
Learn Unity for
Windows 10
Game
Development

—
Sue Blackman
Adam Tuliper

www.allitebooks.com

http://www.allitebooks.org

Learn Unity for
Windows 10 Game

Development

Sue Blackman
Adam Tuliper

www.allitebooks.com

http://www.allitebooks.org

Learn Unity for Windows 10 Game Development

Sue Blackman Adam Tuliper
Temecula, California, USA Lake Forest, California, USA

ISBN-13 (pbk): 978-1-4302-6758-4 ISBN-13 (electronic): 978-1-4302-6757-7
DOI 10.1007/978-1-4302-6757-7

Library of Congress Control Number: 2016962195

Copyright © 2016 by Sue Blackman and Adam Tuliper

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Marc Schärer
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Sharon Wilkey
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

For Adam’s wife, Artemis, and kids, Asa, Axl, and Zoe,
who so graciously let this project take up so much of his time

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors �� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

 ■Chapter 1: The Unity Editor �� 1

 ■Chapter 2: Unity Basics ��� 67

 ■Chapter 3: Scripting with C# ��� 123

 ■Chapter 4: Importing Assets �� 165

 ■Chapter 5: Prototyping the Navigation �� 217

 ■Chapter 6: Experimenting with Functionality �� 243

 ■Chapter 7: Creating the Environment �� 275

 ■Chapter 8: Combining Assets and Functionality �� 307

 ■Chapter 9: Audio and Special Effects �� 339

 ■Chapter 10: GUI and Menus ��� 371

 ■Chapter 11: Rewards and Monetization �� 423

 ■Chapter 12: Building for Windows Store ��� 475

Index ��� 567

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors �� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

 ■Chapter 1: The Unity Editor �� 1

Installing Unity �� 1

Creating a Unity User Account �� 1

Performing the Installation ��� 3

Exploring the General Layout �� 7

Working with Menus ��� 10

Getting Started ��� 17

Exploring the Views �� 25

Managing Layout �� 42

Understanding the Project Structure �� 44

File Structure �� 44

Project Management �� 46

Load/Save ��� 46

www.allitebooks.com

http://www.allitebooks.org

viii Contents

Preparing for Windows Store ��� 46

Building for Windows ��� 47

Summary �� 65

 ■Chapter 2: Unity Basics ��� 67

Working with Unity GameObjects ��� 67

Creating Primitives ��� 68

Using Transforms �� 70

Duplicating GameObjects ��� 75

Arranging GameObjects �� 76

Parenting �� 78

Working with Components�� 81

Creating Environments �� 88

Using the Terrain Editor �� 88

Adding Water �� 110

Creating the Sky ��� 113

Summary �� 121

 ■Chapter 3: Scripting with C# ��� 123

Creating a New Test Project ��� 123

Why C#? �� 124

Working with Script Editors �� 125

Exploring the Editing Environment ��� 125

Examining the Contents �� 132

Building a Script �� 133

Introducing Functions ��� 134

Working with Variables ��� 139

Introducing Interaction ��� 149

Adding User Input ��� 150

Using the Conditional �� 152

Adding More Functionality �� 154

www.allitebooks.com

http://www.allitebooks.org

ix Contents

Looping �� 155

Creating User-Defined Functions �� 156

Working with Script Editors �� 157

Summary �� 163

 ■Chapter 4: Importing Assets �� 165

Importing 3D Objects �� 165

Supported 3D Mesh Formats �� 166

Importing the 3D Assets ��� 166

The Model: Setting the Basic Attributes ��� 172

The Rig Tab: Setting the Animation Type ��� 180

The Animations Tab: Setting Up the Animation Clips �� 186

Importing Image Assets �� 192

Setting the Texture Type ��� 192

Exploring Texture Dimensions �� 196

Understanding Mapping and Vertex Count ��� 197

Managing Textures and Batching ��� 200

Working with Materials and Shaders ��� 205

Investigating the Standard Shader ��� 206

Using Normal Maps �� 210

Summary ��� 214

 ■Chapter 5: Prototyping the Navigation �� 217

Understanding the Basics ��� 217

Taking the First Steps �� 217

Scripting User Interaction �� 219

Creating Prefabs ��� 223

Working with Inheritance�� 226

Creating a Death Zone �� 229

Tweaking Physics ��� 233

www.allitebooks.com

http://www.allitebooks.org

x Contents

Improving the Basics ��� 235

Using Co-routines ��� 235

Suppressing Player Input �� 238

Resetting the Board �� 239

Summary �� 241

 ■Chapter 6: Experimenting with Functionality �� 243

Creating Portals ��� 243

Making Custom GameObject Icons ��� 253

Adding Randomization �� 256

More on Marble Physics ��� 258

Adding a Jump �� 258

Adding a Turbo Boost �� 263

Embracing UWP �� 267

Mapping the Gamepad ��� 267

Summary �� 273

 ■Chapter 7: Creating the Environment �� 275

Generating the Paths ��� 275

Introducing the Cells �� 277

Preparing the Assets ��� 279

Making Paths �� 283

Marking the Path Starting Tile �� 291

Scripting the Undo �� 293

Saving Your Paths ��� 294

Loading the Paths ��� 297

Activating the Paths �� 298

Changing the Tiles �� 298

Setting Sequential Progress ��� 300

Working with External Influences ��� 301

Adding New Game Pieces ��� 303

Summary �� 306

www.allitebooks.com

http://www.allitebooks.org

xi Contents

 ■Chapter 8: Combining Assets and Functionality �� 307

Merging Environment and Functionality ��� 307

Refining the Portal Functionality �� 309

Introducing Dynamic Elements �� 317

Game Elements ��� 317

Shaking Things Up �� 321

Completing the Path ��� 333

Summary �� 337

 ■Chapter 9: Audio and Special Effects �� 339

Adding Audio �� 339

Audio Clips �� 339

Audio Source �� 343

Using Particles and Special Effects �� 348

The Spinner’s FX ��� 348

The Popper’s FX �� 355

The Booster’s FX ��� 357

Updating the Marble ��� 360

Managing the Portal Particles �� 361

Drawing from a Pool ��� 361

Using the Pool ��� 365

The Path End FX ��� 366

Summary �� 370

 ■Chapter 10: GUI and Menus ��� 371

Working with the Unity UI ��� 371

Layout ��� 371

Processing Sprite Textures ��� 384

Background Management �� 391

Game Level GUI ��� 397

Hooking Up the Functionality ��� 400

Making the Game Timer�� 400

Adding Health ��� 404

www.allitebooks.com

http://www.allitebooks.org

xii Contents

Pausing the Game ��� 407

Encouraging Another Game �� 411

Finishing the Start Menu �� 412

Loading the Board Level ��� 412

Retaining Data Between Levels �� 413

Interacting with the GUI by Using a Gamepad �� 417

Summary �� 420

 ■Chapter 11: Rewards and Monetization �� 423

In-App Purchases ��� 424

Persistent Data ��� 424

Creating the Purchased Functionality ��� 427

Making the Store �� 460

Summary �� 474

 ■Chapter 12: Building for Windows Store ��� 475

Reviewing Requirements ��� 476

Enabling Developer Mode ��� 478

Setting Your Build Defaults ��� 487

Customizing the Player Settings ��� 488

Enabling the Gyroscope Functionality �� 511

Finishing the Tiltboard Project �� 516

Adding the Gyroscope Code �� 516

In-App Purchases ��� 520

Testing on Windows 10 Phone �� 561

Extending the UWP ��� 563

Xbox One �� 564

HoloLens ��� 564

Summary �� 565

Index ��� 567

xiii

About the Authors

Sue Blackman has been an instructor in the 3D field for nearly
20 years at art schools and community colleges. She has been
involved with the commercial development of real-time 3D engines
for more than 10 years. In the past, she has been a contributing
author for New Riders Press (3ds max 4 Magic) and written for
ACM SIGGRAPH on serious games. She has written product
training materials and instruction manuals for developing content
with real-time 3D applications, used by multimedia departments
in Fortune 1000 companies including Boeing, Raytheon, and
Lockheed Martin, among others. In addition to writing and
teaching, Sue has been the lead 3D artist on several games for
Activision Publishing and its subsidiaries. Sue can be contacted at
Sue@3dadventurous.com or sueblackman3djunkie@gmail.com.

Adam Tuliper works as a senior software engineer for
Microsoft, helping others achieve their technical vision across
Windows, the Web, and the cloud. He works a lot with the
gaming community in the western United States, co-runs
the Orange County Unity Meetup, and is also an indie game
developer working on new titles. He can be reached via his
web site, www.adamtuliper.com, and Twitter (http://twitter.
com/adamtuliper).

http://www.adamtuliper.com/
http://twitter.com/adamtuliper
http://twitter.com/adamtuliper

xv

About the Technical
Reviewer

Marc Schärer is an interactive media software engineer and
contributor to the Unity forums as a full-time professional Unity
user since 2007. As a Swiss local, he attempts to support the
local development communities in Switzerland to help them
unleash their potential, applying his experience delivering
interactive 3D learning, training, and entertainment experiences
to mobile, desktop, and web platforms for customers around
the world.

He has a strong background in the fields of 3D graphics,
network technology, software engineering, and interactive
media, which first interested him as a teenager. He studied
computer science as well as computational science and
engineering at the Swiss Federal Institute of Technology in
Zürich.

He is currently the chief VR officer at vantage.tv, a company he co-founded in 2014, which
seeks to revolutionize the way we see and experience events of any type and scale in the
future by removing the barrier of distance.

xvii

Acknowledgments

I started writing this book well over two years ago, to help a friend break into both writing
books and the Unity community. The friend, a big fan of mobile games, was going to handle
the Windows Store section and assist throughout the rest of the book. Unfortunately, the
friend had to pull out of the project, leaving me to pick up the pieces. Mobile development
being well out of my comfort zone, I had to find a new co-author. The choice was easy. We
had met Adam Tuliper during our research into Windows Store and he had graciously offered
to help out in whatever way he could. Well, who better than Microsoft’s liaison with Unity,
and a senior programmer besides, whose duties include traveling the country and helping
Unity users make the most out of their Windows games, apps, and Windows devices.

The problem (or benefit, as the case may be), was that as a Microsoft “insider,” Adam was
tuned in to what was in development. So we waited until the time was right to continue with
the book, and as a result, were rewarded with Windows 10 and the fruition of the Unified
Windows Platform (UWP) and all of the device families that encompassed. The little game
that started out as a vehicle to use the accelerometer on Windows Phone and tablets
blossomed into a great testing ground for handling input from touch, mouse, keyboard, and
gamepad. The most exciting part, however, was the addition of Adam’s work on publishing
to Windows Store. Seeing the game on Windows Store, and getting the app and running it
on another Windows 10 device was awesome! Adam burned the midnight oil to bring it all
together by Chapter 12 and has my unending gratitude! Without Adam, this book would not
have been possible. A huge thanks to you!

http://dx.doi.org/10.1007/978-1-4302-6757-7_12

xix

Introduction

The Unity community is very large and very helpful. Videos, code, and 3D assets are
available on any number of topics, and the Unity help documents continue to evolve,
keeping the community abreast of the latest functionality and features. One of the biggest
challenges, however, is to learn how to bring it all together. In this book, you will begin with
the aim to create a small Windows 10 game, taking full advantage of the Universal Windows
Platform (UWP), and be able to publish it to Windows Store. Along the way, you will not only
have a chance to learn the fundamentals of game development with the Unity engine, but
also experience the concept of starting simple, testing early, and adding bonus functionality
as time and budget permit. In the end, you will be taken through the process of publishing
an app to Windows Store, a task filled with its own set of new terms, concepts, and
procedures. As with creating games with Unity, the publishing process is well documented
in the Microsoft Windows Dev Center, but in such detail as to be overwhelming. This final
chapter of this book breaks down the essentials and leads you through the process of
building and publishing to Windows Store one step at a time.

About the Unity Game Engine
The free version of Unity provides an excellent entry point into game development, offering
features and functionality that remove barriers to creative game development. With its huge
user community, Unity removes the elitist separation between programmers, artists, and
game designers that is typical of high-priced game engines. It makes it possible for anyone
to take the first step to bringing their ideas to life. In this book, you will get to wear many hats
as you create your first Unity game, discovering where your interests lie as well as gaining an
understanding of what is required to develop a casual game and bring it to market.

Will I Have to Learn to Script?
Most game play needs to be scripted in Unity, but hundreds of scripts are already available
that can be readily reused. Unity ships with several of the most useful. More can be found
by searching the Unity Forums, wiki, or Unity Answers. Many forum members will even

xx Introduction

write bits of script for less-adept users. In the Collaboration section of the forum, you can
even find scripters looking to trade for art assets. By the end of this book, you should know
enough to be able to take advantage of the wealth of material available from the Unity
community. Although C# (pronounced C sharp), the coding language you will be using in this
book, is not as user-friendly as Unity’s version of JavaScript, it has become the language of
choice for most users, in part because it is better suited to mobile platforms. Regardless of
reasons, nowadays the majority of code samples are in C#, so it makes more sense to use it.

Assumptions and Prerequisites
This book assumes that you are new to scripting, 3D, and game design, and/or the Unity
engine as well as publishing to Windows Store.

What This Book Doesn’t Cover
This is not a book on how to become a programmer nor a high-level adept at asset creation.
It uses programming best practices when possible, but the scripting in this book is designed
to ease a nonprogrammer into the process by providing instant visual feedback as often as
possible. While there are usually several ways to attain the same goal, the scripting choices
made in this book are generally the easiest to read and understand from a newbie’s point of
view. You won’t have to provide your own art assets or go foraging through the Unity Asset
Store for suitable items for the book’s project either. Art assets will be provided for you,
giving you the opportunity to learn the basics of managing them in your game. Although
the Asset Store is a great place to find all manner of assets for your games, the legalities
of redistributing them in the Unity project for each of the book’s chapters was prohibitive.
Although it makes writing the book more difficult, the advantage of having the project in its
current state at the end of the chapter is invaluable. Be sure to download the game project
with the chapter assets from the book’s page on the Unity web site, [url here, please].

Conventions Used in This Book
This book uses various conventions. Examples are shown here.

 1. Instructions look like this.

Code looks like this.

Platform
This book was written using Unity 5.4 in a Windows 10 environment.

Tip Notes, tips, and cautions follow this format.

1© Sue Blackman and Adam Tuliper 2016
S. Blackman and A. Tuliper, Learn Unity for Windows 10 Game Development,
DOI 10.1007/978-1-4302-6757-7_1

Chapter 1
The Unity Editor
On the off chance that you are completely new to Unity, this first chapter reviews the basics
of the Unity editing environment and a few key concepts. If you are already somewhat
familiar with Unity, be aware that Unity is a fast-evolving application. This book was written
while Unity 5.4 was in beta, so it is based on those features; future configurations could
be slightly different. Be sure to check this book’s thread in the Teaching & Certification ➤
Community Learning & Teaching section of the Unity Forums for updates, clarification, and
changes introduced by subsequent releases.

Installing Unity
Your first task, if you have not already done so, is to download and install Unity. You should
also set up a Unity account. Unity now has four license types: Personal, Plus, Pro, and
Enterprise. Unity Personal is free, provided your company doesn’t earn more than $100K a
year. For the most part, the remaining offerings provide you with services that will help you
refine your games for better monetization and player experience.

Creating a Unity User Account
If you don’t already have one, you will be encouraged to create a Unity user account
during the installation process. Your user account will provide access to the downloads,
Unity Forums, Unity Answers, and the Unity Asset Store. The forums provide a place for
discussion of all things Unity. Unity Answers is where you can go to get quick solutions to
your queries, and the Unity Asset Store is where you can find assets of all kinds (3D models,
animated characters, textures, scripts, complete game environments, and more) to help you
with your project. After Unity is installed, you will find a direct link to each of these resources
through the editor’s Help menu.

2 CHAPTER 1: The Unity Editor

To get started, go to https://store.unity.com or follow the Get Unity links from the Unity3D
home page. Currently, you will be given the following license options (Figure 1-1) as well as a
comparison of the differences. Select the Personal edition.

Figure 1-1. The current Unity license options

Figure 1-2. The Unity system and eligibility requirements and Download Installer button

You will be taken to the next page, where the Personal edition’s system and eligibility requirements
are stated; click the Download Installer button to download the installer (Figure 1-2).

https://store.unity.com/

3CHAPTER 1: The Unity Editor

The site automatically offers the version that matches the platform you are currently on, but
also provides a link to other operating system versions.

Because the porting section of this book is written specifically for Windows Store and the
Universal Windows Platform (UWP), you will eventually need access to Windows 10. For the
time being, you will be able to create most of the book’s project on the operating system you
have at hand. Unity’s develop once, deploy everywhere mantra, while not quite as simple as
it sounds, does go a long way toward that goal. The majority of the book offers many tips,
tricks, and best practices valuable for any target platform.

Performing the Installation
This book was written using Unity 5.4. Because Unity regularly makes changes that can
affect your projects, you may wish to use the 5.4 version even if the current version is newer.
If you prefer, you can install multiple versions of Unity on the same machine, provided you
name the folders accordingly (for example, Unity 5.4, Unity 5.6). Since Unity 5, you have
the option to run more than one instance of Unity at the same time. Because changes in
the Project view directly affect the project on your hard drive, it is not advisable to open
two instances of the same project. If you choose to have multiple versions of Unity, you will
be required to start Unity from the desired version rather than from the desktop icon or the
project itself, as the previously run version will open by default.

When you install Unity, you will be given a choice of components to install. Common choices
are the Unity engine, Documentation (if you work offline on a regular basis), Standard Assets,
Example Project, Microsoft Visual Studio Community 2015, Android Build Support, iOS Build
Support, Windows Store .NET Scripting Backend, and Windows Store IL2CPP Scripting
Backend (Figure 1-3). Links are provided in the Unity Build window if you decide to add
more of the options at a later date.

Tip If you are installing Unity to a machine that does not have Internet access, you can usually
find the separate component downloads by following the links for the Unity beta releases. Be aware
that Visual Studio Tools for Unity requires Internet access to install and use.

4 CHAPTER 1: The Unity Editor

For this book, you need Unity 5.4 (or the current build), Standard Assets, Microsoft Visual
Studio Community 2015, and Windows Store .NET Scripting Backend. In Chapter 12, you
will find in-depth explanations for several of the options, but for now, just install them.

1. Install Unity, following the prompts, including the previously
suggested components.

On a Windows machine, Unity will be installed in the Program Files folder. The sample
project (should you opt to install it) will be installed in Documents ➤ Public Documents ➤
Unity Projects. On a Mac, you will find Unity in Users ➤ Shared ➤ Unity. If you do not install
the sample project and sample assets, they can be downloaded from the Unity Asset Store
at a later date or through the installer.

At this point, you should see the Unity icon on your desktop (Figure 1-4).

Figure 1-4. The Unity application icon on the desktop

Figure 1-3. The Unity component options using the Download Assistant

http://dx.doi.org/10.1007/978-1-4302-6757-7_12

5CHAPTER 1: The Unity Editor

If you have not yet created an account, you will be given the opportunity to do so now, or
you can choose to work offline. Next you will see the Unity start screen, where you can
select a previously opened project, browse for a new project, or create and set up a new
project (Figure 1-5).

Figure 1-5. The Unity start screen

Click the icon to open Unity.

This screen shows information including the location and version of previously opened
projects. Unity makes very little attempt at backward compatibility as it strives to improve
frame rate and feature sets, so don’t be surprised if an older project does not work in
a newer version. Also be aware that opening an older version will cause a project to be
updated to run on the current version (as much as possible). When the update is completed,
you will not be able to open it in earlier versions, so it is advisable to save a backup copy
of the project folder prior to updating. Fortunately, you will be warned first and will have the
opportunity to decline the update.

From the start screen, you can watch an overview video by clicking Getting Started. This
overview is brief but will point you toward several of the Unity learning resources. Feel free
to take a few minutes to watch the video. It is installed with Unity and does not require an
Internet connection. If you do not have a Unity account, you will see a Sign In button instead
of My Account in the top-right corner.

Let’s begin by examining the editor with an almost empty new project loaded:

1. On the start screen, select the New button at the upper right to begin
a new project (Figure 1-6).

6 CHAPTER 1: The Unity Editor

Besides setting the name and location of the project, you are also given
the option to preload assets relevant to 3D or 2D scenes. You won’t
be preloading any assets this time, but they can be imported into your
scenes at any time through the editor. Best practice is to avoid loading
unnecessary assets to keep your project clean and easy to manage.

2. Set the Project Name and Location manually using the Browse icon
(…), or accept the default name and location.

Figure 1-6. Creating a new project

Tip When you create a new project, Unity creates a folder to house that project, using the project
name you provide. The folder is the project.

3. With the project name and location specified, click the Create Project
button.

The new project and new scene, Untitled, opens in the Unity editor
(Figure 1-7).

7CHAPTER 1: The Unity Editor

Exploring the General Layout
With the project loaded, you should see Unity sporting its default layout. If you are using the
Personal edition, the UI should appear in light gray, as in Figure 1-7. If you have purchased
or are evaluating Unity Plus or Pro, the background will reflect the dark theme (Figure 1-8).
For this book, the screenshots utilize the light theme for better contrast. If you have Plus or
Pro and prefer the lighter version, you can change the Editor Skin in the General section of
Unity Preferences (Figure 1-9).

Figure 1-7. The new project in the Unity editor

8 CHAPTER 1: The Unity Editor

Figure 1-9. The Editor Skin options for Plus and higher

Figure 1-8. The Unity UI dark theme

9CHAPTER 1: The Unity Editor

Unity’s UI consists of four main views and several important features. The Scene view, Game
view, Hierarchy view, and Inspector view (typically referred to as the Inspector) are generally
accessible in any of the layout options, as are the playback controls, coordinate system
options, and object/viewport navigation buttons (Figure 1-10). If the term views seems a bit
odd, it helps to know that depending on which view is active, your input (or the events it
triggers) will generate different results. The first click in a different view sets the focus to it.

Figure 1-10. The Unity UI and its main features

With the default layout, the main feature is the Scene view. This is where you will be able to
arrange your 3D assets for each scene, or level, in your project.

In the tab next to the Scene view, you will find the Game view. In the default layout, when
you click the Play button, the Game tab is automatically opened. In the Game view, you will
interact with your scene at runtime to test your game play.

To the left of the Scene/Game viewports, you will find the Hierarchy view. Here you will find
the objects that are currently in the loaded scene, or level.

Below the Scene/Game view is the Project view. This contains the resources or assets
available to the current project. This folder corresponds directly to the project’s Assets folder
on your operating system. Deleting files from the Project view will send them to the trash on
your computer. If you author from an external hard drive, you should be able to locate the
deleted files in the drive’s own trash folder. The main point here is that there is no “undo” for
these deleted files in the Unity editor.

10 CHAPTER 1: The Unity Editor

To the far right, you will find the Inspector. This is where you can access the parameters,
options, and other particulars of selected assets, from the Hierarchy or Project views, as well
as general project-related settings.

At the top left, the navigation controls allow you to move and arrange objects in your scene
and reorient the Scene view itself for easier access to the various objects.

To the right of the navigation tool controls are the coordinate system options. Here you can
specify Global or Local coordinates as well as using the object’s designated Pivot Point or
the Center of its bounding box as the rotation point.

In the top center, you will find the playback buttons. The Play arrow puts you in Play
mode, where you can test your game’s functionality and presentation in a Windows or Mac
environment. The background color of the UI will also change, alerting you to the fact that
you are in Play mode. Many types of changes during runtime will be lost once you return to
Edit mode. The Play button becomes a Stop button when you are in Play mode. You also
have the option to Pause the game, using the middle button, or to step through one frame at
a time, using the right button.

Along the top right, you will see a button and three drop-down menus. The cloud icon is
for Services, enabling Unity to provide a “suite of integrated services for creating games,
increasing productivity, and managing your audience.” The Account drop-down menu
provides quick access to your Unity account and lets you sign in or out. The Layers drop-
down menu allows you to set various layers, such as the UI elements, to be active or inactive
during Play mode, or to define new layers. The Layout drop-down menu provides a quick
way to switch between several popular layout configurations.

Working with Menus
The menu bar consists of seven menus, a few of which may already be familiar to you from
other applications (Figure 1-11).

Figure 1-11. The Unity menu bar

With the File menu (Figure 1-12), you can save and load both scenes and projects. This
menu also enables you to build, or compile, your game before sharing it with others. In
Unity, the project consists of all the assets or resources used to create each scene, or level.
Scenes can be anything from complex 3D levels to simple 2D menus and anything partway
between. As usual, keyboard shortcuts are shown where applicable.

11CHAPTER 1: The Unity Editor

In the Edit menu (Figure 1-13), you will find the usual editing options: Undo, Redo, Cut,
Copy, Paste, Duplicate, and Delete. The next couple of menu sections deal with functionality
generally accessed through keyboard shortcuts or UI buttons, but that are useful for
identifying the shortcuts.

Figure 1-12. The File menu

12 CHAPTER 1: The Unity Editor

You will investigate Frame Selected and Find later in the chapter. You use options from
this section of the menu to locate and manipulate the viewport to the selected item. The
Preferences option enables you to customize the Unity editor for matters other than layout.

With the exception of the Step option, the Play options are fairly self-explanatory. If the
concept of stepping through a real-time game seems odd, think of physics. In that scenario,
it could be useful to watch the progress of an object set into motion and affected by force,
gravity, and other physics-based elements.

In the Selection section, you can create and load selection sets of objects for easier
management of large scenes. While it may seem like more trouble than using parenting
or groups to stay organized, it avoids the extra overhead of managing nested transforms.
Children inherit the transforms of their parents, and position, location, and scale must have
each offset calculated for each frame.

Figure 1-13. The Edit menu

13CHAPTER 1: The Unity Editor

The Edit menu also provides access to project settings. These settings are not associated
with any particular scene object. You will find yourself accessing the project settings
regularly for everything from mapping user input to specifying the visual quality of your
game.

At the very bottom of the Edit menu, you can gain access to the snap options to help with
the arrangement of your 2D or 3D scene assets. Unity’s snapping system is powerful and
makes the layout of your environments fun and easy.

In the Assets menu (Figure 1-14), you will see the various options for creating, importing, and
exporting assets. This extremely useful menu can also be accessed in a couple of places in
the editor, as you will see throughout the book. Topping the list is the Create submenu. You
use this option to create most of your Unity-specific assets, such as scripts, materials, and
a variety of other useful things. Along with the menus for importing assets such as textures
and 3D models, you will find a mainstay of Unity game development: the means of importing
and exporting Unity packages. Packages are the vehicle for transferring all things Unity with
their relationships and functionality intact.

Figure 1-14. The Assets menu

With the GameObject menu (Figure 1-15), you can create several types of preset objects,
from the most basic of Unity objects, an Empty gameObject, to primitives (basic geometric
shapes), lights, cameras, and a nice variety of 2D and 3D objects. Also of note in this menu
are three of the last four commands. They are the means for positioning objects relative to
one another, including cameras and their views.

14 CHAPTER 1: The Unity Editor

In Unity, anything that is put in your scene or level is called a gameObject (lowercase g).
More than just Unity’s name for an object, gameObject specifically refers to an object that
inherits attributes and functionality from the GameObject class (uppercase G), the code that
defines the top-level object and its basic behavior.

The Component menu (Figure 1-16) is where you can add components to define or refine
your gameObject’s functionality. Any of the premade objects from the GameObject menu
could be built from scratch by adding the appropriate components to an empty gameObject.

Figure 1-15. The GameObject menu

www.allitebooks.com

http://www.allitebooks.org

15CHAPTER 1: The Unity Editor

Figure 1-16. The Component menu

With Window menu (Figure 1-17), you can open or change focus to Unity’s standard and
specialty views or editors. The shortcut keys are listed if they exist. Unity’s editor UI is
completely customizable so it is possible to dock, float, or tab the component parts. This menu
allows you to locate them again if you inadvertently lose them. Note the Asset Store item. This
takes you directly to Unity’s Asset Store, where you can import assets directly into your game.
If you are not using Unity Pro, you will find that Pro-specific features are grayed out.

16 CHAPTER 1: The Unity Editor

The Help menu (Figure 1-18), as expected, will provide you with the version number and
license information of your Unity installation as well as manage the current location of your
Unity license. This gives you an easy way to move your Plus or Pro license between different
machines and platforms while authoring. This menu also provides access to the two main
parts of Unity documentation: the Unity Manual, where you can find information on the
workings and concepts behind much of the Unity workflow and features, and the Scripting
Manual, where you can find Unity-specific API classes, examples, and scripting tips.
Additionally, the menu supplies links to the Unity Forum, Unity Answers (when you just need
a quick solution), a means of reporting a bug should the need arise, and other useful links to
keep you connected with the Unity community.

Figure 1-17. The Window menu

17CHAPTER 1: The Unity Editor

Figure 1-18. The Help menu

Getting Started
As you may expect, you need something more than an empty project before exploring the
Unity editor. The demo scene that Unity ships with changes occasionally, so yours may be
different from the one shown in this chapter. Many useful Unity sample scenes can be found
at the Unity Asset Store (under the Unity Essentials category, and the Complete Projects
category under Unity Technologies). They are generally fairly complicated and are meant to
show off what is possible to do with Unity, but a few have been designed for tutorials, so
looking through and checking out the descriptions is worthwhile.

Loading Projects
If you did not install the Sample Project during the Unity installation process, fetch it from
the Asset Store now. The Asset Store generally should be opened through the Unity editor,
as most available assets must be imported directly into your current project. Full projects,
however, can be downloaded and stored in the location of your choosing. As the current
sample scenes are packaged into a single project, you should see a Download button.
Follow these steps:

1. From the Windows menu, select Asset Store.

2. Do a search of publishers for Unity Technologies.

3. Select the Standard Assets Example Project.

18 CHAPTER 1: The Unity Editor

4. Click the Download button’s drop-down arrow (on its right side).

5. Select Download Only and make note of the location.

6. Close the Asset Store window when the project has finished
downloading.

From the current project, you can load the sample project:

1. From the File menu, select Open Project.

2. If you installed the sample project, you can select it directly from
the Recent Projects list. If you downloaded it manually, select Open
Other.

3. Navigate to the folder where the Standard Assets Example Project
(the parent folder) was saved, select it, and click Select Folder.

When the Unity editor opens, the previously loaded scene will be loaded. If this is the first
time you have opened a project, a new scene, Untitled, will be loaded (Figure 1-19). It
consists of a camera and a Directional Light (which also provides a sky environment).

Figure 1-19. The Unity sample project opened with a new Untitled scene loaded

One of the first things you will learn to do in Unity is to keep your projects organized. While
it’s not mandatory to do so, most developers create a folder called Scenes to store the
game’s scenes or levels. You will find that the Scenes folder in the Standard Assets Example
Project has been stashed inside the Sample Scenes folder. Unity provides icons to help you

19CHAPTER 1: The Unity Editor

Figure 1-20. The CharacterThirdPerson scene loaded

locate various types of resources. The icon used for scenes is, appropriately, the
Unity product icon.

1. In the Project view, under Assets, click the arrow to expand the
Sample Scenes folder.

2. Select the Scenes folder.

3. In the second column of the Project view, select and double-click the
CharacterThirdPerson scene to load it (Figure 1-20).

The contents of the scene are shown in the Hierarchy view. The Scene view reflects the last
observation point from the last scene seen in the Unity editor, regardless of what project it
was in. You may have to adjust the view to see the contents better.

Navigating the Scene View
The first thing you will probably want to do is reposition and then explore the loaded scene
in the Scene view. Because viewport navigation varies quite a bit in 3D applications, this is a
good place to start your Unity experience. Let’s begin by adjusting the view:

1. Move the cursor to the Scene view.

2. Hold the middle mouse button down and move the mouse to pan the
view.

20 CHAPTER 1: The Unity Editor

3. Using the middle mouse roller, zoom the view until you can see most
of the contents of the scene.

To orbit the view, it is best to have a center point set. The quickest way to
set the focus of the Scene view is to choose an object and then force the
view to frame or center it in the viewport.

4. In the Hierarchy view, single-click the object names to see where
they are located in the scene.

As you select them, their transform axis (a gizmo with a red, green, and
blue arrow for the three cardinal directions) will show in the view.

5. Double-click the ThirdPersonController object.

As the view zooms to frame the character, you can easily see that he is now
the focus (center of the view). Although you probably can’t see any of the
Cameras group’s contents, the center of the group looks to be centrally
located and will be a good choice for the scene focus.

6. Double-click the Cameras object in the Hierarchy view.

Your exact view may vary, but from any particular location, it will be looking
toward the center of the Cameras group that is now in the center of the
view (Figure 1-21).

Figure 1-21. The Cameras group framed in the Scene view

7. To orbit around the Scene view’s center point, hold the Alt key down
on the keyboard, press the left mouse button, and move the mouse
around. The Scene view is orbited around the current center.

8. To look around from the scene’s viewpoint, hold the right mouse
button down and move the mouse. Note that this changes the center
of the view. With the Alt key plus the right mouse button held down,
you can zoom the view.

21CHAPTER 1: The Unity Editor

9. You can also perform fly-through navigation through the scene. Hold
the W key down on the keyboard and then press the right mouse
button. Move the mouse to perform direction changes.

The speed increases the longer the mouse button is held down, so you may
want to try a few starts and stops. Try experiments with the A, S, and D
keys along with the right mouse button.

Understanding the Scene Gizmo
In the Scene view, you have several options for working in the viewport as you create and
refine your scene. The two main options are to view the scene in perspective mode or in
isometric mode.

1. Double-click the Cameras object once again in the Hierarchy view
and then zoom back to get a good view of the scene contents.

2. Using the right mouse button (or any of the alternative methods),
rotate the view and observe the Scene gizmo.

The Scene gizmo indicates the cardinal direction of the global or world
directions (Figure 1-22). Currently, you are seeing the perspective view,
Persp, but you can use the Scene gizmo to change to an isometric view,
Iso. An isometric, view is often used in drafting to create a 3D view without
the vanishing-point perspective of the human eye. Unlike in Persp, where
objects farther back in the scene appear smaller, in Iso, their size relative
to each other is always correct. When coupled with the cardinal directions
(front, back, top, bottom, left, and right), Iso will show a flat orthographic
view that can make positioning objects much more accurate. When rotated
off of the side or top/bottom views, the view becomes isometric. You can
toggle the label to return to a perspective view.

Figure 1-22. The Scene gizmo in the upper-right corner of the Scene view

22 CHAPTER 1: The Unity Editor

3. You can also use the Scene gizmo to see the scene in traditional
orthographic views after it is set to Iso. With the Scene gizmo set to
Persp, select the y, or top, view arrow on the gizmo.

The scene is seen from the top (Figure 1-23), but it’s still the perspective
view, as indicated by the wedge-shaped icon next to the Top label, just
below the gizmo.

Tip In Unity, y is in the world. The Unity Scene and Transform gizmo follow the x,y,z = R,G,B
convention, where the x axis is red, y is green, and z is blue.

Figure 1-23. The perspective Top view

23CHAPTER 1: The Unity Editor

Figure 1-24. The orthographic Top view

5. Try clicking the other Scene Gizmo arrows to see the other views.
These views will allow you to position objects with respect to each
other with far more accuracy than a perspective view.

6. Use the right mouse button or its equivalent to rotate away from the
current orthographic view.

The view once again becomes an isometric view (Figure 1-25). If you have
an engineering background, you will recognize this as a typical means
of depicting objects in 3D without having to calculate true (human-eye-
type) perspective. It is also used in many world-building games, such as
Blizzard’s Warcraft 3 or StarCraft.

4. Click the Top label. Now the view is a flat orthographic view, as
indicated by the three parallel bars next to the Top label (Figure 1-24).

24 CHAPTER 1: The Unity Editor

Figure 1-25. The Iso, or isometric, view

7. Return to a perspective view by clicking the Iso label. The viewport
and label are returned to a perspective view (Figure 1-26).

Figure 1-26. The Scene view once again showing a perspective view

25CHAPTER 1: The Unity Editor

Exploring the Views
Now that you are becoming more adept at manipulating the viewport, you can check out
several of the tools and features available to you with each of the main views.

Hierarchy View
The Hierarchy view is essentially a list tree of the objects currently in the loaded or active
scene. During runtime, objects can be instantiated (created on the fly) or destroyed (deleted
from the scene). This is an important concept in Unity, and it is one of the reasons that most
changes made during runtime are not permanent. On exiting Play mode, the Hierarchy
view will be returned to its former state. This allows you to experiment with changes during
runtime without worrying about the consequences.

Although this scene looks fairly simple in the Hierarchy view, you will discover that a parent
object may contain any number of children, each able to have their own children.

1. Click one of the small, magenta boxes in the Scene view. This
object’s parent, GeometryDynamic, is expanded and highlighted in
the Hierarchy view (Figure 1-27).

Figure 1-27. Picking an object in the Scene view to locate it in the Hierarchy view

Although this scene is simple, you can imagine how difficult it can be to
locate particular objects in either the Scene or Hierarchy view in a more
complex scene. Fortunately, Unity has a nice search function for that
purpose. At the top of the Hierarchy view, to the right of the Create drop-
down arrow, you will see a small magnifying glass icon and its drop-down
arrow. This drop-down menu lets you filter for All, Name, or Type. Let’s start
with Type (Figure 1-28).

26 CHAPTER 1: The Unity Editor

Figure 1-28. The Search feature’s filters

2. Press the drop-down arrow next to the search icon and select Type.

3. In the text file to the right, type camera.

Before you can finish typing, Unity lists all cameras in the scene. In this
case, there is only one, Main Camera. If you select it in the Hierarchy view,
it is also selected in the Scene view. Because it is a camera, its view is also
shown in the Camera Preview window. Note how everything else in the
scene has been grayed out.

4. Double-click the Main Camera in the Hierarchy view to frame it in the
scene, and then zoom in closer to it.

The camera has no mesh object, so a 2D icon is used to represent it in the
Scene view.

5. Return to a normal Scene view by clicking the x to the right of the
word you typed in.

The Scene view is returned to normal, but the selected object remains
highlighted in the Hierarchy view.

6. Double-click the Cameras group and arrange the view to see most of
the boxes.

7. Deselect the Cameras group by clicking in a blank area of the
Hierarchy view.

8. Change the filter back to All and type box.

Because there are several objects in the scene with the word box in their
name, the list of possible objects is quite long. In the Scene view, they are all
“ungrayed,” helping you to find the one you want fairly quickly (Figure 1-29).

27CHAPTER 1: The Unity Editor

9. Click the x to return the Scene view to normal.

Scene View
The Standard Assets Example Project doesn’t really contain any complex scenes, but you
should be able to see some of the more commonly used Scene view tools and features in
action. The tools and options are found along the top of the Scene view (Figure 1-30).

Figure 1-29. The options for a scene object with “box” in its name

Figure 1-30. The Scene view tools and options

1. Deselect any objects you’ve selected by clicking in a blank area of
either the Hierarchy or Scene view.

2. Zoom back far enough to see most of the scene.

3. On the far left, just under the Scene tab, click Shaded to see the
other viewport display options (Figure 1-31).

Of the five, the first three are the most commonly used and should be easy
to understand, especially if you have had any background in 3D modeling
or have ever watched a “making of” video of any of the pioneers of the CG
movie industry’s 3D animated films.

28 CHAPTER 1: The Unity Editor

4. Try selecting Wireframe.

You may have noticed that meshes automatically show as textured wire
when selected. The difference here is that the wire is black, not light blue,
allowing you to continue to locate the selected item in the Scene view.
In Wireframe, you can see how 3D objects came to be called meshes, as
they resemble wire meshes. Unfortunately, the Skybox environment is dark
enough to make seeing the wireframe display difficult. You will learn where
that can be turned off shortly.

5. Check out Shaded Wireframe next. Because of the light-colored
materials in this simple scene, you can readily see the density of the
various objects (Figure 1-32).

Figure 1-31. A few of the viewport display options

29CHAPTER 1: The Unity Editor

The Deferred display options are grayed out because the render path is set
to Forward in this scene. If you have Unity Pro, you have the option to use
Deferred as the Rendering Path. It can be found in Edit ➤ Project Settings
➤ Player. It allows for more-sophisticated lighting and shaders. The display
options will help you see the various components available to that render
path.

If you are familiar with the alpha channel of a 32-bit texture or image, you
may be thinking that Alpha is about transparency, with 0 as fully transparent
and 255 as fully opaque. In Unity, however, the alpha channel can do duty
as anything, from a glossiness channel to self-illumination to height maps.
Some of Unity’s shaders are designed to make use of the alpha channels’
textures to maximize effect and minimize texture usage. With the Alpha
option selected for the viewport texture display, you will be able to see the
alpha channel but not what it has been used for (Figure 1-33).

Figure 1-32. The scene viewed with Shaded Wireframe

30 CHAPTER 1: The Unity Editor

6. Select the Overdraw option and orbit the scene to observe the
overdraw or overlap of the objects.

Overdraw shows how many objects must be drawn on top of each other from
the current vantage point. The denser or brighter the display (Figure 1-34),
the more objects there are that must at least be sorted, if not actually drawn.
On mobile devices, regardless of device and operating system, this type of
sorting is costly and should be kept to a minimum.

Figure 1-33. Textures displaying alpha channels in a former sample scene, AngryBots

Figure 1-34. Possible overdraw problem areas showing as bright areas in the Scene view

31CHAPTER 1: The Unity Editor

The next option shows the MIP map distance. MIP mapping is the process of creating
multiple versions of the same texture image, with each being half the dimensions of its
predecessor and consequently more blurry. No color indicates where the full original-sized
texture is seen. As the tint goes from blue to clear to gold through to red, the smaller, blurrier
maps are substituted, preventing the sparkly artifacting effect seen as the camera pulls back
away from the object. Blue uses a blurred version of the map when the camera is close
enough to see pixilation in the texture. Figure 1-35 shows the effect in the AngryBots scene,
as there are very few textures used in the Standard Assets Example Project scenes.

Figure 1-35. Color tinting indicating which version of MIP map is shown according to the distance

To see the MIP maps generated from the imported textures, you can select a texture in the
Project view and examine it in the Inspector:

1. In the Project view, select the Textures folder from the SampleScenes
folder in the Assets folder.

2. Locate and select the ChevronAlbedo texture in the second column.

3. At the bottom of the Inspector, in the Preview window, move the
slider from the far right, slowly over to the far left.

The images are shown in increasingly blurry versions (Figure 1-36). They
appear pixilated as Unity zooms in closer and closer and the versions are
smaller and smaller. This image shows that the original was 512 × 512
pixels. The MIP mapped versions would be 256 × 256, 128 × 128, 64 × 64,
32 × 32, 16 × 16, 8 × 8, 4 × 4, 2 × 2, and 1 pixel. By MIP 7, it is all the same
blurry color.

32 CHAPTER 1: The Unity Editor

4. Set the Scene display view back to its default Textured.

The next option for the Scene view is the 2D toggle (Figure 1-37). If you
are creating the GUI for your 3D game or creating a fully 2D game, the
2D toggle is a must. A little experimentation shows that the 2D option is a
preset to the Back view, with the iso option turned on. The view points in
the positive z direction. The Scene gizmo is hidden to prevent accidental
viewport manipulation. Only Pan and Zoom are available.

Figure 1-36. A texture and two of its MIP mapped versions

Figure 1-37. The 2D toggle essentially a Back/iso view

The next toggle in the Scene view turns scene lighting off and on. When the
scene lights are off, the scene is lit from the user’s viewpoint, straight into
the scene, ensuring that the visible objects will be well lit. In scenes where
the lighting has already been “baked” into most of the textures, you will not
see much difference.

33CHAPTER 1: The Unity Editor

Note the blue tint and shadows visible with the scene lighting, left. A search of the scene for
light will show that there are two lights. When selected, you will see (in the Inspector) that the
color of the main light is white and is set to use shadows. The color of the fill light is bluish,
providing an economical way to fake bounced or ambient light.

The next button to the right is the Play Sound Effects toggle. It toggles audio on or off. To
hear it in action, you would need an object with an Audio Source component with a sound
assigned and set to Loop. You must also be close enough to hear it if it is set to be a 3D
sound.

The Effects drop-down menu to its right allows you to select which scene effects will be
shown in the Scene view (Figure 1-39). As you may remember, this scene uses a Skybox for
the environment that interfered with the Wireframe display. You can toggle all of the effects
off or on by clicking the Effects button, or you can selectively choose which you want to see
from the drop-down menu. Feel free to deactivate the Skybox effect and try the Wireframe
display again.

Figure 1-38. The Scene Lights toggle: lights on (left) and lights off (right)

Figure 1-39. The Effects drop-down menu

5. Toggle the Scene Light button off and on to see the effect (Figure 1-38).

34 CHAPTER 1: The Unity Editor

The next option is the Gizmos drop-down menu (Figure 1-40). This controls which specialty
icons show in the Scene view and how they are presented. Several types of gameObjects
have standard gizmos already assigned and active in the scene. The most obvious are
lights and audio, and—if you remember the new, almost empty scene when you opened the
project—the camera. The gizmos help you to locate objects in the Scene view that have no
mesh associated with them.

Figure 1-40. Gizmos drop-down menu

1. In the Project folder’s Scenes folder, open the Car scene.

2. Double-click the Car and zoom in until you can see the camera,
particle system, and audio icons (Figure 1-41).

www.allitebooks.com

http://www.allitebooks.org

35CHAPTER 1: The Unity Editor

3. Zoom in closer.

As the gizmos get larger, they start to fade out before they cover too much
of the scene. As a default, they are set as 3D gizmos. They are obviously
2D icons, but they are adjusted in size depending on how close you are
to them, giving you a better feel for where the actual gameObject is in
3D space. They are also occluded by mesh objects to prevent the scene
from getting too cluttered. If you find the dynamic sizing distracting while
working mostly in an overhead view, you may prefer to switch them to 2D
by deactivating the 3D Gizmos check box.

4. Deactivate the 3D Gizmos check box and zoom out to see how the
icons retain their size regardless of distance.

All of the gizmos within view will be shown at a standard size. While this
is obviously not practical for a first-person vantage point, it is useful for
overhead editing.

5. Switch the view to a Top iso view so you are looking down on the car.

The icons are easily visible in this simple scene. In a complex scene, icons
may clutter the scene too much, whether you are using 2D or 3D gizmos.
Fortunately, you can opt to turn icons off and on by type.

6. Open the Gizmos list again, and click the AudioSource icon from the icon
column. All of the AudioSource icons are turned off in the Scene view.

In Unity, you have the option of assigning custom icons as well as generic icons to specialty
scripts. In Chapter 6, you will have a chance to assign some custom icons to some of your
scene objects.

Figure 1-41. Camera and audio icon gizmos for the car

http://dx.doi.org/10.1007/978-1-4302-6757-7_6

36 CHAPTER 1: The Unity Editor

The last item on the Scene view bar is the now familiar search feature. While it may seem
redundant to have the search feature on both views, Unity allows you to fully customize
which views are turned on and where they are placed, so you could find it very convenient if
you are using two monitors and have the Hierarchy view far removed from the Scene view.

Game View
For the most part, the Game view is about the runtime functionality of your scene, and its
tools and options reflect that as well (Figure 1-42). Having dealt with the most complicated
view, you can now take a look at the Game view:

1. Click the Game tab to the right of the Scene tab.

Figure 1-42. The Game view options

Figure 1-43. The Free Aspect drop-down menu

On the far left, the Free Aspect drop-down menu allows you to specify an
aspect ratio so you can make sure you will be seeing what your player will
see (Figure 1-43, left). You can also add custom, fixed sizes by clicking the
Add button (the plus sign) at the bottom (Figure 1-43, right).

37CHAPTER 1: The Unity Editor

2. The next option is Maximize on Play (Figure 1-44). When toggled on,
this hides all other views and maximizes the Game view during play.
If you have stipulated a fixed window size, Unity will do its best to
match it, scaling it smaller when necessary. Toggle the Maximize on
Play option on.

3. Click Play in the Player controls above the Game view. The Game
window is maximized, and the other views are toggled off.

4. Stop Play mode by clicking the Play button again. The views return
to their original layout.

Next to the Maximize on Play option is the Mute Audio button. This lets you
mute audio only during playback.

Next to the Maximize on Play option is the Stats button. The Stats window
will show you the statistics for your game during runtime. The most familiar
will be the frame rate to the right of the Graphics label. The various items in
the list may be a bit more cryptic, but all affect frame rate in one way or the
other.

5. Toggle on the Stats window and click Play. Observe the frame
rate and other items as you drive the car around the environment
(Figure 1-45).

Figure 1-44. Maximize on Play toggle

38 CHAPTER 1: The Unity Editor

Figure 1-45. The Stats window during runtime

6. Stop Play mode, and turn off the Stats window.

The last item on the Game view bar is the Gizmos toggle. Like the Effects drop-down menu,
this one works as a toggle when clicked or can be set to selectively see the gizmos you
prefer.

Project View
Next up is the Project view. This is where all resources for your project are stored and
managed. The Assets folder on your computer is the Assets folder you see in the Project
view. The most important thing to remember is that you can add to the folder through
the Explorer (in Windows) or the Finder (on Mac), but you should not rearrange resources
except from within Unity unless you also include the asset’s .meta file (it will have the same
name). Deleting assets from the Project view will delete them from your computer. The Two
Column Layout is shown as a default. It has some options that are useful when working with
unfamiliar assets.

The big advantage of the Two Column Layout is the ability to easily scrub between text with
a tiny icon when you know the name, but do not know what the image looks like, and a large
thumbnail image when you are trying to locate a particular image or something that looks
right for the purpose. Follow these steps to explore the Project view:

1. Under Assets, expand the folders to Standard Assets ➤ Environment
➤ TerrainAssets ➤ Surface Textures (Figure 1-46).

39CHAPTER 1: The Unity Editor

2. Try adjusting the thumbnail slider at the lower right. The thumbnails
scale nicely. Note that at the far left, you will get the 16-pixel version
in list format. Also note that whatever the display scheme, as soon as
you select an individual asset, it will be displayed in the bottom of the
Preview section of the Inspector, where you will get an even better
view of it.

3. Another of the main features of the two-column Project view is the
Favorites options found above the Assets folder section (Figure 1-47).
It allows you to see all assets of the listed types in the second column.
Select each of the filters, and watch the results in the second column.

Figure 1-47. The Favorites options

Figure 1-46. Adjusting the thumbnail display

40 CHAPTER 1: The Unity Editor

With regular assets, you will be able to see thumbnails instead of generic
icons while filtering the selections.

You’ve probably noticed the familiar search field at the top right of the
Project view. With folders selected, you can type in a name or use the small
icons at the right of the field to filter by type or label. You can also save the
search if you find yourself repeatedly looking for the same item. When using
the filters, however, you get another option. You can search the Asset Store
directly if you find you need a particular asset. The store items are divided
into Free or Paid assets, so you can search the thumbnail previews for
items of interest.

4. From Favorites, select All Models.

5. Click the Asset Store option at the top of the second column.

6. Open the Free Assets section, and click a model that looks
interesting.

The information about the model is shown in the Inspector, and you have
the option of importing it directly to your scene or going out to the Asset
Store for some serious shopping (Figure 1-48, left). For the Paid Assets, you
will see the price instead of the import option (Figure 1-48, right).

41CHAPTER 1: The Unity Editor

Figure 1-48. Accessing the Asset Store assets directly from the Project view: a Free asset (left), and a Paid asset (right)

7. For fun, type in an object of interest to you in the search field. The
item or related items, if any can be found, appear in the project view.

When working with familiar assets, you may find it advantageous to use the original One
Column Layout (Figure 1-49). The column options can be located by right-clicking over the
Project tab. The One Column Layout is more compact and behaves more like the Explorer
(Windows) or Finder (Mac). You will get a chance to give it a try later in the book.

42 CHAPTER 1: The Unity Editor

Figure 1-49. Column layout options

The Inspector
The Inspector is the last of the main views or panels. As you may have noticed, its
functionality and options are directly related to the item that is selected elsewhere in the
editor. As you become more familiar with Unity, you will spend a lot of time in the Inspector.
It is where you will gain access to almost everything related to your game in Unity.

The Console
The console is where messages are printed out during runtime and whenever there are
issues with your project. In the default Editor layout, you will find the console view’s tab next
to the Project view tab. In other layouts, it may not be active, but can be opened through
the Window menu. As with all Unity views or windows, it can be left free-floating or can be
docked in the location of choice. You will get more practice with the console in Chapter 3
when you investigate scripting.

Managing Layout
As you open various projects by different authors, you will see many layout preferences. The
current default layout shows the loaded scene and Assets folder off to nice advantage, so is
a good choice for a first look. As you start developing your own games, however, you may
find it useful to try other preset layouts, or even customize your own:

1. Locate the Layout drop-down at the upper right of the editor. Open it
and check out some of the preset layout options (Figure 1-50).

http://dx.doi.org/10.1007/978-1-4302-6757-7_3

43CHAPTER 1: The Unity Editor

2. Select the 2 by 3 option. This layout is useful for changing and
checking on objects during runtime as you get to see both Scene
and Game views at the same time. Its tall vertical views or panels
make it easier to access large numbers of assets in the Hierarchy
view without resorting to the Search feature. Its main drawback is
that the Project view’s Two Column Layout does not lend itself to a
tall, vertical column very well. This is when the Single Column Layout
is useful.

3. Right-click over the Project tab and select the Single Column Layout.

The Project view is now essentially the contents of the Assets folder, and
the file structure has the standard operating system hierarchy (Figure 1-51).

Figure 1-50. A few layout options

44 CHAPTER 1: The Unity Editor

4. Besides the preset layouts, you can also float and rearrange the
views manually. Click and drag the Hierarchy tab around the editor.

The view snaps into various locations, ready to be dropped. If you have
multiple monitors, you can even leave it floating outside the editor window.
If you have trouble getting it to dock again, you can choose one of the
preset layouts in the Layout drop-down menu.

Understanding the Project Structure
Before you jump in and start creating a game, you ought to have a basic understanding of
how Unity projects are organized. Pretty much everything you create will reside in the Assets
folder. It is up to you to keep things organized as you develop your game. Unity projects
have a highly structured system of dependencies. To be on the safe side, avoid rearranging
the contents of the project view outside the Unity editor to keep these intact.

File Structure
The file structure in Unity’s Project view is drawn directly from Windows Explorer (or the Mac
Finder). To see how Unity manages the folders that you create or import into your project,
you can add a new folder to the current project:

1. Close the three main folders in the Project view. You should see the
Editor, SampleScenes, and Standard Assets folders in the Project
view.

Figure 1-51. The 2 × 3 layout and Single Column project view

45CHAPTER 1: The Unity Editor

2. With none of the existing folders selected, right-click in the Project
view and select Create ➤ Folder (Figure 1-52).

3. Name it Test Folder..

Before you can execute the next step, you have to know the location of the
current project. A quick way to find that is to select New Project from the
File menu and make note of the path shown for it.

4. In Explorer (or Finder on the Mac), navigate to where the Standard
Assets Example Project resides and examine the contents of the
Assets folder (Figure 1-53).

Figure 1-52. Creating a new folder from the right-click menu

Figure 1-53. The new folder, Test Folder, in the project’s hierarchy in the OS’s browser

46 CHAPTER 1: The Unity Editor

As you can also see, there are three extra folders that you cannot access through the Editor.
The Library folder stores relationships between assets. Project Settings stores game-related
data not contained in regular assets. The Temp folder exists during runtime only. You should
not make any changes to these three folders. You may add assets directly to the Assets
folder or subfolders, but should not rearrange the contents (and yes, that is the third time
that has been mentioned!).

Project Management
As you are probably beginning to understand, Unity’s file structure is fairly rigid. This ensures
that assets will not go missing at crucial times.

Another important thing to know about Unity projects is that there is no quick way to back
them up unless you are using a version-control system such as Apache Subversion (SVN),
Git, Perforce Helix, Plastic SCM, or Unity’s own Asset Server. There is no option to Save
Project As. To be able to copy a project, you must first close it. You will find that as you
refine scripts along the development process, earlier test scenes may no longer work. Unity
project files can get quite large, so it is well worth the time and space to make occasional
backup copies for emergencies, for referencing earlier functionality, or for experimenting with
alternative ideas in a nondestructive way.

The finished projects for each chapter of the book are included in the book’s asset file
download from the Apress web site (www.apress.com/9781430267584). They will provide you
with a means of comparing your results with a working copy at the end of each chapter. If
you are already familiar with version control, you may want to do a search for Unity metadata
and how the .meta files can be managed.

Load/Save
Also worth noting is the difference between saving a scene and saving a project. Changes
made to the Hierarchy view will always require the scene to be saved. Changes in the
Project view, because they are actually changes to the folders on the operating system,
may not need to be saved. Assets that are created directly in Unity, even though residing in
the Assets folder, will probably need to be saved because of all of the path and relationship
metadata they generate behind the scenes. Anything scene- or project-related that does not
directly involve assets requires a project save. Best practice is to get in the habit of saving
both your scene and project on a regular basis. Unity will usually remind you to save one
when it is required by the other as well. You won’t be reminded to save scene and project
very often in the book, but that doesn't mean you shouldn’t do so on your own!

Preparing for Windows Store
If you are already on a machine running Windows 10, you can create a simple test scene to
make sure you have most of the components required for the end goal of the book’s project.
This first go at the procedure is mainly to get all the required components installed and
working. In Chapter 12, you will go through the procedure in depth with the project you will
be creating in this section.

http://www.apress.com/9781430267584
http://dx.doi.org/10.1007/978-1-4302-6757-7_12

47CHAPTER 1: The Unity Editor

Building for Windows
Before you jump into building for Windows, you might want a bit of background on the
process, specifically, what it means to build for Windows. This could include building for
devices such as a phone, tablet, Xbox, PC, Microsoft HoloLens, Surface Hub, and more.
There’s been a long journey to support multiple versions of Windows, various stores that
eventually merged into one store, and multiple platforms between ARM, 32-bit, and 64-bit
systems.

Since this book is for building on Windows 10, that means one of two things: you can have
a stand-alone build in Unity or a Windows Store build. Stand-alone builds are the traditional
executable apps you download or install from media and run as a classic Windows
application. These are the EXE files and their supporting files Unity generates.

However, we live in a world now that has a dizzying array of devices available, many of
them mobile devices and tablets. These devices have different power requirements than
a system that is plugged in all the time, and applications need to run differently on these
devices. Traditional executables have many characteristics that make them less ideal for
modern portable devices. The Windows Runtime, also called WinRT, is an application
framework created by Microsoft to address many of the concerns of running modern
applications on modern devices. Applications that run on WinRT are called Universal
Windows applications and also commonly referred to a Windows Store apps. They can be
downloaded and installed from the Windows Store or they can be side-loaded (this is what
enabling Developer mode does for you), a process for installing Windows Store apps outside
the store, a process that happens automatically we run our Windows Store apps from Visual
Studio.

A Bit of History
Windows 8 had a store. Windows Phone 8 had a different store. If you bought something in
one store, it wasn’t reflected in the other store. Windows 8.1 brought changes so you could
share an application ID across the stores and share app purchases and in-app purchases
between the stores. Windows 8.1 finally brought a universal project to Visual Studio that had
a separate Windows Phone project, a shared project, and a Windows Store project. It was
a better way to share code between them. Unity still supports this. Windows 10, however,
finally brought everything together in a much more cohesive environment.

The Universal Windows Platform
Windows 10 brought the Universal Windows Platform (UWP), which unifies all Windows 10
platforms in a common application programming model. UWP enables you to take an app
and have it run across a multitude of devices without concern for the underlying device
type—unless you want to customize an experience for a type of device (for example, an
Xbox or HoloLens). While our end goal for this book is for you to be able to publish a little
game to the Windows Store, you will be creating it with multiple devices in mind.

Applications that run on the UWP are called Store apps or UWP apps. Store apps have a
particular life cycle to them that differ from traditional EXE programs (called classic Windows
applications or Win32 apps, depending on who you talk to).

48 CHAPTER 1: The Unity Editor

What platforms are those? We can look at this in two ways: the actual types of devices
supported or the device family.

Thousands of devices can run Windows 10. For example, phones, tablets, IoT (Internet of
Things) devices, desktops, laptops, and Xbox consoles all support Windows 10. Clearly, very
different architectures are used on these devices to support processors such as x86 and
ARM. As you’ll see, when publishing a UWP app, it will (by default) compile all the different
process architectures so you don’t need to worry about it.

Device families represent a set of APIs given a name and a version number. Current device
families include Mobile, Xbox, Desktop, IoT, and HoloLens. This is extremely powerful
because our UWP applications can technically run on any device family—even IoT, though
you wouldn’t try to run a game on an IoT device for performance reasons. The Universal
device family means any API defined there is available on any other Universal device
(Figure 1-54).

When you submit your applications to the Windows Store, you can specify which device
families can run your application. If you want to write your own custom code to ask for
Contacts on a device, you will see at https://msdn.microsoft.com/library/windows/
apps/br224849 that the Contacts API runs on any Universal device family, which means it’s
available on any Windows 10 device (Figure 1-55).

Figure 1-54. The Windows 10 device families

Figure 1-55. Windows 10 device family requirements

https://msdn.microsoft.com/library/windows/apps/br224849
https://msdn.microsoft.com/library/windows/apps/br224849

49CHAPTER 1: The Unity Editor

Part of the power of a device family becomes apparent when you publish to the store.
You may choose, for example, Mobile only or PC only. Because there is one Windows
Store across all Windows 10 devices, this will determine how your application appears for
each device family in the store. You can read more about device families at https://msdn.
microsoft.com/windows/uwp/get-started/universal-application-platform-guide.

Application Life Cycle
It’s important to understand how a UWP application runs on a Windows 10 system and what
this means for your Unity game. When your application runs, it shows a splash screen and
then loads. When you switch away from your app, it can be suspended by the operating
system, in contrast to classic Windows applications that stay running. You can read more on
the UWP application life cycle at https://msdn.microsoft.com/en-us/windows/uwp/launch-
resume/app-lifecycle. The important takeaway is that your application will not continue
running in the background. There are certain background programming tasks you can do
in a UWP application, but they are outside the scope of this book and not applicable here
(although a use case could be to define a background task to update your application’s tile on
a frequent basis to entice the user back—assuming they’ve pinned it to their start screen).

Installing UWP Applications
UWP applications aren’t installed like traditional applications, where you manually run an
installer and a bunch of DLLs and EXEs are copied to various locations. They are either
downloaded from the Windows Store or side-loaded, which means installed from some
other means like Visual Studio, an installer script, or managed by an enterprise such as a
large company that runs its own software in-house. To test your game, you must install it (or
deploy it) onto your machine. Luckily, Visual Studio does this seamlessly, which is one of the
reasons you will be setting up Developer mode shortly. Before you do that, however, you will
have Unity create your UWP application in the form of a Visual Studio solution.

Before proceeding, it is assumed that you have installed Unity and Microsoft Visual Studio
Community 2015 and that you are connected to the Internet.

Enabling Developer Mode
You will also have to make sure Developer mode is enabled on your computer to be able to
deploy (install) a Windows 10 application from Visual Studio to your computer. If Unity has
installed Visual Studio for you, the first time you run it, you should be prompted to enable
developer settings. If not, or if you already had Visual Studio installed, you can manually
enable Developer mode:

1. Click the Start button in Windows on the taskbar and click the
settings icon to load Windows settings.

2. Type in developer and select one of the resulting options.

3. Select the Developer Mode radio button, shown in Figure 1-56, and
click Yes on the resulting prompt. You may then be shown a message
to reboot; do so if prompted.

https://msdn.microsoft.com/windows/uwp/get-started/universal-application-platform-guide
https://msdn.microsoft.com/windows/uwp/get-started/universal-application-platform-guide
https://msdn.microsoft.com/en-us/windows/uwp/launch-resume/app-lifecycle
https://msdn.microsoft.com/en-us/windows/uwp/launch-resume/app-lifecycle

50 CHAPTER 1: The Unity Editor

Figure 1-56. Enabling Developer mode on a Windows 10 machine

Creating a Test App
To help you complete the required installations, you will begin by creating a new Unity
project. The installation procedure, especially for Microsoft Visual Studio Community 2015,
can be time-consuming, and, depending on what else has been installed on your machine,
may require perseverance. Fortunately, when things go wrong, you will usually be given links
or instructions on how to find the missing components, as per Figure 1-57.

51CHAPTER 1: The Unity Editor

1. Make sure you are connected to the Internet.

2. Double-click the Unity icon on your desktop.

3. When the Projects dialog box appears, click the New icon (option
A in Figure 1-58).

Figure 1-58. Creating the test scene

Figure 1-57. A typical Missing Features dialog box

52 CHAPTER 1: The Unity Editor

4. Name the Project My First Port (Figure 1-58, B).

5. Select the location for the project (Figure 1-58, C).

Unity creates a folder named My First Port. The folder is the Unity project.

6. Change the project type to 2D and select Create Project (Figure 1-58,
D and E).

The Unity editor opens.

A simple bit of interaction will be enough for your first test.

7. From the GameObject menu, choose UI ➤ Button.

8. On the left side, in the Hierarchy view, double-click the new Button
object to center it in the Scene view window.

9. On the right, in the Inspector, scroll down to locate the Button (Script)
component.

10. Click the color bars for Normal Color, Highlighted Color, and Pressed
Color and give each a different color (Figure 1-59).

Figure 1-59. The new UI object’s Button component

This will make it easy to see whether the game is responding.

11. Back in the Hierarchy view, select and then double-click the Canvas
object to focus the view on it.

53CHAPTER 1: The Unity Editor

12. In the Hierarchy view, in the Canvas Scaler (Script) component, set
the UI Scale Mode to Scale With Screen Size (Figure 1-60).

Figure 1-60. The Canvas object’s Canvas Scaler component

13. Click the Button in the Scene view and click and drag it to the center
of the canvas.

14. From the File menu, choose Save Scene As and type in Button Test.

Next you will change some of the build settings.

15. From the File menu, open Build Settings.

16. Click the Add Open Scenes button (Figure 1-61, A).

54 CHAPTER 1: The Unity Editor

Figure 1-61. The Build Settings, adding a scene to the build (A), Selecting Windows Store as the platform (B), and the
message if the Windows Store module is not yet installed (C)

17. Select Windows Store from the Platform list (Figure 1-61, B).

If it shows that the Windows Store module is not loaded, do the following:

18. Click the Open Download Page button (Figure 1-61, C) and download
the file UnitySetup-Metro-Support-for-Editor-5.4.0f3.exe (or
whatever Unity version is currently available).

19. Save the project and close Unity.

20. Install the file, following the prompts on the installer.

21. Open the My First Port project (it will be in the Recent Projects list).

You should be able to continue now.

22. Back in Build Settings, select Windows Store and click Switch
Platform.

The Unity icon will move to Windows Store and it will become the default
platform.

55CHAPTER 1: The Unity Editor

Now you should see options for Windows Store.

23. Under SDK, select Universal 10 (Figure 1-62). Leave Build and
Run On set to Local Machine. Leave UWP Build Type set to XAML.
Deselect the Unity C# Projects check box.

Figure 1-62. The build settings for your test build

24. Click the Build button and create a new folder outside your Unity
project (folder) named Small Test.

25. Inspect the contents of your new folder.

If nothing is added to the folder, you are probably missing the Windows10
SDK. Check the Unity console for a cryptic message about the missing SDK.

If you have the SDK and your folder is not empty, you can obviously skip
the section on locating and installing the SDK.

Installing the Windows 10 SDK

If you already have Visual Studio installed and don’t have the Windows 10 SDK installed,
read this section. If you aren’t sure, see the following “Verifying Installations” section. The
Windows 10 SDK can be downloaded and installed from https://developer.microsoft.
com/en-us/windows/downloads/windows-10-sdk. A quick way to check whether it is installed
is to open Visual Studio, choose File ➤ New Project, and navigate to the Universal section in
the new project dialog box. You can launch the installation from here as well, which simply
launches Visual Studio with the new option selected for the SDK, as shown in Figure 1-63.

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk

56 CHAPTER 1: The Unity Editor

Figure 1-63. Installing the Windows 10 SDK from inside Visual Studio

This launches the Visual Studio installer, where you can accept the defaults and click Next to
install the Windows 10 SDK (Figure 1-64).

57CHAPTER 1: The Unity Editor

Figure 1-64. The Visual Studio Updater

58 CHAPTER 1: The Unity Editor

2. From Settings, select System ➤ Apps and Features. If this option
isn’t visible, type in Features, and then select Apps and Features
(Figure 1-66). You will then see the list of installed applications.

Verifying Installations
For a more direct approach to verifying your installations, you can use the Settings panel on
your Windows 10 PC as follows:

1. From the Windows Start menu, type settings or click the Settings
icon (Figure 1-65).

Figure 1-65. Checking on installed components through the Settings’ Apps and Features

59CHAPTER 1: The Unity Editor

3. Scroll down to Microsoft Visual Studio C++ Redistributable. You
should see a version for 2015 (x64) and (x86) as well as the build
numbers. Below those, you should see Microsoft Visual Studio
Community 2015 with updates (Figure 1-67).

Figure 1-66. Locating Apps and Features in Windows Settings

Figure 1-67. Checking on installed Microsoft components

4. Scrolling down farther, locate the Windows entries.

60 CHAPTER 1: The Unity Editor

There you should have Windows SDK AddOn and Windows Software Development Kit
(Figure 1-68).

Figure 1-68. Selecting a component to see the options to modify or uninstall

Obviously, this software undergoes regular updates, so you will want to use the most
current versions.

If you do find that you are missing anything, you could modify the Visual Studio installation
to select the new options (Figure 1-69). Again, ensure that you have at least Update 3 for
Visual Studio. You can always check this via the Help ➤ About menu in Visual Studio.

Figure 1-69. Selecting Modify to update a component

To manually update the Visual Studio installation and add the Windows 10 SDK, you can
modify the installation:

1. In the Apps and Features opened previously, locate Visual Studio
again and click the Modify button (Figure 1-69).

2. When Visual Studio loads, click Modify (Figure 1-70).

61CHAPTER 1: The Unity Editor

3. Choose the latest SDK version available to you. If other items in the list
are already selected, beyond what is shown in Figure 1-71, that is okay.

Figure 1-70. The Visual Studio modify options

Figure 1-71. Updating the Windows 10 SDK

62 CHAPTER 1: The Unity Editor

Continuing the Build
If you have just finished installing the SKD, return to Unity’s Build settings and try the build
again.

When the build has finished, the browser will open and you will see the contents of your new
folder (Figure 1-72).

Figure 1-72. The results of the successful build

Unity has generated a UWP Visual Studio solution, the .sln file, SmallTest.sln. Now you will
open the solution with Visual Studio to complete the build process.

1. Double-click to open the My First Port.sln file in Visual Studio.

2. The first time you open Visual Studio, you will be asked to sign in
with your Microsoft account. If you have previously purchased or
downloaded just about any Microsoft product, you probably already
have an account. If not, create one following the prompts. If you
already have one and can’t remember it, follow the prompts to
recover it. Signing in is a one-time event on each machine, so you
won’t be bothered again.

Having signed in, Visual Studio Community Edition will open, showing the
new solution (Figure 1-73).

63CHAPTER 1: The Unity Editor

3. For Windows 10, select x86 (Figure 1-74).

Figure 1-73. Visual Studio and your first build

Figure 1-74. Selecting the processor type

64 CHAPTER 1: The Unity Editor

4. From the Debug menu, select Debug (Figure 1-75).

If all goes well, you should see your project appear in its own window after
the Unity splash screen finishes (Figure 1-76).

Figure 1-75. Creating a Debug build

65CHAPTER 1: The Unity Editor

5. Touch or click the button to see whether the functionality is working.

It should change colors upon pressing, but will not show the hover color if
you are using touch.

6. Close the game window and Visual Studio (the settings will be retained).

You’ve deployed and run your first test scene outside the Unity editor!

Summary
In this chapter, you took a first look at the Unity editor. Besides getting a brief overview of
the major areas, you had a chance to investigate some of the functionality that will help you
as the book’s project progresses. The biggest takeaway was in scene management, where
you learned that you could add to the Assets folder from your OS’s Finder or Explorer, but
that you should not rearrange assets outside the Unity editor after they have been added.

If you are feeling overwhelmed at the amount of new information to digest, don’t worry.
Anything that is critical to know and understand will be covered again later in the book. A
few of the things mentioned in this chapter are more just to give you an idea of what can be
done as your knowledge of Unity increases. Feel free to revisit this chapter at a later date.

In the last section, you created a tiny scene to get a head start on the process and
installations required to build for the Windows Store.Electronic supplementary material The
online version of this chapter
(doi:10.1007/978-1-4302-6757-7_1) contains supplementary material, which is available to
authorized users.

Figure 1-76. Your first build running on its own

http://dx.doi.org/10.1007/978-1-4302-6757-7_1

67© Sue Blackman and Adam Tuliper 2016
S. Blackman and A. Tuliper, Learn Unity for Windows 10 Game Development,
DOI 10.1007/978-1-4302-6757-7_2

Chapter 2
Unity Basics
Although you can create assets directly inside Unity, the building blocks for your scene
will usually be based on imported assets. The in-game functionality, location, and final
appearance, however, will be managed and completed within the Unity editor. For that, you
need a good understanding of Unity’s key concepts and best practices. In this chapter,
you will explore and experiment with a good portion of the Unity features that don’t require
scripting to be useful in your scenes.

Working with Unity GameObjects
In Unity, assets can be anything from textures and materials to meshes, scripts, and
physics-related components. Whether they are imported or generated inside Unity,
components are combined and manipulated to bring objects to life. Unity uses the term
gameObject to represent objects because internally they belong to a scripting class named
GameObject. When referring to a generic gameObject, this book uses the lowercase g.
When scripting, the uppercase and lowercase g refer to either the particular gameObject,
lowercase, or to the GameObject class, uppercase G, that holds the definitions and available
functionality for all gameObjects.

The most basic of gameObjects (in the formal sense of the word) consists of little more
than a transform. A transform indicates an object’s scale, orientation, and location in space.
The gameObject itself can be used as a parent to manage multiple gameObjects, or can
be filled with components that define all manner of visual appearance and functionality.
Unity provides many prebuilt gameObjects. Some are simple primitives, ideal for quickly
prototyping your game. Others are full-fledged systems for complex and sophisticated
objects and special effects.

If you have no prior experience with 3D assets, let alone game-type functionality, don’t
worry; you will begin with the basics and go on from there.

68 CHAPTER 2: Unity Basics

Creating Primitives
A primitive object is, by definition, an object that can be defined by a set of parameters.
Although Unity offers several primitives of its own, those of you who have worked with
traditional digital content creation (DCC) applications such as Autodesk 3ds Max, Autodesk
Maya, or the open source Blender, will note that there is very little you can do to modify
primitives other than change their scale. Be that as it may, primitives are extremely useful for
prototyping your game’s functionality and flow.

In Unity, the sphere, cube, capsule, and cylinder are a few of the available primitives. A
sphere is defined by a radius and the number of longitudinal and latitudinal segments it has.
A box, or cube, is defined by height, width, length, and its number of segments. When an
object cannot be described by a set of parameters, it is called a mesh. A mesh is a collection
of vertices, edges, and faces that are used to build the object in 3D space. The smallest
renderable 3D element is a triangle, or tri. It consists of vertices, edges, and the face that
they define (Figure 2-1). Unless specified by the shader in charge of drawing the face, the
face is single-sided. The direction it is drawn on is called its face normal, where an imaginary
line is perpendicular to the face.

Figure 2-1. A face defined by its vertices and edges (left), and its face normal (right)

A primitive is a mesh, but a mesh (no parametric way to define or describe it) is not
necessarily a primitive. In Unity, you do not have access to most of the primitive’s
parameters, but they can be used as is or as the base for more-complex gameObjects.

Let’s begin by creating a new project:

1. If Unity is not already open, click the Unity icon on your desktop.

2. In the start window, select New Project.

3. In the location of your choice, name your project Unity Basics.

4. Underneath the Location, make sure 3D is selected and click Asset
Packages.

5. Select Characters, Environment, and Prototyping asset packages.

6. Click Create Project.

69CHAPTER 2: Unity Basics

Unity remembers the last layout you used. If you haven’t opened anything
else since the first chapter, it will be in the 2 × 3 configuration. Since you
will be dealing with scene layout for a while, you can switch back to the
Default layout if you wish.

7. Click the Layout button at the top right of the editor to open the list
of presets.

8. Select Default.

The layout reverts to having the Hierarchy view on the left, the Inspector on
the right, the Scene and Game views tabbed in the center, and the Project
view underneath.

The project has a default, nameless scene, but it has not yet been saved.
Unity will prompt you to save scenes when exiting, but it is a good idea to
rename them before you begin working on them.

9. From the File menu, choose Save Scene As and save the scene as
Primitives.

The new scene asset appears in the Project view, sporting the Unity
application icon (Figure 2-2).

Figure 2-2. The new Unity scene asset in the Project view

70 CHAPTER 2: Unity Basics

10. From the GameObject menu, choose 3D Object ➤ Cube (Figure 2-3).

A Cube is created in the center of the Scene viewport (Figure 2-4).

Using Transforms
All gameObjects have a Transform component. Simply put, transforms represent move
(translate), rotate, and scale actions. The Transform component keeps track of where the
object is in space, what its orientation is, and whether it has been scaled. GameObjects can
be moved, rotated, or scaled within the 3D world. You can transform them in Edit mode, and
their transforms can be animated during runtime.

Figure 2-3. Creating a Cube

Figure 2-4. The newly created Cube with its Transform gizmo

71CHAPTER 2: Unity Basics

If you have not touched the Scene view since the project was created, the Cube should have
been created at 0,0,0. In Unity, y is up in the world. If you use Autodesk products where z is
up in the world for modeling your assets, don’t worry. With a few exceptions, Unity corrects
orientation on import. You should see your Cube with its Transform gizmo, specifically the
Position gizmo, clearly visible. The arrows follow the convention of RGB = x,y,z, or, the
red arrow is the x direction, the green arrow is the y direction, and the blue arrow is the
z direction. z is the direction Unity considers as forward. Follow these steps to explore
transforms:

1. With the Cube selected, look at the Transform component at the top
of the Inspector (Figure 2-5).

 2. If the X, Y and Z Positions are not all 0, you can type it in to move the
Cube to that location.

In the Inspector, take a look at the Cube’s Scale. It defaults to 1 × 1 × 1.
Unity considers 1 unit equal to 1 meter. (That is approximately 3 feet if you
are not used to thinking in metric units.)

Besides being able to type values directly into the number fields, many of
Unity’s entry box labels act as sliders.

3. Position your cursor over the Rotation’s Y label.

4. Click and drag it left and then right to rotate the Cube in the Scene
view. Leave the Cube at about -120 degrees.

5. At the top of the editor, make sure the coordinate system is set to
Local (it is a toggle), not Global, and the Transform is set to Move
(Figure 2-6).

Figure 2-5. The Cube’s Transform component

72 CHAPTER 2: Unity Basics

6. Click the z arrow in the viewport and drag the Cube while watching
the Position values in the Inspector. The Cube is moving in its local z
direction, but its x position is updated as well.

7. Change the coordinate system to Global. Using the z arrow again,
pull the Cube in the Global z direction. This time, the only value being
updated in the Inspector is the Z Position. When you transform an
object, its location and orientation are kept in world coordinates.

You can also rotate and scale objects by using the transform modes at the top left. Just like
Position, Rotate can use local or global coordinates.

1. Click to activate Rotate mode (Figure 2-7).

Figure 2-7. Rotate mode and the Rotate gizmo

Figure 2-6. The coordinate system set to Local, and the Move transform active

73CHAPTER 2: Unity Basics

2. Rotate the Cube by placing the cursor over the circular parts of the
gizmo and dragging.

3. Change the mode to Scale (Figure 2-8).

Figure 2-8. Scale mode and the Scale gizmo

Note that the coordinate system is grayed out. You can only scale an object
on its local coordinate system. This prevents objects that have been rotated
from getting skewed.

4. Scale the Cube on any of its axes.

5. In the Inspector, set all of its Scale values back to 1.

6. Set the coordinate system to Local.

With multiple objects, there are some tools that will help you with positioning. Let’s add
another primitive gameObject:

1. Hold down the middle mouse button and pan the Scene view so
that the Cube is off to the left, but not out of the viewing frustum (the
boundaries of the viewport window).

2. From the GameObject menu, choose 3D Objects ➤ Sphere. The
Sphere is created in the center of the viewport, not at 0,0,0 (Figure 2-9).

74 CHAPTER 2: Unity Basics

When you begin to work with components, you will learn that all the values
from one can be copied to the same type component on another, but this
time you will be using a typical Unity workflow where the target object
is focused, or framed, in the viewport, and the object selected and then
moved to that location. Unfortunately, this technique does not change the
object’s orientation to match. Realistically, most objects do not require
exact orientation. Those that do are generally orthographically aligned,
making their orientation easy to handle.

3. Select the Cube in the Hierarchy view.

4. Double-click the Cube in the Hierarchy view, or move the cursor to
the Scene view and press the F key. The Scene view zooms in to the
selected object. Unity calls this action frame selected.

5. Now select the Sphere by clicking it in either the Hierarchy view or
the Scene view.

6. From the GameObject menu, select Move to View. The Sphere is
moved to the new center of the viewport, as defined by framing the
Cube (Figure 2-10).

Figure 2-9. The new created Sphere—not located at 0,0,0

75CHAPTER 2: Unity Basics

Figure 2-10. The scene focused to the Cube and the Sphere moved to the scene’s focus

7. Select the Cube and check the Inspector for its Rotation values. It
should still have -120 (or whatever you left it at) as its Y Rotation
value.

8. Select the Sphere and check its Rotation values. You can see that
the Move To View option moved the Sphere to the location but did
not change its orientation.

Duplicating GameObjects
In Unity, you will often find it necessary to duplicate objects. To do so, you can use
Ctrl+D (⌘+D on Mac) or select Duplicate from the right-click menu. Some items—such as
materials, textures, scripts, and many other assets—must have unique names. An objects
automatically has its name incremented upon duplication. GameObjects can, however, share
the same name.

In this section, you will name the duplicates for easier identification:

1. Select the Sphere in the Hierarchy view.

2. At the top of the Inspector, to the left of its name, turn off the
check box to deactivate the Sphere in the Scene view. The Sphere
disappears from the Scene view, but its Transform gizmo remains
visible as long as it is selected.

3. Click in an empty spot in either the Scene or Hierarchy view to
deselect the deactivated Sphere.

76 CHAPTER 2: Unity Basics

In the Hierarchy view, the deactivated Sphere’s name is grayed out
(Figure 2-11) indicating that it is not active in the scene. In case you are
wondering, it is typical to activate a gameObject during runtime.

Figure 2-11. The deactivated Sphere in the Hierarchy view

4. Select the Cube from either the Scene view or the Hierarchy view.

5. From the right-click menu, select Duplicate. The clone is
automatically renamed Cube (1).

6. Switch to Move mode.

7. Pull Cube (1) away from Cube so they are at least a meter (the
original size of the cubes) apart.

8. With either cube selected, press Ctrl+D (⌘+D on Mac) to clone
another cube. The new clone is automatically renamed Cube (2).

9. Move Cube (2) away from the other two.

Arranging GameObjects
Typically, you will make duplicates of imported 3D assets when setting up your 3D
environment. Duplicates don’t reduce the overhead during runtime, but they will reduce disk
space, which equates to download time.

The end result is that duplicate assets must be arranged in the scene, either manually or
through scripting. To help with that task, Unity has a very nice vertex snap feature:

1. Arrange the view so that you can see all three cubes easily.

2. Select Cube.

3. Hold the V key down on your keyboard and move the cursor around
the cube. The Transform gizmo jumps to the closest vertex.

