
www.allitebooks.com

http://www.allitebooks.org

Learning OMNeT++

Make realistic and insightful network simulations with
OMNeT++

Thomas Chamberlain

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning OMNeT++

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1110913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-714-9

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Thomas Chamberlain

Reviewers
Thomas M. Chen

P. Victer Paul

Acquisition Editor
Vinay Argekar

Commissioning Editor
Shreerang Deshpande

Technical Editors
Dennis John

Gaurav Thingalaya

Copy Editors
Laxmi Subramanian

Adithi Shetty

Kirti Pai

Project Coordinator
Sherin Padayatty

Proofreader
Faye Coulman

Indexer
Hemangini Bari

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

Cover Image
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Thomas Chamberlain grew up in the 90s in London. From a young age, he was
passionate about programming and computers, which led him to pursue a degree in
Computer Science, where he focused on intelligent, self-adaptive networks.

Since then, Tom has worked for a leading aerospace, defense, and advanced
technology company as a Software and Systems Engineer.

I would like to thank my friends and family, who have always
supported me, and I would like to dedicate this book to my
wife, Andrea.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Thomas M. Chen received his BS and MS degrees in Electrical Engineering from
the Massachusetts Institute of Technology, and a PhD in Electrical Engineering from
the University of California, Berkeley. After graduation, he worked on high-speed
networks research at GTE Laboratories (now Verizon) in Waltham, Massachusetts.
He contributed to the national ATM standards and the Industry consortium ATM
Forum. In 1997, he joined the Department of Electrical Engineering at Southern
Methodist University, Dallas, Texas, as an Associate Professor. At SMU, he led
the research in network security, network protocols, and traffic control. He joined
Swansea University, Wales, UK, in 2008 as a professor of networking.

He is the co-author of ATM Switching Systems, Artech House (1995) and the
co-editor of Broadband Mobile Multimedia: Techniques and Applications, Auerbach
Publications (2008) and Mathematical Foundations for Signal Processing, Communications,
and Networking, CRC Press (2012). He was formerly the Editor-in-chief of IEEE
Communications Surveys, IEEE Communications Magazine, and IEEE Network. He
was also formerly the Technical Editor for IEEE Press books and the Associate Editor
for ACM Transactions on Internet Technology. He has served as a member-at-large
in the IEEE Communications Society Board of Governors and as a Treasurer for the
IEEE Computer Society's Security and Privacy group. He currently serves as the
Associate Editor for the International Journal of Security and Networks, Journal on
Security and Communication Networks, and International Journal of Digital Crime
and Forensics. He received the IEEE Communications Society's Fred Ellersick Best
Paper award in 1996.

www.allitebooks.com

http://www.allitebooks.org

P. Victer Paul is a research scholar pursuing a PhD in the field of Computer
Science, Pondicherry University, Pondicherry, India. He has completed his
B.Tech. in Information Technology (2007) from SMVEC with a university rank and
M.Tech. in Network and Internet Engineering (2011) from Pondicherry University,
Pondicherry, India, with a University gold medal. He is a recipient of the INSPIRE
fellowship from the Department of Science and Technology, Govt. of India. He has
around six years of professional experience in Industry and Research. Currently, he
is working in the fields of Wireless Communications, Evolutionary Computing, and
Distributed Systems. He is one of the researchers proficient in using and optimizing
the OMNeT++ simulation tool and has developed a number of projects in the same.
He has published around 20 research papers in various forums such as conferences
and journals at national and international levels.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with OMNeT++ 7

What this book will cover 7
What is OMNeT++? 8
The need for simulation 8
Examples of simulation in the industry 8
What you will learn 9
Summary 10

Chapter 2: Installing OMNeT++ 11
Downloading OMNeT++ source code 11

Windows 12
Linux 12

Prerequisites for compiling OMNeT++ from the source 13
Installing OMNeT++ on Windows 14
Installing OMNeT++ on Linux 15
Compiling and installing on Windows 16
Compiling and installing on Linux 16

Running OMNeT++ IDE for the first time 17
Running OMNeT++ on Linux 18
Running OMNeT++ on Windows 19

Downloading INET 19
Importing INET to prepare for the next chapter 20

Summary 21

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: OMNeT++ Simulations 23
Beginner to expert, low to high level 23
Components that make up OMNet++ simulations 23

Network 23
Module 24
Compound Module 26
Channels 27

The NED language 27
OMNeT++ configuration file 31
Simulation frameworks 34

Google Earth demo 35
INET in detail 37

Example INET simulations 38
Summary 42

Chapter 4: Creating and Running a Simulation 43
The OMNeT++ IDE 43
Creating a new project 46

Creating an empty project 46
Importing a project 48

Creating an example project 48
Switching to another workspace 54
Hello World network simulation 55

What this simulation will do 55
Defining your network 56

Creating multiple scenarios 67
Controlling the flow of your simulation 69

Summary 71
Chapter 5: Learning from Your Simulations 73

Gathering useful information 73
Visualizing gathered data 78

Vector charts 78
Scalar charts 79

Analysis of the Tictoc example project 79
Generating capture packet data 83

Summary 84
Index 85

Preface
I've always enjoyed blogging about anything and everything; things I love and
things I want to share with others. I first started getting really into blogging while
I was in my first year of university. I would write posts about computer security
and my general ideas and thoughts on things surrounding the topic. Whenever I
was particularly passionate about a topic that I was either studying or researching,
I would blog about it. That's really how this book came about; from being at the
university and then blogging about it. The reason why I was using OMNeT++ in
the first place was because of the degree I was reading in Computer Science and the
need to simulate networks for research. In my final year of graduation, I proposed
to do my own dissertation instead of choosing from the set list that my batch had
been given. It was a dissertation that was completely drenched in my passion for
networks and security and was titled Optimizing Self-Aware Networks to Defend
Against Distributed Denial of Service Attack. There was no way I could get around the
epically long title! The reason why I wanted to defend against DDoS attacks was
because of how popular they were. This popularity not only led me to realize how
simple such an attack is, but also how difficult they are to defend against. In my
research, I realized that I needed to study two main crippling barriers in creating a
DDoS attack: cost and time. The main problem was that I needed to create massive
wide area networks in order to observe the mechanisms of a life-sized DDoS attack.
DDoS attacks were very popular in 2011 and are very popular even today. I found
that the only good answer to this problem was simulation. I set out to try and create
a lifelike model of a DDoS attack using simulation and not just something "like"
a DDoS attack. I wanted something that truly was a DDoS attack, but just on a
"non-physical" network, mostly because I couldn't afford the real thing and
I wouldn't have had the time to set it up in real life.

Preface

[2]

After spending the next five minutes on Google, I came across OMNeT++. It
boasted of everything that I was looking for and needed. OMNeT++ made network
simulation fun for me. It made it easy to edit my simulations and learn from the
networks I had created. I'm a very visual learner, so the visual side of OMNeT++
made the simulations completely real for me. I loved what I had found from my
five-minute Google search. I was really impressed. So, as with everything similar I
come across, I blogged about it. Shortly thereafter, I received an e-mail from Reshma
Raman, an Author Acquisition Executive from Packt Publishing. The conversation
went something like this: "Would you like to be an author for a mini book on
OMNeT++?" "Sure," I replied. It felt like an invitation to extend my love of blogging
on a grander scale, and I also knew that I'd learn a lot more about OMNeT++ in the
process. You can never say you know everything, so I never do.

What this book covers
Chapter 1, Getting Started with OMNet++, talks about what this book will cover,
what you will learn from the book, and also the importance and uses of simulation.

Chapter 2, Installing OMNeT++, walks you through the steps of how you can get and
install OMNeT++. It also includes how to get optional add-ons and what they do.

Chapter 3, OMNeT++ Simulations, goes into detail about the components that
make up OMNeT++ simulations and how a simulation can be configured
into numerous scenarios.

Chapter 4, Creating and Running a Simulation, walks you through the steps of how
you can create your own network simulation, which includes creating the network
topology and creating multiple scenarios for your simulation. It then explains
how to run and control the flow of your simulation.

Chapter 5, Learning from Your Simulations, shows you how to gather data from
your network simulation and then how to create visualizations to represent
the data collected.

What you need for this book
For this book, you need a Windows operating system, such as Windows XP or
later versions of Ubuntu Linux 12.04 or 13.04. Other Linux distributions will
work, but this book uses Ubuntu.

Prior knowledge on C++ programming will aid a reader of this book, but it is
not essential.

Preface

[3]

Who this book is for
This book is ideal for anyone wishing to quickly get to grips on network simulation,
whether you're an expert in networks or just a beginner. It is perfect for all network
engineers and administrators who wish to emulate networks using OMNet++ as a
preparation for building the actual network.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "You may need to change 4.2.2 to
match the version you have downloaded. This also assumes that the tarball
was downloaded into your Downloads folder."

A block of code is set as follows:

standardHost: StandardHost {
@display("p=59,215");
IPForward = true; //Turn IP forwarding on
numTcpApps = 5; //Set the number of TCP Apps on this node to 5
 }

Any command-line input or output is written as follows:

sudo apt-get update && sudo apt-get install build-essential

gcc g++ bison flex perl

tcl-dev tk-dev blt libxml2-dev

xlib1g-dev openjdk-6-jre doxygen graphiz

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The benefit
of using the Edit Parameters form is that you can see all the parameters that belong
to the submodule you are observing and their default values".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with
OMNeT++

This book is intended for a whole range of people, from network engineers who
want to create reliable networks to budding simulation enthusiasts. I know I would
have benefited from a book like this when I was in my final year of University.
That's when I realized I needed to simulate networks to solve the problems I had.
This book would have been useful for me, because once I realized I wanted to
simulate a network, I also realized that I had no idea how to do it. Once I discovered
OMNeT++, I also found the learning curve for using it to be steep to start with, and I
really wanted the network simulations that I would soon create to be up and running
as quickly as possible. I wish for this book to be useful, interesting and also fun.

