
Adrian Kaehler & Gary Bradski

 Learning
 OpenCV 3
COMPUTER VISION IN C++ WITH THE OPENCV LIBRARY

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Adrian Kaehler and Gary Bradski

Learning OpenCV 3
Computer Vision in C++ with

the OpenCV Library

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-93799-0

[M]

Learning OpenCV 3
by Adrian Kaehler and Gary Bradski

Copyright © 2017 Adrian Kaehler, Gary Bradski. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://www.oreilly.com/safari). For more information, contact our corpo‐
rate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Dawn Schanafelt Indexer: Ellen Troutman
Production Editor: Kristen Brown Interior Designer: David Futato
Copyeditor: Rachel Monaghan Cover Designer: Karen Montgomery
Proofreader: James Fraleigh Illustrator: Rebecca Demarest

December 2016: First Edition

Revision History for the First Edition
2016-12-09: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491937990 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning OpenCV 3, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://www.oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491937990
http://www.allitebooks.org

Table of Contents

Preface. xv

1. Overview. 1
What Is OpenCV? 1
Who Uses OpenCV? 2
What Is Computer Vision? 3
The Origin of OpenCV 6

OpenCV Block Diagram 8
Speeding Up OpenCV with IPP 9
Who Owns OpenCV? 10

Downloading and Installing OpenCV 10
Installation 10

Getting the Latest OpenCV via Git 13
More OpenCV Documentation 13

Supplied Documentation 14
Online Documentation and the Wiki 14

OpenCV Contribution Repository 17
Downloading and Building Contributed Modules 17

Portability 18
Summary 19
Exercises 19

2. Introduction to OpenCV. 21
Include Files 21

Resources 22
First Program—Display a Picture 23
Second Program—Video 25
Moving Around 27

iii

www.allitebooks.com

http://www.allitebooks.org

A Simple Transformation 31
A Not-So-Simple Transformation 32
Input from a Camera 35
Writing to an AVI File 36
Summary 38
Exercises 38

3. Getting to Know OpenCV Data Types. 41
The Basics 41
OpenCV Data Types 41

Overview of the Basic Types 42
Basic Types: Getting Down to Details 44
Helper Objects 52
Utility Functions 60
The Template Structures 67

Summary 68
Exercises 69

4. Images and Large Array Types. 71
Dynamic and Variable Storage 71

The cv::Mat Class: N-Dimensional Dense Arrays 72
Creating an Array 73
Accessing Array Elements Individually 78
The N-ary Array Iterator: NAryMatIterator 81
Accessing Array Elements by Block 84
Matrix Expressions: Algebra and cv::Mat 85
Saturation Casting 87
More Things an Array Can Do 88
The cv::SparseMat Class: Sparse Arrays 89
Accessing Sparse Array Elements 90
Functions Unique to Sparse Arrays 92
Template Structures for Large Array Types 94

Summary 97
Exercises 97

5. Array Operations. 99
More Things You Can Do with Arrays 99

cv::abs() 102
cv::absdiff() 103
cv::add() 103
cv::addWeighted() 104
cv::bitwise_and() 106

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

cv::bitwise_not() 107
cv::bitwise_or() 107
cv::bitwise_xor() 108
cv::calcCovarMatrix() 108
cv::cartToPolar() 110
cv::checkRange() 111
cv::compare() 111
cv::completeSymm() 112
cv::convertScaleAbs() 112
cv::countNonZero() 113
cv::cvarrToMat() 113
cv::dct() 114
cv::dft() 115
cv::cvtColor() 117
cv::determinant() 119
cv::divide() 120
cv::eigen() 120
cv::exp() 121
cv::extractImageCOI() 121
cv::flip() 122
cv::gemm() 122
cv::getConvertElem() and cv::getConvertScaleElem() 123
cv::idct() 124
cv::idft() 124
cv::inRange() 124
cv::insertImageCOI() 125
cv::invert() 126
cv::log() 126
cv::LUT() 127
cv::magnitude() 127
cv::Mahalanobis() 128
cv::max() 129
cv::mean() 130
cv::meanStdDev() 130
cv::merge() 131
cv::min() 131
cv::minMaxIdx() 132
cv::minMaxLoc() 133
cv::mixChannels() 134
cv::mulSpectrums() 136
cv::multiply() 136
cv::mulTransposed() 136

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

cv::norm() 137
cv::normalize() 139
cv::perspectiveTransform() 140
cv::phase() 141
cv::polarToCart() 142
cv::pow() 142
cv::randu() 143
cv::randn() 143
cv::randShuffle() 144
cv::reduce() 144
cv::repeat() 145
cv::scaleAdd() 146
cv::setIdentity() 146
cv::solve() 147
cv::solveCubic() 148
cv::solvePoly() 149
cv::sort() 149
cv::sortIdx() 149
cv::split() 150
cv::sqrt() 150
cv::subtract() 152
cv::sum() 152
cv::trace() 152
cv::transform() 153
cv::transpose() 153

Summary 154
Exercises 154

6. Drawing and Annotating. 157
Drawing Things 157

Line Art and Filled Polygons 158
Fonts and Text 165

Summary 167
Exercises 167

7. Functors in OpenCV. 169
Objects That “Do Stuff” 169

Principal Component Analysis (cv::PCA) 169
Singular Value Decomposition (cv::SVD) 173
Random Number Generator (cv::RNG) 176

Summary 179
Exercises 180

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

8. Image, Video, and Data Files. 183
HighGUI: Portable Graphics Toolkit 183
Working with Image Files 185

Loading and Saving Images 185
A Note About Codecs 188
Compression and Decompression 188

Working with Video 189
Reading Video with the cv::VideoCapture Object 190
Writing Video with the cv::VideoWriter Object 196

Data Persistence 198
Writing to a cv::FileStorage 198
Reading from a cv::FileStorage 200
cv::FileNode 201

Summary 204
Exercises 204

9. Cross-Platform and Native Windows. 207
Working with Windows 207

HighGUI Native Graphical User Interface 208
Working with the Qt Backend 220
Integrating OpenCV with Full GUI Toolkits 232

Summary 247
Exercises 247

10. Filters and Convolution. 249
Overview 249
Before We Begin 249

Filters, Kernels, and Convolution 249
Border Extrapolation and Boundary Conditions 251

Threshold Operations 255
Otsu’s Algorithm 258
Adaptive Threshold 259

Smoothing 261
Simple Blur and the Box Filter 262
Median Filter 265
Gaussian Filter 266
Bilateral Filter 267

Derivatives and Gradients 269
The Sobel Derivative 269
Scharr Filter 272
The Laplacian 273

Image Morphology 275

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Dilation and Erosion 276
The General Morphology Function 281
Opening and Closing 281
Morphological Gradient 285
Top Hat and Black Hat 287
Making Your Own Kernel 289

Convolution with an Arbitrary Linear Filter 290
Applying a General Filter with cv::filter2D() 291
Applying a General Separable Filter with cv::sepFilter2D 292
Kernel Builders 292

Summary 294
Exercises 294

11. General Image Transforms. 299
Overview 299
Stretch, Shrink, Warp, and Rotate 299

Uniform Resize 300
Image Pyramids 302
Nonuniform Mappings 306
Affine Transformation 308
Perspective Transformation 313

General Remappings 316
Polar Mappings 317
LogPolar 318
Arbitrary Mappings 322

Image Repair 323
Inpainting 324
Denoising 325

Histogram Equalization 328
cv::equalizeHist(): Contrast equalization 331

Summary 331
Exercises 332

12. Image Analysis. 335
Overview 335
Discrete Fourier Transform 336

cv::dft(): The Discrete Fourier Transform 336
cv::idft(): The Inverse Discrete Fourier Transform 339
cv::mulSpectrums(): Spectrum Multiplication 339
Convolution Using Discrete Fourier Transforms 340
cv::dct(): The Discrete Cosine Transform 342
cv::idct(): The Inverse Discrete Cosine Transform 343

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Integral Images 343
cv::integral() for Standard Summation Integral 346
cv::integral() for Squared Summation Integral 346
cv::integral() for Tilted Summation Integral 346

The Canny Edge Detector 347
cv::Canny() 349

Hough Transforms 349
Hough Line Transform 349
Hough Circle Transform 354

Distance Transformation 358
cv::distanceTransform() for Unlabeled Distance Transform 359
cv::distanceTransform() for Labeled Distance Transform 360

Segmentation 360
Flood Fill 361
Watershed Algorithm 365
Grabcuts 366
Mean-Shift Segmentation 368

Summary 370
Exercises 371

13. Histograms and Templates. 373
Histogram Representation in OpenCV 376

cv::calcHist(): Creating a Histogram from Data 377
Basic Manipulations with Histograms 380

Histogram Normalization 380
Histogram Threshold 380
Finding the Most Populated Bin 380
Comparing Two Histograms 382
Histogram Usage Examples 385

Some More Sophisticated Histograms Methods 388
Earth Mover’s Distance 389
Back Projection 394

Template Matching 397
Square Difference Matching Method (cv::TM_SQDIFF) 399
Normalized Square Difference Matching Method

(cv::TM_SQDIFF_NORMED) 400
Correlation Matching Methods (cv::TM_CCORR) 400
Normalized Cross-Correlation Matching Method

(cv::TM_CCORR_NORMED) 400
Correlation Coefficient Matching Methods (cv::TM_CCOEFF) 400
Normalized Correlation Coefficient Matching Method

(cv::TM_CCOEFF_NORMED) 401

Table of Contents | ix

Summary 404
Exercises 404

14. Contours. 407
Contour Finding 407

Contour Hierarchies 408
Drawing Contours 413
A Contour Example 414
Another Contour Example 416
Fast Connected Component Analysis 417

More to Do with Contours 420
Polygon Approximations 420
Geometry and Summary Characteristics 421
Geometrical Tests 428

Matching Contours and Images 429
Moments 429
More About Moments 431
Matching and Hu Moments 435
Using Shape Context to Compare Shapes 436

Summary 441
Exercises 442

15. Background Subtraction. 445
Overview of Background Subtraction 445
Weaknesses of Background Subtraction 446
Scene Modeling 447

A Slice of Pixels 447
Frame Differencing 451

Averaging Background Method 452
Accumulating Means, Variances, and Covariances 458

A More Advanced Background Subtraction Method 467
Structures 470
Learning the Background 472
Learning with Moving Foreground Objects 474
Background Differencing: Finding Foreground Objects 475
Using the Codebook Background Model 477
A Few More Thoughts on Codebook Models 477

Connected Components for Foreground Cleanup 477
A Quick Test 481

Comparing Two Background Methods 483
OpenCV Background Subtraction Encapsulation 485

The cv::BackgroundSubtractor Base Class 485

x | Table of Contents

KaewTraKuPong and Bowden Method 486
Zivkovic Method 488

Summary 490
Exercises 491

16. Keypoints and Descriptors. 493
Keypoints and the Basics of Tracking 493

Corner Finding 494
Introduction to Optical Flow 498
Lucas-Kanade Method for Sparse Optical Flow 500

Generalized Keypoints and Descriptors 511
Optical Flow, Tracking, and Recognition 513
How OpenCV Handles Keypoints and Descriptors, the General Case 514
Core Keypoint Detection Methods 526
Keypoint Filtering 571
Matching Methods 573
Displaying Results 580

Summary 583
Exercises 584

17. Tracking. 587
Concepts in Tracking 587
Dense Optical Flow 588

The Farnebäck Polynomial Expansion Algorithm 589
The Dual TV-L1 Algorithm 592
The Simple Flow Algorithm 596

Mean-Shift and Camshift Tracking 600
Mean-Shift 601
Camshift 604

Motion Templates 605
Estimators 613

The Kalman Filter 615
A Brief Note on the Extended Kalman Filter 633

Summary 634
Exercises 634

18. Camera Models and Calibration. 637
Camera Model 638

The Basics of Projective Geometry 641
Rodrigues Transform 643
Lens Distortions 644

Calibration 648

Table of Contents | xi

Rotation Matrix and Translation Vector 650
Calibration Boards 652
Homography 660
Camera Calibration 665

Undistortion 677
Undistortion Maps 678
Converting Undistortion Maps Between Representations with

cv::convertMaps() 679
Computing Undistortion Maps with cv::initUndistortRectifyMap() 680
Undistorting an Image with cv::remap() 682
Undistortion with cv::undistort() 683
Sparse Undistortion with cv::undistortPoints() 683

Putting Calibration All Together 684
Summary 687
Exercises 688

19. Projection and Three-Dimensional Vision. 691
Projections 692
Affine and Perspective Transformations 694

Bird’s-Eye-View Transform Example 695
Three-Dimensional Pose Estimation 700

Pose Estimation from a Single Camera 700
Stereo Imaging 703

Triangulation 704
Epipolar Geometry 708
The Essential and Fundamental Matrices 710
Computing Epipolar Lines 720
Stereo Calibration 721
Stereo Rectification 726
Stereo Correspondence 737
Stereo Calibration, Rectification, and Correspondence Code Example 752
Depth Maps from Three-Dimensional Reprojection 759

Structure from Motion 761
Fitting Lines in Two and Three Dimensions 762
Summary 765
Exercises 766

20. The Basics of Machine Learning in OpenCV. 769
What Is Machine Learning? 770

Training and Test Sets 770
Supervised and Unsupervised Learning 771
Generative and Discriminative Models 773

xii | Table of Contents

OpenCV ML Algorithms 774
Using Machine Learning in Vision 776
Variable Importance 778
Diagnosing Machine Learning Problems 779

Legacy Routines in the ML Library 785
K-Means 786
Mahalanobis Distance 793

Summary 797
Exercises 797

21. StatModel: The Standard Model for Learning in OpenCV. 799
Common Routines in the ML Library 799

Training and the cv::ml::TrainData Structure 802
Prediction 809

Machine Learning Algorithms Using cv::StatModel 810
Naïve/Normal Bayes Classifier 810
Binary Decision Trees 816
Boosting 830
Random Trees 837
Expectation Maximization 842
K-Nearest Neighbors 846
Multilayer Perceptron 849
Support Vector Machine 859

Summary 870
Exercises 871

22. Object Detection. 875
Tree-Based Object Detection Techniques 875

Cascade Classifiers 876
Supervised Learning and Boosting Theory 879
Learning New Objects 888

Object Detection Using Support Vector Machines 897
Latent SVM for Object Detection 898
The Bag of Words Algorithm and Semantic Categorization 901

Summary 907
Exercises 907

23. Future of OpenCV. 909
Past and Present 909

OpenCV 3.x 910
How Well Did Our Predictions Go Last Time? 911
Future Functions 912

Table of Contents | xiii

Current GSoC Work 913
Community Contributions 915
OpenCV.org 916

Some AI Speculation 917
Afterword 920

A. Planar Subdivisions. 923

B. opencv_contrib. 939

C. Calibration Patterns. 943

Bibliography. 949

Index. 967

xiv | Table of Contents

Preface

This book provides a working guide to the C++ Open Source Computer Vision
Library (OpenCV) version 3.x and gives a general background on the field of com‐
puter vision sufficient to help readers use OpenCV effectively.

Purpose of This Book
Computer vision is a rapidly growing field largely because of four trends:

• The advent of mobile phones put millions of cameras in people’s hands.
• The Internet and search engines aggregated the resulting giant flows of image

and video data into huge databases.
• Computer processing power became a cheap commodity.
• Vision algorithms themselves became more mature (now with the advent of deep

neural networks, which OpenCV is increasingly supporting; see dnn at
opencv_contrib [opencv_contrib]).

OpenCV has played a role in the growth of computer vision by enabling hundreds of
thousands of people to do more productive work in vision. OpenCV 3.x now allows
students, researchers, professionals, and entrepreneurs to efficiently implement
projects and jump-start research by providing them with a coherent C++ computer
vision architecture that is optimized over many platforms.

The purpose of this book is to:

• Comprehensively document OpenCV by detailing what function calling conven‐
tions really mean and how to use them correctly

• Give the reader an intuitive understanding of how the vision algorithms work
• Give the reader some sense of what algorithm to use and when to use it

Preface | xv

https://github.com/opencv/opencv_contrib

• Give the reader a boost in implementing computer vision and machine learning
algorithms by providing many working code examples to start from

• Suggest ways to fix some of the more advanced routines when something goes
wrong

This book documents OpenCV in a way that allows the reader to rapidly do interest‐
ing and fun things in computer vision. It gives an intuitive understanding of how the
algorithms work, which serves to guide the reader in designing and debugging vision
applications and also makes the formal descriptions of computer vision and machine
learning algorithms in other texts easier to comprehend and remember.

Who This Book Is For
This book contains descriptions, working code examples, and explanations of the
C++ computer vision tools contained in the OpenCV 3.x library. Thus, it should be
helpful to many different kinds of users:

Professionals and entrepreneurs
For practicing professionals who need to rapidly prototype or professionally
implement computer vision systems, the sample code provides a quick frame‐
work with which to start. Our descriptions of the algorithms can quickly teach or
remind the reader how they work. OpenCV 3.x sits on top of a hardware acceler‐
ation layer (HAL) so that implemented algorithms can run efficiently, seamlessly
taking advantage of a variety of hardware platforms.

Students
This is the text we wish had back in school. The intuitive explanations, detailed
documentation, and sample code will allow you to boot up faster in computer
vision, work on more interesting class projects, and ultimately contribute new
research to the field.

Teachers
Computer vision is a fast-moving field. We’ve found it effective to have students
rapidly cover an accessible text while the instructor fills in formal exposition
where needed and supplements that with current papers or guest lectures from
experts. The students can meanwhile start class projects earlier and attempt more
ambitious tasks.

Hobbyists
Computer vision is fun—here’s how to hack it.

We have a strong focus on giving readers enough intuition, documentation, and
working code to enable rapid implementation of real-time vision applications.

xvi | Preface

1 Always with a warning to more casual users that they may skip such sections.

What This Book Is Not
This book is not a formal text. We do go into mathematical detail at various points,1

but it is all in the service of developing deeper intuitions behind the algorithms or to
clarify the implications of any assumptions built into those algorithms. We have not
attempted a formal mathematical exposition here and might even incur some wrath
along the way from those who do write formal expositions.

This book has more of an “applied” nature. It will certainly be of general help, but is
not aimed at any of the specialized niches in computer vision (e.g., medical imaging
or remote sensing analysis).

That said, we believe that by reading the explanations here first, a student will not
only learn the theory better, but remember it longer as well. Therefore, this book
would make a good adjunct text to a theoretical course and would be a great text for
an introductory or project-centric course.

About the Programs in This Book
All the program examples in this book are based on OpenCV version 3.x. The code
should work under Linux, Windows, and OS X. Using references online, OpenCV 3.x
has full support to run on Android and iOS. Source code for the examples in the
book can be fetched from this book’s website; source code for OpenCV is available on
GitHub; and prebuilt versions of OpenCV can be loaded from its SourceForge site.

OpenCV is under ongoing development, with official releases occurring quarterly. To
stay completely current, you should obtain your code updates from the aforemen‐
tioned GitHub site. OpenCV maintains a website at http://opencv.org; for developers,
there is a wiki at https://github.com/opencv/opencv/wiki.

Prerequisites
For the most part, readers need only know how to program in C++. Many of the
math sections in this book are optional and are labeled as such. The mathematics
involve simple algebra and basic matrix algebra, and assume some familiarity with
solution methods to least-squares optimization problems as well as some basic
knowledge of Gaussian distributions, Bayes’ law, and derivatives of simple functions.

The math in this book is in support of developing intuition for the algorithms. The
reader may skip the math and the algorithm descriptions, using only the function
definitions and code examples to get vision applications up and running.

Preface | xvii

http://bit.ly/learningOpenCV3
https://github.com/opencv/opencv
http://sourceforge.net/projects/opencvlibrary
http://opencv.org
https://github.com/opencv/opencv/wiki

How This Book Is Best Used
This text need not be read in order. It can serve as a kind of user manual: look up the
function when you need it, and read the function’s description if you want the gist of
how it works “under the hood.” However, the intent of this book is tutorial. It gives
you a basic understanding of computer vision along with details of how and when to
use selected algorithms.

This book is written to allow its use as an adjunct or primary textbook for an under‐
graduate or graduate course in computer vision. The basic strategy with this method
is for students to read the book for a rapid overview and then supplement that read‐
ing with more formal sections in other textbooks and with papers in the field. There
are exercises at the end of each chapter to help test the student’s knowledge and to
develop further intuitions.

You could approach this text in any of the following ways:

Grab bag
Go through Chapters 1–5 in the first sitting, and then just hit the appropriate
chapters or sections as you need them. This book does not have to be read in
sequence, except for Chapters 18 and 19 (which cover camera calibration and
stereo imaging) and Chapters 20, 21, and 22 (which cover machine learning).
Entrepreneurs and students doing project-based courses might go this way.

Good progress
Read just two chapters a week until you’ve covered Chapters 1–22 in 11 weeks
(Chapter 23 will go by in an instant). Start on projects and dive into details on
selected areas in the field, using additional texts and papers as appropriate.

The sprint
Cruise through the book as fast as your comprehension allows, covering Chap‐
ters 1–23. Then get started on projects and go into detail on selected areas in the
field using additional texts and papers. This is probably the choice for professio‐
nals, but it might also suit a more advanced computer vision course.

Chapter 20 is a brief chapter that gives general background on machine learning,
which is followed by Chapters 21 and 22, which give more details on the machine
learning algorithms implemented in OpenCV and how to use them. Of course,
machine learning is integral to object recognition and a big part of computer vision,
but it’s a field worthy of its own book. Professionals should find this text a suitable
launching point for further explorations of the literature—or for just getting down to
business with the code in that part of the library. The machine learning interface has
been substantially simplified and unified in OpenCV 3.x.

This is how we like to teach computer vision: sprint through the course content at a
level where the students get the gist of how things work; then get students started on

xviii | Preface

meaningful class projects while supplying depth and formal rigor in selected areas by
drawing from other texts or papers in the field. This same method works for quarter,
semester, or two-term classes. Students can get quickly up and running with a general
understanding of their vision task and working code to match. As they begin more
challenging and time-consuming projects, the instructor helps them develop and
debug complex systems.

For longer courses, the projects themselves can become instructional in terms of
project management. Build up working systems first; refine them with more knowl‐
edge, detail, and research later. The goal in such courses is for each project to be wor‐
thy of a conference publication and with a few project papers being published
subsequent to further (post-course) work. In OpenCV 3.x, the C++ code framework,
Buildbots, GitHub use, pull request reviews, unit and regression tests, and documen‐
tation are together a good example of the kind of professional software infrastructure
a startup or other business should put together.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path‐
names, directories, and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XMLtags, HTMLtags, the contents of files, or the
output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user. Also
used for emphasis in code samples.

Constant width italic

Shows text that should be replaced with user-supplied values.

[...]
Indicates a reference to the bibliography.

This icon signifies a tip, suggestion, or general note.

Preface | xix

This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/Learning-OpenCV-3_examples.

OpenCV is free for commercial or research use, and we have the same policy on the
code examples in the book. Use them at will for homework, research, or for commer‐
cial products! We would very much appreciate you referencing this book when you
do so, but it is not required. An attribution usually includes the title, author, pub‐
lisher, and ISBN. For example: “Learning OpenCV 3 by Adrian Kaehler and Gary
Bradski (O’Reilly). Copyright 2017 Adrian Kaehler, Gary Bradski,
978-1-491-93799-0.”

Other than hearing how it helped with your homework projects (which is best kept a
secret), we would love to hear how you are using computer vision for academic
research, teaching courses, and in commercial products when you do use OpenCV to
help you. Again, it’s not required, but you are always invited to drop us a line.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

xx | Preface

https://github.com/oreillymedia/Learning-OpenCV-3_examples
http://oreilly.com/safari
http://www.oreilly.com/safari

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list examples and any plans for future
editions. You can access this information at: http://bit.ly/learningOpenCV3.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
A long-term open source effort sees many people come and go, each contributing in
different ways. The list of contributors to this library is far too long to list here, but
see the .../opencv/docs/HTML/Contributors/doc_contributors.html file that ships with
OpenCV.

Thanks for Help on OpenCV
Intel is where the library was born and deserves great thanks for supporting this
project as it started and grew. From time to time, Intel still funds contests and con‐
tributes work to OpenCV. Intel also donated the built-in performance primitives
code, which provides for seamless speedup on Intel architectures. Thank you for that.

Google has been a steady funder of development for OpenCV by sponsoring interns
for OpenCV under its Google Summer of Code project; much great work has been
done through this funding. Willow Garage provided several years of funding that
enabled OpenCV to go from version 2.x through to version 3.0. During this time, the
computer vision R&D company Itseez (recently bought by Intel Corporation) has
provided extensive engineering support and web services hosting over the years. Intel
has indicated verbal agreement to continue this support (thanks!).

On the software side, some individuals stand out for special mention, especially on
the Russian software team. Chief among these is the Russian lead programmer

Preface | xxi

http://bit.ly/learningOpenCV3
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Vadim Pisarevsky, who is the largest single contributor to the library. Vadim also
managed and nurtured the library through the lean times when boom had turned to
bust and then bust to boom; he, if anyone, is the true hero of the library. His technical
insights have also been of great help during the writing of this book. Giving him
managerial support has been Victor Eruhimov, a cofounder of Itseez [Itseez] and
now CEO of Itseez3D.

Several people consistently help out with managing the library during weekly meet‐
ings: Grace Vesom, Vincent Rabaud, Stefano Fabri, and of course, Vadim Pisarevsky.
The developer notes for these meetings can be seen at https://github.com/opencv/
opencv/wiki/Meeting_notes.

Many people have contributed to OpenCV over time; a list of more recent ones is:
Dinar Ahmatnurov, Pablo Alcantarilla, Alexander Alekhin, Daniel Angelov, Dmitriy
Anisimov, Anatoly Baksheev, Cristian Balint, Alexandre Benoit, Laurent Berger, Leo‐
nid Beynenson, Alexander Bokov, Alexander Bovyrin, Hilton Bristow, Vladimir
Bystritsky, Antonella Cascitelli, Manuela Chessa, Eric Christiansen, Frederic Dever‐
nay, Maria Dimashova, Roman Donchenko, Vladimir Dudnik, Victor Eruhimov,
Georgios Evangelidis, Stefano Fabri, Sergio Garrido, Harris Gasparakis, Yuri Gitman,
Lluis Gomez, Yury Gorbachev, Elena Gvozdeva, Philipp Hasper, Fernando J. Iglesias
Garcia, Alexander Kalistratov, Andrey Kamaev, Alexander Karsakov, Rahul Kavi, Pat
O’Keefe, Siddharth Kherada, Eugene Khvedchenya, Anna Kogan, Marina Kolpakova,
Kirill Kornyakov, Ivan Korolev, Maxim Kostin, Evgeniy Kozhinov, Ilya Krylov, Lak‐
sono Kurnianggoro, Baisheng Lai, Ilya Lavrenov, Alex Leontiev, Gil Levi, Bo Li, Ilya
Lysenkov, Vitaliy Lyudvichenko, Bence Magyar, Nikita Manovich, Juan Manuel
Perez Rua, Konstantin Matskevich, Patrick Mihelich, Alexander Mordvintsev, Fedor
Morozov, Gregory Morse, Marius Muja, Mircea Paul Muresan, Sergei Nosov, Daniil
Osokin, Seon-Wook Park, Andrey Pavlenko, Alexander Petrikov, Philip aka
Dikay900, Prasanna, Francesco Puja, Steven Puttemans, Vincent Rabaud, Edgar Riba,
Cody Rigney, Pavel Rojtberg, Ethan Rublee, Alfonso Sanchez-Beato, Andrew Senin,
Maksim Shabunin, Vlad Shakhuro, Adi Shavit, Alexander Shishkov, Sergey Sivolgin,
Marvin Smith, Alexander Smorkalov, Fabio Solari, Adrian Stratulat, Evgeny Talanin,
Manuele Tamburrano, Ozan Tonkal, Vladimir Tyan, Yannick Verdie, Pierre-
Emmanuel Viel, Vladislav Vinogradov, Pavel Vlasov, Philipp Wagner, Yida Wang,
Jiaolong Xu, Marian Zajko, Zoran Zivkovic.

Other contributors show up over time at https://github.com/opencv/opencv/wiki/
ChangeLog. Finally, Arraiy [Arraiy] is now also helping maintain OpenCV.org (the
free and open codebase).

Thanks for Help on This Book
While preparing this book and the previous version of this book, we’d like to thank
John Markoff, science reporter at the New York Times, for encouragement, key con‐

xxii | Preface

https://github.com/opencv/opencv/wiki/Meeting_notes
https://github.com/opencv/opencv/wiki/Meeting_notes
https://github.com/opencv/opencv/wiki/ChangeLog
https://github.com/opencv/opencv/wiki/ChangeLog

tacts, and general writing advice born of years in the trenches. We also thank our
many editors at O’Reilly, especially Dawn Schanafelt, who had the patience to con‐
tinue on as slips became the norm while the errant authors were off trying to found a
startup. This book has been a long project that slipped from OpenCV 2.x to the cur‐
rent OpenCV 3.x release. Many thanks to O’Reilly for sticking with us through all
that.

Adrian Adds...
In the first edition (Learning OpenCV) I singled out some of the great teachers who
helped me reach the point where a work like this would be possible. In the interven‐
ing years, the value of the guidance received from each of them has only grown more
clear. My many thanks go out to each of them. I would like to add to this list of extra‐
ordinary mentors Tom Tombrello, to whom I owe a great debt, and in whose mem‐
ory I would like to dedicate my contribution to this book. He was a man of
exceptional intelligence and deep wisdom, and I am honored to have been given the
opportunity to follow in his footsteps. Finally, deep thanks are due the OpenCV com‐
munity, for welcoming the first edition of this book and for your patience through
the many exciting, but perhaps distracting, endeavors that have transpired while this
edition was being written.

This edition of the book has been a long time coming. During those intervening
years, I have had the fortune to work with dozens of different companies advising,
consulting, and helping them build their technology. As a board member, advisory
board member, technical fellow, consultant, technical contributor, and founder, I
have had the fortune to see and love every dimension of the technology development
process. Many of those years were spent with Applied Minds, Inc., building and run‐
ning our robotics division there, or at Applied Invention corporation, a spinout of
Applied Minds, as a Fellow there. I was constantly pleased to find OpenCV at the
heart of outstanding projects along the way, ranging from health care and agriculture
to aviation, defense, and national security. I have been equally pleased to find the first
edition of this book on people’s desks in almost every institution along the way. The
technology that Gary and I used to build Stanley has become integral to countless
projects since, not the least of which are the many self-driving car projects now under
way—any one of which, or perhaps all of which, stand ready to change and improve
daily life for countless people. What a joy it is to be part of all of this! The number of
incredible minds that I have encountered over the years—who have told me what
benefit the first edition was to them in the classes they took, the classes they taught,
the careers they built, and the great accomplishments that they completed—has been
a continuous source of happiness and wonder. I am hopeful that this new edition of
the book will continue to serve you all, as well as to inspire and enable a new genera‐
tion of scientists, engineers, and inventors.

Preface | xxiii

2 We now have many contributors, as you can see by scrolling past the updates in the change logs at https://
github.com/opencv/opencv/wiki/ChangeLog. We get so many new algorithms and apps that we now store the
best in self-maintaining and self-contained modules in opencv_contrib).

As the last chapter of this book closes, we start new chapters in our lives working in
robotics, AI, vision, and beyond. Personally, I am deeply grateful for all of the people
who have contributed the many works that have enabled this next step in my own
life: teachers, mentors, and writers of books. I hope that this new edition of our book
will enable others to make the next important step in their own lives, and I hope to
see you there!

