Professional Expertise Distilled

Mastering NServiceBus
and Persistence

professional expertise distilled

Rich Helton [PACKT] enterprise 8

PUBLISHING

http://www.allitebooks.org

Mastering NServiceBus
and Persistence

Design and build various enterprise solutions
using NServiceBus while utilizing persistence
enterprise objects

Rich Helton

enterprise

PUBLISHING
BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Mastering NServiceBus and Persistence

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014
Production reference: 1200814

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78217-381-6
www . packtpub.com

Cover image by Zarko Piljak (zpiljakegmail . com)

[vww allitebooks.cond

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Rich Helton

Reviewers
Andrew Church

Eben Roux

Commissioning Editor
Usha lyer

Acquisition Editor
Neha Nagwekar

Content Development Editor
Shaon Basu

Technical Editor
Manal Pednekar

Copy Editors
Sarang Chari

Mradula Hegde
Gladson Monteiro
Alfida Paiva
Adithi Shetty

Project Coordinator
Sanghamitra Deb

Proofreaders
Simran Bhogal

Stephen Copestake

Linda Morris

Indexer
Rekha Nair

Production Coordinators
Manu Joseph

Conidon Miranda
Alwin Roy
Nitesh Thakur

Cover Work
Manu Joseph

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Rich Helton is the Principal Software Engineer at the Colorado Department of
Labor and Employment (CDLE) in their IT office. He works on several projects, such
as Unemployment Insurance's WyCAN (Wyoming-Colorado-Arizona-North Dakota)
and CDLE's Internet Self-Service (ISS). He has spent time as a technical manager,

as an information security officer, and an enterprise services manager for the state.
Rich has an experience of more than 2 decades in building large-scale enterprise
systems, working as the principal architect for a customer list that includes ADP,
Jeppesen, J.B. Hunt, Schneider Logistics, US West, DCN, and many more. He has
implemented Java and C# projects since these languages were in beta, and he has
built many projects in frameworks to include Spring, ORMs, NoSQL, and multiple
ESB frameworks since their beginning.

He has several patents in the field of mobile video from when he was the VP of
Technology of Digital Camera Networks. He holds many certifications in security
and software development and a Master's degree in software. He has taught many
software and application security classes as a consultant in both the public and
private sectors. He posts some of his classes on http://www.slideshare.net/
rhelton_1. Rich has built many monitoring systems, network tools, and mobile
tools for decades as an independent consultant to include C# system tools and
Java Android applications.

I would like to thank the ongoing support of my wife, Johennie, and
my daughters, Ashley and Courtney.

[vww allitebooks.cond

http://www.slideshare.net/rhelton_1
http://www.slideshare.net/rhelton_1
http://www.allitebooks.org

About the Reviewers

Andrew Church is a senior software engineer and alumni of the Rochester Institute
of Technology. Andrew has 5 years of experience working on enterprise-distributed
systems for large companies, including a large retailer, as well as product systems for
small start-ups. Andrew has also spent time in product development and innovation
for a start-up in Rochester, NY.

I would like to acknowledge my parents for always telling me
that I could do anything that I set out to do. I would also like to
acknowledge my best friend, my wife Taylor, whose unwavering
support for all of my crazy ambitions is nothing but inspiring.

Eben Roux has been an IT professional since 1995 and has acted as a developer,
consultant, and architect within many industries. He has also provided strategies
and solutions that have contributed to the successful implementation of various
systems, which includes an NServiceBus solution for an insurance firm.

He is the owner of the free open source Shuttle Service Bus project and believes firmly
in the development of quality software that empowers users to get their job done.

Having come from a Visual Basic background, Eben first became a Microsoft
Certified Professional in 1998, and by 2003, had completed three Microsoft Certified
Solution Developer certifications (VB5, VB6, and VB.NET). Since moving exclusively
to C# development in 2007, he has focused on a domain-driven design implemented
within an event-driven architecture based on message-oriented middleware.

Eben can be contacted at me@ebenroux. co. za or via his blog at www.ebenroux.co. za.

I would like to thank my wife, Amanda, and our sons, Reynard and
Reynier, for allowing me to contribute to the community.

[vww allitebooks.cond

www.ebenroux.co.za
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www. PacktPub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . Packt Pub . com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[@]PACKT)

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content

¢ On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant updates on new Packt books

Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter, or the Packt Enterprise Facebook page.

[vww allitebooks.cond

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: NServiceBus Persistence Introduction 7
Introduction to SOA 8
The need for metadata 12
The need for persistence patterns 14
Fallacies of distributed computing 16
The need for sagas 17

A real-life saga 18
Beginning an NServiceBus saga 20
Beginning NServiceBus assemblies 22
Summary 28
Chapter 2: The NServiceBus Architecture 29
Benefits of NSB 30
More on endpoints 31
The application security perspective 32
NSB hosting versus self-hosting 32
Using Powershell commands 35
Message exchange patterns 36
The publish/subscribe pattern 36
Request-response messages 38
Saga services 39
Some saga features 40
Timeout messages 41
Message mutations 43
Message encryption 45
Cluster messaging 47
Performance monitoring 49

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Gateway messaging 52
Data bus messaging 55
Storage patterns 56
Backing it up 59
Monitoring 59
Sample e-mail notification 62
Let's recap 65
Summary 66
Chapter 3: Particular Service Platform 67
ServicePulse 68
ServiceControl 70
Servicelnsight 76
ServiceMatrix 81
Introducing custom checks 91
Publish/subscribe through ServiceMatrix 94
Sagas through ServiceMatrix 99
Summary 103
Chapter 4: Knowing Your IBus 105
Understanding the basics of IBus 105
Configuring IBus 107
Interface configurations 111
Using the Fluent Configure.With() 114
The transport storage 116
The saga persister 116
The timeout persister 117
The gateway persister 117
The subscription storage 118
Finding more configuration settings 118
Using saga and NHibernate 119
Defining NHibernate 125
The saga database data 126
Logging 128
Buyer's remorse code walkthrough 130
Message mutators 137
Encryption 139
Services and deployment 140
Summary 142
Chapter 5: Persistence Architecture 143
Persistence basics 143
Supporting frameworks for persistence 145
Introducing Entity Framework 146

Lii]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

XML serialization 150
C#t reflection 154
The PayQueue sample 155
The SQL queuing sample 158
Database logging 163
Summary 167
Chapter 6: SQL Server Examples 169
The SQL Server example 169
The MVC-EF example 174
Entity Framework snippets 180
Creating tables with EF 180
Creating tables from the EF code 183
Creating tables from EF models 184
Code-first EF 188
Code-first EF and configurations 191
Unit testing NServiceBus 194
Message handler unit testing 196
Saga handler unit testing 202
Summary 203
Chapter 7: Persistent Snippets 205
Entering NHibernate 205
Using saga and NHibernate 209
Defining NHibernate 215
The saga database data 216
Logging 217
Entering RavenDB 219
Entering MongoDB 223
NServiceBus MongoDB persistence 227
Summary 228
Chapter 8: The NSB Cloud 229
Introducing the cloud and NSB 229
Introducing Paa$, laaS, and SaaS 231
Cloud vendors 232
Using Microsoft Azure 237
Virtual machines 240
Azure Service Bus 247
Service bus for Windows Server 250
Other Azure services 255

[iii]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Adding NServiceBus
NServiceBus for Azure
Azure support for NServiceBus
NSB in the mobile world
Recap
Questions that were answered
Summary

Index

256
256
256
260
261
262
263

265

[iv]

Preface

Starting with the basics of NServiceBus (NSB), this book will provide you with all the
skills you need to successfully design, develop, and architect C# enterprise systems
with NSB. We will walk through many enterprise NSB scenarios with different
persistence models. Some of these enterprise solutions will include additional
frameworks, such as Model-View-Controller, Entity Frameworks, NHibernate, SFTP,
and WCEF. There will be discussions on MongoDB, RavenDB, and NHibernate as they
relate to NSB. The Particular Service Platform, including ServiceControl, ServicePulse,
and Servicelnsight, will be discussed at length with examples.

You will be taken through IBus characteristics, followed by the Persistent and
NServiceBus saga architectures. You will get to know about the basics of persistence
and the supporting frameworks for persistence, followed by SQL queuing and
database logging. This will be followed by an in-depth look at the saga architecture,
covering the mechanics, message mapping, and internal configuration, as well as
tips on how to avoid certain common errors.

We will discuss how NSB provides an enhanced quality of software through the use of
security, logging, monitoring, notification, and persisting objects and messages. There
will be many examples. We will end the book with future enhancements to NSB, how
NSB is part of the cloud space, and how it finds itself in use in the mobile world.

What this book covers

Chapter 1, NServiceBus Persistence Introduction, will discuss NSB and the basic
persistence design pattern it uses, which include the sagas, gateways, subscriptions,
messages, and timeout design patterns. We will also discuss the benefits of using
NSB, and what it brings to the table in terms of software design.

Preface

Chapter 2, The NServiceBus Architecture, will focus on the NServiceBus architecture.
We will also discuss the different message and storage types supported in NSB.
This discussion will include an introduction to some of the tools and advantages
of using NSB as we conceptually look at how some of the pieces fit together.

We will back up the discussions with code examples.

Chapter 3, Particular Service Platform, will focus on Particular Service Platform

that includes ServicePulse, ServiceControl, Servicelnsight, and ServiceMatrix.

As the name implies, ServicePulse gives us a pulse on the messages, services, and
endpoints. ServiceControl is the control API that ServicePulse and Servicelnsight
depend on to get their internal information. Servicelnsight gives us graphical and
message-level drilldown into the services, endpoints, and messages that also include
a saga drilldown. ServiceMatrix is the graphical interface into code generation for
NServiceBus endpoints, services, and messages in a Visual Studio canvas.

Chapter 4, Knowing Your IBus, will discuss various configurations and examples of
the NSB IBus. In Enterprise Service Bus (ESB), the bus is the backbone of the sagas,
subscriptions, sending, timeouts, and gateways. For NServiceBus, the bus interface
is known as the IBus. Knowing your IBus is the most important part of NServiceBus.

Chapter 5, Persistence Architecture, will cover persisting items to the database,
including messages and logging. For the ESB bus, persistence is the key element
for the storing of messages, which could be associated as business objects that run
through the ESB workflow. The metadata comprises other persistent elements
that define how the messages and workflow are being handled in the ESB through
configuration. Persistence can also be considered the feedback that the ESB gives
back to the system in the form of logging, errors, and audits.

Chapter 6, SQL Server Examples, will focus on snippets about SQL Server examples.

We will discuss queuing in SQL Server. More advanced features for Entity Framework
will be discussed, as will MVC-EF examples. This chapter is for developers who are
working with SQL Server and Entity Frameworks with NServiceBus.

Chapter 7, Persistent Snippets, will focus on snippets about persistence. We will
discuss NHibernate, RavenDB, and MongoDB. We will dive into code to accomplish
some database tasks related to NServiceBus. This code could be applied to many
tasks that are not ESB-specific. But this is a much needed chapter on database code
itself. We will create SQL Server databases without the use of SQL code and read
tables that NServiceBus created in RavenDB. We will show how to create tables
with code, read tables, and display tables in NHibernate and RavenDB.

[2]

Preface

Chapter 8, The NSB Cloud, will focus on snippets about NServiceBus in the Azure
cloud after an introduction to various components about the Azure cloud services.
NSB has a lot of support for the Azure cloud. Be it SQL Storage, Azure Queues,

or the Azure Service Bus, NSB is headed in a direction of working more with
Cloud Services. We will briefly discuss Salesforce and even NSB integration into
mobile devices.

What you need for this book

Beginner-level knowledge of Visual Studio 2012 with C# will be required. This could
be the Visual Studio 2012 Express Edition from Microsoft.

Who this book is for

This book is for any person who wishes to develop, design, or architect NServiceBus's
ESB systems in C# as a possible solution. We discuss many items that go beyond
NSB, such as MVC-EF frameworks and databases such as RavenDB, SQL Server,

and MongoDB.

Conventions

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"First, run the Install commands for the pieces that are accomplished in
PowerShell commandlets."

A block of code is set as follows:

using System;

using System.IO;

using ServiceControl.Plugin.CustomChecks;

using ServiceControl.Plugin.CustomChecks.Messages;
using ServiceControl.Plugin.CustomChecks.Internal;
namespace PaymentEngine.ECommerce

[31]

Preface

{

public class MyCustomCheck : CustomCheck

{

public MyCustomCheck ()
: base ("ECommerce SubmitPayment check", "ECommerce")

{

ReportPass () ;

}
H

Any command-line input or output is written as follows:

"PM> Get-NserviceBusLocalMachineSettings"

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Go to
the Component Services option under the Administrative Tools menu."

[Q Tips and tricks appear like this.]

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[4]

www.packtpub.com/authors

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can http://www.packtpub. com/support and register to have
the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

NServiceBus Persistence
Introduction

In this chapter, we will discuss NServiceBus (NSB) and the basic persistence design
pattern it uses, which includes the saga, gateway, subscription, messages, and timeout
design patterns. We will also discuss the benefits of using NSB and what it brings to
the table in software design. Finally, we will discuss the following topics:

¢ Introduction to SOA

o

The need for metadata

[e]

The need for persistence patterns

o

The need for enterprise frameworks

[e]

Fallacies of distributed computing

o

The need for sagas

[e]

A real-life saga

* Beginning an NServiceBus saga

* Beginning NServiceBus assemblies

NServiceBus Persistence Introduction

Introduction to SOA

Service Oriented Architecture (SOA) is a very important architectural

concept (ht tp://en.wikipedia.org/wiki/Service- oriented_architecture).
To understand what services it brings to the table, we bring up the four tenets of
services, also known as the Principles of Service Oriented Design (for more details
refer to http://msdn.microsoft.com/en-us/library/bb972954.aspx). They
are autonomous, boundaries, share schema and class, and compatibility.

¢ Autonomous: Services are autonomous; this means that each individual
service takes care of its own self-contained life cycle independent of other
services, and changing a particular service will not have any side effects
on other services.

* Boundaries: Boundaries to services are explicit. There are distinct entry
and exit points for messaging; it is well defined where these points are
in the service.

¢ Share schema and class: Services share schema and contract, but not their
classes. This means that the internals of the services are not exposed. Again,
the messaging interface is defined, but the internals of what is going on are
not exposed across the platform. This adds a layer of abstraction to services
that define a business requirement, say an order service, without having to
go into every detail of the business.

* Compatibility: A service's compatibility is based on its policy. The policy
defines the nonfunctional requirements of what the service must conform
to while it is being produced. For example, what is the level of encryption,
maintenance, and effort required? For instance, in an order service, what
data needs to be saved to the disk, what data needs to be encrypted, and
what is the level of fault tolerance of the service?

A simple example comes from ordering websites that need to send payments to
third-party servers to receive the payment. Assume a pizza-ordering site; there are a
number of issues that may occur at the time of credit card processing, which include
insufficient funds as well as network and connectivity issues. If SOA or ESB is not
used, the customer may be asked not to refresh the page. This is required so that the
payment request is sent to the third-party processing server, and the customer may
even receive a network error. When an error is received, the customer is asked to
retry again.

[8]

http://en.wikipedia.org/wiki/Service-oriented_architecture
http://msdn.microsoft.com/en-us/library/bb972954.aspx

Chapter 1

There are many major ordering websites that function in this way today. As a
customer, some of the concerns include the integrity of how a website handles orders
since it requires customer validation and intervention to process payments. Even
ensuring that a page does not refresh relies on the customer, which makes the site
less appealing in comparison to those that do not require customer intervention for
issues the customer does not need to be made aware of.

Instead, the responsibility to ensure the funds are processed should be on the
system rather than on the customer. Of course, in order for a website to take on the
responsibility of firing off the message to an SOA, there has to be an SOA in place to
take on the responsibility of processing the message for the payment.

While developing an SOA or ServiceBus system, many software architects consider
starting it from scratch. However, they soon realize that there are many unstated
requirements that are expected to be incorporated. These requirements assume a
specific behavior and do not explicitly call them out. It is a given fact that a good
design takes these non-business functional requirements into account.

Some examples of these requirements include second-level retries for when a
credit card isn't processed the first time. When this happens, the system stores the
messages along the way; keeps track of the state of the services; and integrates into
other company systems network errors, the encryption of the credit card number,
and the access control level that different users and systems may need.

These requirements become complex quickly, as the following diagram implies.
It may take years to resolve some of the issues but most of the time, the business
allocates months rather than years to address them. In order to resolve these
non-business functional requirements and to address the associated issues that
may arise, it is best to study solutions that other architects have provided for
similar situations.

[o]

NServiceBus Persistence Introduction

For instance, use a ServiceBus product such as NServiceBus as a guide to

performance-enhanced products with built-in message reliability and integrity.

14~

R

W Web Server

Bervices

i T-

]

Continuing with the order system for a pizza establishment, the website would
process the order and hand off the message to ServiceBus to process the payment.
Then, the system takes the ownership of the payment message instead of relying

on the customer.

The messages need to accommodate the partner's systems. However, the bus

handles data and queues internally and saves the state, messages, and objects if
something goes wrong. This is important since payments affect the bottom line,
and the company has a business need to keep track of its payments.

The hand-off of messaging allows a customer to continue to the next action or
website page. The payment response is later processed as the system takes on

the responsibility for the payment.

[10]

Chapter 1

The messages are sent between services as autonomous tasks, and the messages
need to be made durable, scalable, reliable, secure, transactional, and capable of
being distributed among different systems. This backbone, the pieces as a whole,
is by definition an Enterprise Service Bus (ESB). ESB is simply a common bus
across the enterprise, with the preceding characteristics (durable, scalable, reliable,
secure, transactional, and distributable).

A saga is a mechanism that evolved in ESBs to save the state of messages. A saga
also keeps track of the originating message's endpoints so that it can respond to the
originator with changes to the message.

Just as an accountant must keep track of receivable payments and orders in a
company, so must a company's systems —record keeping is of paramount concern.
Once a user creates an account, they become a customer; as a customer, they assume
that the company protects their information, unless told otherwise.

Throughout history, many companies that are no longer in existence neither
protected users' data, nor adequately kept track of payments and orders. Security
and sales are an overall concern in the industry. A company's main goal is to make
more money than it spends, which includes keeping track of the company's data.
Losing sales and data can be expensive. Reporting where data is and its current state
(be it a sale or customer's data) is important. Therefore, of course, it is better to have a
system that never has an issue. Though, if a system has an issue (such as losing data
or funds), it is best to know the magnitude of the issue and as much information as
possible. Therefore, when building payment engines, it is not uncommon to require
daily reports of dollar totals, the number of successes or failures, reasons for failures,
root cause of failures, and more.

In order to provide such reports, there needs to be an end-to-end tracking of messages.
A message is nothing more than a piece of data that travels through a system as the
system completes a transaction.

A transaction is a completed unit of work, such as completing a payment. A message
can be saved after a transaction is completed in order to keep a record and be able to
provide feedback on what happened through the workflow.

A workflow is the end-to-end processing of transactions as the message moves
through the system to complete its life cycle. During a message's life cycle, some data
may be mutated. An example is payment in part or additional fees. The system uses
the message's metadata to determine how the message moves through the workflow.

Metadata is information about the message itself, such as a message ID or header
information. Header information is used to keep information that may show, for
instance, the originating system and destination.

[11]

NServiceBus Persistence Introduction

A saga uses a message ID to save and lookup the state of the message at a given
point using the originator of the message to respond, with the status of the message,
to the originator.

All of the previous work is performed in order to do reporting; also, instead of
creating a solution from the ground up, NServiceBus is built explicitly to simplify
and assist with the amount of work within a system. NServiceBus uses queuing to
pass messages to other services, such as MSMQ, which includes error queues and
audit queues.

For example, a simple report may be there to send a daily message of how many
messages were sent to the error queue. Since messages can be created in XML, there
could be an error field to be easily parsed out for error details. However, in no way
does this replace logging.

Products such as ServicePulse and other reporting mechanisms are used to assist
in giving reports of the company's messages and data. This simple example could
be expanded to send messages that contain payments above a threshold ($100 for
instance) to one queue and under the threshold to a different queue. A report could
be made daily based on timestamps. Since sagas are saved in databases before

a message is completed, another report could be generated to report on all the
payments over $100 that are not processed.

There are many ways to provide reports of messages, and because sagas and queues
are used, it can be drilled down to very detailed information. It is obvious that there
is extensive work to be done to create and implement a solution from scratch.

The need for metadata

During the course of building enterprise systems, there are functional and
nonfunctional requirements. Functional requirements describe the business rules,
and nonfunctional requirements are system characteristics with non-business rules.
A simple nonfunctional requirement for a system is, for instance, that any SSN must
be encrypted both at rest and in-transient states. Nonfunctional requirements simply
go beyond security requirements; nonfunctional requirements include notifications,
alerts, monitoring, logging, and other software qualities.

Nonfunctional requirements include many of the components that make up
software quality http://en.wikipedia.org/wiki/Software quality. Software
quality includes some of the software characteristics already mentioned, such as
maintainability, security, code quality, reliability, integrity, and so on. Software
quality is the ideal state for software to achieve; nonfunctional requirements form
the specifics of how to achieve certain pieces.

[12]

http://en.wikipedia.org/wiki/Software_quality

Chapter 1

The problem is that, while business requirements may be clearly spelled out,
nonfunctional requirements may not be defined clearly or negotiated enough ahead
of time. Therefore, tweaks are required along the way during the application life
cycle, including development or maintenance. Metadata and precreated frameworks
are the key players of this tweaking.

Consider an administration application that business analysts (BAs) and operational
teams use to check the current state of an enterprise application. The application takes
orders for aircraft maps and equipment, and customer service representatives (CSRs)
have an interface for working with the customers and changing their data at will.
Operations use an administration application to monitor the end-to-end throughput
from a browser to a database and receive notifications if the levels are not achieved.

In the previous example, notifications and monitoring are nonfunctional
requirements. BAs may use the administration application to handle special
customer cases and monitor the number of orders, customers, and other reports.
The generation of the reports, the data for monitoring, is based on the business
data and generates metadata. This metadata is used to check the business data.

The following is a common 3-tier diagram for an application that gathers
sales information:

Presentation tier - GET SALES
The top-most level of the application oL
is the user interface. The main function
of the interface is to translate tasks
and results to something the user can
understand.
Logic tier
This layer coordinates the
application, processes commands, \J
makes logical decisions and GET LIST OF ALL ADD ALL SALES
evaluations, and performs SALES MADE TOGETHER
calculations. It also moves and LAST YEAR
processes data between the two
surrounding layers.
SALE 1
QUERY SALE 2
- SALE 3
Data tier SALE 2
Here infoermation is stored and retrieved
from a database or file system. The
information is then passed back to the
logic tier for processing, and then
eventually back to the user.
Storage
Database

[13]

NServiceBus Persistence Introduction

The application has a frontend, a logic tier (middle tier), and a data tier. So far,

this is a very common design for an application. The frontend is done in HTML or
ASP.NET to control the presentation layer in a browser. The logic tier contains the
workflow and messaging to handle business logic. Finally, the data tier is the storage
to hold the information in a persisted repository —usually a database, mainframe,
file I/ O, or third-party server among other options.

When you look at this basic application, you'll realize that many endpoints are
missing. These endpoints are used to monitor the application, to log the application,
and perform other operational and administration tasks previously mentioned.
Therefore, this model is incomplete since it does not address nonfunctional
requirements.

Many software projects seem to need continuous enhancements because the
developer keeps on adding components for security, operational reports, and
other application characteristics that were not mentioned in the list of business
requirements, even though they are components required to ensure the integrity
of the application itself.

The need for persistence patterns

To paraphrase what's written in http: //en.wikipedia.org/wiki/Service_
oriented_architecture, the idea behind Service-oriented Architecture (SOA)
is to decouple the end-to-end application functionality between discreet services.

So far, we have discussed sagas and some metadata of applications. There are other
types of data that are saved to the data store, including business objects that contain
the information used for business rules. Business rules run the business engines and
are used to execute business logic.

In the ESB world, the bus transports (moves) objects that could be considered business
objects; these business objects move through sagas. These objects are the pieces of
NSBs that are used for notifications, timeouts, gateways for message distribution,
Second-level Retries (SLRs), and even endpoints to where the messages are sent.

The preceding objects make up many of the application metadata. Many of these are
the configurations of the services that make up the distribution of the messages and the
behavior of the transactions. The metadata that NSB keeps track of during a publish-
subscribe message pattern is the same subscription information required for NSB to
keep track of the publish-subscribe endpoints. The subscription information is needed
for the subscribers to keep track of the message types and queue endpoints. This is
needed to subscribe to the publishers. NSB uses the database to keep track of these
types of endpoints.

[14]

http://en.wikipedia.org/wiki/Service_oriented_architecture
http://en.wikipedia.org/wiki/Service_oriented_architecture

Chapter 1

A small table of what is available can be seen at http://docs.particular.net/
nservicebus/persistence-in-nservicebus.

InMemory RavenDB | NHibernate | MSMQ

Timeout Vv v v Not
supported
begining
version
3.3.0

Subscription v v Vv v

Saga v v v

Gateway v v Vv

Distributor v v

Second Level Retry Vv

Fault Management v v

Notifications v

The persistence configurations are just some of the typical ESB service configurations
in NSB. There are many more configurations as NSB is meant to do so much more

as a complete automation framework for the middleware. We will be discussing

the various features and their associated configurations on the bus called IBus
throughout this book.

Through this table, we know that the timeout for sagas, the saga object itself, the
subscription information for publish-subscribe, the second-level retries, the fault
management, notification, the gateway, and distributor can be supported in MSMQ.
Some of these pieces can be stored in the local memory of the host application; it
cannot be saved when the application is not running. Pieces can be saved in the
RavenDB database, which is a NoSQL document-oriented database. Pieces can also be
saved using the NHibernate database connecter, which is an ORM mapper to various
relational databases, such as SQL Server, MySQL, and Oracle. Some of the items have
been referred to as data, which is data that describes the messages versus the messages
themselves that will be part of the ESB workflow. The workflow itself makes up the
business logic, while the messages themselves could be considered as business objects.

The benefit of NServiceBus is that it will handle the persisting of the object's
messages and various pieces for the developer, as long as the developer has
configured NSB correctly.

For instance, when using NHibernate, NSB will perform the mapping of the
messages to the relational database, and the developer does not have to configure
the NHibernate-mapping properties to map the objects to the relational database.
This saves the developer a lot of time and effort. The messages themselves can also
be persisted through various means using the settings for using the transport in IBus
configurations. These message queues include MSMQ, Azure queues, SQL Server
queues, ActiveMQ, and RabbitMQ.

[15]

http://docs.particular.net/nservicebus/persistence-in-nservicebus
http://docs.particular.net/nservicebus/persistence-in-nservicebus

NServiceBus Persistence Introduction

Fallacies of distributed computing

Many books are written on just various troubleshooting issues over networks and
servers. There are many issues that come up in operations and maintenance that
were never conceived as potential issues, anywhere from intermittent routers due
to a power cord not being plugged in all the way, patches that left the servers in a
hung state, DNS errors from a domain controller, and so on. There is no guarantee
that the networks, or servers, are secure, remain unchanged, and all the routes
remain reliable for the application that was built. Not having to deal with these
abnormal issues by having someone else deal with the uptime issues is what makes
cloud computing so attractive. In many enterprise applications, as in this usage, we
discuss where uptime is critical, and where it is normal to have to code, notification,
and monitoring, for failure along every step of the way between services and
clients. There are many assumptions that we can make, including the one that it is
someone else's concern; however, in the end, it becomes a piece of the application's
responsibility to describe how it is working.

Because the network may not be reliable, there may be a changeover in staff and
servers. The need for persistent enterprise objects, such as bus technology and
persistent messaging, has evolved. Also, the need for instrumentation has grown

to track the messages and objects. Not knowing where payments and orders are

in a system can be bad for any organization that needs to track them. In the end,

the data that runs through applications is owned by the organization; if it is hacked,
if financial data is lost, or if employees are not paid, it is their responsibility, rather
than considering that it lives in the cloud or it is the fault of a bad network or any
other condition. Because of this need for reporting on the systems, there is a need

for metadata, which is just another form of persisting the company's data, except for
business data such as a customer's address. Metadata is a form of reporting data, such
as the current state of a message or if there was an error with a message reaching its
endpoint. It is a snapshot in the organization's operations of applications. Sometimes
these snapshots are very important; in many cases, where money and personal
identifying information are involved, they are used to provide information, even

to courts, on what happened when the money goes missing. We will start on this
journey of running through the designing of systems with a common SOA design
pattern called saga that will assist us in providing these pieces discussed thus far.

[16]

Chapter 1

The need for sagas

A saga is a design pattern that was originally coined in a paper by Hector
Garcia-Molina in 1987, http://www.amundsen. com/downloads/sagas.pdf.
To quote a piece:

"A long-lived transaction (LLT) is a saga if it can be written as a sequence of
transaction that can be interleaved with other transactions."

In Arnon Rotem-Gal-Oz's book on SOA Patterns, page 137 says:

"Sagas are a way for services to reach distributed consensus without relying
on distributed transactions."

It is expressed by many references that sagas may be built differently, depending
on the need.

A saga pattern is supported by NServiceBus; for more information see http://
docs.particular.net/nservicebus/sagas-in-nservicebus. A saga handles the
persisting of pieces of messages as part of an ESB. During a workflow of messages,
a message is sent to a saga; the saga persists the needed data and responds to the
original client with messages. A saga itself is a data object with an ID, getters, and
setters. As messages are passed back and forth between services, the saga is an
intermediate to save valuable data. The data are message parts.

The messages of a service bus are persisted by nature and can be replayed when
there is an issue with the delivery of the message with the endpoint; however, the
saga keeps track of the originator and can store other data to be associated with

the original message. This updated data, which is defined by the developer, may
be the state of the message, the session information related to the message, or any
other data needed by the application. The saga correlates messages it receives,
synchronizes the activity using the corresponding ID, and deals with other features
such as timeouts and lookups.

The saga evolves in the ServiceBus architecture as a pattern; it is discussed in greater
detail in the next chapters.

Many common frameworks such as Microsoft MVC and EF are designed for
business requirements only, with additional frameworks to assist in nonfunctional
requirements; this point is stressed throughout this book. Also, we emphasize the
concept of ServiceBus.

[17]

http://www.amundsen.com/downloads/sagas.pdf
http://docs.particular.net/nservicebus/sagas-in-nservicebus
http://docs.particular.net/nservicebus/sagas-in-nservicebus

NServiceBus Persistence Introduction

ServiceBus is a messaging workflow; it stores messages along the way. It is a workflow
since it incorporates both business and nonfunctional requirements. ServiceBus does
have transactional persistence to perform second-level retries if there is an error in

the server or the network. The saga pattern extends that concept by giving feedback

to services along the way to the originator and timing out messages. Also, it provides
feedback on which operations business analysts and CSRs normally require to perform
day-to-day operations. This information is used to correct issues that are of interest to
the business. Remember that the saga pattern is a framework that is easily extensible,
and so it is not a stress to use it for more than just retries.

A real-life saga

NServiceBus simplifies the implementation of the concepts in the previous section;
the following is a real-life scenario to illustrate them and multiple services that
communicate with each other.

Recall the pizza-ordering example we discussed earlier where the Please do not
refresh the page and wait for the order to complete message is displayed when a
user places an order. We discussed the concern that the user may have doubts about
whether the order is completed, and there is the implication that a browser refresh
could cause order issues. Obviously, an ASP or JSP web page waits for some web
service to go out and charge my card as it waits for the result. To avoid this behavior,
a better solution is needed. One such solution is a workflow for passing messages
around so that the system fires off a transaction to process the payments, allowing
user interaction to continue; eventually, the system is to receive an update once the
payment is processed.

There are a few possible solutions for the preceding example, and all of them
have one thing in common: combining a workflow with a middle layer simplifies
the solution.

One possible solution is to have several services that are responsible for

different actions. We need to save data entered by a user to a database; this can be
accomplished via some backend services. These services handle all the transactions
needed. A service, say Servicel, can pick up the data and pass it into a MSMQ for
processing. This provides the separation of knowing which messages are in the state
of processing. Another service, say Service2, can be responsible for the interaction
with a payment engine.

[18]

Chapter 1

Continuing with the pizza-ordering example, Servicel is responsible for getting
the data entered by the customer and Service2 is responsible for processing the
credit card payment. If there are errors with the payment engine, Service2 and
the ServiceBus have the logic to retry again. However, Servicel remains unaware
that there are errors with the payment. Service2 is atomic and does not provide
notifications and feedback to the user. The payment service may place the error
in an error queue, but some information, such as why the payment was not
processed, will remain missing.

8 Queue

Web System

WebService to
Payment Server

Using the saga pattern provides many of the features that are currently missing in
the solution presented thus far. The saga is the end-to-end message workflow that
can be used to save the state in an intermediate process. This can be accomplished
by saving an intermediate saga data object. This persistence typically is done to

a database and looked up when the same message is passed back through. Sagas
can get complicated but, because very little code is required —since the ServiceBus
handles most of the work —sagas can be simple to use.

As hinted previously, a saga can be created as an intermediate between the services to
keep the client, in our example Servicel, informed about the progress of the message.

[19]

vww .allitebooks.cond

http://www.allitebooks.org

NServiceBus Persistence Introduction

The saga can update other endpoints of the message status and change the message
if it needs updating as it moves through the workflow. The important piece of a saga
is the one-to-one lookup of the data related to the message and the message itself.
This allows the workflow to follow a message's progress and know where it is at a
given moment along multiple services. We could define a timer to fail the message

if it continually errors out, since we don't want messages to live forever.

Returning back to the pizza-ordering example, instead of waiting and not refreshing
the page, we can create a page where the user can go to and check the status as the
order progresses through the ServiceBus workflow. Notice that this allows many
nonfunctional requirements to be addressed.

Nonfunctional requirements (such as monitoring, logging, manual retries, timeouts,
checking encryption, and the message) can be addressed by monitoring the services
and messages.

To recap, we can address the payment engine errors by adding logic to the saga to
notify the user, operations, and the organization of specific errors. For instance, we
could add logic to the saga to send an e-mail to the user saying that the order was
denied due to insufficient funds. In addition, we could add another error-checking
option into the workflow for network failure and other unexpected events. When
such events happen, have a notification sent to operations stating that the payment
engine server is not available at this time. Notice that the user does not need to be
notified of these errors. Therefore, the saga becomes the focal point for checking the
status of the message.

Beginning an NServiceBus saga

As mentioned earlier, sagas are a design pattern. They are not unique to NServiceBus
but are common in most enterprise service bus systems. There are many references
to sagas, for instance, http://vasters.com/clemensv/2012/09/01/Sagas.aspx
and http://msdn.microsoft.com/en-us/library/jj591569.aspx. These details
are discussed in greater detail later. For now, we will expand on the payment engine
example we have been exploring.

First, a saga in NServiceBus is always started and updated by a message.

Even when a timer is fired, a message is created. This timeout message is to be
handled by the saga —refer to the following class diagram.

[20]

http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://msdn.microsoft.com/en-us/library/jj591569.aspx

Chapter 1

In the class diagram, there is message that starts the saga container from Servicel;
this means that the message is originated from the service that communicates with
the frontend. A saga data is created and saved to the database. This data may be
retrieved when the message passes the saga again; this means that the data that was
saved for a message from Servicel may be retrieved on the return trip from Service2.
Therefore, when returning from the payment service, persisted data can be retrieved
and the message can be updated with data that is not directly passed to the message.

) IamStartedByMessages<SubmitRequestCommand= + — SEFVICE].
IHandleMessages<ApproveReguestCommand:=
IHandleMessages<DenyRequestCommand:= ﬁ SErViCEZ

IHandleMessages<RecordEncumbranceReplyMessage=
IHandleTimeouts<TimeoutMessages

| PurchaseOrderRequestSaga Y
Class
¥ Saga=PurchaselrderRequestDate-

=l Fields
®_ logger

=l Methods
@ ConfigureHowToFindSaga
@ Handle {+3 overloads)

ff-‘a Process&pproval
@ Timeout

Diatabase

There is a lot of debate on how sagas are used, mostly relating to how sagas can

be extended and used in multiple ways. However, the basics remain the same.

A message starts a saga, a saga saves the data that is associated with the message,

a saga handles other types of messages, a saga is able to lookup the original message
that it started with, a saga is able to add data to the original message, and a saga
routes messages to different destinations.

[21]

NServiceBus Persistence Introduction

Beginning NServiceBus assemblies

You can start your first NServiceBus installation from Visual Studio. There are some
preconditions that must be satisfied before NServiceBus is installed on the machine:

* Install DTC: Distributed Transaction Coordinator (DTC) is responsible
for ensuring that the transaction is committed or rolled back in Microsoft
technologies, such as SQL Server and MSMQ

* Install MSMQ: Microsoft Message Queuing (MSMQ is the messaging
system for Microsoft operating systems

e Install RavenDB: RavenDB is a NoSQL document-oriented database
that stores internal information for NServiceBus, such as the endpoint
subscription information

* Install performance counters: The performance counters are calls into the
Microsoft performance management system so that Microsoft operating
systems can give performance reports on NServiceBus

Before setting up NServiceBus itself, vanilla NServiceBus makes a lot of
use of MSMQ), DTC, RavenDB, and even performance counters to monitor
NServiceBus's performance.

We will need to install the PowerShell commandlets through Package Manager.

Many items can be managed in the Package Manager console program of Visual
Studio, 2012. We will need a solution, and we can start by using the MSMQ solution
from GitHub. It is available at https://github.com/Particular/NServiceBus.
Msmq.Samples/tree/master/VideoStore.Msmg. We will need to install the various
NserviceBus references by using NuGet, as in the following screenshot:

ideoStore.ContentManagement - Manage NuGet Packages kd E3
b Installed packages Skable Only - Sortby: Relevance - nservicehus| b4 |-
4 Online .
MServiceBus _Install “ Created by NServiceBus Lkd
The most popular open-source .
nugek.org service bus For .net Id: MServiceBus
Search Results Yersion: 4.6.3
T Last Published: 7/17/2014
b pdates MNServiceBus NHibernate D loads: 167145
The MHibernate for the MIervicebus Vig::?icc:aans: e

Project Tnformation

We need to make sure that the PowerShell commandlets are installed correctly first.
We do this by using Package Manager:

* Install the package, NServiceBus.PowerShell

* Import the module, . \packages\NServiceBus.PowerShell.4.3.0\1ib\
net40\NServiceBus.PowerShell.dll

e TestNServiceBusPerformanceCountersInstallation

[22]

https://github.com/Particular/NServiceBus.Msmq.Samples/tree/master/VideoStore.Msmq
https://github.com/Particular/NServiceBus.Msmq.Samples/tree/master/VideoStore.Msmq

Chapter 1

The "import module" step is dependent on where NService.PowerShell.dll

was installed during the "install package" process. The "Install-package" command
will add the .d11 module into a package directory related to the solution. We can
find out more on PowerShell commandlets at http://docs.particular.net/
nservicebus/managing—nservicebus—using—powershellznuievenlgfnﬂdewdng
the help section in Package Manager. Here, we see that we can insert configurations
into the App . config file when we look at the help section, PM> get-help

about NServiceBus.

NServiceBus provides instructions for preparing your machine on http://docs.
particular.net/nservicebus/preparing-your-machine-to-run-nservicebus.
First, run the Install commands for the pieces that are accomplished in PowerShell
commandlets.

Fackage Manager Console

Package source: |nuget.org - -E} Default project: | ConsoleApplication2 -

PM> Install-NServiceBusDtc

PM> Install-NServiceBusMsmg

Confirm

lire you sure you want to perform this action?

Performing operation “Install-NServiceBusMSMQ" on Target "WIN-UAUTL1G6GPEQA™.

[¥] Yes [A&] Yes to A11 [N] Mo [L] Mo te A11 [S5] Suspend [2?] Help {default is "¥"):
PM> Install-NServiceBusRavenDB

PM> Install-NServiceBusPerformanceCounters

Creating counters

PH>

IR
(]

We can then run various Test commands to see whether the installations succeeded.

PM> Test-NServiceBusDTCInstallation

True

PM> Test-NServiceBusMsMQInstallation

True

PM> Test-NServiceBusRavenDEInstallation

True

PM> Test-NServiceBusPerformanceCountersInstallaticon
True

PMz

[23]

http://docs.particular.net/nservicebus/managing-nservicebus-using-powershell
http://docs.particular.net/nservicebus/managing-nservicebus-using-powershell
http://docs.particular.net/nservicebus/preparing-your-machine-to-run-nservicebus
http://docs.particular.net/nservicebus/preparing-your-machine-to-run-nservicebus

NServiceBus Persistence Introduction

This verifies that everything is set up correctly. I like using C# and NServiceBus
because I can then use other products to verify the correctness. We can verify many
pieces using services that come with Windows Server. These instructions will be
specific to Windows-operating systems, and we will use the Windows 2008 server

for these instructions. For instance, to verify that DTC is set up, we can check to see
how it's set up:

1. Go to the Component Services option under the Administrative Tools menu.

2. Expand the Computers mode under the Component Services node.

3. Right-click on Properties and select the MSDTC tab.

4. Hit the Security configuration button, as shown in the following screenshot:
1]
#. Flle Action View Window Help | - 5|1||
G EEE _ i
S Coreok Root — 2l
= #. Component Services =| Transacti .TIEICing | Logging Security |

= || Computers 1 Transact
= 1A My Computer [Secuity Settings 4
“| COM+ Applications V¥ Network DTC Access
“| DCOM Config Client and Administration
“| Running Processes ’7|_ Allow Remate Clients I Allow Remote Administration
~| Distributed Transaction Coordinator))
[= (A Local DTC Transaction Manager Communication
2| Transaction List [~ Allow Inbound WV Alow Outbound
) |4 Transaction Statistics @ Mutual Authentication Required
& [Event VIEWEF_U‘DCED £~ Incoming Caller Authentication Required
 Custom Views - o i
a, Windows Logs Mo Authentication Required
Applications and Services Logs
;4 Subscriptions
. Services (Local) [V Enable XA Transactions [# Enable SMA LU 6.2 Transactions
 DTC Logon Account
Account: INTAUTHORITY‘-.NetworkService Browse... |
Passward: I
Corfirm passward: I
Leam more about setting these properties.
ok | cacel | s |
| 1 2
| |

This way, there is verification from Windows Server's tools that DTC is configured.
However, this does not mean that the firewall ports are open to ensure that DTC is

in operation. For example, a firewall may block the interaction of the DTC protocol
between machines.

[24]

Chapter 1

Due to firewalls not being allowed to open up all the ports between machines, it

is often a best practice to minimize the ports to run the transactions between ports
5000 and 6000. This can be done by setting the Ports Ranges value under Component
Service | My Computer | Default Protocols | Properties to 5000-6000.

Fiy Enn\pulﬁer Prnperile_-s d k.
General | Options | Default Properties I
Default Protocols | COM Security | MSDTC |

DCOM Protocols

¥ Connection-oriented TCP/IP

Properties for COM Internet Services E3 '

Use the port ranges controls to add or remove port ranges from
the port categories for use with packet filtering or firewall
software.

-Port Ranges -

Add Remow

i~ Description
The set of network pn
ordering of the protocs
with the top protocol k - | Aemove | Remove All I

Port range assignment

& Intermnet range " Intranet range
 Default dynamic port allocation
+ Intemet range " Intranet range
Learn more about settinc
oK | Cancel |

oK | cancel | II

DTC can be used to verify that the system is working before running a program.
Both machines have to be set up to run DTC, and there are many articles related to
troubleshooting DTC, such as http://blogs.msdn.com/b/distributedservices/
archive/2008/11/12/troubleshooting-msdtc-issues-with-the-dtcping-
tool.aspx and http://docs.particular.net/nservicebus/transactions-
message-processing. Note that DTC is very dependent on the protocols that run
between machines and can cause many errors when not configured properly.

Even if we know that MSMQ) is set up correctly (because we have tested it), we may
need to know which queues it is currently using.

[25]

http://blogs.msdn.com/b/distributedservices/archive/2008/11/12/troubleshooting-msdtc-issues-with-the-dtcping-tool.aspx
http://blogs.msdn.com/b/distributedservices/archive/2008/11/12/troubleshooting-msdtc-issues-with-the-dtcping-tool.aspx
http://blogs.msdn.com/b/distributedservices/archive/2008/11/12/troubleshooting-msdtc-issues-with-the-dtcping-tool.aspx
http://docs.particular.net/nservicebus/transactions-message-processing
http://docs.particular.net/nservicebus/transactions-message-processing

NServiceBus Persistence Introduction

Using the PowerShell pM> Get-NServiceBusLocalMachineSettings command,
we can see which queues it currently wishes to reference. Also, by viewing Visual
Studio Server Explorer, we can verify that they are present.

One of the many features I really like about NServiceBus is its ability to create
message queues, services, and DTC pieces. This is less work than what the server
staff does to maintain and install an application.

Here is a look at the queues now in Visual Studio Server Explorer:

Server Explorer > I x
BREIRIE §
[Dats Connections
El &4 Servers
=] é WIN-JAUT16GPEQA
32{ Event Logs
'a__,l Management Classes
(54 Management Events
_-‘3 Message Queues
= [Private Queues
ﬂy audit
= error
@ Public Queues
] Performance Counters
#* Services
g4 SharePoint Connections

o & EHEH

Package Manager Consale

Package source: |nuget.org -‘ £+ | Default project: | ConsoleApplication2 -
PM> Test-NServiceBusMSMQInstallation

True

Pl> Get-NServiceBuslLocalMachineSettings

ErrorQueue AuditQueue
Error audit

We can see the RavenDB service is running without even leaving Visual Studio by
looking into the services section of the same Visual Studio Server Explorer in which
it was installed.

RavenDB is a document-oriented database that can operate completely independent
of NServiceBus. This means that you are now working on NoSQL development, and
it has an interface to save the collections of objects.

RavenDB must be running as NServiceBus uses it to store internal information such
as subscription endpoint information and message types. The following screenshot
is of Server Explorer in Visual Studio and shows that RavenDB is running;:

[26]

Chapter 1

Server Explorer * I X
2] T
i Power -

{1 Print Spooler

' Problem Reports and Solutions Control Panel £

{m Remote Access Auto Connection Manager

{m Remote Access Connection Manager

{m Remote Desktop Configuration

{m Remote Desktop Services

'm Remote Desktop Services UserMode Port Redi
i Remote Procedure Call (RPC)

{'m Remote Procedure Call (RPC) Locatar

iy Remote Registry

{m Resultant Set of Policy Provider

{a Routing and Remate Access

In addition, we can see that RavenDB is installed by its web interface. When running
one of the NServiceBus video store examples, we can see that it creates associated
tables in RavenDB for internal use. We can view it through the default port 8080
and access it using http://localhost:8080/raven/studio.html.

2 =
@/ = | ¥ htip://localhost:3080/raver ,oj #3| 9 Datbases = |_1
Documents Collections Indexes Patch Tasks Alerts Logs o New | -
| g Databases
| 4 New Database
|5 Amazon.Contracts |5 videoStore.ContentManagement | & VideoStore.CustomerRelstions | VideoStore,Operations |5 videoStore.Sales

At this point, we have the basics to set up pieces that NServiceBus utilizes. We have
a data store for sagas and another persistence, RavenDB. Also, we have queues in
MSMQ that uses DTC to handle transactions. These are not the only options, but they
are the default options for NServiceBus.

RavenDB, a NoSQL database, comes standard with NServiceBus as a persister for
sagas and other NServiceBus controls. It is worth mentioning that the licensing of
RavenDB is part of NServiceBus.

[27]

NServiceBus Persistence Introduction

If you are to use RavenDB outside of NServiceBus, then you must license RavenDB
for your own use: http://ravendb.net/nservicebus-and-ravendb.

An alternate solution to RavenDB is to use other databases, such as SQL Server,
through an open source ORM connector (called NHibernate). This does not negate
the need to have RavenDB running, but it can offload many of the tables from
RavenDB to other databases.

Summary

In this chapter, we introduced and explained the need for the saga pattern.

We discussed how saga handles nonfunctional requirements that are commonly

overlooked. We also discussed the fallacies of distributed computing. We briefly

discussed the need for NServiceBus, its installation, and how it helps to improve

the quality of software while it provides support for nonfunctional requirements.

In the next chapter, we will discuss a particular service platform that includes
ServicePulse, ServiceControl, Servicelnsight, and ServiceMatrix.

[28]

http://ravendb.net/nservicebus-and-ravendb

The NServiceBus Architecture

In this chapter, we will focus on the NServiceBus architecture. We will discuss
the different message and storage types supported in NSB. This discussion
will include an introduction to some of the tools and advantages of using NSB.
We will conceptually look at how some of the pieces fit together while backing
up the discussions with code examples.

In this chapter, we will cover the following topics:

* Benefits of NSB
° More on endpoints

° The application security perspective

* Message exchange patterns
° The publish/subscribe pattern
° The request-response pattern

[e]

Saga services

° Message mutations

° Message encryption

° Cluster messaging

° Performance monitoring

° Gateway messages

* Storage patterns
° Timeout storage
° Subscription storage

° Backing it up

The NServiceBus Architecture

* Monitoring
° A sample e-mail notification
* Recap

NSB is the cornerstone of automation. As an Enterprise Service Bus (ESB), NSB is the
most popular C# ESB solution. NSB is a framework that is used to provide many of
the benefits of implementing a service-oriented architecture (SOA). It uses an IBus
and its ESB bus to handle messages between NSB services, without having to create
custom interaction. This type of messaging between endpoints creates the bus. The
services, which are autonomous Windows processes, use both Windows and NSB
hosting services. NSB-hosting services provide extra functionalities, such as creating
endpoints; setting up Microsoft Queuing (MSMQ), DTC for transactions across
queues, subscription storage for publish/subscribe message information, NSB sagas;
and much more. Deploying these pieces for messaging manually can lead to errors
and a lot of work is involved to get it correct. NSB takes care of provisioning its
needed pieces.

NSB is not a frontend framework, such as Microsoft's Model-View-Controller (MVC).
It is not used as an Object-to-Relationship Mapper (ORM), such as Microsoft's

Entity Frameworks, to map objects to SQL Server tables. It is also not a web service
framework, such as Microsoft's Windows Communication Foundation (WCF). NSB is
a framework to provide the communication and support for services to communicate
with each other and provide an end-to-end workflow to process all of these pieces.

Benefits of NSB

NSB provides many components needed for automation that are only found in ESBs.
ESBs provide the following:

* Separation of duties: From the frontend to the backend by allowing the
frontend to fire a message to a service and continue with its processing not
worrying about the results until it needs an update. Also, you can separate
workflow responsibilities by separating NSB services. One service could be
used to send payments to a bank, and another service can be used to provide
feedback of the current status of the payment to the MVC-EF database so
that a user may see the status of their payment.

* Message durability: Messages are saved in queues between services so
that if the services are stopped, they can start from the messages saved in
the queues when they are restarted. This is done so that the messages will
persist, until told otherwise.

[30]

Chapter 2

* Workflow retries: Messages, or endpoints, can be told to retry a number of
times until they completely fail and send an error. The error is automated
to return to an error queue. For instance, a web service message can be sent
to a bank, and it can be set to retry the web service every 5 minutes for 20
minutes before giving up completely. This is useful while fixing any network
or server issues.

* Monitoring: NSB's ServicePulse can keep a check on the heartbeat of its
services. Other monitoring checks can be easily performed on NSB queues
to report the number of messages.

* Encryption: Messages between services and endpoints can be easily encrypted.

* High availability: Multiple services, or subscribers, could be processing the
same or similar messages from various services that live on different servers.
When one server, or a service, goes down, others could be made available to
take over that are already running.

More on endpoints

While working with a service-to-service interaction, messages are transmitted in
the form of XML through queues that are normally part of Microsoft Server such
as MSMQ, SQL Server such as SQL queuing, or even part of Microsoft Azure
queues for cloud computing.

There are other endpoints that services use to process resources that are not part of
service-to-service communications. These endpoints are used to process commands
and messages as well, for instance, sending a file to non-NSB-hosted services, sending
SFTP files to non-NSB-hosted services, or sending web services, such as payments, to
non-NSB services. While at the other end of these communications are non-NSB-hosted
services, NSB offers a lot of integrity by checking how these endpoints were processed.
NSB provides information on whether a web service was processed or not, with or
without errors, and provides feedback and monitoring, and maintains the records
through queues. It also provides saga patterns to provide feedback to the originating
NSB services of the outcome while storing messages from a particular NSB service to
the NSB service of everything that has happened.

In many NSB services, an audit queue is used to keep a backup of each message that
occurred successfully, and the error queue is used to keep track of any message that
was not processed successfully.

[31]

The NServiceBus Architecture

The application security perspective

From the application security perspective, OWASP's top ten list of concerns,
available at https://www.owasp.org/index.php/Top 10 2013-Top_ 10, Seems

to always surround injection, such as SQL injection, broken authentication, and
cross-site scripting (XSS). Once an organization puts a product in production,

they usually have policies in place for the company's security personnel to scan

the product at will. Not all organizations have these policies in place, but once an
organization attaches their product to the Internet, there are armies of hackers that
may try various methods to attack the site, depending on whether there is money

to be gained or not. Money comes in a new economy these days in the form of using
a site as a proxy to stage other attacks, or to grab usernames and passwords that a
user may have for a different system in order to acquire a user's identity or financial
information. Many companies have suffered bankruptcy over the last decades
thinking that they were secure.

NSB offers processing pieces to the backend that would normally be behind a
firewall to provide some protection. Firewalls provide some protection as well

as Intrusion Detection Systems (IDSes), but there is so much white noise for
viruses and scans that many real hack attacks may go unnoticed, except by very
skilled antihackers. NSB offers additional layers of security by using queuing and
messaging. The messages can be encrypted, and the queues may be set for limited
authorization from production administrators.

NSB hosting versus self-hosting

NServiceBus.Host is an executable that will deploy the NSB service. When the
NSB service is compiled, it turns into a Windows DLL that may contain all the
configuration settings for the IBus. If there are additional settings needed for the
endpoint's configuration that are not coded in the IBus's configuration, then it
can be resolved by setting these configurations in the Host command.

However, NServiceBus . Host need not be used to create the program that is used

in NServiceBus. As a developer, you can create a console program that is run by a
Window's task scheduler, or even create your own services that run the NSB IBus code
as an endpoint. We can see samples of this type of code in the MVC samples in other
chapters. Not using the NSB-hosting engine is normally referred to as self-hosting.

[32]

https://www.owasp.org/index.php/Top_10_2013-Top_10

Chapter 2

The NServiceBus host streamlines service development and deployment, allows you
to change technologies without code, and is administrator friendly when setting
permissions and accounts. It will deploy your application as an NSB-hosted solution.
It can also add configurations to your program at the NServiceBus.Host .exe
command line. If you develop a program with the NServiceBus.Host reference, you
can use EndpoinConfig.cs to define your IBus configuration in this code, or add it
as part of the command line instead of creating your own Program. cs that will do a
lot of the same work with more code. When debugging with the NServiceBus.Host
reference, the Visual Studio project is creating a windows DLL program that is run
by the NserviceBus.Host .exe command.

Here's an example form of the properties of a Visual Studio project:

Configuration: I.-!'.l:tive (Debug) j Platform: I.ﬁ.cﬁve (Ary CPU) j

Start Action

" Start project

{¥ Start external program: I..rn,bin'|,Del:|ugWSErvicEEus.Hnst.ExE |

" Start browser with URL: I

Start Options

Command line arguments: M5erviceBus. Integration ﬂ

Warking directory: I e |

[T Use remote machine I

[33]

The NServiceBus Architecture

The NServiceBus.Host . exe command line has support for deploying Window's
services as NSB-hosted services:

C:“Program Files (x86>“Particular SoftwaresNServiceBusz“wv4_3“Binaries>*NServiceBus
.Host .exe -7
MServiceBus Endpoint Host Service

USAGE:
MEerviceBus .Host.exe [-installl [optionsl
HServiceBus .Host.exe [-uninstalll [options]

INSTALL OPTIOQNS:

=%, —h, -help Help about the command line options.

—install Inztall the endpoint asz a Windows service.

—zerviceName=UALUE Specify the service name for the installed
service.

—dizplayMame=UALUE Friendly name for the installed service.

—description=UALUE Description for the service.

—endpointGonfigurationType=UALUE

Specify the type implementing
IConfigureThisEndpoint that should be used.

—dependsOn=UALUE Specifies the names of services or groups which
must start hefore this service.

—zideBySide Inztall the service with the version included in
the service name. This allows running multiple
endpoints side by side when doing hot
deployments .

—endpointName=UALUE The name of this endpoint.

—usernane=UALUE Username for the account the service should run
under.

—password=UALUE Password for the service account.