What this book will cover
This book will show you how you can get OMNeT++ up and running on your
Windows or Linux operating system. This book will then take you through the
components that make up an OMNeT++ network simulation. The components
include models written in the NED (Network Description) language, initialization
files, C++ source files, arrays, queues, and then configuring and running a
simulation. This book will show you how these components make up a simulation
using different examples, which can all be found online. At the end of the book, I will
be focusing on a method to debug your network simulation using a particular type
of data visualization known as a sequence chart, and what the visualization means.

Getting Started with OMNeT++

[8]

What is OMNeT++?
OMNeT++ stands for Objective Modular Network Testbed in C++. It's a
component-based simulation library written in C++ designed to simulate
communication networks. OMNeT++ is not a network simulator but a
framework to allow you to create your own network simulations.

The need for simulation
Understanding the need for simulation is a big factor in deciding if this book is for
you. Have a look at this table of real network versus simulated network comparison.

A real network A network simulation
The cost of all the hardware, servers, switches
and so on has to be borne.

The cost of a single standalone machine
with OMNeT++ installed (which is free).

It takes a lot of time to set up big specialist
networks used for business or academia.

It takes time to learn how to create
simulations, though once you know how it's
done, it's much easier to create new ones.

Making changes to a pre-existing network
takes planning, and if a change is made in
error, it may cause the network to fail.

Making changes to a simulated network
of a real pre-existing network doesn't pose
any risk. The outcome of the simulation
can be analyzed to determine how the real
network will be affected.

You get the real thing, so what you observe
from the real network is actually happening.

If there is a bug in the simulation software,
it could cause the simulation to act
incorrectly.

As you can see, there are benefits of using both real networks and network simulations
when creating and testing your network. The point I want to convey though, is that
network simulations can make network design cheaper and less costly.

Examples of simulation in the industry
After looking into different industries, we can see that there is obviously a massive
need for simulation where the aim is to solve real-world problems from how a
ticketing system should work in a hospital to what to do when a natural disaster
strikes. Simulation allows us to forecast potential problems without having to first
live through those problems.

Chapter 1

[9]

Different uses of simulation in the industry are as follows:

• Manufacturing: The following are the uses under manufacturing:
 ° To show how labor management will work, such as worker

efficiency, and how rotas and various other factors will
affect production

 ° To show what happens when a component fails on a production line

• Crowd Management: The following are the uses under crowd management:
 ° To show the length of queues at theme parks and how that will

affect business
 ° To show how people will get themselves seated at an event in

a stadium

• Airports: The following are the uses for airports:
 ° Show the effects of flight delays on air-traffic control
 ° Show how many bags can be processed at any one time on a baggage

handling system, and what happens when it fails

• Weather Forecasting: The following are the uses under weather forecasting:

 ° To predict forthcoming weather
 ° To predict the effect of climate change on the weather

That's just to outline a few, but hopefully you can see how and where simulation
is useful.

Simulating your network will allow you to test the network against myriads of
network attacks, and test all the constraints of the network without damaging
it in real life.

What you will learn
After reading this book you will know the following things:

• How to get a free copy of OMNeT++
• How to compile and install OMNeT++ on Windows and Linux
• What makes up an OMNeT++ network simulation
• How to create network topologies with NED

Getting Started with OMNeT++

[10]

• How to create your own network simulations using the OMNeT++ IDE
• How to use pre-existing libraries in order to make robust and realistic

network simulations without reinventing the wheel

Learning how to create and run network simulations is definitely a big goal of
the book. Another goal of this book is to teach you how you can learn from the
simulations you create. That's why this book will also show you how to set up
your simulations, and to collect data of the events that occur during the runtime of
the simulation. Once you have collected data from the simulation, you will learn
how to debug your network by using the Data Visualization tools that come with
OMNeT++. Then you will be able to grasp what you learned from debugging the
simulated network and apply it to the actual network you would like to create.

Summary
You should now know that this book is intended for people who want to get
network simulations up and running with OMNeT++ as soon as possible. You'll
know by now, roughly, what OMNeT++ is, the need for simulation, and therefore
OMNeT++. You'll also know what you can expect to learn from this book.

Installing OMNeT++
It's important that you have OMNeT++ correctly installed onto your Windows or
Linux operating system. OMNeT++ has some prerequisites and optional add-ons
that we will also be installing to ensure a fully working OMNeT++ environment.
The Linux operating system I am using throughout this book is Ubuntu 12.10. The
Windows version I will be using is Windows 7. It's also important that you read the
licenses for each tool and package you install so that you are aware about what you
are allowed to do with those tools and packages.

Downloading OMNeT++ source code
OMNeT++ is not available on the community website as an executable program;
only its source code is available. This means that you need to compile the source
code in order to run OMNeT++. If you are not a confident Linux user, I suggest
that you use Windows as it's much easier to install on Windows.

First, go to the OMNeT++ download page at the following URL:
http://www.omnetpp.org/omnetpp. Once there, you need to click
on OMNeT++ Releases. Now you will see two download selections:

1. OMNeT++ x.x.x win32 (source + IDE + MINGW, zip)
2. OMNeT++ x.x.x (source + IDE, tgz)

If you are using Windows, click on option 1; you can click on option 2 if you are
using Linux. Throughout this chapter, you will only need to read the content for
the operating system you are using.

Installing OMNeT++

[12]

Windows
Once you have downloaded the ZIP file, you need to unzip it to a folder of your
choice. To unzip it, you need to right click on the zipped file and then click on Extract
All. I recommend that you can easily find it on the root folder of your local drive.

Linux
Once you have downloaded the tarball, you need to extract it either using the file
manager you have installed (this is typically done by right-clicking on the tarball
and then clicking on Extract Here, or double-clicking on the file and selecting
where to extract it) or entering the following code into your terminal:

tar xvzf ~/Downloads/omnetpp-4.2.2-src.tgz -C ~/

You may need to change 4.2.2 to match the version you have downloaded. This
also assumes that the tarball was downloaded into your Downloads folder. What this
command does is extract the tarball into your home directory. The parameter xvzf
used in the command stands for the following:

• x: Extract
• v: Verbose (so that you can see what is happening while the command

is running)
• z: Uncompress
• f: File to extract followed by the tarball that you downloaded

-C is then used to declare the directory that we want to extract the files into. If you
wish to change the directory that the tarball is extracted into, you need to change
the command to match what you want. For more information about using the tar
command, enter man tar into your terminal to bring up the manual for the
tar command.

Chapter 2

[13]

While the command is running, you should see something like the following in
your terminal:

You will know that the extraction is complete when the terminal stops outputting the
files it's extracting.

You can double check if the extraction worked by locating the extracted folder which
will be in your home directory or where you have otherwise specified.

Prerequisites for compiling OMNeT++
from the source
There are optional prerequisites that you can build OMNeT++ with, but on Linux
you also need to make sure you have the correct mandatory prerequisites in order
for OMNeT++ to build.

There are three optional packages which can be used to build OMNeT++. They are
as follows:

• MPI: This stands for message passing interface and is a message-passage
library. This means that it is used for parallel programming that can be
done across multiple machines with distribution memory. You may find
this useful for OMNeT++ as it will allow you to speed up your simulations.
Essentially, MPI will facilitate faster and more powerful simulations.

• PCAP: This stands for packet capture, and it allows packets that are
travelling through the local network to be captured.

Installing OMNeT++

[14]

• Akaroa: Akaroa smartly collects data during the runtime of a simulation
and stops the simulation once enough data has been collected to make a
meaningful observation from that data. This tool is very useful for anyone
who is trying to debug a network to make it more efficient and robust.

Installing OMNeT++ on Windows
All the prerequisites for installing OMNeT++ on Windows are actually included
in the ZIP file that we have downloaded. This is why installing OMNeT++ on
Windows is a lot easier than installing it on Linux. However, the optional
packages are not included.

To get MPI for Windows, you first need Visual Studio Express for Windows
desktop which can be found at http://www.microsoft.com/visualstudio/eng/
downloads. Once you have installed Visual Studio, you just need to run the MPI
installer provided by Open MPI that can be found at http://www.open-mpi.org/
software/ompi/v1.6/. During the installation, make sure that the option to add
MPI to the path is selected in the following manner:

You need to edit the configure.user file found in your OMNeT++ folder in order
to tell OMNeT++ where to find your MPI. If you read the configure.user file,
you will find the instructions and examples on how to do this.

Chapter 2

[15]

The PCAP implementation for Windows is called WinPcap and can be downloaded
from http://www.winpcap.org/install/default.htm. When installing WinPcap,
I recommend that you select the option to automatically start the WinPcap driver at
boot time.

Unfortunately, Akaroa is not Windows-friendly and this book will not cover how to
install it on the Windows operating system.

Installing OMNeT++ on Linux
I will show you how to install the MPI implementation for Linux, Open MPI.
It provides a full implementation of the message-passing interface. To install,
open your terminal and enter:

sudo apt-get install openmpi-bin libopenmpi-dev

You can also install Open MPI by using the synaptic package manager that is found
on most of the popular Linux distributions.

The PCAP implementation for Linux is libpcap and can be installed from the
terminal by entering the following command:

sudo apt-get install libpcap-dev

You can also install libpcap-dev by using the synaptic package manager.

Akaroa can be downloaded from http://www.cosc.canterbury.ac.nz/research/
RG/net_sim/simulation_group/akaroa/download.chtml. You must first register
to download the source code for Akaroa, as you need to compile it. Once you have
downloaded the Akaroa tarball, you need to first extract it and then, using your
terminal, move it into the extracted directory and enter the following command:

./configure

make

sudo make install

If there are any errors in this installation, please consult the documentation that is
provided in the Akaroa folder which you just downloaded.