4. When the cursor snaps to the lower vertex closest to the next cube
over, press and hold the left mouse button, and then drag it over to
the next cube.

77CHAPTER 2: Unity Basics

5. With the mouse button down, move the cursor around the target
cube and watch the original vertex snap to its new target.

6. When you are happy with the alignment, let go of the mouse button
to finalize the arrangement.

7. Repeat the process with the third cube in the row or stack you
started with the first two (Figure 2-12).

Figure 2-12. The cloned cubes aligned using Vertex Snap

You can also set objects to snap at intervals and use a rotation snap:

1. Select one of the cubes and set its rotation values back to 0.

2. From the Edit menu, at the very bottom, select Snap Settings.

The grid snaps are set to 1 unit. This means that the object must be within
1 unit or meter of the grid intersection before they will snap. Because the
cubes’ pivot points are at their centers, the cubes were not sitting directly
on top of the scene’s construction grid. The first thing to do is move your
selected cube up.

Of interest is that the cube keeps the same offset as it snaps 1 unit each
direction. If you want it to snap to corners, you can use the buttons at
the bottom of the Snap Settings dialog box to center the cube on an
intersection, add 0.5 to the X and Z in the Inspector, and then happily snap
between corners.

3. Select the cube again and set its Y Position to 0.5 in the Inspector.

78 CHAPTER 2: Unity Basics

4. Try snapping the cube to the grid in the Global x or z direction.

Angle or Rotational snaps are set to 15 degrees as a default. You will want
to set them to a number that makes sense for your needs before you use
the snap rotate functionality.

5. Change the mode to Rotate.

6. Hold the Ctrl (or Cmd) key down and rotate the cube on its y axis,
noting the 15-degree increments or decrements in the Inspector.

7. Feel free to round up if the rotation value in the Inspector is
infinitesimally off at the end of the rotation.

Parenting
At this point, you may be wondering how to group multiple objects together and parent them
to a single gameObject for easier handling. The key concept here is that children inherit
the transforms of their parents. If a parent is moved 2 meters in the z direction, the child is
moved that same 2 meters. If the parent is rotated, the child is rotated relative to the parent.
If the parent is scaled, the child receives the same scale, again, relative to the parent. It
sounds straightforward, but it is a crucial rule to remember.

1. From the GameObject menu choose 3D Object ➤ Capsule.

2. In the Inspector, set its position to 0,0,0.

3. Select Cube (2) and position it at least a couple of meters away from
the Capsule.

4. Select the Capsule in the Hierarchy view and drag and drop it onto
Cube (2) in the Hierarchy view.

5. Check the Capsule’s transforms in the Inspector and make note of
them.

They now reflect its offset from its parent rather than its World space
location in the scene.

6. Toggle the Transform gizmo from Center to Pivot.

The gizmo moves from midway between Cube (2) and its child, Capsule, to
the parent, Cube (2).

79CHAPTER 2: Unity Basics

The newly created hierarchy is apparent in the Hierarchy view (Figure 2-13).

Figure 2-13. The parent, Cube (2), and its new child, Capsule

7. Now rotate Cube (2).

The Capsule rotates around its parent as expected.

8. Inspect the Capsule’s Position transforms.

They remain the same as when it was first parented to Cube (2).

9. Double-click the Capsule in the Hierarchy view to frame it in the
viewport.

10. Select Cube (1).

11. From the GameObject menu, use Move to View to position Cube (1)
at the scene’s focal point (Figure 2-14).

80 CHAPTER 2: Unity Basics

12. Now look at Cube (1)’s transform values.

As you may have expected, the two values do not match (Figure 2-15).

Figure 2-15. The Capsule’s Position values (left), and Cube (1)’s Position values (right)

Figure 2-14. Cube (1) moved to the Capsule’s location

13. Select the Capsule in the Hierarchy view and drag it out of Cube (1)’s
group and drop it in a clear space below the other gameObjects.

Tip You may have noticed that new objects added to the scene are added at the bottom of the
hierarchy, making them easier to find as you fill out your scene. You can, however, move them
around in the hierarchy without changing their location in the Scene view.

81CHAPTER 2: Unity Basics

Now the Capsule’s Position values match (Figure 2-16).

Figure 2-16. The Capsule’s unparented Position values

Working with Components
In the previous section, you had an introduction to the Transform component. In Unity,
all gameObjects are a collection of components that help define their appearance and
functionality, and all gameObjects have a Transform component. You have already used
several ready-made gameObjects. They already contain a standard set of components,
generic or unique, that make them what they are. In addition to the mandatory Transform
component, each of your primitive objects has a Mesh Renderer, a collider (of an appropriate
shape for its primitive), and a Mesh Filter (for its particular primitive’s geometry). With the
exception of the Transform component always being at the top of the Inspector, component
order can be rearranged. Order does not affect game play.

Mesh Renderer
The component with the most obvious effect on a 3D object is the Mesh Renderer
component. This component is what causes the object’s Mesh Filter component to be
rendered, or drawn, into the Scene view. Its first two parameters dictate whether it can cast
or receive shadows (provided there is a light in the scene set to cast shadows). It also holds
an array for the material or materials assigned to the mesh. There are specialty renderers for
things like skinned meshes (typically characters), but nondeforming objects generally use the
regular Mesh Renderer.

1. Select one of the cubes in the scene.

2. In the Inspector, locate the Mesh Renderer component.

3. Click the arrow next to the Materials parameter to see what material
or materials are used on the object (Figure 2-17).

82 CHAPTER 2: Unity Basics

Each test object has only one material, so the Material array Size is 1, and that material
resides in the Element 0 slot. Arrays always start counting at 0, not 1. The material, in this
case, Default-Material, is shown at the bottom of the Inspector, along with a preview of the
material. The material itself is not a component, but is a parameter in the Mesh Renderer
component. This is an internally generated material that is applied to several of Unity’s built-
in meshes, and you will not be able to adjust it.

1. Select each of the cubes, and disable their Mesh Renderer
components by deactivating the check box to the left of the
component name.

Unlike deactivating a gameObject from the top of the Inspector (as you did with the Sphere),
disabling the Mesh Renderer merely causes it not to be drawn in the scene. All of the rest of
its functionality remains the same.

Mesh Filter
The Mesh Filter component is what holds the 3D mesh for gameObjects that are rendered
into the scene. You will rarely need to do anything with it, but occasionally the actual mesh
will go missing, so it is worth a quick look.

1. Select the Capsule object.

2. Click the little circular Browse icon to the far right of the Mesh
parameter’s loaded Capsule mesh (Figure 2-18).

Figure 2-17. The Mesh Renderer component

83CHAPTER 2: Unity Basics

When the Browse window appears, you will see several imported meshes
at the top and several internally generated primitives that Unity includes
for its own use near the bottom. The Capsule is currently selected, and
information about the mesh is shown at the bottom of the Browse window.
The Browse window, just as with the second column of the Project view,
has a scaling slider that allows you to adjust the thumbnail size or to drop
down to text with a small icon. Because it is a floating window, you can
also adjust its size and aspect ratio for easier browsing.

3. Adjust the thumbnail size with the slider at the top right of the
Browse window.

 4. Adjust the size and shape of the window as you would with any
application (Figure 2-19).

Figure 2-18. The Browse icon for the Capsule’s Mesh Filter

Figure 2-19. The Browse icon for the Capsule’s Mesh Filter

5. For fun, double-click and select the EthanBody mesh instead of the
Capsule.

6. Focus the Scene view on the Capsule to see the result.

The Capsule mesh is gone and the EthanBody mesh takes its place
(Figure 2-19). The replacement mesh has inherited its material from the
original Mesh Renderer component.

84 CHAPTER 2: Unity Basics

7. Click the Browse icon next to the Material parameter Element 0’s
currently loaded Default-Diffuse material, and check out various
more-interesting materials.

The material is immediately loaded as you click through the browser
(Figure 2-20).

Colliders
You may have noticed when you selected and disabled each cube’s Mesh Renderer, that
a green outline of the cube remained. This represents the cubes’ Box Collider component.
Collider components have two main types of functionality. The default is to block physics-
based objects from going through the volume defined by the Collider component. The
second, the Is Trigger parameter, when activated allows objects to pass through the object
but registers the event for further evaluation and possible action.

Any object that must cause an event to be triggered on pick, collision, intersection, or ray-
cast must have a collider of some type. Even with their Mesh Renderer turned off (set to not
render in the scene), the objects, because of their colliders, are still fully active in the game.

Colliders come in several primitive shapes, but can also be automatically generated from a
mesh object. The latter is more costly, in terms of frame rate, and should be used only when
absolutely necessary. There is a size limit (number of tris) and other limitations, so it is not
unusual to import a custom mesh to stand in as a collider for a highly detailed mesh.

Figure 2-20. One of the Branches materials on the Capsule’s EthanBody Mesh Filter

85CHAPTER 2: Unity Basics

1. Select the Capsule, and check out its Capsule Collider component in
the Inspector (Figure 2-21).

2. Disable the Capsule’s Mesh Renderer to get a better look at its
Capsule Collider in the Scene view (Figure 2-22).

Figure 2-21. The Capsule Collider component

Figure 2-22. The Capsule object (with the EthanBody mesh) and its Capsule Collider

www.allitebooks.com

http://www.allitebooks.org

86 CHAPTER 2: Unity Basics

The Capsule collider was original fit correctly to the original Capsule
Mesh, but colliders can be adjusted in both size and location through their
parameters.

3. Select the Sphere in the Hierarchy view, and Activate it by clicking
the check box at the top of the Inspector to activate it.

4. Double-click it to focus the view to it if necessary.

5. Disable its Mesh Renderer to get a better view of its Sphere Collider.

6. Select one of the Cubes to see its Box Collider.

In addition to having the option to act as a trigger only, colliders of any shape can use a
Physic Material to define how they react on collision. The Physics Material lets you set
bounciness and other physics-related properties.

Common to the collider shapes based on primitives is a set of adjustments for the shape
itself, including the x, y, and z adjustments for its center offset. Mesh colliders can be
used when the shape requires more-accurate collision testing, but it is far more efficient
to use one or more of the other shapes and adjust each to fit. Colliders are a mainstay of
interactivity and as such, you will get quite familiar with them.

Camera
As you may have guessed, not all gameObjects have mesh components or are drawn in
the scene at runtime. The Main Camera is a typical nonrendering object. Let’s see what
components it has.

 1. Select the Main Camera from the Hierarchy view, and look at its
components in the Inspector (Figure 2-23).

87CHAPTER 2: Unity Basics

Along with the mandatory Transform, it has a pretty robust Camera component and three
components that have no exposed parameters at all. Because there is no mesh associated
with a camera, it has no Mesh Filter, Mesh Renderer, or collider components. The GUI Layer
component is what enables the camera to Unity’s legacy GUI objects. The Flare Layer
component allows the camera to “see” lens flare effects. Most of Unity’s effects are now
image based and do not require a Flare Layer.

The Audio Listener component is a specialty component. It enables sound in the entire
scene or level. Unity automatically adds one to any camera objects that are created in your
scene. A default camera is created with each new scene, which ensures that your scene will
be sound ready. Unfortunately, every time you create a new camera, you will get another
Audio Listener. Because there can be only one Audio Listener to a scene, you will see an
error message requesting that you “ensure there is exactly one Audio Listener in the scene.”

As you progress through the book, you will have a chance to investigate all sorts of
components and find out what kind of functionality they add to each gameObject.

Figure 2-23. The Camera’s components in the Inspector

88 CHAPTER 2: Unity Basics

Creating Environments
If your goal is to create casual games for mobile platforms, you may or may not require
outdoor 3D environments. This book’s project will not be making use of an outdoor world,
but it is worth delving into the Unity Terrain editor to get a feel for what can be done with it.
When Unity first targeted mobile platforms, terrain was not fully supported. Now, with each
release, speed and optimization have been improved so that 3D outdoor environments are
feasible on at least higher-end mobile platforms.

More than ever, you will want to “compartmentalize” your world so that only a small amount
of it is visible at any one time. More important, you will want to devise a way to control the
nonvisible areas. Unity contains an occlusion culling system, but smart design is the first
step to managing your environment well. For mobile, where the initial file size is limited,
it is even more important to think in modules that can be packed into asset bundles to
extend your games. Both occlusion culling and asset bundles are beyond the scope of this
book, but as your games get more complex, you will want to investigate the two topics.
Meanwhile, Figure 2-24 shows an indoor and an outdoor environmental layout that present
opportunities for managing the visibility.

Figure 2-24. Efficient layout for indoor and outdoor scenes

Using the Terrain Editor
Unity’s Terrain editor offers a lot of opportunity to create scene bloat, so you will be creating
a small test scene to become familiar with the basic dos and don’ts. The Terrain component
is well covered in the Unity documentation, at http://docs.unity3d.com/Documentation/
Components/script-Terrain.html, should you wish to delve deeper into the Terrain editor.

Creating the Terrain GameObject
Let’s begin with the base Terrain object:

1. From the File menu, Save your current scene.

2. From the File menu, choose New Scene.

http://docs.unity3d.com/Documentation/Components/script-Terrain.html
http://docs.unity3d.com/Documentation/Components/script-Terrain.html

89CHAPTER 2: Unity Basics

3. From the File menu, choose Save Scene and name it Terrain Test.

In the spirit of managing your project well, now is a good time to organize
your scenes.

4. Right-click the Assets folder in the Project view, and choose Create
➤ Folder.

5. Name the new folder Scenes.

6. Drag the Terrain Test scene and the Primitives scenes into the new
Scenes folder.

Now you are ready to create your new terrain:

1. From the GameObject menu, choose 3D Object ➤ Terrain (Figure 2-25).

Figure 2-25. The Terrain gameObject

90 CHAPTER 2: Unity Basics

2. Double-click the Terrain object and inspect it and its unique
components in the Inspector (Figure 2-26).

Along with the mandatory Transform, the new gameObject has only two
other components: the Terrain Collider, a specialized collider used only for
terrains, and a deceptively simple-looking Terrain component. This is where
most of the terrain building takes place—essentially, it is the Terrain editor.

3. Click each of the tool icons.

As you select the icon, its name/function appears in the box below it, along
with basic instructions for its use (Figure 2-27).

Figure 2-26. The Terrain components in the Inspector

Figure 2-27. Checking out the Terrain tools

Tools are, from left to right, Raise/Lower Terrain, Paint Height, Smooth
Height, Paint Texture, Place Trees, Paint Details, and Terrain Settings.

The first order of business is to set the size and height resolution.

4. Select the Terrain Settings tool.

5. In the Resolution section, near the bottom, set the Terrain Width and
the Terrain Length to 100 × 100 meters.

91CHAPTER 2: Unity Basics

6. Set the Height to 75 meters.

The Height consists of the lowest point—a lake bottom, for example—to
the highest peak. If you want mountains that are 130 meters high from a
valley floor and a lake bottom that is 20 meters deep from that same floor,
you would make the Height 150 meters.

7. Make note of the warning at the bottom of the Resolution sections.

Modifying the Resolution settings may clear the heightmap, detail map,
and splatmap. When you paint the various features and assets onto your
terrain, a texture is created to store your brush strokes. The heightmap is
a grayscale image that holds the topography. The detail map is an RGBA
image that stores the location of details such as Terrain system–generated
trees, bushes, and rocks. The splatmap is a color map that holds the terrain
textures in its RGB and alpha channels. Each splatmap and detail maps
can hold information for four textures or objects. When you exceed that
number, a second map is created, using more memory for both the map
and the assets it represents.

The next step establishes “ground level,” and as with the Resolution
settings, must be done before sculpting, painting, or populating the terrain.

8. In the Inspector, in the Terrain’s Paint Height tool, set the Height to 20
and click the Flatten button (Figure 2-28).

Figure 2-28. The Flatten height setting

92 CHAPTER 2: Unity Basics

Note that once you select a terrain tool, the basic instructions for its use appear in the box
immediately below the Terrain toolbar.

The Terrain jumps up 20 units in the viewport, but the Y Position in the Inspector is not affected.

With your terrain defined, you are ready to sculpt the features and paint the textures and
details. Painting and/or sculpting is achieved by pressing the left mouse button down while
moving the mouse.

Raise/Lower Terrain
The first of the tools is Raise/Lower Terrain. With it, you can paint mountains and valleys by
using a variety of brush shapes. The two parameters are Brush Size and Opacity (strength
of the effect). In this module, painting is additive. As with all tools, the brush size shows as a
light blue area on the terrain in the Scene view as you paint.

 1. At the top of the Scene view, toggle off Scene Lighting.

2. Select the Raise/Lower Terrain tool.

3. Rotate the view so that the terrain is closer to a top view.

4. Using the default brush (the soft round brush), Size, and Opacity,
paint some hills around the outside of the terrain.

5. Experiment with different brushes, Sizes, and Opacity values to see
the results.

6. Hold Shift down while painting to create a depression in the valley floor.

7. Paint over the same depression a few times until it bottoms out
(Figure 2-29).

Tip Terrain topography is generally easier to work with when scene lighting is toggled off.

93CHAPTER 2: Unity Basics

Figure 2-29. The terrain as sculpted with the Raise/Lower Terrain tool

Note how the detail softens as soon as you release the mouse button. This is Unity’s Scene
view Level of Detail (LOD), at work. If you zoom in, you will see the detail you originally saw
as you painted.

You can also control the amount of mesh resolution for the terrain through the Settings tool:

1. Change the Scene view display from Shaded to Wireframe (Figure 2-30).

Figure 2-30. The Wireframe display making the terrain topography more apparent

94 CHAPTER 2: Unity Basics

2. Zoom in and out to see how the mesh resolution changes in
response to viewing distance.

3. Select the Terrain Settings tool.

4. Under the Base Terrain section, try changing the Pixel Error setting to
reduce the number of tris used for the terrain (Figure 2-31).

Figure 2-31. Using the Pixel Error setting to reduce the number of tris on the terrain mesh

The Pixel Error setting provides one means of adjusting a terrain mesh for
lower-end devices while continuing to retain the higher-resolution image
used to generate the terrain height. LOD functionality is retained.

5. Set the Pixel Error down to about 10 instead of the default 5 for a
good compromise.

6. Set the Shading Mode back to Shaded.

Paint Height
The next tool is the Paint Height tool. Like the Raise/Lower Terrain tool, it is also additive,
but you can set the cap height to have more control when painting building pads, mesas,
or even sunken walkways. Because you are already defining a target height, this time the
Shift key will sample the terrain’s height at the cursor’s location when you click. This is quite
useful when you want to go back to a certain feature to increase its size but can no longer
remember the height setting you used.

95CHAPTER 2: Unity Basics

1. Select the Paint Height tool.

Note that the previous settings for Brush Size and Opacity are retained.
Let’s create a plateau, slightly above the base level.

2. Hold the Shift key down, and click once to sample the valley floor
near the depression.

The Height parameter changes to match the sampled point.

3. Repeat the process until you find an area slightly higher than the
base height of 20, or choose an area and set the Height manually to
about 21 or 22.

4. Paint a nice plateau on the valley floor, encroaching into the
depression a bit (Figure 2-32).

Figure 2-32. A low plateau to the right of the depression

Smooth Height
The next tool is the Smooth Height tool. Having undoubtedly ended up with a few spiky
mountains somewhere on your terrain, you were probably wondering how you could tame
them down a bit without having to undo your work. The Smooth Height tool will simulate
some nice weathering to relax the rough areas.

96 CHAPTER 2: Unity Basics

Paint Texture
With the topography blocked in, it’s time to add some textures. The Environment package
you imported has some textures that are perfect for experimentation. The first texture you
choose will always flood the entire terrain.

1. In the Project view ➤ Assets folder ➤ Environment ➤ TerrainAssets,
select the SurfaceTextures folder.

2. Use the size slider to see the thumbnails at their maximum.

The names of several textures are appended with Albedo. In earlier versions
of Unity, and in Maya, the base texture is often called Color. In 3ds Max, it
is called Diffuse in the basic materials. With the move to Physically Based
Shading (PBS), the title Albedo is now used for the base texture. A few of
the textures also have been appended with Specular. This indicates that
the texture has the albedo in its RGB channels and its Smoothness map in
its alpha channel. Smoothness, also known as specularity and glossiness
in some applications, controls the surface’s absorption or reflection of light.
A hard, smooth surface reflects a lot of light, while a rough or soft surface
reflects very little. You will also see MudRockyNormals, a texture whose
entire purpose is as a Normal map to simulate bump not present in the
mesh.

3. Click CliffAlbedoSpecular in the second column.

4. Adjust the Inspector’s width and the preview window’s height to get
a good view of the texture.

You can see its alpha channel by toggling the RGBA button next to the Mipmap slider
(Figure 2-33).

Figure 2-33. The texture’s RGB channels showing the albedo (left), and the alpha channels showing the specular (right)

97CHAPTER 2: Unity Basics

Textures, as with the rest of the trees, detail meshes, and grasses, must be loaded into the
appropriate Terrain component tool before they can be used. Let’s begin by flooding the
terrain with the Grass(Hill) texture.

1. Select the Terrain object again to get back to the terrain tools.

2. Click the Paint Texture tool.

3. Under the Textures preview area, select Edit Textures.

4. From the list that appears, select Add Texture (Figure 2-34).

Figure 2-34. The Edit Textures list

98 CHAPTER 2: Unity Basics

The Add Terrain Texture dialog box appears (Figure 2-35).

5. Click the Texture’s Select button to bring up the Select Texture2D
dialog box.

6. Select GrassHillAlbedo.

 7. Click Add.

The GrassHillAlbedo texture is now shown in the available Textures area beneath the
brushes (Figure 2-36). In the Scene view, the terrain is filled with the GrassHillAlbedo texture,
tiled at the default 15 × 15 size. Note that this is a tiling size, not amount. If you wanted
the texture to appear smaller or more detailed on the terrain, you would decrease the Size
parameters.

Figure 2-35. The Add Terrain Texture dialog box

99CHAPTER 2: Unity Basics

To get some practice painting a terrain texture, you will need to add another texture:

 1. Toggle on the scene lighting now that you have a texture on the terrain.

2. Click the Edit Textures button again, and select Add Texture again.

3. Select GrassRockyAlbedo and click Add.

The new texture is added to the available textures (Figure 2-37). Note that
the GrassHillAlbedo texture has a light blue strip at its base. This tells you
that it is the currently active texture for painting.

Figure 2-36. The first texture flooding the Terrain

Figure 2-37. The two available terrain textures

4. This time, load MudRockyAlbedoSpecular into the Albedo and then
load MudRockyNormals into the Normals slot.

5. Add the SandAlbedo texture and experiment with painting your
terrain (Figure 2-38).

100 CHAPTER 2: Unity Basics

The Normal map used in the MudRocky material is probably too costly for mobile devices
and may not be supported on all devices, but it’s fun to see the nice effect it has on the
environment. The strength of the normal map is adjusted in the map itself. You will get to
experiment with normal maps in Chapter 4.

Place Trees
With the texture in place, the next tool you will by trying is the Place Trees tool. As you
may imagine, you will not be able to paint trees with abandon onto your terrain for mobile
devices. Even on conventional platforms with Unity’s built-in LOD system for trees, you have
to design with occlusion in mind if you want to create a heavy stand of trees.

One of the nicer additions to Unity’s Terrain system is the incorporation of Interactive Data
Visualization’s SpeedTree system. SpeedTree trees have more realistic interaction with wind,
better rendering and shadowing, and have extensive LOD options.

Before populating your terrain with trees, let’s take a few minutes to examine the trees on an
individual basis:

1. From the Project view ➤ Standard Assets ➤ Environment ➤
SpeedTree ➤ Broadleaf folder, select Broadleaf_Desktop.

2. Drag it onto your Terrain object in the Scene view and adjust the view
so you can see it nicely.

The tree is rather large for the little 100 × 100 meter plot of land. Let’s scale
it down so you can plant more trees later.

Figure 2-38. The freshly textured Terrain

http://dx.doi.org/10.1007/978-1-4302-6757-7_4

101CHAPTER 2: Unity Basics

3. Scale the tree down to about 0.375 for x, y, and z and readjust the view.

4. With the tree selected, click the tiny lock in the upper right of the
Inspector to lock the Inspector to this object (Figure 2-39).

5. Deselect the tree in the Hierarchy view.

You now have a nice view unencumbered by mesh edges and colliders
(Figure 2-40).

Figure 2-39. Locking the Inspector to the Broadleaf_Desktop object

Figure 2-40. The Broadleaf_Desktop tree in the Scene view

102 CHAPTER 2: Unity Basics

6. From the Gizmos drop-down just above the view, activate 3D Icons
so they won’t block the view of the tree.

7. In the Scene view, zoom in and out from the tree and watch the
Scene view display as it indicates the LOD version that you are
seeing (Figure 2-41).

Figure 2-41. Inspecting the LOD versions in the Scene view

Figure 2-42. The Broadleaf_Mobile tree in the Scene view next to the Broadleaf_Desktop tree

The bounding rectangle in the Scene view is color coded to match the LOD
levels.

8. Unlock the Inspector.

9. From the Project view, drag the Broadleaf_Mobile tree into the scene
next to the desktop version (Figure 2-42).

103CHAPTER 2: Unity Basics

The mobile version is nowhere near as robust as the desktop version, the
leaves aren’t anti-aliased against the background, and the color isn’t as nice.

Let’s get the camera set to the nice view of the two trees before going any
further.

10. Select the Main Camera and from the GameObject menu, select
Align with View.

When you go to Play mode after planting trees, you will have a better view
of the trees.

11. Expand the Broadleaf_Desktop asset in the project view and locate
the mesh assets (Figure 2-43).

Figure 2-43. The four tree meshes used for the Broadleaf_Desktop tree’s LOD versions

12. Select each LOD version of the mesh and check the Preview window
to see the number of tris that each has.

13. LOD0 has 7188 tris, LOD1 has 4420 tris, LOD2 has 879 tris, and
LOD3 (the billboard image) has 4 tris.

14. Expand the Broadleaf_Mobile asset and compare the triangle counts.

15. This time, LOD0 has 999 tris, LOD1 has 689 tris, LOD2 has 331 tris,
and LOD3 (the billboard image) has 4 tris.

Additionally, the desktop tree has 13 colliders, and the mobile tree has 3. Collision
calculations, as you may have guessed, cost time, which also equates to frame rate. The
fancy rendering of the desktop tree also uses more frame rate.

Be sure to check online for lots of ways to economize your SpeedTrees.

Let’s make some adjustments to the desktop version to make it a bit more economical.

1. Select the Broadleaf_Desktop tree in the Hierarchy view.

2. Turn off Animate Cross Fade so you can see the LODs pop in and
out easier.

3. Drag the LOD dividers so the LOD changes happen sooner

4. Create a folder named Prefabs in the Project view.

104 CHAPTER 2: Unity Basics

5. Rename your desktop tree to Broadleaf_Comp (for compromise).

6. Drag it into the new Prefabs folder.

You have now created a customized version of the tree that can be used with the Terrain
system. You don’t have access to the SpeedTree prefabs except through the Terrain editor,
but they already exist internally.

Armed with a better knowledge of where the resources can be spent on trees, it’s time to
plant a few using the Terrain system:

1. Select the Terrain object and click the Plant Trees icon.

2. In Edit Trees, select Add Tree, load your Broadleaf_Comp tree, and
click Add.

3. For fun, select the tree, click Mass Place Trees, and accept the
default 10,000 trees.

The Terrain object looks like an overgrown Chia Pet (Figure 2-44). If you try
to rotate the view, however, you will probably see that it has brought your
machine to a crawl.

Note Dragging a scene object from the Hierarchy view into the Project view creates what Unity
calls a prefab. Prefabs differ from imported assets in that they can contain Unity components—
which means that you can have any useful object conveniently set up and ready to use. As an
example, a common prefab for shooter-type games is a projectile. It might contain the projectile
object and its components, a particle system or two, and the script that tells it what to do when it
hits something. Once in the Project view, a prefab can be exported as a Unity package, making it
available for use in multiple projects. You will be creating many prefabs throughout this book.

Figure 2-44. Mass planting 10,000 trees

105CHAPTER 2: Unity Basics

Note that with more than one tree available for planting, you will get an
even percentage of each species or variety.

Let’s get the terrain back under control.

4. Undo (Ctrl+Z or Cmd+Z from the Edit menu) until your terrain is clean
again.

There are basically two ways to plant your trees. You can click or you can
click and drag. Single clicks drop a sparse number of trees, while dragging
over the same spot fills in bare spots until the target density is achieved.

5. Set the Brush Size to 20 and the Density to 80.

6. Click once on the terrain.

A few trees are planted.

7. Click a few more times in different places.

8. Now click and drag in the same spot until it is quite dense.

9. Undo to remove the densely painted area.

10. This time, turn the density down to 10 and paint to fill in an area more
completely.

Now the density is capped at a more reasonable amount (Figure 2-45).

Figure 2-45. Careful planting resulting in a more reasonable density

106 CHAPTER 2: Unity Basics

11. Load the mobile version of the tree into the Terrain editor and add it
to the terrain by using the same settings.

Note that introducing a new tree doesn’t alter the maximum density. If there
is no room for it, the new tree will not be added.

12. Click Play and turn on Stats in the Game view (Figure 2-46).

Figure 2-46. Checking on frame rate

The density is reasonable, and the frame rate hasn’t suffered too much.

13. Select the Terrain and in Settings, under Tree & Detail Settings, turn
off Draw.

The trees and detail objects are no longer being drawn, but you may see several gray
spheres hanging around in the Scene view. These are the light probes that can keep
dynamic objects “in the shade” when using only baked light. You may disable them directly
under the Draw parameter.

Let’s try something else expensive but fun. One of the great features with SpeedTrees is how
they react to wind. To see the wind, you will need a Wind Zone object.

1. From the GameObject menu, choose 3D Object ➤ Wind Zone.

The Wind Zone comes in with the Mode set to Directional, so it doesn’t
matter where it is in the scene. The Spherical mode is useful when attached
to low-flying helicopters. It has a Radius parameter.

2. Click Play and watch the frame rate to see how much the wind
“costs” as the tree waving ramps up to full speed.

3. Experiment with the parameters.

107CHAPTER 2: Unity Basics

Paint Details
Paint Details is for painting all other sorts of objects onto your terrain. There are two types of
Detail object: Grass Textures and Detail Meshes. Grass Textures are images on planes that
are billboarded, which means they always turn to face the camera. Using an alpha channel,
they are meant for creating grass and other plants or objects that are layered against each
other rather than volumetric in nature. Detail Meshes are for objects that require a 3D mesh,
such as rocks, cactus, or succulents.

Detail Meshes do not have a built-in setting to keep them from getting too close to each
other. Painting (mouse button held down) even with Density settings at their lowest will
generally produce too many overlapping objects. The best practice is discriminating mouse
button pressing rather than painting.

The main thing to remember with either Grass Textures or Detail Meshes is that the objects
will fall under Unity Terrain’s LOD system. Unlike the SpeedTrees that go between various
versions of the tree down to a billboard image and finally are completely culled (turned off),
Detail objects are either off or on. If, for example, you want to create large rock formations
around the terrain, keep in mind that they will be distance culled.

Let’s try a few detail objects:

1. Select the Terrain and then select the Paint Details tool.

2. Click Edit Details.

You have the choice of Add Grass Texture, Add Detail Mesh, Edit, or
Remove (Figure 2-47).

Figure 2-47. Detail object options

108 CHAPTER 2: Unity Basics

3. Select the Add Grass Texture option.

The Add Grass Texture dialog box appears. If you click the Browse button,
you will have to select from all of the scene textures. For the Grass Texture,
you want a texture with an alpha channel. Two very nice grass textures
came in with the Environment package.

4. From the Project view, Assets folder ➤ Environment ➤ TerrainAssets,
open the BillboardTextures folder and choose GrassFrond01Albedo
or GrassFrond02Albedo and click Add.

5. Set the Brush Size to 25, the Opacity to 0.03, and the Target Strength
to 0.06.

6. Zoom in close enough to the terrain so that the grass won’t be
distance culled.

7. For now, paint the grass heavily so you can see the pattern from the
two tint colors.

8. Go back into Edit Details and edit the Grass Texture, changing the
Healthy and/or Dry Colors.

The color changes on the grass that was painted previously.

9. Hold the Shift key down and paint to thin out the grass (Figure 2-48).

Figure 2-48. Grass painted on the Terrain

10. Click Play and observe your grass in the Scene view if your camera is
not set to it well.

The grass waves gently in the wind.

109CHAPTER 2: Unity Basics

11. In the Terrain Settings, under Wind Settings for Grass, adjust the
Speed, Size, and Bending to better match your trees’ movement.

Let’s try a Detail Mesh next. There is nothing remotely useful for a Detail Mesh in your
current project, so you will import a new Unity package.

1. From the Chapter 2 Assets folder, load the Rock.unity package.

You will find the Rock in the Prefabs folder.

2. Load the Rock in as a Detail Mesh and set the Dry and Healthy
Colors to white and gray.

3. Change the Render Mode to Vertex Lit.

4. Examine the Min and Max size settings and click Add but do not
close the edit window.

5. Set the Brush Settings to Brush Size 100, Opacity 0.1, and Target
Strength 0.625.

6. Make sure the Rock is selected and click once on the Terrain to
make some rocks (Figure 2-49, left).

7. In the Edit Details window, adjust the Min and Max sizes until you
see good differentiation in the rocks, somewhere around 0.08 for the
Min and 1.2 for the Max (Figure 2-49, center). You do not have to
click Apply.

8. Click and drag on the Noise Spread label to see different fractal
patterns (Figure 2-49, right).

Figure 2-49. A single rock click: default settings (left), Min and Max size adjusted (center), and Noise Spread adjusted (right)

9. Click Apply and zoom out in the view to see when the rocks are
distance culled.

10. When they disappear, go to the Settings section and under the Tree
and Detail Objects, increase the Detail Distance until they reappear.

http://dx.doi.org/10.1007/978-1-4302-6757-7_2

110 CHAPTER 2: Unity Basics

Unfortunately, the grass is also drawn again, so as you can see, using detail objects for
something that should be seen at a great distance is probably not a good idea.

One last piece of information you should know about Detail Meshes is that Unity internally
combines several Detail Mesh textures together for batching. If the rock’s UV mapping
spills out over the edge of the map (Figure 2-50, left), instead of staying within the mapping
boundary (Figure 2-50, center), the object will pick up a neighboring texture (Figure 2-50,
right).

Adding Water
With the newer shaders, you will be able to create some nice water to fill the hole in
your terrain:

1. Temporarily deactivate the Draw check box in the Terrain Settings
Tree and Detail Objects section.

2. Hover the cursor over the hole in the Terrain and press the F key on
the keyboard to zoom in.

3. From Environment Water ➤ Water ➤ Prefabs, drag the
WaterProDaytime prefab into the hole in the Scene view. In this prefab’s
Water component, set the Water Mode to Simple (Figure 2-51).

Figure 2-50. An overlapping UV unwrap (left), and the results (right). The correct unwrap is shown in the center.

111CHAPTER 2: Unity Basics

4. Adjust the scale and position to fit and then adjust the view.

5. Select the Main Camera. From the GameObject menu, choose Align
with View.

6. Click Play to see the results.

The water ripples gently as if with a light breeze, but the water color is
uniform (Figure 2-52, left). The there is no reflection or transparency or
indication of depth. Let’s try the two other Water Mode options. Be sure to
check up on the frame rate in Stats to see whether you can detect any large
differences in the three options.

Figure 2-51. Caption

Figure 2-52. WaterProDaytime: Simple (left), Reflective (center), and Refractive (right)

112 CHAPTER 2: Unity Basics

7. While still in Play mode, set Water Mode to Reflective (Figure 2-52,
center).

The color remains constant, but the reflection makes this variation much
more believable.

8. Now set the Water Mode to Refractive (Figure 2-52, right).

The Refractive version is very transparent with a bit of reflection, making it more suitable for
shallow bodies of water.

The next water prefab you will try is a lot more complex than WaterProDaytime. It was
designed more for oceans, and as such comes with multiple pieces to help fill out the scene.

1. Disable WaterProDaytime.

2. From Environment ➤ Water ➤ Water4 ➤ Prefabs, drag the
Water4Advanced prefab into the hole in the Scene view.

3. Disable all but one of the child Tile objects, position it, and then
click Play.

This one has nice reflection (provided by its own camera), refraction, and
transparency that is reduced near the center, providing a nice sense of
depth. The only problem is that it was obviously meant to be an ocean.
Fortunately, you can tame the wave displacement.

4. Select the parent, Water4Advanced, and disable the Gerstner
Displace component.

5. Select the active Tile object and experiment with the
Water4Advanced shader’s parameters.

You can ignore the lower parameters with Wave in their name, as you have already turned
off the Gerstner Displace component. Note that many of the X, Y, Z, and W values are for
unrelated parameters (shown in parentheses). You may notice the sun’s reflection on the
water, depending on your lake’s orientation and your camera position. The “sun” is not being
calculated from the Directional Light; it is handled in another child of the Water4Advanced
object, the Specular object. Its only component, the Transform, dictates where the highlight
will fall on the water. Be sure to experiment with it as well.

Figure 2-53 shows the settings used to achieve the lake in the accompanying image.

Tip Changing the shader’s parameters even during runtime will be permanent. You may want to
take a screenshot of the original settings.

113CHAPTER 2: Unity Basics

Creating the Sky
In Unity, the sky is created through the use of a skybox. Clouds can be included in the
images that make up the skybox. Moving clouds would have to be handled separately. Fog
is handled through Image Effects.

Using Skyboxes
Just as the name implies, six images are used to create the visual bounds of your scene.
Rather than create an actual cube that could interfere with other 3D objects, Unity’s skybox
is generated by a shader.

There are three shaders to choose from. The first builds a cubemap internally from a
procedurally generated “sky.” The second uses the standard DDS cubemap format, and the
third creates a cubemap using six individual images.

Let’s begin with the procedurally generated sky. Every scene you create is automatically set
to use the existing Default Skybox material that was built with the Procedural Skybox shader.

Figure 2-53. Settings (top) for the example Water4Advanced after a bit of tweaking (bottom)

114 CHAPTER 2: Unity Basics

1. In the Project view, select the Materials folder.

2. Right-click over the folder or in the second column where its
contents are shown and choose Create ➤ Material (Figure 2-54).

3. Name the Material Procedural Sky.

4. In the Inspector, click the Shader drop-down and choose Skybox ➤
Procedural (Figure 2-55, left).

The shader has only five parameters, and the resulting sky is shown at the
bottom in the Preview window (Figure 2-55, right).

5. Tweak the parameters until you get something interesting. Be sure to
include a visible sun (you may have to drag in the preview window to
see the sun).

Figure 2-54. Create ➤ Material from the Assets menu or the right-click menu in the Project view

Figure 2-55. The Procedural Skybox shader option (left), and selected (right)

115CHAPTER 2: Unity Basics

Once the material is ready to go, you will load it into the scene.

6. From the Window menu, select the Lighting window.

7. In the Scene section, load your new Procedural Sky material into the
Skybox field (Figure 2-56).

Figure 2-56. The Lighting window with the new Procedural Sky loaded

Note that the Ambient Source is currently set to use the skybox and that its
intensity can by adjusted to suit.

The great thing with the Procedural skybox is that the shader uses the
Directional Light in your scene to place the sun on the skybox.

8. Pan and orbit the Scene view so you can see the sun.

9. Select the Directional Light and rotate it about the x and y axes to
see how the sun is positioned to match.

Note how the sky color and light change as it goes down toward, and then below, the
“horizon.”

If you want your skybox to have clouds, you have two shader choices. The Cubemap shader
uses a ready-made cubemap, and the 6 Sided shader uses six individual images to generate
one for you.

The sky you will be using next was generated using a free sky generator (www.nutty.ca/?p=381).
It has the option for adding simple clouds, adjusting the position of the sun, and allows you
to modify the colors of just about everything. The image was rendered out in a horizontal
cross configuration and then processed in Photoshop and exported as a DDS formatted
cubemap. For more information on cubemaps, a nice reference page is at
www.cgtextures.com/content.php?action=tutorial&name=cubemaps.

http://www.nutty.ca/?p=381
http://www.cgtextures.com/content.php?action=tutorial&name=cubemaps

116 CHAPTER 2: Unity Basics

1. From the Chapter 2 Assets folder, drag the Skies folder into the
Project view.

2. In the Project view, select the Materials folder and from the right-click
menu, create a new material.

3. Name the material Cubemap Sky.

4. In the Inspector, click the Shader drop-down and choose Skybox ➤
Cubemap.

5. Drag the Highnoon.dds (cubemap) image into the shader’s Cubemap
(HDR) field.

HDR stands for High Dynamic Range, where a more accurate intensity value is stored for the
light areas than is possible with standard RGB. Your cubemap is not HDR and will not be as
accurate when used for the Ambient Source. Nevertheless, it will contribute to the ambient
lighting as is and has the advantage of using less resources than a true HDR cubemap
would.

6. Drag the new Cubemap Sky material into the Lighting window’s
Skybox field.

7. Orbit and pan the view to see the results (Figure 2-57).

8. In the Cubemap Sky material’s Cubemap shader, try adjusting the
Exposure and the Rotation.

The Highnoon cubemap’s sun is somewhere near the top of the cube, so rotating it is more
about getting a nice view of the clouds from the important locations in your scene than
about deciding from which direction the sun will be shining. While less crucial in this case,
you will be synchronizing the Directional Light in your scene with the cubemap’s sun by
using a few little tricks.

Figure 2-57. The Highnoon cubemap in the Cubemap Sky

http://dx.doi.org/10.1007/978-1-4302-6757-7_2

117CHAPTER 2: Unity Basics

1. Rotate the cubemap to the desired orientation by using the shader’s
Rotation parameter.

2. Using Alt + left mouse button, orbit the view until the cubemap’s sun
is roughly centered in the Scene view.

3. Select the Directional Light and use Move to View.

The light is in the true center of the view, so now you can adjust the sun
to match.

4. Orbit the view to finish aligning the sun to the Directional Light.

5. Select the Directional Light. From the GameObject menu, choose
Align with View.

6. Use the middle mouse roller the minimum amount to zoom the light
back into view.

The light’s angle matches the sun in the cubemap, but it is facing the wrong
direction.

7. Add or subtract 180 degrees to the Directional Light’s X Rotation to
get it pointing in the correct direction.

8. Double-click the Broadleaf_Mobile tree in the Hierarchy view and
orbit the view to see how the shadows and lighting look.

The final shader uses six images and generates the cubemap for you; otherwise, it works
essentially like the Cubemap shader. Let’s try that one next:

1. Create a new Material and name it SixImage Sky.

2. In the Inspector, click the Shader drop-down and choose Skybox ➤
6 Sided.

The only tricky part about using individual images is knowing where each
belongs. If they are already generated, the naming will generally follow
one of two naming conventions. They will either be left, right, front, back,
top, and bottom or they will be -X, +X, -Z, +Z, -Y, and +Y. You may also
see them use positive and negative rather than + and -. Figure 2-60 will
help you to decide which image is which, especially if the image is in the
horizontal cross configuration and you will be manually separating it into
the six individual images.

118 CHAPTER 2: Unity Basics

3. Drag the appropriate Morning_ images from the Skies folder into the
6 Sided shader.

Something hasn’t gone well (Figure 2-58). The easiest fix when breaking in
a new cubemap source is to label each of the images with their side names
and then swap either the left and right or the front and back. In this case,
it looks like Unity currently has Left and Right opposite from the standard
horizontal cross and Nvidia strip configuration names.

Figure 2-58. The Morning images showing incorrect ordering

4. Load the Left image in the Right slot, and the Right image in the Left.

Everything is looking good again (depending on your version of Unity,
of course).

5. Assign it to the Skybox parameter in the Lighting window and
experiment with the Rotation to get the sun in the right location for
your scene.

6. Use the technique outlined in the previous section to synchronize the
Directional Light with the new cubemap’s sun (Figure 2-59).

119CHAPTER 2: Unity Basics

Figure 2-59. The early morning sun position—with most of the terrain in shadow

With the early morning light, you may decide that the Directional Light could be a bit
stronger and maybe a bit bluer. Feel free to adjust its Intensity to 1.25 and give it a slightly
bluish Color.

Introducing Fog
If you happen to live somewhere near a decent-sized body of water, you are probably
missing a bit of morning fog, or at least some morning mist. Let’s make that the final
experiment for your little environment.

Unity now handles all but the most minimal fog through effects. Turning the trees on will give
you good visual feedback for your fog.

1. Select the Terrain object and activate the Draw check box in the
Settings, Tree and Detail Objects section.

2. In the Lighting window, scroll down until you find the Fog check box
and activate it.

3. Zoom slowly back from your little environment.

The default fog is a nice generic gray color, but you have no means of adjusting its density,
and it doesn’t affect the skybox.

4. Select the camera and set it to Align to View.

5. Press Play and observe the frame rate (FPS) with and without the fog
turned on.

The frame rate jumps around a lot, but doesn’t particularly seem to affect
the frame rate.

To use the Effects fog, you will have to import the Standard Assets Effects package. Also
be aware that this fog requires graphics cards that support Depth Textures. See Unity’s

120 CHAPTER 2: Unity Basics

Graphics Hardware Capabilities and Emulation page for further details and a list of compliant
hardware.

1. Import the Effects package from the Assets menu’s Import Package
option.

2. Select the Main Camera. From the bottom of the Component menu,
choose Image Effects ➤ Rendering ➤ Global Fog.

3. Switch to the Game view and disable the Fog in the Lighting window.

4. Disable the Exclude Far Pixels check box.

The skybox is now affected by the fog. You would probably want to turn the
Camera’s Clear Flags parameter to Solid Color and match the Color to your
fog if this was your intended mood or style.

5. Disable the Distance Fog.

Note the hard horizon line. You could lower the Height Density, but then the
trees would no longer be hidden after you raise the fog height.

6. Raise the Height value until only the tops of the trees are showing.

7. Enable the Exclude Far Pixels check box and set the Height Density
to about 0.5.

Now you get the best of both—except that the Water4Advanced is
not affected by the fog. You will need to go back to using the simpler
WaterProDaytime.

8. Deactivate Water4Advanced and activate WaterProDaytime.

9. Click Play and check the Stats for frame rate again.

If you are feeling adventurous, you might want to do a search of Unity Answers for
GlobalFogExtended by rea. It has a lot more settings that you can tweak for some very nice
effects (Figure 2-60). In the two Global Fog Extended images, the Raleigh setting (controls
the color of the fog) was around 98. Luminance, Bias, and Contrast were tweaked to get a
brighter look to the fog. The zipped file contains a shader and a script. Place the two files
in the same folders as the Unity versions. Add the script to the camera and load the shader
into it as well as setting the Directional Light as the Sun parameter.

Figure 2-60. Global Fog, Distance (left); Global Fog Extended, Height Fog (center); Global Fog Extended, Distance and
Height Fog (right)

121CHAPTER 2: Unity Basics

As with just about anything you consider using for mobile platforms, you should always
check frame rate and eventually test on the lowest targeted platform you plan on supporting.

Summary
In this chapter, you were introduced to the Unity gameObject and some of the components
that help define its visual aspect and behavior. You discovered that Unity has several
primitive 3D objects that are handy for experimenting.

You learned that all gameObjects have a Transform component that keeps their position,
orientation, and scale. In the Scene view, you can use either the Local or the Global
coordinate system with the Transform gizmo to arrange your objects. Double-clicking an
object in the Hierarchy brings the object to the center of the Scene view, where you can then
use the GameObject options, Move to View and Align to View, to great advantage.

Another means of alignment in Unity, you found, is the ability to snap objects to each other
by using their vertices as snap points with the help of the V key. Cloning objects by using
Ctrl+D (Cmd+D), you were able to quickly create and align your test cubes. You also got
some practice activating and deactivating gameObjects from the top of the Inspector.

With multiple objects in your scene, the next experiment was to parent objects by dragging
and dropping them onto other objects in the Hierarchy view. The key concept learned was
that children inherit the transforms of their parents and that their transforms reflect their
offset from the parent rather than their actual location in world space.

Getting back to components, you discovered how they became the building blocks of Unity
gameObjects. With 3D objects, you saw that the Mesh Renderer component is responsible
for drawing the object into the scene. Some components are somewhat generic, and others,
such as the Light and Camera components, are quite specialized.

Plunging into Unity’s Terrain system, you became aware of many factors that can impact
frame rate. Painting the terrain with textures, and populating it with trees and detail objects
(meshes or billboard planes), showed you how quickly you can bring the frame rate to a
crawl.

A quick look at water, skyboxes, and fog rounded out the environment experiments and
reinforced the importance of being aware of the graphic capabilities of your target platforms.

In the next chapter, you will delve into scripting, where you will begin your journey into
making interactive and engaging games and applications.

123© Sue Blackman and Adam Tuliper 2016
S. Blackman and A. Tuliper, Learn Unity for Windows 10 Game Development,
DOI 10.1007/978-1-4302-6757-7_3

Chapter 3
Scripting with C#
In Unity, very little happens without at least a small amount of scripting. Even if you consider
yourself more of an artist or game designer, you should learn enough of the basics of
scripting to be able to prototype game ideas, track down code for desired functionality,
and become familiar with concepts and techniques commonly used with Unity game
development. If your palms are getting sweaty and your pulse rate is increasing at this point,
don’t panic! The syntax involved is no more difficult to pick up than learning to text; it is
generally fairly descriptive. The major concepts are fairly straightforward. More important,
just as you don’t need to understand the workings of an internal combustion engine in order
to drive a car, in scripting you don’t necessarily have to understand how a bit of code works
in order to make good use of it.

Creating a New Test Project
If you are already familiar with programming, you will discover that only a small part of
scripting in a game engine has to do with what you may have learned in a conventional
programming class. The fun part is that scripting in a game engine gives you a lot more
visual feedback for your efforts.

Let’s begin by creating a new Unity project:

 1. Create a new Unity project and name it ScriptingTests.

You won’t require any packages for this little test project.

2. Use the 2 × 3 layout and the One Column Layout for the Project view.

3. From the GameObject ➤ 3D Object submenu, create a Cube and a
Sphere.

4. Move the Sphere a couple of meters away from the Cube on the x axis.

5. Orbit the Scene view until the Cube is on the left and the Sphere is
on the right (Figure 3-1).

124 CHAPTER 3: Scripting with C#

6. Select the Main Camera in the Hierarchy view. From the GameObject
menu, choose Align with View.

7. Add a Directional Light and adjust its direction so that the two
objects are well lit in the Game view.

8. Save the scene as Scripting Sandbox.

The scene is very simple but it will give you a lot of interesting possibilities for scripting tests
beyond the classic Hello World message used in traditional programming courses.

Why C#?
In the earlier days of the Unity game engine, targeted users were typically familiar with
Adobe Flash. As a result, most of the learning material and documentation was done with
UnityScript, a JavaScript derivative similar to Flash’s ActionScript. Besides having the great
advantage of being the main scripting language in most examples, UnityScript tends to be a
lot more user friendly than C# for beginners.

Unity supports multiple languages. JavaScript, C#, and Boo (although Boo is being phased
out), and uses the Mono framework that allows you to author for multiple operating systems
at the same time. With the push toward mobile, however, C# is becoming the language of
choice for the Unity community. It is considered to be more powerful and more flexible, is
getting to be better documented, and it is easier to find sample code for most Unity uses.

In this book, the scripting is kept fairly basic, but you are encouraged to investigate C# in a
more traditional manner if you find the topic intriguing.

Figure 3-1. Scene view with the Cube and the Sphere

125CHAPTER 3: Scripting with C#

Working with Script Editors
Because the syntax for most programming languages is highly structured, people typically
use a script editor. Unlike a simple text editor, it is full of features that monitor your syntax,
offer suggestions, and highlight problem areas. Unity currently ships with MonoDevelop. It
consists of several areas for more serious programming, but you will generally use just the
editing area. With more recent releases, the option to install Visual Studio Tools for Unity has
been added. Whatever your preference, you will need a test project for your experimentation.

Exploring the Editing Environment
Let’s create a new C# script and check out the editing environment:

1. Right-click in the Project view and from the Create menu, choose
C# Script.

2. The new script goes immediately into rename mode.

Name it MyFirstScript.

In the Inspector, you will see the new script with its bare-bones content. Of
note is the name that you supplied in the class declaration (Figure 3-2).

Figure 3-2. The newly generated script with its name showing in the class declaration

Tip If you decide to change the script’s name after it has been generated, you must also change it
in the script’s class declaration.

126 CHAPTER 3: Scripting with C#

 3. Because the script cannot be edited in the Inspector, it must be
opened in the script editor. Click the Open button at the top of the
Inspector, or double-click the script in the Project view to open the
script.

One of your options when installing Unity was to install Microsoft’s Visual Studio Tools for
Unity (VSTU), a free version of the industry standard, Visual Studio, as your script editor.
This feature-filled toolset allows you to develop and debug your Unity games by using Visual
Studio.

Although installation may be problematic on older versions of Windows, you will need VSTU
to port to the Universal Windows Platform (UWP). It can also be useful when developing
for Android. If you did not choose to install it when you installed Unity, you can run Unity’s
installer again to have it installed, or you can do a search for Visual Studio Tools for Unity
and install it directly from the Microsoft site. Either way, you will need Internet access, as
some of its components are loaded from other locations. Additionally, you will have to log in
with your Microsoft account to run VSTU for the first time.

Currently, the default installation for Unity loads Visual Studio Community edition. This
version integrates with VSTU. If you are already familiar with coding and Visual Studio,
you know that VSTU provides capabilities not only for rich refactoring, debugging, source
code analysis, formatting, and custom debugging visualizers, but also for generating
code methods in your code. If you are unfamiliar with all of the features just mentioned,
don’t worry, you won’t need them to create games in Unity. As your capabilities increase,
however, you may want to look at VSTU’s many features for ways to improve workflow and
productivity.

The other script editor is the MonoDevelop editor. It has shipped with Unity for several years,
and although it may not have as many bells and whistles as VSTU, it runs happily on a wide
variety of Windows versions and can be installed on offline machines.

If you want to use a different editor than what was installed, you can select the script editor
of your choice through the Preferences submenu under the Edit menu. If you have installed
the editors during the initial Unity installation, both will be offered as options (Figure 3-3).

127CHAPTER 3: Scripting with C#

The MonoDevelop script editor opens in its own window (Figure 3-4).

Figure 3-3. Selecting your script editor in Unity Preferences

128 CHAPTER 3: Scripting with C#

In the left pane you will find the Document Outline. Try clicking each of its content elements.
The element selected is located in the editing pane to the right. As your scripts become
longer, this can provide a quick way to navigate to the desired location in your script.

Figure 3-4. The Mono Develop script editor

129CHAPTER 3: Scripting with C#

If you have chosen Visual Studio as your script editor, it will also open in its own window
(Figure 3-5).

One thing you will notice about both editors is the traditional color coding of the contents
of your scripts. As you become familiar with scripting, this feature will help you as you write
your code. Another major reason to use a script editor rather than a simple text editor is that
they will also identify errors and help you fix the problems. Let’s try a little test:

1. Below the void Start () { line, type this:

something wrong

In Visual Studio, the error is reported immediately (Figure 3-6).

Figure 3-5. The Visual Studio script editor

130 CHAPTER 3: Scripting with C#

2. The asterisk next to the script’s name at the top of the editor window
indicates that the script has not yet been saved. To save a file in
Visual Studio, use the Save icon on the toolbar (Figure 3-7).

Figure 3-6. An error in the Visual Studio script editor

Figure 3-7. Use the Save button to save the script. The asterisk in the script name indicates it hasn’t yet been saved.

131CHAPTER 3: Scripting with C#

3. In MonoDevelop, the error is not found until the file has been saved,
and even then it will show in Unity’s console (as soon as you switch
focus to the Unity editor) first (Figure 3-8). To save the script in
MonoDevelop, choose File ➤ Save or press Ctrl+S (Cmd+S).

4. For the error to show inside MonoDevelop, choose Build ➤ Build All
(Figure 3-9).

Figure 3-8. The error reported in Unity’s console

Figure 3-9. Using Build All to pinpoint the error in MonoDevelop

5. Remove the text you added to the editor and save the script.

132 CHAPTER 3: Scripting with C#

Examining the Contents
In either editor, you will see the code for your script in the main window.

At the very top of the script, you will find the libraries used to interpret the code. UnityEngine
and System.Collections are always added as a default. Occasionally, you may require other
libraries, but generally, until you begin to add GUI elements, these two will contain most of
what you will be using.

The next feature is the class declaration, public class MyFirstScript MonoBehaviour {.
In Unity, a script is generally a single class. Its contents are contained within an opening and
a closing curly bracket, or brace. The closing curly bracket is at the bottom of the script.

Inside the curly brackets, you will see the two most common functions used in Unity: the
Start function and the Update function. They come blocked in and waiting for content. Note
that they also have their own set of curly brackets to define where their content is kept.

Also note the comments above each function. Prefaced by //, anything after the
backslashes, and on the same line, is ignored by the engine. The gray color of the comment
text (green in Visual Studio) is a visual reminder that it is not to be read. Comments are often
put above code, as in this case, as a description of what the code is doing as well as shorter
notes at the end of lines. You can also use the // to temporarily disable lines of active code
to help in the debugging process and as a way to locate code tagged for future attention.

Let’s make another script:

1. Right-click in the Project view and from the Create menu, select
C# Script.

2. Name this one SimpleTransforms.

3. Double click the script in the Project view to open it in the editor.

The second script opens in the editor, in its own tab (Figure 3-10).

Figure 3-10. The second script open in the MonoDevelop editor

On its own, a script will do nothing unless it is in a scene. To add it to the
scene, it must be added to a gameObject, where it becomes a component
of the object.

4. Click and drag the SimpleTransforms script from the Project view
onto the Cube in the Hierarchy view.

133CHAPTER 3: Scripting with C#

The SimpleTransforms script becomes a component of the Cube object, as you can see in
the Inspector when the Cube is selected (Figure 3-11).

Figure 3-11. The SimpleTransforms script as a component of the Cube object

The script is added as an instance. That means the same script can be added to as many
objects as you wish. If the script is changed, the changes will affect all of the objects that
contain that script.

Building a Script
There are a few ways to make an object do something without scripting. Both traditional
key-frame animation and the use of a physics in your scene can cause objects to move,
rotate, or scale. But the essence of a game is to control what happens to your objects as the
player interacts with the game. Doing that requires scripting. To script, you have to become
familiar with functions, syntax, and variables at the very least.

To create a game, you create a lot of individual scripts that define the functionality of your
game. Most scripts reside on and control specific gameObjects. Some scripts control a
single action or event, while others eventually handle many game-play scenarios. More
important, scripts quite often have to communicate with each other.

Whatever the complexity or purpose, scripts in most modern programming languages
generally have the same basic components. Functions contain the instructions that make
things happen. Variables store information such as an object, a state, or a value that can
represent just about anything. Comments are the part of the code that is not interpreted by
the engine and can be used to make notes in the code as well as temporarily disable code.

Later in the book, you will use specific comments to store tasks through // Todo and //
Fixme, which then will appear in the task view of MonoDevelop, Xamarin Studio, and Visual
Studio. Let’s begin with functions

134 CHAPTER 3: Scripting with C#

Introducing Functions
Functions are where the game functionality is handled. There are several types of functions.
Some, such as the Start function, are called only once when the game starts or when
a particular object is brought into a running game. Other functions, such as Update, are
called every frame. This type of function is typically used to check for user input or watch
for passing time. Another type of function is used for monitoring events such as collisions,
mouse picks, and other object-specific interaction. A fourth commonly used type of function
is a user-defined function. You create this type of function when you expect to be using its
functionality multiple times and possibly from different places.

Investigating Syntax
As with any programming language, syntax and spelling are crucial. Although we live in a
world where spelling and grammar are corrected even as we type, you must remember that
letting devices do that kind of task costs time and resources. In games, that equates to
frame rate, which can often make or break a game’s chance of success.

Let’s begin by examining one of the existing functions:

void Start () {

}

The first word, void, in this case, is the return type. With void, no information is returned.

The next word, Start, is the name of the function. The name may not contain spaces or
certain special characters and cannot start with a number. In Unity, the convention is to use
a capital letter for the first character of the name.

The parentheses are used to contain optional arguments. An argument is a piece of
information that can be passed into a function for its use only.

Inside the curly brackets is where you put the body, or content, of the function. The curly
brackets can be arranged in a couple of ways. Some people prefer them to always be on
their own line, as follows:

void Start ()
{

}

The coding style for the curly brackets is taken very seriously by many companies. Always
respect the preferences of people or companies you work with.

Inside the curly brackets, code is generally indented to show that it is inside the function.
The MonoDevelop script editor automatically indents the code for you. Although indenting is
not necessary, it makes the code more readable.

135CHAPTER 3: Scripting with C#

Let’s add some content to the Update function of the SimpleTransforms script.Add the
following line inside the Update function:

transform.Rotate(0,1f,0);

The Update function should now look as follows:

// Update is called once per frame
void Update () {
 transform.Rotate(0,1f,0);
}

Take a moment to look at the syntax of the line you just added. It uses dot notation to
specify where to look for the various parts of the instructions.

As you may remember from the previous chapter, a transform is a move, rotation, or scale.
In the preceding code, transform, with its lowercase t, refers to the Transform component
on the object that the script is on, in this case, the Cube object. Rotate is a function (also
referred to as a method) from the Transform class. The three numbers are the arguments
passed into the Rotate method. In this case, they are the x, y, and z values that will be used
to rotate the Cube. At the end of the line is a semicolon. This tells the engine that this is the
end of the command.

Checking the Functionality
After adding the new code, you have to save the script before you can see any results.
Saving the script compiles it into instructions that can be used more quickly during runtime.
Follow these steps to save the script:

1. Look at the SimpleTransforms script’s tab in the editor. Instead of the
gray x next to the name, you will see a gray circle (Figure 3-12). This
indicates that there have been changes to the script that have not yet
been saved.

Figure 3-12. The SimpleTransforms script indicating unsaved edits

2. From the File menu, choose Save. Alternatively, you can press Ctrl+S
(Cmd+S) to save the script.

3. With the script updated to include the new content in the Update
function, you can now check out the results. Click Play and observe
the Cube in the Scene and Game views.

136 CHAPTER 3: Scripting with C#

The Cube rotates on its y axis. Depending on what else is running on your
machine, you may notice that the rate of rotation is not constant. This
might be a good time to see what the Rotate method is supposed to do by
checking the scripting documentation.

4. From the Help menu, choose Scripting Reference. Set the scripting
language to C# at the upper right.

5. Type Rotate in the search field and then click the magnifying glass to
perform the search (Figure 3-13).

Figure 3-13. Searching the Scripting Reference for “Rotate”

6. Select the second offering in the search results, Transform.Rotate.

The Description reports:

Applies a rotation of /eulerAngles.z/ degrees around the z axis, /
eulerAngles.x/ degrees around the x axis, and /eulerAngles.y/ degrees
around the y axis (in that order).

If relativeTo is left out or set to Space.Self, the rotation is applied around
the transform’s local axes. (The x, y, and z axes shown when selecting the
object inside the Scene view.) If relativeTo is Space.World, the rotation is
applied around the world x, y, and z axes.

The relativeTo argument is optional, so the rotation, in degrees, is applied
to the local axis. Because you have added the code to the Update function,
the Cube should be rotated 1 degree each time the Update function is
evaluated, or at least every frame. The problem, of course, is that frame
rate varies depending on what else is being calculated at runtime, not to
mention between devices.

The solution to the problem is to use an important bit of code from the Time
class. A search of the Scripting Reference will tell you that Time.deltaTime
returns the “time in seconds it took to complete the last frame.” If that
sounds a bit confusing, read on. The bottom line is that multiplying a value
by Time.deltaTime essentially changes the instructions from per frame to
per second. It not only forces the rotation, in this case, to be consistent, but
also ensures that the rotation will be the same on all capable platforms.

137CHAPTER 3: Scripting with C#

7. Change the 1f to Time.deltaTime * 1f so the line looks as follows:

transform.Rotate(0,Time.deltaTime * 1f,0);

The lowercase f next to nonzero numbers tells C# that the number is a
float, or floating-point number. If the f was left off, it would be read as an
int, or integer. The result of the multiplication would automatically be a float
because time uses floating-point numbers. If it was written as 1.0, it would
be considered a double without the clarifying f. Doubles require a larger
memory allocation, though both can be fractional values.

8. Save the script.

9. Click Play. The Cube, now rotating at 1 degree per second instead of
per frame, rotates at an extremely slow, but constant speed.

10. Change the 1f to 50f and save the script again.

11. Click Play and check out the updated speed.

Understanding Error Messages and the Console
If you are new to programming, you may easily get baffled by syntax errors as you add code
to your scripts. Before moving on to other basic scripting topics, generating a few errors to
see the results will be worthwhile. These examples use Unity’s console in case you are using
MonoDevelop, but feel free to compare the messages reported in Visual Studio if that is your
script editor of choice.

Let’s begin with a typical typo, an incorrect case. In C#, functions are usually capitalized and
variables are usually lowercase.

1. In the SimpleTransforms script, change the t in transform to an
uppercase T:

Transform.Rotate(0,Time.deltaTime * 50f,0);

 2. Save the script and then click on the Unity editor to switch the focus
to it. An error message appears in the status line at the bottom of the
editor (Figure 3-14).

Figure 3-14. Error message on the status line

The message indicates that Unity is missing a reference to an object on
which it can perform the Rotate. The capital T refers to the Transform class,
not the transform component on the Cube with the script.

138 CHAPTER 3: Scripting with C#

3. Double-click the status line to open the full console. The console
often gives you more information than is available to the status line
(Figure 3-15).

Figure 3-15. The error message in the console

Figure 3-16. The line located in the script

Right now, your script is small enough to locate the problem without help,
but when the script is large, you can use the console to find the issue. The
script is identified at the beginning of the line. The two numbers inside the
parentheses tell you the line number and character position. You can also
have the console take you to the line in the script.

4. Double-click the error message in the console.

5. Switch focus to the script editor and note that the line with the error
is now highlighted (Figure 3-16).

6. Put the lowercase t back into the line.

7. Delete the semicolon from the end of the line.

8. Save the script and check the console for the next error message
(Figure 3-17).

139CHAPTER 3: Scripting with C#

With the semicolon to signify the end of the line missing, the engine sees
the } as the next character on the line and gets confused. That, in turn,
causes a parsing error because the curly brackets no longer match.

9. Replace the semicolon and save the script.

10. Switch focus to the console. It updates and the errors are cleared.

Working with Variables
The next major feature of most programming languages is the variable. Variables are used
to store values. They keep track of just about everything that your game will have to know to
make things happen, and are accessed and can be updated as required.

Just as with function names, variables have their own naming conventions. In Unity, variable
names generally start with lowercase letters. Like function names, they may not use certain
special characters or spaces, and also may not use any reserved words. Reserved words are
names already used by C# and Unity. If the variable name turns blue after you type it, that
indicates that it is a reserved word so you must alter it for your own use.

The trick to naming variables is to keep the name descriptive without making it so long that
it makes the code difficult to read. When naming in Unity, it is always preferable to use camel
case (mixed uppercase and lowercase) rather than underscores to separate words. For
instance, some_variable_name using underscores becomes someVariableName in camel case.
As you will shortly see, the latter will become Some Variable Name when it is exposed to the
Inspector.

Figure 3-17. Two error messages

140 CHAPTER 3: Scripting with C#

Variable Types
An important aspect of variables in C# is that they must be strongly typed. This means that
you must declare what type of information they will be used to store so that enough memory
can be allocated for them. Here are the most common types:

	Numbers: Typically you use integers (int) for things like counting. An
integer is a whole number that can be positive or negative. Fractional
numbers, or floats (float), are used for things such as distance or time.
Doubles (double) are large versions of floats that take a larger memory
allocation. When you type a value, you must differentiate a float from a
double by adding a lowercase f to the end of it. Most of your floating-
point numbers in Unity will be floats.

	Strings: These are so named because they are strings of characters
(string). They are always shown between quotation marks. The integer
value 5 is not the same as the string "5", for example. The first has
a numeric value, whereas the second does not. Also be aware that
spaces and punctuation are characters, so "canary" is not the same as
" canary ". And, as you may have guessed, capitalization also counts.
"Canary" is not the same string as "canary".

	Booleans: Booleans (bool) pronounced boo-lee-uhn , for Charles Boole,
a 17th century mathematician, are the most memory-efficient variable
types. In C#, you use the values true or false.

	Unity-specific variable types: Pretty much anything can be a variable
type in Unity, as long as it derives from a class. You can store all the
information contained in an instance of a script (for example, when
you’ve added a script to a specific object), all in a single variable. This
concept is key to various scripts being able to communicate with each
other.

Along with declaring the type of variable, you will also specify whether it can be accessed by
other scripts and even whether it can be exposed to the Inspector. Variables exposed to the
Inspector can be easier to set up for nonprogrammers as well as allow you to change their
values during runtime for instant feedback. As a default, C# variables are always private;
they cannot be accessed outside the scripts they are in. To make a variable accessible to
other scripts and have it exposed to the Inspector, you must mark it as public. Occasionally,
you may want to keep a variable public but not have it cluttering the Inspector. You can
use internal for that scenario, though if you are already familiar with programming and
understand the use of namespaces, you are better off using [HideInInspector] where the
variable listed beside or below the line will be affected.

141CHAPTER 3: Scripting with C#

With a bit of background covered, you are probably anxious to create a few variables. Let’s
use MyFirstScript to experiment with a few variables:

1. Open MyFirstScript, or activate its tab in the script editor if it is
already open.

2. Under the class declaration and above the Start function, add the
following:

public int health;
public float reloadRate = 1.5f;
public string favoriteColor;
public bool isReady = false;
public Camera the_Camera;
public GameObject theSphere;

Variables that are available to the entire script or class must be listed inside
the class’s opening and closing curly brackets and are generally listed just
below the class declaration and above the functions for readability. The
order of the variables is not important, but it is good practice to keep them
organized as your scripts get more complicated. In this book, unless told to
put them in a specific location, you will usually add them below the existing
variables so it is easier to compare your scripts with the finished scripts for
each chapter.

3. Save the script.

To see the results of your additions, the script must be added to an object
in the scene. This script doesn’t do anything yet, but you will be contacting
it from the other script, so let’s go ahead and put it on the Sphere.

4. Drag the MyFirstScript from the Project view onto the Sphere in the
Hierarchy view and select the Sphere.

The Sphere now has a My First Script component, complete with all the new
variables showing as its parameters (Figure 3-18).

Figure 3-18. The Sphere’s new My First Script component with the variables showing as its parameters

142 CHAPTER 3: Scripting with C#

Note the way that the variable names using camel case in the Inspector. The first letter has
been capitalized and a space has been added before new capitalized characters. The the_
Camera variable’s underscore is less readable as a parameter in the component.

Let’s take a moment to inspect the new additions.

The health variable was not initialized with a value, so it defaults to 0. The reloadRate
variable requires an f to identify the value assigned to it as a float type in the script, but
not in the Inspector. A value for the favoriteColor variable was not assigned, which is the
equivalent of "", or no characters within the required quotation marks. Quotation marks
are not used in the Inspector. The Boolean variable isReady was initialized to false, so the
check box it displays for its parameters field is deactivated.

The last two variables are Unity-specific types, so you can see that in your script these
types are both capitalized and the blue color of a reserved word. This is because they refer
to predefined classes that already exist in the Unity engine. Note also that the type shows in
the value field in parentheses after the None.

Let’s load a camera, or rather a gameObject with a Camera component into the The_Camera
parameter and then make some changes to the script to see how it affects the inspector:

1. With the Sphere selected, try to click and drag the Directional Light
onto its The_Camera field. Because the Directional Light has no
Camera component, it cannot be loaded there.

2. Now click and drag the Main Camera object onto the Sphere’s
The_Camera field. This time the object drops into the field nicely.
The gameObject’s name, Main Camera, shows in the field, but it is
actually just its Camera component that is being referenced, so that
remains showing in the parentheses.

3. Drag the Cube gameObject onto the The Sphere field. The Cube is
a GameObject, the type specified, so there is no type shown for it in
parentheses.

Let’s see about those changes to the script next.

Order of Evaluation
Now you will go back into the script, initialize favoriteColor, remove the underscore from
the_Camera, and change the variable name of theSphere to theCube to make it more logical:

1. Change the variables so they look as follows:

public int health;
public float reloadRate = 1.5f;
public string favoriteColor = "red";
public bool isReady = false;
public Camera theCamera;
public GameObject theCube;

143CHAPTER 3: Scripting with C#

 2. Save the script again.

3. With the Sphere selected, check the results in the Inspector
(Figure 3-19).

Two things have happened, or rather one thing has happened and another
hasn’t. The two variables with name changes have been cleared of the
values you assigned to them. As the names were changed, that is an
expected result. Conspicuously missing, however, is the new Favorite Color
value.

It turns out that as soon as a variable is exposed to the Inspector, that
value will overwrite whatever was assigned to it in the variable’s declaration
and initialization. This allows the author to customize each instance of the
script to tailor it to each of the scene objects that it has been assigned to.
Unfortunately, it can wreak havoc with your efforts to track down problems
in your script.

Figure 3-19. The updated My First Script component

Tip If your game is not behaving as expected, remember to check the Inspector to see what value
is being used for the parameter in question.

 4. In this case, because you haven’t assigned any new values yet, you
can reset the component to show the values assigned to it in the
script. Right-click over the My First Script label in the Inspector and
select Reset.

The new value, red, now shows in the Inspector. Note that the quotation marks
are not used in the Inspector.

Let’s try another experiment with the variable values. Let’s change the favoriteColor value
inside the Start function:

144 CHAPTER 3: Scripting with C#

1. Add a line to reassign the favoriteColor value inside the Start
function so that it looks as follows:

// Use this for initialization
void Start () {
 favoriteColor = "blue";
}

 2. Save the script.

3. Click Play and look at the Inspector. The Favorite Color now shows
blue as its value.

The order of assignment for variables is as follows:

The value assigned in the variable’s declaration.

The value assigned in the Inspector.

The value assigned to the variable in the Start function.

Another critical thing to know about variables that have been exposed to
the Inspector is that changes made during runtime are only temporary.

4. While in Play mode, change the Favorite Color value to green.

5. Exit Play mode. The value returns to the original red.

Tip Whenever you make changes to the values in the Inspector that you wish to be permanent, be
sure to do so while not in Play mode. You should also remember to save the scene, as changes are
local to the current scene.

You’ve seen how variables are used to store values, so now let’s see one being used. In the
SimpleTransforms script, you hard-coded a speed value for the rotation. More typically, you
would create a variable named speed and use it in the command that rotates the Cube. That
way, it could be used to control several things throughout the script. If it had to be changed,
you would have to change only the value of the variable. A difficulty setting, for example,
might be used to adjust several aspects of your game play.

Let’s see how using a variable for speed affects your script:

1. Open the SimpleTransforms script.

2. Just below the class declaration, add the following variable:

public float speed = 50f;

 3. In the Update function, replace the original value with the variable speed:

transform.Rotate(0,Time.deltaTime * speed,0);

 4. Save the script.

145CHAPTER 3: Scripting with C#

5. Click Play and select the Cube in the Hierarchy view.

6. Change its Speed parameter and watch as the Cube’s rotation
changes in the Scene and Game views.

Tip You can change many numeric values in the Inspector by clicking and dragging on the
parameter’s label. The functionality is set up to behave like a slider.

Tip Because you may eventually find yourself converting Unity’s JavaScript to C#, it is worth
noting that in JavaScript, variables are public by default and must be specifically marked as private
when you don’t want them accessible outside their script.

 7. Stop Play mode.

Scope Within the Script
The next important thing to know about variables is their scope, or who they may be used by
and how long they will persist in memory.

When variables are declared inside the class, but not inside a function, they are accessible
throughout that particular instance of the script. That means they can be used or altered by
the contents of any function.

If a variable exists only inside a function, it is said to be local to that function. It must be
declared inside the function and is automatically destroyed (the memory allocated to store it
is cleared) at the end of the function. Functions or methods inside other functions can have
variables that are local to themselves. If a variable is declared within a particular set of curly
brackets, it is local to that set.

Because of scope, you could easily use the same variable name in several places. Generally,
however, best practice is to give even local variables different names just to avoid confusion.

When a variable is public, it may also be accessed by other scripts. Variables that have no
reason to be used outside their class or show in the Inspector should be marked as private.
In C#, private is the default.

 1. Open the MyFirstScript script.

2. In the variables section, remove public from the public int health line:

int health;

 3. Save the script.

4. Select the Sphere in the Hierarchy view and inspect the My First
Script component in the Inspector. The Health parameter is no longer
exposed to the Inspector (Figure 3-20).

146 CHAPTER 3: Scripting with C#

At times you might not want to expose a variable to the Inspector, but require it to be
accessible from other scripts. As mentioned earlier, this quick solution should not be used if
you are an advanced user using namespaces. The isReady variable might be something that
doesn’t have to be exposed to the Inspector. Let’s change it to internal.

1. Change the public bool isReady = false line to the following:

internal bool isReady = false;

 2. Save the script and check the Inspector.

The Is Ready parameter is now hidden from the Inspector (Figure 3-21).

Figure 3-20. The Health parameter is no longer exposed in the My First Script component

Figure 3-21. The Is Ready parameter is hidden from the Inspector

At this point, you may be wondering how you can check up on the values
of variables hidden from the Inspector. As it turns out, you can set the
Inspector to Debug mode instead of the default Normal mode to see private
variables.

147CHAPTER 3: Scripting with C#

3. Right-click the Inspector label and select Debug from the list
(Figure 3-22).

The label name changes to Debug, and now you can see the private variables in the My First
Script component (Figure 3-23).

To further complicate the way variables can be accessed, you can use [SerializeField] in
front of a private variable. This keeps the variable from being changed by other scripts, and
it will allow you to easily set up or change the values through the Inspector instead of hard-
coding them in the scripts.

Figure 3-22. Setting the Inspector to Debug mode

Figure 3-23. The private variables visible, though grayed out, in the Inspector

148 CHAPTER 3: Scripting with C#

For a side-by-side comparison of your choices, a table makes a good visual aid; take a look
at Table 3-1.

Table 3-1. Variable Accessibility and Visibility

Visible in Inspector Accessible to Other Scripts

public Yes Yes

private No No

internal No Yes

[SerializeField] private Yes No

As your scene grows, you will realize that it is not practical to keep the one object selected
all the time in order to monitor its parameters. From the Inspector tab drop-down list, the
Add Tab submenu enables you to open multiples of several of Unity’s tab views. This lets
you keep focus on one object without the need to keep it selected. Feel free to set the
Inspector back to Normal mode if it gets too cluttered.

Although Unity’s tabs can be pulled off to float free, you will often want to know what
multiple variable values are doing, and especially the order in which they change. The
console, besides giving you nasty red error messages when your code has issues, can
be quite helpful in telling you the values of your variables at certain points in your game.
You can have the console print out values and helpful messages. The C# version is Debug.
Log(<something to print>), but you can also use print(<something to print>). The
Debug.Log version will yield more information when you open the debugger log, and the code
adheres to the normal C# naming convention so Log is capitalized. You will find the print
(note the lowercase p) statement used interchangeably throughout the Unity community.

1. Inside the Start function of the MyFirstScript script, above the
favoriteColor line, add the following:

Debug.Log(isReady);

 2. Save the script and click Play. The status line at the bottom of the
editor reports False.

3. Double-click the status line to bring up the console and see the full
report (Figure 3-24).

149CHAPTER 3: Scripting with C#

Figure 3-24. The console printing the value of isReady at startup

With the line selected, you can see more information at the bottom of the
console. Regardless of the extra info, the message remains somewhat
cryptic. Fortunately, you can also add your own message to clear things up.

4. Change the line to the following:

Debug.Log("The value of the isReady variable is: " + isReady);

 5. Save the script.

6. Stop Play mode and then click Play again. This time, the message is
a lot more helpful (Figure 3-25).

Figure 3-25. The less cryptic message

You must stop Play mode and then restart it because the code for printing
to the console is in the Start function and is evaluated only once, on
startup. Following this line of thought, if your print statement was in the
Update function, as soon as you changed the output instructions and saved
(compiled) the script, the new values would show as soon as you switched
focus back to Unity.

7. Stop Play mode.

The most helpful use of printing to the console is to flag some sort of an event. You can
check where you are in a script when something happens as well as check on the value of
relevant variables. For this, you will be testing some basic interaction in your scene.

Introducing Interaction
The most distinctive feature of games is that the user can interact with the game to generate
events, move the story line forward, or work toward a specific goal. In Unity, with the
exception of the UI system objects, interaction requires a collider. Whether you want to pick
a 3D object in your scene, fire a projectile at it, or drop a boulder on it, you will be interacting
with either the scene or a specific object.

150 CHAPTER 3: Scripting with C#

Adding User Input
Generic input, such as keyboard, mouse, and device-specific input are generally monitored
in the Update function, where you watch for a specific key, mouse movement, button press,
or accelerometer change.

Interaction with a specific object is generally handled with one of the event-based functions.
The most common are probably OnCollisionEnter, OnTriggerEnter, OnMouseDown, and their
counterparts for exit and mouse-up. The first two functions flag interaction between scene
objects, while the third catches interaction between an object and a mouse pick.

Let’s see what other event-based functions are available:

1. Search the Scripting Reference for MonoBehaviour (note the British
spelling here).

Remember, when you create a new C# script, its default name is
NewMonoBehavior. So your script, deriving from the MonoBehaviour class,
has access to all variables, functions, and messages it contains.

2. Check the Messages category.

These functions, also called callbacks, are called or evaluated when their
specific event is detected and the message sent to the script. The easiest
to test will be the OnMouseDown function. Let'’ add it to the SimpleTransforms
script. That script resides on the Cube object, so you will be adding pick
functionality to your Cube.

3. Open the SimpleTransforms script.

4. Below the closing curly bracket of the Update function, but above the
script’s final closing curly bracket, block in the new function:

void OnMouseDown () {

}

Note In this book, unless otherwise instructed, when you are asked to create a new function, add
it below the existing functions, but above the script’s final closing curly bracket. The convention
is to have functions that are evaluated at startup first (such as Start and Awake), functions that
are called every frame or at a fixed length of time next (Update and Fixed Update), and all
others after those. After the script has been compiled, the order is irrelevant.

Caution Be careful not to put a function inside another function.

151CHAPTER 3: Scripting with C#

Figure 3-26. The less cryptic message

 5. Inside the new OnMouseDown function (between its curly brackets), add
the following line:

Debug.Log("I've been hit!");

The MonoDevelop editor will automatically tab over to inset the line.

6. Save the script.

7. Click Play and pick the spinning cube with a left mouse click.

Your I've been hit! message appears in the console (Figure 3-26).

8. Click the Cube a few more times. As expected, each time the Cube
is picked, the OnMouseDown function is called and evaluated.

Next let’s try a bit of math and have the function print out the number of times the Cube has
been picked after each new pick. For that, you need a variable to keep track of the picks. This
is also a good time to include a comment to remind yourself what the variable is used for.

1. Stop Play mode.

2. Add the following variable declaration beneath the public float
speed line:

int picks = 0; // number of times the object has been picked

Just as with functions, unless you’re told to do otherwise, add new
variables beneath the existing ones. If the new variable’s purpose is not
related to that of the previous variables, you may want to add a carriage
return to make the new variable.