Gary Adds...
I founded OpenCV in 1999 with the goal to accelerate computer vision and artificial
intelligence and give everyone the infrastructure to work with that I saw at only the
top labs at the time. So few goals actually work out as intended in life, and I’m thank‐
ful this goal did work out 17 (!) years later. Much of the credit for accomplishing that
goal was due to the help, over the years, of many friends and contributors too numer‐
ous to mention.2 But I will single out the original Russian group I started working
with at Intel, who ran a successful computer vision company (Itseez.com) that was
eventually bought back into Intel; we started out as coworkers but have since become
deep friends.

With three teenagers at home, my wife, Sonya Bradski, put in more work to enable
this book than I did. Many thanks and love to her. The teenagers I love, but I can’t
say they accelerated the book. :)

This version of the book was started back at the former startup I helped found,
Industrial Perception Inc., which sold to Google in 2013. Work continued in fits and
starts on random weekends and late nights ever since. Somehow it’s now 2016—time
flies when you are overwhelmed! Some of the speculation that I do toward the end of
Chapter 23 was inspired by the nature of robot minds that I experienced with the
PR2, a two-armed robot built by Willow Garage, and with the Stanley project at Stan‐
ford—the robot that won the $2 million DARPA Grand Challenge.

As we close the writing of this book, we hope to see you in startups, research labs,
academic sites, conferences, workshops, VC offices, and cool company projects down
the road. Feel free to say hello and chat about cool new stuff that you’re doing. I
started OpenCV to support and accelerate computer vision and AI for the common
good; what’s left is your part. We live in a creative universe where someone can create
a pot, the next person turns that pot into a drum, and so on. Create! Use OpenCV to
create something uncommonly good for us all!

xxiv | Preface

https://github.com/opencv/opencv/wiki/ChangeLog
https://github.com/opencv/opencv/wiki/ChangeLog
https://github.com/opencv/opencv_contrib

CHAPTER 1

Overview

What Is OpenCV?
OpenCV [OpenCV] is an open source (see http://opensource.org) computer vision
library available from http://opencv.org. In 1999 Gary Bradski [Bradski], working at
Intel Corporation, launched OpenCV with the hopes of accelerating computer vision
and artificial intelligence by providing a solid infrastructure for everyone working in
the field. The library is written in C and C++ and runs under Linux, Windows, and
Mac OS X. There is active development on interfaces for Python, Java, MATLAB, and
other languages, including porting the library to Android and iOS for mobile applica‐
tions. OpenCV has received much of its support over the years from Intel and Goo‐
gle, but especially from Itseez [Itseez] (recently acquired by Intel), which did the bulk
of the early development work. Finally, Arraiy [Arraiy] has joined in to maintain the
always open and free OpenCV.org [OpenCV].

OpenCV was designed for computational efficiency and with a strong focus on real-
time applications. It is written in optimized C++ and can take advantage of multicore
processors. If you desire further automatic optimization on Intel architectures [Intel],
you can buy Intel’s Integrated Performance Primitives (IPP) libraries [IPP], which
consist of low-level optimized routines in many different algorithmic areas. OpenCV
automatically uses the appropriate IPP library at runtime if that library is installed.
Starting with OpenCV 3.0, Intel granted the OpenCV team and OpenCV community
a free-of-charge subset of IPP (nicknamed IPPICV), which is built into and acceler‐
ates OpenCV by default.

One of OpenCV’s goals is to provide a simple-to-use computer vision infrastructure
that helps people build fairly sophisticated vision applications quickly. The OpenCV
library contains over 500 functions that span many areas in vision, including factory
product inspection, medical imaging, security, user interface, camera calibration,

1

http://opensource.org
http://opencv.org

stereo vision, and robotics. Because computer vision and machine learning often go
hand-in-hand, OpenCV also contains a full, general-purpose Machine Learning
library (ML module). This sublibrary is focused on statistical pattern recognition and
clustering. The ML module is highly useful for the vision tasks that are at the core of
OpenCV’s mission, but it is general enough to be used for any machine learning
problem.

Who Uses OpenCV?
Most computer scientists and practical programmers are aware of some facet of com‐
puter vision’s role, but few people are aware of all the ways in which computer vision
is used. For example, most people are somewhat aware of its use in surveillance, and
many also know that it is increasingly being used for images and video on the Web. A
few have seen some use of computer vision in game interfaces. Yet fewer people real‐
ize that most aerial and street-map images (such as in Google’s Street View) make
heavy use of camera calibration and image stitching techniques. Some are aware of
niche applications in safety monitoring, unmanned flying vehicles, or biomedical
analysis. But few are aware how pervasive machine vision has become in manufactur‐
ing: virtually everything that is mass-produced has been automatically inspected at
some point using computer vision.

The open source license for OpenCV has been structured such that you can build a
commercial product using all or part of OpenCV. You are under no obligation to
open-source your product or to return improvements to the public domain, though
we hope you will. In part because of these liberal licensing terms, there is a large user
community that includes people from major companies (IBM, Microsoft, Intel,
SONY, Siemens, and Google, to name only a few) and research centers (such as Stan‐
ford, MIT, CMU, Cambridge, and INRIA). There is a Yahoo Groups forum where
users can post questions and discussion; it has almost 50,000 members. OpenCV is
popular around the world, with large user communities in China, Japan, Russia,
Europe, and Israel.

Since its alpha release in January 1999, OpenCV has been used in many applications,
products, and research efforts. These applications include stitching images together
in satellite and web maps, image scan alignment, medical image noise reduction,
object analysis, security and intrusion detection systems, automatic monitoring and
safety systems, manufacturing inspection systems, camera calibration, military appli‐
cations, and unmanned aerial, ground, and underwater vehicles. It has even been
used in sound and music recognition, where vision recognition techniques are
applied to sound spectrogram images. OpenCV was a key part of the vision system in
the robot from Stanford, “Stanley,” which won the $2M DARPA Grand Challenge
desert robot race [Thrun06].

2 | Chapter 1: Overview

http://groups.yahoo.com/group/OpenCV

1 Computer vision is a vast field. This book will give you a basic grounding in the field, but we also recommend
texts by Trucco [Trucco98] for a simple introduction, Forsyth [Forsyth03] as a comprehensive reference, and
Hartley [Hartley06] and Faugeras [Faugeras93] for a discussion of how 3D vision really works.

What Is Computer Vision?
Computer vision1 is the transformation of data from a still or video camera into
either a decision or a new representation. All such transformations are done to ach‐
ieve some particular goal. The input data may include some contextual information
such as “the camera is mounted in a car” or “laser range finder indicates an object is 1
meter away.” The decision might be “there is a person in this scene” or “there are 14
tumor cells on this slide.” A new representation might mean turning a color image
into a grayscale image or removing camera motion from an image sequence.

Because we are such visual creatures, it is easy to be fooled into thinking that com‐
puter vision tasks are easy. How hard can it be to find, say, a car when you are staring
at it in an image? Your initial intuitions can be quite misleading. The human brain
divides the vision signal into many channels that stream different kinds of informa‐
tion into your brain. Your brain has an attention system that identifies, in a task-
dependent way, important parts of an image to examine while suppressing
examination of other areas. There is massive feedback in the visual stream that is, as
yet, little understood. There are widespread associative inputs from muscle control
sensors and all of the other senses that allow the brain to draw on cross-associations
made from years of living in the world. The feedback loops in the brain go back to all
stages of processing, including the hardware sensors themselves (the eyes), which
mechanically control lighting via the iris and tune the reception on the surface of the
retina.

In a machine vision system, however, a computer receives a grid of numbers from the
camera or from disk, and that’s it. For the most part, there’s no built-in pattern rec‐
ognition, no automatic control of focus and aperture, no cross-associations with
years of experience. For the most part, vision systems are still fairly naïve. Figure 1-1
shows a picture of an automobile. In that picture we see a side mirror on the driver’s
side of the car. What the computer “sees” is just a grid of numbers. Any given num‐
ber within that grid has a rather large noise component and so by itself gives us little
information, but this grid of numbers is all the computer “sees.” Our task, then,
becomes to turn this noisy grid of numbers into the perception “side mirror.”
Figure 1-2 gives some more insight into why computer vision is so hard.

What Is Computer Vision? | 3

Figure 1-1. To a computer, the car’s side mirror is just a grid of numbers

Figure 1-2. The ill-posed nature of vision: the 2D appearance of objects can change rad‐
ically with viewpoint

4 | Chapter 1: Overview

www.allitebooks.com

http://www.allitebooks.org

In fact, the problem, as we have posed it thus far, is worse than hard: it is formally
impossible to solve. Given a two-dimensional (2D) view of a 3D world, there is no
unique way to reconstruct the 3D signal. Formally, such an ill-posed problem has no
unique or definitive solution. The same 2D image could represent any of an infinite
combination of 3D scenes, even if the data were perfect. However, as already men‐
tioned, the data is corrupted by noise and distortions. Such corruption stems from
variations in the world (weather, lighting, reflections, movements), imperfections in
the lens and mechanical setup, finite integration time on the sensor (motion blur),
electrical noise in the sensor or other electronics, and compression artifacts after
image capture. Given these daunting challenges, how can we make any progress?

In the design of a practical system, additional contextual knowledge can often be used
to work around the limitations imposed on us by visual sensors. Consider the exam‐
ple of a mobile robot that must find and pick up staplers in a building. The robot
might use the facts that a desk is an object found inside offices and that staplers are
mostly found on desks. This gives an implicit size reference; staplers must be able to
fit on desks. It also helps to eliminate falsely “recognizing” staplers in impossible
places (e.g., on the ceiling or a window). The robot can safely ignore a 200-foot
advertising blimp shaped like a stapler because the blimp lacks the prerequisite
wood-grained background of a desk. In contrast, with tasks such as image retrieval,
all stapler images in a database may be of real staplers, and so large sizes and other
unusual configurations may have been implicitly precluded by the assumptions of
those who took the photographs; that is, the photographer perhaps took pictures only
of real, normal-sized staplers. People also tend to center objects when taking pictures
and tend to put them in characteristic orientations. Thus, there is often quite a bit of
unintentional implicit information within photos taken by people.

Contextual information can also be modeled explicitly with machine learning techni‐
ques. Hidden variables such as size, orientation to gravity, and so on can then be cor‐
related with their values in a labeled training set. Alternatively, one may attempt to
measure hidden bias variables by using additional sensors. The use of a laser range
finder to measure depth allows us to accurately measure the size of an object.

The next problem facing computer vision is noise. We typically deal with noise by
using statistical methods. For example, it may be impossible to detect an edge in an
image merely by comparing a point to its immediate neighbors. But if we look at the
statistics over a local region, edge detection becomes much easier. A real edge should
appear as a string of such immediate neighbor responses over a local region, each of
whose orientation is consistent with its neighbors. It is also possible to compensate
for noise by taking statistics over time. Still other techniques account for noise or dis‐
tortions by building explicit models learned directly from the available data. For
example, because lens distortions are well understood, one need only learn the
parameters for a simple polynomial model in order to describe—and thus correct
almost completely—such distortions.

What Is Computer Vision? | 5

2 Shinn Lee was of key help.

The actions or decisions that computer vision attempts to make based on camera
data are performed in the context of a specific purpose or task. We may want to
remove noise or damage from an image so that our security system will issue an alert
if someone tries to climb a fence or because we need a monitoring system that counts
how many people cross through an area in an amusement park. Vision software for
robots that wander through office buildings will employ different strategies than
vision software for stationary security cameras because the two systems have signifi‐
cantly different contexts and objectives. As a general rule, the more constrained a
computer vision context is, the more we can rely on those constraints to simplify the
problem and the more reliable our final solution will be.

OpenCV is aimed at providing the basic tools needed to solve computer vision prob‐
lems. In some cases, high-level functionalities in the library will be sufficient to solve
the more complex problems in computer vision. Even when this is not the case, the
basic components in the library are complete enough to enable creation of a complete
solution of your own to almost any computer vision problem. In the latter case, there
are several tried-and-true methods of using the library; all of them start with solving
the problem using as many available library components as possible. Typically, after
you’ve developed this first-draft solution, you can see where the solution has weak‐
nesses and then fix those weaknesses using your own code and cleverness (better
known as “solve the problem you actually have, not the one you imagine”). You can
then use your draft solution as a benchmark to assess the improvements you have
made. From that point, you can tackle whatever weaknesses remain by exploiting the
context of the larger system in which your solution is embedded.

The Origin of OpenCV
OpenCV grew out of an Intel research initiative to advance CPU-intensive applica‐
tions. Toward this end, Intel launched many projects, including real-time ray tracing
and 3D display walls. One of the authors, Gary Bradski [Bradski], working for Intel at
that time, was visiting universities and noticed that some top university groups, such
as the MIT Media Lab, had well-developed and internally open computer vision
infrastructures—code that was passed from student to student and that gave each
new student a valuable head start in developing his or her own vision application.
Instead of reinventing the basic functions from scratch, a new student could begin by
building on top of what came before.

Thus, OpenCV was conceived as a way to make computer vision infrastructure uni‐
versally available. With the aid of Intel’s Performance Library Team,2 OpenCV
started with a core of implemented code and algorithmic specifications being sent to

6 | Chapter 1: Overview

3 As of this writing, Willow Garage, a robotics research institute and incubator, is actively supporting general
OpenCV maintenance and new development in the area of robotics applications.

members of Intel’s Russian library team. This is the “where” of OpenCV: it started in
Intel’s research lab with collaboration from the Software Performance Libraries
group and implementation and optimization expertise in Russia.

Chief among the Russian team members was Vadim Pisarevsky, who managed,
coded, and optimized much of OpenCV and who is still at the center of much of the
OpenCV effort. Along with him, Victor Eruhimov helped develop the early infra‐
structure, and Valery Kuriakin managed the Russian lab and greatly supported the
effort. There were several goals for OpenCV at the outset:

• Advance vision research by providing not only open but also optimized code for
basic vision infrastructure. No more reinventing the wheel.

• Disseminate vision knowledge by providing a common infrastructure that devel‐
opers could build on, so that code would be more readily readable and
transferable.

• Advance vision-based commercial applications by making portable,
performance-optimized code available for free—with a license that did not
require commercial applications to be open or free themselves.

Those goals constitute the “why” of OpenCV. Enabling computer vision applications
would increase the need for fast processors. Driving upgrades to faster processors
would generate more income for Intel than selling some extra software. Perhaps that
is why this open and free code arose from a hardware vendor rather than a software
company. Sometimes, there is more room to be innovative at software within a hard‐
ware company.

In any open source effort, it’s important to reach a critical mass at which the project
becomes self-sustaining. There have now been approximately 11 million downloads
of OpenCV, and this number is growing by an average of 160,000 downloads a
month. OpenCV receives many user contributions, and central development has
largely moved outside of Intel.3 OpenCV’s timeline is shown in Figure 1-3. Along the
way, OpenCV was affected by the dot-com boom and bust and also by numerous
changes of management and direction. During these fluctuations, there were times
when OpenCV had no one at Intel working on it at all. However, with the advent of
multicore processors and the many new applications of computer vision, OpenCV’s
value began to rise. Similarly, rapid growth in the field of robotics has driven much
use and development of the library. After becoming an open source library, OpenCV
spent several years under active development at Willow Garage, and now is sup‐
ported by the OpenCV foundation. Today, OpenCV is actively being developed by

The Origin of OpenCV | 7

http://www.willowgarage.com
http://opencv.org

the foundation as well as by several public and private institutions. For more infor‐
mation on the future of OpenCV, see Chapter 23.

Figure 1-3. OpenCV timeline

OpenCV Block Diagram
OpenCV is built in layers. At the top is the OS under which OpenCV operates. Next
comes the language bindings and sample applications. Below that is the contributed
code in opencv_contrib, which contains mostly higher-level functionality. After that is
the core of OpenCV, and at the bottom are the various hardware optimizations in the
hardware acceleration layer (HAL). Figure 1-4 shows this organization.

8 | Chapter 1: Overview

Figure 1-4. Block diagram of OpenCV with supported operating systems

Speeding Up OpenCV with IPP
If available on Intel processors, OpenCV exploits a royalty-free subset of Intel’s Inte‐
grated Performance Primitives (IPP) library, IPP 8.x (IPPICV). IPPICV can be linked
into OpenCV at compile stage and if so, it replaces the corresponding low-level opti‐
mized C code (in cmake WITH_IPP=ON/OFF, ON by default). The improvement in speed
from using IPP can be substantial. Figure 1-5 shows the relative speedup when IPP is
used.

Figure 1-5. Relative speedup when OpenCV uses IPPICV on an Intel Haswell Processor

The Origin of OpenCV | 9

4 In olden times, OpenCV developers used Subversion for version control and automake to build. Those days,
however, are long gone.

5 It is important to know that, although the Windows distribution contains binary libraries for release builds, it
does not contain the debug builds of these libraries. It is therefore likely that, before developing with
OpenCV, you will want to open the solution file and build these libraries yourself.

Who Owns OpenCV?
Although Gary Bradski started OpenCV at Intel, the library is and always was
intended to promote commercial and research use; that is its mission. It is therefore
open and free, and the code itself may be used or embedded (in whole or in part) in
other applications, whether commercial or research. It does not force your applica‐
tion code to be open or free. It does not require that you return improvements back
to the library—but we hope that you will.

Downloading and Installing OpenCV
From the main OpenCV site, you can download the complete source code for the lat‐
est release, as well as many recent releases. The downloads themselves are found at
the downloads page. However, the most up-to-date version is always found on Git‐
Hub, where the active development branch is stored. For more recent, higher-level
functionality, you can also download and build opencv_contrib [opencv_contrib]
(https://github.com/opencv/opencv_contrib).

Installation
In modern times, OpenCV uses Git as its development version control system, and
CMake to build.4 In many cases, you will not need to worry about building, as com‐
piled libraries exist for many environments. However, as you become a more
advanced user, you will inevitably want to be able to recompile the libraries with spe‐
cific options tailored to your application.

Windows
At http://opencv.org/downloads.html, you will see a link to download the latest ver‐
sion of OpenCV for Windows. This link will download an executable file, which is a
self-extracting archive with prebuilt OpenCV binaries for various versions of Visual
Studio. You are now almost ready to start using OpenCV.5

10 | Chapter 1: Overview

http://opencv.org
http://opencv.org/downloads.html
https://github.com/opencv/opencv
https://github.com/opencv/opencv
https://github.com/opencv/opencv_contrib
http://opencv.org/downloads.html

6 Of course, the exact path will vary depending on your installation; for example, if you are installing on a 32-
bit machine, then the path will include x86 instead of x64.

The one additional detail is that you will want to add an OPENCV_DIR environment
variable to make it easier to tell your compiler where to find the OpenCV binaries.
You can set this by going to a command prompt and typing:6

setx -m OPENCV_DIR D:\OpenCV\Build\x64\vc10

If you want to link OpenCV statically, this is all you will need. If you want to use
OpenCV dynamic link libraries (DLLs), then you will also need to tell your system
where to find the binary library. To do this, simply add %OPENCV_DIR%\bin to your
library path. (For example, in Windows 10, right-click on your computer icon, select
Properties, and then click on Advanced System Settings. Finally, select Environment
Variables and add the OpenCV binary path to the Path variable.)

OpenCV 3 comes with IPP linked in, so you get the performance advantage of more
or less modern x86 and x64 CPUs.

You can also build OpenCV from a source tarball as follows:

1. Run the CMake GUI.
2. Specify paths to the OpenCV source tree and the build directory (they must be

different!).
3. Press Configure twice (choose the appropriate Visual Studio generator, or

MinGW makefiles if you use MinGW), and then press Generate.
4. Open the generated solution within Visual Studio, and build it. In the case of

MinGW, use the Linux instructions that follow.

Linux
Prebuilt binaries for Linux are not included with the Linux version of OpenCV owing
to the large variety of versions of GCC and GLIBC in different distributions (SuSE,
Debian, Ubuntu, etc.). In many cases, however, your distribution will include
OpenCV. If your distribution doesn’t offer OpenCV, you will have to build it from
sources. As with the Windows installation, you can start at http://opencv.org/down
loads.html, but in this case the link will send you to SourceForge, where you can
select the tarball for the current OpenCV source code bundle.

To build the libraries and demos, you’ll need GTK+ 2.x or higher, including headers.
You’ll also need gcc and the essential development packages, cmake and libtbb (Intel
thread building blocks), and optionally zlib, libpng, libjpeg, libtiff, and libjasper with
development files (i.e., the versions with -dev at the end of their package names).

Downloading and Installing OpenCV | 11

http://opencv.org/downloads.html
http://opencv.org/downloads.html

You’ll need Python 2.6 or later with headers installed (developer package), as well as
NumPy in order to make Python bindings work. You will also need libavcodec and
the other libav* libraries (including headers) from ffmpeg.

For the latter, install libav/ffmpeg packages supplied with your distribution or down‐
load ffmpeg from http://www.ffmpeg.org. The ffmpeg library has a Lesser General Pub‐
lic License (LGPL), but some of its components have the stricter General Public
License (GPL). To use it with non-GPL software (such as OpenCV), build and use a
shared ffmpg library:

$> ./configure --enable-shared
$> make
$> sudo make install

(When you link an LGPL library dynamically, you are not obliged to use GPL license
for your code.) You will end up with /usr/local/lib/libavcodec.so.*, /usr/local/lib/libav‐
format.so.*, /usr/local/lib/libavutil.so.*, and include files under various /usr/local/
include/libav* paths.

To actually build the library, you will need to unpack the .tar.gz file and go into the
created source directory, and do the following:

mkdir release
cd release
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..
make
sudo make install # optional

The first and second commands create a new subdirectory and move you into it. The
third command tells CMake how to configure your build. The example options we
give are probably the right ones to get you started, but other options allow you to
enable various options, determine what examples are built, add Python support, add
CUDA GPU support, and more. By default, OpenCV’s cmake configuration script
attempts to find and use as many third-party libraries as possible. For example, if it
finds CUDA SDK, it will enable GPU-accelerated OpenCV functionality. The last
two commands actually build the library and install the results into the proper places.
Note that you do not need to install OpenCV in order to use it in your CMake-based
projects; you just need to specify the path to generate OpenCVConfig.cmake. In the
preceding case, the file will be placed in the release directory. If you decided to run
sudo make install instead, OpenCVConfig.cmake would be placed in /usr/local/
share/OpenCV.

Just like in the Windows case, the Linux build of OpenCV will automatically take
advantage of IPP once it’s installed. Starting from OpenCV 3.0, OpenCV’s cmake
configuration script will automatically download and link a free subset of IPP
(IPPICV). To explicitly disable IPP if you do not want it, pass the -D WITH_IPP=OFF
option to CMake.

12 | Chapter 1: Overview

http://www.ffmpeg.org

Mac OS X
Installation on OS X is very similar to Linux, except that OS X comes with its own
development environment, Xcode, which includes almost everything you’ll need
except for CMake; you do not need GTK+, TBB, libjpeg, ffmpeg, and so on:

• By default, Cocoa is used instead of GTK+.
• By default, QTKit is used instead of ffmpeg.
• Grand Dispatch Central (GDC) is used instead of TBB and OpenMP.

The installation steps are then exactly the same. You may want to pass the -G Xcode
option to CMake to generate an Xcode project for OpenCV (and for your applica‐
tions) in order to build and debug the code conveniently within Xcode.

Getting the Latest OpenCV via Git
OpenCV is under active development, and bugs are often fixed rapidly when bug
reports contain accurate descriptions and code that demonstrates the bug. However,
official OpenCV releases occur only once or twice a year. If you are seriously devel‐
oping a project or product, you will probably want code fixes and updates as soon as
they become available. To get these, you will need to access OpenCV’s Git repository
on GitHub.

This isn’t the place for a tutorial in Git usage. If you’ve worked with other open
source projects, then you’re probably familiar with it already. If you haven’t, check
out Version Control with Git by Jon Loeliger (O’Reilly). A command-line Git client is
available for Linux, OS X, and most UNIX-like systems. For Windows users, we rec‐
ommend TortoiseGit; for OS X the SourceTree app may suit you.

On Windows, if you want the latest OpenCV from the Git repository, you’ll need to
access the directory at https://github.com/opencv/opencv.git.

On Linux, you can just use the following command:

git clone https://github.com/opencv/opencv.git

More OpenCV Documentation
The primary documentation for OpenCV is the HTML documentation available at
http://opencv.org. In addition to this, there are in-depth tutorials on many subjects at
http://docs.opencv.org/2.4.13/doc/tutorials/tutorials.html, and an OpenCV wiki (cur‐
rently located at https://github.com/opencv/opencv/wiki).

Getting the Latest OpenCV via Git | 13

http://shop.oreilly.com/product/0636920022862.do
http://code.google.com/p/tortoisegit/
https://github.com/opencv/opencv.git
http://opencv.org
http://docs.opencv.org/2.4.13/doc/tutorials/tutorials.html
https://github.com/opencv/opencv/wiki

Supplied Documentation
OpenCV 2.x comes with a complete reference manual and a bunch of tutorials, all in
PDF format; check opencv/doc. Starting from OpenCV 3.x, there is no offline docu‐
mentation anymore.

Online Documentation and the Wiki
As we just mentioned, there is extensive documentation as well as a wiki available at
http://opencv.org. The documentation there is divided into several major compo‐
nents:

Reference
This section contains the functions, their arguments, and some information on
how to use them.

Tutorials
There is a large collection of tutorials; these tell you how to accomplish various
things. There are tutorials for basic subjects, like how to install OpenCV or create
OpenCV projects on various platforms, and more advanced topics like back‐
ground subtraction of object detection.

Quick Start
This is a tightly curated subset of the tutorials, containing just ones that help you
get up and running on specific platforms.

Cheat Sheet
This is actually a single .pdf file that contains a truly excellent compressed refer‐
ence to almost the entire library. Thank Vadim Pisarevsky for this excellent ref‐
erence as you pin these two beautiful pages to your cubicle wall.

Wiki
The wiki contains everything you could possibly want and more. This is where
you’ll find the roadmap, as well as news, open issues, bugs tracking, and count‐
less deeper topics like how to become a contributor to OpenCV.

Q&A
This is a vast archive of literally thousands of questions people have asked and
answered. You can go there to ask questions of the OpenCV community, or to
help others by answering their questions.

All of these are accessible under the Documentation button on the OpenCV.org
homepage. Of all of those great resources, one warrants a little more discussion here
—the Reference. The Reference is divided into several sections, each of which per‐
tains to a module in the library. The exact module list has evolved over time, but the

14 | Chapter 1: Overview

http://opencv.org
http://docs.opencv.org/
http://docs.opencv.org/trunk/d9/df8/tutorial_root.html
http://opencv.org/quickstart.html
http://docs.opencv.org/3.0-last-rst/opencv_cheatsheet.pdf
https://github.com/opencv/opencv/wiki
http://answers.opencv.org/questions

modules are the primary organizational structure in the library. Every function in the
library is part of one module. Here are the current modules:

core

The “core” is the section of the library that contains all of the basic object types
and their basic operations.

imgproc

The image processing module contains basic transformations on images, includ‐
ing filters and similar convolutional operators.

highgui (split to imgcodecs, videoio, and highgui in OpenCV 3.0)
This module contains user interface functions that can be used to display images
or take simple user input. It can be thought of as a very lightweight window UI
toolkit.

video

The video library contains the functions you need to read and write video
streams.

calib3d

This module contains implementations of algorithms you will need to calibrate
single cameras as well as stereo or multicamera arrays.

features2d

This module contains algorithms for detecting, describing, and matching key‐
point features.

objdetect

This module contains algorithms for detecting specific objects, such as faces or
pedestrians. You can train the detectors to detect other objects as well.

ml

The Machine Learning library is actually an entire library in itself, and contains a
wide array of machine learning algorithms implemented in such a way as to work
with the natural data structures of OpenCV.

flann

FLANN stands for “Fast Library for Approximate Nearest Neighbors.” This
library contains methods you will not likely use directly, but which are used by
other functions in other modules for doing nearest neighbor searches in large
data sets.

More OpenCV Documentation | 15

gpu (split to multiple cuda* modules in OpenCV 3.0)
The GPU library contains implementations of most of the rest of the library
functions optimized for operation on CUDA GPUs. There are also some func‐
tions that are implemented only for GPU operation. Some of these provide excel‐
lent results but require computational resources sufficiently high that
implementation on non-GPU hardware would provide little utility.

photo

This is a relatively new module that contains tools useful for computational
photography.

stitching

This entire module implements a sophisticated image stitching pipeline. This is
new functionality in the library, but, like the photo module, it is an area where
future growth is expected.

nonfree (moved to opencv_contrib/xfeatures2d in OpenCV 3.0)
OpenCV contains some implementations of algorithms that are patented or
otherwise burdened by usage restrictions (e.g., the SIFT algorithm). Those algo‐
rithms are segregated into their own module to indicate that you will need to do
some kind of special work in order to use them in a commercial product.

contrib (melted into a few opencv_contrib modules in OpenCV 3.0)
This module contains new things that have yet to be integrated into the whole of
the library.

legacy (disappeared in OpenCV 3.0)
This module contains old things that have yet to be banished from the library
altogether.

ocl (disappeared in OpenCV 3.0; replaced with T-API technology)
This is a newer module that could be considered analogous to the GPU module,
except that it implements the Khronos OpenCL standard for open parallel pro‐
gramming. Though much less featured than the GPU module at this time, the
ocl module aims to provide implementations that can run on any GPU or other
Khronos-capable parallel device. (This is in contrast to the gpu module, which
explicitly makes use of the NVidia CUDA toolkit and so will work only on
NVidia GPU devices.)

Despite the ever-increasing quality of this online documentation, one task that is not
within its scope is to provide a proper understanding of the algorithms implemented
or of the exact meaning of the parameters these algorithms require. This book aims
to provide this information, as well as a more in-depth understanding of all of the
basic building blocks of the library.

16 | Chapter 1: Overview

OpenCV Contribution Repository
In OpenCV 3.0, the previously monolithic library has been split into two parts:
mature opencv and the current state of the art in larger vision functionality at
opencv_contrib [opencv_contrib]. The former is maintained by the core OpenCV
team and contains (mostly) stable code, whereas the latter is less mature, is main‐
tained and developed mostly by the community, may have parts under non-OpenCV
license, and may include patented algorithms.

Here are some of the modules available in the opencv_contrib repository (see Appen‐
dix B for a full list at the time of this writing):

Dnn

Deep neural networks

face

Face recognition

text

Text detection and recognition; may optionally use open source OCR Tesseract
as backend

rgbd

Processing RGB + depth maps, obtained with Kinect and other depth sensors (or
simply computed with stereo correspondence algorithms)

bioinspired

Biologically inspired vision

ximgproc, xphoto
Advanced image processing and computational photography algorithms

tracking

Modern object-tracking algorithms

Downloading and Building Contributed Modules
On Linux and OS X, you can just use the following command to download
opencv_contrib:

git clone https://github.com/opencv/opencv_contrib.git

On Windows, feed this address to TortoiseGit or another such client. Then you need
to reconfigure OpenCV with CMake:

cmake –D CMAKE_BUILD_TYPE=Release \
 –D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules ..

OpenCV Contribution Repository | 17

https://github.com/opencv/opencv_contrib

and rebuild it as usual. The built contributed modules will be put into the same direc‐
tory as regular OpenCV binaries, and you may use them without any extra steps.

Portability
OpenCV was designed to be portable. It was originally written to compile by any
compliant C++ compiler. This meant that the C and C++ code had to be fairly stan‐
dard in order to make cross-platform support easier. Table 1-1 shows the platforms
on which OpenCV is known to run. Support for Intel and AMD 32-bit and 64-bit
architectures (x86, x64) is the most mature, and the ARM support is rapidly improv‐
ing too. Among operating systems, OpenCV fully supports Windows, Linux, OS X,
Android, and iOS.