You must have some packages before you can compile OMNeT++; these can be
downloaded and installed by entering the following command into your terminal:

sudo apt-get update && sudo apt-get install build-essential

gcc g++ bison flex perl

tcl-dev tk-dev blt libxml2-dev

xlib1g-dev openjdk-6-jre doxygen graphiz

Installing OMNeT++

[16]

Once you have installed these packages, you can learn more about them if you are
curious by using the man command. Not every package will have a main page that you
can view, it just depends whether one has been written or not. For example, to find out
more about flex, you would enter the following command into your terminal:

man flex

Downloading the example code
You can download the example code files for all Packt
books that you have purchased from your account at
http://www.packtpub.com. If you purchase this book
elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

Compiling and installing on Windows
The process of compiling and installing on Windows is very self-contained.
To compile and install, just follow the given steps:

1. Enter the OMNeT++ directory that you unzipped earlier.
2. Run the file called Mingwenv.cmd.
3. When the terminal appears, enter the following command:

./configure

make

Compiling and installing on Linux
To compile OMNeT++ on Linux, you must open up a terminal and move it to the
extracted OMNeT++ folder that you downloaded earlier. Now enter the following
command into your terminal:

./configure

make

On Ubuntu 12.10, I received the following error message when I tried to run the
make command:

abspath.cc: In function 'std::string toAbsolutePath(const char*)':

abspath.cc:63:38: error: 'getcwd' was not declared in this scope

Chapter 2

[17]

Thanks to the support of the OMNeT++ community online, I realized that the fix to
the problem was editing abspath.cc that is found in src/utils/ of your extracted
the OMNeT++ folder. Using the text editor of your choice, open abspath.cc and then
add the following code onto line 21:

#include <unistd.h>

Save and close abspath.cc and rerun the make command. Once the last command
has finished running, OMNeT++ will be installed. Making sure that you're still in the
same directory in your terminal, you can now create a menu item from your terminal
by typing the following command:

make install-menu-item

If you want to also create a desktop icon for OMNeT++, enter the following
command into your terminal:

make install-desktop-icon

Running OMNeT++ IDE for the first time
Now that OMNeT++ is installed, it is as easy to run as any other piece of software on
your computer. OMNeT++ can now be run using either your mouse or terminal.

Installing OMNeT++

[18]

Once you run OMNeT++, you will be asked to select the default workspace.
A workspace is a logical collection of projects. For example, a workspace called
peer to peer networks may contain only peer-to-peer network simulations.
On my installation, I've created my own workspace folder which I've called
Projects. My workspace looks like the following screenshot:

Running OMNeT++ on Linux
To run OMNeT++ on Linux, you can type the following command into your terminal:

omnetpp

If you have created a menu item, you can run OMNeT++ by clicking on OMNeT++
from your application menu. The icon on my Ubuntu 12.10 looks like the following:

Chapter 2

[19]

Running OMNeT++ on Windows
In the folder ide inside your OMNeT++ folder, you will see an application called
omnetpp; this is just a short form for OMNeT++. I recommend creating a shortcut
for omnetpp on your desktop.

You can also run omnetpp by running Mingwenv.cmd as you did earlier and enter
the command:

omnetpp

If you see the following splash screen, it means the OMNeT++ IDE is
running correctly:

Downloading INET
INET can be downloaded from the download section at http://inet.omnetpp.org.
The downloaded file is a tarball. Once it is downloaded, you can open it and choose
where to extract to remember how this was done earlier. Also, choose a place to
extract so that you remember.

www.allitebooks.com

http://www.allitebooks.org

Installing OMNeT++

[20]

Importing INET to prepare for the next chapter
The following are the steps to prepare for the next chapter:

1. In OMNeT++, go to Select File | Import.

2. Click on General and then click on Existing Projects into Workspace. Now,
click on Browse and select the INET folder that you just extracted. Make sure
you tick the Copy projects into workspace checkbox.

Chapter 2

[21]

3. Now click on Finish.
4. Now with INET selected under Project Explorer, press Ctrl + B. This will

build INET so that it can be used in your network simulations.

Summary
Now you know how to get a free copy of OMNeT++, build the source code, compile
it, and also build it with optional add-ons. You have also learned how to launch
OMNeT++, obtain INET to import into OMNeT++, and then build it so that it's
ready for you to use.

OMNeT++ Simulations
Let's now look at what exactly is an OMNeT++ network simulation and what it looks
like. This chapter will give you a quick overview of an OMNeT++ simulation with
the help of an example to aid your learning. OMNeT++ is open source, meaning that
all of the source code that makes up OMNeT++ has been made freely available to the
public, thereby allowing people to modify that code and then distribute it to others.

Beginner to expert, low to high level
If you are not a coder and you really don't need to learn how to code, well then,
you don't need to! OMNeT++ not only lets you get right down to the C++ code of
the network simulations, but it also lets you use higher building blocks. In this way,
it caters to all types of users.

Components that make up OMNet++
simulations
Let us understand each component that makes up the simulation of OMNeT++.

Network
In OMNeT++, a Network is an object that defines the network and holds modules,
submodules, and compound modules. The Network object allows those different
types of modules to talk to each other via channels.

OMNeT++ Simulations

[24]

When you run your network simulation, the Network object will look like
the following:

I have called this Network object My_Network.

Module
A Module object in OMNeT++ is a component that sits inside a Network object and
is able to send messages to other Module objects. In your simulation, this could be
a router, a webserver, a standalone machine, or any other component that you can
think of, which is capable of making the communication across a network. When we
add a Module object to our My_Network Network object, it looks like the following:

Chapter 3

[25]

I have named the module My_Module and you can see that it sits inside the
My_Network Network object, as shown in the following screenshot:

OMNeT++ Simulations

[26]

Compound Module
A Compound Module object is made up of multiple Module objects. The INET
simulation framework for OMNeT++ is a library that contains loads of prebuilt
Module and Compound Module objects. The following is what a StandardHost
Compound Module looks like inside our My_Network Network object:

INET provides a neat icon for the StandardHost Compound Module object. If we
have a look at what makes up this object, we can see a collection of Module and
Compound Module objects that together make up a typical or "standard" host that
you would find on a real-life network. The following is what the StandardHost
Compound Module object looks like under the trunk:

Chapter 3

[27]

Note the modules such as TCP and UDP; these prebuilt components are all ready for
use and at your disposal! We can also see that the StandardHost Compound Module
has a module inside it titled pingApp. This is an instantiation of the iPingApp Module
Interface and it allows StandardHost to be used as a ping application and thereby send
pings to other nodes on the network as shown in the following screenshot:

Channels
Channels are objects that are used to connect one module of the Compound Module
object to the other. Channels allow these modules to send messages to each other and
connect the gate of one module to the gate of another. This could be a StandardHost
talking to another StandardHost via an Ethernet cable.

The NED language
NED is a network description language that is used to create the topology of
networks in OMNeT++. The OMNeT++ IDE lets you create your topology either
graphically or using NED. If you choose to create your network topologies using
the graphical editor, the coinciding NED source code will also be generated for you.
The choice to use the graphical editor over the NED language is purely yours.

OMNeT++ Simulations

[28]

Let's look at some basic NED to get started. We will start by looking at how to define
the most basic component—the Network component:

package book.simulations; /* Package is a mechanism to organize
 the various classes and files. My
 simulation project inside of OMNeT++ is
 called "Book" and this NED file is found
 in the "simulations" folder of the
 project. */

networkMy_Network // This is simply defining a Network component
 called
{
 "My_Network"
}

The text after the // and in between /* */ are the comments that explain what
the syntax means. Graphically, this NED produces just an empty network called
My_Network.

Let's consider this network topology. We have three standard hosts and a
large Local Area Network (LAN) connected via two routers, as shown in
the following screenshot:

Chapter 3

[29]

Let's now look at the corresponding NED code that belongs to this topology:

package book.simulations;

/*
Similar to JAVA syntax, the NED file needs to include modules that are
to be used to define the network topology. Since we are using INET,
many of the imports are from the INET library.
*/
import inet.applications.httptools.HttpServer;
import inet.examples.ethernet.lans.LargeLAN;
import inet.examples.httptools.socket.tenserverssocket
 .ethernetline;
import inet.examples.mobileipv6.fiberline;
import inet.nodes.ethernet.Eth100G;
import inet.nodes.inet.Router;
import inet.nodes.inet.StandardHost;
import ned.DatarateChannel;

network My_Network
{
@display("bgb=620,293");

/* @display is just used to describe the appearance of the topology,
such as locations of components and other appearance attributes. */

submodules: //Define submodules that belong in our Network object.
standardHost: StandardHost {
@display("p=59,215");
 }
 standardHost1: StandardHost {
@display("p=172,215");
 }
router: Router {
@display("p=144,134");
 }
largeLAN: LargeLAN {
@display("p=288,56;is=l");
 }
 router1: Router {
@display("p=343,134");
 }

OMNeT++ Simulations

[30]

 standardHost2: StandardHost {
@display("p=422,207");
 }
connections:

/* Define what connections exist in our Network object. In the first
line below, we can see that "standardHost" uses an Ethernet connection
to connect to "router" using the "ethernetline" channel./*

standardHost.ethg++ <-->ethernetline<-->router.ethg++;
router.pppg++ <-->DatarateChannel<--> standardHost1.pppg++;
router.ethg++ <-->fiberline<-->largeLAN.ethg;
router.ethg++ <-->fiberline<--> router1.ethg++;
router1.ethg++ <--> Eth100G <--> standardHost2.ethg++;
}

When getting to grips with OMNeT++, I found it very useful to create my network
topologies using the graphical editor found inside the IDE. Once I added a new
object to my topology, I would check the coinciding NED source code to see what
changes had been made. I would recommend doing this too, because it is easier to
see exactly what attributes are set for your submodules in the source code instead of
having to navigate hidden menus in order to see the attributes.

Let's add some more details to the first submodule standardHost :StandardHost
that was defined previously:

standardHost: StandardHost {
@display("p=59,215");
IPForward = true; //Turn IP forwarding on
numTcpApps = 5; //Set the number of TCP Apps on this node to 5
 }

These added details are very easy to see in the NED source code. However, to set
and view these attributes in the IDE, you must right-click on the standardHost object
and select Parameters.... Now you will see a form similar to the one shown in the
following screenshot:

Chapter 3

[31]

This is a much longer way to change settings, but I must admit that it feels easier.
The benefit with NED is that you can see the parameters for submodules much
more easily. The benefit of using the Edit Parameters form is that you can see all the
parameters that belong to the submodule you are observing and their default values.

OMNeT++ configuration file
The configuration file is what defines how the simulation will run. In every
simulation, this configuration is called omnetpp.ini. Without this file,
the simulation will not run.