—=tartManually Specifies that the zervice should start manually.

—inztalllnfrastructure This setting is no longer in use. Please see
http:7particular.netsarticles managing—
nservicebus—using—powershell for the replacement.

—zcannedfAzszemblies=UALUE Configures NServiceBusz to use the types found in
the given assemhlies.

These configurations are typically referred to as the profile for which the service will
be running. Here are some of the common profiles:

* MultiSite: This turns on the gateway.

* Master: This makes the endpoint a "master node endpoint". This means
that it runs the gateway for multisite interaction, the timeout manager, and
the distributor. It also starts a worker that is enlisted with the distributor.
It cannot be combined with the worker or distributor profiles.

* Worker: This makes the current endpoint enlist as a worker with its
distributor running on the master node. It cannot be combined with
the master or distributor profiles.

* Distributor: This starts the endpoint only as a distributor. This means that
the endpoint does no actual work and only distributes the load among its
enlisted workers. It cannot be combined with the Master and Worker profiles.

[34]

Chapter 2

* Performance counters: This turns on the NServiceBus-specific performance
counters. Performance counters are installed by default when you run a
Production profile.

* Lite: This keeps everything in memory with the most detailed logging.

* Integration: This uses technologies closer to production but without a
scale-out option and less logging. It is used in testing.

* Production: This uses scale-out-friendly technologies and minimal
file-based logging. It is used in production.

Using Powershell commands

Many items can be managed in the Package Manager console program of Visual
Studio 2012. Just as we add commands to the NServiceBus.Host . exe file to extend
profiles and configurations, we may also use V52012 Package Manager to extend
some of the functionalities while debugging and testing. We will use the ScaleOut
solution discussed later just to double check that the performance counters are
installed correctly. We need to make sure that the PowerShell commandlets are
installed correctly first. We do this by using Package Manager:

Install the package, NServiceBus.PowerShell

Import the module, . \packages\NServiceBus.PowerShell.4.3.0\1lib\net40\
NServiceBus.PowerShell.dll

Test NServiceBusPerformanceCountersInstallation

The "Import module" step is dependent on where NService.Powershell.dll was
installed during the "Install package" process. The "Install-package" command will
add the DLL into a package directory related to the solution. We can find out more
on PowerShell commandlets at http://docs.particular.net/nservicebus/
managing-nservicebus-using-powershell and even by reviewing the help
section of Package Manager.

[35]

http://docs.particular.net/nservicebus/managing-nservicebus-using-powershell
http://docs.particular.net/nservicebus/managing-nservicebus-using-powershell

The NServiceBus Architecture

Here, we see that we can insert configurations into App . config when we look at the
help section, PM> get-help about NServiceBus.

PM> get-help about_NSerwviceBus
TOPIC
about_NServiceBus

SHORT DESCRIPTION
Provides information about N5erviceBus commands.

LONG DESCRIPTION
This topic describes the NServiceBus commands.
http://docs.particular.net/

The following NServiceBus cmdlets are included:

Add-NServiceBusMessageForwardingInCaseOfFaultConfig

Add-NServiceBusUnicastBusConfig

Add-NServiceBusTransportConfig

Add-NServiceBusSecondlLevelRetriesConfig

Add-NServiceBusLoggingConfig

Add-NServiceBusMasterlodeConfig

Add-NServiceBusNHibernateConfig

Description

Adds the required configuration section to
the config file.

Adds the required configuration section to
the config file.

Adds the required configuration section to
the config file.

Adds the required configuration section to
the config file.

Adds the required configuration section to
the config file.

Adds the required configuration section to
the config file.

Adds the NHibernate supported config settings
as a comment.

Message exchange patterns

Let's discuss the various exchange patterns now.

The publish/subscribe pattern

One of the biggest benefits of using the ESB technology is the benefits of the
publish/subscribe message pattern; refer to http://en.wikipedia.org/wiki/

Publish-subscribe pattern.

[36]

http://en.wikipedia.org/wiki/Publish-subscribe_pattern
http://en.wikipedia.org/wiki/Publish-subscribe_pattern

Chapter 2

The publish/subscribe pattern has a publisher that sends messages to a queue, say a
MSMQ MyPublisher queue. Subscribers, say Subscriberl and Subscriber2, will
listen for messages on the queue that the subscribers are defined to take from the
queue. If MyPublisher cannot process the messages, it will return them to the queue
or to an error queue, based on the reasons why it could not process the message. The
queue that the subscribers are looking for on the queue are called endpoint mappings.
The publisher endpoint mapping is usually based on the default of the project's name.
This concept is the cornerstone to understand NSB and ESBs. No messages will be
removed, unless they are explicitly told to be removed by a service. Therefore, no
messages will be lost, and all are accounted for from the services. The configuration
data is saved to the database. Also, the subscribers can respond back to MyPublisher
with messages indicating that everything was alright or not using the queue.

The IBus
E:_ Messagel
Subscriberl
MyPublisher
Message2
Queue
Subscriber2
Config Data
For Services

So why is this important? It's because all the messages can then be accounted for,
and feedback can be provided to all the services. A service is a Windows service
that is created and hosted by the NSB host program. It could also be a Windows
command console program or even an MVC program, but the service program is
always up and running on the server, continuously checking queues and messages
that are sent to it from other endpoints.

[37]

The NServiceBus Architecture

These messages could be commands, such as instructions to go and look at the
remote server to see whether it is still running, or data messages such as sending a
particular payment to the bank through a web service. For NSB, we formalize that
events are used in publish/subscribe, and commands are used in a request-response
message exchange pattern.

Windows Server could have too many services, so some of these services could just
be standing by, waiting to take over if one service is not responding or processing
messages simultaneously. This provides a very high availability.

Request-response messages

There is also the message exchange pattern of request-response; you can refer to
http://en.wikipedia.org/wiki/Request-response. The concept is simple: we
send a request to a specific endpoint and get a response only from that endpoint.
There are no additional subscribers listening in to process the message. This is done
using a Bus . Send (command) function, where command is a type of message, in NSB.
In the request-response pattern, we send a message to a specific queue indicating
that only one endpoint is being listened to and no one else. We can send a message
to each service as a heartbeat or to get an update of the status of each service.

The IBus
E:_ Messagel
Subscriberl
MyPublisher
Message2
Queue
Subscriber2
Conftig Data

For Services

[38]

http://en.wikipedia.org/wiki/Request-response

Chapter 2

Saga services

As messages move through the workflow of service-to-service, new messages are
created and sent to the next service. There is a need to keep track of the relationship
of messages when responses are sent back to the service. A lookup of message states,
or sessions, needs to be done in a saga entity object saved to a database. This concept
is like a session cookie for session state information when a user moves from web
page to web page. A service needs to respond to the original service to provide a
progress of the original message. In order to do this, the saga entity also stores the
originator of the message to be able to provide a response to the original message.

The saga entity is an interface derived from IContainSagaData that will contain
the mandatory getter/setter fields of 14, originator and OriginalMessageId.
These properties are needed to reply to the client with information from the
original message.

The IBus
%:_ Messagel
Subscriberl
MyPublisher
Message2
Queue
Subscriber2
Config Data
For Services

[39]

vww allitebooks.conl

http://www.allitebooks.org

The NServiceBus Architecture

Some saga features

As we have mentioned, sagas are design patterns. This means that they are reusable
patterns used in designing software for the purpose of saving different states in
messages, as they are processed through an end-to-end workflow. They have many
features and characteristics:

Sagas are started by a message, maybe more than one. A saga is started by a
message in the interface, for example, "IAmStartedByMessage<Messagels>".

Sagas contain long-lived transactions (LLTs) that contain database
information for the messages for relatively long periods of time. LLT is

used when conditions such as short-lived transactions are not adequate.

A short-lived transaction is when a call to a database, or MSQM, performs

a straightforward rollback or commit. For queues, NServiceBus performs
second-level retries (SLRs) to try to commit a number of times before
performing a rollback. In LLT, there can be multiple conditions and actions
that need to take place for a message to be fully completed, or operations
performed to start the message right from the beginning. LLT is used for
messages where a simple short-term transaction may not suffice. In an SOA,
there are multiple endpoints and services. Most messages will start with a
starting type and will continue to pass through different services in an SOA,
all the while completing operations and updating information. They will start
as one type and pass through a service when they change to a different type
of message. During these transformations of the message, a saga can globally
keep track of the message's state through this workflow of services. It can
respond back to the different originating services indicating that everything
was processed successfully, or respond that there were errors and that there
is a need to rollback the message to each client.

Sagas contain timeout. There is a condition where a message needs to have
a timer to interrupt its actions regardless of what it is doing. Going back

to the pizza-ordering example, we may want to check with the customer
whether the order takes longer than 20 minutes to see if they still wish to
order the pizza. For this reason, you may want to interrupt the order in
progress, which is in the form of a message, and time it out and check
with the customer before proceeding.

Sagas contain state-related information. Sagas save saga data to the
database. Saga data is initially started with a message, and it is also
updated with messages that are passed in with the same identification
information. When a message passes between different services in an
end-to-end workflow, saving the state information before the next
service is wise if it needs to change back to its original state.

[40]

Chapter 2

* Sagas handle messages. A saga is started by a message and passes it through
its message handler. As messages are passed into the saga that are not the
started message, the saga updates its saga data from these messages through
a message handler. The message doesn't normally end at the saga; the saga
forwards it to its next endpoint.

Timeout messages

There is the need in ESBs to set timers for various messages to ensure that they

do not live in the services and queues for an infinite period of time. Even most
production databases require an archive and purging schedule to clean up old

data that may not be relevant anymore. Since messages live on queues as a form of
data, there also needs to be archiving and purging plans to revisit any messages that
could reside in the system when there is no longer a need for them to do so. For this
reason, as NSB is all about automation, timers can be set to relook at a message to
check its status or even delete some resident messages that are no longer needed.

Sagas support timeout messages that are set using the RequestTimeout function of
a saga. This code will look as follows:

public woid Handle{SubmitRequestCommand message)

1
logger.Info("-------- MySaga Handle------- " + message);
RequestTimeout<{TimecutMessage>(TimeSpan. FromSeconds (68});

TimeoutMessage is a user-defined message from the interface 1Message that will be
sent when the timer is expired. In this case, it will be 60 seconds. A timeout message
will be received on the saga instance like any other message handler, and the code
is put in the timeout message handler to perform any cleanup required to get rid of
the message information that is no longer required. The timeout message may be an
empty message:

namespace MySaga

1

m
1A
LA
=1}
m
=
1]
1A
LA
51]
m

public class TimeoutM
1
t

[41]

The NServiceBus Architecture

The saga process does not have to be used to set timeouts in NSB. For similar tasks,
as the one described previously, we may also use NServiceBus.Schedule as well.

In this section, we will be using the TimeoutManager solution with the
following projects:

* TimeoutManager: This project will perform several timeout functions.

Running the TimeoutManager project, we will be presented with a couple of options:

[N F:\Rewrites3_June27_2014\3816_Chap02_NSB_Arch\Ti

2014-A7-12 17:45:89 688 [11 WARN HNServiceBus.Licensing [{null}] <<{nulld> — No v
alid license file was found. The host will be limited to 1 worker thread.

Press '8' to start the saga

Press ‘T’ to start the saga in multi tenant mode

Press ‘D’ to defer a message 18 seconds

Prezsz 'R’ to schedule a task

To exit,. press Ctrl + C

D5:45:34 PH - Sending a message to he processed at a later time
L:45:35 PM - Message will be processed at 5:45:44 PH

L:45:44 PM - Deferred message processed

We can delay the processing of a message or schedule a task with NSB. This is done
in support of the NServiceBus.Schedule function where we can schedule actions or
send messages based on time. Here, we are showing the support of scheduling a task
to be performed after a minute:

namespace MyServer.Scheduling

{

public class ScheduleATaskHandler : IHandleMessages<ScheduleATask>

{

private readonly IBus bus;

public ScheduleATaskHandler (IBus bus)

{

this.bus = bus;

[42]

Chapter 2

public void Handle (ScheduleATask message)

{

Console.WriteLine ("Scheduling a task to be executed every

1 minute") ;
Schedule.Every (TimeSpan.FromMinutes (1)) .Action(() => bus.

SendLocal (new ScheduledTaskExecuted())) ;

}

Downloading the example code
M You can download the example code files for all Packt books you have
Q purchased from your account at http: //www. packtpub. com. If you
purchased this book elsewhere, you can http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

By default, the timeout data will be persisted in RavenDB but may be stored in other
databases, such as SQL Server, using the NHibernate connector as well. Here's what
a document entry for a timeout would look like in RavenDB:

m Collections Indexes Patch Tasks Alerts L

= Raven/Hilo/TimeoutData

ESave = Reformat EIDutIining - ISRei‘resh xDEIete J,OSEBI'CH

Raven/Hilo/TimeoutData

Data Metadata

1
"Max": 96
I

Message mutations

Message mutators allow you to change messages by plugging custom logic into

a couple of simple interfaces. For instance, you can encrypt all or part of a message.
The encryption message mutator is part of the NServiceBus library and can be used
at any time. You can intercept the incoming message, then mutate it before sending
it as an outgoing message. This is the process of changing messages; they leave a
client and enter a server.

[43]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

The NServiceBus Architecture

In this section, we will be using the MessageMutators solution with the
following projects:

* cClient: The client will send messages to the server.

* server: The server will receive the mutated message.

* Messages: This refers to the message format that is being passed between
the client and the server.

* MessageMutators: This project will contain the mutation code to compress
andJJnconnpresstheInessagesinﬁTransportMessageCompressionMutator.
cs and validate the message annotation in validateMessageMutator.cs.

The client and server needs to be running. The client will prompt to send a good or
bad message. The good message is compressed so that it will pass the 4 MB MSMQ
buffer size:

~ F:\Rewrites3_June27_2014\3816_Chap02_NSB_Arch

‘s’ to send a valid message. press "e’ to send a failed message. To exit.

The queue will be validated and compressed from the client before processing it on
the MSMQ:

Client -» send message - Validate (Outgoing) - TransportCompression
(Outgoing) ---> To MSMQ

Then, the server will receive the message from MSMQ, but before processing it, this
will decompress and validate the message before the server processes the message.
It will unmutate the message that the client mutated:

From MSMQ - TransportCompression (Incoming)- Validate (Incoming) -
Server

[44]

Chapter 2

This is just a simple compressing and data annotation validation to ensure that MSMQ
will process the message. There may be many other reasons for mutating the message;
one of them may be to encrypt the credit card within a payment message.

Message encryption

NSB supports the AES or Rijndael encryption algorithm. This is a symmetric key
algorithm, so both the program encrypting the data and decrypting the data must
share a secret key for their effort; see http://en.wikipedia.org/wiki/Advanced
Encryption Standard

Encrypting data will depend on the needs of the organization, but common items
could be any passwords, financial information, or customer's personal identification
information. AES is the strongest symmetric encryption algorithm, and most
languages, such as Java and C#, provide API support to use it.

We know that part of the configuration on both sides will be a secret key.
In this section, we will be using the Encryption solution with the following projects:

* cClient: The client will send encrypted credit card messages to the server.

* server: The server will receive the credit card message and decrypt it.

* Messages: This refers to the message format that is being passed between
the client and the server.

Both the client and server must be running. The client will have a prompt to send
messages to the server:

I F:\Rewrites3_June27_ 2014\3816_Chap02_NSB_Arch

2A14-87-13 12:-81:-38_185% [1]1 WRN HServiceBus_Licensing [{null>] <<{null>> — Ho v
alid license file was found. The host will be limited to 1 worker thread.

2014-A7-13 12:81:38,.274 [11 WARN MessageForwardingInCase(0fFault [{null>] <<{null
»» — Gould not find configuration section ‘MessageForwardingInCaseOfFaultConfig”’
. Going to try to find the error gueue defined in ‘MsmgTransportConfig’ .

2014-A7-13 12:81:46,.913 [11 WARN MHNServiceBus.Utils.MsmgUtilities [<{null>]1 <<{nul
1>> — Queue win—uwautlbgpegasprivatebserror does not exist.

2014-A7-13 12:81:47.626 [11 WARN HNServiceBus.Utils.MsmgUtilities [<{null>]1 <<{nul
1>> — Queue win—uwautl6gpegasprivatebsclient.retries does not exist.

2014-87-13 12:91:47.817 [1]1 WARN HNServiceBus.Utils.MsmgUtilities [<{null>] <<nul
1>> — Queue win—uwautlbgpegasprivatebsclient does not exist.

Fresz *Enter’ to send a message.

[45]

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

The NServiceBus Architecture

Once you press Enter, you will see that the message is encrypted on the server queue:

£ . MSMQ Commander (version 0.4, 11/3/2012) =100 =]

Connect... Refresh v Auto refresh

Queues 1 server F X
= localhost :

[=l Private queues Label Siins
errar (0] <Corrld>«/Corrld > <WinldName>WIN-UAUT16GPEQA\Administre | 2014-07-13 12
dlient.retries (0] < Corrld=></Corrld =< WinIdName>WIN-UAUT 16GPEQA\Administrz | 2014-07-13 12
client (0]
server.retries (0]
server.timeouts (0) ‘l | ,
=] server (2)

Journal (0) .
server.timeoutsdispatcher (0) Body | Queues | Time | Flags |
audit (0) .
Size: 422 bytes
<7xml version="1.0" 7> =

<Messages xmins:xsi="http://vwww.w3.0rg/2001/XMLSchema-instance”
xmins:xsd="http://www.w3.0rg/2001/XMLSchema" xmins="http://
tempuri.net/Messages">

«<MessageWithSecretData>

<Secret>

<EncryptedValue=

< EncryptedBase6+Value=1BMW40ToT1gkl5bAFsKowB7FEEpWz/shoXy/
oprQPIQ=</EncryptedBasettValue>

< BasefdIv>0r20iovh5MkHOzChe69/5A==</Basesdlv>

< /EncryptedValue=

<fSecret=

< [MessageWithSecretData:

<fMessages:> LI

When running the server, NSB will decrypt the message before it passes it to the
server's message handler.

All that is really needed is that both the ends should be enabled for AES in IBus using
the configuration, .RijindaelEncryptionService () ;. We set a part of the message
that we want to encrypt using public WireEncryptionString Secret { get;set;
} where WwireEncryptionString defines that the string will be encrypted. Also, the
secret key has to be in App . config of both the client and the server.

<2wml version="1.8"2>
<configuration>
<configSectionss
<section name="UnicastBusConfig" type="NServiceBus.Config.UnicastBusCenfig, NServiceBus.Core"/>
<section name="RijndaelEncrypticnserviceConfig” type="NServiceBus.Ceonfig.RijndaelencrypticnserviceConfig, NServiceBus.Core"/>
</configsections>
<MsmgTransportConfig ErrorQueue="error" NumberOfWorkerThreads="1" MaxRetries="5"/>
<UnicastBusConfigs
<MessageEndpointMappings>
<add Messages="Messages" Endpoint="Server"/>
</MessageEndpointMappings>
</UnicastBusConfig>
<RijndaelEncryptionservicefonfig Key="gdDbqRpqdRbTs3mhdZh8qCaDaxIxX1+e7" />
<startup>
<supportedRuntime version="v4.8" sku=".NETFramework,Version=v4.8"/>
</startup>
</configuration:

[46]

Chapter 2

Cluster messaging

As mentioned earlier, one of the many benefits of using NSB is that you can distribute
the load or the NSB services or processes. This is commonly known as scaling out the
services. The idea is that you can copy a service, say an order handler, and copy the
exact code or DLL to be a worker to distribute the work. The worker will be exactly
the same as the order handler, except for its configuration. The configuration of the
original order handler would normally be labeled as the master, and the subsequent
extra workers will be labeled as worker processes. The worker processes could be
running locally, but that wouldn't be helpful if the local server is overtaxed with work
already, or they could be framed out to other servers that have process speed to spare.

This model is a form of round-robin clustering, where a handler can distribute its
workload to additional workers doing exactly the same kind of work. A distributor is
used with MSMQ. If an endpoint has a critical time set for performance and requires
more processing help, this clustering could be used to spawn off work to the same
services that live on other machines to share the load. If the machine processing the
message crashes, the message would be rolled back to the queue and other machines
could then process it accordingly.

Worker services send messages through a control queue saying that they are ready
for work. The distributor stores these messages, and when it receives the messages,
it farms them out of the available queues. All the pending work stays in the
distributor's queue so that messages can be timed for performance.

In this section, we will be using the scaleout solution with the following projects:

* Orders.Messages: This refers to the common messages for the sender
and handlers.

* oOrders.Sender: This will send messages to Orders.Handler to be
handled across the workers, worker1 and worker2.

* Orders.Handler.Workerl: This is one of the worker services that uses
a worker profile to send a response back to the sender. This will be an
additional worker copy of Orders.Handler.

* Orders.Handler.Worker2: This is one of the worker services that uses
a worker profile to send a response back to the sender. This will be an
additional worker copy of Orders.Handler.

* Orders.Handler: This is an endpoint that processes the message and
configures it to the distributor. This will be the master profile that the
sender will send the place order command to in the orders.handler
MSMQ. In the Visual Studio 2012 debugger, NServiceBus. Integration
NserviceBus.Master is set in the command line to be used instead of
Configure.Instance.RunDistributor ().

[47]

The NServiceBus Architecture

The solution for the ordering will look like the following;:

ScaleOut

orders.sendep

Sender

orders.handler Handler

Worker2

If there are too many place orders for Orders.Handler to receive, then a round-
robin effect will happen to the worker services across the orders.handler.worker
MSMQ. The control queue is orders.handler.distibutor.control and the data
queue is orders.handler.distibutor.storage. The DataInputQueue, or the
data queue, is the queue where the client processes send their applicative messages.
ControlInputQueue, or the control queue, is the queue where the worker nodes
send their control messages. The control queue is the distributor queue that the
workers will signal to the handler indicating that they are available to process the
message. These queues and worker processes could be spanned across machines or
used on the same machine to distribute the load of the messages. If no workers are
available for the handler to distribute the messages, then the handler will process
the message and respond back to the sender. The workers are duplicated code

for the handler and perform the same function; their purpose is just to take the
workload off the handler to distribute the load.

[48]

Chapter 2

By default, there will be subscription storage information saved in the RavenDB
database. This information is for the worker processes to understand whom to
respond back to when responding. The master node is the handler, which receives
messages from the sender client. So, it knows that it has to respond to the sender
client. However, the handler, which is the master, sends the messages to the worker
processes. So, the workers are only aware of the handler. The handler will create
subscription information so that the workers know that they have to respond back
to the sender client. This will be the subscription storage information that will be
stored by default in the RavenDB, but the subscription storage's configuration can
be changed to save it to other databases as well.

Performance monitoring

When using clustering, an important practice is to monitor the performance
of the handlers and workers. This is needed to determine whether workers
are even needed, and if so, how many.

The first step is to ensure that the solution has the performance counters
installed. We discussed this in the use of PowerShell to test the installation
of the performance counters.

There are two main types of performance counters in NSB. The first is the critical
time performance that is more of an end-to-end performance, and the other is

the endpoint Service-level agreement (SLA) that monitors the mean time of the
endpoint to ensure it meets the service level. The SLA endpoint has to specify a
time that it must meet in the performance. In order to do this, the endpoint SLQ
must be set in code. The monitor will show the seconds left until you breach your
SLA time. Let's look at adding the code into the handler's EndpointConfig.cs:.

namespace Orders.Handler

1
[EndpointSLA("@8:86:18™)]

class EndpointConfig : IConfigureThisEndpoint, AsA_Publisher { }

In this section, we will be using the ScaleOut - Performance solution, which
is the same as the scaleout solution, except for the fact that some performance
settings have been added to this solution.

[49]

The NServiceBus Architecture

The performance counters are used by default if the profile of the deployment

is in production mode. This mode is set by default, but it needs to be specified

if other parameters such as master or worker are used. Let's look at the handler's
deployment properties:

Start Options

Command line arguments: | yserviceBus. Production NServiceBus Master « |

[
Warking directory: |

| Use remote machine |

We can see that the performance counters are installed at startup:

F:\Rewrites3_June27_2014\3816_Chap02_NSB_Arch

[50]

Chapter 2

Then, all we have to do is start the server's performance monitor and start adding

the services that we wish to monitor and specify the SLA, critical times, and "# of
the messages":

=

r— Available counters r Added counters

Select counters from computer: Counter Parent | Inst... | Computer |

I <Local computer > j Browse... | NServiceBus =

;I - ord...
Network Interface = . ord...

NServiceBus El = - ord...

- ord...
of msgs failures [sec

L

of msgs pulled from the input queue fsec
of msgs successfully processed [sec
Critical Time

SLA violation countdown

Instances of selected object:

orders, handler . imeoutsdispatcher
orders. handler worker

orders.sender.retries
orders.sender. imeouts

[

[~

orders, sender, timeoutsdispatcher - |
3

‘[u_..__ B S

<Al instances = j Search

Add »=> | Remaove <<

¥ show description Help | oK I Cancel |

Description:

Age of the oldest message in the queue. ;I

[51]

The NServiceBus Architecture

Running the performance monitor, we can drill down into the specifics of the NSB
process and even see whether the SLA has any issues that need to be met:

o a— — -
MorE-|leXgloo0R M E
100 =
S0
304
704
&0
50
40
304
204
104
a T
11:45:27 AM 11:45:00 AM 11:46:29 AM 11:47:05 AM
Last | 2,147,483,647 Average | 1,894,838,523 Minimum | 17.000 Maximum | 2,147,483,647 Duration | 1:40
I Show I Color | Scale | Counter | Instance | Parent | Object | Computer -
v 1.0 Critical Time orders.han... — M5erviceBus WIN-UAUT 16GPEQ#E
v
d 1.0 # of msgs successfully proc... orders.han... -— MServiceBus WWINAJAUT 16GPEQ#E
|7I 1.0 # of msas pulled from the in... orders.han... -- MServiceBus \‘\WIN-UAUTlGIGPEO# hd
4 3

Gateway messaging

There are cases for when one part of the services may be stored on one part of
an organization's LAN, while other services are stored on another LAN; the only
mode of transport that both these parts have to pass messages to NSB is through
the use of an HTTP or HTTPS tunnel.

The main purpose of the gateway is to allow you to perform the same durable
fire-and-forget messaging that you are accustomed to with NServiceBus across
physically separated sites, where sites are locations where you run the IT
infrastructure and not the websites.

[52]

Chapter 2

The gateway only comes into play when you can't use the normal LAN-to-LAN VPN
tunnels or internal LAN servers to communicate MSMQ to MSMQ. The purpose of
the gateway is to create messages that communicate through HTTP, but it would be
preferable to use HTTPS to ensure that messages are secured.

In this section, we will be using the Gateway solution:

Headquarter.Messages: This refers to the common messages for
Headquarters, Sitea and SiteB.

Headquarter: This will receive messages from http://localhost:
25899 /Headquarter/ and http://localhost:25899/Headquarter2/,
and send messages to http://localhost:25899/SiteA/ and
http://localhost:25899/SiteB/.

siten: This is a project that will receive the update price information from
Headquarters via http://localhost:25899/SiteA/ and respond that it
was successful back to the Headquarters via http://localhost:25899/
Headquarter2/.

siteB: This is a project that will receive the update price information from
Headquarters via http://localhost:25899/SiteB/.

WebClient: This will have an Index.htm page to send a JSON script to
http://localhost:25899/Headquarter/.

These were run in VS2012 in Windows Server 2012 with MSMQ, DTC, NServiceBus
references, and SQL Server 2012 Express LocalDB installed.

Gateway-Databus

http://localhost:25839/
Sited/

p.//localhost: 25833/
Headguarter2/

http://localhost:25899/
SiteB/

[53]

The NServiceBus Architecture

In a gateway, there are incoming channels and defined site keys to send outgoing
messages to their sites. We can see in App . config of the headquarters that

the receiving channels for the headquarters are http://localhost:25899/
Headquarter/ and http://localhost:25899/Headquarter2/.

There will be a site keys set for the sending sites that make up sitea and SiteB:

<GatewayConfig>
<Sites>
¢Site Key="SiteA"” Address="http://localhost:25899/5ites/" ChannelType="Http™ />
<Site Key="S5iteB" Address="http://localhost:25899/5iteB/™ ChannelType="Http" LegacyMode="false™ />
</5ites>
<Channels>
<Channel Address="http://localhost:258399/Headquarter/™ ChannelType="Http" />
<Channel Address="http://localhost:25899/Headquarter2/™ ChannelType="Http" Default="true™ />
</Channels>
</GatewayConfig>
<UnicastBusConfigs

The site keys are used for Bus.SendToSites (new[] { "SiteA", "siteB"}, which
will take in an array of keys to send the messages to their sites. For instance, the
parameter of Sitea will send the message to http://localhost:25899/SiteA/.

Going across alternate channels such as HI'TP means that you lose out on MSMQ's
safety guarantee of exactly one message. This means that communication errors
resulting in retries can lead to receiving messages more than once. To avoid
burdening you with deduplication, the NServiceBus gateway supports this out of
the box. You just need to store the message IDs of all the received messages so it
can detect potential duplicates. The deduplication code can be stored in SQL Server
using the NHibernate persistence configuration. This will be configured on IBus
using .UseNHibernateGatewayDeduplication (). Of course, settings always need
to be applied in the App . config file to define the database connection. Here, we are
connecting to the local SQLExpress instance.

<connectionStrings>
<add name="NServiceBus/Transport” connectionString="cacheSendCennection=true"” />
<add name="NServiceBus/Persistence” connectionString="Data Source=.\SQLEXPRESS;Initial Catalog=nservicebus;Integrated Security=True" />

</connectionstrings>

<!-- specify the other needed NHibernate settings like below in appSettings:--»

<appSettings>
«!-- dialect is defaulted to MsSql2@@8Dialect, if needed change accordingly --»
<add key="NServiceBus/Persistence/NHibernate/dialect” value="NHibernate.Dialect.MsSql2e@sDialect” /»
¢<!-- other optional settings examples -->

<add key="NServiceBus/Persistence/NHibernate/connection.provider” value="NHibernate.Connection.DriverConnectionProvider™ />
<add key="NServiceBus/Persistence/NHibernate/connection.driver class™ value="NHibernate.Driver.Sql2eesClientDriver” />
</appSettings>

<runtime>

[54]

Chapter 2

This is the deduplication table in SQL Server.

WIN-UAUT16GP...Dedu plication]

Id |'ﬁmeReceWed

[3 ey WG TS 20 14-07-11 01:54: 56,000
* AL AL

Data bus messaging

Data bus is used to send large chunks of data or files across as an attachment
because of the limitations of MSMQ to 4 MB. For this reason, a reference can
be passed on to a local file to transfer data using the data bus method.

In this section, we will continue to use the Gateway solution.

The path of the data bus has to be set in the configuration of the endpoint. We will
be using a relative path to where the gateway project is running. Both sitea and
siteB will also have relative paths. There will be a relative path to the binary data
with a data bus subdirectory that contains the files that will have large data.

public woid Init()
1
Configure.With()
.DefaultBuilder()
.FileShareDataBus(".%\databus™);
¥

When we execute the gateway project, it will have SomeLargeString to simulate
data that is larger than 4 MB.

Bus.SendToSites(new[] { "SiteA", "SiteB" }, new Pricelpdated
{
ProductId = 2,
NewPrice = 180.0,
ValidFrom = DateTime.Today,
SomeLargeString = new DataBusProperty<string>("This is a random large string " + Guid.NewGuid())

[55]

The NServiceBus Architecture

If we execute the gateway project, it will create a message to the relative path of its
binary, save the message under databus, and use it as a reference to send to sitea
and siteB. Here, we see the message saved to the local relative path.

- Gateway = Headguarter = bin = Debug - datsbus = 2014-07-10_19

Mame = Date modified Type | Size |

32a-4f47-93ac- adal3 (2014 7:54 PM File

! F:\Rewrites3_June27_2014\3816_ Chap02_NSB_Arch\Gate
File Edit Search Wiew Encoding Language Settings Macro Run Plugins Window ? 4

J cHHEE 3 e@l*ﬁﬁlﬂﬁlﬁﬂ%ﬂ % :'>|~—'I.‘"—'_I.|i~' ==l

|=| becac584-332a-447-93ac-ad 3304bala03 rﬂ'
1 PE!E SOHEINULINULINU L iigtts INULINULINULINULINULINULINULLZ [NULINULINUL =N

his is a random large =string
4735ed01-24b0-4b02-8bcc—a440f58beces @M

The data bus is very useful to move the files around or for data that is too large
for MSMQ.

Storage patterns

Here is a very important chart that we will continuously refer to:

Type InMemory RavenDB NHibernate = MSMQ

Timeout X X X Not supported beginning with V3.3,0
Subscription | X X X X

Saga X X X -

Gateway X X X -

Distributor - - - X

The type is the various persistence storage properties that can be persisted.

For instance, when performing publish/subscribe messaging, there is subscription
information that needs to be saved to a database that details the subscribers and the
message types that they are listening for in their queues.

[56]

Chapter 2

We can have various configurations for these persistence stores: InMemory,
RavenDB, NHibernate and MSMQ. The following bullet list provides a brief

explanation of these stores:

InMemory: This refers to the data that is persisted only to the local memory
of the NSB service. This also means that when a service is stopped or restarted,
the data is no longer saved. A reboot will cause the data to disappear.

RavenDB: This refers to the data that is persisted to a Raven database.
RavenDB is a document-oriented NoSQL database. Regardless of a
reboot, the data in RavenDB will be persisted. It uses JSON documents for
communication; see http://ravendb.net/docs/intro/ravendb-in-a-
nutshell. The default for almost all persistences, except the distributor,
which is just MSMQ, is RavenDB.

NHibernate: This is ORM that connects objects to relational databases, such
as SQL Server, MySQL, and Oracle. It normally needs a mapper properties
file usually in the form of XML to map the objects to the SQL. In NSB,

it will handle any mapping that it requires with NHibernate, otherwise

you will have to use the mapping interface; see http://nhforge.org/.
Regardless of a reboot, the data will be persisted. For NSB configurations,
see http://docs.particular.net/nservicebus/relational-
persistence-using-nhibernate.

MSMQ: This refers to the data that is persisted to Microsoft Message
Queues (MSMQs). MSMQ is an installation of the Windows server that
is used for queuing messages; see http://en.wikipedia.org/wiki/
Microsoft_Message_Queuing. Regardless of a reboot, the messages
will be persisted in this configuration.

The data that is typically persisted in these methods have to deal with message
information such as Timeouts, Subscriptions, sagas' objects, Gateways, and
Distributors. The following bullet list provides a brief explanation of this
message information:

Timeouts: Timeout entities is the message information that has to be stored
when a timer message is used. Sagas use timeouts, and timers can also be
set when scheduling NSB tasks and messages. This is used with the timeout
persister, such as . UseNHibernateTimeoutPersister (), to persist the data
in the SQL Server database, as shown in the following screenshot:

N-UAUT1 EGPE...TimEoutEntityl

[1a

| Destination | Sagald | State Time ‘ CorrelationId | Headers | Endpoint

3
#*

ML

FIEERCEDCEICYE SiteB@WIN-UAUTI6GP. .. 00000000-00... <Binary data> 2014-07-1103:40:41.000 2166dcf8-d292-4... {NServiceBus.Messageld™... SiteB

ML ML ML ML ML ML ML

[57]

http://ravendb.net/docs/intro/ravendb-in-a-nutshell
http://ravendb.net/docs/intro/ravendb-in-a-nutshell
http://nhforge.org/
http://docs.particular.net/nservicebus/relational-persistence-using-nhibernate
http://docs.particular.net/nservicebus/relational-persistence-using-nhibernate
http://en.wikipedia.org/wiki/Microsoft_Message_Queuing
http://en.wikipedia.org/wiki/Microsoft_Message_Queuing

The NServiceBus Architecture

* Subscription: Subscription information is used in publish/subscribe scenarios
to keep track of the subscribers' information. This will typically be the queues
that they are subscribing to and the messages that the subscribers are looking
for. By viewing a publish/subscribe example that is defaulted to RavenDB for
the subscription information, we can see the client queues and the message

types that they process.
Documents
Id Clients MessageType
I Subscriptions, 3386eff9-b802-3bdc-f6d7-ae85dfe 1fd2d [{"Queue":"Subscriber2”,” MyMessages.IMyEvent, Version=1.0.0.0
I Subscriptions/fe5faB0f- 1647-acac-2324-98de5d0ef504 [{"Queue":"Subscriberl”,” MyMessages.EventMessage, Version=1.0.0.0
I Subscriptions/7b316e18-80c9-3%e1-44b0-6bad962e7029 [{"Queue":"Subscriberl”,” MyMessages.Other.AnotherEventMessage, Version=1.0.0.0

* Sagas: Sagas store their message information in a saga data object
that will contain at least the 1d, Originator, and OriginalMessageId.
This is the generated information from the saga engine to respond to
the client with a relationship to the original message. If a timeout is set,
it will also persist the timeout information as well. We can configure

.UseNHibernateSagaPersister () to persist the saga entity information
to SQL Server as follows:

|~ WIN-UAUT16GP...erRequestData |

| Id Originator ‘ OriginalMessag.., | Requestld | Description Cost RequiresAppro. .. ‘ RequiresAppro. .. | ApprovedByLe... | ApprovedByLe...
M| AppForSubmittin... 38fc34ca-ddia-.. b4b69ada-cdal-.. test3 300.00000 True

False False False

* Gateway storage: Gateway acts like a router to remote sites through HTTP
and HTTPS to forward and receive messages that are remote and cannot use
IPSEC or VPN tunnels. Using .UseNHibernateGatewayPersister(); in
the Headquarters project for SQL Server will store the gateway messaging
results, as follows, for persistence:

/WIN-UAUTIEGP...ewayHessageS]
| Headers |'ﬁmeReoe|ved | QriginalMessage Acknowledged
{MServiceBus.Id" "3d 1abatc-c5d2-4c... 2014-07-13 15:34:13.000 <Binary data > True
60088 560-Fcde-40c5-8445-a367009db 519 {MServiceBus. Id":"600a8560-Fcde-4... 2014-07-13 15:34:12.000 <Binary data» True
I 93194a35-0180-4d42-ab&f-a367009dbabf {MServiceBus, Id":"9a194a35-0180-4,,, 2014-07-13 15:34:14,000 <Binary data» True
I a0409157-fc44-4cc4-b5e3-a367009dbse 2 {MNServiceBus,Id""a0409157-fc44-4c... 2014-07-13 15:34:13.000 <Binary data> True
edf4bEd6-263e-445F-5F14-a36 70059dbSe 2 {MServiceBus. Id": "edf4bEd6-263e-44... 2014-07-13 15:34:15.000 <Binary data» True

[58]

Chapter 2

* Distributor Storage: In the scale-out example, we needed to store distributor
data to get the necessary workers available. This data is stored in MSMQ.

1570 Commander (eran 04 13/3/2012) STTET
Connect... Refresh Auto refresh
|Queues v orders.handler.distributor.storage; JOURNAL F X
= Inéag‘rff:te gqueues Label Sent time 1d
audit (105) 2014-07-13 09:48:11.000 | 5c35bbf9-37c8-46b2-a7a6-fa03c18d056f\ 192906 -

2014-07-13 09:48:12.000 | 5c35bbf9-37c8-46b2-a7a6-fa03c18d056f192921
2014-07-13 09:48:13.000 | 5c35bbf9-37c8-46b2-a7a6-fal3c 1840561192943
2014-07-13 09:48:13.000 | 5c35bbf9-37c8-46b2-a7ab-fa03c18d056f 192967

orders.
mor (0)

orders.sender.timeouts (0

orders.sender.timeoutsdispatcher (0)

orders. handler.2de40175bo84-4f91-b3d-5c24e32dc62 2014-07-13 09:48:14.000 | 5c35bbfa-37¢8-46b2-a736-fa03c15d056f|132992
orders.sender.retries (0) 2014-07-13 09:48:14.000 | 5c35bbf9-37¢8-46b2-a7a6-fa03c18d056f|193005
orders.handler (0)) 2014-07-13 09:48:14.000 | 5c350bf3-37¢8-46b2-a7a6-fal3c18d056f1193023
orders.handler.worker (0) 2014-07-13 09:48:15.000 | 5c350bf9-37¢8-46b2-a736-fa03¢ 1840561193035

[erders.handler.distributor.storage (3)

Journal (26) 2014-07-13 09:48:16.000 | 5c35bbf9-37¢8-46b2-a7a6-fad3c 184056193049 il

Backing it up

NSB utilizes a lot of the storage mechanisms that other C# enterprise applications
would normally utilize in the Microsoft world. If data and messages are stored in SQL
Server, then the organization's normal operations for backing up SQL Server would
suffice. For MSMQ), and all the services running in the Windows Server, a daily backup
of the server itself will be advisable. Another method of backing up MSMQ is that all
the messages in the queues are in XML, and daily saving of messages through MSMQ
tools to files could be accomplished. Another method when sending a file to MSMQ is
to save a copy of the message to the disk; alternatively, you can turn on the auditing
function and then create a console program with a daily task scheduler to save all the
new audit messages of the day to the disk. There are many different ways to do this
using the NSB framework or other SQL Server and MSMQ utilities. Because these are
normal Microsoft C# processes, there are many, many different ways to automate
these tasks.

Monitoring

This form of architecture may be referred to as an event-driven SOA where
the events drive the design of the architecture, and the numerous services
make up the flow of the disparate events that drive the workflow; please refer
tohttp://en.wikipedia.org/wiki/Event-driven SOA,. In an event-driven
workflow, business users monitor the events.

[59]

http://en.wikipedia.org/wiki/Event-driven_SOA

The NServiceBus Architecture

In this case, the events are messages; one way to monitor the messages in the queues
is to examine the queues. If SQL Server queues are being used, then the tables can
be examined. If MSMQ is being used, then products such as MSMQCommander
(https://github.com/sverrehundeide/MSMQCommander) can be used to examine
the messages.

particular.servicecontrol (34)
particular
error.log (0)
particular.servicecontrol.tmeouts (1)
subscriberl
mypublisher (0)

subscriberL timeouts (1)

rvicecontrol.errors (0)

Pueues hits error | audit
=l lacalhost .
B rivete queues Label Sent tme 1d
error (0) ‘ZD]Q-[IT—EIZ 10:57:15.000 | 5c35bbf9-37c8-46b2-a7a6-fal3¢18d056f,128037
audit (33) [|2014-07-02 10:57:15.000 [5c350bf9-37c5-46b2-a7a6-Fal5c18d056A 126055

2014-07-02 000 5¢35bbf3-37¢5-46b2-a726-fa03c18d056M 128041

000 5c35bbf9-37c8-46b2-a7a6-fad3c18d056M 128061

2014-07-02 10: 000 | 5¢35bbf3-37c8-46b2-a7a6-fal3c18d056f128079

gody | Queves | Time | Fiags |

mypublisher.tmeouts (0) Size: 316 bytes

subscriberL fimeoutsdispatcher (0) e Sy

i <Messages xmins:usi="http:/fvrww.w3.0rg/2001/XM| Schema-instance” xmins:xsd=""http:// 001/XMLSchema” xmins="http: /tempuri.net/MyMessages">
<IMyEvent>

4> 4b22557b-Fad4-48ef-

[Eventld>
<Time=null</Time>

<Duration>P1DT3H46M395 </ Duration>

</IMyEvent>

=[Messages>

mypublisher.retries (0)
subscriber2.timeouts (1)
subscriber? (0)

There are many examples to look at MSMQ and SQL Server queues. Another one
can be found at http://blog.halan.se/page/Service-Bus-MQ-Manager .aspx
that will work like the following;:

Fq'." Service Bus MO Manager 4.14 - (C)2012-2014 ITQ.COM, Daniel Halan - [WIN-UAUT16GPEQA] ?

@ | ﬁﬁ Clear Processed o4

EVENTS (0) MESSAGES (15)

5c35bhf9-37cB-46b2-07ab-fa03c1Bd056f\183430

.ﬁ#_) Send Command | ;"\\ View Subscriptions

COMMANDS ERRCRS

10:43:47
orders.handler.distributor.storage

%]

10:43:47
orders.handler.distnbutor.storage

5c35bhf9-37cB-46b2-0706-fa03c18d056\ 183428

10:43:36

5¢35bbf9-37c8-46b2-07ab-fa03c18d056f1183406 orders. handler.distributor.storage

10:43:36
orders. handler.distributor.storage

&
(i
[

5c35bbf5-37c8-46b2-a7a6-fa03c18d056f1183402

However, the preferred method is to use the NSB ServicePulse tool found at
http://particular.net/servicepulse, which can check the heartbeat of

an NSB-hosted service by accessing the browser at http://localhost:9090/#/
dashboard. ServicePulse is monitored through a web browser.

[60]

https://github.com/sverrehundeide/MSMQCommander
http://blog.halan.se/page/Service-Bus-MQ-Manager.aspx
http://particular.net/servicepulse

Chapter 2

Active Endpoints

Subscriber1@WIN-UAUT16GPEQA

Latest heartbeat received: a few seconds ago

Subscriber2@WIN-UAUT16GPEQA
Latest heartbeat received: a few seconds ago

MyPublisher@WIN-UAUT16GPEQA

Lalest heartbeat received: a few seconds ago

Inactive Endpoints

Another NSB tool that offers more insight into the services, endpoints, and messages
is NSB's Servicelnsight. It allows you to have a detailed look into the messages, visual
diagrams of the message flows, and detailed endpoint information.

9 ServiceInsight for NServiceBus

*hSaga

3 Show Message Data

o= PaymentAccepted
5/25/2014 4:06:24 PM

Message Type

PaymenthotificationResponse

File Tools View Help

e O R

;’ & Messages

é‘ ©) | Search results: 16 Message(s) found

;’ Sta.. Message ID

§_ 8448c394-33f7-4a53-b954-a33601097 1ec

+— Back to Message View
PaymentAcceptedH

guid 22b8ef44-3bd4-4fbf-9046-a3360

3 Saga Initiated s/25/2014 4:06:2

Time Sent
5/25/2014 4:06:27 PM

o= PaymentNotificationRes
5/25/2014 4:06:27 PM

PaymentAccepted

O

PaymentNotific

[\
Saga Updated s/25/2014 4:08:2

'

o= PaymentNotification

5/25/2014 4:06:25 PM

All/ updated
PaymentNotificationRe... = {}

3

@ Message Properties

b General

b Perfarmance
b Erors

b Gateway

b Saga

Critical Time

B845ms

[61]

The NServiceBus Architecture

There are many features in the NSB product ServiceMatrix that provide standard
development features to develop endpoints, services, and messages. ServiceMatrix
provides a visual canvas to graphically design endpoints, services, and messages.

Undeployed components

L L SubmitPaymentHandler =

Deploy Component...

% Publish Event...
. |o-r SubmitPayment | = Send Command...

=® Reply with Message...

r .
*% Subscribe to Event...

=l ECommerce (ASP.NET MVC) -
ﬁ Payments -
L |.- SubmitPaymentSender -

Convert to Saga...

Add Library References...

Delete

Rename

Properties Alt+Enter

Sample e-mail notification

We mentioned earlier that normal production is filled with notifications related

to checking queues, tables, processes, tasks, and more for both businesses and
operations. We will create a console program that just formats an e-mail, reads the
error queue in MSMQ), saves the number of errors in the queue, and sends it via an
e-mail. Programs such as these don't do much work, but they can be added to check
tasks, services, and even send log details via e-mail as time progresses. Some people
like to only see e-mails if something is not working. However, having a daily e-mail
that indicates whether all the systems are working or not is something that is found
to be useful; this is because when systems fail, they have a tendency to have issues
with notifications as well.

[62]

Chapter 2

In this section, we will be using the ConsoleReadTasks solution:

This will be the consoleReadTasks solution:

using System.Messaging;

using System.Net.Mail;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleReadTasks

{

class Program

{

static void Main(string[] args)

{

// Set the machine to read queues and processes

string machineToRead = System.Environment.MachineName;

/*****

* Checking MSMQ status
* *****/

StringBuilder sendMessage = new StringBuilder () ;

sendMessage .AppendLine (" Message from Daily Status Process

on " + System.Environment.MachineName) ;

sendMessage .AppendLine (System.Environment .MachineName + "
Searching on machine " + machineToRead) ;

Console.WriteLine("<-------- Checking MSMQ status --------
——————— >") ;

sendMessage .AppendLine ("<-------- Checking MSMQ status ----

sendMessage .AppendLine (" Reading MSMQ Status") ;

// read all the queues

var queues = MessageQueue.GetPrivateQueuesByMachine (machi

neToRead) ;
foreach (MessageQueue queue in queues)

{

MessageQueue new_gueue = new MessageQueue (queue.Path) ;
queue .MessageReadPropertyFilter.SentTime = true;

queue .MessageReadPropertyFilter.Body = true;
new_queue.MessageReadPropertyFilter.SentTime
Message[] msgs = new queue.GetAllMessages() ;
// We will keep track of the error queue
if (gueue.QueueName == "private$\\error")

= true;

[63]

The NServiceBus Architecture

{
sendMessage.AppendLine (" Error Queue :" + msgs.
Length) ;
Console.WriteLine (" Error Queue :" + msgs.Length);
}
}
sendMessage.AppendLine ("------------- End of EMa
1l--mmmm o - ")

MailMessage nMail = new MailMessage() ;

nMail.To.Add ("test@google.com") ;

nMail.From = new MailAddress ("test@google.com") ;
nMail.Subject = ("Testing A message from " + System.

Environment .MachineName) ;

}

To test the e-mail, here is a simple Simple Mail Transfer Protocol (SMTP) listener that
will intercept the e-mails locally on port 25 to view, or rather test, your e-mail sending
scenarios. It can be found at http://smtp4dev.codeplex.com/. When the e-mail is

nMail.Body = sendMessage.ToString() ;
SmtpClient sc = new SmtpClient ("localhost");
sc.Send (nMail) ;

sent to the localhost, it will be recorded for review in the smtp4dev software.

[ioix

" smtpddev
rob@rrwood.co.uk

Messages I Sessions |

Received | subject | To

/2014 10:27 PM | Testing A message from WIN-LIAL... | tes oogle.com

SEve...l Inspectl ‘ufiewl

Delete All | Delete

[ﬁb Listening on part 25 Stop Listening | Options.

[64]

http://smtp4dev.codeplex.com/

Chapter 2

To receive a check only on a daily schedule, say 09:00 A.M, the Windows Task
Scheduler normally takes a console program such as this one to set a daily running
schedule. It's easy to use Task Scheduler to set up a daily recurring task that will just
execute this console program to send a daily e-mail. To use the Task Scheduler, just
see http://technet.microsoft.com/en-us/library/cc766428.aspx. We could
add tasks to check the database table, to see whether RavenDB is running, to get a
total of the messages, and more. This is just a beginning sample from a piece of code
that monitors many different endpoints that we will cover in the upcoming chapter.

File Acton View Help
ARl Pl create cosic Task wizars x|
(-) Task Scheduler (Local) = 3
— = !)
=l 7 Task Scheduler Library ~_— Daily
| Microsoft
| Officesoftwarerrc

Create a Basic Task
. | I =l - -
Start: | 4/13/2014 = 9:00:@ AM Synchronize across time zones
Trigger I 2

e |

Action
Finish

< Back | Mext = Cancel

Let's recap

Here are some of the benefits of NSB that we have demonstrated:

1. NSB offers a workflow and can save the message state for services with the
use of sagas.

2. NSB can host an NSB service in which NSB can deploy many of the
settings to install Windows' services through the NserviceBus.Host . exe
command line.

3. NSB can distribute or scale out duplicate services to distribute the load
across machines. This provides high availability.

[65]

http://technet.microsoft.com/en-us/library/cc766428.aspx

The NServiceBus Architecture

4. NSB can deploy its own gateway to send messages across the Intranet,
or Internet, to remote services.

5. NSB has a tool called Servicelnsight to provide the insight on messages,
endpoints and services.

6. NSB has production tools to check for a heartbeat on an endpoint
called ServicePulse.

7. NSB has a tool called ServiceMatrix that helps you work on visual
development on a canvas in Visual Studio.

8. Because NSB uses common Microsoft Windows Server services, such
as MSMQ and SQL Server, you can take advantage of many tools and
deployment techniques in C#.

9. NSB supports many message and storage patterns to build applications
to perform full monitoring, reporting, scalability functions, and to never
lose a message.

10. There are no special backup mechanisms that are needed for NSB that
an organization would not normally have to back up queuing as well
as databases. If everything, messages and persistence, is stored in SQL
Server, then the normal backup procedures for SQL Server should be
applied, such as using a database backup agent or a data vault.

Summary

ESBs like NSB are a necessity to perform workflows in C# using sagas. While there
are frameworks for C# in web services and SFTP clients, it is NSB that establishes

a workflow with the many benefits to ensure that messages and data is not lost as
files are transferred, web services are processed, or SFTP interfaces are established.
Without it, file sharing from mainframes to Windows could be easily untraceable
and could not be processed with durable integrity. There are many benefits of using
NSB. We discussed some of the messaging patterns from encryption, gateways,
clustering, and many more, as how they relate to persistence. We also discussed
monitoring and availability.

In the next chapter, we are going to take a look at a particular service platform that
includes ServicePulse, ServiceControl, Servicelnsight, and ServiceMatrix.

[66]

Particular Service Platform

In this chapter, we will focus on Particular Service Platform, which includes
ServicePulse, ServiceControl, Servicelnsight, and ServiceMatrix.

As the names imply, ServicePulse gives us a pulse of the messages, services, and
endpoints; ServiceControl is a control API that ServicePulse and Servicelnsight
depend on to get their internal information; Servicelnsight gives us a graphical
and message-level drilldown into services, endpoints, and messages, and it
includes a Saga drilldown as well.

ServiceMatrix is a graphical interface into code generation for NServiceBus
endpoints, services, and messages in a Visual Studio canvas. In this chapter,
we will cover the following topics:

ServicePulse
ServiceControl
Servicelnsight
ServiceMatrix

[e]

Introducing custom checks

o

Publish-subscribe through ServiceMatrix

Sagas through ServiceMatrix

Particular Service Platform

There are many tools that can be licensed through http://particular.net. These
tools work in developing and monitoring NServiceBus and can be found from their
download page, http://particular.net/downloads. However, one of the benefits
of NServiceBus using Microsoft protocols such as DTC and MSMQ and databases
such as RavenDB and SQL Server is that other tools from Microsoft and Visual
Studio may work as well. The drawback is that a developer or software architect
who is developing and designing in NServiceBus will lose many of the benefits

of NServiceBus without using additional tools. These tools include ServiceMatrix,
ServicePulse, and Servicelnsight.

The names of these services explain their use. ServiceMatrix is a development
application in Visual Studio that helps you develop endpoints, messages, and services
that include sagas; it has modeling and code generation tools. ServicePulse takes a
quick pulse of NServiceBus's endpoints, messages, and services, providing you with
an option to quickly monitor them and get their status; it is a monitoring tool for
production operations. Servicelnsight provides as much detail as possible of endpoints,
messages, and services and allows you to perform enhanced debugging of these pieces.

ServicePulse

ServicePulse is an operation-monitoring tool for applications in NServiceBus. It has
three main functions:

* Monitoring heartbeats

* Monitoring errors and retries

* Extensibility for custom checks

Using ServicePulse, we can get a dashboard of failed messages, endpoint heartbeats,
successful messages, and custom checks.

.4.. Service

Dashboard

Endpoints Overview

Failed Messages Indicators

Custom Checks
= P
Configuration o v

Endpoints Failed Messages Custom Checks

[68]

http://particular.net
http://particular.net/downloads

Chapter 3

Besides the dashboard, we can get endpoint overviews, failed messages, custom
checks, and configurations.

ﬂ Service Pulse ‘

é localhost: 3090/ fconfiguration

: Getting Started : Suggested Sites : ‘Web Slice

als ServicePulse
} in Pa

Dashboard

Endpoints Overview

Failed Messages

Custom Checks

Configuration

[69]

Particular Service Platform

ServiceControl

ServiceControl can be downloaded from http://particular.net/downloads.
For ServicePulse and Servicelnsight to work, ServiceControl has to be installed.
ServiceControl is an auditing and monitoring service for NServiceBus endpoints
and applications. This will define the transport type and port number that
ServiceControl will be using.

£, ServiceControl

in Particular

p requires 63 MB in:

86)\Particular Software\ServiceControl\,
ServiceControl Port:
Transport type:

Instance name:

Instance description: ServiceControl on WIN-UAUTIEGPEQA

You must agree to the Lice erms and conditions before
you can install ServiceControl 1.0.0.

¥| I agree to the License terms and conditions.