3. Add the following line above the Debug.Log line in the OnMouseDown
function:

picks = picks + 1; // increment the picks variable

152 CHAPTER 3: Scripting with C#

4. Change the Debug.Log line as follows:

Debug.Log("I've been hit " + picks + " times");

5. Save the script.

6. Click Play and pick the Cube several times to see the results.

The message updates nicely to show the number of times the Cube has been picked.
There are a couple of other ways to increment an integer value. Because you will see them
regularly in code, they are worth a quick look:

1. Change the picks = line to the following:

picks += 1; // increments increment the picks variable

2. Save the script and pick the Cube a few more times.

The picks value is updated as before. The most abbreviated version
increments or decrements only by 1, so is less useful, but you will also see
it used regularly.

3. Change the picks = line to the following:

picks++; // increments increment the picks variable by 1

4. Save the script and pick the Cube a few more times.

The picks value is updated as before. Note that this time, because the
script changes were not in the Start function, you were able to check the
results without having to restart Play mode.

5. Stop Play mode.

The interaction works well, as does the updating of the picks variable. What may have
bothered you, though, is the message when the value is 1. Grammatically speaking, it should
say time instead of times. The condition that should change the output exists only when the
value of picks is 1. For that, you will be looking at the conditional.

Using the Conditional
If user interaction defines games in general, then the conditional is what directs the actual
game play. It is where you specify what should happen in response to various events,
depending on any number of variables or object states. A character, for example may die or
continue fighting when attacked, depending on his health variable’s current value. If a light is
on, it may be turned off when a switch object is picked; otherwise, if the light is already off, it
would be turned on.

The concept is straightforward: if <some expression evaluates as true>, then <do
something>, else <do something else. The else is optional. The syntax is as follows:

if (<some expression>) <do this>;
else <do that>; // this line is optional

153CHAPTER 3: Scripting with C#

The only problem here is that there is only one command if the expression evaluates to true
and only one if the expression evaluates to false. Because most conditions have multiple
things to do for the two possibilities, you usually require a set of curly brackets. Think of
them as shopping bags. You can hold only one object in your hand at a time, but a shopping
bag lets you easily carry lots of things at the same time. This looks like the following:

if (<some expression>) {
 <do this>;
 <and this>;
}
else { // this part is optional
 <do that>;
 <and that>
}

In the expression to be evaluated, you can use various operators. Typically, you use the
equivalency operator (==) or its counterpart, not equivalent (!=), where ! is the not.

When comparing number values, you can also use less than (<), greater than (>), less than
or equal to (<=), and greater than or equal to (>=). If multiple conditions must be met, you
can use the and operator (&&). If one of multiple conditions can be met, you can use the or
operator (||) With multiple conditions, the first condition (leftmost) is evaluated first. With
the and operator, if the first condition evaluates as false, the full condition can never be
met, so the remaining condition or conditions are not evaluated. With the or operator, if
the first condition evaluates as true, the remaining conditions are never evaluated because
the condition has already been met. The bottom line is that you should always order your
conditional by placing the one most likely to produce the required result first, and placing
the least likely last. Math is evaluated in the traditional way: multiplication and division are
evaluated before addition and subtraction. As with traditional math, you can use parentheses
to force a different order of evaluation.

If you are checking the value of a Boolean variable, the variable is the only thing to go within
the parentheses because it already evaluates to true or false.

Let’s get some practice with conditionals by letting the user start and stop the Cube from
rotating. To do that, you need a variable to manage the state of the rotation. It is either off
(false) or on (true), so you will use a Boolean type variable:

1. Create a new variable in the SimpleTransforms script:

public bool rotating = false; // initialize as false

2. In the Update function, change the transform.Rotate line by putting
the condition that must be met at the front of the line:

if (rotating) transform.Rotate(0,Time.deltaTime * speed,0);

154 CHAPTER 3: Scripting with C#

3. In the OnMouseDown line, add the following to change the rotating flag
whenever the user clicks the Cube:

if (rotating == true) {
 rotating = false;
}
else { // it must be false
 rotating = true;
}

In the conditional, if (rotating == true) was used to make the code
more readable. If you prefer the shorthand version, feel free to change it to
if (rotating).

4. Save the script.

5. Click Play and test the script by picking the Cube several times.

The Cube starts and stops with the user pick. Note that unlike the if
(rotating) conditional in the Update function, you’ve set this one up with
curly brackets. This allows for easy additions as the code develops. Let’s
go ahead and add one now. Using the picks variable, you can increase the
speed each time the user pick causes the Cube to rotate.

6. Stop Play mode.

7. Add the following lines beneath the rotating = true line in the else
section of the conditional:

// increase the speed by the current number of picks
speed = speed + picks;

 8. Save the script.

9. Click Play and test by picking the Cube several times. The Cube
rotates increasingly faster each time it is picked.

10. Exit Play mode.

Adding More Functionality
Lots of additional functionality is available that will be useful in many games and
applications. In this section, you will look at two of the most commonly used techniques
before moving on to the next chapter. Looping is a way to manage multiple objects or
variables. User-defined functions are a mainstay of controlling game play, moving data
around, and just about every other facet of game development.

155CHAPTER 3: Scripting with C#

Looping
Another commonly used bit of functionality is to iterate, or step through, a list, or array, of
objects or variables. There are several ways to do this, depending on what you are iterating
through. Because the for loop can be used on its own, you will take a short look at it now.
Typically, you will iterate through a number of objects or perform an operation a set number
of times in the Start function. Let’s just do some simple addition to get a feel for how the
for loop works:

1. Open the MyFirstScript script.

2. In the Start function, add the following:

for (int x = 0; x < 10; x++) {
 print ("My favorite number is " + x);
}

The for loop requires four things. The first is an int type variable. It is local
to the for loop and will act as a counter. This is one of the times you don’t
bother with a meaningful variable name.

The variable is initialized with a value. Quite often you will be iterating
through arrays with a first element number of 0. The second section tells
the for loop when to stop: in this case, when the value of x reaches 10.
The last section inside the arguments area tells the for loop how much to
increment the variable after performing whatever tasks are set inside the
body of the for loop (inside the curly brackets). In this case, you are telling
it to increment by 1 by using the ++ shorthand. You could also use x += 1
or x = x + 1.

Inside the body of the for loop, you put the instructions. With a for loop,
they generally involve the use of the counter.

3. Save the script and click Play.

The console reports your favorite number, or rather all 10 of them. At this
point, you probably no longer want to clutter the console with the isReady
printout. Rather than delete it, let’s just comment it out for now.

4. Add // to the front of the Debug.Log line in the Start function:

//Debug.Log("The value of the isReady variable is: " + isReady);

The line goes gray, indicating that it will be ignored.

5. Save the script and click Play again. This time the console prints only
the favorite number line.

156 CHAPTER 3: Scripting with C#

Creating User-Defined Functions
As your last task in this chapter, you will create your first custom function. This task gives
you a chance to try out an argument as well. You will have the Start function’s for loop
send the value of x off to be processed in your new function. Typically, you would create a
user-defined function when you knew you would have to call its functionality from several
functions or even from different scripts.

1. Continuing with the MyFirstScript, add the following function below
the Update function, but above the script’s closing curly bracket:

void MyCustomFunction (int newX) {
 Debug.Log("Wait, I prefer " + (2 * newX));
}

This function doesn’t return any values, so it begins with the usual void.
The name follows the usual function-naming conventions by using camel
case and starts with a capital letter. The argument takes an integer type
variable that will be local to the function. Inside Debug.Log, a string is
coupled with the variable that has been passed to the function where it is
multiplied by 2. Using the parentheses around 2 * newX ensures that the
value is computed before printing to the console. Now you can call your
new function.

2. Inside the for loop, below the print ("My favorite number line, add
the following:

MyCustomFunction(x); // send x off for more work

With this line, you are calling the function and passing the current value
of x to it. This is a means of passing local variables from one function
to another, rather than allocating memory for a variable that is always
reinitialized each time it is used.

3. Save the script.

4. Click Play and watch the results as they are printed in the console.
Each iteration of the for loop prints the original message, jumps
down to the new function, prints its message, and then goes back to
the for loop for the next increment of x.

The final piece of the puzzle is contacting another object’s components.
You may require a particular variable’s value, want to change that value,
or possibly make use of one of the other script’s functions as you will in
this little experiment. If this last section is over your head at the moment,
don’t worry; it will be just a quick look at one way to communicate between
objects. You will have plenty of opportunities to learn more about interscript
and object communication with the book’s project.

To call a function from another object, you must first make the function
public.

157CHAPTER 3: Scripting with C#

5. Change the void MyCustomFunction line to the following:

public void MyCustomFunction (int newX) {

 6. Save the script.

7. Open the SimpleTransforms script.

The first thing to do is to “introduce” the MyFirstScript to the
SimpleTransforms script so it will know how to find and make contact with it.

8. Add the following variable:

public MyFirstScript myScript; // the object/script with the function to contact

The type is the script/class itself. The SimpleTransforms script will know
which object that script is on when you load it onto the Simple Transforms
component. Let’s call the function from the OnMouseDown function and pass
the picks variable to it.

9. In the OnMouseDown function, inside the if (rotating == true) block,
under the rotating = false line, add the following:

myScript.MyCustomFunction(picks); // send picks off to be processed

10. Save the script.

11. Select the Cube and drag the Sphere object onto the new My Script
parameter.

12. Click Play and click the Cube several times.

Now each time the Cube is clicked to a stop, the number of picks is sent
off to the MyCustomFunction, where it is doubled and printed out with the
message.

13. Save the Scene and save the project.

If you are new to scripting and find it intriguing, feel free to delve deeper into it with
conventional courses or learning material. In the remainder of the book, you will be
concentrating on using C# with Unity to achieve your game’s functionality, but will not go
deeply into traditional programming concepts and functionality except where required.

Working with Script Editors
By now, you may have noticed that, as you type, the script editor anticipates what you are
typing and offers autocomplete choices for you (Figure 3-27 and Figure 3-28). Although you
can use any text editor to write your scripts, dedicated editors such as MonoDevelop and
Visual Studio are packed full of tools and functionality that seriously improve workflow. The
simple color coding of reserved words is just the beginning.

158 CHAPTER 3: Scripting with C#

Figure 3-28. Autocomplete suggestions in Visual Studio Community

Figure 3-27. Autocomplete suggestions in MonoDevelop

But while MonoDevelop has been tied into the Unity API for years (recognizing Unity
keywords, methods, and so forth), Visual Studio, unarguably the most popular and widely
used editor in the programming world, is a relative newcomer to Unity. Because it is capable
handling many programming languages that are not natively included in the Community
edition, you must make sure that the tools developed to work with Unity have been installed.

If you opted to install Visual Studio Community edition when you installed Unity, it will also
have installed Visual Studio Tools for Unity. If, however, you have uninstalled and reinstalled
Visual Studio, you may be missing those essential tools. A quick check of Visual Studio will
tell whether they have been loaded:

1. Double-click MyFirstScript in the Project view. The script will open in
Visual Studio if Visual Studio is set as your script editor.

2. Right-click anywhere inside your code to bring up the right-click menu.

You should see the Unity-specific options at the bottom of the menu
(Figure 3-29).

159CHAPTER 3: Scripting with C#

If you do not see the two Unity options at the bottom of the menu, Visual
Studio Tools for Unity has not been installed. Fortunately, there is an easy
way to get the tools installed.

3. In Unity, from the Assets menu, choose Import Package ➤ Visual
Studio 2015 Tools (Figure 3-30).

Figure 3-29. The right-click menu confirming that Visual Studio Tools for Unity has been installed

160 CHAPTER 3: Scripting with C#

The Visual Studio Tools for Unity are quickly added to the Unity editor (you
may have to restart Visual Studio to see them).

If you do not see the option to import the Visual Studio 2015 Tools in the Import Packages
submenu, it means you have not installed Visual Studio Community yet.

Once it’s properly installed, you will want to get a first look at the two options at the bottom
of Visual Studio’s right-click window. While it may be a bit early in your scripting career to
introduce you to them, eventually you will find them incredibly useful, so tuck them away in
your memory or your notes on Visual Studio.

1. Back in Visual Studio, right-click anywhere inside the window where
your MyFirstScript opened.

2. From the bottom of the right-click menu, select Implement
MonoBehaviours.

In this tool, you can create shortcut abbreviations for your most commonly
used functions or methods (Figure 3-31).

Figure 3-30. Installing Visual Studio Tools for Unity

161CHAPTER 3: Scripting with C#

Let’s look at the other Unity-specific option.

3. Close the Implement MonoBehaviours dialog box.

4. From the right-click menu, this time select Quick Mono Behaviours.
The Quick Mono Behaviours tool opens up.

Figure 3-31. Creating typing shortcuts for Unity functions or methods

162 CHAPTER 3: Scripting with C#

5. Type an o into the search field. Scroll down with the middle mouse
roller to OnCollisionEnter (Figure 3-32).

Figure 3-32. Searching entries beginning with the letter o

Note the argument type the method expects, Collision.

163CHAPTER 3: Scripting with C#

Figure 3-33. Locating the OnTriggerEnter method

6. Scroll down farther and locate OnTriggerEnter (Figure 3-33).

This method expects a Collider type argument.

You will eventually be using these two functions quite often, as they are mainstays of
interactivity in Unity. They both require a collider, but the first, OnCollisionEnter, is used
when something bumps into the collider, and the second, OnTriggerEnter, is used when
the object is allowed to pass through the collider so you can trigger an event. The two
arguments are optional, and you may not use them for a while, but eventually you will want
to retrieve information about the colliding or triggering object. This means you will have
to remember which argument belongs with which function. Rather than opening Unity’s
Scripting Reference and searching for the method you are using, you can quickly find the
method you want directly in Visual Studio.

Summary
In this chapter, you got your first introduction to scripting with C# in Unity with the help
of a couple of Unity primitives. A script, you discovered, generally consists of functions,
variables, and comments in most scripting languages. To author your scripts, you used the
MonoDevelop script editor that ships with Unity but is a separate application.

With your first C# script, you learned that the name you give it on creation turns up in
the class declaration. The libraries, UnityEngine and System.Collections, as well as the
blocked-in Start and Update functions, are automatically added to your new scripts. Syntax
is important for the naming and layout of functions, though the location of the curly brackets
that encompass the body of the function can vary.

164 CHAPTER 3: Scripting with C#

Adding a test script to each of your scene’s two objects, you discovered that the scripts
became components on the objects. With the first bit of functionality, you got your Cube to
spin and then used Time.deltaTime to change its spin rate from frames to seconds. Scripts
have to be saved, or compiled, after they have been edited before you can see the results.

After a few experiments with error generation and the console, you were introduced to
variables. Besides the usual number, string, and Boolean types, you found that almost any
script (or class) could be a variable type. Naming conventions for variables were similar
to those used for functions, except that the first character is capitalized for functions and
lowercase for variable names. Camel case, the preferred style of naming in Unity, translated
to more-readable parameter names once exposed to the Inspector.

For a variable to show in the Inspector, you learned that the variable must be marked as
public because the default for a variable is private and not available to other scripts. Scope
in C# limited where a variable could be used. Variables declared inside functions turned out
to be local to those functions and were not available outside those functions.

With the introduction to the print() and Debug.Log statements, printing variables and
messages out to the console, you were able to see how the evaluation and reassignment of
variable values was handled. Values in the Inspector overwrote the variable assignments in
the declaration, but were in turn overwritten by reassignments in the Start function.

Using the OnMouseDown function, you got your first taste of interaction and learned that, with
the exception of Unity’s new GUI objects, an object must have a collider component to
register a pick, collision, or trigger event. With your two little scripts and two simple scene
objects, you got a first look at using conditionals to drive the results of the interaction.
Finally, you had a quick peek at looping code and then made your first user-defined function
and called its functionality from a different object.

In the last section, you took a first look at some extremely useful tools implemented in Visual
Studio with the installation of Visual Tools for Unity.

165© Sue Blackman and Adam Tuliper 2016
S. Blackman and A. Tuliper, Learn Unity for Windows 10 Game Development,
DOI 10.1007/978-1-4302-6757-7_4

Chapter 4
Importing Assets
Although Unity has several primitive objects, and others can be generated at runtime,
unless your game tends toward the minimalistic, you will have to deal with imported assets.
Art assets can be anything from textures and sound clips to fully rigged and animated
characters or mechanical devices. The settings you choose for importing those assets will
be determined by their use in the game. For mobile devices, where efficiency is extremely
important, you need to be especially careful when selecting your import options.

Unity’s import functionality varies according to the type of assets you are bringing into your
project. Audio files are fairly straightforward, with a minimal number of choices. Textures
can be used on meshes, sprites, and GUI objects and have a large number of parameters
and setup options depending on intended use. 3D mesh objects are by far the most
complicated, as they can come with animations and may require colliders. Even more
challenging are animated characters with skinned meshes. Let’s begin with the 3D assets.

Importing 3D Objects
3D mesh assets are generally the building blocks of a 3D game environment. While the
terrain is usually built using Unity’s terrain creation system, the remainder of the 3D assets
will have to be imported. Static meshes can be objects such as buildings and other
“permanent” objects. Objects that may animate or be moved around in the scene are
often referred to as props, a term from film and theater for anything movable or portable.
Obviously, just because an object is small doesn’t mean that it will ever do anything or go
anywhere, so props can also be static. The other major asset type in many games,
2D or 3D, is a character. Characters can range from humanoid to amorphous blobs. Assets
not imported from digital content creation (DCC) programs tend to be particle systems for
special effects, simple cloth objects, and terrains. The two latter types may be imported if
they have complexity beyond the game engine’s creation editors.

166 CHAPTER 4: Importing Assets

Supported 3D Mesh Formats
Unity supports several formats from most of the popular modeling applications. You can use
two main types of files. The first are open source or at least open format types such as .fbx,
.obj, .dxf, and .dae (COLLADA). These are file types that you would use to export assets
from your modeling application. Unity can also read in proprietary file types such as 3ds
Max, Maya, Blender, Modo, CINEMA 4D, LightWave 3D, and Cheetah3D. Whatever file types
you use to import your 3D assets into Unity, they are internally converted to the .fbx format
for use in the game. There are pros and cons associated with both file types. The generic
types tend to be much smaller, as they save only essential information. Proprietary files,
besides being larger, often require the authoring application to be installed and licensed on
the machine where you are using Unity.

If you are a 3D artist and plan to sell your work on Unity’s Asset Store, or are distributing
files for learning material, you will want to export your files as .fbx so they can be used by
everyone. If you are in a studio situation, and are using versioning software such SVN or
Git, you may want to save the files directly into your project. Once they have been loaded
into your project, they are converted internally for use, but remain editable directly from
your DCC application. Without versioning software, you would have to overwrite your files,
thereby abandoning earlier versions that you may want to return to.

Importing the 3D Assets
There are a few ways to bring art assets into your Unity Project for the first time. The most
important concept to understand is that after these assets have been added to the project, they
should not be moved around the Project view outside Unity, unless the meta files generated by
Unity to keep track of the assets are moved at the same time. Let’s do a few tests:

1. Create a new Unity project and name it Import Test.

2. Switch to the Default layout.

3. Locate the project/folder in the Explorer (Windows) or the Finder
(Mac). See Figure 4-1.

Figure 4-1. The project/folder in Windows Explorer

4. Open the Import Test folder until you can see the Assets folder.

5. From the Chapter 4 Assets folder, copy the Misc Textures folder and
paste it into the Assets folder in the Explorer or Finder.

http://dx.doi.org/10.1007/978-1-4302-6757-7_4

167CHAPTER 4: Importing Assets

6. Switch the focus to Unity and inspect the Project view.

7. Select the Misc Textures folder.

The new folder appears in the Project view (Figure 4-2).

Figure 4-2. The Misc Textures folder brought into the project

Dragging folders into the Assets folder through your OS’s file hierarchy is
the quickest way to bring multiple files, preorganized or not, into Unity. It
also gives you the option to replaces files.

8. From the Chapter 4 Assets ➤ Misc Textures folder, drag the
BambooFence.tiff image file into the new Misc Textures folder inside
the Unity editor.

When you drag the file in, it is automatically renamed BambooFence 1.

9. Delete the duplicate.

This time, you will drag the image file into the same folder through the
Explorer or Finder.

10. From the Chapter 4 Assets ➤ Misc Textures folder, copy the
BambooFence image file and paste it into the project’s Misc Assets
➤ Misc Textures folder.

This time, the operating system asks if you wish to Copy and Replace,
Don’t Copy, or rename the copy (Figure 4-3).

http://dx.doi.org/10.1007/978-1-4302-6757-7_4
http://dx.doi.org/10.1007/978-1-4302-6757-7_4

168 CHAPTER 4: Importing Assets

11. Select Copy and Replace.

For singular files, you can also use Import Asset:

1. In Unity, select the Assets folder.

2. Right-click and from the Create submenu, select Folder. Name it 3D
Assets.

3. From the right-click menu, select Import New Asset. From the Chapter 4
Assets ➤ Extra Assets folder, choose the Sugar Sack.fbx file.

The file is imported into the project, into the selected folder (Figure 4-4).

Figure 4-3. The options available when copying an existing asset into the project via Windows Explorer

http://dx.doi.org/10.1007/978-1-4302-6757-7_4

169CHAPTER 4: Importing Assets

Another consideration when importing assets is to make sure the textures
are imported before the 3D meshes. Theoretically, bringing them in at the
same time should be sufficient, but to make sure the textures are found
and materials generated for them, it is safer to bring the textures in first. If
the texture is not found, you can add the proper texture manually, but each
time you reimport the mesh object to update it, you will have to reassign
the texture.

4. With the 3D Assets folder selected, use Import New Asset to import
the DuckInflatable.fbx file from the Chapter 4 Assets ➤ Extra Assets
folder.

5. Select the file and inspect its material at the bottom of the Inspector.

The material has no texture (Figure 4-5).

Figure 4-4. Importing the SugarSack.fbx file into the project by using Import New Asset

http://dx.doi.org/10.1007/978-1-4302-6757-7_4

170 CHAPTER 4: Importing Assets

6. Import its texture, Ducky.tiff, into the project’s Misc Textures folder.

7. Select the Ducky material from the Materials folder that was
automatically generated when you imported the DuckInflatable.fbx file.

8. Click the Misc Textures folder, and then drag the Ducky texture onto
the Ducky material’s texture swatch.

When an object is imported, its diffuse color is imported into the Main Color
field and blended with the texture. This file was created in 3ds Max, where
a texture fully overrides the diffuse color, so you will want to set it to white.

Figure 4-5. The DuckInflatable model imported before its texture

171CHAPTER 4: Importing Assets

9. Set the material’s Basic Color to white.

The material is updated to include its texture (Figure 4-6).

Figure 4-6. Dragging the Ducky texture into the Ducky material’s texture slot

10. Reimport the DuckInflatable model via the OS and tell it to overwrite.

11. Check the asset in the Project view.

With the correct texture loaded into the material, the reimported object
shows correctly, but its thumbnail generated on the first import is not
updated to include the texture.

12. This time, drag the DuckInflatable asset directly into the Project view.

The name is appended, and the thumbnail reflects the corrected material
(Figure 4-7).

172 CHAPTER 4: Importing Assets

Obviously, if you are importing fully finished assets into your scene, the process is not as
crucial, but if you expect to have the asset updated occasionally throughout the authoring
process, the extra step of importing textures first is well worth the effort.

The Model: Setting the Basic Attributes
Having imported the 3D assets into your project, the first place you will go to complete the
import process is the Model tab. This is where you will set the scale, material guidelines,
mapping options, and a few other essentials. Let’s begin by importing a few more assets:

1. Save the scene and name it Assets Set-up.

2. From the Chapter 4 Assets folder, drag the contents of its 3D Assets
folder directly into the existing 3D Assets folder in the Project view.

Depending on the author of the assets and the application used to create
them, the scale of the assets may require adjustment. A unit in Unity is
considered to be 1 meter. That doesn’t mean you must use that scale, but
a few features, such as physics, are based on the default unit, so it is worth
keeping in mind.

If you are using assets that come from different sources, especially if they
were not created specifically for Unity, you may have to adjust the Scale
Factor. Often objects may be built to scale, but you have no clue what that
scale is until you bring them into the scene. Scale is also relevant to the
individual game. Objects are often made larger to draw attention or improve
ease of interaction. One means of checking scale is to create an object of
known scale to use as a story pole.

3. Create a Cube and position it at 0,0,0. A Cube comes in as 1 × 1 × 1
meter.

4. From the 3D Assets folder in the Project view, select the Wooden
Barrel asset and drag it into the Scene view, next to the meter-sized
Cube, and move both up to ground 0 (Figure 4-8).

Figure 4-7. The second import generating a correct thumbnail

http://dx.doi.org/10.1007/978-1-4302-6757-7_4

173CHAPTER 4: Importing Assets

The Wooden Barrel appears to be overly large compared to the meter-sized
Cube. You could use the object’s transforms to scale it down to fit properly,
but transforms cost resources, as they have to be calculated every frame.
The best practice for both mobile platforms and desktops is to use the
Scale Factor option in the Model tab to affect the imported asset rather
than changing an instance of it in the scene. A word of caution: always
scale characters before setting up their rigging, or you will have to go
through the setup process for them again.

5. Select the Wooden Barrel asset in the Project view and, in the Model
section, set its Scale Factor to 0.005 (Figure 4-9).

Figure 4-8. The Wooden Barrel in comparison with the meter-sized Cube

174 CHAPTER 4: Importing Assets

Figure 4-9. Changing the Scale Factor

175CHAPTER 4: Importing Assets

6. Click Apply at the bottom of the import options area. The object’s
scale is updated in the Scene view (Figure 4-10).

The other important setting in the Model section is Generate Colliders.
You’ve already experienced the role that colliders play in a 3D scene. They
can be used to block other objects from going through their associated
mesh as well as to trigger an event when intersected. Monitoring colliders
for whatever use can use up a lot of resources. In most cases, you should
manually add Unity’s standard colliders, as they are the most efficient. For
more-complicated models, you may even add more than one collider to
approximate the object’s shape.

Occasionally, especially when an uneven ground object is involved, you
will have to use a Mesh Collider. Mesh Colliders are the collider type used
when you select Generate Colliders in the Import Settings. Because they
are computationally expensive, you are always better off using multiple
primitive colliders to approximate the object’s shape whenever possible.
Additionally, you should never use Mesh Colliders on anything but static
or nonmoving objects, as that would cause a recalculation of the internal
collision tree. Another issue to be aware of is that meshes with too many
triangles may not be able to generate a working Mesh Collider. With that
scenario, you could create a lower-poly version of the object, turn off its
Mesh Renderer, and add the Mesh Collider to it.

7. With the Wooden Barrel asset selected, activate the Generate
Colliders check box and click Apply.

Figure 4-10. The barrel asset’s Scale Factor is reduced to make the barrel a bit over 1 meter tall

176 CHAPTER 4: Importing Assets

8. Select the Wooden Barrel in the Hierarchy view.

The Mesh Collider is generated directly from the barrel’s geometry, so you
will not see the familiar green collider gizmo (Figure 4-11).

Figure 4-11. The Mesh Collider generated using the object’s geometry

If your game involves projectiles that should hit the barrel and ricochet
in various directions, then using the Mesh Collider will be a necessity. If
the main function is to block player access, a Box Collider will probably
be sufficient. If the barrel can be hit and moved by a projectile, a Capsule
Collider may be the best choice. In this book’s little game, you will use a
Box Collider.

9. Select the Wooden Barrel asset in the Project view and deactivate
the Generate Colliders check box.

10. Click Apply.

11. From the Component menu, choose Physics, and then add a Box
Collider to the Wooden Barrel.

Let’s try a more complicated model. If the goal with the little Guard House model was to
prevent an object from reaching a corner, one large Box Collider would be perfect. But if
the goal was to let an object through its doorway, but not its walls, you would want to use
multiple colliders. To add other than Mesh Colliders to an imported asset, you must first add
the object to a scene, add the collider or colliders, and then save it as a prefab if you want to
reuse it in other scenes. Follow these steps:

1. Select the Guard House asset from the 3D Assets folder.

2. Drag it into the Scene view and then add a Box Collider.

The object was designed to fit into a 90-degree corner, but rotated into
that orientation rather than built into it. It may be easier to set up in an
orthographic projection.

3. Set the Guard House’s Y Rotation to -90.

4. Toggle on the Edit Collider button in the Box Collider component
(Figure 4-12).

177CHAPTER 4: Importing Assets

5. Drag the grips on the collider to size it to fit over the top section of
the doorway (Figure 4-13).

Figure 4-12. Accessing the Edit Collider mode

Figure 4-13. Fitting the Box Collider by using the grips

To add more Box Colliders, you have a couple of choices. You can add a
child gameObject to the Guard House, or, unlike in earlier versions of Unity,
you can now add multiple colliders of the same type to the same object. The
first scenario tends to make setup easier, while the second should be slightly
more efficient because there would be less overhead to keep track of.

178 CHAPTER 4: Importing Assets

Figure 4-14. The newly created empty child object

6. From the GameObject menu, select Create Empty Child.

An empty gameObject is added as a child of the Guard House (Figure 4-14).

7. Name it Wall Collider and add a Box Collider to it.

8. Move it roughly into place for the left wall.

9. Toggle the Edit Collider button and drag the grips on the collider to
size it to fit the left-side wall (Figure 4-15).

10. Duplicate the Wall Collider object and move it over to the
right-side wall.

Figure 4-15. The Wall Collider’s Box Collider adjusted

179CHAPTER 4: Importing Assets

12. Create a folder in the Project view and name it Prefabs.

13. Drag the Guard House into it to create a prefab of the object with its
new features and settings (Figure 4-17).

11. Select the parent, Guard House, to see all the colliders at the same
time (Figure 4-16).

Figure 4-16. The Guard House’s colliders

Figure 4-17. The new prefab in the Two Column Layout (left) and the One Column Layout (right)

Note the blue cube icons representing the prefabs in the One Column Layout. This gives you
a quick means of differentiating between assets and prefabs.

180 CHAPTER 4: Importing Assets

The Rig Tab: Setting the Animation Type
In the Rig section of the Importer, you specify how, if at all, the imported asset animates.
Rigs can vary from mechanical hierarchies (such as a chest lid that opens by using a
simple transform to rotate the lid) to a complex skinned mesh (such as a bone system that
transforms the mesh’s vertices to animate a character). Let’s begin with an object that
doesn’t animate, the Guard House:

1. Select the Guard House asset in the Project view.

2. In the Rig section, set Animation Type to None and click Apply.

3. Repeat for the Coconut Palm and Sugar Sack.

The Wooden Barrel has a small animation. Because it is not even remotely
humanoid, you will set its Animation Type to Generic. The Legacy type is
kept only for backward compatibility.

4. Select the Wooden Barrel asset and check its Animation Type. It is
set to Generic, as there are only two objects in its hierarchy, so it is
good as is.

The last Animation Type is Humanoid. To be humanoid, a character must have a minimum of
11 bones that are roughly human-like in configuration. Let's set up the Guard character next:

1. From the 3D Assets folder, select the Guard asset.

2. Check out the contents of the Guard asset (Figure 4-18).

Figure 4-18. The Guard asset in the One Column Layout (left) and the Two Column Layout (right)

181CHAPTER 4: Importing Assets

You can set up an imported character without first checking on it in the
scene. However, if the Scale Factor must be adjusted, you may have to
redo some of the setup, so it is important to always check the scale first.
For the book’s game project, this character should be about 1.5 meters tall.

4. In the Model section, set the Guard asset’s Scale Factor to 0.0075
and click Apply.

The Guard is scaled in the Scene view (Figure 4-20).

3. Drag him into the Scene view and assess his scale by using a Front
iso view (Figure 4-19).

Figure 4-19. The Guard in the Scene view

Figure 4-20. The Guard scaled in the Scene view

182 CHAPTER 4: Importing Assets

The preview in the Inspector, however, updates only the bones’ scale, not
their positions, so the character appears to have lost quite a bit of weight
(Figure 4-21, right). The preview will have updated fully the next time you
select the asset.

Figure 4-21. The Guard as imported (left) and not fully updated after the scale to a smaller size (right)

5. In the Rig section, select Humanoid and click Apply.

6. Under Avatar Definition, use Create From This Model. The other
option is for multiple characters that are similar enough to share the
same rig.

Having selected Humanoid, you must now configure the character—that is,
make sure his bone system is set up so that you can use preset animations
and behaviors that can map to the correct bones. This is one of the two
major components of Unity’s Mecanim animation system. Created originally
for bipedal humanoid characters, Mecanim gives you settings and controls
to mix and match characters and animations from different sources.
You can, for instance, use the walk and run behaviors from a tall, skinny
humanoid to animate a short, stocky character. The transforms that go
with the gait can be baked into the animation or can be generated through
scripting. More simply put, the character may have been animated moving
along with the gait, or may have been animated in place, as if walking on a
treadmill. The caveat to the interchangeable animation functionality is that
all of the animations must come from the same build of character—because
the scene character is adjusted globally to match the animations, not on a
per animation basis. Basically, this means that you will not be able to use
the walk sequence from a tall, skinny character and the run sequence from
a short, stocky character.

183CHAPTER 4: Importing Assets

The Guard character has his own animations, so his rig will be quick to set up.

7. In the Rig section, click the Configure button (Figure 4-22).

Figure 4-22. The Configure button in the Rig section

8. Save the scene at the dialog box if you haven’t done so recently.

Mecanim commandeers the Scene view as part of its setup procedure.

The Mapping panel shows a humanoid template, and the character and the
bones are shown in the Scene view (Figure 4-23). Bones are automatically
assigned, using both the bone names from the imported asset and their
position in the hierarchy. Green indicates a successful assignment, and red
indicates places where Mecanim was unable to find the bone in question.
You can select and drag the correct bone from either the Scene or
Hierarchy views and drop it onto either the correct location on the template
humanoid or directly into the list.

184 CHAPTER 4: Importing Assets

With this character, the ribcage was used for a lot of the animation, but
Mecanim doesn’t recognize that bone and uses the top spine object for its
Chest assignment. Although it may seem logical to reassign the ribcage as
the chest, it’s usually safer to go with Mecanim’s choice. The ribcage bones
show as gray, or unassigned, in the Scene view.

A warning appears, informing you of the differences (Figure 4-24). You can
ignore the warning for this character.

Figure 4-23. Configuring the character

Figure 4-24. The conversion warning

185CHAPTER 4: Importing Assets

At the bottom of the panel, you will see drop-down menus for Mapping and
Pose. The options contained within each may help you when a character
doesn’t import correctly. Note that the character is shown in classic T-pose
in the Scene view. The T-pose is used to generate the mapping of bones to
your character.

When the mapping is done, you can select the Muscles tab. Here you can
test the rigging to see how well it holds up under extreme poses (the top
section) or fine-tune it to fit the generic animations to your character’s body
type. With a fat character, for example, you would restrict the arm’s range
to prevent it from going through the character’s body. Mecanim, when using
various animations on the character, would restrict the rotation accordingly.

9. At the top of the Muscles section, move the sliders to see how well
the Guard holds up to the various pose extremes (Figure 4-25).

Figure 4-25. Testing the muscle assignments: contortion tests

10. This character doesn’t have any special requirements, so you can
return to the regular Importer. Click Done.

The regular Scene view returns.

186 CHAPTER 4: Importing Assets

The Animations Tab: Setting Up the Animation Clips
The third section of the Importer is the Animations section. This is where you set up the
animations that came in with your assets, if any. Follow these steps:

1. Select the Guard House asset and click the Animations button.

The Inspector shows that no animations are associated with this asset. If
there were and you were not planning on using them, you would want to
activate the Don’t Import Animations check box.

2. Select the Wooden Barrel asset.

Under Clips, the imported Take 001 is highlighted.

3. Below the Clip box, next to the animation clip icon, rename the clip
to Lid Open (Figure 4-26).

Figure 4-26. Renaming an animation clip

4. Click the Play button in the Preview window to watch the animation.
The animation shows the lid opening and closing.

To reverse the animation clip, you can set its speed to a negative number,
so there is no need to make a close animation unless you want it to behave
differently than the reversed version of the open animation.

187CHAPTER 4: Importing Assets

Depending on the authoring application, the assets will probably show a single
animation with the default name Take 001. Best practice is to give your animation
clips a meaningful name. Characters especially tend to have idle, walk, and run
animations, so you will want to be able to differentiate between them.

The timeline is where you can break your clips into separate behaviors.
The lid goes up over 30 frames and goes down over the last 30 frames.
Note that the importer knows how many frames per second were used to
generate the clip, so you needn’t worry about its application of origin.

5. Set the Lid Open’s End to 30 below the timeline.

6. Click the Play button in the Preview window at the bottom of the
Inspector to see the animation. The preview loops through the
frames for the specified clip.

7. Click the plus icon at the bottom of the Clips box to create a new clip.

8. Name it Lid Close and set its Start to 31 and its End to 60.

9. Click Apply.

10. In the Project view, open the Wooden Barrel asset and check out the
new clips (Figure 4-27).

Figure 4-27. The Wooden Barrel asset’s new animation clips

188 CHAPTER 4: Importing Assets

You may also notice the little torso icon. When an asset has animations, an Avatar is created.
It represents the Mecanim animation system.

Let’s set up the character next. When using the Humanoid Animation Type, you have more
options in setting up the clips. The steps are as follows:

1. Select the Guard asset.

2. In the Animation section, rename Take 001 to Guard Idle.

3. Set its End to 120.

Many of the animations or behaviors that belong to characters should be
looped.

4. Just below the Start field, activate the Loop Time check box.

5. Click Play in the Preview window to see the idle animation.

If the animation doesn’t quite loop cleanly, you can activate the Loop Pose
check box and let Mecanim blend the bone locations to make them meet
up. As long as the animation was meant to loop, it does a nice job; if not, it
will probably cause more harm than good.

6. Click the plus sign to create a new clip and name it Guard Walk.

7. Drag the left-side marker on the timeline past 120 until it looks like he
is fully in a walk sequence, at frame 125.

This will set the Start value. You may also note the mini curve that shows
up when you move the Start and End markers. Quite often you will be able
to judge the clip boundaries by peaks in the curves. While not crucial in
conventionally animated characters, it is useful when using motion-capture
(mo-cap) files.

8. Drag the right marker to the right until the Loop Match indicator goes
from yellow to green and you are at a peak (frame 160), as shown in
Figure 4-28.

189CHAPTER 4: Importing Assets

Walk sequences may be as short as a stride for each leg or may have
three or more loops to introduce a bit of variation. This character uses a
single repeat for his walk. The next behavior, the run sequence, has two.
To conserve resources during runtime, let’s use only one. Typically, you will
want to find the best one.

9. Create a new clip for the run sequence and name it Guard Run.

10. Set its Start to 165 and its End to 205.

11. Adjust the zoom bar to fit the range.

12. Drag the End time indicator back to frame 185 (the location of the
last peak). The Loop Match indicator turns green.

13. Activate the Loop Time check box.

The last option you will want to utilize is the Bake Into Pose option for the
Root Transform Position (Y). Not only has this character been animated
for a walk pose, but his root transform has also been animated so that he
moves forward as he walks. If he had been animated walking in place, you
would have to move him though scripting. When a character has been
animated going forward, there is a possibility that a small amount of upward

Figure 4-28. Finding the loop points for the walk sequence on the timeline

190 CHAPTER 4: Importing Assets

movement exists. Because the animations loop relatively (that is, they are
additive), the character continues to move forward as the clip loops. If there
was a slight bit of upward movement, he would start drifting upward as
well. Typically, you will bake the Y position into the pose so it is not treated
relatively in the looping process.

14. Under Root Transform Position (Y), select Bake Into Pose for the idle,
walk, and run animations.

The Guard character has several other animations.

1. Set up the animations as follows:

Guard Block, 210–268, doesn’t loop
Guard Strafe, 272–312

Guard WIP, 325–345

Guard Narrow Idle, 355–395

Guard Jump, 400–425, doesn’t loop, do not use Bake Into Pose

There are a few little details to take care of before moving on. The Block
clip is for a one-off play, so it is not looped. The Strafe requires a bit more
work.

2. Select the Guard Strafe clip and click Play in the Preview window.
The character carefully side-steps, but his right wrist snaps at the
loop point.

3. Select the Loop Pose option to blend the positions better.

To get the strafe right, you can use a negative speed. For animations
that require a mirrored movement, there is a Mirror option, just above the
velocity values.

The walk-in-place (WIP) is typically used when turning a character whose
regular walk includes the forward movement.

The Narrow Idle can be used to fit the guard inside the Guard House, as he
is awaiting some action.

The Jump can help you understand what the Bake Into Pose option does.

4. Select the Guard Jump clip.

5. In the Preview window, toggle on the Pivot/Mass gizmo.

6. Click Play in the Preview window and watch as the gizmo moves up
and down as the character jumps.

191CHAPTER 4: Importing Assets

7. Turn on Bake Into Pose for Root Transform (Y).

This time, the gizmo stays on the ground as the character jumps up and
down. The important thing to note is that if the character is given a collider,
it would stay with the ground instead of going up with the character
(Figure 4-29). In normal situations, you want the collider to move with the
character, so you usually do not use Bake Into Pose for jump clips.

Figure 4-29. Without Bake Into Pose (left) and with Bake Into Pose (right)

8. Turn off Bake Into Pose for Root Transform (Y).

As a final bit of information on animation clips and Mecanim, you may have
noticed that there are a few spare keys between each behavior, where the
character returns to its starting location and neutral pose. It is especially
important to return the character to its former pose after the animation
transforms his position.

9. Add one last clip and leave it at the full frame number.

At frame 430, the character is in his full start configuration and location.
This is the pose he will have in the scene before Play mode and the one
where you will be adding his collider(s). If his last animation was a run, his
mesh would be off in the distance, and you would be left to guess where
the collider would have to be positioned and sized.

10. Click Apply to accept all of the Guard’s clip animations.

You will have a chance to experiment with controlling the character in Chapter 11.

http://dx.doi.org/10.1007/978-1-4302-6757-7_11

192 CHAPTER 4: Importing Assets

Importing Image Assets
Textures are an important part of enriching the player’s enjoyment of your game. Through
style and color palettes, textures can provide continuity and mood. They can also be your
game’s downfall, especially for mobile platforms, if not managed well. There are a lot of
considerations to keep in mind when using textures.

There are two basic types of textures: those that are used on 3D models and those that are
used in 2D space for sprite animation and GUI interfaces. The default setup for imported
textures depends on whether you specified a 3D or 2D game when you created your project.
So far, your textures are all for 3D objects.

The textures themselves normally have three or four channels. Red, green, and blue (RGB)
are the standard channels for an 8-bit texture, and each channel has a range of 0 to 255
(256 shades). At a value of 128, the color is fully saturated. A value of 0 is black, and a value
of 255 is white. The fourth channel, the alpha channel, is also 8 bits, but goes from black to
white only. Traditionally, the alpha channel is used to determine transparency, where 0 (black)
is fully transparent and 255 (white) is fully opaque. In Unity, the alpha channel is quite often
used for purposes other than transparency, as you will see in the “Working with Materials
and Shaders” section later in this chapter.

Setting the Texture Type
Texture Type dictates the default used to set up the texture for your game. Let’s look at a few
of the textures you have already imported:

1. From the Misc Textures folder, select the BambooFence texture.

193CHAPTER 4: Importing Assets

2. Click the Texture Type drop-down list to see the choices (Figure 4-30).

The textures earmarked for 3D games come in as Texture. The
BambooFence texture does not have an alpha channel, but you could have
one automatically generated for it.

3. Activate the Alpha from Grayscale check box and then click Apply. A
new icon appears in the Preview window’s title bar (Figure 4-31, left).

Note In Unity 5.5, “Texture” has been renamed to “Default”.

Note In Unity 5.5, Alpha from Grayscale can be found in the Alpha Source drop-down.

Figure 4-30. The Texture Type options for imported textures

194 CHAPTER 4: Importing Assets

4. Click the RGB colored icon to see the grayscale alpha channel
(Figure 4-31, right).

For Wrap Mode, most textures are set to Repeat. An exception would be
for textures used for cookies, or masks for objects like spotlights, where
you want to project a single image.

Filter Mode determines how the texture looks when seen from a distance
or at sharp angles. Bilinear is usually a good default. Aniso, short for
Anisotropic, is a filter that helps remove the artifacting (the sparkling effect)
often seen on ground textures when viewed at oblique angles. Aniso
filtering is quite costly, in terms of frame rate, so use it sparingly.

Closely tied to filters is MIP mapping. In this process, smaller, blurrier
textures are substituted as the texture recedes farther back in the
3D world’s environment. The concept is simple if you think about a
checkerboard texture. As you view the texture from the front in the
viewport, it covers a fixed number of pixels. As it recedes, you will hit the
“sweet spot,” where the numbers of pixels the texture covers comes out
evenly for the two colors, but eventually, the game engine will have to make
arbitrary choices about which color to draw. As the texture recedes, the
color choice has no way to remain consistent, and the texture appears to
sparkle. To avoid this artifacting, textures are MIP mapped. A series of base
2–sized textures is made for the image (Figure 4-32).

Figure 4-31. Viewing the new alpha channel

195CHAPTER 4: Importing Assets

The next option is for size. In the Preview window, you can see that the
current size of the texture is 1024 × 1024 pixels. The size (in memory) is 1.3
MB. Both numbers are overkill for mobile devices, unless the texture will be
covering a large part of the screen.

5. Set the Max Size drop-down to 512.

Now the size is reported as 341.4 KB, approximately a quarter of the
original. Just for fun, you may want to see how much lower it will be without
the added alpha channel.

6. Deactivate the Alpha from Grayscale check box and click Apply. The
size drops to 170.7 KB.

The savings from 1.3 MB to 170.7 KB is substantial when you are dealing
with limited memory. The original format of the texture asset makes no
difference. On import, textures are converted to .dds format, using the most
logical compression type in this case, DXT1. This means you can use image
formats such as .psd with their layers intact and update or tweak them at will.

Depending on the platform you are authoring on, you also have the option to override the Max
Size and Format options, based on the target device for the individual texture (Figure 4-33).

Figure 4-32. A few of the 512 sized image’s MIP maps, from left to right, 256, 128, 64, 32, 16, and 8

196 CHAPTER 4: Importing Assets

Be aware that only tabs for installed platform modules will appear as options. For both
devices and platforms, you will have to decide on the lowest target device you want to
support and then research its capabilities. A good place to start is the Unity docs, where you
will find guidelines for each platform.

Exploring Texture Dimensions
You may have noticed that the texture sizes offered are limited. Even if you are completely
new to real-time engines, you’ve probably heard by now that textures should be in base-2
size. And if math isn’t too far in your past, you may even remember that base 2 means the
numbers are derived by multiplying the previous number by 2. The “magic” numbers are
2, 4, 8, 16, 32, 64, 128, 256, 1024, 2048, and so forth. The reason is that in computers (or
other electronic devices), memory blocks come in base 2–sized blocks. If a texture takes
up just an extra pixel in the two directions, it jumps memory usage up by a magnitude of 4
(Figure 4-34).

Figure 4-33. Override choices: for Web, stand-alone (desktop), iPhone, Android, BlackBerry, Windows Store apps, and
Windows Phone 8

Figure 4-34. Memory usage for 256 × 256 pixels (left), for 270 × 270 pixels (center), and for 512 × 512 (right)

Having spilled over into the adjacent memory blocks, the middle texture, 270 × 270, takes
the same amount of memory as the 512 × 512 image. The other problem is that as a default,
the Texture Type, Texture, will scale the image out to fit the full memory size, possibly
causing poor image quality. For non-power-of-2 images, you should use the Advanced

197CHAPTER 4: Importing Assets

setting rather than the presets. From there, you can disable the forced power-of-2 setting.
While the power-of-2 “rule” is less crucial with modern devices, it is always good practice to
keep to it for performance reasons.

Understanding Mapping and Vertex Count
Another topic for economical 3D assets is that of mapping and vertex count. The same
object’s vertex count can vary substantially, depending on its edge treatments and how an
image is mapped to it. This variation is caused by the information stored on each triangle’s
vertices. Lighting, colors, transparency, and other data can be stored there. If the information
can be shared, the vertex can be shared. Part of the resource usage is in transforming and
lighting objects—so the fewer vertices to process, the faster your frame rate.

The smallest renderable 3D element is a face, or triangle. It consists of three vertices, the
three edges that connect them, and the face that they define (Figure 4-35, left). When
vertices are shared between faces, the lighting is averaged between the direction of each
face, or the face normal (Figure 4-35, center). When the edge between faces is “hard,”
the vertex cannot be shared, because each face will have lighting derived from its vertex
(Figure 4-35, right). Lighting is calculated by using the angle of incidence between the light
source and the vertex normal (Figure 4-36). The smaller the angle of incidence, the more
light the vertex receives.

Figure 4-35. Vertex normals on a single face, or triangle (left), being shared or averaged between two quads (center),
and not shared (right)

198 CHAPTER 4: Importing Assets

Let’s use a fairly simple mushroom model as a test case. It was created using a lathe and
then bent slightly afterward. The model is reported to have 74 vertices in the application
where it was created. For this experiment, it was given several treatments. In Unity, you will
see that the vertex count varies for the different configurations.

1. Import the Mushroom.unity package into the project.

The mushroom assets come into the project at the root level. Feel free to
move them into the 3D Assets folder with the rest of the imported assets to
keep the project better organized.

2. In the Project view, select each mushroom mesh and note its
triangles (tris) count.

In Figure 4-37, you see the mushroom model showing its geometry and two textures
mapped onto three of the examples.

Figure 4-36. The angle of incidence determining the amount of light that a vertex normal receives

199CHAPTER 4: Importing Assets

Figure 4-37. The base mushroom geometry and two of the textures used

Figure 4-38 describes the treatments and shows the vertex count for each after being
imported into Unity.

Figure 4-38. Several configurations of the mushroom model

For #1, there are no shared vertices; each triangle has its own set of vertices. With #2, all
vertices are able to be shared, so the count is the lowest possible for the model. #3 has
color added to the vertices, so the vertex count remains the same. To see this mushroom’s
vertex color, you would have to add it as a terrain Detail Mesh or find a shader that uses
vertex color. The lower row of mushrooms in Figure 4-38 all use textures and have mapping
coordinates. They are mapped as shown in Figure 4-39. Mushroom #4 uses 3d Max’s
default mapping for lathes, in which the top and bottom vertices are separated to prevent
texture stretching (Figure 4-39, A). Because the texture is a simple gradient, it could have

200 CHAPTER 4: Importing Assets

used mapping as in Figure 4-39, B, and would have dropped 14 vertices (two rows of 8 are
collapsed to 1 vertex each). In # 5, mapping B was used, but adding hard edges forced extra
vertices to allow for the lighting. Mushroom #6 uses a traditional unwrap: different parts of
the mesh are laid out for minimal distortion and optimum layout. It comes in at 114. The
downside of numbers 4–6, of course, is that their textures will take up memory.

Figure 4-39. Three mapping layouts

As you have seen, economy and visual appeal usually have trade-offs, but as long as you
understand the deciding factors, you should be able to make informed choices.

Managing Textures and Batching
In the previous example, two of the mushrooms had their own unique texture. If both
mushrooms were in the scene and visible, Unity would have to make a separate draw call
for each one. As you have probably guessed, draw calls cost resources. Resources equate
to frame rate, and in mobile applications, battery usage. To economize, Unity allows you to
batch objects by using the same material for multiple objects. To do so, first the textures are
usually atlased together onto one texture sheet. Several of the objects you imported earlier
share the same texture (Figure 4-40).

201CHAPTER 4: Importing Assets

This image contains the unwrapped textures for the palm tree, barrel, guard house, and
sugar sack. The mapping can be seen to the right.

Batching has a few limitations. Besides using the same material, the objects must
have fewer than 300 vertices each. Also, stored vertex information is limited to three
types. Typically, this is the x, y, and z location; normal (the direction it faces); and UV (its
mapping coordinate). This means that each mesh is limited to 900 vertex attributes. If the
requirements are met, instead of making separate draw calls for each object at render time,
batching can combine them into a single draw call.

Static batching, now available in Unity’s Personal edition, is significantly more efficient,
because it can batch objects of any size as long as they are marked as static and share the
same material. Typically, objects that do not animate or move are marked as Static and can
be batched. With the Asset Set-up scene loaded, drag the Coconut Palm and Sugar Sack
into the scene and arrange them so that each can be seen (Figure 4-41).

Figure 4-40. The MiscAssets texture sheet

202 CHAPTER 4: Importing Assets

When checking on draw calls, you must have the objects in question within the viewing
frustum (the bounds of the screen) and at least partially visible:

1. Select the camera from the GameObject menu and then choose
Align with View.

2. Add a Directional Light to the scene.

3. Click Play and then toggle on Stats from the Game view’s toolbar
(Figure 4-42).

Figure 4-41. The miscellaneous assets visible in the scene

203CHAPTER 4: Importing Assets

On the second line, you will see Draw Calls and Saved by Batching.
Currently, the stats show 13 draw calls and 2 saved by batching. A count
of the renderable objects turns up 14 (3 for the guard, 2 for the barrel,
and 6 for the palm). The 15th is, presumably, for the camera drawing the
background. By deactivating the objects one by one, you will find that the
two saved draw calls are from the guard’s club and one of the tree’s fronds.

The Coconut Palm, Guard House, and Sugar Sack all use the same material
and do not animate in this test scene, so they are good candidates for
batching.

4. Select the Coconut Palm, Guard House, and Sugar Sack.

5. At the top right of the Inspector, select the Static check box (Figure 4-43).

Figure 4-42. Stats toggled on in the Game view

Figure 4-43. The Static check box in the Inspector

204 CHAPTER 4: Importing Assets

6. Click Yes, Change Children in the dialog box.

7. The Static flag has several individual options. Click the down arrow
to see all the features that were marked as static (Figure 4-44).

Figure 4-44. The various Static options

Figure 4-45. The Stats dialog box after setting several objects to Static

A few of the settings that use the Static flag are lightmapping, occlusion
culling, batching, and path finding. The Wooden Barrel should also be
marked as static, but its lid (it has an animation) should not.

8. Select the Wooden Barrel and mark it as static, but not its children
(as the lid has an animation).

9. Click Play, and examine the changes in the Stats dialog box
(Figure 4-45).

205CHAPTER 4: Importing Assets

This time, the draw calls drop to 6, and 9 are reported saved by batching.
The Cube doesn’t share a material with any other objects, but it should be
marked as static for several other reasons covered by the flag.

10. Stop Play mode.

11. Set the Cube to Static and click Play. As expected, the Draw Calls
number does not change.

12. Stop Play mode.

As a quick recap, there are a few guidelines for successful batching. It is worth keeping them
in mind when preparing objects for your scene:

	Objects must share the same material.

	Objects must be marked as Static.

	Vertex attributes must not exceed 900—that is, three attributes per
vertex.

	Objects cannot use separate lightmaps. (The extra UV map makes a
total of four attributes per vertex, unless you can do away with one of
the standard ones.)

	Objects cannot be scaled in the scene. (Nonuniform scale is apparently
allowed.)

	Instantiated objects must not use an instanced material (which they do
by default).

	Materials used for batched objects must not be altered during runtime,
as that will cause another instance of the material to be created and
break batching.

Working with Materials and Shaders
In Unity, all materials use shaders—the calculations are performed on the GPU (graphics
chip) rather than the CPU. As you might expect, the fancier the shader, the more resource-
intensive it is. When 3D assets are imported into Unity, a material is generated by using the
default Standard shader. The Standard shader has several optional parameters and was
meant to be used in high-end games and applications where resources are more plentiful
and a realistic style is the goal. The shader was designed especially for physically based
materials so that the material will look correct in any given lighting and environmental setting.
Although it is optimized for runtime, it is an expensive choice for low-end mobile devices on
which the mood is more often playful than awe inspiring.

The material generated on import derives its name from the texture unless you change the
import settings in the Model section. On import, only a diffuse texture and a lightmap texture
(using map channel 2) will automatically be added to the material. The lightmap texture is for
the legacy method, but of note is that Unity supports only two map channels.

206 CHAPTER 4: Importing Assets

Investigating the Standard Shader
Let’s begin by taking a look at a few of the imported assets’ materials:

1. Select the Sugar Sack in the Hierarchy view.

2. Open its Material array to see what material or materials it is using
(Figure 4-46).

There are a couple of good reasons that you don’t just open the material
where it is clearly visible at the bottom of the object’s components. The
first is that the object must remain selected while you are working on the
material. And the second is that opening just the material in the Inspector
will give you a preview of it in the Preview window at the bottom of the
Inspector.

3. Click the material’s name in the Element 1 slot to highlight it in the
Project view.

4. Now open the material from the Project view and inspect it.

It uses the MiscAssetsTexture material and is currently set to use the
default Standard shader (Figure 4-47). With physically based materials,
there are generally two ways to set up your material for realism. The first
is by adjusting its metallic properties, and the second is by adjusting its
specular properties. In each method, the other property is automatically
set by the other. Preference is generally dictated by the application used
to create these physically correct shaders, so Unity also offers a Standard
(Specular Setup) shader for those who prefer that method.

Figure 4-46. Identifying a material on an asset through its Mesh Renderer component

207CHAPTER 4: Importing Assets

The material has options for quite a few parameters that can make your
materials look extremely attractive. Even with the material optimized for
runtime, a lot of the options will be too costly for mobile devices. Let’s
take a quick look at them anyway. Just as with anything else, economizing
in other areas could justify splurging for that one special asset that could
make your game a hit.

The first map and color is for Albedo. This is the main color or texture of the
material. In other shaders, you will see it called Main Color, Main, or Diffuse.
In Unity, material colors, especially for the main color, are additive. That
is, the color will be blended (in Photoshop terminology) into the texture, if
any, in an additive fashion. White adds nothing, gray darkens a texture, and
black overwrites whatever it is added to. In this case, with the Albedo color

Figure 4-47. The MiscAssetsTexture material using the Standard shader

208 CHAPTER 4: Importing Assets

being white, the texture is not altered. Feel free to try various color tints and
observe the result.

5. Click the texture’s thumbnail to locate it in the Project view. The texture
is temporarily highlighted yellow in the Project view (Figure 4-48).

Figure 4-49. Viewing a texture’s alpha channel by toggling the RGB/Alpha button

Figure 4-48. Locating a texture used in a material’s shader

6. Select the texture in the Project view and check it out in the Preview
window.

7. Click the RGB/Alpha toggle button to inspect the texture’s alpha
channel (Figure 4-49).

209CHAPTER 4: Importing Assets

You will be using the alpha channel as a glossiness/specular/metalness
map. In other words, it will affect the shininess and reflectiveness of the
material. In places where the image is white, it will be very shiny; and where
it is black, it will have no shininess at all.

8. Select the MiscAssetsTexture material again.

9. Drag the MiscAssetsTexture texture into the Metallic slot (Figure 4-50).

Figure 4-50. The Metalic slot using the alpha channel of the MiscAssetsTexture

As you may have noticed, the Smoothness has been set to 1, very smooth/
reflective. The palm fronds and roof tiles are the most obviously affected,
with the overhead lighting (Figure 4-51).

Figure 4-51. The The palm fronds and roof tiles sporting new highlights

210 CHAPTER 4: Importing Assets

Feel free to rotate the Directional Light in the scene on its x axis to see how
the red stripes and painted leaves on the Guard Shack react to the light.

Although the Standard shader is tempting, you should become familiar
with the shaders designed expressly for mobile devices. They use less
resources and so less battery power.

10. Click the Shader drop-down again, and from the Mobile submenu,
select Diffuse.

This bare-bones shader does give the assets a much more casual look and
feel. Note that it does not even have a main Color parameter (Figure 4-52).
Unless you have a reason to use an additive color (such as a mouse-over
color change), the more economical Mobile version will do nicely.

Figure 4-52. No Main Color for the Mobile/Diffuse shader

Using Normal Maps
For the Guard character, you will add a bump. A bump adds detail to a mesh without
changing its geometry. If you think back on the way an object is lit, you will remember that
the light is calculated at each vertex. A bump map, or its modern equivalent, the normal
map, uses color to simulate geometry that doesn’t exist. The bump map was traditionally a
grayscale map in which white was bumped out and black bumped in. As a grayscale, it was
often loaded in the diffuse texture’s alpha channel. The normal map (normal from the vertex
normals that are used to calculate lighting) uses color to indicate the direction of the fake
normal for a much more accurate result.

You can recognize normal maps by their distinctive cyan and magenta colors. Do be aware
that a large normal map adds a lot of extra lighting calculations, as each pixel is treated as if
it were a vertex. The savings are in fewer actual vertices on a mesh to be managed. The cost
is the space the texture takes up in memory.

Because it uses all three color channels, RGB, the normal map requires its own texture.
Normal maps are typically generated in DCC applications (such as 3ds Max, Maya, ZBrush,
or Blender) by using higher-poly versions of a mesh, and the resulting map is then applied to
a lower-poly version. Quite often, you can simply use the existing diffuse texture to generate
a useful normal map. The normal map is derived from its grayscale, where white is bumped
out and black is ignored.

211CHAPTER 4: Importing Assets

While experimenting with the normal map, you will not want the character’s mesh edges
showing (a third reason to open a material by itself):

1. Select the Guard group, and then select its Guard child object.

2. In its Skinned Mesh Renderer component, open the Materials array
and click its Element 0, the repository for the first material used on
the object. The material is located and briefly highlighted yellow in
the Project view.

3. Select the GuardTexture material.

4. Change its shader to Mobile ➤ Bumped Specular.

5. Click the GuardTexture thumbnail and select it in the Project view.

6. Press Ctrl+D (Cmd+D) to duplicate the texture. Rename it
GuardTextureBmp.

7. Change its Texture Type to Normal Map and then click Apply.

With the default settings, the texture map is too detailed to make a nice
normal map (Figure 4-53, left). Rather than changing the Filtering from
Sharp to Smooth, you can reduce the size of the bitmap, improving the
smoothness of the normal map, and reducing the number of calculations
it requires in the scene as well as the amount of memory and disk space it
requires.

Figure 4-53. The GuardTextureBmp at the original 1024 (left), 256 (center), and 128 (right), where the repurposed map
is even smoother

212 CHAPTER 4: Importing Assets

8. For the Default, select 256 as the Max Size and then click Apply.

9. Select the GuardTexture material again.

10. Adjust the Shininess slider until it is near the left side, producing a
soft highlight (Figure 4-54, center).

Figure 4-55. The horn in the original texture (left), the normal map it generates (center), and a method of reducing
seams created when the surrounding color contrasts too much (right)

Figure 4-54. The default Diffuse shader (left), the Specular Bump shader before adding the normal map (center), and
after adding the normal map (right)

11. Drag the new normal map into the NormalMap slot.

With the addition of the normal map (Figure 4-54, right), you may have
noticed seams from the unwrap (Figure 4-55, left). If you plan on generating
the normal map directly from the texture map, be sure to add extra
“padding” around the pattern pieces to minimize the color difference used
to generate the normal map (Figure 4-55, right).

12. Drag the Guard parent object into the Prefabs folder in the Project view.

213CHAPTER 4: Importing Assets

Just as with any shader that has multiple features, effects such as specular highlights and
bumps can mean extra passes when an object is drawn in the scene. Always weigh the
visual impact with the cost in frame rate. Don’t be afraid, however, to leave a costly shader in
the game. If the game requires “pruning” to improve frame rate further down the production
pipeline, you can always revisit your assets and decide what visual candy can be sacrificed.

For now, let’s go ahead and prepare a few of the assets you’ve experimented with for use in
the game you’ll be making:

1. Focus the Scene view to the Coconut Palm and create a new Empty
gameObject.

2. Name it Tropical Corner.

3. Drag the Coconut Palm, Sugar Sack, and Wooden Barrel objects into it.

4. Drag the Tropical Corner object into the Prefabs folder.

5. In the Prefabs folder, select the Tropical Corner, the Guard, and the
Guard House prefabs.

6. From the right-click menu, select Export Package. The assets and
their dependencies are gathered up for inclusion in the package
(Figure 4-56).

Figure 4-56. The prefabs gathered for export as a Unity package

7. Click Export and save the assets as CornerObjects.unitypackage in
your Chapter 4 Assets folder.

8. Save the scene and save the project.

http://dx.doi.org/10.1007/978-1-4302-6757-7_4

214 CHAPTER 4: Importing Assets

You’ve just created your first Unity package. Be aware that as of this writing, Unity does not
yet support prefabs of prefabs, so plan accordingly when creating prefabs for reuse (they will
not retain their reference relationship to each other).

Summary
In this chapter, you discovered that assets can be textures, sound clips, 2D textures, or 3D
meshes. 2D images can be used as textures for 3D meshes, to create your game’s GUI and
use as animated sprites. 3D objects may be static or animated and may be as complex as
fully rigged and animated characters. You also found that their intended use dictates the
import settings for all assets types.

Next you discovered that Unity supports several 3D file types in their native format, but
internally, it converts all to .fbx. To ensure that Unity can generate the proper material for
your imported 3D asset, you learned that a safe practice is to import the textures into the
project before the meshes. All types of assets can be imported by dragging directly into the
Project view, copying into the Assets folder via the operating system, or by using the Import
Assets option in the right-click menu. The important thing to remember is not to move
assets around in the OS unless you are including the metadata files. Importing an updated
asset into the project is best done through the OS, where you have the option to overwrite
the original.

3D models should have their scale set in the Importer’s Model section with the Scale Factor
option rather than in the actual scene, for performance reasons. Next, you discovered that a
meter cube makes a good reference for adjusting scale to fit your game. 3D assets can have
Mesh Colliders automatically generated, but it is generally better to create the colliders from
primitives, once again for performance reasons.

For the Rig section, you learned that objects that have no animation should be set to
Animation Type None, nonhumanoid characters and mechanical contraptions that animate
should stay assigned as Generic, and humanoid characters should be set to Humanoid.
Humanoid characters will have bone and muscle assignments so that you can use animation
clips from multiple sources. A minimum number of 11 bones is also a requirement for
humanoid characters.

In the Importer’s Animation section, you learned that objects that have been imported with
animations generally require the setup of their animation clips. Clips may or may not loop.
Humanoid characters have several clip options that can make setup easier, especially if the
animation was created using motion capture.

Moving on to texture importing, you discovered that Unity can read several texture formats,
but converts them to .dds format for optimal compression. Textures can be 24 bit or 32
bit, where the extra 8 bits hold an alpha channel. The textures can be given a size cap on
a global or a platform-specific basis. To save disk space and memory, you learned that all
textures should be sized in multiples of two. Textures used in the scene on 3D assets also
have a series of MIP maps automatically generated.

Upon experimenting with materials and shaders, you found that rather than using an 8-bit
bump from an alpha channel, Unity uses normal maps. A quick way to create a normal map
is to duplicate a regular texture and set its Type to Normal. Because shaders can use the

215CHAPTER 4: Importing Assets

alpha channel for purposes other than transparency, you discovered that Unity can generate
an alpha channel from a texture’s grayscale version. This alpha version can be used to
determine areas of glossiness, where white is fully glossy, and black is ignored, as well as
many other useful shader parameters.

By experimenting with 3D assets imported and brought into a test scene, you discovered
that objects meeting several requirements (including poly count and a shared material)
could be automatically batched to combine several objects into a single draw call, seriously
improving the efficiency of your scene.

With all of the various adjustments made to your imported assets, you learned that it was
usually a good idea to make prefabs of the assets that had been set up in the Scene view.
This enables you to reuse the asset, or group of assets, in multiple scenes. Finally, you
created your first Unity package so it could also be used in other packages.

217© Sue Blackman and Adam Tuliper 2016
S. Blackman and A. Tuliper, Learn Unity for Windows 10 Game Development,
DOI 10.1007/978-1-4302-6757-7_5

Chapter 5
Prototyping the Navigation
As with any game, it is always a good idea to lock down the basic functionality by using
simple proxy objects wherever possible. This helps keep your development time agile,
allowing you to adjust your game plan when an idea doesn’t pan out. Even with a team of
programmers, you can easily hit technical restrictions that will force you to make changes.
Game play itself may require extra thought; what looks good on paper doesn’t necessarily
equate to fun game play. Creating mock-ups with simply geometry allows you to test your
ideas without the overhead or commitment of expensive (in time and/or money) art assets.

Understanding the Basics
For this book’s project, you will be making a little tip-puzzle game. The concept is simple,
but the functionality can be challenging, especially using game physics. The player will rotate
or tip a board to move a sphere, or marble, into key positions. This type of input will give you
an excellent opportunity to experiment with input from various platforms and devices. To tip
the board, you will click and drag the mouse on desktop applications, finger-drag on touch
screens (tablet), and even use accelerometers on mobile devices if supported.

Taking the First Steps
To create your mock-up, you will use a few Unity primitives and begin to work out the
functionality with your scripts. You will add objects and scripting a little at a time so you are not
overwhelmed by the task ahead of you and can spot errors a lot easier. Start with these steps:

1. Create a new project with the defaults set up for 3D and name it
Tiltboard.

2. Save the default scene as Board Test.

3. Create a Cube and name it Board.

4. Set its X and Z Scale to 26 and its Y Scale to 0.2.

218 CHAPTER 5: Prototyping the Navigation

5. Add a Directional Light and adjust its rotation until it shines down on
the Board at a slight angle.

6. Switch to 2 × 3 layout and set the Project tab to One Column Layout,
if you are not already in it.

7. Adjust the camera to get a good view of the Board in the Game view
(Figure 5-1).

Figure 5-1. The Board in the Game view

219CHAPTER 5: Prototyping the Navigation

Scripting User Interaction
Just as with the old-time handheld games, your player will have to tip the board to get the
marble, or ball, to roll in the correct direction. There are several ways to script this behavior.

The logical place to start is with the desktop functionality. A search of the Unity Forums and
Unity Answers found several possible solutions, but the following JavaScript code for using a
mouse drag to control an object’s rotation was one of the simplest. Here is the URL for the code:

http://answers.unity3d.com/questions/386625/rotate-object-following-mouse-
movement-object-jump.html?sort=oldest

The code is as follows:

private var factor : float = 0.6;
private var v3StartPos : Vector3;
private var v3StartRot : Vector3;

function OnMouseDown(){
 v3StartPos = Input.mousePosition;
 v3StartRot = transform.eulerAngles;
}

function OnMouseDrag(){
 var v3T : Vector3 = Input.mousePosition;
 transform.eulerAngles = v3StartRot + Vector3.up * (v3StartPos - v3T).x * factor;
}

Most syntax changes are fairly simple to convert JavaScript to C#. C# is automatically
private; the type is first, then the variable name, and then the optional assignment. Floats
must have a lowercase f to distinguish them from doubles. The word var is not used. For
functions, void (the type returned by the function) is put in front of the name. The word
function is not used.

1. From the right-click menu in the Project view, create a new folder and
name it Game Scripts.

2. Create a new C# script in the Game Scripts folder, and name it
TiltBoard.

3. Open the script in the script editor and add the following under the
class declaration:

public float factor = 0.6f; // adjustment
Vector3 v3StartPos; // mouse location
Vector3 v3StartRot; // board orientation

4. Add the following below the Update function:

void OnMouseDown(){
 v3StartPos = Input.mousePosition; // starting location of the cursor
 v3StartRot = transform.eulerAngles; // current orientation of board
}

http://answers.unity3d.com/questions/386625/rotate-object-following-mouse-movement-object-jump.html?sort=oldest
http://answers.unity3d.com/questions/386625/rotate-object-following-mouse-movement-object-jump.html?sort=oldest

220 CHAPTER 5: Prototyping the Navigation

void OnMouseDrag(){
 Vector3 v3T = Input.mousePosition; // get the current cursor position
 transform.eulerAngles = v3StartRot + Vector3.up * (v3StartPos - v3T).x * factor;
}

5. Save the script.

6. Drag and drop the script onto the Board object.

7. Click Play, and test by clicking the board and dragging the mouse left
and then right.

The board rotates on its y axis, Vector3.up. It is using the change (delta) in the cursor’s
horizontal, or x, direction as long as the left mouse button is held down.

For the game, the board’s orientation will control the marble’s movement as it tilts along its
x and y axes. Let’s begin by changing the rotation axis in the code. While Vector3.up is easy
to decipher, it gives no clues as to how the other directions can be accessed. For that, you
will take a quick look at the scripting docs:

1. From the Help menu, select Scripting Reference and search for
Vector3 but do not select it from the list that is generated.

In the list, you will see that Vector3.up is shorthand for Vector3(0,1,0).
Vector3.down is shorthand for Vector3(0,-1,0), Vector3.forward is
Vector3(0,0,1), Vector3.backward is Vector3(0,0,-1), Vector3.left is
Vector3(1,0,0), and Vector3.right is Vector3(0,0,-1). By now you’ve
probably guessed that Vector3.up = Vector3.down. This allows you to use
the delta of the x, y, and z values whether they are positive or negative.
Armed with this information, you will change the code to tilt the Board on
its x axis using Vector3.left.

2. Exit Play mode.

3. In the OnMouseDrag function, change the Vector3.up to Vector3.left
as follows:

transform.eulerAngles = v3StartRot + Vector3.left * (v3StartPos - v3T).x * factor;

4. Save the script, click Play, and test, remembering to move the mouse
left and right.

The board rotates along the x axis, which makes it tip in the z direction. It
might be more intuitive if the mouse vertical movement (y) tips the board on
its x axis.

5. Exit Play mode.

6. Change the rotation line as follows:

transform.eulerAngles = v3StartRot + Vector3.left * (v3StartPos - v3T).y * factor;

221CHAPTER 5: Prototyping the Navigation

 7. Save the script and test the adjustments.

This time, the cursor and the board seem more in sync. The problem now
is that you also require the board to move in the other direction as well. The
code is adding the adjustment for the one axis to the current orientation,
so you ought to be able to add the other at the same time. It will require the
same adjustments. To make sure the evaluation is done in the correct order,
you will add a few parentheses.

8. Exit Play mode.

9. Change the rotation line to the following:

transform.eulerAngles = v3StartRot + (Vector3.left * (v3StartPos - v3T).y * factor) +
(Vector3.forward * (v3StartPos - v3T).x * factor);

10. Save the script and test again. This time, the Board tilts along both
axes as you move the mouse around.

11. Exit Play mode.

With the basics working, you are probably anxious to drop a marble onto the board. It
sounds easy, but keeping in mind that game physics are only approximations of the real
thing, you will soon discover otherwise:

1. Create a Sphere in the middle of the board and lift it up so it is
slightly higher than the Board’s top surface.

2. Name it Marble.

For objects to make use of physics, you must add a Rigidbody component.

3. Add a Rigidbody component to the Marble object.

4. Click Play and tilt the board.

The Marble drops to the Board, but does not react when the board is tilted.
To achieve interaction when the Board object is in motion, the board must
also have a Rigidbody component. And because the board is controlled
with user input rather than physics, it must be marked as Is Kinematic.
This is also the case if it has key-frame animation or any other means of
animation other than physics.

5. Add a Rigidbody component to the Board object.

6. Set it to Is Kinematic and deactivate the Use Gravity check box.

7. Click Play and test.

The marble now rolls around as you tilt the board, but occasionally, it will
fall through. A partial solution here is to make the board thicker so that the
marble can’t get through it between frames as easily. Physics behavior is
not necessarily calculated every frame, so it is possible that an object can
miss a collider altogether if it is moving too fast.

222 CHAPTER 5: Prototyping the Navigation

The farther the marble gets from the center of the board (the object’s pivot
point), the faster the board will change position in relation to the marble,
and the higher the chance that the marble will get through it between the
time the collision checks are made. Obviously, this will cause problems with
game play, but rule number 1 is “don’t waste good game ideas on learning
material,” so you will get creative during the course of this project and turn
it to an advantage, or at least a plausible part of the game mechanics. To
improve performance, you can also adjust the way the Marble is handled by
physics.

8. Select the marble and in its Rigidbody component, set Collision
Detection to Continuous Dynamic.

You can also help collision detection by making barriers thicker so that the
objects aren’t as likely to pass through between physics frame checks. The
checks themselves can be altered, but it is not advisable to do so unless
you really know what you are doing.

9. Select the Board and set its Y Scale to 2.0.

10. Adjust its Y Position to -1 so that its top surface is at 0.

11. Click Play and test.

This time, the marble is better behaved, but it is still too easy to lose it over
the edge.

Before you add some walls, you will probably want to make the contents of
the Scene view easier to see. A simple green material for the Board will be
a big improvement.

12. From the right-click menu, choose Create ➤ Material.

13. Name it Green.

14. In the Inspector, Click the Main Color sample swatch and change it
to an easy-to-see green (or any other color you wish).

15. Drag it onto the Board object in either the Scene view or the
Hierarchy view.

Let’s add some walls next. Visually, the walls shouldn’t be too thick, but to keep the physics
working, you will increase the collider size:

1. Create a Cube, 28 × 3 × 1.

2. Name it Wall.

3. Increase the Collider’s Z Size to 3.

4. Set its Z Center to -1 so that the collider hangs over the outside of
the Board.

5. Set the Collider’s Y Size to 2 and set its Y Center to 0.5 (Figure 5-2).

223CHAPTER 5: Prototyping the Navigation

The next thing you will want to do is to add a Rigidbody component to the
Wall. It already has a collider to stop other rigidbodies, but if it will be moving,
it will use far less resources if it also has a rigidbody set to Is Kinematic.

6. From the Components menu, choose Physics and then add a
Rigidbody component.

7. Activate the Is Kinematic check box and deactivate the Use Gravity
check box.

Creating Prefabs
Now that the wall has been beefed up to help prevent physics mishaps, you can save setup
time by turning it into a prefab. Prefabs are Unity’s mechanism for storing reusable objects.
In traditional desktop applications, when you instantiate an object such as a projectile,
the object, its components, and its children are put into the scene on demand, ready for
action. When the object is no longer required, it is destroyed. In mobile applications, the
two functions are too costly to use with abandon, but the prefab itself also serves a twofold
purpose. It can help save disk space and/or download time and it makes scene setup using
identical objects, or instances, much quicker. Follow these steps to create a prefab:

1. Create a new folder in the project view and name it Prefabs.

2. Drag the Wall object into the new folder.

The Wall prefab sports a blue cube icon in the Single Column Layout
(Figure 5-3, left) and a thumbnail of the object in Two Column Layout
(Figure 5-3, right). Its name in the Hierarchy view is blue instead of black,
indicating that it is a prefab of an asset that exists in the project. If a prefab

Figure 5-2. The Wall’s collider scaled out beyond the cube

224 CHAPTER 5: Prototyping the Navigation

is deleted from the project, its instance in the Hierarchy view turns red, but
the object remains.

3. Delete the Wall prefab from the Project view and acknowledge the
warning that it will be permanent.

The name in the Hierarchy view turns reddish.

You can repair the “broken” prefab through the GameObject menu.

4. Select the Wall in the Hierarchy view and from the GameObject
menu, select Break Prefab Instance.

The Wall’s name turns black.

5. Drag the Wall object back into the Prefabs folder to create a new prefab.

When the prefab was created, all of its components and their parameter
values were stored as is. To reuse them, you can bring them into the scene
during Edit mode in three ways.

To bring a new prefab into the scene in the same location and orientation as
the original, you can simply duplicate the original in the scene.

6. Select the original Wall in the Scene and duplicate it by pressing
Ctrl+D (Cmd+D on the Mac).

The duplicate occupies the same location and orientation as the original.

7. Set its Y Rotation to 180 and move it to the other side of the Board.

Let’s try another method.

8. Drag the Wall prefab from the Project view into the Hierarchy view.

This duplicate also occupies the same location and orientation as the
original did when the prefab was created.

9. Set its Y Rotation to 90 and move it to the appropriate side of the Board.

Figure 5-3. The prefab and its icon in Single Column Layout (left) and Two Column Layout (right)

225CHAPTER 5: Prototyping the Navigation

10. Finally, drag the Wall prefab directly into the Scene view, and move it
around the Board, observing the changes in the Y Position as you do
so.

The bottom of the Wall object is automatically adjusted according to which
object it intersects.

11. Set its Y Rotation to -90 and set its Y Position to match the other
three walls.

12. Move it to the remaining side of the Board object and drag the Wall
object in the Hierarchy to the bottom of the list so it is with the other
walls.

Depending on how you arranged your walls in relation to the outside edges
of the Board object, you may have noticed that you have some overhang.
The beauty of using a prefab is that changes will affect the copies.

13. Select the Wall prefab in the Project view and set its X Scale to 27.

The walls in the Scene view scale to match.

14. Rename the four walls to Wall Top, Wall Bottom, Wall Left, and Wall
Right, according to their location in the Game view (Figure 5-4).

Tip Activate and Deactivate the walls to identify them in the Game view or turn on Gizmos in the
Game view to see which is which.

Figure 5-4. The four walls in the Game view

226 CHAPTER 5: Prototyping the Navigation

Just as with transforms, the instances of the prefab may have unique
names without breaking the prefab.

Before testing the new additions, you can use the same collider scaling
method to help keep the Marble from falling through the floor while
improving the visuals:

1. Select the Board and reduce its Y Scale to 0.5 and its Y Position
to -0.25.

2. Set its collider’s X and Z Size to 1.2 and its Y Size to 10.

3. Adjust the collider’s Y Center to -4.5.

To have the walls move with the Board, you will have to parent them to it.

4. Drag the four wall objects onto the Board object in the Hierarchy view.

5. Click Play and test.

The functionality is there, but in the next section, you will quickly see a drawback to
parenting everything to the board.

Working with Inheritance
One of the more important concepts to remember is that children inherit the transforms of
their parents. For transforms, that is quite reasonable—that is one of the main reasons to
parent objects. Problems arise, however, when rotation and scale come into play. Let’s try
some experiments to illustrate the behavior:

1. Stop Play mode.

2. Select one of the walls.

Its Scale now reads 1 × 1.5 × 0.04545455. In other words, the scale reflects
the influence of the parent. Multiply the current values by the Board’s values
and you get 22 × 3 × 0.5. Unfortunately, mixing scale and rotation is going
to cause problems. Let’s create a ramp for the Marble to roll up.

3. Create a new Cube and name it Ramp.

4. Make it 3 × 3 × 6 and rotate it so that one end is flush with the board
(Figure 5-5).

227CHAPTER 5: Prototyping the Navigation

5. Move the marble above it so it will drop onto the high end of the
Ramp object.

6. Click Play and watch the marble drop and roll.

7. Stop Play mode and drag the Ramp object onto the Board object.

Figure 5-5. The Ramp

228 CHAPTER 5: Prototyping the Navigation

The ramp is skewed because of the rotation combining with the scale (Figure 5-6). The
solution is to parent all of the Board object’s children to a unitized (value of 1) parent.

Figure 5-6. The Ramp parented to the Board and badly skewed

1. Double-click the Board object to focus the viewport to it.

2. Create an Empty gameObject and name it Board Group. It should be
in the center of the Board.

Note that its Scale is 1 × 1 × 1.

3. Drag each of the Board Object’s child objects into the Board Group
and then add the Board object to it as well.

You will notice the Ramp never recovers its original size.

4. Return the Ramp object’s Scale to 3 × 3 × 6.

Now the problem is that the code to rotate the board is on the Board
object, not on the Board Group. You can easily add the script to the Board
Group, but the function is using OnMouseDown and OnMouseDrag, so you will
have to add a collider so that the player can interact with it.

Tip With Unity, any object that involves interaction must have a collider component.

5. Select the Board object, right-click the Tilt Board component, and
select Remove Component.

229CHAPTER 5: Prototyping the Navigation

6. Select the Board Group object and add a Sphere Collider
component.

7. Turn on Gizmos in the Game view and increase the Radius of the
Sphere Collider until it is large enough to let the player click and drag
from anywhere onscreen: approximately 25.