If an architecture or OS doesn’t appear in Table 1-1, this doesn’t mean there are no
OpenCV ports to it. OpenCV has been ported to almost every commercial system,
from Amazon Cloud and 40-core Intel Xeon Phi to Raspberry Pi and robotic dogs.

Table 1-1. OpenCV portability guide for release 1.0

 x86/x64 ARM Other: MIPs, PPC
Windows SIMD, IPP, Parallel, I/O SIMD, Parallel (3.0), I/O N/A
Linux SIMD, IPP, Parallel,a I/O SIMD, Parallel,a I/O Parallel,a I/O*
Android SIMD, IPP (3.0), Parallel,b I/O SIMD, Parallel,b I/O MIPS—basic support
OS X/iOS SIMD, IPP (3.0), Parallel, I/O SIMD, Parallel, I/O N/A
Other: BSD, QNX, ... SIMD SIMD
a Parallelization in Linux is done via a third-party library or by enabling OpenMP.
b Parallelization in Android is done via Intel TBB.

Here is the legend for Table 1-1:

SIMD
Vector instructions are used to gain the speed: SSE on x86/x64, NEON on ARM.

IPP
Intel IPP is available. Starting from 3.0, there is free specialized IPP subset
(IPPICV).

Parallel
Some standard or third-party threading framework is used to distribute process‐
ing across multiple cores.

I/O
Some standard or third-party API can be used to grab or write video.

18 | Chapter 1: Overview

Summary
In this chapter we went over OpenCV’s [OpenCV] history from its founding by Gary
Bradski [Bradski] at Intel in 1999 to its current state of support by Arraiy [Arraiy].
We covered the motivation for OpenCV and some of its content. We discussed how
the core library, OpenCV, has been separated from newer functionality in
opencv_contrib (see Appendix B) along with an extensive set of links to the OpenCV-
related content online. This chapter also covered how to download and install
OpenCV, together with its performance and portability.

Exercises
1. Download and install the latest release of OpenCV. Compile it in debug and

release mode.
2. Download and build the latest trunk version of OpenCV using Git.
3. Describe at least three ambiguous aspects of converting 3D inputs into a 2D rep‐

resentation. How would you overcome these ambiguities?

Summary | 19

CHAPTER 2

Introduction to OpenCV

Include Files
After installing the OpenCV library and setting up our programming environment,
our next task is to make something interesting happen with code. In order to do this,
we’ll have to discuss header files. Fortunately, the headers reflect the new, modular
structure of OpenCV introduced in Chapter 1. The main header file of interest is .../
include/opencv2/opencv.hpp; it just calls the header files for each OpenCV module:

#include "opencv2/core/core_c.h"

Old C data structures and arithmetic routines

#include "opencv2/core/core.hpp"

New C++ data structures and arithmetic routines

#include "opencv2/flann/miniflann.hpp"

Approximate nearest neighbor matching functions

#include "opencv2/imgproc/imgproc_c.h"

Old C image processing functions

#include "opencv2/imgproc/imgproc.hpp"

New C++ image processing functions

#include "opencv2/video/photo.hpp"

Algorithms specific to handling and restoring photographs

#include "opencv2/video/video.hpp"

Video tracking and background segmentation routines

#include "opencv2/features2d/features2d.hpp"

Two-dimensional feature tracking support

21

#include "opencv2/objdetect/objdetect.hpp"

Cascade face detector; latent SVM; HoG; planar patch detector

#include "opencv2/calib3d/calib3d.hpp"

Calibration and stereo

#include "opencv2/ml/ml.hpp"

Machine learning: clustering, pattern recognition

#include "opencv2/highgui/highgui_c.h"

Old C image display, sliders, mouse interaction, I/O

#include "opencv2/highgui/highgui.hpp"

New C++ image display, sliders, buttons, mouse, I/O

#include "opencv2/contrib/contrib.hpp"

User-contributed code: flesh detection, fuzzy mean-shift tracking, spin images,
self-similar features

You may use the include file opencv.hpp to include any and every possible OpenCV
function, but it will slow down compile time. If you are using only, say, image pro‐
cessing functions, compile time will be faster if you include only opencv2/imgproc/
imgproc.hpp. These include files are located on disk under the .../modules directory.
For example, imgproc.hpp is located at .../modules/imgproc/include/opencv2/imgproc/
imgproc.hpp. Similarly, the sources for the functions themselves are located under
their corresponding src directory. For example, cv::Canny() in the imgproc module
is located in .../modules/improc/src/canny.cpp.

With the preceding include files, we can start our first C++ OpenCV program.

You can include legacy code such as the older blob tracking, Hid‐
den Markov Model (HMM) face detection, condensation tracker,
and Eigen objects using opencv2/legacy/legacy.hpp, which is located
in .../modules/legacy/include/opencv2/legacy/legacy.hpp.

Resources
There are several good introductory PowerPoint files on the Web that provide over‐
views of OpenCV:

• A high-level overview of the whole library can be found at http://is.gd/niZvJu.
• Speedups are discussed at http://is.gd/ShvMZE.
• Modules are described at http://is.gd/izlOrM.

22 | Chapter 2: Introduction to OpenCV

http://is.gd/niZvJu
http://is.gd/ShvMZE
http://is.gd/izlOrM

1 Of course, once you do this, you risk conflicting names with other potential namespaces. If the function
foo() exists, say, in the cv and std namespaces, you must specify which function you are talking about using
either cv::foo() or std::foo() as you intend. In this book, other than in our specific example of
Example 2-2, we will use the explicit form cv:: for objects in the OpenCV namespace, as this is generally
considered to be better programming style.

First Program—Display a Picture
OpenCV provides utilities for reading from a wide array of image file types, as well as
from video and cameras. These utilities are part of a toolkit called HighGUI, which is
included in the OpenCV package. We will use some of these utilities to create a sim‐
ple program that opens an image and displays it on the screen (Example 2-1).

Example 2-1. A simple OpenCV program that loads an image from disk and displays it
on the screen

#include <opencv2/opencv.hpp> //Include file for every supported OpenCV function

int main(int argc, char** argv) {
 cv::Mat img = cv::imread(argv[1],-1);
 if(img.empty()) return -1;
 cv::namedWindow("Example1", cv::WINDOW_AUTOSIZE);
 cv::imshow("Example1", img);
 cv::waitKey(0);
 cv::destroyWindow("Example1");
 return 0;
}

Note that OpenCV functions live within a namespace called cv. To call OpenCV
functions, you must explicitly tell the compiler that you are talking about the cv
namespace by prepending cv:: to each function call. To get out of this bookkeeping
chore, we can employ the using namespace cv; directive as shown in Example 2-2.1

This tells the compiler to assume that functions might belong to that namespace.
Note also the difference in include files between Examples 2-1 and 2-2; in the former,
we used the general include opencv.hpp, whereas in the latter, we used only the neces‐
sary include file to improve compile time.

Example 2-2. Same as Example 2-1 but employing the “using namespace” directive

#include "opencv2/highgui/highgui.hpp"

using namespace cv;

int main(int argc, char** argv) {

 Mat img = imread(argv[1], -1);

First Program—Display a Picture | 23

2 Clearly, build instructions are highly platform dependent. In this book we do not generally cover platform-
specific details, but here is an example of what a build instruction might look like in a UNIX-like environ‐
ment: gcc -v example2_2.cpp -I/usr/local/include/ -L/usr/lib/ -lstdc++ -L/usr/local/lib
-lopencv_highgui -lopencv_core - -o example2_2. Note that the various components of the library are
usually linked separately. In the upcoming Example 2-3 where we will include video, it would be necessary to
add: -lopencv_imgcodecs -lopencv_imgproc -lopencv_videoio -lopencv_video -lopencv_videostab.

3 A proper program would check for the existence of argv[1] and, in its absence, deliver an instructional error
message to the user. We will abbreviate such necessities in this book and assume that the reader is cultured
enough to understand the importance of error-handling code.

 if(img.empty()) return -1;

 namedWindow("Example1", cv::WINDOW_AUTOSIZE);
 imshow("Example1", img);
 waitKey(0);

 destroyWindow("Example1");

}

When compiled2 and run from the command line with a single argument,
Example 2-1 loads an image into memory and displays it on the screen. It then waits
until the user presses a key, at which time it closes the window and exits. Let’s go
through the program line by line and take a moment to understand what each com‐
mand is doing.

cv::Mat img = cv::imread(argv[1], -1);

This line loads the image.3 The function cv::imread() is a high-level routine that
determines the file format to be loaded based on the filename; it also automatically
allocates the memory needed for the image data structure. Note that cv::imread()
can read a wide variety of image formats, including BMP, DIB, JPEG, JPE, PNG,
PBM, PGM, PPM, SR, RAS, and TIFF. A cv::Mat structure is returned. This struc‐
ture is the OpenCV construct with which you will deal the most. OpenCV uses this
structure to handle all kinds of images: single-channel, multichannel, integer-valued,
floating-point-valued, and so on. The line immediately following:

if(img.empty()) return -1;

checks to see if an image was in fact read. Another high-level function, cv::named
Window(), opens a window on the screen that can contain and display an image.

cv::namedWindow("Example1", cv::WINDOW_AUTOSIZE);

This function, provided by the HighGUI library, also assigns a name to the window
(in this case, "Example1"). Future HighGUI calls that interact with this window will
refer to it by this name.

24 | Chapter 2: Introduction to OpenCV

www.allitebooks.com

http://www.allitebooks.org

The second argument to cv::namedWindow() defines window properties. It may be
set either to 0 (the default value) or to cv::WINDOW_AUTOSIZE. In the former case, the
size of the window will be the same regardless of the image size, and the image will be
scaled to fit within the window. In the latter case, the window will expand or contract
automatically when an image is loaded so as to accommodate the image’s true size,
but may be resized by the user.

cv::imshow("Example1", img);

Whenever we have an image in a cv::Mat structure, we can display it in an existing
window with cv::imshow(). The cv::imshow() function creates a window if one
does not exist (created by cv::namedWindow()). On the call to cv::imshow(), the
window will be redrawn with the appropriate image in it, and the window will resize
itself as appropriate if it was created with the cv::WINDOW_AUTOSIZE flag.

cv::waitKey(0);

The cv::waitKey() function asks the program to stop and wait for a keystroke. If a
positive argument is given, the program will wait for that number of milliseconds and
then continue even if nothing is pressed. If the argument is set to 0 or to a negative
number, the program will wait indefinitely for a key-press.

With cv::Mat, images are automatically deallocated when they go out of scope, simi‐
lar to the Standard Template Library (STL)-style container classes. This automatic
deallocation is controlled by an internal reference counter. For the most part, this
means we no longer need to worry about the allocation and deallocation of images,
which relieves the programmer from much of the tedious bookkeeping that the
OpenCV 1.0 IplImage imposed.

cv::destroyWindow("Example1");

Finally, we can destroy the window itself. The function cv::destroyWindow() will
close the window and deallocate any associated memory usage. For short programs,
we will skip this step. For longer, more complex programs, the programmer should
make sure to tidy up the windows before they go out of scope to avoid memory leaks.

Our next task is to construct a very simple—almost as simple as this one—program
to read in and display a video file. After that, we will start to tinker a little more with
the actual images.

Second Program—Video
Playing a video with OpenCV is almost as easy as displaying a single picture. The
only new issue we face is that we need some kind of loop to read each frame in
sequence; we may also need some way to get out of that loop if the movie is too bor‐
ing. See Example 2-3.

Second Program—Video | 25

Example 2-3. A simple OpenCV program for playing a video file from disk

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"

int main(int argc, char** argv) {

 cv::namedWindow("Example3", cv::WINDOW_AUTOSIZE);
 cv::VideoCapture cap;
 cap.open(string(argv[1]));

 cv::Mat frame;
 for(;;) {
 cap >> frame;
 if(frame.empty()) break; // Ran out of film
 cv::imshow("Example3", frame);
 if(cv::waitKey(33) >= 0) break;
 }

 return 0;
}

Here we begin the function main() with the usual creation of a named window (in
this case, named "Example3"). The video capture object cv::VideoCapture is then
instantiated. This object can open and close video files of as many types as ffmpeg
supports.

cap.open(string(argv[1]));
cv::Mat frame;

The capture object is given a string containing the path and filename of the video to
be opened. Once opened, the capture object will contain all of the information about
the video file being read, including state information. When created in this way, the
cv::VideoCapture object is initialized to the beginning of the video. In the program,
cv::Mat frame instantiates a data object to hold video frames.

cap >> frame;
if(frame.empty()) break;
cv::imshow("Example3", frame);

Once inside of the while() loop, the video file is read frame by frame from the cap‐
ture object stream. The program checks to see if data was actually read from the video
file—if(frame.empty())—and, if not, quits. If a video frame was successfully read
in, it is displayed through cv::imshow().

if(cv::waitKey(33) >= 0) break;

26 | Chapter 2: Introduction to OpenCV

4 You can wait any amount of time you like. In this case, we are simply assuming that it is correct to play the
video at 30 frames per second and allow user input to interrupt between each frame (thus we pause for input
33 ms between each frame). In practice, it is better to check the cv::VideoCapture structure in order to deter‐
mine the actual frame rate of the video (more on this in Chapter 8).

Once we have displayed the frame, we then wait 33 ms.4 If the user hits a key during
that time, we will exit the read loop. Otherwise, 33 ms will pass and we will execute
the loop again. On exit, all the allocated data is automatically released when it goes
out of scope.

Moving Around
Now it’s time to tinker around, enhance our toy programs, and explore a little more
of the available functionality. The first thing we might notice about the video player
in Example 2-3 is that users have no way to move around quickly within the video. So
our next task is to add a slider trackbar, which will give users this ability. For more
control, we will also allow the user to single-step the video by pressing the S key and
to go into run mode by pressing the R key, and whenever the user jumps to a new
location in the video with the trackbar, we’ll pause there in single-step mode.

The HighGUI toolkit provides a number of simple instruments for working with
images and video beyond the simple display functions we have just demonstrated.
One especially useful mechanism is the aforementioned trackbar, which enables users
to jump easily from one part of a video to another. To create a trackbar, we call
cv::createTrackbar() and indicate which window we would like the trackbar to
appear in. In order to obtain the desired functionality, we need a callback that will
perform the relocation. Example 2-4 gives the details.

Example 2-4. Adding a trackbar slider to the basic viewer window for moving around
within the video file

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <fstream>

using namespace std;

int g_slider_position = 0;
int g_run = 1, g_dontset = 0; //start out in single step mode
cv::VideoCapture g_cap;

void onTrackbarSlide(int pos, void *) {

 g_cap.set(cv::CAP_PROP_POS_FRAMES, pos);

Moving Around | 27

 if(!g_dontset)
 g_run = 1;
 g_dontset = 0;

}

int main(int argc, char** argv) {

 cv::namedWindow("Example2_4", cv::WINDOW_AUTOSIZE);
 g_cap.open(string(argv[1]));
 int frames = (int) g_cap.get(cv::CAP_PROP_FRAME_COUNT);
 int tmpw = (int) g_cap.get(cv::CAP_PROP_FRAME_WIDTH);
 int tmph = (int) g_cap.get(cv::CAP_PROP_FRAME_HEIGHT);
 cout << "Video has " << frames << " frames of dimensions("
 << tmpw << ", " << tmph << ")." << endl;

 cv::createTrackbar("Position", "Example2_4", &g_slider_position, frames,
 onTrackbarSlide);

 cv::Mat frame;
 for(;;) {

 if(g_run != 0) {

 g_cap >> frame; if(frame.empty()) break;
 int current_pos = (int)g_cap.get(cv::CAP_PROP_POS_FRAMES);
 g_dontset = 1;

 cv::setTrackbarPos("Position", "Example2_4", current_pos);
 cv::imshow("Example2_4", frame);

 g_run-=1;

 }

 char c = (char) cv::waitKey(10);
 if(c == 's') // single step
 {g_run = 1; cout << "Single step, run = " << g_run << endl;}
 if(c == 'r') // run mode
 {g_run = -1; cout << "Run mode, run = " << g_run <<endl;}
 if(c == 27)
 break;

 }
 return(0);

}

In essence, the strategy is to add a global variable to represent the trackbar position
and then add a callback that updates this variable and relocates the read position in

28 | Chapter 2: Introduction to OpenCV

5 Note that some AVI and mpeg encodings do not allow you to move backward in the video.

the video. One call creates the trackbar and attaches the callback, and we are off and
running.5 Let’s look at the details starting with the global variables.

int g_slider_position = 0;
int g_run = 1;
int g_dontset = 0; // start out in single-step mode
VideoCapture g_cap;

First we define a global variable, g_slider_position, to keep the trackbar slider posi‐
tion state. The callback will need access to the capture object g_cap, so we promote
that to a global variable as well. Because we are considerate developers and like our
code to be readable and easy to understand, we adopt the convention of adding a
leading g_ to any global variable. We also instantiate another global variable, g_run,
which displays new frames as long it is different from zero. A positive number indi‐
cates how many frames are displayed before stopping; a negative number means the
system runs in continuous video mode.

To avoid confusion, when the user clicks on the trackbar to jump to a new location in
the video, we’ll leave the video paused there in the single-step state by setting g_run =
1. This, however, brings up a subtle problem: as the video advances, we’d like the
slider trackbar’s position in the display window to advance according to our location
in the video. We do this by having the main program call the trackbar callback func‐
tion to update the slider’s position each time we get a new video frame. However, we
don’t want these programmatic calls to the trackbar callback to put us into single-step
mode. To avoid this, we introduce a final global variable, g_dontset, to allow us to
update the trackbar’s position without triggering single-step mode.

void onTrackbarSlide(int pos, void *) {

 g_cap.set(cv::CAP_PROP_POS_FRAMES, pos);

 if(!g_dontset)
 g_run = 1;
 g_dontset = 0;

}

Now we define a callback routine to be used when the user slides the trackbar. This
routine will be passed a 32-bit integer, pos, which will be the new trackbar position.
Inside this callback, we use the new requested position in g_cap.set() to actually
advance the video playback to the new position. The if() statement sets the program
to go into single-step mode after the next new frame comes in, but only if the callback
was triggered by a user click, not if it was called from the main function (which sets
g_dontset).

Moving Around | 29

6 Because HighGUI is highly civilized, when a new video position is requested, it will automatically handle
issues such as the possibility that the frame we have requested is not a keyframe; it will start at the previous
keyframe and fast-forward up to the requested frame without us having to fuss with such details.

7 Because HighGUI is a lightweight, easy-to-use toolkit, cv::createTrackbar() does not distinguish between
the name of the trackbar and the label that actually appears on the screen next to the trackbar. You may
already have noticed that cv::namedWindow() likewise does not distinguish between the name of the window
and the label that appears on the window in the GUI.

The call to g_cap.set() is one we will see often in the future, along with its counter‐
part g_cap.get(). These routines allow us to configure (or query, in the latter case)
various properties of the cv::VideoCapture object. In this case, we pass the argu‐
ment cv::CAP_PROP_POS_FRAMES, which indicates that we would like to set the read
position in units of frames.6

int frames = (int) g_cap.get(cv::CAP_PROP_FRAME_COUNT);
int tmpw = (int) g_cap.get(cv::CAP_PROP_FRAME_WIDTH);
int tmph = (int) g_cap.get(cv::CAP_PROP_FRAME_HEIGHT);
cout << "Video has " << frames << " frames of dimensions("
 << tmpw << ", " << tmph << ")." << endl;

The core of the main program is the same as in Example 2-3, so we’ll focus on what
we’ve added. The first difference after opening the video is that we use g_cap.get()
to determine the number of frames in the video and the width and height of the video
images. These numbers are printed out. We’ll need the number of frames in the video
to calibrate the slider trackbar (in the next step).

createTrackbar("Position", "Example2_4", &g_slider_position, frames,
 onTrackbarSlide);

Next we create the trackbar itself. The function cv::createTrackbar() allows us to
give the trackbar a label7 (in this case, Position) and to specify a window in which to
put the trackbar. We then provide a variable that will be bound to the trackbar, the
maximum value of the trackbar (the number of frames in the video), and a callback
(or NULL if we don’t want one) for when the slider is moved.

if(g_run != 0) {

 g_cap >> frame; if(!frame.data) break;
 int current_pos = (int)g_cap.get(cv::CAP_PROP_POS_FRAMES);
 g_dontset = 1;

 cv::setTrackbarPos("Position", "Example2_4", current_pos);
 cv::imshow("Example2_4", frame);

 g_run-=1;

}

30 | Chapter 2: Introduction to OpenCV

In the while loop, in addition to reading and displaying the video frame, we also get
our current position in the video, set the g_dontset so that the next trackbar callback
will not put us into single-step mode, and then invoke the trackbar callback to update
the position of the slider trackbar displayed to the user. The global g_run is decre‐
mented, which has the effect of either keeping us in single-step mode or letting the
video run depending on its prior state set by a user keypress, as we’ll see next.

char c = (char) cv::waitKey(10);
if(c == 's') // single step
 {g_run = 1; cout << "Single step, run = " << g_run << endl;}
if(c == 'r') // run mode
 {g_run = -1; cout << "Run mode, run = " << g_run <<endl;}
if(c == 27)
 break;

At the bottom of the while loop, we look for keyboard input from the user. If S has
been pressed, we go into single-step mode (g_run is set to 1, which allows reading of
a single frame). If R is pressed, we go into continuous video mode (g_run is set to -1
and further decrementing leaves it negative for any conceivable video size). Finally, if
Esc is pressed, the program will terminate. Note again, for short programs, we’ve
omitted the step of cleaning up the window storage using cv::destroyWindow().

A Simple Transformation
Great, so now you can use OpenCV to create your own video player, which will not
be much different from countless video players out there already. But we are interes‐
ted in computer vision, so we want to do some of that. Many basic vision tasks
involve the application of filters to a video stream. We will modify the program we
already have to do a simple operation on every frame of the video as it plays.

One particularly simple operation is smoothing an image, which effectively reduces
the information content of the image by convolving it with a Gaussian or other simi‐
lar kernel function. OpenCV makes such convolutions exceptionally easy to do. We
can start by creating a new window called "Example4-out", where we can display the
results of the processing. Then, after we have called cv::imshow() to display
the newly captured frame in the input window, we can compute and display the
smoothed image in the output window. See Example 2-5.

Example 2-5. Loading and then smoothing an image before it is displayed on the screen

#include <opencv2/opencv.hpp>

void example2_5(const cv::Mat & image) {

 // Create some windows to show the input
 // and output images in.

A Simple Transformation | 31

 //
 cv::namedWindow("Example2_5-in", cv::WINDOW_AUTOSIZE);
 cv::namedWindow("Example2_5-out", cv::WINDOW_AUTOSIZE);

 // Create a window to show our input image
 //
 cv::imshow("Example2_5-in", image);

 // Create an image to hold the smoothed output
 //
 cv::Mat out;

 // Do the smoothing
 // (Note: Could use GaussianBlur(), blur(), medianBlur() or bilateralFilter().)
 //
 cv::GaussianBlur(image, out, cv::Size(5,5), 3, 3);
 cv::GaussianBlur(out, out, cv::Size(5,5), 3, 3);

 // Show the smoothed image in the output window
 //
 cv::imshow("Example2_5-out", out);

 // Wait for the user to hit a key, windows will self destruct
 //
 cv::waitKey(0);

}

The first call to cv::imshow() is no different than in our previous example. In the
next call, we allocate another image structure. Next, the C++ object cv::Mat makes
life simpler for us; we just instantiate an output matrix, out, and it will automatically
resize/reallocate and deallocate itself as necessary as it is used. To make this point
clear, we use it in two consecutive calls to cv::GaussianBlur(). In the first call, the
input image is blurred by a 5 × 5 Gaussian convolution filter and written to out. The
size of the Gaussian kernel should always be given in odd numbers since the Gaus‐
sian kernel (specified here by cv::Size(5,5)) is computed at the center pixel in that
area. In the next call to cv::GaussianBlur(), out is used as both the input and out‐
put since temporary storage is assigned for us in this case. The resulting double-
blurred image is displayed, and the routine then waits for any user keyboard input
before terminating and cleaning up allocated data as it goes out of scope.

A Not-So-Simple Transformation
That was pretty good, and we are learning to do more interesting things. In
Example 2-5, we used Gaussian blurring for no particular purpose. We will now use a
function that uses Gaussian blurring to downsample an image by a factor of 2 [Rose‐
nfeld80]. If we downsample the image several times, we form a scale space (also

32 | Chapter 2: Introduction to OpenCV

known as an image pyramid) that is commonly used in computer vision to handle the
changing scales in which a scene or object is observed.

For those who know some signal processing and the Nyquist-Shannon Sampling
Theorem [Shannon49], downsampling a signal (in this case, creating an image where
we are sampling every other pixel) is equivalent to convolving with a series of delta
functions (think of these as “spikes”). Such sampling introduces high frequencies into
the resulting signal (image). To avoid this, we want to first run a high-pass filter over
the signal to band-limit its frequencies so that they are all below the sampling fre‐
quency. In OpenCV, this Gaussian blurring and downsampling is accomplished by
the function cv::pyrDown(), which we implement in Example 2-6.

Example 2-6. Using cv::pyrDown() to create a new image that is half the width and
height of the input image

#include <opencv2/opencv.hpp>

int main(int argc, char** argv) {

 cv::Mat img1,img2;

 cv::namedWindow("Example1", cv::WINDOW_AUTOSIZE);
 cv::namedWindow("Example2", cv::WINDOW_AUTOSIZE);

 img = cv::imread(argv[1]);
 cv::imshow("Example1", img1);

 cv::pyrDown(img1, img2);
 cv::imshow("Example2", img2);

 cv::waitKey(0);

 return 0;

};

Let’s now look at a similar but slightly more complex example involving the Canny
edge detector [Canny86] cv::Canny(); see Example 2-7. In this case, the edge detector
generates an image that is the full size of the input image but needs only a single-
channel image to write to, so we convert to a grayscale, single-channel image first
using cv::cvtColor() with the flag to convert blue, green, red (BGR) images to gray‐
scale, cv::COLOR_BGR2GRAY.

A Not-So-Simple Transformation | 33

Example 2-7. The Canny edge detector writes its output to a single-channel (grayscale)
image

#include <opencv2/opencv.hpp>

int main(int argc, char** argv) {

 cv::Mat img_rgb, img_gry, img_cny;

 cv::namedWindow("Example Gray", cv::WINDOW_AUTOSIZE);
 cv::namedWindow("Example Canny", cv::WINDOW_AUTOSIZE);

 img_rgb = cv::imread(argv[1]);

 cv::cvtColor(img_rgb, img_gry, cv::COLOR_BGR2GRAY);
 cv::imshow("Example Gray", img_gry);

 cv::Canny(img_gry, img_cny, 10, 100, 3, true);
 cv::imshow("Example Canny", img_cny);

 cv::waitKey(0);

}

This allows us to string together various operators quite easily. For example, if we
wanted to shrink the image twice and then look for lines that were present in the
twice-reduced image, we could proceed as in Example 2-8.

Example 2-8. Combining the pyramid down operator (twice) and the Canny
subroutine in a simple image pipeline

cv::cvtColor(img_rgb, img_gry, cv::BGR2GRAY);
cv::pyrDown(img_gry, img_pyr);
cv::pyrDown(img_pyr, img_pyr2);
cv::Canny(img_pyr2, img_cny, 10, 100, 3, true);
// do whatever with 'img_cny'
//
...

In Example 2-9, we show a simple way to read and write pixel values from
Example 2-8.

Example 2-9. Getting and setting pixels in Example 2-8

int x = 16, y = 32;
cv::Vec3b intensity = img_rgb.at< cv::Vec3b >(y, x);

// (Note: We could write img_rgb.at< cv::Vec3b >(x,y)[0])
//

34 | Chapter 2: Introduction to OpenCV

uchar blue = intensity[0];
uchar green = intensity[1];
uchar red = intensity[2];

std::cout << "At (x,y) = (" << x << ", " << y <<
 "): (blue, green, red) = (" <<
 (unsigned int)blue <<
 ", " << (unsigned int)green << ", " <<
 (unsigned int)red << ")" << std::endl;

std::cout << "Gray pixel there is: " <<
 (unsigned int)img_gry.at<uchar>(y, x) << std::endl;

x /= 4; y /= 4;
std::cout << "Pyramid2 pixel there is: " <<
 (unsigned int)img_pyr2.at<uchar>(y, x) << std::endl;

img_cny.at<uchar>(x, y) = 128; // Set the Canny pixel there to 128

Input from a Camera
“Vision” can mean many things in the world of computers. In some cases, we are
analyzing still frames loaded from elsewhere. In other cases, we are analyzing video
that is being read from disk. In still other cases, we want to work with real-time data
streaming in from some kind of camera device.

OpenCV—or more specifically, the HighGUI portion of the OpenCV library—pro‐
vides us with an easy way to handle this situation. The method is analogous to how
we read videos from disk since the cv::VideoCapture object works the same for files
on disk or from a camera. For the former, you give it a path/filename, and for the
latter, you give it a camera ID number (typically 0 if only one camera is connected to
the system). The default value is –1, which means “just pick one”; naturally, this
works quite well when there is only one camera to pick (see Chapter 8 for more
details). Video capture from a file or from a camera is demonstrated in Example 2-10.

Example 2-10. The same object can load videos from a camera or a file

#include <opencv2/opencv.hpp>
#include <iostream>

int main(int argc, char** argv) {

 cv::namedWindow("Example2_10", cv::WINDOW_AUTOSIZE);

 cv::VideoCapture cap;
 if (argc==1) {
 cap.open(0); // open the first camera
 } else {
 cap.open(argv[1]);

Input from a Camera | 35

 }
 if(!cap.isOpened()) { // check if we succeeded
 std::cerr << "Couldn't open capture." << std::endl;
 return -1;
 }

 // The rest of program proceeds as in Example 2-3
 ...

In Example 2-10, if a filename is supplied, OpenCV opens that file just like in
Example 2-3, and if no filename is given, it attempts to open camera zero (0). We
have added a check to confirm that something actually opened; if it didn’t, an error is
reported.

Writing to an AVI File
In many applications, we will want to record streaming input or even disparate cap‐
tured images to an output video stream, and OpenCV provides a straightforward
method for doing this. Just as we are able to create a capture device that allows us to
grab frames one at a time from a video stream, we are able to create a writer device
that allows us to place frames one by one into a video file. The object that allows us to
do this is cv::VideoWriter.

Once this call has been made, we may stream each frame to the cv::VideoWriter
object, and finally call its cv::VideoWriter.release() method when we are done.
Just to make things more interesting, Example 2-11 describes a program that opens a
video file, reads the contents, converts them to a log-polar format (something like
what your eye actually sees, as described in Chapter 11), and writes out the log-polar
image to a new video file.

Example 2-11. A complete program to read in a color video and write out the log-polar-
transformed video

#include <opencv2/opencv.hpp>
#include <iostream>

int main(int argc, char* argv[]) {

 cv::namedWindow("Example2_11", cv::WINDOW_AUTOSIZE);
 cv::namedWindow("Log_Polar", cv::WINDOW_AUTOSIZE);

 // (Note: could capture from a camera by giving a camera id as an int.)
 //
 cv::VideoCapture capture(argv[1]);

 double fps = capture.get(cv::CAP_PROP_FPS);
 cv::Size size(
 (int)capture.get(cv::CAP_PROP_FRAME_WIDTH),

36 | Chapter 2: Introduction to OpenCV

 (int)capture.get(cv::CAP_PROP_FRAME_HEIGHT)
);

 cv::VideoWriter writer;
 writer.open(argv[2], CV_FOURCC('M','J','P','G'), fps, size);

 cv::Mat logpolar_frame, bgr_frame;
 for(;;) {

 capture >> bgr_frame;
 if(bgr_frame.empty()) break; // end if done

 cv::imshow("Example2_11", bgr_frame);

 cv::logPolar(
 bgr_frame, // Input color frame
 logpolar_frame, // Output log-polar frame
 cv::Point2f(// Centerpoint for log-polar transformation
 bgr_frame.cols/2, // x
 bgr_frame.rows/2 // y
),
 40, // Magnitude (scale parameter)
 cv::WARP_FILL_OUTLIERS // Fill outliers with 'zero'
);

 cv::imshow("Log_Polar", logpolar_frame);
 writer << logpolar_frame;

 char c = cv::waitKey(10);
 if(c == 27) break; // allow the user to break out
 }

 capture.release();
}

Looking over this program reveals mostly familiar elements. We open one video and
read some properties (frames per second, image width and height) that we’ll need to
open a file for the cv::VideoWriter object. We then read the video frame by frame
from the cv::VideoReader object, convert the frame to log-polar format, and write
the log-polar frames to this new video file one at a time until there are none left or
until the user quits by pressing Esc. Then we close up.