Qlnstall

ServiceControl gathers the audited messages forwarded by NServiceBus endpoints
and sends them to the configured Audit queue; additionally, it exposes the HTTP
API that provides data and functionality services for Servicelnsight and ServicePulse.
Many of the ServiceControl configuration and troubleshooting instructions can be
found at http://docs.particular.net/servicecontrol/.

ServiceControl supports other queuing types, for instance, SQL Server queues, Azure,
and RabbitMQ. You will find instructions on this at http://docs.particular.net/
servicecontrol/multi-transport-support.

[70]

http://particular.net/downloads
http://docs.particular.net/servicecontrol/
http://docs.particular.net/servicecontrol/multi-transport-support
http://docs.particular.net/servicecontrol/multi-transport-support

Chapter 3

ServiceControl, by default, will be installed at c: \Program Files (x86)\
Particular Software\ServiceControl. ServiceControl has its own RavenDB
that keeps track of the messages when it runs as a Windows service. RavenDB for
NServiceBus must be installed. Most of the NServiceBus databases are located at
C:\Program Files\NServiceBus.Persistence.v4 by default. ServiceControl is
managed through http://localhost:33333/api, and its database is defaulted at
C:\ProgramData\Particular\ServiceControl\localhost-33333. The following
is a snippet on how a database may look:

=IOTX]
Documents
| [B - cooge Al d & @
| Getting Started | | Suggested Sites | | Web Slice Gallery 2 Most Visited 5. Publicly Listed Services |5 Publicly Listed Services
m Indexes ~ Query ~ Tasks Settings Status o New |~ Databases » <system: RA%NDB @
W -G~
i 51 s 1d Description ReportedStatus Headers MessageMetadata ProcessedAt
| Raven/StudioCr -
I System Documents
I EventLogltem/ Endpoint has failed to send «
| customenecks
I EventLogItem/F Endpoint has failed to send «
I EventLogltems
I EventLogltem/ Endpoint has failed to send ¢
I FailedMessagePolicyDatas I heartbeats/dge 1
I FailedMessages I heartbeats/f46" 1
| Feartbeats | heartbeats/cse: 1
IKmmmEﬂdpni“ts IPmcessedMEss. {"NServiceBus.Messageld": | {'Messageld":"47f67c61-b5 2014-07-11T
IPmcessedMess. {"NServiceBus.Messageld": ' {'Messageld":"ee7c7c84-8¢ 2014-07-11T
| Processedmessages
IPmcessedMEss. {"NServiceBus.Messageld": {'Messageld":"fS5600f7-36 2014-07-11T
I SagaHistories
IPmcessedMess. {"NServiceBus.Messageld": {"Messageld":"8bc3d771-70 2014-07-11T
SagaUniqueldentities) _
IProcessedMess. {"NServiceBus.Messageld":' {"Messageld":"08c4954c-67 2014-07-11T
|5“"“""“‘“‘s IPmcessedMess. {"NServiceBus.Messageld":' {'Messageld":"b628416d-1t 2014-07-11T
IPrucessedMess. {"NServiceBus.Messageld": ' {"Messageld":"bcd3626c-75 2014-07-11T
&~ € 4 »

We will be using the ScaleOut-ServiceControl solution. This solution is similar to an
earlier chapter's example, except that there we added service control plugins through
NuGet to generate service control endpoints for monitoring purposes:

* ServiceControl.Plugin.DebugSession: This is found at https://www.nuget.
org/packages/ServiceControl.Plugin.DebugSession/. When deployed,
the debug session plugin adds a specified debug session identifier to the
header of each message sent by the endpoint. This allows messages sent by
debugging or a test run within Visual Studio to be correlated, filtered, and
highlighted within Servicelnsight.

[71]

https://www.nuget.org/packages/ServiceControl.Plugin.DebugSession/
https://www.nuget.org/packages/ServiceControl.Plugin.DebugSession/

Particular Service Platform

ServiceControl.Plugin.CustomChecks: This is found at https://www.
nuget .org/packages/ServiceControl .Plugin.CustomChecks. The
result of a custom check is either a success or a failure (with a detailed
description defined by the developer). This result is sent as a message
to the ServiceControl queue.

ServiceControl.Plugin.Heartbeat: This is found at https://www.nuget.
org/packages/ServiceControl.Plugin.Heartbeat. The heartbeat
plugin sends heartbeat messages from the endpoint to the ServiceControl
queue. These messages are sent every 10 seconds (by default).

ServiceControl.Plugin.SagaAudit: This is found at https://www.nuget.
org/packages/ServiceControl.Plugin.SagaaAudit. The Saga Audit
plugin collects the activity information of a saga runtime. This information
enables the display of detailed saga data, behaviors, and the current status
in Servicelnsight Saga View. The plugin sends the relevant saga state
information as messages to the ServiceControl queue whenever a saga
state changes.

ServiceControl normally runs through the URL at http://localhost:33333/api.
If the ServiceControl screen does not come up correctly, you may want to check

to see whether the Particular.ServiceControl Windows service has started.
Servicelnsight and ServicePulse will be looking to read the endpoint information
from this port.

[localhost: 33333/api x

€« C ff [localhost:33333/api 9 =
if Apps [M] Inbox (18) -rich.helto.. [Kromas Workforce Cen... [http:/fwww.goodle. co... 5

{"audit_url":"http://localhost:33333/api/faudit/{?
page,per_page,direction,sort}","endpoints_aadit_arl":"http:fflocalhost:SSBSS
/api/endpoints/{name}/audit/{?
page,per_page,direction,sort}","endpoints_url":"http://localhost:33333/api/e
ndpoints", "errors_url":"http://localhost:33333/api/errors/{?
page,per_page,direction,sort}","Endpoints_error_url":"http:fflocalhost:SSSSS
Japi/endpoints/{name} /erroxs/{?

page,per page,direction,sort}”,"message search url":"http://localhost:33333/
api/messages/search,/{keyword}/{?

page,per page,direction,sort}”,"endpoints message search url":"http://localh
03t:33333/api/endpoints/ {name} /messages/search/ {kevword} /{7

page,per page,direction,sort}”,"endpoints messages_url":"http://localhost:33
333/api/endpoints/{name} /messages/{?
page,per_page,direction,sort}","name":"SEIviceCDntrol@WIH—

UAUT16GPEQL"™, "description"::"ServiceControl on WIN-
UAUT16GPEQAL", "sagas_url":"http://localhost:33333/api/sagas"”, "license_status"
:"yalid”}

[72]

https://www.nuget.org/packages/ServiceControl.Plugin.CustomChecks
https://www.nuget.org/packages/ServiceControl.Plugin.CustomChecks
https://www.nuget.org/packages/ServiceControl.Plugin.Heartbeat
https://www.nuget.org/packages/ServiceControl.Plugin.Heartbeat
https://www.nuget.org/packages/ServiceControl.Plugin.SagaAudit
https://www.nuget.org/packages/ServiceControl.Plugin.SagaAudit

Chapter 3

These are the starting URLs to provide the endpoint information. If we look at this
page, we can see the URL structure to get further information, such as endpoints via
http://localhost:33333/api/endpoints/.

€ ¢ |[B- con: Plee ¥ &=

! Getting Started ! Suggested Sites ! Web Slice Gallery |2} Most Visited |31 Publidy Listed Services 5/ Publicly Listed Services

[{"id":"faba2bfl-5240-bf13-02d1-6a%62dae712a", "name" : "Orders.Handler", "host_display name":"WIN-
URUT16GPEQR", "monitored” :true, "monitor heartbeat":true,"license_status":"unknown","heartbeat information":
{"last_report at":"2014-07-14T02:29:17.99473522", "reported status":"dead"},"is_sending heartbeats":true},
{"id":"c015973a-3c7d-5d0c-40c1-T6cdb8bT8c86", "name" : "Orders.Handler"”, "host_display_name":"WIN-
URUT16GPEQR", "monitored”:true, "monitor_heartbeat”:true,"license_ status":"unknown", "heartbeat information":
{"last_report at":"2014-07-14T02:29:17.94881332", "reported status":"dead"},"is sending heartbeats":true},
{"id":"£1lec9a95-9963-c036-98£3-e87c7134a055", "name " : "Orders.Handler"”, "host_display name": "WIN-
UAUT16GPEQA", "monitored”:true, "monitor heartbeat":true,"license_ status":"unknown","heartbeat information":
{"last_report at":"2014-07-14T02:29:16.29844622", "reported status":"dead"},"is_sending heartbeats":true},
{"1id":"441f06db-dlba-e059-28f7-9¢ccc403d3a41", "name" : "Orders. Sender", "host_display name":"WIN-
URUT16GPEQR", "monitored”:true, "monitor heartbeat":true,"license_ status":"unknown","is_sending heartbeatsz":false}]

We can also view the messages from ServiceControl via http://localhost:33333/
api/messages/.

ry Bookmarks

http:{localhost: 33333/api/messages/

(- “ localhost: 3

fapifmessages/ c | | - Google e ‘ ﬁ @ ‘ ‘ﬁ“ =

: Getting Started : Suggested Sites Web Slice Gallery @ Most Visited |5 Publicly Listed Services |3 Publidy Listed Services

[{"id":"88dfb3el-5dcc-2958-5cdf-6cef5dB8fdal"”, "nessage_id":"0c0£9282-4b75-4644-865c- ﬂ
a36d00b95301", "message_type": "MyMessages. SubmitRequestReplyMessage"”, "sending endpoint”:

{"name":"MySaga", "host id":"5f9%9a5940-a3ed-7796-8c60-97Tcfd2f4cad", "host" : "WIN-

URUT16GPEQR"}, "receiving endpoint”: {"name":"AppForSubmittingRequests"”, "host id":"cb3046bl-
af3e-5158-41a2-818c3eldakbca”, "host™: "WIN-

UAUT16GPEQA"}, "time sent":"2014-07-19T17:14:44.6951232", "processed at":"2014-07-19T17:14:45.1267632", "critical t
ime":"00:00:00.4316400", "processing time™:"00:00:00.1484370", "delivery time":"00:00:00.2832030","is system messa
ge":false, "conversation id":"05d5b704-8£55-4f60-a%3c-a36d00b852b4", "headers":

[{"key":"NServiceBus.MessageId", "value”: "0c0f2202-4b75-4644-965c—a36d00b85301"},

{"key":"NServiceBus.CorrelationId", "value":"3292242e-Tb3a-4d3e-9932-a36d00b9471£"},
{"key":"NServiceBus.OriginatingEndpoint"”, "value™: "MySaga"}, {"key":"NServiceBus.MessageIntent", "value”:"Send"},
{"key":"NServiceBus.Version","value™:"4.6.3"}, {"key":"NServiceBus.TimeSent", "value":"2014-07-19 17:14:44:655123

Z"}, ["key":"NServiceBus.CriginatingMachine"”, "value": "WIN-URUT16GPEQR"},

{"key":"NServiceBus.OriginatingSagaId", "value":"e2b00911-6f25-4aBa-be63-236d00b9472d"},
{"key":"NServiceBus.0OriginatingSagaType"”, "value”: "MySaga.PurchaseOrderRequestSaga, MySaga, Version=1.0.0.0, LI

This is our message list with key-value pairs that define the collection of messages
that have been captured. Notice that it is a key-value JSON format that is given in the
ServiceControl interface. The ServiceControl's RavenDB performs a fetch in storage
in JSON as well, so there is very little translation needed from the tables in RavenDB
to be posted in HTTP protocol at port 33333.

[73]

Particular Service Platform

We can add the message GUID to the URL in the ServiceControl browser to see the
message body from one of the messages listed as shown in the following screenshot:

) Source of: http:/ /localhost:33333 /api/ messages/0c0f9292-4b75-4644-065¢-a36d00b95301/body - Mozilla Firefox
Fle Edit View Help

<Messages xmlns:xsi="http://u
<Submi tRequestReplyMessage>
<RequestId>4es2cf60-2sbe-437c-806E-2eaT79b£9924£</Requestld>
<Approved>true</Approved>
<PurchaseOrderNunber>F0-A0002</PurchaseOrderNuber>

</Svbmi tRequestReplyMessage>

</Messages>

w3.0rg/2001/XMLSchema-instance” xmlns:xsd="http://v

3.029/2001/XMLSchena" pmlns="http://tempuri.net/Mytlessages">

Then, when installing ServicePulse, it will define how it will access ServiceControl.

ServicePulse

|| | | [| |' |||| ’

Setup reguires 19 MB in:

Program File \Particular Software\SemvicePulsey,

You must agree to the Licenses terms and ¢
you can install ServicePulse 1.0.1.

+| I agree to the License terms a ditions.

@Install

[74]

Chapter 3

Let's look at a simple example. We can start with the publish-subscribe MSMQ
example from https://github.com/Particular/NServiceBus.Msmg.Samples/
tree/master/PubSub. We will add the ServiceControl plugins for heartbeats and
custom checks through NuGet.

2]
b Installed packages Stable Only ~ Sortby: Relevance ~ servicecontrol X v
4 Online = "

?heemmm Bl Created by: NServiceBus Ltd -
All an endpoint to Eeruaee Conyinl Id: ServiceControl Plugin. CustomChecks
nuget.org Version: 1.0.0
i Last Published: 4/156/2014
Cioxtadi o ServiceControl Plugin for DebugSessions Downloads: 275 —
Search Results Fadll The endpoint plugin to connect an endpoint to A
Service Control License
b Updates View License
R - Project Information
% Servme({_mtml _Plugln for Heartbea?s Report Abuse
A The endpoint plugin to connect an endpoint to Description:
Service Control
The endpoint plugin to connect an endpaint
to Service Control
n ServiceControl plugin that enables audit... iceb iceb
e Enables audit of Saga state changes Tags: NSErVICEDUS SErvicebus msmaq cqrs
publish subscribe
Dependencies:
- MServiceBus (= 4.0.0.0 && < 5.0.0.0)
s Forge.WindowsServiceControl NServiceBus. Interfaces (= 4.0.0.0 &&
B Windows Service Control <5,0,0.0)
Each package is licensed to you by its ;
owner. Microsoft is not responsible for, Each item above may have sub-
nor does it grant any licenses to, third- dependendes subject to adaitional ficense
party packages. 1 Sgreemenis. -
Settings | Close

Then, we can check the heartbeats in ServicePulse to validate that the applications
are available; this is indicated in the form of heartbeats. We monitor ServicePulse
through the URL http://localhost:9090.

Active Endpoints Inactive Endpoints

Subscriber1@WIN-UAUT16GPEQA Mo inac
Latest heartbeat received: a few seconds ago

Subscriber2@WIN-UAUT16GPEQA

Latest heartbeat received: a few seconds ago

MyPublisher@WIN-UAUT16GPEQA

Latest heartbeat received: a few seconds ago

[75]

https://github.com/Particular/NServiceBus.Msmq.Samples/tree/master/PubSub
https://github.com/Particular/NServiceBus.Msmq.Samples/tree/master/PubSub

Particular Service Platform

If there are issues with the services, always check that ServiceControl and
ServicePulse are running.

£} Services (Local)
Select an item to view its description. Name -~ | Description Status | Stertup Type | LogOnas |
Particular ServiceContral Particular 5... Started Automatic Local System
Particular ServicePulse Monitoring ... Started Automatic Local System

Servicelnsight

Servicelnsight provides a detailed insight into a specific message. It provides a
detailed flow, timing, and errors of the message; also, it provides you with the
ability to retry and sort the messages, look at their headers and their sagas, copy
the headers and the messages, and more.

We have an endpoint explorer that provides us with details of the messages,
a Message Properties window to drill down into the details of the message,
and a Flow Diagram window to give us a graphical overview of the messages
and endpoints.

Servicelnsight will collect endpoint information from ServiceControl through its
web API. ServiceControl is a collector of endpoint information for Servicelnsight
and ServicePulse.

The directory for the code is under the BasicSagas-ServiceControl directory.
We will use this solution to generate some saga messages to look at through
Servicelnsight.

The solution was run in V52012 in Windows Server 2012, with MSMQ, DTC,
RavenDB, NServiceBus version 4.0 references, and SQL Server 2012 Express
LocalDB installed.

Servicelnsight will have four main parts to view. You have the Messages window
to select which message to view, the Message Properties window to view the
properties of the details of a message, the view canvas that currently displays a
Saga View window, and the Endpoint Explorer window to look for messages
based on the available endpoints.

[76]

Chapter 3

& ServiceInsight for NServiceBus

File Tools View Help
e O 2
P = Messages

) Search results: 16 Message(s) found

TeTOO TP

Sta.. | Message ID Message Type Time Sent Critical Time
8448c394-33f7-4a53-b954-2336010971ec PaymentNotificationResponse 5/25/2014 4:06:27 PM B845ms
*h Saga » @ Message Properties

2 Show Message Data

~ b General
~ Back to Messa

PaymentAcceptedH

b Performance

b Erors
guid 22b8ef44-3bd4-4fbf-9046-a3360 b Gateway
b Saga
o= PaymentAccepted .
5/25/2014 4:06:24 PM O Saga Initiated s/25/2014 4:06:2
All / Updated l
PaymentAccepted = 0

o= PaymentNotification
5/25/2014 4:06:25 PM

PaymentNotificatios

o= PaymentNotificationResp
5/25/2014 4:06:27 PM 1 Saga Updated s5/25/2014 4:06:2

All/ Updated
PaymenthotificationRe . = {}

The Endpoint Explorer window gives a list of the available endpoints that have been
captured in ServiceControl. This list can be used to filter all of the available messages
so that you may view just the messages on an endpoint. The following is an example
of an Endpoint Explorer tree that is viewed:

“#Endpoint Explorer

4 G, http:/flocalhost: 33333/ api
I AppForAccountingDept
I AppForApproversLevell
I AppFordpproversLevel2
I AppForSubmittingRequests
I My5aga
I Orders.Handler
I Orders.Sender

[77]

Particular Service Platform

The collection of messages can be viewed for a single endpoint or in total, from the
collection of messages available and stored in the ServiceControl RavenDB. This will

appear as follows:

5. Message ID Message Type Time Sent Critical Time
0c0f9292-4b75-4644-965¢-a36d0... SubmitRequestReplyMessage 7/19/2014 11:14:44 AM 431ms
fc779d42-06ba-483d-8268-a36d0... SubmitRequestReplyMessage 7/19/2014 11:14:42 AM 2s
e67fe769-f5c5-4b04-adeb-a36d0... IReguestExpiredEvent 7/19/2014 11:07:09 AM 157ms
37b03555-a2aa-4f56-b478-a36d0... IRequestExpiredEvent 7/19/2014 11:07:00 AM 1s
3816402f-f0f4-4d5d-80da-a36d00... IRequestExpiredEvent 7/19/2014 11:03:57 AM 156ms
091c647e-6012-4cBd-8463-a36d0... IRequestExpiredEvent 7/19/2014 11:03:46 AM 1s

Processing Time
148ms

148ms

34ms

167ms

46ms

140ms

Delivery Time
283ms

2

123ms

1s

109ms

1s

In the Flow Diagram view, we have selections at the bottom for the flow view of
the message, the Saga view tab, the Headers view tab, the Body tab, and the Logs

tab of Servicelnsight.

=& Flow Diagram
als

AppForApproversLevel2

ApproveReque... -
o= 7/19/2014 11:14:44 AM

| » | PurchaseOrderRe...

MySaga

MySaga

RecordEncumb... v
om 7/19/2014 11:14:44 AM

AppForAccountingDept

AppForAccountingDept

RecordEncumb... v
ok 7/19/2014 11:14:44 AM

n PurchaseOrderRe...

MySaga

MySaga

SubmitRequest... *

O 7/19/2014 11:14:44 AM
PurchaseOrderR...

AppForSubmittingRequests

<« |

& Flow Diagram |y Saga S Headers </>Body [T Logs

[78]

Chapter 3

The Logs tab of the Flow Diagra

m window displays details of the interactions when

Servicelnsight polls ServiceControl for more data, such as the example that appears

in the following screen:

MLogs

Clear All E] Copy Al

2014-07-24 20:21:50.852 -06:00 [Debug] HTTP Status OK (]

2014-07-24 20:21:50.857 -06:00 [Debug] Response Header:

2014-07-24 20:21:50.314 -06:00 [Information] HTTP GET http:/ /localhost:33333/ api/

2014-07-24 20:21:50.854 -06:00 [Debug] Response Header:
2014-07-24 20:21:50.854 -06:00 [Debug] Response Header:
2014-07-24 20:21:50.854 -06:00 [Debug] Response Header:
2014-07-24 20:21:50.854 -06:00 [Debug] Response Header:
2014-07-24 20:21:50.854 -06:00 [Debug] Response Header:
2014-07-24 20:21:50.854 -06:00 [Debug] Response Header:
2014-07-24 20:21:50.855 -06:00 [Debug] Response Header:
2014-07-24 20:21:50.855 -06:00 [Debug] Response Header:
2014-07-24 20:21:50.856 -06:00 [Debug] Response Header:
2014-07-24 20:21:50.856 -06:00 [Debug] Response Header:
2014-07-24 20:21:50.857 -06:00 [Debug] Response Header:
2014-07-24 20:21:50.857 -06:00 [Debug] Response Header:

http:{flocalhost:33333/api)

"Transfer-Encoding” : "chunksd"

"Vary" : "Accept"

"X-Particular-Version™ : "1.1.0"

"Access-Control-Expose-Headers”™ : "ETag, Last-Modified, Link, Total-Count, ¥-Particular-Version”
"Access-Control-Allow-Headers" : "Origin, X-Requested-With, Content-Type, Accept”
"Access-Control-Allow-Metho POST, GET, PUT, DELETE, OPTIOMS, PATCH"
"Access-Control-Allow-Origin' !
“Cache-Control” : "private, max-age=0"
"Content-Type" : "applicationfjson; charset=utf-8"
“"Date” : "Fri, 25 Jul 2014 02:21:50 GMT"

"ETag" : "\"8d145f930920600\™

"Last-Modified" : "Sun, 25 May 2014 06:25:00 GMT"
1 "Server” : "Microsoft-HTTPAPL/2.07

The Body view tab shows the body of a particular message; notice that we were able
to view this in the ServiceControl browser earlier:

Pt/ /v w3 . org/ 2881/ XMLSchema- instance” xmlns:xsd="http://www.w3.0rg/ 2081/ XMLSchema” xnlns=
<SubmitRequestReplyMessage>

<RequestId>4ee2cf68-9ebe-497c-BO6F- 2ea79bFIgadF< /RequastId>

<Approved>true</Approveds

<PurchaseOrderNumber>P0-ABBB2< /PurchaseOrderiumbers

</SubmitRequestReplyMessage>
</Messages>

"http://tempuri.net/MyMessages”>

The Headers view will give the NSB header information related to the message:

r Headers
Key

- Value
Corrld 3292242e-7b3a-4d3e-9932-a36d00b9471\0
MNServiceBus.ContentType teetxml

05d5b704-6f55-4f60-a93c-a36d00b952b4
3292242e-7h3a-4d3e-9932-a36d00b947 1f
MyMessages.SubmitRequestReplyMessage, MyMessages, Version=1.0.0.0, Culture=neutral, PublickeyToken=null
0c0f9202-4b75-4644-065c-a36d00b95301

NServiceBus.Conversationld
MServiceBus.Comrelationld
MNServiceBus.EnclosedMessageTypes

MServiceBus. Messageld

NServiceBus.Messagelntent Send
MServiceBus.OriginatingAddress MySaga@WIN-UAUT16GPEQA
NServiceBus.OriginatingEndpoint MySaga

MServiceBus.OriginatingMachine WIN-UAUT16GPEQA
e2h00911-6f25-4aBa-be63-a36d00b9472d
MySaga.PurchaseOrderRequestSaga, MySaga, Version=1.0.0.0, Culture=neutral, PublickeyToken=null
2014-07-19 17:14:45:126763 7
AppForSubmittingRequests
WIN-UAUT16GPEQA

2014-07-19 17:14:44:978326 £
efedd522-dded-45f4-94¢8-a36d00b952ad
2014-07-19 17:14:44:695123 Z

4.6.3

WIN-UAUT16GPEQA\Administrator

NServiceBus.OriginatingSagald
MServiceBus.OriginatingSagaType
MNServiceBus.ProcessingEnded
NServiceBus.ProcessingEndpoint
MNServiceBus.ProcessingMachine
NServiceBus.ProcessingStarted
NServiceBus.RelatedTo
NServiceBus. Timesent
MServiceBus.Version

\WinldName

[79]

Particular Service Platform

So, now that we have covered views and messages, there's more. There are also
properties on each message that details NSB properties for the time transmitted,

saga IDs, performance information, message IDs, and other distinct details of the

NSB message details. The saga information will include the saga ID, originator,
and originalMessageId that the saga needs for the original client. Here's a

sample of the properties tab:

4 General

Version

ContentType

IsDeferedMessage
Conversationld
HeaderContent
4 Performance
Time5Sent
ProcessingStarted

ProcessingEnded

ProcessingTime
DeliveryTime
CriticalTime

» Errors

b Gateway

b Saga

O Message Properties

4.6.3

MyMessages.SubmitRequestReplyMessage, MyMessages, Ve

0c0f3292-4b75-4644-965c-a36d00b95301
e92d9522-dded-45f4-94c8-a36d00ba52ed
texct/xml

05d5b704-8f55-4f60-a93c-a36d00b952b4

[{"key":"NServiceBus.Messageld”, "value™: "0c0f3292-4b75-4. .

7/19/2014 11:14:44.6951 AM
7/19/2014 11:14:44.9783 &AM
7/19/2014 11:14:45.1267 &AM
148ms
283ms
431ms

o [o [e [o [|

Servicelnsight gives more information than is usually needed to troubleshoot
messages, endpoints, or services with some amount of detail. The future of NSB
Servicelnsight is to add more detail, such as sequence diagrams to enhance the
flow of the views and add more details to view saga information.

[80]

Chapter 3

ServiceMatrix

ServiceMatrix is a series that can start projects as NServiceBus projects with pieces
already integrated for faster development. However, it is not necessary to use
ServiceMatrix to build NServiceBus components. A step-by-step guide on how to

use ServiceMatrix is available at http://docs.particular.net/servicematrix/
getting-started-with-servicematrix-2.0, and the process of using code without
ServiceMatrix is found at http://particular.net/articles/NServiceBus-Step-
by-Step-Guide.

We install ServiceMatrix in Visual Studio using the Extensions and Updates... option
under the Tools menu.

Extensions and Updates ?
b Installed Sort by: Relevance ~ nservicebus X -
4 Online - =
IFHEE ServiceMatrix Created by: Particular Software

4 Visual Studic Galle .. A set of Visual Studio integrated tools to author Version: 2.0.2

I o MNServiceBus applications Ioad '42

ontrols Downl ISz
b Templates Rating: (1Vote)
b Tools More Information
Search Results Report Extension te Microsoft

b Samples Gallery

b Updates (1)

Download and Install

Downloading...

2.11 MB of 13.6 MB

Cancel

[81]

http://docs.particular.net/servicematrix/getting-started-with-servicematrix-2.0
http://docs.particular.net/servicematrix/getting-started-with-servicematrix-2.0
http://particular.net/articles/NServiceBus-Step-by-Step-Guide
http://particular.net/articles/NServiceBus-Step-by-Step-Guide

Particular Service Platform

We can create an NServiceBus project by navigating to the Project option under the
Files | New menu. Here, we will create a PaymentEngine example:

4 Installed

™
#

@ WCF Service Application Visual C#
4 Templates
4 Visual C& ?a LightSwitch Desktop Application Visual C#
Windows b
b Web :“ LightSwitch HTML Application Visual C#
b Office/SharePoint b
Cloud (> Get Windows Azure SDK for NET Visual C#
LightSwitch
Z_Tporlfiﬂhgt E j“ Excel 2013 Workbook Visual C#
ilverlig
I:étF E“j Outlook 2013 Add-in Visual C#
T v.rsml.d:::ow Ej“ Word 2013 Document Visual C#
ypeScrip
o g] Acivty Librery Visusl C#
SamN;;J:SlE“"EI Projects qc: WCF Workflow Service Application Visual C#
B Online NServiceBus System Visual C#
Click here to go online and find temnplates.
MName: |Pa}rmentEngine |
Location: | F:\ServiceMatriz 'l

Solution name:

PaymentEngine

Normally, there will be three different areas for the standard development
environment. There will be Solution Builder on the left-hand side, NServiceBus
Canvas in the center, and Solution Explorer on the right-hand side.

EW IS 5O
4 . PaymentEngine
B Infrastructure
B Libraries
4 gl Endpoints
4[5 ECommerce
B Components
B Services

ServiceMatrix - NServiceBus Canvas & X

-: New endpoint

sl ECommerce (ASP.NET MVC) ~

@lo--na@m| &=
Search Solution Explorer (Ctrl+;)
3] Solution *PaymentEngine’ (3 projects)
3 Solution tems
B PaymentEngine Contracts
b & PaymentEngineECommerce
P PaymentEngineInternal

S Properties

=B References

¥ packages.config

[82]

Chapter 3

We will create another endpoint called pPaymentProcessing that will be

an NServiceBus host program. The NServiceBus host streamlines service
development and deployment, allows you to change technologies without

code, and is administrator-friendly when setting permissions and accounts.

Refer to http://docs.particular.net/nservicebus/the-nservicebus-host.

=0 New endpoint

Endpoint name

PaymentProcessing

Endpoint host type

MServiceBus Host w

Cancel Done

The Solution Builder window contains four main sections:
* Infrastructure: This is used to create and manage NServiceBus authentication
and auditing
* Libraries: This is used to create and manage NServiceBus reusable libraries
* Endpoints: This is used to create and manage NServiceBus endpoints

* Services: This is used to create and manage NServiceBus services

[83]

http://docs.particular.net/nservicebus/the-nservicebus-host

Particular Service Platform

By right-clicking on the elements of these sections, we can add or change
their properties.

Solution Builder

W ITF FOST M
Fl -Pa}rmentEngine
B Infrastructure

i Libraries
i Endpoints
4 [ECommm---
B Cor Add Authentication
i Services Publish Event...

Send Command...

Delete Del
Rename F2
& Properties Alt+Enter

We can also accomplish similar tasks in the NServiceBus Canvas window with the
difference being that it is a visual graph instead of a tree hierarchy.

ServiceMatrix - N5erviceBus Canvas + X

=l New endpoint

=l ECommerce (ASP.NET MVC)

& Publish Event...

Add Authentication

®= Send Command...

Delete

Rename

Properties Alt+Enter

[84]

Chapter 3

The Solutions Explorer window will give the resultant generated code. Some of

the code will be stubs that are created to add more detail during development. An
event can be created using Publish Event..., and a command message can be created
using Send Command.... We can create a send command message. We will create a
ServiceName of Payments for the command message, SubmitPayment.

= Send Command

SeErvice name

Payrments

Command Mame:

SubmitPayment -

Cancel | I Done

The Contracts section will contain NServiceBus events, and the Internal section will
contain NServiceBus commands. Notice that Submitorder.cs was created when we

created the SubmitPayment command.

fa] Solution *PaymentEngine’ (3 projects)
B Selution tems
P PaymentEngine.Contracts
] PaymentEngine.ECommerce
4 PaymentEnginelInternal
B & Properties
[=B References

F Payments

b @& SubmitPayment.cs
¥1 packages.config

[85]

Particular Service Platform

In the following screenshot, we can see the code that would normally contain your
command message; at this time, it is nothing but a code stub. Here, we add a string
field call data to be passed through the message.

using System;
Finamespace PaymentEngine.Internal.Commands.Payments
1
= public class SubmitPayment
1
public string data { get; set; }
h
¥

At this point, the code will not be compiled because the message only
has one endpoint. We need to deploy the other endpoint with the Deploy
Component... command.

Undeployed components

=l PaymentProcessing (NSB Host) |

o L SubmitPaymentHandler

Deploy Component...
& Publish Event...
L |.¢ SubmitPayment v. o= Sand Command...

=¢ Reply with Message...

'E* Subscribe to Event...

=l ECommerce (ASP.NET MVC) -

mm >ubmitPaymentSender -

Convert to Saga...

Add Library References...

Delete

Rename

Properties Alt+Enter

We can select the available endpoints. In this case, we also created an endpoint,
PaymentProcessing. We also have the ability to create new endpoints.

[86]

Chapter 3

Deploy to endpoint

SubmitPaymentHandler component

Host endpoints

@ PaymentProcessing
) ECommerce

Mew endpoint ->

Cancel l | Daone

Then, we will have two endpoints with a command message being sent from
ECommerce, an MVC controller, to PaymentProcessing, and an NSB Host;
both these endpoints will be created by a command prompt or service.

r' Paysinis =

@ SubumltPayment = =
l= EiLcs
Ny Faymenis =
® I SutmitPaymentSender ~ {
Endpoints

[87]

Particular Service Platform

The submitPaymentSender function will send the message and the
SubmitPaymentHandler function will receive the message, as shown in the
previous screenshot. These functions are already created from ServiceMatrix
and can be extended. Looking at SubmitPaymentHandler, we can extend the
function to print the data field.

using System;
using NServiceBus;
using PaymentEngine.Internal.Commands.Payments;
namespace PaymentEngine.Payments
1
public partial class SubmitPaymentHandler
1
partial woid HandleImplementation(SubmitPayment message)
1
// TODO: SubmitPaymentHandler: Add code to handle the SubmitPayment message.
Conscle.WriteLine("Payments received " + message.GetType().Name);
Conscle.WriteLline("Data " + message.data);
¥
1
1

When we run the project, without adding further code, we get an ASP interface to
send the data in the message.

Test Messages:

You can send test Commands/Events directly from here. This page is auto-generated based on the Publisher/Sender components deployed on this endpoint.

SubmitPayment

T r—

Send!

[88]

Chapter 3

Once you send the message, we receive the data that was sent in PaymentProcessing.

F\ServiceMatrid\ PaymentEngine' PaymentEngine. PaymentProcessing'\bin\DebughMN5erviceBus.Host... EI

Payments received SubmitPayment
Data my data

If we open up ServicePulse, at http://localhost:9090/#/dashboard, we can see
that the message will appear at the two endpoints; however, we will need to install
the plugin to monitor the endpoint.

Latest events

lew 'PaymentEngine Pay

EndpointC

02c-abd6iB4dade

The plugins can be installed via NuGet.

ServiceControl Plugin for CustomChecks (]
The endpoint plugin to connect an endpeint to Service
Contral

i

ServiceControl Plugin for DebugSessions o
The endpoint plugin to connect an endpoint to Service
Contral

ServiceControl Plugin for Heartbeats o
The endpoint plugin to connect an endpoint to Service
Contral

BN

ServiceControl plugin that enables audit of saga state cha...
Enables audit of Saga state changes

i

[89]

[vww allitebooks.cond

http://www.allitebooks.org

Particular Service Platform

Again, there are four ServiceControl plugins that can be installed:

* The ServiceControl plugin for CustomChecks: The custom checks plugin
allows the developer of an NServiceBus endpoint to define a set of conditions
that are checked periodically or during an endpoint's startup.

* The ServiceControl plugin for DebugSessions: Debug session is a dedicated
plugin that enables integration between ServiceMatrix and Servicelnsight.

* The ServiceControl plugin for Heartbeats: The Heartbeat plugin sends
heartbeat messages from the endpoint to the ServiceControl queue.
These messages are sent every 10 seconds (by default).

* The ServiceControl plugin for Saga Audits: The Saga Audit plugin collects
saga runtime activity information. This information enables the display of
detailed saga data, behavior, and the current status of the Servicelnsight
saga view.

By installing the Heartbeats plugin into the ECommerce and PaymentProcessing
projects, ServicePulse will provide heartbeat information on the uptime of these
services.

Endpoint heartbeats have been restored

HeartbeatMonitoring /endpoint’/PaymentEngine ECommerce
/host/9badfba2-db98-4f1d-b02c-abdef34dasel
Endpoint 'PaymentEngine ECommerce' started at 5/24/2014 1:22:22 AM on host RICH-NET-WIN7
EndpointControl /endpoint/PaymentEngine.ECommerce

/nost/9baofba2-db98-411d-b02c-abdefB4dade

Endpoint heartbeats have been restored

HeartbeatMonitoring /endpoint/PaymentEngine PaymentProcessing

/nost/415b3ca6-dbd6-9745-9832-0c1866d357ec

We can also run Servicelnsight to visually see the flow of the Ecommerce MVC by
sending SubmitPayment to PaymentProcessing.

I PaymentEngine.ECommerce

e=» SubmitPayment~

5/23/2014 3:29:36 PM

<l PaymentEngine.PaymentProcessing

[90]

Chapter 3

We can walk down the message and drill down into further information to gain
insight into the performance and operation of the messages and endpoints.

.. Message ID Message Type Time Sent Critical Time Processing Time 4 | Delivery Time
50101f22-5efa-4c0d-B704-233400d05586 SubmitPayment 5/23/2014 12:38:31 PM 25 59ms 2s

elb42d5c-c392-4cba-8abl-a33400ff5295 SubmitPayment 5/23/2014 3:29:36 PM 1s 79ms 1s

Introducing custom checks

With ServiceControl.Plugin.CustomChecks installed, we can perform several checks.

In this section, we will be using the PubSub--ReportFailure solution —the
MyPublisher project reports a failure check that will be reported in ServicePulse.
This solution shows custom checks.

In this section, we will also be using the PubSub--ReportPass solution — the
MyPublisher project reports a pass check that will be reported in ServicePulse.
This solution shows custom checks.

There are the following base constructors under the customCheck package —the
base constructor is used to define which class is passing or failing:

* ReportPass: This will report that the custom check has passed

* ReportFailed: This will report that a custom check has failed, passing
in the string stating the reason for the failure

Here, we create the code for a custom check object that can be called when we submit
a payment as an additional check. It is a simple constructor in a MyCustomCheck class
that will pass information through the base class of customCheck. We call this class
when we send the submitPayment command from the ECommerce project using
MyCustomCheck myCheck = new MyCustomCheck () ;:

using System;
using System.IO;
using ServiceControl.Plugin.CustomChecks;

[91]

Particular Service Platform

using ServiceControl.Plugin.CustomChecks.Messages;
using ServiceControl.Plugin.CustomChecks.Internal;
namespace PaymentEngine.ECommerce

{

public class MyCustomCheck : CustomCheck

{

public MyCustomCheck ()
base ("ECommerce SubmitPayment check", "ECommerce")

ReportPass () ;

}

So, when a submit payment is sent, we get an additional message on ServicePulse.

ECommerce SubmitPayment check: Working as expected
CustomChecks /customcheck/ECommerce SubmitPayment check
/endpoint/PaymentEngine. ECommerce
/host'9ba9iba2-db9o8-41d-b02c-abdefE4dade

We can use conditional statements to check whether files are present, other messages
are present, and a number of conditions that can be reported as either passing or
failing while providing status information to ServicePulse for operations to take action.

In the customChecks class, we can also set a timer to periodically check for files
using the PeriodicCheck interface. This will set a timer to call the class back and
send the condition to ServicePulse. It operates differently from ReportPpass as the
condition here is reported based on a timer. It will use the function PerformCheck ()
that it must override; this will return CheckResult (either passed or failed) to inform
ServicePulse. We will check the status every 2 minutes in this example; depending
on the seconds, it will return a result as either passed or failed:

namespace PaymentEngine.PaymentProcessing

{

class CheckHealth : PeriodicCheck
{
public CheckHealth()
base ("PaymentProcessing Healthcheck",
"PaymentProcessing", TimeSpan.FromMinutes(2))

{
}

[92]

Chapter 3

public override CheckResult PerformCheck ()

{
// Fake a failure once in a while
if (DateTime.Now.Second % 2 == 0)
{

return CheckResult.Failed ("PaymentProcessing fake
failure") ;

}

return CheckResult.Pass;

}

Passing a failure for a custom check in ServicePulse:

PaymentProcessing Healthcheck: PaymentProcessing fake failure

CustomChecks Jendpoint/PaymentEngine.PaymentProcessing
/host/415b3cab-dbd6-9745-0832-9c1866d35Tec
feustomeheck/PaymentProcessing Healthcheck

Passing a pass for a custom check in ServicePulse:

PaymentProcessing Healthcheck: Working as expected

CustomChecks fcustomcheck/PaymentProcessing Healthcheck
fendpoint/PaymentEngine PaymentProcessing
/host/415b3ca6-dbd6-0745-9832-9c1866d357ec

There are many uses of custom checks in ServicePulse to give operations and
the business the internal operations of the services, endpoints, and messages
in NServiceBus.

We called the MyCustomCheck class when we passed messages to the MyPublisher
queue using MyCustomCheck myCheck = new MyCustomCheck() ;.

We can then put conditional statements to check the condition and report whether
the check has failed or passed. We will show how we can pass a message to
ServicePulse to report that it has passed. We can report a failure by replacing the
report that has passed with the one that failed, such as ReportFailed ("Testing").
It will then log the failures in ServicePulse.

Showing 1 failed custom check(s)
MyPublisher availability check MyPublisher Server a few seconds ago
in MyPublisher on

Testing

= Mute

[93]

Particular Service Platform

ServicePulse provides a visual interface to show the history of the heartbeats,
failures, and custom checks when it is running, and we can configure which
available endpoints to check.

Publish/subscribe through ServiceMatrix

The publish/subscribe messaging pattern is where senders, called publishers, send
messages without direct receivers; this is because the receivers of the messages,
called subscribers, subscribe to the messages that they are interested in receiving.

In this section, we will be using the Payment-Saga solution created with
ServiceMatrix. So, ServiceMatrix must be installed. This will be a walk-through
of ServiceMatrix.

The Publish Event... command is used to create the message to be published.

Sl PaymentProcessing (NSB Host) +

O - SubmitPaymentHandler v
& Publish yent..
®= Send Command...
=% Reply with Message...
'i‘ Subscribe to Event...
Convert to Saga...
View Code

Add Library References...

Delete

Rename

Properties

We name the publisher event message PaymentAccepted via the
PaymentProcessing host.

[94]

Chapter 3

‘é Publish Event

Event name

PaymentAccepted| -

[Cancel | l Done

A code-convenient window will be created to review the code before it is deployed.

[& User code changes required

Based on your last operation, ServiceMatrix detected the following code should be
added to your Compenent handler:

var paymentliccepted = new PaymentEngine.Contracts.Pavments.De
Bus.Publish (pavmenticcepted) »

Copy to Clipboard

Will do it later B I

This is so that you can review the code before copying it into the message handler
that you will be publishing from:

public partial class SubmitPaymentHandler

{

partial void HandleImplementation (SubmitPayment message)

{

// TODO: SubmitPaymentHandler: Add code to handle the
SubmitPayment message.

Console.WriteLine ("Payments received " + message.
GetType () .Name) ;

Console.WriteLine ("Data " + message.data);

var paymentAccepted = new PaymentEngine.Contracts.
Payments.PaymentAccepted () ;

Bus.Publish (paymentAccepted) ;

[95]

Particular Service Platform

To add a subscriber to the publisher, simply use the Add Subscriber... command.

* é PaymentAccepted = L]

View Code

Add Sn:wlhm...

Delete

Rename

Properties

We can then add the subscriber to a new service; let's call it Paying.

Add event subscriber

Existing services

Payments

Add new service

Paying| |Add

| Cancel

[96]

Chapter 3

After these changes are made, we should have the following;:

=l ECommerce (A5P.MET MVC) -

il
L]

ayments -

r] P
o B SubmitPaymentSender = -

ol FaymentProcessing (MSE Host)

ﬁ Payments -

. |L SubmitPaymentHandler + -

=l Paying (MSE Host) -

ﬁ Paying -

L .- PaymentfcceptedHandler = L

The properties description of the solution will define the error and audit queues:

Application Product
=[5,)| &
(Mame]) PaymentEngine
Cempany Logo
Error Queue error
Forward Received Messages To audit
Launch Servicelnsight on Debug True
Motes

[97]

Particular Service Platform

The properties description of the solution will also define the various types of queues
that can be used.

Transport Connection String

RabbithQ

Transport SqlServer

Description for Application. Transport AzureQueues

AzureServiceBus

When running the solution and rerunning ServicePulse, we can see the additional
Paying endpoint created that didn't have the plugins installed.

Active Endpoints Inactive Endpaints
PaymentEngine.ECommerce@RICH-NET-WIN7 PaymentEngine.Paying@RICH-NET-WIN7
Latest heartbeat received: a few seconds ago No plugin installed

y i RICH-NET-WIN7

Latest heartbeat received: a few seconds ago

If we review the flow in Servicelnsight, we will see the new flows.

E- PaymentEngine ECommerce

SubmitPayment v
5/24/2014 11:17:28 AM

=l PaymentEngine.PaymentProcessing
]

= PaymentEngine.PaymentProcessing

.é PaymentAccepted v

5/24/2014 11:17:29 AM

=l PaymentEngine.Paying

[98]

Chapter 3

Sagas through ServiceMatrix

Not only can we develop endpoints for command and publish/subscribe messages,
but we can also develop sagas in ServiceMatrix. We will start by creating a new
command message, PaymentNotification.

sl Paying (MSE Host)

ﬁ Paying -

s B PaymentAcceptedHandler | L

o= Send Command

Command name

PaymentMotification -

Cancel l | Daone

The copy preview box will appear again as we copy the sending of the new
command message to the message handler:

public partial class PaymentAcceptedHandler

{

partial void HandleImplementation (PaymentAccepted message)

{

// TODO: PaymentAcceptedHandler: Add code to handle the
PaymentAccepted message.

Console.WriteLine ("Paying received " + message.GetType () .
Name) ;

var paymentNotification = new PaymentEngine.Internal.
Commands . Paying.PaymentNotification() ;

Bus.Send (paymentNotification) ;

[99]

Particular Service Platform

We will deploy the receiving endpoint on to a new endpoint called Not i fyProcessing.

=8 Add endpoint

Endpoint name

MatifyProcessing

Endpoint host type

MNSenviceBus Host -

This is what we should have so far:

|'ﬂ ECommerc

| ﬁ Payme

®) | B SubmitPaymentSender LN

P |@= SubmitPayment v %]

|-Il PaymentProc

| ﬁ Payments »

[l Paying (NsE %)05 PaymentAccepted + %]
|ﬁ Paying |
o | [l PaymentAcceptedHandler ~ Y

A |@= PaymentNotification = (%]

Fr
|“" Paying =
Cl PaymentMotificationHandler ~| (8

[100]

Chapter 3

To start the saga process, we need to click on Reply with Message....

—_—
'rﬂ MotifyProcessing (M5B Host) «|

il
JOTE—
"‘5 Publish Event...
Send Command...
Reply wit) Message...
Subscribe 1o Event..
Convert to Saga...
View Code

Add Library References...

Dolete

Rename

F Properties AR+ [nkmr

This will allow us to convert PaymentAcceptedHandler into a saga.

=]

ServiceMatrix - Saga recormnmendation @

Convert 'PaymentAcceptedHandler' to saga to correlate between request and
response’

Ok l | Cancel

[101]

Particular Service Platform

After the saga is created, we can run the code from Visual Studio. If we look
at Servicelnsight, we will see the updated flow diagram that contains all the
endpoint components.

B Peyme=ntEngine. ECommerc=

o= SubmitPayment ~

S5{25/200+ 4:05:24 FM

4l PaymentEngine. PaymentProces=ing

B PaymentEngine. Pay

PaymentAccep...

é S{Z5/Z014 +:06:24 PH

u PaymentAcceptedHa

4l PaymentEngine Paying
B PaymentEngine Paying
PaymentMotifi... -

Ee 5/25/2014 4:06:25 PH

PaymentAcceptedHa

4 PaymentEngine NolifyProcessing
B PaymentEngine NolifyProcessing
PaymentMotifi...

= 5257014 4:08:27 FH

| » | PaymentAcceptedHa

il PaymentEngine.Paying

Drill down to the saga component in the Paying service and the
PaymentAcceptedHandler component —where the saga is initiated with
PaymentAccepted, saving the PaymentNotification data—and update
the PaymentNotificationResponse message.

[102]

Chapter 3

sw PaymentAccepted
5/25/2014 4:06:24 PM

+ Back to Message View
PaymentAcceptedHandler

guid 22b8ef44-3bd4-4fbf-9

601096fb1

B Saga Initiated 5/25/2014 4:06:25 M

o= PaymentNotificationResponse

all/ Updated i

o= PaymentNotification
5/25/2014 4:06:25 PM

5/25/2014 4:06:27 PM Saga Updated s/25/2014 4:06:28 pm

Al updated

Summary

In this chapter, we looked at the various tools of Particular Service Platform; these

included ServiceMatrix, ServicePulse, and Servicelnsight.

We gave a very brief introduction to ServiceMatrix as we walked through a

description of building an e-commerce MVC solution that worked with request/
reply messages using the send command. This was followed by publish/subscribe
messages, showing ServicePulse and Servicelnsight results. Finally, these derived

into Saga components to show the result in Servicelnsight.

[103]

Knowing Your IBus

In Enterprise Service Bus (ESB), bus is the backbone of the sagas, subscriptions,
sending of messages, timeouts, and gateways. For NServiceBus, the bus interface
is IBus. Knowing your IBus is the most important part of NServiceBus.

In this chapter, we will cover the following topics:

* The basics of IBus, including the different basic configurations

o

Config

[e]

Interfaces

o

Configure

* A basic walk-through of saga with NHibernate
Logging

* A more advanced NHibernate walk-through with saga

o

o

Message mutators
o

Encryption

* Services and deployment

Understanding the basics of IBus

Up to this point, it is assumed that you have been exposed to some of the examples

in the previous chapters. By now, we know that IBus orchestrates messages in various
queues, such as MSMQ), RabbitMQ, and ActiveMQ. Also, messages, sagas, gateways,
and timeouts can be stored in the memory; RavenDB; or various databases, specifically
SQL Server.

Knowing Your IBus

Many examples are available, and knowing a few basic examples will allow one to
understand almost all the examples; most are just variations of some of the same
code. Many of these samples are similar to that of Video Store examples. Here's just a
small breakdown of the various examples from https://github.com/Particular.
For instance, the source code of NServiceBus.Nhibernate can be found at https://
github.com/Particular/NServiceBus.Nhibernate. However, NServiceBus.
Nhibernate, which appears in the table, is taken from the https://github. com/
particular link. The X in the table means that the source code is part of the

original package.

Package Samples from Source from Nuget installers from
https://github. https://github. http://www.nuget.
com/Particular/ com/Particular/ org/packages/

SQL Server NServiceBus.SqlServer. NServiceBus. NServiceBus.SqlServer
Samples SqlServer

NHibernate NServiceBus. NServiceBus. NServiceBus.
Nhibernate.Samples Nhibernate NHibernate

MSMQ NServiceBus. MSMQ. X X
Samples

RabbitMQ NServiceBus.RabbitMQ. NServiceBus. NServiceBus.

Samples RabbitMQ RabbitMQ

ActiveMQ NServiceBus.ActiveMQ. NServiceBus. NServiceBus.
Samples ActiveMQ ActiveMQ

Azure NServiceBus.Azure. NServiceBus.Azure NServiceBus.Azure
Samples

Notifications NServiceBus. NServiceBus.

Notifications Notifications

IBus will take care of a lot of the mapping; for instance, the developer doesn't need to
provide the mapping from objects to tables for NHibernate or from objects to XML
to put into MSMQ. This saves you from a lot of work in developing ESB pieces.

The three main pieces that need to be understood with NServiceBus is IBus, which
includes the configurations in the app . config file, messages, and message handlers.
Knowing this breakdown helps with a lot of the basics. Also, queues and tables are
normally created by the namespace names of the applications, which NServiceBus
handles using the C# reflection. This basic knowledge is needed to understand sagas,
message handling, and persistence understanding.

[106]

https://github.com/Particular
https://github.com/Particular/NServiceBus.Nhibernate
https://github.com/Particular/NServiceBus.Nhibernate
https://github.com/Particular
https://github.com/Particular
https://github.com/Particular/
https://github.com/Particular/
https://github.com/Particular/
https://github.com/Particular/
http://www.nuget.org/packages/
http://www.nuget.org/packages/
https://docs.particular.net/Platform/samples
https://docs.particular.net/Platform/samples

Chapter 4

Configuring IBus

There are several parts to configuring IBus; let me reiterate that the configuration
relies on the app . config file, IBus, messages, and message handlers as a whole.

We will start with the configurations in the app . config file, where many pieces of
the code will come from https://github.com/Particular/NServiceBus/tree/

develop/src/NServiceBus.Core/Config.

Another valuable source to get some of this information is through the sources
on NServiceBus, such as http://www.nudoqg.org/#!/Packages/NServiceBus/

NServiceBus.Core.

In the following table, the app . config file will be referred to as "config", and IBus
will be referred to as "configuration". Here are some of the config sections that will
be defined in many of your app.config files:

Name Description Detailed link
AuditConfig This is the config section http://docs.
for the auditing feature particular.net/
nservicebus/
auditing-with-
nservicebus
GatewayConfig This is the config section http://docs.
for the gateway particular.net/
NServiceBus/the-
gateway-and-multi-
site-distribution
Logging This the section for http://docs.
logging the configuration =~ particular.net/
NServiceBus/logging-
in-nservicebus
MasterNodeConfig This is the configuration http://docs.

MessageEndpointMappings

section to hold the node
that is the master

This is a configuration
element that represents
which message types map
to which endpoint.

particular.net/
NServiceBus/load-
balancing-with-the-
distributor

http://docs.
particular.net/
nservicebus/how-
do-i-specify-to-
which-destination-a-
message-will-be-sent

[107]

https://github.com/Particular/NServiceBus/tree/develop/src/NServiceBus.Core/Config
https://github.com/Particular/NServiceBus/tree/develop/src/NServiceBus.Core/Config
http://www.nudoq.org/#!/Packages/NServiceBus/NServiceBus.Core
http://www.nudoq.org/#!/Packages/NServiceBus/NServiceBus.Core
http://docs.particular.net/nservicebus/auditing-with-nservicebus
http://docs.particular.net/nservicebus/auditing-with-nservicebus
http://docs.particular.net/nservicebus/auditing-with-nservicebus
http://docs.particular.net/nservicebus/auditing-with-nservicebus
http://docs.particular.net/nservicebus/auditing-with-nservicebus
http://docs.particular.net/NServiceBus/the-gateway-and-multi-site-distribution
http://docs.particular.net/NServiceBus/the-gateway-and-multi-site-distribution
http://docs.particular.net/NServiceBus/the-gateway-and-multi-site-distribution
http://docs.particular.net/NServiceBus/the-gateway-and-multi-site-distribution
http://docs.particular.net/NServiceBus/the-gateway-and-multi-site-distribution
http://docs.particular.net/NServiceBus/logging-in-nservicebus
http://docs.particular.net/NServiceBus/logging-in-nservicebus
http://docs.particular.net/NServiceBus/logging-in-nservicebus
http://docs.particular.net/NServiceBus/logging-in-nservicebus
http://docs.particular.net/NServiceBus/load-balancing-with-the-distributor
http://docs.particular.net/NServiceBus/load-balancing-with-the-distributor
http://docs.particular.net/NServiceBus/load-balancing-with-the-distributor
http://docs.particular.net/NServiceBus/load-balancing-with-the-distributor
http://docs.particular.net/NServiceBus/load-balancing-with-the-distributor
http://docs.particular.net/nservicebus/how-do-i-specify-to-which-destination-a-message-will-be-sent
http://docs.particular.net/nservicebus/how-do-i-specify-to-which-destination-a-message-will-be-sent
http://docs.particular.net/nservicebus/how-do-i-specify-to-which-destination-a-message-will-be-sent
http://docs.particular.net/nservicebus/how-do-i-specify-to-which-destination-a-message-will-be-sent
http://docs.particular.net/nservicebus/how-do-i-specify-to-which-destination-a-message-will-be-sent
http://docs.particular.net/nservicebus/how-do-i-specify-to-which-destination-a-message-will-be-sent

Knowing Your IBus

Name

Description

Detailed link

MessageForwardingInCase
OfFaultConfig

MsmqgMessageQueueConfig

MsmgqSubscriptionStorage

RijndaelEncryption

ServiceConfig

SecondLevelRetriesConfig

TransportConfig

UnicastBusConfig

This is the section for
message forwarding in
case of faulty config

This contains the
properties that represent
the MsmgMessageQueue
configuration section

This contains the
properties that

represent the
MsmgqSubscriptionStorage
configuration section.