To demonstrate a configuration file, let's consider the following network described
by this topology:

package book.simulations;

import inet.examples.httptools.socket.tenserverssocket
 .ethernetline;
import inet.networklayer.autorouting.ipv4.FlatNetworkConfigurator;
import inet.nodes.inet.Router;
import inet.nodes.inet.StandardHost;

network My_Network

OMNeT++ Simulations

[32]

{
@display("bgb=620,293");
submodules:
standardHost: StandardHost {
@display("p=90,176");
 }
 standardHost1: StandardHost {
@display("p=365,215");
 }
router: Router {
@display("p=243,87");
 }
flatNetworkConfigurator: FlatNetworkConfigurator {
@display("p=527,112");
 }
connections:
standardHost.ethg++ <-->ethernetline<-->router.ethg++;
router.ethg++ <-->ethernetline<--> standardHost1.ethg++;
}

The preceding code snippet creates the following network:

Chapter 3

[33]

For this simulation to work, the following configuration file (omnetpp.ini) must be
made as follows:

[General]
network = book.simulations.My_Network

#We will make standardHost a TCP Session Application in order for it
to #communicate
**.standardHost.numTcpApps = 1
**.standardHost.tcpApp[0].typename = "TCPSessionApp"
**.standardHost.tcpApp[0].connectAddress = "standardHost1"
**.standardHost.tcpApp[0].connectPort = 1000

#We will make standardHost1 a TCP Echo Application, this means that it
will send #an echo packet once it receives a packet.
**.standardHost1.numTcpApps = 1
**.standardHost1.tcpApp[0].typename = "TCPEchoApp"
**.standardHost1.tcpApp[0].localPort = 1000
**.standardHost1.tcpApp[0].echoFactor = 3.0

#**.ppp[*].queueType = "DropTailQueue"
#**.ppp[*].queue.frameCapacity = 10
#**.eth[*].queueType = "DropTailQueue"

The first thing that we see in our configuration file is that the network to run is
defined. The configuration file then goes on to describe how standardHost and
standardHost1 should behave. We connect standardHost to standardHost1
with the following lines of code:

**.standardHost.tcpApp[0].connectAddress = "standardHost1"
**.standardHost.tcpApp[0].connectPort = 1000

The ** at the start of the preceding lines mean that we don't have to use the
following syntax instead:

My_Network.standardHost.tcpApp[0].connectAddress = "standardHost1"
My_Network.standardHost.tcpApp[0].connectPort = 1000

The ** symbol is a wildcard, which works in this scenario as there is only one
network it can pick from because I have only defined one.

Similar to the graphical editor for creating network topologies, there is also a form
version for writing the configuration file of your network simulation.

OMNeT++ Simulations

[34]

You may prefer to use this instead of writing out the configuration file from scratch
for the same reason as you may want to use the graphical editor to create the
network topology for your network.

Simulation frameworks
There are many simulation framework packages for OMNeT++ that are freely
available online. Whether you want to simulate peer-to-peer networks or simulate
GPS navigation, there are simulation framework packages for almost everything
you would want to do. You can also build on top of existing frameworks and create
functionalities that don't exist. The following are some simulation framework
packages that I think are worth mentioning:

• INET: This is used throughout this book and allows simulations to include
protocols such as the following:

 ° IP
 ° IPv6
 ° TCP
 ° UDP

• HTTP Tools: This allows you to simulate web browsers and web servers and
uses StandardHost from INET.

• EBitSim: This allows you to create BitTorrent simulations. EBitSim makes
use of the INET framework, and boasts of the capability of simulating
1000 nodes.

• VoIPTool for INET: This allows you to simulate the VoIP traffic and makes
use of the INET framework.

A full list of frameworks can be found on the OMNeT++ website at
http://www.omnetpp.org/models/catalog.

These framework packages can be used alongside each other to create extremely
detailed and purposeful network simulations. There really is no need for you to
reinvent the wheel with OMNeT++. With the power of online communities and the
open source nature of OMNeT++, just about every type of network you will want to
simulate can be built up from modules that other people have already made. In this
way, OMNeT++ grows very organically and gets much better over time.

Chapter 3

[35]

Google Earth demo
OMNeT++ 4.2.2 comes with a brilliant Google Earth demonstration. I'm including
this to show what OMNeT++ is capable of and how many things it can be used for.
The following is what the simulation produces when executed:

Not only do we see the cars moving around in the map, but we also see the output
in another window that gives details on exactly what we are looking at in the
simulation. All simulations will act in this manner.

OMNeT++ Simulations

[36]

The following is the other window that the simulation gives you:

We can use this to control the speed of the simulation as well as read the output
that the simulation may give. We can also hone in to specific components by
double-clicking on them. If I double-click on timeStep under car[0], I am
presented with the following screen:

Chapter 3

[37]

The special feature of this demo is its ability to also run on a Google Earth plugin
that is available on most popular browsers. When we select Fast as the speed for
the network, we can open our browser and go to http://localhost:4242.

This following is what we now see:

We see the cars moving across the map in real time. All the code can be found in the
samples/google-earth folder in the OMNeT++ root directory.

INET in detail
The reason I am focusing on INET in this book is because many of the available
simulation framework packages require INET to work. INET is a brilliant backbone
to create your own frameworks from and is a great way of really getting to grips
with OMNeT++!

INET has been brilliantly documented and is available online for free at
http://inet.omnetpp.org/doc/INET/neddoc/index.html.

The reference will give you a detailed look at the various components and
capabilities included in INET.

OMNeT++ Simulations

[38]

Example INET simulations
With INET built inside your OMNeT++ IDE, navigate to the examples folder in
the Project Explorer pane. To run an example simulation in Linux, perform the
following steps:

1. Locate the folder that INET has been built in and open the examples folder.
2. Now double-click on run-demo and select Run in Terminal.
3. Now you will see an interface that can be used to navigate and launch

different simulation examples. Please do spend a bit of time getting familiar
with these examples and remember that you can adapt these to create your
own simulations. It will also be a good idea to read the About... page.

4. Let's now select an example by clicking on the left of the window. I'm going
to select ARP Test. To launch the simulation, I will click on the Launch ARP
Test button, as seen in the following screenshot:

Chapter 3

[39]

5. When you see the following dialog box, just click on OK to proceed.
What this dialog is asking is for you to select the configuration to
use for this simulation that will be defined by the configuration
omnetpp.ini file:

www.allitebooks.com

http://www.allitebooks.org

OMNeT++ Simulations

[40]

The configuration for the preceding simulation is as follows:

[General]
network = ARPTest
sim-time-limit = 500s
cpu-time-limit = 600s
total-stack = 2MiB
tkenv-plugin-path = ../../../etc/plugins
#record-eventlog = true
#debug-on-errors = true

[ConfigARPTest]
tcp apps
**.client.numTcpApps = 1
**.client.tcpApp[*].typename = "TCPSessionApp"
**.client.tcpApp[*].active = true
**.client.tcpApp[*].localAddress = ""
**.client.tcpApp[*].localPort = -1
**.client.tcpApp[*].connectAddress = "server"
**.client.tcpApp[*].connectPort = 1000
**.client.tcpApp[*].tOpen = 1.0s
**.client.tcpApp[*].tSend = 1.1s
**.client.tcpApp[*].sendBytes = 1MiB
**.client.tcpApp[*].sendScript = ""
**.client.tcpApp[*].tClose = 0

#**.server.tcpApp[*].typename="TCPSinkApp"
**.server.numTcpApps = 1
**.server.tcpApp[*].typename = "TCPEchoApp"
**.server.tcpApp[0].localAddress = ""
**.server.tcpApp[0].localPort = 1000
**.server.tcpApp[0].echoFactor = 2.0
**.server.tcpApp[0].echoDelay = 0

Ethernet NIC configuration
**.eth[*].mac.duplexMode = true

Queues
**.ppp[*].queueType = "DropTailQueue"
**.ppp[*].queue.frameCapacity = 10
**.eth[*].queueType = "DropTailQueue"
**.eth[*].queue.dataQueue.frameCapacity = 10

Ethernet switch

Chapter 3

[41]

**.switch*.relayUnitType = "MACRelayUnitNP"
**.relayUnit.addressTableSize = 100
**.relayUnit.agingTime = 120s
**.relayUnit.bufferSize = 1MiB
**.relayUnit.highWatermark = 512KiB
**.relayUnit.pauseUnits = 300# pause for 300*512 bit (19200 byte) time
**.relayUnit.addressTableFile = ""
**.relayUnit.numCPUs = 2
**.relayUnit.processingTime = 2us

#**.mac[*].txrate = 0 # autoconfig
**.mac[*].duplexMode = true

In the first few lines of the preceding code snippet, you can see [ConfigARPTest].
If there were other configurations, you would be able to use the previous dialog box
to select them. This allows you to set up many different scenarios for the network
topology that you have created. [ConfigARPTest] is one scenario for the network
simulation. The second scenario could be called [ConfigARPTest alternative],
where different values are given to the parameters in the configuration.

You can now play with the example and explore the interface that it presents to give
you a greater insight into the simulation. When you click on RUN, the simulation
will start and will look like the following:

OMNeT++ Simulations

[42]

This gives us a very high-level look at what is going on. However, if we
double-click on one of the objects in this simulation, it will take you deeper
into what is happening. For example, if we click on the net router, we see the
components that make up that compound module and also what those modules
are currently doing, as shown in the following screenshot:

I recommend spending some time to modify the examples that come with INET
and also the ones that can be found in the samples folder of your OMNeT++
folder. I find that the easiest way to learn is just to get involved, play around,
explore the possibilities of what you can use all these functionalities for, and
most importantly, have fun!

Summary
By now, you must have understood the OMNeT++ simulations and the components
that make up the OMNeT++ environment.