The call to the cv::VideoWriter object contains several parameters that we should
understand. The first is just the filename for the new file. The second is the video
codec with which the video stream will be compressed. There are countless such
codecs in circulation, but whichever codec you choose must be available on your
machine (codecs are installed separately from OpenCV). In our case, we choose the
relatively popular MJPG codec; we indicate this choice to OpenCV by using the
macro CV_FOURCC(), which takes four characters as arguments. These characters con‐

Writing to an AVI File | 37

stitute the “four-character code” of the codec, and every codec has such a code. The
four-character code for motion jpeg is “MJPG,” so we specify that as
CV_FOURCC(’M’,’J’,’P’,’G’). The next two arguments are the replay frame rate
and the size of the images we will be using. In our case, we set these to the values we
got from the original (color) video.

Summary
Before moving on to the next chapter, we should take a moment to take stock of
where we are and look ahead to what is coming. We have seen that the OpenCV API
provides us with a variety of easy-to-use tools for reading and writing still images and
videos from and to files along with capturing video from cameras. We have also seen
that the library contains primitive functions for manipulating these images. What we
have not yet seen are the powerful elements of the library, which allow for more
sophisticated manipulation of the entire set of abstract data types that are important
in solving practical vision problems.

In the next few chapters, we will delve more deeply into the basics and come to
understand in greater detail both the interface-related functions and the image data
types. We will investigate the primitive image manipulation operators and, later,
some much more advanced ones. Thereafter, we will be ready to explore the many
specialized services that the API provides for tasks as diverse as camera calibration,
tracking, and recognition. Ready? Let’s go!

Exercises
Download and install OpenCV if you have not already done so. Systematically go
through the directory structure. Note in particular the docs directory, where you can
load index.htm, which links to the main documentation of the library. Further
explore the main areas of the library. The core module contains the basic data struc‐
tures and algorithms, imgproc contains the image processing and vision algorithms,
ml includes algorithms for machine learning and clustering, and highgui contains the
I/O functions. Check out the .../samples/cpp directory, where many useful examples
are stored.

1. Using the install and build instructions in this book or at http://opencv.org, build
the library in both the debug and the release versions. This may take some time,
but you will need the resulting library and dll files. Make sure you set the cmake
file to build the samples .../opencv/samples/ directory.

2. Go to where you built the .../opencv/samples/ directory (we build in .../trunk/
eclipse_build/bin) and look for lkdemo.cpp (this is an example motion-tracking
program). Attach a camera to your system and run the code. With the display
window selected, type r to initialize tracking. You can add points by clicking on

38 | Chapter 2: Introduction to OpenCV

http://opencv.org

video positions with the mouse. You can also switch to watching only the points
(and not the image) by typing n. Typing n again will toggle between “night” and
“day” views.

3. Use the capture and store code in Example 2-11 together with the PyrDown()
code of Example 2-6 to create a program that reads from a camera and stores
downsampled color images to disk.

4. Modify the code in Exercise 3 and combine it with the window display code in
Example 2-2 to display the frames as they are processed.

5. Modify the program of Exercise 4 with a trackbar slider control from
Example 2-4 so that the user can dynamically vary the pyramid downsampling
reduction level by factors of between 2 and 8. You may skip writing this to disk,
but you should display the results.

Exercises | 39

CHAPTER 3

Getting to Know OpenCV Data Types

The Basics
In the next few chapters, we will see all of the basic data types of OpenCV, from the
primitives to the larger structures that are used to handle arrays such as images and
large matrices. Along the way, we will also cover the vast menagerie of functions that
allow us to manipulate this data in a host of useful ways. In this chapter, we will start
out by learning about the basic data types and will cover some useful utility functions
that the library provides.

OpenCV Data Types
OpenCV has many data types, which are designed to make the representation and
handling of important computer vision concepts relatively easy and intuitive. At the
same time, many algorithm developers require a set of relatively powerful primitives
that can be generalized or extended for their particular needs. This library attempts to
address both of these needs through the use of templates for fundamental data types,
and specializations of those templates that make everyday operations easier.

From an organizational perspective, it is convenient to divide the data types into
three major categories. First, the basic data types are those that are assembled directly
from C++ primitives (int, float, etc.). These types include simple vectors and matri‐
ces, as well as representations of simple geometric concepts like points, rectangles,
sizes, and the like. The second category contains helper objects. These objects repre‐
sent more abstract concepts such as the garbage-collecting pointer class, range
objects used for slicing, and abstractions such as termination criteria. The third cate‐
gory is what might be called large array types. These are objects whose fundamental
purpose is to contain arrays or other assemblies of primitives or, more often, the
basic data types. The star example of this category is the cv::Mat class, which is used

41

1 Readers unfamiliar with the Standard Template Library can find many excellent references online. In addi‐
tion, the authors highly recommend Nicolai M. Josuttis’s classic The C++ Standard Library, Second Edition: A
Tutorial and Reference (Addison-Wesley, 2012) or Scott Meyers’ excellent Effective STL: 50 Specific Ways to
Improve Your Use of the Standard Template Library (Addison-Wesley, 2001).

2 Actually, this is an oversimplification that we will clear up a little later in the chapter. In fact, cv::Vec<> is a
vector container for anything, and uses templating to create this functionality. As a result, cv::Vec<> can
contain other class objects, either from OpenCV or elsewhere. In most usages, however, cv::Vec is used as a
container for C primitive types like int or float.

to represent arbitrary-dimensional arrays containing arbitrary basic elements.
Objects such as images are specialized uses of the cv::Mat class, but—unlike in ear‐
lier versions of OpenCV (i.e., before version 2.1)—such specific use does not require
a different class or type. In addition to cv::Mat, this category contains related objects
such as the sparse matrix cv::SparseMat class, which is more naturally suited to
nondense data such as histograms. The cv::Mat and cv::SparseMat classes will be
the subjects of the next chapter.

In addition to these types, OpenCV also makes heavy use of the Standard Template
Library (STL). OpenCV particularly relies on the vector class, and many OpenCV
library functions now have vector template objects in their argument lists. We will
not cover STL in this book,1 other than as necessary to explain relevant functionality.
If you are already comfortable with STL, many of the template mechanisms used
“under the hood” in OpenCV will be familiar to you.

Overview of the Basic Types
The most straightforward of the basic data types is the template class cv::Vec<>, a
container class for primitives,2 which we will refer to as the fixed vector classes. Why
not just use STL classes? The key difference is that the fixed vector classes are
intended for small vectors whose dimensions are known at compile time. This allows
for particularly efficient code to handle small common operations. What “small”
means in practice is that if you have more than just a few elements, you are probably
using the wrong class. (In fact, as of version 2.2, this number cannot exceed nine in
any case.) In the next chapter, we will look at the cv::Mat class, which is the right
way to handle big arrays of any number of dimensions, but for now, think of the fixed
vector classes as being handy and speedy for little guys.

Even though cv::Vec<> is a template, you will not tend to see or use it in that form
most of the time. Instead, there are aliases (typedefs) for common instantiations of
the cv::Vec<> template. They have names like cv::Vec2i, cv::Vec3i, and cv::Vec4d
(for a two-element integer vector, a three-element integer vector, or a four-element
double-precision floating-point vector, respectively). In general, anything of the form

42 | Chapter 3: Getting to Know OpenCV Data Types

3 The six data types referred to here have the following conventional abbreviation in the library: b = unsigned
char, w = unsigned short, s = short, i = int, f = float, d = double.

cv::Vec{2,3,4,6}{b,w,s,i,f,d} is valid for any combination of two to four dimensions
and the six data types.3

In addition to the fixed vector classes, there are also fixed matrix classes. They are
associated with the template cv::Matx<>. Just like the fixed vector classes,
cv::Matx<> is not intended to be used for large arrays, but rather is designed for the
handling of certain specific small matrix operations. In computer vision, there are a
lot of 2 × 2 or 3 × 3 matrices around, and a few 4 × 4, which are used for various
transformations. cv::Matx<> is designed to hold these sorts of objects. As with
cv::Vec<>, cv::Matx<> is normally accessed through aliases of the form
cv::Matx{1,2,3,4,6}{1,2,3,4,6}{f,d}. It is important to notice that with the fixed matrix
classes (like the fixed vector classes, but unlike next chapter’s cv::Mat), the dimen‐
sionality of the fixed matrix classes must be known at compile time. Of course, it is
precisely this knowledge that makes operations with the fixed matrix classes highly
efficient and eliminates many dynamic memory allocation operations.

Closely related to the fixed vector classes are the point classes, which are containers
for two or three values of one of the primitive types. The point classes are derived
from their own template, so they are not directly descended from the fixed vector
classes, but they can be cast to and from them. The main difference between the point
classes and the fixed vector classes is that their members are accessed by named vari‐
ables (mypoint.x, mypoint.y, etc.) rather than by a vector index (myvec[0],
myvec[1], etc.). As with cv::Vec<>, the point classes are typically invoked via aliases
for the instantiation of an appropriate template. Those aliases have names like
cv::Point2i, cv::Point2f, and cv::Point2d, or cv::Point3i, cv::Point3f, and
cv::Point3d.

The class cv::Scalar is essentially a four-dimensional point. As with the point
classes, cv::Scalar is actually associated with a template that can generate an arbi‐
trary four-component vector, but the keyword cv::Scalar specifically is aliased to a
four-component vector with double-precision components. Unlike the point classes,
the elements of a cv::Scalar object are accessed with an integer index, the same as
cv::Vec<>. This is because cv::Scalar is directly derived from an instantiation of
cv::Vec<> (specifically, from cv::Vec<double,4>).

Next on our tour are cv::Size and cv::Rect. As with the point classes, these two are
derived from their own templates. cv::Size is mainly distinguished by having data
members width and height rather than x and y, while cv::Rect has all four. The
class cv::Size is actually an alias for cv::Size2i, which is itself an alias of a more

OpenCV Data Types | 43

general template in the case of width and height being integers. For floating-point
values of width and height, use the alias cv::Size2f. Similarly, cv::Rect is an alias
for the integer form of rectangle. There is also a class to represent a rectangle that is
not axis-aligned. It is called cv::RotatedRect and contains a cv::Point2f called cen
ter, a cv::Size2f called size, and one additional float called angle.

Basic Types: Getting Down to Details
Each of the basic types is actually a relatively complicated object, supporting its own
interface functions, overloaded operators, and the like. In this section, we will take a
somewhat more encyclopedic look at what each type offers, and how some of the
otherwise seemingly similar types differ from one another.

As we go over these classes, we will try to hit the high points of their interfaces, but
not get into every gory detail. Instead, we will provide examples that should convey
what you can and can’t do with these objects. For the low-level details, you should
consult .../opencv2/core/core.hpp.

The point classes
Of the OpenCV basic types, the point classes are probably the simplest. As we men‐
tioned earlier, these are implemented based on a template structure, such that there
can be points of any type: integer, floating-point, and so on. There are actually two
such templates, one for two-dimensional and one for three-dimensional points. The
big advantage of the point classes is that they are simple and have very little overhead.
Natively, they do not have a lot of operations defined on them, but they can be cast to
somewhat more generalized types, such as the fixed vector classes or the fixed matrix
classes (discussed later), when needed.

In most programs, the point classes are instantiated via aliases that take forms like
cv::Point2i or cv::Point3f, with the last letter indicating the desired primitive
from which the point is to be constructed. (Here, b is an unsigned character, s is a
short integer, i is a 32-bit integer, f is a 32-bit floating-point number, and d is a 64-
bit floating-point number.)

Table 3-1 is the (relatively short) list of functions natively supported by the point
classes. Note that there are several very important operations that are supported, but
they are supported indirectly through implicit casting to the fixed vector classes
(described in “The fixed vector classes” on page 51). These operations notably contain

44 | Chapter 3: Getting to Know OpenCV Data Types

4 You might have expected us to use the word scalar here, but we avoided doing so because cv::Scalar is an
existing class in the library. As you will see shortly, a cv::Scalar in OpenCV is (somewhat confusingly) an
array of four numbers, approximately equivalent to a cv::Vec with four elements! In this context, the word
singleton can be understood to mean “a single object of whatever type the vector is an array of.”

all of the vector and singleton4 overloaded algebraic operators and comparison
operators.

Table 3-1. Operations supported directly by the point classes

Operation Example
Default constructors cv::Point2i p;

cv::Point3f p;

Copy constructor cv::Point3f p2(p1);

Value constructors cv::Point2i p(x0, x1);
cv::Point3d p(x0, x1, x2);

Cast to the fixed vector
classes

(cv::Vec3f) p;

Member access p.x; p.y; // and for three-dimensional
 // point classes: p.z

Dot product float x = p1.dot(p2)

Double-precision dot product double x = p1.ddot(p2)

Cross product p1.cross(p2) // (for three-dimensional point
 // classes only)

Query if point p is inside
rectangle r

p.inside(r) // (for two-dimensional point
 // classes only)

These types can be cast to and from the old C interface types CvPoint and
CvPoint2D32f. In cases in which a floating-point-valued instance of one of the point
classes is cast to CvPoint, the values will automatically be rounded.

The cv::Scalar class

cv::Scalar is really a four-dimensional point class. Like the others, it is actually
associated with a template class, but the alias for accessing it returns an instantiation
of that template in which all of the members are double-precision floating-point
numbers. The cv::Scalar class also has some special member functions associated
with uses of four-component vectors in computer vision. Table 3-2 lists the opera‐
tions supported by cv::Scalar.

OpenCV Data Types | 45

Table 3-2. Operations supported directly by cv::Scalar

Operation Example
Default constructors cv::Scalar s;

Copy constructor cv::Scalar s2(s1);

Value constructors cv::Scalar s(x0);
cv::Scalar s(x0, x1, x2, x3);

Element-wise multiplication s1.mul(s2);

(Quaternion) conjugation s.conj(); // (returns cv::Scalar(s0,-s1,-s2,-s2))

(Quaternion) real test s.isReal(); // (returns true iff s1==s2==s3==0)

You will notice that for cv::Scalar, the operation “cast to the fixed vector classes”
does not appear in Table 3-2 (as it did in Table 3-1). This is because, unlike the point
classes, cv::Scalar inherits directly from an instantiation of the fixed vector class
template. As a result, it inherits all of the vector algebra operations, member access
functions (i.e., operator[]), and other properties from the fixed vector classes. We
will get to that class later, but for now, just keep in mind that cv::Scalar is short‐
hand for a four-dimensional double-precision vector that has a few special member
functions attached that are useful for various kinds of four-vectors.

The cv::Scalar class can be freely cast to and from the old C interface CvScalar
type.

The size classes
The size classes are, in practice, similar to the corresponding point classes, and can be
cast to and from them. The primary difference between the two is that the point
classes’ data members are named x and y, while the corresponding data members in
the size classes are named width and height. The three aliases for the size classes are
cv::Size, cv::Size2i, and cv::Size2f. The first two of these are equivalent and
imply integer size, while the last is for 32-bit floating-point sizes. As with the point
classes, the size classes can be cast to and from the corresponding old-style OpenCV
classes (in this case, CvSize and CvSize2D32f). Table 3-3 lists the operations sup‐
ported by the size classes.

Table 3-3. Operations supported directly by the size classes

Operation Example
Default constructors cv::Size sz;

cv::Size2i sz;
cv::Size2f sz;

Copy constructor cv::Size sz2(sz1);

46 | Chapter 3: Getting to Know OpenCV Data Types

Operation Example
Value constructors cv::Size2f sz(w, h);

Member access sz.width; sz.height;

Compute area sz.area();

Unlike the point classes, the size classes do not support casting to the fixed vector
classes. This means that the size classes have more restricted utility. On the other
hand, the point classes and the fixed vector classes can be cast to the size classes
without any problem.

The cv::Rect class

The rectangle classes include the members x and y of the point class (representing the
upper-left corner of the rectangle) and the members width and height of the size
class (representing the rectangle’s size). The rectangle classes, however, do not inherit
from the point or size classes, and so in general they do not inherit operators from
them (see Table 3-4).

Table 3-4. Operations supported directly by cv::Rect

Operation Example
Default constructors cv::Rect r;

Copy constructor cv::Rect r2(r1);

Value constructors cv::Rect(x, y, w, h);

Construct from origin and size cv::Rect(p, sz);

Construct from two corners cv::Rect(p1, p2);

Member access r.x; r.y; r.width; r.height;

Compute area r.area();

Extract upper-left corner r.tl();

Extract bottom-right corner r.br();

Determine if point p is inside
rectangle r

r.contains(p);

Cast operators and copy constructors exist to allow cv::Rect to be computed from
or cast to the old-style cv::CvRect type as well. cv::Rect is actually an alias for a rec‐
tangle template instantiated with integer members.

OpenCV Data Types | 47

As Table 3-5 shows, cv::Rect also supports a variety of overloaded operators that
can be used for the computation of various geometrical properties of two rectangles
or a rectangle and another object.

Table 3-5. Overloaded operators that take objects of type cv::Rect

Operation Example
Intersection of rectangles r1
and r2

cv::Rect r3 = r1 & r2;
r1 &= r2;

Minimum area rectangle
containing rectangles r1 and
r2

cv::Rect r3 = r1 | r2;
r1 |= r2;

Translate rectangle r by an
amount x

cv::Rect rx = r + x;
r += x;

Enlarge a rectangle r by an
amount given by size s

cv::Rect rs = r + s;
r += s;

Compare rectangles r1 and r2
for exact equality

bool eq = (r1 == r2);

Compare rectangles r1 and r2
for inequality

bool ne = (r1 != r2);

The cv::RotatedRect class

The cv::RotatedRect class is one of the few classes in the C++ OpenCV interface
that is not a template underneath. Instead, it is a container that holds a cv::Point2f
called center, a cv::Size2f called size, and one additional float called angle, with
the latter representing the rotation of the rectangle around center. One very impor‐
tant difference between cv::RotatedRect and cv::Rect is the convention that a
cv::RotatedRect is located in “space” relative to its center, while the cv::Rect is
located relative to its upper-left corner. Table 3-6 lists the operations that are sup‐
ported directly by cv::RotatedRect.

Table 3-6. Operations supported directly by cv::RotatedRect

Operation Example
Default constructors cv::RotatedRect rr();

Copy constructor cv::RotatedRect rr2(rr1);

Construct from two corners cv::RotatedRect(p1, p2);

Value constructors; takes a
point, a size, and an angle

cv::RotatedRect rr(p, sz, theta) ;

Member access rr.center; rr.size; rr.angle;

Return a list of the corners rr.points(pts[4]);

48 | Chapter 3: Getting to Know OpenCV Data Types

5 At the time of writing, the relevant header file called core.hpp does not actually contain every possible combi‐
nation of these integers. For example, there is no 1 × 1 matrix alias, nor is there a 5 × 5. This may or may not
change in later releases, but you will pretty much never want the missing ones anyway. If you really do want
one of the odd ones, you can just instantiate the template yourself (e.g., cv::Matx<5,5,float>).

The fixed matrix classes
The fixed matrix classes are for matrices whose dimensions are known at compile
time (hence “fixed”). As a result, all memory for their data is allocated on the stack,
which means that they allocate and clean up quickly. Operations on them are fast,
and there are specially optimized implementations for small matrices (2 × 2, 3 × 3,
etc.). The fixed matrix classes are also central to many of the other basic types in the
C++ interface to OpenCV. The fixed vector class derives from the fixed matrix
classes, and other classes either derive from the fixed vector class (like cv::Scalar)
or they rely on casting to the fixed vector class for many important operations. As
usual, the fixed matrix classes are really a template. The template is called
cv::Matx<>, but individual matrices are usually allocated through aliases. The basic
form of such an alias is cv::Matx{1,2,...}{1,2,...}{f,d}, where the numbers can be any
number from one to six, and the trailing letter has the same meaning as with the pre‐
vious types.5

In general, you should use the fixed matrix classes when you are representing some‐
thing that is really a matrix with which you are going to do matrix algebra. If your
object is really a big data array, like an image or a huge list of points, the fixed matrix
classes are not the correct solution; you should be using cv::Mat (which we will get
to in the next chapter). Fixed matrix classes are for small matrices where you know
the size at compile time (e.g., a camera matrix). Table 3-7 lists the operations sup‐
ported by cv::Matx.

Table 3-7. Operations supported by cv::Matx

Operation Example
Default constructor cv::Matx33f m33f; cv::Matx43d m43d;

Copy constructor cv::Matx22d m22d(n22d);

Value constructors cv::Matx21f m(x0,x1); cv::Matx44d
m(x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15);

Matrix of identical elements m33f = cv::Matx33f::all(x);

Matrix of zeros m23d = cv::Matx23d::zeros();

Matrix of ones m16f = cv::Matx16f::ones();

Create a unit matrix m33f = cv::Matx33f::eye();

OpenCV Data Types | 49

Operation Example
Create a matrix that can hold
the diagonal of another

m31f = cv::Matx33f::diag(); // Create a matrix of
 // size 3-by-1 of floats

Create a matrix with
uniformly distributed entries

m33f = cv::Matx33f::randu(min, max);

Create a matrix with
normally distributed entries

m33f = cv::Matx33f::nrandn(mean, variance);

Member access m(i, j), m(i); // one argument for
 // one-dimensional matrices only

Matrix algebra m1 = m0; m0 * m1; m0 + m1; m0 – m1;

Singleton algebra m * a; a * m; m / a;

Comparison m1 == m2; m1 != m2;

Dot product m1.dot(m2); // (sum of element-wise
 // multiplications, precision of m)

Dot product m1.ddot(m2); // (sum of element-wise multiplications,
 // double precision)

Reshape a matrix m91f = m33f.reshape<9,1>();

Cast operators m44f = (Matx44f) m44d

Extract 2 × 2 submatrix at
(i, j)

m44f.get_minor<2, 2>(i, j);

Extract row i m14f = m44f.row(i);

Extract column j m41f = m44f.col(j);

Extract matrix diagonal m41f = m44f.diag();

Compute transpose n44f = m44f.t();

Invert matrix n44f = m44f.inv(method); // (default method is
 // cv::DECOMP_LU)

Solve linear system m31f = m33f.solve(rhs31f, method)
m32f = m33f.solve<2>(rhs32f, method); // (template forma);
 // default method is DECOMP_LU)

Per-element multiplication m1.mul(m2);

a The template form is used when the righthand side of the implied matrix equation has multiple columns. In this case, we are
essentially solving for k different systems at once. This value of k must be supplied as the template argument to solve<>(). It
will also determine the number of columns in the result matrix.

Note that many of the fixed matrix functions are static relative to the class (i.e., you
access them directly as members of the class rather than as members of a particular
object). For example, if you would like to construct a 3 × 3 identity matrix, you have a
handy class function for it: cv::Mat33f::eye(). Note that, in this example, eye()

50 | Chapter 3: Getting to Know OpenCV Data Types

does not need any arguments because it is a member of the class, and the class is
already a specialization of the cv::Matx<> template to 3 × 3.

The fixed vector classes
The fixed vector classes are derived from the fixed matrix classes. They are really just
convenience functions for cv::Matx<>. In the proper sense of C++ inheritance, it is
correct to say that the fixed vector template cv::Vec<> is a cv::Matx<> whose num‐
ber of columns is one. The readily available aliases for specific instantiations of
cv::Vec<> are of the form cv::Vec{2,3,4,6}{b,s,w,i,f,d}, where the last character has
the usual meanings (with the addition of w, which indicates an unsigned short).
Table 3-8 shows the operations cv::Vec supports.

Table 3-8. Operations supported by cv::Vec

Operation Example
Default constructor Vec2s v2s; Vec6f v6f; // etc...

Copy constructor Vec3f u3f(v3f);

Value constructors Vec2f v2f(x0,x1); Vec6d v6d(x0,x1,x2,x3,x4,x5);

Member access v4f[i]; v3w(j); // (operator() and operator[]
 // both work)

Vector cross-product v3f.cross(u3f);

The primary conveniences of the fixed vector classes are the ability to access elements
with a single ordinal, and a few specific additional functions that would not make
sense for a general matrix (e.g., cross product). We can see this in Table 3-8 by the
relatively small number of novel methods added to the large number of methods
inherited from the fixed matrix classes.

The complex number classes
One more class type should be included in the basic types: the complex number
classes. The OpenCV complex number classes are not identical to, but are compatible
with—and can be cast to and from—the classes associated with the STL complex
number class template complex<>. The most substantial difference between the
OpenCV and STL complex number classes is in member access. In the STL classes,
the real and imaginary parts are accessed through the member functions real() and
imag(), while in the OpenCV class, they are directly accessible as (public) member
variables re and im. Table 3-9 lists the operations supported by the complex number
classes.

OpenCV Data Types | 51

Table 3-9. Operations supported by the OpenCV complex number classes

Operation Example
Default constructor cv::Complexf z1; cv::Complexd z2;

Copy constructor cv::Complexf z2(z1);

Value constructors cv::Complexd z1(re0); cv::Complexd(re0,im1) ;

Copy constructor cv::Complexf u2f(v2f);

Member access z1.re; z1.im;

Complex conjugate z2 = z1.conj();

Like many basic types, the complex classes are aliases for underlying templates.
cv::Complexf and cv::Complexd are aliases for single- and double-precision com‐
plex numbers, respectively.

Helper Objects
In addition to the basic types and the big containers (which we will get to in the next
section), there is a family of helper objects that are important for controlling various
algorithms (such as termination criteria) or for doing various operations on the con‐
tainers (such as “ranges” or “slices”). There is also one very important object, the
“smart” pointer object cv::Ptr. Looking into cv::Ptr, we will examine the garbage-
collecting system, which is integral to the C++ interface to OpenCV. This system
frees us from worrying about the details of object allocation and deallocation in the
manner that was so onerous in the earlier C-based OpenCV interface (i.e., before ver‐
sion 2.1).

The cv::TermCriteria class
Many algorithms require a stopping condition to know when to quit. Generally, stop‐
ping criteria take the form of either some finite number of iterations that are allowed
(called COUNT or MAX_ITER) or some kind of error parameter that basically says, “if
you are this close, you can quit” (called EPS—short for epsilon, everyone’s favorite
tiny number). In many cases, it is desirable to have both of these at once so that if the
algorithm never gets “close enough,” it will still quit at some point.

The cv::TermCriteria objects encapsulate one or both of the stopping criteria so
that they can be passed conveniently to an OpenCV algorithm function. They have
three member variables—type, maxCount, and epsilon—which can be set directly
(they are public) or, more often, are just set by the constructor with the form TermCri
teria(int type, int maxCount, double epsilon). The variable type is set to
either cv::TermCriteria::COUNT or TermCriteria::EPS. You can also “or” (i.e., |)
the two together. The value cv::TermCriteria::COUNT is a synonym for cv::Term

52 | Chapter 3: Getting to Know OpenCV Data Types

6 The exact termination criteria are clearly algorithm dependent, but the documentation will always be clear as
to how a particular algorithm interprets epsilon.

7 If you are familiar with some of the more recent additions to the C++ standard, you will recognize a similarity
between the OpenCV cv::Ptr<> template and the smart_ptr<> template. Similarly, there is a smart pointer
shared_ptr<> in the Boost library. Ultimately, they all function more or less the same.

Criteria::MAX_ITER, so you can use that if you prefer. If the termination criterion
includes cv::TermCriteria::COUNT, then you are telling the algorithm to terminate
after maxCount iterations. If the termination criterion includes cv::TermCrite
ria::EPS, then you are telling the algorithm to terminate after some metric associ‐
ated with the algorithm’s convergence falls below epsilon.6 The type argument has
to be set accordingly for maxCount or epsilon to be used.

The cv::Range class

The cv::Range class is used to specify a continuous sequence of integers. cv::Range
objects have two elements, start and end, which—similar to cv::TermCriteria—are
often set with the constructor cv::Range(int start, int end). Ranges are inclu‐
sive of their start value, but not inclusive of their end value, so cv::Range rng(0,
4) includes the values 0, 1, 2, and 3, but not 4.

Using size(), you can find the number of elements in a range. In the preceding
example, rng.size() would be equal to 4. There is also a member, empty(), that tests
if a range has no elements. Finally, cv::Range::all() can be used anywhere a range
is required to indicate whatever range the object has available.

The cv::Ptr template and Garbage Collection 101
One very useful object type in C++ is the “smart” pointer.7 This pointer allows us to
create a reference to something, and then pass it around. You can create more refer‐
ences to that thing, and then all of those references will be counted. As references go
out of scope, the reference count for the smart pointer is decremented. Once all of the
references (instances of the pointer) are gone, the “thing” will automatically be
cleaned up (deallocated). You, the programmer, don’t have to do this bookkeeping
anymore.

Here’s how this all works. First, you define an instance of the pointer template for the
class object that you want to “wrap.” You do this with a call like cv::Ptr<Matx33f>
p(new cv::Matx33f), or cv::Ptr<Matx33f> p = makePtr<cv::Matx33f>(). The
constructor for the template object takes a pointer to the object to be pointed to.
Once you do this, you have your smart pointer p, which is a sort of pointer-like object
that you can pass around and use just like a normal pointer (i.e., it supports operators
such as operator*() and operator->()). Once you have p, you can create other

OpenCV Data Types | 53

8 For the purposes of this example, we will make reference to IplImage and cvLoadImge(), both constructs
from the ancient pre–version 2.1 interface that are now deprecated. We won’t really cover them in detail in
this book, but all you need to know for this example is that IplImage is the old data structure for images, and
cvLoadImage() was the old function to get an image from disk and return a pointer to the resulting image
structure.

9 This example might seem a bit artificial, but in fact, if you have a large body of pre-v2.1 code you are trying to
modernize, you will likely find yourself doing an operation like this quite often.

objects of the same type without passing them a pointer to a new object. For example,
you could create Ptr<Mat33f> q, and when you assign the value of p to q, somewhere
behind the scenes, the “smart” action of the smart pointer comes into play. You see,
just like a usual pointer, there is still only one actual cv::Mat33f object out there that
p and q both point to. The difference is that both p and q know that they are each one
of two pointers. Should p disappear (such as by falling out of scope), q knows that it is
the only remaining reference to the original matrix. If q should then disappear and its
destructor is called (implicitly), q will know that is the last one left, and that it should
deallocate the original matrix. You can think of this like the last person out of a build‐
ing being responsible for turning out the lights and locking the door (and in this case,
burning the building to the ground as well).

The cv::Ptr<> template class supports several additional functions in its interface
related to the reference-counting functionality of the smart pointer. Specifically, the
functions addref() and release() increment and decrement the internal reference
counter of the pointer. These are relatively dangerous functions to use, but are avail‐
able in case you need to micromanage the reference counters yourself.