The AES encryption
service

This is the section for
retrying multiple times
after error

This is a configuration
section for UnicastBus-
specific settings.

http://docs.
particular.net/
NServiceBus/
msmgtransportconfig

http://docs.
particular.net/
NServiceBus/
publish-subscribe-
configuration

http://docs.
particular.net/
NServiceBus/
encryption-sample

http://docs.
particular.net/
NServiceBus//second-
level-retries

http://docs.
particular.net/
NServiceBus/
msmgtransportconfig

http://docs.
particular.net/
NServiceBus/hosting-
nservicebus-in-your-
own-process

To view the different sections of the app . config file in the code, we can pull out the
configurations through the NSB code with something as simple as the following;:

namespace MyMessages

{

[Serializablel]

// Reading configurations from App configuration

UnicastBusConfig unicastBusCfg = Configure.GetConfigSection<UnicastBu

sConfigs () ;
Logging loggingCfg =

Configure.GetConfigSection<Loggings> () ;

[108]

http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/publish-subscribe-configuration
http://docs.particular.net/NServiceBus/publish-subscribe-configuration
http://docs.particular.net/NServiceBus/publish-subscribe-configuration
http://docs.particular.net/NServiceBus/publish-subscribe-configuration
http://docs.particular.net/NServiceBus/publish-subscribe-configuration
http://docs.particular.net/NServiceBus/encryption-sample
http://docs.particular.net/NServiceBus/encryption-sample
http://docs.particular.net/NServiceBus/encryption-sample
http://docs.particular.net/NServiceBus/encryption-sample
http://docs.particular.net/NServiceBus//second-level-retries
http://docs.particular.net/NServiceBus//second-level-retries
http://docs.particular.net/NServiceBus//second-level-retries
http://docs.particular.net/NServiceBus//second-level-retries
http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/msmqtransportconfig
http://docs.particular.net/NServiceBus/hosting-nservicebus-in-your-own-process
http://docs.particular.net/NServiceBus/hosting-nservicebus-in-your-own-process
http://docs.particular.net/NServiceBus/hosting-nservicebus-in-your-own-process
http://docs.particular.net/NServiceBus/hosting-nservicebus-in-your-own-process
http://docs.particular.net/NServiceBus/hosting-nservicebus-in-your-own-process

Chapter 4

TransportConfig transportCfg = Configure.GetConfigSection<Trans
portConfigs> () ;

SecondLevelRetriesConfig secondCfg = Configure.GetConfigSection<Second
LevelRetriesConfigs> () ;

AuditConfig auditCfg = Configure.GetConfigSection<AuditConfigs() ;

MsmgSubscriptionStorageConfig endpoinsCfg Configure.GetCon
figSection<MsmgSubscriptionStorageConfigs () ;

We can view the details in Visual Studio as we step through the code.

Name Walue
E| NserviceBus.Config.UnicastBusConfig
@ base {NServiceBus,Config.UnicastBusConfig} System.Configuration.ConfigurationSection {NServiceBus,Config. UnicastBusConfig}
DistributorControlAddress null string
J DistributorDatafddress null string
J ForwardReceivedMessagesTo "MyAudits" Q - string
J MessageEndpointMappings Count=3 MServiceBus.Config.MessageEndpointMappingCollection
TimeoutManagerAddress null string
TimeToBeReceivedOnForwardedMessages {00:00:00} System.TimeSpan

For instance, in the first line, we have a config object called UnicastBusConfig that
retrieves the settings that are configured either from the app . config file or the code.
The structure of UnicastBusConfig appears as follows:

Properties

Name Description

DistributorControlAddress Gets/sets the address for sending control messages to the distributor.

DistributorDataAddress Gets;.sets the.chstrlbutor s data address - used as the return address of messages sent
by this endpoint.

ForwardReceivedMessagesTo Gets/sets the address to which messages received will be forwarded.

MessageEndpointMappings Contains the mappings from message types (or groups of them) to endpoints.

TimeoutManagerAddress Gets/sets the address that the timeout manager will use to send and receive
messages.

TimeToBeReceivedOnForwardedMessages Gets/sets the time to be received set on forwarded messages

[109]

Knowing Your IBus

Inspecting a sample UnicastBusConfig, we can see that this section has three
mapping endpoints.

1
[os e B ouidawatcn =i
Setlogginglibrary.NLog(); =101
UnicastBusConfig unicastBusCfg = Configure.GetConfigSection<Unici I\ﬁguraﬁonSEcﬁon)(umasiBusCFg)) SectionInformation ﬂ
Logging loggingCfg = Configure.Get igsection<loggings(); Add Watch
TransportConfig transportCfg = Configure™aggConfigSection<Transp Value:
SecondLevelRetri] |Name Value Type ;I
i Fl @ unicastBusCfg {MServiceBus.Config.Unical NService
El @ base {MServiceBus.Config.Unica| System.(
@ base {NServiceBus.Config.Unica| System.(
erm.
J/ License this instance @ Non-Public members
NSE[EZ:::EEE;?;_EU—;Si:jtzzgzs icense\license.xml"); & DistributorControlAddres! null string
’ B " A ' ’ A DistributorDataAddress | null string
logger.Info("-------- MySaga Configure IBus------- "); K& ForwardReceivedMessage "MyAudits” A ~|string
El & MessageEndpointMappin Count = 3 NService
Configure.Mith() @ base Count =3 Sy.stem.ﬁ
.DefaultBuilder() // Autofac Default Container & AddElementName "add" Q | string
.UseTransport<Msmq>() // MSMQ, will create Queues, Defualt & ClearElementName | "clear” G, -| string
.Msmgsubscriptionstorage() // Create a subscription endpoint A CollectionType AddRemoveClearMap System.(
.UseNHibernateSagaPersister() A& Count 3 int
.UseNHibernateTimeoutPersister() & RemoveElementMame "remove” QA - string
.UnicastBus(); // Create the default unicast Bus @ Results View Expanding the Results View
K TimeoutManagerAddress| null string
& TimeToBeReceivedOnFor {00:00:00} System.1
logger.Info("-------- MySaga Saga Enabled-------- " LI
H Close | Help |
zl|

This is a reflection of what is being set in the app . config file and possibly any
settings that may exist in the code to direct the IBus config settings. In this sample,
we had three mapping endpoints in app . config. This is very useful in tracing how
IBus is intended to operate while debugging. When we view the config file, we see
three endpoints.

<UnicastBusConfig ForwardReceivedMessagesTo="MyAudits">
<MessageEndpointMappingss
<add Endpoint="AppForApproversLevell
<add Endpoint="AppForfpproversLevel2” Messages="MyMessages.SclicitApprovalFromLevel2Command, MyMessages" />
<add Endpoint="AppForAccountingDept"” Messages="MyMessages.RecordEncumbranceCommand, MyMessages" />
</MessageEndpointMappings>
</UnicastBusConfig>

Messages="MyMessages.SolicitApprovalFromLevellCommand, MyMessages™ />

[110]

Chapter 4

Interface configurations

Instead of using the IBus' configuration, or app . config configuration, NSB can use
the Host configuration by extending the EndpointConfigclasses. These tables are
not to be all inclusive, but a starting point to understand the various pieces of IBus:

Name Description Detailed link

INeedInitialization Here, implementers will be http://docs.
called after NServiceBus. particular.net/
Configure. With completes NServiceBus/the-
and a container has been set. nservicebus-host

IWantToRunWhen Here, implementers http://docs.

ConfigurationlsComplete

IWantToRunWhenBus
StartsAndStops

are invoked when a
configuration is complete.
Also, implementers are
resolved from the container

and so have access to full DI.

In this interface, Start and
Stop implementers will be
invoked when the endpoint
starts up. A dependency
injection is provided for
these types.

particular.net/
NServiceBus/
profiles-for-
nservicbus-host

http://docs.
particular.net/
NServiceBus/
scheduling-with-
nservicebus

We have the addition of the following interfaces defined at the root of the

NServiceBus code:

Name

Description

Detailed link

IConfigureThisEndpoint

This indicates that the

implementing class will specify the

configuration.

http://docs.
particular.net/
NServiceBus/the-
nservicebus-host

http://docs.
particular.net/
NServiceBus/how-
to-specify-your-
input-queue-name

[111]

http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/profiles-for-nservicbus-host
http://docs.particular.net/NServiceBus/profiles-for-nservicbus-host
http://docs.particular.net/NServiceBus/profiles-for-nservicbus-host
http://docs.particular.net/NServiceBus/profiles-for-nservicbus-host
http://docs.particular.net/NServiceBus/profiles-for-nservicbus-host
http://docs.particular.net/NServiceBus/scheduling-with-nservicebus
http://docs.particular.net/NServiceBus/scheduling-with-nservicebus
http://docs.particular.net/NServiceBus/scheduling-with-nservicebus
http://docs.particular.net/NServiceBus/scheduling-with-nservicebus
http://docs.particular.net/NServiceBus/scheduling-with-nservicebus
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/how-to-specify-your-input-queue-name
http://docs.particular.net/NServiceBus/how-to-specify-your-input-queue-name
http://docs.particular.net/NServiceBus/how-to-specify-your-input-queue-name
http://docs.particular.net/NServiceBus/how-to-specify-your-input-queue-name
http://docs.particular.net/NServiceBus/how-to-specify-your-input-queue-name

Knowing Your IBus

Name

Description

Detailed link

IWantCustomInitialization

IWantCustomLogging

IWantTheEndPointConfig

IWantToRunAtStartup

IWantToRunBefore
Configuration

If you want to specify your
own container or serializer,
implement this interface on
the class that implements
IConfigureThisEndpoint.
Implementers will be invoked
before the endpoint starts up.
A dependency injection is not
provided for these types.

If you want to specify your own
logging, implement this interface
on the class that implements
IConfigureThisEndpoint.

In this interface, implementers
will be provided with a reference
to IConfigureThisEndpoint,
and they must inherit either
IHandleProfile or
IWantCustomInitialization.

In this interface, implementers will
be invoked when the endpoint
starts up. A dependency injection
is provided for these types.

This interface indicates that this
class contains logic that needs
to be executed before other
configurations.

http://docs.
particular.net/
NServiceBus/the-
nservicebus-host

http://docs.
particular.net/
NServiceBus/the-
nservicebus-host

http://docs.
particular.net/
NServiceBus/
profiles-for-the-
nservicebus-host

http://docs.
particular.net/
NServiceBus/
NServiceBus-Step-
by-Step-Guide
http://docs.
particular.net/
NServiceBus/how-
do-i-centralize-
all-unobtrusive-
declarations

[112]

http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/the-nservicebus-host
http://docs.particular.net/NServiceBus/profiles-for-the-nservicebus-host
http://docs.particular.net/NServiceBus/profiles-for-the-nservicebus-host
http://docs.particular.net/NServiceBus/profiles-for-the-nservicebus-host
http://docs.particular.net/NServiceBus/profiles-for-the-nservicebus-host
http://docs.particular.net/NServiceBus/profiles-for-the-nservicebus-host
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/how-do-i-centralize-all-unobtrusive-declarations
http://docs.particular.net/NServiceBus/how-do-i-centralize-all-unobtrusive-declarations
http://docs.particular.net/NServiceBus/how-do-i-centralize-all-unobtrusive-declarations
http://docs.particular.net/NServiceBus/how-do-i-centralize-all-unobtrusive-declarations
http://docs.particular.net/NServiceBus/how-do-i-centralize-all-unobtrusive-declarations
http://docs.particular.net/NServiceBus/how-do-i-centralize-all-unobtrusive-declarations

Chapter 4

By adding NServiceBus.Hosting, we get the following roles:

Name Description Detailed link

AsA_Client This sets the class as a client http://docs.particular.net/
role. As a client, every time NServiceBus/NServiceBus-
it starts, it will do so with a Step-by-Step-Guide
new material.

AsA_Publisher This is the same as AsA_ http://docs.particular.

Server but subscriptions need net/NServiceBus//publish-
to be set. As a server, it is fault subscribe-sample

tolerant and holds a message

for continuous use.

AsA_Server This sets the class as a http://docs.particular.net/
server role. NServiceBus/NServiceBus-
Step-by-Step-Guide

Most of the examples will have an EndpointConfig.cs file that will define IBus
with the endpoint of the application. Here's an example from the MySaga project
in EndpointConfig.cs that is defining an endpoint and configuring IBus:

namespace MySaga
public class EndpointConfig : IConfigureThisEndpoint, AsA_Server, IWantCustomInitialization, IWantToRunWhenBusStartsAndStops
{
private static Logger logger = LogManager.@etCurrentClasslogger();

public void Tnit(}|

1

In this example, a MySaga endpoint will be created as a server via AsA_Server.
It will have to implement the overwritten functions' start () and Stop ()
functionalities due to IWant ToRunWhenBusStartsaAndStops. We will use this
class to configure the endpoint, and since we did not explicitly configure and
name the endpoint in IBus, the namespace MySaga will be used because of
IConfigureThisEndpoint. This class will have an Init () function to define
IBus because of the use of IWantCustomInitialization; otherwise, an IBus
will be created with the default values and app.config.

[113]

http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus//publish-subscribe-sample
http://docs.particular.net/NServiceBus//publish-subscribe-sample
http://docs.particular.net/NServiceBus//publish-subscribe-sample
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide
http://docs.particular.net/NServiceBus/NServiceBus-Step-by-Step-Guide

Knowing Your IBus

Using the Fluent Configure.With()

There are many configuration settings for IBus. We will be discussing several of them
as they relate to sagas and persisters. There are too many different configurations

to discuss in

their entirety and many are not used in most common configurations.

NSB can be explicitly configured to accommodate many, many situations. For a
more complete listing of some of the configurations, as far as available functions are

concerned, p

lease refer to http://www.nudoq.org/#!/Packages/NServiceBus/

NServiceBus.Core/Configure

1. Let's

start by breaking down a sample IBus configuration:

Confi

MsmqSubscriptionStorage() // Create a subscription endpoint
.UseNHibernateSagaPersister() // WHibernate Saga
.UseNHibernateTimeoutPersister() // NHibernate Timeout
UnicastBus(); // Create the default unicast Bus

gure.With()
DefaultBuilder()} // Autofac Default Container
UseTransport<Msmg>(} // M5MQ, will create Queues, Defualt

2. For IBus, the first piece to define is the [oC, we have to set the container,

http

o

o

://docs.particular.net/NServiceBus/containers:
DefaultBuilder (): This is the default Autofac

NinjectBuilder (): This is the most popular C# IoC container
found at http://www.ninject.org/

StructureMapBuilder (): This can be found at
http://docs.structuremap.net/

UnityBuilder (): This can be found at http://unity.codeplex.com/
SpringBuilder (): This can be found at http://www.spring.net/

CastleWindsorBuilder (): This can be found at
http://www.castleproject.org/

AutofacBuilder (): This can be found at
http://code.google.com/p/autofac/

3. We have to ensure that the proper reference is installed; for instance,
NHibernate.Unity must be installed to use UnityBuilder.

[114]

http://www.nudoq.org/#!/Packages/NServiceBus/NServiceBus.Core/Configure
http://www.nudoq.org/#!/Packages/NServiceBus/NServiceBus.Core/Configure
http://docs.particular.net/NServiceBus/containers
http://www.ninject.org/
http://docs.structuremap.net/
http://unity.codeplex.com/
http://www.spring.net/
http://www.castleproject.org/
http://code.google.com/p/autofac/

Chapter 4

4. Next, we want to ensure that the serialization is set. By default, XML
serialization is used. In Version 4.0, the serialization is set in front of
the IBus' configuration, Configure.With().

public wvoid Imit()
{
Configure.Serialization.Xml(};// or BinarySerializer()
Configure.with()}
.CastlewindsorBuilder()};
T

By default, IBus uses the XML serialization, but it could be set directly by using
the following:

public class EndpointConfig : IConfigureThisEndpoint, AsA_Server, IWantCustomInitialization

{
public void Init()

{
Configure.Serialization.Xml();// or BinarySerializer()
Configure.With()
.CastleWindsorBuilder();
3

The options for the IBus serialization are as follows:

* XmlSerialization: This is set by default, and it serializes data into an
XML form.

* BinarySerialization: This is a serialization in binary form.

* BsonSerialization: This is a serialization for binary-encoded serialization for
JSON-like documents; for more information, refer to http://codebetter.
com/karlseguin/2010/03/05/bson-serialization/.

* JsonSerialization: This is a JavaScript Object Notation (JSON) format; for
more information, refer to http://msdn.microsoft.com/en-us/library/
bb410770%28v=vs.110%29.aspx.

[115]

http://codebetter.com/karlseguin/2010/03/05/bson-serialization/
http://codebetter.com/karlseguin/2010/03/05/bson-serialization/
http://msdn.microsoft.com/en-us/library/bb410770%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/bb410770%28v=vs.110%29.aspx

Knowing Your IBus

The transport storage

We need to set the transport information using the .UseTransport () configured
portion of the IBus. This will be the transportation method that will be followed
across the bus, and remember that the endpoints that you want to communicate
together must all communicate across the transport method. In other words, a
message on MSMQ and message in SQL will not see each other. An example is
already given previously, but here are some of the following choices:

* UseTransport<Msmg>: You can use MSMQ transport for messages.

* TUseTransport<SqglServers: You can use a SglServer table to
queue messages.

* UseTransport<ActiveMQ>: You can use ActiveMQ to queue messages.
* UseTransport<RabbitMQ>: You can use RabbitMQ to queue messages.

®* UseTransport<AzureServiceBuss>: You can use Azure ServiceBus;
see http://docs.particular.net/NServiceBus/windows-azure-
transport. A sample of this is found at https://github.com/Particular/
NServiceBus.Azure.Samples.

* UseTransport<AzureStorageQueue>: You can use Azure queues;
see http://docs.particular.net/NServiceBus/windows-azure-
transport. A sample of this is found at https://github.com/Particular/
NServiceBus.Azure.Samples.

The saga persister

The saga persister is where the saga message data will be saved. It is just data, but it
is handled like a message in many cases. When setting up saga data, we have a few
choices on whether to save it to a database or not, and there are many databases that
NHibernate will support. By default, the RavenDB database will be used. Here are
some of the saga persister choices:

* UseNHibernateSagaPersister (): You can use NHiberntae based on the
connection string in app . config to store the saga instance

* UseInMemorySagaPersister (): You can use volatile memory storage to
store the saga instance

* RavenSagaPersister (): You can use RavenDB to store the saga instance

[116]

http://docs.particular.net/NServiceBus/windows-azure-transport
http://docs.particular.net/NServiceBus/windows-azure-transport
https://github.com/Particular/NServiceBus.Azure.Samples
https://github.com/Particular/NServiceBus.Azure.Samples
http://docs.particular.net/NServiceBus/windows-azure-transport
http://docs.particular.net/NServiceBus/windows-azure-transport
https://github.com/Particular/NServiceBus.Azure.Samples
https://github.com/Particular/NServiceBus.Azure.Samples

Chapter 4

The timeout persister

The procedure to set up a timeout persister can be found in many documents, such
as the saga documentation at http: //docs.particular.net/NServiceBus/sagas-
in-nservicebus. When designing a saga message handler, the timeout creation is
entered early on in the functions to ensure that any code beforehand is not a concern.
For example, we are setting up the saga timeout code; while doing this, the creation
code will create a timeout message, say of 60 seconds, and the question that will
remain is where the timer and timeout messaging code will be saved. If it is in the
memory, and obviously if the system is rebooted and the application shuts down, it
is no longer persisted as it was in memory. Many NSB services are designed in a way
that when a server is completely rebooted and the services are restarted, they would
start from where they had left off, including timeouts that would still be running in
sagas. For this reason, the timeout messaging has to be persisted to a database, thus
enters RavenDB and the NHibernate interface of databases for the timeout persister.
By default, the RavenDB database will be used. Here are a few variations on how the
timeout message can be persisted as it is timing down:

* UseNHibernateTimeoutPersister (): Using the implementation of the
NHibernate package for Timeout Manager

* UseInMemoryTimeoutPersister (): Using the volatile local memory to
store Timeout Manager

* UseRavenTimeoutPersister (): Using RavenDB to store Timeout Manager

* DisableTimeoutManager (): As Timeout Manager is on by default for server
roles, use this method to turn off Timeout Manager

The gateway persister

Another persister for NServiceBus is the gateway pieces of NSB; see http://docs.
particular.net/NServiceBus/the-gateway-and-multi-site-distribution.
An instance of a gateway example can be found at https://github.com/
Particular/NServiceBus.Msmq.Samples. The persister will keep track of
message IDs for duplication. Some persisters that are offered are as follows:

* UseRavenGatewayPersister (): This uses the RavenDB message persistence
via the gateway.

* UseRavenGatewayDeduplication (): This uses RavenDB for message
deduplication via the gateway.

* RunGateway (): This is used as a configuration to run the gateway. By default,
a gateway will use RavenPersistence (see the GatewayDefaults class).

[117]

http://docs.particular.net/NServiceBus/sagas-in-nservicebus
http://docs.particular.net/NServiceBus/sagas-in-nservicebus
http://docs.particular.net/NServiceBus/the-gateway-and-multi-site-distribution
http://docs.particular.net/NServiceBus/the-gateway-and-multi-site-distribution
https://github.com/Particular/NServiceBus.Msmq.Samples
https://github.com/Particular/NServiceBus.Msmq.Samples

Knowing Your IBus

* UseInMemoryGatewayPersister (): This uses the in-memory and volatile
message persistence via the gateway.

* UseInMemoryGatewayDeduplication (): This uses an in-memory message
deduplication for the gateway.

* UseNHibernateGatewayPersister (): This configuration will use the
NHibernate framework to persist the NSB gateway data.

* DisableGateway (): The gateway is turned on by default for the master role.
Call the DisableGateway () method to turn the gateway off.

By default, the RavenDB database will be used.

The subscription storage

The subscription storage is an IBus configuration to set where the subscription
metadata information will reside. It will define the subscription endpoint information
in publish/subscribe. The subscription storage keeps track of publish/subscribe
endpoint information. More information on subscription storage can be found at
http://docs.particular.net/NServiceBus/publish-subscibe-configuration.
This is not the messaging process itself, that is, the publisher message being sent and
saved, because that will be the transport setting, but this is the information saved for
NSB saying that specific messages are sent and received by each subscription endpoint.
Without this information, subscription message routing will not work, but the host
programs will normally set these settings when they are started by default. Again,
RavenDB stores the data by default. However, these persisters are also available:

* RavenSubscriptionStorage (): Uses subscription storage using RavenDB
* MsmgSubscriptionStorage (): Uses subscription storage using MSMQ

* UseNHibernateSubscriptionPersister (): Uses subscription storage
using NHibernate; see http://docs.particular.net/NServiceBus/
relational-persistence-using-nhibernate—nservicebus-4.x

* InMemorySubscriptionStorage (): Uses subscription storage in the local
memory, which is volatile

Finding more configuration settings

These are just some basic settings. Going through the settings and then adding on the
many other variations of configurations from sources such as Nudoq documentation
with the many different configurations, http://www.nudoq.org/#!/Packages/
NServiceBus/NServiceBus.Core/Configure, as an example defining the endpoint,
the various messages, and more, can seem overwhelming. NSB offers a lot of default
settings that are most commonly used.

[118]

http://docs.particular.net/NServiceBus/publish-subscibe-configuration
http://docs.particular.net/NServiceBus/relational-persistence-using-nhibernate-nservicebus-4.x
http://docs.particular.net/NServiceBus/relational-persistence-using-nhibernate-nservicebus-4.x
http://www.nudoq.org/#!/Packages/NServiceBus/NServiceBus.Core/Configure
http://www.nudoq.org/#!/Packages/NServiceBus/NServiceBus.Core/Configure

Chapter 4

NSB offers many common examples that could be used out of the box for many
designs. An easy way to learn is to take an MSMQ example, and if you wish to
learn RabbitMQ instead, just change the settings for RabbitMQ. The samples are

free and offer a great learning experience.

= ‘ nudog.org,

Home > NServiceBus [+

Extension Methods

Name

I defineendpointname

Most Visited v Linux Mint Community Forums Blog [iDownload [iDownload

Description

AddSystemMessagesAs

AsMasterNode
DefineEndpeointName

CustomiseRavenPersistence

DefaultBuilder

DefineCriticalErrorAction

DefineEndpointName

DefinelLocalAddressNameFunc

Add system messages convention

The callback is called for further custemising the Raven.Client.JDocumentStore.

into NServiceBus.Core.dll. In this version, the

Sets the function to be used when critical error occurs.

Sets the function that specified the name of this endpoint

a function that overrides the default naming of NServiceBus local addresses.

for more details.

DefiningCommandsAs e function to be used

ther a type is a commands.

the function to be used to evaluate w
s or not

ther a property should be sent via the
DefiningDataBusPropertiesAs ether a property should be sent via the

e function to be ysed to evalugte whether g property should be encrvpted or

Using saga and NHibernate

We will walk through a modified example of a basic saga, originally from
https://github.com/jkillingsworth/NServiceBus-BasicSagas. However,

this example has been modified to use NHibernate, which uses a local SQL Express
database. NHibernate was added using some of the steps from http://docs.
particular.net/nservicebus/relational-persistence-using-nhibernate.
We also added logging using the NLog framework to log the functionality as we go.
The NHibernate ORM framework was chosen because it can connect to a multitude
of different databases using the same code, the difference being to the different
databases is the connection string in the app . config file.

To elaborate on this Saga example, there is a MySaga program that directs the
messages using message handlers that creates new messages to send and respond
through the workflow. The saga object is persisting the message states to be used
during these message handlers. The saga persistence keeps track of the information
that we defined to be saved in a saga entity object. It is the state and session
information of the message that we deem relevant.

[119]

https://github.com/jkillingsworth/NServiceBus-BasicSagas
http://docs.particular.net/nservicebus/relational-persistence-using-nhibernate
http://docs.particular.net/nservicebus/relational-persistence-using-nhibernate

Knowing Your IBus

The saga acts as an anchor that we can persist as we orchestrate messages moving
across the bus. We can retrieve the instance of the saga associated with the message,
update it, and keep it stored, as even the original message morphs into different
types of messages. The following screenshot demonstrates this orchestration:

=1alx
MySaga

Descrption | Cost

tartedByMessage Subscr iptions Mo
AppForAppr
dEvent, MyM

okl
Sery iceBus. Uni piptions He
ptionManage ng AppForSubmitt:

Q0 t: e MyMessages . 1Re xpivedEvent, MyH
8.0, Culture-ncutral. PublicKeyToken-null

£5] Level 1 Approval
-

Description | Cost

1) Gets Requests

2) Created Saga from Requests
3) Created Approval Message
4) Sends Approval Message

In this application, we sent IAmStartedByMessages<SubmitRequestCommand> from
an AppSubmittingRequests application that is seen here as Purchase Order Requests.
It creates and submits SubmitRequestCommand that takes the data from this message
and creates a saga on the bus, along with a unique ID. It also sets a 60-second timer
that will send a timeout message from the bus once 60 seconds are over.

[120]

Chapter 4

public wvoid Handle(SubmitRequestCommand message)

1

logger.Info("-------- MySaga Handle------- + message);

RequestTimeout<TimecutMessage>(TimeSpan. FromSeconds (66) 1

Data.RequestId = message.Reques H

Data.Description = message.Description;

Data.Cost = message.Cost;

Data.RequiresfApprovalBylevell = message.Cost > 188.88m;
Data.RequiresApprovalBylevel? = message.Cost > 1888.88m;
Data.ApprovedBylevell = false;

Data.ApprovedBylevel2 = false;

ProcessApproval();

Then, it sends an approval that creates the level 1 approval, which is an application
called AppForApprovalsLevell. After the Approve or Deny button is selected, it
creates a new message that is sent back to the saga, and the saga handles the messages.
Depending on the return message, it will either call the THandleMessages<Approve
RequestCommand> Or IHandleMessages<DenyRequestCommand> handler. The saga
will be pulled up by the bus, as we had the mapping code in this example to map the
messages to RequestID.

public owverride woid ConfigureHowToFindSaga()

1

logger.Info("-------- Start MySaga ConfigureMapping------- B

JEEEEE

When the infrastructure is handling a message of the given type
this specifies which message property should be matched to

which saga entity property in the persistent saga store.

* EFEF S

ConfigureMapping<ipproveRequestCommand>(x =* x.RequestId).ToSaga(x =» x.ReguestId);
ConfigureMapping<DenyRequestCommand>(x => x.RequestId).ToSaga(x => x.ReguestId);

logger.Info("-------- End MySaga ConfigureMapping------- "N

[121]

Knowing Your IBus

We can pull up the saga that matches the message and routes it based on some
logic —in this case, the cost—or returns it to the originating client. The saga
may contain a huge part of the original message, so all of it doesn't need to be
propagated through messages.

public woid Handle(ApproveRequestCommand message)

1
logger.Info("-------- MySaga Handle------- + message);

if (message.fpprover == Approver.levell)

1
h

Data.ApprovedBylLevell = true}

if (message.fpprover == fpprover.level2)

1
h

Data.ApprovedBylevel2 = true;

Processfpproval();

¥

public wvoid Handle(DenyRequestCommand message)
i
logger.Info("-------- MySaga Handle------- + message);
var reply = new SubmitRequestReplyMessage
i
RequestId = Data.RequestId,
Approved = false

s

ReplyToOriginator(reply);
MarkAsComplete();

The saga is aware of its originator; it knows that it needs to match Request1d because
of the mapping, and the bus keeps an internal ID to keep all the sagas unique. All the
sagas must have the 1d, Originator, and OriginalMessageId fields that the bus will
use to keep track of the saga. Here, we also have a [Unique] attribute to ensure that
RequestId is kept unique to ensure that the map is made to return to the correct saga.

[122]

Chapter 4

public class PurchaseOrderRequestData : IContainSagaData
{
"F:-c:-c:-c
* gets/sets the Id of the process. Do NOT generate this walue in your code.
The walue of the Id will be generated automatically to provide the
best performance for saving in a database.
ES :-<:-c:-<‘lf
public wvirtual Guid Id { get; set; } // Required
‘,'HHH
* Contains the return address of the endpoint that caused the process to run.
ES :-<:-c:-<‘lf
public wvirtual string Originator { get; set; } //Required
‘,'HHH
* Contains the Id of the message which caused the saga to start.
This is needed so that when we reply to the Originator, any
registered callbacks will be fired correctly.

£ =<=<=-<‘,l

public wvirtual string OriginalMessageld { get; set; } //Required

[Unique]

public wirtual Guid RequestId { get; set; } // Unigque ID to lockup Request message
public wvirtual string Description { get; set; }

public wirtual decimal Cost { get; set; }

public wirtual bool RequiresApprovalBylewvell { get; set; }

public wirtual bool RequiresfpprovalBylevel2 { get; set; }

public virtual bool ApprovedBylLewell { get; set; }

public wirtual bool ApprovedBylewel2 { get; set; }

The EndpointConfig.cs file of the MySaga project contains the Init () method. This
function contains the initial configuration of the endpoint for the IBus. The endpoint
will default to the namespace of the project; for instance, in this case, MySaga will be
the endpoint as it is associated with the namespace.

namespace MySaga

public class EndpointConfig : IConfigureThisEndpoint, AsA Server, IWantCustomInitialization, IWantToRunWhenBusStartsAndSteps

{

private static Logger logger = LogManager.GetCurrentClassLogger();

public void Init()
{

However, you may explicitly define your endpoints on IBus with configure.
With () .DefineEndpointName ("MyEndpoint") ;, where MyEndpoint is the IBus'
endpoint to be defined.

[123]

Knowing Your IBus

As always, the NSB IBus will create the appropriate endpoints if defined correctly.
Here, we have it based on the different projects' namespaces in the solution. The
different projects are MySaga, AppforApprovalsLevell, AppforApprovalsLevel2,
AppForSubmittingRequests, and AppForAccountingDept. Note that NSB will
create them in lowercase and it will also create the appropriate timeout, error,

and audit queues.

£ MSMQ Commander (version 0.4, 11/3/2012)

Connect... Refresh W Auto refresh

[=l localhost

=] Private queues
myyerrors (0
myyaudits (3]
appforapproverslevel2 (1)
appforaccountingdept (0]
appforapproverslevell (0)
audit (3]
appforsubmittingrequests (0]
mysaga.subscriptions (3)
mysaga ()
mysaga.timeouts (1)
mysaga.timeoutsdispatcher (0]

[+ [F [EEEFEEE

We are going to configure IBus in the EndpointConfig. cs file, which in most cases
is where IBus will be configured to use saga and timeout persistence in NHibernate.

Configure.With()
.DefaultBuilder(} // Autofac Default Container
.UseTransport<Msmg>() // MSMQ, will create Queues, Defualt
.MsmgSubscriptionStorage() // Create a subscripticon endpoint
.UseNHibernateSagaPersister()
.UseNHibernateTimeoutPersister()
.UnicastBus(); // Create the default unicast Bus

[124]

Chapter 4

Defining NHibernate

NHibernate is configured in the app . config file for the Mysaga project to configure
the NHibernate interface to connect to the local SQL Express Server instance.

<!-- NHibernate Settings-->
<connectionstrings>
<add name="NServiceBus/Transpert™ connectionString="cacheSendConnection=true” /»

<add name="NServiceBus/Persistence” connectionString="Data Scurce=.\SQLEXPRES5;Initial Catalog=nservicebus;Integrated Security=True" />
</connectionStrings>

<!-- specify the other needed NHibernate settings like below in appSettings:--»>
<appSettings»>
<!-- dislect is defaulted to Ms5ql20@8Dialect, if needed change accordingly --»>
<add key="NServiceBus/Persistence/NHibernate/dialect” value="NHibernate.Dialect.Ms5ql2@888Dialect™ />
<!-- other optional settings examples -->
<add key="NServiceBus/Persistence/NHibernate/connection.provider” value="NHibernate.Connection.DriverConnectionProvider” />

<add key="NServiceBus/Persistence/NHibernate/connection.driver_class” value="NHibernate.Driver.5ql2e@sClientDriver” />
</appSettings>

Here, we can see the NServiceBus NHibernate connection strings and its app settings.
Now that we have NHibernate configured for NServiceBus, we can check SQL Server
after we start the sample solution. Once we start the solution, NServiceBus will create
the appropriate tables for saga and timeouts in the nservicebus database.

| Toad for SQL Server Freeware Viewer Tables nservicebus X[|

Mame I Columns I Creation Date

|LastU|:|dated IMcdiﬁmtion Date |M5_Descri|:|tior1 |Rcw Count

dbo.PurchaseOrderRequestlata 10| 3/5/2014 7:19:01 PM | {null} 3/5/2014 7:19:01 PM 1]
dbo. TimeoutEntity 3| 3/5/2014 7:1%:01 PM | {null} 3/5/2014 7:1%:01 PM a

We see the base saga that is normally created called containSagabata, which has 14,
Originator, and OriginalMessageId, to always be able to find the correct unique

saga instance; it also has the originator information to reply to the client that sent this
handler the message to start the saga.

[125]

Knowing Your IBus

It also created the PurchaseOrderRequestData saga where the table will match the
object. The object will appear as follows:

namespace MySaga
1
public class PurchaseOrderRequestData : IContainSagaData
1
Je
* @Gets/sets the Id of the process. Do NOT generate this value in your code.
The value of the Id will be generated automatically to provide the
best performance for saving in a database.
=
public virtual Guid Id { get; set; } // Required
JE
* Contains the return address of the endpoint that caused the process to run.
=
public virtual string Originator { get; set; } //Required
J
* Contains the Id of the message which caused the saga to start.
This is needed so that when we reply to the Originater, any
registered callbacks will be fired correctly.

= wwE

public virtual string OriginalMessageId { get; set; } //Required

[unique]

public virtual Guid RequestId { get; set; } // Unique ID to lookup Request message
public virtual string Description { get; set; }

public virtual decimal Cost { get; set; }

public wvirtual bocl RequiresApprovalBylewvell { get; set; }

public virtual boel RequiresApprovalBylevel2 { get; set; }

public virtual bocl ApprovedBylewell { get; set; }

public virtual beel ApprovedBylLewel2 { get; set; }

The saga database data

So, the database table associated with the object will look like the following:

roperties | Columns | Data | Statistics | Indexes | Constr

afeli=-s Rl | =

|Pos |Cdunr|Nane |Type

Cg 1/1d uniqueidentifien
I @ 2| Originator nvarchar(255)
I @ 3| CriginalMessageld nvarchar(255)
-%ﬂ 4| Requestld unigueidentifien
I i 5 | Description rivarchar(255)
Il &|Cost decmal(12, 5)
@ 7| RequiresApprovalByLevel1 | bit
:@ 3|RequiresApprovalByLevel2 | bit
I @ 9| ApprovedBylLevel1 bit

i 10 | ApprovedByLevel2 hit

[126]

Chapter 4

Note that we neither needed to create any mapping files to do any of the mappings
for NHibernate, nor create the table. We simply created the NSB configuration. NSB
created the tables and performed the mapping. Look, no need to do SQL.

Likewise, I have a timeout message as an object, as follows:

Uusing NservicebBus;

namespace Mysaga

1
public class hiwecutﬂessage : IMessage
{
}

¥

However, since IBus keeps extra information to keep track of the correct saga and
have IBus execute the timer separately from the current thread, there will be a lot
of extra information in its timeout table for IBus' use.

ks | Columns | Data | Statistics | Indexes |
=Rl EsE s

Fos ICqumn Mame IType |

=

0

= mir 1eider

Unigquelide er

2| Destination nvarchar(1024)
3 5agald uniqueidentifier
4| State varbinary (MAX)
5| Time datetime

6| CorrelationId nvarchar(1024)
7 Headers nvarchar (MAX)
3 | Endpoint nvarchar(440)

[127]

Knowing Your IBus

Logging

In this example, we also have to set the app . config file to use NLog. NServiceBus
will support the common logging frameworks, common logging, NLog, Log4Net,
and Serilog. Refer to http://docs.particular.net/NServiceBus/logging-in-
nservicebus for more information.

For NLog, we need to add the Nlog Nuget reference to the project.
& Properties
F References

=B Jesi,Collections

u-B Microsoft.CSharp
-0 MyMessages

N NHibernah;'/-—'
50 plog

-0 pMServiceBus

o8 ServiceBus, Core

o8 NServiceBus,Host

=B pServiceBus.NHibernate

-l System

u-B System, Configuration

u-B System.Data

-0 Syztem,Data.DatasetExtensions
-0 System,Xml

-0 System,¥ml.Ling

We need to set the logging levels and the location of where the logs are being sent to
in the app.config file.

<!-- NLOG --x
<nleg xmlns="http://www.nlog-preject.org/schemas/Niog.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance™>
<targets>
<target name="logfile" xsi:type="File™ fileName="c:\logs\basicSaga_%{shortdate}.log” layout="%${longdate} ${level} ${message}" />
<target name="console” wsi:type="Conscle™ />
<target wsi:type="EventLog™ name="event” layout="%{message}" source="MyProgram" eventId="555" log="Application™ />
</targets>
<rules>
<logger name="*" minLevel="Error" writeTo="event" />
<logger name="*" minLevel="Info" writeTo="censole" />
<logger name="*" minLevel="Trace"” writeTo="logfile" />
</rules>
</nlog>
<l-- NLOG -

[128]

http://docs.particular.net/NServiceBus/logging-in-nservicebus
http://docs.particular.net/NServiceBus/logging-in-nservicebus

Chapter 4

The app . config file is set using Nlog in the same way like most applications
do, the difference being that there needs to be a section name for NServiceBus
to use Nlog, for example, <section name="nlog" type="NLog.Config.
ConfigSectionHandler, NLog" /»;for a tutorial on NLog, please see
https://github.com/nlog/nlog/wiki/Tutorial. We also set the local
configuration using SetLoggingLibrary.NLog () ;.

private static Logger logger = LogManager.GetCurrentClassLogger();
public woid Init()
1

/! Log the Bus
setlogginglibrary.NLog();
logger.Info("-------- start------- "V

From the app. config file, we are saving a lot of traceable information daily in the
C:\logs\ directory while creating a new file with a filename of the date.

o
+ Computer + Local Disk (C:) - logs

Indude inlibrary + Share with + New folder

Name “ I Date modified | Type | Size |

|| basicSaga_2014-03-05 3/5/2014 7:55 PM Text Document T4KB

I8 basicsaga_2014-03-05 - Notepad

File Edit Format View Help

014-03-05 19:18:42.3793 1nfo ——————— AppForapproversLevell uUmity Container--------
2014-03-05 19:18:42.6254 Info -——————- AppForApproversLevell IBus Config-------—-

2014-03-05 19:18:42.7221 info ———————— AppForsubmittingRequests Unity-------

2014-03-05 19:18:42.8227 Info ---————- AppForsubmittingRequests Config IBUS STart-------
2014-03-05 19:18:43.3999 info - ——————— AppForaccountingbDept IBus Config start--------
2014-03-05 19:18:43.6411 Info --——————- AppForApproversLevel2 unity config--------

2014-03-05 19:18:43.7397 1Info -—-——--—- AppForapproversLevel? IBus config--------

2014-03-05 19:18:45.3764 Debug Number of types to scan: 1321

2014-03-05 19:18:45. 3764 Debug Default provider for infrastructure service NServiceBus.Automd
2014-03-05 19:18:45.6489 Debug Number of types to scan: 1323

Logging becomes a necessity when trying to document the internal happening of
messages, sagas, and persistence.

[129]

https://github.com/nlog/nlog/wiki/Tutorial

Knowing Your IBus

Buyer's remorse code walkthrough

We will walk through the sample for NHibernate that is found at https://github.
com/Particular/NServiceBus.NHibernate.Samples. The reason that we keep
choosing NHibernate for now is its ability to work with many different database
products, including SQL Server and MySQL. We have also walked through a
NHibernate example previously, so we are just extending those fundamental
concepts.

This example will use SQL Server to store subscriptions, sagas, and timeouts.
It will be a fictional video store with a web frontend, communicating with sagas
and message handlers as before.

First, we have an e-commerce endpoint implemented as an ASP.NET MVC4
application that uses the following:

iggested Sites [__| Web Slice Gallery |2} Most Visited

Particular

Welcome to NService Bus Video Store!

Select what videos you would like to watch

List of available NServiceBus videos

[T Intreduction to NServiceBus - Part |

i this 2-hour presentation, Uci Dahan covers the architectural ramifications of using a service bus, and how the Bus pattern differs from REC, as well as how to use the bas
one-way messaging, raquest/reply, publish/subscribe, and configuring NServiceBus

™ intreduction to NServiceBus - Part It

Continuation of Introduction to NServiceBus - Part

[Hidden NServiceBus Gems

Although NserviceBus has been around for a while, many developers are only familiar with the top-level public AP, Join Udi Dahan for a logk nto some of the lesser known

For Microsoft. AspNet.SignalR, see http: //www.asp.net/signalr to know
how to provide feedback to the user. SignalR allows you to have bidirectional
communication between the server and client. ASP.NET MVC4 will provide a
very generic home website to place orders for NServiceBus videos.

The MVC application will send MvcApplication.Bus. Send (command) ; to the
bus with a command that contains the order information.

When the application starts, an nservicebus table is created with tables for
ContainSagaData for IBus to store specific data that contains Id, Originator,
and OriginalMessageId we have discussed before.

[130]

https://github.com/Particular/NServiceBus.NHibernate.Samples
https://github.com/Particular/NServiceBus.NHibernate.Samples
http://www.asp.net/signalr

Chapter 4

2] viewer Table nservicebus, dbo. ContainSagaData X

roperties | Columns | Data | 5taﬁsﬁcs| Indexes| Constrai
el s N e B e RS

Fos |Col|..|mr1 Mame |Type IBaseTy
1|Id uniqueidentifier
2| Originator nvarchar{255)

3| OriginalMessageld | nvarchar(255)

There will also be the sagas themselves, such as an instance of Processordersaga
and a timeout record while it is saving ProcessOrdersSaga on IBus.

Mame | Row Count |
=[] Databases
=l ff:l nservicebus
=1 [Tables
B[dbo. ContainsagaData
(] dbo.ProcessOrderSaga
(] dbo.Subscription
(] dbo.TimeoutEntity

= e e

The timeout and sagas act as messages in the table because we set NHibernate from
the code in the following screenshot in InitializeNHibernatePersistence.cs. To
initialize the bus's sagas, timeouts, and subscriptions to NHibernate, this class needs
to be in all the applications. This is because you want the subscriptions of all the
applications to know the subscription definitions in order to transport the messages.

-Inamespace VideoStore.Sales
{
using NServiceBus;
- class InititalizeSubscriptionStorage : INeedInitialization
i
- public woid Init()
i
N3erviceBus.Configure.Instance
.UseNHibernateSubscriptionPersister() // subscription storage using NHibernate
JUseNHibernateTimeoutPersister() // Timeout Persistance using WHibernate
.UseNHibernateSagaPersister(); // Saga Persistance using NHibernate
i
1
1

[131]

Knowing Your IBus

The subscription information that will be saved in SQL Server will be in the
Subscription table to define the queues that are available for the messages to
be transported. We can see that the ClientBecamePrefered message will be
placed on the VideoStore.CustomerRelations queue.

Properties | Columns | Data | Statistics | Indexes | Constraints ‘ Triggers ‘ Partitions | Dependencies | Permissions | Extended Properties | Seript ‘

i

Q SubscriberEndpoint | Q MessageType | Wersion | TypeMame

I~

VideoStore, CustomerRelations @WIN-UAUT 16GPEQA | VideoStore,Messages,Events.ClientBecamePreferred, 1.0.0.0 | 1.0.0.0 | VideoStore,Messages.Events.ClientBecamePreferred

VideoStore, CustomerRelations @WIN-UAUT 16GPEQA | VideoStore,Messages.Events.OrderAccepted, 1.0.0.0 1.0.0.0 |VideoStore.Messages.Events.OrderAccepted
] VideoStore, ECommerce @WIN-UAUT 16GPEQA VideoStore.Messages.Events.DownloadlsReady, 1.0.0.0 1.0.0.0 | VideoStore.Messages.Events.DownloadlsReady
] VideoStore ECommerce @WIN-UAUT 16GPEQA YideoStore,Messages,Events.OrderCancelled, 1.0.0.0 1.0.0.0 |VideoStore,Messages.Events.OrderCancelled
: VideoStore, ECommerce @WIN-UAUT 16GPEQA VideoStore,Messages.Events.OrderPlaced, 1.0.0.0 1.0.0.0 |VideoStore.Messages.Events.OrderPlaced

Now, to be clear, the preceding screenshot contains the message subscription's
definition that defines in which queues the messages will be transported to;
additionally, since we have not defined many other variables previously, we know
that IBus will use DafaultBuilder (), XML serialization, and MSMQ transportation
by default. If we want to use SQL Server as our method of transportation, then we
will have to use the definition, UseTransport<SglServers. The https://github.
com/Particular/NServiceBus.SqglServer link will demonstrate queuing across
SQL Server.

As always, it is important to check out what the saga is doing. The saga will be
located in the Videostore.Sales project. This code may start to look very similar to
the previous BasicSaga code, but as with most of ESB, it works in the same pattern
and only adds minor differences. Here, we will be mapping SubmitoOrder and
CancelOrder to the saga through 0rderNumber. This is to look up the saga at a later
time by its unique OrderNumber that will keep the messages' mapping to the correct
saga instance. Notice that when the saga is started by the IAmStartedByMessages<
SubmitOrder> message handler, we start the timer; 20 seconds will be persisted to
SQL Server after the end of this function call. We save the message information —
specifically the uniqueness of the saga—and call 0rderNumber and any information
that we wish to save additionally, then off it goes to SQL Server to be grabbed later
from the cancelorder or SubmitOrder messages. This saga will be mostly used for
a buyer's remorse period of 20 seconds to return to the order information and then
publish it to process it if the user doesn't cancel it within 20 seconds.

[132]

https://github.com/Particular/NServiceBus.SqlServer
https://github.com/Particular/NServiceBus.SqlServer

Chapter 4

*¢ VideoStore., Sales. ProcessCOrderSaga ~ @ Timeout(BuyersRemorsels
public class ProcessOrderSaga : Saga<ProcessOrderSaga.OrderDatas,
IAmStartedByMessages<SubmitOrders,
IHandleMessages<CancelOrders,
= IHandleTimeouts<ProcessOrderSaga.BuyersRemorselsOvers

* Configure how to find a daga by OrderNumber
* for CancelOrder and SubmitOrder

= public everride void ConfigureHowTeFindSaga()

{
ConfigureMapping<SubmitOrder>(m => m.OrderNumber)
.ToSaga(s =» s.OrderNumber);
ConfigureMapping<CancelOrder>(m => m.OrderNumber)
.ToSaga(s =» s.OrderNumber);
¥

It
* Saga Starter, save to Saga Data

* Start a 20 second timer

PR

= public wvoid Handle(SubmitOrder message)

1
if (DebugFlagMutator.Debug)

Debugger.Break();
h

Data.0OrderNumber = message.OrderNumber;
Data.VideoIds = message.VideoIds;
Data.ClientId = message.ClientId;

RequestTimeout(TimeSpan.FromSeconds(2@), new BuyersRemorseIlsOver())s
Console.Out.WriteLline("Starting cool down period for order #{@}.", Data.OrderNumber);

After the timeout period has elapsed, a BuyersRemorseIsover object will be sent to
the message handler of the timeout through the THandleTimeouts<ProcessOrders
aga.BuyersRemorseIsOvers> interface. Because this is part of the original saga, the
saga will be pulled in as the data object.

The public void Timeout (BuyersRemorseIsOver state) function will be called to
handle the message and a new OrderAccepted message will be created and populated
from the saga instance, while the saga is being cleaned up. The 0rderAccepted
message will be published to the next endpoints for processing.

[133]

Knowing Your IBus

This seems like there is a lot of work, but as always, NserviceBus handles it using
just a few lines of code.

“z VideoStore.Sales. ProcessOrderSaga - @ Timeout(BuyersRemorselsOver state]

e
* Handle the Timeout

* Publish that the order was accepted
because the buyer remorse period was overd
Delete the Saga for cleanup

* wExE

= public void Timeout(BuyersRemorseIsOver state)

if (DebugFlagMutator.Debug)
{

}

Debugger.Break();

Bus.Publish<Orderfccepteds(e =>

e.0rderNumber = Data.OrderNumber;
e.VideoIds = Data.VideoIds;
e.ClientId = Data.ClientId;

H
// Delete the Saga
MarkasComplete();
Console.Out.WriteLine("Cooling down period for order #{@} has elapsed.”, Data.OrderNumber);

What the user will see is the timing out of the order at the bottom. This is their chance
to cancel the order if they change their mind, as it is in a pending state.

[T Who needs a service bus anyway?

Although Enterprise Service Buses have been used in many larger companies, small and medium enterprises have often been put off by the high cost of thes
we're seeing more open-source service buses gaining popularity and many developers are beginning to get curious - what would 1 use it for? Join Udi to get {
with NServiceBus

Place Order |

™ Tick this box if you want to debug the code behind. We have placed breakpoints in specific places in the code to help you out become f
the NServiceBus way of doing things!

List of orders Orders Received

Video(s)
Once you place an order, you have 20 secs to cancel it.

No orders received yet

Video(s) Status

1 Who needs a service bus anyway? Pending

[134]

Chapter 4

If the Cancel button isn't clicked, the timer will timeout and create a new message
from a saga instance to publish a successful order; then, the saga will be cleaned up
after the order is published. If Cancel isn't clicked, we will clean up the saga first and
then publish the ordercancelled message.

eoStore.Sales. ProcessOrderSaga - 1 Handl
P
* handle the CancelOrder message
P—
public woid handle([aﬂ:eli’de* message)
1
if (DebugFlagMutator.Debug)
1
Debugger.Break();
b
// Cleanup SAGA
MarkAsComplete();
Bus.Publish({Bus.CreateInstance<OrderCancelled>{o =>
i
o.0rderNumber = message.OrderNumber;
0.ClientId = message.ClientId;
1);
Console.Out.WriteLine("Order #{8} was cancelled.", message.OrderfNumber});
¥

Where are these messages published? By looking at the subscriptions table
previously in SQL Server, we can see the map of the queues. See the previous
picture, but it just shows the following;:

® VideoStore.Messages.Events.OrderAccepted: VideoStore.
ContentManagement@MachineName (just the local machine name)

® VideoStore.Messages.Events.OrderAccepted: VideoStore.
CustomerRelation@MachineName

® VideoStore.Messages.Events.OrderCancelled: VideoStore.ECommerce@
MachineName

[135]

Knowing Your IBus

If you have a look at MSMQ, you'll see that the messages for orderCancelled are
placed on videoStore.ContentManagement and VideoStore.CustomerRelation.

= . MSMQ Commander (version 0.4, 11/3/2012) =] S
Connect... Refresh v Auto refresh
(Queues > videostore.customerrelations videostore.contentmanagement ¥ X
= localhost)
[=] Private queues el SeriilnG 1d
audit (42) 2014-03-05 17:49:42.000 5c35bbf9-37c8-46h2-a7ab-fal3c
error (0)
mysaga (0]
mysaga.timeouts (0)
mysaga.timeoutsdispatcher (0

videostore.sales.timeouts (1)
videostore.sales.timeoutsdispatcher (0]
videostore.operations (0}
videostore.sales.retries (0)
videostore.contentmanagement.imeouts (0]
videostore.customerrelations.timeouts (0]
videostore.operations.timeouts (0]
videostore.contentmanagement.imeoutsdispatcher (0)
videostore.customerrelations.timeoutsdispatcher (0]
videostore.operations.timeoutsdispatcher (0]
videostore.contentmanagement.retries (0)
videostore.customerrelations.retries (0]
videostore.operations.retries (0)
videostore.ecommerce ()
videostore.ecommerce.timeouts (0)
videostore.ecommerce.timeoutsdispatcher (0)
[videostore.customerrelations (1)

Journal (0)
videostore.sales (0)
videostore.contentmanagement (1)
videostore.ecommerce.retries (0)

Body | Queues | Time | Flags |

Size: 366 bytes

<7xml version="1.0" 7>

<Messages xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”™
xmins:xsd="http://www.w3.0org/2001/XML5chema" xmins="http://
tempuri.net/VideoStore.Messages.Events">

<Orderfccepted>

<OrderMumber>1</0rderNumber>

<Videolds>

<String=nead</String >

< \ideolds>

< Clientld > 1da555ee-bd3e-4f14-b175-cfa7372acd1c</Clientld>
<Orderdccepted>

< [Messages>

The customer relations application can then send coupons and special offers to the
customer, and the content management application returns a link to be clicked on
to download the video.

[136]

Chapter 4

Orders Received

it Video(s)

1 Who needs a service bus anyway?

There are various pieces that could be added, and we would have gone into a

lot more detail, but this is just to give you some understanding of the interaction
between ESB and NHibernate. The messages can be observed and the endpoints,
saga, and timeouts can be instrumented. Conditions can be added to the sagas and
messages for errors beyond the default error queue that messages will be returned
to if there are exceptions. There are many, many possibilities to extend this sample.

Message mutators

There was also a very handy utility to debug and watch this application get
embedded into the ESB and messaging itself. Refer to a checkbox that appears
at the bottom of the homepage, as follows:

Place Order |

[¥l Tick this box if you want to debug the code behind. We have placed breakpoints in specific places in the code to help you out become familiar with
the NServiceBus way of doing things!

[137]

Knowing Your IBus

Checking this checkbox will allow breakpoints to be executed at the bebugger.

Break () function.

VideoStore, CustomerRelations, Order AcceptedHandler

—Inamespace VideoStore.CustomerRelations
1
- using System;
using System.Diagnostics;
using Messages.Events;
using NserviceBus;
using VideoStore.Common;

1
public TBus Bus { get; set; }
- public woid Handle(OrderAccepted message)
1
if (DebugFlagMutator.Debug)
1
Debugger.Break();

- class OrderfcceptedHandler : IHandleMessages<Orderfccepteds>

The class that is created in these samples is called DebugFlagMutator.cs that will

incorporate the IMutateTransportMessage interface.

[EER DMl e N Ge I ErdpointConfig.cs & InitizlizeMHibernatePersistence.cs & ProvisionDownloadHandler.cs & ProvisionDownloadR.esponseHan:
IdeaStore. Commen. DebugFlagMutator ~ M Debug
Finamespace VideoStore.Common
{
= using System;
using System.Threading;
using NServiceBus;
using NServiceBus.MessageMutator;
= public class DebugFlagMutator : IMutateTransportMessages, INeedInitialization
i
public static boel Debug { get { return debug.value; } }
= public veid MutateIncoming(TransportMessage transportMessage)
{
var debugFlag = transportMessage.Headers.ContainsKey("Debug") ? transportMessage.Headers["Debug”] : "false";
if (debugFlag !=null && debugFlag.Equals("true”, StringComparison.OrdinallgnoreCase))
debug.value = true;
}
else
1
debug.Value = false;
¥
}

[138]

Chapter 4

This class will use the interface IMutateTransportMessage as a message mutator.
For more on message mutators, see http://docs.particular.net/NServiceBus/
nservicebus-message-mutators-sample. Message mutators can change the
message as it goes to and from the endpoint in transient. This happens in the
transport header in most cases, without it affecting the rest of the message

needed by the message handler.