8. Set Is Trigger to on (true) so the collider does not create a physical
barrier.

9. Add the TiltBoard script to the Board Group object.

10. Set its Factor to 0.1 so the player can’t tip the board too quickly and
cause the physics to fail.

11. Click Play and test the new assembly.

Rolling the ball around and trying to get it up onto the ramp is pretty challenging, but not
terribly exciting. There are a few things you can do to improve things. The first is to reset the
Marble object when the player allows it to escape the board environment. Typically, this is
done with what is usually referred to as a death zone object.

Creating a Death Zone
Traditionally, you would Destroy the object and Instantiate a new one back at the start
location. With mobile devices, however, instantiation is costly (uses a lot of battery power),
so you will simply move it back to the start.

With the Board Group object, you created an Empty gameObject and added a collider. For
more-complex colliders, such as the Box Collider, it is often easier to create a Cube and
adjust its dimensions, and then delete or disable its Mesh Renderer:

1. Focus the Scene view on the Board Group and create a new Cube.

2. Name it Death Zone.

3. Move it down below the Board Group so that the tilting Board Group
will not hit it (about -30 Y Position) and scale it to about 100 × 10 × 100.

4. Disable its Mesh Renderer component, so that only the collider
shows.

5. Set its Box Collider’s Is Trigger parameter to on.

Is Trigger will allow the object to go through the collider, but will flag the intersection in an
OnTriggerEnter function.

230 CHAPTER 5: Prototyping the Navigation

Next, you will create the script that controls the Death Zone’s functionality. Before worrying
about the reset functionality, it’s always a good idea to make sure the detection is working:

1. Create a new C# script in the Game Scripts folder and name it
DeathZoneReset.

2. Below the default Start and Update functions, add the following:

void OnTriggerEnter () {
 print ("got one!");
}

3. Save the script and drag it onto the Death Zone object.

4. Click Play and tip the Board Group until the marble goes over or
through the board and into the Death Zone.

The console prints got one! when the Marble intersects the Death Zone.

To reset the sphere to its original location, the script must first be able to identify the sphere
and to also know where the reset location is. You could query the Marble’s starting location
through an Awake function before the game gets underway and the Marble drops, or you can
use a placeholder object. The latter affords you a nice amount of flexibility that can be useful
as you add more sophistication to your game. If you had different levels, for example, the
starting location could vary from level to level.

Additionally, the sphere may be subject to repositioning throughout the game due to various
other events, say, a portal effect, so it is worth considering having the relocation code in a
centralized place. Logically, a script on the Marble object makes the most sense as it is the
marble that must be relocated. Let’s also plan ahead and allow for multiple starting points by
making the location variable an array:

1. Stop Play mode.

2. Create a new C# script and name it MarbleManager.

3. Add the following variable under the class declaration:

public Transform[] location; // drop point locations

To define an array (multiple values for the variable), you add the brackets
at the end of the variable’s type. In C# (and Unity’s version of JavaScript
for mobile platforms), the elements in the array must all be of the same
type. By declaring this one as public, you can assign the values directly
in the Inspector. You will be assigning gameObjects, but only the object’s
transforms are being stored in the location array.

4. Create a variable to store the current starting location:

Transform currentStartLocation; // this could vary depending on level

231CHAPTER 5: Prototyping the Navigation

5. In the Start function, assign one of the array elements as the current
starting location:

currentStartLocation = location[0]; // assign the current start location

The 0 inside the brackets refers to element 0, the first element in the array.
Arrays always start counting their elements at 0, not 1. For now, you will
assume that the starting location will be stored in element 0.

6. Create a new function to move the marble to the specified location:

public void SetToStart () {
 // set the new position
 Vector3 tempPos = new Vector3(transform.position.x,transform.position.y,
transform.position.z);
 tempPos = currentStartLocation.position;
 transform.position = tempPos;
}

Note that this function is marked as public. This will allow you to access
it from other scripts and even other objects. In C#, you cannot directly set
a new transform. You must first create a temporary variable that holds the
current transform, assign the new value to that variable, and then you can
assign that variable’s value to finally change the object’s transform. To store
just the position part of the transform, you are using a Vector3 type to hold
x, y, z. Variables capable of storing multiple values are called structs. To
access the individual parts of the variable’s value, you use dot notation.

7. Save the script.

8. Drag it onto the Marble object.

Next you will create the placeholder location for the starting position of the marble:

1. Select the Marble in the Hierarchy view and focus the view to it.

2. Create a new Empty gameObject and name it Start Location A.

3. Select the Marble.

4. In the MarbleManager component, click the arrow next to the
Location parameter to see the contents of the array.

At this point, the array is empty; it has a Size of 0. Rather than setting the
Size to 1, and then dragging the Start Location A object into the Element 1
slot, you can shortcut the procedure and save a step.

5. Drag the Start Location A object from the Hierarchy view onto the
Marble’s MarbleManager component’s Location line.

The array is automatically set to a Size of 1 and the object put in the new
Element 0. The object shows as the value, but in parentheses, you can see
that it is just the object’s transform that has been stored (Figure 5-7).

232 CHAPTER 5: Prototyping the Navigation

Now you can test the script by having it position the marble in the starting
location when the game begins.

6. In the Start function, below the line that assigns the current location,
add the call to the function that relocates the object:

SetToStart (); // move the object to the current start location

7. Save the script.

8. Move the Marble object off to the side in the Scene view.

9. Click Play.

The marble appears at the start location and drops onto the board.

With the repositioning code working well, you can return to the DeathZoneReset script and
add its next bit of code. To call a function on another object’s script, you must identify both
the object and the script. Additionally, the function itself must be marked as public. A quick
check of the SetToStart function will tell you that it is indeed set to public, so you are good
to go ahead and reset the marble from the DeathZoneReset script.

1. Open the DeathZoneReset script.

2. Under the class declaration, create a new variable to store the
reference to the Marble object:

public GameObject marble; // the marble object

3. In the OnTriggerEnter function, comment out the print line and
below it add the following:

//print ("got one!");
marble.GetComponent<MarbleManager>().SetToStart(); // put the marble back to the start

To call a function or access a variable on another object’s script, you
identify the object, and then you must identify the script (or other
component), and finally, using dot notation, call the function (as in this case)
or specify the variable.

4. Save the script.

Figure 5-7. The Start Location A object assigned as Element 0, storing its transform

233CHAPTER 5: Prototyping the Navigation

5. Select the Death Zone object and drag the Marble object from
the Hierarchy view to the DeathZoneReset component’s Marble
parameter.

6. Click Play, and test by sending the marble over a wall or through
the floor.

The marble is dropped from the start location shortly after it goes over a wall.

Tweaking Physics
At this point, you are probably thinking that even with a bunch of obstacles, the marble
control may be too slow to qualify as fun. Fortunately, there’s no rule that says you have
to stick to reality. You can change not only the object’s “physical” properties through its
colliders, but also the physics reactions on a global scale. Tweaking the physics will improve
the player experience greatly. Let’s begin by changing the gravity itself.

1. From the Edit menu, choose Project Settings ➤ Physics. The Physics
Manager opens (Figure 5-8).

Figure 5-8. The Physics Manager

234 CHAPTER 5: Prototyping the Navigation

2. In the Physics Manager, set the gravity to -200, or, if you prefer to be
able to remember the default settings, add 20 to the default to make
it -209.81.

3. Click Play and test the new gravity setting. The marble is much more
responsive.

You can also experiment with the physic materials for the marble and board.

4. Exit Play mode.

5. From the right-click menu in the Project view, choose Import
Package ➤ Physic Materials.

6. Click Import.

In the Standard Assets folder, you will find the Physic Materials folder with
five handy presets (Figure 5-9). If you wish to experiment with them, feel
free to duplicate an existing material for tweaking, or, if you are a physics
whiz, create your own from scratch from the right-click menu, by choosing
Create ➤ Physic Material.

Figure 5-9. The Physic Material presets

7. Select each material and examine its settings, noting especially the
friction settings and bounciness.

8. Select the Marble. In the Sphere Collider component, click the
Browse button to the far right of the Material parameter.

9. Select Bouncy and deactivate the Ramp object.

10. Click Play.

The marble now bounces like a super ball. Though entertaining, it is
not very useful for a marble game. Experiment with the various physics
materials, noting the friction and bounciness displayed by each.

11. Exit Play mode.

235CHAPTER 5: Prototyping the Navigation

12. Activate the Ramp and select Metal for the Marble’s Physic Material.

13. Add the Wood Physic Material to the board for a bit more friction.

14. Click Play and test. The marble now has a nice amount of
responsiveness.

You can also adjust the mass of the marble to further refine its behavior;

1. Select the Marble.

2. In its Rigidbody component, set its Mass to 500.

3. Click Play and test. The responsiveness remains intact, but the
marble has less of a tendency to bounce.

Improving the Basics
The little bit of game play you have blocked in is pretty basic. With each addition, you have
undoubtedly had ideas about how to improve things. Let’s move ahead and implement a few
more goodies. There are any number of things you can do to affect the player experience,
but a good place to start is by improving the marble reset functionality.

At the end of the preceding section, you probably noticed that a short pause before the
marble reset would be a nice touch. It would allow you time to reset the board, update scores
or health, or even fire off some special effects. While it is too early in the development to start
adding the eye candy, now is a good time to set up some of the functionality that can be
handled when the marble is reset or even ported to a different position as part of the game.

Using Co-routines
Setting a delay or pause before triggering an event is not as easy as it sounds in C#. In
Unity’s JavaScript, you could use a simple yield new WaitforSeconds([pause time]). In C#,
however, adding a pause is a bit trickier. The problem is that code is evaluated linearly during
each frame. To create a pause in C#, you have to start a co-routine—a type of function that
can run at the same time as the rest of the code. When the pause times are up, the code will
be evaluated regardless of what everything else is doing. Let’s create a co-routine to delay
the repositioning of the marble.

The first consideration is how to handle the pause when it can come from two different
places. There are times, such as scene startup, when there should be no delay. This makes
a good argument for keeping the transform code separate from the delay code. You might
wonder why you can’t use the same code and pass in a value of 0 for the delay. You could
do that easily enough, but with mobile applications in mind, you are probably better off
avoiding the extra overhead for an IEnumerator (the place where the delay code will live).

236 CHAPTER 5: Prototyping the Navigation

It also turns out that you can’t call an IEnumerator from another script, so you will end up
adding extra code regardless. Let’s begin by reorganizing the MarbleManager script:

1. Open the MarbleManager script.

2. Create a new function for the outside objects to call:

public void StartDelay (float pause) {
 StartCoroutine(DelayReset(pause));
}

The StartDelay function takes an argument, pause, which is a float value. It
passes it on to the co-routine, DelayReset. Co-routines are always initiated
with StartCoroutine.

3. Create the co-routine below the StartDelay function:

IEnumerator DelayReset (float pause) {
 // pause before reset
 yield return new WaitForSeconds(pause); // this starts the delay
 // add some FX here
 // reset
 SetToStart (); // call the original relocation function
}

4. Save the script.

Now you can redirect the DeathZoneReset’s OnTriggerEnter function.

5. Open the DeathZoneReset script.

6. Change the contents of the OnTriggerEnter function:

marble.GetComponent<MarbleManager>().StartDelay (3f); // set the delay going using 3 seconds

 7. Save the script.

 8. Click Play and send the marble over the edge.

After the marble intersects the Death Zone and the specified delay has passed, the marble is
reset to the specified location.

A couple of issues may have become apparent at this point. Depending on the angle of the
Board Group, the marble could get to the Death Zone quickly or after a longer fall. It may
also be visible to the player while it falls into the void. The solution to the first problem is
rather simple: invert the functionality of the Death Zone. Instead of triggering the reset when
the marble enters the zone, trigger it when it exits the zone. This means that you will have to
resize and reposition the Death Zone. The code change is even easier:

1. Stop Play mode.

2. Open the DeathZoneReset script.

3. Change the OnTriggerEnter function to OnTriggerExit.

237CHAPTER 5: Prototyping the Navigation

4. Save the script.

5. Rename the Death Zone object to Live Zone.

6. Change its scale to 30 × 10 × 30.

7. Move it up so that it covers the Board Group (Figure 5-10) and then
add it to the Board Group in the Hierarchy view.

Figure 5-10. The Live Zone positioned over the Board Group

8. Make sure the Start Location A object is inside the Live Zone.

Tip To see where the Start Location A object is in relation to the Live Zone, set the Coordinate
System Pivot to Pivot. Select the Start Location A object first, and then holding down the Ctrl key,
add the Board Group to the selection.

9. Click Play and test by once again sending the marble over the walls.
This time, the delay time is more consistent and predictable.

Visibility control will also be a quick feature to add. Rather than Deactivate (easy) and
Activate (not so easy) the Marble, you will simply tell it not to be rendered or drawn in
the scene. In the interest of saving resources (for mobile devices), you can also suspend
the physics calculations that are dropping the marble. You can’t disable the Rigidbody
component, but you can temporarily set it to Is Kinematic.

238 CHAPTER 5: Prototyping the Navigation

1. Open the MarbleManager script.

2. At the top of the StartDelay function, add the following:

renderer.enabled = false; // turn off rendering
rigidbody.isKinematic = true; // suspend physics calculations

The code for the Rigidbody is fairly straightforward. You are turning on its Is
Kinematic parameter. The renderer is a bit more cryptic. Unity has several
types of render components similar to its colliders, so you use renderer,
referring to the parent class of the various renderer components instead of
the specific one used by the object. In both cases, not specifying the object
directly infers that the components in question are on the same object that
the script component resides on.

The values will be returned to normal right after the delay time is up.

3. In the IEnumerator, just above the SetToStart() line, add this:

renderer.enabled = true; // turn on rendering
rigidbody.isKinematic = false; // restart physics calculations

4. Save the script.

5. Select the Marble in the Hierarchy view.

6. Click Play and test.

7. Watch the two components to see the values change.

Suppressing Player Input
With the marble’s basic functionality well underway, you have probably noticed that the
player may have left the board in an awkward position to restart the play. It would make
sense to reset the board’s transforms in preparation for the marble re-drop. The problem
is that resetting the board won’t guarantee that the player won’t keep moving it during the
delay time. So the goal here is to also suppress user input during the reset delay.

Player input is monitored every frame, so the place to suppress it is in an Update function.
The code you will be using can actually go in any script’s Update function with the same
results. For now, to keep things simple, you will add it to the MarbleManager script. To turn
the functionality off and on, you will create a flag, a simple two-state Boolean variable, to
handle the functionality:

1. Open the MarbleManager script.

2. Below the existing variables, add the following variable:

internal bool repressInput = false; // allow player input at start-up

The internal keyword means that the variable will not be exposed to the
Inspector, but that it will be accessible to other scripts.

239CHAPTER 5: Prototyping the Navigation

3. In the Update function, add the following:

if(repressInput) Input.ResetInputAxes(); // blocks user input

Input is capitalized, referring to the actual Input class rather than
an individual use of it on an object. This is why the code is object-
independent. The ResetInputAxes() function, or method, sets all input
values back to 0, effectively blocking user input for each frame.

As you may have guessed, you will set the flag off and on in the same
places you took care of the marble’s activity.

4. In the StartDelay function, above the StartCoroutine line, add the
following:

repressInput = true;

5. In the IEnumerator, above the SetToStart line, add this:

repressInput = false;

6. Save the script.

7. Press Play and test the new code by trying to tip the Board during
the reset delay. The board remains unresponsive while the marble is
being reset.

Resetting the Board
With player input safely suppressed, you can see about returning the Board Group to
its original orientation. You could do that instantaneously, as you did with the marble’s
relocation, but because the board is fully visible and a main feature onscreen, it would be
nicer to see it glide smoothly back to its original orientation. Smoothly changing an object’s
position is relatively easy using a Lerp (linear interpolation) function. Rotation, on the
other hand, can be massively more complicated. Internally, Unity handles rotation by using
Quaternion math. Basically, this means it deals with the direction the object’s up vector is
pointing. As humans, we generally prefer to use rotation in Euler (pronounced oiler, or if you
are familiar with umlauts, euler). Euler angles allow us to think of rotation in degrees, but
more important, to rotate the x, y, and z axes independently.

Fortunately, there is a Quaternion static variable that represents no rotation, Quaternion.
identity, and a function, Slerp (for smooth linear interpolation), to take the board from its
current orientation back to no rotation. The trickiest part of Slerp (and regular Lerp as well)
is understanding the time argument, t. It is not time so much as a location on a timeline that
is normalized to 1, or 100 percent of the time. You will derive it from Time.time, the amount
of time that has passed since the game was started.

http://D:\\Program Files (x86)\\Unity4.5\\Editor\\Data\\Documentation\\html\\en\\ScriptReference\\Input.ResetInputAxes.html

240 CHAPTER 5: Prototyping the Navigation

The first step is to create a script that will live on the Board Group and handle the
functionality:

1. Create a new C# script in the Game Scripts folder and name it
BoardManager.

2. Just below the class declaration, add the following variables:

internal bool resetBoard = false; // flag to run the reset
Quaternion from; // the object's current rotation when the reset is called
// time slicers
internal float endTime = 0.0f ;
internal float matchTime = 0.0f ; // seconds duration of the pause

3. In the Update function, add the following:

if (resetBoard) {
 float t = (Time.time - endTime + matchTime) / matchTime ; // Goes from 0 to 1
 print (t); // so you can see that the numbers do what they are supposed to do
 transform.rotation = Quaternion.Slerp(from, Quaternion.identity, t);
 if (Time.time > endTime) resetBoard = false;// reset the flag

}
If the math calculating t makes your head hurt, don’t worry; you can watch
the numbers reported from the print statement.

The endTime and matchTime values are set in the function that starts the
rotation reset. It in turn is triggered from the marble’s MarbleManager script
when the delay has been started.

4. Create the function that starts the board reset:

public void StartBoardReset (float pauseTime) {
 matchTime = pauseTime;
 endTime = Time.time + matchTime;
 from = transform.rotation;
 resetBoard = true;
}

This function is public as it will be called from the Marble’s MarbleManager
script. The argument pauseTime will be passed in from that script as well. It
is assigned to the matchTime variable that is available to any other functions
in the BoardManager’s script. The endTime is calculated by adding the
matchTime to Time.time, the amount of time that has passed since the
game began. The from variable stores the Board Group’s current orientation
in Quaternion form, and the resetBoard flag is set to true to get things
moving (or rotating, as the case may be).

5. Save the script.

6. Add the new script to the Board Group.

241CHAPTER 5: Prototyping the Navigation

Before you can test, you will have to make a few additions to MarbleManager:

1. Open the MarbleManager script.

2. Add the following variable to be able to access the BoardManager:

public BoardManager boardManage-r; // the Board Group's BoardManager script

With this declaration, you are specifying the type as the script component,
BoardManager. You will drag in the Board Group as the value, so the
MarbleManager will know that it is communicating with that script on that
object. Typically, you use the same name as the script for the variable name
but with the first character lowercase. Let’s continue writing the Board
Group’s reset functionality.

3. In the StartDelay function, above the StartCoroutine line, add the
following:

boardManager.StartBoardReset(pause); // start the board reset, send the pause time

4. In the IEnumerator, above the SetToStart line, add this:

boardManager.resetBoard = false; // toggle off the board's reset flag

5. Save the script.

6. Select the Marble in the Hierarchy view.

7. Drag the Board Group object onto the new Board Manager
parameter.

8. Click Play and try tipping the marble out of the board. The Board
Group smoothly resets itself just in time for the marble to drop and
allow the player another chance.

9. Stop Play mode.

10. In the BoardManager script, comment out the print(t) line and save
the script.

11. Save the scene and save the project.

Summary
In this chapter, you made a good start with testing the basics of your little game by creating
a simple mock-up without the need for fancy art assets. Along the way, you had your
first taste of adapting someone else’s script to your needs through trial and error. Using
OnMouseDown and OnMouseDrag, you learned how to affect an object’s rotation.

With a bit of script, a cube, and a sphere, you got your first look at using physics to control
game play. After discovering that game physics are by no means a silver bullet, you
learned some tricks to improve the odds of the functionality working as you had imagined

242 CHAPTER 5: Prototyping the Navigation

by padding the collider scales. While creating your proxy geometry, you also got a look at
a Unity mainstay—the prefab. Although you discovered that instantiating and destroying
prefabs at runtime was usually too expensive to use for mobile devices, you found they
can be extremely useful for scene setup as well as for conserving disk space or minimizing
download times.

Next, with a handful of proxy objects to manage, you learned an important piece of
knowledge about parenting objects. Children, you found, inherit the transforms of their
parents. If the parent had a scale of something other than 1 × 1 × 1, you discovered that
mixing scales and rotations could result in horrible skewed geometry. Upon dragging objects
in and out of a group, you also discovered that the transforms reported in the Inspector were
only local offsets when they were parented to other objects.

In anticipation of players getting too rough with your game, you created a death zone
that would restart the game play when the marble went over the edge. While scripting the
functionality, you used examples of variables that could have several values held in an array,
and variables whose values had multiple parts, structs. With these, you started to get a feel
for using dot notation as a means of accessing just the parts of objects, components, or
variables you wanted.

Jumping into a few more advanced topics in C# code, you learned how to set up delays
in code evaluation with co-routines by using the IEnumerator. Scripting a pause before
the reset of the marble gave you an opportunity to manage some component properties,
suppress user input, and finally, to smoothly rotate a gameObject back to its starting
orientation.

243© Sue Blackman and Adam Tuliper 2016
S. Blackman and A. Tuliper, Learn Unity for Windows 10 Game Development,
DOI 10.1007/978-1-4302-6757-7_6

Chapter 6
Experimenting with
Functionality
As you saw in the previous chapter, just because something is challenging (for example,
driving the marble around the board) doesn’t automatically make it fun. Given that
challenging tasks can be fun for one person and tedious for another, you are never going
to be able to please everyone. You can, however, try your best to make the challenges
entertaining. Just as with the preliminary stage, you can block in the functionality without
spending too much time. With mobile devices in mind, you will not have free rein to overload
the game with fabulous (but costly) special effects, so intriguing concepts and clever or
unexpected consequences will have to do the job. A combination of obstacles and
power-ups or other “helpers” will form the basis of the game play required to move the
marble to an end location.

With basic navigation and environment sorted out, it’s time to decide on the functionality
that will challenge the player while moving the marble to reach its goal. The goal in most
little tip games is to get the marble or other spherical object to a particular location, usually
a depression in the board. While a depression to catch a sphere is not practical for game
physics, your marble will eventually have a location for a goal. In this chapter, you will
experiment with various means of helping and hindering the player maneuvering the marble
around the board.

Creating Portals
Although portals could generally be considered a more advanced feature because of the
scripting involved, you already have much of the code written. The biggest difference is that
the reset location could be unique to each portal. Also, you probably don’t want a board
reset to pause game play. You will want some sort of special effect to mark the event, but

244 CHAPTER 6: Experimenting with Functionality

that can wait until later in the book, when you add the “eye” and “ear” candy. This time, you
will be re-creating the DeathZoneReset script to make it useful for various scenarios:

1. Create a new C# script and name it PortalHopper.

2. At the top of the script, just under the class declaration, add the
following variables:

public MarbleManager marbleManager; // the MarbleManager script
public Transform destination; // the target location
internal float delay = 0.0f; // the time it will take to move the marble

Note that this time you will directly specify the script to be contacted, the
MarbleManager script, by dragging it into the Inspector. Using GameObject.
Find and GetComponent uses a lot of resources and time, and should be
avoided whenever possible, especially outside the Start or Awake functions.

3. Add the trigger function:

void OnTriggerEnter () {
 marbleManager.PortalJump (delay,destination);
}

The PortalJump function will take two arguments, the delay time that will be
the same for all portals, and the destination object’s transform.

4. Save the script.

5. In the MarbleManager script, add the PortalJump function:

public void PortalJump (float pause, Transform destination) {
 renderer.enabled = false;
 rigidbody.isKinematic = true;
 StartCoroutine(DelayPortalJump(pause, destination));
}

Just as with the StartDelay function, the PortalJump function acts as a
staging area for the transportation of the marble by turning off the renderer
and disabling the physics calculations. Note that it passes both the delay
time and the destination on to a co-routine.

6. Add the IEnumerator:

IEnumerator DelayPortalJump (float pause, Transform destination) {
 // pause before reset
 yield return new WaitForSeconds(pause);
 // add some FX here
 // reset
 renderer.enabled = true; // turn on rendering
 rigidbody.isKinematic = false; // restart physics calculations
 MoveToLocation (destination);
}

245CHAPTER 6: Experimenting with Functionality

As you can see, there is little difference between the two IEnumerators. The
renderer and physics calculations are turned on after a short delay and then
the relocating is initialized.

7. Create the MoveToLocation function:

public void MoveToLocation (Transform destination) {
 // set the new position
 Vector3 tempPos = new Vector3(transform.position.x,transform.position.y, transform.
position.z);
 tempPos = destination.position;
 transform.position = tempPos;
}

This is the usual C# method of setting a new location. A temporary variable
is created to hold the current values, a value (or values) is changed, and the
new struct is fed back to the object’s position parameters. In case you are
familiar with Unity’s version of JavaScript and are thinking the C# procedure
is long-winded, JavaScript performs the same procedure, but it is hidden
from the user.

8. Save the script.

Next you will create a couple of proxy objects to test your repurposed code:

1. Select the Directional Light and for its Shadow Type, choose Soft
Shadows (or Hard Shadows if your Unity license does not include
Soft Shadows).

Dynamic shadows use a lot of resources during runtime, but are quite
useful during setup because they help to alleviate visual ambiguity. Simply
put, they help you to view the screen’s 2D space as 3D space.

2. Create a new Sphere in the Hierarchy view and name it Portal A.

This sphere will act only as a location or zone and will not require a
Rigidbody component.

3. Set its collider’s Is Trigger parameter to true.

4. Scale it to 2 × 2 × 2, and leave it to intersect the board slightly
(Figure 6-1).

246 CHAPTER 6: Experimenting with Functionality

5. Drag the PortalHopper script onto the new object.

6. Drag the Marble object onto its MarbleManager parameter.

7. To test, drag the Start Location A object onto its Destination parameter.

8. Drag Portal A into the Board Group.

9. Click Play and then test by rolling the marble into the Portal A sphere.

The marble is ported to the original drop spot regardless of board orientation. It will be
crucial to have the portal destination spots part of the Board Group, as there is no pause or
board resetting involved.

1. Duplicate the Portal A object and name it Portal A Destination.

2. Position the cursor over its PortalHopper component, right-click, and
select Remove Component.

3. Remove the Sphere Collider component as well.

4. Move the Portal A Destination object to the other side of the Board
(Figure 6-2).

Figure 6-1. The Sphere intersecting the Board slightly

247CHAPTER 6: Experimenting with Functionality

5. In the Inspector, disable its Mesh Renderer.

6. Select the Portal A object and drag the Portal A Destination object in
as its Destination.

7. Click Play.

As soon as the game starts, instead of dropping from Start Location A, the
marble is immediately moved to the Portal A Destination. The answer to
the mystery lies in the fact that Portal A is already intersecting the Board’s
collider at startup, so the OnTriggerEnter code is triggered.

8. Stop Play mode and lift the Portal A object clear of the Board.

9. Click Play again.

This time, the Marble drops into the game as expected.

10. Roll the Marble through the portal from several directions.

The marble continues rolling in the same direction it was going at its previous location.

Although lifting up the Portal A object so it no longer intersects with the Board solves the
issue, there will be plenty of times when that option is not available. Fortunately, you have
a few options for preventing the Board from triggering the code in the OnTriggerEnter
function.

Let’s begin by having the function report the name of the object that triggered it. Many
functions can be overloaded. That means that they have optional arguments. You have used
OnTriggerEnter with no arguments up to this point. So how do you know what the possible
configurations are for a function? Simple: you check Unity’s Scripting Reference.

Figure 6-2. The Portal A Destination object relocated to the upper right of the board

248 CHAPTER 6: Experimenting with Functionality

1. From the Help menu, select Scripting Reference.

2. Select C# in the upper right and type OnTriggerEnter in the Search
field (Figure 6-3).

Figure 6-3. The results for a search of OnTriggerEnter

3. Select Collider.OnTriggerEnter.

The argument wants a collider (Figure 6-4). This argument is different in
that you don’t pass it into the function manually; the object triggering the
function passes its collider in automatically. Let’s see how that works.

249CHAPTER 6: Experimenting with Functionality

4. In the PortalHopper script, change the OnTriggerEnter function as
follows:

void OnTriggerEnter (Collider theCollider) {

5. At the top of the function, add the following:

print (theCollider.gameObject.name);

The collider component does not have a name field, so you must ask for its
gameObject’s name by using dot notation.

6. Save the script.

7. Select the Portal A object and move it back down so it intersects
with the Board.

8. Click Play and watch the console.

The console reports an intersection of Portal A and the Board. The Sphere
is ported to the Portal A Destination object before it has a chance to drop
from the start position.

9. Roll the Sphere into the Portal A Object.

Now the console reports the Marble as the object with the collider that
triggered the event.

Figure 6-4. The optional Collider argument for OnTriggerEnter

250 CHAPTER 6: Experimenting with Functionality

Armed with the knowledge of what object triggered the event, you can
see about stopping the code inside the function from being evaluated if
the object is not the correct one. The return code exits the function so
anything following the command is never evaluated. While you could check
for the correct object by comparing names, in this scenario, you will want to
use a quicker, more-efficient comparison. Because manually assigning yet
one more object can get tedious, let’s use an alternate way to quickly get
and assign the Marble’s collider.

10. Create the following variable:

Collider marbleCollider; // the marble's collider

11. In the Start function, add the following:

marbleCollider = marbleManager.gameObject.collider;

In this line, dot notation takes you back up to the MarbleManager’s parent,
the Marble, and then goes back down to the Marble’s Sphere Collider
component.

12. Add the following lines just above the print statement:

// if the collider didn't belong to the Marble object, leave the function
if(theCollider != marbleCollider) return;

13. Save the script.

14. Click Play.

This time, the Marble drops and rolls down the Ramp.

15. Roll the Sphere into the Portal A object.

It is ported to the drop site and its name reported as the evaluation of the
function is continued.

16. Comment out the print line.

17. Save the script.

Depending on the level design, you could use portals to help or hinder the Marble’s
progress. With the single drop site, you could give the player shortcuts to reach the end
position or goal. If, on the other hand, a site was randomly selected, the Marble could suffer
a setback in its journey. The portals, in effect, become “chutes” and “ladders.”

Before developing the multilocation code, let’s take a little time to differentiate the “magic”
portals from regular obstacles. A glow effect would be a nice touch, as well as letting the
player know that the object is not “solid.”

251CHAPTER 6: Experimenting with Functionality

1. Select the Portal A object.

2. Disable the Mesh Renderer component.

3. From the Component menu, choose Rendering ➤ Light.

4. Set the Range to 4 and the Intensity to 1.5.

5. Set the Color to a nice magenta H-295, S-255, V-255, and the
Color’s Alpha to about 175.

6. Activate the Draw Halo check box.

You should now see the halo in the Game and Scene views where the
sphere used to be (Figure 6-5). A halo is an object drawn on a plane that is
billboarded (or aligned) to always face the camera. It will generally require
less resources than a post-processing effect such a glow but has the
disadvantage of clipping other geometry.

252 CHAPTER 6: Experimenting with Functionality

7. Reduce the Portal A object’s Scale to 1 × 1 × 1 so the Marble will be
lit briefly before the jump.

8. Click Play and make sure everything continues to work as before.

9. Stop Play mode and select Portal A.

10. Drag it into the Prefabs folder in the Project view.

Figure 6-5. The halo option for the Light component now on the Portal A object

253CHAPTER 6: Experimenting with Functionality

11. Rename it Portal Good.

The portal object in the Hierarchy view is renamed to match.

12. Rename the original in the Hierarchy view to Portal Good A.

You will require multiple destination sites, so now is a good time to make a prefab for those
as well. While you are at it, you can remove unused components:

1. Select the Portal A Destination object.

You could remove the Sphere (Mesh Filter) and Mesh Renderer
components, but they will make the y positioning easier in the Scene view
if you drag directly from the Project view, so it may be better to leave them
disabled.

2. Repeat the prefab-creating procedure with Portal A Destination,
naming the prefab Portal Destination Good.

Making Custom GameObject Icons
The main problem with making the drop sites nonrendering is that you won’t be able to see
them in the Scene view during setup unless they are selected. Fortunately, Unity gives you a
way to make custom icons for your gameObjects and even for your scripts.

1. Select the Portal Destination Good object in the Prefabs folder.

2. In the Scene view, change the view to a Top iso view.

3. At the top of the inspector, click the gameObject icon (the blue cube)
and select the magenta label icon (Figure 6-6).

Figure 6-6. The icon options revealed at the top of the Inspector

254 CHAPTER 6: Experimenting with Functionality

In the viewport, the new icon appears along with the object’s name
(Figure 6-7). The name stretches the label out far beyond the object’s
location, and you really don’t need to know its name. It would be more
useful if it was a simple X-marks-the-spot sort of image.

Figure 6-7. The icon in the Scene view with the object’s name

4. Locate the Chapter 6 Assets folder in the assets you downloaded
from the Apress web site.

5. Drag the Misc Textures folder into the Project view in the editor,
or copy and paste it into the project’s Assets folder in your OS’s
Explorer (Finder on the Mac).

6. Open the icon drop-down again and click the Other button.

7. In the browser, locate and select the magenta X image, GoodX.

The X image is an improvement for marking a drop site, but the image is
rather small if you are using 3D icons for the gizmos. You can scale the 3D
icons (but that can clutter the view), or you can switch to 2D icons. The
icons themselves are obviously all 2D images, but the 3D icons are scaled
according to distance.

8. From the Gizmo icon on the Scene view toolbar, deactivate the 3D
Gizmos check box.

The icon is an appropriate size now (Figure 6-8).

http://dx.doi.org/10.1007/978-1-4302-6757-7_6

255CHAPTER 6: Experimenting with Functionality

Now you can easily create its counterpart, the “bad” drop site:

1. In the Prefabs folder, select the Portal Destination Good object and
press Ctrl+D (Cmd+D) to duplicate it.

2. Name it Portal Destination Bad.

3. Select the BlackX image for its icon.

4. Drag the new prefab into the Scene view, across from the “good” site.

The object’s pivot point is at the Board’s top surface, too low for dropping
the Marble back into the scene.

5. Turn on the Mesh Renderer component and lift the sphere up until it
just clears the Board.

6. Turn off the Mesh Renderer component and drag the object into the
Board Group in the Hierarchy view.

7. Use Ctrl+D (Cmd+D) to make three duplicates.

8. Give them unique names by appending the default name with the
numbers 1, 2, 3, and 4.

9. Move the objects to different spots around the board (Figure 6-9).

Figure 6-8. The custom image icon in the Scene view

256 CHAPTER 6: Experimenting with Functionality

You will also require a few “bad” portals.

10. Select Good Portal A in the Hierarchy view and duplicate it.

11. Move to an empty spot on the Board.

12. Name the new object Portal Bad.

Because this object won’t be associated with any particular landing spot, it
can have a generic name. You will be making a few changes to this one, so
the first thing to do is to break the association with the prefab.

13. From the GameObject menu, select Break Prefab Instance.

14. Change its Light color to reddish-orange for now.

You will be making a different special effect for it later in the book.

Adding Randomization
Now let’s see about adapting the PortalHopper script to work with multiple landing sites.
For this, you will be using a function that returns random numbers exclusive or inclusive of a
given range, depending on number type:

1. Open the PortalHopper script.

2. Change the destination variable by making it an array:

public Transform[] destination; // the possible target location

Figure 6-9. The new “bad” drop sites

257CHAPTER 6: Experimenting with Functionality

 3. In the OnTriggerEnter function, just below the return line, add the
following:

int num = Random.Range (0,destination.Length);
Transform tempDestination = destination[num];

To access array elements, you require integers, so in this code you assign
an integer randomly chosen from 0 to the length of the array. Note that
Length is capitalized, but does not have the parentheses indicating a
function call. With integers, the maximum number is excluded. If your array
has five elements, the last element number is 4, so choosing a number
between 0 and 5 (where 5 is excluded) gives you a quick way to randomly
select array elements. Float values, on the other hand, are inclusive of the
max value. Both variations include the min, or minimum, value.

In this bit of code, local variables num and tempDestination are created
inside the function to keep the code more readable. The memory is
allocated and then freed up as soon as the function is finished.

4. Change the marbleManager line to include the new randomly chosen
destination:

marbleManager.PortalJump (delay,tempDestination);

Theoretically, because allocating and accessing sucks up resources, you
would be better off just doing the calculations inside the marbleManager
line. If you are comfortable with what is happening in the last three lines,
comment out the first two and change the final line by adding [num] to the
original destination variable, and then substituting the Random.Range line
for num:

marbleManager.PortalJump (delay,destination[Random.Range (0,destination.Length)]);

 5. Save the script.

6. Select the Portal Good A object and set the new Destination array
Size to 1.

7. Assign the Portal Destination Good object as its Destination Element 0.

8. Select Portal Bad and set its Destination array Size to 4.

9. Drag the four “bad” drop sites into the array elements (Figure 6-10).

258 CHAPTER 6: Experimenting with Functionality

10. Click Play and roll the Marble through the “bad” portal several times.

You will find that the random numbers are truly random; the random
number generator will often select the same drop site twice in a row.

11. Stop Play mode.

More on Marble Physics
So far, the marble can be controlled only by tilting the board. With the new portal
functionality, you might decide the player will want a way to avoid the bad portals, especially
should they become mobile at some point. You might also decide that a rolling marble is too
easy to predict. By using a bit of physics force, you can bring both scenarios into play.

Adding a Jump
A jump will be useful for evading marauding portals as well as helping the Marble reach its
goal. You will begin by delving into Unity’s Input class to fire it off. By using Unity’s Input
Manager to orchestrate the jump, you give the player the option to remap the keys, or you to
remap the means of input as well.

1. From the Edit menu, choose Project Settings ➤ Input.

2. Open the Axes array by clicking the arrow next to the name
(Figure 6-11).

Figure 6-10. The “bad” drop sites loaded in as possible destinations

259CHAPTER 6: Experimenting with Functionality

3. Open the two Jump elements.

The first Jump is triggered from the spacebar, the second from joystick
button 3. This means either input will fire off the event when scripted to use
what is essentially a virtual button. When it comes time to trigger the event
from the mobile platforms, you will be able to add another option by using
the Jump “key.” Let’s find out how to script it.

Input is another factor that can be called from any of the scripts. In this
case, because it will be affecting the Marble, you will be creating another
script for it.

4. Create a new C# script and name it Booster.

Input is generally checked for every frame, so you will add the code to the
Update function.

5. Add the following variable for the strength of the jump:

public float jumpStrength = 1000000f;

If the amount of the jumpStrength sounds excessive, remember that you
have increased the game gravity by quite a bit. By using a public variable,
you will be able to test the jump during runtime to fine-tune the amount of
force required.

Figure 6-11. The presets in the Input Manager

260 CHAPTER 6: Experimenting with Functionality

6. Add the following code inside the Update function:

if (Input.GetButtonDown("Jump")){
 rigidbody.AddForce(Vector3.up * jumpStrength);
}

AddForce, as you probably guessed, is what pushes the object in the
specified direction. In this case, it is Vector3.up, short for Vector3(0,1,0).
This is a world coordinate, so even if the Board is tipped at an extreme
angle, the Marble will go up relevant to the world rather than up relevant to
the Board.

7. In the Scripting Reference, look up Input.GetButtonDown.

Its description reads as follows:

Returns true during the frame the user pressed down the virtual button
identified by buttonName.

You need to call this function from the Update function, since the state gets
reset each frame. It will not return true until the user has released the key
and pressed it again.

Use this only when implementing action-like events, i.e., shooting a weapon.
Use Input.GetAxis for any kind of movement behavior.

So the input triggers only once, when the virtual key is pressed.

8. Save the script and add it to the Marble.

9. Select the Live Zone and set its Y Scale to 15 to give yourself more
jump room before triggering a reset.

10. Click Play and press the spacebar when the Marble rolls off of
the Ramp.

11. Press the spacebar repeatedly in succession.

The Marble jumps higher with every successful press, but not all key presses register with
this input type. Let’s try an alternative Input option. The GetButton variation will return true
while the virtual button is held down. This one is typically used for projectiles. The projectile
rate is controlled with a timer.

1. Change the conditional:

if (Input.GetButton("Jump")){

2. Save the script.

261CHAPTER 6: Experimenting with Functionality

3. Click Play and tap the spacebar as briefly as possible.

This time the reaction is reliable, but the height of the jump is not. Let’s test
a timer to limit the jump time. You can find this code in the sample code for
Input.GetButton in the Scripting Reference.

4. Add the variables for the timer:

float jumpRate = 0.5F;
float nextJump = 0.0F;

5. Add the timer check to the conditional:

if (Input.GetButton("Jump") && Time.time > nextJump){

The and operator, &&, is used when you want to specify that more than one
condition must evaluate as true.

6. Add the line that updates the timer at the top of the conditional:

nextJump = Time.time + jumpRate;

7. Save the script.

8. Click Play and test the jump several times to make sure it is
responsive without excessive height. This time, the jump is well
behaved and happens on cue.

This functionality should help your player move the marble up onto obstacles that are just
out of its reach or to jump out of the way to avoid enemies. A remaining issue is to prevent
the player from jumping the marble again before it has landed. Typically, you create an
isGrounded flag and add that into the conditional:

1. Add the following variable to the Booster script:

 bool isGrounded = true;

2. Add the new flag to the conditional:

if (Input.GetButton("Jump") && Time.time > nextJump && isGrounded){

3. Just below that line, set the flag to false to prevent additive jumps:

isGrounded = false; // prevent jumping if in air

4. Save the script.

To track when the Marble is grounded, you will watch for its collisions with
other objects with an OnCollisionEnter event. Rather than checking for the
ground by name, you will use another of Unity’s mainstays, the tag.

262 CHAPTER 6: Experimenting with Functionality

5. Add the function to reset the flag:

void OnCollisionEnter (Collision collision) {
 if (collision.gameObject.tag == "Ground") {
 isGrounded = true;
 }
}

6. Save the script.

Next you will define the new Ground tag and assign it to the Board object
and the Ramp.

7. Select the Board object.

8. At the top of the Inspector, click the down arrow in the Tab drop-
down and select Add Tag (Figure 6-12).

Figure 6-12. Adding a new tag

9. In the Tag array, type in Ground for Element 0.

As soon as you start typing, an Element 1 is added for the next tag
(Figure 6-13).

263CHAPTER 6: Experimenting with Functionality

Creating a tag doesn’t automatically add it.

10. Select the Board again and select the Ground tag from the drop-down.

The big advantage to using tags is that you can filter for multiple objects in
a conditional without naming them individually. That means you can tag the
Ramp as a Ground also.

11. Select the Ramp and set its Tag to Ground.

12. In the Booster script, initialize the isGrounded flag to false:

bool isGrounded = false;

13. Save the script.

14. Click Play and make sure the Marble remains jumpable.

Adding a Turbo Boost
Using the same AddForce code that you used for the jump, you should be able to give
the Marble a speed boost. The tricky part here is to figure out which way the Marble is
heading. Unlike a simple 2D environment, the tilting Board makes all three axes crucial to the
calculation. So the first order of business is to get the current velocity (speed and direction)
of the marble. Fortunately, velocity, or the velocity vector, is one of Rigidbody’s variables.
The most logical place to monitor that value is from the Update function.

Figure 6-13. The new Ground tag

264 CHAPTER 6: Experimenting with Functionality

Just as with the jump code, you will find that the GetButtonDown command is not
consistent enough to use in this little game, so you will set it up with a timer, as you did with
the jump code:

1. In the Booster script, add the following variables:

public float boostRate = 0.4F;
float nextBoost = 0.0F;
Vector3 currentVelocity;

2. At the top of the Update function, add this:

currentVelocity = rigidbody.velocity;

To test the functionality, you will want to be able to trigger the boost
manually. But because you may also want to trigger it as a result of
particular events, the code that does the work should be in its own
function, a public function so it can be called from other objects. Let’s
begin by adding a variable for the boost strength.

3. Add the following variable:

float boostStrength = 5000f;

4. Add the following function:

public void Boost () {
 nextBoost = Time.time + boostRate; // set timer
 rigidbody.AddForce(currentVelocity * boostStrength, ForceMode.Impulse);
}

A couple of things happening are here. First, increasing the velocity is as easy as multiplying
the current velocity. Second is the use of the optional ForceMode flag. If you look up
ForceMode in the Scripting Reference, you will find the following description and list of
variables:

Description: Option for how to apply a force using Rigidbody.AddForce.

Variables:

Force: Add a continuous force to the rigidbody, using its mass.

Acceleration: Add a continuous acceleration to the rigidbody, ignoring its mass.

Impulse: Add an instant force impulse to the rigidbody, using its mass.

VelocityChange: Add an instant velocity change to the rigidbody, ignoring its mass.

265CHAPTER 6: Experimenting with Functionality

In this case, you are using impulse to give a quick boost to its current
velocity.

To test the turbo boost before setting up trigger points, you will create your
own custom virtual key. Once again, by creating a virtual input rather than
hard-coding an event to a particular keyboard key, you keep your code
more flexible for the player.

5. In the Update function, below the currentVelocity line, add the
following:

if (Input.GetButton("Boost") && Time.time > nextBoost) {
 Boost ();
}

6. Save the script.

Before you can test the new functionality, you must create the virtual Boost button in the
Input Manager:

1. From the Edit menu, choose Project Settings ➤ Input.

The easiest way to create a new input axis is to copy the one that most
closely resembles the one you want to make. In this case, Jump, a one-off
type of functionality, is a good candidate.

2. Locate the first Jump, the one that is triggered with the spacebar.

3. Right-click its label and select Duplicate Array Element.

The duplicate is created below the original, or perhaps the duplicate is
created above the original and it is now the current one. Whatever the
mechanism, they are identical, so it doesn’t matter which one you modify.

4. Change its Name to Boost.

The Name is the string you use to specify the input axis in scripting.

5. Set its Descriptive Name to Boost Force.

This name/description shows in the Player Settings dialog box on startup
on a desktop deployment.

6. Change the Positive button to left shift.

7. Unlock the Inspector by toggling the tiny lock icon to open.

For a list of keys, buttons, and other input device names, search for
Conventional Game Input in the Unity Manual and check out the Button
Names section.

With the code and input axis sorted out, you are ready to give the new
turbo-boost a try.

266 CHAPTER 6: Experimenting with Functionality

8. Click Play and press the keyboard’s left Shift key to see the boost in
action.

The Marble shoots off faster when the key is pressed.

Let’s see how game play is affected with a few “hot spots.”

Just as with the portals, you will use spherical colliders as they are the most efficient (having
to check only a single value, the radius). This time, however, you will want the spheres’ pivot
point on the Board’s surface. Depending on the way the colliders are used, you may also
want the player to see them.

9. From 3D Objects, create a Quad object on the Board.

10. Set its X Rotation to 90 and its Y Position to about 1.5.

11. Drag the object into the Board Group.

Because the Quad is essentially just a flat square, you will want to be
careful to keep it above the surface of the board slightly. If it was exactly on
the surface of the Board, the renderer would not know which object to draw
and could end up drawing pieces of both. As an object gets farther away
from the camera, the problem intensifies. In some cases, you can use a
custom shader that will help to solve the “Z-order fighting.”

12. Name the Quad Hot Spot.

13. Set its Scale to 2.5, 2.5, 1.

14. Remove its Mesh Collider.

15. Add a Sphere Collider and activate the Is Trigger check box.

16. Locate the BoostSpot texture in the Misc Textures folder and drop it
on the Hot Spot in either the Scene view or the Hierarchy view.

Dropping a texture directly onto an object generates a basic material with
a Diffuse shader. This texture has an alpha channel, so you will want to
switch the shader to something more appropriate.

17. Locate the new Materials folder that was generated inside the Misc
Textures folder.

18. Inside the folder, select the BoostSpot material.

19. Change its shader to a Transparent, Diffuse shader.

Now you need a way to call the boost functionality when the Marble intersects the Hot
Spot’s collider. Let’s begin by creating a script for it:

1. Create a new script and name it HotSpotBooster.

2. Add the following variable:

public Booster booster; // the Booster script

267CHAPTER 6: Experimenting with Functionality

3. Add an OnTriggerEnter function:

void OnTriggerEnter (Collider theCollider) {
 // if the collider didn't belong to the Marble object, leave the function
 if(theCollider.gameObject.name != "Marble") return;
 //trigger the boost
 booster.Boost (); // trigger the boost
}

As with its portal counterpart, you first check to make sure it was the
Marble that tripped the trigger. If it was, you call the Boost function on the
Booster script.

4. Save the script.

5. Add it to the Hot Spot object.

6. Drag the Marble object into its Booster parameter.

7. Drag the Hot Spot object into the Prefabs folder.

8. Duplicate the Hot Spot twice in the Hierarchy view and move the
duplicates to new positions around the Board.

9. Click Play and roll the Marble over a Hot Spot.

The Marble shoots forward on its current trajectory.

Embracing UWP
In this last section, you will begin the process of making your little game playable on different
devices. While desktop systems already allow you to use input from a gamepad as well as
mouse and keyboard, consoles are less flexible. For the TipBoard game to be controllable
on an Xbox One device, you will want to tilt the board with one of the analog thumb sticks
on a gamepad.

Mapping the Gamepad
While Unity has a lot of functionality for joysticks already mapped into the Input Manager,
the first challenge is to check the mapping on the current hardware. Button and axis
assignments will also vary between operating systems such as iOS and Windows 10 so you
will want to research your target devices and platforms early in development.

Another important bit of information is that there are two types of input on the Xbox
controller. Buttons return true when pressed. Axes generally return a float value between -1
and 1 at all times. The left and right triggers are an exception in that they return 0 to 1 and 0
to -1, respectively. The current mapping for the Xbox One controller is shown in Figure 6-14.

268 CHAPTER 6: Experimenting with Functionality

For this last section, you will need an Xbox controller; either Xbox 360 or, preferably, Xbox One.

Testing Axes
Let’s begin by testing the axis-type inputs. You had a quick peek at the Input Manager earlier
in the chapter when you gave the marble some jumping functionality through the use of
the virtual Jump button. If you were to increase the array of input elements, you would get
a copy of the last element in the array, so rather than bloating the array, let’s repurpose an
existing element.

1. From the Edit menu, choose Project Settings ➤ Input.

2. Click the tiny lock icon at the upper right of the Inspector to keep the
Input Manager open.

3. Create an Empty gameObject in the scene and name it Test Input.

4. In the Inspector, open the Axes array if it is not already open and
open the Fire2 element.

5. Change its Name to Test Axes.

6. Clear all of the button names.

The names are not used when you are using axis input, so it is a good idea
to remove them to prevent confusion.

7. Set Sensitivity to 1 and select Joystick Axis as the Type.

Figure 6-14. The Xbox One gamepad and its Unity mapping

269CHAPTER 6: Experimenting with Functionality

8. If it is not already set to X Axis, open the Axis list and select X Axis
from the top of the list.

9. Create a new script and name it GamepadMapping.

10. In the Update function, add the following:

if (Input.GetAxis("Test Axes") != 0) print(Input.GetAxis("Test Axes"));

11. Save the script and add it to the Test Input object.

The script deals with the Input class and as such could be on any object or script.

1. Click Play and open the console.

A small number (not the expected 0) is constantly printed to the console,
even though you haven’t used any of the controller’s buttons or sticks. It
is called the dead zone and can cause the objects controlled by the axis
to slowly wander without user input. The value varies according to each
individual gamepad with older, worn thumbsticks generally registering
higher values. For the tiltboard game, it will simulate players not being
able to hold the board perfectly still, but for other uses, you might want to
increase the size. Let’s try that now.

2. In the Input Manager, with the game continuing to run, set the Dead
value slightly larger than the value being printed.

The values continue to be printed in the console, but the object will no
longer be affected by them.

3. Now push the left stick all the way to the left and then to the right.

The value tops out at 1 at the far right and -1 at the far left.

4. In the Input Manager, with the game continuing to run, change the
Axis to the Y Axis.

5. Test the left stick’s vertical axis.

It tops out at 1 at the bottom and -1 at the top. If necessary, you could
activate the Invert check box to invert the results.

6. Next, test the 3rd Axis (Joysticks and Scrollwheels) and press the
two front triggers, one at a time.

The left trigger goes almost to 1 and the right trigger almost to -1.

7. Change the Axis to the 4th Axis and make note of which stick,
trigger, or dpad (the rocker control to the left of the right stick) is
mapped to it.

8. Repeat for any other axes you are curious about.

270 CHAPTER 6: Experimenting with Functionality

Tilting the Board
Now that you have checked the input mechanism, you can see about using it to tilt the
board. If you search the Internet for using a gamepad to rotate objects, you will find several
solutions. Let's try one of the simpler solutions to get a feel for what you will require:

1. Open the TiltBoard script.

2. Add a speed variable:

float speed = 100f;

3. In the Update function, add the following:

float vert = Input.GetAxis("Vertical") * speed * Time.deltaTime;
float hor = Input.GetAxis("Horizontal") * speed * Time.deltaTime;
transform.Rotate(vert, hor, 0);

4. Save the script and test it by using the left stick.

The board tips nicely on the vertical axis, but spins on the horizontal. In
case you are wondering why the axes work at all, a quick check of the Input
Manager will reveal a second set of virtual Horizontal and Vertical inputs.
Let’s sort out the mapping on the rotations.

5. Change Rotate(vert, hor, 0) to Rotate(vert, 0, hor).

6. Save the script and test the functionality.

The rotation begins well, but it soon becomes apparent that the rotation is
local as the board is tipped repeatedly.

7. Change the Rotation to the following:

transform.Rotate(vert, 0, hor,Space.World); // rotate relative to world

The rotation is better, but it allows the user to turn the board upside down.
Let’s try a different approach by setting the angle of rotation rather than
animating the rotation.

8. Replace the contents of the Update function with this:

float xRotation = Input.GetAxis("Vertical") * speed;
float zRotation = -Input.GetAxis("Horizontal") * speed;

transform.eulerAngles = new Vector3(xRotation , 0, zRotation);

9. Save the script and test the new code.

271CHAPTER 6: Experimenting with Functionality

The limits are good, but the sensitivity is too high. You can adjust both the speed and the
input’s sensitivity:

1. In the script, change the speed to 50 and save the script.

2. In the Input Manager, set the Sensitivity for the joystick versions of
the Horizontal and Vertical to 0.5.

Experimentation will show you that the lower the Sensitivity value, the
tighter the rotation limits. While you are there, you can reduce the Dead
value to 0. You have probably discovered that it takes some skill to keep
the sticks from snapping back to 0. Setting the Dead zone to 0 will give the
player more control as the values approach 0.

3. Set the Dead value for both inputs to 0.

4. Test the new settings.

The sensitivity is better now, but you can make it smoother by using
Time.deltaTime.

5. Add Time.deltaTime to both rotations:

float xRotation = Input.GetAxis("Vertical") * speed * Time.deltaTime;
float zRotation = -Input.GetAxis("Horizontal") * speed * Time.deltaTime;

Slowing the input with Time.deltaTime will require a speed adjustment.

6. Set the speed to 1500.

Feel free to make the speed variable public so you can fine-tune the number.

7. Test the latest additions

The board control using the gamepad is much better.

As with anytime you make major changes in the code, you should always check to see
whether the rest of the functionality remains intact:

1. Click Play and try tipping the board with the mouse drag.

Nothing happens because the rotation is being set in the Update function
using the (almost) 0 values from the gamepad. The first thing you should
probably do is check whether a gamepad or joystick is present. If there is,
you will also want a flag to bypass the Update code. Let’s begin by adding a
couple of flags.

2. Add the following variables:

bool gamepad = false; // is there a gamepad active on the system
bool useGamepad; // flag to bypass update code

272 CHAPTER 6: Experimenting with Functionality

3. In the Start function, look for the presence of any gamepads or
joysticks:

if (Input.GetJoystickNames().Length > 0) gamepad = true;

4. In the Update function, wrap the transform.eulerAngles line in a
conditional:

if (gamepad && useGamepad) {
 transform.eulerAngles = new Vector3(xRotation , 0, zRotation);
}

Now let’s set the temporary flag when the player is using mouse-drag to tip
the board.

5. At the top of the OnMouseDrag function, add the following:

useGamepad = false;

Next you need to decide when to turn the flag back on. If you turned it back
on in an OnMouseUp function, the board would snap back to the input axes’
(almost) 0 values. If the player isn’t using the gamepad, you would rather
it skipped the snap-back code entirely. The problem will be to allow the
player to switch back to the gamepad at will. By checking for a reasonable
value from the input axes, you can tell when it is active again.

6. In the Update function, above the if (gamepad conditional, add the
following:

if (xRotation > 0.5f || zRotation > 0.5f) useGamepad = true;

It’s not a very high-tech solution, but it is quite effective.

7. Save the script and test the functionality from both types of input.

Now the player can switch between mouse and gamepad without disrupting game play.

Testing Buttons
For the gamepad buttons, you can work with the button by name rather than with virtual
input buttons. Although that makes testing easier, hard-coding it will prevent the player from
remapping the input to a different gamepad. For now, let’s use the quick method:

1. Open the GamepadMapping script.

2. Add the following lines to the Update function:

if (Input.GetKeyDown(KeyCode.Joystick1Button0)) print("A");
if (Input.GetKeyDown(KeyCode.Joystick1Button1)) print("B");
if (Input.GetKeyDown(KeyCode.Joystick1Button2)) print("X");

273CHAPTER 6: Experimenting with Functionality

if (Input.GetKeyDown(KeyCode.Joystick1Button3)) print("Y");
if (Input.GetKeyDown(KeyCode.Joystick1Button4)) print("LB");
if (Input.GetKeyDown(KeyCode.Joystick1Button5)) print("RB");
if (Input.GetKeyDown(KeyCode.Joystick1Button6)) print("Back");
if (Input.GetKeyDown(KeyCode.Joystick1Button7)) print("Start");

3. Save the script.

4. Click Play and test your gamepad’s button mapping, making note of
any deviation.

In Chapter 11 you will be making use of more button and axis functionality.
You may have noticed that the marble jumped when you pressed the Y
button. This is because the jump action is already being triggered by a
virtual button/keyboard key.

5. Exit Play mode.

6. Locate the second Jump virtual input in the Input Manager and
investigate its settings.

It is already mapped to joystick 3. Also note the sensitivity used for
buttons, 1000.

7. Delete or deactivate the Test Input object in the Hierarchy.

8. Unlock the Inspector.

9. Save the scene and save the project.

With a handful of useful snippets of functionality tested, you are ready to create the
environment for your little tilt board game.

Summary
In this chapter, you experimented with functionality that will serve to help or hinder the
marble’s progress toward its goal. Repurposing the reset functionality from the previous
chapter, you developed a portal system, and delving into physics forces, you developed a
couple of interesting ways to temporarily disrupt the marble’s progress.

You quickly discovered that the collision detection required a means to filter for the correct
collider before executing the appropriate instructions. To do so, you used the optional
Collision argument with the OnTriggerEnter event. It returned information about the
colliding object so that you were able to jump out of the function with a return in case it
wasn’t the correct object.

While experimenting with the portals, you got a first peek at how Unity combines
components to make various types of objects. By adding a Light component to your portals
and activating its Halo parameter, you were able to create a low-resource glow effect to
mark the portal’s location.

http://dx.doi.org/10.1007/978-1-4302-6757-7_11

274 CHAPTER 6: Experimenting with Functionality

To make things more interesting, you created an array to hold multiple destinations for your
portals. You discovered that Random.Range was exclusive of the minimum and maximum
integer values, making it ideal for use with arrays so that the portal’s destination could be
randomly chosen.

While looking into physics forces to make your marble jump or shoot forward on cue, you
had a second look into Unity’s Input system and were able to create your first “virtual”
button or key. This, you found, was an excellent way to allow flexibility not only for you, but
also for the player, as it allows the player to remap keys.

To make the trigger for the jump functionality more robust, you borrowed a technique used
often for shooting projectiles. With the use of Time.time, the amount of time that has passed
since the start of the game, you created a simple timer to prevent rapid triggering of the
jump feature. Adding a second condition, you specified that the jump could not be triggered
unless the marble was grounded. To determine the state of the marble, you once again used
the Collision argument. This time, however, by making your own custom tag, you could
check for any number of objects that used that particular tag.

Taking the boost functionality one step further, you abstracted the actual code that produced
the boost into its own function. This enabled you to quickly test the results with the virtual
key and to actually call the same functionality when the marble intersected a hot spot
object’s collider on its own.

Finally, you embraced the UWP concept by adding code to allow the player to use a
gamepad instead of a mouse to tilt the board. In doing so, you learned how to detect
gamepads and then use their two input types, buttons and axes, in place of the mouse and
keyboard.

275© Sue Blackman and Adam Tuliper 2016
S. Blackman and A. Tuliper, Learn Unity for Windows 10 Game Development,
DOI 10.1007/978-1-4302-6757-7_7

Chapter 7
Creating the Environment
Now that you have a tentative idea for a tip-board chutes-and-ladders type of game, you
need your game to have some sort of path to give the player a goal and purpose for the
marble. Good portals will move you farther along the path, and bad portals will drop you
back. For the path itself, because a typical casual game is meant to be played multiple
times, the path should be either generated at runtime or at least chosen from a pool of
possible paths. Because creating the logic and code for a fully automated path is beyond
the scope of this book, you will compromise by creating an authoring system that will let you
design paths quickly and store them in efficiently small sizes.

For the path itself, you will be using hexagonal tiles, or cells. The six sides allow for the path
to go in six directions, including some nice diagonals, making it more interesting than a
simple square grid. Trying to stay exactly on the path would be too challenging with the tip
board, so you will also be devising a way to track the last activated tile, allowing the player
to complete the path without being penalized for rolling off it. As the marble rolls over a path
tile, in order, it will be shown as activated. The marble can activate a path tile only if the
previous one is already activated.

Generating the Paths
The key to today’s casual games is that they must be fun to play multiple times. This means
that each time the player starts the little tip-board game, the game should be a bit different.
The power-ups and enemies will add a lot of randomness, but the path configuration will also
help. If you search the Web for maze and path generators, you will find lots of material. Several
maze generators are for sale from the Asset Store that could be adapted for this game. Writing
an automated path generator by hand is not too hard, but it is a little time-consuming.

The best way to begin is to make a visual mock-up of cases where the scenario leads to
failure (will halt path generation). See Figure 7-1.

276 CHAPTER 7: Creating the Environment

The first test to halt path generation is when there is no cell, as in Figure 7-1’s left-hand case.
On the right, having found an existing cell for the location of the next path cell, it is tested
for adjacent path cells. With no adjacent path cells (the parent direction is not checked), this
location will be valid. From that cell, however, all but one of the directions will prevent the
path from remaining linear. The top-left direction, in case you are wondering, would create an
ambiguity, with two path cells leading off from the same cell. With the two most obvious fail
cases identified, the rough procedure for the path cell generation would be as follows:

1. Create a grid of numbered cells for the board and put them into
an array.

2. Find a random starting cell and choose a random direction to go.

3. Cast a ray in the direction to find out whether a cell is there.

4. If there is no cell in the location, rotate the ray 60 degrees and cast
another ray until a valid location is found.

5. With a valid cell location found, check that cell’s adjacent cells to
make sure none of them are path cells.

6. If there are no adjacent path cells, accept this location as the next
path cell.

If there are adjacent path cells, rotate the ray 60 degrees and cast another
ray until a valid location is found.

7. Go to step 5 and repeat until you have enough cells for the path. If
you don’t have enough cells for a long enough path, try a new path.

As you can see, the procedure does not lend itself well to a numbered list of steps. In this
case, a visual representation in the form of a flow chart will be much more useful (Figure 7-2).
It allows you to refine and work out the details of the procedure before you write your first line
of code.

Figure 7-1. Path generation scenarios

277CHAPTER 7: Creating the Environment

Following this procedure, you will soon find that most of the valid paths are not terribly
exciting, as they often “crawl” along the borders. You could set the cells along all three
borders to not be usable, but that cuts out some nice solutions. Ideally, you should randomly
decide whether a border cell could be included, but that will complicate the code. To keep
things moving along in this project, you will store several solutions and choose from those at
runtime. In case you are thinking that you will require too many solutions, you will be adding
some functionality that will allow you to manually create and store paths easily. Storing the
solutions will take up very little room, as you will be storing only a list of the path cells by grid
location.

Introducing the Cells
Before settling down to create some paths, you should decide on the means of identifying
an activated cell. The most obvious scenario is to change the material on the cell. Swapping
materials during runtime, however, tends to be a bit costly, so it would be wise to come up
with something more efficient for mobile platforms. If each cell contains three versions of
the stepping stone or tile object, you will be able to turn the renderer for each off and on
as required. The overhead required to keep track of the extra geometry will not be much of
a burden, especially if you have two types of cells: path and nonpath. Eventually, all of the
tiles will use the same material with an atlased texture, so the draw calls will be kept to a
minimum.

Typically, when you are creating mazes, each square (or other shape) is called a cell. In
this game, the hexagonal shape resembles a cell, but is almost flat like a tile. The term tiles
also quite often refers to sections of terrains or other ground that can be tiled, so is doubly
appropriate for the objects. Both terms will be used to refer to the objects.

Figure 7-2. The path generation flow chart

278 CHAPTER 7: Creating the Environment

The tricky part here is that you will want to take advantage of prefabs to build the grid for
the path, but Unity is quite happy to have hundreds of objects of the same name, so you will
require a means of identifying them on an individual basis.

1. Open the TipBoard project.

2. From the File menu, create a New Scene and then Save Scene As
Grid Layout.

3. Add a Directional Light and orient it so that it points down at the
ground plane by setting Rotation to 90,0,0.

4. Locate the BoardTiles.unitypackage in the Chapter 7 Assets folder
and load it into the project from the right-click menu (or the Assets
menu) by choosing Import Package ➤ Custom Package.

5. Click Import from the Import Unity Package dialog box.

You will find a new folder, Game Assets, has been added to your project.
It contains the Cell Base, the Cell Path, and their materials and textures.
The Cell Path contains three objects: the parent, Cell Dormant, and Cell
Activated.

6. Drag the Cell Base and Cell Path assets into the Hierarchy view.

7. Press Ctrl+D (Cmd+D) to duplicate the Cell Path object and move it
to the right.

8. On the first Cell Path object, deactivate the Cell Activated child object.

9. On the second Cell Path object, deactivate the Cell Dormant object.

The three cell objects, or tiles, should help the player identify the game’s objective (Figure 7-3).

Figure 7-3. The three cell object configurations

http://dx.doi.org/10.1007/978-1-4302-6757-7_7

279CHAPTER 7: Creating the Environment

Preparing the Assets
Anytime you plan on using an object more than once, you should immediately create
a prefab for it. As your scene develops, you can add to the prefab and have the scene
instances of it automatically update to receive the new changes. Follow these steps to
create the prefab:

1. Delete the Cell Path object with the Cell Activated child object
showing.

2. Select the other Cell Path object and activate its Cell Activated child.

Deactivating an object during runtime is easy. Reactivating it is not, as it is
inactive and cannot be contacted using GameObject.Find(). For your game,
you will be enabling and disabling the Mesh Renderer to control visibility.

3. Disable the Cell Activated child’s Mesh Renderer in the Inspector.

To track the marble, the path tiles must have colliders. A Sphere Collider is
the most economical and closely fits the hexagon shape of the cell.

4. From the Component menu, choose Physics and then add a Sphere
Collider to the Cell Path object.

5. Set the collider’s Radius to 0.85.

Keeping the collider smaller than the hexagon will prevent the player from
slightly clipping a corner and activating the tile.

6. Set the collider to Is Trigger.

7. Right-click over the Sphere Collider’s component label and select
Copy Component.

8. Drag the Cell Path object into the Prefabs folder.

A prefab for the Cell Path is created.

9. Select the Cell Base object in the Hierarchy view.

10. Position the cursor over any of the component labels, right-click, and
select Paste Component As New.

11. Drag the Cell Base object into the Prefabs folder.

12. In the Prefabs folder, for both the Cell Base and the Cell Dormant
objects, deactivate the Mesh Renderer’s Cast Shadows parameter.

Shadows are costly at any time and should be turned off whenever
possible. The activated version of the cell uses an Unlit shader, so it will not
receive shadows. Both of its shadow parameters can be turned off.

13. Turn off both shadow parameters in the Cell Activated’s Mesh
Renderer component.

280 CHAPTER 7: Creating the Environment

With the Cell Path’s prefab safely started, you can delete it from the scene.
You will be doing a little bit of layout practice with the Cell Base object, so it
can remain in the scene for now.

14. Check the objects in the scene to see that their shadow parameters
have been updated to match the prefabs.

15. Select the Cell Path object in the Hierarchy view and delete it from
the scene.

Let’s see how easy it will be to create the grid with the Cell Base:

1. Select the Cell Base object in the Hierarchy view.

2. Using Ctrl+D (Cmd+D), duplicate the object about three or four
times.

As expected, in the Hierarchy view, the clones all have the same name.

3. Selecting the new cells from the bottom upward, move them apart
in the x direction so that the first object in the list in the Hierarchy
view is to the left in the Scene view and the last object is on the right
(Figure 7-4).

Unlike older versions of Unity, the Hierarchy view is no longer shown
alphabetically, but is shown in the order objects were added to the scene.
This will be helpful for tasks such as grid layout, where you could have a
lot of objects with the same name, yet need to process them in a particular
order.

Aligning the objects is surprisingly easy when you take advantage of Unity’s
vertex-snapping functionality.

Figure 7-4. The grid of base tiles

281CHAPTER 7: Creating the Environment

4. Select the second cell.

5. Hold the V key down on the keyboard and move the cursor to the
lower-left corner of the hexagon (Figure 7-5).

The gizmo snaps to the lower left.

6. Press the mouse button down and drag the cell to meet up with its
neighbor on the left.

7. Continuing to hold the V key down, select the middle hexagon and
move it to the left to snap to the second cell.

8. Repeat for the remaining cells, checking to make sure you are
snapping the top vertices together.

So far, so good. You’re probably thinking the grid layout will be a snap (pun
intended). But the problem comes when you duplicate multiples. Their
order in the Hierarchy list may be unexpected.

9. Select all of the cell objects and use Ctrl+D (Cmd+D) to duplicate
them.

10. While they are still selected, drag them below the first row, and then
use the vertex snap to put them into position.

11. Click the first cell on the left in the new row.

In the Hierarchy view, the cell is shown as the last in the list (Figure 7-6). As long as you
remember how the order of creation is done, it probably won’t cause problems, but if you
wanted to parse the list in a more logical manner (at least for those of us who are used to
reading from left to right), you would have a lot of rearranging to do.

Figure 7-5. Using vertex snap

282 CHAPTER 7: Creating the Environment

While the order doesn’t matter for this experiment, it will for the final grid. What’s more, when
you go to create a prefab of the full grid, the order may change once again. Fortunately,
especially as there are a lot of tiles in the final layout, in this next section you will be using a
prefab grid that came in with the other objects in the Unity package you imported.

1. Delete the existing cell objects in the Scene view.

2. In the Prefabs folder, locate the Game Grid prefab.

3. Drag it into the Hierarchy view.

4. Set the Scene view to a Top iso view.

5. Select the Main Camera.

6. From the GameObject menu, choose Align with View.

7. Adjust the camera’s position until you have a good view of the cell
grid in the Game view (Figure 7-7).

Figure 7-6. Unexpected list order for the duplicates

Figure 7-7. The grid of base tiles or cells in the Game view

283CHAPTER 7: Creating the Environment

8. Select one of the cells.

Although a Cell Base prefab was used to create the Game Grid children,
they did not update when you added the collider to the original Cell Base
prefab. At the time of this writing, creating prefabs of prefabs is not yet
supported. Fortunately, you can add components to multiple objects at the
same time.

9. Select the Cell Base prefab in the Project view, hover the cursor over
the Sphere Collider component’s label, and select Copy Component.

10. In the Prefabs folder, open the Game Grid and select all of its Cell
Base children.

11. Position the cursor over one of the component labels in the
Inspector, right-click, and select Paste Component as New.

12. In the Hierarchy view, select one of the Cell Base objects and make
sure it received the collider component.

The collider appears on each of the Base Cell objects in the Hierarchy.

You could forge ahead and set up the grid for the actual game, but with a little more effort,
you can add a bit more code and use it to generate some path data as well.

Making Paths
The first thing to consider is how many path cells or tiles you will want to use. As you’ve
already heard a few times, using Instantiate and Destroy to add and remove prefabs from
the scene tends to be too costly for mobile. For the path, you will use an array of existing
objects that are activated and positioned on demand. This will also give you a means of
adjusting the difficulty of the game.

To manually be able to design a path, the procedure will be as follows:

1. Build an array of base cells and an array of path cells.

2. Pick a base cell for the start of the path and record its element
number.

3. Take the next available path cell and move it to the base cell’s
location.

4. Activate it.

5. Add the base location to an array that will record the path.

6. If the last added path cell is picked, reverse the process.

When dealing with objects that will be activated and deactivated during runtime, you will
require a means of finding them when they are not active. To do so, you will create the array
in the Awake function. The Awake function is evaluated before the Start function, where you
will initialize the object’s Active state. Let’s create a script for each path cell parent. Because

284 CHAPTER 7: Creating the Environment

children inherit the transforms of their parents, you will want to make sure that the parents
are both at 0,0,0.

1. Create a new empty gameObject and name it Path Manager.

2. Set its position to 0,0,0.

3. Create a new C# script in the Game Scripts folder and name it
PathCells.

4. Add the following variables:

public Renderer activatedCell;
public Renderer dormantCell;

In this version of the game, you have only two children representing the
states of the tile. In a more complicated version, you might want to keep
track of several, so you will find the children with GetComponentsInChildren.
As all of the path cells are alike, you know that element 0 will be the
activated tile, and element 1 will be the dormant tile. The cell variables are
set as public so you will be able change their parameters directly from
other scripts.

5. Above the Start function, add an Awake function as follows:

void Awake () {
 // make temp array of children
 Renderer[] child = gameObject.GetComponentsInChildren<Renderer>();
 //identify and assign the children
 activatedCell = child[0];
 dormantCell = child[1];
}

6. Save the script.

7. Drag the script onto the Cell Path prefab in the Prefabs folder in the
Project view.

8. Drag the Cell Path prefab into the Scene view, set its Y Position to 0,
and drag it off to the right of the Game Grid.

A quick check of the base cells will show you that they are a bit lower than
0, so the path tiles will visually be a bit higher.

9. Drop the Cell Path object onto the Path Manager object in the
Hierarchy view.

10. With the Cell Path object selected, duplicate it until you have 35
objects.

The PathCells script doesn’t do anything yet, but eventually it will store the cell’s location in
the array of path cells as well as an array containing the cell’s children. The next script you
make will help you to create paths on the board grid.

285CHAPTER 7: Creating the Environment

1. Create another new C# script and name it PathCellManager.

2. Add it to the Path Manager object.

3. Open the script and add the variable for the Path Cell array:

public PathCells[] allPathCells;

4. Create an Awake function and create the array:

void Awake () {
 // set the size of the array using the number of children
 allPathCells = new PathCells[transform.childCount];
 // find all the children containing the PathCells component & put them into the array
 allPathCells = gameObject.GetComponentsInChildren<PathCells>();
}

Awake functions are evaluated before the Start function. It is traditional
to put the Awake function above the Start function, but the order doesn’t
affect anything.

Unity arrays are not resizable, so you either set the Size in the Inspector,
as you have done previously, or, as in this case, you can set the size after
the variable has been declared. The GetComponentsInChildren function
will also search through children of children, so searching for a Transform
component would have returned all of the Cell Path objects and each of
their children. As you will be contacting the Cell Path objects through their
PathCells script/component, you specify PathCells as the component
type to search for. The childCount returns only the number of children an
object has and does not include grandchildren, so it will not require any
adjustment.

5. Save the script.

6. Click Play and check out the Path Manager object to see the list of
Cell Path objects it generated for the All Path Cells array.

With the Cell Path Objects safely stored, you can take care of their active
state in the Start function.

7. Stop Play mode.

8. In the Start function, add the following:

// deactivate the Cell Path objects
foreach (PathCells cells in allPathCells) {
 cells.gameObject.SetActive(false);
}

286 CHAPTER 7: Creating the Environment

The foreach loop iterates through the array and, in this case, performs the
change in active status. Because the objects have already added to an
array that lives in memory, you will have access to turning them back on.

9. Save the script.

10. Click Play and check to see that the Cell Path objects are
deactivated.

Let’s also go ahead and block in the functions that will be handling the
path picks.

11. Block in the two functions:

public void AddPathCell(int elementNum, Transform location) {

}

// FIXME used only for path design *********
public void RemovePathCell(int elementNum) {

}

As you create the various scripts throughout the chapter, some of the code
will be used only during the game setup process. When it is time to publish,
you will want to disable it for efficiency’s sake and to prevent player-induced
mishaps. By adding a comment beginning with FIXME, you will be able to
quickly locate and make the changes before publishing.

12. Save the script.

Just as with the Cell Path objects, the Cell Base objects will be communicating with their
parent, so they will require a script to manage data and other functionality:

1. Create a new C# script and name it BaseCells.

2. Select the first of the Cell Base objects on the Game Grid prefab in
the Project view, and drag the new script onto it.

If you check the other Cell Base objects, you will see that it was not added
to the rest of them. As you found when adding the Sphere Colliders, you
will be able to select them all at once and add them quickly.

3. Select the rest of the Cell Base objects on the Game Grid prefab.

4. From the Component menu, choose Scripts, and select the
BaseCells script.

Next you will create an array for the Cell Base objects. Once again, you will
use GetComponentsInChildren to identify the objects. This time, you will
search for the BaseCells component. The best place to manage the base
cells, of course, is from their parent, Game Grid.

287CHAPTER 7: Creating the Environment

5. Create a new C# script and name it GridManager.

6. Drag it onto the Game Grid object in the Hierarchy view.

7. Open the script and add the variable for the Cell Base object’s array:

public BaseCells [] allBaseCells;

8. Create an Awake function and create the array:

void Awake () {
 // set the size of the array using the number of children
 allBaseCells = new BaseCells [transform.childCount];
 // find all the children & put them into the array
 allBaseCells = gameObject.GetComponentsInChildren< BaseCells >();
}

Now that you have generated the array, you can assign the element
numbers to the Cell Base objects themselves by iterating through the new
array and sending them off to the individual objects.

9. In the Awake function, after the array has been filled, add the
following:

//inform the Cell Base objects of their element numbers
for (int x = 0; x < allBaseCells.Length; x++) {
 allBaseCells[x].elementNum = x;
}

10. Save the script.

Before you can test, the Cell Base objects will require a variable to store their element
number. Later, when picked, they will have to contact the PathCellManager script to identify
their element number. They already have a collider, so they are ready to receive a pick event.
The colliders on the Cell Base objects are only for the path design process and will have to
be removed before publishing.

Let’s go back in and add some more code to the BaseCells script to get rid of the error
reported by the console:

1. Open the BaseCells script.

2. Add the following variables:

public PathCellManager pathCellManager; // the component on the Path Manager object
public int elementNum; // the element number assigned to this cell object

In a desktop application, where resource management is less of an issue,
you would use GameObject.Find to locate the Path Manager object, and
then use GetComponent to identify the PathCellManager component. The
problem is that GameObject.Find must iterate through the entire scene
to find the object. While a one-off use in a Start function shouldn’t be

288 CHAPTER 7: Creating the Environment

a problem, in this case you have over 100 objects that would all be
looking for the same object and iterating through the scene to find it. By
approaching the task from the opposite direction, you ought to be much
more efficient.

3. Save the BaseCells script.

The error about missing variables disappears.

4. Switching to the GridManager script for a minute, add the following
variable:

public PathCellManager pathCellManager;

 5. In the Awake function, below the allBaseCells[x].elementNum = x
line, add this:

allBaseCells[x].pathCellManager = pathCellManager;

Now you can manually assign the Path Manager object just once and it will
automatically be assigned to the 100+ Cell Path objects.

6. Save the script.

7. Select the Game Grid object in the Hierarchy view and drag the
Path Manager object onto its Grid Manager component’s Path Cell
Manager parameter.

8. Click Play and then check a few of the Cell Base objects to see that
the Path Manager object has been correctly assigned (Figure 7-8).

Figure 7-8. The Path Manager and its PathCellManager component found at runtime

With that little issue solved, let’s head back to the BaseCells script.

The Cell Base object will have to send its element number back to the
PathCellManager when picked, so you will require an OnMouseDown function.
In case you are worried about multiple platforms, the functionality you are
setting up now is only for game setup.

289CHAPTER 7: Creating the Environment

9. In the Base Cells script, create an OnMouseDown function to receive
the pick:

//FIXME this is for path design only *************
void OnMouseDown () {
 pathCellManager.AddPathCell(elementNum, transform);
 gameObject.SetActive(false);
}

Besides the element number that the GridManager will have assigned
it, to save time, the picked object will also send its location before it is
deactivated.

10. Save the script.

11. Click Play and try picking the base cells in the Game view to create
a path.

The cells disappear when picked (Figure 7-9).

Figure 7-9. The path revealed as base tiles are picked and deactivated

Now you can see about filling the recently vacated spots with the Cell Path objects. You will
bring a Cell Path object to the location and then activate it. The trick here is to be aware of
which Cell Path objects have already been used. For that, you will keep track of the next-
in-line element number. The Cell Path objects should also keep track of their own element
numbers in their pool. Let’s go back in and add some code to the PathCells script:

1. To the PathCells script, add the following variables:

PathCellManager pathCellManager;
public int pathElement; // the element number of this object in the path array
public int baseElement; // the element number of the cell it will replace

290 CHAPTER 7: Creating the Environment

2. Save the script.

3. Open the PathCellManager script.

4. Add the following variable to keep track of the next-available Cell
Path object:

public int nextInLine; // next available element number for the path objects pool

The Start function already has a foreach that iterates through the path cells
and deactivates them. Rather than turning it into a for loop, you can add a
local variable as a counter that will essentially be the element number.

5. In the Start function, above the foreach line, add the following local
variable:

int x = 0; // the counter

6. Inside the foreach loop above the SetActive line, add this:

allPathCells[x].pathElement = x++; // assign its element number to it, then increment x

The x in this case, is not incremented until after the assignment, so is safe
to use in this fashion.

7. Save the script.

8. Click Play and check the Cell Path objects in the Hierarchy view to
see that they are storing their Path Element numbers.

With some of the “paperwork” out of the way, let’s see about getting the Cell Path objects
to activate and move to the vacated Cell Base locations. The pick takes you to the
PathCellManager script, where the picked cell has just sent its location and element number
to the AddPathCell function. The first task should be to make sure you haven’t used up all of
the Cell Path objects:

1. Open the PathCellManager script.

2. In the AddPathCell function, add the following:

if (nextInLine >= allPathCells.Length) return;

3. Now add the code that manages the path cell:

//activate the next path cell
PathCells cell = allPathCells[nextInLine]; // assign it to a temp variable for easier
handling
cell.gameObject.SetActive(true);

Here you are accessing the next Cell Path object in the array, assigning it to
a temporary variable, and then activating it.

291CHAPTER 7: Creating the Environment

4. Add the following:

//transform it
cell.transform.position = location.position;

Using the location of the Cell Base object that was passed into the
function it is replacing, it is moved to the new position.

5. Now add this:

// store the base cell element's number in this path cell
cell.baseElement = elementNum;

The Cell Base object’s element number is stored so it can be identified and
reactivated if the Cell Path object is removed from the path.