There is also a function called empty(), which you can use to determine if a smart
pointer is pointing to an object that has been deallocated. This could happen if you
called release() on the object one or more times. In this case, you would still have a
smart pointer around, but the object pointed to might already have been destroyed.
There is a second application of empty(), which is to determine if the internal object
pointer inside the smart pointer object happens to be NULL for some other reason. For
example, this might occur if you assigned the smart pointer by calling a function that
might just return NULL in the first place (cvLoadImage(), fopen(), etc.).8

The final member of Ptr<> that you will want to know about is delete_obj(). This is
a function that gets called automatically when the reference count gets to zero. By
default, this function is defined but does nothing. It is there so that you can overload
it in the case of instantiation of cv::Ptr<>, which points to a class that requires some
specific operation in order to clean up the class to which it points. For example, let’s
say that you are working with an old-style (pre–version 2.1) IplImage.9 In the old
days, you might, for example, have called cvLoadImage() to load that image from
disk. In the C interface, that would have looked like this:

54 | Chapter 3: Getting to Know OpenCV Data Types

10 In this case, by FILE we mean struct FILE, as defined in the C standard library.

IplImage* img_p = cvLoadImage(...);

The modern version of this (while still using IplImage rather than cv::Mat, which we
are still working our way up to) would look like this:

cv::Ptr<IplImage> img_p = cvLoadImage("an_image");

or (if you prefer) this:

cv::Ptr<IplImage> img_p(cvLoadImage("an_image"));

Now you can use img_p in exactly the same way as a pointer (which is to say, for
readers experienced with the pre–version 2.1 interface, “exactly as you would have
back then”). Conveniently, this particular template instantiation is actually already
defined for you somewhere in the vast sea of header files that make up OpenCV. If
you were to go search it out, you would find the following template function defined:

template<> inline void cv::Ptr<IplImage>::delete_obj() {
 cvReleaseImage(&obj);
}

(The variable obj is the name of the class member variable inside Ptr<> that actually
holds the pointer to the allocated object.) As a result of this definition, you will not
need to deallocate the IplImage* pointer you got from cvLoadImage(). Instead, it
will be automatically deallocated for you when img_p falls out of scope.

This example was a somewhat special (though highly relevant) situation, in that the
case of a smart pointer to IplImage is sufficiently salient that it was defined for you
by the library. In a somewhat more typical case, when the clean-up function does not
exist for what you want, you will have to define it yourself. Consider the example of
creating a file handle using a smart pointer to FILE.10 In this case, we define our own
overloaded version of delete_obj() for the cv::Ptr<FILE> template:

template<> inline void cv::Ptr<FILE>::delete_obj() {
 fclose(obj);
}

Then you could go ahead and use that pointer to open a file, do whatever with it, and
later, just let the pointer fall out of scope (at which time the file handle would auto‐
matically be closed for you):

{
 cv::Ptr<FILE> f(fopen("myfile.txt", "r"));
 if(f.empty())
 throw ...; // Throw an exception, we will get to this later on...
 fprintf(f, ...);
 ...
}

OpenCV Data Types | 55

At the final brace, f falls out of scope, the internal reference count in f goes to zero,
delete_obj() is called by f’s destructor, and (thus) fclose() is called on the file
handle pointer (stored in obj).

A tip for gurus: a serious programmer might worry that the incre‐
menting and decrementing of the reference count might not be
sufficiently atomic for the Ptr<> template to be safe in multithrea‐
ded applications. This, however, is not the case, and Ptr<> is thread
safe. Similarly, the other reference-counting objects in OpenCV are
all thread safe in this same sense.

The cv::Exception class and exception handling
OpenCV uses exceptions to handle errors. OpenCV defines its own exception type,
cv::Exception, which is derived from the STL exception class std::exception.
Really, this exception type has nothing special about it, other than being in the cv::
namespace and thus distinguishable from other objects that are also derived from
std::exception.

The type cv::Exception has members code, err, func, file, and line, which are
(respectively) a numerical error code, a string indicating the nature of the error that
generated the exception, the name of the function in which the error occurred, the
file in which the error occurred, and an integer indicating the line on which the error
occurred in that file. err, func, and file are all STL strings.

There are several built-in macros for generating exceptions yourself.
CV_Error(errorcode, description) will generate and throw an exception with a
fixed text description. CV_Error_(errorcode, printf_fmt_str, [printf-args])
works the same, but allows you to replace the fixed description with a printf-like
format string and arguments. Finally, CV_Assert(condition) and CV_DbgAs
sert(condition) will both test your condition and throw an exception if the con‐
dition is not met. The latter version, however, will only operate in debug builds.
These macros are the strongly preferred method of throwing exceptions, as they will
automatically take care of the fields func, file, and line for you.

The cv::DataType<> template
When OpenCV library functions need to communicate the concept of a particular
data type, they do so by creating an object of type cv::DataType<>. cv::DataType<>
itself is a template, and so the actual objects passed around are specializations of this
template. This is an example of what in C++ are generally called traits. This allows
the cv::DataType<> object to contain both runtime information about the type, as

56 | Chapter 3: Getting to Know OpenCV Data Types

11 You don’t have this sort of problem in languages that support variable introspection and have an intrinsic
runtime concept of data types.

12 If this construct is awkward to you, remember that you can always assign integer values to the “options” in an
enum declaration. In effect, this is a way of stashing a bunch of integer constants that will be fixed at compile
time.

well as typedef statements in its own definition that allow it to refer to the same type
at compile time.

This might sound a bit confusing, and it is, but that is an inevitable consequence of
trying to mix runtime information and compile-time information in C++.11 An
example will help clarify. Here’s the template class definition for DataType:

template<typename _Tp> class DataType
{
 typedef _Tp value_type;
 typedef value_type work_type;
 typedef value_type channel_type;
 typedef value_type vec_type;

 enum {
 generic_type = 1,
 depth = -1,
 channels = 1,
 fmt = 0,
 type = CV_MAKETYPE(depth, channels)
 };
};

Let’s try to understand what this means, and then follow it with an example. First, we
can see that cv::DataType<> is a template, and expects to be specialized to a class
called _Tp. It then has four typedef statements that allow the type of the cv::Data
Type<>, as well as some other related types, to be extracted from the cv::DataType<>
instantiated object at compile time. In the template definition, these are all the same,
but we will see in our example of a template specialization that they do not have to be
(and often should not be). The next section is an enum that contains several compo‐
nents.12 These are the generic_type, the depth, the number of channels, the format
fmt, and the type. To see what all of these components mean, we’ll look at two exam‐
ple specializations of cv::DataType<>, from core.hpp. The first is the cv::DataType<>
definition for float:

template<> class DataType<float>
{
public:
 typedef float value_type;
 typedef value_type work_type;
 typedef value_type channel_type;

OpenCV Data Types | 57

 typedef value_type vec_type;

 enum {
 generic_type = 0,
 depth = DataDepth<channel_type>::value,
 channels = 1,
 fmt = DataDepth<channel_type>::fmt,
 type = CV_MAKETYPE(depth, channels)
 };
};

The first thing to notice is that this is a definition for a C++ built-in type. It is useful
to have such definitions for the built-in types, but we can also make them for more
complicated objects. In this case, the value_type is of course float, and the
work_type, channel_type, and vec_type are all the same. We will see more clearly
what these are for in the next example. For the constants in the enum, this example
will do just fine. The first variable, generic_type, is set to 0, as it is zero for all types
defined in core.hpp. The depth variable is the data type identifier used by OpenCV.
For example, cv::DataDepth<float>::value resolves to the constant CV_32F. The
entry channels is 1 because float is just a single number; we will see an alternative to
this in the next example. The variable fmt gives a single-character representation of
the format. In this case, cv::DataDepth<float>::fmt resolves to f. The last entry is
type, which is a representation similar to depth, but includes the number of channels
(in this case, one). CV_MAKETYPE(CV_32F,1) resolves to CV_32FC1.

The important thing about DataType<>, however, is to communicate the nature of
more complicated constructs. This is essential, for example, for allowing algorithms
to be implemented in a manner that is agnostic to the incoming data type (i.e., algo‐
rithms that use introspection to determine how to proceed with incoming data).

Consider the example of an instantiation of cv::DataType<> for a cv::Rect<> (itself
containing an as-yet-unspecialized type _Tp):

template<typename _Tp> class DataType<Rect_<_Tp> >
{
public:
 typedef Rect_<_Tp> value_type;
 typedef Rect_<typename DataType<_Tp>::work_type> work_type;
 typedef _Tp channel_type;
 typedef Vec<channel_type, channels> vec_type;

 enum {
 generic_type = 0,
 depth = DataDepth<channel_type>::value,
 channels = 4,
 fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
 type = CV_MAKETYPE(depth, channels)
 };
};

58 | Chapter 3: Getting to Know OpenCV Data Types

This is a much more complicated example. First, notice that cv::Rect itself does not
appear. You will recall that earlier we mentioned that cv::Rect was actually an alias
for a template, and that template is called cv::Rect_<>. So this template could be
specialized as cv::DataType<Rect> or, for example, cv::DataType< Rect_<float>
>. For the case cv::DataType<Rect>, recall that all of the elements are integers, so if
we consider that case, all of the instantiations of the template parameter _Tp resolve
to int.

We can see that the value_type is just the compile-time name of the thing that the
cv::DataType<> is describing (namely Rect). The work_type, however, is defined to
be the work_type of cv::DataType<int> (which, not surprisingly, is int). What we
see is that the work_type is telling us what kind of variables the cv::DataType<> is
made of (i.e., what we “do work” on). The channel type is also int. This means that if
we want to represent this variable as a multichannel object, it should be represented
as some number of int objects. Finally, just as channel_type tells us how to repre‐
sent this cv::DataType<> as a multichannel object, vec_type tells us how to repre‐
sent it as an object of type cv::Vec<>. The alias cv::DataType<Rect>::vec_type will
resolve to cv::Vec<int,4>.

Moving on to the runtime constants: generic_type is again 0, depth is CV_32S, chan
nels is 4 (because there are actually four values, the same reason the vec_type
instantiated to a cv::Vec<> of size 4), fmt resolves to 0x3069 (since i is 0x69), and
type resolves to CV_32SC4.

The cv::InputArray and cv::OutputArray classes
Many OpenCV functions take arrays as arguments and return arrays as return values,
but in OpenCV, there are many kinds of arrays. We have already seen that OpenCV
supports some small array types (cv::Scalar, cv::Vec, cv::Matx) and STL’s
std::vector<> in addition to the large array types discussed in the next chapter
(cv::Mat and cv::SparseMat). In order to keep the interface from becoming oner‐
ously complicated (and repetitive), OpenCV defines the types cv::InputArray and
cv::OutputArray. In effect, these types mean “any of the above” with respect to the
many array forms supported by the library. There is even a cv::InputOutputArray,
specifying an array for in-place computation.

The primary difference between cv::InputArray and cv::OutputArray is that the
former is assumed to be const (i.e., read only). You will typically see these two types
used in the definitions of library routines. You will not tend to use them yourself, but
when you are being introduced to library functions, their presence means that you
can use any array type, including a single cv::Scalar, and the result should be what
you expect.

OpenCV Data Types | 59

Related to cv::InputArray is the special function cv::noArray() that returns a
cv::InputArray. The returned object can be passed to any input requiring
cv::InputArray to indicate that this input is not being used. Certain functions also
have optional output arrays, where you may pass cv::noArray() when you do not
need the corresponding output.

Utility Functions
In addition to providing the specialized primitive data types that we have seen so far
in this chapter, the OpenCV library also provides some specialized functions that can
be used to more efficiently handle mathematical and other operations which arise
commonly in computer vision applications. In the context of the library, these are
known as the utility functions. The utility functions include tools for mathematical
operations, tests, error generations, memory and thread handling, optimization, and
more. Table 3-10 lists these functions and summarizes their functionalities; detailed
descriptions then follow.

Table 3-10. Utility and system functions

Function Description
cv::alignPtr() Align pointer to given number of bytes
cv::alignSize() Align buffer size to given number of bytes
cv::allocate() Allocate a C-style array of objects
cvCeil()a Round float number x to nearest integer not smaller than x
cv::cubeRoot() Compute the cube root of a number
cv::CV_Assert() Throw an exception if a given condition is not true
CV_Error() Macro to build a cv::Exception (from a fixed string) and throw it
CV_Error_() Macro to build a cv::Exception (from a formatted string) and throw it
cv::deallocate() Deallocate a C-style array of objects
cv::error() Indicate an error and throw an exception
cv::fastAtan2() Calculate two-dimensional angle of a vector in degrees
cv::fastFree() Deallocate a memory buffer
cv::fastMalloc() Allocate an aligned memory buffer
cvFloor() Round float number x to nearest integer not larger than x
cv::format() Create an STL string using sprintf-like formatting
cv::getCPUTickCount() Get tick count from internal CPU timer
cv::getNumThreads() Count number of threads currently used by OpenCV
cv::getOptimalDFTSize() Compute the best size for an array that you plan to pass to cv::DFT()
cv::getThreadNum() Get index of the current thread
cv::getTickCount() Get tick count from system
cv::getTickFrequency() Get number or ticks per second (see cv::getTickCount())
cvIsInf() Check if a floating-point number x is infinity

60 | Chapter 3: Getting to Know OpenCV Data Types

Function Description
cvIsNaN() Check if a floating-point number x is “Not a Number”
cvRound() Round float number x to the nearest integer
cv::setNumThreads() Set number of threads used by OpenCV
cv::setUseOptimized() Enables or disables the use of optimized code (SSE2, etc.)
cv::useOptimized() Indicates status of optimized code enabling (see cv::setUseOpti

mized())
a This function has something of a legacy interface. It is a C definition, not C++ (see core .../types_c.h) where it is defined as
an inline function. There are several others with a similar interface.

cv::alignPtr()
template<T> T* cv::alignPtr(// Return aligned pointer of type T*
 T* ptr, // pointer, unaligned
 int n = sizeof(T) // align to block size, a power of 2
);

Given a pointer of any type, this function computes an aligned pointer of the same
type according to the following computation:

(T*)(((size_t)ptr + n+1) & -n)

On some architectures, it is not even possible to read a multibyte
object from an address that is not evenly divisible by the size of the
object (i.e., by 4 for a 32-bit integer). On architectures such as x86,
the CPU handles this for you automatically by using multiple reads
and assembling your value from those reads at the cost of a sub‐
stantial penalty in performance.

cv::alignSize()
size_t cv::alignSize(// minimum size >='sz' divisible by 'n'
 size_t sz, // size of buffer
 int n = sizeof(T) // align to block size, a power of 2
);

Given a number n (typically a return value from sizeof()), and a size for a buffer sz,
cv::alignSize() computes the size that this buffer should be in order to contain an
integer number of objects of size n—that is, the minimum number that is greater or
equal to sz yet divisible by n. The following formula is used:

(sz + n-1) & -n

cv::allocate()
template<T> T* cv::allocate(// Return pointer to allocated buffer
 size_t sz // buffer size, multiples of sizeof(T)
);

OpenCV Data Types | 61

The function cv::allocate() functions similarly to the array form of new, in that it
allocates a C-style array of n objects of type T, calls the default constructor for each
object, and returns a pointer to the first object in the array.

cv::deallocate()
template<T> void cv::deallocate(
 T* ptr, // Pointer to buffer to free
 size_t sz // size of buffer, multiples of sizeof(T)
);

The function cv::deallocate() functions similarly to the array form of delete, in
that it deallocates a C-style array of n objects of type T, and calls the destructor for
each object. cv::deallocate() is used to deallocate objects allocated with cv::allo
cate(). The number of elements n passed to cv::deallocate() must be the same as
the number of objects originally allocated with cv::allocate().

cv::fastAtan2()
float cv::fastAtan2(// Return value is 32-bit float
 float y, // y input value (32-bit float)
 float x // x input value (32-bit float)
);

This function computes the arctangent of an x,y pair and returns the angle from the
origin to the indicated point. The result is reported in degrees ranging from 0.0 to
360.0, inclusive of 0.0 but not inclusive of 360.0.

cvCeil()
int cvCeil(// Return the smallest int >= x
 float x // input value (32-bit float)
);

Given a floating-point number x, cvCeil() computes the smallest integer not smaller
than x. If the input value is outside of the range representable by a 32-bit integer, the
result is undefined.

cv::cubeRoot()
float cv::cubeRoot(// Return value is 32-bit float
 float x // input value (32-bit float)
);

This function computes the cubed root of the argument x. Negative values of x are
handled correctly (i.e., the return value is negative).

62 | Chapter 3: Getting to Know OpenCV Data Types

cv::CV_Assert() and CV_DbgAssert()
// example
CV_Assert(x!=0)

CV_Assert() is a macro that will test the expression passed to it and, if that expres‐
sion evaluates to False (or 0), it will throw an exception. The CV_Assert() macro is
always tested. Alternatively, you can use CV_DbgAssert(), which will be tested only
in debug compilations.

cv::CV_Error() and CV_Error_()
// example
CV_Error(ecode, estring)
CV_Error_(ecode, fmt, ...)

The macro CV_Error() allows you to pass in an error code ecode and a fixed C-style
character string estring, which it then packages up into a cv::Exception that it then
passes to cv::error() to be handled. The variant macro CV_Error_() is used if you
need to construct the message string on the fly. CV_Error_() accepts the same ecode
as CV_Error(), but then expects a sprintf()-style format string followed by a vari‐
able number of arguments, as would be expected by sprintf().

cv::error()
void cv::error(
 const cv::Exception& ex // Exception to be thrown
);

This function is mostly called from CV_Error() and CV_Error_(). If your code is
compiled in a nondebug build, it will throw the exception ex. If your code is com‐
piled in a debug build, it will deliberately provoke a memory access violation so that
the execution stack and all of the parameters will be available for whatever debugger
you are running.

You will probably not call cv::error() directly, but rather rely on the macros
CV_Error() and CV_Error_() to throw the error for you. These macros take the
information you want displayed in the exception, package it up for you, and pass the
resulting exception to cv::error().

cv::fastFree()
void cv::fastFree(
 void* ptr // Pointer to buffer to be freed
);

This routine deallocates buffers that were allocated with cv::fastMalloc() (covered
next).

OpenCV Data Types | 63

cv::fastMalloc()
void* cv::fastMalloc(// Pointer to allocated buffer
 size_t size // Size of buffer to allocate
);

cv::FastMalloc() works just like the malloc() you are familiar with, except that it is
often faster, and it does buffer size alignment for you. This means that if the buffer
size passed is more than 16 bytes, the returned buffer will be aligned to a 16-byte
boundary.

cvFloor()
int cvFloor(// Return the largest int <= x
 float x // input value (32-bit float)
};

Given a floating-point number x, cv::Floor() computes the largest integer not
larger than x. If the input value is outside of the range representable by a 32-bit inte‐
ger, the result is undefined.

cv::format()
string cv::format(// Return STL-string
 const char* fmt, // formatting string, as sprintf()
 ... // vargs, as sprintf()
);

This function is essentially the same as sprintf() from the standard library, but
rather than requiring a character buffer from the caller, it constructs an STL string
object and returns that. It is particularly handy for formatting error messages for the
Exception() constructor (which expects STL strings in its arguments).

cv::getCPUTickCount()
int64 cv::getCPUTickCount(void); // long int CPU for tick count

This function reports the number of CPU ticks on those architectures that have such
a construct (including, but not limited to, x86 architectures). It is important to know,
however, that the return value of this function can be very difficult to interpret on
many architectures. In particular, because on a multicore system a thread can be put
to sleep on one core and wake up on another, the difference between the results to
two subsequent calls to cv::getCPUTickCount() can be misleading or completely
meaningless. Therefore, unless you are certain you know what you are doing, it is

64 | Chapter 3: Getting to Know OpenCV Data Types

13 Of course, if you really do know what you are doing, then there is no more accurate way to get detailed timing
information than from the CPU timers themselves.

best to use cv::getTickCount() for timing measurements.13 This function is best for
tasks like initializing random number generators.

cv::getNumThreads()
int cv::getNumThreads(void); // total threads allocated to OpenCV

Return the current number of threads being used by OpenCV.

cv::getOptimalDFTSize()
int cv::getOptimalDFTSize(int n); // best size array to use for dft, >= n

When you are making calls to cv::dft(), the algorithm used by OpenCV to compute
the transform is extremely sensitive to the size of the array passed to cv::dft(). The
preferred sizes do obey a rule for their generation, but that rule is sufficiently compli‐
cated that it is (at best) an annoyance to compute the correct size to which to pad
your array every time. The function cv::getOptimalDFTSize() takes as an argument
the size of the array you would have passed to cv::dft(), and returns the size of the
array you should pass to cv::dft(). OpenCV uses this information to create a larger
array into which you can copy your data and pad out the rest with zeros.

cv::getThreadNum()
int cv::getThreadNum(void); // int, id of this particular thread

If your OpenCV library was compiled with OpenMP support, it will return the index
(starting from zero) of the currently executing thread.

cv::getTickCount()
int64 cv::getTickCount(void); // long int CPU for tick count

This function returns a tick count relative to some architecture-dependent time. The
rate of ticks is also architecture and operating system dependent, however; the time
per tick can be computed by cv::getTickFrequency() (described next). This func‐
tion is preferable to cv::getCPUTickCount() for most timing applications, as it is not
affected by low-level issues such as which core your thread is running on and auto‐
matic throttling of CPU frequency (which most modern processors do for power-
management reasons).

OpenCV Data Types | 65

cv::getTickFrequency()
double cv::getTickFrequency(void); // Tick frequency in seconds as 64-bit

When cv::getTickCount() is used for timing analysis, the exact meaning of a tick is,
in general, architecture dependent. The function cv::getTickFrequency() computes
the conversion between clock time (i.e., seconds) and abstract “ticks.”

To compute the time required for some specific thing to happen
(such as a function to execute), you need only call cv::getTick
Count() before and after the function call, subtract the results, and
divide by the value of cv::getTickFrequency().

cvIsInf()
int cvIsInf(double x); // return 1 if x is IEEE754 "infinity"

The return value of cvIsInf() is 1 if x is plus or minus infinity and 0 otherwise. The
infinity test is the test implied by the IEEE754 standard.

cvIsNaN()
int cvIsNan(double x); // return 1 if x is IEEE754 "Not a number"

The return value of cvIsNaN() is 1 if x is “not a number” and 0 otherwise. The NaN
test is the test implied by the IEEE754 standard.

cvRound()
int cvRound(double x); // Return integer nearest to 'x'

Given a floating-point number x, cvRound() computes the integer closest to x. If the
input value is outside of the range representable by a 32-bit integer, the result is
undefined. In OpenCV 3.0 there is overloaded cvRound(float x) (as well as
cvFloor and cvCeil), which is faster on ARM.

cv::setNumThreads()
void cv::setNumThreads(int nthreads); // Set number of threads OpenCV can use

When OpenCV is compiled with OpenMP support, this function sets the number of
threads that OpenCV will use in parallel OpenMP regions. The default value for the
number of threads is the number of logical cores on the CPU (i.e., if we have four
cores each with two hyperthreads, there will be eight threads by default). If nthreads
is set to 0, the number of threads will be returned to this default value.

66 | Chapter 3: Getting to Know OpenCV Data Types

14 In fact, if your C++ programming skills are not entirely up to par, you can probably just skim or skip over this
little section entirely.

cv::setUseOptimized()
void cv::setUseOptimized(bool on_off); // If false, turn off optimized routines

Though early versions of OpenCV relied on outside libraries (such as IPP, the Intel
Performance Primitives library) for access to high-performance optimizations such
as SSE2 instructions, later versions have increasingly moved to containing that code
in the OpenCV itself. By default, the use of these optimized routines is enabled,
unless you specifically disabled it when you built your installation of the library.
However, you can turn the use of these optimizations on and off at any time with
cv::setUseOptimized().

The test of the global flag for optimizations usage is done at a rela‐
tively high level inside the OpenCV library functions. The implica‐
tion is that you should not call cv::setUseOptimized() while any
other routines might be running (on any threads). You should
make sure to call this routine only when you can be certain you
know what is and what is not running, preferably from the very top
level of your application.

cv::useOptimized()
bool cv::useOptimized(void); // return true if optimizations are enabled

At any time, you can check the state of the global flag, which enables the use of high-
performance optimizations (see cv::setUseOptimized()) by calling cv::useOpti
mized(). True will be returned only if these optimizations are currently enabled;
otherwise, this function will return False.

The Template Structures
Thus far in this chapter, we have regularly alluded to the existence of template forms
for almost all of the basic types. In fact, most programmers can get quite far into
OpenCV without ever digging down into the templates.14

OpenCV versions 2.1 and later are built on a template metaprogramming style simi‐
lar to STL, Boost, and similar libraries. This sort of library design can be extremely
powerful, both in terms of the quality and speed of the final code, as well as the flexi‐
bility it allows the developer. In particular, template structures of the kind used in
OpenCV allow for algorithms to be implemented in an abstracted way that does not
specifically rely on the primitive types that are native to C++ or even native to
OpenCV.

OpenCV Data Types | 67

15 Note the trailing underscore—this is a common, but not universal, convention in the library used to indicate
a template. In the 2.x version of the library, it was essentially universal. Since 3.x, the underscore was dropped
where not specifically necessary. Thus cv::Point_<> still has the underscore to distinguish from the nontem‐
plate class cv::Point, while cv::Vec<> does not have an underscore. (It was cv::Vec_<> in the 2.x version of
the library.)

In this chapter, we started with the cv::Point class. Though the class was introduced
as a primitive, in fact when you instantiate an object of type cv::Point, you are
actually instantiating an even more fundamental template object of type
cv::Point_<int>.15 This template could have been instantiated with a different type
than int, obviously. In fact, it could have been instantiated with any type that sup‐
ports the same basic set of operators as int (i.e., addition, subtraction, multiplication,
etc.). For example, OpenCV provides a type cv::Complex that you could have used.
You also could have used the STL complex type std::complex, which has nothing to
do with OpenCV at all. The same is true for some other types of your own construc‐
tion. This same concept generalizes to other type templates such as cv::Scalar_<>
and cv::Rect_<>, as well as cv::Matx_<> and cv::Vec_<>.

When instantiating these templates on your own, you must provide the unitary type
that is to be used to compose the template, as well as (where relevant) the dimensions
of the template. The arguments to the common templates are shown in Table 3-11.

Table 3-11. Common fixed length templates

Function Description
cv::Point_<Type T> A point consisting of a pair of objects of type T.
cv::Rect_<Type T> A location, width, and height, all of type T.
cv::Vec<Type T, int H> A set of H objects of type T.
cv::Matx<Type T, int H, int W> A set of H*W objects of type T.
cv::Scalar_<Type T> A set of four objects of type T (identical to cv::Vec<T, 4>).

In the next chapter, we will see that the large array types, cv::Mat and cv::Sparse
Mat, also have corresponding template types cv::Mat<> and cv::SparseMat_<>,
which are similar but differ in a few important ways.

Summary
In this chapter, we covered in detail the basic data types that are used by the OpenCV
library to handle compact collections. These collections include points, but also small
vectors and matrices that are often used to represent things like color (channel) vec‐
tors or coordinate vectors, as well as small matrices that operate in these spaces. We
covered both the template representations used, mostly internally, by the library for

68 | Chapter 3: Getting to Know OpenCV Data Types

such objects, as well as the classes that are specializations of those templates. These
specialization classes make up the majority of what you will use on a daily basis.

In addition to these data classes, we also covered the helper objects that allow us to
express concepts such as termination criteria and value ranges. Finally, we concluded
the chapter by surveying the utility functions that the library provides. These func‐
tions provide optimized implementations of important tasks that computer vision
applications often encounter. Important examples of operations include special arith‐
metic and memory management tools.

Exercises
1. Find and open .../opencv/cxcore/include/cxtypes.h. Read through and find the

many conversion helper functions.
a. Choose a negative floating-point number.
b. Take its absolute value, round it, and then take its ceiling and floor.
c. Generate some random numbers.
d. Create a floating-point cv::Point2f and convert it to an integer cv::Point.

Convert a cv::Point to a cv::Point2f.
2. Compact matrix and vector types:

a. Using the cv::Mat33f and cv::Vec3f objects (respectively), create a 3 × 3
matrix and 3-row vector.

b. Can you multiply them together directly? If not, why not?
3. Compact matrix and vector template types:

a. Using the cv::Mat<> and cv::Vec<> templates (respectively), create a 3 × 3
matrix and 3-row vector.

b. Can you multiply them together directly? If not, why not?
c. Try type-casting the vector object to a 3 × 1 matrix, using the cv::Mat<> tem‐

plate. What happens now?

Exercises | 69

CHAPTER 4

Images and Large Array Types

Dynamic and Variable Storage
The next stop on our journey brings us to the large array types. Chief among these is
cv::Mat, which could be considered the epicenter of the entire C++ implementation
of the OpenCV library. The overwhelming majority of functions in the OpenCV
library are members of the cv::Mat class, take a cv::Mat as an argument, or return
cv::Mat as a return value; quite a few are or do all three.

The cv::Mat class is used to represent dense arrays of any number of dimensions. In
this context, dense means that for every entry in the array, there is a data value stored
in memory corresponding to that entry, even if that entry is zero. Most images, for
example, are stored as dense arrays. The alternative would be a sparse array. In the
case of a sparse array, only nonzero entries are typically stored. This can result in a
great savings of storage space if many of the entries are in fact zero, but can be very
wasteful if the array is relatively dense. A common case for using a sparse array rather
than a dense array would be a histogram. For many histograms, most of the entries
are zero, and storing all those zeros is not necessary. For the case of sparse arrays,
OpenCV has the alternative data structure, cv::SparseMat.

If you are familiar with the C interface (pre–version 2.1 implemen‐
tation) of the OpenCV library, you will remember the data types
IplImage and CvMat. You might also recall CvArr. In the C++
implementation, these are all gone, replaced with cv::Mat. This
means no more dubious casting of void* pointers in function
arguments, and in general is a tremendous enhancement in the
internal cleanliness of the library.

71

1 Pre-2.1 OpenCV array types had an explicit element IplImage::nChannels, which indicated the number of
channels. Because of the more general way in which such concepts are captured in the cv::Mat object, this
information is no longer directly stored in a class variable. Rather, it is returned by a member function,
cv::channels().

The cv::Mat Class: N-Dimensional Dense Arrays
The cv::Mat class can be used for arrays of any number of dimensions. The data is
stored in the array in what can be thought of as an n-dimensional analog of “raster
scan order.” This means that in a one-dimensional array, the elements are sequential.
In a two-dimensional array, the data is organized into rows, and each row appears
one after the other. For three-dimensional arrays, each plane is filled out row by row,
and then the planes are packed one after the other.

Each matrix contains a flags element signaling the contents of the array, a dims ele‐
ment indicating the number of dimensions, rows and cols elements indicating the
number of rows and columns (these are not valid for dims>2), a data pointer to
where the array data is stored, and a refcount reference counter analogous to the ref‐
erence counter used by cv::Ptr<>. This latter member allows cv::Mat to behave very
much like a smart pointer for the data contained in data. The memory layout in data
is described by the array step[]. The data array is laid out such that the address of an
element whose indices are given by (i0, ii, … , iN d −1) is:

In the simple case of a two-dimensional array, this reduces to:

&(mtxi , j) = mtx.data + mtx.step 0 *i + mtx.step 1 * j

The data contained in cv::Mat is not required to be simple primitives. Each element
of the data in a cv::Mat can itself be either a single number or multiple numbers. In
the case of multiple numbers, this is what the library refers to as a multichannel array.
In fact, an n-dimensional array and an (n–1)-dimensional multichannel array are
actually very similar objects, but because there are many occasions in which it is use‐
ful to think of an array as a vector-valued array, the library contains special provisions
for such structures.1

One reason for this distinction is memory access. By definition, an element of an
array is the part that may be vector-valued. For example, an array might be said to be

72 | Chapter 4: Images and Large Array Types

2 The purpose of this padding is to improve memory access speed.

3 OpenCV allows for arrays with more than three channels, but to construct one of these, you will have to call
one of the functions CV_{8U,16S,16U,32S,32F,64F}C(). These functions take a single argument, which is the
number of channels. So CV_8UC(3) is equivalent to CV_8UC3, but since there is no macro for CV_8UC7, to get
this you would have to call CV_8UC(7).

a two-dimensional three-channel array of 32-bit floats; in this case, the element of the
array is the three 32-bit floats with a size of 12 bytes. When laid out in memory, rows
of an array may not be absolutely sequential; there may be small gaps that buffer each
row before the next.2 The difference between an n-dimensional single-channel array
and an (n–1)-dimensional multichannel array is that this padding will always occur
at the end of full rows (i.e., the channels in an element will always be sequential).