Encryption

Also, please note that there are Rijndael Encryption configurations in the videoStore.
ECommerce project. In the Global . asax file, there is a confirmation according to which
RijndaelEncryptionService can run on the bus:

protected void Application_Start()
1
startableBus = Configure.With()

.DefaultBuilder()
.LogaNet(new Debugfppender {Threshold = Level.Warn})
MseTransport<tismgz()
.PurgeOnStartup(true)
JnicastBus()
.RunHandlersUnderIncomingPrincipal(false)
.RijndaelEncryptionService()
.UseNHibernateTimeoutPersister()
CreateBus();

Configure.Instance.ForInstallationOn<Windows>().Install();

bus = startableBus.Start();

ation.RegisterAllAreas();
ig.RegisterGlobalFilters{GlobalFilters.Filters);
ig.RegisterRoutes(RouteTable.Routes);

[139]

http://docs.particular.net/NServiceBus/nservicebus-message-mutators-sample
http://docs.particular.net/NServiceBus/nservicebus-message-mutators-sample

Knowing Your IBus

The submitorder message will have all the fields that start with the Encrypted word
as defined in the UnobtrusiveMessageConventions.cs file via the .DefiningEnc
ryptedPropertiesAs (p => p.Name.StartsWith ("Encrypted")); configuration.
This will encrypt the fields that start with Encrypted.

public class SubmitOrder
1
public int OrderNumber { get; set; }
public string[] VideoIds { get; set; }
public string ClientId { get; set; }
public string EncryptedCreditCardNumber { get; set; }
public string EncryptedExpirationDate { get; set; }
h

We can verify this from the message being transported if the message has the
encrypted values for credit card and expiration date:

videostore.operations [0 I
videostore.sales.retries (0])
videostore.contentmanagement.timecuts (0) Body | Queues I Time I Flags I
videostore.customerrelations.timeouts (0))
videostore.operations.timeouts (0) Size: 590 bytes
v?d eostore.contentmana gem er_lt.timeoqudispatch er <7l version="1.0" 7=
videostore.customerrelations.timeoutsd |spa‘t‘ch er b, < Messages xmins:xsi="http://www.w3.0rg/2001/¥MLSchema-instance”
\'!d eostore.operations.timeo utsdlspa_tch E[\('- 1 xmins:xsd="http://wwaw.w3.0rg/2001/XMLS chema" xmins="http://tempuri.nat/
+ !d eostore.contentmana gem ent. r_etn es (0) VideoStore.Messages. Commands™>
!d eostore.customerreIathns.__re!rles (o) <SubmitOrders
videostare.operations.retries (1) <OrderNumber>1</Orderiumbers
Bl wdeostore.e::q_mmerce (0) <Videolds>
Journal (0) o «String>nesd</String>
videostore.ecommerce.timeouts (0) o <[Videolds
videostore.ecommerce.timeoutsdispatcher (0 <Clientld >b42bf613-80ee-4707-9243-be427fb122eb=(Clientld>
w_d eostore.ecomrp erce.retries (0) <EncryptedCreditCardiumber>
&1 videostore.sales (1) +T0eIQpHLIom4hcXUdX7516nE1 1DGGENUSXRUNEzgnE=@4t30Q5/qihSUf
. Journal (D) . . WaNkKbnbXw==</EncryptedCreditCardMumber=
videostore.sales.timeouts (0) <EncryptedExpirationDate >WOCYENKbuRDVzHjPX8X0sg==@wi1FREAWh/RPEDS/
Eaudit (7) PIgWiXGA==</EncryptedExpirationDate>
~ Journal (0) . . </SubmitOrder>
videostore.customerrelations (0) <[Messages>
videostore.contentmanagement (0)

Services and deployment

Many of the programs that we have shown in the examples thus far have been console
applications that generally don't run in production.

There is a framework that is embedded in a lot of NserviceBus code called Topshelf;
see http://topshelf-project.com for the Topshelf website. TopShelf is a
framework used to build Windows services.

[140]

http://topshelf-project.com

Chapter 4

To deploy NServiceBus, a command script in Windows can be written to deploy
the application via the NServiceBys.Host .exe command from NServiceBus; refer
to http://docs.particular.net/NServiceBus/the-nservicebus-host. To see
what the available installations are, simply run NServiceBus.Host.exe /2.

[+ Administrator: Command Prompt) m] B3

C=“Program Files ¢(xB6>-Particular Software MServiceBus*wd_ 3 “Binaries>*NServiceBus
.Host.exe ~7
MN3erviceBus Endpoint Host Service

USAGE:
HEerviceBus Host.exe [-installl [optionsl
HEerviceBus _Host.exe [-uninstalll [options]

INSTALL OPTIONS:

—?. -h. -help Help about the command line options.

—install Install the endpoint as a Windows service.

—szerviceName=UALUE Specify the service name for the installed
service.

—displayName=UALUE Friendly name for the installed service.

—description=UALUE Description for the service.

—endpo intConf igurationT ype=UALUE

Specify the type implementing
IConfigureThisEndpoint that should be used.

—dependz0n=UALUE Specifies the names of services or groups which
must start before this service.

—sideBySide Install the service with the version included in
the service name. This allows running multiple
endpoints side hy side when doing hot
deployments.

—endpo intName =UALUE The name of this endpoint.

—uszernane=UALUE Username for the account the service should run
under.

—password=UALUE Password for the service account.

—sztartManually Epecifies that the zervice zhould start manually.

—installlnfrastructure Thisz setting iz no longer in use. Please see
http:/sparticular.nets/articles/managing—
nservicebus—using—powershell for the replacement.

—zcannedAzszemblies =UALUE Configures NEerviceBus to use the types found in
the given assemblies.

UNMINSTALL OPTIONS:

=7. ~h. -help Help about the command line options.
—uninstall Uninstall the endpoint as a Windows service. bl

A sample script to install a service can be created with something as simple as
the following:

fdisplayName: "MyPay(ueus™
/description:"Service for Payments" /endpointConfigurationType:"EndpointConfig,MyPayQueue™

As a note, besides Visual Studio 2012, I use Notepad++, Free Toad for SQL Server,
and MSMQ Commander.

[141]

http://docs.particular.net/NServiceBus/the-nservicebus-host

Knowing Your IBus

Summary

We have discussed many of the different configurations used to create IBus. Much
emphasis has been put on both sagas and persistence. We walked through two
similar but different examples and went through the Init () method, sagas, and
message handlers. The goal is that the reader has enough references and knowledge
about configurations to start configuring their own sagas and persistent examples
going forward. We discussed the creation of services and endpoints, debugging
through message mutators, and more. The NServiceBus IBus does the bulk of the
work, so coding is kept to a minimal.

[142]

Persistence Architecture

For the ESB bus, persistence is the key element in storing messages that could be
associated as business objects that run through the ESB workflow. There are other
persistent elements that comprise the metadata that define how the messages and
workflow are being handled in the ESB through configuration. Persistence can also
be considered the feedback that the ESB gives to the system in the form of logging,
errors, and audits. In this chapter, we will cover persisting items to the database,
including messages and logging.

We will cover the following topics:

* Persistence basics

* Supporting frameworks for persistence
° Introduction to Entity Framework
° XML serialization

° C# reflection

* The PayQueue sample
* The SQL queuing sample
* Database logging

Persistence basics

Up to this point, we have delved heavily into MSMQ. In later chapters, we will also
cover RabbitMQ and ActiveMQ. If you know MSMQ very well, learning RabbitMQ
and ActiveMQ will be simple, except that these technologies are not as tightly
coupled to the Windows Server as MSMQ.

Persistence Architecture

Let's face it: as a developer, and architect, you are likely reading this chapter to keep
up your skills. Your skills get you jobs. If you are skilled in both Java and C#, your
chances of getting employment is greater. The same logic applies if you know how
to build enterprise systems not only using message queues, but databases as well. It
will be easier to find server people who can administrate the databases rather than
message queue systems simply because databases are prevalent in storing data for a
multitude of desktop systems as well. Therefore, you may want to use databases for
message queuing. Most projects spend a lot of time persisting data to the databases
and building tables and databases, which we discuss through this chapter. However,
we will not run SQL commands in this chapter; rather, we will build objects on top
of C# frameworks to deal with SQL commands. In many modern technologies these
days, such as NServiceBus, Entity Frameworks, NHibernate, and Spring Roo, the
frameworks run a lot of SQL commands. We use objects in these frameworks, and
the frameworks either generate DDLs, XML mapping, or scripting. NSB will take
care of most of the mappings to the databases directly.

One of the reasons, besides heavily loading SQL Servers with stored procedures,
for the object relational mappers (ORMs) being more and more popular and also
NoSQL databases such as RavenDB and MongoDB, is not just to take advantage
of having modern frameworks do the heavy lifting, but to have the tools in the
frameworks do the heavy processing. SQL Server, and other databases, seem to
always have enough load.

The concept is to create the objects in code, and the frameworks will take care of the
SQL. This allows developers to code faster once they get used to the frameworks.
Some of the fathers of agile processes developed frameworks such as Spring

for all developers to glue frameworks as opposed to building everything from
scratch. The other reason is SQL Injection. Feel free to go through some of my

slides to understand some of this, http://www.slideshare.net/rhelton 1/
sql-injection-amp-entity-frameworks and http://www.slideshare.net/
rhelton 1/asp-mvs3-rev009. Here's a slide for a starting iPad development in C#,
http://www.slideshare.net/rhelton 1/the-ipad-monotouch. Here's an older
slide on NServiceBus, http://www.slideshare.net/rhelton 1/nservicebus.

If SQL commands are in code, and used close to the frontend of an application, a
hacker can try to inject SQL commands into the frontend pieces to see whether they
can execute SQL commands directly into the database. For instance, a form may have
SQL commands to access a database, and a hacker may inject SQL commands into
the form to try to return passwords and users.

[144]

http://www.slideshare.net/rhelton_1/sql-injection-amp-entity-frameworks
http://www.slideshare.net/rhelton_1/sql-injection-amp-entity-frameworks
http://www.slideshare.net/rhelton_1/asp-mvs3-rev009
http://www.slideshare.net/rhelton_1/asp-mvs3-rev009
http://www.slideshare.net/rhelton_1/the-ipad-monotouch
http://www.slideshare.net/rhelton_1/nservicebus

Chapter 5

A typical scenario for injecting SQL into browsers would be to run the browser code
in a Firefox debugger, look for any functions or JavaScript that looks like it may take
SQL, and run a SQL Injection tool to try every combination of SQL through these
commands. There are many off-the-shelf tools to test the browser code available to
all. For those who hack or check hacking for a living, there are many, many freeware
tools that assist in finding SQL Injection, and even training sites to train your skills
in finding SQL Injection. If you practice hacking enough, such as SQL Injection,
there are many official contests to try your hacking skills at. The ultimate way to

get rid of SQL Injection is not to use SQL commands at all in code. With today's
modern frameworks, with ORMs and NoSQL, there is not absolute need to use SQL
commands. Also, the performance in NoSQL, and ORMs, to code, dependent on the
code base, has been shown to increase performance, decrease development time,
and decrease code.

Supporting frameworks for persistence

To familiarize you with SQL ORM's in Visual Studio, it would be negligent if

I did not cover Entity Framework, XML serialization, and C# reflection as not
only NSB, but many frameworks are based on these techniques. When working
with SQL Server, it is not uncommon to have several Entity Framework tools
for administration, monitoring, and synching data in SQL Server; otherwise,
the alternative would likely be SQL scripting and stored procedures.

NServiceBus, as well as any ESB, is heavily reliant on XML serialization and object
reflection, which will be covered as well.

In this section, we will be using the PayQueue solution:

* MyMessages: This is a payment message used for the projects

* AppForWritingXML: This is a project that writes payment XML files to
alocal c:\ drive

* AppForReadingXML: This is a project to read XML files from the drive,
which saves a copy to the local database through Entity Framework,
using the routines from the AppForWritingToTable routines and
sending them to MSMQ to process as messages

* AppForWritinTables: These are just the data access routines for
AppForReadingXML

[145]

Persistence Architecture

The AppForWritingXML creates 5 XML files into C:\Load XML_Files. The
AppForReadingXML will load the XML messages into the Payment table. The Payment
table for sending payments, the AppForReadingXML table for receiving payments,

the unicastconfig table and auditconfig tables need to be created. We see that the
messages move from files to the Payment table to the AppForReadinXML table using
various coding methods. A PayQueue database must be created in the SQLExpress.

If the database is new and the tables need to be created, then run the Model . edmx to
create the tables from the Model . edmx file of AppForWritingForTables using the
"Generate Database from model". This will create a file called Model1 .edmx.sql that
when run will create the tables. This SQL script can be run to create the tables from
Visual Studio 2012. These were ran in V52012 in Windows Server 2012, with MSMQ,
DTC, NServiceBus references, and SQL Server 2012 Express LocalDB installed.
Ensure that DTC, MSMQ), and NServiceBus is set up per http://docs.particular.
net/nservicebus/preparing-your-machine-to-run-nservicebus.

Run apprForWritingXML to create XML files, and then AppForReadingXML to send
them to the SQL tables and MSMQ using NServiceBus. These were run in VS 2012
in Windows Server 2012, with MSMQ, DTC, and NServiceBus references, and SQL
Server 2012 Express LocalDB installed.

Introducing Entity Framework

Entity Framework (EF) has many tools designed to integrate well into Visual Studio.
EF is an object relational mapper (ORM) where Visual Studio, through wizards

into Visual Studio and SQL Server, takes care of a lot of the mapping effort and

even creates entity objects from existing database. We will briefly touch upon Entity
Framework for the needs of this book and working with SQL databases and MVC.

It is neither a requirement to know EF at this point nor to be an EF expert to work
with NSB; however, a developer should be familiar with EF so as to relate to Visual
Studio and SQL Servers, especially as a Microsoft best practice. If further information
is desired outside this book, feel free to visit my slides at http://www.slideshare.
net/rhelton 1/asp-mvc3-rev009.

[146]

http://docs.particular.net/nservicebus/preparing-your-machine-to-run-nservicebus
http://docs.particular.net/nservicebus/preparing-your-machine-to-run-nservicebus
http://www.slideshare.net/rhelton_1/asp-mvc3-rev009
http://www.slideshare.net/rhelton_1/asp-mvc3-rev009

Chapter 5

EF can be installed into your application when developing just using NuGet.

AppForWritingXML - Manage NuGet Packages IS
b Installed packages Stable Only - Sortby: Relevance - entit X -
4 Online »
EntityFramework
Entity Framework is Microsoft's Creatfad A
Al e Xd: EntityFramework
nuget.org technology for new applicatio... Version: 6.0.2
Microsoft and JNET . = e - Last Published: 12/13/2013
ntityF k D
Search Restits B WebBackgrounder . EntityFramework is an N TR
implementation of the 1JobCoordinator for License
I Updates WebBackarounder that uses a Database (via EF... View License
EntityFramework.SqlServerCompact Praject IT]furmatinn
Allows SQL Server Compact 4.0 to be used with REpnrt_A _L'SE
Entity Framework. Description:
Entity Framework is Microsoft's recommended
Y (T data access technology for new applications.
mLib for vi-
Q Classes to represent, construct, parse, serialize Tags: Microsoft EF Database Data O/RM
and validate entity data models, Targets \MET ADO.MET
4.0, Silverlight 4.0, or \NET Portable Lib with su... Dependencies:
. Microsoft ASP.NET Identity EntityFrame... Mo Dependences
ASP.MET Identity providers that use Entity
Each package is licensed to you by its Framework.
owner. Microsoft is not responsible for,
nor does it grant any licenses to, third- 7
party packages. 1 2 3 4 5 »
settngs| _aose |

After downloading it, we can create model objects from tables and databases. The
model will create the connection string for the entity models in the app. config file
as well as establish mapping to the entity objects, and the entity objects themselves.

Entity Data Model Wizard il 3|

i? Choose Your Data Connection

Which data connection should your application use to connect to the database?

win-uaut16gj sgle ueue.dbo Mew Connection, .. |

This connection string appears to contain sensitive data (for example, a password) that is required to
connect to the database. Storing sensitive data in the connection string can be a security risk. Do
you want to indude this sensitive data in the connection string?

= No, exdude sengitive data from the connection string. I will setitinmy application code.
" Yes, indude the sensitive data in the connection string,
Entity connection string:

metadata=res://*Model 1.csdl|res://*Model 1. ssdl | ;I
res:f*Model 1. msl; provider =System.Data. SglClient;provider connection string="data source=.
\eglexpress;initial catalog=PayQueue;integrated

security=True;multipleactiveresultsets =True;application name=EntityFramework™

¥ save entity connection settings in App.Config as:

IPayQueueEnﬁﬁes

< Previous | Next = I Firish Cancel

[147]

Persistence Architecture

EF has the ability to update the tables to match any changes in the mapped models
and even update the models from changes done to the tables. This is done to keep
the mapping of the tables to entities synced.

bl Model Ledmx [Diagrami] -+ X
onfig {5
3 Add New »
= Properties | & Propertie Refactor .
of Appld 1 ¢ Event
& AppName i Mbiller Rename
= Navigation Properties i Hbilled ¥ cut Cirl+X
H K bankF :
K& bankt @l Ccopy Cui+C
FefirstN
B last;
Move to new Diagram
B street &
E Jostrast X Delete from Model Del
Ko city Remove from Diagram Shift+Del
j K state
Kezip Collapse
& namel Indude Related
& phon T
& comp Validate
& paym Update Model from Database. ..
:p"'”" Generate Database from Model...
paym
JTime Add Code Generation Ttem.,
i & Durat 25 TableMapping
i = Navigati
é 23 stored Procedure Mapping
T & show in Moded Browser
F Properties Alt+Enter
1
Error List

Entity Framework uses Fluent API's lambda expressions, as does NServiceBus; see
http://msdn.microsoft.com/en-us/data/jj591620.aspx for more on this topic
of Entity Framework.

Here's a snippet of Entity Framework code where we get the database context for the
model, PayQueueEntities. We get a collection of all the rows in the payments table
called payment_rows. We exercise the lambda where clause to retrieve the first row
that has any primary of the message that we will update the database from; if none
are found, we add the record as follows:

using (var context = new PayQueueEntities())

{

// Get the payment rows

[148]

http://msdn.microsoft.com/en-us/data/jj591620.aspx

Chapter 5

var payment rows = context.Payments;

// Fluent API, check to see if there already is a payment
with this EventId (PK)

var payment = payment rows.Where(x => (x.EventId == details.
EventId)) .FirstOrDefault () ;
/***

* If no payment in rows
* Add row

* Otherwise update row
* *****/

if (payment == null)
{
/**
* Walk through the details object

* Using Reflection
* ***/

Payment newPayment = new Payment(); // Create a new
payment row

Also, notice that a newPayment object was created to create a row in the database.
This is some of the generated code from EF that already has mapping to the tables
created through the Visual Studio wizard. It's nice not to have to create your own
objects, but just to call the objects that match the database rows that were created
with the Visual Studio ADO Entity class creation tools. The code, in the Where
command, will find any matching EventIds keys matching the selected messages.

NServiceBus does not currently officially integrate into Entity Framework but uses
NHibernate instead as a mapper to the SQL databases and creates the mapping
for NServiceBus. There are people working in developing code who are starting

to use Entity Framework as a persister, such as in a saga persister example at
https://github.com/Meksi/NServiceBus.Persistence. However, almost
every developer who executes MVC and C# has heard of, if not developed in,
Entity Framework to some degree as it follows the Microsoft best practices in

C# development.

Also, if you look in the examples discussed thus far, the Fluent API's lambda
expression is used throughout NServiceBus. We can see it in pieces when we
called UnobtrusiveMessageConventions:

class UnobtrusiveMessageConventions : IWantToRunBeforeConfiguration

{

public void Init ()

{

Configure.Instance

[149]

https://github.com/Meksi/NServiceBus.Persistence

Persistence Architecture

.DefiningCommandsAs (t => t.Namespace !=
null && t.Namespace.StartsWith("VideoStore") && t.Namespace.
EndsWith ("Commands"))

.DefiningEventsAs (t => t.Namespace !=
null && t.Namespace.StartsWith("VideoStore") && t.Namespace.
EndsWith ("Events"))

.DefiningMessagesAs (t => t.Namespace !=
null && t.Namespace.StartsWith("VideoStore") && t.Namespace.
EndsWith ("RequestResponse"))

.DefiningEncryptedPropertiesAs (p => p.Name.
StartsWith ("Encrypted")) ;

}
}

Going forward, you may see many snippets of code in Entity Framework. Most of
the code will be generated using the tools found in Visual Studio, mostly Visual
Studio 2012.

XML serialization

NServiceBus, and ESBs in general, rely heavily on XML serialization and C#
reflection as well as many other frameworks, such as EF. There are many books

on XML serialization as well, but we will discuss it in brief as it applies to NSB
messages. It is not a requirement of this book to have skills in EF, MVC, reflection,
and XML serialization, so introductions will be provided. Working with NSB in
general may not require these skills at first, but digging into any messaging and NSB
code will start to require it; it will at least be beneficial for deeper understanding.
Extending the Entity Framework example, let's retrieve, as an exercise, XML files that
look like messages from a file directory, load them into a SQL Server table, and then
send the messages through message queuing. Later, we will extend this example
even more and load up the data through C# reflection. This example was derived
from the need to automatically send test message —only a few now —but it could

be extended to hundreds, through NSB into MSMQ. This is testing through console
programs, so a MVC video store frontend could be added after the other pieces have
been stress-tested. There are many applications that may not require a frontend,

as many organizations still use batch processing, especially those associated with
getting mainframe information, through the use of mainframe text files being parsed
into XML files as they are passed from text into message forms. Messaging has
evolved from various XML designs.

[150]

Chapter 5

While many of the examples thus far have had simple messages, it is pretty normal
that messages, just as with XML and databases, will have multiple parts to break
down the messages:

namespace MyMessages

{

public class EventMessage : IMessage

{

public Guid EventId { get; set; }
public PaymentReqg paymentReqg { get; set; }

public class PaymentReq

{

201.10

public
public
public
public
public
public
public
public
public
public
public
public
public

string
string
string
string
string
string

billerGroupId { get; set; }

billerid { get; set; }

bankRoutingNumber { get; set; } // 9-digits
bankAccountNumber { get; set; } // 9-digits
firstName { get; set; }

lastName { get; set; } // 9-digits

Address address { get; set; }

string
string
string

nameOnAccount { get; set; }
phone { get; set; } // 10 digits
companyName { get; set; } // 50 characters

Guid paymentReferenceId { get; set; }

string
string

paymentChannel { get; set; } // Usually WEB
paymentAmount { get; set; } // of the form

public class Address

{

public
public
public
public
public

string
string
string
string
string

streetAddressl { get; set; }
streetAddress2 { get; set; }
city { get; set; }

state { get; set; } // 2-chars
zip { get; set; } // 5-digits

[151]

Persistence Architecture

There are many mediums for XML messaging in NSB; we have mentioned SQL
Server, MSMQ, ActiveMQ, RabbitMQ, Azure, and others, but NSB could also

be used as the workflow for other endpoints, such as SFTP, WCF, and File I/O.
However, when using custom endpoints, the developer now becomes responsible
for the transactions and second-level retries. One way to handle these issues is the
use of sagas. Here's a snippet illustrating writing the preceding message to an XML
file using XML serialization.

static void Main(string[] args)

{
string path = @"c:\Load XML Files\";

/*****

* Create 5 Sample XML Files

* *****/

for (int index = 0; index < 5; index++)
string filename = @"temp" + (index + 1) + ".xml";
EventMessage details = new EventMessage() ;

SerializeEventMessage (path+filename, details);

static public void SerializeEventMessage (string pathname,
EventMessage details)

{

XmlSerializer serializer = new XmlSerializer (typeof (Event
Message)) ;

using (TextWriter writer = new StreamWriter (pathname))

{

serializer.Serialize (writer, details);

[152]

Chapter 5

We can read the XML data into the objects and then copy the data into the database.

class Program

static void Main(string[] args)

{

/*****

* Open the temp files in this directory

* *****/

string[] dirs = Directory.GetFiles(@"c:\Load XML Files",
lltempll) ;

foreach (string filename in dirs)

{

/***

* De-serialize the XML into the objects
* *****/
EventMessage details = DeserializeEventMessage (filena
me) ;
PaymentDAL payDAL = new PaymentDAL() ;

/*****

* Save to the database
* *****/

payDAL.writeEventMsg (details) ;

static public EventMessage DeserializeEventMessage (string
filename)
XmlSerializer serializer = new XmlSerializer (typeof (Event
Message)) ;
using (TextReader reader = new StreamReader (filename))
EventMessage eventMsg = (EventMessage)serializer.
Deserialize (reader) ;
return eventMsg;

}

After we read and write data from files, we can process them as messages or save
them to the database. This is a simple example of loading messages from files into
the database using reflection and Entity Framework.

[153]

Persistence Architecture

C# reflection

Reflection cannot be underestimated, especially when working with XML serialization
and Entity Framework.

C# uses reflection mostly with the System.Reflection namespace; for

further reading see http://msdn.microsoft.com/en-us/library/system.
reflection%28v=vs.110%29.aspx. Reflection can be used to get information from
assemblies, http://msdn.microsoft.com/en-us/library/ms173183.aspx, Or
to get information from object and classes, http://msdn.microsoft.com/en-us/
library/b05d559ty%28v=vs.110%29.aspx.

So why does this help with all this development? Being able to walk through an
object and copy fields to fields, as with a deep cloning of an object, can only be

done with reflection. When copying from a message to a database row, it does not
necessarily have to be a one-to-one copy, but it saves having to know all the fields of
an object or changing the code when the fields of the objects change. Here's a snippet
from the paymentDAL. cs file that shows a copy of the address piece of the message
object being copied into the Payments table address value with a payment row of
data. In this piece of code, we are copying values from a one object to a different
object with matching field names and putting in values, without calling these fields
directly, which would involve a lot more code and work.

/*****

* Copy the values of the old Address object
* to the address fields in the database
* *******/
Address address = (Address)payPropertyInformation.
GetValue (paymentReq, null) ;

PropertyInfo[] addressProperty
= address.GetType () .GetProperties|() ;

// Get each field from the address object
for (int index4 = 0; index4 < addressProperty.Length; index4++)

{

PropertyInfo addressPropertyInformation =
addressProperty [index4] ;

string addressName = addressPropertyInformation.Name.
ToString() ;

// Get the address field value

var addressField = addressPropertyInformation.
GetValue (address, null) ;

// Find the same field in the database row

var field3 = newPayProperty.Where(x => (x.Name ==
addressName)) .FirstOrDefault () ;

[154]

http://msdn.microsoft.com/en-us/library/system.reflection%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/system.reflection%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms173183.aspx
http://msdn.microsoft.com/en-us/library/b05d559ty%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/b05d559ty%28v=vs.110%29.aspx

Chapter 5

}

This code uses C# reflection to copy one field in an object created from XML to an

//Set the database row with the address field value

field3.SetValue (newPayment,

object mapped in a table row and then saved.

addressField, null) ;

(4]

[T Resuits |_'_1 Messagesl

| Time: | Duration | billerGroupld | billerld | bankRouting Number | bank Accourt Number |ﬁrstName

lastMame | streetAddress1

| strestAddress2 | ciy

1682175 | NULL
868B0AA NUILL
iCDA0DFE | NULL
1701434 NULL
TIDEBGA NULL

MULL
NULL
MULL
MULL
MULL

ORDER
ORDER
ORDER
ORDER
ORDER

USER 444444444 555655555 ATTN
USER 444444444 5555555505 ATTN
USER 444444444 55555655565 ATTN
USER 444444444 55555655565 ATTN
USER 444444444 55555655565 ATTN

BILLING
BILLING
BILLING
BILLING
BILLING

Accounting Building
Accounting Building
Accounting Building
Accounting Building
Accounting Building

123 Gold Street
123 Gold Street
123 Gold Street
123 Gold Street
123 Gold Street

Denvey
Denvey
Denvef
Denvef

Denvef

The PayQueue sample

From these frameworks and the use of SQL Queuing, we will be introducing a
PayQueue sample that will be evolving over some of the following chapters.

@ o--wdad@m #RAR

Bearch Solution Explorer (Ctrl+;)

uu'__| Solution 'PayQueue’ (4 projects)
4 @l Solution Items

B ReadMe.txt
AppForReadinXML

f AppForwritingTables
f AppForWriting%ML
P MyMessages

SOILTON CXpiorer

The solution will start with four projects:

* MyMessages: This contains the common messages — currently EventMessage

given previously

* AppForWritingXML: This contains the application to write XML messages

to disk

[155]

Persistence Architecture

* AppForWritingTables: This contains Entity Framework and C# refection
to populate the PayQueue Payments table with the event message data

* AppForReadingXML: This reads the sample XML files from disk, populates
the payments table, and sends the data through a SQL Queue

Many of the snippets have already been covered in part. The part that remains is
sending it across the bus in SQL Queuing. We set the logging (log4net in this case),
configure the bus, and send the message.

The installation piece creates the endpoints in SQL Server, and it knows to do this
because the transport is set to <Sglservers:

// Set the log4net

SetLoggingLibrary.Log4Net (log4net.Config.XmlConfigurator.
Configure) ;

// Configure the Bus

bus = Configure.With ()
.DefaultBuilder ()
.UseTransport<SqglServers ()
.UnicastBus ()
.CreateBus ()

.Start (() => Configure.Instance.
ForInstallationOn<NServiceBus.Installation.Environments.Windows> ()

.Install());
/****

* Send it to the Queue
* ****/

foreach (var msg in myXMLlist)

{

bus.Send (msg) ;

}

However, this code is really a small piece of the recipe. The app.config file plays an
important role in configuring the bus:

1. We will define NServiceBus/Transport that will give the SQL connection
string for the queues, which will include the database and connection.

2. The Entity Framework connection string is used to perform other actions on
the database to load tables with utilities outside NServiceBus.

3. The error and audit queues need to be set.
A log4net file appender was added to debug.

The queue has to be defined based on the messages namespace.

[156]

Chapter 5

<?xml version="1.8" encoding="utf-8"2>

E<configurations

= <configSections:
<section name="MessageForwardingInCaseOfFaultConfig"” type="NServiceBus.Config.MessageForwardingInCaseCfFaultConfig, NServicef
<section name="Logging" type="NServiceBus.Config.logging, NServiceBus.Core" />
<section name="AuditConfig" type="NServiceBus.Config.AuditConfig, NSerwviceBus.Core™ />
<section name="UnicastBusConfig” type="NServiceBus.Config.UnicastBusConfig, NServiceBus.Core” />
<section name="log4net" type="log4net.Config.Llog4NetConfigurationSectionHandler, log4net" />

<fconfigSectionss
= <startup> 1

<supportedRuntime version="v4.8" sku=".NETFramework,Versicn=v4.5" />
</startup>

= <connectionStrings:
<add name="NServiceBus/Transport” connectionString="Data Source=.\SQLEXPRESS;Initial Catalog=PayQueue;Integrated Security=True’
<add name="PayQueueEntities” connectionString="metadata=res://*/Modell.csdl|res://*/Modell.ssdl|res://*/Modell.msl;provider=sy:
</connectionStrings>

30 I

<MessageForwardingInCaseOfFaultConfig ErrorQueue="error” />
<AuditConfig QueueName="audit” /> 2

ganet debug="false">..

= <UnicastBusConfig:
= <MessageEndpoin
<add Assembly

ppings>

tessages” Namespace="MyMessages" Endpoint="AppForReadimXML" />

</MessageEndpointMappings> ‘_‘——_______ 5

</UnicastBusConfig»

= <runtime>
= <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
= <dependentAssembly>

<assemblvIdentitv name="NServiceBus.Core” publicKevToken="9fc386479f8a226c" culture="neutral™ /> N
100% =~ 4 3

We can see that, when we started the program, the endpoints were created in the
PayQueue table as follows:

| 1| nservicebus
= [) PayQueue

| Database Diagrams

=] [Tables

[System Tables

=] dbo.AppForReadinkML
=1 dbo.AppForReadinkML.Retries
=] dbo.AppForReadin¥ML. Timeouts
=] dbo.AppForReadinXML. TimeoutsDispatcher

=1 dbo.audit

=l dbo.error

=1 dbo.Log

] dbo.Payments

(30 =t 3 e e S A

[157]

Persistence Architecture

We can also see that, when the program runs, it creates messages in the queues,
as shown in the following screenshot.

WIN-UAUT16G...ForReadinXML|

Id | Correlationld | ReplyToAddress Recoverable Expires | Headers ‘ Body RowVersion

3 593cclca-2825-... BAlaeWiWBWELlee| AppForReadinXML. WIN-UAUT16GPE... True MULL {MServiceBus.M... <Binary data> 23

| foBef148-2345-... f9Be5148-2345-... AppForReadinXML.WIN-UAUT16GPE... True MLEL {"MServiceBus.M... <Binary data> 24

I db4e25b6-0936-,,, db4e25b5-0936-... AppForReadinXML.WIN-JAUT16GPE... True ML {MServiceBus.M.., <Binary data> 25
290730c0-0981-... | 290730c0-0981-... AppForReadinXML.WIN-UAUT 16GPE... True ML {NServiceBus.M.., <Binary data> 256
c49%b26da-ded3-... c49b26da-d6d3-... AppForReadinX¥ML.WIN-UAUT16GPE... True ML {NServiceBus.M.., <Binary data> 27

E ALL ML MULL ALLL ML MLLL AL NLLL

The SQL queuing sample

We have already explored MSMQ in previous chapters. Wouldn't it be nice to
store the messages in MySQL or SQL Server instead, and not worry so much about
tooling for MSMQ if the database is already tooled? Also, you can consolidate all
the data into a database, thus not having multiple products to maintain. MSMQ is
a product, and makes more used of database tools for these programs.

In this section, we will be using NserviceBus.SqlServer.Samples-master\
VideoStore.SqglServer, which is described in the SQL Queuing sample.
The sample runs a video store for SQL queuing to order videos.

The solution was run in VS 2012 in Windows Server 2012, with MSMQ, DTC,
NServiceBus references, and SQL Server 2012 Express LocalDB installed.

Running the example, https://github.com/Particular/NServiceBus.

SqlServer.Samples, we see that the queues are now created in the nservicebus
table instead of the MSMQ.

[158]

https://github.com/Particular/NServiceBus.SqlServer.Samples
https://github.com/Particular/NServiceBus.SqlServer.Samples

Chapter 5

Microsoft SQL Server Management Studio
File Edit Wew Debug Tools Community Help

S New Query | [0y |0y |15 5 |)

Window

arer

Connect » i!; !2 m T g

= b \SQLEXPRESS (SQL Server 10.50.4000 - WIN-UALT 16GPEQA\Administrator)
= [Databases
[System Databases
= |J nservicebus
[l Database Diagrams
= [Tables

[System Tables
= dbo.audit
= dbo.ContainsagaData
=] dbo.error
=] dbo.ProcessOrderSaga
= dbo.Subscription
= dbo.TimeoutEntity
= dbo.VideoStore, ContentManagement
= dbo.VideoStore, ContentManagement. Retries
= dbo.VideoStore, ContentManagement, Timeouts
=] dbo.VideoStore. ContentManagement, TmeoutsDispatcher
= dbo.VideoStore, CustomerRelations
= dbo.VideoStore. CustomerRelations. Retries
=
=] dbo.VideoStore, CustomerRelations TimeoutsDispatcher
= dbo.VideoStore ECommerce
=] dbo.VideoStore ECommerce. Retries
=] dbo.VideoStore, ECommerce, Timeouts
=] dbo.VideoStore, ECommerce, TimeoutsDispatcher
= dbo.VideoStore, Operations
= dbo.VideoStore, Operations. Retries
= dbo.VideoStore, Operations. Timeouts
= dbo.VideoStore, Operations, TimeoutsDispatcher
=] dbo.VideoStare. Sales
3 dbo.videoStore. Sales. Retries
3 dbo.videoStore. Sales. Timeouts
=] dbo.VideoStore. Sales. TimeoutsDispatcher

We can see that the audit message queue in SQL Server is filling up with messages;
this is because audit logging is turned on via the registry and app.config. See
http://docs.particular.net/NServiceBus/auditing-with-nservicebus.

[= 1 nservicebus =1
. g _Dra;‘abase Diagrams = Resuts | Lia Mﬁsagﬁl

ables -

81 C System Tables I [Cometationid | ReplyToAddress
= dbo.audt | 3996E 12F 665E-4502-SDDC-AJES010DIESS | 3996e 12-6652-4602-9ddc-2229010d2085 VideoStore. CantentManagement
=1 cho.error 2 | 4E2D7Fe.0300-44B4-93DB-AZESNT0D2ATZ | 4eBdTIFO0300-4404-9300-2229010d2a72 Video Store. Sales
[dbo.videoStore ContentManagems | [3 | 3534E45F-1095-4302-94A3-A2E3010D2E85 | 3684e45-1039-43d2-3433-a229010d285 VideoStore Sales
g j‘;°‘gje":s’e-g"”:”mﬁ”agem‘ 4 | ASSEEDFD-07E1-4250-84FA-AZES010D2E85 aBSeecth-07e1-4250-042-22:901002:85 VideoStors. Sales
a o dZZsm:'cZEmﬂm:EZEEEi 5 | ADCS4291-84044AAAAB0B-A2ES010D5DBD | adc94891-8404-4asm-290b 22901045000 VideoStore. Sales
3 cbo Videostore. CustomerRelatons | |.6__| 08DBB536-DDB1-4D85-89A4-A2E0010DSETE | 23a85832-24ea-4e36-93a-2259010d55c3 VideoStore. ECommerce
=] dbo.VideoStore, CustomerRelation: | | 7 (OB3E1AFE-3F34-4EBC-SBB2-A2ES010ESCO0 Oblelsfb-394-debc-90b2-320501028200 VideoStors.Sales
(=1 dbo.VideoStore. CustomerRelation: | |8 | 3A4034BC-03C1-4C20-8E87-A2ES010EACEE 590c45-e71343bh3b-a2ed010eBad | VideoStore ECommerce
(1 dba VideoStore. CustomerRelaton: | ' | 14FE55FD-5E7B-409A-A25B-A2E50111ABDD 14e55c-5e To-40da-a35b-5269011Tabd) VideoStore. Seles
=1 dbo.VideoStore. ECommerce P
3 b veloostore. Ecommerco. petri | | 1] 472D7EF6 F508 4D27-8FE7AZESTTIABDT | 473d7HSF506 4427 ¥87a2e80111bd] VideoStore.Seles
1 dbo VideoStore. ECommerce Tmeo | | 11| 889308A3-3A444B74-9254-A2E00111ABD1 | Bb330bad-3a44-4b74-9294226901 11abd 1 | VideoStore Scles
=] cho.VideoStore.ECommerce. Tmeo | | 12| 8D1B5A30-BFAD-4A31-8FBE-A2EI0111B9CD | 8d1b5a3b7ad-4a818b6a2:90111b%ed | VideoStors. Sales
[dbo.VideoStore, Operations 13 | 979512FA-3EBF-4EDE-BOEL-AZESDT11BARS G7951%a-Sed-46d8b0e4-a2e30111bass \ideoStors Sales
3 dbo.VideoStore.Operations.Retrie: | | 14 | 426A27C2-5A0949D-A40F-A2E90111BAAS | 426a27c2-5a03-43d2-04F 269011 1baaB VideoStors ContentMaragement
= dba.VideoStore. Operations. Timeat | [T |

15 | 8CACTZEDCCOF4382B753AZE90111BAAE Bode726d colf4363b7532:90111baa6 | VideoStore Sles
=1 dbo.VideoStore. Operations. Timeot | j——

[159]

http://docs.particular.net/NServiceBus/auditing-with-nservicebus

Persistence Architecture

This is accomplished because of the configurations on the IBus in the videoStore.
ECommerce project with the Global .asax.cs file. When reviewing the code, please
note the following points as to how the IBus is configured:

* Ensures that we are using the same central queue

* Appends log events to the debug system through log4net

* Use SQL Server as queuing

* Install and configure the NServiceBus instance in the Windows environment

protected void Application_Start()
{
Configure.Scaleut(s => s.UseSingleBrokerQueue()); f————— 1

bus = Configure.With()
.DefaultBuilder() 2

.LogdNet(new Debughippender {Threshold = Level.Warn}) +__—-—-—-‘

.UseTransport<sglservers()
Purge0Onstartup(true) \ 3
.UnicastBus()

.RunHandlersUnderIncomingPrincipal(false)

.RijndaelEncrypticnService()

.CreateBus()

.Start(() =» Configure.Instance.ForInstallationOn<NServiceBus.Installation.Environments.Windows>()
.Install());

“reaRegistration.RegisterAllAreas(); 4
il .RegisterGlobalFilters(GlobalFilters.Filters);

ig.RegisterRoutes(RouteTable.Routes);

bl

Please see http://docs.particular.net/NServiceBus/hosting-nservicebus-
in-your-own-process-v4.x, which covers some of this information.

The SQL queening is defined in the web . config file of the VideoStore . ECommerce
project in the connection string section as the NServiceBus/Transport alias to
define the database and table.

<connectionStrings>
<add name="NServiceBus/Transport”
connectionString="Data Scurce=.\SQLEXPRES5;Initial Cataleg=nservicebus;Integrated Security=True" />
</connectionStrings:

In order for the UseTransport<SglServers form of queuing, the NServiceBus.
Sqlserver package must be installed. Logdnet must be installed to use Log4Net (new
Debugippender { Threshold = Level.Warn}), which is discussed more in the
next section.

[160]

http://docs.particular.net/NServiceBus/hosting-nservicebus-in-your-own-process-v4.x
http://docs.particular.net/NServiceBus/hosting-nservicebus-in-your-own-process-v4.x

Chapter 5

AppForReadinXML - Manage NuGet Packages

b Installed packages
4 QOnline

All

nuget.org

Microsoft and .NET
Search Results

I+ Updates

Each package is licensed to you by its
owner. Microsoft is not responsible for,
nor does it grant any licenses to, third-
party packages.

Settings |

Stable Only

}\f

- Sortby: Relevance

NServiceBus StructureMap .

The StructureMap Container for the nservicebus

NServiceBus Spring
The Spring Container for the nservicebus

NServiceBus SqlServer
SQL transport support for
MServicebus

Install

NServiceBus.StructureMap262
The StructureMap262 Container for the
nservicebus

NServiceBus.Serilog
Serilog integration for NServiceBus.

e s |

~ NServicebus.s X v

Created by: NServiceBus Ltd
Id: NServiceBus. SqlServer
Version: 1.1.0
Last Published: 11/13/2013
Downloads: 5531
License
View License
Project Information
Report Abuse
Description:
SQL transport support for NServicebus
Tags: nservicebus servicebus msmg cgrs publish
subscribe
Dependencies:
NServiceBus (= 4.0.0.0 && < 5.0.0.0)

NServiceBus. Interfaces (= 4.0.0.0 && <
5.0.0.0)

Each item above may have sub-dependendes
subject fo additiona! ficense agreements.

Close |

This sample is a video store sample, so we will have:

* VideoStore.Ecommerce: The MVC program that starts the bus with the
installations in Application_Start given previously. A web page is used
to select orders and the user is given 20 seconds to change their mind with
feedback given to the page through SignalR.

* VideoStore.Sales: This has a saga, and handles the timeout and
completion of the orders.

* VideoStore.Message: These are common messages for all the endpoints.

* vVideoStore.ContentManagement: This returns the URL to be selected after
the order is performed.

* VideoStore.CustomerRelations: This has the potential to send coupons
to the customers for special offers.

* VideoStore.Operations: This has the potential to accept operational
messages such as for errors and reporting at a later time.

This sample works very much like earlier samples discussed for MSMQ, except now
all the pieces are in SQL Server. Or are they?

[161]

Persistence Architecture

If we look in MSMQ, it appears empty.

- . MSMQ Commander (version 0.4, 11/3f2012)

Connect... Refrezh

Jueues

= localhost

w Auto refresh

However, if we look in RavenDB for NServiceBus, we notice that tables have been

created for the various endpoints as normal. They are not populated, but they are
created as place holders for endpoint information.

¥ Databases x |L:Home X | + |
6] localhost: 8080 fraven/studio. himl # /databases?database =VideoStore, Operations L6y |E ~ Googl
| Getting Started | | Suggested Sites | | Web Slice Gallery |2 Mast Visited

Documents

Collections Indexes Patch Tasl Databases> VideoStore.Operations i

g Databases

| 4 New Database

[3 videostore.Operations

[3] videoStore ECommerce
0 documents

[__§]\.l'ideoStc-re.ContentManagement

[__ﬂ VideoStore. Sales [__ﬂ AppForReadinXML

[__§] VideoStore. CustomerRelations

We want to ensure that, even though we are using SQL Server for practically

everything in NServiceBus, for this example, we should still ensure that RavenDB,
DTC, and MSMQ are set up as normal.

[162]

Chapter 5

Database logging

In many organizations, there may be a security operations center, or network
operations center. In such environments, it is normal to consolidate logs of
applications for use in a syslog, http://en.wikipedia.org/wiki/Syslog, or
foruseina security event manager, http://en.wikipedia.org/wiki/Security
event_manager. It could be that the developer will not be the person going through
all the logs, but they have to be shared with other teams for keeping a record of
hacking attempts to the system, for system reporting, for maintenance reporting,
and more. Depending on clients' requirements, it may change from environment
to environment. For this reason, logging and the consolation of logging become a
line item and may be a section of the architecture documents, for the application's
deployment in production.

There are many logging frameworks in both C# and Java that are common.
For NServiceBus, there are the three logging frameworks that are supported
out of the box:

* Log4net: This is a .NET port of Java's Log4], the most popular logging
framework in Java. It originated from the Apache Foundation; see
http://logging.apache.org/logdnet/

* NLog: This is a .NET logging framework; see http://nlog-project.org/

* Serilog: This is another .NET logging framework; see http://serilog.
net /. This is written to store in NoSQL document database

For Log4net examples, please see http://logging.apache.org/logdnet/release/
config-examples.html and for NServiceBus, please see http://docs.particular.
net/NServiceBus/logging-in-nservicebus.

We are going to use Log4net, and its AdoNetAppender to log in to SQL databases.
The following steps will be accomplished:

1. Install Log4Net through NuGet.

2. Create a Log table in the nservicebus SQL database.

3. Configure the app.config file.

4. Configure NSB for Log4Net.

[163]

http://en.wikipedia.org/wiki/Syslog
http://en.wikipedia.org/wiki/Security_event_manager
http://en.wikipedia.org/wiki/Security_event_manager
http://logging.apache.org/log4net/
http://nlog-project.org/
http://serilog.net/
http://serilog.net/
http://logging.apache.org/log4net/release/config-examples.html
http://logging.apache.org/log4net/release/config-examples.html
http://docs.particular.net/NServiceBus/logging-in-nservicebus
http://docs.particular.net/NServiceBus/logging-in-nservicebus

Persistence Architecture

We will need to install Log4Net. Here, we are using the Package Manager Console
that is a part of Visual Studio 2012. We are installing Log4Net Version 1.2.10 because
this example was using NServiceBus Version 4.4. We will use the Package Manager
Console to install the correct version.

100 % -

Package Manager Console

Package source: nuget.org - {;} Default project: VideoStore, Sales

PM> install-package Logdnet -version 1.2.18

"logdnet 1.2.18' already installed.

Adding 'logdnet 1.2.18' to VideoStore.Sales.
Successfully added 'logdnet 1.2.18' to VideoStore.Sales.

PM>

We will create the Log table in the nservicebus database by running SQL commands
to create the Log table in the nservicebus table using Visual Studio 2012.

DEBUG TEAM SQL TOOLS TEST ARCHITECTURE
=} e = +5 J

P Start ~ Debug =~ S TE_ ?s o
SOLQueryl.egl * 4 X

B - v H 8 nservicebus

-|CREATE TABLE [dbo].[Log] (
[Id] [int] IDENTITY (1, 1) NOT NULL,
[Date] [datetime] NOT NULL,
[Thread] [varchar] (255) NOT NULL,
[Level] [varchar] (5@) NOT NULL,
[Logger] [varchar] (255) NOT NULL,
[Message] [varchar] (48@8) NOT NULL,
[Exception] [wvarchar] (28@8) NULL

For the query, refer to the following code snippet:

CREATE TABLE [dbo]. [Log] (
[Id] [int] IDENTITY (1, 1) NOT NULL,
[Date] [datetime] NOT NULL,
[Thread] [varchar] (255) NOT NULL,

[164]

Chapter 5

[Level] [varchar] (50) NOT NULL,
[Logger] [varchar] (255) NOT NULL,
[Message] [varchar] (4000) NOT NULL,
[Exception] [varchar] (2000) NULL

)

The previous query created the Log table for nservicebus. SQL commands do have
their uses in commands.

=N ngervicebus
|1 Database Diagrams
[= [Tables
|1 System Tables
= dbo.audit
=1 dbo.error
= = dbo.log
= Ca
=] 1d {int, not null)
Z] Date (datetime, not null)
Z] Thread (varchar({255), not null)
=| Level {varchar{50), not null)
=] Logger {varchar(255), not null)
Z] Message (varchar(4000), not null)
Z] Exception (varchar{2000), null)

We will configure the app . config file. We will add several areas to the
app.config file:

Log4net has to be included in the configuration section.

We will add an entire section for AdoNetAppender that will span many
lines telling the system how to configure the table, with specific files to
be added to each row in the table.

[165]

Persistence Architecture

3. We will reuse the existing connection string. Using the same connection
string several times in the same app . config file has a tendency to create
deadlocks, so it is best to reuse the same alias name originally created for
the connection string. In this case, NServiceBus/Transport.

<?uml version="1.8" encoding="utf-8"?>
<configuration:
<configsections>
<section name="MessageForwardingInCaseOfFaultConfig" type="NServiceBus.Config.MessageForwardingInCaseOfFaultConfig, NSe
¢<section name="Logging" type="NServiceBus.Config.Logging, NServiceBus.Core” />
<section name="RijndaelEncryptionServiceConfig" type="NServiceBus.Config.RijndaelEncryptionserviceConfig, NServiceBus.C
<section name="AuditConfig" type="NServiceBus.Config.AuditConfig, NServiceBus.Core" />
<section name="UnicastBusConfig" type="NServiceBus.Config.UnicastBusConfig, NServiceBus.Core" />
<section name="log4net" type="logdnet.Config.log4NetConfigurationsectionHandler, log4net™ /> - 1
</configSections»
<connectionStrings>
<add name="NServiceBus/Transport” connectionstring="Data Socurce=.\SQLEXPRES5;Initial Cataleg=nservicebus;Integrated Sec
</connectionStrings»
<loganet debug="false">
<root>
<level value="DEBUG" /> 2
<appender-ref ref="AdoNetAppender” /> -
</root>
<appender name="AdoNetAppender” type="log4net.Appender.AdoNetAppender”>
<buffersize value="1@8" />
<connectionType value="System.Data.SqlClient.SqlCennection
<connectionStringiame value="NServiceBus/Transport” />
<connectionString value="Data Source=.\SQLEXPRESS;Initial Catalog=nservicebus;Integrated Security=True" />
<commandText value="INSERT INTO Log ([Date],[Thread],[Level],[Logger],[Message], [Exception]) VALUES ({@log_date, (@thre
<parameter>
<parameterName value="filog_date" />
<dbType value="DateTime" />
<layout type="log4net.Layout.RawTimeStamplLayout™ />
</parameter>
<parameter>
<parameterName value="@thread" />
<dbType value="String" />
<size walue="255" />
<layout type="log4net.Layout.PatternLayout™>
<conversionPattern value="%thread” />
</layout>
</parameter>

em.Data, Version=1.8.33@@.8, Culture=neutral, Publick

We will configure NSB to log with Log4Net in code as follows:

public class EndpointCenfig : IConfigureThisEndpoint, AsA_Publisher, UsingTranspeort<SgqlServers,
1
public woid Init()
1
Setlogginglibrary. LogdNet(logdnet.Config.¥mlCenfigurator.Configure);
Configure.With()
.DefaultBuilder()
.RijndaelEncryptionService();
H
h

[166]

Chapter 5

After this, when running the NServiceBus SQL Server sample, we should start to get
the following in the Log table.

<
3 Resutts | _'_1 Messages I

Id I Date I Thread I Level I Logger I Message I Exception I
1_ 1 2014-03-1014:05:25257 1 DEBUG = NServiceBus Configure Number of types to scan: 2061
2_ 2 2014031014:05:25373 1 DEBUG = NServiceBus Corfig. InfrastructureServices Defautt provider for infrastructure service NServiceBu...
3 |3 20140310 14:05:25497 1 DEEUG NServiceBus Features.Featurelnitislizer Featurs Audit will be enabled by default
4 |4 20140310 14:05:25500 1 DEBUG NServiceBus Features Festurelnitislizer Feature AutoSubscribe will be enabled by default
5_ 5 2014-03-1014:05:25500 1 DEBUG NServiceBus Features Featurelnitislizer Feature TimeoutManager will be enabled by default
E_ & 2014031014:05:25503 1 DEBUG = NServiceBus.Features. Featurelnitislizer Feature SecondLevelRetries will be enabled by default
7 17 201403-1014:05:25733 1 DEEUG = NServiceBus Config. InfrastructureServices | Default provider for infrastructure service NServiceBu...
8 |8 201403-1014:0525737 1 DEBUG = NServiceBus Corfig. InfrastructureServices | Default provider for infrastructure service NServiceBu
9_ 5 2014-03-1014:05:25743 1 DEBUG = NServiceBus Config. InfrastructureServices | Default provider for infrastructure service NServiceBu...
l 10 2014031014:05:25.743 1 DEBUG = NServiceBus Corfig. InfrastructureServices Defautt provider for infrastructure service NServiceBu...
1| 11 2014-03-1014:05:25.747 1 DEEUG = NServiceBus Config. InfrastructureServices | Default provider for infrastructure service NServiceBu...
(12 | 12 | 2014-03-1014:05:25747 | 1 DEBUG = NServiceBus Config. InfrastructureServices | Default provider for infrastructure service NServiceBu...
l 13 | 2014-03-1014:05:25.7%0 1 INFO NServiceBus Configure Invocation of NService Bus [Want ToRunBeforeCorfig...
L 14 20140310 14:05:25.750 1 DEBUG = NServiceBus Configure - Details: NServiceBus.Persistence SetupDefaultPer...
(15 | 15 2014-03-1014:05:26033 1 INFO NSenviceBus Configure Invocation of NServiceBus Config INeedintialization ...
(16 | 16 | 2014-03-1014:05:26.033 1 DEBUG = NServiceBus Configure - Details:
L 7 2014031014:05:26.043 1 DEBUG = NServiceBus ConfigureFaults Forwarder Emor queue retrieved from <Message ForwardingInCas...
l 18 20140310 14:05:26.060 1 DEBUG = NServiceBus.Unicast. MessageHandlerR... = Associated "NServiceBus Scheduling Messages. Sche...
(19 | 19 2014-03-1014:05:26.707 1 DEEUG NServiceBus. Unicast. MessageHandlerR... Associated VideoStore Messages Commands Submit..
(20 | 20 | 2014-03-1014:05:26.707 1 DEEUG NServiceBus. Unicast.MessageHandlerR... Associated VideoStore Messages Commands. Submit..

In this example, we have put as many different pieces into the SQL Server as possible.

Summary

In this chapter, we have discussed persistence as a whole, where we discussed
supporting frameworks for XML, Entity Framework, and reflection in which we
introduced a PayQueue sample used for more backed processing. We walked
through a SQL Queuing example from NserviceBus while adding database logging.

In the next chapter, we will discuss saga architecture. Some may ask, "Why discuss
sagas in a persistence book?" Sagas are a method of persisting message data, mostly
state data, to a database. The difference is that the saga engine does a lot of the

persistence work.

[167]

SQL Server Examples

In this chapter, we will be focusing on snippets of SQL Server examples. We will
discuss queuing in SQL Server. In addition to this, more advanced features of Entity
Framework (EF), as well as MVC-EF examples will be discussed. This chapter is for
developers who work with SQL Server and Entity Framework with NServiceBus.

In this chapter, we will cover the following topics:

* The SQL Server example

* The MVC-EF example

* Entity Framework snippets
* Creating tables through EF

o

Creating tables from the EF code-first

Creating tables from the EF model-first

* Expanding the code
* Unit testing

The SQL Server example

One of the many benefits of using SQL Server to persist sagas, timeouts, logging,
and messages is that Visual Studio has many capabilities if it's used in EF, such

as wizards to create mapped objects from existing tables. So, when NSB is saving
messages, sagas, timeouts, logging, and other NSB artifacts to SQL database tables,
EF can be used in console applications to monitor these artifacts. We will look at
monitoring messages, and we'll choose EF for these examples because of its ease of
mapping in Visual Studio from existing SQL Servers. EF will generate the models
from existing tables that NSB creates.