Creating and Running
a Simulation

In this chapter, you will learn how to create your own network simulation and then
run it using OMNeT++. After going through the previous chapters, you should have
no problems understanding this chapter! You will learn the following topics:

• How to create the topology of your network using both the OMNeT++ IDE
and the NED language

• How to create multiple scenarios for your simulation using the same
network topology

• How to run and control the flow of your simulation

The OMNeT++ IDE
The OMNeT++ IDE provides you with the ideal environment to develop and run
your OMNeT++ simulations. Based on the popular and extremely versatile Java-
based Eclipse IDE platform, the OMNeT++ IDE is essentially a customized build
of Eclipse. What's great about this development environment of OMNeT++ is
that you're able to create network simulations without having to do any coding.
However, if you need some extra functionality in your simulation, the OMNeT++
IDE lets you go as deep into the code as you want.

Creating and Running a Simulation

[44]

If we open up the OMNeT++ IDE, we should see the INET project that we previously
set up. Using the Project Explorer on the left-hand side of the window, we can
navigate through all the files and folders inside that project.

If you click on the triangle just on the left of the src folder, you will see a number of
folders. These folders contain the source code that makes up the INET framework.
This source code gives you the perfect template if you wish to write your own
network protocols. The OMNeT++ IDE is also a fully-fledged development
environment for C++ coding. Click on the triangle just on the left of the applications
folder and then do the same for the dhcp folder. Now you'll see a listing of the source
code that makes up an INET module for the Dynamic Host Configuration Protocol,
as shown in the following screenshot:

Chapter 4

[45]

To take a look at the source code for this module, just double-click on the
DHCPClient.cc source file to open it. The OMNeT++ IDE provides really
good code indentation and great syntax coloring which makes reading and
writing code much easier.

The following is a snippet of the DHCPClient.cc file:

#include "DHCPClient.h"

#include "InterfaceTableAccess.h"
#include "IPv4InterfaceData.h"
#include "ModuleAccess.h"
#include "NotifierConsts.h"
#include "RoutingTableAccess.h"

Define_Module(DHCPClient);

DHCPClient::DHCPClient()
{

Creating and Running a Simulation

[46]

 timer_t1 = NULL;
 timer_t2 = NULL;
 timer_to = NULL;
 nb = NULL;
 ie = NULL;
 irt = NULL;
 lease = NULL;
}

DHCPClient::~DHCPClient()
{
 cancelTimer_T1();
 cancelTimer_T2();
 cancelTimer_TO();
}

The preceding code will make more sense as you continue through this chapter.
Note how DHCPClient is parsed into a method called Define_Module(). It must
be an OMNeT++ module!

Creating a new project
There are many different ways you can create a new project. In this section, we
will look at creating a completely empty but structured project, importing a project
(for example, a project from a Git repository), and then we'll look at a very technical
example project built in to OMNeT++ IDE that shows you how to program your
own modules.

Creating an empty project
To create an empty project, perform the following steps:

1. Open the OMNeT++ IDE.
2. Navigate to File | New | OMNeT++ Project... or click the down-facing

triangle on the New icon and select OMNeT++ Project....
3. Enter a name that you would like to give your new project and click

on Next >.
4. Select Empty project with 'src' and 'simulations' folders as shown in the

following screenshot:

Chapter 4

[47]

5. Finally, click on Finish to have your project created.

The Project Explorer window in the OMNeT++ IDE will now have the
following structure:

Creating and Running a Simulation

[48]

Importing a project
In Chapter 2, Installing OMNeT++, we imported INET into the OMNeT++ IDE so that
it could be added as a library for your simulations to use. To import other projects,
follow the same steps that you used to import the INET project.

Creating an example project
To create an empty project, perform the following steps:

1. Open the OMNeT++ IDE.
2. Navigate to File | New | OMNeT++ Project... or click the down-facing

triangle on the New icon and select OMNeT++ Project....
3. Enter a name that you would like to give your new project and click

on Next >.
4. Select the Tictoc example file in the Examples folder, as shown in the

following screenshot:

5. Finally, click on Finish to create the Tictoc example project.

Chapter 4

[49]

Let's first have a look at what we have understood already. In the newly created
project, navigate to the simulations folder in the Project Explorer window of the
OMNeT++ IDE and double-click on Tictoc.ned to open it.

You should see something similar to what we have discussed previously in this
book—this is the topology of a network called Tictoc. This network contains two
modules, tic and toc. The source code that you can see by clicking on the Source
tab next to the Design tab shows that this network topology is very basic:

package example.simulations;

import example.Txc;

//
// Two instances (tic and toc) of Txc connected.
//
network Tictoc
{
 submodules:
 tic: Txc;
 toc: Txc;
 connections:
 tic.out --> {delay = 100ms;} --> toc.in;
 tic.in <-- {delay = 100ms;} <-- toc.out;
}

We can see that tic and toc are submodules of Txc. The out gate of tic is connected
to the in gate of toc and vice versa.

Creating and Running a Simulation

[50]

In the src folder of this project, double-click on Txc.ned and click on the Source tab.
The following is a code snippet of the source:

package example;

//
// Immediately sends out any message it receives. It can optionally
generate
// a message at the beginning of the simulation, to bootstrap the
process.
//
simple Txc
{
 parameters:
 bool sendInitialMessage = default(false);
 gates:
 input in;
 output out;
}

This module contains one parameter, a Boolean value called sendInitialMessage,
which has been given the default value false. The module contains one input gate
called in, and one output gate called out. We can see these gates used in the Tictoc
network topology as shown in the following line of code:

tic.out --> {delay = 100ms;} --> toc.in;

This example project, however, does not use a library like INET. In fact, this
example has its own source code that defines the Txc module. In the Project
Explorer, navigate to the src folder under the example project and double-click
on the Txc.cc C++ source file. You will see the following source code:

#include "Txc.h"

namespace example {

Define_Module(Txc);

void Txc::initialize()
{
 if (par("sendInitialMessage").boolValue())
 {
 cMessage *msg = new cMessage("tictocMsg");

Chapter 4

[51]

 send(msg, ""out"");
 }
}
void Txc::handleMessage(cMessage *msg)
{
 // just send back the message we received
 send(msg, "out"");
}

}; // namespace

You can see that an OMNeT++ module is defined:

Define_Module(Txc);

This module has two methods: initialize and handleMessage(cMessage *msg).
The initialize method does a check on the sendInitialMessage parameter to
see if it equals true. This parameter was defined in the Txc module's NED file
as follows:

parameters:
 bool sendInitialMessage = default(false);

So we can see that by default, the value of sendInitialMessage is set to false. The
omnetpp.ini configuration file can be used to set the value of sendInitialMessage
to true. This is shown in the following code snippet:

[General]
network = Tictoc
cpu-time-limit = 60s
#debug-on-errors = true

**.tic.sendInitialMessage = true

This tells us that the submodule tic of the Txc module will send the initial message
when the simulation is started.

In the initialize method, if the sendInitialMessage variable is equal to true,
the following message is sent from the out gate:

if (par(""sendInitialMessage").boolValue())
 {
 cMessage *msg = new cMessage(""tictocMsg");
 send(msg, "out"");
 }

Creating and Running a Simulation

[52]

The network topology for this simulation tells us that the message is sent between
the two submodules tic and out. A message is sent from the out gate of tic to the
in gate of toc. But what happens when toc receives this message? Like in every
defined OMNeT++ module, there must be a handleMessage method. This method
gets called within the module once it has received a message during the simulation
runtime as follows:

void Txc::handleMessage(cMessage *msg)
{
 // just send back the message we received
 send(msg, "out");
}

This method takes the message that it received and sends it as a message from the
module's out gate as the network topology tells us:

tic.out --> {delay = 100ms;} --> toc.in;
tic.in <-- {delay = 100ms;} <-- toc.out;

We can see that the tic and the toc node will constantly send a message back
and forth as both the modules' out gates are connected to the other node's in gate,
thus causing an infinite send and receive between the two nodes as shown in the
following screenshot:

Chapter 4

[53]

Let's now change the messages that go back and forth in order to say something else.
Let's make tic say "Hello" and then toc reply with "Hello back!".

Let's first modify the initialize() method of Txc.cc to:

void Txc::initialize()
{
 if (par("sendInitialMessage").boolValue())
 {
 cMessage *msg = new cMessage("Hello");
 send(msg, "out");
 }
}

All I've done is changed the variable msg to store the string Hello instead of
tictocMsg. That was simple enough, and now let's change the handleMessage()
method to the following:

void Txc::handleMessage(cMessage *msg)
{
 if (strcmp("tic", getName()) == 0) {
 msg = new cMessage("Hello");
 } else {
 msg = new cMessage("Hello back!");
 }
 send(msg, "out");
}

The If statement checks to see if the message id value sent from a node is even
or odd. If the id value is even, the message sent out is Hello, otherwise it's Hello
back!. Let's look at a snippet from the output of the simulation log:

** Event #2 T=0.2 Tictoc.tic (Txc, id=2), on 'Hello' (cMessage, id=1)

** Event #3 T=0.3 Tictoc.toc (Txc, id=3), on '{Hello back!}' (cMessage,
id=2)

** Event #4 T=0.4 Tictoc.tic (Txc, id=2), on 'Hello' (cMessage, id=3)

** Event #5 T=0.5 Tictoc.toc (Txc, id=3), on '{Hello back!}' (cMessage,
id=4)

** Event #6 T=0.6 Tictoc.tic (Txc, id=2), on 'Hello' (cMessage, id=5)

** Event #7 T=0.7 Tictoc.toc (Txc, id=3), on '{Hello back!}' (cMessage,
id=6)

** Event #8 T=0.8 Tictoc.tic (Txc, id=2), on 'Hello' (cMessage, id=7)

** Event #9 T=0.9 Tictoc.toc (Txc, id=3), on '{Hello back!}' (cMessage,
id=8)

** Event #10 T=1 Tictoc.tic (Txc, id=2), on 'Hello' (cMessage, id=9)

Creating and Running a Simulation

[54]

This shows us that the modification to the Txc node class was successful. This also
shows us how we can use the simulation output log as a way to debug our network
simulation. The simulation log appears when you start your network simulation
environment. The following is what it looks like:

Switching to another workspace
When organizing your simulation projects, you may want to be extra neat and tidy
and use different workspaces too. A workspace is a directory on your filesystem
that is used to store project directories and all the files therein. So, you may want a
workspace titled Torrent Simulations, for example, which you could use to hold all
of your simulations that make use of torrent clients and P2P networks.