Creating an Array
You can create an array simply by instantiating a variable of type cv::Mat. An array
created in this manner has no size and no data type. You can, however, later ask it to
allocate data by using a member function such as create(). One variation of cre
ate() takes as arguments a number of rows, a number of columns, and a type, and
configures the array to represent a two-dimensional object. The type of an array
determines what kind of elements it has. Valid types in this context specify both the
fundamental type of element as well as the number of channels. All such types are
defined in the library header, and have the form CV_{8U,16S,16U,32S,32F,64F}C{1,2,3}.3

For example, CV_32FC3 would imply a 32-bit floating-point three-channel array.

If you prefer, you can also specify these things when you first allocate the matrix.
There are many constructors for cv::Mat, one of which takes the same arguments as
create() (and an optional fourth argument with which to initialize all of the ele‐
ments in your new array). For example:

cv::Mat m;

// Create data area for 3 rows and 10 columns of 3-channel 32-bit floats
m.create(3, 10, CV_32FC3);

// Set the values in the 1st channel to 1.0, the 2nd to 0.0, and the 3rd to 1.0
m.setTo(cv::Scalar(1.0f, 0.0f, 1.0f));

is equivalent to:

cv::Mat m(3, 10, CV_32FC3, cv::Scalar(1.0f, 0.0f, 1.0f));

Dynamic and Variable Storage | 73

4 Technically, it will only be deallocated if m was the last cv::Mat that pointed to that particular data.

The Most Important Paragraph in the Book

It is critical to understand that the data in an array is not attached
rigidly to the array object. The cv::Mat object is really a header for
a data area, which—in principle—is an entirely separate thing. For
example, it is possible to assign one matrix n to another matrix m
(i.e., m=n). In this case, the data pointer inside of m will be changed
to point to the same data as n. The data pointed to previously by
the data element of m (if any) will be deallocated.4 At the same time,
the reference counter for the data area that they both now share
will be incremented. Last but not least, the members of m that char‐
acterize its data (such as rows, cols, and flags) will be updated to
accurately describe the data now pointed to by data in m. This all
results in a very convenient behavior, in which arrays can be
assigned to one another, and the work necessary to do this takes
place automatically behind the scenes to give the correct result.

Table 4-1 is a complete list of the constructors available for cv::Mat. The list appears
rather unwieldy, but in fact you will use only a small fraction of these most of the
time. Having said that, when you need one of the more obscure ones, you will proba‐
bly be glad it is there.

Table 4-1. cv::Mat constructors that do not copy data

Constructor Description
cv::Mat; Default constructor

cv::Mat(int rows, int cols, int type); Two-dimensional arrays by type

cv::Mat(
 int rows, int cols, int type,
 const Scalar& s
);

Two-dimensional arrays by type with initialization value

cv::Mat(
 int rows, int cols, int type,
 void* data, size_t step=AUTO_STEP
);

Two-dimensional arrays by type with preexisting data

cv::Mat(cv::Size sz, int type); Two-dimensional arrays by type (size in sz)

cv::Mat(
 cv::Size sz,
 int type, const Scalar& s
);

Two-dimensional arrays by type with initialization value (size
in sz)

74 | Chapter 4: Images and Large Array Types

www.allitebooks.com

http://www.allitebooks.org

Constructor Description
cv::Mat(
 cv::Size sz, int type,
 void* data, size_t step=AUTO_STEP
);

Two-dimensional arrays by type with preexisting data (size in
sz)

cv::Mat(
 int ndims, const int* sizes,
 int type
);

Multidimensional arrays by type

cv::Mat(
 int ndims, const int* sizes,
 int type, const Scalar& s
);

Multidimensional arrays by type with initialization value

cv::Mat(
 int ndims, const int* sizes,
 int type, void* data,
 size_t step=AUTO_STEP
);

Multidimensional arrays by type with preexisting data

Table 4-1 lists the basic constructors for the cv::Mat object. Other than the default
constructor, these fall into three basic categories: those that take a number of rows
and a number of columns to create a two-dimensional array, those that use a
cv::Size object to create a two-dimensional array, and those that construct
n-dimensional arrays and require you to specify the number of dimensions and pass
in an array of integers specifying the size of each of the dimensions.

In addition, some of these allow you to initialize the data, either by providing a
cv::Scalar (in which case, the entire array will be initialized to that value), or by
providing a pointer to an appropriate data block that can be used by the array. In this
latter case, you are essentially just creating a header to the existing data (i.e., no data
is copied; the data member is set to point to the data indicated by the data
argument).

The copy constructors (Table 4-2) show how to create an array from another array.
In addition to the basic copy constructor, there are three methods for constructing an
array from a subregion of an existing array and one constructor that initializes the
new matrix using the result of some matrix expression.

Dynamic and Variable Storage | 75

Table 4-2. cv::Mat constructors that copy data from other cv::Mats

Constructor Description
cv::Mat(const Mat& mat); Copy constructor

cv::Mat(
 const Mat& mat,
 const cv::Range& rows,
 const cv::Range& cols
);

Copy constructor that copies only a subset of rows and
columns

cv::Mat(
 const Mat& mat,
 const cv::Rect& roi
);

Copy constructor that copies only a subset of rows and
columns specified by a region of interest

cv::Mat(
 const Mat& mat,
 const cv::Range* ranges
);

Generalized region of interest copy constructor that uses an
array of ranges to select from an n-dimensional array

cv::Mat(const cv::MatExpr& expr); Copy constructor that initializes m with the result of an
algebraic expression of other matrices

The subregion (also known as “region of interest”) constructors also come in three
flavors: one that takes a range of rows and a range of columns (this works only on a
two-dimensional matrix), one that uses a cv::Rect to specify a rectangular subregion
(which also works only on a two-dimensional matrix), and a final one that takes an
array of ranges. In this latter case, the number of valid ranges pointed to by the
pointer argument ranges must be equal to the number of dimensions of the array
mat. It is this third option that you must use if mat is a multidimensional array with
ndim greater than 2.

If you are modernizing or maintaining pre–version 2.1 code that still contains the C-
style data structures, you may want to create a new C++-style cv::Mat structure from
an existing CvMat or IplImage structure. In this case, you have two options
(Table 4-3): you can construct a header m on the existing data (by setting copyData to
false) or you can set copyData to true (in which case, new memory will be allocated
for m and all of the data from old will be copied into m).

76 | Chapter 4: Images and Large Array Types

Table 4-3. cv::Mat constructors for pre–version 2.1 data types

Constructor Description
cv::Mat(
 const CvMat* old,
 bool copyData=false
);

Constructor for a new object m that creates m from an old-
style CvMat, with optional data copy

cv::Mat(
 const IplImage* old,
 bool copyData=false
);

Constructor for a new object m that creates m from an old-
style IplImage, with optional data copy

These constructors do a lot more for you than you might realize at
first. In particular, they allow for expressions that mix the C++ and
C data types by functioning as implicit constructors for the C++
data types on demand. Thus, it is possible to simply use a pointer
to one of the C structures wherever a cv::Mat is expected and have
a reasonable expectation that things will work out correctly. (This
is why the copyData member defaults to false.)
In addition to these constructors, there are corresponding cast
operators that will convert a cv::Mat into CvMat or IplImage on
demand. These also do not copy data.

The last set of constructors is the template constructors (Table 4-4). These are called
template constructors not because they construct a template form of cv::Mat, but
because they construct an instance of cv::Mat from something that is itself a tem‐
plate. These constructors allow either an arbitrary cv::Vec<> or cv::Matx<> to be
used to create a cv::Mat array, of corresponding dimension and type, or to use an
STL vector<> object of arbitrary type to construct an array of that same type.

Table 4-4. cv::Mat template constructors

Constructor Description
cv::Mat(
 const cv::Vec<T,n>& vec,
 bool copyData=true
);

Construct a one-dimensional array of type T and size n from a
cv::Vec of the same type

cv::Mat(
 const cv::Matx<T,m,n>& vec,
 bool copyData=true
);

Construct a two-dimensional array of type T and size m × n
from a cv::Matx of the same type

Dynamic and Variable Storage | 77

5 In the case of cv::Mat::eye() and cv::Mat::ones(), if the array created is multichannel, only the first chan‐
nel will be set to 1.0, while the other channels will be 0.0.

Constructor Description
cv::Mat(
 const std::vector<T>& vec,
 bool copyData=true
);

Construct a one-dimensional array of type T from an STL
vector containing elements of the same type

The class cv::Mat also provides a number of static member functions to create cer‐
tain kinds of commonly used arrays (Table 4-5). These include functions like
zeros(), ones(), and eye(), which construct a matrix full of zeros, a matrix full of
ones, or an identity matrix, respectively.5

Table 4-5. Static functions that create cv::Mat

Function Description
cv::Mat::zeros(rows, cols, type); Create a cv::Mat of size rows × cols, which is full of

zeros, with type type (CV_32F, etc.)
cv::Mat::ones(rows, cols, type); Create a cv::Mat of size rows × cols, which is full of

ones, with type type (CV_32F, etc.)
cv::Mat::eye(rows, cols, type); Create a cv::Mat of size rows × cols, which is an

identity matrix, with type type (CV_32F, etc.)

Accessing Array Elements Individually
There are several ways to access a matrix, all of which are designed to be convenient
in different contexts. In recent versions of OpenCV, however, a great deal of effort
has been invested to make them all comparably, if not identically, efficient. The two
primary options for accessing individual elements are to access them by location or
through iteration.

The basic means of direct access is the (template) member function at<>(). There are
many variations of this function that take different arguments for arrays of different
numbers of dimensions. The way this function works is that you specialize the
at<>() template to the type of data that the matrix contains, then access that element
using the row and column locations of the data you want. Here is a simple example:

cv::Mat m = cv::Mat::eye(10, 10, 32FC1);

printf(
 "Element (3,3) is %f\n",
 m.at<float>(3,3)
);

78 | Chapter 4: Images and Large Array Types

For a multichannel array, the analogous example would look like this:

cv::Mat m = cv::Mat::eye(10, 10, 32FC2);

printf(
 "Element (3,3) is (%f,%f)\n",
 m.at<cv::Vec2f>(3,3)[0],
 m.at<cv::Vec2f>(3,3)[1]
);

Note that when you want to specify a template function like at<>() to operate on a
multichannel array, the best way to do this is to use a cv::Vec<> object (either using a
premade alias or the template form).

Similar to the vector case, you can create an array made of a more sophisticated type,
such as complex numbers:

cv::Mat m = cv::Mat::eye(10, 10, cv::DataType<cv::Complexf>::type);

printf(
 "Element (3,3) is %f + i%f\n",
 m.at<cv::Complexf>(3,3).re,
 m.at<cv::Complexf>(3,3).im,
);

It is also worth noting the use of the cv::DataType<> template here. The matrix con‐
structor requires a runtime value that is a variable of type int that happens to take on
some “magic” values that the constructor understands. By contrast, cv::Complexf is
an actual object type, a purely compile-time construct. The need to generate one of
these representations (runtime) from the other (compile time) is precisely why the
cv::DataType<> template exists. Table 4-6 lists the available variations of the at<>()
template.

Table 4-6. Variations of the at<>() accessor function

Example Description
M.at<int>(i); Element i from integer array M

M.at<float>(i, j); Element (i, j) from float array M

M.at<int>(pt); Element at location (pt.x, pt.y) in integer matrix M

M.at<float>(i, j, k); Element at location (i, j, k) in three-dimensional
float array M

M.at<uchar>(idx); Element at n-dimensional location indicated by idx[] in
array M of unsigned characters

To access a two-dimensional array, you can also extract a C-style pointer to a specific
row of the array. This is done with the ptr<>() template member function of
cv::Mat. (Recall that the data in the array is contiguous by row, thus accessing a spe‐

Dynamic and Variable Storage | 79

6 The difference in performance between using at<>() and direct pointer access depends on compiler optimi‐
zation. Access through at<>() tends to be comparable to (though slightly slower than) direct pointer access
in code with a good optimizer, but may be more than an order of magnitude slower if that optimizer is turned
off (e.g., when you do a debug build). Access through iterators is almost always slower than either of these. In
almost all cases, however, using built-in OpenCV functions will be faster than any loop you write regardless
of the direct access methods described here, so avoid that kind of construct wherever possible.

cific column in this way would not make sense; we will see the right way to do that
shortly.) As with at<>(), ptr<>() is a template function instantiated with a type
name. It takes an integer argument indicating the row you wish to get a pointer to.
The function returns a pointer to the primitive type of which the array is constructed
(i.e., if the array type is CV_32FC3, the return value will be of type float*). Thus,
given a three-channel matrix mtx of type float, the construction mtx.ptr<Vec3f>(3)
would return a pointer to the first (floating-point) channel of the first element in row
3 of mtx. This is generally the fastest way to access elements of an array,6 because once
you have the pointer, you are right down there with the data.

There are thus two ways to get a pointer to the data in a matrix mtx.
One is to use the ptr<>() member function. The other is to
directly use the member pointer data, and to use the member array
step[] to compute addresses. The latter option is similar to what
one tended to do in the C interface, but is generally no longer pre‐
ferred over access methods such as at<>(), ptr<>(), and the itera‐
tors. Having said this, direct address computation may still be most
efficient, particularly when you are dealing with arrays of greater
than two dimensions.

There is one last important point to keep in mind about C-style pointer access. If you
want to access everything in an array, you will likely want to iterate one row at a time;
this is because the rows may or may not be packed continuously in the array. How‐
ever, the member function isContinuous() will tell you if the members are continu‐
ously packed. If they are, you can just grab the pointer to the very first element of the
first row and cruise through the entire array as if it were a giant one-dimensional
array.

The other form of sequential access is to use the iterator mechanism built into
cv::Mat. This mechanism is based on, and works more or less identically to, the anal‐
ogous mechanism provided by the STL containers. The basic idea is that OpenCV
provides a pair of iterator templates, one for const and one for non-const arrays.
These iterators are named cv::MatIterator<> and cv::MatConstIterator<>,
respectively. The cv::Mat methods begin() and end() return objects of this type.
This method of iteration is convenient because the iterators are smart enough to han‐

80 | Chapter 4: Images and Large Array Types

7 In fact the dimensionality of the “plane” is not limited to two; it can be larger. What is always the case is that
the planes will be contiguous in memory.

dle the continuous packing and noncontinuous packing cases automatically, as well
as handling any number of dimensions in the array.

Each iterator must be declared and specified to the type of object from which the
array is constructed. Here is a simple example of the iterators being used to compute
the “longest” element in a three-dimensional array of three-channel elements (a
three-dimensional vector field):

int sz[3] = { 4, 4, 4 };
cv::Mat m(3, sz, CV_32FC3); // A three-dimensional array of size 4-by-4-by-4
cv::randu(m, -1.0f, 1.0f); // fill with random numbers from -1.0 to 1.0

float max = 0.0f; // minimum possible value of L2 norm
cv::MatConstIterator<cv::Vec3f> it = m.begin();
while(it != m.end()) {

 len2 = (*it)[0]*(*it)[0]+(*it)[1]*(*it)[1]+(*it)[2]*(*it)[2];
 if(len2 > max) max = len2;
 it++;

}

You would typically use iterator-based access when doing operations over an entire
array, or element-wise across multiple arrays. Consider the case of adding two arrays,
or converting an array from the RGB color space to the HSV color space. In such
cases, the same exact operation will be done at every pixel location.

The N-ary Array Iterator: NAryMatIterator
There is another form of iteration that, though it does not handle discontinuities in
the packing of the arrays in the manner of cv::MatIterator<>, allows us to handle
iteration over many arrays at once. This iterator is called cv::NAryMatIterator, and
requires only that all of the arrays being iterated over be of the same geometry (num‐
ber of dimensions and extent in each dimension).

Instead of returning single elements of the arrays being iterated over, the N-ary itera‐
tor operates by returning chunks of those arrays, called planes. A plane is a portion
(typically a one- or two-dimensional slice) of the input array in which the data is
guaranteed to be contiguous in memory.7 This is how discontinuity is handled: you
are given the contiguous chunks one by one. For each such plane, you can either
operate on it using array operations, or iterate trivially over it yourself. (In this case,
“trivially” means to iterate over it in a way that does not need to check for discontinu‐
ities inside of the chunk.)

Dynamic and Variable Storage | 81

The concept of the plane is entirely separate from the concept of multiple arrays
being iterated over simultaneously. Consider Example 4-1, in which we sum just a
single multidimensional array plane by plane.

Example 4-1. Summation of a multidimensional array, done plane by plane

const int n_mat_size = 5;
const int n_mat_sz[] = { n_mat_size, n_mat_size, n_mat_size };
cv::Mat n_mat(3, n_mat_sz, CV_32FC1);

cv::RNG rng;
rng.fill(n_mat, cv::RNG::UNIFORM, 0.f, 1.f);

const cv::Mat* arrays[] = { &n_mat, 0 };
cv::Mat my_planes[1];
cv::NAryMatIterator it(arrays, my_planes);

At this point, you have your N-ary iterator. Continuing our example, we will com‐
pute the sum of m0 and m1, and place the result in m2. We will do this plane by plane,
however:

// On each iteration, it.planes[i] will be the current plane of the
// i-th array from 'arrays'.
//
float s = 0.f; // Total sum over all planes
int n = 0; // Total number of planes
for (int p = 0; p < it.nplanes; p++, ++it) {
 s += cv::sum(it.planes[0])[0];
 n++;
}

In this example, we first create the three-dimensional array n_mat and fill it with 125
random floating-point numbers between 0.0 and 1.0. To initialize the cv::NAryMat
Iterator object, we need to have two things. First, we need a C-style array contain‐
ing pointers to all of the cv::Mats we wish to iterate over (in this example, there is
just one). This array must always be terminated with a 0 or NULL. Next, we need
another C-style array of cv::Mats that can be used to refer to the individual planes as
we iterate over them (in this case, there is also just one).

Once we have created the N-ary iterator, we can iterate over it. Recall that this itera‐
tion is over the planes that make up the arrays we gave to the iterator. The number of
planes (the same for each array, because they have the same geometry) will always be
given by it.nplanes. The N-ary iterator contains a C-style array called planes that
holds headers for the current plane in each input array. In our example, there is only
one array being iterated over, so we need only refer to it.planes[0] (the current
plane in the one and only array). In this example, we then call cv::sum() on each
plane and accumulate the final result.

82 | Chapter 4: Images and Large Array Types

To see the real utility of the N-ary iterator, consider a slightly expanded version of
this example in which there are two arrays we would like to sum over (Example 4-2).

Example 4-2. Summation of two arrays using the N-ary operator

const int n_mat_size = 5;
const int n_mat_sz[] = { n_mat_size, n_mat_size, n_mat_size };
cv::Mat n_mat0(3, n_mat_sz, CV_32FC1);
cv::Mat n_mat1(3, n_mat_sz, CV_32FC1);

cv::RNG rng;
rng.fill(n_mat0, cv::RNG::UNIFORM, 0.f, 1.f);
rng.fill(n_mat1, cv::RNG::UNIFORM, 0.f, 1.f);

const cv::Mat* arrays[] = { &n_mat0, &n_mat1, 0 };
cv::Mat my_planes[2];
cv::NAryMatIterator it(arrays, my_planes);

float s = 0.f; // Total sum over all planes in both arrays
int n = 0; // Total number of planes
for(int p = 0; p < it.nplanes; p++, ++it) {
 s += cv::sum(it.planes[0])[0];
 s += cv::sum(it.planes[1])[0];
 n++;
}

In this second example, you can see that the C-style array called arrays is given
pointers to both input arrays, and two matrices are supplied in the my_planes array.
When it is time to iterate over the planes, at each step, planes[0] contains a plane in
n_mat0, and planes[1] contains the corresponding plane in n_mat1. In this simple
example, we just sum the two planes and add them to our accumulator. In an only
slightly extended case, we could use element-wise addition to sum these two planes
and place the result into the corresponding plane in a third array.

Not shown in the preceding example, but also important, is the member it.size,
which indicates the size of each plane. The size reported is the number of elements in
the plane, so it does not include a factor for the number of channels. In our previous
example, if it.nplanes were 4, then it.size would have been 16:

/////////// compute dst[*] = pow(src1[*], src2[*]) //////////////
const Mat* arrays[] = { src1, src2, dst, 0 };
float* ptrs[3];

NAryMatIterator it(arrays, (uchar**)ptrs);
for(size_t i = 0; i < it.nplanes; i++, ++it)
{
 for(size_t j = 0; j < it.size; j++)
 {
 ptrs[2][j] = std::pow(ptrs[0][j], ptrs[1][j]);

Dynamic and Variable Storage | 83

 }
}

Accessing Array Elements by Block
In the previous section, we saw ways to access individual elements of an array, either
singularly or by iterating sequentially through them all. Another common situation is
when you need to access a subset of an array as another array. This might be to select
out a row or a column, or any subregion of the original array.

There are many methods that do this for us in one way or another, as shown in
Table 4-7; all of them are member functions of the cv::Mat class and return a subsec‐
tion of the array on which they are called. The simplest of these methods are row()
and col(), which take a single integer and return the indicated row or column of the
array whose member we are calling. Clearly these make sense only for a two-
dimensional array; we will get to the more complicated case momentarily.

When you use m.row() or m.col() (for some array m), or any of the other functions
we are about to discuss, it is important to understand that the data in m is not copied
to the new arrays. Consider an expression like m2 = m.row(3). This expression
means to create a new array header m2, and to arrange its data pointer, step array,
and so on, such that it will access the data in row 3 in m. If you modify the data in m2,
you will be modifying the data in m. Later, we will visit the copyTo() method, which
actually will copy data. The main advantage of the way this is handled in OpenCV is
that the amount of time required to create a new array that accesses part of an exist‐
ing array is not only very small, but also independent of the size of either the old or
the new array.

Closely related to row() and col() are rowRange() and colRange(). These functions
do essentially the same thing as their simpler cousins, except that they will extract an
array with multiple contiguous rows (or columns). You can call both functions in one
of two ways, either by specifying an integer start and end row (or column), or by
passing a cv::Range object that indicates the desired rows (or columns). In the case
of the two-integer method, the range is inclusive of the start index but exclusive of
the end index (you may recall that cv::Range uses a similar convention).

The member function diag() works the same as row() or col(), except that the
array returned from m.diag() references the diagonal elements of a matrix. m.diag()
expects an integer argument that indicates which diagonal is to be extracted. If that
argument is zero, then it will be the main diagonal. If it is positive, it will be offset
from the main diagonal by that distance in the upper half of the array. If it is negative,
then it will be from the lower half of the array.

The last way to extract a submatrix is with operator(). Using this operator, you can
pass either a pair of ranges (a cv::Range for rows and a cv::Range for columns) or a

84 | Chapter 4: Images and Large Array Types

8 For clarity, we use the word array when referring to a general object of type cv::Mat, and use the word matrix
for those situations where the manner in which the array is being used indicates that it is representing a math‐
ematical object that would be called a matrix. The distinction is a purely semantic one, and not manifest in
the actual design of OpenCV.

cv::Rect to specify the region you want. This is the only method of access that will
allow you to extract a subvolume from a higher-dimensional array. In this case, a
pointer to a C-style array of ranges is expected, and that array must have as many
elements as the number of dimensions of the array.

Table 4-7. Block access methods of cv::Mat

Example Description
m.row(i); Array corresponding to row i of m

m.col(j); Array corresponding to column j of m

m.rowRange(i0, i1); Array corresponding to rows i0 through i1-1 of matrix m

m.rowRange(cv::Range(i0, i1)); Array corresponding to rows i0 through i1-1 of matrix m

m.colRange(j0, j1); Array corresponding to columns j0 through j1-1 of matrix m

m.colRange(cv::Range(j0, j1)); Array corresponding to columns j0 through j1-1 of matrix m

m.diag(d); Array corresponding to the d-offset diagonal of matrix m

m(cv::Range(i0,i1), cv::Range(j0,j1)); Array corresponding to the subrectangle of matrix m with one corner
at i0, j0 and the opposite corner at (i1-1, j1-1)

m(cv::Rect(i0,i1,w,h)); Array corresponding to the subrectangle of matrix m with one corner
at i0, j0 and the opposite corner at (i0+w-1, j0+h-1)

m(ranges); Array extracted from m corresponding to the subvolume that is the
intersection of the ranges given by ranges[0]-
ranges[ndim-1]

Matrix Expressions: Algebra and cv::Mat
One of the capabilities enabled by the move to C++ in version 2.1 is the overloading
of operators and the ability to create algebraic expressions consisting of matrix
arrays8 and singletons. The primary advantage of this is code clarity, as many opera‐
tions can be combined into one expression that is both more compact and often
more meaningful.

In the background, many important features of OpenCV’s array class are being used
to make these operations work. For example, matrix headers are created automati‐
cally as needed and workspace data areas are allocated (only) as required. When no
longer needed, data areas are deallocated invisibly and automatically. The result of
the computation is finally placed in the destination array by operator=(). However,

Dynamic and Variable Storage | 85

9 The underlying machinery of cv::MatExpr is more detail than we need here, but you can think of
cv::MatExpr as being a symbolic representation of the algebraic form of the righthand side. The great advan‐
tage of cv::MatExpr is that when it is time to evaluate an expression, it is often clear that some operations can
be removed or simplified without evaluation (such as computing the transpose of the transpose of a matrix,
adding zero, or multiplying a matrix by its own inverse).

10 If you are a real expert, this will not surprise you. Clearly a temporary array must be created to store the result
of m1+m0. Then m2 really is just another reference, but it is another reference to that temporary array. When
operator+() exits, its reference to the temporary array is discarded, but the reference count is not zero. m2 is
left holding the one and only reference to that array.

one important distinction is that this form of operator=() is not assigning a cv::Mat
or a cv::Mat (as it might appear), but rather a cv::MatExpr (the expression itself9) to
a cv::Mat. This distinction is important because data is always copied into the result
(lefthand) array. Recall that though m2=m1 is legal, it means something slightly differ‐
ent. In this latter case, m2 would be another reference to the data in m1. By contrast,
m2=m1+m0 means something different again. Because m1+m0 is a matrix expression, it
will be evaluated and a pointer to the results will be assigned in m2. The results will
reside in a newly allocated data area.10

Table 4-8 lists examples of the algebraic operations available. Note that in addition to
simple algebra, there are comparison operators, operators for constructing matrices
(such as cv::Mat::eye(), which we encountered earlier), and higher-level operations
for computing transposes and inversions. The key idea here is that you should be able
to take the sorts of relatively nontrivial matrix expressions that occur when doing
computer vision and express them on a single line in a clear and concise way.

Table 4-8. Operations available for matrix expressions

Example Description
m0 + m1, m0 – m1; Addition or subtraction of matrices

m0 + s; m0 – s; s + m0, s – m1; Addition or subtraction between a matrix and a singleton

-m0; Negation of a matrix

s * m0; m0 * s; Scaling of a matrix by a singleton

m0.mul(m1); m0/m1; Per element multiplication of m0 and m1, per-element division of
m0 by m1

m0 * m1; Matrix multiplication of m0 and m1

m0.inv(method); Matrix inversion of m0 (default value of method is DECOMP_LU)

m0.t(); Matrix transpose of m0 (no copy is done)

m0>m1; m0>=m1; m0==m1; m0<=m1; m0<m1; Per element comparison, returns uchar matrix with elements 0
or 255

86 | Chapter 4: Images and Large Array Types

Example Description
m0&m1; m0|m1; m0^m1; ~m0;
 m0&s; s&m0; m0|s; s|m0; m0^s; s^m0;

Bitwise logical operators between matrices or matrix and a
singleton

min(m0,m1); max(m0,m1); min(m0,s);
 min(s,m0); max(m0,s); max(s,m0);

Per element minimum and maximum between two matrices or a
matrix and a singleton

cv::abs(m0); Per element absolute value of m0

m0.cross(m1); m0.dot(m1); Vector cross and dot product (vector cross product is defined only
for 3 × 1 matrices)

cv::Mat::eye(Nr, Nc, type);
 cv::Mat::zeros(Nr, Nc, type);
 cv::Mat::ones(Nr, Nc, type);

Class static matrix initializers that return fixed Nr × Nc matrices of
type type

The matrix inversion operator inv() is actually a frontend to a variety of algorithms
for matrix inversion. There are currently three options. The first is cv::DECOMP_LU,
which means LU decomposition and works for any nonsingular matrix. The second
option is cv::DECOMP_CHOLESKY, which solves the inversion by Cholesky decomposi‐
tion. Cholesky decomposition works only for symmetric, positive definite matrices,
but is much faster than LU decomposition for large matrices. The last option is
cv::DECOMP_SVD, which solves the inversion by singular value decomposition (SVD).
SVD is the only workable option for matrices that are singular or nonsquare (in
which case the pseudo-inverse is computed).

Not included in Table 4-8 are all of the functions like cv::norm(), cv::mean(),
cv::sum(), and so on (some of which we have not gotten to yet, but you can probably
guess what they do) that convert matrices to other matrices or to scalars. Any such
object can still be used in a matrix expression.

Saturation Casting
In OpenCV, you will often do operations that risk overflowing or underflowing the
available values in the destination of some computation. This is particularly common
when you are doing operations on unsigned types that involve subtraction, but it can
happen anywhere. To deal with this problem, OpenCV relies on a construct called
saturation casting.

What this means is that OpenCV arithmetic and other operations that act on arrays
will check for underflows and overflows automatically; in these cases, the library
functions will replace the resulting value of an operation with the lowest or highest
available value, respectively. Note that this is not what C language operations nor‐
mally and natively do.

You may want to implement this particular behavior in your own functions as well.
OpenCV provides some handy templated casting operators to make this easy for you.
These are implemented as a template function called cv::saturate_cast<>(), which

Dynamic and Variable Storage | 87

allows you to specify the type to which you would like to cast the argument. Here is
an example:

uchar& Vxy = m0.at<uchar>(y, x);
Vxy = cv::saturate_cast<uchar>((Vxy-128)*2 + 128);}

In this example code, we first assign the variable Vxy to be a reference to an element
of an 8-bit array, m0. We then subtract 128 from this array, multiply that by two (scale
that up), and add 128 (so the result is twice as far from 128 as the original). The usual
C arithmetic rules would assign Vxy-128 to a (32-bit) signed integer; followed by
integer multiplication by 2 and integer addition of 128. Notice, however, that if the
original value of Vxy were (for example) 10, then Vxy-128 would be -118. The value
of the expression would then be -108. This number will not fit into the 8-bit
unsigned variable Vxy. This is where cv::saturation_cast<uchar>() comes to the
rescue. It takes the value of -108 and, recognizing that it is too low for an unsigned
char, converts it to 0.

More Things an Array Can Do
At this point, we have touched on most of the members of the cv::Mat class. Of
course, there are a few things that were missed, as they did not fall into any specific
category that was discussed so far. Table 4-9 lists the “leftovers” that you will need in
your daily OpenCV programming.