SQL Server Examples

Let's start by building a simple publish or subscribe example from https://
github.com/Particular/NServiceBus.Msmg.Samples/tree/master/PubSub.
We have already walked through this in the previous example, so we will discuss
just modifying the sample to save data in SQL databases to time. We will send the
messages and subscription information to the nservicebus SQL database using
NHibernate. This will be our PubSub-SQL solution.

This example will populate the SQL nservicebus database with the

messages and subscription information from the original PubSub example by
changing the transport type to SQL Server in the IBus configuration, that is, .
UseTransport<SglServers (). Also, we will change the subscription persistence
type to NHibernate. The app . config file will have to contain the connection
information to point to the appropriate SQL Server database. We can study

some articles from http://docs.particular.net/nservicebus/relational-
persistence-using-nhibernate---nservicebus-4.x and http://docs.
particular.net/NServiceBus/publish-subscribe-configuration to Change
the configurations to send the messages and map the subscriptions in SQL Server.

This will still be a PubSub example, except now the queues will be in the
nservicebus database for the MyPublisher, Subscriberi, and Subscriber2 tables.

E_Jm

[System Tables

=1 dbo.audit

=1 dbo.error

1 dbo.MyPublisher

1 dbo.MyPublisher.Retries

=1 dbo.MyPublisher. Timeouts

1 dbo.MyPublisher. TimeoutsDispatcher
=1 dbo.Subscriber1

1 dbo.Subscriber 1.Refries

=1 dbo.Subscriber 1. Timeouts

1 dbo.Subscriber 1. TimeoutsDispatcher
1 dbo.Subscriber2

1 dbo.Subscriber2.Refries

1 dbo.Subscriber 2. Timeouts

1 dbo.Subscriber 2. TimeoutsDispatcher

HHEFEEMBEEGERKMERBERK

[170]

https://github.com/Particular/NServiceBus.Msmq.Samples/tree/master/PubSub
https://github.com/Particular/NServiceBus.Msmq.Samples/tree/master/PubSub
http://docs.particular.net/NServiceBus/publish-subscribe-configuration
http://docs.particular.net/NServiceBus/publish-subscribe-configuration

Chapter 6

The subscription storage, using NHibernate for the local SQL Express database,
will also be stored in the nservicebus database. First, we will install NServiceBus.
NHibernate via NuGet. This will be the PubSub-SQL solution.

Stable Only - Sortby: Relevance

NServiceBus NHibernate

f\"f The MHibernate for the MNServicebus Instal |

You will now have to put the subscription information in the SQL
nservicebus table.

l}; Microsoft SQL Server Management Studio

~=1oi |
File Edit WView Debug QueryDesigner Tools Window Community Help
Sl NewQuery | [y [[|5 M & |)
E & B B |changeType~ | ¥ fal | [

-UAUT16GPE...0.Subscription | Object Explorer Details |
Comnect~ 2% &) m T [Z] B

- X
SubscriberEndp... | MessageType ‘ Versian

| TypeMame
51 dbo.Subscriber2 Retries =l {»

3 dbo.Subscriber2 Timeauts Subscriber 1 MyMessages.Ot... 1.0.0.0
= dbo.Subscriber2, TimeoutsDispatcher —

Subscriber1 MyMessages.Ev... 1.0.0.0 MyMessages, EventMessage

MyMessages. Other. AnotherEventivessage

Subscriber2 MyMessages.[M... 1.0.0.0 MyMessages, [MyEvent

[Views * ML ML ML ML

3 Synonyms
3 Programmability
|l Service Broker
3 Storage
3 Security

(3 Security

[Server Objects

3 Replication

[Management

B I 1 of3 | b Bl b

Even though the subscription table will now be in the SQL database, RavenDB

will still require some of the internal information for NSB, so it must remain
running as a service.

[171]

SQL Server Examples

In this section, we will be using the PubSub-SQL solution:

* MyMessages: This is a payment message used for the projects.

* MyPublisher: This is a project that publishes EventMessages to the SQL
Express nservicebus tables for publish or subscribe. The subscription
information is persisted in the SQL Express nservicebus tables instead
of RavenDB.

* Subscriberl: This is a project for subscribing to the NServicebus
Subscriberil tables to read and handle EventMessages.

* Subscriber2: This is a project for subscribing to the NServicebus
Subscriber2 tables to read and handle the IMyEvent messages.

This is a publish or subscribe solution to publish messages that Subscriber1
and Subscriber2 handle. Subscriberl processes one type of messages, whereas
Subscriber2 processes a different type of messages. These were run in VS 2012
in Windows Server 2012, with MSMQ, DTC, NServiceBus references, and SQL
Server 2012 Express LocalDB installed. An nservicebus database must be
present in SQL Server.

The code will look like the following in the MyPublisher, Subscriberl, and
Subscriber2 projects. Note the addition of . UseTransport<SqlServers () to
send messages to SQL Server and .UseNHibernateSubscriptionPersister ()
to save the subscription data in SQL Server.

using NServiceBus;

namespace MyPublisher

{

class EndpointConfig : IConfigureThisEndpoint, AsA Publisher, IWan

tCustomInitialization

{

public void Init ()
{
Configure.With ()

.DefaultBuilder() // Ensure the default builder is
there

.UseTransport<SglServer>() // Use SQL Server Queues

.UseNHibernateSubscriptionPersister () // Persist the
Subscription in SQL Server

[172]

Chapter 6

.DefiningEventsAs (t => t.Namespace != null &&
t .Namespace.StartsWith ("MyMessages")) ;

}
}

The DefiningEventAs () configuration is used to define the convention of the events
that are used for pub/sub messaging, as messages starting with MyMessages. These
messages are configured to process them as event messages for publish or subscribe.

We need to ensure that app . config is updated to send the messages and
subscription information to the correct database. We will set this in the
NServiceBus/Transport and NServiceBus/Persistence/NHibernate/
Subscription sections of the app.config file.

Don't forget to change the Subscriberl and Subscriber2 endpoints and to
use .UseTransport<SglServers () in similar methods as well. Then, we will
just generate some messages to populate the database.

To populate the MyPublisher table with examples, we need to run the program and
create multiple messages.

F:\3816EN_Chap07\PubSub-SQL\MyPublisher\bin\De!

Published with daz214ic-fBZa-4641-83ae—472ec?6B0Bf 7.

[173]

SQL Server Examples

The MVC-EF example

Many C# developers create programs using MVC-EF as defined in Microsoft
architecture best practices. We will look at the example enclosed in this book called
MvC-SQL with an MvCApp project. This project will read the selected queues from the
browser and display what they contain. We will read the available queues in the
browser without the need to go through SQL Management Studio.

NServiceBus Pub-Sub

MyPublisher
Subscribert

SubscriberZ
Audit
Error:

MVCApp is the main program that runs Mvc-EF in SQL Server to view the tables created
in the PubSub-SQL solution. However, the PubSub-SQL solution needs to be run first.

These examples were run in VS 2012 in Windows Server 2012, with MSMQ, DTC,
NServiceBus references, and SQL Server 2012 Express LocalDB installed.

In order to get access to these tables in the nservicebus database, we need to create
objects that map to the tables. In order to do that, we add the ADO.NET Entity Data
Model, which will create the mapping to the tables.

Add New Item - MVCApp
4 Installed Sortby: Default v &
4 \isual C#
Code ﬁ? ADO.NET Entity Data Model Visual C#
Data
General i? CataSet Visual C#
4 \eb
MVC 3 @ EF 5.x DbContext Generator Visual C#
Windows Forms
WPF =
) I-_j LINQ to SQL Classes Visual C#
Repaorting 0
Silverlight
SQL Server i SQL Server Compact 4.0 Local Dat...Visual C#
Workflow
i SQL Server Database Visual C#
b Online
rj XML File Visual C#
<
rj XML Schema Visual C#
<
_"!" X5LT File Visual C#
Name: [Model 1.edmsx |

[174]

Chapter 6

A database context will have to be added that will put a connection string in the

app . config file or the web. config file for MVC. In this case, the connection string
will be nservicebusrnentities.

Entity Data Model Wizard 2 x|

i? Choose Your Data Connection

Which data connection should your application use to connect to the database?

Iwin-uautlﬁgpeqa'ﬁqlexpress.nservicebus.u:II:u: j| Mew Connection... I

This connection string appears to contain sensitive data (for example, a password) that is reguired to
connect to the database. Storing sensitive data in the connection string can be a security risk. Do
you want to indude this sensitive data in the connection string?

£ Mo, exdude sensitive data from the connection string, I willlset itin my application code.
") Yes, indude the sensitive data in the connection string.
Entity connection string:

metadata=res://*Model1.czdl res: /f*Model 1.s=dl| ;l
res://*Model1.msl;provider =System. Data. SglClient;provider connection string="data source=.
\=glexpress;initial catalog=nservicebus;integrated

security =True;MultipleActiveResultSets =True; App=EntityFramework”™

W save entity connection settings in App.Config as:

InservicebusEnﬁties

< Previous Mext = Firish Cancel

The web . config file will now contain the connection string:

<connectionStrings>

<add name="nservicebusEntities" connectionString="metada
ta=res://*/DAL.Modell.csdl|res://*/DAL.Modell.ssdl |res://*/
DAL.Modell.msl;provider=System.Data.SglClient;provider
connection string="data source=.\sglexpress;initial
catalog=nservicebus;integrated security=True;MultipleActiveResul
tSets=True;App=EntityFramework"" providerName="System.Data.
EntityClient" />
</connectionStringss>

[175]

SQL Server Examples

In the MvVCApp project, there will be models, views, and controllers to use the new
EF models. The different controllers for reading the different queues will be in the
UserController:

» |

| UserController
Class
=t Controller

=l Fields

@ |ogger
=l Methods
Audit
Errors
MyPublisher
Subscriberl
Subscriber2
Subscription

eo0ea D

Looking at one of the controllers, subscription, we will simply read the table using
the EF model and return it to the view when the controller is called:

public ActionResult Subscription ()

{
List<MVCApp.DAL.Subscription> models = new List<MVCApp.
DAL.Subscriptions> () ;

using (var db = new nservicebusEntities())

{

var subscriptions = db.Subscriptions;
foreach (var subscription in subscriptions)

{

models.Add (subscription) ;

}

return View (models) ;

[176]

Chapter 6

The view will display the data that we match up from the EF model to display

in Subscription.cshtml, which, in turn, will call the Subscription controller
that will return the populated models from the database. The database context
nservicebusrnentities is used to access the database, via the connection string,
to populate the MVCApp . DAL . Subscription model, which is a property of the
mapping in the Models1.edmx file. The sequence for the Subscription controller
appears as follows:

this : UserController models : List<Subscription> db : nservicebusEntities

Subsaiption

Create Lisk=Subscription =

aew List<MYCApn. DALSEsaot .
<<returnz>>
¥R R -
CreatenservicebusEntities
newnsenvicebusEntities(]
<<return= >
,ﬁ _______________________________

Loop

[foreach {subscriptions])]
Add

models.Add{subsaiton)

<<return=>

[177]

SQL Server Examples

The Models1.edmx file is an XML file that defines a conceptual model, a storage
model, and the mapping between these models for the nservicebus database.
The . edmx file also contains the information that is used by the ADO.NET Entity
Data Model Designer (Entity Designer) to render a model graphically. In the
following screenshot, we can see some of the graphical renderings of the file:

Qg error 43 MyPublisher...

= Properties = Properties = Properties

o8 1d G 1d JiId

& CorrelationId & CorrelationId & CorrelationId

& ReplyToAddress | & ReplyToAddress & ReplyToAddress

F Recoverable T F Recoverable F Recoverable

M Expires M Expires M Expires

oF Headers oF Headers oF Headers

& Body & Body & Body

¥ Row\fersion ¥ Row\fersion ¥ Row\fersion
=l Mavigation Properties =l Mavigation Properties =l Mavigation Properties
i i .| .|

This file will contain not only the mappings but also the objects themselves that are
translated, or mapped, to the table. In this example, we populated the MvVCApp . DAL.
Subscription model, which is not an object that we coded, but it was generated
as the entity object to be mapped from the . edmx file. Here, we can see the code of
the entity objects themselves; in this case, the MVCApp . DAL . Subscription entity is
the entity object generated from the EF. Visual Studio generates all the mapping,
including that of the entity objects on its own, such that we can use as models for
both controllers and views.

#2 MVCApp. DAL.Subscription ~ | ¥ SubsariberEndpoint - & -2 dim o ’
£ 2 2 =
:},:}, <auto-generateds t Search Solution Explorer (Ctrl+;)
I This code was generated from a template. 4 DA
i 4 o Modell.edmx
/" Manual changes to this file b %Y Modell.Context.tt
i = ior i r ; ;
£ may cause unexpectedlhehé\;lc ‘m you appl%catlcn. *Y Model 1.Designer.cs
/ Manual changes to this file will be overwritten .
= = T2 Model1.edmx. diagram
/f{ Hf the code is regenerated. T
/f </auto-generated> el
S b audites
3 'h error.cs
-Inamespace MVCApp.DAL b Y Model1.cs
{ B) MyPublisher.cs
= US:!-"'E System; .) P 'h MyPublisher_Retries.cs
using Ssystem.Collections.Generic; b 3 MyPublsher_Timeouts.cs
. . A B MyPublisher _Ti tsDispatcher.
= public partial class Subscription Dypu _IS P
7 ['h Subscriber1.cs
public string SubscriberEndpoint { get; set; } P) subscriber 1 Retries.cs
public string MessageType { get; set; } b 3 Subscriber1_Timeouts.cs
public string Version { get; set; } b Y subseriber1_TimeoutsDispatcher. cs
public string TypeName { get; set; } b 33 Subscriber2.cs
¥ b Y Subscriber2_Retries.cs
} 3 'h Subscriber2_Timeouts.cs
b Y Subscriber?_TimeoutsDispatcher. cs
P 3 Subscription.cs

[178]

Chapter 6

So, when the Subscription link is clicked, we will populate the Subscription.
cshtml file with a collection of the table entries, as the entity models from the
controller, to display all the entries in the browser.

Subscription
SubscriberEndpoint MessageType
Subscriber ssages.EventMessage,1.0.0.0
Subseribert essages.Other.AnotherEventMessage,1.0.0.0
Subsecriber MyMessages. IMyEvent,1.0.0.0

In a similar manner, we can add the same for the MyPublisher, Subscriberi,
Subscriber2, error, and audit queues to view their messages as well.

This is not a replacement for ServicePulse to get a pulse on NServiceBus, but this is
an exercise of the power that NSB has to offer, and why ESB engines, such as NSB,
are so powerful in using them. We just demonstrated through a simple program how
to visually create an administration tool to view queues. Features could be added to
send e-mails when there is a message in an error queue, to get an audit queue count
of messages for today, and many more such tracking features. This demonstrates
that not only are the message queues durable, but they can easily be tracked.

To recap MVC integration, MVC is the most common software design pattern used.
In the Mvcapp project, we have built models-views-controllers.

4 il Controllers

P €* HomeController.cs E CO n trol Ie rs

b C* UserController.cs
4 = paL

b 4 Modell.edmx
4 @l Models

b C* AuditExt.cs

C* ErrorExt.cs M Od e I s

b
b ©* MyPublisherExt.cs «
4

C# Subscriber 1Ext.cs
b ©* Subscriber2Ext.cs
[Scripts
4 i views
4 @ Home
&1 Index.cshiml
4 @ Shared
@1 _Layout.cshtml
@] Error.cshiml
4] User
@1 Audit.cshtml
[&] Errors,cshiml
[MyPublisher. cshitml
@1 Subscriber 1.cshitml ‘ .
(3] Subscriber2.cshtml VIEWS
@1 Subscription. cshtml
[2] _ViewStart. cshiml
P Web.config

[179]

SQL Server Examples

This example follows the MVC paradigm:

Query model state Model

.......... .- === +Contains model state
Change notification| « Notifies view of state change

. Update model state

v

View » View selection Controller
* Renders the model User input = Maps user action to model
- Requests model update fo oo _.__t seripwt . »| operations
= Sends user input to controller « Determines the next view

So, we have built a browser to review the publish or subscribe messages into the
nservicebus SQL database.

Entity Framework snippets

We have ventured into creating models in MVC and EF from an existing database.
There will be many cases where the database is not created. We listed previous
examples and described in previous chapters how to manually create a database,
but many ESB developers don't use SQL Server Management Studio, or SQL scripts,
very often. We will get into some details on how to create tables from either EF code
or models. There will be no SQL discussed here as we use objects to build tables

and populate them. EF plays a major role in reading and writing to the SQL Server
database. Since NSB will likely be deployed on a Windows Server machine to handle
the enterprise objects, it is natural that SQL Server will be used as well for many of
the Microsoft components.

Creating tables with EF

So far, the examples have shown us how to read messages in EF. We chose

Entity Frameworks to monitor and build SQL Server tables as Entity Framework
works well inside Visual Studio for modeling data. Also, using an ORM product
eliminates SQL Injection as there is no SQL code to review. Refer to http://www.
slideshare.net/rhelton 1/sgl-injection-amp-entity-frameworks for more
information on Entity Frameworks and SQL Injection. Besides security concerns, EF
is a recommended platform for programming C# into SQL Server from Microsoft.
Microsoft puts a lot of effort into both Visual Studio and the .NET frameworks to
make it as easy as possible.

[180]

http://www.slideshare.net/rhelton_1/sql-injection-amp-entity-frameworks
http://www.slideshare.net/rhelton_1/sql-injection-amp-entity-frameworks

Chapter 6

In the next two samples, we will show you how to populate sample messages

into SQL Server tables to test some of our NSB deployments. EF is a very useful
framework to generate code that will create tables and sample data, as well as read
tables quickly for SQL Server. In the next two examples, messages will be generated
through two means, one being code-first EF where a model does not have to be
created from an existing database, and one via model-first where a model does have
to created first from an existing database. In both examples, the frameworks will be
creating pay messages in the MVCApp1 .AppContext table as we go through a generic
use. In the next chapter, we will create the same messages in nservicebus.

The goal of both these examples will be to create a pay message table and populate it:

N-UAUT16G...Paymessages | Object Explorer Detals |
Connect > 34 4 #] & id | Eventld | error | state ‘

Bl | MVCApp1.AppContext ﬂ » 1 8b265223-dc%e-... Mone initial
(3 Database Diagrams 3721b25d-4733-.. Nane inital

El 3 Tables - -
[System Tables 3 lac138ec-4b2e-.. Mone initial

= dbo._ MigrationHistory 4 ohfisofa-faf4-4... Mone initial

&} dbo Paymessages
[d Views
[Synonyms

5 ee2c56f7-6d42-... Mone initial
* ML ML AL ML

The main function in both programs to create the messages will also be the same,
except they will be calling a different context that is used to create the database
and tables from code-first or from the model-first.

The code-first program will be called from the MvCApp1 solution and the
model first example will be called from the MVvCApp1 -ModelFirst solution.
The code-first solution is so named as the MVCApp1 namespace is used in
generating the database name.

We will start with the program. cs file for both applications.

We will create a program to create the AppContext object, and use it to populate
the table with the Paymessage objects.

namespace MVCAppl

{

class Program

{

static void Main(string[] args)

{

int length = 5;
using (var db = new AppContext())

{

for (int index = 0; index < length; index++)

{

[181]

SQL Server Examples

Paymessage message = new Paymessage () ;
message.id = index + 1;

message.error = "None";
message.state = "Initial";
if (index == 0)

message.EventId = new Guid("8b265223-dc9e-
4789-a6df-69d19f644ad7") ;
else if (index == 1)
message.EventId = new Guid("3721ba5d-4733-
4d98-a5e2-8e8afal3e6lf4") ;
else if (index == 2)
message.EventId = new Guid("lacl88ec-4b2e-
436c-b989-db88ce5dblfa") ;
else if (index == 3)
message.EventId = new Guid("9bf180fa-f8f4-
4b2b-8fac-cca73ad4e2cab") ;
else if (index == 4)
message.EventId = new Guid("ee2c56f£7-6d42-
4314-bce5-4825ed294437") ;
db.Paymessages.Add (message) ;
db.SaveChanges () ;

}

The following are the associated sequences for populating the five pay messages:

Program db : MVCAppEntities message : Paymessage DE SWI E

Create MV CAppEntities

new M CAppEntities(]

<<returnzz

Create Paymessage

new Paymessags]
<<returnzz
{ _______________________________
Add
o’b,PaymessagesAo’qi’mﬂsagJ
<<returnzz

[182]

Chapter 6

The namespace to the database context is MVCApp1 . AppContext, which will be used
to add messages inside the Paymessages database set. Another way this can be read
as the sequence executes is create an MVCApp1 . AppContext database and then a
Paymessages table and populate it with the Paymessage object made up of id, error,
state, and EventId. This was all that was needed to create our sample message data
for testing and populating our SQL Server database into the following tables:

= [Databases
[System Databases
= | J] MVCApp1.AppContext
| Database Diagrams
= @ Tables
|1 System Tables
=1 dbo.__MigrationHistory
= =1 dbo.Paymessages
= [Columns
¢ id (PK, int, not null)
=] Eventld {uniqueidentifier, not null)
=] error {nvarchar{max), null)
=] state {nvarchar{max), null)

Creating tables from the EF code

In this example, we will be using the MvCApp1 solution to create some sample
messages. In this section, we will discuss using EF in code to create the tables with
sample messages versus having the user or developer use SQL Scripting or develop
the messages through the SQL Management Studio.

This will be a basic understanding of EF, and for more details, please refer to
http://www.slideshare.net/rhelton 1/asp-mvc3-rev009.

To create tables in code through EF, the generic DbContext is used. The DbContext is
a generic database context used to perform operations on the database. The best way
to think of DbContext is a session database context created by a connection string,
and no connection string will default to the local database. A DbContext article for
working with the context can be found at http://msdn.microsoft.com/en-us/
data/j3j729737.aspx, but this example will work as it is.

[183]

http://www.slideshare.net/rhelton_1/asp-mvc3-rev009
http://msdn.microsoft.com/en-us/data/jj729737.aspx
http://msdn.microsoft.com/en-us/data/jj729737.aspx

SQL Server Examples

In our example, we will extend the Dbcontext to tell it which sets of the database
we will be creating a database to handle.

—lusing System;
using System.Cocllections.Generic;
using System.Data.Entity;
using System.Lling;

using System.Text;
using System.ThreadiV
—Inamespace MWCAppl /
1
- public class AppContext : DbContext /
1

public DhSet<Paymessage> Paymessages { get; set; }
¥

You will see that the namespace is MVCApp1, the extended database context is
AppContext, and the table is be filled with Paymessage objects; so, the namespace
will be used as this is a lot of work. We will use appContext to create the database
and tables from code. When we run the code, without any model, we will get the
tables and database filled.

N-UAU‘[]BG....Pavmessages}’ Object Explorer Details } -

Connect - 33 2 B id | Eventid | error | state
= _J MVCApp 1. AppContext ;l 3 1 8b265223-dc%e-... MNone initial

[Database Diagrams 3721ba50-4733-... None initial

[3 Tables - - |

[System Tables 3 lac188ec-4b2e-... Mone initial

= dbo.C_ MigrationHistory 4 obf130fa-faf4-4... None initial

= dbo Paymessages 5 ee2c56f7-6d42-.. None initial

3 Views |
3 Synonyms * ML ML ML MLEL

Creating tables from EF models

An alternative to creating sample messages in straight EF code is to have generated
EF models create the sample messages table. Here are some basic steps from a
current database.

1. The database name needs to be created first and have a connection string
in the app.config file.
The model is created from an existing database through Visual Studio.

The model created from the database is used to create new databases,
in cases where it is not already created through Visual Studio.

[184]

Chapter 6

The program. cs will be the same in both files, the difference being the AppContext
to map out the objects to the tables. First, we will add Model11 . edmx.

Add New Item - MVCAppl-ModelFirst

4 Installed Sortby: Default -
4 \Visual C# Items
— ﬁ-_? ADO.NET Entity Data Model
General ii DataSet
Web
Windows Forms q'_? EF 5.x DbContext Generator
WPF
Reporting =
- LINQ to SQL Classes
SOL Server 9 Q Q
Workflow
Graphics i Local Database
b @z i Service-based Database
rj XML File
<>
rj ¥ML Schema
<>
_‘!l' ¥SLT File
MName: Model1.edmx

Visual C# Items

Visual C# Items

Visual C# Items

Visual C# Items

Visual C# Items

Visual C# Items

Visual C# Items

Visual C# Items

Visual C# Items

This will be created from the existing MVCApp1.AppContext database.

Call appContext to match the same code for the main function.

Entity Data Model Wizard

i? Choose Your Data Connection

you want to indude this sensitive data in the connection string?

! Yes, indude the sensitive data in the connection string,

Entity connection string:

2

Which data connection should your application use to connect to the database?

Iwin—uautngpeqa‘.,sqlexpress.MVCAppl.AppConhext.dbo j Mew Connection... |

This connection string appears to contain sensitive data (for example, a password) that is required to
connect to the database. Storing sensitive data in the connection string can be a security risk. Do

1 Mo, exclude sensitive data from the connection string. Iwill setitinmy application code,

metadata=res: [/*/Model1.czdl|res: f{*Model 1.s=dl|

\SQLExpress;initial catalog=MvCApp1. AppContext;integrated
security =True;MultipleActiveR esultSets =True; App=EntityFramework™

¥ save entity connection settings in App.Config as:

res: ff*Model 1.msl;provider =System.Data. SqlClient;provider connection string="data source=.

IAppContext'

< Previous | Mext = I Finish

Cancel

[185]

SQL Server Examples

This mapping will also create the connection string in the app . config file to be

associated with the database:

<connectionStrings><add name="AppContext" connectionString
="metadata=res://*/Modell.csdl|res://*/Modell.ssdl|res://*/

Modell.msl;provider=System.Data.SglClient;provider connection
string="data source=.\SQLExpress;initial catalog=MVCAppl.

AppContext;integrated security=True;MultipleActiveResultSets=True;App
=EntityFramework"" providerName="System.Data.EntityClient" /></

connectionStrings

Ensure that the database exists; if not, then create one.

E New Database

L8 Seript ~ % Help

=103

Owner:

Database name: IM‘u"CApp‘I AppContext

I:de{ault)

¥ Use fulltext indexing

To create the tables, (in this case, the MvCApp table to populate with messages)
simply right-click on Generate Database from Model... to create a DDL's SQL

script to create the model's table.

=l Properties
oEid
J Eventld
& errar
| M state %
=l Navigatior o

Al

Paymessage

Add New
Refactor
Rename
Cut Ctrl+X
Copy Ctrl+C

Move to new Diagram

Delete fram Madel Del
Remove from Diagram Shift+Del
Collapse

Indude Related

Validate

Update Model from Database, .,

Generate Database from Model...

Add Code Generation [tem..

Table Mapging

Stored Procedure Mapping

Show n Model Browser

Properties Alt+Enter

[186]

Chapter 6

This will generate the DDL schema to be run by clicking on the Finish button.

Generate Database Wizard 21 x|
i? Summary and Settings

Save DOL As: IModeIl.edmx.sql

DDL |

— Entity Designer DDL Script for SQL Server 2005, 2008, and Azure
- Date Created: 06/01/2014 11:56:16

— Generated from EDMX file: F:\38 16EN_Chap07\SAVE2\MYCApp 1-ModelFirst\MVCApp1-
ModelFirst\Model 1. edmx

SET QUOTED _IDEMTIFIER. OFF;

GO

USE [MVCApp 1. AppContext];

GO

IF SCHEMA_ID{N'dba’) IS MULL EXECUTE(N'CREATE SCHEMA [dbol?);
GO

- [

< Previous I Mext > | Finish | Cancel |

Once the DDL's SQL script is created, run the SQL script in Visual Studio.

LT SR s R Il Model 1. edmx [Diagram 1] * Program.cs

P - v A wi mf mycapp e |- E

-- Date Created: 84/@9/2014 13:27:25
-- Generated from EDMX file: F:\3816EN_Chap@7\CodeFirstEF\ConsoleModelFirstEF\ConsoleModelFirstEF\Modell. edmx

SET QUOTED_IDENTIFIER OFF;
]
USE [MVCApp]:
00% -~
STsQL St 7 Message —

Command {3) completed successfully.

[187]

SQL Server Examples

After the SQL script is run and the Visual Studio is generated from the model,
the table should be built.

N*UAUTl&G....Paymessages}/ Object Explorer Details] -
Connect ~ & 44 EE id | Eventid | error | state

= || MVCApPL AppContext &l % |nu L AL MULL
[Database Diagrams
[[Tables
[System Tables |

=1 dbo.C_ MigrationHistory
& dbo.Paymessages

Then, we will run the program, and it will populate the pay messages.

M-UAUTIEG....Pavmessages}/ Object Explorer Details] -
Connect = 3y = il ‘j.g id | Eventld | error | state

= _J MYCAppl. AppContext ;I » 1 8b255223-dc%e-... Mone initial
£ Database Diagrams 3721ba5d-4733-... None initial
= [@ Tables -
£ System Tables 3 1ac188ec-4b2e-... None initial
= dbo.C__ MigrationHistory 4 Sbf180fa-faf44... Mone initial
ik dbo Paymessages 5 eecS6f7-6042-... None initial
Views
o * ML ML ML ML

3 Synonyms

So, we simply had to do the following to create a table from a model:

1. Ensure that the database is present in the SQL Server.

2. Generate the SQL DDL script from the model for the new table using
the Generate Database from Model....

Ensure the database was present, and tables will be generated.

Run the generated SQL script in Visual Studio to create the new table
from the table. The table should now match the current model.

Then, we have a populated table from a model without writing the SQL
code ourselves.

Code-first EF

For many of the samples, data needs to be set up in the database. The preference
in this book is to use ORMs than SQL Scripts and EF is a Microsoft framework that
supports integration into Visual Studio. For some of the samples, we plan to read
and write data to nservicebus, and other databases, using EF and MVC.

One of the tables that we will use is to load messages through the saga system.
These messages would normally be the result of users populating MVC forms as
they enter orders, payments, or more.

[188]

Chapter 6

The table will appear as follows:

WIN-UAUT16GP...Paymessages |

id | Eventld errar state
2 1 8b265223-dc%e-4759-a0df-65d 19f54... Mone initial
I 2 8b265223-dc2e-4739-a0df-69d 19f54... Mone initial
I 3 3721basd-4733-4d98-a5e2-8e8afal3... Mone initial
I 4 1ac138ec-9h2e-436c-0939-db88c65d. .. | Mone initial
I 5 obf1a0fa-faf4-4b2b-3fac-cca73ade... Mone initial
I] ee2chef7-6d42-4314-boe5-45252d29.., Mone initial

We have discussed that there is no need to create many pieces manually, and we
would use EF to perform some of these functions. We will log, audit, automate,
and check things as much as possible.

Code-first EF utilizes the generic DbContext as we have mentioned in previous
chapters. Here, we will extend it so that it is database specific. The DbContext is a
generic database context used to perform operations on the database. A DbContext
article for working with can be found at http://msdn.microsoft.com/en-us/
data/j§3729737.aspx. We will extend the DbContext so that it knows the sets

of databases we will be creating to handle. To specify the connection string or

base database, see http://www.entityframeworktutorial .net/code-first/
database-initialization-in-code-first.aspx to create DbSet. We will

create a project called consoleDbContext to populate the necessary tables.

namespace ConsoleDbContext
1
public class AppContext : DbContext
1
public AppContext() : base("nservicebus™) { }
public DhSet<Paymessage> Paymessages { get; set; }
}
b

We will extend the database context with AppContext; this will create a table
called pPaymessage to be filled with a set of Paymessages objects. To do all this
manually is a lot more work, so we will rely on automating the filling of the table.
The base ("nservicebus") expression will dictate the code to put the table in the
nservicebus database. By default, it will use the local SQL Express instance.

[189]

http://msdn.microsoft.com/en-us/data/jj729737.aspx
http://msdn.microsoft.com/en-us/data/jj729737.aspx
http://www.entityframeworktutorial.net/code-first/database-initialization-in-code-first.aspx
http://www.entityframeworktutorial.net/code-first/database-initialization-in-code-first.aspx

SQL Server Examples

We will create the program to create the AppContext object and use it to populate
the table with the Paymessage objects:

namespace MVCAppl

{

class Program

{

static void Main(string[] args)

{

int length = 5;
using (var db = new AppContext ())

{
for (int index = 0; index < length; index++)
{
Paymessage message = new Paymessage () ;
message.id = index + 1;

message.error = "None";
message.state = "initial";
if (index == 0)

message.EventId = new Guid("8b265223-dc9e-
4789-a6df-69d19f644ad7") ;
else if (index == 1)
message.EventId = new Guid("3721ba5d-4733-
4d98-a5e2-8e8afa3e6lf4") ;
else if (index == 2)
message.EventId = new Guid("lacl88ec-4b2e-
436c-b989-db88ce5dblfa") ;
else if (index == 3)
message.EventId = new Guid("9bf180fa-£f8f4-
4b2b-8fac-cca73a4e2cab") ;
else if (index == 4)
message.EventId = new Guid("ee2c56f£7-6d42-
4314-bce5-4825ed294437") ;
db.Paymessages.Add (message) ;
db.SaveChanges () ;

}

This will populate the database with the sample messages.

[190]

Chapter 6

Code-first EF and configurations

As we have mentioned earlier, we can perform the configuration in code and outside
the app . config file. The app . config file comes in very handy, but sometimes the
technical or non-functional requirements may require encryption of the configuration,
or that the configuration is more global by being entries in the database.

However, you may want to store this information in the database, as this
shows user IDs and passwords in plain text. This code will be found in the
ConsoleDbContext-Config directory.

We will walk you through a more extended example as it relates to NSB, just as
we established a relationship in the case of the previous DBContext with the
app.config file.

In this scenario, we want to store the UnicastBusConfig settings in the database.
The unicast bus configuration is made up of a collection of message endpoints.
So, we need a one-to-many relationship in the configuration in the database

that appears similar to the following diagram:

"Cfg MessageEndpointMappingDB

'-':13 UnicastBusConfigDB

=l Properties
[=I Properties # id
P id & UnicastBus ConfigDBId
& DistributorControl&ddress K AssemblyName
K& DistributorDatatddress = S Endpoint
& ForwardReceivedMessagesTo 1* & Messages
& TimeoutManagerAddress B Namespace
& TimeToBeReceivedOnForward.... B TypeFullName
=/ Navigation Properties = Navigation Properties
=/ MessageEndpointMappingDBs = UnicastBus ConfigDB

This shows a one-to-many mapping of the unicast configuration as it has a collection
called MessageEndpointMappingCollection of MessageEndpointMappings.

This is to allow many endpoint mappings in the app . config settings for unicast

in the following code:

<UnicastBusConfig ForwardReceivedMessagesTo="MyAudits":
<MessageEndpointMappings>
<add Endpoint="MySFTPClient™ Messages="MyMessages.SendCommand, MyMessages™ />
</MessageEndpointMappings>
</UnicastBusConfig>

[191]

SQL Server Examples

We can add many message endpoints. In order to create a database to hold

these name-value pairs, we will have to copy the UnicastBusConfig and
MessageEndpointMapping classes to create the database tables that contain the same
values. The reason that we cannot use the classes directly is that we need to add keys
for data storage and the relationship of one-to-many in the tables. We will call these
classes UnicastBusConfigDB and MessageEndpointMappingDB so that they are
database compatible. We will add their keys.

public class UnicastBusConfigDB

: ig

public UnicastBusConfigDB()

{
}

messageMaps = new List<MessageEndpointMappingDB>();

[Key]
public int id { get; set; }

public virtual ICollection<MessageEndpointMappingDB> messageMaps { get; set; }

|1

We will create the key for the MessageEndpointMappingDB class and the relationship
by going back to the UnicastBusConfigDB class.

public partial class MessageEndpointMappingDB
1

[Key]

public int id { get; set; }

public int UnicastBusConfigDBId { get; set; }
public UnicastBusConfigDE unicastBusConfigDB { get; set; }

This will create a relationship and the keys that we are aiming for in the Entity
Framework table diagrams created previously.

public class AppContext : DbContext

1
public AppContext() : base("nservicebus™) { }

<UnicastBusConfigDB> unicastBusConfigs { get; set; }

ntMappingDB» messageEndpointMappings { get; set; }

protected CVE”ldE void OnModelCreating(DbModelBuilder modelBuilder)

{
modelBuilder.Entity<MessageEndpointMappingDB>().HasRequired<UnicastBusConfigDE>(s => s.unicastBusConfigDB)
JWithMany(s =»> s.messageMaps).HasForeignKey(s =» s.UnicastBusConfigDBId);
base.0OnModelCreating(modelBuilder);
h

[192]

Chapter 6

To create the tables with a key that will relate the table of the endpoints to
the unicast.

MﬂN—UAUTlﬁGP“thappngBﬂ

id | UnicastBusConf... | AssemblyMame | Endpoint Messages MNamespace | TypeFullame |

» 1 MLLL MySFTPClient MyMessages.Se... ALLL NLEL

Then, we can read the endpoint and unicast tables to get the configuration instead of

using the app . config file. This is a helpful exercise for those who do not wish to use
the app . config settings:

static void Main(string[] args)

{

/**************

* Read the database fields
* ************/

using (var db = new nservicebusEntities())
var unicasts = db.UnicastBusConfigDBs;
// Get the first UnicastConfig record for now
var unicastBusCfgDB = unicasts.FirstOrDefault () ;

/*****

* Get the message endpoints per unicast

* ****/
var messageEndpoints = db.MessageEndpointMappingDBs;
foreach (var endpoint in messageEndpoints)

{

if (unicastBusCfgDB.id == endpoint.
UnicastBusConfigDBId)

{

unicastBusCfgDB.MessageEndpointMappingDBs.

Add (endpoint) ;
}
}
/****
* Fill in normal unicast config from DB
* *****/
UnicastBusConfig unicastBusCfg = new
UnicastBusConfig() ;

unicastBusCfg.DistributorControlAddress =
unicastBusCfgDB.DistributorControlAddress;

[193]

SQL Server Examples

unicastBusCfg.DistributorDataAddress =
unicastBusCfgDB.DistributorDataAddress;

unicastBusCfg.ForwardReceivedMessagesTo =
unicastBusCfgDB.ForwardReceivedMessagesTo;

unicastBusCfg.TimeoutManagerAddress = unicastBusCfgDB.
TimeoutManagerAddress;

unicastBusCfg.TimeToBeReceivedOnForwardedMessages =
unicastBusCfgDB.TimeToBeReceivedOnForwardedMessages;

Console.WriteLine (unicastBusCfg) ;
/**
* Add Message Endpoint Mappings
* ***/
unicastBusCfg.MessageEndpointMappings = new
MessageEndpointMappingCollection () ;

foreach (var endpointDB in unicastBusCfgDB.
MessageEndpointMappingDBs)
{
MessageEndpointMapping endpoint = new
MessageEndpointMapping () ;
endpoint.AssemblyName = endpointDB.AssemblyName;
endpoint.Endpoint = endpointDB.Endpoint;
endpoint .Messages = endpointDB.Messages;
endpoint .Namespace = endpointDB.Namespace;
endpoint.TypeFullName = endpointDB.TypeFullName;

unicastBusCfg.MessageEndpointMappings.
Add (endpoint) ;

Console.WriteLine (endpoint) ;

Unit testing NServiceBus

Visual Studio 2012 has plenty of unit testing features. NServiceBus.Testing
offers testing by sending messages through message handlers and sagas. This
includes anything that a message handler and saga can do, including header
manipulation and dependency injection. You can visit http://docs.particular.
net/NServiceBus/unit-testing for some basic examples. For the source code of
NServiceBus.Testing, Visit https://github.com/Particular/NServiceBus/
tree/develop/src/NServiceBus.Testing.

[194]

http://docs.particular.net/NServiceBus/unit-testing
http://docs.particular.net/NServiceBus/unit-testing
https://github.com/Particular/NServiceBus/tree/develop/src/NServiceBus.Testing
https://github.com/Particular/NServiceBus/tree/develop/src/NServiceBus.Testing

Chapter 6

The very basics of starting unit testing is to create a unit test project in
Visual Studio by adding a new unit test project to an existing solution.
See http://msdn.microsoft.com/en-us/library/hh598957.aspx/ for details.

Add New Project

> rEm=ni .NET Framework 4.5 = Sortby: Default -
4 Installed | c
EJ Coded UI Test Project Visual C#
4 Vigual C#
Windows

c#
- EJ Unit Test Project Visual C#

b Office c#
Cloud EJ Web Performance and Load Test Project Visual C#
Reporting

I SharePaint
Silverlight
WCF
Warkflow

LightSwitch

We will add NServiceBus. Testing from NuGet by visiting http: //www.nuget.
org/packages/NServiceBus.Testing/. We will initialize the tests using Test .
Initialize (), which is calling NServiceBus. Testing, thus starting the tests with
either Test .Handler<HandleNames> () Or Test .Saga<SagaName> ().

using MServiceBus;
using MServiceBus.Testing;

namespace UnitTestHandlers
1
[TestClass]
public class UnitTestHandler

1
‘J‘:-::-cn-c
* Test the message handler for MYWCFClient
* This will call the WCF Service for a completion

£

£ xxxxf

[TestMethod]
public woid Run()
1

Test.Initialize();

Test.Handler<MyHandler>()
.ExpectReply<ResponseMessager(m => m.S5tring == "hello™)
.OnMessage<RequestMessagex(m =» m.5tring = "hello™);

[195]

http://msdn.microsoft.com/en-us/library/hh598957.aspx/
http://www.nuget.org/packages/NServiceBus.Testing/
http://www.nuget.org/packages/NServiceBus.Testing/

SQL Server Examples

When a test is built, we can run it or debug it. The test indicators will tell us whether
anything failed. We can also put in rules and assertions that if the correct response
does not happen, it will fail the test. This is a great feature of Visual Studio, and there
are many samples: http://msdn.microsoft.com/en-us/library/ms243176.

aspx, http://www.visualstudio.com/en-us/get-started/create-and-run-
unit-tests-vs.aspx, and extensions such as http://www.codeproject .com/
Articles/22358/Visual-Studio-Unit-Testing-Extensions.

[Test Explorer v 3% [UGREE Rt eNeEl l FventhMessageHandler.cs UnifTestHandler.cs UnitTestSaga2.cs LnitTestMySag;
Q-h [E B ceach o~ %3 UnitTestHandlers. UnitTestHandler2 ~ @ Run(

using System.Xml.Serialization;
A Streaming Video: Improving quality with unit tests ¢ » using Messages;

using Microseoft.VisualStudio.TestTools.UnitTesting;
using MyMessages;
4 Ppassed Tests (3) using MyMessages.IMessages;
@ Run 2 ser using MyMessages.MessageParts; .
T . Test Indicators
using NSerwviceBusj
using NServiceBus.Testing;

Run All | Run...~ | Playlist : All Tests =

4 Not Run Tests (3)
-Inamespace UnitTestHandlers

i
[TestClass]
= public class UnitTestHandler2
i

2 prr—

* Test the message handler for MYWCFClient
Refactor y mpletion
Organize Usings »

Generate Sequence Diagram...

3% Show on Code Map Cirl+”
Find All References on Code Map RU n TeSts
Show Related Items on Code Map » K

A RunTests CHl+R, T Debug Tests
Debug Tests Cirl+R, CHrl+T 4—-—'—-

Message handler unit testing

The message handler code will be in the unit test itself. From our \BasicWCF2\
MVCApp - WCF\UnitTestHandlers\ project, where we have various unit tests, we
will use this unit test, to debug, test, and walk through EventMessageHandler. The
EventMessageHandler receives SendCommand from MVCApp, via the saga, loads XML
messages, selects one if it has found one, and sends it to the WCF server, which will
respond back to the saga.

[196]

http://msdn.microsoft.com/en-us/library/ms243176.aspx
http://msdn.microsoft.com/en-us/library/ms243176.aspx
http://www.visualstudio.com/en-us/get-started/create-and-run-unit-tests-vs.aspx
http://www.visualstudio.com/en-us/get-started/create-and-run-unit-tests-vs.aspx
http://www.codeproject.com/Articles/22358/Visual-Studio-Unit-Testing-Extensions
http://www.codeproject.com/Articles/22358/Visual-Studio-Unit-Testing-Extensions

Chapter 6

Controller/

Bus Client Saga

‘{
WICF XML J
Message
Handler/
WCF Client

We proceed with creating UnitTestHandler2.cs, and then add the header
information and [TestMethod]. This will be under BasicwcF2 in the
UnitTestHandlers project.

q@q

Controller
Message
Handler

XML Message
On Disk

WCF Server

' | —

[197]

SQL Server Examples

After the base of the file is created, we will create a normal message, sendCommand,
with GuID and state that will inform where the message should be at before
reaching the message handler called command.

namespace UnitTestHandlers
i
[TestClass]

public class UnitTestHandler2

{

jEEE

* Test the message handler for MYWCFClient
* This will call the WCF Service for a completion

[TestMethod]

public void Run()

{
Test.Initialize();
e

Create a Command message
used to loock up an XML Message file
on Disk, send to WCF Server

SendCommand command = new SendCommand():
command.RequestId = new Guid("Bb265223-dc9e-4789-a6df-69d19f644ad7");
command.state = MyMessages.MessageParts.5tateCodes.SentMyWCFClient;

// The Test code
Test.Handler<EventMessageHandler>()
.ExpectReply<ResponseCommand>(m => m.state == MyMessages.MessageParts.StateCodes.CompleteMyWCFClient)
.OnMessage<sendCommand>(command) ;

We see that the command message is passed to .OnMessage<SendMessa
ge> (command) and ResponseMessage in reply, with the state being set to
CompleteMyWCFClient. When calling the unit test in Debug, we can even
pass this message in the handler and see how it behaves.

StateCodes.cs UnitTestHandler2.cs B > Ry 0Tl g Ells |2 e UnitTestHandler.cs UnitTest]

* UnitTestHandlers. UnitTestHandler 2. EventMessageHandler ~ @ Handle(SendComm)
-] public class EventMessageHandler : IHandleMessages<SendCommand>
{

public IBus Bus { get; set; }

-] public wvoid Handle(SendCommand message)

{

serviceReferencel.WcfserviceOf PayMessage ErrorCodesClient clien
new ServiceReferencel.Wcfservice0f PayMessage ErrorCodesC]

// Create the response message
L= ResponseCommand command = new ResponseCommand();
command.RequestId = message.RequestId;

FEE T

* Get the XML messages from the temp direcotry.

[198]

Chapter 6

This allows us to design and debug the handler functionality in the unit test code.
There are many rules that can be used when testing the handler or saga. For instance,
ExpectNotReply where the handler does not reply with a specific message.

To get information on what is available in NServiceBus. Testing, we can:

* Try to enter something and hover the mouse over IntelliSense

eSS
b ErorCodes.cs
b C* paymentReq.cs
b < StateCodes.cs

b € RequestExpiredEvent.cs
) packages.config

// The Test code
Test.Handler<Eventiiessagetandlers ()

© ExpectDefer<> . ©5.MessageParts. StateCodes. CompleteMyWCFClient)

® ExpectDoNotContinueDispatchingCurrentMessage ToHandlers

@ ExpectForwardCurrentMessageTo b c* ResponseCommand.cs

© ExpectHandleCurrentMessagelater b

@ ExpectNotDefer<> b MySaga

@ ExpectMotPublsh<> 4 [c® MyWCFClient

publi® Handler<EventMessageHandlers Handler<EventMessageHandlers.ExpectNotReply< TMessage=(Func< TMessage,bool> chack)
® ExpectMotSend<> & Check that the handler does not reply with 3 given message

z“b“e ExpectliotSendLocal<> -

lic cl ¥ SendCommand.cs

N - =
Solution Explorer Team Explorer Class View

e Read the documentation at http://www.nudoq.org/#!/Packages/
NServiceBus.Testing/NServiceBus.Testing/Handler (T)

www.nudog.org/#!/Packages/NServiceBus.Testin rviceBus.Testing/Handler(T)

st Visitedv 0 Linux Mint @ Community T Forums T Blog [jDownload @ {iDownload

dome > NServiceBus [+ Name Description

search... Handler<T> Creates a new instance of the handler tester.

ACKAGES B Methods

ServiceBus

ServiceBus.ActiveMQ Name Description

ServiceBus.Autofac

ServiceBus.Azure L ExpectDefer<TMessage> Check that the handler defers a message of the given type

ServiceBus.Azure.Transports.Windoy -

ServiceBus.Azure.Transports.Windo ExpectDoNotContinueDispatchingCurrentMessageToHandlers Cneck that the handler tells the bus to stop processing the ¢

ServiceBus.Castlewindsor message.

ServiceBus.Distributor.MSMQ ExpectHandleCurrentMessageLater a’:aesi:;:?;tt;e handler tells the bus to handle the current

ServiceBus.Hosting.Azure — :

ServiceBus.Interfaces ExpectNotDefer<TMessage> Check that the handler doesn't defer a message of the given
Load More <

ExpectNotPublish<TMessage> Check that the handler does not publish any messages of the

SSEMBLIES given type complying with the given predicate.
Servicenue Check that the handler d t I th
ServiceBus.Azure eck that the handler does not reply with a given message

[199]

SQL Server Examples

e Toread the code in GitHub, refer to https://github.com/Particular/
NServiceBus/blob/develop/src/NServiceBus.Testing/Handler.cs

github.com

Community Forums Blog [Download [!Download

public Handler<T> ExpectNotReply<TMessage=(Func<TMessage, bool> check)

{
expectedInvocations.Add(new ExpectedNotReplyInvocation<TMessage> { Check = check });
return this;

So, there are many possibilities to test the code. For the message handler, it will get
the command with GUID and state, read the XML files to get a matching message,
and send it to the WCF service, which will respond back to the saga. The saga keeps
track of the message routing and states and will respond to Mvcapp. The MvCcapp
project will update its state in the table. There could normally be multiple views that
could read the state, maybe an admin utility to check on the state of the messages,
the CSR talking to the customer and telling them whether the payment has been
processed, or a confirmation form, or an e-mail to the customer telling them that the
payment is successful, or many other scenarios. Besides a couple of functions to read
the XML file for the message, which is just used for testing, there could be a number
of scenarios added; however, the majority of the code is simply the following, which
is simple enough:

/****
* The message handler
* Matches a XML message GUID from a file and the command sent
* to it from MVC via the Saga
* If found, sends it to the WCF Server and responds
* with the state of what happened.
* The WCF Service must be running to complete.
*
* ****/

public class EventMessageHandler
IHandleMessages<SendCommand>
{
public IBus Bus { get; set; }
public void Handle (SendCommand message)

{
ServiceReferencel.WcfServiceOf PayMessage
ErrorCodesClient clientl =
new ServiceReferencel.WcfServiceOf PayMessage
ErrorCodesClient () ;

// Create the response message

[200]

https://github.com/Particular/NServiceBus/blob/develop/src/NServiceBus.Testing/Handler.cs
https://github.com/Particular/NServiceBus/blob/develop/src/NServiceBus.Testing/Handler.cs

Chapter 6

GetMessages () ;

ResponseCommand command = new ResponseCommand () ;
command.RequestId = message.RequestId;
/****

* Get the XML messages from the temp direcotry.

* Find a match from the GUID
* ****/

List<PayMessage> list EventMessageHandler.

PayMessage payMessage = null;
foreach (var temp message in list)

{

if (message.RequestId == temp message.EventId)

{
}
}

// if no XML, just fail
if (payMessage == null)

{

payMessage = temp message;

command.state = StateCodes.MyWCFClientFailXML;
Bus.Reply (command) ;
Console.WriteLine ("No XML Found") ;

}

else

{

ErrorCodes returnCode = clientl.

Process (payMessage) ;

if (returnCode == ErrorCodes.None)

{

StateCodes.

command.state

CompleteMyWCFClient;

}

else

{
}

command. state StateCodes .MyWCFClientFail;

Bus.Reply (command) ;
Console.WriteLine ("Success") ;

}

After testing this code, we could use the tested code to create a class into a new
project, minus the unit testing, and start using it as a message handler. It saves
time by developing the code in a unit test, and putting the tested product into the
applications' project. The unit test project also serves as a backup of knowing what
it looked like during a good test.

[201]

SQL Server Examples

Saga handler unit testing

We will start testing saga code from \BasicWCF2\MVCApp - WCF\
UnitTestHandlers\, where we have various unit tests, including a copy of the
MySaga code in UnitTestSaga2.cs. Again, a sample of some of the workings can
be found at http://docs.particular.net/NServiceBus/unit-testing. Many

of the same principles apply as we saw in unit testing the message handler, except
now it will be saga handler, and our testing moves from Test .Handler to Test.
Saga. Now, we can study the source code from https://github.com/Particular/
NServiceBus/blob/develop/src/NServiceBus.Testing/Saga.cs.

One thing to note is that if a saga entity object is deleted in different function calls,
with MarkAsComplete (), these should be tested separately because once we delete
the object, we cannot delete them again. For example, in our tests:

TestMethod]
public veid Run()
{

Test.Initialize();

J**

State sent to Saga
wx

SendCommand command = new SendCommand();

command.RequestId = new Guid("8b265223-dc9e-4789-a6df-69d19fe44ad7");

command.state = MyMessages.MessageParts.S5tateCodes. SentMyWCFClient;

.'ll. *

* Response from WCF and to MVCApp
,

ResponseCommand resp = new ResponseCommand();

resp.RequestId = | new Guid("8b265223-dcIe-4789-a6df-69d19f644ad7");

resp.state = MyMessages.MessageParts.StateCodes.CompleteMyWCFClient;

Test.Saga<MyTestSagax()

.ExpectReplyToOrginator<ResponseCommands ()
.ExpectSend<SendCommand: ()
.When(s =» s.Handle(command))
.ExpectReplyToOrginator<ResponseCommands ()
JWhen(s => s.Handle(resp))
JAssertSagaCompletionIs(true);

Test.Saga<MyTestSagar()

.ExpectReplyToOrginator<ResponseCommand: ()
.Expectsend<SendCommands ()
.ExpectTimecutToBeSetIn<SendCommand>((state, span) => span == TimeSpan.FromHours(3))

.When(s =» s.Handle(command})
.ExpectReplyToOrginator<ResponseCommands()
.WhensagaTimesOut()
JAssertSagaCompletionIs(true);
}

[202]

http://docs.particular.net/NServiceBus/unit-testing
https://github.com/Particular/NServiceBus/blob/develop/src/NServiceBus.Testing/Saga.cs
https://github.com/Particular/NServiceBus/blob/develop/src/NServiceBus.Testing/Saga.cs

Chapter 6

In this snippet, we are testing the ITHandleMessages<ResponseCommand>

message handler in the first test case, and in the second test case, we are testing
IHandleTimeouts<SendCommand> separately as they delete the saga object. We are
passing in prefabbed messages in the code to see whether they work well with the
normal messages.

The saga handler itself will act as an intermediate between the MVCApp and the
WCF client. This is needed so that it can timeout after three hours in case there is no
response from the WCF service.

Summary

We covered a lot of information in this chapter regarding persistence. This chapter
has a lot of associated code. We covered the highlights of working with NSB and
databases. NSB does take care of a lot of the workings with databases and mappings,
but because of the flexibility of NSB, various pieces can be extended through C# to
notify and monitor a variety of SQL Server pieces.

We covered how to create e-mail notifications by watching queues and notifying
operations of the workings of NSB.

We created a SQL Server database from object code, we created one from EF models,
we created MVC-EF code to read the tables for a PubSub that does most things in
SQL Server, and we changed some of the pieces from EF to NHibernate and then
from EF to RavenDB. We read the subscription tables of NServiceBus in code and
displayed them in MVC for both RavenDB and SQL Server. We also offered a small
sample on how to configure a daily check to send ourselves an e-mail if anything
was populated in the MSMQ error queue. Wow! for a small chapter, the reader has
a lot of information to build from.

The next chapter will be more into the code of general persistence. We will discuss
NHibernate, RavenDB, and MongoDB. We will dive into the code to accomplish
some database tasks since it relates to NServiceBus. This code can be applied to
many tasks that are not ESB-specific.

[203]

Persistent Snippets

In this chapter, we will be focusing on snippets about persistence. We will discuss
NHibernate, RavenDB, and MongoDB.

We will dive into the code to accomplish some database tasks since it relates to
NServiceBus. This code can be applied to many tasks that are not ESB-specific. But
this is a much-needed chapter on database code itself. We will create SQL Server
databases without the use of SQL code and read tables that NServiceBus created in
RavenDB. We will show how to create tables with code, read and display tables in
NHibernate and RavenDB, and even send ourselves an e-mail with the error queue
count. This will be the applied theory in this chapter.