6. And finally, add the remainder of the code:

// increment the nextInLine
nextInLine++;

// deactivate the Cell Base
location.gameObject.SetActive(false);

The last bit deactivates the Cell Base here, after a check for a valid Cell
Path object to replace it so you can comment it out in the PathCells script
(where no check was carried out).

7. Save the script.

8. In the BaseCells script, comment out the gameObject.SetActive(false)
line, as it is now handled in the PathCellManager script.

9. Save the script.

10. Click Play and try creating a path.

Marking the Path Starting Tile
You are probably thinking that it would be nice to have a quick way to recognize the starting
tile. Because the element 0 tile in the allPathCells array is always the first one used, you
can simply assign a different material to it:

1. Locate the Cell Dormant material in the Game Assets ➤ Materials folder.

2. Duplicate it and replace the appended 1 with Start.

3. Tint its Main Color a light green to differentiate it.

Here’s where you might think things should be easy. You might think you could change the
first Cell Path’s Cell Dormant material and all would be well, but the objects may not be

292 CHAPTER 7: Creating the Environment

loaded as per the order in the Hierarchy list. Assigning a different material to the first path
cell after the path list has been generated will be a safe way to go:

1. In the PathCellManager script, add a variable to hold the start
material:

public Material startMaterial;

2. At the bottom of the Start function, add this:

allPathCells[0].dormantCell.material = startMaterial;// assign the start tile material

3. Save the script.

4. Select the Path Manager object in the Hierarchy view and assign the
new Cell Dormant Start material to its Start Material parameter.

5. Click Play and create a path.

The starting tile is clearly marked (Figure 7-10).

Figure 7-10. The starting tile clearly marked

293CHAPTER 7: Creating the Environment

Scripting the Undo
Now of course, you are probably thinking it would be handy to be able to undo a path cell
when you change your mind. This functionality is less work, because you don’t have to put
the path cell back, just deactivate it. The next time the cell is used, it will be moved to the
next location. Now you will script the undo functionality.

1. Back in the PathCells script, assign the pathCellManager component
in the Start function:

pathCellManager = transform.parent.GetComponent<PathCellManager>();

By going up the component hierarchy with transform.parent, you can get
the component’s parent and from there go back down and get any of the
sibling components.

2. Add the following function:

//FIXME this is for path design only *************
void OnMouseDown () {
 pathCellManager.RemovePathCell(baseElement);
}

Here, the element number of the Cell Base object that was turned off is
sent back for processing.

3. Save the script.

4. Open the PathCellsManager script.

5. In the RemovePathCell function, add the following:

// deactivate the current path cell
PathCells cell = allPathCells[nextInLine - 1];
cell.gameObject.SetActive(false);

// reactivate the base cell at this location using the element number argument
gridManager.allBaseCells[elementNum].gameObject.SetActive(true);

// decrement the nextInLine
nextInLine--;

You will have to identify the Game Grid’s GridManager component, before
you can test the code as it holds the array of Cell Base objects.

6. Continuing with the PathCellsManager script, add the following
variable:

public GridManager gridManager;

7. Save the script.

294 CHAPTER 7: Creating the Environment

8. Select the Path Manager object in the Hierarchy view and drag the
Game Grid object onto its Base Cell component’s Grid Manager
parameter.

9. Click Play and test the undo.

As long as you create and undo the path in the correct order, the functionality is sufficient.

There are obviously lots of ways you could make the little path designer more foolproof, such
as an end-of-pool warning and a way to force you to create the path only in order. If you want
to spend time making the code more robust, you can revisit it after you have been through
the last section of the chapter that restricts the player from activating tiles out of order.

Saving Your Paths
As it is now, the functionality you have added will work for its intended purpose—a way for
you to create paths that can generate a sequential list of Cell Base elements for a path. The
big question is, how can you save them? The answer is: as a prefab. For that, you need to
create an object whose sole purpose is to hold the array of Cell Path elements in their proper
order:

1. Create a new Empty gameObject and name it Path List.

2. Create a new C# script and name it PathLister.

3. Add it to the Path List object.

To store the numbers, this time you will try something a little different. You
will use a list instead of an array. A list will grow and shrink on demand,
allowing you to use as many or as few path cells as you wish. Easy levels
could have fewer, less complicated paths, and harder levels could have
more path tiles and complicated patterns.

The first thing to know about lists is that they are not included with the
regular includes at the top of the script.

4. At the top of the script, just under the regular includes, add the
following as per Figure 7-11:

using System.Collections.Generic; // required for lists

// This script is used for path design only ***************

Tip To create valid paths, add and remove tiles in the correct order only.

295CHAPTER 7: Creating the Environment

5. Add the following variables under the class declaration:

public List<int> pathList;
public int lastIn = 0;

Note the syntax: the type follows List.

6. And add a variable to hold an optional texture:

// optional texture image for this path
public Texture thumbnail;

7. Add the two little functions that manage the list:

public void AddToList (int newNum) {
 pathList.Add(newNum);
 lastIn++;
}

public void RemoveFromList () {
 lastIn--;
 pathList.RemoveAt(lastIn);
}

With a list, elements are added at the end of the list with Add. By keeping
track of the last element number, the lastIn variable, you can use RemoveAt
to remove the element from the list. Note the use of ++ and -- to increment
and decrement the value of lastIn.

8. Save the script.

The element numbers that feed the list will come from the PathCellManager script:

1. Open the PathCellManager script.

2. Add the variable that holds access to the list:

public PathLister pathLister;

Figure 7-11. Including System.Collections.Generic for lists

296 CHAPTER 7: Creating the Environment

3. At the bottom of the AddPathCell function, add the following:

//FIXME add to the path list, design only **************
pathLister.AddToList (elementNum);

4. At the bottom of the RemovePathCell function, add this:

//FIXME remove from path list, design only **************
pathLister.RemoveFromList ();

5. Save the script.

6. Select the Path Manager object in the Hierarchy view and drag the
Path List object onto its new Path Lister parameter.

7. Click Play and select the Path List object before you start creating
a path.

8. Open the Path List parameter to view the additions and removals.

The Cell Base elements are added and removed as you design your path.

Now it’s time to create the prefab. Let’s begin by making a folder to store your creations for
use in the actual game:

1. In the Prefabs folder, create a new folder and name it Paths.

2. Click Play again and create a path worthy of saving.

3. While still in Play mode, drag the Path List object into the new
Paths folder.

Tip You may want to make a screen grab of each path and reduce it to thumbnail size for reference so
you don’t repeat any of the paths. You can add it to the Path List objects in the Prefab’s Path folder.

 4. Stop Play mode.

5. Check out the list in the new prefab. The element numbers
remain intact.

6. Repeat the process.

The newly created prefabs’ names are even incremented as you drop
them into the folder.

7. Repeat until you have at least four path lists.

297CHAPTER 7: Creating the Environment

Figure 7-12 shows a few of the possible configurations.

Loading the Paths
Reusing the path templates should be fairly easy, as you already have most of the code. You
will now add that functionality to the PathCellManager script:

1. In the PathCellManager script, add the following:

using System.Collections.Generic; // need for lists

2. Add the following variables:

public PathLister[] paths; // array of prefabs with path lists
int pathLength; // length of the chosen path

3. Save the script.

4. Select the Path Manager and set its Paths array Size to match the
number of paths you created.

5. Drag the path prefabs into the waiting elements.

6. Back in the PathCellManager script, create the function that loads
the paths:

void LoadPath () {
 // pick one of the paths
 int num = Random.Range(0, paths.Length);
 // iterate through the list and send each Cell Path object for processing
 foreach(int x in paths[num].pathList){
 AddPathCell(x,gridManager.allBaseCells[x].transform);
 }
 pathLength = paths[num].lastIn;
}

Figure 7-12. A few possible paths

298 CHAPTER 7: Creating the Environment

The last line stores the length of the chosen list, its lastIn parameter, so
you will know when you are at the end of the path. The allPathCells array
holds all available Cell Path objects so that won’t tell you how many were
used for the current path. The method transform.childCount returns the
number of children, not the number of active children, so it is of no help
either.

7. Call the function from the bottom of the Start function:

// load a premade path, comment this line out to design more paths
LoadPath(); // comment out this line when designing paths

8. Save the script.

9. Click Play a few times to see the prefab paths loaded.

Because the random number chosen is truly random, you may get repeats. The game will
eventually have enough going on that this shouldn’t be a problem, but you may wish to
investigate ways to have more control over randomly generated numbers.

Activating the Paths
With a means to quickly create and reuse paths, it is time to add the last bit of path
functionality. The player must roll the marble along the path to reach the end tile. As the
marble intersects a tile’s collider, it should “light up,” or otherwise indicate that it has hit that
checkpoint. In order to keep the player on the path, the tiles will light up only if they are done
in sequence. Additionally, portals can jump the marble backward or forward along the path.
This will require full management involving the status of the path. You already have a nice list
of the Cell Path objects to work with, so you will be making code to navigate the list.

Changing the Tiles
The first bit of game functionality to address will be the visual indication that the tile has
been activated. For activated, you will turn on the Mesh Renderer on the Cell Activated child
and turn it off on the Cell Dormant child. As the parent object already contains the code
to manage itself, it will be worthwhile identifying the children’s Mesh Renderer component
for quicker access. You will be toggling the states from the PathCellManager script as it
contains the array of Path Cell objects.

1. Open the PathCellManager script.

2. Add the following function:

public void ToggleTileState (PathCells cell) {
 // get the renderer component's current state
 if (cell.activatedCell.renderer.enabled) {
 cell.activatedCell.renderer.enabled = false;
 cell.dormantCell.renderer.enabled = true;
 }

299CHAPTER 7: Creating the Environment

 else {
 cell.activatedCell.renderer.enabled = true;
 cell.dormantCell.renderer.enabled = false;
 }
}

In this function, you pass in the cell/tile you want to change, check the
Mesh Renderer’s state on the dormant child, and then toggle the two cells’
Mesh Renderer’s state accordingly.

Let’s set up a simple way to test an intersection with the collider.

3. Save the script.

4. Back in the PathCells script, add the following:

void OnTriggerEnter (Collider collider) {
 if (collider.tag != "Player") return;
 pathCellManager.ToggleTileState(this);
}

In case you are wondering why you aren’t toggling the tiles directly from
the cell, remember that the path itself is managed on the PathCellManager
script and it will ultimately be in control. So the argument, this, passes the
cell (or, more accurately, its PathCells script) back to the PathCellManager
script.

You also may have noticed that instead of checking for the hitting collider’s
object name, you are once again checking for its tag. As you found out
earlier, Unity provides several ways to identify (or, in this case, filter) objects
for special processing. Tags give you the freedom to check for several
related objects.

5. Save the script.

Now you will want a quick way to test the new code. The easiest way to test is by dragging
an object around in the scene view at runtime. That way, you don’t have to add collision
floors, worry about driving it around, or other little issues.

1. Double-click one of the base cells in the Hierarchy view to focus the
view to it.

2. Create a new Sphere object and set its Tag to Player.

3. Add a Rigidbody component and deactivate the Use Gravity check box.

4. Check to make sure the Sphere intersects the game tiles, and then
set the view to a Top iso and drag it off the grid.

5. Click Play and select the Sphere.

6. Drag the Sphere around the path and watch the tiles toggle between
activated and dormant versions.

300 CHAPTER 7: Creating the Environment

The next step is to find out which tile has just been toggled and report back to the
PathCellManager. The cell already knows its order in the list of path tiles, or cells, and
communication is already going back to the PathCellManager, so all you have to do is add
an extra argument to the ToggleTileState function.

1. In the PathCellManager script, change the ToggleTileState function
as follows:

public void ToggleTileState (PathCells cell, int pathPosition) {

2. Add a print statement at the top of the function to check the
number:

print (pathPosition);

3. Save the script.

Having changed the arguments in the function, you will have to change
them each place the function is called.

4. In the PathCells script, change the pathCellManager.
ToggleTileState line to the following:

pathCellManager.ToggleTileState(this,pathElement);

5. Save the script.

6. Click Play and use the Sphere to toggle the tiles in the path’s order.

The printout in the console should be sequential regardless of which end of
the path you started from.

7. Comment out or delete the print statement.

8. Save the script.

Setting Sequential Progress
Now that you have a means of knowing where on the path you are, you can change the rules
a bit. If you think about it, as long as you remember the number of the previously activated
tile, if the next tile is +1, you can continue. The first task, then, will be to save the current
path position. The PathCellManager script is in charge of path monitoring, so that is where
you will begin.

1. Open the PathCellManager script.

2. Add the following variable:

int lastActivated = -1; // the last sequential tile visited

301CHAPTER 7: Creating the Environment

Note the initialization of -1. This is so that the first tile, element 0, will be valid.

3. At the top of the ToggleTileState function, add the following:

//check for a valid position before processing
if (pathPosition != (lastActivated + 1)) return;

4. At the bottom of the function, add this:

lastActivated++; // increment the position

5. Save the script.

6. Click Play and test using the Sphere.

This time, the cells will activate only when triggered from start to finish.

Working with External Influences
The last bit of path functionality will be to increment or decrement the last activated path
position in response to some outside influences, say, the portals. The mechanism will be the
same for both, but the position will go in either a positive or a negative direction, depending
on the number fed to it. The mechanics of updating the path are similar to those in the
ToggleTileState function. As you probably guessed, this functionality will also be handled in
the PathCellsManager script:

1. Open the PathCellsManager script.

2. Add the following to the Update function for easy testing:

// this is just for testing ***************
if(Input.GetKeyDown("up")) PathAdjuster(4);
if(Input.GetKeyDown("down")) PathAdjuster(-4);

3. Now start the PathAdjuster function:

public void PathAdjuster (int tiles) {
 if(lastActivated == -1) return;

No path adjustments are allowed until the player has rolled the marble onto
the path. The tiles argument is the base amount of the adjustment.

4. Next, randomize the adjustment a little:

// randomize the base amount
int newAdj = Random.Range(tiles - 1, tiles + 1);

5. Start the for loop:

for (int x = 0; x < Mathf.Abs(newAdj); x++) {

302 CHAPTER 7: Creating the Environment

This one is a bit tricky. You want to loop through the code newAdj number of
times, but when newAdj is a negative number, the amount would already be
less than the end condition. The solution here is to use the absolute value
(remove any negative signs) of the number. The Mathf class will give you
access to all sorts of mathematical functions not regularly available.

6. Search the Scripting Reference for Mathf to see what other
interesting functions are available.

7. Add the code that does the work:

// forward, if it was a positive number
if(newAdj >= 0) {
 lastActivated++;
 // get the new tile to activate
 PathCells cell = allPathCells[lastActivated];
 cell.activatedCell.renderer.enabled = true;
 cell.dormantCell.renderer.enabled = false;
}
else { // backwards, if it was a negative number
 // get the last activated tile
 PathCells cell = allPathCells[lastActivated];
 cell.activatedCell.renderer.enabled = false;
 cell.dormantCell.renderer.enabled = true;
 lastActivated--;
}

8. End the for loop and close the function:

 }
}

9. Save the script.

10. Test by manually activating the path about halfway in the Scene
view with the Sphere, clicking in the Game view to switch focus to it,
and then pressing the up or down arrows to jump the activated tile
position backward or forward.

The functionality is there, but you need a couple of checks to account for the start and end
of the path. Let’s say that the path cannot by reduced past the first tile, lastActivated = 0,
and it can’t be jumped all the way to the end tile, pathLength - 2.

1. At the top of the if(newAdj >= 0) conditional, add the following:

if(lastActivated > pathLength-3) return;

2. At the top of the else, add this:

if(lastActivated < 1) return;

303CHAPTER 7: Creating the Environment

3. Save the script.

4. Click Play and test.

The new code safely prevents the path from out-of-range errors or allowing
the player to finish without attempting the path.

5. Deactivate the test Sphere.

Adding New Game Pieces
The next chapter introduces the functionality designed in the previous chapter and ties it into
new game pieces to enhance your new board environment. These game pieces will radically
impact your marble’s progress and so ought to be worthy of your new environment. Let’s
import the assets and do the initial setup:

1. Create a new scene and name it Ani Test.

2. From the Chapter 7 Assets folder, drag the three textures,
BambooFence, CellTiles.tiff, and GamePieces.psd into the Game
Assets ➤ Model Textures folder.

The two new textures have been atlased to contain the textures for multiple
objects (Figure 7-13).

Figure 7-13. The new atlased textures

3. Drag the four .fbx files—Bamboo Wall, Banana Peel, Gumdrop, and
Peppermint—into the Game Assets folder.

The three new game pieces all use the same material, GamePieces.

4. Select the GamePieces material in the Project view.

5. Set its Main Color to white.

http://dx.doi.org/10.1007/978-1-4302-6757-7_7

304 CHAPTER 7: Creating the Environment

6. Check out the new game pieces in the Inspector (Figure 7-14).

Figure 7-14. The new Banana Peel, Gumdrop, and Peppermint game pieces

Tip Some DCC applications do not blend their diffuse color with their diffuse texture map as does
Unity, so it is always a good idea to check the generated material’s Main Color on import.

The Banana Peel, as you may have guessed, will serve as the boost trigger
to speed up the marble. The gumdrops will become the Good portal
objects, and the Peppermint will be the Bad portal objects. The Gumdrop
and Peppermint objects both have simple transform animations. There is
little setup to do for them, but the animation clips will require renaming.

7. Select the Gumdrop asset in the Project view. In the Animations
section, rename its clip to Squash.

8. Under the clip name, click Clamp Range.

The file that the Gumdrop was created in was set to 60 frames of animation,
but the Gumdrop was animated for only 30 frames—hence the prompt to
Clamp Range.

9. Set the clip to Loop Time and click Apply.

10. Repeat for the Peppermint, naming its clip Spin and checking its
Loop Time.

The Banana Peel object is more complicated. As with the character you set up in Chapter 4,
it too has a bone system. This one is not humanoid, so you will leave its Animation Type set
to Generic. Three of its four clips will be the random animation that occurs when the Marble

http://dx.doi.org/10.1007/978-1-4302-6757-7_4

305CHAPTER 7: Creating the Environment

rolls over the Banana Peel, and the fourth will be a standard idle animation. The Banana Peel
is a bit large for the rest of the game pieces, so you will begin by setting its scale:

1. Select the Banana Peel asset, set its Scale Factor to 0.008 in the
Model section, and click Apply.

2. In the Rig section, set its Root Node to Banana Peel.

3. In the Animation section, create four animation clips as per Figure 7-15.

Figure 7-15. The Banana Peel animation clips

4. Set only the B Idle clip to Loop Time and then click Apply.

To finish the animation setup, you will have to put the objects into a scene
and hook up the Mecanim features.

5. Drag the three new game pieces into the Scene view (Figure 7-16).

306 CHAPTER 7: Creating the Environment

6. Rename the Peppermint to Spinner and the Gumdrop to Popper.

7. Drag each of the three new game pieces into the Prefabs folder.

8. Save the scene and save the project.

In the next chapter, you will activate the animations with Mecanim and add some
unexpected animation as you hook up the new assets to the existing functionality and
expand their visual appeal.

Summary
In this chapter, you brought in a few more assets and began to create the environment for
your game. Starting with a couple of hexagonal tiles, or cells, you learned how using vertex
snap could speed up the layout process for arranging assets in a scene. From there, you went
through the process of creating the code that would manage the visibility of the path tiles
through the use of their Mesh Renderers. Using a bit more economizing, you found that shadow
casting was expensive and learned to assess an object’s shadow-casting requirements.

Though you imported a finished grid of hexagons, you learned that presently, Unity does
not support prefabs of prefabs, but that you could add components by selecting multiple
objects. As you created code to manage the path tiles, you discovered that regular arrays in
Unity are not dynamic in size. To make a list of path tiles that could grow and shrink during
the path-authoring process, you discovered the list, but found that it was not included
automatically and that you had to include system.Collections.generic to use it.

After adding code to manage the design and creation of your paths, you discovered they
could easily be saved as prefabs during runtime, allowing you to read back in the data
during the actual game. With randomly selected paths now available, you finished the path,
managing code so that it would track the player’s current position on the path, highlight the
completed tiles, and allow for outside sources to move the player up and down the path.

Finally, you brought in a few new assets and set up their animation clips and saved them as
prefabs in anticipation of incorporating them into your game.

Figure 7-16. The three new game pieces in the Ani Test scene

307© Sue Blackman and Adam Tuliper 2016
S. Blackman and A. Tuliper, Learn Unity for Windows 10 Game Development,
DOI 10.1007/978-1-4302-6757-7_8

Chapter 8
Combining Assets and
Functionality
With your potential game functionality and the game board ready for further testing, your
next challenge is to merge them and, along with some new game pieces, lock down the
basic game play.

Merging Environment and Functionality
It’s time to see how the functionality and board environment work together:

1. Open the Board Test scene.

2. Drag Start Location A, Marble, Directional Light, and Main Camera
into the Board Group.

3. Delete the Ramp from the group.

4. Make a prefab of the Board Group by dragging it into the
Prefabs folder.

5. Open the Grid Layout scene (don’t save the Board Test scene).

6. Delete the main Camera, the Directional Light, and the Sphere.

7. Save the scene as Board Level.

8. Drag the Board Group prefab into the Hierarchy view.

9. Adjust its height until the tiles just peek through, about -3.03
(Figure 8-1).

308 CHAPTER 8: Combining Assets and Functionality

10. Take the Marble, Main Camera, Directional Light, and Start Location
A out of the Board Group, agreeing to lose the prefab.

Shadows help define shape and keep us oriented in 3D space. Now, with the grid graphics
on the board and most of the action taking place close to the board’s surface, it is not as
important for the light to cast shadows. As shadow calculations are quite costly, it is always
a good idea to turn them off if the game will work well without them.

1. Set the Directional Light’s Shadow Type to No Shadows.

As you saw in Chapter 5, anything that must move with the tilting board
must be added to its group.

2. Drag the Game Grid and Path Manager objects onto the Board
Group in the Hierarchy view.

In the previous chapter, you used a marble stand-in to check the path
collisions. The condition was that the colliding object was tagged as
Player. Let’s go ahead and set the same tag on the real Marble object.

3. Select the Marble.

4. Tag the Marble as Player.

Testing the Marble on the path will be easier if the portals and hotspots are
deactivated.

5. Select the portals and hotspots and deactivate them.

Figure 8-1. The grid and board objects merged

http://dx.doi.org/10.1007/978-1-4302-6757-7_5

309CHAPTER 8: Combining Assets and Functionality

6. Click Play and then test by rolling the marble from the start of the
path to the end (Figure 8-2).

Figure 8-2. Rolling the Marble along the path by tipping the Board

The action is difficult and boring at this stage but will form the basis of the little game. In the
next section, you will learn about helping and hindering the marble’s progress along the path.

Refining the Portal Functionality
Before jumping back into the portal code, let’s make some decisions about how it should
work. Right now, it sends the marble off to the specified location or, if multiple destinations
have been supplied, chooses one of the locations at random. In the interest of dishing out
bonuses and setbacks, you will be implementing a health system that will dictate what
happens to the marble under various conditions. This way, you will be able to curb the
effects of intersecting the portals.

Tracking Health
The health points will range from 0 to 20. Each time the marble intersects a portal’s collider,
points will be added or removed, staying within the 20-point range. Because the code for
both “good” and “bad” portals is very similar, the differentiator will be the health points
themselves. A negative number indicates a bad portal, while a positive number indicates a
good portal.

310 CHAPTER 8: Combining Assets and Functionality

In addition to gaining or losing health points, the player will be rewarded or penalized when
the heath is above or below specified thresholds. This way, the player has the option to
recover points when the health has dropped dangerously low, or to take advantage of a high
health score. The functionality for extreme ends of the point span will be to move the path
progress forward or backward along the path. With forward progress, the marble will be
ported to the newly activated path progress position. With a backward penalty, the marble
will be sent to one of the random locations already loaded into the script.

1. Open the MarbleManager script.

2. Add the health variable:

public int health = 10; // start health at half way

A value of 10 starts the marble with a good midpoint amount. When you
implement the path position adjustments, they will work only when the
health is very high or very low.

3. Save the script.

The PortalHopper script resides on both “good” and “bad” trigger objects.
You could check for positive vs. negative values in the conditionals that
tell the game how to react to a hit, or you could create a variable as a flag.
The most economical way would be to use a simple Boolean, where true
means good and false means bad. The downside is that the variable name
and check box could be less than clear. If you are the one setting them
up, you will probably remember the assignments, but in a studio situation,
someone else could be in charge. You will often see enums being used in
various other code, and so this is a good time to become familiar with the
way they are set up.

4. Open the PortalHopper script.

5. In the same area as the regular variables, define the enum:

public enum HealthType {
 Good = 0, // adds health points and/or path tiles
 Bad = 1 // removes health points and/or path tiles
}

HealthType is the custom type you are defining, and good and bad are the
two values it can have. They are assigned by element number. To use the
enum, you will create a variable of type HealthType, named healthType, and
then use dot notation to initialize the value. Enums are essentially custom
variable types and can be marked as public, internal, or private, just as any
other variable.

311CHAPTER 8: Combining Assets and Functionality

6. Create the variable that uses the enum and assign a value:

// The enum to use
public HealthType healthType = HealthType.Good;

Now comes the best part about enums—the way they are displayed in the
Inspector.

7. Save the script.

8. Select one of the portal objects and locate the new Health Type
parameter.

9. Click the drop-down.

The two possible values, Good and Bad, are available for the author to choose from
(Figure 8-3).

Figure 8-3. The drop-down list created in the Inspector by the enum

Next you will add a base value to add or subtract from the marble’s health and an
adjustment amount that will come in handy for setting ranges, changing difficult and

1. Continuing in the PortalHopper script, add the following variables:

public int healthPoints = 2; // amount of points to take or give
internal int adjustment = 4; // average path adjustment

In case you are wondering why you couldn’t just double the health points to
get the path adjustment, using a second variable allows you more control
in case the path length is shorter or longer. Note the use of internal;
the adjustment variable will be available to other scripts, but will not be
exposed to the Inspector.

312 CHAPTER 8: Combining Assets and Functionality

2. In the Start function, add the following:

// set up health points & path adjustment
if (healthType == HealthType.Good) { //good game piece
 if (healthPoints > 4) adjustment = 5;
 else if (healthPoints < 2) adjustment = 3;
}
else { // else its a bad game piece, adjust path adjustment accordingly
 if (healthPoints > 4) adjustment = -3;
 else if (healthPoints < 2) adjustment = -5;
 else adjustment = -4;
 healthPoints = healthPoints * -1; // bad health points are negative
}

In this code block, you are adjusting the health points and path adjustment
according to the portal type of the object the script is on and the health
point assignment itself. This makes the path adjustment somewhat
consistent with the health points gained or lost by the hit.

3. At the top of the OnTriggerEnter function, just below the return line,
get the current health points from the marble:

int health = marbleManager.health;

You already have contact with the MarbleManager through the
marbleManager variable you created when you first created the
PortalHopper script, so getting its health value is easy.

4. Next, block in the conditional for the good portal, a positive
healthPoints value:

if (healthPoints > 0) { // health points are positive
 // adjust the health to no greater than 20
 health += healthPoints; // increment the health value
 if (health > 20) health = 20;
}

Because the health points should top out at 20, you will add them first, and
then cap the value if necessary.

5. Directly beneath it, add the code for the bad portal:

else { // health points are negative
 // adjust the health to no less than 0
 health += healthPoints; // decrement the health value
 if (health < 0) health = 0;
}
marbleManager.health = health; // assign the adjusted value to the marble's health

313CHAPTER 8: Combining Assets and Functionality

Note that you are also adding the bad healthPoints to update the marble’s
health value. In this case, the points are already negative, so += is doing a
subtraction.

6. Below the marbleManager.health = health line, add a print
statement to keep track of the health value:

print (marbleManager.health);

7. Leave the PortalJump code at the bottom of the OnTriggerEnter
function for now.

8. Save the script.

9. Activate the portal objects in the scene.

10. Locate Portal Bad and set its Health Type to Bad in the drop-down list.

11. Add or remove enough portals to have three good and three
bad portals.

Don’t worry about creating extra destinations for the Good portals, as those
will eventually be on the path.

12. To make testing easier at this point, set one Good portal near a
corner of the board and one Bad portal near another corner of the
board.

13. Set the Good portal Health Points to 3.

14. Click Play, roll the Marble into the various portals, and watch the
health value change in the console or status line. Check to make sure
it doesn’t go over 20 or under 0.

With the health values changing nicely, it is time to tackle the path adjustment that may go
with the health point changes.

Adjusting the Path Progress
While adjusting the path progress may sound like a lot of work, you have already done
something similar when you created paths for use in the game. The path tiles are managed
from the PathCellManager script. Let’s begin with the function that will do the adjustments.
You will be passing in the base number of tiles to use for the adjustment; either a positive or
negative number, so it will know which direction to go.

1. Open the PathCellManager script.

Before calling the existing function, you will want to change the
protection level on the lastActivated variable so it can be accessed by
the PortalHopper script. Internal, as you may remember, will make it
accessible but not visible to the Inspector.

314 CHAPTER 8: Combining Assets and Functionality

2. Change the lastActivated variable protection level as follows:

internal int lastActivated = -1; // the last sequential tile visited

3. Save the script.

Back in the PortalHopper script, you will add the code that calls the
function. With the path adjustment functionality in place, you will
differentiate the response according to the current health value.

4. Open the PortalHopper script.

5. Add the new variable to identify the PathCellManager:

public PathCellManager pathCellManager;

In the PathCellManager, you prevented the path adjustment from going
too far back or forward on the path. This time, you will also make a check
to prevent any path adjustment from taking place if the player has not yet
started the path.

6. Add the following local variable below the int health = line in the
OnTriggerEnter function:

int currentTile = pathCellManager.lastActivated; // current tile

7. Replace the contents of the if (healthPoints > 0) clause as follows:

// marble is stong enough to gain path tiles
if (health >= 12 && currentTile > 0){ // marble is stong enough to gain path tiles
 // increment path
 pathCellManager.PathAdjuster(adjustment);
 }
 else { // not strong enough for path boost, just increment health
 // increment health to no greater than 20
 health += healthPoints; //increment the health value
 if (health > 20) health = 20;
}

So now, if the health is strong (more than 11) and the player has started
the marble on the path, the path position will be incremented by calling
the new PathAdjuster function and sending it the base number of tiles to
add. Health points are not added when the path is adjusted, as that would
be like double dipping. If the health value was not high enough for a path
adjustment, the else clause, the health value is incremented.

315CHAPTER 8: Combining Assets and Functionality

8. Next, replace the contents of the else { // health points are
negative clause, where the healthPoints are a negative number for a
bad portal:

// marble is very weak, takes a hit
if (health < 6 && currentTile > 0){
 // jump to one of the spawn places
 marbleManager.PortalJump (delay,destination[Random.Range (0,destination.Length)]);
 // decrement the path
 pathCellManager.PathAdjuster(adjustment);
}
else { // strong enough to resist path hit
 // decrement health to no less than 0
 health += healthPoints; //decrement the health value
 if (health < 0) health = 0;
}

If the health points to be added are negative, and the health is less than
5, the path is decremented, but no additional health points are removed.
The marble is also ported to one of the spawn points. If the health value is
stronger, only health points are deducted.

9. Delete the original marbleManager.PortalJump, int num = Random.
Range and Transform tempDestination lines from the bottom of the
OnTriggerEnter function.

10. Save the script.

11. Make sure you are not in Play mode.

12. Select the six portal objects and assign the Path Manager object to
the Cell Path Manager parameter.

13. Click Play and test the new functionality. Remember to test before
and after starting the Marble along the path.

The completed path is incremented and decremented according to health and portal type.

As of yet, however, the marble is not yet ported forward to the new path position after an
increment. You have the means of performing the transform, but not the target position. For
that, you will have to contact the PathCellManager script.

1. Open the PathCellManager script.

2. Add the following function:

public Transform GetCurrentTile () {
 return allPathCells[lastActivated].transform;
}

3. Save the script.

4. Open the PortalHopper script again.

316 CHAPTER 8: Combining Assets and Functionality

5. Beneath the pathCellManager.PathAdjuster line in the if (health >
12 clause, add the following:

// jump marble to the new current tile;
marbleManager.PortalJump (delay,pathCellManager.GetCurrentTile());

In this line, you are getting the transform of the current tile by calling the
new function you made in the PathCellManager script, and then you are
immediately passing it on to the MarbleManager’s PortalJump function.

6. Save the script.

7. Click Play and test by rolling through enough good portals to trigger
the path increment behavior.

This time, the marble is ported to the newly assigned path progress tile.

8. Stop Play mode.

With the good portals sending the marble to a dynamic location, you no
longer have a need for the good drop points.

9. Delete the original Portal Drop Good objects from the Hierarchy view.

You also no longer require the hot keys that you used to set up the path
adjustment script.

10. Open the PathCellManager script.

11. Delete or comment out the contents of the Update function.

12. Save the script.

Although the game play is more interesting, it continues to be too predictable to truly engage
the player. Activating the hotspots will make things a bit more challenging:

1. Select the three hotspot objects.

2. Activate them.

The hotspots, as you may recall, temporarily increase the marble’s velocity
for a quick boost of speed. If approached carefully, the player may get
several tiles activated at once. If hit while navigating the path, the hotspots
could easily shoot the marble off track and disrupt the Marble’s progress.

3. Click Play and test.

The variation in speed and predictability certainly helps the game, but it definitely lacks an
element of danger. In the next section, you will be making the portal objects dynamic, both
visually and in position.

317CHAPTER 8: Combining Assets and Functionality

Introducing Dynamic Elements
To improve both game play and visual appeal, you will replace the proxy portal objects with
animated assets. The animations will be manually controlled by Mecanim, and the two types
of portals will use different placement schemes, so each object will have its own script for its
dynamic behavior.

Game Elements
In Chapter 4, you imported and made a start at setting up several new assets. They have
had their import settings tweaked, preliminary animations set up, and materials adjusted.
The prefabs you made should be ready to bring into the scene. For the game, you will use
the blue gumdrops for good portals, the peppermint candies as bad portals, and the banana
peels for the power boosts.

Now will also be a good time to update the cell tile textures with the atlased version,
CellTiles. There’s only one problem. Because the new texture contains all four cell tile
textures, the mapping will be off. If you don’t have access to a DCC application to change
the mapping, when the texture is carefully atlased, you may be able to change the material
tiling and offsets. You already have separate materials for each, so let’s begin by putting the
new texture in each.

Before you begin updating the materials, let’s take a quick look at the game’s stats to see
how the draw calls are adding up:

1. Click Play and toggle on the Statistics report in the Game view.

The draw calls are up to 210! Let’s see what can be done about that.
Material changes are permanent in Play mode, so you can leave the game
running.

2. From the Game Assets folder, open both the Materials and Model
Textures folder in the Single Column Layout so you can see the
thumbnails for both at the same time.

3. Select each of the Cell materials and drag the CellTiles texture into
the texture thumbnail.

The board looks like a nice patchwork quilt. Don’t panic!

4. Set the x and y Tiling to 0.5 in all four Materials.

The draw calls remain at 210. Let’s change a few materials. The Cell
Activated material uses an Unlit shader. For the other three materials, you
can use the Mobile/Diffuse shader.

5. Assign the Mobile/Diffuse shader to the three other cell materials.

The draw calls drop to almost half! Removing the color that gets blended
with the texture is a huge savings with this scene.

http://dx.doi.org/10.1007/978-1-4302-6757-7_4

318 CHAPTER 8: Combining Assets and Functionality

6. Set the Offsets as per Figure 8-4.

7. Return to the Unity editor and inspect the new textures by clicking
Play and rolling over a tile or two.

Now let’s see how the new game pieces look on the updated board. You’ve already
deactivated the hotspots and destination objects; the portals are next so you will have a
clear view of the board.

1. Deactivate the six portal objects.

The draw calls drop to eight! Clearly, there is something expensive going
on there.

2. Select all six portal objects and turn off their Light components.

Mystery solved! The Light components are the culprits. Fortunately, the new
game objects will have plenty of visual effect on the game.

3. Stop Play mode and remove the Light component from the portal
objects.

4. Select the Portal Good object in the Prefabs folder and remove its
Light component.

The draw calls remain at eight. You will gain more draw calls when you
reactivate the mesh renderers, but it will cost only one per object. Let’s
bring in the new objects.

5. Deactivate the six portal objects again.

6. Drag the Popper, the Spinner, and the Banana Peel prefabs into the
Scene view.

Figure 8-4. The four cell materials using the same texture, but with different offsets

319CHAPTER 8: Combining Assets and Functionality

7. Position them over a tile and make sure they each sit just above the
board (Figure 8-5).

8. Drag the three objects onto the Board Group Object.

9. Select one of the Portal Bad objects, right-click over its Portal
Hopper component, and select Copy Component.

10. Select the Spinner object, right-click over any of its component
labels, and select Paste as New Component.

11. Copy the Portal Hopper component from one of the Portal Good
objects and paste the component onto the Popper object.

12. Select one of the Hotspot objects, copy its Hotspot Booster
component, and paste it onto the Banana Peel.

The game pieces will also require a collider to catch the OnTriggerEnter events. Once again,
the Sphere Collider is the least resource intensive of the colliders. To make sure the objects
get a good intersection, you will use a collider that is slightly smaller than the object’s mesh.
That way, the marble can’t just clip the outside and trigger the events. The easiest way to
get a clean collider onto the imported assets is to copy one from one of the existing portal
objects.

1. Select one of the portal objects.

2. Copy its Sphere Collider component.

3. Select the three game pieces and paste the Sphere Collider
component onto them.

4. Set the collider’s Radius to 0.65 for the Gumdrop and Peppermint,
and 0.9 for the Banana Peel.

Figure 8-5. The three replacement new game pieces on the new cell textures

320 CHAPTER 8: Combining Assets and Functionality

5. Click Play and make sure the new portal objects work just like the
originals by rolling the marble over them and checking the health
points value in the console.

6. Delete the old portal objects.

Stop Play mode. The new game pieces were imported with animation and you set up the
animation clips, but nothing is animating in the scene at runtime as of yet.

Activating Mecanim Animations
With Mecanim, to see the animation play in game, you will have to set up the Animator
Controller for each object.

1. Create a new folder in the Project view and name it Mecanim.

2. With the new folder selected, from the right-click menu, choose
Create Animator Controller.

3. Name it Spinner Controller.

4. Duplicate it to create two more Animator Controllers.

5. Name one Popper Controller and the other Booster Controller.

6. Select the Spinner object and drag the Spinner Controller into the
Animator component’s Controller parameter.

7. Repeat for the other two objects, adding the appropriate controller
to each.

8. Select the Spinner object and double-click the Controller’s Spinner
Controller.

The Animator view opens as a tab next to the Scene view with the selected controller shown
in the bottom-right corner and a default Any State present.

The Any State is used in situations where any currently active state should be interrupted,
such as with a character “death.” For looping animations, you will add the object’s animation
clip as its only regular state.

1. Drag the Spinner’s Spin clip from the Project view into the Animator view.

The clip is shown as orange, the default state in the view (Figure 8-6). It
takes on the clip’s name, but that can be changed in the Inspector.

321CHAPTER 8: Combining Assets and Functionality

2. Click Play.

The Spinner object spins happily in the viewport.

3. Stop Play mode and repeat the procedure for the Popper.

4. For the Banana Peel, drag only the B Idle clip into the Animator view.

5. Click Play and watch the imported animations play.

The progress bar loops on the B Idle state in the Animator view, showing
the animation’s distance along its timeline. You will eventually bring in the
other nonlooping animations and trigger them from scripting.

6. Stop Play mode and drag each of the new game pieces into the
Prefabs folder.

The new game assets are ready for some secondary animation.

Shaking Things Up
To make things more interesting both visually and for game play, you will have the two types
of portals exhibit different dynamic behaviors. The Gumdrops, now known as Poppers, will
pop up randomly around the board, avoiding the path as landing places. The Peppermints,
a.k.a. Spinners, will spin their way across the board heading for randomly chosen waypoints.

Tip You may be tempted to deactivate Apply Root Motion in the game pieces’ Animator
component, but you must not do so. Root Motion refers to any transform on the root object, so you
would lose the Spinner’s rotation and the Popper’s scale animations!

Figure 8-6. The Spin clip becoming the default state in the Animator

322 CHAPTER 8: Combining Assets and Functionality

Drifting Spinners
The peppermint Spinners will be allowed to pass through all objects and so will be easier
to set up. Let’s begin by setting up their waypoints. Most will be positioned around the
outside of the game grid, but a few will be inside the grid to provide the occasional change
in direction midway. To prevent the Spinners from jumping around the outside, you will set a
minimum distance for the waypoints that they can head toward.

1. Focus the Scene view to the Popper object.

2. Create an Empty gameObject and name it Waypoint.

3. Keeping its Y Position as is, set its X and Z Positions to 0 and focus
the view to it.

4. In the Inspector, click the object icon’s open arrow to open the icon
drop-down.

5. Select Other and choose the Waypoint texture.

6. Drag the new Waypoint into the Prefabs folder.

Because the Waypoints don’t require any scripts, you will have to find a way to identify them
so you can collect them and put them into an array.

1. Click the Tag drop-down and select Add Tag.

2. Create a new tag in Element 1 and name it Waypoint.

3. Select the Waypoint prefab in the Project view and assign the
Waypoint tag to it.

4. Create a new Empty gameObject and name it Waypoint Group.

5. Drag the Waypoint object into the Waypoint Group.

6. Drag the Waypoint Group into the Board Group.

7. Duplicate the Waypoint object to make 14 more copies.

8. Arrange them as per Figure 8-7.

323CHAPTER 8: Combining Assets and Functionality

When the Spinner gets close enough to a waypoint, it will contact the parent of the waypoint
to get a new heading. The randomly chosen Waypoint must not be closer than 10 units.

1. Create a new C# script and name it WaypointManager.

2. Add it to the Waypoint Group object.

3. Add the following variables:

public Transform[] allWayPoints;
int wayLength; // length of the array;
float minDist = 10f; // closest distance to get a new target to

Once again you will be putting the children of the parent into an array for
processing. This time, however, by searching for children with transforms,
the parent will be included. It will come in as element 0, so you will have to
keep that in mind when iterating through the array.

4. Load the waypoints into an array in an Awake function:

void Awake () {
 wayLength = transform.childCount;
 // size the array
 allWayPoints = new Transform [wayLength];

Figure 8-7. The Waypoint locations

324 CHAPTER 8: Combining Assets and Functionality

 // fill the array
 allWayPoints = gameObject.GetComponentsInChildren<Transform>();
}

5. Start the function that sets a destination for the Spinner:

public void GetNewTarget(Traveler requestedBy) {
 int num = Random.Range(1,wayLength); // get a random element number, exclude parent, 0
 Transform tempWayPoint = allWayPoints[num]; // get the object at that element number

In this function, you pass in the object that is requesting a new destination.
First you must check the distance between its current position and the
prospective Waypoint. Then you will assign the new destination to it
directly.

6. Check to see whether it is valid:

 while (Vector3.Distance(requestedBy.transform.position,tempWayPoint.transform.position)
< minDist) {
 num = Random.Range(1,wayLength);
 tempWayPoint = allWayPoints[num];
 }
 requestedBy.currentTarget = tempWayPoint.transform;
}

In this while loop, you are checking the distance between the Spinner that
requested a new destination with the randomly chosen waypoint. If the
distance is less than the minDist, a new random Waypoint is chosen and
checked. When the selected Waypoint is not less than the minDist, you
break out of the while loop and directly assign the valid Waypoint as the
target for the object that requested the new destination.

7. Save the script and ignore the errors pertaining to the missing
Traveler; you will be creating it shortly.

Now you will create the script that tells the Spinner to move toward its current destination.

1. Create a new C# script and name it Traveler.

2. Add it to the Spinner object in the Prefabs folder.

Tip If Unity does not allow you to add the new script to the Spinner because of the missing
Traveler error, perform a Build All in the script editor from the Build menu to make sure it has found
the new Traveler script.

325CHAPTER 8: Combining Assets and Functionality

3. Add the following variables:

public WaypointManager waypointManager;
internal Transform currentTarget;
float speed = 8f;

4. In the Start function, add the following:

// get first target
waypointManager.GetNewTarget(this); // request a valid target for this object
transform.LookAt(currentTarget); // turn this object to face the new target
speed = Random.Range(speed-2, speed); // randomize the speed so all are slightly different

5. In the Update function, add this:

// move the object towards its target
float step = speed * Time.deltaTime;
transform.position = Vector3.MoveTowards(transform.position, currentTarget.position, step);
// check to see how close it is to the target
float dist = Vector3.Distance(currentTarget.position, transform.position);
print(dist);
// if it is too close, request a new destination
if(dist < 0.5f) waypointManager.GetNewTarget(this);

6. Save the script.

The errors reported by the console should disappear.

7. Select the Spinner object in the Hierarchy view and drag the
Waypoint Group into its Waypoint Manager parameter.

8. Click Play and watch the Spinner move purposely around the board.
Check the console to see the distance between the spinner and its
current target destination.

9. Stop Play mode.

10. Comment out the print statement and save the script again.

11. Update the Spinner prefab by using Apply at the top of the Inspector.

12. Duplicate the Spinner two more times and spread them out around
the board.

To be fully functional, you will have to reactivate the bad portal
destination points.

13. Select the four Portal Destination Bad objects and reactivate them.

The Marble will now be at the mercy of the random destinations when struck by a
marauding Spinner.

326 CHAPTER 8: Combining Assets and Functionality

Poppers
The Gumdrops will not travel around the board like the Spinners. They will pop up in random
cell/tile locations, stay for a few seconds, and then pop up elsewhere. Rather than make it
too easy for the player to gain health points by rolling through them, you will be restricting
them to nonpath locations. This will make it necessary for the player to leave the path if
he wants to pick up points. You already have written code for porting objects, and you are
more than familiar with randomizing numbers by now, so the challenge here is to restrict
the destinations to nonpath tiles. Fortunately, a quick check of the target tile’s active state
should do the job. Let’s begin with the function that finds the new base tile location.

1. Open the GridManager script.

2. Add the function:

public Vector3 GetBaseLocation () {
 int cLength = allBaseCells.Length;
 Transform tempLoc = allBaseCells[Random.Range(0,cLength)].transform;
 while (!tempLoc.gameObject.activeSelf) {
 tempLoc = allBaseCells[Random.Range(0,cLength)].transform;
 }
 return tempLoc.transform.position;
}

This function is a bit different. It is public so it can be called from other
places, but instead of returning void or nothing, this one will return a
Vector3 value. The code inside it is fairly simple; get a random base tile
until you find one that is active. If it is not active, it was replaced by a path
tile and cannot be used as a Popper location. Then return the valid tile’s
position, the Vector3 value.

3. Save the script.

Now you can create the script that operates the Popper behavior.

4. Create a new C# script and name it Popper_Hopper.

5. Add the following variables:

public GridManager gridManager; // to get the base tile locations
internal float targetTime; // for the timer
internal float onTime = 5f; // time the object is visible
internal float offTime = 1f; // time it is not visible
Animator animator; // so the animation start times can be randomized

With the Spinners’ rotation, it didn’t matter that they were all spinning with
the same animation. With the Poppers, you will quickly find that they all
squash up and down at the same time. To solve this visual problem, you
can start the animation clip at different places along its timeline.

327CHAPTER 8: Combining Assets and Functionality

6. Add the following to the Start function:

animator = gameObject.GetComponent<Animator>();
targetTime = Time.time + Random.Range(0f,onTime);
animator.Play("Squash",0,Random.Range(0f,1f));

The first line identifies the Animator component. The second line starts the
timer by assigning the first amount of time it will be visible. Time.time is the
amount of time in seconds that has passed since the game started. The
last line adjusts the start time of the animation clip/state. With Mechanim,
you first tell it which state you want. Because you used the drag-and-drop
method to create the states from the animation clips, the names are the
same. The next argument, 0, tells what layer the state is on. Unless you are
making complicated state machines for controlling your animation clips,
your clip will be on layer 0. The next argument is where on the clip’s timeline
you want to start. The clip length is unitized, so the value of 1 corresponds
to 100 percent along the timeline. You, of course, are specifying a random
location on the timeline to start the animation.

Next you create the timer code that will turn the Popper off and on as well
as move it around the board.

7. In the Update function, add the timer code:

if (visible && Time.time > targetTime - offTime){
 visible = false;
 gameObject.GetComponent<Renderer>().enabled = false; //hide popper
 gameObject.GetComponent<Collider>().enabled = false; //disable collider
 targetTime = Time.time + Random.Range(.5f,offTime); //set a new time to make visible
}

if (Time.time > targetTime){
 MoveIt(gridManager.GetBaseLocation());
 gameObject.GetComponent<Renderer>().enabled = true;//show popper
 gameObject.GetComponent<Collider>().enabled = true;//enable collider
 visible = true;
 targetTime = Time.time + Random.Range(0.5f,onTime) + offTime;// new time before hiding
}

The first conditional hides the Popper between pops. It first checks whether
it is already hidden and if so, no further calculations are performed. If it is
visible and the visible time is up, it hides the Popper, turns off the collider,
and gets a new hide time. In the second conditional, if the time is up, the
object is moved to a new location. That location is acquired by calling
a function on the GridManager. Next, the object is made visible again,
its collider enabled, and the timer set for the next hide time, once again
randomizing the on time a bit so it isn’t so predictable.

328 CHAPTER 8: Combining Assets and Functionality

8. Next, create the MoveIt function:

void MoveIt (Vector3 location) {
 //transform it
 Vector3 newPos = new Vector3(transform.position.x,transform.position.y,transform.
position.z);
 newPos = location;
 transform.position = newPos;
}

This function uses the location returned by the gridManager.
GetBaseLocation call to move the Popper to its next position.

The last little function will give you a means of turning off the Popper early
if it gets hit by the Marble. This will prevent the player from double-dipping
health points from the Popper.

9. Add the following function:

void ForceOff () {
 targetTime = Time.time; // this forces a timer restart
}

Setting the targetTime to 0 forces the cycle to restart. It doesn’t turn the
Popper off so much as it turns it on in a new location. You will call the
function shortly, but it is not yet hooked up to anything.

10. Save the script.

11. Add the script to the Popper prefab and then select the Popper in the
Hierarchy view.

12. Drag the Game Grid object to the Grid Manager parameter.

13. Click Play and watch the Popper wink in and out around the grid.

14. Roll through the Popper with the Marble.

The health is incremented, but you may not be able to tell whether it was a good hit.

The last little function you created will be called from the PortalHopper where the health
points are generated.

1. Open the PortalHopper script.

2. At the bottom of the OnTriggerEnter function, add the following:

// force time is up if this is a popper
gameObject.SendMessage("ForceOff",SendMessageOptions.DontRequireReceiver);

329CHAPTER 8: Combining Assets and Functionality

This time, you are using a SendMessage to call the function. A quick search
of the Scripting Reference will tell you “Calls the method named methodName
on every MonoBehaviour in this game object.” The function (or method) is
called by name, and so is a string. You may use one optional argument, and
you can have it report back if there was no function of that name found.
The nice thing is that you don’t have to supply the component/script that
the function resides on. Each of the components will be searched for the
function. Obviously, you won’t want to use SendMessage on large-scale
searches where it could cost too much in terms of frame rate, but it can be
quite useful on a smaller scale.

3. Save the script.

4. Click Play and roll through some Poppers to see that they disappear
on intersection.

5. Stop Play mode.

6. Duplicate the Popper two more times for a total of three.

7. Place the Poppers randomly around the board.

8. Click Play and try out different strategies to complete the path.

The Poppers offer a different type of challenge. Unlike the Spinners that you have to predict
their location, with the Poppers, you have to decide whether you can get to them safely and
in time before they move again.

Boosters
The Banana Peels are more of a neutral game piece in that, with careful planning, you
can shoot through one to gain several path tiles at a time, or, if caught unawares can be
catapulted into an oncoming Spinner. At the very least, they can send the Marble quickly
off course. There is already enough moving on the board so the Banana Peels will stay put,
but they should at least start in different positions each time. To keep things simple, you will
group them and then rotate the group in the Start function.

1. Duplicate the Banana Peel twice so you have three and rotate the
duplicates for some variation.

2. Arrange them around the board, keeping in mind that they will be
rotating together as a group.

3. Create a new Empty gameObject and name it Boosters.

4. Drag it into the Board Group and then drag the Banana Peels into the
Boosters Group.

5. Create a new C# script and name it Rotator.

330 CHAPTER 8: Combining Assets and Functionality

6. Add the following to its Start function:

transform.Rotate(0f,Random.Range(0f,360f),0f);

7. Save the script and drag it onto the Boosters Group.

8. Click Play several times to view the arrangement.

The Banana Peels turn up positioned haphazardly across both path and base tiles.

Although the Banana Peels are not moving around the board, you can spice up their
functionality a bit more. The Banana Peel asset’s animation clip was split into four separate
clips. It is currently set to use the fourth clip as a looping idle clip. That leaves you three
possible hit clips to fire off when the Marble intersects the peels.

1. Open the HotSpotBooster script.

You will require an array to store the clips and will have to access the
Animator states through the Animator component.

2. Add the following variables:

public AnimationClip[] aniClip;
internal Animator animator;

3. In the Start function, identify the Animator component:

animator = GetComponent<Animator>();

4. In the OnTriggerEnter function, below the return line, add the
following:

if (animator) {
 int num = Random.Range(0,aniClip.Length);
 animator.Play(aniClip[num].name,0,0);
}

You’ve used animator.Play before when you set the poppers to start their
Squash clips in random places along their timeline. This time, you want to
play their clips from start to finish, so after pulling up a clip at random, you
specify 0 as the level and 0 as the place to start the clip. Note that you are
using the name field of the clip because it is used as the state name by
default. If you change the names of the states, you will have to make an
array of the state names that can be fed into the Play function or method.

5. Save the script.

Next you will set up the rest of the Banana Peel’s animation state in the Animator and learn a
bit more about Unity’s powerful Mecanim.

331CHAPTER 8: Combining Assets and Functionality

1. Select a Banana Peel object and double-click its Animator controller
to load it into the Animator view.

Currently, it contains the ubiquitous Any State and the default state, B Idle.

2. Locate the Banana Peel’s clips in the Game Assets folder and drag
B1, B2, and B3 into the Animator window, positioning them above
the B Idle state (Figure 8-8).

Figure 8-8. The Banana Peel’s four states in the Animator view

Remember, none of the clips other than the idle were set to loop. If you
triggered the clips now, they would simply stop animating when the clip
was finished. With Mecanim, you can set the clips to automatically revert
back to the idle clip when finished. Because Mecanim was originally
developed to control character animation, you will want to prevent blending
between the states. The clips you are using already start and end at the
same neutral state, making blending unnecessary. Let’s begin by creating
transitions between the three new states and the idle state.

3. Select the B1 state, right-click, and choose Make Transition.

4. Click the B Idle state to hook up the new transition.

5. Click the new transition to see it in the Inspector.

The Conditions for it to go from B1 to B Idle automatically default to
Exit Time.

6. Reduce the blend by moving the left time marker close to the right
and moving the idle to match (Figure 8-9).

332 CHAPTER 8: Combining Assets and Functionality

7. Repeat the process for the B2 and B3 clips.

The new states are ready to load (Figure 8-10).

Figure 8-9. The blend reduced for the transition between B1 and B Idle

Figure 8-10. The Transitions from the one-off states back to the idle

Tip Moving the B Idle clip far to the right will cause it to snap back to the correct place for the
adjusted transition when you let go of it.

Note that there are no transitions from the idle to the other clip states. They can be triggered
only by code.

With the states set up in the Animator, you can go ahead and load them into the
HotSpotBooster.

333CHAPTER 8: Combining Assets and Functionality

1. Select the three Banana Peel objects in the Hierarchy view.

2. Set the Ani Clips array size to 3 and load B1, B2, and B3 into the new
fields.

3. Click Apply to bring its prefab up-to-date with the new parameters.

Because the clips exist in the Project view, they are automatically included
on the prefab.

4. Click Play and roll the Marble through the Banana Peels.

This time, the peels react when the marble rolls over them.

Apart from a few special effects, the components of the game are fully functional (Figure 8-11).

Completing the Path
At this point, you are able to roll the Marble along the path, and, after gaining and losing
health points along the way, reach the end path tile. As that is the most obvious goal, you
will want to let the player know the game has ended by stopping or even hiding the other
game pieces and returning the board to its upright position. The path progress is tracked in
the PathCellManager script, so that is the most logical place to begin.

Figure 8-11. The game pieces all in play

334 CHAPTER 8: Combining Assets and Functionality

1. Open the PathCellManager script.

The TogglePathTiles function always knows where the last activated
tile is. By taking the path length and subtracting 1 (the path array starts
at 0, remember), you have the end tile’s element number. When the
lastActivated variable’s value equals that, your player has completed
the path.

2. Add the following at the bottom of the ToggleTileState function:

// check for winner
if(lastActivated >= pathLength - 1){
 ProcessWinner();
}

Now you will fill out the tasks that will be performed at the completion of
the path in a ProcessWinner function.

3. Start blocking in the ProcessWinner function:

void ProcessWinner () {
 print("Winner");

 // cue the FX

4. Stop user input:

//stop input
marbleManager.repressInput = true;

You already have this functionality for when the board is reset.

5. Level the game board:

// level board
boardManager.StartBoardReset (4);

For the board reset at the end of the path, a 4-second reset time will be nice.

6. Stop the game pieces:

// stop game pieces
foreach (GameObject gp in allGamePieces) {
 gp.SetActive(false);

}

You will be adding the line that loads all of the game pieces in the Awake
function. They will be identified by a tag. The easiest option is to deactivate
them, but once you have access, you may just want to stop them from moving.

335CHAPTER 8: Combining Assets and Functionality

1. Hide the Marble:

// hide marble
marbleManager.gameObject.SetActive(false);

2. Show the menu:

 // show menu

} // close the function

In Chapter 10, you will be handling the game GUI, so for now you will just
add the place-keeper comment.

Let’s see about creating the game pieces array next so you can process
those objects.

3. Add the following variables to the script:

internal GameObject[] allGamePieces; // store the game pieces for easy processing
public MarbleManager marbleManager; // where input is turned off
public BoardManager boardManager; // where the board is re-leveled

4. In the Awake function, add the following:

//store the game piece objects
allGamePieces = GameObject.FindGameObjectsWithTag("Game Piece");

5. Save the script.

6. Select the Path Manager object and drag the Board Group object
onto the Board Manager parameter and the Marble onto the Marble
manager.

You will, of course, require the Game Piece tag before testing. You don’t
have to use the drop-down for the tags to gain access to them; The Tags,
Sorting Layers, and regular Layers are all in the same place.

1. From the Layers drop-down at the upper right of the editor, select
Edit Layer.

The Layers and Tags reside in the same place so you can access each
through the Layers drop-down or from any object’s Tag drop-down.

2. Open the Tags array and add Game Piece at Element 2.

3. Select the Banana Peel, Spinner, and Popper prefabs and assign the
Game Piece tag to each.

To test the end, you will want to get there quickly to see whether the main
functionality works.

http://dx.doi.org/10.1007/978-1-4302-6757-7_10

336 CHAPTER 8: Combining Assets and Functionality

4. Select the nine game piece objects and deactivate them.

5. Click Play and roll the Marble along the path to see the results upon
reaching the end.

The board resets, the Winner message appears in the console, the sound
plays, and player input is suppressed.

Let’s check on the game pieces next.

6. Reactivate the nine game pieces.

7. Click Play and test to see the results upon reaching the end of the path.

The game pieces disappear on cue.

With a little more code, you can just stop them from moving by disabling
the script that moves them around. As this is a different script in the
Poppers and Spinners, you will make good use of SendMessage by putting
the same function in both scripts. The function itself doesn’t even have
to have the same contents, only the same name. The Banana Peels don’t
have a script that moves them around during the game, but by using
dontRequireReceiver, no error will be thrown.

8. In the PathCellManager script, comment out the gp.SetActive line.

9. Below it add the following:

gp.SendMessage("Freeze", SendMessageOptions.DontRequireReceiver);

10. Save the script.

11. Open the Traveler script and add the Freeze function:

public void Freeze () {
 this.enabled = false; // disable the script
}

12. Save the script.

13. Add the same function to the Popper_Hopper script.

14. Save the script.

15. Click Play and test to see the new end result.

This time, the game objects stop moving but continue their individual
animation. Feel free to use whichever end scheme you prefer.

16. Save the scene and save the project.

Either way, the ending is rather underwhelming. In the next chapter, you will be adding
sound effects and special effects.

337CHAPTER 8: Combining Assets and Functionality

Summary
In this chapter, you merged the functionality created in Chapter 6 with the environment you
created in Chapter 7 and were able to see how your marble performed with an actual path
on the board.

In the interest of inspiring the player to try his skill at the little tilt-board game, you introduced
a health system in which the “good” and “bad” portal interactions could help or hinder the
player’s progress along the path. To make the Inspector easier to read, you used enum to
differentiate the Portal Hopper script for the two types of interaction.

With the introduction of the fledgling game pieces you started in the last chapter, you
discovered that you could alter the mapping coordinates to spruce up your game tiles rather
than returning to a DCC application when you received an atlased map with all four textures
on it.

Before swapping out the proxy objects with some more interesting objects, you took a
look at the draw calls in the game and made the discovery that not only was the Color
parameter on the Diffuse shader expensive, but the little Omni lights used previously were
major draw-call hogs. Remembering that interaction requires that objects contain a collider,
you quickly copied an existing collider component from one of the proxy portal objects and
pasted it onto the new game pieces. Upon bringing the objects into the scene, however,
you discovered that Mecanim animations, with their Animator component, require a lot
more work before their animations will automatically play in the scene. The key ingredient,
you found, was to provide each object with its own Animator Controller. This gave you the
means to introduce the clips as states. The looping clips, set as the default state, would now
animate happily on startup.

Next, you introduced a waypoint system to move the Spinners randomly back and forth
across the board with the help of transform.LookAt and the MoveTowards method. For
the Poppers, you set a timer that allowed you to randomly relocate the objects around the
board tiles. To give it a bit more intelligence, you restricted the Poppers to base tiles only by
checking to see whether the randomly chosen tile was active or not.

For the Banana Peel, returning to Mecanim, you set the three hit animations to automatically
return the object to the looping idle animation as soon as the clip was triggered. With
scripting, you discovered how to set the Popper objects animating at different points along
the animation’s timeline. The same method, Animator.Play(), allowed you to fire off the
banana hit animations at will, letting Mecanim take care of the return to the idle state.

Your last task was to block in the functionality for the player completing the path. In the
function created to handle the task, you contacted various scripts to repress player input,
return the board to its upright position, and stop the game pieces from performing their
scripted functionality, while continuing with their imported animations.

http://dx.doi.org/10.1007/978-1-4302-6757-7_6
http://dx.doi.org/10.1007/978-1-4302-6757-7_7

339© Sue Blackman and Adam Tuliper 2016
S. Blackman and A. Tuliper, Learn Unity for Windows 10 Game Development,
DOI 10.1007/978-1-4302-6757-7_9

Chapter 9
Audio and Special Effects
Now that most of the game play is sorted out, it’s a good time to look into adding some
special effects to spice up the user experience. The most obvious thing that is missing
is a variety of sound effects that will help your players keep tabs on the state of the
marble’s health while keeping their eyes on the marble and other game pieces. The other
missing piece of the puzzle is a favorite of video games of all kinds: the particle system.
Particle systems, a mainstay of desktop games, cannot be used with abandon for mobile
applications, but with careful planning you can budget in a few for special occasions. Let’s
begin with audio, as it will add the most bang for the buck.

Adding Audio
As you play through your game, you’ve probably noticed that it is eerily quiet. In Unity, to
hear sound clips, the scene must have an Audio Listener. Camera objects have an Audio
Listener as a default. You probably remember removing extras anytime you added a camera
to a scene. But to actually play the sound clip, you must use an Audio Source component.

Audio Clips
As a default, audio clips come in as 3D sounds. As an object with an Audio Source
component and sound clip moves from one side of the screen to the other, the sound
is played from one speaker (or earphone or earbud) to the other, enhancing the player’s
experience of the game. For this little game, you could probably get away with making all
of the sounds 2D, but if you were playing the game with earbuds, using 3D sounds might
increase your awareness of the Marble’s location on the board and of the interactions of the
various game pieces with the Marble.

1. From the Chapter 9 Assets folder, bring the SoundFX folder into the
Project view.

2. Open the folder and click on each of the clips.

http://dx.doi.org/10.1007/978-1-4302-6757-7_9

340 CHAPTER 9: Audio and Special Effects

As you click on each clip, its waveform shows in the Inspector (Figure 9-1)
and, if the Auto Play button is on, the clip plays once.

At the far right, you will see the three audio icons. The first toggles autoplay
off and on; when this option is off, the sound won’t play when the clip is
selected in the Project view. The next icon causes the clip to play looped. If
you have turned off autoplay, or the looping option is not on and you want
to hear the clip again, you can press the Play button at the far right.

Figure 9-1. The waveform of the selected clip in the Inspector

341CHAPTER 9: Audio and Special Effects

3. Select the PongBeep clip and check it out in the Inspector (Figure 9-2).

Note that PongBeep doesn’t show a waveform because it is in WAV format.
Unity documentation recommends that short clips, especially nonlooping
clips, remain in their native format. The Load Type is set to Load in Memory
so that the clip is always ready to play. The downside is that it will take up
memory.

4. Click the down arrow for the Audio Format (Figure 9-3).

Figure 9-2. The PongBeep clip in the Inspector

Figure 9-3. Audio Format options on the PC

342 CHAPTER 9: Audio and Special Effects

Figure 9-4. Audio load types

The other format option is OGGVORBIS, an open source codec similar to
MPEG with a good compression rate. Most of the other clips you imported
are .ogg to begin with, and most are short enough to be loaded into
memory.

5. Select the Synthup clip (Figure 9-4).

This clip is already in .ogg format, so there are no format options. You do,
however, have some Load Type options. The clip is fairly short, but you will
be playing it only when the player reaches the end of the path, so let’s keep
it as Compressed in Memory. Do be aware that uncompressing audio clips
will suck up resources, so avoid having several uncompressing at the same
time. Typically, you would be using the compressed format with background
music or other ambient sounds that differ per level. Do be aware that some
mobile platforms may be able to decompress only one file at a time.

The next thing to decide is whether the clip should be 2D or 3D. The
interaction clips will be 3D so that the player can hear which side of the
board the marble is on at the time of the intersection. The Marble reset
sound, Synthup, and the pop for its landing should not be localized, so you
can set them to 2D to save some runtime resources.

6. Deactivate the 3D Sound check box for the Synthup and Pop clips,
clicking Apply after each change.

7. All of the sounds are short, so select each remaining sound clip and
set all to Decompress on Load.

343CHAPTER 9: Audio and Special Effects

Audio Source
As mentioned earlier, to play a sound, you use an Audio Source component. The sound can
be set to Play on Awake, typically used when instantiating a projectile, or it can be activated
through code. Each Audio Source component can hold one sound clip. To play the default
clip—unlike in earlier Unity versions, where you could use the simple accessor, audio.
Play()—you will now have to contact the clip as you would any other component. Many
times you will want to be able to choose from a variety of sounds depending upon
circumstances. A character’s footsteps, for instance, should change depending on the type
of surface it is walking over, as well as the gait itself. Other times you will just want to break
up the monotony by randomly choosing similar files.

Game Pieces
The game piece objects should trigger a different sound depending on whether the health
or the path is being affected. To make the setup process easier, because the good and bad
game pieces are all sharing the same portal and path code, you can load the four possible
sound clips and specify which to use in the conditionals for each scenario. Let’s begin by
adding an Audio Source to each of the game pieces.

1. Select the three game pieces, Banana Peel, Spinner, and Popper, in
the Prefabs folder.

2. From the Component menu, choose Audio to add an Audio Source
component.

3. With the three objects still selected, deactivate the Audio Source
components’ Play on Awake check box.

4. Adjust the panel so that you can see the Rolloff curve in the 3D
Sound Settings section (Figure 9-5).

Tip Unity has been systematically getting rid of simple accessors over the last several versions.
The code is converted from theAudio.Play() to GetComponent<AudioSource>().Play()
when an older script is updated. You may want to consider creating a variable to identify the Audio
Source and using a replacement before allowing Unity to update the scripts automatically.

344 CHAPTER 9: Audio and Special Effects

The default Rolloff is Logarithmic. As you can see by its curve, players would be able to hear
the sound only if they were very close to it. Let’s select Linear and adjust the Max Distance
as a more appropriate solution for the game-board environment. The distance is calculated
from the camera to the object.

1. For Volume Rolloff, select Linear Rolloff.

2. Set the Max Distance to 50.

Besides the game pieces producing sounds when triggered, you will want
to have a sound when the Marble gets reset after escaping the board.

3. Copy the Audio Source component from one the game piece
objects.

4. Paste [Component as New] the Audio Source component onto the
Marble object.

Figure 9-5. The Rolloff curve

345CHAPTER 9: Audio and Special Effects

5. Select the Synthup sound as the audio clip for the Marble object’s
Audio Source component.

6. Set the Volume to about 0.5.

Note that it shows the clip as a 2D Sound, so the 3D Clip settings will not be used. Because
you could play a 3D clip from the same Audio Source component at any time, they are not
grayed out.

Now let’s add the code to manage the sound effects for the regular game pieces. You could
use an array to store the four clips, but it might be a better choice to have individually named
variables to make loading the correct clips easier. When you want to play a different sound
effect, rather than loading the different clip in the Audio Source component, use theAudio.
PlayOneShot().

1. Open the PortalHopper script.

2. Add the following variables:

public AudioClip plusHealth;
public AudioClip plusPath;
public AudioClip minusHealth;
public AudioClip minusPath;

 3. In the OnTriggerEnter function, in the if (health >= 12 section, add
the following:

theAudio.PlayOneShot(plusPath); // add path sound fx

Note that audio clips require the clip as the argument (as opposed to
animation clips, which have the argument as their name, a string type).

4. In its else clause, add this:

theAudio.PlayOneShot(plusHealth); // add heath sound fx

5. In the if (health < 6 clause, for the bad game pieces, add the
following:

theAudio.PlayOneShot(minusPath); // lose path sound fx

6. In its else section, add this:

theAudio.PlayOneShot(minusHealth); // lose heath sound fx

7. Save the script.

To load the clips, you can select the prefabs in the Project view. To be able
to load values in a prefab, they must exist in the Project view as assets
or prefabs. An object that exists only in the Hierarchy view for a particular
scene or level must be loaded in the Hierarchy view. The sound clips are

346 CHAPTER 9: Audio and Special Effects

9. Select the Popper and Spinner game pieces in the Prefabs folder.

10. Load them as follows:

Plus Health - ShipBellSingle
Plus Path - PortalWhoosh
Minus Health - Splat
Minus Path - buzzerSoft

11. Check the game pieces in the Hierarchy view to make sure each
contains the newly loaded audio clips.

12. Click Play and check out the new sound effects by rolling the Marble
into the game pieces.

The ship’s bell clip seems to be suffering from the Doppler effect.

1. Select the Popper prefab and set its Audio Source’s Doppler Level to 0.

2. Click Play and test again. This time the bell sound is not so wobbly.

The Banana Peel booster requires only one clip, so it can be loaded directly
into its Audio Source.

3. Select the Banana Peel prefab.

4. Add the AirCompressorBurst as its audio clip in its Audio Source
component.

You can trigger the sound from the HotSpotBooster script.

5. Open the HotSpotBooster script.

6. Create a new variable:

AudioSource theAudio;

7. In the Start function, add the following to assign the component to it:

theAudio = GetComponent<AudioSource>();

definitely assets that are available from the project view at any time, so you
are good to go.

8. Expand the Sound FX folder in the Project view so you will be able to
drag the audio clips directly into the prefab’s Audio Source
component.

Tip This quick-load technique works only with the Single Column Layout for the Project view.

347CHAPTER 9: Audio and Special Effects

8. In the OnTriggerEnter function, below the Booster.Boost() line, add this:

theAudio.Play(); // play the loaded clip

9. Save the script.

10. Click Play and test the new additions.

Now, of course, you are probably thinking it would be a good time to start on the path-
finished functionality.

The Marble drop event could do with a sound effect so the player will know when the Marble
is in play. In the MarbleManager script, you already left a space for special effects.

1. Open the MarbleManager script.

2. Add the following variables:

AudioSource theAudio;
public AudioClip landed; // pop sound

3. In the Start function, add the following to assign the component to it:

theAudio = GetComponent<AudioSource>();

4. At the top of the IEnumerator DelayReset, add this:

theTheAudio.Play(); // play the resetting music

5. In both IEnumerators, under the // add some FX here line, add the
following:

theAudio.PlayOneShot(landed); // play the pop sound

6. Save the script.

7. Add the Pop clip to the new Landed parameter in the Marble
Manager component.

8. Click Play and test.

You should hear the sound effects on startup anytime the Marble escapes
the board.

To hear the sound on game startup, you can reroute the Marble drop
through the DelayReset function. You could set the delay to zero, but
there will eventually be enough going on that a second or two will give your
player a chance to get acclimated before the Marble drops.

9. In the Start function, replace SetToStart() with the following:

StartDelay (2f);

10. Save the script and test.

348 CHAPTER 9: Audio and Special Effects

Now, after a brief delay and a little fanfare, the Marble drops to the board with a plop and the
game is on!

Using Particles and Special Effects
Having freed up a few resources upon reaching the end of the path, you may be thinking
that you could afford a particle system or two to make things even better. The trick to using
particle systems with mobile devices is to severely limit the particle count, limit the life of the
effect, and limit the spread if using transparency. The Shuriken particle system has tons of
settings and adjustments that should help you keep the effects economical.

The Spinner’s FX
Let’s begin with a smoke-like effect for the Spinners:

1. Turn off Play mode.

2. From the Create menu, choose Particle System and name it Dark Puff.

A particle system consisting of what appears to be slow-moving cotton
balls appears.

3. Move the new object up, just above the board, to about 0.1 for its Y
Position,

4. Check out the Inspector to get a peek at the possible adjustments
(Figure 9-6).

349CHAPTER 9: Audio and Special Effects

Although the sheer number of parameters is rather daunting, most of the
parameters make sense once you catch on to the usual type of options
available.

When the particle system is selected, it will show an active preview in the
Scene and Game views. The Scene view, however, has become even more
cluttered with the addition of the Audio Source components. Let’s clear it
out a bit before jumping into particles.

5. Select the Waypoint object from the Prefabs folder.

6. Click the object icon drop-down, the custom W, and select None.

7. Repeat for the Portal Destination Bad prefab.

8. From the Scene view toolbar, open the Gizmos drop-down and
toggle off the audio and any other component gizmos you wish
(Figure 9-7).

Figure 9-6. The Shuriken particle system component

350 CHAPTER 9: Audio and Special Effects

Now the Scene view has only the essentials (Figure 9-8).

Figure 9-7. The AudioSource icon toggled off

Figure 9-8. The selected Shuriken particle system and its Particle Effect dialog box in the Scene view

351CHAPTER 9: Audio and Special Effects

Before turning off the Loop parameter, let’s adjust the spread of the emitter:

1. Select the Dark Puff again and click the rollout bar to open the Shape
module.

2. Change the Angle to 0 (Figure 9-9).

Tip You can also grab and move the grips on the Cone emitter’s gizmo in the Scene view.

Figure 9-9. Changing the Angle of the Cone emitter

 3. Decrease the Radius to 0.5.

The cotton balls should be moving straight up now. Let’s reduce the
resource drain by limiting the duration of the particle life and the maximum
number of particles next.

4. At the top of the component, set the Duration to 0.35.

5. Set the Max Particles to 8.

The system is still set to Loop, but now it can’t emit any new particles until
the eight die out.

6. Set the Start Lifetime to 0.3.

Now the particles pop out sooner.

7. Set the Start Speed to 1 and the Start Size to 2.

352 CHAPTER 9: Audio and Special Effects

Most of the parameters can be randomized using various methods. Depending on the
parameter, you will usually find Constant, Curve, Random Between Two Constants, and
Random Between Two Curves. Let’s randomize the Start Speed:

1. Click the down arrow at the far right of the Start Speed parameter.

A menu appears with the options available for that parameter (Figure 9-10).

Figure 9-10. Parameter options from the drop-down menu

2. Select Random Between Two Constants and set them to 0.5 and 1.

If you check on Start Color, you will find that it has an option to tint the
particles with a gradient. This gradient affects the particle system as a
whole over the duration.

3. For the Start Color, choose Gradient.

4. Click the color swatch to open the Gradient dialog box.

The Gradient editor appears. The top markers are for the alpha channel,
and the bottom markers are for the diffuse color.

5. Double-click the lower-left marker, or click the color swatch to bring
up the Color Picker and select a darkish red.

6. Double-click the marker on the lower right and select black.

7. Back in the component, set the duration to 5.35 and watch the color
cycle in the viewport cover the Duration.

Generally, you will find a gradient over the individual particle’s lifetime more
useful. For that, you will use one of the modules in the lower section.

8. Set the Start Color back to Color.

353CHAPTER 9: Audio and Special Effects

It should return to white.

9. Check the Color over Lifetime rollout to activate it, and then click the
bar to open it.

It is set to Gradient as a default.

10. Set the Gradient up as you did with the earlier one, but this time,
click just above the color bar, about 90 percent along, to create a
new transparency marker.

11. Set the end transparency marker to 0 (Figure 9-11).

Figure 9-11. Adding a transparency marker to the gradient

12. Inspect the results in the Scene or Game view.

The particles are now going through the gradient individually.

The particles are using the default particle system material. It uses an alpha channel
texture to get the soft, blobby falloff to transparency. While transparency costs in mobile
applications, it is less of an issue if it doesn’t use much pixel space onscreen. So far, this
one is fairly small, so let’s increase the size of the particles over their lifetime.

1. Locate the Size over Lifetime, activate it, open it, and click the curve
(the default option for size) thumbnail to see the curve at the bottom
of the Inspector.

On the upper left, the Size, 1.0, represents 100 percent of the Start Size you
set earlier. Let’s grow this one larger over time. You could work backward
and change the Start Size, but it will be just as easy to increase the percent.

2. Change the 1.0 to 2.0 and move the left curve node down to 1.

Instead of fiddling with the tangency handles, you can use a preset from the
bottom of the mini-curve editor.

354 CHAPTER 9: Audio and Special Effects

3. Select the fast-out, slow-in curve, and move the left node back up to
1 again (Figure 9-12).

Figure 9-12. A fast-out, slow-in tangency curve for the particle Size over Lifetime

4. Set the Duration back to 0.35, deactivate the Play on Awake
check box (just above the Max Particles parameter) and deactivate
Looping.

With Looping turned off, you will have to click the Simulate button in the
Scene view to see the particle system in action. If the simulation was
running, be sure to click Pause a couple of times first.

5. Click the Simulate button a few times to see what the particle system
will look like in action.

6. Select one of the Spinners and focus the viewport to it.

7. Select the Dark Puff particle system and use Move to View from the
GameObject menu to align it with the Spinner.

8. Drag the particle system onto the Spinner and then move it up a little
so the puffs are above the peppermint.

9. Click Play and click the Simulate button.

The particles spin with the parent, but the duration is so brief that they look
lopsided.

355CHAPTER 9: Audio and Special Effects

10. Stop Play mode and decrease the Radius in the Shape module to 0.2
and set the Start Size to 3.

11. Click Play and click Simulate again.

This time the puffs stay closer to the Spinner and look suitably toxic.

12. For fun, while you are still in Play mode, locate the particle system’s
Simulation Space parameter and change it from Local to World
Space.

Now the particles are left where they were born as the Spinner moves away.

13. Stop Play mode and drag the Dark Puff object into the Prefabs folder.

The other two Spinners now sport a Dark Puff of their own. You might think it would
make more sense to update the Spinner to include the particle system, but you will be
experimenting with another means of limiting the asset usage with the particle systems.

The Popper’s FX
For the Poppers, you will create a confetti-like effect. This time, you will switch to a mesh
particle and do away with the transparency by using Default-Particle material. The Max
Particles count will be higher, but it will not have to be constantly turned to face the
viewport, or billboarded, either. A downside it that it will have to use a two-sided shader or
you will be wasting resources by calculating its position when it is back-face culled.

1. Create a new Particle System and name it Confetti.

2. Set its Duration to 0.5 and its Start Size to Random Between Two
Constants, 0.5 and 1.

3. Set its Start Color to Random Between Two Colors and set the
second color to a nice blue to match the gumdrops.

4. At the bottom of the module rollouts, click to open the Renderer
rollout.

5. For Render Mode, select Mesh and change the Mesh from Cube to
Quad via the Browse icon.

6. Deactivate the Cast Shadows and Receive Shadows options.

The billboard particles will not cast or receive shadows if the options are
left on. Your Directional Light is not set to cast shadows, but if it was,
these mesh particles would be included, sucking up resources. So you
don’t really have to turn off the options in this case, but it is a good habit to
develop.

7. In the game assets’ Materials folder, right-click and choose Create
Material. Name the material Simple Particles.

356 CHAPTER 9: Audio and Special Effects

8. Change the shader to Mobile, Particles, Alpha Bended.

9. Select the Confetti object again. In the Renderer rollout, assign the
new material.

You should be able to see the material on both the top side and the bottom side of the
particles if you tip the Scene view up and then down.

Now you will make the particles a bit more interesting. They will come up in a narrow stream,
and then, overcome by gravity, will fall back down, fluttering all the way.

1. Set the Start Lifetime to Random Between Two Constants, 0.5 and 1.

2. Change the Start Size from 0.1 to 0.4.

3. Set the Start Speed to 10 and the Gravity Multiplier to 0.1.

4. In the Shape module, set the Radius to 0.2 and the angle to 4.

The effect is improving, but the particles could use some spin.

5. Set the Start Rotation to Random Between Two Constants, 0 and 180.

6. Activate and open the Rotation over Lifetime module.

7. Set the Angular Velocity to Random Between Two Constants, 360
and 1080.

The particles are happily tumbling down now.

There is a bit of a mystery remaining, however. The Max Particles are set to 1000, yet very
few are created in the viewport. The answer lies in the Emission section.

1. In the Emission section, change the Rate to 40.

2. Set Max Particles to 40.

3. Deactivate the Looping check box, and then click Simulate a few
times to see the result.

4. Select one of the Poppers and focus the view to it.

5. Select the Confetti object and use Move to View to position it to the
Popper.

6. Move it to the top of the Popper and then drop it onto the Popper in
the Hierarchy view.

7. Click Play and then press the Simulate button regularly to see the
Confetti in action.

Note how the particle system inherits the Popper’s squashing animation
(Figure 9-13).

357CHAPTER 9: Audio and Special Effects

Figure 9-13. The Confetti particle system inheriting the gumdrop’s animated scale transform

8. Stop Play mode and drag the Confetti object into the Prefabs folder.

The Booster’s FX
For the Banana Peels, you will be creating a vapor trail as the Marble is shot across the
board. This time, the particle system will stay with the Marble and be cued when the Marble
receives the physics boost.

1. Create a new Particle System.

2. Set its Duration to 0.5, its Start Lifetime to 0.5, and its Start Size to 2.

3. Change its Start Color to Gradient and set the alpha value to go from
255 at 85 percent to 0 at 100 percent.

4. Set Simulation Space to World, and the Start Speed to 0 so the
particles will be left behind when the Marble rolls.

5. Set the Max Particles to 50.

To work with the boost effect, you will require a higher emission rate at the
start and a lower one toward the end of the duration. To do that, you can
use a curve.

6. Open the Emission section and change the Rate from Constant to
Curve. Click the curve’s thumbnail to view it in the preview window at
the bottom of the Inspector.