It's the directory that stores all of my current projects including INET, which is used
as a library by other projects, in the same workspace. To create a new workspace to
switch to, navigate to File | Switch Workspace | Other inside of OMNeT++ IDE
as follows:

Chapter 4

[55]

Click on the Browse button. Now you can browse your filesystem and create
a new folder to select as your workspace. In Ubuntu, simply click on the Create
Folder button, enter the workspace name, press Enter, and click on OK in the
Select Workspace Directory window and then click on OK again in the
Workspace Launcher window.

The OMNeT++ IDE will restart and you'll see what looks like a fresh installation.

Hello World network simulation
Now that you know how to create a new project inside OMNeT++, let's make a
simulation from scratch. We will use the INET framework to save time and to get the
simulation up and running as quickly as possible. To continue, you must first include
INET as explained earlier.

What this simulation will do
This simulation will be simple, yet accurate. The simulation will contain five
computers, all talking to a server via a router.

Creating and Running a Simulation

[56]

Defining your network
Start by creating an empty project with the src and simulations folders. I'm calling
my simulation HelloWorld. With your new project open, the first step should be to
create your network.

1. Navigate to the simulations folder and open package.ned. Now click on
Network under Types in the Palette explorer and then click to the left on the
opened Design tab. Alternatively, you could just start using the Source tab
and add:
network Network
{

}

If the following is what you see in the Design tab, it means that you've done
it correctly:

Chapter 4

[57]

2. Now, open the omnetpp.ini file under the simulations folder. The first thing
to do is select the network to simulate. The network I just created is simply
called Network and the package it belongs to is helloworld.simulations.
With omnetpp.ini opened in the Form tab, select General from the left-hand
side. Here you can select the network that you wish to simulate. Mine looks
like the following:

3. If you're not sure what to enter for Network to simulate:, just check
the package.ned source and look at the first line. The first line of my
package.ned source looks like the following:
package helloworld.simulations;

4. You can also clear the Network to simulate: textbox, tap Ctrl + Space bar
and a list of available networks to select will appear.
Alternatively, you can do this by just using the Source tab instead of the
Form view. As the network has already been selected, select the Source
tab, and the following is what you will see:

[General]
network = helloworld.simulations.Network

5. Let's now add the following four nodes to the network: a client, a server,
a router, and a server. Going back to the Design view of your network
topology, search for the following components from the Palette and add
them to the network:

 ° StandardHost x 2
 ° A router
 ° FlatNetworkConfigurator

Creating and Running a Simulation

[58]

The purpose of the FlatNetworkConfigurator submodule is to configure
IPv4 addresses for the nodes to make up a "flat" network. The two
StandardHost submodules will act as a client and server respectively.
I've renamed the StandardHost submodules accordingly. The following
is what your network topology should look like:

6. If you look at the source for this topology, you will see that I've decided to
use Ethernet connections between these components. This suggests that the
network is a LAN, as shown in the following code snippet:
package helloworld.simulations;

import inet.examples.httptools.socket.tenserverssocket.
ethernetline;
import inet.networklayer.autorouting.ipv4.FlatNetworkConfigurator;
import inet.nodes.inet.Router;
import inet.nodes.inet.StandardHost;

@license(LGPL);
//
// TODO documentation
//
network Network
{
 @display("bgb=575,253");
 submodules:
 Client: StandardHost {

Chapter 4

[59]

 @display("p=130,117");
 }
 router: Router {
 @display("p=295,99");
 }
 Server: StandardHost {
 @display("p=455,117");
 }
 flatNetworkConfigurator: FlatNetworkConfigurator {
 @display("p=447,36");
 }
 connections:
 Client.ethg++ <--> router.ethg++;
 router.ethg++ <--> Server.ethg++;
}

7. Remember not to pay too much attention to the @display() tags as they just
indicate where I have placed those submodules in the Network component.
Note that the following license declaration is added in the code:
@license(LGPL);

Lesser General Public License (LGPL) means that the code is allowed to be
copied and distributed, but changing it is not allowed. This license is added
by default and can simply be removed or changed if you wish. I've kept it
purely for the sake of this guide.

8. Now let's get the nodes of this network talking to each other. In order to do
this, we must create configurations for the submodules in the omnetpp.ini
file. This basic configuration will get the simulation running smoothly:
[General]
network = helloworld.simulations.Network

**.Client.numTcpApps = 1
**.Client.tcpApp[0].typename = "TCPBasicClientApp"
**.Client.tcpApp[0].connectAddress = "Server"
**.Client.tcpApp[0].connectPort = 80
**.Client.tcpApp[0].thinkTime = 0s
**.Client.tcpApp[0].idleInterval = 0s

**.Server.numTcpApps = 1
**.Server.tcpApp[0].typename = "TCPEchoApp"
**.Server.tcpApp[0].localPort = 80

**.ppp[*].queueType = "DropTailQueue"
**.ppp[*].queue.frameCapacity = 10

Creating and Running a Simulation

[60]

9. This code is reasonably pragmatic, and you can see that the client is a
basic TCP client application that talks to the server, which is a TCP echo
application listening on port 80. The last two lines configure the network
interface cards in the network.

10. You will now be able to run this simulation. You can use the same method
that you learnt earlier. The following is what you will see when running
the network:

11. You will see that everything is running as we configured it in the omnetpp.
ini file. Let's now add four other client nodes to the Network topology. This
is as easy as adding the first client node; simply add them from the Palette
and name them accordingly. The Network topology should now look like
the following:

Chapter 4

[61]

The source for this new network topology is as follows:

package helloworld.simulations;

import inet.examples.httptools.socket.tenserverssocket.
ethernetline;
import inet.networklayer.autorouting.ipv4.FlatNetworkConfigurator;
import inet.nodes.inet.Router;
import inet.nodes.inet.StandardHost;

@license(LGPL);
//
// TODO documentation
//
network Network
{
 @display("bgb=662,311");
 submodules:

Creating and Running a Simulation

[62]

 Client1: StandardHost {
 @display("p=49,265");
 }
 router: Router {
 @display("p=306,151");
 }
 Server: StandardHost {
 @display("p=306,51");
 }
 flatNetworkConfigurator: FlatNetworkConfigurator {
 @display("p=530,82");
 }
 Client2: StandardHost {
 @display("p=184,265");
 }
 Client3: StandardHost {
 @display("p=319,265");
 }
 Client4: StandardHost {
 @display("p=416,265");
 }
 Client5: StandardHost {
 @display("p=530,265");
 }
 connections:
 Client1.ethg++ <--> ethernetline <--> router.ethg++;
 Client2.ethg++ <--> ethernetline <--> router.ethg++;
 Client3.ethg++ <--> ethernetline <--> router.ethg++;
 Client4.ethg++ <--> ethernetline <--> router.ethg++;
 Client5.ethg++ <--> ethernetline <--> router.ethg++;
 router.ethg++ <--> ethernetline <--> Server.ethg++;
}

This will be a good time to introduce the method of using arrays to organize
similar nodes better; for example, there are five clients that all share the same
parameters and are of the same submodule type.
Let's first add a parameters section to our code and add an integer variable
just below the instance where the network is first declared, as shown in the
following code snippet:
network Network
{
 parameters:
 int n;

Chapter 4

[63]

This variable will store the number of clients on the network. This is done by
removing all five of the client definitions from the source code and replacing
it with only one as follows:

Client[n]: StandardHost {
}

12. The code is now much tidier and easier to read. Tidy code will make larger
projects much easier to manage. The last thing that needs to be changed is
in the connections section; first delete all the lines in that section that start
with Client. Now write the following in the connections section:
for i=0..n-1 {
 Client[i].ethg++ <--> ethernetline <--> router.ethg++;
}

The following is the updated Network topology source code:

package helloworld.simulations;

import inet.examples.httptools.socket.tenserverssocket.
ethernetline;
import inet.networklayer.autorouting.ipv4.FlatNetworkConfigurator;
import inet.nodes.inet.Router;
import inet.nodes.inet.StandardHost;

@license(LGPL);
//
// TODO documentation
//
network Network
{
 parameters:
 int n;
 @display("bgb=662,311");
 submodules:
 Client[n]: StandardHost {
 }
 router: Router {
 @display("p=306,151");
 }
 Server: StandardHost {
 @display("p=306,51");
 }

Creating and Running a Simulation

[64]

 flatNetworkConfigurator: FlatNetworkConfigurator {
 @display("p=530,82");
 }

 connections:
 for i=0..n-1 {
 Client[i].ethg++ <--> ethernetline <--> router.ethg++;
 }
 router.ethg++ <--> ethernetline <--> Server.ethg++;
}

13. Now add the following line anywhere in the omnetpp.ini file:
*.n = 5

This sets the number of client nodes to 5. When you run the simulation again,
the following is what you'll see:

Chapter 4

[65]

14. You can now set any number of client nodes you wish and try out different
values to see what's possible. The following is what the network looks like
with the value of n set to 200:

This looks overwhelming; however, it still runs and the simulation's output
log still gives the same insight into the simulation. Note that with this many
nodes in the simulation, it will take much longer to run, depending on the
processor speed you have available.

15. The following is the code of an INET example Network topology which also
makes use of arrays:

package inet.examples.inet.nclients;

import inet.networklayer.autorouting.ipv4.IPv4NetworkConfigurator;
import inet.nodes.inet.Router;
import inet.nodes.inet.StandardHost;

Creating and Running a Simulation

[66]

import ned.DatarateChannel;

network NClients2
{
 parameters:
 int numRouters;
 int hostsPerRouter;
 types:
 channel ethernetline2 extends DatarateChannel
 {
 delay = 0.1us;
 datarate = 100Mbps;
 }
 channel gigabitline2 extends DatarateChannel
 {
 delay = 0.1us;
 datarate = 1Gbps;
 }
 submodules:
 configurator: IPv4NetworkConfigurator;
 r[numRouters]: Router;
 cli[numRouters*hostsPerRouter]: StandardHost {
 parameters:
 @display("i=device/laptop_vs");
 }
 srv: StandardHost {
 parameters:
 @display("i=device/server_l");
 }
 connections:
 for i=0..numRouters-1, for j=0..hostsPerRouter-1 {
 cli[i*hostsPerRouter+j].pppg++ <--> ethernetline2 <-->
r[i].pppg++;
 }
 for i=0..numRouters-2 {
 r[i].pppg++ <--> gigabitline2 <--> r[i+1].pppg++;
 }
 r[numRouters-1].pppg++ <--> ethernetline2 <--> srv.pppg++;
}

The preceding code can be found at inet/examples/inet/nclients/
NClients2.ned.