In this chapter, we will cover:

* Entering NHibernate
* Using saga and NHibernate

[e]

Defining NHibernate

o

The saga database data

* Logging
* Entering RavenDB
* Entering MongoDB

Entering NHibernate

NServiceBus takes care of the mapping interface from the objects to relational
databases. We will briefly cover how mapping occurs with NHibernate in a typical
non-NSB application if the developer needs to walk through an NHibernate source
in NSB or extend it.

Persistent Snippets

Entity Framework is definitely the way to go for SQL Server, but there is a chance
that you may have to deal with Oracle or MySQL. There are multiple ways to
create the mapping from the objects to relations. One method is to code in the
hbm.xml files and another is to use Fluent API. For more on Fluent API, see
http://en.wikipedia.org/wiki/Fluent interface.

We will use the Fluent API in NHibernate, which will utilize mapping in code
instead of in XML. You may find more information on Fluent NHibernate at
http://www.fluentnhibernate.org/. In order to use Fluent NHibernate,
we will need to add it as a reference via NuGet.

ConsoleNH1 - Manage NuGet Packages

b Installed packages Stable Only ~ Sortby: Relevance
4 Oniine NHibernate
MHibernate is a mature, open source object-
Al relational mapper for the \MET framework. Itis
nuget.org actively developed, fully featured and usedin t...
Microsoft and .NET . NHibernate Search
Search Results a MHibernate Search brings the power of full text
search engines to the persistence domain model
b Updates by combining MHibernate with the capabilities of ..
. MHibernate.Envers
a Audit trail integrated with NHibernate.
. MHibernate.Caches.SysCache
a Cache provider for MHibernate using ASP.MET
Cache object.
FluentlHibernate Instal
Fluent MHibernate provides a =
Each package is licensed to you by its conventient way to configure
owner. Microsoft is not responsible for, MHibernate - no XML invaolved.

|_nor does it arant anv licenses to. third-

For the NHibernate pieces, there will be a session interface instead of an EF
context interface, which works similarly. We will need the entity object, which
is similar to the one created earlier, and the mapping that was created by EF.
We will create a different entity object. Notice that it is very similar to creating
an entity object except for the virtual keyword.

[206]

http://en.wikipedia.org/wiki/Fluent_interface

Chapter 7

This will be the MVC-NHibernate solution:

namespace MVCApp.Models

{

public class AuditExt2
{
public virtual System.Guid Id { get; set; }
public virtual string CorrelationId { get; set; }
public virtual string ReplyToAddress { get; set; }
public virtual bool Recoverable { get; set; }
public virtual Nullable<System.DateTime> Expires { get; set; }
public virtual string Headers { get; set; }
public virtual byte[] Body { get; set; }
public virtual long RowVersion { get; set; }

}

Then, we will create the mapping. A more detailed description can be found at
http://github.com/jagregory/fluent-nhibernate/wiki/Getting-started

The code snippet for mapping of 1d and other variables will appear as follows:

using FluentNHibernate.Mapping;

namespace MVCApp.Mapping

{

public class AuditExt2Map : ClassMap<MVCApp.Models.AuditExt2>

{

public AuditExt2Map ()

{

Table ("audit") ;
Id(x => x.Id);

Map (x => x.ReplyToAddress) ;
Map (x => x.Recoverable) ;
Map (x => x.Expires) ;

Map (x => x.Headers) ;

Map (x => x.Body) ;

Map (x => x.RowVersion) ;

[207]

http://github.com/jagregory/fluent-nhibernate/wiki/Getting-started

Persistent Snippets

In this scenario, we are just providing a one-to-one mapping of the table values to the
object values. We were able to take a shortcut as we already had the EF entity, so we
could just copy and paste most of the pieces. So now we have an entity object and the
mapping; however, instead of just calling the EF context, we actually have to code
the NHibernate session. We will create NhibernateHelper.cs, which will contain
the connectionstring that points to the correct database. Instead of SQL Server,

we can easily use MySQL or SQLite on an iPhone or Android device. We will create
a configuration for the session factory:

private static void InitializeSessionFactory ()
{
_sessionFactory = Fluently.Configure ()
.Database (MsSglConfiguration.MsSgl2008
.ConnectionString(

@"Server=localhost\SQLExpress;Databa
se=nservicebus;Trusted Connection=True;")

.Showsqgl ()
)
.Mappings (m =>
m.FluentMappings
.AddFromAssemblyOf<MVCApp.Models.
AuditExt2>())

.BuildSessionFactory () ;

}

Once we create the configuration, we will open the session and call the database
objects in a way that is similar to how we do it in EF. Most of the code of the new
function is made up by copying the NHibernate object into the previous EF object
that is displayed on the screen. The screen won't have to change, just the entity object
that NHibernate used:

public ActionResult Audit ()

{
List<MVCApp.Models.AuditExt> models = new List<MVCApp.
Models.AuditExt> () ;

using (var session = NHibernateHelper.OpenSession())

{

var audits = session.QueryOver<AuditExt2>() .List () ;
foreach (var audit in audits)

{

[208]

Chapter 7

AuditExt data = new AuditExt () ;

data.audit = new DAL.audit () ;

data.audit .Headers = audit.Headers;

data.audit.Id = audit.Id;
data.audit.ReplyToAddress = audit.ReplyToAddress;
data.audit.Recoverable = audit.Recoverable;
data.audit.Expires = audit.Expires;
data.audit.RowVersion = audit.RowVersion;

if (audit.Body == null)

{

data.reader "o,

}

else

{

data.reader = System.Text.UTF8Encoding.UTF8.
GetString (audit.Body) ;

}

models.Add (data) ;

}

return View (models) ;

}

So what did we learn so far? We learned how to create objects from the NServiceBus
tables to C# using EF, how to display these objects in MVC, and how to extend them
into NHibernate so that we are not limited to just using SQL Server.

Using saga and NHibernate

We will walk through a modified example of a basic saga, originally from
https://github.com/jkillingsworth/NServiceBus-BasicSagas. However,

this example has been modified to use NHibernate, which uses a local SQL Express
database. NHibernate was added using some of the steps from http://docs.
particular.net/nservicebus/relational-persistence-using-nhibernate-
--nservicebus-4.x. We also added logging using the NLog framework to log
functionalities as we go. The NHibernate ORM framework was chosen because it
can connect to a multitude of different databases using the same code, the difference
being the connection string in the app . config file for the different databases.

[209]

https://github.com/jkillingsworth/NServiceBus-BasicSagas

Persistent Snippets

To elaborate on this saga example, there is a MySaga program that directs the
messages while saving a saga instance as the messages are being moved. The

saga persistence keeps track of the information that we defined to be saved in a
saga entity object. The saga acts as an anchor that we can persist as we orchestrate
messages moving across the bus. We can retrieve the instance of the saga associated
with the message, update it, and keep it stored, since the original message morphs
into different types of messages.

| Purchase Orde: =)
MySaga

| Status | PO#

scriptions.
ng AppForfippr
xpiredEvent. Myl
tartedByMessage cast.Subscriptions.Me
ng AppForAppr
uestExpiredEuent, Myflessag
u

seriptions.Me

ng AppForfippr
-IRequestExpiredEvent, Hyl
—null

scriptions.

. Uersi]

st .Subscriptions .MessageDrivenSuby
g ApgforSubnittingflequeste
sa e

scriptions.MessageDriv
ny AppForSubnittingRe
xpiredEvent, MyMessa

Level 1 Approval
e

Descripton | Cost

1) Gets Requests

2) Created Saga from Requests
3) Created Approval Message
4) Sends Approval Message

In this application, we sent IAmStartedByMessages<SubmitRequestCommand> from
the AppSubmittingRequests application, seen here as Purchase Order Requests. It
creates and submits SubmitRequestCommand, which takes the data from this message
and creates a saga on the bus with a unique ID. It also sets a 60-second timer that will
send a time-out message from the bus once the 60 seconds are completed.

[210]

Chapter 7

public void Handle(SubmitRequestCommand message)

1

logger.Info("-------- MySaga Handle------- + message);

Data.RequestId = message.Requestld;

Data.Description = message.Descripticn;

Data.Cost = message.Cost;

Data.RequiresApprovalBylLevell = message.Cost > 180.088m;

Data.ApprovedBylevell = false;
Data.ApprovedBylevel? = false;

ProcessApproval();

RequestTimeout<TimeocutMessage»(TimeSpan. FromSeconds (60))]

Data.RequiresApprovalBylevel? = message.Cost > 1880.88m;

Then, it sends an approval that creates Level 1 Approval, an application called

AppForApprovalsLevell and, after the Approve or Deny button is clicked, it

creates a new message that is sent back to the saga; the saga handles the messages.
Depending on the return message, it will either call the THandleMessages<Approve
RequestCommand> or IHandleMessages<DenyRequestCommand> handler. The saga
will be pulled up by the bus, since we used mapping code in this example to map
the messages to RequestId.

{

public class PurchaseOrderRequestData : IContainSagaData

jE
!

* Gets/sets the Id of the process. Do NOT generate this value in your code.

The value of the Id will be generated automatically to provide the
best performance for saving in a database.

® mmm

public virtual Guid Id { get; set; } // Required

e
!

* Contains the return address of the endpoint that caused the process to run.

* kkk |

public virtual string Originator { get; set; } //Required

ITT L3

* Contains the Id of the message which caused the saga to start.
This is needed so that when we reply to the Originator, any
registered callbacks will be fired correctly.

P
!

public virtual string OriginalMessageId { get; set; } //Required

[Unique]

public virtual Guid RequestId { get; set; } // Unique ID to lookup Request message

public virtual string Description { get; set; }

public virtual decimal Cost { get; set; }

public virtual boocl RequiresApprowvalBylewvell { get; set; }
public virtual boocl RequiresApprovalBylewvel2 { get; set; }
public virtual boocl ApprovedBylLewvell { get; set; }

public virtual boocl ApprovedBylLewvel2 { get; set; }

[211]

Persistent Snippets

We can pull up the saga that matches the message and route it based on some logic,
in this case, the cost, or return it to the originating client. The saga may contain
most of the original message, so all of it doesn't need to be propagated through

the messages.

public woid Handle{ApproveRequestCommand message)
1
logger.Info("-------- MySaga Handle------- " + message);
if (message.Approver == Approver.Llevell)
1
Data.ApprovedBylevell = true;
h
if (message.Approver == Approver.Lewvell)
1
Data.ApprovedBylevel2 = true;
}
ProcessApproval(};
¥
public woid Handle(DenyRequestCommand message)
1
logger.Info("-------- MySaga Handle------- " + message);
var reply = new SubmitRequestReplyMessage
1
RequestId = Data.RequestId,
Approved = false
bi
ReplyToOriginator(reply);
MarkAsComplete();
¥

The saga is aware of its originator. It knows to match the Request1d because of the
mapping, and the bus keeps an internal ID to keep all the sagas unique. All sagas
must have the 1d, Originator, and OriginalMessageId fields that the bus will use
to keep track of the saga. Here, we also have the [Unique] attribute to ensure that
RequestId is kept unique so that the map is made to return the correct saga.

[212]

Chapter 7

public class PurchaseOrderRequestData : IContainSagaData
1
f‘HHH
* Gets/sets the Id of the process. Do NOT generate this walue in your code.
The wvalue of the Id will be generated automatically to provide the
best performance for saving in a database.
Ed :-c:-c:-c‘;'
public virtual Guid Id { get; set; } // Required
f‘:-c:-c:-c
* Contains the return address of the endpoint that caused the process to run.
E] =-<=-<=-<‘ﬂ
public wirtual string Originator { get; set; } //Required
fIHHH
* Contains the Id of the message which caused the saga to start.
This is needed so that when we reply to the Originater, any
registered callbacks will be fired correctly.

ES xxx{

public wirtual string OriginalMessageld { get; set; } //Required

[Unigue]

public wirtual Guid RequestId { get; set; } // Unique ID to lookup Request message
public wirtual string Description { get; set; }

public wirtual decimal Cost { get; set; }

public wirtual bool RequiresApprovalBylevell { get; set; }

public wirtual bool RequiresApprovalBylewvel2 { get; set; }

public wirtual bool ApprovedByLevell { get; set; }

public wirtual bool ApprovedBylLevel2 { get; set; }

The EndpointConfig.cs file of the MySaga project contains the Init () method. This
function contains the initial configuration for the endpoint of the IBus. The endpoint
will default to the namespace of the project, for instance; in this case, Mysaga will be
the endpoint as it is associated with the namespace.

namespace MySaga

public class EndpeintConfig : IConfigureThisEndpoint, AsA Server, IWantCustomInitialization, IWantToRunWhenBusStartsAndstops

{

private static Logger logger = LogManager.GetCurrentClasslogger();

public void Init()

{

However, you may explicitly define your endpoints of the IBus with configure.
With () .DefineEndpointName ("MyEndpoint") ;, where MyEndpoint is the IBus'
endpoint to be defined.

[213]

Persistent Snippets

As always, the NSB IBus will create the appropriate endpoints if defined correctly.
Here, we have it based on the different project's namespaces in the solution. The
different projects are MySaga, AppforApprovalsLevell, AppforApprovalsLevel2,
AppForSubmittingRequests, and AppForAccount ingDept. Notice that NSB

will create them in lowercase, and also create the appropriate time-out, error,

and audit queues.

£ . MSMQ Commander (version 0.4, 11/3/2012)

Connect... Refresh w Auto refresh

=l localhost

[=I Private queues
myerrors (1)
myaudits (3]
appforapproverslevel2 (0)
appforaccountingdept (0]
appforapproverslevell (0)
audit (3]
appforsubmittingrequests (0)
mysaga.subscriptions (3]
mysaga (0)
mysaga.timeouts (0]
mysaga.timeoutsdispatcher (0]

F [F B FEEHEEEE

We are going to configure the IBus in EndpointConfig.cs, which in most cases
is where the IBus will be configured to use the saga and time-out persistence in
NHibernate.

Configure.With()
DefaultBuilder(} // Autocfac Default Container
UseTransport<Msmg>() // MSMQ, will create Queues, Defualt
.MsmgSubscriptionStorage() // Create a subscription endpeoint
.UseNHibernateSagaPersister()
.UseNHibernateTimeoutPersister()
.UnicastBus(); // Create the default unicast Bus

[214]

Chapter 7

Defining NHibernate

NHibernate is configured in the app . config file for the Mysaga project, to configure
the NHibernate interface in order to connect to the local SQL Express Server instance.

<l-- NHibernate Settings--»
<connectionStrings>

<add name="NServiceBus/Transport™ connectionString="cacheSendConnection=true™ />

<add name="NServiceBus/Persistence” connectionString="Data Source=.\SQLEXPRESS;Initial Cataleg=nservicebus;Integrated Security=True™ />
</connectionStrings>

¢!-- specify the other needed NHibernate settings like below in appSettings:-->
<appSettings»>
<!-- dialect is defaulted to MsSql2@@8Dialect, if needed change accordingly --»>
<add key="NserviceBus/Persistence/NHibernate/dialect” value="NHibernate.Dialect.Ms5ql2e@8Dialect” />
<!-- other optional settings examples --»
<add key="NServiceBus/Persistence/NHibernate/connection.provider” value="NHibernate.Connection.DriverConnectionProvider” />
<add key="NServiceBus/Persistence/NHibernate/connection.driver_class” value="NHibernate.Driver.5ql2e@8ClientDriver” />
</appSettings»

Here, we can see the NServiceBus NHibernate connection strings and app settings.
Now that we have NHibernate configured for NServiceBus, we can check the SQL
Server after opening the sample solution. After opening the solution, NServiceBus
will create the appropriate tables for saga and time-outs in the nservicebus database.

namespace MySaga

{

public class PurchaseOrderRequestData : IContainSagaData

1

.f':::: *
* Gets/sets the Id of the process. Do NOT generate this wvalue in your code.
The value of the Id will be generated automatically to provide the
best performance for saving in a database.
® EmE S
public virtual Guid Id { get; set; } // Required
e
* Contains the return address of the endpoint that caused the process to run.
w wwE
public wirtual string Originator { get; set; } //Required
pEEE
* Contains the Id of the message which caused the saga to start.
This is needed so that when we reply to the Originator, any
registered callbacks will be fired correctly.

* ok

public virtual string OriginalMessageld { get; set; } //Required

[Unique]

public wvirtual Guid RequestId { get; set; } // Unique ID to lookup Request message
public virtual string Description { get; set; }

public virtual decimal Cost { get; set; }

public virtual bool RequiresApprovalBylevell { get; set; }

public virtual bool RequiresApprovalBylevel2 { get; set; }

public virtual bool ApprovedBylevell { get; set; }

public virtual bool ApprovedBylevel2 { get; set; }

[215]

Persistent Snippets

We see that the base saga that is normally created, called containSagabata, has 1d,
Originator, and OriginalMessageId and is always able to find the correct unique
saga instance and the originator information to reply to the client that sent this
handler the message to start saga.

It also created the PurchaseOrderRequestData saga, where the table will match
the object. The object will appear as follows:

1 Toad for SQL Server Freeware viewer Tables nservicebus | |

Mame | Columns | Creation Date I Last Updated I Modification Date M5_Description | Row Count

dbo.ContainSagaData 3|3/5/2014 7:19:01 PM | {null} 3/5/2014 7:19:01 PM 0
dbo.PurchaseCrderRequestData 10| 3/5/2014 7:19:01 PM | {null} 3/5/2014 7:19:01 FM 0
dbo. TimeoutEntity 3|3/5/2014 7:19:01 PM | {null} 3/5/2014 7:19:01 FPM 0

The saga database data
So the database table associated with the object will look like the following:

roperties | Columns | Data | Statistics | Indexes | Constr

il - &9 B | =
I Pos | Column Mame I Type

% 1/1d unigueidentifien
: EE 2| Originator nvarchar(255)
I EE 3| OriginalMessageld nvarchar(255)

% 4|Requestld uniqueidentifien
:EE 5| Description nvarchar(255)
I EE 6| Cost decimal(13, 5)
I EE 7| ReguiresApprovalByLevell | bit
I EE & | ReqguiresApprovalByLevel2 | bit
I EE 3| ApprovedByLevel1 bit

EE 10| ApprovedByLevel2 bit

Please note that we did not need to create any mapping files for any of the
NHibernate mappings, nor did we need to create the table. We simply created the
NSB configuration. NSB created the tables and performed the mapping. Look! No
need to use SQL.

[216]

Chapter 7

Likewise, we have a time-out message as an object given as follows:

1
h

using Nervicebus;
namespace MySaga

public class |'I"'_n'E|:L|—_'-'.EssagE

: IMessage

But since IBus retains extra information to keep track of the correct saga and has the
IBus execute the timer separately from the current thread, there will be a lot of extra
information in its time-out table for the IBus' use:

es | Columns | Data | Statistics | Indexes

e __PG r
= 5 Rl | ;_:I =] | i
Pos | Column Mame | Type
T mineidentifis

2| Destination nvarchar{1024)
3 Sagald unigueidentifier
4| State warbinary([MAX)
5| Time datetime
& | Correlationld rvarchar{1024)
7 Headers rvarchar(MAX)
& | Endpaint rvarchar(440)

Logging

In the following example, we have also set the app . config file to use NLog.

NServiceBus will support the common logging frameworks, common logging,

NLog, Log4Net, and Serilog. Please see http://docs.particular.net/
NServiceBus/logging-in-nservicebus for more information.

[217]

http://docs.particular.net/NServiceBus/logging-in-nservicebus
http://docs.particular.net/NServiceBus/logging-in-nservicebus

Persistent Snippets

For NLog, we need to add the Nlog NuGet reference to the project:

P~ & Froperfies
4 Fleferences

-0 System

=B [esi,Collections

5-B Microsoft.CSharp

u-8 MyMessages

LY | NHibernat;—'_‘,.—"
-8 Nlog

-0 NServiceBus

5B NServiceBus.Core

"8 NServiceBus.Host
"8 NServiceBus.MHibernate

5-B System.Configuration

o8 System.Data

58 System.Data.DataSetExtensions
-0 System, Xml

58 System.Xml.Ling

We need to set the logging levels and the location of where the logs are being sent

to in the

app.config file:

<l--
<nlog xmlns
<targets>
<target
<target

</targets
<rules>
<logger
<logger
<logger
</rules>
</nlog»
<l--

NLOG =%

="http://www.nlog-project.org/schemas/NLeg.xsd" xmlns:xsi="http://www.w3.0rg/2881/XML5chema-instance">

name="logfile" xsi:type="File" fileName="c:%logs\basicSaga_3%{shortdate}.log" layout="3{longdate} ${level} ${message}" />

name="console” xsi:type="Console™ />
>

name="*" minLevel="Error” writeTo="event"” />
name="*" minLevel="Info" writeTo="console" />

name="*" minLevel="Trace” writeTo="logfile" />

NLOG -->

<target xsi:type="EventlLog" name="ewent" layout="${message}" source="MyProgram" eventId="555" log="Application" />

The app . config file is set in a way similar to most applications, using Nlog.

private static Logger logger =
public wvoid Init()

1

// Log the Bus
Setlogginglibrary.NLog();
logger.Info("-------- Start

LogManager.GetCurrentClassLlogger();

[218]

Chapter 7

For a tutorial on NLog, please check out https://github.com/nlog/nlog/wiki/
Tutorial. The difference is that there needs to be a section name for NServiceBus to
use Nlog, <section name="nlog" type="NLog.Config.ConfigSectionHandler,
NLog" />. We also set the local configuration by using setLoggingLibrary.

NLog () ;.

From the app . config file, we are saving a lot of the trace information in the c:\1ogs\
directory while creating a new file daily with a filename of the current date:

e —
. = Computer - Local Disk (C:) - logs

Indude inlibrary * Sharewith + New folder

Mame “ | Date modified | Type I Size I

| basicSaga_2014-03-05 3/5/2014 7:55FM Text Document T4KB

B basicSaga_2014-03-05 - Notepad

File Edit Format View Help

[2014-03-05 19:18:42,3793
2014-03-05 19:18:42.6254
2014-03-05 19:18:42.7221
2014-03-05 19:18:42.8227
2014-03-05 19:18:43, 3999

--AppForApproversLevell Unity Container-------—-
AppForapproversLevell IBus Config
AppForsSubmittingRequests Unity-------
AppForsubmittingRequests Config IBus start
AppForAccountingDept IBus conf12 start
2014-03-05 19:18:43.6411 AppForapproversLevel2 unity Config----
2014-03-05 19:18:43.7397 AppForapproversLevel2 IBus Config--------

2014-03-05 19:18:45.3764 Debug Number of types to scan: 1321

2014-03-05 19:18:45. 3764 Debug Default provider for infrastructure service NServiceBus.autom3
2014-03-05 19:18:45. 6489 pebug Number of types to scan: 1323

Logging becomes a necessity when trying to document the internal happenings of
messages, sagas, and persistence.

Entering RavenDB

We have briefly discussed RavenDB in the earlier chapters of this book. NSB takes
care of the document mapping in the RavenDB database; however, we will cover
some of the basics of RavenDB in a typical C# program without NSB. I will remind
you to review the RavenDB licensing when working with RavenDB.

RavenDB is a document-oriented store database that is used by many defaults in
NServiceBus and makes use of the JSON format. See https://ravendb.net/ for
more information. In our previous PubSub example, we took out most pieces of
the persistence from RavenDB and put it in a SQL Server. Now, we will put the
subscriptions back into RavenDB.

[219]

https://github.com/nlog/nlog/wiki/Tutorial
https://github.com/nlog/nlog/wiki/Tutorial
https://ravendb.net/

Persistent Snippets

This is done by deleting . UseNHibernateSubscriptionPersister (), which we
put earlier in the PubSub MyPublisher example. After deleting this piece of code,
NServiceBus will default to storing the subscription information back into RavenDB.
When running the PubSub example, we can see that the subscription information
was generated in RavenDB.

% Documents | + ‘

é - lecalhost: 3080 /raven/studio. himl# /documents database =MyPublisher

{ ! Getting Started | Suggested Sites | | Web Slice Gallery |2} Most Visited

Collections Indexes Patch Tasks Alerts Logs o New |

Documents
Subscription Subscription Subscription
Subscriptions/3386eff9-.. Subscriptions/... Subscriptions/7b316e18-80...

' 4 '

However, this section is about accessing RavenDB through snippets of code. Our end
goal is to display the following screenshot through MVCApp by code so that we can
later extend the persistence of NServiceBus to automatically log, monitor, and do more
as we have been going through in this book. We wish to write the code to display it in
the browser without the RavenDB admin tool to show the following screenshot:

(ueve Nessgelype

Subscribar Miyheszapas Other dnatherfvantiestaps, Versicn=10.0.0

Subscribert Nyfiessages, Even Nessage, Vard

Subscrberd

This is the subscription information of the MyPublisher, Subscriberl and
Subscriber2 queues. We could see this earlier in the SQL Server as the following;:

[220]

Chapter 7

SubscriberEndp. .. | MessageType Version TypeMame
[MyMessages.Ev... 1.0.0.0 MyMessages.Ev...
Subscriber 1 MyMessages,Ot.., 1.0.0,0 MyMeszages. Ot...
Subscriber2 MyMessages. IM... 1.0.0.0 MyMessages. IM, ..
* ALEL MLLL ALLL ALEL

To start developing with RavenDB, the RavenDB client will have to be installed from
NuGet. This will be the MVCApp - RavenDB solution. For more information, see

https://www.nuget.org/packages/RavenDB.Client.

Now, it is RavenDB's turn. RavenDB is a document oriented in the JSON format,
meaning that the string values of C# will be used heavily. For more on JSON, see
http://www.json.org/. We can see the record just by clicking on the icon on the

RavenDB screen and viewing its details.

Collections Indexes Patch

E Save

Subscriptions/7b316e13-80c3-3%e1-44b0-6bad96ae7029

= > Subscriptions/7b316e18-80c9-39¢e1 -

Reformat EIDutIiningv %Refresh xDeIete pSearch

Data Metadata
i
"MessageType": “"MyMessages.Other.¬herEventMessage, Version=1.8.8.8",
- "Cliemts™: [
= {
"Queus”: "Subscriberl”,
"Machine": "WIN-UAUT16GPEQA"
¥

Tasks Alerts Log

[221]

https://www.nuget.org/packages/RavenDB.Client
http://www.json.org/

Persistent Snippets

This is an object of two values: MessageType and a list of clients. Inside the
Clients list is Queue with the value of QueueSubscriberl, and Machine with
the value of WIN-. We will create an entity object to mimic the document
data used previously to create our own list:

namespace MVCApp.Mapping

{

public class SubscriptionExt

{
public string MessageType { get; set; }
public List<Address> Clients { get; set; }

}

public class Address

{
public string Queue { get; set; }
public string Machine { get; set; }

}

We can see that there is a MessageType with a list of clients containing Queue
and Machine. We need to mention that this code snippet found at https://gist.
github.com/johannesg/7984309 was helpful.

To display a list in the view, I am going to use a simpler object where I don't have
to worry about walking down multiple link lists until later, and just show the first
client's values. This will be the object to populate my view:

public class SubscriptionExtView

{
public string MessageType { get; set; }
public string Queue { get; set; }
public string Machine { get; set; }

}

So let's recap. We have the view and entity objects defined. We will populate a list of
these objects that we read from a session to the database, as we did in the EF context
and the NHibernate session. Now, we start a RavenDB session. The RavenDB session
uses a URL as a connection string to the database. Once we open the session, we

are going to search for the data. One of the many features of RavenDB, especially

in searching is that RavenDB uses Lucene. Lucene is an open source Apache search
engine software; for more information, see https://lucene.apache.org. For building
Lucene queries in RavenDB, see http://ravendb.net/docs/2.0/client-api/
querying/query-and-lucene-query. So, now we will execute the following code:

[222]

https://gist.github.com/johannesg/7984309
https://gist.github.com/johannesg/7984309
https://lucene.apache.org
http://ravendb.net/docs/2.0/client-api/querying/query-and-lucene-query
http://ravendb.net/docs/2.0/client-api/querying/query-and-lucene-query

Chapter 7

public ActicnResult Subscription()
List<SubscriptionExtView> models = new List<SubscriptionExtView>();
using (var ds = new DocumentStore { Url = "http://localhost:8880", DefaultDatabase = "MyPublisher™ })
ds.Initialize(); \ 1
using (var session = ds.OpenSession("MyPublisher™)) 2
{
var len = session.Advanced.LluceneQuery<SubscriptionExts("Raven/DocumentsByEntitylame"). yResult.TotalResults;
for (int index = @; index < len; indext+)
{

>("Raven/DocumentsEByEntitylame”).QueryResult.Results[index];

var foo = session.Advanced.LuceneQuery<subs
= t»(foo.ToString());

var bar = JsonConvert.DeserializeObject<
/{ Copy the entity object into the view object

MVCApp.Mapping.sub ptionExtView view = new SubscriptionExtview();
view.MessageType = bar.MessageType;

MVCApp.Mapping.Address addr = bar.Clients.First(); <
view.Machine = addr.Machine; 3

view.Queue = addr.Queue;
models. Add(view);

¥
1

return View(models);

We will perform the following steps:

1. Open the session with the URL of RavenDB. We will need the
MyPublisher database.

2. We will perform a Lucene search in the table to find our entities using the
entity object format.

3. We will copy the entity object into the view object to display the results.

This will display the subscription storage from RavenDB.

Entering MongoDB

A very popular NoSQL database that is being used more and more in the NoSQL
community is MongoDB. MongoDB is a document-oriented database system

that uses JSON-like documents with dynamic schemas. For more information on
MongoDB, see http://en.wikipedia.org/wiki/MongoDB. MongoDB can be found
at http://www.mongodb.org/ and the installation instructions for Windows can be
found at http://docs.mongodb.org/manual/tutorial/install-mongodb-on-
windows. MongoDB is written in C++, is open source, uses the Apache open source
license that most Apache Foundation products run under, and is cross-platform.

[223]

http://en.wikipedia.org/wiki/MongoDB
http://www.mongodb.org/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows

Persistent Snippets

To install MongoDB on Windows, download the installation file, which will install
it today at C: \Program Files\MongoDB 2.6 Standard. To start the installation,
open a command prompt, change the directory to C:\Program Files\MongoDB
2.6 Standard\bin, create the database directory using md \data\db, and start the
database via mongod . exe.

=+ Administrator: Command Prompt - mongod
C:~Program Files“\MongoDB 2.6 Standard-~hin>md “datasdh

C:~Program Files“MongoDB 2.6 Standard“~hin>mongod

mongod ——help for help and startup options
2014-04-29T14:05:580.985-06WA [initandlisten] MongoDB starting = pid=232 port=270
1?7 dbpath=~datadb> 64-bit host=UIN-UAUT16GPEGA

2313633—§ET14:35:SB.QBG—BGBB [initandlisten] targetMinO%: Windows ?-Windous Serv
er

2014-84-29T14:05:580.986-8B6BA [initandlisten] db version v2.6.8
2014-04-29T14:05:50.906—060@ [initandlisten] git version: leclcPbaeca2lc5983dc1?8
228f5852c298dbblbc

2014-P4-29T14:05:50.986—06PA [initandlisten] build info: windows sys.getwindowsvu
ersion(major=6,. minor=1, build=7681,. platform=2, service_pack='Service Fack 1’'>
BOOST_LIB_UERSION=1_49%

2014-84-29T14:05:50.787-0600
2014-04-29T14:05:50.988-B68A
2014-04-29T14:05:50.948-0600
2014-94-29T14:85:580.965-A60A
noe recovery needed

2014-94-29T14:85:51 . A12-AaEA
cal.-ns, filling with =eroes
2014-9A4-29T14:85:51 . A13-A6HAA
2014-84-29T14:05:51 .848-B600
ocal.nz,. size: 16MEB,
2014-84-29T14:05:51 .058-B6068
cal.@, Filling with =zeroes...
2014-84-29T14:05:51 .178-B68A
ocal.@,. si=ze: 64MB.
2014-A4-29T14:85:51 .171-AcHAA
roperties: { vz 1, key:

took B.118

_did:= 1 . name:

[initandlisten]
[initandlisten]
[initandlisten]
[initandlisten]

[FileAllocator]

[FileAllocator]
[FileAllocator]

took B.6831 zecs

[FileAllocator]

[FileAllocator]
secs
[initandlisten]

vid v,

allocator:
options: {3
Jjournal dir=“data“db:\journal
recover : no journal files present,

system

allocating new datafile “datasdb:lo

creating directory “datasdbs_tmp
done allocating datafile “datasdbs1l

allocating new datafile “datasdbxlo
done allocating datafile “datasdb1l

build index on:

nsg =

lucal.otartup log p|
"local.startup_1 >

We can check on the database by running many MongoDB tools listed at http://
docs.mongodb.org/ecosystem/tools/administration-interfaces/ or http://
stackoverflow.com/questions/3310242/do-any-visual-tools-exist-for-
mongodb-for-windows. One of the many tools is UMongo, which is cross-platform
and built in Java; for more information see http://edgytech.com/umongo/. We can
see the MyPublisher subscription tables in the publish/subscribe example.

File Tools Help

ongo Instances

+-§ Mongo: localhost{127.0.0,1: 27017

=@ Maongo: localhost/127.0.0, 1: 27017

£ MongoD: localhost/127.0.0.1:27017
local {5/1112)

+ MyConfig (9/1008)
MyPublisher (7/378)

- subscriptions (3/720)
id{1/8178)

fzy=tem.indexes (1/112)

admin (0/0)

+

[224]

http://stackoverflow.com/questions/3310242/do-any-visual-tools-exist-for-mongodb-for-windows
http://stackoverflow.com/questions/3310242/do-any-visual-tools-exist-for-mongodb-for-windows
http://stackoverflow.com/questions/3310242/do-any-visual-tools-exist-for-mongodb-for-windows
http://edgytech.com/umongo/

Chapter 7

For developing in C#, mongocsharpdriver will need to be installed in the project
through NuGet using PM> Install-package mongocsharpdriver. For more
information, see https://www.nuget .org/packages/mongocsharpdriver/.

We will run through a small sample of C# MongoDB to get acclimatized to MongoDB
before diving into it with NServiceBus. In this example, we will place configurations in
the MongoDB local database.

Endpoint
MySFTPCliert MyMessages.SendCommand, MyMessa..

In order to build data, we need to define the object in a form of BsonDocument, to
which we will add the collection of objects in the database table. BSON is Binary
JSON. For more information, see http://en.wikipedia.org/wiki/BSON. The
BsonDocument is the name-value pair of the data field to the data value that is added
to the database. An in-depth discussion can be found at http://docs.mongodb.
org/ecosystem/tutorial/use-csharp-driver/. We will connect to the database
by setting the connection string in the app . config file to Server=localhost:27017:

private static void CreateMessageMaps (MessageEndpointMappingDB
mapping)
{
var client = new MongoClient (ConnectionString) ;
var server = client.GetServer() ;
MongoDatabase myConfig = server.GetDatabase ("MyConfig") ;

MongoCollection<BsonDocument> endpoints = myConfig.GetColl
ection<BsonDocument> ("MessageEndpointMappingDB") ;

BsonDocument endpoint = new BsonDocument {
{ "AssemblyName", mapping.AssemblyName },
{ "Endpoint", mapping.Endpoint },
{ "Messages", mapping.Messages },

[225]

https://www.nuget.org/packages/mongocsharpdriver/
http://en.wikipedia.org/wiki/BSON
http://docs.mongodb.org/ecosystem/tutorial/use-csharp-driver/
http://docs.mongodb.org/ecosystem/tutorial/use-csharp-driver/

Persistent Snippets

{ "Namespace", mapping.Namespace },
{ "TypeFullName", mapping.TypeFullName }

}i

endpoints. Insert (endpoint) ;

}

We create the BsonDocument, which contains the field names of the database, for
instance server AssemblyName, and sets the associated string value in that field,
in this case, mapping.AssemblyName. The BsonDocument is then inserted into the
database, a collection of rows in endpoints. Insert (endpoint).

To retrieve the collection of objects, we return the MongoCollection of objects
and transform the collection into an object list:

public static List<MessageEndpointMappingDB> GetMessageMaps ()

{

List<MessageEndpointMappingDB> endpointList = new List<Messa
geEndpointMappingDB> () ;

var client = new MongoClient (ConnectionString) ;
var server = client.GetServer () ;
MongoDatabase myConfig = server.GetDatabase ("MyConfig") ;

MongoCollection<MessageEnd
pointMappingDB> endpoints = myConfig.
GetCollection<MessageEndpointMappingDBs> ("MessageEndpointMappingDB") ;
foreach (var endpoint in endpoints.FindAll ())

{

endpointList.Add (endpoint) ;

return endpointList;

}

To delete the table, we simply perform Drop on the table, which is a MongoCollection
of objects related to the table itself. MongoDB is not an ORM. It is a document-oriented
database, meaning it handles the database as a collection of documents, in this case,
BSON documents (a collection of documents). Think of each document as a row in

the database and each field in the row as a name-value pair:

[226]

Chapter 7

public static void DeleteMessageMaps ()

{

var client = new MongoClient (ConnectionString) ;
var server = client.GetServer () ;
MongoDatabase myConfig = server.GetDatabase ("MyConfig") ;

MongoCollection<MessageEnd
pointMappingDB> endpoints = myConfig.
GetCollection<MessageEndpointMappingDBs> ("MessageEndpointMappingDB") ;
endpoints.Drop () ;

}

This was a simple introduction into MongoDB.

NServiceBus MongoDB persistence

For the NuGet installation of the MongoDB persistence NServiceBus references, they
can be found at http://www.nuget .org/packages/NServiceBus.Persistence.
MongoDb/ and the associated source code can be found at https://github.com/
tekmaven/NServiceBus.Persistence.MongoDb.

In order to create the MongoDB subscription information for applications such
as MyPublisher, place the MongoDB configurations in IBus after installing the
references through NuGet, for instance, MongobbSubscriptionStorage ():

namespace MyPublisher
1
class EndpointConfig : IConfigureThisEndpoint, AsA Publisher,IWantCustomInitialization
i
public wveid Init()
1
Configure.wWith()
.DefaultBuilder()
//this overrides the NServiceBus default convention of IEvent
.DefiningEventsAs(t =» t.Namespace != null && t.Namespace.StartsWith("MyMessages"))
.MongoDbPersistence()
.MongoDbSagaPersister()
.MongoDbSubscriptionStorage()

s

[227]

http://www.nuget.org/packages/NServiceBus.Persistence.MongoDb/
http://www.nuget.org/packages/NServiceBus.Persistence.MongoDb/
https://github.com/tekmaven/NServiceBus.Persistence.MongoDb
https://github.com/tekmaven/NServiceBus.Persistence.MongoDb

Persistent Snippets

Summary

We covered a lot of information in this chapter regarding persistence. This chapter
has a lot of associated code. We covered the highlights of working with NSB and
databases. NSB does take care of most of the workings of databases and mappings
however, because of the flexibility of NSB, various pieces can be extended through
C# to notify and monitor a variety of SQL Server pieces.

The next chapter will dive into the working of the Cloud. We will discuss the
coding practices we have learned so far to produce more end-to-end systems.

[228]

The NSB Cloud

In this chapter, we will be focusing on snippets of NServiceBus in the cloud after

a very brief introduction to the cloud and some of its services. While NServiceBus
has support as a service bus for the Microsoft Cloud of Azure, it is also a beneficial
tool to integrate into other cloud technologies as well, as all clouds have support for
third-party integration to pass data through web services.

In this chapter, we will cover the following topics:

* Introducing the cloud and NSB

* Introducing PaaS, IaaS, and SaaS
* Cloud vendors

* Using Microsoft Azure

* Adding NServiceBus

* NSB in the mobile world

* Questions that were answered

Introducing the cloud and NSB

At the beginning of this chapter, NSB Version 5.0 for Azure is in beta. This chapter
will explain how to use NSB without DTC. NSB is getting integrated more and more
into the Azure queues and Azure SQL Server, but the evolution will likely involve
Big Data as well. Just as computers were using 4 MB of RAM in the past, and now
more than 16 GB of RAM is pretty normal, queuing of data will increase as well.
Basic Big Data through databus has been around for some time; however, payment
engines and customer databases are always in the need of processing large files to
transfer data and funds. To understand the cloud is to understand the offloading of
queuing, small data, and large data into cloud servers, which are managed through
cloud wizards. This results in a loss of the on-premise viewing of fine details to some
degree, as the remote servers are dependent on the cloud wizards.

The NSB Cloud

The NSB tools are also adapting. Servicelnsight has grown to handle more details
with sequence diagrams for debugging outside of Visual Studio and MSMQ as
well. The tools are moving from being integrated locally into a physical server to
being integrated into a remote server where many of the details of the server itself
may be less important as servers are virtualized offsite. For instance, in the future,
Servicelnsight will add saga sequence diagrams to add more detail than

the current flow diagrams. The following sequence diagram shows what is in
store for Servicelnsight:

However, DTC is not supported in many cloud technology queues and RabbitMQ,
but enhancements are being made in NSB Version 5 and above to compensate this,
mostly by keeping track of messages that have either already been processed or
about to be processed in the transactional integrity of tables.

[230]

Chapter 8

Introducing PaasS, laaS, and Saa$S

In the evolution of cloud computing, there are the concepts of Platform as a
Service (PaaS), Software as a Service (SaaS), and Infrastructure as a Service (IaaS).

PaaS is the cloud computing service that provides a computing platform and

a solution stack as a service. In PaaS, the cloud solution provider provides the
operating systems, databases, web servers, development tools, and other services
that are required to host the consumer's application. IaaS is at a level below the PaaS,
as it provides the virtual (as well as physical) machines, servers, storage options,
load balancers, networks, and more basic components. SaaS is at a higher level than
PaaS, as it is the software distribution model in which the applications themselves
are hosted by a vendor or service provider and made available to customers over a
network, typically the Internet. Here is an image that shows how Windows Azure
supports laaS and PaaS:

As A Service

Oon-
premises

ge
You manage

Storage Storage

T Runtimes 5 -
c Runtimes
m_
Tl - =
. SOA Integration
o
o | B > Databases
© =
%— “ Server SW Server SW g
£ -
= m Virtualization Virtualization %
O w
” | ST e
Server HW Server HW 4

Networking Networking

|
\ abeuew app

-

I .
1 Windows Az [

[231]

The NSB Cloud

Depending on the cloud vendor, some of these terminologies may be termed slightly
different. While all cloud vendors support these components, they differ on the level
of abstraction for these components. For example, Windows Azure will allow you

to configure a virtual machine in the cloud, while Salesforce clouds will not allow
you to know which infrastructure you are running on. The cloud vendor that is
selected, as well as licensing, will dictate your throttling level of transactions and
the limitation of your resources. There will be many limitations on resources and
transactions as you are sharing resources that other companies may be using as

well and paying more to utilize those resources. In the cloud world, consumption of
resources and transactions is based on licensing. There are many resources available
by all cloud vendors to develop in their cloud, and there is a lot of help available

as their goal is to get you to utilize their cloud as much as possible as that is their
revenue stream.

Cloud vendors

There are many cloud vendors, for example, Salesforce.com, Microsoft Azure,
Google App Engine (GAE), and Amazon Elastic Compute Cloud (EC2). Salesforce
uses a Java-like language called Apex. The GAE uses Java, Python, PHP, and Go.
Microsoft Azure uses .NET but also supports SDKs for Java, Python, PHP, and
NodeJS. Amazon uses Java, Python, PHP, Ruby, and .NET. NServiceBus supports
both the Microsoft Azure Cloud and the Amazon Cloud. The cloud solutions have
many templates that are considered to have an out-of-box (OOB) functionality

to build the cloud solution. There are also extra modules that can be installed;
many are free, and some require a subscription, such as Salesforce's AppExchange,
https://appexchange.salesforce.com. The supporting engines and
programming languages are used to extend none of the OOB functionalities.

These are additional modules or applications, for example, which connect
additional Salesforce features into Android or use Google mail.

While many cloud vendors, such as Amazon and Azure, can use NServiceBus to
interface directly into their queuing solution, other vendors, such as Salesforce,
which has its own language Apex, built on top of Java, cannot have NSB access its
queues as an ESB engine.

As Salesforce has connectors into other products such as Android APIs and Google
mail, connectors would have to be used to queue through external ESBs such as
NSB as well. Most connectors are built through the use of web services. Some of
this methodology is described at http://www.ramonsmits.com/2013/04/08/
receiving-salesforce-notifcations-with-nservicebus.html.

[232]

https://appexchange.salesforce.com
http://www.ramonsmits.com/2013/04/08/receiving-salesforce-notifcations-with-nservicebus.html
http://www.ramonsmits.com/2013/04/08/receiving-salesforce-notifcations-with-nservicebus.html

Chapter 8

Developing an application from scratch seems easier when developing in the cloud
as many cloud vendors have templates and wizards to create data from scratch. The
complexity increases if an on-premise solution has to be migrated to an off-premise
cloud solution that is language dependent. For instance, if you have a .NET solution,
moving to Microsoft Azure may be relatively easy, but moving to Google Apps
may require a migration to Java first. Moving to Salesforce may require multiple
migrations to the data first, and then building the GUI through VisualForce, the
Salesforce visual interface, as most of the underlying infrastructure of the Salesforce
cloud, Force.com, is not exposed. For this reason, there are several tools to move
data into Salesforce objects, such as the data loader tool, https://developer.
salesforce.com/page/Data Loader.

The following screenshot shows a sample VisualForce screen:

Home Leads m Contacts Reports Dashboards Documents Products +

“ Hello World
Customize Page | Printable View | Help for this Page &
Recent ltems
Contacts Opportunities Open Activities Notes and Attachments
W Hello World L
& Liz Garcia Account Detail Edit | | Delete | | Sharing
\ Working Writer Account Owner Liz Garcia [Chanae] Phone (555) 123-4567
4 MarcRyan Account Name Hello World [View Hierarchy] Fax (555)123-4568
Parent Account Website
W Recycle Bin ¥ Additional Information
Type Customer Employees
Industry Communications Annual Revenue
Deseription

¥ Address Information

Billing Address S5 Shorebird Drive Shipping Address 22 Bird Song Street -
X' [page Editor =
B Q 9% @& A A Component Reference Where is this used?
<apex:page standardController="Account" showHeader="true" |
tabStyle="account" > E
<style>

.activeTab {background-color: #236FBD; color:white;
background-image:none}
cizaTan lore 33 CISPES. PP ey

[233]

https://developer.salesforce.com/page/Data_Loader
https://developer.salesforce.com/page/Data_Loader

The NSB Cloud

For the Salesforce Apex language, there is a Developer Console that can be used in
the Force.com cloud to develop any code-specific application; however, the thought
with Salesforce is to get away from coding a lot of the data and visual objects. An
example of the Developer Console is shown in the following screenshot:

File~ Debug~ Tes Workspace > Help
'lm,ﬂkﬁ' vt
Code Coverage: No o
iblic class PurchaseOrders {
public interface PurchaseoOrder {
ible discount():
}
public wvirtual class CustomerPurchaseOrder implements PurchaseOrder {
i irtual Double discount() {
re 5
L) }
}
-
Hide Finished Runs Cancel All Deployments
Recid Nice Order Description Status Start End Duratio Handier Ajax i Delay
439 0 Chedking for new Chedkponts, Test results, & File updates Frsshed 2:0.. 2:0. 234
438 0 427 Checking for new Chedkpol , & File updates Frished 0 84
7 0 426 ts, & File updates Frnished 0 0. 86
438 0 425 Chedkng for new Chedp &File updates Finished 20.. 2:0 115
45 o 424 Checking for new Chedkpont & File updates Fnished 0 7
L34 o 423 Checking for new Chedgoints, Test results, & File updates Finished 0 0 103 -

The issue with many off-premise scenarios is that while developing in the cloud, if

a current solution is currently working on-premise, there has to be a period of time
for turnover from on-premise to off-premise systems during which the data has to
be synched to both systems at the same time, and outages have to be scheduled. The
data has to be synched not only on a legacy system and a new system, but also on
the GUI and business logic as well. The switch from a legacy system to a new system
needs to be as seamless as possible to keep the customers of the system happy.

One of the problems frequently overlooked when moving from old systems to new
systems is that while new systems are being built, old systems may also be updated
with enhancements, which have to be updated in the new system as well before it

is completed. There are myriad issues involved while creating a new system, which
are beyond the scope of this book, but it will suffice to say that the more complex the
older system is, the more it can affect a new system. For the many reasons of jumping
from an old solution from an on-premise data center to a new solution off-premise
in the cloud, some of the changes can be eased with creating hybrid solutions where
an on-premise data is shared to the new cloud solution until a complete migration

is accomplished. For this purpose, NSB is a great solution for marshaling data and
business logic from an on-premise solution for an off-premise solution.

[234]

Chapter 8

Let's not say that this is a replacement for data warehousing where a central
repository is used for data, but when we update one system with a response of a
completed message, error, or another message that is performing an action through
SOA, we update the other system with the same message as well. The following
diagram shows a simple example where the on-premise contains most of the logic to
update a payment through a third-party service, but the response is sent to the cloud
as well that is duplicating some of the services to update not only the data but the
business processes as well:

On-premise Payment
1Bus Service
Client Saga Service

Web service

Requ:an

Message Cloud IBus

This example shows the distribution of the ESB messages to the cloud through the
message queues. The Azure and Amazon Clouds would easily support this design.
However, some cloud vendors will not expose their queuing mechanisms, and for
this reason, WCF integration could be used as a connector to update the services
inside more proprietary clouds such as Salesforce.

On-premise : ! Payment
1Bus '

Service

Client Saga Service

Web Services g:l

[235]

The NSB Cloud

The service method of transferring data is a semi-real-time method of transferring
small amounts of data from one system to another through a secure pipe of HTTPS
using digital certificates. We also know that we can transfer messages through a
secure HTTPS gateway using NServiceBus. A lot of these messages have very small
limits by default; for MSMQ, we have 4 MB, and the default for WCF is roughly 64
KB. Some of these limits can be changed by using an NSB databus to set new limits
in WCF. However, it will not be sending very large files for a daily upload of files.
For this reason, Salesforce has a data loader.

In many systems, there are similar processes that derive from the Extract-Transform-
Load (ETL) process. See http://en.wikipedia.org/wiki/Extract, transform,
load. An ETL process will extract data from a system, say a SQL Server table that
had changes for that day; it will transform into data that can be loaded into the
system that needs the daily data, say an XML data file, and then load it into another
system, say a Salesforce Cloud system. Some systems may simply need a daily load
of the information instead of a second-by-second replay of the data that has changed.
The thought is that instead of sending web services or messages to cloud queues, a
daily snapshot can be taken from the on-premise MSMQ, or a SQL table, and sent
securely to the cloud to be uploaded through SFTP, a secure version of FTP. The
diagram will be similar to this picture:

On-premise

: Payment
IBus |

Service

Saga Service

Client

=

SFTP Servic

RS |

[236]

http://en.wikipedia.org/wiki/Extract,_transform,_load
http://en.wikipedia.org/wiki/Extract,_transform,_load

Chapter 8

We could exponentially come up with a variety of ways to update the cloud with
local data or to load data to a new cloud system. Auditing and reporting should
be one of the characteristics of any form of sending data to the cloud, as any
organization may be called one day from an organization, such as the IRS, to show
that the customers were initially loaded and validated into the cloud solution. For
this reason, using the saga design pattern would be of a great benefit for taking a
snapshot of messages that were sent to the cloud solution through many of these
means. Even in the SFTP solution, we could take a snapshot of which records were
put into a file and verify the sending of the data to be uploaded into the cloud
database. The benefit of NSB is that we can take snapshots of messages, and audit
through queues and report on the interaction and endpoints.

Using Microsoft Azure

The benefit of Azure is that it can be used in Microsoft data centers around the
world. The purpose of Azure is to have a Software Development Kit for websites,
virtual machines, and cloud services for either the cloud, on-premise, or a hybrid
between the two. Some cloud technologies, such as Salesforce, are cloud-centric
and not on-premise-centric. The Windows Azure SDK is considered open source
from Microsoft, yes, open source, and it can be found at https://github.com/
Azure. There are Power Shell tools for Windows to deploy (see https://github.
com/Azure/azure-sdk-tools) and even command-line tools for the Linux and
Mac operating systems (see http://research.microsoft.com/en-us/projects/
azure/windows-azure-for-linux-and-mac-users.pdf and http://azure.
microsoft. com/en—us/documentation/articles/command—line—tools/).

Just as in Salesforce and other cloud technologies, there are galleries with pre-created
applications and modules (see http://azure.microsoft.com/en-us/gallery/
store/), and there are wizards to build the sites and samples (see http://azure.
microsoft. com/en—us/develop/net/samples/). Once you access Azure, you have
the ability to create various applications and services. There are many applications
and services on the left that can be created. All clouds use a pay-for-what-you-use
model, mostly in production, for licensing. In Azure, there is an Azure calculator to
calculate the costs, http://azure.microsoft.com/en-us/pricing/calculator/.

In Azure, there are three Execution models, meaning, there are normally three
different ways to deploy end-to-end applications:

* You can create a website, meaning, you can add backend storage, messaging,
and other pieces to it.

* You can create a virtual machine, meaning, you could add various pieces as
you would in a Linux or Windows Server to also deploy applications and
a website.

[237]

https://github.com/Azure
https://github.com/Azure
https://github.com/Azure/azure-sdk-tools
https://github.com/Azure/azure-sdk-tools
http://research.microsoft.com/en-us/projects/azure/windows-azure-for-linux-and-mac-users.pdf
http://research.microsoft.com/en-us/projects/azure/windows-azure-for-linux-and-mac-users.pdf
http://azure.microsoft.com/en-us/documentation/articles/command-line-tools/
http://azure.microsoft.com/en-us/documentation/articles/command-line-tools/
http://azure.microsoft.com/en-us/gallery/store/
http://azure.microsoft.com/en-us/gallery/store/
http://azure.microsoft.com/en-us/develop/net/samples/
http://azure.microsoft.com/en-us/develop/net/samples/
http://azure.microsoft.com/en-us/pricing/calculator/

The NSB Cloud

* You can create cloud services, such as web service, which also contains
backend storage, messaging, and other pieces.

The websites can be created in PHP, ASP.NET, Node.js, or Python. The website can
be created so that the platform, patches, and all the platform pieces are handled for
you. Since it is ASP, it could be built locally and even deployed through the source
control. You can even create a domain, other than the cloud domain, for this website
to be accessed on the Internet.

COMPUTE WEB SITE ’ QUICK CREATE

DATA SERVICES VIRTUAL MACHINE .‘\’ CUSTOM CREATE

WEB HOSTING PLAN
APP SERVICES MOBILE SERVICE " FROM GALLERY Create = RO

NETWORK SERVICES CLOUD SERVICE
REGION

STORE East US

After a website is created, it can be edited in the cloud or locally through WebMatrix
(see http://www.microsoft.com/web/post/how-to-edit-a-site-hosted-on-
windows-azure-with-webmatrix). Using WebMatrix is similar in nature to some
of the previous MVC examples, and Microsoft MVC can still be used in Microsoft
Azure. A simple page can be done in HTML with WebMatrix to build a website in
Azure in the following screenshot:

[REMOTE] temp21 - Microsoft WebMatrix [3}
File Remote Sign in 'H ~ @
CJ U /- Domain : j fOpen 3’6 Cut }} 2. Replace | §Wurd Wrap |
" Seale I add Exdisting [Copy 3% GoToLine.. |%D Line Mumbers |
Run Settings Download Manage New . Paste =~ = Find ... B Extensions
> - Mistore + [Close Al > i select Al EPrint

. hostingstart.htmi

4« @ wmp2t <IDOCTYPE htmls<htmlschead> <titlesMicrosoft Azure Web Site - Welcomec/titler <style -
hostingstart.himl type="text/css"> html { height: 1eelk; width: 100%; }
#feature { width: 968px; margin: 95px auto @ auto;
overflow: auto; } #content { font-family: "Segoe UI";
font-weight: normal; font-size: 26px; color: #ffffff;
float: left; width: 46@px; margin-top: 68px; margin-left:
@px; vertical-align: middle; } #content hl
{ font-family: "Segoe UI Light"; color: #FFffff;
font-weight: normal; font-size: 7@px; line-height: 48pt;
width: 8eepx; } pa,pa pa s Ppa
1 color: #Ffffff; } #content a.button { background:
#BDBCF2; border: 1px solid #FF F; color: #FFFFFF;
display: inline-block; font-family: Segoe UI; font-size: 24px;
line-height: 46px; margin-top: 18px; padding: @ 15px 3px;
text-decoration: nonej } #content a.button img
float: right; padding: 18px @ @ 15px; b
#content a.button 1 ba:kgruund: #1C75BC; T body

1 background-image: url('dota:image/

png; base64, iVBORw @KGQDQ«'HQ"SL)’ELQQ«]B/ vAAAQGCAYAAACqg SgMAAAAAXNSRETAr. s4c6Q4444FrQL‘1544LJJ w8
YQUAAAATCER \DSQAAATEAZUrDhSAAAATAEVYdFNVZNR3YXILAEFkb23L
gELEQURAXuy954L RpqmCSLps3yVSqbl 2q iNbPFOntL 70Zdy o/ 76WvZ2Z 3 TPW2RRVGUIZVUNGVS I8k :.--'lf.'xg1m -

100% | 4 >
Logs Find Results ~

[238]

http://www.microsoft.com/web/post/how-to-edit-a-site-hosted-on-windows-azure-with-webmatrix
http://www.microsoft.com/web/post/how-to-edit-a-site-hosted-on-windows-azure-with-webmatrix

Chapter 8

More complex websites can be created using MVC-EF in Visual Studio and then
deployed to Azure using the publish interface in Visual Studio. So, we can use the
previous chapter's MVC-EF examples as well in Azure. However, WebMatrix is a
nice tool to create a sample Azure website quickly, and combinations of MVC with
Razor and WebMatrix can be used to create HTML5 pages.