7. Change the curve to the fast-out, slow-in preset and set the Rate to
100 (Figure 9-14).

358 CHAPTER 9: Audio and Special Effects

8. For Shape, set the Cone to an Angle of 25, and a Radius of 0.22.

9. Activate Color over Lifetime and change the gradient to an orangish
yellow at the start and a greenish yellow at the end. Set its alpha to
fade toward the end as well (Figure 9-15).

If you had multiple particles that you wanted to use the same gradient for,
you could click the New button in the Preset section to make the gradient
available for reuse.

To create a proper vapor trail, you will want the size of the particles to
shrink over their lifetime as well as fade.

Figure 9-15. The Color over Lifetime gradient

Figure 9-14. The Emission’s Rate curve

359CHAPTER 9: Audio and Special Effects

10. Activate the Size over Lifetime module. Set the Curve to a linear
curve from 1.0 to 0.4 (Figure 9-16).

Figure 9-16. The Size over Lifetime curve

11. Align the particle system with the Marble and then drag it onto the
Marble in the Hierarchy view.

12. Click Play and roll the Marble through the Banana Peels to see
the effect.

13. Stop Play mode.

To be more efficient, you will fire off the particle system only when the Marble goes through
a Banana Peel. Because it will always be on the Marble and will be triggered to play at will,
you can put the Particle System component directly onto the Marble. This makes it a lot
easier to trigger as well.

1. Copy the Particle System’s Particle System component.

2. Select the Marble and use Paste as New to add it to the Marble.

3. Delete the original Particle System.

4. In the Particle System component, deactivate Looping and Play
on Awake.

To trigger the effect, you will add a few lines of script.

5. Open the Marble’s Booster script.

6. In the Boost function, above the rigidbody line, add the following:

particleSystem.Play();

360 CHAPTER 9: Audio and Special Effects

The ParticleSystem class, just like the Camera, RigidBody, and several other
component classes, already has a defined variable in the Component class,
so you don’t have to identify it expressly.

7. Save the script and click Play.

The Marble now leaves a trail after shooting through the Banana Peels.

Updating the Marble
The Marble itself is beginning to look rather bland. The Game Pieces material has a rather
nice striped area in its upper-left corner, but the Unity-generated sphere would require a
remapped version. This time, you can try another method of updating: you will replace just
the mesh in the Sphere(Mesh Filter) component. That way, you won’t have to re-create the
entire object.This will also allow you to use a lower-poly sphere, as it is never seen up close.

1. From the right-click menu in the Game Assets folder, use Import
Asset to bring in the new Marble asset from the Chapter 9 Assets
folder.

The Marble locates the correct material on import.

2. Select the original Marble in the Hierarchy view.

3. In the Sphere(Mesh Filter) component, select the Browse button next
to the Mesh field.

4. Select the Marble mesh from the available meshes in your project
(Figure 9-17).

Figure 9-17. Substituting a different mesh from those available in the projects

http://dx.doi.org/10.1007/978-1-4302-6757-7_9

361CHAPTER 9: Audio and Special Effects

The Marble mesh replaces the original Sphere mesh (Figure 9-18).

Figure 9-18. The Marble mesh replacing Unity’s Sphere mesh in the Marble object

5. Drag and drop the Game Pieces material onto the marble.

6. Click Play and make sure the Marble functions as before.

7. Stop Play mode.

Although updating a mesh with this method is not something you will have to do often, you
may occasionally have to find meshes that have gone missing for no apparent reason.

Managing the Portal Particles
You’ve blocked in the Spinner and Popper particle systems as children of the game pieces
themselves. In the case of the Spinner, where the Dark Puff looks good following its parent,
the result is quite good. For the Poppers, however, when the object is ported to another
location, the particle system goes with it, making it visually confusing. You could unparent
the particle system just before the Popper was ported, but then you would have to move
it back to the Popper after it was finished and reparent it. If you are going to do that much
work, you may as well create a simple pool system to manage the particle systems.

Drawing from a Pool
You’ve already made a sort of static pool system for using the path tiles. The tiles were
pulled from the array until the path was built for each path configuration. For a true, dynamic
pool, objects will be returned after use so they can be reused during the game. The Popper
particle system is a perfect test subject for a very simple pool system.

The new ingredient you will use is a stack. As with a list, you will have to include System.
Collections.Generic. The two methods you will use are Push and Pop. Push() “pushes”
an object onto the “top” of the stack. and Pop() “pops” an object off the top of the stack
(Figure 9-19). The benefit of the stack is that you do not have to parse an array to see
whether an object is available. If it is on the stack, it is available. When you pop it, you will
also activate it; and when you push it, you will deactivate it.

362 CHAPTER 9: Audio and Special Effects

The first step is to feed the objects from an array into the stack. For the Poppers, because
the particle systems will get left behind, you might possibly require up to double the number
of them in the scene. Let’s consider six to be plenty. If you were going to increase the
number of game pieces for increasing levels of difficulty, you might want to instantiate the
correct number at the beginning of each level, but this is a very simple little game, so you will
just have a set number to draw from.

1. Turn on Play on Awake in the Confetti prefab in the Project view.

2. Delete the Confetti object from the Popper.

3. Create an Empty gameObject; set it at 0,0,0 and name it Popper
Pool.

4. Drag the Confetti prefab into the hierarchy, directly into the Popper
Pool object.

5. Duplicate the Confetti object five times so you have a total of six
Confetti objects in the Popper Pool.

And you will use the same procedure for the Dark Puff pool.

6. Turn on Play on Awake in the Dark Puff prefab in the Project view.

7. Delete the Dark Puff object from the Popper.

8. Create an Empty gameObject; set it at 0,0,0 and name it Spinner
Pool.

9. Drag the Dark Puff prefab into the hierarchy, directly into the Spinner
Pool.

10. Duplicate the Dark Puff object five times so you have a total of six
Dark Puff objects in the Spinner Pool.

11. Create a new C# Script and name it SimplePool.

12. Add the new script to the Popper Pool and Spinner Pool objects.

In this script, you will load the objects that are children of the Pool parents. To keep it more
generic, you can find them by their transforms rather than their Particle System components.

Figure 9-19. Popping an object off the Stack (left), and pushing an object onto the stack (right)

363CHAPTER 9: Audio and Special Effects

1. Add the following include at the top of the script:

using System.Collections.Generic;

2. Add the following variables:

public Stack<GameObject> availableGameObjects; // the objects that are available for use
public Transform[] allGameObjects; // the objects that could be in the pool

3. Start an Awake function and load the particle systems into the array
by using their Transform component:

void Awake () {
 // set the size of the array
 allGameObjects = new Transform [transform.childCount];
 // find all the children containing the Transform component & put them into the array
 allGameObjects = gameObject.GetComponentsInChildren< Transform >();

 4. Load the contents of the array into the stack:

availableGameObjects = new Stack<GameObject>();
for (int x = 1; x < allGameObjects.Length; x++) {
 availableGameObjects.Push(allGameObjects[x].gameObject); // add the objects to the stack
 allGameObjects[x].gameObject.SetActive(false);
}

Note that the counter starts at 1 because the parent, having a Transform
component, was added to the array first. Also note that your stack is for
gameObjects, so you must cast the transforms up to the gameObject
before putting the array contents into the stack.

5. Add the curly bracket to close the Awake function:

}

You will require two main functions for your simple pool system: one to pop an object off the
stack and position it in the scene, and another to push it back onto the stack when it has
finished. If you had something like a projectile, where you cannot predict when it will have to
be destroyed, you would have the object itself report back to the pool manager script to be
pushed back on the stack. With the particle systems, you already know the duration and the
maximum particle lifespan, so you can take advantage of an IEnumerator to tell the script
when to push the newly activated article back on the stack.

Let’s begin with the pop functionality. It will be responsible for transforming the particle
system to the correct location, parenting it to the correct object, and activating it. You will
pass in two arguments: the parent object and the location to set the object.

364 CHAPTER 9: Audio and Special Effects

1. Create the function and assign the “popped” object to a temporary
local variable:

// remove & use pool object
public void PopAndUse (Transform newParent, Vector3 location) {
 GameObject stackObj = availableGameObjects.Pop ();

2. Move the stack object to its new location:

//transform it
Vector3 newPos = new Vector3(stackObj.transform.position.x, stackObj.transform.
position.y,stackObj.transform.position.z);
newPos = location;
stackObj.transform.position = newPos;

3. Parent the stack object and set it as active:

// parent the object
stackObj.transform.parent = newParent;
stackObj.SetActive (true);

With the Spinners, the Spinner itself will be the parent, but with the
Poppers, the parent will be the Board Group. Passing in the parent allows
the code to be more reusable.

4. At the bottom of the PopAndUse function, start the co-routine and then
close the function:

 // make arrangements to return the object
 StartCoroutine(ReturnWhenFinished (stackObj));
 } // close the PopAndUse function

5. Create the IEnumerator as follows:

IEnumerator ReturnWhenFinished (GameObject toBeReturned) {
 float targetDelay = 3f;
 yield return new WaitForSeconds(targetDelay);
 toBeReturned.transform.parent = null;
 // put it back in the pool
 ReturnAndPush(toBeReturned);
}

After the time has passed, the object is removed from the parent
and returned to the stack. The object in question was passed into
the IEnumerator as an argument. You could calculate the delay
time withtoBeReturned.particleSystem.duration + toBeReturned.
particleSystem.startLifetime if you wish, but a flat time of 3 seconds
should be fine for either of the particle systems because neither is set to
loop.

365CHAPTER 9: Audio and Special Effects

6. Add the ReturnAndPush function:

// put it back in the pool
void ReturnAndPush (GameObject returnedObj) {
 returnedObj.SetActive (false);
 availableGameObjects.Push (returnedObj);
}

7. Save the script.

Using the Pool
With your simple pool system set up, you will make use of it through the PortalHopper script:

1. Open the PortalHopper script.

2. Add the following variables:

// particle system variables
public SimplePool plusFX;
public SimplePool minusFX;
public bool dontParent = true; // flag to parent to the board or this gameObject
Transform fxParent;

As the script handles both the good and bad game piece functionality,
the variables will hold both pool objects and the instructions about which
parent to use. You could just as easily hard-code the correct parent, but
this gives you the flexibility to use particle systems with different behaviors
on your game pieces. For the Poppers, on which you don’t want the
particle systems parented, dontParent is set to true. For the Spinners, you
will set this option to false.

3. At the bottom of the Start function, finalize which object is to be the
parent of the pool FX object:

if (dontParent) fxParent = transform.parent; // the object's parent, the Board Group
else fxParent = transform; // the object this script is on

4. In the OnTriggerEnter function, just under the if (healthPoints > 0)
line, add the following:

plusFX.PopAndUse(fxParent, transform.position);

5. Just under the else { // health points are negative line, add this:

minusFX.PopAndUse(fxParent, transform.position);

6. Save the script.

366 CHAPTER 9: Audio and Special Effects

7. Select the three Popper objects and three Spinner objects in the
Hierarchy view.

8. Drag the Popper Pool object into the new Plus FX parameter.

9. Drag the Spinner Pool into the new Minus FX parameter.

10. Deactivate the Don’t Parent check box for the Spinners (Figure 9-20).

Figure 9-20. The Portal Hopper parameters

11. Click Play and test the new functionality.

You should be able to see the particle system objects moved in and out of the various
parents as they are used and returned. Note that they aren’t parented back to their pool
objects when finished, but are merely left unparented until used again.

The Path End FX
For the grand finale effects, you will be importing a Unity package with a prefab. The
difference here is that you will be using a particle effect, or more simply put, a hierarchy of
both particle systems and other objects. One of the great features of the Shuriken particle
system is the ability to see all particle systems in the effect working at the same time and be
able to edit them concurrently as well.

367CHAPTER 9: Audio and Special Effects

1. From the right-click menu, select Import Package ➤ Custom
Package. From the Chapter 9 Assets folder, select FX_Finale.
unitypackage.

The package contains a prefab with a Particle Effect.

2. Drag the Particle Finale prefab into the Hierarchy view and click Play
to see and hear it in all its glory.

It consists of three particle systems, an Audio Source component, and a
light with an animated intensity, all of which are set to Play on Awake.

3. Select the Particle Finale prefab in the Hierarchy view.

To create a Particle Effect, the topmost parent must have a Particle System
component. To view it and its children, you will open the Particle Effect editor.

4. At the top right of its Particle System component, click the Open
Editor button (Figure 9-21).

Figure 9-21. Accessing the Particle Effects editor

The editor opens to reveal the Particle System components of the parent and children, along
with the preview window for the mini-curve editor (Figure 9-22).

http://dx.doi.org/10.1007/978-1-4302-6757-7_9

368 CHAPTER 9: Audio and Special Effects

The three particle system components can be edited without having to change the selection
in the Hierarchy view. Additionally, if you click the Simulate button in the viewport, you will
see all three of the effects play out as designed.

A few interesting things have been used to create the finale effect. The parent effect is using
a combination of Bursts and a gradient Start Color. In the Emissions section, the Bursts set
the particles off in the specified intervals. The colors are synchronized to fall within a single
Burst, giving the illusion of being four separate particle systems. Under Renderer, instead of
the default Billboard Render Mode, it uses Stretched Billboard to give a streaky effect.

The second effect, the swirls, makes good use of Start Rotation and Rotation over Lifetime,
but more important, this effect suppresses upward movement with Limit Velocity over
Lifetime, where the z velocity is set to 0. In Shuriken, z is up in the world, so you will see
some transform settings that are related to that coordinate system.

The third effect is similar to some of your earlier particle systems. It uses a higher number
of particles to give a more solid look that is shaped with Size over Lifetime. It also uses a
Gradient in both Color and Color over Lifetime to achieve a nice fade-out.

In keeping with the guidelines for keeping overdraw to a minimum, the Particle Finale effect
is kept fairly localized, so you will want to fire it off at the location of the final path tile when
the Marble has completed the course. Let’s revisit the PathCellManager script, where the
winner code lives.

Tip If you don’t see all of the Particle System components, you will have to move the divider to
the right until they are all visible. Position the cursor over the divider between the component and
the curve editor and drag it to the right.

Figure 9-22. Accessing the Particle Effects editor

369CHAPTER 9: Audio and Special Effects

1. Deactivate the Particle Finale in the Hierarchy view and drag it into
the Board Group.

2. Open the PathCellManager script.

3. Add the following variable:

public GameObject finalFX; // the particle effect for the end of path

Because the end of the path is set before the game starts, you can position
the effect in the LoadPath function. The last tile element number is the path
length minus 1.

4. At the bottom of the LoadPath function, add the following:

// position the particle fx at the path end
Vector3 newPos = new Vector3(finalFX.transform.position.x,finalFX.transform.
position.y,finalFX.transform.position.z);
newPos = allPathCells[pathLength-1].transform.position;
finalFX.transform.position = newPos;

Now you can activate the final effect from the ProcessWinner function.

5. In the ProcessWinner function, under the // cue the FX line, add this:

finalFX.SetActive(true); // turn on the final effects

6. Save the script.

7. Drag the Particle Finale object into the Path Manager’s new Final FX
parameter.

8. Click Play and play though to the end of the path.

The end path effects definitely signal the path’s completion. The Particle Finale is still active,
however, so it would probably be a good idea to turn it off after it finishes and you are
waiting for player input. Let’s create a small IEnumerator to handle its deactivation.

1. Under the finalFX.SetActive(true) line, add this:

StartCoroutine(Deactivate(finalFX ,2.5f)); // send the object off to be deactivated

You could have customized the IEnumerator to deactivate just finalFX, but
deactivating an object after a short pause is a good generic bit of code. The
Destroy method, the code you would use in a nonmobile game, even has a
delay built in as one of its arguments.

2. Create the IEnumerator:

IEnumerator Deactivate (GameObject target, float pause) {
 // pause before reactivation
 yield return new WaitForSeconds(pause);

370 CHAPTER 9: Audio and Special Effects

 // deactivate the object
 target.SetActive(false);
}

3. Save the script.

4. Click Play and play though to the end of the path.

5. Check the state of the Particle Finale in the Hierarchy view.

This time, the Particle Finale is deactivated after it has done its job.

Conspicuously missing from your game at this point is a nice heads-up display (HUD) to
inform the player of the Marble’s health as well as the amount of time that has passed. Once
the path has been completed, the player will be faced with some options before being able
to restart the game and play again. In the next chapter, you will add the GUI elements that
will round out your game.

Summary
In this chapter, you spiced up the action with the addition of sound effects and particle systems.

Sound effects, you discovered, could be handled in several ways, but the main takeaway
is that very short sounds that are played often are best loaded into memory, while longer
sounds that play in the background or are played infrequently are better off streamed.

Next, you learned that besides having the one Audio Listener in a scene, you require an
Audio Source to actually play a clip. When the sound effect was set to 3D rather than 2D,
you discovered that a falloff curve controls the distance to the object with the Audio Source
the player (for player, read camera) had to be. The two main means of causing the sound
to be played, you found, were AudioSource.Play() that plays the default clip loaded in the
Audio Source component, and AudioSource.PlayOneShot(), which could temporarily take
over an Audio Source and play a specified sound clip.

With the addition of particle systems to your game, you had a first look at Shuriken, the
complex particle system implemented in Unity. With its generous options for setting up your
particle systems, you found that most options involved either a change over the duration
of the particle system, or, a change over the individual life of the particles. Most effects,
you found, had numerous options, beginning with a single constant value and extending to
random values between two curves or gradients depending on the parameter type.

With a few particle systems to work with, you then implemented a simple pool system
to use and reuse a limited number of particle systems. The pool system is a mainstay of
mobile games for which instantiating and destroying objects is too costly. By “popping” and
“pushing” items off a stack, you were able to determine which objects were available for
use, while preventing overuse that would bring a mobile game to a crawl.

Finally, after building a few effects from scratch, you imported the finished final effect, where
you learned that you could group particle systems and other FX (lights, audio, and so forth)
into particle effects that could be opened and edited together in the Shuriken editor. With the
newly imported special effect, you made a start at triggering various tasks associated with
the completion of the Marble’s progress on the path.

371© Sue Blackman and Adam Tuliper 2016
S. Blackman and A. Tuliper, Learn Unity for Windows 10 Game Development,
DOI 10.1007/978-1-4302-6757-7_10

Chapter 10
GUI and Menus
With the inclusion of Unity’s long-awaited Unity UI, graphical interfaces have become
both more powerful and more complex. The trade-off is that you no longer have to code
everything for location and interaction. In this chapter, you will be filling in a few last parts
of your game by providing a heads-up display (HUD) for your in-game play statistics to put
a bit more pressure on the player. You will also be creating a simple menu. Although your
game has only one level, you will allow your player to adjust the difficulty at the beginning of
each session.

Working with the Unity UI
Designed with a strong leaning toward the special requirements for mobile devices, the Unity
UI has gone a long way toward making menus and HUD less painful to author. The legacy
GUI Text and GUI Texture objects have been removed from the menu options, but the fully
scripted Unity GUI system remains. The two biggest downsides of the earlier Unity GUI
system are that it must be fully scripted (there are no gameObjects directly associated with
it) and it is extremely inefficient as far as resources go, for mobile devices.

Layout
One of the most appreciated aspects of the Unity UI system is its layout capabilities.
Not only do elements snap to align nicely, but you also have control over whether they
should shrink with a window resizing, or retain their relative positions and size. The key to
this scheme is an anchoring system and the concept of a canvas that it is built upon, in
particular, the canvas’s Canvas Scaler component.

372 CHAPTER 10: GUI and Menus

For this project’s UI, you will be working in 2D space. Do be aware, though, that the Unity UI
objects, though essentially 2D, exist in 3D space. While generally flat to the viewing screen,
you do have the option of skewing the canvas to present the player with a true perspective
view of the GUI. Let’s begin by creating a new scene for a few experiments:

1. Create a new folder and name it Scenes.

2. Drag all of the scenes into it to tidy up the Project view.

3. Create a New Scene in the Scenes folder and name it Start Menu.

4. Double-click it to open the new scene and delete the Directional Light.

5. Select the Main Camera and set its Clear Flags to Solid Color.

6. If it isn’t already, turn off the Camera icon in the Scene view’s Gizmos
drop-down list.

As mentioned earlier, all Unity UI objects must be children of a Canvas object. Creating a UI
object, however, will automatically generate the Canvas for you.

1. From the GameObject menu, choose UI ➤ Button.

In the Hierarchy view, you will see that the Button has been added as a
child of the Canvas automatically (Figure 10-1).

The Button is currently in the lower-left corner of the Game view. To set up
its location, you will want to switch the Scene view to 2D display.

Figure 10-1. The Canvas and EventSystem automatically generated with the first UI object

373CHAPTER 10: GUI and Menus

2. Toggle the Scene view to 2D (Figure 10-2).

Figure 10-2. The Scene view using 2D display

The 2D display is essentially an iso (or flat) view from the back of the z
direction (Figure 10-3).

Figure 10-3. The Scene view with 2D display toggled off

The Canvas reflects the size dictated by the Game view. It is not
a gameObject that can be adjusted, but keeping it from changing
unintentionally during your GUI setup is essential.

374 CHAPTER 10: GUI and Menus

3. With 2 × 3 layout, or with the Scene or Game view floating, try
changing the aspect ratio of the Game view by using some of the
presets and observing the results in the Scene view (Figure 10-4).

Figure 10-4. The aspect ratio affecting the Canvas bounds, 5:4 (left) and 16:10 (right)

Figure 10-5. The Button’s anchor points in the center of the Canvas

4. Select the Button and observe the four anchor corner icons in the
center of the Canvas (Figure 10-5).

375CHAPTER 10: GUI and Menus

As the aspect ratio of the Canvas is changed, the Button retains its
distance from its anchor, causing it to move off and on screen.

5. Set the Game view back to Free Aspect.

6. Click and drag the Button up toward its anchor points (Figure 10-6).

Figure 10-6. Moving the Button around the anchor points

As you move the Button, the guidelines report the offset from the anchor
points. When you reach the center position, the lines turn blue. The offset
from the anchor points is reflected in the inspector as the Pos X, Pos Y, and
Pos Z. When the Button is centered, they will show as 0,0,0. The size of the
Button is its Width and Height. The anchor’s positions are unitized, where
0,0 is the lower left and 1,1 is the upper right. The X and Y Min and Max are
currently all 0.5.

7. Move the Button so it is centered on the anchors, watching for the
blue guidelines to indicate when the Button is centered.

8. Try adjusting the aspect ratio of the Game view.

This time the Button retains its central location. It also retains its size and
aspect ratio.

The four anchor points can be moved manually or into preset locations.
Let’s do a few experiments with both methods.

9. With the Button selected, click the Anchor Presets button at the top-
left corner of the Inspector and select the Full Stretch option in the
lower-right corner (Figure 10-7).

376 CHAPTER 10: GUI and Menus

Figure 10-7. Selecting the Full Stretch preset in the Anchor Presets

The Anchor Presets icon changes to reflect the selected preset.

10. Change the Game view window size to see the full stretch in action
(Figure 10-8).

377CHAPTER 10: GUI and Menus

You will notice that if the window’s aspect ratio is too extreme, the Button
will sport a red X, indicating that it will not be visible. Clearly, this could be
a serious problem. Worse yet, if you correct the size in one, it will adversely
affect the size in other resolutions or aspect ratios.

11. Try some of the other anchor presets and adjust the Game view’s
aspect ratio.

The Top/Bottom and Left/Right presets can be useful for HUDs where the elements are kept
off to the sides, but scaling may continue to be a problem. Now is the time to set the Canvas
gameObject’s Canvas Scaler component. This is what will help you set up your UI in such a
way that it will work with multiple screen resolutions with a minimum of additional work. As
a default, its UI Scale Mode is set to Constant Pixel Size. Because you won’t be worrying
about pixel perfect for this project, you will change it to a more flexible choice.

1. Select the Canvas object and set its UI Scale Mode to Scale With
Screen Size (Figure 10-9).

Figure 10-8. The Button stretching along with the window

378 CHAPTER 10: GUI and Menus

The first thing to set is a resolution. A good place to start is with the
smallest resolution you plan on supporting. Currently, the Lumia 520 phone,
a Windows phone and one of the top-selling phones of any OS, supports
854 × 480 pixels. This resolution is roughly a 16:9 aspect ratio, which will
leave space on either side of the playing board for some UI elements.

2. Set the Reference Resolution to 854 × 480.

Figure 10-9. The Scale With Screen Size option

379CHAPTER 10: GUI and Menus

3. Set the Game view to 16:9 (Figure 10-10).

You will be using the Screen Match Mode’s default, Match Width or Height.
The next decision point comes with whether to match the Width, Height, or
something halfway between. This is done with the slider below the Screen
Match Mode. The background image you will be using will look better
cropped on the sides rather than top and bottom, so you will choose to
keep the Height the driving parameter.

4. Move the Match slider all the way to the right for a value of 1.

For now, with the start screen, you will just use the centering option and
there should be no problems.

5. Select the Button and set its anchors back to the center preset
(Figure 10-11).

Figure 10-10. Setting the Game view’s aspect ratio

380 CHAPTER 10: GUI and Menus

With the anchors centered, the Button, the most important element, will
be the same size regardless of screen resolution. Let’s see about fixing the
Button size.

To manipulate the Button, you will see that, once selected, it has a Rect (as
in rectangle) Transform gizmo (Figure 10-12).

Figure 10-11. The centered Anchors preset

381CHAPTER 10: GUI and Menus

With the bars, you can click and drag to change the size of the Button on
the selected side. By clicking and dragging on a corner blue dot, you can
change the size on two axes. The center blue ring is the pivot point and can
be relocated by clicking in its center and dragging it. And, if you position
the cursor just outside of the corner dots, you can rotate the object on its z
axis. As expected, alignment snaps are well implemented to help you with
your layout.

Tip Be careful when transforming UI gameObjects that an extra pick hasn’t selected one of its
children. The Button, for example, has a Text child object.

Figure 10-12. The Rect Transform gizmo

6. If your button is showing a red X, drag the top or bottom of the
Button’s gizmo, make sure it is right-side-out again, and recenter it
on the anchor points.

7. Hover the pivot point circle until it highlights. Then click and drag it to
down to the Button’s lower edge.

8. In the Inspector, set the Button’s Pos Y to 30 to offset it that far
above the anchor points.

9. Drag the top of the Button’s gizmo and resize the button to a Height
of 40 (watch the Height in the Inspector as you pull the top upward).

382 CHAPTER 10: GUI and Menus

10. To get an even width, type the value of 250 directly into the Width
parameter in the Inspector (Figure 10-13).

11. Rename the Button to Play Button.

Along with a Play button, you will offer the player a chance to adjust the game’s difficulty.
For that you will use a slider:

1. Double-click the Button in the Hierarchy view to focus the view.

2. From the GameObject menu, choose UI ➤ Slider and name it
Difficulty Slider.

The Slider’s anchors should already be centered in the Canvas so it too will
retain its size with respect to the Canvas. Also, when a parent’s anchors are
set, all of the children will inherit from those anchors as well.

3. Set its Width to 250 and its Height to 40.

4. Move it down to a Y Position of about -88.

With its new measurements, the Slider looks rather chunky. Let’s see what
can be done to it.

5. Set the Slider component’s Value to 0.9 so you will be able to see the
various parts of the slider.

6. Next, open the Difficulty Slider to inspect its hierarchy.

Besides a Background, it has two other children: a Fill area and a Handle
Slide area. The Background can increase the pick area for the Slider’s
handle, a useful behavior for a small mobile screen and large player fingers.

7. Deactivate the Background object for now.

8. Select the Handle and for its Image component’s Source Image, click
the Browse icon, and select the UISprite instead of the Knob.

Figure 10-13. The Button sized and relocated using the Inspector and the Rect Transform gizmo

383CHAPTER 10: GUI and Menus

The Slider is looking more like a regular slider (Figure 10-14).

You will also want to add a label for the slider:

1. Create a new Text object and name it Slider Label.

2. Position it between the Play Button and Difficulty Slider.

3. In the Text component, set its Alignments to centered, its Font Style
to Bold, and its Font Size to 30.

4. Set the Text to easy med hard.

The text Size is too large for its bounding rectangle and does not show. You
could adjust its size, or, allow the text to overflow.

5. Set the Horizontal and Vertical Overflows to Overflow.

6. Set its Color to a saturated green.

7. Drag the Slider Label into the Difficulty Slider group so it inherits the
centered anchors.

Figure 10-14. The reworked slider

384 CHAPTER 10: GUI and Menus

8. Switch to Free Aspect on in the Game view, and change the view
size to make sure the three GUI elements retain their size and
position (Figure 10-15).

Processing Sprite Textures
Now let’s look at a few of the more visual aspects of the UI objects. The Button consists of
two components: an Image component and a Button component. The Image component
is set up to take a Sprite type image, and its Image Type is set to Sliced. This means the
texture can be set up to stretch only the inner part of the texture, leaving the corners intact.

Before importing the UI textures, you will take advantage of 2D mode. This will speed up the
processing of the textures that will be used only for the UI, setting them to Sprite type on
import instead of the Texture type you saw in Chapter 4.

1. From the Edit menu, choose Project Settings ➤ Editor.

2. Change the Default Behavior Mode to 2D (Figure 10-16).

Figure 10-15. The added text

http://dx.doi.org/10.1007/978-1-4302-6757-7_4

385CHAPTER 10: GUI and Menus

Besides importing the textures set to Sprite type, this setting will also
change the Scene view to 2D. You are already using the 2D display for the
Scene view, but this will definitely save time with the textures. Be aware,
however, that it will also set new cameras to orthographic rather than
perspective.

3. Drag the UI Textures folder into the project from the Chapter 10
Assets folder.

It contains several new textures for your menu and HUD (Figure 10-17).

Figure 10-17. The new GUI textures in the Two Column Layout

Figure 10-16. Changing the Default Behavior Mode

The first thing you will notice is that the sprite textures all have expand arrows in the Two
Column Layout. Unlike 3D objects that have their mapping built in, for 2D objects that share
an atlased texture, you must specify how the texture sheet is divided. The second thing that
you will see is that the transparent backgrounds of sprites are shown in the familiar gray
checkered pattern (Figure 10-18).

http://dx.doi.org/10.1007/978-1-4302-6757-7_10

386 CHAPTER 10: GUI and Menus

Let’s go ahead and customize the Start Menu’s GUI objects.

1. Select the Play Group object from the UI Textures folder.

2. From the Sprite Mode drop-down, select Multiple (Figure 10-19).

Figure 10-18. The Sprite type showing its transparency (left), and the Texture type showing its solid background
(center), and alpha channel (right)

Figure 10-19. Selecting the Multiple Sprite Mode option

For the Play button, you will be using multiple sprites.

387CHAPTER 10: GUI and Menus

3. Click the Sprite Editor button (it is located halfway down on the right).

4. In the Sprite editor’s top left corner, click Slice and select the Grid By
Cell Count option.

5. Set the Column & Row counts to 2 and press Slice (Figure 10-20).

Figure 10-20. Using the Grid By Cell Count option to separate the atlased texture sheet

Fine gray lines appear indicating the slice locations.

6. Click the Apply button from the upper left of the Sprite Editor and
then close it.

7. Click the expand arrow for the PlayGroup texture in the Project view.

The new sprites generated from the texture sheet are now available for use (Figure 10-21).

Figure 10-21. The sprites generated from the atlased texture sheet, One Column Layout (left), and Two Column
Layout (right)

388 CHAPTER 10: GUI and Menus

Let’s load the new sprite textures onto the Play Button.

1. Select the Play Button and load PlayGroup_0 as the Image
component’s Source Image.

2. In the Button component, change the Transition to Sprite Swap.

3. Load PlayGroup_1 as the Highlighted Sprite and PlayGroup_2 as the
as the Pressed Sprite (Figure 10-22).

Figure 10-22. The sprites loaded in for the Button transitions

With the Button image in place, you can see that the button will have to be
adjusted to match the image.

4. In the Button’s Image component, click Preserve Aspect Ratio.

5. Click Set Native Size.

With the texture providing the text, you can get rid of the default
Text object.

6. Expand the Play Button, select its Text child and delete the Text
gameObject.

7. Click Play and test the Button by hovering and clicking.

Now let’s add some custom textures to the Slider:

1. Stop Play mode.

2. Expand the Difficulty Slider and select the Background child.

3. Activate it and set its Top, Bottom, Left, and Right Rect Transform
parameters to -5.

389CHAPTER 10: GUI and Menus

4. Set its Color to r, 24; g, 65; b, 255.

The background image is a flat blue.

5. Select the Fill Area’s Fill child and the Handle Slice Area’s Handle
child and assign the BlueButton sprite texture as their Source Image.

The texture is stretched across the Fill image and squished on the Handle (Figure 10-23).

Figure 10-23. The stretched BlueButton sprite

For this image, you will use Unity’s slicing feature. Also known as 9 slice, it defines the region of
the image that will be allowed to stretch, allowing the corners to retain their original pixel size.

1. Select the BlueButton sprite in the Project view.

2. Open the Sprite Editor.

Because Sprite Mode is set to Single, the editor opens with the slice
guides, thin green lines, around the outside the image.

3. Click and drag on the guide grips to adjust their positions so that the
Borders are all 12 pixels each (Figure 10-24).

390 CHAPTER 10: GUI and Menus

4. Click Apply and close the editor.

Before you can see the changes, you will have to update the Image Type in
the Image components.

5. Select the two objects and set their Image Type to Sliced.

6. Inspect the changes in the Scene or Game view.

This time, the corners are held and the center is stretched (Figure 10-25).

Figure 10-24. The sliced BlueButton sprite

Figure 10-25. The Slider parts with the sliced texture holding the corners

In case you are wondering why the Handle remains squashed looking, consider the sprite’s
size, 32 pixels. If the borders take up 24 pixels (12 and 12), and the handle uses less than
24, the remaining pixels must be squashed to fit.

Let’s put a more interesting texture on the Fill image to see how the Slider behaves at
runtime.

391CHAPTER 10: GUI and Menus

1. Select the Fill child and assign DiagonalStripes sprite texture as its
Source Image.

This image also stretches, but slicing will not solve the problem. This time
you will set it to tile.

2. In the Image component, change its Image Type from Simple to Tiled.

The texture is tiled to fit the object.

3. Click Play and move the Slider.

The Fill image changes size, but the mapping remains intact (Figure 10-26).

Figure 10-26. The Difficulty Slider’s Fill holding its mapping as the value changes

Background Management
Next you will add a background image to give the Start Menu a bit more appeal by hinting at
the game play and environment. Once you move away from the centered anchor option, it
becomes more important to do your initial setup in your target aspect ratio.

1. Stop Play mode.

2. Set the Game view to the 16:9 aspect ratio.

3. From the UI section, create a new Image object and name it Menu
Background.

4. Drag the new image up to the top of the Canvas group so it will be
drawn first, or in back of the rest of the objects.

5. Load the SplashStart sprite in as its Source Image.

6. Snap its sides to the Canvas’s sides.

7. Leave the Anchors at Middle/Center.

8. Try adjusting the Game view to see how the background holds up in
a few different aspect ratios (Figure 10-27).

392 CHAPTER 10: GUI and Menus

The background scales to fit the height as per the Canvas Scaler, and the sides are cropped.

Adding a title will be more challenging. The place to start is with the smallest resolution you
plan on supporting. Currently, the Lumia 520 phone, one of the top-selling phones of any
OS, supports 854 × 480 pixels. To make testing easier, you will set up a couple of custom
resolutions for the Game view. Be aware that these custom resolutions will be a new part of
your editor layout and are not stored in the project.

1. Click the plus icon at the bottom of the Game view’s aspect drop-
down and add the following (Figure 10-28):

Lumia 520, 854 × 480

720p, 1024 × 720

1080p, 1920 × 1080

Surface Pro, 3:2, 2160 × 1440

Figure 10-27. Three different Game view aspect ratios: 6:9 (left), 3:2 (center), 5:4 (right)

Figure 10-28. Adding custom resolutions to the Game view

393CHAPTER 10: GUI and Menus

Next you will want to float the Game window so you can adjust the size and
change the settings unimpeded. To make it easier to return to your favorite
layout, you can save a custom layout first.

2. From the Layout drop-down at the upper right of the editor, select
Save Layout.

3. Name it something meaningful.

4. Click the Game view tab and drag it off the editor until it no longer
tries to dock itself.

5. Select your new layout from the Layout drop-down to see your saved
layout reset.

6. Tear off the Game view again.

For the title image, you will arrange the anchors halfway between center and full stretch.
This will allow for some increase of size, but not to the point of overpowering the Button and
Slider, which are retaining the same size independent of screen size.

1. Select the Lumia 520 resolution and make the view large enough to
see the correct resolution.

2. Create a new Image and name it Title Image.

3. Load the TipPuzzleTitle image in as its Source Image and set it to
Preserve Aspect.

4. In the Rect Transform, set the Z Rotation to 13.5.

5. Adjust the size until the image fits in the top-left corner (Figure 10-29).

Tip The Asset Store has many useful items, including one made specifically for testing different
sizes and resolutions. If you plan on seriously getting into the mobile market, be sure to check out
Flying Whale’s xARM.

394 CHAPTER 10: GUI and Menus

The image, the title of your little game, just isn’t as big and important as
you’d like to see it. Let’s use the Canvas Scaler to gain a bit more real
estate for the title.

6. Select the Canvas Scaler and set its Reference Resolution
to 1024 × 720.

The background image will require adjustment to compensate.

7. Set the Game view to the Lumia size and snap the background
image to the new Canvas borders.

The logical move might be to anchor the image to the top-left corner of the
Canvas at this point. but by pushing the anchors out to the bottom corner
of the existing UI elements, you can gain a little bit of scaling and keep the
picture larger.

8. Set the size, location, and anchors as per Figure 10-30.

Figure 10-29. The title image, crowded into the view

395CHAPTER 10: GUI and Menus

9. Check using the other resolutions to see how the title holds up
(Figure 10-31).

Figure 10-30. The title image with custom adjustment

Figure 10-31. Slight scaling of the Title image between the Lumia (left), 720p (center), and Surface Pro (right) screen presets

The anchors on the left are lined up with the left side of the Canvas, anchoring the image
to the left side as it scales. The right side anchors are a bit over halfway, so the image will
scale only about half of what it would if the anchors were all the way to the right side. With
Preserve Aspect turned on, the exact top/bottom numbers aren’t crucial as long as the Max
Y is near the top to anchor it from the top.

Let’s investigate how order in the Hierarchy view affects interaction.

1. Click Play and test the UI.

The Difficulty Slider works, but the Play button does not respond. The title
image, though transparent beyond the text, is blocking the button.

2. In the Hierarchy view, move the Title Image above the Play Button,
but below the Menu Background.

396 CHAPTER 10: GUI and Menus

3. Click Play and test again.

With the button and slider scaled down for the title image, it will be
important to increase the slider's pick area.

4. Select the Difficulty Slider and create a new Image GameObject
inside it

5. Name it Background Pick and move it above the original
Background object.

6. Adjust its size so it is larger than the other parts of the slider on the
sides and bottom and reaches almost to the Start Button at the top
(Figure 10-32).

Figure 10-32. Increasing the slider’s pick area with an Image

7. In its Color parameter, turn its Alpha value to 0.

Before you can script the button to open the Board Level, both scenes
must be added to the build. The first will go in at position 0 and will be
the first scene loaded when the built game is run. Scenes can be added,
removed and re-ordered from the build.

8. Save the scene.

9. From File menu, select Build Settings and click Add Current.

10. Close the Build Settings window.

The Start Menu has been added to the build.

397CHAPTER 10: GUI and Menus

Game Level GUI
With a few exceptions, the Game Level GUI is technically similar to the Start Menu’s GUI, so
you will be importing it as a Unity package.

1. Open the Board Level scene.

2. Import the GameLevelGUI.unitypackage from the Chapter 10
Assets folder.

3. Drag the Game Level GUI prefab from the Assets/Prefabs folder into
the Hierarchy view.

The new UI is nothing special, but it includes a check box and it also gets deeper into Text
component functionality. Just as with some of the Start Menu elements, these are anchored
to the sides. Some of the elements are allowed to scale slightly differently than the Canvas
Scaler handles. Let’s begin by checking the GUI at the target resolutions.

1. Set the Game view to the Lumia 520 setting.

2. If necessary, adjust the camera’s x, y, and z positions. Center the
game board in the viewport (Figure 10-33).

Figure 10-33. The imported Game Level GUI at the Lumia 520 resolution

As with the Start Menu, the smallest resolution should be where your
controls take up the most screen space.

http://dx.doi.org/10.1007/978-1-4302-6757-7_10

398 CHAPTER 10: GUI and Menus

3. Try the other preset screen sizes (Figure 10-34).

The GUI elements are a bit crowed at the narrower aspect ratios, but the controls have
shrunk just enough that they shouldn’t interfere with the board area where the action
happens. Before rushing off to shrink controls, remember that some are meant to be pressed
and must not be so small as to make touching ambiguous.

Before hooking up the Button functionality, you will create an animation with the Play
Again button to mark the Marble reaching the end of the path. Besides animating the usual
transforms, you can also animate the anchor points.

1. Select the Play Again Button in the Hierarchy view.

2. From the Window menu, open the Animation window and click the
Create button (Figure 10-35).

Figure 10-34. The Game Level GUI at three of the target size/aspect ratios

Figure 10-35. Creating a new Animation clip for the UI object

399CHAPTER 10: GUI and Menus

3. Name the new clip ButtonAni and create a new folder named
Animation Clips to store it in.

4. Click the time indicator up at the timeline and drag it to 1:00.

5. In the Scene view, move the Button to the center (watch for orange
guide lines) and in the Inspector, set its X and Y Scale to 2.

6. Now set its Anchors to the Middle/Center preset.

7. Drag the time indicator from 0:00 to 1:00 to see the animation.

8. Click the Animation’s Play button and observe the speed.

It is a bit slow.

9. Drag the top key (that will move all at that time location) at the 1:00
time to 0:4 and click Play again.

The animation is quicker.

10. Close the Animation window and check out the Play Again’s new
Animator component in the Inspector.

Creating the animation automatically added the Animator component and created an
Animator Controller for it named after the Button, Play Again Button.

Let’s continue the button's animation.

1. Click Play.

The Button animates to the center, over and over. Besides preventing a
looping animation, you will also have to stop the Button from animating on
startup.

2. Locate and select the ButtonAni clip in the Project view and
deactivate the Loop Time check box in the Inspector

3. With the Play Again Button selected, open the Animator tab, right-
click, and choose State ➤ Empty to create a new state.

Tip Double-clicking the Controller in an object’s Animator component will also open the Animator view.

 4. Right-click over it and choose Set As Layer Default State. Then name
it Default in the Inspector.

5. Click Play.

Now the Button will no longer play automatically on star up.

400 CHAPTER 10: GUI and Menus

There’s one last graphical thing to do. Let’s put a nice gradient into the background of the
Board Level. You will use a second Canvas so you can set it to draw behind the 3D scene:

1. Create a new Canvas object and name it Canvas Background.

2. Add an Image object to it and name it Background.

3. Drag BackgroundStrip in as its Source Image.

4. Set the anchors to the edge of the Canvas (Stretch/Stretch) and
scale the image out to them as well.

5. Set the Canvas Render Mode to Screen Space Camera.

The background drops behind the other UI objects.

6. Load the Main Camera in as the Render Camera.

In the Game view, the background drops behind the 3D objects.

7. Test the different screen sizes and aspect ratios to assure yourself
that it behaves well with any preset.

Hooking Up the Functionality
With the GUI elements in place and sizing correctly, it’s time to hook them up to the code
that feeds the displays. The health parameter is already in place but the game timer itself will
require a bit of scripting. Let’s take care of it first. From this point out, a lot of scripts will be
talking to each other, which means, of course, a lot of introductions as you identify them to
each other.

While manually doing a drag-and-drop into a parameter isn’t bad occasionally, it gets old
fast. Using GameObject.Find() is not bad if it happens only on load, but you can improve
upon it by using FindWithTag so it doesn’t have to go through all of the scene’s objects.
Creating a separate tag for each of the communicating objects would be overkill, but you
can improve efficiency with a few extra tags. You’ve already tagged the game pieces as
Game Piece. Let’s create a new tag for the script that will manage the Board Level UI:

1. Select any object.

2. At the top of the Inspector, open the Tag drop-down and select Add
Tag. Click the plus twice to create two new tags.

3. Name them HUD and Holder.

Making the Game Timer
The little game is already full of rewards and pitfalls to keep the player engaged during
the game, so your next task is to entice the player to want to play the game again and
again. A scoring system could be introduced by letting the player try to roll the Marble
through yet another type of game piece, but a better solution would be to use the time it
takes to complete the path as the incentive to Play Again. The timer itself is relatively easy.
Remember, Time.time returns the amount of time in seconds since the game was started.

401CHAPTER 10: GUI and Menus

In this case, you will be using Time.timeSinceLevelLoad because Time.time would be
returning time from the start of the entire game—that is, since the Start menu (once you have
it hooked up). You will also want to be able to start and stop the timer for various reasons, so
there will be a bit more scripting involved.

Let’s begin by creating a script to manage all of the game HUD:

1. Open the Board Level scene.

2. Create a new C# script in the Game Scripts folder and name it
GameHUD.

3. Add the following to access the Unity UI elements:

using UnityEngine.UI;

4. Add the following variables beneath the class declaration:

// timer variables
float elapsedTime; // need for starting and stoping timer
float startTime; //
bool ticking = false; // flag for timer active
string formattedTime; // float converted to nice string for display
public Text currentETime; // the elapsed time GUI

//health variables
internal int health = 10; // tracking health

The last line is for the health variable. Although it is tracked in the
MarbleManager script, as soon as the path is completed, the Marble is
deactivated, leaving the health variable inaccessible. Health is adjusted in
the PortalHopper script, so it will be easy to send updates to the GameHUD
script at the same time.

5. Create the function that will handle the timer’s state:

public void ToggleTimer (bool state) {
 ticking = state;
 if (state) startTime = Time.timeSinceLevelLoad - elapsedTime;
 else elapsedTime = Time.timeSinceLevelLoad - startTime;
}

This function is in charge of setting the state of the timer. Passing true
starts the timer, and passing false stops the timer. When you initially
start the timer, Time.timeSinceLevelLoad, the amount of time that has
passed since the level was loaded, is 0. As this is the first time it is started,
elapsedTime is also 0, so the first startTime will be 0. The current elapsed
time can always be calculated with Time.timeSinceLevelLoad - startTime.
After a pause, the game is started up again and the startTime recalculated.
The new startTime is the current Time.timeSinceLevelLoad minus the
elapsed time. Figure 10-36 may help you visualize the functionality.

402 CHAPTER 10: GUI and Menus

6. Start the timer from the Start function:

ToggleTimer (true); // call the function & start the timer
formattedTime = string.Format("{0:0}:{1:00}", 0, 0);

The second line initializes the time for use with the GUI. Using string.
Format, you define within the curly brackets, and the arguments 0, 0
replace the placeholders inside the brackets. Later, when you allow the
player to pause the game at will, that pause will be added in as well.

In the Update function you will break the time into seconds and minutes and
feed it into the same string format.

7. In the Update function, calculate the current elapsed time if the timer
is running:

if (ticking) {
 float timer = Time.timeSinceLevelLoad - startTime;
 int minutes = Mathf.FloorToInt(timer / 60F);
 int seconds = Mathf.FloorToInt(timer - minutes * 60);
 formattedTime = string.Format("{0:0}:{1:00}", minutes, seconds);
 currentETime.text = formattedTime; // update the GUI text
}

This code breaks the current elapsed time into seconds and minutes, and
then feeds the values into a string so that can be displayed by the GUI in
the Text component.

8. Save the script.

9. Create a new Empty gameObject and name it HUD Manager.

10. Drag the GameHUD script onto it and assign the HUD tag to it.

Figure 10-36. An example of the time code’s functionality

403CHAPTER 10: GUI and Menus

11. From the Canvas, locate the Timer Label’s Elapsed Time Value object
and drag it into the HUD Manager’s Current E Time parameter.

12. Click Play.

The timer ticks happily away but does not yet stop when the path has been completed.

The PathCellManager script contains the code that is played when the path is completed, so
it will have to tell the timer to stop at that time.

1. Open the PathCellManager script.

2. Add the following variable to identify the GameHUD script:

GameHUD gameHUD; // so the timer can be turned off at game end

3. In the Start function, add the following:

gameHUD = GameObject.FindWithTag("HUD").GetComponent<GameHUD>();

4. Near the top of the ProcessWinner function, add this:

// turn off timer
gameHUD.ToggleTimer(false);

5. Save the script.

6. Click Play and complete the path.

The timer stops nicely when the path is completed.

Now you will see about pausing the timer when the Marble escapes the board. Because the
player can trigger the event with wild board tipping, a little time penalty might be a good
deterrent, but because the physics may fail while the player is being careful, you wouldn’t
want to “charge” for the entire reset time. In this case, there will be a short lag time when
the Marble escapes until the reset is triggered, so the penalty will automatically be very
small. The reset is triggered in the DeathZoneReset script, but is actually handled in the
MarbleManager script.

1. Open the MarbleManager script.

2. Add the variable to identify the GameHUD:

GameHUD gameHUD; // so the timer can be turned off while resetting

3. At the top of the Start function, add the following:

gameHUD = GameObject.FindWithTag("HUD").GetComponent<GameHUD>();

404 CHAPTER 10: GUI and Menus

4. At the top of the IEnumerator DelayReset, add this:

// turn off timer
gameHUD.ToggleTimer(false);

5. At the bottom, below the SetToStart() line, add this:

// turn on timer
gameHUD.ToggleTimer(true);

6. Save the script.

7. Click Play and tip the board until the marble escapes.

The timer should now pause while the marble is being reset and start up again as it pops
into play.

Adding Health
Before hooking up health to the new GUI, you will want to have the PortalHopper script
update the value in the GameHUD script so it will be available even after the Marble has
been deactivated.

If the health had to be updated every frame, you could update the variable directly and add
the code to the Update function. But it has to be updated only after each score adjustment,
so you will call a function to handle the value change.

1. Open the PortalHopper script.

2. Add the variable to identify the GameHUD:

GameHUD gameHUD; // so the HUD can track health

3. In the Start function add the following:

gameHUD = GameObject.FindWithTag("HUD").GetComponent<GameHUD>();

4. In the OnTriggerEnter function, below the print(marbleManager.
health) line, add the following:

gameHUD.UpdateHealthGUI(health); // update and process health in HUD

5. Comment out the print line.

6. Save the script.

405CHAPTER 10: GUI and Menus

With the health now being updated in the GameHUD script, you can hook up its value to
both the Health Value and Health Bar objects:

1. Open the GameHUD script.

2. Add the following variables:

public RectTransform healthBar; // the Health Bar image's Rect Transform
public Text healthText; // The health value label
public Image imageColor;

For the Health Bar, you will be adjusting the Y Scale and changing the
image color. Because Scale is a transform, you will have to use the usual
process for setting its value. Note that you are asking for its local scale
values.

3. Create the UpdateHealthGUI function:

public void UpdateHealthGUI(int newHealth) {
 // health bar value
 health = newHealth;
 Vector3 tempScale = new Vector3(healthBar.localScale.x,healthBar.localScale.y,healthBar.

localScale.z);
 tempScale.y = health/20f;
 healthBar.localScale = tempScale;
 healthText.text = string.Format("{0}%", health);
}

4. Save the script.

5. Drag the Health Value object into the new Health Text parameter.

6. Drag the Health Bar into both the Health Bar and Image Color
parameters.

7. Click Play and test.

The text is kept up-to-date, and the bar scales according to that value.

Calculating the color change will be fairly easy. Out of a maximum of 20, if the Health is 5 or
less, the color will be red, warning the player that a hit by a Spinner will lose path progress.
If the value is over 15, the color will be green, indicating that path progress will be gained
when a gumdrop is hit.

Rather than hard-coding the colors, you will create a gradient and sample the color from the
corresponding location on it.

1. Continuing with the GameHUD script, add the following variable:

public Gradient gradient; // the Health Bar image's color source

406 CHAPTER 10: GUI and Menus

2. At the bottom of the UpdateHealthGUI function, add the following:

// Health bar color
imageColor.color = gradient.Evaluate(tempScale.y);

3. Save the script.

4. In the Game HUD component, double-click the gradient’s color bar
to open the Gradient editor.

The top side of the bar is for alpha values, and the bottom side is for color.

5. Set the first and last alpha channel markers to white, or 255, by
clicking them and then adjusting their values.

For the colors, click just above the bottom side of the color bar to create
new markers. You can move the newly created marker by dragging it or
typing in a location. You can set a different color by clicking the color
swatch for the selected marker and setting it in the usual Color Editor. Unity
limits you to eight markers for color and eight for alpha channel.

6. Set the colors as per Figure 10-37.

Figure 10-37. The health gradient, locations, colors, and their RGB values

7. In the GameHUD, initialize the new health display values in the Start
function:

UpdateHealthGUI(health); //initialize the health GUI

8. Save the script.

407CHAPTER 10: GUI and Menus

To test the functionality at this point, you could easily spend extra time avoiding spinners
and getting blown off course by the boosters. To be more efficient, you can turn off the game
pieces that will impede your testing.

1. Deactivate the Spinners and Boosters.

2. Click Play and accumulate enough points to register 20.

3. Turn on the Spinners and Boosters.

4. Test the bar’s behavior as the points go up and down.

The Health Bar provides improved feedback to keep the player apprised of the Marble’s health.

Pausing the Game
For the Pause toggle, you will be altering time with Time.scale in the GameHUD script.
Setting the time scale to 0 effectively stops game play, but at the same time allows the
player interaction with GUI controls.

There are some serious side effects of stopping Play mode while the timescale, is at 0 as
it does not automatically reset to 1 when you stop Play mode. This can prevent collider
states from resetting, yield statements from ending, and play havoc with anything using the
system clock. Fortunately, you will add a bit of code to prevent testing from being a painful
experience.

1. Open the GameHUD script.

2. Create the following variable:

// flag for pausing game
bool isPaused;

3. Add the following function to toggle time:

public void PauseToggle () {
 if (isPaused) {
 print("Unpaused");
 Time.timeScale = 1.0f;
 isPaused = false;
 }
 else {
 print("Paused");
 Time.timeScale = 0.0f;
 isPaused = true;
 }
}

To turn the timescale back on in case you stop Play mode during a pause, you
will use OnApplicationQuit, and then check to see whether it was the editor.

408 CHAPTER 10: GUI and Menus

4. Add the following function to make sure timescale gets reset:

public void OnApplicationQuit() {

 Time.timeScale=1; // always reset timeScale on exit

 }

5. Save the script.

With the previous UI objects, you used scripting to update their various parameters to match
the game’s state. This time, because the toggle is interactive, the player will change the
game’s state. To call a function from a UI object, you will make use of the Toggle
component’s On Value Changed flag. Unlike most of Unity, where you would have to create
a script to hold an OnValueChanged function, the UI system lets you create the event in the
object’s GUI component, select the object with the script component you want to call, and
specify the method or function within it.

 1. Select the Pause toggle/check box object.

2. In the Toggle script component, deactivate the Is On parameter (just
above the Toggle Transition parameter) so it will be off on startup.

3. In the Toggle component, at the bottom, click the plus icon to create
a new On Value Changed event if there isn’t one already there from
the package import (Figure 10-38).

Tip Any functions or methods called from an On Click event must be made public.

Figure 10-38. Creating an event for a Unity UI component

4. If it isn’t already set to Runtime Only, change that option now to
avoid future problems with TimeScale and other issues.

5. Drag the HUD Manager object from the Hierarchy view to the Object
field of the new event. Warning: do not drag this from your Project
view. This must be from the Hierarchy window as you need an actual
game object instance in your scene to call this code on.

409CHAPTER 10: GUI and Menus

6. From the Functions drop-down, choose GameHUD ➤ PauseToggle()
(Figure 10-39).

7. Click Play and tilt the board.

8. Click the Pause toggle.

The timer stops, and the animations and physics stop.

9. Click the Pause toggle again.

Everything picks up where it left off. In case you hadn’t noticed, however,
player input was not paused. This makes sense if you think about it. If
the player couldn’t interact with the GUI, how could he start the game up
again? The problem appears when you try to drag in the view to tip the
board. Because click-and-drag is more of a UI-type input, it is still active!
Not only that, but now the game may freeze up if the board is tipped.

Figure 10-39. Loading the method to call when the toggle’s state is changed

410 CHAPTER 10: GUI and Menus

10. Pause the game again.

11. Click and drag in the Game view.

The board tilts as before, but the Marble remains where it was when the game was paused.
The simplest solution is to create a flag for the OnMouseDrag function. You might think that
you can stop the contents of a script from being evaluated if you were to disable it, but the
only thing that disables is its Start function.

Let’s see about setting a flag to prevent user interference during a pause.

1. Open the TiltBoard script.

2. Add the following variable:

internal bool allowTilt = true; // flag for pausing tilt

3. At the top of the OnMouseDrag function, add the following:

if (!allowTilt) return;

4. Save the script.

5. In the GameHUD script, add the following variable to access the
TiltBoard script:

public TiltBoard tiltBoard;

6. Inside the TogglePause function, comment out the print("Unpaused")
line and add the following beneath it:

tiltBoard.allowTilt = true;

7. Comment out the print("Paused") line and add the following
beneath it:

tiltBoard.allowTilt = false;

8. Save the script.

9. Assign the Board Group object to the HUD Manager’s new Tilt Board
parameter.

10. Click Play and test the tilt blocking during a pause.

This time, the board doesn’t budge during the pause. Blocking user input
during a pause also prevents issues with pausing during a reset.

With the Board Level fairly functional, it is time to add it to the build and
think about changing levels or scenes.

11. Stop Play mode and save the scene.

12. Open the Build Settings window and click Add Open Scenes.

411CHAPTER 10: GUI and Menus

With both scenes added to the build, you are ready to let the player restart the game either
during or after completion of the path.

Encouraging Another Game
To entice the player to restart the game, you will trigger the Play Again Button’s animation
when the player has completed the path. The PathCellsManager script knows when that
happens. It will have to have contact with the Play Again Button’s Animator component so it
can trigger the animation.

1. Open the PathCellManager script.

2. Add the following variable:

public Animator buttonAni; // button's animator component

3. In the ProcessWinner function, under the // show menu line, add this:

buttonAni.Play("ButtonAni");

4. Save the script.

5. Drag the Play Again Button onto the Path Manager’s new Button Ani
parameter.

6. Click Play and complete the path.

The Button zips to the middle of the screen and comes to a stop.

When the player clicks the button, the Start Menu scene should load. It doesn’t matter
where you add this code, as it will be accessed through the Button’s event system. Logically,
it will make the most sense to put it with the rest of the HUD code.

In older versions of Unity, you changed levels by using Application.LoadLevel. This has
been changed to SceneManager.LoadScene and requires another library.

1. Open the GameHUD script and near the top, add the following:

using UnityEngine.SceneManagement;

2. Add the following functions:

public void StartMenu () {
 // restart
 SceneManager.LoadScene ("Start Menu");
}

public void PlayAgain () {
 // restart
 SceneManager.LoadScene ("Board Level");
}

3. Save the script.

412 CHAPTER 10: GUI and Menus

With SceneManager.LoadScene, you can use either the scene’s build index number or its
name. You’ve already added the two scenes to the build, but will eventually add a preload
scene to make data retention go smoother. By using the level name, you can add an earlier
level without having to change the script. To call the function, you will add an event to the
Button’s On Click behavior.

1. Select the Play Again Button in the Hierarchy view.

2. Create a new On Click event and drag the HUD Manager in as the
Object.

3. Select the GameHUD’s PlayAgain() as the function.

4. Save the scene.

5. Click Play and pick the button when the path has been completed.

The Board Level is loaded.

6. Stop Play mode and repeat the procedure with the Main Menu
button calling the StartMenu function.

7. Test the Main Menu button.

Now, of course, you will want to head back to the Start Menu and hook its Play button up to
the Board Level.

Finishing the Start Menu
Earlier in the chapter, you created a simple start screen. It currently consists of a Play Game
button and a Difficulty Slider. When the game has ended, the player can return to the Start
menu when the Play Again button is pressed. This allows the player to change the difficulty if
desired.

Loading the Board Level
As you know already, loading the Board Level is easy. Retaining data between levels is a bit
trickier than it sounds. Let’s begin by creating a script to manage the Start Menu’s GUI.

1. Open the Start Menu scene.

2. Create a new Empty gameObject named Game Manager.

3. Create a new C# script named GameManager.

4. Add it to the new gameObject.

413CHAPTER 10: GUI and Menus

5. Add the following at the top of the script:

using UnityEngine.SceneManagement;
using UnityEngine.UI;

6. Add the following function for the Play Button:

public void LoadGameLevel () {
SceneManager.LoadScene ("Board Level");
}

7. Save the script.

8. Select the Play Button and click the plus sign to add a new On Click
event to it.

9. Drag the Game Manager in as the object and from GameManager,
select the LoadGameLevel() function.

10. Save the scene.

11. Click Play and press the Play button.

The Board Level scene starts.

12. Stop Play mode to return to the Start Menu scene.

Retaining Data Between Levels
For the Difficulty Slider, you will have to retain the setting the player has chosen when the
level changes. To do this, you add an Awake function with DontDestroyOnLoad(). The problem
is that if you are going back and forth between level and menu, you will soon have several
duplicates of the object. The trick is to check for the existence of the object you want, and to
either delete extras or instantiate a new one depending on what was found. The code is a bit
confusing, but keeping data persistent between levels/scenes is a necessity in most games.

1. In the Start Menu scene, create an Empty gameObject and name it
Holder.

2. Assign the Holder tag to it.

3. Create a new C# script, name it Persistent, and add it to the Holder
object.

4. Add the following variables:

private static Persistent instanceRef;

414 CHAPTER 10: GUI and Menus

5. Add the Awake function:

void Awake () {
 if(instanceRef == null) {
 instanceRef = this;
 DontDestroyOnLoad(gameObject);
 }
 else {
 DestroyImmediate(gameObject);
 }
}

This code checks to see whether it already exists in the scene and if so,
deletes itself (its parent object).

6. Drag the Holder gameObject into the Prefabs folder to create a
prefab of it.

Next you will create the script that will pull in the prefab if it is not there already:

1. Create a new script and name it PersistentChecker.

2. Add the following variable:

public GameObject holder;

3. Add the Awake function:

void Awake () {
 if (!GameObject.FindWithTag("Holder")) {
 holder = Instantiate(holder);
 holder.name = "Holder";
 }
}

4. Save the scripts and the Start Menu scene and open the Board Level.

Now you will create the means of checking for the presence of the Holder object.

1. Create a new Empty gameObject and name it Check for DDLs.

2. Drag the new PersistentChecker script onto it.

3. From the Prefabs folder, load the Holder prefab into its Holder field.

4. Drag the Check for DDLs object into the Prefabs folder and save the
scene.

5. Click Play and go back and forth in the levels, watching for the
Holder object.

The Holder object appears in each scene as an addition to the regular scene (Figure 10-40).

415CHAPTER 10: GUI and Menus

Now you can add the slider data to the Persistent script, share it with the GameManager
script, and then make use of it in the Board Level:

1. Add the following variable to the Persistent script and save the script:

// make this data available to all levels
internal int difficulty = 3; // the level of difficulty value

2. Open the Start Menu scene and open the GameManager script.

3. Add the following variables:

public Slider slider; // access for the slider
Persistent persistent; // object that carries the difficulty values throughout levels

4. In the Start function, locate the Holder object and its Persistent
component:

persistent = GameObject.FindWithTag("Holder").GetComponent<Persistent>();

5. Apply the stored difficulty value to the slider value in the Start function:

slider.value = persistent.difficulty;

So far, the player can change the Slider’s value, but it has yet to be associated
with the difficulty variable. To track when it has been changed, you will create an
UpdateSliderValue function and access it from the Slider’s event system.

Figure 10-40. The Holder object persistent through both levels

416 CHAPTER 10: GUI and Menus

1. Add the following UpdateSliderValue function:

public void UpdateSliderValue () {
 // get the slider value and update difficulty in the Persistant script
 if(persistent) {
 persistent.difficulty = (int)slider.value;
 }
}

2. Save the script.

3. Drag the Difficulty Slider onto the Game Manager’s new Slider
parameter.

4. Select the Difficulty Slider in the Hierarchy view.

5. Add a new event to the OnValueChanged section.

6. Drag the GameManager in as the Object and select the
GameManager’s UpdateSliderValue() as the function.

Now is a good time to finish up the slider functionality.

7. Set the Min Value to 1, the Max Value to 5, activate the Whole
Numbers check box, and set the (starting)] Value to 3.

8. Save the scene and then test to see that the slider retains the values
you set between levels.

The difficulty value will be used in the Board Level when that level has been loaded. It will
be used to change the Spinner and Hopper settings to make game play more interesting.
Here, you will begin to use the Difficulty Slider’s value to affect the game play:

1. In the Traveler script, add the following variable:

Persistent persistent; // holds difficulty settings

2. At the top of the Start function, use the difficulty value to adjust
the Spinner speed according to difficulty:

persistent = GameObject.FindWithTag("Holder").GetComponent<Persistent>();
speed = 3 * persistent.difficulty + Random.Range(0,3);

With the new adjustment, speed as an integer will provide a more
noticeable variation when used in Random.Range.

3. Change the speed variable to an int, also removing the f from the 8,
and save the script.

If you wish, add a print statement at the bottom of the Start function to see the
assignments each time the Board Level is started.

417CHAPTER 10: GUI and Menus

In the Popper_Hopper script, the difficulty value will be used to affect the amount of time the
gumdrops will be present before popping to another location.

1. Open the Popper_Hopper script.

2. Add the following variable:

Persistent persistent; // holds difficulty settings

3. At the bottom of the Start function, add the following:

persistent = GameObject.FindWithTag("Holder").GetComponent<Persistent>();
onTime = (6 - persistent.difficulty) + Random.Range(0,3);

4. Once again, test the equation with the range of possible difficulty values.

5. Save the script.

6. Click Play and test the game. Change the difficulty value to the
extremes on each replay.

7. Tweak the adjustments in either script if you feel the results could be
improved.

Interacting with the GUI by Using a Gamepad
In case you have been worrying about how you are going to let your gamepad users
interact with your new GUIs, you will be happy to hear that Unity has already incorporated
the functionality for you. As you have seen in Chapter 5, many of the preset “virtual” input
controls already have a joystick version or, in the case of buttons (both keyboard and
mouse), “alternate” inputs. As a default, Unity has mapped the x and y (left stick) axes to
GUI navigation by using the Horizontal and Vertical inputs.

Let’s begin by checking out the default mapping to see how it behaves with your UI. The first
task is, of course, to plug in or activate (for Bluetooth) your gamepad.

1. Turn on or plug in your gamepad.

2. Open the Start Menu and click Play.

3. Tip the left stick up and down to see if anything happens.

No reaction is apparent. It turns out that there is one little setting you must
use to get the gamepad navigating the UI elements.

4. Stop Play mode and in the Hierarchy view, select the EventSystem
object.

Note the First Selected parameter’s value field. It requires a gameObject.

5. Open the Canvas and drag the Play Button into the EventSystem’s
First Selected field.

http://dx.doi.org/10.1007/978-1-4302-6757-7_5

418 CHAPTER 10: GUI and Menus

6. Click Play and tip the left stick up and down.

You should now see the Play Button highlight going off and on as the focus
changes.

7. When the Play Button is not highlighted, test the left and right
directions with the left stick.

This time the slider works. In case you are wondering at the choppy
movement, remember that its value maxes out at 5 and it is set to use
whole numbers.

The most obvious thing you have probably realized is that with gamepad
navigation, it will be quite important to set the Highlight parameter to
something other than white. Color Highlights are additive, whereas white is
ignored.

8. Stop Play mode and select the Difficulty Slider.

9. Set its Highlighted Color to something other than white.

10. Click Play and test the results.

The effect is pretty ugly. Let’s try using a different image for the Highlighted Color.

1. Stop Play and set the Difficulty Slider’s Transition to Sprite Swap.

2. Select the UI Assets folder, right-click, and choose Import Package
Custom ➤ Package.

3. From the Chapter 10 Assets folder, select RedButtonSprite and
click Import.

A nice, shiy, red version of the BlueButton is 9-sliced and ready to use.

4. Add the new RedButton as the Highlighted Sprite in the Difficulty
Slider component.

5. Click Play and test with the gamepad.

The new addition looks much nicer. It’s always a good idea, however, to
check the original functionality after a change.

6. Switch to the mouse, hover, and then drag the handle.

The handle reverts to blue during the drag.

7. Stop Play mode and add the RedButton to the Pressed Sprite field.

8. Click Play and test both navigation methods.

This time both methods work nicely. Now, of course, you are probably
wondering how to “press” a highlighted button. A quick check of the Input
Manager will reveal that Unity has mapped one of its two Submit inputs
with the Joystick 0 button, the A button on the gamepad.

http://dx.doi.org/10.1007/978-1-4302-6757-7_10

419CHAPTER 10: GUI and Menus

9. Cycle over to the Play button and press the gamepad’s A button.

The Game Level is loaded, but not yet hooked up to use the gamepad.

10. Stop Play mode and save the scene.

Now you will activate gamepad navigation with the Board Level and see whether it holds any
surprises.

1. Open the Board Level scene.

2. Select the EventSystem object, and from Game Level GUI ➤ Canvas
➤ Pause Label, drag the Pause object into the First Selected field.

3. Click Play and test the gamepad navigation.

4. While you are there, try using the up and down arrow keys.

It turns out, the Horizontal and Vertical axes that Unity uses for the UI navigation are already
being used to tip the board (from Chapter 6) . At this point, you need to make an executive
decision about the controls. Unity’s defaults will usually be fairly standard, but you should
change them if your game play will benefit from better controls. The board tilting requires
infinitely more finesse than cycling through UI elements, so you will switch the UI navigation
to the secondary stick, axes 4 and 5, and create a couple of new virtual inputs for the board
tipping.

1. Open the Input Manager.

2. Duplicate the second Horizontal element by right-clicking it and
selecting Duplicate Array Element.

3. Rename one of them Horizontal2.

4. Duplicate the second Vertical element the same way.

5. Rename one of them Vertical2.

6. In the Horizontal input, change the Axis from X Axis to 4th Axis
(Joysticks).

7. In the Vertical input, change the Axis from Y Axis to 5th Axis (Joysticks).

Tip The UI assignments for using the Vertical and Horizontal axes can be found in the
EventSystem’s Standalone Input Module component.

Having changed the names of the X and Y inputs, you will have to update
the Tiltboard script to match.

http://dx.doi.org/10.1007/978-1-4302-6757-7_6

420 CHAPTER 10: GUI and Menus

8. Open the Tiltboard script.

9. In the Update function, change "Horizontal" to "Horizontal2" and
"Vertical" to "Vertical2":

float xRotation = Input.GetAxis("Vertical2") * speed * Time.deltaTime;
float zRotation = -Input.GetAxis("Horizontal2") * speed * Time.deltaTime;

10. Save the script and test the new assignments.

Now the left stick controls the board tip, and the right-click controls the UI navigation.

The Pause check box/toggle should have a highlight, but using the RedButton for the
Highlighted state won’t be as good a choice visually as it was for the slider. This time, you
can try a simple opacity change for the check box.

1. Stop Play mode and select the Pause toggle.

2. Set its Normal Color to a medium darkish grey, RGB, 80, 80, 80 with
full opacity, 255.

3. Set its Highlighted Color to White with full opacity, 255.

4. Click Play and test by navigating off and on the Pause check box.

Now the Pause UI element is easier to identify when it has the focus. In
case you are wondering why Pause was selected as the First Selected, it is
so the player can toggle it off and on without having to first navigate to it.
The Main Menu and Play buttons don’t involve the same urgency as being
able to pause the game before getting hit by a marauding peppermint.

5. Stop Play mode and save the scene and the project.

With the simple GUI, the Start menu and the game controller working, in the next chapter
you will add a reward system that should entice the player to spend money to improve his
chances of an easy win.

Summary
In this chapter, you were introduced to Unity’s latest UI system, where you discovered that
GUI objects are similar to 3D objects in that they are made of components and actually exist
in 3D space. Upon switching the Scene view to the 2D option, you found that the GUI objects
can easily be snapped and aligned. A key feature, you discovered, is the anchoring system,
where the location of the four corner points dictate whether the object scales or retains its
location relevant to one or more of the screen’s borders. The Canvas Scaler component, you
learned, is a key factor in gracefully handling resolution and aspect ratio changes.

After changing the editor’s Default Behavior Mode to 2D, you were able to import the GUI
textures as Sprite types and learned that they can be singular or sliced into multiple images
for use with the various Unity UI components. As with previous Unity GUI systems, you
discovered that images for buttons and other backgrounds can take advantage of the 9-slice

421CHAPTER 10: GUI and Menus

technique that enables the borders of images to remain correct while the centers are scaled
to fit. With background images, you learned that it was advantageous to lock either the
width or height in the Canvas Scaler to crop rather than allow a nonuniform scaling.

After importing a Unity package for the Board Level’s GUI, you got some firsthand
experience with using the GUI component’s built-in event system to call existing functions.
With the game GUI in place, you proceeded to create a timer to put a bit of pressure on your
player, and then to expose the health point system to provide encouragement.

With the mobile platform in mind, you created a means to pause the game, discovering
that a pause does not affect the player’s input, only game physics and animation. Next, you
brought the Start Menu scene and Board Level together through SceneManager.LoadScene,
where you also learned how to make data persistent between menus and levels. And finally,
you got a first look at how Unity’s UI system can adapted for use with a game controller.

423© Sue Blackman and Adam Tuliper 2016
S. Blackman and A. Tuliper, Learn Unity for Windows 10 Game Development,
DOI 10.1007/978-1-4302-6757-7_11

Chapter 11
Rewards and Monetization
As it stands, your little game could be considered to be complete. In the early days of
computer games, you would shop it around and find a publisher who would then take care
of the box, marketing, and retailers to sell your game. You, as the developer, might see
around 5 percent of the retail price; for a $20 game (typical for an indie developer), that
meant 50 cents, or at most, a dollar. As the Internet became ubiquitous, it became possible
for indie developers to sell their own games online for half the retail price and cut out the
publishers. That also meant cutting out the marketing, so the number of units sold dropped
accordingly. Filling a need, Valve came up with Steam, an online publisher, or store, for
both their own games and approved games (meaning, they monitor the quality) from indie
developers as well.

When the mobile market became viable for indie developers, things changed once again.
The price for a game dropped, so our indie developer was back to that 50 cents or a dollar
or two per game. The difference, of course, was the market size itself being exponentially
larger. The publisher gave way to the “Store,” with Apple, Google, and Microsoft as the
shopkeepers for their respective platforms.

And then something interesting happened. Developers started to give their games away for
free and look for other ways to derive income from them. At first, it was as simple as giving
the first level away for free and then charging for subsequent levels. And then came in-app
purchases, or IAPs. The purchases could be anything from a new outfit for the character,
a better weapon, a more powerful spell, or even in-game currency to buy items as part of
the game play itself. The third monetization scheme, in-app advertisements in the form of
video ads, became possible when third-party companies saw the opportunity for ongoing
management of the placement and content of paid advertisements. If players watch the
complete ad, they usually get a reward. Better yet, the developer earns money for the player
watching and/or clicking though to act upon the advertisements.

The bottom line is that you, as the game designer, now must think about how monetization
is incorporated into your game. In this chapter, you will create an in-game store enabling
players to make purchases that make the game easier to win.

424 CHAPTER 11: Rewards and Monetization

In-App Purchases
To entice players to use your in-game “store,” you will make two perks available. The
first gives players the ability to move the banana boosters to a location of their choosing.
Because the boosters often are a hindrance as much as a help, this feature will be fairly
inexpensive. The big-price item will be a means for removing the peppermints from the
board. And, along with the two item-type purchases, you will also let players purchase the
game’s currency, tipCoins. To encourage players to keep playing, they will be rewarded with
tipCoins each completion of a game board. Bonus coins will be awarded for fast completion
times.

Persistent Data
Although storing player stats, purchases, and high scores (or low times, in this case)
somewhere on a server is beyond the scope of this book, you will at least be keeping track
of the current totals for the three items: the number of tipCoins in the player’s account,
the number of banana-moving opportunities the player has purchased, and the number of
peppermint removals purchased, The latter two will have to be adjusted as they are used.

Managing the New Data
The reward system will require several variables to keep track of the additional data. To
give the player a fun visual, the banana-moving functionality will be represented as a
wheelbarrow loaded with a banana peel. The peppermints will be crushed (destroyed) by the
weapon-wielding guard character from Chapter 4.

 1. Open the Persistent script.

 2. Add the following variables:

// keeping track of:
 internal float cash = 0f; // cash in pocket
 internal int wheelbarrows = 3; // usable banana movers
 internal int candyCrushers = 3; // usable peppermint crushers

 // rewards
 internal float winCash = 10f; // default win cash
 internal float timeBonus = 5f; // bonus for fast time
 private float timeThreshold = 100; // maximum seconds allowed for speed bonus

 // prices
 internal float wbPrice = 10f; // price per wheelbarrow/banana mover
 internal float crusherPrice = 75; // price per peppermint crushed
 internal float coinPrice = 0.99f; // the purchase price of tipCoins
 internal int coinAmount = 50; // how many coins you get

425CHAPTER 11: Rewards and Monetization

3. Add a function to calculate the tipCoins earned for winning the game:

public void CalculateWinCash (float winTime) {
 // a game has been won
 float bonusCash = 0;
 print (winTime + " < ? " + timeThreshold);
 if (winTime < timeThreshold) bonusCash += timeBonus;
 cash = cash + winCash + bonusCash;
 print ("cash in account = " + cash);
}

You will call the function each time the game is completed. In the function
that handles a completed game, the PathCellManager’s ProcessWinner
function, you will get the time from the GameHUD just after it stops the
timer. Then you will send it to be processed back in Persistent, where the
bonus will be added if the time was fast enough. The PathCellManager
script will need to be able to contact the Persistent script.

 4. Open the PathCellManager script and add the following variable:

private Persistent persistent;

 5. Assign the variable in the Start function:

persistent = GameObject.FindWithTag("Holder").GetComponent<Persistent>();

 6. In the ProcessWinner function, under the gameHUD.ToggleTimer line,
add the following:

persistent.CalculateWinCash(gameHUD. GetGameTime ());

 7. In the GameHUD script, create the new GetGameTime function that
returns the current elapsed time:

public float GetGameTime () {
 float endTime = Time.timeSinceLevelLoad - startTime;
 return endTime;
}

 8. Open the Board Level scene.

 9. Save the scripts and deactivate the Spinners and Boosters if you
wish.

10. Test by winning a few games both slowly and quickly, checking the
status line when you do so.

Tip Remember, the bonus time threshold is 100 seconds, and the game is showing minutes and
seconds, so a slow speed would be over 1:40.

426 CHAPTER 11: Rewards and Monetization

The player should be encouraged to play again, so you will want to show him his current
stash of tipCoins, and later, the number of wheelbarrows and crushers he has available.

 1. From the Chapter11 Assets folder, import the GUIExtras.
unitypackage.

 2. In the Hierarchy view, expand the Game Level GUI so you can see
the Canvas object.

 3. From the Prefabs folder, drag the Rewards Panel prefab onto the
Canvas.

You should now have a nice little collection of labels, buttons, and toggles to keep your
player up-to-date (Figure 11-1).

Figure 11-1. The new rewards and monetization GUI objects

The new GUI objects will be managed from the HUD Manager’s GameHUD script.

 4. Add the following variables to the GameHUD script:

//GUI
public Text cashValue;
public Text barrowCount;
public Text crusherCount;

Persistent persistent;

427CHAPTER 11: Rewards and Monetization

 5. Find and assign persistent in the Start function:

persistent = GameObject.FindWithTag("Holder").GetComponent<Persistent>();

 6. Save the script and assign the corresponding GUI objects (TC Value,
Count B, and Count C) to the Game HUD’s new parameters.

 7. In the PathCellManager script, in the ProcessWinner function, under
the persistent.CalculateWinCash line, add this:

gameHUD.UpdateTipCash();

 8. Back in the GameHUD script, add this function:

public void UpdateTipCash () {
 cashValue.text = persistent.cash.ToString();
}

As long as you’re in gameHUD, let’s update the cash label on start of the
level as well.

 9. In the Start function, after persistent has been assigned, add a call
to the new function:

UpdateTipCash();

10. Comment out the print statement in Persistent’s CalculateWinCash
function.

11. Save the scripts and the scene and test the number of tipCoins the
player is earning on completing the path.

Creating the Purchased Functionality
Before creating the store, you will add the functionality that lets the player move the bananas
and call the guard out to get rid of peppermints. For the two scenarios, you will have a
chance to use a couple of valuable Unity techniques. The banana movers will make use of
converting cursor position to world space. The Guard will give you a chance to direct an
animated character.

428 CHAPTER 11: Rewards and Monetization

Moving Bananas
The bananas will be moved around the board with a click and drag by the user. The first
thing to do is to try some test picks on the bananas. You can begin by using a Destroy as it
is the quickest and most obvious way to see whether the pick is working (and more fun than
a print statement).

 1. Open the Board Level scene and activate the Banana Peels if you
had turned them off.

 2. Open the HotSpotBoosters script.

 3. Add an OnMouseDown function:

void OnMouseDown () {
 Destroy(gameObject);
}

 4. Save the script and try picking the bananas.

Nothing happens.

Realistically, rearranging game pieces should probably be done with the
pause on.

 5. Hit Pause, and try picking again.

Again, no response.

The issue here is that you have two big colliders intercepting the picks.
Let’s identify the colliders.

 6. Turn off 2D mode and select the Board Group.

The blue gizmos are audio, so you can ignore them or turn the icons off
under Gizmos. The Board Group has a large Sphere Collider for tilting the
board and the Live Zone (a child of the Board Group) also covers quite a bit
of real estate.

 7. Stop Play mode, turn off the two object’s, colliders, and test again.

This time, the picked bananas disappear. Pick works when the Board
Group and Live Zone colliders are off. You can turn them off in the
GameHUD’s PauseToggle function.

 1. Delete the OnMouseDown function.

 2. Open the GameHUD script.

 3. Add the two variables:

public Collider boardGroupCollider;
public Collider liveZoneCollider;

429CHAPTER 11: Rewards and Monetization

 4. In the PauseToggle function, turn them on at the top of the if clause
(where the pause is turned off) and on at the bottom of the Else
clause:

public void PauseToggle () {
 if (isPaused) {
 boardGroupCollider.enabled = true;
 liveZoneCollider.enabled = true;
 //print("Unpaused");
 tiltBoard.allowTilt = true;
 Time.timeScale = 1.0f;
 isPaused = false;
 }
 else {
 //print("Paused");
 tiltBoard.allowTilt = false;
 Time.timeScale = 0.0f;
 isPaused = true;
 boardGroupCollider.enabled = false;
 liveZoneCollider.enabled = false;
 }
}

 5. Save the script and assign the two objects to the two new variables
and turn their colliders back on.

 6. Test and try picking some of the tiles on the board.

Back in Chapter 7, when you were creating the paths, the tiles responded to picks. You
added FIXME comments to remind yourself to address this functionality later. The BaseCells,
PathCells, and PathCellManager scripts all have FIXMEs. Fixme (case is unimportant in the
keyword) can be used to store tasks through // Todo and // Fixme, which then will appear
in the task view of MonoDevelop, Xamarin Studio, and Visual Studio. Let’s see about finding
the FIXME commented code and disabling it.