Table 4-9. More class member functions of cv::Mat

Example Description
m1 = m0.clone(); Make a complete copy of m0, copying all data elements as well; cloned array will

be continuous
m0.copyTo(m1); Copy contents of m0 onto m1, reallocating m1 if necessary (equivalent to

m1=m0.clone())
m0.copyTo(m1, mask); Same as m0.copyTo(m1), except only entries indicated in the array mask are

copied
m0.convertTo(
 m1, type, scale, offset
);

Convert elements of m0 to type (e.g., CV_32F) and write to m1 after scaling by
scale (default 1.0) and adding offset (default 0.0)

m0.assignTo(m1, type); Internal use only (resembles convertTo)

m0.setTo(s, mask); Set all entries in m0 to singleton value s; if mask is present, set only those values
corresponding to nonzero elements in mask

m0.reshape(chan, rows); Changes effective shape of a two-dimensional matrix; chan or rows may be zero,
which implies “no change”; data is not copied

m0.push_back(s); Extend an m × 1 matrix and insert the singleton s at the end

m0.push_back(m1); Extend an m × n by k rows and copy m1 into those rows; m1 must be k × n

m0.pop_back(n); Remove n rows from the end of an m × n (default value of n is 1)a

88 | Chapter 4: Images and Large Array Types

Example Description
m0.locateROI(size, offset); Write whole size of m0 to cv::Size size; if m0 is a “view” of a larger matrix,

write location of starting corner to Point& offset
m0.adjustROI(t, b, l, r); Increase the size of a view by t pixels above, b pixels below, l pixels to the left,

and r pixels to the right
m0.total(); Compute the total number of array elements (does not include channels)

m0.isContinuous(); Return true only if the rows in m0 are packed without space between them in
memory

m0.elemSize(); Return the size of the elements of m0 in bytes (e.g., a three-channel float matrix
would return 12 bytes)

m0.elemSize1(); Return the size of the subelements of m0 in bytes (e.g., a three-channel float
matrix would return 4 bytes)

m0.type(); Return a valid type identifier for the elements of m0 (e.g., CV_32FC3)

m0.depth(); Return a valid type identifier for the individial channels of m0 (e.g., CV_32F)

m0.channels(); Return the number of channels in the elements of m0

m0.size(); Return the size of the m0 as a cv::Size object

m0.empty(); Return true only if the array has no elements (i.e., m0.total==0 or
m0.data==NULL)

a Many implementations of “pop” functionality return the popped element. This one does not; its return type is void.

The cv::SparseMat Class: Sparse Arrays
The cv::SparseMat class is used when an array is likely to be very large compared to
the number of nonzero entries. This situation often arises in linear algebra with
sparse matrices, but it also comes up when one wishes to represent data, particularly
histograms, in higher-dimensional arrays, since most of the space will be empty in
many practical applications. A sparse representation stores only data that is actually
present and so can save a great deal of memory. In practice, many sparse objects
would be too huge to represent at all in a dense format. The disadvantage of sparse
representations is that computation with them is slower (on a per-element basis).
This last point is important, in that computation with sparse matrices is not categori‐
cally slower, as there can be a great economy in knowing in advance that many oper‐
ations need not be done at all.

The OpenCV sparse matrix class cv::SparseMat functions analogously to the dense
matrix class cv::Mat in most ways. It is defined similarly, supports most of the same
operations, and can contain the same data types. Internally, the way data is organized
is quite different. While cv::Mat uses a data array closely related to a C data array
(one in which the data is sequentially packed and addresses are directly computable
from the indices of the element), cv::SparseMat uses a hash table to store just the

Dynamic and Variable Storage | 89

11 Actually, zero elements may be stored if those elements have become zero as a result of computation on the
array. If you want to clean up such elements, you must do so yourself. This is the function of the method
SparseMat::erase(), which we will visit shortly.

nonzero elements.11 That hash table is maintained automatically, so when the num‐
ber of (nonzero) elements in the array becomes too large for efficient lookup, the
table grows automatically.

Accessing Sparse Array Elements
The most important difference between sparse and dense arrays is how elements are
accessed. Sparse arrays provide four different access mechanisms: cv::Sparse
Mat::ptr(), cv::SparseMat::ref(), cv::SparseMat::value(), and cv::Sparse
Mat::find().

The cv::SparseMat::ptr() method has several variations, the simplest of which has
the template:

uchar* cv::SparseMat::ptr(int i0, bool createMissing, size_t* hashval=0);

This particular version is for accessing a one-dimensional array. The first argument,
i0, is the index of the requested element. The next argument, createMissing, indi‐
cates whether the element should be created if it is not already present in the array.
When cv::SparseMat::ptr() is called, it will return a pointer to the element if that
element is already defined in the array, but NULL if that element is not defined. How‐
ever, if the createMissing argument is true, that element will be created and a valid
non-NULL pointer will be returned to that new element. To understand the final argu‐
ment, hashval, it is necessary to recall that the underlying data representation of a
cv::SparseMat is a hash table. Looking up objects in a hash table requires two steps:
first, computing the hash key (in this case, from the indices), and second, searching a
list associated with that key. Normally, that list will be short (ideally only one ele‐
ment), so the primary computational cost in a lookup is the computation of the hash
key. If this key has already been computed (as with cv::SparseMat::hash(), which
will be covered next), then time can be saved by not recomputing it. In the case of
cv::SparseMat::ptr(), if the argument hashval is left with its default argument of
NULL, the hash key will be computed. If, however, a key is provided, it will be used.

There are also variations of cv::SparseMat::ptr() that allow for two or three indi‐
ces, as well as a version whose first argument is a pointer to an array of integers (i.e.,
const int* idx), which is required to have the same number of entries as the
dimension of the array being accessed.

90 | Chapter 4: Images and Large Array Types

12 For those not familiar with “const correctness,” it means that the method is declared in its prototype such
that the this pointer passed to SparseMat::value<>() is guaranteed to be a constant pointer, and thus Spar
seMat::value<>() can be called on const objects, while functions like SparseMat::ref<>() cannot. The next
function, SparseMat::find<>(), is also a const function.

In all cases, the function cv::SparseMat::ptr() returns a pointer to an unsigned
character (i.e., uchar*), which will typically need to be recast to the correct type for
the array.

The accessor template function SparseMat::ref<>() is used to return a reference to
a particular element of the array. This function, like SparseMat::ptr(), can take one,
two, or three indices, or a pointer to an array of indices, and also supports an
optional pointer to the hash value to use in the lookup. Because it is a template func‐
tion, you must specify the type of object being referenced. So, for example, if your
array were of type CV_32F, then you might call SparseMat::ref<>() like this:

a_sparse_mat.ref<float>(i0, i1) += 1.0f;

The template method cv::SparseMat::value<>() is identical to Sparse

Mat::ref<>(), except that it returns the value and not a reference to the value. Thus,
this method is itself a “const method.”12

The final accessor function is cv::SparseMat::find<>(), which works similarly to
cv::SparseMat::ref<>() and cv::SparseMat::value<>(), but returns a pointer to
the requested object. Unlike cv::SparseMat::ptr(), however, this pointer is of the
type specified by the template instantiation of cv::SparseMat::find<>(), and so
does not need to be recast. For purposes of code clarity, cv::SparseMat::find<>()
is preferred over cv::SparseMat::ptr() wherever possible. cv::Sparse

Mat::find<>(), however, is a const method and returns a const pointer, so the two
are not always interchangeable.

In addition to direct access through the four functions just outlined, it is also possible
to access the elements of a sparse matrix through iterators. As with the dense array
types, the iterators are normally templated. The templated iterators are cv::Spar
seMatIterator_<> and cv::SparseMatConstIterator_<>, together with their corre‐
sponding cv::SparseMat::begin<>() and cv::SparseMat::end<>() routines. (The
const forms of the begin() and end() routines return the const iterators.) There are
also the nontemplate iterators cv::SparseMatIterator and cv::SparseMatConstIt
erator, which are returned by the nontemplate SparseMat::begin() and Sparse
Mat::end() routines.

In Example 4-3 we print out all of the nonzero elements of a sparse array.

Dynamic and Variable Storage | 91

Example 4-3. Printing all of the nonzero elements of a sparse array

// Create a 10x10 sparse matrix with a few nonzero elements
//
int size[] = {10,10};
cv::SparseMat sm(2, size, CV_32F);

for(int i=0; i<10; i++) { // Fill the array
 int idx[2];
 idx[0] = size[0] * rand();
 idx[1] = size[1] * rand();

 sm.ref<float>(idx) += 1.0f;
}

// Print out the nonzero elements
//
cv::SparseMatConstIterator_<float> it = sm.begin<float>();
cv::SparseMatConstIterator_<float> it_end = sm.end<float>();

for(; it != it_end; ++it) {
 const cv::SparseMat::Node* node = it.node();
 printf(" (%3d,%3d) %f\n", node->idx[0], node->idx[1], *it);
}

In this example, we also slipped in the method node(), which is defined for the itera‐
tors. node() returns a pointer to the internal data node in the sparse matrix that is
indicated by the iterator. The returned object of type cv::SparseMat::Node has the
following definition:

struct Node
{
 size_t hashval;
 size_t next;
 int idx[cv::MAX_DIM];
};

This structure contains both the index of the associated element (note that element
idx is of type int[]), as well as the hash value associated with that node (the hashval
element is the same hash value as can be used with SparseMat::ptr(), Sparse
Mat::ref(), SparseMat::value(), and SparseMat::find()).

Functions Unique to Sparse Arrays
As stated earlier, sparse matrices support many of the same operations as dense
matrices. In addition, there are several methods that are unique to sparse matrices.
These are listed in Table 4-10, and include the functions mentioned in the previous
sections.

92 | Chapter 4: Images and Large Array Types

Table 4-10. Additional class member functions of cv::SparseMat

Example Description
cv::SparseMat sm; Create a sparse matrix without initialization

cv::SparseMat sm(3, sz, CV_32F); Create a three-dimensional sparse matrix with dimensions given by the
array sz of type float

cv::SparseMat sm(sm0); Create a new sparse matrix that is a copy of the existing sparse matrix sm0

cv::SparseMat(m0, try1d); Create a sparse matrix from an existing dense matrix m0; if the bool
try1d is true, convert m0 to a one-dimensional sparse matrix if the
dense matrix was n × 1 or 1 × n

cv::SparseMat(&old_sparse_mat); Create a new sparse matrix from a pointer to a pre–version 2.1 C-style
sparse matrix of type CvSparseMat

CvSparseMat* old_sm =
 (cv::SparseMat*) sm;

Cast operator creates a pointer to a pre–version 2.1 C-style sparse matrix;
that CvSparseMat object is created and all data is copied into it, and
then its pointer is returned

size_t n = sm.nzcount(); Return the number of nonzero elements in sm

size_t h = sm.hash(i0);
size_t h = sm.hash(i0, i1);
size_t h = sm.hash(i0, i1, i2);
size_t h = sm.hash(idx);

Return the hash value for element i0 in a one-dimensional sparse matrix;
i0, i1 in a two-dimensional sparse matrix; i0, i1, i2 in a three-
dimensional sparse matrix; or the element indicated by the array of
integers idx in an n-dimensional sparse matrix

sm.ref<float>(i0) = f0;
sm.ref<float>(i0, i1) = f0;
sm.ref<float>(i0, i1, i2) = f0;
sm.ref<float>(idx) = f0;

Assign the value f0 to element i0 in a one-dimensional sparse matrix;
i0, i1 in a two-dimensional sparse matrix; i0, i1, i2 in a three-
dimensional sparse matrix; or the element indicated by the array of
integers idx in an n-dimensional sparse matrix

f0 = sm.value<float>(i0);
f0 = sm.value<float>(i0, i1);
f0 = sm.value<float>(i0, i1, i2);
f0 = sm.value<float>(idx);

Assign the value to f0 from element i0 in a one-dimensional sparse
matrix; i0, i1 in a two-dimensional sparse matrix; i0, i1, i2 in a three-
dimensional sparse matrix; or the element indicated by the array of
integers idx in an n-dimensional sparse matrix

p0 = sm.find<float>(i0);
p0 = sm.find<float>(i0, i1);
p0 = sm.find<float>(i0, i1, i2);
p0 = sm.find<float>(idx);

Assign to p0 the address of element i0 in a one-dimensional sparse
matrix; i0, i1 in a two-dimensional sparse matrix; i0, i1, i2 in a three-
dimensional sparse matrix; or the element indicated by the array of
integers idx in an n-dimensional sparse matrix

sm.erase(i0, i1, &hashval);
sm.erase(i0, i1, i2, &hashval);
sm.erase(idx, &hashval);

Remove the element at (i0, i1) in a two-dimensional sparse matrix; at
(i0, i1, i2) in a three-dimensional sparse matrix; or the element
indicated by the array of integers idx in an n-dimensional sparse matrix.
If hashval is not NULL, use the provided value instead of computing it

cv::SparseMatIterator<float> it
 = sm.begin<float>();

Create a sparse matrix iterator it and point it at the first value of the
floating-point array sm

cv::SparseMatIterator<uchar> it_end
 = sm.end<uchar>();

Create a sparse matrix iterator it_end and initialize it to the value
succeeding the final value in the byte array sm

Dynamic and Variable Storage | 93

Template Structures for Large Array Types
The concept we saw in the previous chapter, by which common library classes are
related to template classes, also generalizes to cv::Mat and cv::SparseMat, and the
templates cv::Mat_<> and cv::SparseMat_<>, but in a somewhat nontrivial way.
When you use cv::Point2i, recall that this is nothing more or less than an alias
(typedef) for cv::Point_<int>. In the case of the template cv::Mat and cv::Mat_<>,
their relationship is not so simple. Recall that cv::Mat already has the capability of
representing essentially any type, but it does so at construction time by explicitly
specifying the base type. In the case of cv::Mat_<>, the instantiated template is
actually derived from the cv::Mat class, and in effect specializes that class. This sim‐
plifies access and other member functions that would otherwise need to be
templated.

This is worth reiterating. The purpose of using the template forms cv::Mat_<> and
cv::SparseMat_<> are so you don’t have to use the template forms of their member
functions. Consider this example, where we have a matrix defined by:

cv::Mat m(10, 10, CV_32FC2);

Individual element accesses to this matrix would need to specify the type of the
matrix, as in the following:

m.at< Vec2f >(i0, i1) = cv::Vec2f(x, y);

Alternatively, if you had defined the matrix m using the template class, you could use
at() without specialization, or even just use operator():

cv::Mat_<Vec2f> m(10, 10);

m.at(i0, i1) = cv::Vec2f(x, y);

// or...
m(i0, i1) = cv::Vec2f(x, y);

There is a great deal of simplification in your code that results from using these tem‐
plate definitions.

94 | Chapter 4: Images and Large Array Types

These two ways of declaring a matrix, and their associated .at
methods are equivalent in efficiency. The second method, however,
is considered more “correct” because it allows the compiler to
detect type mismatches when m is passed into a function that
requires a certain type of matrix. If:

cv::Mat m(10, 10, CV_32FC2);

is passed into:
void foo((cv::Mat_<char> *)myMat);

failure would occur during runtime in perhaps nonobvious ways. If
you instead used:

cv::Mat_<Vec2f> m(10, 10);

failure would be detected at compile time.

Template forms can be used to create template functions that operate on an array of a
particular type. Consider our example from the previous section, where we created a
small sparse matrix and then printed out its nonzero elements. We might try writing
a function to achieve this as follows:

void print_matrix(const cv::SparseMat* sm) {

 cv::SparseMatConstIterator_<float> it = sm.begin<float>();
 cv::SparseMatConstIterator_<float> it_end = sm.end<float>();

 for(; it != it_end; ++it) {
 const cv::SparseMat::Node* node = it.node();
 printf(" (%3d,%3d) %f\n", node->idx[0], node->idx[1], *it);
 }
}

Though this function would compile and work when it is passed a two-dimensional
matrix of type CV_32F, it would fail when a matrix of unexpected type was passed in.
Let’s look at how we could make this function more general.

The first thing we would want to address is the issue of the underlying data type. We
could explicitly use the cv::SparseMat_<float> template, but it would be better still
to make the function a template function. We would also need to get rid of the use of
printf(), as it makes an explicit assumption that *it is a float. A better function
might look like Example 4-4.

Example 4-4. A better way to print a matrix

template <class T> void print_matrix(const cv::SparseMat_<T>* sm) {

 cv::SparseMatConstIterator_<T> it = sm->begin();
 cv::SparseMatConstIterator_<T> it_end = sm->end();

Dynamic and Variable Storage | 95

13 The appearance of the typename keyword here is probably somewhat mysterious to most readers. It is a result
of the dependent scoping rules in C++. If you should forget it, however, most modern compilers (e.g., g++)
will throw you a friendly message reminding you to add it.

 for(; it != it_end; ++it) {
 const typename cv::SparseMat_<T>::Node* node = it.node();
 cout <<"(" <<node->idx[0] <<", " <<node->idx[1]
 <<") = " <<*it <<endl;
 }
}

void calling_function1(void) {
 ...
 cv::SparseMat_<float> sm(ndim, size);
 ...
 print_matrix<float>(&sm);
}

void calling_function2(void) {
 ...
 cv::SparseMat sm(ndim, size, CV_32F);
 ...
 print_matrix<float>((cv::SparseMat_<float>*) &sm);
}

It is worth picking apart these changes. First, though, before looking at changes,
notice that the template for our function takes a pointer of type const cv::Sparse
Mat_<t>*, a pointer to a sparse matrix template object. There is a good reason to use a
pointer and not a reference here, because the caller may have a cv::Mat object (as
used in calling_function2()) and not a cv::Mat_<> template object (as used in
calling_function1()). The cv::Mat can be dereferenced and then explicitly cast to
a pointer to the sparse matrix template object type.

In the templated prototype, we have promoted the function to a template of class T,
and now expect a cv::SparseMat_<T>* pointer as argument. In the next two lines, we
declare our iterators using the template type, but begin() and end() no longer have
templated instantiations. The reason for this is that sm is now an instantiated tem‐
plate, and because of that explicit instantiation, sm “knows” what sort of matrix it is,
and thus specialization of begin() and end() is unnecessary. The declaration of the
Node is similarly changed so that the Node we are using is explicitly taken from the
cv::SparseMat_<T> instantiated template class.13 Finally, we change the printf()
statement to use stream output to cout. This has the advantage that the printing is
now agnostic to the type of *it.

96 | Chapter 4: Images and Large Array Types

Summary
In this chapter, we introduced the all-important OpenCV array structure cv::Mat,
which is used to represent matrices, images, and multidimensional arrays. We saw
that the cv::Mat class can contain any sort of primitive type, such as numbers, vec‐
tors, and others. In the case of images, they were just cv::Mat class objects built to
contain fixed-length vectors such as Vec3b. This class has a wide variety of member
functions that simplify the expression of many simple operations. For other common
operations on arrays, a wide variety of functions exist, which we also covered in this
chapter. Along the way we learned about sparse matrices, and saw that they could be
used in almost any place regular cv::Mat structures can be used, just as we could use
STL vector objects with most functions. Finally, we took a moment to dig a little
deeper into the exact functioning of the template classes for large array types. There
we learned that, while the primitive types are derived from their templates, the large
array templates are instead derived from the basic class.

Exercises
1. Create a 500 × 500 single channel uchar image with every pixel equal to zero.

a. Create an ASCII numeric typewriter where you can type numbers into your
computer and have the number show up in a 20-pixel-high by 10-pixel-wide
block. As you type, the numbers will display from left to right until you hit the
end of the image. Then just stop.

b. Allow for carriage return and backspace.
c. Allow for arrow keys to edit each number.
d. Create a key that will convert the resulting image into a color image, each

number taking on a different color.
2. We want to create a function that makes it efficient to sum up rectangular

regions in an image by creating a statistics image where each “pixel” holds the
sum of the rectangle from that point to the image origin. These are called integral
images and by using just 4 points from the integral image, you can determine the
sum of any rectangle in the image.
a. Create a 100 × 200 single-channel uchar image with random numbers. Create

a 100 × 200 single-channel float “integral image” with all members equal to
zero.

b. Fill in each element of the integral image with the corresponding sum of the
rectangle from that pixel to the origin in the original uchar image.

Summary | 97

c. How can you do part b) very efficiently in one pass using the integral num‐
bers you’ve already calculated in the integral image plus the new number
being added in the original image? Implement this efficient method.

d. Use the integral image to rapidly calculate the sum of pixels in any rectangle
in the original image.

e. How can you modify the integral image so that you can compute the sum of a
45-degree rotated rectangle in the original image very efficiently? Describe the
algorithm.

98 | Chapter 4: Images and Large Array Types

CHAPTER 5

Array Operations

More Things You Can Do with Arrays
As we saw in the previous chapter, there are many basic operations on arrays that are
now handled by member functions of the array classes. In addition to those, however,
there are many more operations that are most naturally represented as “friend” func‐
tions that either take array types as arguments, have array types as return values, or
both. The functions, together with their arguments, will be covered in more detail
after Table 5-1.

Table 5-1. Basic matrix and image operators

Function Description
cv::abs() Return absolute value of all elements in an array
cv::absdiff() Return absolute value of differences between two arrays
cv::add() Perform element-wise addition of two arrays
cv::addWeighted() Perform element-wise weighted addition of two arrays (alpha blending)
cv::bitwise_and() Compute element-wise bit-level AND of two arrays
cv::bitwise_not() Compute element-wise bit-level NOT of two arrays
cv::bitwise_or() Compute element-wise bit-level OR of two arrays
cv::bitwise_xor() Compute element-wise bit-level XOR of two arrays
cv::calcCovarMatrix() Compute covariance of a set of n-dimensional vectors
cv::cartToPolar() Compute angle and magnitude from a two-dimensional vector field
cv::checkRange() Check array for invalid values
cv::compare() Apply selected comparison operator to all elements in two arrays
cv::completeSymm() Symmetrize matrix by copying elements from one half to the other
cv::convertScaleAbs() Scale array, take absolute value, then convert to 8-bit unsigned
cv::countNonZero() Count nonzero elements in an array

99

Function Description
cv::arrToMat() Convert pre–version 2.1 array types to cv::Mat
cv::dct() Compute discrete cosine transform of array
cv::determinant() Compute determinant of a square matrix
cv::dft() Compute discrete Fourier transform of array
cv::divide() Perform element-wise division of one array by another
cv::eigen() Compute eigenvalues and eigenvectors of a square matrix
cv::exp() Perform element-wise exponentiation of array
cv::extractImageCOI() Extract single channel from pre–version 2.1 array type
cv::flip() Flip an array about a selected axis
cv::gemm() Perform generalized matrix multiplication
cv::getConvertElem() Get a single-pixel type conversion function
cv::getConvertScaleElem() Get a single-pixel type conversion and scale function
cv::idct() Compute inverse discrete cosine transform of array
cv::idft() Compute inverse discrete Fourier transform of array
cv::inRange() Test if elements of an array are within values of two other arrays
cv::invert() Invert a square matrix
cv::log() Compute element-wise natural log of array
cv::magnitude() Compute magnitudes from a two-dimensional vector field
cv::LUT() Convert array to indices of a lookup table
cv::Mahalanobis() Compute Mahalanobis distance between two vectors
cv::max() Compute element-wise maxima between two arrays
cv::mean() Compute the average of the array elements
cv::meanStdDev() Compute the average and standard deviation of the array elements
cv::merge() Merge several single-channel arrays into one multichannel array
cv::min() Compute element-wise minima between two arrays
cv::minMaxLoc() Find minimum and maximum values in an array
cv::mixChannels() Shuffle channels from input arrays to output arrays
cv::mulSpectrums() Compute element-wise multiplication of two Fourier spectra
cv::multiply() Perform element-wise multiplication of two arrays
cv::mulTransposed() Calculate matrix product of one array
cv::norm() Compute normalized correlations between two arrays
cv::normalize() Normalize elements in an array to some value
cv::perspectiveTransform() Perform perspective matrix transform of a list of vectors
cv::phase() Compute orientations from a two-dimensional vector field
cv::polarToCart() Compute two-dimensional vector field from angles and magnitudes
cv::pow() Raise every element of an array to a given power
cv::randu() Fill a given array with uniformly distributed random numbers
cv::randn() Fill a given array with normally distributed random numbers
cv::randShuffle() Randomly shuffle array elements
cv::reduce() Reduce a two-dimensional array to a vector by a given operation

100 | Chapter 5: Array Operations

Function Description
cv::repeat() Tile the contents of one array into another
cv::saturate_cast<>() Convert primitive types (template function)
cv::scaleAdd() Compute element-wise sum of two arrays with optional scaling of the first
cv::setIdentity() Set all elements of an array to 1 for the diagonal and 0 otherwise
cv::solve() Solve a system of linear equations
cv::solveCubic() Find the (only) real roots of a cubic equation
cv::solvePoly() Find the complex roots of a polynomial equation
cv::sort() Sort elements in either the rows or columns in an array
cv::sortIdx() Serve same purpose as cv::sort(), except array is unmodified and indices are

returned
cv::split() Split a multichannel array into multiple single-channel arrays
cv::sqrt() Compute element-wise square root of an array
cv::subtract() Perform element-wise subtraction of one array from another
cv::sum() Sum all elements of an array
cv::theRNG() Return a random number generator
cv::trace() Compute the trace of an array
cv::transform() Apply matrix transformation on every element of an array
cv::transpose() Transpose all elements of an array across the diagonal

In these functions, some general rules are followed. To the extent that any exceptions
exist, they are noted in the function descriptions. Because one or more of these rules
applies to just about every function described in this chapter, they are listed here for
convenience:

Saturation
Outputs of calculations are saturation-casted to the type of the output array.

Output
The output array will be created with cv::Mat::create() if its type and size do
not match the required type or size. Usually the required output type and size are
the same as inputs, but for some functions size may be different (e.g., cv::trans
pose) or type may be different (e.g., cv::split).

Scalars
Many functions such as cv::add() allow for the addition of two arrays or an
array and a scalar. Where the prototypes make the option clear, the result of pro‐
viding a scalar argument is the same as if a second array had been provided with
the same scalar value in every element.

More Things You Can Do with Arrays | 101

Masks
Whenever a mask argument is present for a function, the output will be compu‐
ted only for those elements where the mask value corresponding to that element
in the output array is nonzero.

dtype

Many arithmetic and similar functions do not require the types of the input
arrays to be the same, and even if they are the same, the output array may be of a
different type than the inputs. In these cases, the output array must have its
depth explicitly specified. This is done with the dtype argument. When present,
dtype can be set to any of the basic types (e.g., CV_32F) and the result array will
be of that type. If the input arrays have the same type, then dtype can be set to its
default value of -1, and the resulting type will be the same as the types of the
input arrays.

In-place operation
Unless otherwise specified, any operation with an array input and an array out‐
put that are of the same size and type can use the same array for both (i.e., it is
allowable to write the output on top of an input).

Multichannel
For those operations that do not naturally make use of multiple channels, if given
multichannel arguments, each channel is processed separately.

cv::abs()
cv::MatExpr cv::abs(cv::InputArray src);
cv::MatExpr cv::abs(const cv::MatExpr& src); // Matrix expression

These functions compute the absolute value of an array or of some expression of
arrays. The most common usage computes the absolute value of every element in an
array. Because cv::abs() can take a matrix expression, it is able to recognize certain
special cases and handle them appropriately. In fact, calls to cv::abs() are actually
converted to calls to cv::absDiff() or other functions, and handled by those func‐
tions. In particular, the following special cases are implemented:

• m2 = cv::abs(m0 - m1) is converted to cv::absdiff(m0, m1, m2)
• m2 = cv::abs(m0) is converted to m2 = cv::absdiff(m0,

cv::Scalar::all(0), m2)

• m2 = cv::Mat_<Vec<uchar,n> >(cv::abs(alpha*m0 + beta)) (for alpha,
beta real numbers) is converted to cv::convertScaleAbs(m0, m2, alpha,
beta)

102 | Chapter 5: Array Operations

The third case might seem obscure, but this is just the case of computing a scale and
offset (either of which could be trivial) to an n-channel array. This is typical of what
you might do when computing a contrast correction for an image, for example.

In the cases that are implemented by cv::absdiff(), the result array will have the
same size and type as the input array. In the case implemented by cv::convertSca
leAbs(), however, the result type of the return array will always be CV_U8.

cv::absdiff()
void cv::absdiff(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst // Result array
)

dsti = saturate(| src1i − src2i |)

Given two arrays, cv::absdiff() computes the difference between each pair of cor‐
responding elements in those arrays, and places the absolute value of that difference
into the corresponding element of the destination array.

cv::add()
void cv::add(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
 cv::InputArray mask = cv::noArray(), // Optional, do only where nonzero
 int dtype = -1 // Output type for result array
);

dsti = saturate(src1i + src2i)

cv::add() is a simple addition function: it adds all of the elements in src1 to the cor‐
responding elements in src2 and puts the results in dst.

For simple cases, the same result can be achieved with the matrix
operation:

dst = src1 + src2;

Accumulation is also supported:
dst += src1;

More Things You Can Do with Arrays | 103

cv::addWeighted()
void cv::addWeighted(
 cv::InputArray src1, // First input array
 double alpha, // Weight for first input array
 cv::InputArray src2, // Second input array
 double beta, // Weight for second input array
 double gamma, // Offset added to weighted sum
 cv::OutputArray dst, // Result array
 int dtype = -1 // Output type for result array
);

The function cv::addWeighted() is similar to cvAdd() except that the result written
to dst is computed according to the following formula:

dsti = saturate(src1i*α + src2i*β + γ)

The two source images, src1 and src2, may be of any pixel type as long as both are of
the same type. They may also have any number of channels (grayscale, color, etc.) as
long as they agree.

This function can be used to implement alpha blending [Smith79; Porter84]; that is, it
can be used to blend one image with another. In this case, the parameter alpha is the
blending strength of src1, and beta is the blending strength of src2. You can convert
to the standard alpha blend equation by setting α between 0 and 1, setting β to 1 − α,
and setting γ to 0; this yields:

dsti = saturate(src1i*α + src2i*(1 − α))

However, cv::addWeighted() gives us a little more flexibility—both in how we
weight the blended images and in the additional parameter γ, which allows for an
additive offset to the resulting destination image. For the general form, you will prob‐
ably want to keep alpha and beta at 0 or above, and their sum at no more than 1;
gamma may be set depending on average or max image value to scale the pixels up. A
program that uses alpha blending is shown in Example 5-1.

104 | Chapter 5: Array Operations

Example 5-1. Complete program to alpha-blend the ROI starting at (0,0) in src2 with
the ROI starting at (x,y) in src1

// alphablend <imageA> <image B> <x> <y> <width> <height> <alpha> <beta>
//
#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv) {

 cv::Mat src1 = cv::imread(argv[1],1);
 cv::Mat src2 = cv::imread(argv[2],1);

 if(argc==9 && !src1.empty() && !src2.empty()) {

 int x = atoi(argv[3]);
 int y = atoi(argv[4]);
 int w = atoi(argv[5]);
 int h = atoi(argv[6]);
 double alpha = (double)atof(argv[7]);
 double beta = (double)atof(argv[8]);

 cv::Mat roi1(src1, cv::Rect(x,y,w,h));
 cv::Mat roi2(src2, cv::Rect(0,0,w,h));

 cv::addWeighted(roi1, alpha, roi2, beta, 0.0, roi1);

 cv::namedWindow("Alpha Blend", 1);
 cv::imshow("Alpha Blend", src2);
 cv::waitKey(0);
 }

 return 0;
}

The code in Example 5-1 takes two source images: the primary one (src1) and the
one to blend (src2). It reads in a rectangle ROI for src1 and applies an ROI of the
same size to src2, but located at the origin. It reads in alpha and beta levels but sets
gamma to 0. Alpha blending is applied using cv::addWeighted(), and the results are
put into src1 and displayed. Example output is shown in Figure 5-1, where the face
of a child is blended onto a cat. Note that the code took the same ROI as in the ROI
addition in Example 5-1. This time we used the ROI as the target blending region.