£¥ Build
Rebuild
Clean
u:l Package...
S
% Publish..
Manage Configurations...
Configure Rermnote Desktop... Conhzure' (2 projects)
Project Dependencies... <WebRole
)) erties
Project Build Order...
ENCES
Mew Web Role Project... Data
Mew Worker Role Project... ent
Add Library Package Reference... rllzullers
Els
Set as StartUp Project -
Debug L
[_'_55 Add Solution to Source Contral... pl.asax)
) ages.config
& Cut Ctrl+X config
Y D e i e - n-l D|E.C5
4 |y MVConAzure
4 [7 Roles

_3 Demo.Mvc\WebRole
_\:l ServiceConfiguration.Cloud.cscfy
5% ServiceConfiguration.Local.cscfg
4% ServiceDefinition csdef

[239]

The NSB Cloud

The Azure SDK is integrated into Visual Studio. The differences will be that Azure
Cloud services, such as the cloud website, storage, SQL database, active directory,
and other Windows services can be used instead of the local on-premise ones. A
point to note is that NServiceBus is integrated into Visual Studio as well. We can
install the Azure SDK 2.3 for Visual Studio 2012 using the Microsoft Web Platform
Installer from http://www.microsoft .com/web/downloads/platform.aspx. This
is shown in the following screenshot:

0 Web Platform Installer 5.0 == .
@ Search results for azure |:| o

Name Released Install ~

= Windows Azure Pack: Tenant Site 4/21/2014 =
Thomipii Brandoo WerdPress (MS SOL or Azure SGL) 10/16/2013 Add
Windows Azure Training Kit 5/7/2014 Add

Virtual machines

Microsoft Azure gives customers complete control of virtual machines to run in
the cloud. There are many base VMware operating systems that can be created in
the cloud.

ATE ¥ MACHINE
: AL M i

Virtual machine operating system selection

ALL Ubuntu Server 12.04....
RUTRIRIMACEY wte. Microsoft SQL Server 2012 Evaluatio,

MY IMAGES i
MY [3 KS f} Windows Server 2008 R2 SP1, Dece.. Ubuntu Server 12.04.1 amdé4 20121218
7 PUBLISHER Canonical
f‘. Windows Server 2008 R2 SP1, Octo..
L OS FAMILY Linux

- Windows Server 2012, December 20.
- Windows Server 2012, October 2012

A OpenLogic CentOS 6.3

=

SUSE Linux Enterprise Server 11 SP2

sase

l @ Ubuntu Server 12.04.1 LTS

http://www.microsoft.com/web/downloads/platform.aspx

Chapter 8

We could easily create a virtual machine for Windows Server 2012, and utilize many
of the features that we would use locally in creating an application. The difference
would be that the licensing and administration would be based on cloud-based tools
and wizards.

Utilizing virtual machines off-premise is very much like having one on-premise,
except that you are paying for someone else to maintain it off-site. Therefore, if
MSMQ and SQL Server are configured on the virtual machine, they could be used in
a way similar to on-site NSB examples.

Not only can you deploy websites and virtual machines, but you can deploy other
applications as well, such as services that live in the cloud, which are called cloud
services. These can be servers or other types of services that a person would normally
deploy on a server. For instance, a backend process such as NServiceBus could be
considered a cloud service. IIS running in the cloud is considered a cloud service.
Many of the web services running in the cloud will be considered cloud services.

The cloud service also must have a role to run the service. There are two main roles
to run cloud services: one is the web role to run IIS, and websites built in PHP and
CGI, and the other is the worker role that is more geared to run backend processes
or backend cloud services. Both roles can run the .NET framework services, native
code, and the Windows Server services.

A cloud service can be published or packaged from Visual Studio. To publish a cloud
service, built in the Azure SDK, it will package and deploy the cloud service to your
Azure cloud services.

Another method to deploy a cloud service is to package it locally and upload the
pieces into the Azure cloud services to deploy it interactively with Azure.

Upload a package.

This will create a new staging deployment.

DEPLOYMENT LABEL

temp
PACKAGE

BROWSE FOR FILE... ‘ M FROM LOCAL ‘] FROM STORAGE ‘
CONFIGURATION

BROWSE FOR FILE... ‘ M FROM LOCAL ‘] FROM STORAGE ‘

[T Deploy even if one or more roles contain a single instance.

[V Start deployment

[241]

The NSB Cloud

Depending on the cloud vendor, you can determine your development methodology.
We have provided some small examples for developing in Salesforce. While
developing in Google Apps, you can use the Eclipse IDE in Java, Apache Tomcat,
and the Mule ESB on-premise, and then upload it to the Google Cloud. For Azure,
you can develop your solution on-premise as well as in Visual Studio, and then
upload it and run it from Azure Cloud. However, for Azure, you will need cloud
development packages. There is a cloud service package, which is a development
ZIP file that will be deployed in a . cspkg format. It will need to be deployed with a
cloud configuration file as well, which is in the . cscfg file format.

However, in order to interact with the cloud services of Azure, and work with
Azure services locally, the Azure SDK has to be installed into the local machine
mentioned earlier.

For storage service's data management, we can create a SQL database in the cloud,
and use a SQL database on-premise from the cloud, or a hybrid thereof. The main
difference is that the connection string in the SQL Server database points towards an
on-premise or off-premise server. A virtual network can be set up between the cloud
and an on-premise LAN to provide a secure network connection. When connecting
to SQL Servers, IPs have to be explicitly allowed through the firewall to the cloud
database. There is a lot of built-in security to protect the cloud services. The Azure
SDK interfaces through Visual Studio so that there are tools to build SQL tables,
stored procedures, and more, from Visual Studio to the Azure cloud SQL database.

Server Explorer sccccccossissssasonsaissssssecsoiion dbo.Table [Design] & X
Q wagfa B 4 Update ScriptFile: dbe.Tablesql

4 @ Data Connections Mame Data Type Allow Nulls 4 Keys (1)
_‘ Emt‘dhn o Id int O <unnamed> (Primary Key, Clustered: Id)
b B Views 0 Check Constraints (0)
bl Stored Procedures Indexes (0)
b [Functions Foreign Keys (0}
b Bl Synonyms Triggers (0)

b = Servers
I SharePoint Connections
I =8 Windows Azure
3 Design 14 S T-50L
CREATE TABLE [dbo].[Table]

[Id] INT NOT NULL PRIMARY KEY

We can even manage the SQL database in the Azure Cloud from SQL
Management Studio.

[242]

Chapter 8

®o: Microsoft SQL Server Management Studio

_:J__Neruery |_-|':J L-h‘ﬂ =" e

-

Connect~ 33 32 EI .E

File Edit View Debug Tools Window Community Help

[=] 1 Databases
|1 System Databases
B) test
=l [Tables
[System Tables
[=NEERdbo. Tabl=1
3 Columnz
[Keys
[Constraints
1 Triggers
3 Indexes
1 Statistics

Object Explorer Det|

@ DI

B [kx8m&s2yff.database windows.net (SQL Server 11.0.5

kxBmad2yff.database, wi

MName

[Columns
L Keys

L Constraints
L Triggers
[Indexes
L Statistics

ij Choose Your Database Objects and Settings

This, in turn, means that we can use it to create entity models, and use the remote
SQL database for NServiceBus persistence as we would in a local SQL database,
and any other coding that we would do in a local SQL database. The only difference
is that it is living in the Azure cloud. Here, we are developing entities from the
cloud database.

Entity Data Model Wizard

Which database objects do you want to include in your model?

Jd

EN L] abies
= 9 dbo
FA Tablel
Oap views
[O=p Stored Procedures and Functions

For business analytics and reporting, normal SQL Server tools can be used in
the cloud, such as SQL Server Reporting Services (SSRS); there is reporting on
the SQL database that normally comes with the SQL Server as well as Hadoop.
The SQL reporting can be to the off-premise in similar manner to the on-premise
SQL reporting with SSRS. In the off-premise cloud, there are additional Azure
management tools that can be used.

[243]

The NSB Cloud

However, working with SQL Server is for medium-size data in the cloud. There is
also Big Data. One might ask, why know Hadoop with NSB? Just as NSB works with
SQL Server today in many solutions, working with NSB with Hadoop in a databus
solution will be the future for moving large data.

Hadoop processes large data and assumes that the data is in BLOBs. It processes data
in parallel by running logic across multiple parallel machines by MapReduce jobs.

By processing large chunks independently using Hadoop Distributed File System
(HDFS), Hadoop also has its own SQL-like query language called Apache Hive
Interface (see http://hive.apache.org/). For non-SQL-like query languages, there is
the Pig Latin Hadoop language called Apache Pig (see http://pig.apache.org/).

HDInsight is Microsoft's 100 percent compatible distribution of Hadoop that is
managed in Azure or on the Windows Server, as shown in the following screenshot:

CLUSTER NAME
SQL DATABASE ’ QUICK CREATE

*.azurehdinsight.net

STORAGE i»‘i CUSTOM CREATE

CLUSTER SIZE @

HDINSIGHT 4 data nodes

RECOVERY SERVICES

mystorage2l3

Other than adding a SQL database, we can add three other types of storage:

* A table storage that is based on a key-value No-SQL table format
* A Binary Large Object (BLOB) storage for binary storage, such as video files
* A queue storage to store messages

A BLOB is a group of containers, which is just unstructured data, such as a video or
audio file stored as binary storage in a data store.

[244]

http://hive.apache.org/
http://pig.apache.org/

Chapter 8

Table storage is a No-SQL solution instead of the relational SQL database. It can
store data across multiple machines. Each table can contain partitions across multiple
machines. These tables have entities with partition and row keys to access the entity.
Access to the table data uses a key-value pair to access the data store. These tables do
not enforce a SQL table schema that a SQL server would do for storage. Since there is
very little enforcement to create a table, the objects are loosely coupled to the access,
as there are just key-value pair references. This helps in access speed as management
of the data is minimal, and requires less storage as various SQL schema pieces for
table management are not used. Thus, it can take less storage, resulting in less cost
for the data. For table storage, there is a partition key, row key, and a timestamp:

* Partition key: This is a unique key associated with a partition as a collection
of all associated rows. This is defined to specify which partition to access.
An example is the name of the table.

* Row key: This is a unique key to identify the row in the partition, and is
usually a unique ID.

* Timestamp: This is the time at which the row was updated, and is updated
by Azure.

Queue storage is very similar to storing messages in MSMQ, except that the

management tools are in Azure Cloud. NSB uses Azure queues in a manner similar
to MSMQ and SQL Queues. However, Azure queues do not use DTC. There is a lot
of support from NServiceBus for both Azure queues and Azure service bus queues.

Just as many of the Azure Cloud items can be managed through the Azure SDK and
Visual Studio, storage queues can also be managed through the Visual Studio 2012
Server Explorer.

4 22 Windows Azure

b & Cloud Services

I+ @ Motification Hubs
b @ Service Bus
P

@¥ Storage Create Queue n
4 @ (Development)

4 F@ Blobs Enter @ name for the new queue:
& Queues
I Egg Tables
b [k Virtual Machines

b @ Web Sites ok || Cancel

Maming guidelines

[245]

The NSB Cloud

Besides using Visual Studio, there are many open source tools such as Azure Storage
Explorer, found at http: //azurestorageexplorer.codeplex.com/.

File View Tools Help

[mpstorege2 () (o)
mystorage213 *
Queus | Storage Type
AR PR E Lfe]=]e
Hew copy || Rename || Delete Wiew HEw Pop Pop &ll || Upload |pownload Blebs || Queues || Tables || Refresh

Id Insertion Time Degueue Count Expiration Time Mext Visible Time Dequeue Count Pop Receipt

Loading queues

These are just some of the local tools working through the Azure portal in the Azure
Cloud that allow a person to monitor, log, send notifications, and more, on the
storage being allocated for use.

[246]

http://azurestorageexplorer.codeplex.com/

Chapter 8

mystorage213
“ DASHBOARD MONITOR CONFIGURE CONTAINERS
general
REPLICATION LOCALLY GEQ READ-ACCESS
REDUNDANT REDUNDAMNT GEQ REDUNDANT
Secondary Region: East US
manitoring

BLOBS OFF MINIMAL RHE:Teind
Retention (n dayst: [(specify 0if you donotwant to setaetention polic

TABLES OFF MINIMAL RHE:Teind
Retention (n dayst: [(specify 0ifyou do notwant to setaetention polic

QUEUES OFF MINIMAL RHE:Teind
Retention (n daysy: [(specify 0if you do notwant to set aetention polic

Azure Service Bus

The Windows Azure Service Bus provides a hosted, secure, and widely available
infrastructure for widespread communication between different messaging
endpoints to include web services. The service bus communicates via three methods:

* Queues: You can perform one-to-one messaging through queues

* Topics: You can send one-to-many publish/subscribe messages from one
publish endpoint to many subscriber endpoints

* Relays: One-to-one requests-replies that will not be queuing passed
between endpoints

[247]

The NSB Cloud

Microsoft.ServiceBus.dll will be used to connect to the service bus, extend the service
bus, as well as work with the WCF and Windows workflow when interacting with
the service bus. The Azure Service Bus can be created in the Azure portal by first
creating the service bus namespace.

x

Add a new namespace
NAMESPACE NAME

testin

servicebus.windows.net

REGION

East US =l

v

We can create the service bus queues, topics, and relays in the Azure portal, and we
can also manage the service bus through Visual Studio after it was initially created

in the Azure portal. The service bus will use a primary key and a connection string
(which is not too dissimilar from a connection string to a SQL database) to be accessed.

4 3% Windows Azure
b & Cloud Services
b B Motification Hubs
4 3 Service Bus
4 4} testin
4 E Queues
b #8 Topics
4 g Storage
4 g (Development)
b &) Blobs
a4 FE‘ Queues
& testing
b Egg Tables
b EL Virtual Machines
b @ Web Sites

[248]

Chapter 8

Also note that there is a difference between storage queues and service bus queues.
Note the different names in this example. Service bus queues have more features for
management such as guaranteed FIFO, while Azure Queues have less manageability
built in. See http://msdn.micosoft.com/en-us/library/hh767287.aspx.

I contrast the differences as the service bus queues have some features such as
NServiceBus, while Azure Queues are more generic in nature, such as SQL Queues.
When creating an Azure service bus queue, we can see the granularity that is offered
during the creation.

This will create a new Service Bus queue with the following properties.

MName

| videostore, sales

User Description

Default Message Time To Live

|*.—"2233?2-j3535 seconds [V Use Default

Duplicate Detection History Time Window

|50|3 seconds
Lock Duration
|50 seconds

Maximurm Delivery Count
I 10 attempts

Maximum Queue Size

J' 1GE [Use Maximum Size

[~ Enable Dead Lettering on Message Expiration
[~ Requires Duplicate Detection

r Requires Session

[v Enable Batched Operations

[+ Enforce Message Ordering

[~ Enable Partitioning

™ Automatic Delete On Idle I 300 seconds

Forward To (Queue,Topic Path)

Save I Cancel

[249]

http://msdn.micosoft.com/en-us/library/hh767287.aspx

The NSB Cloud

There are additional tools for exploring the Azure service bus, such as the Server Bus
Explorer found at http://code.msdn.microsoft .com/windowsazure/Service-
Bus-Explorer-f2abcaba.

Service Bus Explorer 2.2.1.1 = =

File Edit Actions View Help . == Windows Azure
Connect to a Service Bus Namespace ﬂ
@ P

B8 Windows Azure

[Select aservice bus namespace.. I

URl or Server FQDN:
Namespace:

Shared Secret lssuer Name:
Shared Secret lssuer Secret:
Connectivity Mode:

PutoDetect <

Transport Type:
NetMessaging -

Queue Fitter Expression:
Topic Fitter Expression:

Subscription Fitter Expression:

0K Cancsl

Service bus for Windows Server

To develop with the Azure service bus on-premise, the service bus for Windows
Server needs to be installed from the Microsoft website; one download link is at
http://msdn.microsoft.com/en-US/library/jj193004.aspx.

We can also install it from the Web Platform Installer from
http://www.microsoft.com/web/downloads/platform.aspx.

[250]

http://code.msdn.microsoft.com/windowsazure/Service-Bus-Explorer-f2abca5a
http://code.msdn.microsoft.com/windowsazure/Service-Bus-Explorer-f2abca5a
http://msdn.microsoft.com/en-US/library/jj193004.aspx
http://www.microsoft.com/web/downloads/platform.aspx

Chapter 8

1) Web Platform Installer 5.0 o [=]p3]

° Search results for service bus | P

Name Released Install =
[%L Service Bus 1.0 Q/22/2012 Add
[%L Service Bus 1.0 Cumulative Update 1 2/22/2013 Add

After installation of the Azure service bus to a Windows server, a configuration must
take place with the service bus tools.

SERVICE BUS CONFIGURATION WIZARD

Service Bus Configuration

Configure Farm Management Database

SQL SERVER INSTANCE

|GimpGamesRichH\SQLEXPRESS | |Te5t Connection

@ Advanced Options
[] Use the above SOL Server instance and settings for all databases

DATABASE NAME

|SbManag ementDB

Configure Gateway Database

SQL SERVER INSTANCE

|GimpGamesRichH\SQLEXPRESS | & |Te5t B
@ Advanced Options

DATABASE NAME

|SbGatewayDatabase v

©

[251]

The NSB Cloud

The configuration for this service bus will create a "farm" in the SQL database, which
is normally local, but depending on the instance and database name entered in the
configuration, it could even be a cloud database instance as we discussed before.
The database will create three tables.

[=]] Databaszes
[System Databases
| J sbGatewayDatabase
| J sbManagementDE
|) SBMessageContainer01

It will also create either two services, for Version 1.0, or four services, for Version 1.1,
to send and receive the service bus messages, excluding the Windows Fabric service.

Service Bus Gateway Provides access control, discovery and routing of Service Bus resources,
Service Bus Message Broker Provides storage and processing for Service Bus messages,

The breakdown of the services is as follows:

* Windows Fabric: This is the core clustering technology that manages a "ring"
of the nodes in a farm.

* Service Bus Message Broker: This manages the send and receive operations
from service bus queues, topics, and subscriptions.

* Service Bus Gateway: This serves as the protocol head for supported service
bus protocols. The gateway also performs security validation on incoming
requests.

* Service Bus Resource Provider: This handles management requests from the
Windows Azure Pack Portal.

* Service Bus VSS: This discovers and automates backup and restore
operations using Microsoft's Volume Shadow Copy Service (VSS).

To view the logs of any event in the service bus for Windows Servers, the application
installs its own event log area.

= Applications and Services Logs
.—| Hardware Events
.—| Internet Explarer
.—| Key Management Service
| Microsoft
ﬂ Microsoft Office Alerts
B || Microsoft-ServiceBus

'—| COperational

[252]

Chapter 8

There are many PowerShell commands that can be used to administrate the
Windows service bus for the Windows Server. They can be found at http://msdn.
microsoft.com/en-us/library/jj659882.aspx. Some of the commands include:

* get-sbclientconfiguration: This gets the client configuration to connect

to the server

* get-sbfarm: This gets the configuration of the farm

* get-sbfarmstatus: This gets the current status of the farm connected

* get-sbnamespace: This gets the details of the namespace

There are many more. The following screenshot shows a small example of

get-sbfarm:

¥ Service Bus Powershell

Windows Powerfhell

Copyright <(C)» 2012 Microsoft Corporation. All rights reserved.

PS8 C:“Program Files“Bervice Bus“\1.8> get—shfarm

Farm] ype
SBFarmDBConnectionString

ClusterConnectionEndpointPort
ClientConnectionEndpointPort
LeazeDriverEndpointPort
ServiceConnectionEndpointPort
RunAsAccount

AdminGroup
GatewayDBConnectionString

HttpzPort

TcpPort
MeszageBrokerPort
FarmCertificate

EncryptionCertificate

Hosts

SE

Data Source=WIN-UAUT16GPEQA;Initial
Catalog=8bhManagementDB;Integrated
Security=True ;Encrypt=Falze

706808

Administrator

BUILTIN~Adminisztrators

Data Source=. ;Initial
Catalog=ShGatewvayDatahase;Integrated
Security=True;;Encrypt=False

Thumbprint:
D7982836F92CA1ECBE31A
IsGenerated: True
Thumbprint:
D7982836F92CA1ECBEI1A
IzGenerated: True
{Hame: WIN- » Configuration State:
HostConf igurationCompleted?

2888D5DC362,

2888D5DC362.

PS8 C:»Program Files“Service Bus:\1.8>

[253]

http://msdn.microsoft.com/en-us/library/jj659882.aspx
http://msdn.microsoft.com/en-us/library/jj659882.aspx

The NSB Cloud

After we create the configuration for the Azure service bus, I copy the logs during
the creation process; they will contain the connection string and other information
that created the service bus. By using the connection string from the creation process
while running the configuration tools, we are able to connect to the service bus

through Visual Studio using the Server Explorer for the Service bus.

Enter the information to connect to a Service Bus namespace. You can choose between Windows Azure Service

Bus or Service Bus (for Windows Server). You can fill the fields manually or populate them using an existing
connection string.

() Windows Azure Service Bus
(®) Service Bus 1.0 for Windows Server

Endpoints (separated by ","):

Sts Endpoints (separated by ","):

Ff‘;ﬁjm“"“’ Enter Connection String
- from config

Management port:
9355

Use connection string

Preview connection string:
Endpoint=;RuntimePort=9354:ManagementPort=9333

Online privacy statement

[ok || cancel

Then, we can manage it in Visual Studio's Server Explorer.

4

= Windows Azure
Cloud Services
Notification Hubs
& Service Bus

b T ¥ oER
@

b {1 sbi/gimpgamesrichh/ServiceBusDefaultNamespace
B4} testin

b ¥ Storage

b A Virtual Machines

@ Web Sites

Now, we have Azure Service bus running on-premise.

[254]

Chapter 8

Other Azure services

Windows Azure Active Directory is designed to be used with cloud applications
such as SaaS applications. It also provides a Single Sign On (SSO) technology to
work with Windows Server Active Directory, Facebook, Google, and many
other technologies.

Windows Azure Messaging allows applications to talk to other applications. The
Azure technologies provided for this are Windows Azure Service Bus and Windows
Azure Queues. The Azure Service Bus can have applications communicate with
each other through the cloud, on-premise or both. It communicates via queues,
topics, or relays. Queues are one-to-one messaging, topics are one-to-many publish/
subscribe messaging, and relays are bidirectional messaging. Relays do not store
messages in between. Windows Azure Queues provide the ability for queues to exist
between the web and worker roles to separate roles and responsibilities in passing
messages between cloud queues. This allows messages to be stored between the
responsibilities of applications. However, queuing in the cloud is not exactly the
same as queuing on-premises because the worker role is responsible for deleting the
messages, so there may be no guarantee that the message is used once.

Windows Azure provides different network connection configurations, such as
virtual network, connect, and traffic management. The virtual network can use a
static VPN through IPSec for an always-on connection to the cloud to continuously
connect on-premise to the cloud. This is for users and developers who need
continuous network access from on-premise to the cloud. It will appear to be on
the same network. There may be a need to connect specific on-premise machines to
specific cloud virtual machines. For this reason, we use Windows Azure Connect.
Specific cloud services connect to specific on-premise connections. This is to specify
developers and users to specific applications, for instance, connecting an on-premise
DBA to a cloud SQL database. Windows Azure Traffic Manager helps in routing
specific users to specific clouds, for instance, connecting Asian customers to the
Asian cloud. This is based on policies defined in the Traffic manager.

Windows Azure provides mobile and media services as well. Media service has
components to help deploy media to users, which includes content protection, using
different media types and formats to assist in streaming media. Windows Azure
mobile services allow the backend development for mobile services. While mobile
devices have native programming done in Objective-C, Android, Java, PhoneGap,
and Mono, mobile services allow a user to log in and access data and applications

to sync their devices through resources and web services. They also allow SSO
authentication and the ability to push to their devices when they log in to

receive updates.

[255]

The NSB Cloud

Adding NServiceBus

All cloud services communicate via web services to on-premise data or to other
cloud services. Even though products such as the Salesforce cloud is normally kept
in the cloud versus on-premise, there may still be data sent to Salesforce and kept
on-premise. There could be many reasons why some data could be kept on-premise
and not stored in the cloud; some reasons may be that there is proprietary data that a
company wishes not to store off-premise, or data for security reasons may need to be
kept on-premise.

Salesforce provides WSDL interfaces to their cloud by downloading their WSDL and
client certificate guide, https://help.salesforce.com/HTViewHelpDoc?id=dev_
wsdl.htm&language=en US. A workflow rule in Salesforce would have to be created
to define the data fields that have to be defined. See the tutorial found at http://
www . ramonsmits.com/2013/04/08/receiving-salesforce-notifcations-with-
nservicebus.html as an example. We have already covered setting up NServiceBus
with WCF in previous chapters.

NServiceBus for Azure

Azure has queuing and subscription services just as a local on-premise Windows
Server has MSMQ, but it is different. For this reason, NServiceBus has built interfaces
to use the Azure pieces in the IBus interface as well. See http://docs.particular.
net/nservicebus/windows-azure-transport. The examples can be found on
GitHub at https://github.com/Particular/NServiceBus.Azure.Samples.

We can develop using NServiceBus to manage the Azure service bus and Azure
queues in the following scenarios:

* NServiceBus managing an Azure service bus on-premise

* NServiceBus managing an Azure service bus in the Azure Cloud

* NServiceBus managing the Azure queues in the Azure Cloud

* NServiceBus managing the Azure queues in the Azure Cloud with multiple
endpoints hosted in the same role instance

Azure support for NServiceBus

Let's work with the MSMQ publish/subscribe example that we have worked with
multiple times. There will have to be multiple steps for either the Azure service bus
or Azure queues to be used with NServiceBus. These steps include:

[256]

https://help.salesforce.com/HTViewHelpDoc?id=dev_wsdl.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=dev_wsdl.htm&language=en_US
http://www.ramonsmits.com/2013/04/08/receiving-salesforce-notifcations-with-nservicebus.html
http://www.ramonsmits.com/2013/04/08/receiving-salesforce-notifcations-with-nservicebus.html
http://www.ramonsmits.com/2013/04/08/receiving-salesforce-notifcations-with-nservicebus.html
http://docs.particular.net/nservicebus/windows-azure-transport
http://docs.particular.net/nservicebus/windows-azure-transport
https://github.com/Particular/NServiceBus.Azure.Samples

Chapter 8

1. A reference for the NuGet reference for NServiceBus transport needs to
be installed for Azure Service Bus; we use NServiceBus.Azure.Transports.
WindowsAzureServiceBus, http://www.nuget .org/packages/
NServiceBus.Azure.Transports.WindowsAzureServiceBus/,
and for the Azure queue, we use NServiceBus.Azure. Transports.
WindowsAzureStorageQueues, http: //www.nuget .org/packages/
NServiceBus.Azure.Transports. WindowsAzureStorageQueues/.

2. The app.config or web.config needs to contain the new NServiceBus/
Transport configuration. For the Azure Service bus, it will be of the form:

<connectionStringss>

<add name="NServiceBus/Transport"
connectionString="Endpoint=sb://{namespace}.servicebus.windows.net
/ ;SharedSecretIssuer=owner; SharedSecretValue:{key} "/

</connectionStringss>

For the Azure queue, it will be of the form:

<connectionStringss>
<add name="NServiceBus/Transport" connectionString="UseDevelop
mentStorage=true" />
</connectionStringss>

3. The transport of the IBus needs to change appropriately. For the Azure
service bus, the transport needs to be set to UseTransport<AzureServiceB
us> (). For Azure queues, the transport needs to be set to UseTransport<Azu
reStorageQueues ().

By running the NServiceBus video store example for the Azure queues found at
https://github.com/Particular/NServiceBus.Azure.Samples/tree/master/
VideoStore.AzureStorageQueues.Cloud, and Creating the videostore-sales
queue to write to, we can see that the transport queues are created in a similar
manner as NServiceBus would do for MSMQ.

== Windows Azure
I & Cloud Services
I B Notification Hubs
b @ Service Bus
4 g¥ Storage
4 @ (Development)
b & Blobs
Fl rE'l Queues
@l audit
&l error
&l videostore-ecommerce
E__“ videostore-ecommerce-retries
[=]l videostore-sales
b gy Tables
b Gk Virtual Machines
b @Y Web Sites

[257]

http://www.nuget.org/packages/NServiceBus.Azure.Transports.WindowsAzureServiceBus/
http://www.nuget.org/packages/NServiceBus.Azure.Transports.WindowsAzureServiceBus/
http://www.nuget.org/packages/NServiceBus.Azure.Transports.WindowsAzureStorageQueues/
http://www.nuget.org/packages/NServiceBus.Azure.Transports.WindowsAzureStorageQueues/
https://github.com/Particular/NServiceBus.Azure.Samples/tree/master/VideoStore.AzureStorageQueues.Cloud
https://github.com/Particular/NServiceBus.Azure.Samples/tree/master/VideoStore.AzureStorageQueues.Cloud

The NSB Cloud

After submitting several orders through the e-commerce site, we can see the
messages passed into the storage queue.

[videostore-sales [Queue] + X

1d Message Text Preview

{ “enull, 1-4e27- Inits
273052e2-1405-4f04-98cf-289c18b399%b {"IdForCorrelation™:null, "Id": "4a8b4ea6-60b3-4f06-a017-a32a009f1ef2", MessageIntent™: 3, "ReplyToAddress™ "VideoStore. ECommerce @UseDeyv
285a6aff-0c0d-497e-82b4-45829e6207d {"TdForCorrelation”:null,"Id"; "chabcb37-355b-4346-9045-232a00975228", "MessageIntent”™; 1, "Reply ToAddress"; "VideoStore, ECommerce @UseDev 1.8KB
0371374f-355F-492e-9f04-2a32da02610b {"IdForCorrelation”:null, "Id": "255d 1abd-f59f-40 15-a909-3 32a009330d ", Messagelntent™: 1, "ReplyToAddress™: VideoStore ECommerce @UseDey... 1.8KB

We can also use the NServiceBus example for the Azure Cloud service bus queues
from https://github.com/Particular/NServiceBus.Azure.Samples/tree/
master/VideoStore.AzureServiceBus.Cloud. We can get the Azure service bus
connection string from Azure in the connection information.

service bus

NAMESPACE NAME STATUS. LOCATION SUBSCRIPTION CREATED DATE pel

testin >

DELETE

We copy the connection information into the app . config or web. config file:

<connectionstringss
<add name="NServiceBus/Transport” connectionString="Endpoint=sh://

testin.servicebus.windows.net/;SharedSecretIssuer=owner;SharedsecretValue=NBX0CCO0CO0000KFIG156180UyIWYTeh2f jIpmfad=" />
</connectionStringss

[258]

https://github.com/Particular/NServiceBus.Azure.Samples/tree/master/VideoStore.AzureServiceBus.Cloud
https://github.com/Particular/NServiceBus.Azure.Samples/tree/master/VideoStore.AzureServiceBus.Cloud

Chapter 8

Then, we send the order through the videostore.ecommerce project. Ensure that
the videostore.sales queue is created in the Azure service bus.

4 3 Service Bus

F |

4} testin
Fi E_; Queues

o0 zudit
error
testqueue

[1=ll=l 1=l
[=] 0 [=] 0 [=]

=]
[=]

E]

4 »E Topics

videostore, ecommerce
videostore. ecommerce. retries

videostore. sales

4 38 videostore ecommerce. events

£2 Subscriptions

Using the Service Bus Explorer, we can see that the message was sent to the Azure

service bus queue.

File Edit Actions View Hep
@
[SR sb://testin servicebus windows net/
=] j Queues
& audit
& emor
& tesuece
& videostors ecommercs
& videostore ecommerce reres
& videostore sales

- Topics

videostore ecommerce events
€y Nfication Hubs

(P Relay Services

2

Description | Authorization Rules | Mefrics Messages |

Service Bus Explorer 22.1.1

=1

B8 Windows Azun

| Enqueued Tmeic

5/13/2014 8:03 PM

| EmiresAtlic

12/31/999 11559 PM

B Misc

ContentType

d2ce3913-74c2-4860-4
1

ParttionKey
= Propetties.
e = Nene} EE = RepiyTe VideoStore. ECommerce
lbase4BinaryQ3http://schemas microsoft com/2003/10/ NServicoBus . 20039137, Ff“g.rns “ ore.
[Serialization/#3 {"OrderNumber”1."Videolds " NServiceBus.C. 420039137, oY oscssdan
'need"]"Clientld":"31b31Tea- d62- erviceBus = ScheduedEnqueue Tim
o " Encrypied Number - 1osRd NServieeBus Or... VideoStore, Sequenceliumber |1
{Ag13nghJbh Vv DdL/a/Trs HDEmOeFkWvkazvv 1=@Ef 1 8 diagnostics ol 61142937d. Sessionld
1sgumniKGGEINBo | Irk==". EncryptedEriration Date ™" NServiceBus M Send S
lg0TDg4MQ/ A CULHe IUA==@bgHECQ T0GERguWIK o
—o 1 NServiceBus V... 461 State Active
NServiceBus.Ti 20140513 TimeTolive 10675199.02:48:05.47.
NServiceBus Or. WIN-UAUT. o
Pt Eeton. \ViaParttion| |
| =
GetMetics | Messages | Deadiier Refresh Disable Delete Update

So, we have just tested the Azure service bus

. To test the on-premise solution, it

is done in a similar manner, except that an on-premise emulator must be present.
The emulator is installed by installing a service bus for Windows Servers.

[259]

The NSB Cloud

NSB in the mobile world

While, one day, there may be the possibility of using MSMQ on the Windows Phone
operating system or using RabbitMQ queues and MySQL inside Android devices as
native applications, it may not seem practical as ESBs handle backend processing.
These may be possible features for running NSB on the phone, but the purpose of
NSB is to establish an SOA through the use of a C# ESB.

With the rise of different operating systems on the phones, be it iOS for the iPhone
and iPad, or be it Java Android for the Android phones and the Windows Phone
and tablet operating systems, many developers are turning towards "write-once
run-anywhere". This is a tagline used for the Java programming language, the
Mono development platform from Xamarin to use C# on different systems, to more
recently the use of writing games for the web browser using HTML5 and PhoneGap.
In HTMLS5, many of the native capabilities of mobile devices are available. In
PhoneGap, you can tap into more native mobile phone capabilities better than
HTMLS5. With HTMLS5, you can leverage Microsoft MVC as we have done in many
examples; the difference is now that you are upgrading your HTML to Version 5,
and using JavaScript APIs to support phone functionality.

Mobile Phone) e
| NSB
Client HTM L55 Microsoft
Browser MVC | Saga Service

—

Javascipt
APIs: i'
History |
Canvas ;

Geolocation e eb service
Web Workers
Drag and Drop Payment

Wesockets Service

Local Storage
Offline E

Audio/Video

[260]

Chapter 8

In this scenario, NSB is interacting with Microsoft MVC as it has in many examples
in this book, but now, Microsoft MVC is utilizing HTMLS5 for mobile development
in Visual Studio. There are many extensions to assist in HTML5 development

with Visual Studio for MVC, such as Mobile Ready HTML5 MVC.NET at
http://visualstudiogallery.msdn.microsoft.com/9df9c61c-4d90-43e5-
9aal-a58786b7ale4.

NSB becomes an even more valuable framework for decoupling the frontend
interaction from the backend processing. For instance, you may be playing a game,
and want to pay for the game. Decoupling the frontend will allow you to make a
payment for the game inside HTML5, during a pause of the game, and continue with
the game as the payment is being processed to the credit card service. Without the
NSB decoupling, the continuation of the game may be an issue while the payment is
being processed with the frontend processes. Imagine the pizza order scenario with
Do not Refresh this page while we are processing your order. This scenario may

be extended without the benefit of decoupling with NSB, for a game being played in
HTMLS as Do not Refresh this page on your phone while we are processing your
payment for the game. How embarrassing, but there are many popular websites that
have these warnings as they are processing orders and payments.

PhoneGap is an HTMLS5 application platform that allows you to author native
applications with web technologies and get access to APIs and application stores.
PhoneGap is basically used for developing working code for iPhones, Androids,
Blackberries, and WebOS devices that contain HTML, cascading style sheet(CSS),
and JavaScript. It can be found at http://phonegap. com/. PhoneGap is also
supported in Visual Studio and C#.

Recap
Here are some of the benefits of NSB that we have demonstrated in this chapter:
* NSB can send messages to some vendor queues such as access queues
through some cloud vendors such as Azure service bus queues

* Azure service bus can be used for on-premise testing by using ServiceBus
for Windows Servers, and the current version is Version 1.1

* For cloud vendors that do not expose their message queues, NSB services
can connect to them using web services, such as WCF

* For mobile phones, HTML5 can be used to extend MVC for mobile
applications to use NSB as it would normally be used for MVC

* NSBis a good solution for marshaling messages between on-premise and
off-premise data and business logic

[261]

http://visualstudiogallery.msdn.microsoft.com/9df9c61c-4d90-43e5-9aa1-a58786b7a1e4
http://visualstudiogallery.msdn.microsoft.com/9df9c61c-4d90-43e5-9aa1-a58786b7a1e4
http://phonegap.com/

The NSB Cloud

Questions that were answered

Here are some of the questions answered throughout this chapter:

1. What is the emulator for the on-premise service bus?

A. Service bus for Windows Servers.

2. What are two frameworks that could be used in C# to provide HTML browser
clients for mobile devices?

A. HTMLS5 and PhoneGap.

3. What is one of the tools to create Microsoft Azure websites?
A. WebMatrix.

4. What does HDFS stand for?
A. Hadoop Distributed File System (HDFS).

5. What is the Azure service bus pattern that is similar to MSMQ publish/subscribe?
A. Topics.

6. What SDK has to be installed for Visual Studio 2012 to use Azure Server Explorer?
A. Visual Studio 2012 for Web and Windows Azure SDK-2.3.

7. What's one way to install the Azure SDK and Service Bus for Windows Server?

A. By using the Microsoft Web Platform Installer.

8. Name one of the ways to use SQL Reporting in Azure.
A.SSRS.

9. Does NSB support Azure service bus and Azure storage queues?
A. Yes.

10. What is one of the ways to connect NSB to SalesForce?
A. WCF.

11. Does RabbitMQ support DTC?
A. No.

12. Are future versions of NSB adding support for Azure and the cloud?
A. Yes.

13. Is Servicelnsight supporting more sequence diagrams for sagas?
A. Yes.

[262]

Chapter 8

Summary

In this chapter, we took a deeper dive into Software as a Service (SaaS) and how
NServiceBus ties into cloud computing. We gave a very brief introduction to the
cloud and some of its services.

We discussed how NSB will be useful as well in the mobile device world going
forward by utilizing C# technology into HTML5 and PhoneGap. We know that
NServiceBus is a framework that is quickly adapting to the software industry
mobile and cloud trends going forward.

[263]

A

Amazon Elastic Compute Cloud (EC2) 232
Apache Hive Interface
URL 244
Apache Pig
URL 244
application security perspective, NSB 32
AsA_Client role
about 113
URL 113
AsA_Publisher role
about 113
URL 113
AsA_Server role
about 113
URL 113
Azure
NServiceBus, using for 256
Azure calculator
URL 237
Azure Service Bus
about 247-250
queues method 247
relays method 247
topics method 247
Azure Storage Explorer
URL 246
Azure support
NServiceBus, using for 256-259

benefits, ESB
about 65, 66
encryption 31

Index

high availability 31
message durability 30
monitoring checks 31
separation of duties 30
workflow retries 31

benefits, NSB
endpoints 31
NServiceBus.Host 32-35
Powershell commands, using 35
security perspective 32
self-hosting 32-34

Binary JSON (BSON)
URL 225

Binary Large Object (BLOB) 244

buyer's remorse sample, NHibernate
encryption 139, 140
message mutator 137-139
overview 130-137

C

cascading style sheet(CSS)

NSB, using 261
cloud vendors 232-237
cluster messaging

about 47, 48

performance monitoring 49-52
code-first EF

about 188-190

configuration, performing 191-193
configuration settings, NSB 119
C# reflection 154, 155
cross-site scripting (XSS) 32
custom checks

base constructor, ReportFailed 91

base constructor, ReportPass 91

performing 91-93

customer service representatives (CSRs) 13

D

database logging
about 163-167
Log4net 163
NLog 163
Serilog 163
data bus messaging 55, 56
data loader tool
URL 233
distributed computing
fallacies 16
Distributed Transaction
Coordinator (DTC)
about 22
URL 25
distributor profile, NSB 34
distributor storage pattern 59

E

Fluent API
URL 206
using, in NHibernate 206
Fluent Configure.With()
about 114,115
configuration settings 118
gateway persister 117, 118
saga persister 116
subscription storage 118
timeout persister 117
transport storage 116
Fluent NHibernate
URL 206

G

gateway messaging
about 52-54
Gateway solution, using 53
gateway persister
DisableGateway() 118
RunGateway() 117

EF URL 117
about 146-149, 169 UselInMemoryGatewayDeduplication() 118
URL 183 UseInMemoryGatewayPersister() 118
used, for creating tables 180-183 UseNHibernateGatewayPersister() 118

EF code UseRavenGatewayDeduplication() 117
tables, creating from 183 UseRavenGatewayPersister() 117

EF models gateway storage pattern 58
tables, creating from 184-188 Google App Engine (GAE) 232

EF snippets
about 180 H

code-first EF 188-190
tables, creating with EF 180
e-mail notification

Hadoop Distributed File
System (HDFS) 244

about 62
testing 64, 65 I
endpoints, NSB 31
Enterprise Service Bus (ESB) 11, 30, 105 IBus.
Entity Framework. See EF basm.s 1(,)5’ 106
ESB bus configuring 107-110

examples 106
interface configurations 111
NServiceBus 106

IBus configuration
AuditConfig section 107

persistence 143
Extract-Transform-Load (ETL) process
URL 236

[266]

GatewayConfig section 107
logging section 107
MasterNodeConlfig section 107
MessageEndpointMappings section 107
MessageForwardingInCaseOfFaultConfig
section 108
MsmqMessageQueueConfig section 108
MsmqSubscriptionStorage section 108
RijndaelEncryptionServiceConfig
section 108
SecondLevelRetriesConfig section 108
TransportConfig section 108
UnicastBusConfig section 108
URL 114
IConfigureThisEndpoint, IBus
about 111
URL 111
INeedlInitialization, IBus
about 111
URL 111
Infrastructure as a Service (IaaS) 231, 232
InMemory 57
integration profile, NSB 35
interface configurations, IBus
about 111,113
INeedInitialization 111
IWantToRunWhenBusStartsAndStops 111
IWantToRunWhen
ConfigurationlsComplete 111
roles 113
Intrusion Detection Systems (IDSes) 32
IWantCustomlInitialization, IBus
about 112
URL 112
IWantCustomLogging, IBus
about 112
URL 112
IWantTheEndPointConfig, IBus
about 112
URL 112
IWantToRunAtStartup, IBus
about 112
URL 112
IWantToRunBeforeConfiguration, IBus
about 112
URL 112

IWantToRunWhenBusStartsAndStops, IBus
about 111
URL 111

IWantToRunWhenConfigurationIsComplete,
IBus
about 111
URL 111

J

JSON
URL 221

L

lite profile, NSB 35
Log4dnet

URL 163
logging frameworks

for NLog 128,129
logging, in NServiceBus 217-219
long-lived transactions (LLTs) 40
Lucene

URL 222

master profile, NSB 34
message encryption 45, 46
message exchange patterns

about 36

cluster messaging 47

data bus messaging 55, 56

gateway messaging 52-54

message encryption 45

message mutators 43, 44

publish/subscribe pattern 36

request-response 38

saga 40

timeout messages 41
message handler unit testing 196-201
message monitoring

about 60-62

e-mail notification 62-65
message mutators 43
metadata, SOA

about 11

need for 12-14

[267]

Microsoft Azure
Azure Service Bus 247
benefit 237
end-to-end applications, deploying 237
other services 255
service bus, for Windows Server 250-254
URL 237
using 237-240
virtual machines, creating 241-246
Microsoft Message Queues (MSMQs) 57
Microsoft Web Platform Installer
URL 240
mobile world
NSB, using 260, 261
Model-View-Controller (MVC) 30
MongoDB
about 223-226
installing, on Windows 224
NServiceBus MongoDB persistence 227
tools, URL 224
URL 223
MSMQCommander
URL 60
MultiSite profile, NSB 34
MVC-EF example 174-180

N

NHibernate
about 57, 205-209
configuring 125, 215, 216
Fluent API, using 206
URL 106
using 119-214
NHibernate ORM framework 209
NLog
URL 163
NSB Servicelnsight tool 61
NSB ServicePulse tool
URL 60
NServiceBus (NSB)
about 12, 14, 30
adding 256
benefit 30, 65, 68, 261
deploying 141
drawback 68

information, URL 199

logging 217-219

saga, URL 17

ServicePulse 68

unit testing 194

URL, for slide 144

used, for Azure support 256-259

used, in mobile world 260, 261

using 229, 230
NServiceBus.Host 32-34
NServiceBus installation, from Visual

Studio

installing 22-28

preconditions 22
NServiceBus MongoDB persistence

about 227

URL 227
NServiceBus saga

about 20, 21

URL 20
NServiceBus.Nhibernate

URL 106

(0

object relational mappers (ORMs) 144

options, IBus serialization
BinarySerialization 115
BsonSerialization, URL 115
JsonSerialization, URL 115
XmlSerialization 115

options, saga persister
RavenSagaPersister() 116
UseInMemorySagaPersister() 116
UseNHibernateSagaPersister() 116

out-of-box (OOB) functionality 232

P

Particular Service Platform
ServiceControl 70
Servicelnsight 76
ServiceMatrix 81
ServicePulse 68
tools, URL 68
URL, for downloading 68

partition key 245

[268]

PayQueue sample saga, features 40

about 155-157 saga services 39
AppForReadingXML project 156 row key 245
AppForWritingTables project 156
AppForWritingXML project 155 S
MyMessages project 155
PayQueue solution saga
using 145 about 11
persistence database data 126,127, 216
about 143 example 18, 19
basics 143-145 logging frameworks, NLog 128
supporting frameworks 145 storage pattern 58
persistence patterns, SOA using 119-124, 209-214
need for 14, 15 saga handler unit testing
PhoneGap about 202, 203
about 261 source code, URL 202
URL 261 saga persister 116
Platform as a Service (PaaS) 231, 232 sagas, ServiceMatrix
PowerShell command]lets developing 99-102
URL 23 ScaleOut-ServiceControl solution 71
production profile, NSB 35 Second-level Retries (SLRs) 14
Publish Event... command 94 security event manager
publish/subscribe messaging pattern, U'RL 163
through ServiceMatrix Serilog
about 94 URL 163
working 95-98 Server Bus Explorer
PubSub--ReportFailure solution 91 URL 250
PubSub--ReportPass solution 91 service bus, for Windows Server
PubSub-SQL solution, using about 250-254
MyMessages method 172 Pow.erShell commands, URL 253
MyPublisher method 172 Service Bus Gateway 252
Subscriberl method 172 Service Bus Message Broker 252
Subscriber? method 172 Service Bus Resource Provider 252
URL 170 Service Bus VSS 252
URL 250
Q Windows Fabric 252
Service Bus Gateway 252
queue storage, virtual machines 245 Service Bus Message Broker 252
Service Bus Resource Provider 252
R Service Bus VSS 252
ServiceControl
RavenDB about 70-76
about 26, 27, 219-223 configuration, URL 70
Lucene, using 222 queuing types, URL 70
URL 28,57, 219-221 ServiceControl.Plugin.CustomChecks 72
reql;lestt-g%sponse message pattern ServiceControl.Plugin.DebugSession 71
abou

ServiceControl.Plugin.Heartbeat 72

[269]

ServiceControl.Plugin.SagaAudit 72
URL 70
ServiceControl.Plugin.CustomChecks
URL 72
ServiceControl.Plugin.DebugSession
URL 71
ServiceControl.Plugin.Heartbeat
URL 72
ServiceControl.Plugin.SagaAudit
URL 72
ServiceControl plugins, ServiceMatrix
custom checks plugin 90
Debug session plugin 90
Heartbeat plugin 90
Saga Audit plugin 90
Servicelnsight 76-80
Service-level agreement (SLA) 49
ServiceMatrix
about 67, 81-91
custom checks, performing 91-93
installing 81
publish/subscribe messaging pattern 94-98
sagas, developing 99-102
ServiceControl plugins 90
Solution Builder window, sections 83
URL 81-83
uses 68
service-oriented architecture. See SOA
ServicePulse
about 67
functions 68
uses 68
using 68, 69
services, Microsoft Azure
Azure Service Bus 255
media service 255
mobile service 255
Windows Azure Active Directory 255
Windows Azure Connect 255
Windows Azure Messaging 255
Windows Azure Queues 255
Windows Azure Traffic Manager 255
services, NServiceBus 140, 141
service, SOA
autonomous 8
boundaries 8

compatibility 8
share schema and class 8
Simple Mail Transfer Protocol (SMTP) 64
Single Sign On (SSO) 255
SOA
about 9, 10, 30
developing 9
distributed computing, fallacies 16
example 8
metadata, need for 12-14
URL 8
Software as a Service (SaaS) 231, 232
software quality 12
SQL Injection
URL 144
SQL queuing sample
about 158-162
VideoStore.ContentManagement
method 161
VideoStore.CustomerRelations method 161
VideoStore.Ecommerce method 161
VideoStore.Message method 161
VideoStore.Operations method 161
VideoStore.Sales method 161
SQL Server
benefits 169
example 169-173
SQL Server example
about 169-173
URL 170
SQL Server Reporting Services (SSRS) 243
storage patterns
about 56, 57
backing up 59
distributor Storage 59
gateway storage 58
persistence stores 57
sagas 58
subscription storage 58
timeout storage 57
SubmitPaymentSender function 88
SubmitPaymentHandler function 88
subscription storage
about 118
persisters 118
URL 118

[270]

subscription storage pattern 58
supporting frameworks, persistence
about 145
C# reflection 154, 155
EF 146-149
XML serialization 150-153
syslog
URL 163

T

tables
creating, from EF code 183
creating, from EF models 184-188
creating, with EF 180-183
table storage, virtual machines
about 245
partition key 245
row key 245
timestamp 245
timeout messages 41-43
timeout persister
about 117
setting up, URL 117
variations 117
timeout storage pattern 57
timestamp 245
Topshelf
URL 140
transaction, SOA 11
transport storage
about 116
options 116

U

UMongo
URL 224

unit testing, NServiceBus
about 194-203

message handler unit testing 196-201

saga handler unit testing 202, 203
source code, URL 194
URL 195

\'

virtual machines
about 240
creating 241-244
storages, adding 244
Visual Studio
URL 196
Volume Shadow Copy Service (VSS) 252

w

WebMatrix
URL 238
Windows Communication Foundation
(WCF) 30
Windows Fabric 252
worker processes 47
worker profile, NSB 34

X

XML serialization 150-153

[271]

enterprise

PUBLISHING

Thank you for buying
Mastering NServiceBus and Persistence

About Packt Publishing

Packt, pronounced 'packed’, published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . packtpub . com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

enterprise 8

professional expertise distilled

PUBLISHING

Learning NServiceBus

PACKT

Learning NServiceBus

ISBN: 978-1-78216-634-4 Paperback: 136 pages

Build reliable and scalable distributed software
systems using the industry leading .NET Enterprise
Service Bus

1. Replace batch jobs with a reliable process.

2. Create applications that compensate for
system failure.

3. Build a message-driven system.

Short | Fast | Focused

Redis Persistence

Matt Palmer [PACKT]

Instant Redis Persistence

ISBN: 978-1-78328-021-6 Paperback: 50 pages

Everything you need to know about configuring,
maintaining, and optimizing your Redis data storage

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Configure and manage how Redis stores
your data.

3. Optimize performance and ensure data
security with backups and encryption.

Please check www.PacktPub.com for information on our titles

enterprise 8

professional expertise distilled

PUBLISHING

Persistence in PHP with
Doctrine ORM

Persistence in PHP with

Doctrine ORM
ISBN: 978-1-78216-410-4 Paperback: 114 pages

Build a model layer of your PHP applications
successfully, using Doctrine ORM

1. Develop a fully functional Doctrine-backed
web application.

2. Demonstrate aspects of Doctrine using
code samples.

3. Generate a database schema from your
PHP classes.

Java Persistence
with MyBatis 3

Java Persistence with MyBatis 3
ISBN: 978-1-78216-680-1 Paperback: 132 pages

A practical guide to MyBatis, a simple yet powerful
Java Persistence Framework!

1. Detailed instructions on how to use MyBatis
with XML and annotation-based SQL mappers.

2. Anin-depth discussion on how to map complex
SQL query results such as one-to-many and
many-to-many using MyBatis ResultMaps.

3. Step-by-step instructions on how to integrate
MyBatis with a Spring framework.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: NServiceBus Persistence Introduction
	Introduction to SOA
	The need for metadata
	The need for persistence patterns
	Fallacies of distributed computing
	The need for sagas
	A real-life saga

	A beginning NServiceBus saga
	Beginning NServiceBus assemblies

	Summary

	Chapter 2: NServiceBus Architecture
	Benefits of NSB
	More on endpoints
	The application security perspective
	NSB hosting versus self-hosting
	Using Powershell commands

	Message exchange patterns
	The publish/subscribe pattern
	Request-response messages
	Saga services

	Some saga features
	Timeout messages
	Message mutations
	Message encryption
	Cluster messaging
	Performance monitoring

	Gateway messaging
	Data bus messaging

	Storage patterns
	Backing it up

	Monitoring
	Sample e-mail notification

	Let us recap
	Summary

	Chapter 3: Particular Service Platform
	ServicePulse
	ServiceControl
	ServiceInsight
	ServiceMatrix
	Introducing custom checks
	Publish/subscribe through ServiceMatrix

	Sagas through ServiceMatrix
	Summary

	Chapter 4: Knowing Your IBus
	Understanding the basics of IBus
	Configuring IBus
	Interface configurations
	Using the Fluent Configure.With()
	The transport storage
	The saga persister
	The timeout persister
	The gateway persister
	The subscription storage
	Finding more configuration settings

	Using saga and NHibernate
	Defining NHibernate
	The saga database data
	Logging
	Buyer's remorse code walkthrough
	Message mutators
	Encryption

	Services and deployment
	Summary

	Chapter 5: Persistence Architecture
	Persistence basics
	Supporting frameworks for persistence
	Introducing Entity Framework
	XML serialization
	C# reflection

	PayQueue sample
	SQL Queuing sample
	Database logging
	Summary

	Chapter 6: SQL Server Examples
	The SQL Server example
	The MVC-EF example
	Entity Framework snippets
	Creating tables with EF
	Creating tables from the EF code
	Creating tables from EF models

	Code-first EF
	Code-first EF and configurations

	Unit testing NServiceBus
	Message handler unit testing
	Saga handler unit testing

	Summary

	Chapter 7: Persistent Snippets
	Entering NHibernate
	Using saga and NHibernate
	Defining NHibernate
	The saga database data

	Logging
	Entering RavenDB
	Entering MongoDB
	NServiceBus MongoDB persistence

	Summary

	Chapter 8: The NSB Cloud
	Introducing the cloud and NSB
	Introducing PaaS, IaaS, and SaaS
	Cloud vendors
	Using Microsoft Azure
	Virtual machines
	Azure Service Bus
	Service bus for Windows Server
	Other Azure Services

	Adding NServiceBus
	NServiceBus for Azure
	Azure support for NServiceBus

	NSB in the mobile world
	Recap
	Questions that were answered
	Summary

	Index