Chapter 4

[67]

Creating multiple scenarios
At the moment, the simulation that we have just created only uses one configuration;
this is the one under General in the omnetpp.ini file. Let's add two scenarios that
the simulation can use. Scenario 1 will have five client nodes, whereas scenario 2 will
have ten client nodes. The following is what the updated omnetpp.ini file looks like:

[Config Scenario_One]

*.n = 5

[Config Scenario_Two]

*.n = 10

[General]
network = helloworld.simulations.Network

**.Client*.numTcpApps = 1
**.Client*.tcpApp[0].typename = "TCPBasicClientApp"
**.Client*.tcpApp[0].connectAddress = "Server"
**.Client*.tcpApp[0].connectPort = 80
**.Client*.tcpApp[0].thinkTime = 0s
**.Client*.tcpApp[0].idleInterval = 0s

**.Server.numTcpApps = 1
**.Server.tcpApp[0].typename = "TCPEchoApp"
**.Server.tcpApp[0].localPort = 80

**.ppp[*].queueType = "DropTailQueue"
**.ppp[*].queue.frameCapacity = 10

When you try to run your simulation now, you will be presented with a new dialog
box asking you which configuration to select to run:

Click the OK button to continue to your simulation.

Creating and Running a Simulation

[68]

Let's now look at a more sophisticated example of using multiple scenarios:

[Config inet__inet]
description = "inet_TCP <---> inet_TCP"
setting TCP stack implementation
**.srv*.tcpType = "TCP"
**.cli*.tcpType = "TCP"
#**.srv.numPcapRecorders = 1
#**.srv.pcapRecorder[0].pcapFile = "results/inet_srv.pcap"

[Config lwip__lwip]
description = "TCP_lwIP <---> TCP_lwIP"
setting TCP stack implementation
**.srv*.tcpType = "TCP_lwIP"
**.cli*.tcpType = "TCP_lwIP"
#**.srv.numPcapRecorders = 1
#**.srv.pcapRecorder[0].pcapFile = "results/lwip_srv.pcap"

[Config lwip__inet]
description = "TCP_lwIP <---> inet_TCP"
setting TCP stack implementation
**.srv*.tcpType = "TCP_lwIP"
**.cli*.tcpType = "TCP"

[Config inet__lwip]
description = "inet_TCP <---> TCP_lwIP"
setting TCP stack implementation
**.srv*.tcpType = "TCP"
**.cli*.tcpType = "TCP_lwIP"

[General]
network = NClients
#debug-on-errors = true
tkenv-plugin-path = ../../../etc/plugins

sim-time-limit = 1000000s

number of client computers
*.n = 4

tcp apps
**.cli[*].numTcpApps = 1
**.cli[*].tcpApp[*].typename = "TelnetApp"

Chapter 4

[69]

**.cli[*].tcpApp[0].localAddress = ""
**.cli[*].tcpApp[0].localPort = -1
**.cli[*].tcpApp[0].connectAddress = "srv"
**.cli[*].tcpApp[0].connectPort = 1000

**.cli[*].tcpApp[0].startTime = exponential(5s)
**.cli[*].tcpApp[0].numCommands = exponential(10)
**.cli[*].tcpApp[0].commandLength = exponential(10B)
**.cli[*].tcpApp[0].keyPressDelay = exponential(0.1s)
**.cli[*].tcpApp[0].commandOutputLength = exponential(40B)
**.cli[*].tcpApp[0].thinkTime = truncnormal(2s,3s)
**.cli[*].tcpApp[0].idleInterval = truncnormal(3600s,1200s)
**.cli[*].tcpApp[0].reconnectInterval = 30s
**.cli[*].tcpApp[0].dataTransferMode = "object"

**.srv.numTcpApps = 1
**.srv.tcpApp[*].typename = "TCPGenericSrvApp"
**.srv.tcpApp[0].localAddress = ""
**.srv.tcpApp[0].localPort = 1000
**.srv.tcpApp[0].replyDelay = 0

NIC configuration
**.ppp[*].queueType = "DropTailQueue" # in routers
**.ppp[*].queue.frameCapacity = 10 # in routers

turn on throughput stat
**.channel.throughput.result-recording-modes=+last

The preceding code can be found at inet/examples/inet/nclients/omnetpp.ini.

Controlling the flow of your simulation
There are different ways to control the flow of your simulation inside the simulation
environment using the following toolbar:

From left to right, the displayed buttons perform the following:

1. Run Until next event in the module.
2. Fast Run install the next event in the module.
3. Run.

Creating and Running a Simulation

[70]

4. Select Run, Fast Run, Express Run, or Run Until.
5. Stop.

The following is a screenshot of a network simulation to remind you where this
toolbar can be found:

The following table describes the flow types available when running a
network simulation:

Flow Type Description
Run This runs the simulation normally, allowing you to

visualize what is happening.
Fast Run This runs the simulation much faster, doing 1000 events or

more every other second.
Express Run This runs the simulation at top speed, doing 100,000 events

or more every other second.
Run Until This allows you to run the simulation to a certain time or

event in the simulation.

Chapter 4

[71]

Selecting Run Until will display the following dialog box to tell the simulation when
to stop:

Summary
We have now covered everything set out in this chapter. You should now know how
to create OMNeT++ projects using the OMNeT++ IDE. This chapter has also shown
you how to modify an example project to create your own network simulation. We
have now covered how to create network topologies using the NED language and
also graphically using the OMNeT++ IDE, as well as using arrays to allow for easy
scalability of any network simulation. You should also now know how to configure
multiple scenarios for your network simulation and then control its flow using the
OMNeT++ IDE.

Learning from Your
Simulations

The main reason to simulate a network is to try and gain some insight into exactly
what a network design will yield without having to first create that simulation in the
real world. Creating and running your simulation isn't enough to achieve this; you
must also gather data from your simulations and create meaningful visualizations.
These visualizations may show a breaking point in your design, a particular pattern,
inefficiency, or anything else that suggests bad designing.

Gathering useful information
Gathering data from your network simulation is not a difficult task to do using
OMNeT++. OMNeT++ is able to gather vector and scalar data and also create
realistic packet capture files. To enable your simulation to gather data, you must
include the following extra line in the simulation's configuration omnetpp.ini file:

record-eventlog = true

Learning from Your Simulations

[74]

Now when you run your simulation, you'll see a folder titled Results appear in the
same folder where the omnetpp.ini folder is as shown in the following screenshot:

This folder is created because the record-eventlog is set to true.

Inside this new folder, you'll see four new files and the names of these files will
depend on the configuration you choose for your simulation. I chose a configuration
called Scenario_One; therefore the four files are named as follows:

File Name Description
Scenario_One-0.elog This file is the event log of the simulation.
Scenario_One-0.sca This file stores scalar data that was recorded

during the simulation.
Scenario_one-0.vec This file stores vector data that was recorded

during the simulation.
Scenario_One-0.vci This is an index file for the vector file generated.

This index file allows the vector file to be accessed
much faster.

Let's have a look at the event log file that was generated from running the Hello
World example where Scenario_One was selected as the configuration. To open this
file in Project Explorer, I double-clicked on the file. This is what the file looks like
when opened inside OMNeT++:

Chapter 5

[75]

This file shows us a breakdown of every event that has occurred during the
simulation. By clicking on one of the red circles in the upper part of the file, we can
see a detailed list of what is happening in that particular event. I clicked on the event
#12 (click the red circle) as shown in the following screenshot:

I was then taken to the event in the Event Log tab:

So from this detailed list, we can see that a message is sent as an SYN packet to the IP
address 192.168.0.7.

Learning from Your Simulations

[76]

You can also navigate to the event log by right-clicking inside the diagram view and
then navigating to Go To | Go to Event. You will see the following dialog box:

Now just type the event number you'd like to go to, then click on the OK button,
and it will navigate to that event. Similarly, you can right-click inside the diagram
view and navigate to Go To | Go to Simulation Time... if you wish to navigate to a
particular time in the simulation instead of a particular event. If you know that your
network starts behaving strangely at a certain time in the simulation, this feature is
very useful in order to see exactly what is happening at that time and which events
are occurring.

The other files generated are the scalar and vector data files, which allow us to create
insightful data visualizations. When you double-click to open one of these files, you
will see the following screenshot:

Chapter 5

[77]

This dialog asks you to create an analysis file. To use the vector and scalar data files,
you must first create an analysis file which will use all the available vector and
scalar files.

Click on the Finish button for OMNeT++ to create the analysis file for you.
OMNeT++ will now open the analysis file and you will see the following screen:

Click on the Browse Data tab at the bottom and then click on the Histograms tab at
the top. Now you will see a list of histograms displayed as follows:

Learning from Your Simulations

[78]

After clicking on queueingTime named dataset, I can right-click on it and then click
on Plot which would show me the following screenshot:

We can see how the amount in the Server queue changes over time.

Visualizing gathered data
In this section, I will be using the data recorded from running the Hello World
simulation. Follow the steps from the previous section to create the event log,
and the vector, scalar, and analysis files.

OMNeT++ allows you to create many different visualizations from your networks.
They are defined in the sections that follow.

Vector charts
This chart shows the relationship between two or more datasets. This includes the
histogram which you have seen earlier. With the analysis file for the network open,
open the Vectors tab. In the location module filter, click on the downward arrow of the
combo box, and then click on *.queue to filter in only modules that use a queue. Now
highlight any number of rows, right-click on the highlighted part, and now click on
Plot. This is the output I see once I have zoomed in on a particular part of a chart:

Chapter 5

[79]

This output shows us the various queues I selected and how they rise and fall
over time.