 1. Open the scripts and use the Search option to look for FIXME.

 2. Comment out the sections marked with FIXME in the
PathCellManager script and the entire OnMouseDown functions in the
other two.

The next issue that may crop up is an odd one. If you stopped Play mode while Pause was
on, the colliders you had turned off during the pause have not been reset! If you start the
game again, the board will not tilt. Whether it is related to the timescale code or something
else, for testing purposes, you will want to make sure the colliders are properly reset.

The most logical solution would be to initialize the objects in the Start function of the same
script that turns them off and on during game play, the GameHUD script. But there’s a
problem with that. If the object with the collider has not yet been loaded into the scene, its
state will not be changed.

430 CHAPTER 11: Rewards and Monetization

Although you could add the code to the objects individually, keeping it on the GameHUD
script will give you a chance to investigate the script execution order. If the GameHUD script
was evaluated last, the other objects should have time to load. Let’s test the collider states
to see what is happening:

 1. Click Play and then stop while in pause mode.

The two colliders, from Board Group and Live Zone, will probably be off.

 2. Click Play and check the two colliders.

Their states have not been reset. You are not able to tip the board.

 3. At the bottom of the GameHUD script’s Start function, add the
following:

//reset collider states
boardGroupCollider.enabled = true;
liveZoneCollider.enabled = true;

 4. Save the script.

 5. From the Edit menu, choose Project Settings ➤ Script Execution
Order.

 6. Drag the GameHUD script onto the Default Time box.

The GameHUD script automatically is assigned a time of 100 milliseconds
after the default time (Figure 11-2).

Figure 11-2. The GameHUD script set to execute after the default time

431CHAPTER 11: Rewards and Monetization

 7. Change the time to -100 and watch the result (Figure 11-3).

Now the script shows above the Default Time so it will be executed first.

 8. Set the time back to 100 and click Apply.

 9. Test the results by stopping the game in Play mode, and checking
the two colliders.

They probably will be off when you exit Play mode.

10. Click Play again and check the two colliders after the marble has
dropped.

This time they should be properly turned on.

Now would be a good time to once again start thinking about the differences between
mobile and desktop platforms. With no mouse in mobile platforms, you might think that
there is no OnMouseDown. Unity actually implemented functionality to allow touch to work with
mouse down, but does not recommend it. In keeping with Unity’s recommendation, you will
use the mouse while authoring, but the code will also be able to handle touch. Rather than
using OnMouseDown, you will detect mouse button activity in the Update function and send it
on to a touch-handling function.

 1. Create a new script, PlayerMovable.

 2. Add the following variables:

private bool isDragging = false;
private Camera theCamera;
private Transform currentBananaPeel;

 3. In the Start function, find the camera:

theCamera = Camera.main;

Figure 11-3. The GameHUD script set to execute before the default time

432 CHAPTER 11: Rewards and Monetization

 4. In the Update function, add the preliminary touch code:

 // Handle native touch events
 foreach (Touch touch in Input.touches) {
 HandleTouch(touch.fingerId, touch.position, touch.phase);
 }

This code checks for a touch event. Touches may include more than one
finger, so the event is stored in an array. fingerId tells you the finger (ID 0 is
the first touch). Touch also includes the screen position, touch.position.

 5. Also in the Update function, add the following:

// Simulate touch events from mouse events
 if (Input.touchCount == 0) {
}

On a desktop, unless you are using a touchscreen-enabled monitor, touch.
count will always equal 0, so now you can check for mouse button events.

 6. Add the mouse button code inside the conditional:

if (Input.GetMouseButtonDown(0)) {
 HandleTouch(10, Input.mousePosition, TouchPhase.Began);
}
if (Input.GetMouseButton(0)) {
 HandleTouch(10, Input.mousePosition, TouchPhase.Moved);
}
if (Input.GetMouseButtonUp(0)) {
 HandleTouch(10, Input.mousePosition, TouchPhase.Ended);
}

Button 0 is the left mouse button. Note that the code is all redirected to the
touch-handing function, HandleTouch, along with the equivalent TouchPhase
type, Began, Moved, and Ended.

 7. Add the HandleTouch function:

private void HandleTouch(int touchFingerId, Vector2 touchPosition, TouchPhase
touchPhase) {
 switch (touchPhase) {
 case TouchPhase.Began:
 // mouse down or finger touch
 print("touch down");
 break;
 case TouchPhase.Moved:
 // mouse or finger moving
 print("moving");
 break;

433CHAPTER 11: Rewards and Monetization

 case TouchPhase.Ended:
 // mouse or finger up
 print("mouse up");
 break;
 }
}

The switch statement allows you to avoid using nested if statements.

 8. Save the script and add it to the HUD Manager.

 9. Click Play and test the pick, checking the status line or console as
you do so.

So far, the code is quite generic. The next step is to get it to react only when there is a
Banana Peel under the initial pick or touch. For that, you will use a raycast. The HandleTouch
function will be casting rays into the scene from the screen-space mouse or touch location.

In the TouchPhase.Began case, the raycast looks for an object named Banana Peel. When it
finds one, it assigns it as the current dragging object and turns on the isDragging flag.

In the TouchPhase.Moved case, the raycast looks for the Board Surface object (you will create
it shortly). If it finds it, the Banana Peel is moved to the intersection of the raycast and Board
Surface.

In the TouchPhase.Ended case, the isDragging flag is set to false.

 1. At the top of the HandleTouch function, declare the raycast variables:

Ray ray = theCamera.ScreenPointToRay(touchPosition);
RaycastHit[] hits;
int i = 0;

The first line also calculates the ray by using the mouse down or touch
location passed into the HandleTouch function.

 2. In the TouchPhase.Began case, identify the Banana Peel hit and start
the isDragging flag:

case TouchPhase.Began:
 // mouse down or finger touch
 print("touch down");
 hits = Physics.RaycastAll(ray);
 while (i < hits.Length) {
 RaycastHit hit = hits[i];
 if (hit.collider.name == "Banana Peel") {
 isDragging = true;
 currentBananaPeel = hit.collider.transform;
 return;
 }
 i++;
 }
 break;

434 CHAPTER 11: Rewards and Monetization

 3. At the top of the TouchPhase.Moved case, add the following :

if(!isDragging) return;

 4. At the top of the TouchPhase.Ended case, add this:

isDragging = false;

 5. Due to a change in Unity’s duplication naming, make sure all three of
your Banana Peels are named Banana Peel.

 6. Save the script and test.

If you were over a Banana Peel when you clicked, the console should show the
“moving” printout. Otherwise, there will be no message until you mouse-up.

Now that you can see your code recognizing the Banana Peels, you can
reposition them. The raycast code is similar, but this time it looks for an
intersection with the Board Surface object (you will create it shortly) and
then moves the Banana Peel to the hit point.

 7. In the TouchPhase.Moved case, below the return line, add the
following:

hits = Physics.RaycastAll(ray);
 while (i < hits.Length) {
 RaycastHit hit = hits[i];
 if (hit.collider == boardSurfaceCollider) {
 Vector3 temp = new Vector3 (currentBananaPeel.position.x
,currentBananaPeel.position.y, currentBananaPeel.position.z);
 temp = hits[i].point;
 currentBananaPeel.position = temp;
 }
i++;
}
break;

Each hit is checked for a collision with the Board Surface object’s collider (one of
the pieces of info stored by RaycastHit). A temporary Vector3 variable is created
to hold the current transform of the object that has this script.The hit point
location is assigned to the temp variable, and the object is set to the new location.
The While loop continues through the array incrementing the i variable.

 8. Feel free to comment out any leftover print statements.

Tip Alternatively, you could use hit.collider.name.StartsWith(“Banana Peel”) or
.Contains(“Banana Peel”).

435CHAPTER 11: Rewards and Monetization

Before you test the new code, you will have to create the Board Surface. The board is
actually lower than the board tiles, so you will create a simple quad to intercept the rays.
It will have a Mesh Collider and, as a bonus, it will also prevent the player from moving the
bananas off the tile grid. The quad’s collider will have to be turned off during regular play, or
the Marble will not be able to roll smoothly across the board.

 1. From the 3D Object submenu, create a quad and name it Board
Surface.

 2. Rotate it 90 degrees on its x axis to align with the board and then
scale it to match the tiled area (about 20 × 20).

 3. Position it about the same height as the top of the tiles (Figure 11-4).

Figure 11-4. The Board Surface object aligned with the top of the tiles

 4. Turn off its Mesh Renderer component and put it into Board Group.

 5. In the GameHUD script, add a variable for the Board Surface’s
collider:

Collider boardSurfaceCollider;

 6. Find and assign it in the Start function:

boardSurfaceCollider = GameObject.Find("Board Surface").GetComponent<Collider>();

 7. Turn it off in the TogglePause’s if(isPaused) clause:

boardSurfaceCollider.enabled = false;

436 CHAPTER 11: Rewards and Monetization

 8. And turn it on in the else clause:

boardSurfaceCollider.enabled = true;

 9. Save the script.

The Board Surface’s collider also has to be added to the PlayerMovable
script.

10. In the PlayerMovable script, add a variable to hold the Board
Surface’s collider:

public Collider boardSurfaceCollider;

11. And Find and assign it in the Start function:

boardSurfaceCollider = GameObject.Find("Board Surface").GetComponent<Collider>();

12. Initialize it with the other two colliders in the GameHUD script to
make sure its state has been reset at start-up:

boardSurfaceCollider.enabled = false;

13. Save the scripts and test.

The player can now drag the Banana Peels around the board.

By adding one more conditional, you can restrict the functionality to pause mode only. The
entire Update function can be ignored if not in pause mode, so you will want a variable that
stores is current state.

 1. Add the following variable to the PlayerMovable script:

internal bool isPaused = false;

 2. At the top of the Update function, add the following:

if(!isPaused) return;

The GameHUD script manages the pause state, so it will have to tell the
PlayerMovable script anytime the pause state is changed. Both scripts are
on the HUD Manager object so it will be a quick find.

 3. In the GameHUD script, add the following variable:

PlayerMovable playerMovable;

 4. Assign it in the Start function:

playerMovable = GetComponent<PlayerMovable>();

437CHAPTER 11: Rewards and Monetization

 5. In the PauseToggle function’s isPaused clause, add the following:

playerMovable.isPaused = false;

 6. In the PauseToggle function’s else clause, add this:

playerMovable.isPaused = true;

 7. Save the scripts and test.

The Touch/mouse-down action is working well.

The next task is to allow only one “move” episode for each Barrow (Banana Peel
move event) purchased. As soon as the player clicks a banana, the available count is
decremented. The PlayerMovable script will need to make contact with Persistent to update
the count and to the GUI objects to update the count in the UI. Picks once the count has
dropped to 0 must be blocked.

 1. At the top of the PlayerMovable script, add the following:

using UnityEngine.UI;

 2. Add the following variables:

private Persistent persistent;
private Text barrowCount;

 3. Assign them at the bottom of the Start function:

persistent = GameObject.Find("Holder").GetComponent<Persistent>();
barrowCount = GameObject.Find ("Count B").GetComponent<Text>();

 4. In the TouchPhase.Began case, above isDragging = true, add this:

if(persistent.wheelbarrows == 0) return; // no more perks

 5. Below isDragging = true, add this:

persistent.wheelbarrows --; // decrement the perks
barrowCount.text = persistent.wheelbarrows.ToString();// update the UI

 6. Test the new pick functionality.

The count goes down, but still needs to be initialized in the GUI when the
level starts. Let’s handle that in the GameHUD.

 7. In GameHUD, add the following:

public void UpdateBarrow () {
 barrowCount.text = persistent.wheelbarrows.ToString();
}

438 CHAPTER 11: Rewards and Monetization

 8. And call it from the Start function:

UpdateBarrow ();

 9. Play and test the new functionality.

10. Feel free to test different numbers in the Persistent script.

Next you will want to prevent the player from accidently moving a banana. When the player
activates the banana-moving button (toggle, in this case), the “checkmark” (an outline)
should go on, indicating he is in moveable mode. Once you have access to the outline,
you can also disable the toggle and block the player from moving more banana peels if the
count reaches 0. The graphic for toggle objects is managed in the parent object’s Toggle
component, Wheelbarrows.

 1. In the PlayerMovable script, and the Game HUD script, add the
following variable:

private Toggle barrowToggle;

 2. Find and assign it in both Start functions:

barrowToggle = GameObject.Find("Wheelbarrows").GetComponent<Toggle>();

 3. In the TouchPhase.Began case, change the first condition to include a
check of the toggle’s state:

if(persistent.wheelbarrows == 0 || barrowToggle.isOn == false)
return; // no more perks or not activated

Once all of the bananas have been picked, the toggle should be disabled.

 4. Just above that section’s final return statement, add the following:

if (persistent.wheelbarrows == 0) barrowToggle.interactable = false;
// disable the toggle

And the toggle’s interactive state should be disabled if not in pause mode.

 5. In the GameHUD script, PauseToggle’s isPaused section, add the
following:

barrowToggle.interactable = false; // disable the toggle

 6. In the else section, add this:

if (persistent && persistent.wheelbarrows != 0) barrowToggle.
interactable = true; // enable the toggle if count not 0 and
persistent is in scene

439CHAPTER 11: Rewards and Monetization

The check for persistent was added to prevent an error on exit when the
line threw an error because the Holder object (with the Persistent script)
had already been removed from the scene.

 7. Disable the toggle in the Start function as well:

barrowToggle.interactable = false; // disable the toggle

 8. Save the scripts and test. Remember that you must turn the button
on before moving the Banana Peels.

 9. Change the initial Wheelbarrow count in the Persistent script and
test again to make sure it works in several scenarios, and then leave
it set to 3.

The banana functionality is reasonably well behaved under most situations. The trick now
will be adapting it for use with a gamepad.

Adapting the Banana Peel Move for a Gamepad
Let’s begin by assessing the gamepad’s functionality and then see what can be fed into the
touch code so you won’t have to duplicate the rest of the code. You will also want to take
care not to interfere with the basic UI navigation.

Touch or mouse-down is easy; you can use a button-down. The gamepad buttons 0 and 3
are already used for Submit/Enter and the Marble jump, respectively. Unity also premaps
button 1 as Cancel. Mouse-up signals a release of the Banana Peel and as such is key
functionality. For the drag functionality, you will be using the right bumper, or RB.

The main challenge is that there is no pointer, so there is no way get a position for either
clicking or dragging. For that, you will be creating a custom cursor, or pointer, that can be
moved around by the left stick. The board is already frozen during the banana move, so the
left stick is freed up for this additional functionality while the right stick continues to manage
the UI navigation.

The starting point for the mode occurs when the player clicks the Wheelbarrows button.
While the custom cursor is being moved around, you will use one image, and while it is
dragging a Banana Peel, you will use a version that is less opaque. This will help the player
to know when he has successfully picked up a Banana Peel.

 1. Make sure your gamepad is active.

 2. Choose GameObject ➤ UI ➤ Image to create an image.

 3. Name it Pointer. From the Rewards asset, load the WB_Pointer in as
its Sprite.

 4. Click Preserve Aspect and set the Width and Height of the Rect
Transform to 70.

 5. Duplicate Pointer, name it PointerWorking, and then drag it onto
Pointer so it becomes a child of Pointer.

440 CHAPTER 11: Rewards and Monetization

 6. Load the WB_Pointer Faded sprite in as its Sprite.

Now let’s see about making it move by using the gamepad.

 1. Create a new script and name it CustomPointer.

 2. Add the variable for adjusting the speed:

public float speed = 200f;

 3. In the Update function, add the code that moves the image:

transform.Translate (Vector2.right * speed * Time.deltaTime * Input.GetAxis
("Horizontal2"));
transform.Translate (Vector2.up * speed * Time.deltaTime * Input.GetAxis
("Vertical2"));

 4. Save the script and add it to the Pointer object.

 5. Click Play and manipulate the left stick.

The sprite moves, as does the board. Let’s try moving it during a pause.

 6. Navigate to the Pause toggle and click the A button to pause the
action.

 7. Now use the left stick to try to move the sprite.

Nothing happens because you are using Time.timeScale = 0 in the
GameHUD script to pause most of the action. Time.deltaTime is affected
because a 0 timescale means there is no delta (change). Fortunately, there
is an easy way to override it.

 8. In the two transform.Translate lines, change Time.deltaTime to
Time.unscaledDeltaTime.

 9. Save the script and test the sprite move during a pause.

This time, the board stays still and the sprite moves around when you use the left stick.

You may now be wondering whether there are also ways to override the 0 timescale pause
on animations. It turns out that there is a way to do so, and it is incredibly simple. Because
the animations on your game pieces are independent of the transforms you have scripted,
you can keep them animating during a pause.

 1. Stop Play mode and open the Prefabs folder.

 2. Select the Spinner and, in the Animator component, change Update
Mode to Unscaled Time.

 3. Click Play and pause.

Now the game pieces happily animate in place.

441CHAPTER 11: Rewards and Monetization

 4. Stop Play mode and set the Popper, Banana Peel, and Guard
prefabs to Unscaled Time if you wish.

Let’s get back to the pointer. Now that you know it can be moved with gamepad input, there
is another little issue that could use some attention. Using a 0 Dead value for the left stick is
great for the board tipping, but allows the Pointer to wander off when not in use. Increasing
the Dead value will stop the wandering, but cause lags while the input is in the Dead zone.
Ideally, you want to smoothly ramp up the speed that you are multiplying the input with, so
that it is smaller when the numbers are in the Dead zone and faster when they are not. If the
math involved in that type of calculation makes your head hurt, you’re in luck. Josh Sutphin
of Kickbomb Entertainment has a wonderful blog from his Triple Helix days explaining
the dead zone problem, a history of solutions, and, best of all, a nice bit of code that will
improve the gamepad stick experience in a few extra lines of code.

 1. In the Custom Pointer script, change the two transform.translate
lines in the Update function to the following:

float deadzone = 0.25f; // this will override the 0 value set in the Input
Manager
Vector2 stickInput = new Vector2(Input.GetAxis("Horizontal2"),
Input.GetAxis("Vertical2"));
if(stickInput.magnitude < deadzone)
 stickInput = Vector2.zero;
else
 stickInput = stickInput.normalized * ((stickInput.magnitude -

deadzone) / (1 - deadzone));

transform.Translate (Vector2.right * speed * Time.unscaledDeltaTime
* stickInput.x);
transform.Translate (Vector2.up * speed * Time.unscaledDeltaTime *
stickInput.y);

 2. Save the script and check out the huge improvement in Pointer
movement.

Let’s continue by hooking the Pointer functionality into the rest of the GUI.

 3. In the Custom Pointer script, at the top, add the following:

using UnityEngine.UI;

 4. Add a few more variables:

public Image pointer;
public Image pointerWorking;
public Toggle wheelbarrows;
bool isActive = false;
internal bool usingGamepad = false; // no gamepad available

The isEnabled flag is public, so the top-level functionality can be controlled
by the GameHUD’s pause functionality. The only time the pointer should be
visible and moving is during a pause.

442 CHAPTER 11: Rewards and Monetization

 5. In the Start function, check for a gamepad:

if (Input.GetJoystickNames().Length > 0)
 usingGamepad = true;

 6. At the top of the Update function, check for an active gamepad:

if (!usingGamepad || !isActive) return;

 7. Create the function that will manage the sprites’ visibility:

public void SetPointerState (int state) {
 switch (state) {
 case 0: // neither image rendered
 pointer.enabled = false;
 pointerWorking.enabled = false;
 break;
 case 1: // pointer rendered
 pointer.enabled = true;
 pointerWorking.enabled = false;
 break;
 case 2: // pointerWorking rendered
 pointer.enabled = false;
 pointerWorking.enabled = true;
 break;
 }
}

 8. Initialize the sprites to off in the Start function:

SetPointerState(0); // turn off both pointer images

 9. Create a function for the Wheelbarrow button to call when picked:

public void ActivatePointer (){
 if(!usingGamepad) return;
 isActive = true;
 SetPointerState(1); //temporary
}

The Wheelbarrow button can be picked only if the game is paused, so if the gamepad is in
use, for now, you can turn on the pointer here.

 1. Save the script and assign the Wheelbarrows toggle to the Pointer’s
new Wheelbarrows parameter.

 2. Select the Wheelbarrows toggle.

 3. Create a new OnValueChanged event.

 4. Drag the Pointer in as the Object.

443CHAPTER 11: Rewards and Monetization

 5. Select the CustomPointer script and its ActivatePointer() function.

 6. Click Play and test by pausing the board, navigating to the
Wheelbarrows toggle, and pressing the A key.

The Pointer sprite should now appear in the center of the screen.

 7. Use the left stick to move the sprite over a Banana Peel.

Having gotten this far into the process, your next task will be to use the A button on the
gamepad to pick up and drop Banana Peels. The two pointers’ Image components will be
turned off and on to let the player know the state of the Banana Peel.

 1. Open the PlayerMovable script.

 2. Add the following variables:

public bool usingGamepad = false;
public Transform pointer;
private Vector2 pointerPosition;

The pointer variable is so you can get its transform, and the pointer
position is the (x, y) format required by the touch code. In order to keep the
touch, mouse, and gamepad code from interfering, you can use a low-tech
means of checking to see whether the player is using a gamepad. Because
a desktop system can have a gamepad on and active while the player is
using a mouse, checking for the existence of a gamepad is not enough.

The logic is as follows: The focus starts on the Pause toggle. To get to the
Wheelbarrow toggle, the gamepad user must use the Horizontal2 axis to
get there. The check is performed only during the pause, so the impact is
minimal.

 3. At the top of the Update function, just below the if(!isPaused) line,
add the following:

if(Mathf.Abs(Input.GetAxis("Horizontal")) > 0.2f) {
 usingGamepad = true; //
}

Using Mathf.Abs gets the absolute value of the input, so both negative and
positive directions are checked at the same time. Remember, Horizontal,
not Horizontal2, input is used for GUI navigation.

 4. At the bottom of the Update function, add the code that finds the
location of the sprite cursor if the gamepad is in use:

if (usingGamepad) {
 pointerPosition = new Vector2 (pointer.position.x,pointer.position.y);
 if (isDragging) HandleTouch(10, pointerPosition, TouchPhase.Moved);

444 CHAPTER 11: Rewards and Monetization

The pointer’s position is converted to a Vector2 value. If a Banana Peel
object is “picked up,” the location is sent on to the touch code’s Moved
case. The gamepad code makes use of the isDragging flag that is already
being used in the Touch code for dragging the Banana Peels.

 5. Below that, add the code that handles the gamepad button pushes:

if(Input.GetButtonDown("Submit")) {
 HandleTouch(10, pointerPosition, TouchPhase.Began);
 pointer.GetComponent<CustomPointer>().SetPointerState(2);
// turn on working pointer
}

if(Input.GetButtonUp("Submit")) {
 HandleTouch(10, pointerPosition, TouchPhase.Ended);
 pointer.GetComponent<CustomPointer>().SetPointerState (1);
// turn on regular pointer
}

6. And finally, close the usinggamepad conditional:

} // close usingGamepad conditional

The working pointer sprite should not be turned on before a valid pick is
confirmed, so you will turn it on inside the TouchPhase.Moved case.

 7. Inside the TouchPhase.Began case, under the currentBananaPeel.
position = temp; line, add:

if (usingGamepad) pointer. GetComponent<CustomPointer>().
SetPointerState(2); // turn on working pointer

 8. Save the script and assign the Pointer to the GameHUD’s Player
Movable component.

 9. Click Play and test the pick up, move, and drop functionality.

The functionality is a bit hit-or-miss because the Submit button-down is also repicking the
current GUI focus, the Wheelbarrow toggle. You will address that issue a bit later.

The player has two options at this point. He can continue moving Banana Peels around until
he has run out of Wheelbarrows, or he can cancel the mode at any time. Both scenarios will
require the Pointer being reset and hidden, and the focus set on the most logical candidate,
the Pause toggle. Let’s create the function that will be triggered if the virtual Cancel button
is triggered. A quick look at the Input Manager will show that one of the Cancel inputs is
mapped to the joystick button 1, the B button on the gamepad.

445CHAPTER 11: Rewards and Monetization

 1. In the PlayerMovable script, add the following variable to identify the
GameHUD script:

GameHUD gameHUD;

 2. Assign it in the Start function:

gameHUD = GameObject.Find("HUD Manager").GetComponent<GameHUD>();

 3. In the Update function add the line that catches the Cancel just
above the usingGamepad conditional’s closing curly bracket:

if(Input.GetButtonDown("Cancel")) {
 StopMovable ();
}

 4. And create the new function:

void StopMovable () {
 // turn off and reset pointer
 pointer.GetComponent<CustomPointer>().ResetPointer();
 // reset GUI focus
 gameHUD.ResetFocus();
}

 5. In the CustomPointer script, create the ResetPointer function:

public void ResetPointer(){
 isActive = false;
 SetPointerState(0); // turn off both pointer images
Vector3 tempPos = new Vector3(transform.position.x, transform.position.y,
transform.position.z);
 tempPos.x = Screen.width/2;
 tempPos.y = Screen.height/2;
 transform.position = tempPos;
}

To reset the focus, you will create the ResetFocus() function in the GameHUD so it can be
used by other scripts. This little task is not as simple as you might think, but is a crucial part
of game flow. The first thing you require is a new using statement.

 1. Open the GameHUD script.

 2. At the top of the GameHUD script, add the following:

using UnityEngine.EventSystems;

 3. Next, add the following variables:

public EventSystem theEventSystem; //
public GameObject newFocus; // in case a UI element is disabled

446 CHAPTER 11: Rewards and Monetization

 4. Add the ResetFocus() function:

public void ResetFocus () {
 theEventSystem.SetSelectedGameObject(newFocus);
}

 5. Save the the scripts and, in the GameHUD, assign the EventSystem to
the Event System parameter and the Pause toggle to the New Focus
parameter.

 6. Click Play and test the cancel functionality by pressing the B (Cancel)
button on the gamepad while you are in banana movable mode.

The Pointer disappears, and the focus is set to the Pause toggle, allowing the player to
continue the game.

Closely related to this functionality is being able to turn focus off. By doing so during the
movable mode, you can prevent the player from “un-pausing” the game in the midst of
moving Banana Peels.

 7. Back in the GameHUD, create another function to remove focus:

public void RemoveFocus () {
 theEventSystem.SetSelectedGameObject(null);
}

This one you will want to call as soon as the Wheelbarrows button is
pressed, but only if there is an active gamepad.

 8. In the CustomPointer script, add a variable for the GameHUD script:

public GameHUD gameHUD;

 9. At the bottom of the ActivatePointer script, after it has checked for
an active gamepad, call the RemoveFocus function:

gameHUD.RemoveFocus();

10. Save all scripts and assign the HUD Manager object to the Pointer’s
Game HUD parameter.

11. Click Play and test.

Tip You could check for missing focus by using if(theEventSystem.
currentSelectedGameObject == null).

447CHAPTER 11: Rewards and Monetization

With the movable mode in progress, the player can no longer navigate the GUI until he
presses the Cancel button. This also fixes the problem so the Banana Peels are reliably
picked up on button-down.

The next bit of functionality is to turn the Pointer off when the player finishes using the last of
the Wheelbarrows. For that, you will set a flag when the Wheelbarrow count is updated, and
then turn the Pointer off when the player drops the current Banana Peel.

 1. In the PlayerMovable script, add the following variable:

bool empty = false; // flag for turning off pointer if no more Wheelbarrows

 2. In the case TouchPhase.Began section, change the if (persistent.
wheelbarrows == 0) line to the following:

if (persistent.wheelbarrows == 0){
 barrowToggle.interactable = false; // disable the toggle
 empty = true;
}

 3. In the case TouchPhase.Ended section, add this:

if (empty) pointer.GetComponent<CustomPointer>().ResetPointer();

 4. Click Play and test by using all of the Wheelbarrows.

The Pointer disappears as the last Banana Peel is dropped.

The next test is to see whether you can cancel and then return to use the
remaining Wheelbarrows.

 5. Click Play, move a Banana Peel, press the Cancel button, and return
and try again.

As soon as you reenter movable mode, the Pointer becomes visible. Let’s
reset the usingGamepad flag in the PlayerMovable script when the player
cancels the mode.

 6. In the PlayerMovable script, at the bottom of the StopMovable
function, add the following:

usingGamepad = false;

 7. Because it will make one last pass through the Update function, change
the if(Input.GetButtonUp("Submit")) conditional to the following:

if(Input.GetButtonUp("Submit")) {
 HandleTouch(10, pointerPosition, TouchPhase.Ended);
 if(empty) return;
 pointer.GetComponent<CustomPointer>().SetPointerState (1);

// turn on regular pointer
}

448 CHAPTER 11: Rewards and Monetization

 8. Save the script and test again.

This time, the procedure goes smoothly. Before checking it by using the mouse, you
will want to filter out turning on the Pointer if the axis is not being used. Clicking the
Wheelbarrow toggle calls the ActivatePointer function in the CustomPointer script. Let’s
add the check in there:

 1. Add one more variable to the CustomPointer script:

public PlayerMovable playerMovable;

 2. At the top of the ActivatePointer function, change the
if(!usingGamepad) line to:

if(!playerMovable.usingGamepad) return;

 3. Save the script and assign the HUD Manager to the Pointer’s Player
Movable component’s new parameter.

 4. Click Play and test the Banana Peel–moving procedure using the
mouse.

 5. Check the gamepad usage one more time.

Both workflows behave as designed.

Crushing the Peppermints
With the bananas taken care of, it’s time to see about reducing the peppermint threat.
Because the peppermints (the Spinners) are always on the move, it really doesn’t matter
which one is neutralized. The quickest solution is to just let the player click a peppermint.
But he will have spent a lot of tipCoins to get rid of a peppermint, so you will want to do
something a bit more interesting (rewarding).

Neutralizing the Spinner
Let’s start with the basics by turning off the collider and renderer of the picked peppermint
(Spinner).

 1. Create a new C# script and name it Neutralizer.

It will have to be able to contact the corresponding UI objects and
Persistent. You will be able to copy much of the code from the
PlayerMovable script, changing from barrow to crusher.

 2. Add the path for the UI:

using UnityEngine.UI;

449CHAPTER 11: Rewards and Monetization

 3. Add the variables:

private Persistent persistent;
private Text crusherCount;
private Button crusherButton;
private AudioSource theAudio;
public AudioClip crushFX;

 4. Find and assign them in the Start function:

persistent = GameObject.Find("Holder").GetComponent<Persistent>();
crusherCount = GameObject.Find("Count C").GetComponent<Text>();
crusherButton = GameObject.Find("Crushers").GetComponent< Button>();
theAudio = GetComponent<AudioSource>();

 5. Add a temporary OnMouseDown function:

void OnMouseDown() {
 NukeIt();
}

This will make it easier to test.

 6. Now add the NukeIt function where all of the work is done:

public void NukeIt () {
 if(persistent.candyCrushers == 0 || crusherButton.

interactable == false) return; // no more perks or not activated
 theAudio.PlayOneShot(crushFX);
 //disable the collider and renderer
 GetComponent<Collider>().enabled = false;
 GetComponent<Renderer>().enabled = false;
 persistent.candyCrushers --; // decrement the perks
 crusherCount.text = persistent.candyCrushers.ToString();

// update the UI
}

 7. Save the script and add it to the three Spinner objects and activate
them if they were turned off.

 8. Load the Crush sound clip into their Crush FX parameter.

 9. Open the GameHUD script and add the following to the Start function:

UpdateCrusher ();

10. Create the new function:

public void UpdateCrusher () {
crusherCount.text = persistent.candyCrushers.ToString();
}

11. Save the script and test.

450 CHAPTER 11: Rewards and Monetization

The peppermints disappear from the scene on pick, and the count goes down. You will
refine the functionality later.

Hiring Some Help
To give the player his money’s worth for purchasing a means of getting rid of those pesky
peppermints, you will bring in a character to make the task more interesting. The weapon-
wielding Guard character from Chapter 4 will spice things up nicely.

 1. Import the Guard.unitypackage from Chapter 4 or from the Chapter 11
Assets folder.

 2. From the 3D Assets folder, select the Guard and in the Model
section, set the Scale Factor to .012. Click Apply.

 3. In the Rig section, note that the Guard is set up as Humanoid.

 4. Check out the Animation Section to see the animation clips you set
up in Chapter 4.

 5. Click each clip and press the preview window’s Play button to see
the animations.

 6. Create a new clip and name it Guard Quick Block.

 7. Set its start to 218 and its End to 222.

Note the difference between the Guard Run and Guard Walk animations vs. the Guard WIP.
WIP stands for walk in place. With Mecanim, you can use the transform baked into the root
animation to move the character, or let scripting move him. There is also an option not to use
root motion if the animation has it. In this case, you will let the animation move the character.

For this little game, setting up full-blown Mecanim controls is hardly worth the time, so you
will be calling the animations directly from scripting and using just a few of the Mecanim
features. The first thing you will require is an Animator Controller for the state machine:

 1. Create a new Animator Controller in the Project view’s Mecanim
folder.

 2. Name it Guard Animator Controller.

 3. Drag the Guard into the scene view so he is at the top-center area of
the tilt board (Figure11-5) and rotate him 180 degrees so he is facing
forward.

451CHAPTER 11: Rewards and Monetization

 4. From the Components menu or Add Component button, in the
Physics submenu, give the Guard a Character Controller component.

The Character Controller is a collider and physical object respecting only
the basics of physics rolled into one, with a few extra parameters that
are useful for characters. It is a good, quick way to set up a very simple
character but does not actually use Rigigdbody physics and as such is
somewhat limited.

 5. In the Character Controller component, if it was not the default, set
the (collider) Center Y to 1.4, the Radius to 0.5, and the Height to
2.75.

 6. Add the Guard Animator Controller to the character by dropping
it directly onto him in the Hierarchy view. You will see that it
automatically goes to the Animator component’s Controller field.

 7. Drag the Guard into the Board Group so he will move with it when
it tips.

Figure 11-5. The Guard at the top center of the board

452 CHAPTER 11: Rewards and Monetization

 8. From 3D Assets folder, expand the Guard asset until you can see the
animation clips (Figure 11-6).

 9. Select the Guard in the Hierarchy view and click the Animator tab, or,
if it is not yet visible, open it from the Window menu.

10. Now drag the Guard Idle, Guard Narrow Idle, Guard Run, Guard
Walk, and Guard Quick Block (drag it in twice) animation clips into
the Animator window.

Figure 11-6. The expanded Guard asset

453CHAPTER 11: Rewards and Monetization

The first one in is set as the Default (it is an orange color). For the first tests, you will want
him to start at a run.

 1. Right-click over the Guard Run state and choose Set as Layer
Default State.

 2. Save the scene and play.

The Guard runs to the other side of the board.

You will use a couple of transitions to make use of the quick blocks.

 3. Right-click over the Guard Quick Block state and choose Make
Transition.

 4. Drag and drop the connection onto Guard Run.

 5. Right-click over the Guard Quick Block 0 state and choose Make
Transition.

 6. Drag and drop the connection onto Guard Walk (Figure 11-7).

The default transition uses the first clip’s end time as its condition to blend
to the next state. You will trigger the first state, and it will automatically
blend to the second state where it will start looping.

Figure 11-7. The Guard animation clips/states with the two Guard Quick Block transitions

454 CHAPTER 11: Rewards and Monetization

You will use a Look At to point him in the direction of his target peppermint. Because they
are constantly on the move, it won’t matter which one he goes toward, so you will create an
array to hold the peppermints and set him to go after them in order.

 1. Create a new C# script and name it Crusher.

 2. Add the following variables:

public Transform[] targets; // the peppermints
internal int maxCrushers = 3; // the max number of crushers per game
int currentTarget = 0; // index number of current target
Transform target; // location of the current target

 3. In the Start function, initialize the target to the first array element:

target = targets[0]; // set the first target

 4. In the Update function, add the following:

transform.LookAt(target);

When he intersects the target, the GUI will have to be updated through the
peppermint’s Neutralizer script, and the next target assigned.

 5. Create the OnTriggerEnter function:

void OnTriggerEnter (Collider collider) {
 if (collider.transform == target){
 collider.GetComponent<Neutralizer>().NukeIt();
 GetNextTarget();
 }
}

 6. And the function to get the next target:

void GetNextTarget() {
 currentTarget ++;
 if (currentTarget < maxCrushers) {
 target = targets[currentTarget];
 }
}

 7. Save the script and add it to the Guard.

 8. Set the Targets array size to 3 and drag the three Spinners into the
slots.

 9. Save the scene.

10. Click Play and watch the Guard clean up the peppermints.

When his mission is completed, he spins wildly and ricochets around the board.

455CHAPTER 11: Rewards and Monetization

Next, the Guard will need a base point to return to and a means of telling him he’s finished.

 1. For the base point, create an Empty gameObject and add a Sphere
Collider to it.

 2. Set the collider to Is Trigger.

 3. Name it Guard Base Point and add it to the Board Group.

 4. In the Scene view, move it to the guard’s feet.

It will always be the last target, so you can add it to the Guard’s Target
array.

 5. Set the Target array to 4 and add the Guard Base Point to it as
Element 3.

 6. In the Crusher script, create the following variables:

internal bool hunting = true;
Animator animator;

The hunting flag will allow you to turn the LookAt off and on in the Update function.
The finished flag will stop the LookAt before it cycles again. The animator will let you
communicate with the state engine to change the animations. Once he is finished, you will
also disable the Crusher button.

 1. In the Start function, assign the animator:

animator = GetComponent<Animator>();

 2. Use the hunting flag in the Update function:

void Update () {
 if (hunting) {
 transform.LookAt(target);
 }
}

 3. In the OnTriggerEnter function, at the top, add the following:

if(!hunting) return;

 4. And above the <Neutralizer>().NukeIt() line, add this:

animator.CrossFade("Guard Quick Block",0.1f);

 5. In the GetNextTarget function, add an else:

else {
 currentTarget = 3;
 target = targets[currentTarget];
 animator.CrossFade("Guard Quick Block 0",0.1f);
}

456 CHAPTER 11: Rewards and Monetization

 6. Save and test.

Now, after he’s destroyed the peppermints, he walks calmly to the base
point and spins because the code throws an error when it tries to neutralize
a non-peppermint object. One more condition will avoid that problem.

 7. In the OntriggerEnter function, just below the if (!hunting) line,
add this:

if (collider.transform == target && currentTarget == 3) {
 hunting = false;
 animator.CrossFade("Guard Narrow Idle",.5f);
 return;
}

 8. Save and test.

If he finishes his task and has a long walk to get back to the base point,
you are probably thinking his walk is painfully slow. That can be fixed in the
Animator view:

 1. Select the Guard.

2. In the Animator tab, select the Guard Walk state.

3. In the Inspector, set the Speed to 3.

4. Change the run speed to 1.25 while you are there.

Now it would be nice if he turned around after reaching the base point. You will have him
turn to face the center of the board (the place where the ball drops in). Note the CrossFade
time of 0.75 seconds for the transition to idle.

 1. Create a new variable:

public Transform theBoard; // board centre

 2. Below the CrossFade("Guard Narrow Idle line, add the following:

transform.LookAt(theBoard);

 3. Save the script and assign the Board object to the new parameter.

 4. Save the scene and test.

Now the Guard is beginning to be quite well behaved.

457CHAPTER 11: Rewards and Monetization

You may have noticed that the number of crushers has been going down but has not yet
been initialized at the start of the scene. Now is a good time to hook up the guard to the rest
of the reward system.

 1. In the Animator view, set the Guard Narrow Idle as the default state.

 2. In the Crusher script, set the hunting variable’s value to false.

The player may or may not want to use up his crushers, so the guard
should not be activated until the player presses the Crusher button. That
means you will also have to have access to the UI.

 3. At the top of the Crusher script, add the following:

using UnityEngine.UI;

And you will have to contact the Persistent script to see how many crushers
have been purchased.

 4. Add the following variables:

Persistent persistent;
Button crusherButton;

 5. Find them in the Start function:

persistent = GameObject.FindWithTag("Holder").GetComponent<Persistent>();
crusherButton = GameObject.Find("Crushers").GetComponent<Button>();

 6. Create the function that will be called from the button press:

public void Activate() {
// Get max crushers available
maxCrushers = persistent.candyCrushers;
if (maxCrushers > 3) maxCrushers = 3;
if (maxCrushers == 0) return;
hunting = true;
animator.CrossFade("Guard Run",.2f);
}

On activation, the number of crushers is updated from the Persistent script.
The number is capped to 3, the max number of peppermints in the scene. If
none are available, the activation is ignored.

 7. Save the script.

 8. Select the Crusher (the UI button). In its Button component, add an
On Click event using the Guard object and the Activate function.

You can deactivate the button when the guard has finished and block
repeated activation once hunting has been activated so the player can’t
press it again before the guard has finished.

458 CHAPTER 11: Rewards and Monetization

 9. At the bottom of the GetNextTarget's else clause, add the following:

crusherButton.interactable = false;

10. At the top of the Activate function, add the following:

if (hunting) return;

11. In the Persistent script, set the Crushers number to 2. Test, and
then set the number to 5 to make sure the correct numbers of
peppermints are removed from the scene and the correct number of
crushers persist through the next game.

Because the Guard procedure is just a one-shot deal, the gamepad additions will be simple.
GUI navigation is already in play, so the only task will be to reset focus to the Pause toggle
when the Crusher’s toggle is pressed.

 1. Open the Crusher script.

 2. Add a variable for the GameHUD:

public GameHUD gameHUD;

 3. In the Activate function, below the if(hunting) return line, add the
following:

gameHUD.ResetFocus();

 4. Save the script and assign the HUD Manager to the Guard’s Crusher
component’s new GameHUD parameter.

 5. Click Play and test using the gamepad.

Hiding the Guard
The guard is working well, but unless the player has forked out some tipCoins for some
crushers, the guard shouldn’t be on the board. To spice up the purchase even more, you can
bring in the Guard House asset from Chapter 4 so he will have a better place to hang out.
If this is purely a desktop application, you could toss the Guard and Guard House into an
empty gameObject and deactivate them all at the same time. Unity, however, recommends
turning off the Mesh Renderers and colliders as more-efficient means of temporarily having
objects go in and out of the scene. The Guard-related objects are renderers for the Guard
House, Guard, Club, and Shield. For the colliders, you have one for the Guard and two for
the Guard House.

 1. Import the GuardHouse.package from Chapter 4 or the Chapter 11
Assets folder.

 2. Drag its prefab (it already has colliders) into the scene and position it
in the top-left corner of the board, setting its Y Rotation to 130.

459CHAPTER 11: Rewards and Monetization

 3. In the Hierarchy view, drag it into the Board Group.

 4. The Guard is a little bit too wide to be able to fit nicely through the
door, so move him slightly out in front of it.

 5. Move the Guard Base Point object there as well.

 6. Click Play and test.

You may notice that the Marble can force its way under the Guard on its
way into the corner.

 7. Make sure the Guard is far enough in front of the structure to roll it
out again.

You can control the visibility and colliders from the Crusher script.

 1. Add the following variables to the Crusher script:

//To toggle on/off
public Renderer guardHouse;
public Renderer guard;
public Renderer club;
public Renderer Shield;
public CharacterController guardCollider;
public Collider gHWallLeft;
public Collider gHWallRight;

 2. Create the following function to do the work:

void ToggleGuardStuff(bool state) {
 crusherButton.interactable = state;
 guardHouse.enabled = state;
 guard.enabled = state;
 club.enabled = state;
 Shield.enabled = state;
 guardCollider.enabled = state;
 gHWallLeft.enabled = state;
 gHWallRight.enabled = state;
}

 3. At the bottom of the Start function, toggle the Guard objects off or
on depending on the Crusher count:

if(persistent.candyCrushers > 0) ToggleGuardStuff(true);
else ToggleGuardStuff(false);

460 CHAPTER 11: Rewards and Monetization

 4. Save the script and assign the new objects, making sure that you use
the Guard mesh object for the renderer object (Figure 11-8).

Note, you can expand the Guard object to locate the child objects easier.

 5. Click Play and test the functionality by using up the crushers and
playing another game.

The Guard (and Guard House) appear only when the player has purchased
at least one Crusher.

Making the Store
With the reward system working, it’s time to make the Store. This is where the player will go
to spend his tipCoins, purchase more coins, and purchase the functionality to win the game
easier. If the store is a separate level or scene, and you let him visit it during the game, you
would have to store the transforms of just about everything in the Board level so it would be
the same when he returned. If you blocked the Board Level scene with a second Canvas, it
could contain your store while the rest of the scene is running. The downside of this scenario
is that the player may want to check the store before he commits to the Play button. A
simple alternative to the first scenario is to give him access to it only from the main level or
start screen. This has the added advantage of making him more likely to purchase the helper
services before he sees whether the path looks easy or hard.

Figure 11-8. The new parameter assignments

461CHAPTER 11: Rewards and Monetization

 1. Create a new scene and save it as Store Level.

 2. Select the Camera and set its Clear Flags to Solid Color and delete
the Directional Light, if there was one by default.

 3. Set the window size to 16 × 9 or one of your presets.

 4. Import the Store.unitypackage from the Chapter 11 Assets folder.

 5. In 2D viewport mode, drag the blue rect corners out to meet the
anchors and canvas border if they are not already in place.

The GUI has been set up for you, but not yet hooked up to the game
(Figure 11-9). The Canvas is set to Scale With Screen Size, Match Width
Or Height, and uses the Nokia Lumia’s size as the Reference Resolution
centered between Width and Height. The center panel is anchored to the
center, the title to the top, and the price panel to the bottom. The two
navigation buttons are anchored to their respective corners. Feel free to
check out the screen in your preset sizes.

Before hooking anything up, let’s add it to the Build Settings to make it
accessible from the Start menu.

Figure 11-9. The Store prefab

462 CHAPTER 11: Rewards and Monetization

 6. Save the scene and choose Edit ➤ Build Settings ➤ Add Open
Scenes.

 7. Close Build Settings.

 8. Add the Check for DDLs prefab to the scene and save the scene.

To activate gamepad functionality, you will, of course, have to supply a first-selected GUI
object. To encourage the player to spend money, that will be the Buy Coins button.

 1. From the GameObject menu ➤ UI sub-menu, add an EventSystem
object.

 2. Drag the Buy Coins object into the First Selected field.

 3. Click Play and test the store functionality by using a gamepad.

 4. Save the scene.

The Start Menu was set up for the gamepad navigation in Chapter 10, so you should now be
good to go for the gamepad after hooking up the functionality.

Finishing the Start Menu
To access the store level, you will be updating the Start Menu and finishing its functionality.

 1. Open the Start Menu.

 2. Import the StartGUIextras.unitypackage.

 3. Set the Game view to the 16:9 setting.

 4. Drag the Start GUI Extras prefab directly into the scene’s Canvas.

 5. Drag the blue rect corners out to meet the anchors and canvas
border if they are not already in place.

463CHAPTER 11: Rewards and Monetization

Figure 11-10. The new additions to the Start menu

 6. Check your various preset screen sizes to make sure the elements
maintain good placement and scale.

The extras include a Store, Credits, and Extras button as well as a few
simple instructions (Figure 11-10).

464 CHAPTER 11: Rewards and Monetization

 1. Import the CanvasCredits,unitypackage.

 2. Drag the Canvas Credits prefab into the Hierarchy view.

 3. Drag it into the Hierarchy view, not into the existing canvas
(Figure 11-11).

The Canvas Credits is a second Canvas object in the scene. Just as with regular
gameObjects, activating and deactivating GUI Canvases will cost battery life, so once again
you will be hiding the graphics and disabling picks to economize. Using a second Canvas
allows you to deal with all of its components at the same time, but there are a few gotchas.

 1. Click Play.

The new canvas goes behind the contents of the first canvas. Changing
the Canvas Credits’ location in the hierarchy will not fix the problem. The
answer is to change the Sort Order.

Figure 11-11. The credits Canvas—everybody gets credit!

465CHAPTER 11: Rewards and Monetization

 2. In its Canvas component, set its Sort Order to 1(Figure 11-12) and
click Play.

This time it stays on top.

 3. Hover over the Exit or Credits button.

The buttons respond, and shouldn’t, so you will want a way to block
interaction with the Main Canvas while the credits are up. The simplest
thing to do is to cover it with a full-sized Panel object.

 4. Exit Play mode and from the gameObject menu choose UI ➤ Panel
to add a Panel to the Canvas Credits group and scale it to full size if
it hasn’t done so automatically.

 5. In Play mode, try hovering the buttons again.

This time there is no response.

 6. Stop Play mode and move the blocker Panel up to the top of the
Canvas so it won't block the credits panel close button and set its
Color’s alpha value to 0.

 7. Set the Canvas component's Sort Order to 1.

To hide and show the credits, you will disable the Canvas. In doing
so, the credit’s Close button will also be disabled. Let’s do that in the
GameManager script.

 8. Open GameManager script.

Tip You can bring a canvas forward to work on in Edit mode by turning the Canvas component off
and then on.

Figure 11-12. Adjusting the Sort Order—lower numbers are drawn first

466 CHAPTER 11: Rewards and Monetization

 8. Add the following variables:

public Canvas creditsCanvas;
public Button closeCredits;

 9. Save the script and assign the objects to them.

10. Add the following functions:

public void OpenCredits () {
 creditsCanvas.enabled = true;
}
public void CloseCredits () {
 creditsCanvas.enabled = false;
}

11. Add the call to CloseCredits from the Start function to make sure it
is off at startup:

CloseCredits ();

12. Save the script and disable the Canvas Credits’ Canvas component.

Now you are ready to connect the buttons with the new functions via their On Click events.

 1. Select the Credits button from the main Canvas and create an On
Click event.

 2. Load the Game Manager as its Object and assign the Game
Manager’s OpenCredits() function to it.

 3. Select the Close Button from the Canvas Credits and create an On
Click event

 4. Load the Game Manager as its Object and assign the Game
Manager’s CloseCredits() function to it.

 5. Click Play and test by opening and closing the credits panel.

The application Exit button is fairly easy to code, but doesn’t actually stop play in the editor
without special editor code. A few lines of specialized code are well worth the effort.

 1. In the GameManager, add the following function:

public void EndGame (){
 Application.Quit(); // end the application
 #if UNITY_EDITOR
 UnityEditor.EditorApplication.isPlaying = false;
 #endif
}

467CHAPTER 11: Rewards and Monetization

For some mobile platforms, you may not be able to let the game close itself. This is
addressed in Chapter 12.

 2. Save the script and select the Exit Button from the main Canvas;
create an On Click event.

 3. Load the Game Manager object into it and assign the
GameManager’s EndGame() function to it.

Loading the Store will be easy.

 4. Add the following function to the GameManager script:

public void LoadStoreLevel () {
 SceneManager.LoadScene("Store Level");
}

 5. Select the Store Button and create an On Click event.

 6. Load the Game Manager object into it and assign the Game
Manager’s LoadStoreLevel() function to it.

7. Save the scene and play to test.

Hooking Up the Store
With the remainder of the Start menu’s functionality taken care of, it’s time to work on the
store functionality. As you may have guessed, the store will be in contact with the Persistent
script, where all of the important data is kept.

 1. Open the Store Level scene.

 2. Create a new empty gameObject and name it Store Manager.

 3. Create a new script and name it StoreManager.

 4. Add the StoreManager script to the Store Manager object.

 5. Add the following paths at the top:

using UnityEngine.UI;
using UnityEngine.SceneManagement;

468 CHAPTER 11: Rewards and Monetization

 6. Add the following variables:

Persistent persistent;

//GUI
public Text CurrentCoins;
public Text CurrentWheelbarrows;
public Text CurrentCandyCrushers;

// purchase prices
private float wbPrice;
private float crusherPrice;
private float coinPrice;
private float coinAmount;

// price labels
public Text wbPriceLabel;
public Text crusherPriceLabel;
public Text coinPriceLabel;
public Text coinAmountLabel;

 7. In the Start function, make sure time is running:

Time.timeScale = 1;

You added code in the Board Level to reset time on exit, but to make sure
your yield statements will execute properly, it is safest to reset time in this
scene as well.

 8. Find and assign the Holder object:

persistent = GameObject.Find("Holder").GetComponent<Persistent>();

 9. Then get the purchase prices (in case they have been changed):

//update prices
wbPrice = persistent.wbPrice;
crusherPrice = persistent.crusherPrice;
coinPrice = persistent.coinPrice;
coinAmount = persistent.coinAmount;

The Store Level came in with the text already set, but in using variables for the amounts, you
will can update the text in case you want to change the amounts.

 1. Below that, update the pricing in the GUI:

//load into price labels
wbPriceLabel.text = wbPrice.ToString() + " each";
crusherPriceLabel.text = crusherPrice.ToString() + " each";
coinPriceLabel.text = coinAmount.ToString() + " for $" + coinPrice.ToString();

469CHAPTER 11: Rewards and Monetization

 2. Save the script and assign the corresponding text components in the
Price Panel objects (Figure 11-13).

Figure 11-13. The Store Manager assignments

 3. Add the function to return to the main menu (a.k.a., the Start Menu):

public void LoadStartMenu () {
// go to the main menu
 SceneManager.LoadScene("Start Menu");
}

 4. Create the function to play the game:

public void LoadBoardLevel () {
 // play the game
 SceneManager.LoadScene("Board Level");
}

 5. Save the script.

 6. Create new On Click events for the Play and Main Menu buttons
and assign the new StoreManager functions, LoadBoardLevel() and
LoadStartMenu() to them.

As soon as the scene loads and the Persistent script is found, you will want to update the
current totals. As in the GameHUD, you will grab them from the Persistent script and load
them directly into the GUI text.

 1. Add the following functions:

public void UpdateTipCash () {
 CurrentCoins.text = persistent.cash.ToString();
}

470 CHAPTER 11: Rewards and Monetization

public void UpdateBarrow () {
 CurrentWheelbarrows.text = persistent.wheelbarrows.ToString();
}

public void UpdateCrusher () {
 CurrentCandyCrushers.text = persistent.candyCrushers.ToString();
}

 2. Call them from the bottom of the Start function:

// get current values and update them in the UI
UpdateTipCash ();
UpdateBarrow ();
UpdateCrusher ();

 3. Save the script.

 4. Assign the corresponding text objects to the Store Manager
component’s parameters.

 5. Save the scene and play through from the Start Menu scene.

 6. Test the menu and Play buttons while you are there.

For the purchase buttons, there will be a little math involved. At this stage, you will magically
get tipCoins from the click of a button. You will probably want a message that tells whether
the transactions were completed.

 1. Reload the Store Level.

 2. In the StoreManager script, add the following function to purchase
tipCoins:

public void BuyCoins () {
 // do the real purchase here...

 //add the coins
 persistent.cash += coinAmount;
 // update the UI
 UpdateTipCash ();
 TransactionComplete();
}

For the two game purchases, you will have to account for insufficient funds. You may also
want to provide a sign when the transaction has gone though. Don’t bother trying to save
the script before you have added the transaction functions.

471CHAPTER 11: Rewards and Monetization

 3. For the Wheelbarrow purchases, add the following:

public void BuyWheelbarrow () {
 // check for sufficient funds
 if(persistent.cash < wbPrice) {
 InsufficientFunds();
 return;
 }
 //add the coins
 persistent.wheelbarrows += 1;
 //take the money
 persistent.cash -= wbPrice;
 // update the UI
 UpdateBarrow ();
 UpdateTipCash ();
 TransactionComplete();
}

 4. For the crusher purchase, add this:

public void BuyCrusher () {
 // check for sufficient funds
 if(persistent.cash < crusherPrice) {
 InsufficientFunds();
 return;
 }
 //add the coins
 persistent.candyCrushers += 1;
 //take the money
 persistent.cash -= crusherPrice;
 // update the UI
 UpdateCrusher ();
 UpdateTipCash ();
 TransactionComplete();
}

A sound effect or two would go well here. A bit of text will do the job for the message, but it
will have to appear and then disappear. With the Credits panel, where there were several UI
elements to be managed, you created another Canvas. The transaction messages are quite
simple, an Image and Text, so you will be moving them up and down inside the Canvas to
hide and show them. As a bonus, the images also will block the player from fast multiple
picks. Let’s see what they look like.

 1. Drag the Transaction Complete object to the bottom of the Canvas.

It appears (Figure 11-14), and you can see how it will block the store
buttons.

472 CHAPTER 11: Rewards and Monetization

 2. Check your various screen presets to make sure the store buttons
are always blocked.

 3. Drag the Transaction Complete object back to the top and drag the
Insufficient Funds object to the bottom to see what it looks like. Then
drag it back up to the top.

 4. In the Store Manager, create a variable for both Images:

//transaction messages
public Image insufficientFunds;
public Image transactionComplete;

 5. Save the script.

You can get away with using a single Audio Source component if you use PlayOneShot.

 1. Add an Audio Source component to the Store Manager.

 2. Add a variable to the StoreManager script so it can be quickly
contacted:

AudioSource theAudio;

 3. Add a couple of sound effects:

public AudioClip buzzer;
public AudioClip dinger;

Figure 11-14. The transaction message blocking picks for more purchases

473CHAPTER 11: Rewards and Monetization

 4. Assign the Audio Source in the Start function:

theAudio= GetComponent<AudioSource>();

To turn the images off and on after a short pause, you will use an
IEnumerator and yield. The arguments sent to the co-routine tell it which
image to bring forward and for how long.

 5. Add the following just above the StoreManager’s closing curly
bracket:

IEnumerator TurnOffMessage (Image currentSibling,float pause) {
 yield return new WaitForSeconds(pause);
 currentSibling.transform.SetAsFirstSibling();
}

 6. Add the following functions:

void InsufficientFunds() {
 insufficientFunds.transform.SetAsLastSibling();
 theAudio.PlayOneShot(buzzer);
 StartCoroutine(TurnOffMessage(insufficientFunds, 0.5f));
}

void TransactionComplete () {
 transactionComplete.transform.SetAsLastSibling();
 theAudio.PlayOneShot(dinger);
 StartCoroutine(TurnOffMessage(transactionComplete, 0.2f));
}

Feel free to adjust the times to your satisfaction.

 7. Save the script.

 8. Load the sound effects, BuzzerSoft and Ding, and the two
transaction objects into the new parameters.

 9. Hook up [add On Click events] the Buy Coins, Buy Wheelbarrows
and Buy Candy Crushers buttons with their respective Store
Manager functions, BuyCoins(),BuyWheelbarrow() and BuyCrusher().

10. Assign the corresponding UI elements to the Store Manager’s
Insufficient Funds and Transaction Complete parameters.

11. Set the Wheelbarrows and CandyCrushes to 0 in the Persistent
script.

12. Play and test the store functionality.

The actual purchase of tipCoins is covered in Chapter 12, but your little game is now looking
quite respectable.

474 CHAPTER 11: Rewards and Monetization

Summary
In this chapter, you embellished your game’s functionality to create a better environment for
monetization. To support a “store” and its data, you made excellent use of the Persistent
script so the various items and coinage would be retained and accessible throughout
the various level or scene changes. Besides the in-game currency, tipCoins, you allowed
your player to purchase the ability to rearrange the Banana Peels and, with the help of
the character from Chapter 4, to eradicate peppermints. All the new functionality was tied
together with enhanced GUI menus and elements.

For the Banana Peels, you introduced functionality that allowed the player to manually drag
the Banana Peel objects around the board. In anticipation of the touch functionality prevalent
on mobile platforms, the code was designed to work with both touch and mouse actions.
When designing for both input schemes, you learned that the touch count from a mouse
click will always return zero. To go for a full triple play, you added gamepad functionality
by generating your own pointer object to give gamepad users a visual means to select and
move the Banana Peels.

With the use of Time.timeScale, you learned that you can pause game play without affecting
UI interaction. This provided you with a way to prevent the player from losing time during
Marble resets, made rearranging the Banana Peels visually easier, and set your game up to
be able to handle interruptions common on mobile devices.

Using the guard character to destroy the marauding peppermints gave you a chance to learn
a little bit more about Mecanim and how you could also control the states through scripting.
More important, the Guard’s peppermint-crushing behavior provided a lot of eye candy to
make your players feel like they was getting their money’s worth for the purchases.

And finally, you learned a few new tricks for working with the Unity UI, including the use
of multiple Canvases and controlling sibling order to make various UI elements visible and
invisible on command as well as blocking unwanted interaction.

475© Sue Blackman and Adam Tuliper 2016
S. Blackman and A. Tuliper, Learn Unity for Windows 10 Game Development,
DOI 10.1007/978-1-4302-6757-7_12

Chapter 12
Building for Windows Store
In this chapter, you will be getting firsthand experience with accelerometer code and
functionality, provided, of course, you have access to a Windows 10 device that supports it.
It is assumed you will be working with Windows 10. There are differences in procedure and
requirements for Windows 8 and 8.1, but they are well documented on the Windows Dev
Center in case you need them. The accelerometer functionality requires that you venture out
from the (by now, comfortable) Unity environment, and discover the world of Windows Store,
Windows Dev Center, and a host of new terms, procedures, and reference material.

This chapter also assumes that you have completed the section on porting in Chapter 1.
It contains a very tiny project that will help you with the setup process. If you have not yet
done so, please take the time now as there are several support files and Visual Studio tools
that may not have been loaded when you installed Visual Studio. At the time of this writing, it
appears that Visual Studio Service Pack 3 is not part of the Unity installation. Conspicuously
missing are the Windows SDK and a suite of Visual Studio tools. Generally, when you
are missing a Windows 10 or Visual Studio component or tool, you will be given a link to
obtain it. The process of collecting all the necessary tools and installations could be time-
consuming, so plan accordingly.

Once everything is in place, you will add the accelerometer functionality, address issues
related to in-app purchases, and learn some testing procedures, both simulated and via
Windows Store. Later, you will take a peek at additional monetization as well as additional
UWP platforms and Visual Studio functionality.

Tip A Unity forum dedicated to Windows Store apps and Windows Phone can be accessed at
http://forum.unity3d.com/forums/50-Windows-Development

http://dx.doi.org/10.1007/978-1-4302-6757-7_1
http://forum.unity3d.com/forums/50-Windows-Development

476 CHAPTER 12: Building for Windows Store

Reviewing Requirements
To properly support this chapter and build and test your game for Windows 10, you
should be running Windows 10 (though you can package but not run Windows 10 apps on
Windows 8) as well as have Visual Studio Community edition or greater installed. When you
install the latest version of Unity, you’ll have several options to choose (Figure 12-1).

The dialog box in Figure 12-1 may change slightly depending on the version of Unity that
you install, so choose the options best fitting. Let’s cover the options here:

Microsoft Visual Studio Community: This option, which appears only if
Visual Studio is not detected, installs Microsoft’s completely free version of
Visual Studio, called Visual Studio Community edition. Select this option if
you don’t have Visual Studio installed.

Microsoft Visual Studio Tools for Unity: This option displays if Visual
Studio is already installed. This option installs a Visual Studio add-in and
configures Visual Studio to be able to talk to Unity to develop and debug
your games, even while running in Unity. It also contains several great
helpers covered below. Select this option if you already have Visual Studio
installed.

Figure 12-1. Unity installation options for Windows 10

477CHAPTER 12: Building for Windows Store

Windows Store .NET Scripting Backend: This is the standard .NET
compilation for Windows Store apps. In the future, this will be the “old
way” of doing things, although it is currently the primary approach. As of
this writing, if you want to use Unity’s in-app purchase system (rather than
write code to integrate directly with Microsoft’s commerce system), you
must install the .NET Scripting backend, as Unity’s IAP libraries aren’t yet
supported with IL2CPP (though they may be supported by the time you
read this). Select this option.

Windows Store IL2CPP Scripting Backend: This player takes all of your
compiled C# code and converts it to C++, which means you’ll need to also
install (or have installed already) Visual C++ when you install Visual Studio.
This has better API compatibility with Unity, but as of this writing is still
in beta. Also if you want to debug code running on a device from Visual
Studio, IL2CPP isn’t supported yet (this may have changed by the time
you read this). This is optional as of this writing; consider trying this going
forward. Be forewarned that it is possible that some Asset Store purchases
may work only with IL2CPP. Be sure to test your purchases before
incorporating them into your game, or contact the authors for compatibility
with .NET.

To complete this chapter, you need the following:

Visual Studio 2015 Community edition (or greater) with Update 3 or
higher. Unity will install this for you by default on Windows if you don’t
already have it. (See Figure 12-1.)

Windows 10 SDK.

A computer with Windows 10 installed and running.

Optionally, a Windows 10 mobile device with an accelerometer.

A Microsoft account (free) to use Visual Studio. You can procure one at
http://account.live.com.

If you wish to work through the entire chapter and publish your own
applications to Windows Store, you will also need to obtain a developer
account. They run about $19 USD and are a one-time nonrecurring
charge. Get one at http://dev.microsoft.com or, if you are part of any
of Microsoft’s Startup programs such as BizSpark, they typically have
free codes to register for Windows Store.

Developer mode enabled on your system

http://account.live.com/
http://dev.microsoft.com/

478 CHAPTER 12: Building for Windows Store

If you don’t have these prerequisites but still want to try out building for Windows 10,
you can create a Windows 10 Virtual Machine with Visual Studio already installed on it in
Microsoft Azure, Microsoft’s cloud service (Figure 12-2) in just a few clicks. You can then
install Unity on it and be all set to build for Windows 10.

Enabling Developer Mode
You need Developer mode enabled on your computer to be able to deploy (run) a Windows
10 application from Visual Studio to your computer. If Unity has installed Visual Studio for
you, the first time you run it, you should be prompted to enable developer settings. If not, or
if you already had Visual Studio installed, you can manually enable Developer mode:

 1. Click the Start button from the Windows taskbar and click the
Settings icon to load Windows settings.

 2. Type in developer and select one of the resulting options. In
Figure 12-3, both options do the same thing.

Figure 12-2. The option of running Visual Studio on a virtual machine in Microsoft Azure (Microsoft’s cloud service)

479CHAPTER 12: Building for Windows Store

 3. Select the Developer Mode radio button (Figure 12-4) and click
Yes at the resulting prompt. You may then be shown a message to
reboot; do so if prompted.

Figure 12-3. Searching for developer from Windows Settings

Figure 12-4. Activating Developer Mode in Developer Settings

480 CHAPTER 12: Building for Windows Store

Installing the Windows 10 SDK
If you already have Visual Studio installed and don’t have the Windows 10 SDK installed,
read this section. If you aren’t sure, see the following “Verifying Installations” section. The
Windows 10 SDK can be downloaded and installed from https://developer.microsoft.
com/en-us/windows/downloads/windows-10-sdk. A quick way to check whether it’s installed
is to open Visual Studio and choose File ➤ New Project and navigate to the Universal
section in the New project dialog box. You can launch the installation from here as well,
which simply launches Visual Studio with the new option selected for the SDK (Figure 12-5).

Figure 12-5. Installing the Windows 10 SDK

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk

481CHAPTER 12: Building for Windows Store

This launches the Visual Studio installer, where you can accept the defaults and click Next to
install the Windows 10 SDK (Figure 12-6).

Figure 12-6. The the Visual Studio installer

482 CHAPTER 12: Building for Windows Store

Figure 12-7. Accessing Setting in Windows 10

Verifying Installations
A good way to verify the success of your installations is to use the Settings panel on your
Windows 10 PC as follows:

 1. From the Windows Start menu, type settings or click the Settings
icon (Figure 12-7).

483CHAPTER 12: Building for Windows Store

Figure 12-8. Locating Apps and Features

 2. From Settings, choose System ➤ Apps and Features.

If this isn’t visible, just type in Features, and then select Apps and
Features (Figure 12-8). You should now see the list of installed
applications.

484 CHAPTER 12: Building for Windows Store

 3. Scroll down to Microsoft Visual Studio C++ Redistributable.

You should see a version for 2015 (x64) and (x86) as well as the build
numbers.

 4. Below those, you should see Microsoft Visual Studio Community
2015 with updates (Figure 12-9).

 5. Scrolling down farther, locate the Windows entries.

There you should have Windows SDK AddOn and Windows Software Development Kit
(Figure 12-10).

Figure 12-9. Checking to see the installed versions of Visual Studio C++ Redistributable and Microsoft Visual Studio

Figure 12-10. Checking for installed versions of Windows SDK AddOn and Windows Software Development Kit

Tip If you have multiple versions of the Redistributable from different years, you may be prompted
to remove them.

485CHAPTER 12: Building for Windows Store

Obviously, this software undergoes regular updates, so you will want to use the most current
versions.

If you do find that you are missing anything, you could modify the Visual Studio installation
as shown next to select the new options. Again, ensure that you have at least Update 3 for
Visual Studio. You can always check this via the Help ➤ About menu in Visual Studio.

To manually open the Visual Studio install to add the Windows 10 SDK when you don’t yet
have it, do the following:

 1. In the Apps and Features opened previously, look for Visual Studio
and click the Modify button (Figure 12-11).

 2. When Visual Studio loads, click Modify again (Figure 12-12).

 3. Choose the latest SDK version available to you.

Figure 12-11. Modifying an installed version of Microsoft Visual Studio

Figure 12-12. The Visual Studio updater

486 CHAPTER 12: Building for Windows Store

If you have other items selected in the list beyond what is shown here, that is okay
(Figure 12-13).

The Windows 10 SDK should now be installed.

Figure 12-13. Selecting the latest Windows 10 SDK features to update

487CHAPTER 12: Building for Windows Store

Setting Your Build Defaults
Now is a good time to set up the default build settings that Unity will use to package up your
application for Windows Store. Each build is referred to as a Player. If you build for Windows
Store, that’s the Windows Store Player.

 1. Bring up the Build settings in Unity with File ➤ Build Settings
(Figure 12-14).

 2. Select Windows Store in the list and click Switch Platform to set
Windows Store as the default build platform (Figure 12-14, 1).

 3. Select the SDK as Universal 10, UWP Build Type as XAML, and
finally click Build (Figure 12-14, 2).

Figure 12-14. The Unity Build Settings

488 CHAPTER 12: Building for Windows Store

 4. Optional: Activate the Unity C# Projects check box (Figure 12-14, 4).

Activating the Unity C# Projects check box enables your build to contain
your Unity source code for debugging while running your app on your
device (Phone, PC, HoloLens, Xbox). More information on this topic is
provided below when you work with Visual Studio.

You can choose Development Build if you want to use Unity’s profiler
support while running on a target device (such as a phone or your PC). This
enables it in your exported Windows 10 project, but note this will leave a
Development Build watermark in your application’s window until the option
has been turned off.

Customizing the Player Settings
Now is a good time to look at the player settings and customize them to your liking. You
will be adding a cursor and several Windows Store–specific images. As many of the final
tasks remaining have to do with the Player Settings, it will be worth your while to create a
duplicate tab for the Inspector that you can lock and float for easy access.

 1. At the top right of the Inspector tab, click the Option icon and choose
Add Tab ➤ Inspector (Figure 12-15).

Figure 12-15. Adding another Inspector tab

Tip If you notice an error that the currently selected scripting backend is not installed
(Figure 12-14, 3), ensure that you have installed it in your Unity setup as mentioned earlier.

489CHAPTER 12: Building for Windows Store

 2. Choose File ➤ Build Settings and then click the Player Settings button
(Figure 12-16). Alternatively, choose Edit ➤ Project Settings ➤ Player.

 3. As you have done in earlier chapters, turn on the lock icon to keep
this tab from switching to your other objects or assets (Figure 12-17).

Figure 12-16. Accessing Player Settings through the Build Settings

Figure 12-17. Locking the new Inspector tab

490 CHAPTER 12: Building for Windows Store

 4. Optionally, drag the tab off to create a floating window (by dragging
upward), a new column (by dragging downward), or just leave it
tabbed with the original Inspector, depending on the amount of real
estate you have to work with.

Adding More Art Assets
Depending on the platforms you selected when you installed Unity, you will see tabs in the
Player Settings that represent each platform you have installed and can build for (Figure 12-18).

This example shows the following players are installed: Stand-alone EXE (Figure 12-18, 1),
Windows Store (Figure 12-18, 2), and WebGL (Figure 12-18, 3). Settings for Windows Store
are currently selected.

When you set the Build Settings to a particular platform, its corresponding tab will be active
in the Player Settings. Before submitting your app to Windows Store, you should double-
check each section to make sure everything has been covered.

In the top section, you added the Product Name, Tipboard Teaser, and a bogus Company
Name, LostMyMarbles. When you have acquired a developer account, you will have created
a publisher name. That is the name that should be put in as the Company Name.

You have already added an icon for desktop deployment, but have not yet added a custom
cursor. With touch-enabled devices, a cursor is obviously not required and is in fact
suppressed. In earlier versions of Unity, custom cursors required careful attention to layers
to make sure they were drawn last, or on top of the rest of the scene. Now, however, Unity
supports an actual operating system–type cursor (a.k.a. hardware cursor) making the use of
simple custom cursors extremely easy.

Figure 12-18. Player Settings showing a tab for each platform that has been installed

491CHAPTER 12: Building for Windows Store

A quick check of the Unity docs will not tell you that the hardware cursor size is going to be
32 × 32 pixels regardless of the image size or Windows pointer scheme. Oversized cursors
would have to be made and handled through code as sprites. For this game, a simple
hardware cursor will be fine.

Let’s go ahead and create a cursor now:

 1. Locate the Tipboard Cursor image in the Build Images folder.

 2. Set its Texture Type to Cursor.

In the Preview window, note that the image is 32 × 32 pixels.

 3. Click Apply and drag the new cursor texture into the Default Cursor
slot in the top section of the Player Settings.

 4. Move the mouse so the cursor is over the Game view.

The cursor changes.

With the cursor less generic than that provided by the operating system,
you will probably want to suppress it on mouse drags in the Board Level.
The Cursor is handled from the Cursor class and can be accessed from any
script. Because you will want to turn it off and on when the Board it tilting,
you will be adding the code to the Tiltboard script.

 5. Open the Tiltboard script.

 6. At the top of the OnMouseDown function, add the following:

Cursor.visible = false;

To bring it back on, you will add the OnMouseDown function’s counterpart, the
OnMouseUp function.

 7. Add the OnMouseUp function:

void OnMouseUp()
{
 Cursor.visible = true;
}

 8. Save the script and test the tilt functionality.

The cursor disappears during mouse drag as expected. The code, however, has nothing
to do with the mouse-down so also works anywhere else onscreen. The UI elements may
override the hide functionality, depending on focus and state of the element.

The last item in the top section of the Player Settings is the Cursor Hotspot. The location in
pixels uses the upper-left corner of the image as 0, 0. The Tipboard Cursor image was also
designed to use that location as the hotspot, so you are good to go.

492 CHAPTER 12: Building for Windows Store

Building for Windows
Now you are all set to create your first UWP build with the Tipboard project. As with your
very first test build in Chapter 1, Unity will generate a UWP Visual Studio solution that you
will open with Visual Studio and complete the build. You could have done this step right after
the player settings were defaulted to the Windows Store previously, but any additional
changes you made wouldn’t have modified your generated Visual Studio solution.

 1. Load up the Build Settings again via File ➤ Build Settings.

 2. Ensure that Windows Store is selected as per the default you set up
earlier in this chapter.

 3. Click Build, and when the folder selection dialog box opens, choose
a new folder to write your build to (unless this is a repeat step, and
then you can write to the same folder). A good practice is to create a
folder called Builds (outside your project folder).

Unity will show you a status bar as your application, the Player, is
being built. If successful, you should see either a folder open, or on
your taskbar you’ll see it highlighted.

 4. Open the folder.

If the folder doesn’t appear, it is empty, or the build finished quickly, a
problem likely occurred in building your application.

 5. If there was a problem with the build, click the status line to open the
Console window or open it from the Windows menu and inspect the
message.

Hopefully, you sorted out all of the installs in Chapter 1 with your test build.
If not, read the error messages closely and double-check your installs as
per the previous section.

Tip Unity won’t overwrite a generated Visual Studio solution. It will update its own files (such
as your in-game assets), but it won’t overwrite things like name or icons. Unity does, however,
generate a file called UnityOverwrite.txt in your Build folder (or whatever you chose to name
yours). This file can be customized to overwrite files upon build. For example, if you wanted Unity
to overwrite the package.appxmanifest file, which contains your project name, icons (logos), and
more, you could change the line in the UnityOverwrite.txt file as shown next. The next time you
create a build from Unity, that file will be overwritten.

Old: Tipboard Teaser\Package.appxmanifest: modified

New: Tipboard Teaser\Package.appxmanifest: overwrite

http://dx.doi.org/10.1007/978-1-4302-6757-7_1
http://dx.doi.org/10.1007/978-1-4302-6757-7_1

493CHAPTER 12: Building for Windows Store

 6. If the build has failed and you are sure it should not have, restart
Unity and attempt the build again.

Assuming now that you have had a successful build and that the folder you created was fill
and has opened, you are ready to move on to Visual Studio to continue the build process.

 1. If you do not have Explorer showing file extensions, it is advisable
that you set it to do so now.

 2. To open the new build of your UWP application in Visual Studio,
double-click the generated Visual Studio solution, which has the .sln
extension (Figure 12-19).

When the solution opens in Visual Studio, typically you will have one to three projects
(Figure 12-20). If you selected Unity C# Projects in Unity’s Build settings, you should see
three projects. Depending on where you have code in your project, Unity will generate
several additional C# projects. The first one you’ll see, Assembly-CSharp, contains all of
your Unity C# game code contained within folders not called Plugins. If you opted for Unity
C# Project when you were setting up the Build Settings, you could go in there and make
minor modifications and recompile without Unity being open.

Figure 12-19. Opening your UWP Application in Visual Studio

494 CHAPTER 12: Building for Windows Store

You could also set breakpoints in this code and debug your Unity code running on your
device. Breakpoints halt the progress of evaluating code at that particular line in the code,
allowing you to check on the status of variables and other information. From the breakpoint,
you can step through the code one line at a time to see if it is going where you expected.
When you have tracked down the problem or want to check in another place, you can tell
Visual Studio to continue. For more information on breakpoints and stepping through code,
see “Getting Started with Visual Studio” in the Dev Center.

Figure 12-20. Selecting the correct project in Visual Studio

495CHAPTER 12: Building for Windows Store

Next, you will select the processor type (Figure 12-21). The default build settings set your
processor type to ARM—which is what you’ll want only if you are building for or testing on a
Windows Phone physical device. If you are testing for the Windows Phone by using the
Windows Phone Emulator or for a Windows 10 PC (including HoloLens and Xbox), you’ll
want to choose x86. If you know you are on a 64-bit device (the majority of Windows 10
devices), you can alternatively choose x64. If you want to optimize your build and test it, you
can choose Release or Master instead of Debug, called a Debug build, just to the left of the
Processor drop-down).

Tip Release builds are optimized and still support Unity’s profiler that you can run from within
Unity, whereas Master is compiled with .NET Native and is fully optimized. Master builds take
considerably longer to create (minutes) and are used for final testing and store submissions.

Figure 12-22. Selecting the x64 processor type

 1. For testing on your local PC, set the processor to x64 and leave
Debug selected (Figure 12-22).

Figure 12-21. The processor type options

496 CHAPTER 12: Building for Windows Store

Figure 12-23. Monitoring the build status

 2. Click the Local Machine play button to compile and deploy this UWP
to your local machine.

You can view the build status in the lower-right corner of Visual Studio (Figure 12-23).

When the application launches, you’ll see Development Build in the lower-
right corner (Figure 12-24, bottom right) because this is a Debug build (that is,
you have Debug selected in the preceding step) or you still have Development
Build selected in Unity’s player settings for Windows Store Apps.

Also at the top of the screen is a debugging toolbar for XAML Windows
applications. It isn’t present in your Master builds—so this isn’t something
the end user sees. This debug toolbox is visible only because you are
running your app from Visual Studio and you can collapse it by clicking its
bar (Figure 12-24, top).

497CHAPTER 12: Building for Windows Store

Having been deployed, the game is now running.

 3. Give it a try to make sure things are working as expected.

 4. To close the application, bring the mouse to the upper-right corner
and click the window Close button, X (Figure 12-25, left).

Alternatively, you could click the Stop button in Visual Studio (Figure 12-25, right), but it’s
generally a safe practice to let an app safely close on its own if possible. While the Exit
button would also stop the app, the convention for Windows Store apps or players is to use
the window Close button. You will eventually swap out the Exit button for better game play
instructions

Figure 12-24. The launched Development Build

Figure 12-25. Closing the Development Build

498 CHAPTER 12: Building for Windows Store

Exploring Screen Settings and Orientation
Let’s look at options available for your Player. You can opt to attempt to have the application
run in full-screen mode but you cannot force it to stay full-screen. This is up to the user,
which was why GUI levels take more time and thought than 3D worlds. 3D space can be
affected by a change in aspect ratio, giving your player a wider or narrower view of the
environment. 2D screen space is affected by scale, in that it can become unreadable on
small screens and overly large and clunky on large screens, hence the latest Unity UI system
that allows you to compensate or even specify different configurations for different-sized
screens.

Universal Windows applications have the ability to run on various rotations as well. They
can support a single default orientation or autorotation, which automatically rotates your
application when their device is turned, provided the device supports that. Choosing
autorotation means you will want to select the supported rotations for your application. If
the app is running on a device that supports rotation, it will not be redrawn for any of the
deactivated rotations. In other words, if you rotate upside down but don’t have Portrait
Upside Down supported in the following dialog box, the application won’t rotate. The little
Tiltboard game requires a landscape orientation to give the player access to the HUD.

If the device doesn’t support rotation, the application may get displayed in whatever default
the orientation is for that device regardless of your specified settings. If I was on a device
that didn’t support rotation, and its default orientation was Portrait, if I specified only
Landscape, it’s possible the app would be launched in Portrait because that’s all the device
supports. These preferences apply to both the splash screen and the running game and
should be kept in mind when you are setting the rotation options.

Let’s set the default to be full-screen, and the default rotation (orientation) to be Landscape
Right:

 1. Open the Build Settings by choosing File ➤ Build Settings.

 2. Click Player Settings and ensure that the Default Is Full Screen check
box is activated (Figure 12-26).

 3. For Default Orientation, choose Auto Rotation, and select Landscape
Right and Landscape Left.

499CHAPTER 12: Building for Windows Store

Providing Icons and Logos
If your curiosity has led you to investigate the Icon (called Logos in Windows Store
applications) section of the Player Settings after you set the build to Windows Store, you
may have been intimidated with the sheer number and sizes of images required. There are
just a few required images (Unity generates these upon your first build). The rest are for an
enhanced user experience to support users who could be running on a very wide array of
screen resolutions and pixel densities. The images for Windows Store apps act as a logo
(icon) in the Windows Store, the logo in your Start menu (which includes live tiles), and more.
As such, they are an important tool for attracting players and supporting the most hardware
possible.

Figure 12-26. Resolution, Presentation and Orientation in the Player Settings

500 CHAPTER 12: Building for Windows Store

A quick investigation of the tiles already loaded on your Windows 10 devices will show that
most tend to be similar in design and color choice (Figure 12-27). Text is optionally added on
top of the tiles, and some choose to have their logo in the image instead. Other applications
do not have any text in their tile.

Figure 12-27. Text added on top of tiles in Windows 10

Tip Tiles are the icons in the Windows 10 start screen for UWP applications. They can come
in multiple sizes: Small, Medium, Large, and Wide. Small and Medium are always available, the
others are optional, and the user chooses them to customize their start screen. As a developer, you
can choose to have a more detailed, wider tile if you so choose. You have the ability (via code) to
customize the tiles at runtime to show the users custom information.

501CHAPTER 12: Building for Windows Store

By choosing a different wide logo, you can give a better layout when the user chooses to
have a wide logo for your app on their start screen. Figure 12-28 shows an example of a
medium and wide tile.