Scalar charts
Repeat what you have done in the previous section, but select only the scalar data
that you can find inside the Scalars tab next to the Vectors tab. This will produce
bar charts and histograms.

Analysis of the Tictoc example project
Let's use the event log to have a detailed look into the Tictoc example that we
created earlier. First, modify the configuration file to contain the following new line:

record-eventlog = true

Learning from Your Simulations

[80]

Run the simulation until at least 20-30 events have occurred. Now navigate to the
Results folder and open the .elog file. You will see the following screenshot:

This is a very clear overview of the simulation that was run. You can see the time
that has passed for each event that has occurred at the bottom in yellow. The blue
lines show the messages going back and forth between the two lines named Tictoc.
tic, and Tictoc.toc. We can see that Tictoc.toc always sends the message Hello and
Tictoc.tic always sends the message Hello back!. When we click on an event, for
example on #7, we see the following in the Event Log tab:

Chapter 5

[81]

Inside the event #7, we can see a breakdown of what happens as follows:

1. Tictoc.toc receives a message Hello back! from Tictoc.tic.
2. Tictoc.toc creates a message Hello.
3. Tictoc.toc sends the message from its out gate with a delay of 0.1 seconds.
4. Tictoc.tic receives the message 0.1 seconds or 100 milliseconds after the

message was sent.

This is a very pragmatic approach to analyzing your network simulation and it gives
a breakdown of each event that occurs in great detail.

Let's now filter only the module tic in the following manner:

1. Right-click on the diagram view and go to Filter | Filter event log. You will
now see the following window:

Learning from Your Simulations

[82]

2. On the left of the window under Module filter, tick the by name
checkbox. Now select which module you wish to filter as shown
in the following screenshot:

3. Click on the OK button and now your event log will look like the
following screenshot:

Only the Tictoc.tic events are now shown in the event log. This makes managing
large amounts of data more easy as you can simply filter only what you want to see.

Chapter 5

[83]

Generating capture packet data
OMNeT++ lets you generate PCAP data. This file format (.pcap) is created by most
packet capture tools such as Wireshark. The about page on the Wireshark website
(found at www.wireshark.org) says the following:

"Wireshark is the world's foremost network protocol analyzer. It lets you capture
and interactively browse the traffic running on a computer network. It is the de facto
(and often de jure) standard across many industries and educational institutions."

When you use PCAP files to analyze your network, it will give you the same feel as
analyzing a real-life network.

To allow your Hello World simulation to generate PCAP files, you must modify
your configuration file by adding the following code:

**.numPcapRecorders = 1
**.Server.pcapRecorder[0].pcapFile = "results/server.pcap"

The second line of the preceding code refers to my node called Server. which means
that I want to generate only PCAP files for this node. This will give a result similar
to the result got by running Wireshark in real life on that server. After running the
simulation, there will now be a file called server.pcap in your Results folder.
I recommend you get Wireshark as the viewer for this output. Wireshark can be
downloaded from the Wireshark website at www.wireshark.org.

On opening the server.pcap file in Wireshark, we see the following screenshot:

Learning from Your Simulations

[84]

You may prefer to use Wireshark to analyze your network simulation as Wireshark
is an industry standard for analyzing real networks.

Summary
That is the end of this book. I hope that it has been enjoyable and that you've
learned about the power of using OMNeT++ as your choice for network
simulation frameworks.

Index
Symbols
@display() tags 59

A
Akaroa 14

C
capture packet data, Tictoc example project

generating 83
Channels object 27
components, OMNeT++ simulation

about 23
Channels 27
Compound Module 26
Module 24, 25
Network 23

Compound Module object 26
configuration file, OMNeT++ 31-33

D
data

gathering 73-75
visualizing 78

Define_Module() 46

E
EBitSim 34
example project

creating 48-53
example simulation, INET

running, on Linux 38-42

F
flow types, Hello World network simulation

express run 70
fast run 70
run 70
run until 70

G
Google Earth demo 35-37

H
handleMessage() method 53
Hello World network simulation

about 55
flow, controlling 69, 70
flow types 70
functioning 55
multiple scenarios, creating 67-69
network, defining 56-65

HTTP tools 34

I
INET

about 19, 34, 37
downloading 19
examples 38
importing, for preparing for next chapter

20, 21
URL 19, 37

initialize() method 53
installation

OMNeT++ 11

[86]

L
libpcap 15
Linux

OMNeT++, compiling 16
OMNeT++, installing 15, 17
OMNeT++, running 18
OMNeT++ source code, downloading 12

M
Module object 24, 25
MPI 13

N
NED

about 27, 28
Network component, defining 28
network topology 28
source code 29, 30

Network object 23, 24

O
Objective Modular Network Testbed in C++

(OMNeT++)
about 7
compiling, on Linux 16
compiling, on Windows 16
configuration file 31
data, gathering 73-78
downloading 11
example project, creating 48
Google Earth demo 35
Hello World network simulation 55
installing, on Linux 15
installing, on Windows 14, 15
pre-requisites 13
project, creating 46
releases 11
running 17
running, on Linux 18
running, on Windows 19
simulation frameworks 34
source code, downloading 11
URL 11

workspace, switching 54
OMNeT++ IDE 43-46
OMNeT++ network simulation 23
omnetpp 19
OMNeT++ simulation

about 23
components 23

P
PCAP 13
pre-requisites, OMNeT++

about 13
Akaroa 14
MPI 13
PCAP 13

project
creating 46
empty project, creating 46, 47
importing 48

R
real network

versus, simulated network 8

S
scalar charts 79
sendInitialMessage parameter 51
simulation

examples 8, 9
need for 8
uses, for airport 9
uses, under crowd management 9
uses, under manufacturing 9
uses, under weather forecasting 9

simulation frameworks
about 34
EBitSim 34
HTTP Tools 34
INET 34
VoIPTool for INET 34

source code, OMNeT++
downloading 11
downloading, for Linux 12, 13
downloading, for Windows 12

[87]

T
Tictoc 49
Tictoc example project

about 79
analysis 79-82
capture packet data, generating 83, 84

Txc module 50

V
vector charts 78
visualizations

creating 78
scalar charts 79
vector charts 78

Visual Studio Express, for Windows
URL 14

VoIPTool 34

W
Windows

OMNeT++, compiling 16
OMNeT++, installing 14-16
OMNeT++, running 19
OMNeT++ source code, downloading 12

WinPcap 15
workspace 54, 55

Thank you for buying
Learning OMNeT++

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.allitebooks.com

http://www.allitebooks.org

Linux Shell Scripting Cookbook,
Second Edition
ISBN: 978-1-78216-274-2 Paperback: 384 pages

Over 110 practical recipes to solve real-world shell
problems, guaranteed to make you wonder how you
ever lived without them

1. Master the art of crafting one-liner command
sequence to perform text processing, digging
data from files, backups to sysadmin tools, and
a lot more

2. And if powerful text processing isn't enough,
see how to make your scripts interact with the
web-services such as Twitter, Gmail

3. Explores the possibilities with the shell in a
simple and elegant way—you will see how to
effectively solve problems in your day-to-day life

BackTrack 5 Cookbook
ISBN: 978-1-84951-738-6 Paperback: 308 pages

Over 80 recipes to execute many of the best known
and little known penetration testing aspects of
BackTrack 5

1. Learn to perform penetration tests with
BackTrack 5

2. Nearly 100 recipes designed to teach
penetration testing principles and build
knowledge of BackTrack 5 Tools

3. Provides detailed step-by-step instructions on
the usage of many of BackTrack's popular and
not-so popular tools

Please check www.PacktPub.com for information on our titles

CentOS 6 Linux Server Cookbook
ISBN: 978-1-84951-902-1 Paperback: 374 pages

A practical guide to installing, configuring, and
administering the CentOS community-based
enterprise server

1. Delivering comprehensive insight into
CentOS server with a series of starting
points that show you how to build, configure,
maintain, and deploy the latest edition of one
of the world's most popular community based
enterprise servers

2. Providing beginners and more experienced
individuals alike with the opportunity to
enhance their knowledge by delivering instant
access to a library of recipes that addresses all
aspects of CentOS server and put you in control

Web Penetration Testing with Kali
Linux
ISBN: 978-1-78216-316-9 Paperback: 350 pages

A practical guide to implementing penetration testing
strategies on websites, web application, and standard
web protocols with Kali Linux

1. Learn key reconnaissance concepts needed as a
penetration tester

2. Attack and exploit key features, authentication,
and sessions on web applications

3. Learn how to protect systems, write reports,
and sell web penetration testing services

Please check www.PacktPub.com for information on our titles

 ~StormRG~

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with OMNeT++
	What this book will cover
	What is OMNeT++?
	The need for simulation
	Examples of simulation in the industry
	What you will learn
	Summary

	Chapter 2: Installing OMNeT++
	Downloading OMNeT++ source code
	Windows
	Linux

	Prerequisites needed to compile OMNeT++ from the source
	Installing OMNeT++ on Windows
	Installing OMNeT++ on Linux
	Compiling and installing on Windows
	Compiling and installing on Linux

	Running OMNeT++ IDE for the first time
	Running OMNeT++ on Linux
	Running OMNeT++ on Windows

	Downloading INET
	Import INET to prepare for the next chapter

	Summary

	Chapter 3: OMNeT++ Simulations
	Beginner to expert, low to high level
	Components that make up OMNet++ simulations
	Network
	Module
	Compound Module
	Channels

	The NED Language
	OMNeT++ configuration file
	Simulation frameworks
	Google Earth demo

	INET in detail
	Example INET simulations

	Summary

	Chapter 4: Creating and Running a Simulation
	The OMNeT++ IDE
	Creating a new project
	Creating an empty project
	Importing a project

	Creating an example project
	Switching to another workspace
	Hello World network simulation
	What this simulation will do
	Defining your network

	Creating multiple scenarios
	Controlling the flow of your simulation

	Summary

	Chapter 5: Learning from your Simulations
	Gathering useful information
	Visualizing gathered data
	Vector Charts
	Scalar charts

	Analysis of the TicToc example project
	Generating capture packet data

	Summary

	Index