By assigning these icons (a.k.a. logos and tiles) in the Player Settings, they will automatically
get pushed down to Visual Studio. Note that Unity expects a Texture 2D type of image if you
set these from within Unity. Since you are going to generate so many, it is recommended
that you not set them at this time in Unity’s Player Settings, but wait until you are working in
Visual Studio.

Generating them one by one can be a tedious task, but several tools are at your disposal
to generate the various icon sizes you need. The most important thing to understand is that
you should not use a single image and resize it to fit the various sizes. For UWP, the scaling
also includes various margin sizes that must be adhered to. This allows Windows 10 to
automatically select the correct icon or tile sizes during the download for the target device
as well as crop them depending on usage and device.

For the current guidelines, visit https://msdn.microsoft.com/windows/uwp/controls-and-
patterns/tiles-and-notifications-app-assets or search the Windows Dev Center for
“Guidelines for Tile and Icon Assets.” It is highly recommended that you at least take a look
through the article. The bare minimum tiles you must have are as follows:

Small: 71 × 71, used on the Start screen

Medium: 150 × 150, Start screen

Wide: 310 × 150, Start screen

Large (desktop only, not mobile): 310 × 310, Start screen

App List (icon): 44 × 44, used in search results, shortcuts, Explorer

Microsoft recommends that for each tile size, you provide not only these sizes (referrred to
as 100, or 100 percent) but in addition, 200- and 400-scale factors. So for the small logo,
you should have at least 71 × 71, 142 × 142, and 284 × 284 sizes.

Figure 12-28. Regular and wide width tiles

https://msdn.microsoft.com/windows/uwp/controls-and-patterns/tiles-and-notifications-app-assets
https://msdn.microsoft.com/windows/uwp/controls-and-patterns/tiles-and-notifications-app-assets

502 CHAPTER 12: Building for Windows Store

Unity will generate the placeholder images for the 100 percent scale. However, you will
be happy to know that an extension is available in Visual Studio that will generate all the
images for you. The UWP Tile Generator, available at https://visualstudiogallery.msdn.
microsoft.com/09611e90-f3e8-44b7-9c83-18dba8275bb2, installs into Visual Studio (it is also
open sourced at https://github.com/shenchauhan/UWPTileGenerator).

When you want a quick way to see these logos in action, check out a repository acquired
from Paul Thomson (thanks Paul!) on GitHub at https://github.com/adamtuliper/uwp-
visual-assets (Figure 12-29). This will allow you to run a sample project and see when the
various logos/icons are used. Open this project’s package.appxmanifest and click an icon to
see its purpose if you ever forget it.

Figure 12-29. Paul Thomson’s icon viewer

https://visualstudiogallery.msdn.microsoft.com/09611e90-f3e8-44b7-9c83-18dba8275bb2
https://visualstudiogallery.msdn.microsoft.com/09611e90-f3e8-44b7-9c83-18dba8275bb2
https://github.com/shenchauhan/UWPTileGenerator
https://github.com/adamtuliper/uwp-visual-assets
https://github.com/adamtuliper/uwp-visual-assets

503CHAPTER 12: Building for Windows Store

That sample project offers a nice way to view even the scaling sizes that Windows will
choose because it lists the size on most of the icons. In Figure 12-30, you see a start screen
using Square 44 × 44 at 150 percent scale (thus 66 × 66) and Square 150 at 150 percent
scale (thus 225 × 225). Windows automatically chooses the scale factors based on display
settings.

If you are familiar with and have access to a vector-based authoring program such as Adobe
Illustrator, the simplest way to generate your icons is by creating a vector-based master (.svg
extension) and letting the Visual Studio extension do the rest of the work for you. If you
prefer a more complex raster-type image (.png is the recommended extension), you can also
use the extension to generate the sizes and then touch up the images manually where
required. For best results, it is recommended that you use an SVG image, and ensure that it
has very little padding and scales the best across the various resolutions.

Tip If you do not have Adobe Illustrator, a free alternative is the open source vector drawing
program, Inkscape. While it may not be as full-featured as a fully commercial product, it has most
of the functionality you will need and has a fairly shallow learning curve. Unfortunately, the UWP
Tile Generator does not currently read Inkscape's version of the .svg format, but several users have
devised a means of generating the various sizes required for your apps.

Figure 12-30. The test project’s icon loaded in Windows

Let’s give the UWP Tile Generator a try with a vector image and configure the icon options:

 1. Follow the link provided to download the UWP Tile Generator.

 2. Make sure Visual Studio is not running and then double-click the
downloaded UWPTileGenerator.vsix file to install it.

504 CHAPTER 12: Building for Windows Store

 3. Open Visual Studio and then open the Visual Studio solution for the
Tipboard project.

You will have to bring your SVG file into the Visual Studio solution manually,
as it won’t be automatically added by Unity. There are two ways to do this;
both will be covered so you understand how files get added to your project.

The icon loaded into Unity earlier in the project is more appropriate for a
desktop solution. Locate the image, TileIcon.svg, in the Chapter 12 Assets
folder.

 4. Switch back to Visual Studio and bring the Explorer window into
view.

 5. Drag and drop TileIcon.svg from the Explorer window into the Assets
folder in Visual Studio (Figure 12-31).

The folder in Visual Studio named Assets isn’t to be confused with the
Assets folder in your Unity project. The two are unrelated.

Figure 12-31. Bringing an svg file into Visual Studio

http://dx.doi.org/10.1007/978-1-4302-6757-7_12

505CHAPTER 12: Building for Windows Store

Alternatively, you can right-click the Assets folder in Visual Studio, choose
Add/Existing Item, and navigate to the Chapter 12 Assets folder. Select
TileIconP.svg to add it to the Assets folder in Visual Studio.

 6. In Visual Studio, right-click Assets/TileIconP.svg and choose
Generate UWP Tiles (Figure 12-32).

Figure 12-32. The right-click method of loading the svg file

 7. Double-click the Package.appxmanifest file in Visual Studio’s file list
(the Solution Explorer window) and navigate to the Visual Assets tab
to view all of the images that have been set up in the project.

http://dx.doi.org/10.1007/978-1-4302-6757-7_12

506 CHAPTER 12: Building for Windows Store

 8. Enable showing the application name printed on the logo in the Start
screen by activating the deactivated check boxes under Show Name.

The name displayed on the logo is what is entered in the Short Name field right
above the check boxes, which is Tipboard Teaser (Figure 12-33).

 9. Save the package.appxmanifest file.

Figure 12-33. The app’s “short name”associated with the logos

507CHAPTER 12: Building for Windows Store

Anytime you go through the build process from Unity to generate the Visual Studio solution,
these icon settings won’t be overwritten. If for some reason you plan on deleting your
generated project on occasion you’ll either need to repeat the preceding image-generation
process or bring the generated files into your Unity project and assign them in the Icon
section of the Player Settings. (A use case for this is when you set up settings in Unity’s
Player Settings that you want to be pushed down to the Visual Studio solution.)

Once again, Windows Store doesn’t require all of the images that were generated. You may
have noticed that initially Unity generates five images for you. That is all you technically
require. However, having all of the images will allow you to run on multiple display
resolutions more effectively.

Having added the images to the built solution in Visual Studio, it is unnecessary to add them
to the Unity project. If you want to do so anyway, just to keep all of the assets in the same
place, follow these steps. Again, this is optional if you’ve successfully generated the tiles in
Visual Studio.

 1. Create a folder in Unity’s Project view window under Assets and
name it Windows Images.

 2. Copy the new images from the Visual Studio solution’s Assets folder
and paste them into the new folder.

If you have opted not to go through the image-generating process,
alternatively you can import the Unity package, WindowsIcons.
unitypackage, that contains all of the processed images. It can be found in
the Chapter 12 Assets folder.

 3. Open Unity, go to File ➤ Build Settings and click Player Settings.

 4. Open the Icon section.

http://dx.doi.org/10.1007/978-1-4302-6757-7_12

508 CHAPTER 12: Building for Windows Store

Figure 12-34. Unity Tiles and names assigned in Unity’s Player Settings

Figure 12-34 shows where you can assign names that will show up on the
tiles as well as all of the individual tile sizes. Feel free to add names if you
wish.

509CHAPTER 12: Building for Windows Store

 5. From the Build Images folder, locate and apply the corresponding
texture to each tile or logo type by clicking the small Select button on
each Texture 2D empty image preview or by dragging and dropping
them directly from the Project view.

Adding the Splash Screen
If you have a Pro or a Plus Unity license, you have the option to customize or even remove
the (Powered by) Unity splash screen that appears while your app loads. These settings are
in the Player Settings (Figure 12-35). If you have only Unity Personal edition, this option is
grayed out, but you can still customize your splash screen. If this option is enabled for you,
you can assign your splash screen images here.

If you do choose to use the Unity splash screen (and you have the Plus or Pro Unity license),
you also have the option to use the light or dark color scheme. At the bottom of the Splash
Screen section, you have the added option of setting the color of the Unity splash screen as
well.

Figure 12-35. The Splash screen options in the Player Settings

510 CHAPTER 12: Building for Windows Store

Figure 12-36. Customizing the UWP Splash screen in Visual Studio

Let’s customize the application’s splash screen, independent of Unity’s. If you have only an
icon image to work with, the splash screen can be easily customized inside of the generated
UWP solution in Visual Studio.

 1. In Visual Studio, right-click the Assets/TileIconP.svg file and choose
Generate UWP Splash (Figure 12-36).

511CHAPTER 12: Building for Windows Store

Figure 12-37. The generated Splash screens in Visual Studio

 2. Open Package.appxmanifest file and verify the various size splash
screens that have been generated for you (Figure 12-37).

The next time you run the application, your custom splash screen will be displayed in
addition to Unity’s splash screen, unless you opted not to display Unity’s.

Enabling the Gyroscope Functionality
Most of the essentials have now been taken care of. With the confidence of knowing the
app will successfully build for UWP and that you will be able to test on an Gyroscope-
enabled device, you are now ready to tackle the gyroscope code. The Tiltboard project
is far too complex at this point to be using to test new functionality, so you will reuse an
early part of the Board Test scene to develop the basic gyroscope code. Aside from getting
the gyroscope code to work, the most important goal is to make sure the camera has the
correct orientation to match your finished scene. This will dictate which board axes get
mapped to the gyro values returned by the gyroscope.

 1. From the Chapter 12 Assets folder, load the BasicBoard.
Unitypackage into your Porting Tests project.

 2. Drag the Basic Board prefab into your Button Test scene’s Hierarchy
view.

http://dx.doi.org/10.1007/978-1-4302-6757-7_12

512 CHAPTER 12: Building for Windows Store

 3. Delete the original Main Camera from the scene and drag the
imported camera and Directional Light out of the Basic Board group,
agreeing to break the prefab instance.

 4. In the Scene view, set to a Top view, move the Marble to the top of
the board, and check that it appears in the same place in the camera
view.

 5. Create a new C# script and name it GyroTest.

 6. Add it to the Basic Board group.

Because the simple scene has no death zone or Marble reset functionality,
you will use the Reset button to reload the scene when the tilting gets out
of hand.

 7. Add the following paths at the top of the script:

using UnityEngine.SceneManagement;
using UnityEngine.UI;

 8. Add the following function:

public void ResetScene () {
SceneManager.LoadScene(0); // load the element 0 scene
}

Next you will add the gyroscope code. Depending on the platform, the gyro may or may
not be automatically enabled. Because the game must be built into a solution to test on the
target device, it will be well worth the time to build in a few controls to make testing easer.
You will eventually allow your player to switch between touch/mouse drag, gamepad, and
gyroscope.

 1. In the Start function, add the following:

Input.gyro.enabled = true;

 2. Add the following variables:

float yRotation;
float xRotation;
float zRotation;
float speed = 1f; // sensitivity adjustment

public bool xOn;
public bool yOn;
public bool zOn;
public Slider slider;

public Text text;

513CHAPTER 12: Building for Windows Store

As you have probably guessed, you will want a means of adjusting the
sensitivity of the gyroscope. The speed variable will allow you to do so
through a slider. The Boolean variables will allow you to isolate the axes
while testing.

 3. Add the following code to the Update function:

if (xOn) xRotation += -Input.gyro.rotationRateUnbiased.x * speed;
else xRotation = 0;

if (yOn) yRotation += -Input.gyro.rotationRateUnbiased.y * speed;
else yRotation = 0;

if (zOn) zRotation += -Input.gyro.rotationRateUnbiased.z * speed;
else zRotation = 0;

transform.eulerAngles = new Vector3(xRotation, yRotation, zRotation);

In this code, the gyro.rotationRateUnbiased value for each axis is added to
the existing rotation and then multiplied or adjusted by the speed value. The
last line sets the board’s rotation by using the new values.

Next, you will add the function that will update the speed when the slider is
accessed and report the number to the text object.

 4. Add the speed adjustment function:

public void SetSpeed (float value) {
 speed = value;
 text.text = value.ToString();
}

 5. And the functions for the on/off axes:

public void SetX (bool state) {
 xOn = state;
}
public void SetY (bool state) {
 yOn = state;
}
public void SetZ (bool state) {
 zOn = state;
}

 6. Save the script.

514 CHAPTER 12: Building for Windows Store

At this point, you are probably anxious to test the gyroscope code, so to save time, you can
add the extra UI controls from a Unity package:

 1. Delete the Button from the scene but leave the Event System.

 2. Import the TestCanvas.unitypackage to your project.

 3. Drag the Canvas into the Hierarchy view.

 4. Select the Reset Button. In the existing On Click event, load Basic
Board as the Object and GyroTest ➤ ResetScene() as the function.

 5. Select Toggle X. In the existing On Value Changed event, load Basic
Board as the Object and GyroTest ➤ SetX as the function.

Note that there is also a SetX (bool) option. In the first, the check box state
is passed directly into the SetX’s argument, state. With the second, SetX
(bool), you are provided with a check box just below the selected script/
function, where you can dictate what value is sent to the function. While
that may not make any sense with the simple true/false toggle state, if
you were using the toggles as option or radio boxes, you could pass the
appropriate value (of whatever type) directly to the function that would
initiate the proper tasks.

 6. Select Toggle Y, in the existing On Value Changed event, load Basic
Board as the Object and GyroTest ➤ SetY as the function.

 7. Select Toggle Z, in the existing On Value Changed event, load Basic
Board as the Object and GyroTest ➤ SetZ as the function.

 8. Select Slider, in the existing On Value Changed event, load Basic
Board as the Object and GyroTest ➤ SetSpeed as the function.

 9. Select the Basic Board and assign the Slider UI object as the Slider
parameter and the Message UI object as the Text parameter.

10. Save the scene and save the project.

11. Click Play and test the check boxes, slider, and finally the Reset
button.

515CHAPTER 12: Building for Windows Store

With the test scene ready to go, it’s time to build the solution and deploy it for testing:

 1. Open up Build Settings and click Build.

 2. Choose the same folder that you created for the first test project in
Chapter 1.

 3. Unity will overwrite its own data but won’t overwrite any of the
custom changes you’ve made. Power users can override Unity’s
overwriting behavior by editing the UnityOverwrite.txt file in the Build
folder as mentioned earlier the chapter.

 4. Open the solution again in Visual Studio. If it was already open,
you will likely have been prompted to reload it; in that case, choose
Reload All.

 5. Because you are reusing the solution, the x86 setting has remained
in place.

 6. Click the Debug button on the top toolbar in Visual Studio and test
the gyroscope by turning the axes on one at a time and adjusting
the speed slider until the Marble has a reasonable amount of
responsiveness.

The first thing that you will have noticed is that the gyro axes are mapped
wrong for the direction your camera is pointed. Experimentation will show
that the last line in the Update function should be as follows:

transform.eulerAngles = new Vector3(xRotation, zRotation, yRotation);

 7. Feel free to make the changes if you wish, but you are now armed
with the information required to add the acceleration code to the
Tiltboard project.

Tip When running a Debug build, any output caused by using Debug.Log() will be written out to
a UnityPlayer.log file. Note that output from print() statements will not be included. The player log
is located under <user>\AppData\Local\Packages\<productname>\TempState. See also
log files. These output values along with other helpful diagnostic information can also be viewed at
runtime in Visual Studio’s output window, accessible via Debug/Windows/Output.

http://dx.doi.org/10.1007/978-1-4302-6757-7_1

516 CHAPTER 12: Building for Windows Store

Finishing the Tiltboard Project
There are a few more things you will do to finish the functionality of the Tiltboard project and
prepare it for deployment on Windows Store. The most obvious is, of course, adding the
accelerometer code. Less obvious will be gracefully handling interruptions from other apps
such as Skype, incoming phone calls, or text messages. A third consideration will be to test
the in-app purchase of the tipCoins. A nice option with Windows Store is that you can allow
players to “purchase” items for free.

Adding the Gyroscope Code
Let’s begin by adding the gyroscope code to the project. When you test the game for the
first time, you will probably notice that the gyroscope will suck up quite a bit of resources.
That means that you should allow players to adjust the sensitivity of the tilting to better
match their device. It also means that the speed value should be retained between levels so
the player doesn’t have to adjust it for each new game.

Another thing you will discover is that the mouse-drag functionality for tilting the board
works with touch and drag. Although this is probably a pleasant surprise, you will want to
restrict the player to one or the other input type at any one time.

Most of the code will be added to the TiltBoard script, so you will begin there:

 1. Open the Tiltboard project.

 2. Open the TiltBoard script.

 3. Add the following variables:

Figure 12-38. Visual Studio's Unity Player log

517CHAPTER 12: Building for Windows Store

// gyroscope ***
bool gyroEnabled = false;
internal float yRotation;
internal float xRotation;
internal float zRotation;

float speed = .065f; // sensitivity adjustment for gyroscope
public MarbleManager marbleManager; // to repress tilt when over tilted
public GameObject aCButton; //gyroscope/drag toggle
public GameObject aCSpeed; // gyroscope sensitivity slider
Slider slider; // the Slider component
Persistent persistent; // holder of data

The first variable controls whether gyroscope or dragging is in charge of
tilting the board. The three floats manage the gyroscope changes. The
speed is set to an amount that worked well on a Surface Pro. Feel free to
adjust this number.

The MarbleManager is in charge of resetting the board when the Marble
escapes, so it will need to tell the TiltBoard script to repress gyroscope
functionality during a reset. The other variables are for the UI additions.
Persistent is where you will store the player’s speed preference.

 4. In the Start function, identify and assign two of the variable’s values:

slider = aCSpeed.GetComponent<Slider>();
persistent = GameObject.FindWithTag("Holder").GetComponent<Persistent>();

 5. Also in the Start function, add the following:

if (SystemInfo.supportsGyroscope) {// check for acceleromter support
 Input.gyro.enabled = true; // enable hte acceleromter
 gyroEnabled = true;
 aCButton.SetActive(true); // show the toggle for acc/drag
 aCSpeed.SetActive(true); // show the speed slider
 GetACInfo(); // update the speed variable
}
else aCButton.SetActive(false);

In this code, you first check to see whether the device supports an
gyroscope. If it does, you enable it. Next you set the variable that keeps
track of which tilt functionality is active, and then you show the UI controls
that are seen only if gyroscope functionality is present. Finally, you update
the slider value to that stored in the Persistent script.

The code for setting the tilt is fairly straightforward. Note that the spin
direction is always set to 0. The allowTilt flag is during board resets, while
the gyroEnabled flag filters the tilt methods.

518 CHAPTER 12: Building for Windows Store

 6. In the Update function, add the following:

if (!allowTilt || !gyroEnabled) return;

xRotation += -Input.gyro.rotationRateUnbiased.x * speed;
yRotation += -Input.gyro.rotationRateUnbiased.y * speed;

transform.eulerAngles = new Vector3(xRotation, 0, yRotation);

And now you will make the three functions that support the UI and manage
the data. The first manages the tilt method.

 7. Add the following function:

// gyroscope ***
public void ToggleGyroscope (bool state) {
 gyroEnabled = state;
 aCSpeed.SetActive(state); // if ac is on, show the slider
 persistent.gyroEnabled = gyroEnabled; // update enabled state
}

 8. Add the function that manages the sensitivity:

// gyroscope ***
public void UpdateSpeed (float newSpeed) {
 speed = newSpeed;
 persistent.speed = speed; // update stored setting
}

 9. Add the function that gets the data on startup:

// gyroscope ***
 void GetACInfo () {
 speed = persistent.speed; // get stored setting
 gyroEnabled = persistent.gyroEnabled;
 slider.value = speed; // update the slider
}

Note that you are also keeping track of the tilt functionality’s current state.

The next section finishes up the functionality in the other scripts:

 1. Open the Persistent script.

 2. Add the following variables:

//gyroscope ***
internal float speed = .065f; // sensistivity adjustment
internal bool gyroEnabled ; // ac enabled state

519CHAPTER 12: Building for Windows Store

 3. Save the script.

 4. Open the BoardManager script and add the following variable:

public TiltBoard tiltBoard; // gyroscope ***

 5. In the Update function, below the tiltBoard.UpdateBoard() line, add
this:

tiltBoard.allowTilt = true; // gyroscope ***

 6. In the StartBoardReset function below the resetBoard = true line,
add this:

tiltBoard.allowTilt = false; // gyroscope ***

 7. Save the script.

 8. Open the PathCellManagerscript.

 9. In the ProcessWinner function, under the marbleManager.
repressInput = true line, add the following:

Input.gyro.enabled = false; // gyroscope ***

10. Save the script.

Next you will add the new UI elements. To speed things up, you can bring these in from a
Unity package and finish hooking them up to the code:

 1. Open the Board Level scene.

 2. Import the GyroscopeUI.unitypackage.

 3. Locate the Gyroscope Group in the Prefabs folder and drag it into
the Game Level GUI’s Canvas.

 4. Select the Toggle AC object in the Gyroscope Group and assign the
Board Group as the Object in the On Value Changed event.

 5. Set the function to TiltBoard ➤ ToggleGyroscope.

 6. Select the AC Slider Speed object in the Gyroscope Group and
assign the Board Group as the Object in the On Value Changed
event.

 7. Set the function to TiltBoard ➤ UpdateSpeed.

 8. Save the scene and save the project.

520 CHAPTER 12: Building for Windows Store

Now you will build the updated project and test the new functionality on your Windows 10
device. For this test, a Surface Pro 4 was used, allowing the build to be deployed to Local
Machine. If you are deploying to a device where installing Visual Studio is not practical,
select Device instead and ensure that it is connected to your development machine by USB
cable.

 1. Create your build again from Unity.

 2. Open the resulting Visual Studio solution and select Start Debugging
from the Build menu.

 3. Click Play, or press F5 on your keyboard.

The Unity Load screen appears, and the newly updated game is loaded.

 4. Test the game by toggling the gyroscope toggle button on and off.

Note that when the gyroscope is off, you can tip the board with a finger
touch and drag. Also note that there is no cursor.

 5. Exit the debugging build.

Now that you know the mechanics of the game will work on devices with gyroscope
functionality, it is time to think about managing the in-app and in-game purchases.

In-App Purchases
In this section, you will explore practical issues connected with in-app purchases. While
you will want to test purchasing from an outside source, you will also want to consider what
happens to the player’s purchases should the game go down.

Saving Store and Game Data
In the scenario presented in the introduction to this section, you were made aware of a
potential problem with both purchases made through Window Store, the tipCoins, and the
in-game purchases of the Wheelbarrows (for moving the Banana Peels) and the Crushers
(the guard character that destroys the peppermint candies).

In a networked game, especially those that are multiplayer, you would store player data on
a server, where the player would be able to log in and run the game from different devices.
Although many services offer cloud services, such as Microsoft Azure, server data storage is
beyond the scope of this book.

Although it’s not as flexible as a data store on a server, you can store data on the local
device where the app has been deployed. Unity’s PlayerPrefs allow you to store data in a
format that is not easily hacked by typical casual players. Windows Store apps also have the
ability to write roaming data that will get synchronized between your devices, though that is
beyond the scope here, as it isn’t integrated into Unity.

521CHAPTER 12: Building for Windows Store

PlayerPrefs are easily updated, but it is important to know they are written back to disk
only when you call PlayerPrefs.Save() or when the application exists gracefully (without a
crash). It is best to explicitly save the values to prevent data loss (and angry players).

Before you begin coding the save and load functionality, you will be introduced to a slightly
more advanced topic. Although most of the code involving the purchases resides in the
StoreManager and Persistent scripts, the variables are accessed and updated from several
scripts. The danger here is that you could theoretically change values before they were
changed from an earlier call.

To safeguard against this happening, you will create copies of the main variables (currently
fields) that will be properties. Properties provide you with a slightly different way to handle
access to the variables. The first thing to do is to set the three main variables to private.
Now the other scripts will have access to them only through their property counterparts’ get
and set accessors (methods). Note that the property names use the field names with the
first letter changed to uppercase to keep things less confusing, though you’ll find Unity uses
nonstandard C# naming conventions for their property names.

 1. Open the Persistent script.

 2. Change the cash, wheelbarrows, and candyCrushers variables to
private:

private float cash;
private int wheelbarrows = 0; // usable banana movers
private int candyCrushers = 0; // usable peppermint crushers

 3. Under the original variables, create the Cash property:

public float Cash {
 get {
 return cash;
 }
 set {
 cash = value;
 PlayerPrefs.SetFloat("cash", Cash);
 }
}

With get, the value for the now private cash is immediately returned. To
change it, the value sent through the set is immediately assigned to the
private cash. Next, you will save the value to the device via the PlayerPrefs.
For more information on PlayerPrefs, be sure to check out the Unity
documentation. Something here on where exactly they are saved.

522 CHAPTER 12: Building for Windows Store

 4. Create the Wheelbarrows property:

public int Wheelbarrows {
 get {
 return wheelbarrows;
 }
 set {
 wheelbarrows = value;
 PlayerPrefs.SetInt("wheelbarrows", Wheelbarrows);
 }
}

 5. Create the CandyCrushers property:

public int CandyCrushers {
 get {
 return candyCrushers;
 }
 set {
 candyCrushers = value;
 PlayerPrefs.SetInt("candycrushers", CandyCrushers);
 }
}

In the CalculateWinCash function, you will save the three important values
every time the player completes the game/level.

 6. In the CalculateWinCash function, under the Cash = Cash + winCash
line, add the following:

//user may have more points, but level
//has also ended save their current settings
SaveSettings();

The SaveSettings function is very simple. This forces the file containing
your player preferences to be updated. Note that your preferences are not
saved until this happens!

 7. Save the player prefs to disk when SaveSettings is called:

//Saves player prefs to disk
public void SaveSettings() {
 //ensure the settings are saved when this is called (to disk)
 //Unity will save settings upon graceful exit, but let's ensure
 //user doesn't lose purchases now.
 PlayerPrefs.Save();
}

523CHAPTER 12: Building for Windows Store

Now you will see about retrieving the properties from disk.

 1. Create the following function to load the stored player prefs:

public void LoadSettings() {
 Cash = PlayerPrefs.GetFloat("cash", 0);
 Wheelbarrows = PlayerPrefs.GetInt("wheelbarrows", 0);
 CandyCrushers = PlayerPrefs.GetInt("candycrushers", 0);
}

These PlayerPrefs values are in what is called a dictionary. It’s simply a key/
value lookup. You ask for a key (for example, wheelbarrows) and you get the
value back if one exists, or 0 for a default value.

You will want to load the saved data when the app is started.

 2. At the bottom of the Awake function’s if clause, add the following:

//Load the last saved values (if they exist)
LoadSettings();

 3. Save the script.

The data is now saved when the level is completed, but it also should be
saved after each purchase of tipCoins, Wheelbarrows, and candyCrushers.
Because each transaction has a call to TransactionComplete, it will be a
simple addition.

 4. Open the StoreManager script.

 5. At the top of the TransactionComplete function, add the following
to ensure that we save our coin counts right after a successful
purchase:

persistent.SaveSettings();

 6. Save the script.

The data will be maintained nicely on the local device. Next you will investigate a practical
means of testing the purchase of the tipCoins with “real” money.

Testing Purchases
At this point, you will want to test your purchases from outside sources. You have two
choices for doing so. The first can be done using a simulator, which requires code changes
to the Windows 10 simulator to fake a real purchase. The second is carried out through
Windows Store and, as you may guess, requires an app developer license.

The Windows Store supports multiple types of in-app purchases (IAPs), covering
consumables (for example, coins), subscriptions, and more. You are going to implement in-
app purchases into Tiltboard to enable purchasing of coins—a consumable product.

524 CHAPTER 12: Building for Windows Store

Integrating in-app purchases is a problem that has several methods available for your
implementation. Microsoft has this process documented in its developer documentation
fairly extensively and has published source samples to do this from Unity at https://github.
com/Microsoft/unityplugins. Even easier, though, is the fact that Unity has added in-app
purchase support that can easily be extended to support additional platforms.

To use the built in in-app purchase support, you will have to do a couple of things. You will
begin by enabling IAP services in your project. The IAP package will already be installed, but
you may need a newer version.

 1. From the Window menu, select Services (Figure 12-39).

Tip The Unity IAP, because it services many platforms, is constantly being updated. Unity
recommends keeping up-to-date on this, and their dialog in services will help do this, but always
back up your project before updating to ensure that your custom IAP code isn’t overwritten.

Figure 12-39. Selecting Services

https://github.com/Microsoft/unityplugins
https://github.com/Microsoft/unityplugins

525CHAPTER 12: Building for Windows Store

 2. In the resulting Services window, create a Unity Project ID—this is
usually your Unity user ID (Figure 12-40).

Figure 12-40. Creating a Unity Project ID

526 CHAPTER 12: Building for Windows Store

 3. Click to turn on IAP under In-App Purchasing (Figure 12-41).

Figure 12-41. Turning on In-App Purchasing

527CHAPTER 12: Building for Windows Store

 4. Confirm enabling IAP by clicking the Enable button (Figure 12-42).

Figure 12-42. Confirming In-App Purchasing

528 CHAPTER 12: Building for Windows Store

Figure 12-43. Selecting the age range

 5. Now choose the age range for your application.

Tiltboard is not targeted for 13 and under, so the option is left deactivated
(Figure 12-43).

Note the Children’s Online Privacy Protection Act (COPPA) compliance
changes you will be prompted about. This affects ads that could be served
up depending on COPPA compliance and assuming you integrate with an
ad network, such as Microsoft Ads.

529CHAPTER 12: Building for Windows Store

 6. Click the Import or Reimport button if there are any updates to the in-
app purchase libraries that Unity may prompt you about (Figure 12-44).

Configuring In-App Purchase Names
Follow the store submission process for the specific directions required to set up in-app
purchases during the submission. The steps must be followed to ensure they match up with
the names configured in the application.

In the Game Scripts ➤ WindowsStore/InAppPurchases file, you’ll note there is a Coin75 in
there with a specific string. This value is what needs to be set up in the Windows Store and
defined in our in-app purchase API.

 1. Examine the contents of the InAppPurchases script.

public class InAppPurchases
{
 //Note right side of the string is what needs to be registered in the store
 public const string Coins75 = "75.Coins";
}

Figure 12-44. Checking for updates to in-app purchasing libraries

530 CHAPTER 12: Building for Windows Store

 2. Note that in the InAppPurchaseManager script in the InitializeIAP
method, you let the system know about the IAPs you have:

// Define the products
builder.AddProduct(InAppPurchases.Coins75, ProductType.Consumable, new IDs
{
{InAppPurchases.Coins75, WindowsStore.Name}
});

 3. If you were to add more purchase types (for example, unlocking a
new Level Pack), you could do something like the following:

builder.AddProduct("LevelPack1", ProductType.NonConsumable, new IDs
{
 //Some level pack you'd have them purchase to unlock new levels
 {"LevelPack1", WindowsStore.Name}
});

 4. Two other areas of the file need special mention. If a user reinstalls
the application, the current computer won’t immediately know
about the purchases that user has made. When the user runs the
application, these purchases will be restored. You must handle this
case, which is already in the code.

public PurchaseProcessingResult ProcessPurchase(PurchaseEventArgs e){
 //......

 //If they bought cash, increment the amount and save it
 if (String.Equals(e.purchasedProduct.definition.id, InAppPurchases.Coins75,

StringComparison.Ordinal)) {
 Persistent.instance.Cash += 75;
 //Ensure these are saved
 Persistent.instance.SaveSettings();
 }
}

Simulating Purchases
For localized testing of the purchasing process, you will require the built-in simulator. The
simulator allows you to fake in-app purchases locally while developing rather than going to
Windows Store. This gives you the ability to force different result codes for testing, such as
success and failure.

 1. Open the Game Scripts ➤ WindowsStore ➤ InAppPurchaseManager
script and navigate to the InitializeIAP method.

 2. In that method, change the following line of code to true to enable
the simulation system for in-app purchases.

531CHAPTER 12: Building for Windows Store

//*************************************
// You must remove this before building your release package
// for the store or you won't have real in-app purchases.
//*************************************
builder.Configure<IMicrosoftConfiguration>().useMockBillingSystem = true;

 3. Save the script.

Running the simulator will give results as per Figure 12-45 when trying the in-app purchase
while debugging.

Important! Before you publish your application, you must set this value,
useMockBillingSystem, to false or you will fail certification.

Figure 12-45. Message from simulator while debugging

532 CHAPTER 12: Building for Windows Store

Making the Commitment
The second option for testing your in-app purchases is to upload a developer build to
Windows Store. Before you can do so, you will be required to register as an app developer.
A developer account lets you submit apps and add-ins to Microsoft marketplaces, including
Windows Store, Office Store, and Azure Marketplace. A developer account is not required,
however, to develop and test applications on your devices. That is a developer license,
which is free. Note the difference in Visual Studio, which gives you the ability to register for
either through the Project ➤ Store menu specifically when you are in a Universal Windows
application project in Visual Studio (otherwise, the menu option for Project ➤ Store won’t be
visible, as it is context sensitive). See Figure 12-46.

Obtaining a Developer Account
Currently the cost is a one-time only fee of $19 USD for individuals and $99 USD for
companies. To register as a developer and to learn more about the Universal Windows
Platform in general, you can go to https://developer.microsoft.com and follow the Sign Up
Now link. There you will be told what to expect and what you must provide during the sign-
up process. You’ll be asked to enter your contact information, choose a publisher display
name, and provide a payment method.

Figure 12-46. Registering for a developer account from within Visual Studio

https://developer.microsoft.com/

533CHAPTER 12: Building for Windows Store

To begin the sign-up process in earnest, you must be signed in with the Microsoft account
that you want to associate with your developer account. If you don’t already have a
Microsoft account, you will be given a link to create one. If you downloaded Visual Studio
components beyond the Unity install, you have probably already been asked to create a
Microsoft account.

Following the next Sign Up prompt, you will be taken to the Microsoft Dev Center gateway,
where you must either sign in or create a new account. If you create an account, you
will have to return to the Microsoft Dev Center gateway to continue. The process is well
documented, but is outlined here as well:

 1. Go to https://develop.microsoft.com or choose Open Developer
Account from Visual Studio, as shown in the prior section when a
UWP application is open in Visual Studio.

 2. Click Windows apps in the left column.

 3. Click Get Started.

 4. In Register as an App Developer, select Sign Up Now.

You will be taken to the Window Dev Center and asked to sign in using the
account you want to associate your app developer account with.

Now you will be taken to the purchase page.

 5. Select your account type: individual or company. Most small
developers choose Individual, as company accounts require
additional cost ($99) and business verification. Please research the
account types via the link in the following Tip and choose what suits
you best.

 6. Provide a Publisher Display name.

In case you are not currently online, the paragraph on the Publisher Display
Name is as follows:

Enter the publisher display name that you wish to use (50 characters or
fewer). Note that if you enter a name that someone else has already selected,
or if it appears that someone else has the rights to use that name, we will not
allow you to select that name. For company accounts, the publisher display
name must be your organization’s registered business name or trade name.
Select this carefully, as customers will see this name when browsing and will
come to know your apps by this name.

Tip It is a good idea at this point to click the Learn More link. It will take you to https://
msdn.microsoft.com/windows/uwp/publish/opening-a-developer-account#the-

account-signup-process, where you can get more in-depth information about the developer
account.

https://go.microsoft.com/fwlink/p/?LinkID=254486
https://develop.microsoft.com/
https://msdn.microsoft.com/windows/uwp/publish/opening-a-developer-account#the-account-signup-process
https://msdn.microsoft.com/windows/uwp/publish/opening-a-developer-account#the-account-signup-process
https://msdn.microsoft.com/windows/uwp/publish/opening-a-developer-account#the-account-signup-process

534 CHAPTER 12: Building for Windows Store

 7. Returning to the sign-up, fill in your contact information.

 8. Pay a one-time registration fee (no prepaid credit cards are allowed).
Students via a program at many schools called DreamSpark may
have access to a Windows Store token to offset this fee. Those on
Microsoft’ BizSpark program also likely have this token available
under their benefits.

 9. On the next screen, read and accept the terms and conditions of the
App Developer Agreement.

10. Select the check box to indicate you have read and accepted the
terms.

11. Click Finish to confirm the purchase.

You will be taken to your account page, where the status will show that it is being
processed. You will then receive an e-mail that you must respond to in order to confirm that
the e-mail address is correct.

After responding to the e-mail, your dev account status should be active!

Packaging UWP Apps
To test or submit your app, you must first package it by choosing Create App Packages in
Visual Studio. This process will create an appxupload file to send to Windows Store or an
appxbundle that can be installed (side-loaded) onto another machine by double-clicking it.
You will be creating the appxupload file to send to the store.

535CHAPTER 12: Building for Windows Store

Figure 12-47. Selecting the project in Visual Studio

 1. Ensure the Tipboard Teaser Universal Windows project is selected in
Visual Studio (Figure 12-47).

 2. If you are building to run on the local machine, choose x64 (or if you
know you are running on a 32-bit machine, choose x86).

 3. Choose Project ➤ Store ➤ Create App Packages to tell Visual Studio
to create a package that you can install onto devices (Figure 12-48).

536 CHAPTER 12: Building for Windows Store

You will eventually need to upload this package to Windows Store if you
want to distribute it.

 4. Confirm you want to build packages by choosing Yes on the next
screen.

 5. Enter a name for your application (Figure 12-49).

Figure 12-48. Creating a package that can be installed on devices

537CHAPTER 12: Building for Windows Store

The name must be unique. Click Reserve, and it will process and reserve
the application name for you. You have one year to publish your application
before an unused name is returned back as available.

Figure 12-49. Reserving an app name on Windows Store

538 CHAPTER 12: Building for Windows Store

 6. Choose your application from the Existing App Names list and click
Next (Figure 12-50).

Figure 12-50. Selecting a name from your list of reserved names

539CHAPTER 12: Building for Windows Store

 7. In the dialog box shown in Figure 12-51, select the following options
to build for multiple platforms.

This will create multiple builds of your application that can run on 32-bit,
64-bit, and ARM processors. If you know you’ll run on only, say, 32-bit
machines at this time, then choose only 32-bit.

 8. Select or accept the location for the built package (Figure 12-51, 1).

 9. Choose Master x86 (Figure 12-51, 2).

10. Choose Master x64 (Figure 12-51, 3).

11. Choose Master ARM (Figure 12-51, 4).

Once completed, you’ll either see an error to resolve (this should be rare) in
Visual Studio or you’ll see the completed dialog box.

Figure 12-51. Configuring the packages

540 CHAPTER 12: Building for Windows Store

12. Click the link for the Output Location (Figure 12-52).

You will require it later on for submission to the store.

The resulting location should now have an .appxupload file you can upload to Windows
Store (Figure 12-53).

Figure 12-52. Selecting the Output Location

Figure 12-53. The generated appxupload file

541CHAPTER 12: Building for Windows Store

You may have noticed in the preceding dialog box, the Launch Windows App Certification
Kit. Microsoft recommends that you click it and read the next section at this time.

Windows App Certification Kit
Before submitting your app to the store for testing, purchase, free acquisition, or becoming
Windows Certified, you should install and run the Windows App Certification Kit (WACK).
This will help you validate and test it locally before you submit it for certification. Because
you are using Visual Studio, you can run the Windows App Certification Kit when you create
your app package.

The prerequisites are as follows:

	You must install and run Windows 10 with the Windows 10 SDK
installed.

	You must have a valid developer license for your computer (if you’ve
gone through the Create App Package procedure, you are all set up for
this already).

Now, you will validate your Windows app by using the Windows App Certification Kit
interactively.

 1. You can run WACK from the completion of package creation in the
prior step by clicking Launch Windows App Certification Kit; if so,
you can skip step 2.

 2. From the Start menu, search Apps, find Windows Kits, and click
Windows App Cert Kit.

 a. From the Windows App Certification Kit, select the category of
validation you would like to perform; in this case, select Validate
a Windows App.

 b. Browse directly to the app you’re testing, or choose the app from
a list in the UI.

 c. When the Windows App Certification Kit is run for the first time,
the UI lists all the Windows apps that you have installed on your
computer. The next time you run the certification kit, the UI will
display the most recent Windows apps that you have validated. If
the app that you want to test is not listed, you can click My App
Isn’t Listed to get a full list of all apps installed on your system.

 3. After you have input or selected the app that you want to test, click
Next.

From the next screen, you will see the test workflow that aligns to the
app type you are testing. If a test is grayed out in the list, the test is not
applicable to your environment. For example, if you are testing a Windows
10 app on Windows 7, only static tests will apply to the workflow. Note that
Windows Store may apply all tests from this workflow.

542 CHAPTER 12: Building for Windows Store

 4. Select the tests you want to run and click Next. If you are unsure,
leave them all selected (Figure 12-54).

Figure 12-54. Selecting the tests to run

543CHAPTER 12: Building for Windows Store

 5. Once the test starts running, leave the machine alone until it finishes
(Figure 12-55).

This can take several minutes.

Figure 12-55. Progress reported for the tests

 6. At the prompt after the test, enter the path to the folder where you
want to save the test report.

The Windows App Certification Kit begins validating the app.

Be aware that paths containing ampersands may cause failure.

The Windows App Certification Kit creates an HTML along with an XML
report and saves it in the folder you specified.

544 CHAPTER 12: Building for Windows Store

If the report was successful, no further action is necessary. If it failed, as shown in Figure 12-56,
further action will be required by clicking the link to view your results and determining what
the error is. As simple as it sounds, search the Net for the same error you may receive. Also,
double-check that you’ve created a Master build (not Release or Debug).

Figure 12-56. A failed result

545CHAPTER 12: Building for Windows Store

Uploading to the Windows Store
Next you will want to send your application to Windows Store. This procedure assumes you
have acquired a Developer Account that will enable you to publish to Windows Store.

The next step is context sensitive and requires this project to be selected.

 1. Ensure that you have Visual Studio open and your Universal
Windows project highlighted (Figure 12-57).

Figure 12-57. The project once again selected in Visual Studio's Solution Explorer

546 CHAPTER 12: Building for Windows Store

 2. In Visual Studio, choose Project ➤ Store ➤ Upload App Packages
(Figure 12-58).

This launches your web browser, going to the Windows Dev Center
specifically for the application name you’ve reserved.

Figure 12-58. Uploading the App Packages

547CHAPTER 12: Building for Windows Store

 3. Click the Start Your Submission button (Figure 12-59).

Figure 12-59. Starting your submission

 4. Before you continue, take a moment to notice the notifications icon
in the upper-right corner (Figure 12-60).

When your application is published, it will contain information and helpful tips.

Figure 12-60. Inspecting the notifications icon

548 CHAPTER 12: Building for Windows Store

You will have numerous sections to fill out for your game (Figure 12-61).

In Pricing and Availability (Figure 12-62), you will set the price for your applications and the
countries where it will be available. Selecting many countries widens your market but may
increase approval time for the store. Tipboard Teaser was marked as Free with No Free Trial,
though if you wanted to make this a paid app, you could allow players to have a free trial
period.

Figure 12-61. Sections to fill out

549CHAPTER 12: Building for Windows Store

Of notable mention here is the Distribution and Visibility section. You can make the app
visible in the store once approved, or you can opt to not make it public. This way, you can
send users the URL to your application, and they can install it and test it using real In-App
Purchases before you do a larger launch. This is commonly called a soft launch.

Figure 12-62. Setting pricing and availability

550 CHAPTER 12: Building for Windows Store

The Properties section of your submission is where you specify the category for your
application and any system requirements (Figure 12-63). Tipboard Teaser is a game meant
for family and kids.

Figure 12-63. Setting category and system requirements

551CHAPTER 12: Building for Windows Store

Tipboard Teaser can work with Touch, Keyboard, Joystick, and Mouse so you can add the
entries for Recommended Hardware (Figure 12-64).

Figure 12-64. Interactive hardware minimums and requirements

The next category, Age Ratings, will walk you through some questions to determine the
rating for your game (Figure 12-65).

Figure 12-65. Beginning the age ratings process

552 CHAPTER 12: Building for Windows Store

Once complete, you’ll be assigned an Age Rating across various ratings organizations that
are used in multiple countries to determine the appropriate audience for your application
(Figure 12-66). You will want to review the results before moving on.

The Packages section is where you will upload the generated appxupload file.

 1. Navigate to the folder where your Create App Packages output was
generated when you did the Build for Windows Store section.

 2. Find the appxupload file in there and drag that into the web browser
to upload it (Figure 12-67).

Give it a minute to process the upload.

You must use the appxupload file, not the appx or other file type. Ensure
that you upload only a Master build, as the Release build would still have
Unity profiler code within it.

Figure 12-66. The generated ratings

553CHAPTER 12: Building for Windows Store

 3. Select the appropriate device families for your application.

Tipboard Teaser has been tested on the Desktop and Mobile device families
(Figure 12-68). However, it could easily be tested on Xbox or HoloLens (there’s a HoloLens
emulator available for testing as well).

Figure 12-67. Dragging the packages into the browser

Figure 12-68. Selecting the device appropriate families

The Store Listings section is where you create a good description for your game. Creating
a good description is an extremely important task. Feel free to examine other successful
games for ideas on what they included in their descriptions. Coming up with a compelling
description is an art form and should be given serious thought.

554 CHAPTER 12: Building for Windows Store

This section is also where you’ll need to capture screenshots. Windows has a Snipping tool
you can use to grab screenshots (search for it in your start screen). Also you can launch the
Simulator from Visual Studio and grab screenshots by using the Simulator. The Simulator
can be launched from Visual Studio and has a toolbar on the side to grab screenshots that
can be used to upload to the store (Figure 12-69).

In the left column in the web browser is a section for add-ons. This is where in-app
purchases need to be configured (Figure 12-70).

Figure 12-69. Using the Simulator to grab screenshots

Figure 12-70. Selecting Developer-managed consumable

555CHAPTER 12: Building for Windows Store

 1. Click the Add-ons option and click to create a new add-on.

Your in-app purchase is the 75 tipCoins, which is a consumable, meaning a
player can use it up.

 2. Select this as a Developer-managed consumable and ensure you
specify the same name used in Game Scripts ➤ WindowsStore ➤
InAppPurchases, in this case 75.Coins.

As of this writing Unity doesn’t support Store-managed consumables so
ensure you have selected Developer-managed.

 3. After you are finished, review your certification and click Submit to
the Store if everything is okay.

A list of several of your settings appears (Figure 12-71).

Figure 12-71. A brief summary of your app’s settings

556 CHAPTER 12: Building for Windows Store

Figure 12-72. The submission approval progress report

Figure 12-73. The approved submission on Windows Store

You can review your progress then or wait for an e-mail that your submission has been
approved (Figure 12-72).

Once certification is complete, your application is in the Windows Store (Figure 12-73). It will
look similar to the following, which shows Tipboard Teaser along with the supported x86,
x64, and ARM platforms. It also shows the Windows 10 minimum version—which is tied to
the Windows 10 SDK you used to build your application in Visual Studio.

557CHAPTER 12: Building for Windows Store

Monetization
In case you are wondering about monetization, you will find that there are currently four
popular ways to earn money with your app. The first is to sell the app outright in Windows
Store. Prices ranging from 99 cents to a few dollars tend to be the norm, but lately, a lot of
developers opt to give the game away free and make money from in-app purchases or ads.
You’ve had a test run with IAP, so now it’s time to look at in-game advertisements. Basically,
there are two types: banner ads and interstitial video ads. To utilize either type, you have to
visit the Windows Dev Center, search for the Microsoft Store Services SDK, and install it on
your developer machine. It contains the libraries and tools Visual Studio needs to let you add
advertising to your Universal Windows Platform (UWP) apps.

 1. Close Visual Studio if it is running.

 2. Download and install the Microsoft Store Services SDK.

Once installed, it will be updated anytime you update Visual Studio. Always make sure that
you have the latest version of both and that the versions match.

Banner ads require you to design your app such that the ads will not interfere with your game
or its UI. Because your little tip-puzzle game is already quite cluttered, you won’t be giving this
one a try. The coding for banner ads requires extensive use of XAML and layout coding and is
beyond the scope of this book. If you are familiar and comfortable with XAML, feel free to give
banner ads a try. As usual, they are well documented in the Dev Center docs.

Interstitial video ads are easier to manage than banner ads in that they use the entire screen
and so require no placement coding. Interstitial means that they are run between scenes,
levels, or other logical breakpoints, or at the player’s choice. As the developer, it is up to you
to decide where and how often they will appear, or how often a player may access them.
Unity has an easy system for adding Unity-managed video ads, but unfortunately does not
yet support Windows Store.

As you may have guessed, video ads are also well documented on the Dev Center. They
come in two basic functionality types. Paywall ads are generally inserted between levels or
scenes. The player must watch them before being rewarded with the next level. This is the
more passive of the two types of video ads, but it could be set up to allow a player to spend
a few tipCoins to cut the video short and get back to the game.

With rewards-based ads, you generally let the player access them on demand and for
watching them, the player receives some type of reward. As the player can actively pursue
rewards, you would want to set a limit as to how many and how often he could do so.

Due to time constraints, we were not able to provide a step by step procedure for testing
Windows 10 ads. For more information on this topic, please visit the Windows Dev Center
and search for interstitial ads in the Monetization section.

Tip For serious earning, you may want to make use of your Dev Center dashboard. It will allow
you to easily run A/B testing, log, and evaluate results. That is beyond the scope of this book, but
is well documented in the Dev Center and worth looking into when you are at that stage of your
developer career.

558 CHAPTER 12: Building for Windows Store

Exiting Apps
Windows Store apps leave the power to exit in the hands of the user. It is recommended that
applications are not allowed to close themselves. All Windows Store apps are closed by the
user closing the window. On the phone, when at the root page of your application, clicking
back will close the application, and that is the expected behavior. On a desktop, users will
click the X in the upper-right corner to close the application. If the app has been paused, the
operating system determines that it wants to close to free up resources.

Having outlived its usefulness, you will want to remove the Exit button and replace it
with something useful. The spot left would make a good place to access more in-depth
instructions for the game now that it also has the flexibility to work for devices using a
gamepad.

 1. Open the Start menu in Unity and deactivate the Exit button (you
may want to leave it in for stand-alone builds).

 2. Import the NewInstructions.unitypackage from the Chapter 12 Assets
folder.

 3. Drag the More Button prefab into the Start Menu.

 4. Save the scene, click Play, and test both the new instructions and
exiting via mouse, touch, or virtual Enter button (for gamepad).

Suspended Apps
When the user switches away from your application, an event that can happen on
any Windows 10 device, your application is paused. Unity provides you with the
OnApplicationPause(bool paused) event. If it finds the code, it will call it. You will use this
to pause the application during an interruption from outside the app. You have already
implemented a pause in your game. This one will be very similar.

 1. Import the PauseApp.Unitypackage from the Chapter 12 Assets
folder.

The package contains a new Canvas with a panel to block inadvertent input
and a button to resume after the pause has been triggered.

 2. Open the Game Level scene.

The Start Menu and Store Levels are already waiting for user input so have
no need of the pause functionality.

 3. Drag the PauseScreen prefab into the scene.

 4. From Game Scripts/WindowsStore, open ScreenManager and
examine the code.

http://dx.doi.org/10.1007/978-1-4302-6757-7_12
http://dx.doi.org/10.1007/978-1-4302-6757-7_12

559CHAPTER 12: Building for Windows Store

The only case that needs to be handled here is when OnApplicationPause(true) occurs.
That is when the pause is triggered. When the user is ready to rejoin the game, he clicks or
taps the Pause button that is on new screen overlay, or, he can press Escape or the back
button (on phone or gamepad). Either alternative is mapped to the Escape key by the Input
Manager.

The following is an outline of the actions taken for various pause scenarios. Resume is
handled after being paused only by accepting user input to touch the onscreen Pause
button or Escape/Back button input:

Game first loads ➤ Unity calls OnApplicationPause(false) ➤
Do nothing

Escape pressed and not paused ➤ Pause()

App loses focus ➤ Unity calls OnApplicationPause(true) ➤ Pause()

Focus returned to app ➤ Unity calls OnApplicationPause(false) ➤
Do nothing

Escape/Back Button/Pause button pressed and already paused ➤
Resume()

Typically, an application shows a pause screen, which is nothing more than an overlay
Canvas (that blocks user input) with a button in the middle (to resume game play). Just as
with the pause you created to stop the game while the player rearranges Banana Peels, you
will stop time by setting the timescale to 0:

public void Pause(){
 // Set the game's timescale to 0 to pause
 originalTimeScale = Time.timeScale;
 Time.timeScale = 0;
 paused = true;
 Paused.SetActive(paused);
}

Note that before time is paused, you are saving the current timescale in originalTimeScale.
This way, if your player was already in pause mode for the Banana Peel moving, the correct
timescale will be restored.

The ScreenManager’s pause code also must activate the imported Canvas object. Because
the object is deactivated at startup, it cannot be identified by using GameObject.Find. So in
this case, you must assign the Canvas manually in the Hierarchy view.

You have already set up several Button click events in both Chapters 10 and 11, so hooking
up the Pause button to call Resume() will be easy:

 1. Select the Pause button and add a new Button OnClick event.

 2. Assign the ScreenManager (where the ScreenManager script resides)
as the Object.

 3. Select the ScreenManager’s Resume() function.

http://dx.doi.org/10.1007/978-1-4302-6757-7_10
http://dx.doi.org/10.1007/978-1-4302-6757-7_11

560 CHAPTER 12: Building for Windows Store

Now, when the button is clicked, the Resume() method sets the Time.timeScale back to its
original value and disables the Canvas.

In this instance, you were able to disable the Canvas and manually set a reference to it so it
could be found later when it required activation. In some cases, that is not an option, making
regular edit painful. A pro tip is that you can assign the canvas to a different layer and hide
that layer in the Editor only via the Layers drop-down in the top-right corner of Unity. This
method is used quite regularly for HUD GUI elements in general as they are automatically in
the GUI layer.

Cleaning Up Unused Code
During the course of this book, you have created many new scripts. Because you have built
upon some of them in multiple chapters, with a few exceptions, the default empty Start and
Update functions were left intact for future use. Now, however, with the code finalized, you
will want to go through and delete any empty functions, especially Update as it gets checked
every frame. With this in mind, once you are creating your own scripts, best practice is to
remove the default empty Start and Update functions from scripts that will never use them.
Abandoned code is not as straightforward. You may want to archive it somewhere for use in
other projects before you delete it.

While you are going through the scripts, feel free to delete old code that has been
commented out. It doesn’t cause a performance hit, but will keep your code cleaner and
easier to read.

The list of scripts that have empty Start and/or Update functions is as follows:

BaseCells.cs

BoardManager.cs

ColliderSwitch.cs

Crusher.cs

DeathZoneReset.cs

GameManager.cs

GridManager.cs

HotSpotBooster.cs

Neutralizer.cs

PathCells.cs

PathLister.cs

PortalHopper.cs

Rotator.cs

SimplePool.cs

StoreManager.cs

WaypointManager.cs

561CHAPTER 12: Building for Windows Store

Testing on Windows 10 Phone
If you want to test your game on a physical device such as a Windows 10 phone, there are
a few different steps to go through. As with your development machine, the device must be
set to Debug mode if you want to debug. Otherwise, you can choose Release or Master in
Visual Studio for your build configuration, as we’ve done previously.

 1. Locate the Developers Settings on your phone: Settings ➤ Update &
Security, and then choose For Developers.

 2. Enable Developer mode.

 3. Connect the device with a USB cable.

 4. In Visual Studio, go to the debug target drop-down next to the Start
Debugging button.

 5. Choose Device to tell Visual Studio to deploy the app to your
connected phone.

Device will deploy the app to a USB connected device. The device must be
developer unlocked (see step 1).

 6. Next to the Debug, select ARM if it is not already showing.

 7. Press F5 or from the Debugging menu, select Start Debugging.

Alternatively, you can test in the Windows Phone Emulator.

 1. In the Device drop-down, select Download New Emulators
(Figure 12-74).

Tip Enter developer settings into the Cortana search box in the taskbar.

Figure 12-74. Selecting Download New Emulators from the Device drop-down

562 CHAPTER 12: Building for Windows Store

 2. In the resulting web site, choose to install the emulator (Figure 12-75).

The install may be about 4 GB.

 3. After installation is done, restart Visual Studio and open the Tipboard
Teaser Universal Windows application project again.

 4. This time, select one of the Mobile Emulators instead of Device.

Because you are using an emulator on your local hardware, you’ll also
require x86 rather than ARM in the build configuration type (Figure 12-76).

Figure 12-75. Installing the emulator

Figure 12-76. Selecting x86 to use with the emulator

563CHAPTER 12: Building for Windows Store

The emulator will load and eventually deploy your application to it and run (Figure 12-77).

Extending the UWP
In this book, you have created a little game that was tailored for the conventional UWP
devices that may contain accelerometers. This included phone, tablets, hybrid tablets/
laptops, and, of course, conventional laptops and desktops, as an app rather than EXE.
But you have also heard the occasional reference to Xbox One and HoloLens in that they
also make use of UWP. In this short section, you will look a bit deeper into what it takes to
author for the two devices. For both devices, you can build from your regular Windows 10
development machine. While there are emulators available for both, there are other factors
that you will want to be aware of.

Figure 12-77. A Windows Phone emulator

564 CHAPTER 12: Building for Windows Store

Xbox One
For Xbox One, the process is similar to what you have just finished working through, until
you get to testing the app. The Xbox now allows you to experiment directly on the hardware
without having to purchase a dev account. Unity even has an editor that can be run on the
Xbox itself. To actually develop for Xbox, you will have to apply for an ID@Xbox. You will
be asked about your company, school, or organization, whether you have a game ready to
sell on Xbox, and various company and other information. Although there is a check box for
home hobbyist, it is clearly geared toward people or teams that want to produce apps and/
or games for the Xbox.

Here is the interesting part. If you want to develop on a PC, there is an emulator available,
but at present, for that, you must be an approved Xbox developer to gain access to it. So
you can test your apps or games directly on an Xbox free of charge, but to use the emulator,
you must go through the process of being an accepted Xbox developer. To jump into
experimenting with Dev mode, all you have to do is download the Dev Mode Activation app
on your Xbox One.

According to the Dev Center, “You don’t need to be an ID@Xbox developer to experiment,
create, and test games on your Xbox, but you do need to enroll with ID@Xbox if you want to
publish and sell your game on Xbox One or take advantage of Xbox Live on Windows 10.”

The other alternative is to build your game as a UWP, and then finish the build in Visual
Studio and deploy it to the Xbox for testing. It will require a different SDK that can easily be
downloaded and installed from the Dev Center.

As far as input, obviously, the gamepad is the primary device for games, but the handset
is also important, especially with non-game apps. As you have already discovered, Unity’s
Input Manager makes authoring for the two input devices almost seamless.

For an excellent guide to creating apps with Xbox One, check out @schmosif’s http://
forum.unity3d.com/threads/tips-and-tricks-for-building-for-uwp-and-deploying-to-
xbox-one.395150/.

HoloLens
For the HoloLens, the biggest barrier is the current price point, a whopping $3,000 USD.
On the plus side, anyone in the United States can now purchase a developer version of the
HoloLens if they can afford it (they cannot, however, sell it). In case the price is out of your
budget, an emulator is available at no cost for the HoloLens. You already have most of the
software HoloLens requires: Visual Studio 2015 Update 3 and the Windows 10 SDK (version
1511 or later). The Unity game engine is recommended as the game engine of choice to
develop HoloLens apps. HoloLens support in Unity is available through a custom version of
the Unity editor and runtime, which is available to download for free on the Unity web site.
So you can install the HoloLens emulator to build holographic apps without a HoloLens.

The only restriction, is that the machine you plan to use it on must support Hyper-V for
the emulator installation to succeed. The HoloLens emulator is based on Hyper-V and
uses RemoteFX for hardware-accelerated graphics. 64-bit Windows 10 Pro, Enterprise, or
Education Support Hyper-V, the Home edition does not support Hyper-V or the HoloLens

http://forum.unity3d.com/threads/tips-and-tricks-for-building-for-uwp-and-deploying-to-xbox-one.395150/
http://forum.unity3d.com/threads/tips-and-tricks-for-building-for-uwp-and-deploying-to-xbox-one.395150/
http://forum.unity3d.com/threads/tips-and-tricks-for-building-for-uwp-and-deploying-to-xbox-one.395150/

565CHAPTER 12: Building for Windows Store

emulator. To determine whether your system supports Hyper-V, go to Control Panel ➤
Programs ➤ Programs and Features. Turn Windows Features on or off and ensure that
Hyper-V is present and selected.

Also be aware that HoloLens comes with a variety of less-than-conventional means of input
referred to as human understanding. They include the following:

Spatial sound

Gaze tracking

Gesture input

Voice support

The emulator simulates these input types, but obviously there is no substitute for
determining game flow and usability in the end than testing with the actual device.

A good starting place for researching the HoloLens is https://developer.microsoft.com/
en-us/windows/holographic/install_the_tools.

Summary
In this final chapter, you began by reviewing the requirements for building a Visual Studio
solution in preparation for deployment to Windows Store.

With the introduction of a Windows 10 device with accelerometer functionality, you made a
simple test file to test the gyro code. In doing so, you found that mapping the gyro input to
the correct axes required testing and adjustment.

The next step was to add the code to the Tiltboard project and allow the player to choose
between touch-drag and accelerometer. Adding a toggle for the two methods used to tip
the board, you made the game more flexible, especially as it became apparent that the
accelerometer seemed to use a lot more power.

The next focus was on in-app purchases. To retain the player’s purchases, both from
Windows Store and in game, you added code to save the three key purchases to the local
device at key times. This not only protected the player from losing purchases in case of a
crash or power loss, but also retained them between sessions. While not as global as saving
data to a server, it was a good solution on a small scale and gave you the opportunity to
try more advanced coding with properties and to make use of Unity’s PlayerPrefs for data
storage.

With data saving under control, you moved on to testing the purchasing process. The first
testing involved simulating the purchase on your local machine.

The next step required the commitment of obtaining an app developer account, where you
also discovered a wealth of information in the docs found on the Windows Dev Center.
Armed with a new publisher display name, you were ready to submit your game to be beta
tested. This allowed you to invite others, as well as yourself, to test your game in a private
setting to see how it behaved without fear of it garnering bad reviews in case there were
bugs to be addressed.

https://developer.microsoft.com/en-us/windows/holographic/install_the_tools
https://developer.microsoft.com/en-us/windows/holographic/install_the_tools

566 CHAPTER 12: Building for Windows Store

With the tough bits taken care of, you turned your attention to filling in a few blanks in the
Player Settings by adding icon and tile art, a cursor, and tweaking a few settings.

Finally, you took the plunge and submitted your app to Windows Store. While awaiting the
results, you had a brief look at a few other platforms for which Visual Studio will be quite
useful.

567

 ■A
Animator view, 320
Assets menu, 13
Audio clips, 339

2D/3D, 342
format options on PC, 341
load types, 342
OGGVORBIS, 342
PongBeep clip, 341

Audio Source component, 339,
343–344, 367

Awake function, 230, 283–285, 287–288,
334–335, 363, 413

 ■B
Banana Peels, 329–330, 333, 343, 346, 359
BaseCells script, 286–288, 291
Booleans, 140, 142, 153, 164
Boosters, 329–333
Booster script, 261, 263–264, 267
Booster’s FX, 357, 359–360
Box Collider, 229
Button’s anchor points, 374

 ■C
C#, 124

naming convention, 148
new test project, 123–124
scope within script, 145–147
in unity, 163
variables in, 140

CalculateWinCash function, 427
Camera component, 88
Canvas bounds, 374
CellTiles, 317

Children’s Online Privacy Protection Act
(COPPA) compliance, 528

COLLADA, 166
Collider component, 86–87
Collider type argument, 163
Component menu, 14
Confetti particle system, 357
Cubemap Sky material, 117

 ■D
2D display toggled off, 373
death zone object, 229, 269
DeathZoneReset script, 244
Detail Meshes, 108
3D Gizmos check box, 35
Digital content creation (DCC)

programs, 165
3D mesh, 108
3D mesh assets, 165
3D objects, importing, 165

importing assets, 166–169, 171–172
DuckInflatable model, 169–171

setting animation clips, 186–191
Guard model, 186–191

setting animation type, 180–182,
184–185

Guard House model, 180–185
setting basic attributes, 172–173,

175–177, 179
Guard House model, 176–179
Wooden Barrel model, 172–173, 175

supported 3d mesh formats, 166
Doppler effect, 346
Drag-and-drop method, 327
Draw calls, 317–318
DreamSpark, 534
2D toggle, 32

Index

© Sue Blackman and Adam Tuliper 2016
S. Blackman and A. Tuliper, Learn Unity for Windows 10 Game Development,
DOI 10.1007/978-1-4302-6757-7

568 Index

 ■E
Effects drop-down menu, 33
Environment, creating

activating paths, 298
adding new game pieces, 303–306
changing tiles, 298–299
setting sequential progress, 300
working external influences, 301–302

generating paths, 275–277
flow chart, 277
introducing cells, 277–278
loading paths, 297–298
making paths, 283–291
path generation scenarios, 276
path starting tile, 291–292
preparing assets, 279, 281–283
saving your paths, 294–297
scripting undo, 293–294

 ■F
Free Aspect drop-down menu, 36
Functionality, experimenting with

creating portals, 243–251, 253
GameObject icons, 253–255, 257–258
marble physics

adding jump, 258, 260–263
adding turbo boost, 263–267

 ■G
Game elements

draw calls, 317
game pieces, 318–319

Game functionality
merging environment, 307–308
path progress

adjustment, 313–316
refine portal

health points, 309–313
GameHUD script, 425–426, 428–431,

435–436, 438, 445–446
GameObject menu, 13–14
GameObjects, unity, 67

arranging, 76–78
components, working with, 81

Camera, 88
Collider, 86–87

Mesh Filter, 83–84
Mesh Renderer, 82

creating primitives, 68–69
duplicating, 75–76
parenting, 78–79, 81
using transforms, 70–75

Gamepad
mapping, 267–268

testing axes, 268, 270
testing buttons, 272–273
tilting board, 270–272

GamepadMapping, 269, 272
Game physics, 217, 221, 241
Game pieces, 343, 361

Doppler effect, 346–347
Rolloff curve, 343

Game, prototyping
creating death zone, 229–232
creating prefabs, 223–224, 226
first steps, 217–218
resetting board, 239–241
scripting user interaction, 219–222
suppressing player input, 238–239
tweaking physics, 233–234
using co-routines, 235–238
working with inheritance, 226, 228–229

Game view, 9, 36, 317, 353
Maximize on Play toggle, 36–37
options, 36
Stats window, 38

Gizmos drop-down menu, 34
Glossiness, 99
Grid graphics, 308

 ■H
Heads-up display (HUD), 370–371, 385,

400–404, 406, 408, 410–412
HealthPoints value, 312
HealthType, 310
Hierarchy view, 9, 20, 25, 52, 307, 345,

367–368
Main Camera, 26
scene view, 25–26
search feature’s filters, 26

High Dynamic Range (HDR), 117
HoloLens apps, 564–565
HoloLens emulator, 564

569Index

 ■I, J, K
IAP under In-App Purchasing, 526
IEnumerator, 363–364, 369
Image assets, importing, 192

exploring texture dimensions, 196
setting texture type, 192–195

Importing assets
3D objects, 165

DuckInflatable model, 169–171
Guard House model

(animation type), 180–191
importing assets, 166–170, 172
setting animation clips, 186–191
setting animation type, 180–182,

184–185
setting basic attributes, 172,

175–179
supported 3d mesh formats, 166
Wooden Barrel model, 172–173, 175

image assets, 192
exploring texture dimensions,

196–197
setting texture type, 192–195

mapping and vertex count,
197–198, 200

mushroom model, 198–199
textures and batching, 200–205
working with materials and shaders

standard shader, 205–210
using normal maps, 210–213

In-app purchases (IAPs)
persistent data

managing new data, 424–427
purchased functionality, 427

crushing peppermints, 448–451,
453–460

moving bananas, 428–429, 431–448
Store, making, 460–461

finishing Start Menu, 462, 464–467
hooking up, 467–474

Interaction, 149
adding more functionality, 154
adding user input, 150–152
creating user-defined functions, 156–157
looping, 155
using the conditional, 152–154

working with script editors, 157–163
Isometric (Iso) view, 21–23
isReady variable, 146, 149, 155

 ■L
LoadGameLevel() function, 413
LoadPath function, 369
Logos, 499

 ■M, N
MarbleManager script, 347
Marble mesh, 360–361
Marble Physics, 258

adding jump, 258, 260–263
adding turbo boost, 263–267

Mecanim, 317, 320
Mesh Colliders, 68, 175–176, 214
Meshes, 28
Mesh Filter component, 83–84
Mesh Renderer component, 82
Microsoft’ BizSpark program, 534
Microsoft Visual Studio

Community 50, 59, 2015
MIP map, 31
MiscAssetsTexture, 201, 206–207, 209
Mobile market, 423
MonoDevelop editor, 126, 132, 151
MonoDevelop script

editor, 127, 134, 163
MoveIt function, 328
MyFirstScript, 125, 132, 141, 145, 148,

155–158, 160

 ■O
OnCollisionEnter, 150, 162–163
One Column Layout, 41
OnMouseDown function, 288–289
OnMouseDrag function, 272, 410
OnMouseUp function, 272
OnTriggerEnter event, 273
OnTriggerEnter function, 229, 232, 236, 247,

249, 257, 267, 312–315, 319, 328,
330, 345, 404

OnTriggerEnter method, 150, 163
OnValueChanged function, 408

570 Index

 ■P, Q
Paint Details tool, 108–111
Paint Height tool, 96
Paint Texture tool, 98, 100, 102–103
Particle Effect, 350
Particle Effects editor, 367–368

parent effect, 368
second effect, 368
third effect, 368

PathCellManager script, 287, 290–292,
295, 297–300, 313, 315–316,
333, 336, 368

PathCells script, 284–285, 289, 291, 293,
299–300

Path tiles, 361
PauseToggle function, 429, 437
Peppermints, IAPs, 448

hiding guard, 458–460
hiring some help, 450–451, 453–458
neutralizing Spinner, 448–450

Peppermint Spinners, 322–325
Physically Based Shading (PBS), 99
Place Trees tool, 103–108
PlayerPrefs.Save(), 521
Plugins, 493
PongBeep clip, 341
Popper, 343, 361
Popper particle system, 361
Poppers, 326–327, 336, 362

add function, 328
add variables, 326
function, 326
MoveIt function, 328
Open GridManager script, 326
start function, 327
update function, 327

Poppers. See Gumdrops
Popper’s FX, 355–357
PortalHopper script, 310–311, 314–315,

328, 365
Primitive object, 68
ProcessWinner function, 334, 403,

411, 425, 427
Project view, 38, 345

Asset Store, 40–41
One Column Layout, 41
steps, 38

thumbnail display, 39
Two Column Layout, 38

 ■R
Raise/Lower Terrain, 94–96
Rect Transform gizmo, 381–382
ResetInputAxes() function, 239
ReturnAndPush function, 365
Rolloff curve, 343–344
Root Motion, 321

 ■S
Scene gizmo, 21, 23–24
Scene Lights toggle, 33
Scenes folder, 18
Scene view, 9, 19, 20, 25–27, 318, 320,

349–350, 351, 353
alpha channel, 29–30
Deferred display options, 29
effects drop-down menu, 33
meshes, 28
MIP map, 31
overdraw shows, 30
Shaded Wireframe, 28
tools and options, 27–28

Script, building, 133
checking functionality, 135–137
introducing functions, 134
investigating syntax, 134–135
understanding error messages and

console, 137–139
Script edito, 125–127, 130–131

examining the contents, 132–133
mono develop, 128
in Unity Preferences, 127

Scripting Sandbox, 124
ScriptingTests, 123
SetToStart function, 232
Shuriken particle system, 349–350, 366
Simple pool system, 363
SimpleTransforms script, 132–133, 135,

137, 144, 150, 153, 157
Single Column Layout, 43
Sky, Unity environments, 115

fog, 120–121
using skybox, 115–117, 119–120

Sliced BlueButton sprite, 390

571Index

Smooth Height tool, 97
Solution Explorer window, 505
Specularity, 99
Sphere Collider, 229, 234, 279, 283, 286
Spinner’s FX, 348–349

AudioSource icon toggled off, 350
particle Size over Lifetime, 353–354
Shuriken particle system, 349–350
Start Speed, 352–353

Stack, 361–362, 364
Start function, 327, 347, 365
StartDelay function, 236, 238–239, 241
Start function, 330
Start screen, 5
Start Speed, 352–353
Store apps, 47
Stretched BlueButton sprite, 389

 ■T
Terrain Collider, 91
Terrain editor, 90

GameObject, 90–92, 94
Paint Details tool, 108–111
Paint Height tool, 96
Paint Texture tool, 98, 100, 102–103
Place Trees tool, 103–108
Raise/Lower Terrain, 94–96
Smooth Height tool, 97

The Xbox One gamepad, 268
Time.deltaTime, 136–137, 144, 153, 164
Time.timeSinceLevelLoad, 401
Two Column Layout, 38, 43

 ■U
Unity, 67

application icon, 4
assets menu, 13
Asset Store, 17
click Download Installer, 2
component menu, 14
components option, 3
console, 42
create, user account, 1–2
creating project, 6–7
developer mode, 49
edit menu, 11–13
environments, creating, 88

adding water, 112–114
sky, 115–117, 119–121
Terrain editor, 90–92, 94–96, 97, 98,

100, 102–103, 108, 109–110, 111
file menu, 11
GameObject menu, 13–14
gameObjects, working with, 67

arranging, 76–78
components, 81–84, 86–88
creating primitives, 68–69
duplicating, 75–76
parenting, 78–79, 81
using transforms, 70–75

help menu, 16–17
Inspector, 42
layout, 7, 9–10

dark theme, 8
Editor Skin options, 8
layers drop-down menu, 10
main feature, 9

load sample project, 18
Mac, 4
menu bar, 10
product icon, 19
project structure, 44

file structure, 44, 46
load/save, 46
project management, 46

selection section, 12
start screen, 5
window menu, 15
Windows machine, 4

Unity Answers, 1
Unity Asset Store, 1
Unity C# Projects check box, 488
Unity license options, 2
UnityOverwrite.txt, 492
UnityScript, 124
Unity’s UI system

Application.LoadLevel, 411
Awake function, 413–417
background management, 391–396
3D objects, 421
DontDestroyOnLoad(), 413
Game Level GUI, 397, 399–400
GameObject.Find(), 400
Gamepad, 417–420
GUI elements, 400

572 Index

GUI system, 371
health, 404–405, 407
in-game play statistics, 371
layout, 371–377, 379, 381–384
loading the Board Level, 412–413
PathCellsManager script, 411
Pausing the Game, 407–411
Play Again Button’s Animator

component, 411
SceneManager.LoadScene, 412
Sprite textures, 384–385, 387–391
the Game Timer, 400–404

Universal Windows applications, 47
Universal Windows

Platform (UWP), 2, 47, 126
application life cycle, 49
applications, 49
device families, 48
apps, 475, 487, 492–493, 496, 500–503,

505, 510–511, 533–534, 557, 565
Update function, 259–260, 264–265,

269–272, 327
UpdateHealthGUI function, 405–406

 ■V
Vector3 value, 326
Vertex Snap, 77
Visual Studio, 55, 62
Visual Studio Community, 158
Visual Studio Community edition, 476
Visual Studio script editor, 129–130
Visual Studio solution, 49
Visual Studio Tools, 125–126, 158–160
Visual Studio Tools for Unity (VSTU), 126

 ■W, X, Y, Z
While loop, 324
Window menu, 15
Windows 10, 46, 48–49, 58
Windows 10 SDK, 55, 60–62
Windows App Certification Kit (WACK), 541
Windows Runtime (WinRT), 47
Windows store

accelerometer code, 516, 518–519
accelerometer functionality, 511–514, 516
art assets, 490–491

building on, 47
default build settings, 487–488
enabling developer mode, 478–479
exploring screen settings and

orientation, 498–499
history, 47
HoloLens, 564–565
icons and logos, 499–501, 503–507
in-app purchases

cleaning up unused code, 560
configuring, 529–530
developer account, 532–534
developer license, 532
exiting apps, 558
monetization, 557
saving store and game

data, 520, 522–523
simulating, 530–531
suspended apps, 558–560
testing, 523–524, 526–529
uploading, 545–549, 551–556
UWP Apps, 47–49, 534–536,

538–540
Windows 10 Phone, 561–563
Windows App Certification

Kit, 541, 543–544
installing the Windows 10 SDK, 480–481
load module, 54
Microsoft Visual Studio Community, 476
Microsoft Visual Studio Tools

for Unity, 476
player settings and customize, 488–489
player’s purchases, 567
Splash Screen, 509, 511
Tiltboard Project, 516
unity installation options,

Windows 10, 476
Unity’s PlayerPrefs for data storage, 567
UWP build, 492–493, 495–497
verifying installations, 482–486
Visual Studio Service Pack 3, 475
Windows 10, 476
Windows Store IL2CPP Scripting

Backend, 477
Windows Store .NET Scripting

Backend, 477
Xbox One, 564

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Unity Editor
	Installing Unity
	Creating a Unity User Account
	Performing the Installation
	Exploring the General Layout
	Working with Menus
	Getting Started
	Loading Projects
	Navigating the Scene View
	Understanding the Scene Gizmo

	Exploring the Views
	Hierarchy View
	Scene View
	Game View
	Project View
	The Inspector
	The Console

	Managing Layout

	Understanding the Project Structure
	File Structure
	Project Management
	Load/Save

	Preparing for Windows Store
	Building for Windows
	A Bit of History
	The Universal Windows Platform
	Application Life Cycle
	Installing UWP Applications
	Enabling Developer Mode
	Creating a Test App
	Installing the Windows 10 SDK
	Verifying Installations

	Continuing the Build

	Summary

	Chapter 2: Unity Basics
	Working with Unity GameObjects
	Creating Primitives
	Using Transforms
	Duplicating GameObjects
	Arranging GameObjects
	Parenting
	Working with Components
	Mesh Renderer
	Mesh Filter
	Colliders
	Camera

	Creating Environments
	Using the Terrain Editor
	Creating the Terrain GameObject
	Raise/Lower Terrain
	Paint Height
	Smooth Height
	Paint Texture
	Place Trees
	Paint Details

	Adding Water
	Creating the Sky
	Using Skyboxes
	Introducing Fog

	Summary

	Chapter 3: Scripting with C#
	Creating a New Test Project
	Why C#?
	Working with Script Editors
	Exploring the Editing Environment
	Examining the Contents

	Building a Script
	Introducing Functions
	Investigating Syntax
	Checking the Functionality
	Understanding Error Messages and the Console

	Working with Variables
	Variable Types
	Order of Evaluation
	Scope Within the Script

	Introducing Interaction
	Adding User Input
	Using the Conditional
	Adding More Functionality
	Looping
	Creating User-Defined Functions
	Working with Script Editors

	Summary

	Chapter 4: Importing Assets
	Importing 3D Objects
	Supported 3D Mesh Formats
	Importing the 3D Assets
	The Model: Setting the Basic Attributes
	The Rig Tab: Setting the Animation Type
	The Animations Tab: Setting Up the Animation Clips

	Importing Image Assets
	Setting the Texture Type
	Exploring Texture Dimensions

	Understanding Mapping and Vertex Count
	Managing Textures and Batching
	Working with Materials and Shaders
	Investigating the Standard Shader
	Using Normal Maps

	Summary

	Chapter 5: Prototyping the Navigation
	Understanding the Basics
	Taking the First Steps
	Scripting User Interaction
	Creating Prefabs
	Working with Inheritance
	Creating a Death Zone
	Tweaking Physics

	Improving the Basics
	Using Co-routines
	Suppressing Player Input
	Resetting the Board

	Summary

	Chapter 6: Experimenting with Functionality
	Creating Portals
	Making Custom GameObject Icons
	Adding Randomization

	More on Marble Physics
	Adding a Jump
	Adding a Turbo Boost

	Embracing UWP
	Mapping the Gamepad
	Testing Axes
	Tilting the Board
	Testing Buttons

	Summary

	Chapter 7: Creating the Environment
	Generating the Paths
	Introducing the Cells
	Preparing the Assets
	Making Paths
	Marking the Path Starting Tile
	Scripting the Undo
	Saving Your Paths
	Loading the Paths

	Activating the Paths
	Changing the Tiles
	Setting Sequential Progress
	Working with External Influences
	Adding New Game Pieces

	Summary

	Chapter 8: Combining Assets and Functionality
	Merging Environment and Functionality
	Refining the Portal Functionality
	Tracking Health
	Adjusting the Path Progress

	Introducing Dynamic Elements
	Game Elements
	Activating Mecanim Animations

	Shaking Things Up
	Drifting Spinners
	Poppers
	Boosters

	Completing the Path
	Summary

	Chapter 9: Audio and Special Effects
	Adding Audio
	Audio Clips
	Audio Source
	Game Pieces

	Using Particles and Special Effects
	The Spinner’s FX
	The Popper’s FX
	The Booster’s FX
	Updating the Marble
	Managing the Portal Particles
	Drawing from a Pool
	Using the Pool
	The Path End FX

	Summary

	Chapter 10: GUI and Menus
	Working with the Unity UI
	Layout
	Processing Sprite Textures
	Background Management
	Game Level GUI

	Hooking Up the Functionality
	Making the Game Timer
	Adding Health
	Pausing the Game
	Encouraging Another Game

	Finishing the Start Menu
	Loading the Board Level
	Retaining Data Between Levels

	Interacting with the GUI by Using a Gamepad
	Summary

	Chapter 11: Rewards and Monetization
	In-App Purchases
	Persistent Data
	Managing the New Data

	Creating the Purchased Functionality
	Moving Bananas
	Adapting the Banana Peel Move for a Gamepad

	Crushing the Peppermints
	Neutralizing the Spinner
	Hiring Some Help
	Hiding the Guard

	Making the Store
	Finishing the Start Menu
	Hooking Up the Store

	Summary

	Chapter 12: Building for Windows Store
	Reviewing Requirements
	Enabling Developer Mode
	Installing the Windows 10 SDK
	Verifying Installations

	Setting Your Build Defaults
	Customizing the Player Settings
	Adding More Art Assets
	Building for Windows
	Exploring Screen Settings and Orientation
	Providing Icons and Logos
	Adding the Splash Screen

	Enabling the Gyroscope Functionality
	Finishing the Tiltboard Project
	Adding the Gyroscope Code
	In-App Purchases
	Saving Store and Game Data
	Testing Purchases
	Configuring In-App Purchase Names
	Simulating Purchases
	Making the Commitment
	Obtaining a Developer Account
	Packaging UWP Apps
	Windows App Certification Kit
	Uploading to the Windows Store

	Monetization
	Exiting Apps
	Suspended Apps
	Cleaning Up Unused Code

	Testing on Windows 10 Phone

	Extending the UWP
	Xbox One
	HoloLens

	Summary

	Index