More Things You Can Do with Arrays | 105

Figure 5-1. The face of a child, alpha-blended onto the face of a cat

cv::bitwise_and()
void cv::bitwise_and(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
 cv::InputArray mask = cv::noArray(), // Optional, do only where nonzero
);

dsti = src1i ∧ src2i

cv::bitwise_and() is a per-element bitwise conjunction operation. For every ele‐
ment in src1, the bitwise AND is computed with the corresponding element in src2
and put into the corresponding element of dst.

If you are not using a mask, the same result can be achieved with
the matrix operation:

dst = src1 & src2;

106 | Chapter 5: Array Operations

cv::bitwise_not()
void cv::bitwise_not(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Result array
 cv::InputArray mask = cv::noArray(), // Optional, do only where nonzero
);

dsti = ∼ src1i

cv::bitwise_not() is a per-element bitwise inversion operation. For every element
in src1, the logical inversion is computed and placed into the corresponding element
of dst.

If you are not using a mask, the same result can be achieved with
the matrix operation:

dst = !src1;

cv::bitwise_or()
void cv::bitwise_and(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
 cv::InputArray mask = cv::noArray(), // Optional, do only where nonzero
);

dsti = src1i ∨ src2i

cv::bitwise_or() is a per-element bitwise disjunction operation. For every element
in src1, the bitwise OR is computed with the corresponding element in src2 and put
into the corresponding element of dst.

If you are not using a mask, the same result can be achieved with
the matrix operation:

dst = src1 | src2;

More Things You Can Do with Arrays | 107

cv::bitwise_xor()
void cv::bitwise_and(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
 cv::InputArray mask = cv::noArray(), // Optional, do only where nonzero
);

dsti = src1i⊕ src2i

cv::bitwise_and() is a per-element bitwise “exclusive or” (XOR) operation. For
every element in src1, the bitwise XOR is computed with the corresponding element
in src2 and put into the corresponding element of dst.

If you are not using a mask, the same result can be achieved with
the matrix operation:

dst = src1 ^ src2;

cv::calcCovarMatrix()
void cv::calcCovarMatrix(
 const cv::Mat* samples, // C-array of n-by-1 or 1-by-n matrices
 int nsamples, // num matrices pointed to by 'samples'
 cv::Mat& covar, // ref to return array for covariance
 cv::Mat& mean, // ref to return array for mean
 int flags, // special variations, see Table 5-2.
 int ctype = cv::F64 // output matrix type for covar
);

void cv::calcCovarMatrix(
 cv::InputArray samples, // n-by-m matrix, but see 'flags' below
 cv::Mat& covar, // ref to return array for covariance
 cv::Mat& mean, // ref to return array for mean
 int flags, // special variations, see Table 5-2.
 int ctype = cv::F64 // output matrix type for covar
);

Given any number of vectors, cv::calcCovarMatrix() will compute the mean and
covariance matrix for the Gaussian approximation to the distribution of those points.
This can be used in many ways, of course, and OpenCV has some additional flags
that will help in particular contexts (see Table 5-2). These flags may be combined by
the standard use of the Boolean OR operator.

108 | Chapter 5: Array Operations

Table 5-2. Possible components of flags argument to cv::calcCovarMatrix()

Flag in flags argument Meaning
cv::COVAR_NORMAL Compute mean and covariance
cv::COVAR_SCRAMBLED Fast PCA “scrambled” covariance
cv::COVAR_USE_AVERAGE Use mean as input instead of computing it
cv::COVAR_SCALE Rescale output covariance matrix
cv::COVAR_ROWS Use rows of samples for input vectors
cv::COVAR_COLS Use columns of samples for input vectors

There are two basic calling conventions for cv::calcCovarMatrix(). In the first, a
pointer to an array of cv::Mat objects is passed along with nsamples, the number of
matrices in that array. In this case, the arrays may be n × 1 or 1 × n. The second call‐
ing convention is to pass a single array that is n × m. In this case, either the flag
cv::COVAR_ROWS should be supplied, to indicate that there are n (row) vectors of
length m, or cv::COVAR_COLS should be supplied, to indicate that there are m (col‐
umn) vectors of length n.

The results will be placed in covar in all cases, but the exact meaning of avg depends
on the flag values (see Table 5-2).

The flags cv::COVAR_NORMAL and cv::COVAR_SCRAMBLED are mutually exclusive; you
should use one or the other but not both. In the case of cv::COVAR_NORMAL, the func‐
tion will simply compute the mean and covariance of the points provided:

Thus the normal covariance Σnormal
2 is computed from the m vectors of length n, where

v̄n is defined as the nth element of the average vector: v̄. The resulting covariance
matrix is an n × n matrix. The factor z is an optional scale factor; it will be set to 1
unless the cv::COVAR_SCALE flag is used.

In the case of cv::COVAR_SCRAMBLED, cv::calcCovarMatrix() will compute the
following:

More Things You Can Do with Arrays | 109

This matrix is not the usual covariance matrix (note the location of the transpose
operator). This matrix is computed from the same m vectors of length n, but the
resulting scrambled covariance matrix is an m × m matrix. This matrix is used in
some specific algorithms such as fast PCA for very large vectors (as in the eigenfaces
technique for face recognition).

The flag cv::COVAR_USE_AVG is used when the mean of the input vectors is already
known. In this case, the argument avg is used as an input rather than an output,
which reduces computation time.

Finally, the flag cv::COVAR_SCALE is used to apply a uniform scale to the covariance
matrix calculated. This is the factor z in the preceding equations. When used in con‐
junction with the cv::COVAR_NORMAL flag, the applied scale factor will be 1.0/m (or,
equivalently, 1.0/nsamples). If instead cv::COVAR_SCRAMBLED is used, then the value
of z will be 1.0/n (the inverse of the length of the vectors).

The input and output arrays to cv::calcCovarMatrix() should all be of the same
floating-point type. The size of the resulting matrix covar will be either n × n or m ×
m depending on whether the standard or scrambled covariance is being computed. It
should be noted that when you are using the cv::Mat* form, the “vectors” input in
samples do not actually have to be one-dimensional; they can be two-dimensional
objects (e.g., images) as well.

cv::cartToPolar()
void cv::cartToPolar(
 cv::InputArray x,
 cv::InputArray y,
 cv::OutputArray magnitude,
 cv::OutputArray angle,
 bool angleInDegrees = false
);

magnitudei = xi
2 + yi

2

anglei = atan2(yi, xi)

This function cv::cartToPolar() takes two input arrays, x and y, which are taken to
be the x- and y-components of a vector field (note that this is not a single two-
channel array, but two separate arrays). The arrays x and y must be of the same size.
cv::cartToPolar() then computes the polar representation of each of those vectors.
The magnitude of each vector is placed into the corresponding location in magni
tude, and the orientation of each vector is placed into the corresponding location in

110 | Chapter 5: Array Operations

angle. The returned angles are in radians unless the Boolean variable angleInDe
grees is set to true.

cv::checkRange()
bool cv::checkRange(
 cv::InputArray src,
 bool quiet = true,
 cv::Point* pos = 0, // if non-Null, location of first outlier
 double minVal = -DBL_MAX, // Lower check bound (inclusive)
 double maxVal = DBL_MAX // Upper check bound (exclusive)
);

This function cv::checkRange() tests every element of the input array src and
determines if that element is in a given range. The range is set by minVal and maxVal,
but any NaN or inf value is also considered out of range. If an out-of-range value is
found, an exception will be thrown unless quiet is set to true, in which case the
return value of cv::checkRange() will be true if all values are in range and false if
any value is out of range. If the pointer pos is not NULL, then the location of the first
outlier will be stored in pos.

cv::compare()
bool cv::compare(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
 int cmpop // Comparison operator, see Table 5-3.
);

This function makes element-wise comparisons between corresponding pixels in two
arrays, src1 and src2, and places the results in the image dst. cv::compare() takes
as its last argument a comparison operator, which may be any of the types listed in
Table 5-3. In each case, the result dst will be an 8-bit array where pixels that match
are marked with 255 and mismatches are set to 0.

Table 5-3. Values of cmpop used by cv::compare() and the resulting comparison operation
performed

Value of cmp_op Comparison
cv::CMP_EQ (src1i == src2i)

cv::CMP_GT (src1i > src2i)

cv::CMP_GE (src1i >= src2i)

cv::CMP_LT (src1i < src2i)

cv::CMP_LE (src1i <= src2i)

cv::CMP_NE (src1i != src2i)

More Things You Can Do with Arrays | 111

1 Mathematically inclined readers will realize that there are other symmetrizing processes for matrices that are
more “natural” than this operation, but this particular operation is useful in its own right—for example, to
complete a symmetric matrix when only half of it was computed—and so is exposed in the library.

All the listed comparisons are done with the same functions; you just pass in the
appropriate argument to indicate what you would like done.

These comparison functions are useful, for example, in background subtraction to
create a mask of the changed pixels (e.g., from a security camera) such that only novel
information is pulled out of the image.

These same results can be achieved with the matrix operations:
dst = src1 == src2;
dst = src1 > src2;
dst = src1 >= src2;
dst = src1 < src2;
dst = src1 <= src2;
dst = src1 != src2;

cv::completeSymm()
bool cv::completeSymm(
 cv::InputArray mtx,
 bool lowerToUpper = false
);

mtxij = mtx ji∀ i > j (lowerToUpper = false)

mtxij = mtx ji∀ j < i (lowerToUpper = true)

Given a matrix (an array of dimension two) mtx, cv::completeSymm() symmetrizes
the matrix by copying.1 Specifically, all of the elements from the lower triangle are
copied to their transpose position on the upper triangle of the matrix. The diagonal
elements of the mtx are left unchanged. If the flag lowerToUpper is set to true, then
the elements from the lower triangle are copied into the upper triangle instead.

cv::convertScaleAbs()
void cv::convertScaleAbs(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Result array
 double alpha = 1.0, // Multiplicative scale factor
 double beta = 0.0 // Additive offset factor
);

112 | Chapter 5: Array Operations

dsti = saturateuchar(| α*srci + β |)

The cv::convertScaleAbs() function is actually several functions rolled into one; it
will perform four operations in sequence. The first operation is to rescale the source
image by the factor a, the second is to offset by (add) the factor b, the third is to com‐
pute the absolute value of that sum, and the fourth is to cast that result (with satura‐
tion) to an unsigned char (8-bit).

When you simply pass the default values (alpha = 1.0 or beta = 0.0), you need not
have performance fears; OpenCV is smart enough to recognize these cases and not
waste processor time on useless operations.

A similar result can be achieved, with somewhat greater generality,
through the following loop:

for(int i = 0; i < src.rows; i++)
 for(int j = 0; j < src.cols*src.channels(); j++)
 dst.at<dst_type>(i, j) = satuarate_cast<dst_type>(
 (double)src.at<src_type>(i, j) * alpha + beta
);

cv::countNonZero()
int cv::countNonZero(// Return number of nonzero elements in mtx
 cv::InputArray mtx, // Input array
);

count = ∑
mtxi≠0

1

cv::countNonZero() returns the number of nonzero pixels in the array mtx.

cv::cvarrToMat()
cv::Mat cv::cvarrToMat(
 const CvArr* src, // Input array: CvMat, IplImage, or CvMatND
 bool copyData = false, // if false just make new header, else copy data
 bool allowND = true, // if true and possible, convert CvMatND to Mat
 int coiMode = 0 // if 0: error if COI set, if 1: ignore COI
);

cv::cvarrToMat() is used when you have an “old-style” (pre–version 2.1) image or
matrix type and you want to convert it to a “new-style” (version 2.1 or later, which
uses C++) cv::Mat object. By default, only the header for the new array is construc‐
ted without copying the data. Instead, the data pointers in the new header point to
the existing data array (so do not deallocate it while the cv::Mat header is in use). If

More Things You Can Do with Arrays | 113

2 “COI” is an old concept from the pre-v2 library that meant “channel of interest.” In the old IplImage class,
this COI was analogous to ROI (region of interest), and could be set to cause certain functions to act only on
the indicated channel.

you want the data copied, just set copyData to true, and then you can freely do away
with the original data object.

cv::cvarrToMat() can also take CvMatND structures, but it cannot handle all cases.
The key requirement for the conversion is that the matrix should be continuous, or
at least representable as a sequence of continuous matrices. Specifically,
A.dim[i].size*A.dim.step[i] should be equal to A.dim.step[i-1] for all i, or at
worst all but one. If allowND is set to true (default), cv::cvarrToMat() will attempt
the conversion when it encounters a CvMatND structure, and throw an exception if
that conversion is not possible (the preceding condition). If allowND is set to false,
then an exception will be thrown whenever a CvMatND structure is encountered.

Because the concept of COI2 is handled differently in the post–version 2.1 library
(which is to say, it no longer exists), COI has to be handled during the conversion. If
the argument coiMode is 0, then an exception will be thrown when src contains an
active COI. If coiMode is nonzero, then no error will be reported, and instead a
cv::Mat header corresponding to the entire image will be returned, ignoring the COI.
(If you want to handle COI properly, you will have to check whether the image has
the COI set, and if so, use cv::extractImageCOI() to create a header for just that
channel.)

Most of the time, this function is used to help migrate old-style
code to the new. In such cases, you will probably need to both con‐
vert old-style CvArr* structures to cv::Mat, as well as doing the
reverse operation. The reverse operation is done using cast opera‐
tors. If, for example, you have a matrix you defined as cv::Mat A,
you can convert that to an IplImage* pointer simply with:

Cv::Mat A(640, 480, cv::U8C3);
// casting is implicit on assignment
IplImage. my_img = A;
iplImage* img = &my_img;

cv::dct()
void cv::dct(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Result array
 int flags, // for inverse transform or row-by-row
);

114 | Chapter 5: Array Operations

This function performs both the discrete cosine transform and the inverse transform
depending on the flags argument. The source array src must be either one- or two-
dimensional, and the size should be an even number (you can pad the array if neces‐
sary). The result array dst will have the same type and size as src. The argument
flags is a bit field and can be set to one or both of DCT_INVERSE or DCT_ROWS. If
DCT_INVERSE is set, then the inverse transform is done instead of the forward trans‐
form. If the flag DCT_ROWS is set, then a two-dimensional n × m input is treated as n
distinct one-dimensional vectors of length m. In this case, each such vector will be
transformed independently.

The performance of cv::dct() depends strongly on the exact size
of the arrays passed to it, and this relationship is not monotonic.
There are just some sizes that work better than others. It is recom‐
mended that when passing an array to cv::dct(), you first deter‐
mine the most optimal size that is larger than your array, and
extend your array to that size. OpenCV provides a convenient rou‐
tine to compute such values for you, called cv::getOptimalDFT
Size().
As implemented, the discrete cosine transform of a vector of length
n is computed via the discrete Fourier transform (cv::dft()) on a
vector of length n/2. This means that to get the optimal size for a
call to cv::dct(), you should compute it like this:

size_t opt_dft_size = 2 * cv::getOptimalDFTSize((N+1)/2);

This function (and discrete transforms in general) is covered in much greater detail
in Chapter 11. In that chapter, we will discuss the details of how to pack and unpack
the input and output, as well as when and why you might want to use the discrete
cosine transform.

cv::dft()
void cv::dft(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Result array
 int flags = 0, // for inverse transform or row-by-row
 int nonzeroRows = 0 // only this many entries are nonzero
);

The cv::dft() function performs both the discrete Fourier transform as well as the
inverse transform (depending on the flags argument). The source array src must be
either one- or two-dimensional. The result array dst will have the same type and size
as src. The argument flags is a bit field and can be set to one or more of
DFT_INVERSE, DFT_ROWS, DFT_SCALE, DFT_COMPLEX_OUTPUT, or DFT_REAL_OUTPUT. If

More Things You Can Do with Arrays | 115

DFT_INVERSE is set, then the inverse transform is done. If the flag DFT_ROWS is set,
then a two-dimensional n × m input is treated as n distinct one-dimensional vectors
of length m and each such vector will be transformed independently. The flag
DFT_SCALE normalizes the results by the number of elements in the array. This is typi‐
cally done for DFT_INVERSE, as it guarantees that the inverse of the inverse will have
the correct normalization.

The flags DFT_COMPLEX_OUTPUT and DFT_REAL_OUTPUT are useful because when the
Fourier transform of a real array is computed, the result will have a complex-
conjugate symmetry. So, even though the result is complex, the number of array ele‐
ments that result will be equal to the number of elements in the real input array
rather than double that number. Such a packing is the default behavior of cv::dft().
To force the output to be in complex form, set the flag DFT_COMPLEX_OUTPUT. In the
case of the inverse transform, the input is (in general) complex, and the output will
be as well. However, if the input array (to the inverse transform) has complex-
conjugate symmetry (for example, if it was itself the result of a Fourier transform of a
real array), then the inverse transform will be a real array. If you know this to be the
case and you would like the result array represented as a real array (thereby using half
the amount of memory), you can set the DFT_REAL_OUTPUT flag. (Note that if you do
set this flag, cv::dft() does not check that the input array has the necessary symme‐
try; it simply assumes that it does.)

The last parameter to cv::dft() is nonzeroRows. This defaults to 0, but if set to any
nonzero value, will cause cv::dft() to assume that only the first nonzeroRows of the
input array are actually meaningful. (If DFT_INVERSE is set, then it is only the first
nonzeroRows of the output array that are assumed to be nonzero.) This flag is partic‐
ularly handy when you are computing cross-correlations of convolutions using
cv::dft().

The performance of cv::dft() depends strongly on the exact size
of the arrays passed to it, and this relationship is not monotonic.
There are just some sizes that work better than others. It is recom‐
mended that when passing an array to cv::dft(), you first deter‐
mine the most optimal size larger than your array, and extend your
array to that size. OpenCV provides a convenient routine to com‐
pute such values for you, called cv::getOptimalDFTSize().

Again, this function (and discrete transforms in general) is covered in much greater
detail in Chapter 11. In that chapter, we will discuss the details of how to pack and
unpack the input and output, as well as when and why you might want to use the
discrete Fourier transform.

116 | Chapter 5: Array Operations

3 Long-time users of IPL should note that the function cvCvtColor() ignores the colorModel and channelSeq
fields of the IplImage header. The conversions are done exactly as implied by the code argument.

cv::cvtColor()
void cv::cvtColor(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Result array
 int code, // color mapping code, see Table 5-4.
 int dstCn = 0 // channels in output (0='automatic')
);

cv::cvtColor() is used to convert from one color space (number of channels) to
another [Wharton71] while retaining the same data type. The input array src can be
an 8-bit array, a 16-bit unsigned array, or a 32-bit floating-point array. The output
array dst will have the same size and depth as the input array. The conversion opera‐
tion to be done is specified by the code argument, with possible values shown in
Table 5-4.3 The final parameter, dstCn, is the desired number of channels in the desti‐
nation image. If the default value of 0 is given, then the number of channels is deter‐
mined by the number of channels in src and the conversion code.

Table 5-4. Conversions available by means of cv::cvtColor()

Conversion code Meaning
cv::COLOR_BGR2RGB
cv::COLOR_RGB2BGR
cv::COLOR_RGBA2BGRA
cv::COLOR_BGRA2RGBA

Convert between RGB and BGR color spaces (with or without alpha channel)

cv::COLOR_RGB2RGBA
cv::COLOR_BGR2BGRA

Add alpha channel to RGB or BGR image

cv::COLOR_RGBA2RGB
cv::COLOR_BGRA2BGR

Remove alpha channel from RGB or BGR image

cv::COLOR_RGB2BGRA
cv::COLOR_RGBA2BGR
cv::COLOR_BGRA2RGB
cv::COLOR_BGR2RGBA

Convert RGB to BGR color spaces while adding or removing alpha channel

cv::COLOR_RGB2GRAY
cv::COLOR_BGR2GRAY

Convert RGB or BGR color spaces to grayscale

cv::COLOR_GRAY2RGB
cv::COLOR_GRAY2BGR
cv::COLOR_RGBA2GRAY
cv::COLOR_BGRA2GRAY

Convert grayscale to RGB or BGR color spaces (optionally removing alpha
channel in the process)

cv::COLOR_GRAY2RGBA
cv::COLOR_GRAY2BGRA

Convert grayscale to RGB or BGR color spaces and add alpha channel

More Things You Can Do with Arrays | 117

Conversion code Meaning
cv::COLOR_RGB2BGR565
cv::COLOR_BGR2BGR565
cv::COLOR_BGR5652RGB
cv::COLOR_BGR5652BGR
cv::COLOR_RGBA2BGR565
cv::COLOR_BGRA2BGR565
cv::COLOR_BGR5652RGBA
cv::COLOR_BGR5652BGRA

Convert from RGB or BGR color space to BGR565 color representation with
optional addition or removal of alpha channel (16-bit images)

cv::COLOR_GRAY2BGR565
cv::COLOR_BGR5652GRAY

Convert grayscale to BGR565 color representation or vice versa (16-bit images)

cv::COLOR_RGB2BGR555
cv::COLOR_BGR2BGR555
cv::COLOR_BGR5552RGB
cv::COLOR_BGR5552BGR
cv::COLOR_RGBA2BGR555
cv::COLOR_BGRA2BGR555
cv::COLOR_BGR5552RGBA
cv::COLOR_BGR5552BGRA

Convert from RGB or BGR color space to BGR555 color representation with
optional addition or removal of alpha channel (16-bit images)

cv::COLOR_GRAY2BGR555
cv::COLOR_BGR5552GRAY

Convert grayscale to BGR555 color representation or vice versa (16-bit images)

cv::COLOR_RGB2XYZ
cv::COLOR_BGR2XYZ
cv::COLOR_XYZ2RGB
cv::COLOR_XYZ2BGR

Convert RGB or BGR image to CIE XYZ representation or vice versa (Rec 709
with D65 white point)

cv::COLOR_RGB2YCrCb
cv::COLOR_BGR2YCrCb
cv::COLOR_YCrCb2RGB
cv::COLOR_YCrCb2BGR

Convert RGB or BGR image to luma-chroma (a.k.a. YCC) color representation
or vice versa

cv::COLOR_RGB2HSV
cv::COLOR_BGR2HSV
cv::COLOR_HSV2RGB
cv::COLOR_HSV2BGR

Convert RGB or BGR image to HSV (hue saturation value) color representation
or vice versa

cv::COLOR_RGB2HLS
cv::COLOR_BGR2HLS
cv::COLOR_HLS2RGB
cv::COLOR_HLS2BGR

Convert RGB or BGR image to HLS (hue lightness saturation) color
representation or vice versa

cv::COLOR_RGB2Lab
cv::COLOR_BGR2Lab
cv::COLOR_Lab2RGB
cv::COLOR_Lab2BGR

Convert RGB or BGR image to CIE Lab color representation or vice versa

cv::COLOR_RGB2Luv
cv::COLOR_BGR2Luv
cv::COLOR_Luv2RGB
cv::COLOR_Luv2BGR

Convert RGB or BGR image to CIE Luv color representation or vice versa

118 | Chapter 5: Array Operations

4 Excluding 360, of course.

Conversion code Meaning
cv::COLOR_BayerBG2RGB
cv::COLOR_BayerGB2RGB
cv::COLOR_BayerRG2RGB
cv::COLOR_BayerGR2RGB
cv::COLOR_BayerBG2BGR
cv::COLOR_BayerGB2BGR
cv::COLOR_BayerRG2BGR
cv::COLOR_BayerGR2BGR

Convert from Bayer pattern (single-channel) to RGB or BGR image

We will not go into the details of these conversions nor the subtleties of some of the
representations (particularly the Bayer and the CIE color spaces) here. Instead, we
will just note that OpenCV contains tools to convert to and from these various color
spaces, which are important to various classes of users.

The color-space conversions all use the following conventions: 8-bit images are in the
range 0 to 255, 16-bit images are in the range 0 to 65,536, and floating-point numbers
are in the range 0.0 to 1.0. When grayscale images are converted to color images, all
components of the resulting image are taken to be equal; but for the reverse transfor‐
mation (e.g., RGB or BGR to grayscale), the gray value is computed through the per‐
ceptually weighted formula:

Y = (0.299)R + (0.587)G + (0.114)B

In the case of HSV or HLS representations, hue is normally represented as a value
from 0 to 360.4 This can cause trouble in 8-bit representations and so, when you are
converting to HSV, the hue is divided by 2 when the output image is an 8-bit image.

cv::determinant()
double cv::determinant(
 cv::InputArray mat
);

d = det(mat)

cv::determinant() computes the determinant of a square array. The array must be
of one of the floating-point data types and must be single-channel. If the matrix is
small, then the determinant is directly computed by the standard formula. For
large matrices, this is not efficient, so the determinant is computed by Gaussian elimi‐
nation.

More Things You Can Do with Arrays | 119

If you know that a matrix has a symmetric and positive determi‐
nant, you can use the trick of solving via singular value decomposi‐
tion (SVD). For more information, see the section “Singular Value
Decomposition (cv::SVD)” on page 173 in Chapter 7, but the trick is
to set both U and V to NULL, and then just take the products of the
matrix W to obtain the determinant.

cv::divide()
void cv::divide(
 cv::InputArray src1, // First input array (numerators)
 cv::InputArray src2, // Second input array (denominators)
 cv::OutputArray dst, // Results array (scale*src1/src2)
 double scale = 1.0, // Multiplicative scale factor
 int dtype = -1 // dst data type, -1 to get from src2
);

void cv::divide(
 double scale, // Numerator for all divisions
 cv::InputArray src2, // Input array (denominators)
 cv::OutputArray dst, // Results array (scale/src2)
 int dtype = -1 // dst data type, -1 to get from src2
);

dsti = saturate(scale*
src1i
src2i

)
dsti = saturate(scale / src2i)

cv::divide() is a simple division function; it divides all of the elements in src1 by
the corresponding elements in src2 and puts the results in dst.

cv::eigen()
bool cv::eigen(
 cv::InputArray src,
 cv::OutputArray eigenvalues,
 int lowindex = -1,
 int highindex = -1
);

bool cv::eigen(
 cv::InputArray src,
 cv::OutputArray eigenvalues,
 cv::OutputArray eigenvectors,
 int lowindex = -1,
 int highindex = -1
);

120 | Chapter 5: Array Operations

Given a symmetric matrix mat, cv::eigen() will compute the eigenvectors and eigen‐
values of that matrix. The matrix must be of one of the floating-point types. The
results array eigenvalues will contain the eigenvalues of mat in descending order. If
the array eigenvectors was provided, the eigenvectors will be stored as the rows of
that array in the same order as the corresponding eigenvalues in eigenvalues. The
additional parameters lowindex and highindex allow you to request only some of the
eigenvalues to be computed (both must be used together). For example, if lowin
dex=0 and highindex=1, then only the largest two eigenvectors will be computed.

cv::exp()
void cv::exp(
 cv::InputArray src,
 cv::OutputArray dst
);

dsti = e srci

cv::exp() exponentiates all of the elements in src and puts the results in dst.

cv::extractImageCOI()
bool cv::extractImageCOI(
 const CvArr* arr,
 cv::OutputArray dst,
 int coi = -1
);

The function cv::extractImageCOI() extracts the indicated COI from a legacy-style
(pre–version 2.1) array, such as an IplImage or CvMat given by arr, and puts the
result in dst. If the argument coi is provided, then that particular COI will be extrac‐
ted. If not, then the COI field in src will be checked to determine which channel to
extract.

The cv::extractImageCOI() method described here is specifically
for use with legacy arrays. If you need to extract a single channel
from a modern cv::Mat object, use cv::mixChannels() or
cv::split().

More Things You Can Do with Arrays | 121

cv::flip()
void cv::flip(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Result array, size and type of 'src'
 int flipCode = 0 // >0: y-flip, 0: x-flip, <0: both
);

This function flips an image around the x-axis, the y-axis, or both. By default, flip
Code is set to 0, which flips around the x-axis.

If flipCode is set greater than zero (e.g., +1), the image will be flipped around the y-
axis, and if set to a negative value (e.g., –1), the image will be flipped about both axes.

When doing video processing on Win32 systems, you will find yourself using this
function often to switch between image formats with their origins at the upper left
and lower left of the image.

cv::gemm()
void cv::gemm(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 double alpha, // Weight for 'src1' * 'src2' product
 cv::InputArray src3, // Third (offset) input array
 double beta, // Weight for 'src3' array
 cv::OutputArray dst, // Results array
 int flags = 0 // Use to transpose source arrays
);

Generalized matrix multiplication (GEMM) in OpenCV is performed by cv::gemm(),
which performs matrix multiplication, multiplication by a transpose, scaled multipli‐
cation, and so on. In its most general form, cv::gemm() computes the following:

D = α ⋅ op(src1)* op(src2) + β ⋅ op(src3)

where src1, src2, and src3 are matrices, α and β are numerical coefficients, and op()
is an optional transposition of the matrix enclosed. The transpositions are controlled
by the optional argument flags, which may be 0 or any combination (by means of
Boolean OR) of cv::GEMM_1_T, cv::GEMM_2_T, and cv::GEMM_3_T (with each flag
indicating a transposition of the corresponding matrix).

All matrices must be of the appropriate size for the (matrix) multiplication, and all
should be of floating-point types. The cv::gemm() function also supports two-
channel matrices that will be treated as two components of a single complex number.

122 | Chapter 5: Array Operations

You can achieve a similar result using the matrix algebra operators.
For example:

cv::gemm(
 src1, src2, alpha, src3, bets, dst,cv::GEMM_1_T | cv::GEMM_3_T
);

would be equivalent to:
dst = alpha * src1.T() * src2 + beta * src3.T()

cv::getConvertElem() and cv::getConvertScaleElem()
cv::convertData cv::getConvertElem(// Returns a conversion function (below)
 int fromType, // Input pixel type (e.g., cv::U8)
 int toType // Output pixel type (e.g., CV_32F)
);

cv::convertScaleData cv::getConvertScaleElem(// Returns a conversion function
 int fromType, // Input pixel type (e.g., cv::U8)
 int toType // Output pixel type (e.g., CV_32F)
);

// Conversion functions are of these forms:
//
typedef void (*ConvertData)(
 const void* from, // Pointer to the input pixel location
 void* to, // Pointer to the result pixel location
 int cn // number of channels
);

typedef void (*ConvertScaleData)(
 const void* from, // Pointer to the input pixel location
 void* to, // Pointer to the result pixel location
 int cn, // number of channels
 double alpha, // scale factor
 double beta // offset factor
);

The functions cv::getConvertElem() and cv::getConvertScaleElem() return
function pointers to the functions that are used for specific type conversions in
OpenCV. The function returned by cv::getConvertElem() is defined (via typedef)
to the type cv::ConvertData, which can be passed a pointer to two data areas and a
number of “channels.” The number of channels is given by the argument cn of the
conversion function, which is really the number of contiguous-in-memory objects of
fromType to convert. This means that you could convert an entire (contiguous-in-
memory) array by simply setting the number of channels equal to the total number of
elements in the array.

More Things You Can Do with Arrays | 123

Both cv::getConvertElem() and cv::getConvertScaleElem() take as arguments
two types: fromType and toType. These types are specified with the integer constants
(e.g., CV_32F).

In the case of cv::getConvertScaleElem(), the returned function takes two addi‐
tional arguments, alpha and beta. These values are used by the converter function to
rescale (alpha) and offset (beta) the input value before conversion to the desired
type.

cv::idct()
void cv::idct(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Result array
 int flags, // for row-by-row
);

cv::idct() is just a convenient shorthand for the inverse discrete cosine transform.
A call to cv::idct() is exactly equivalent to a call to cv::dct() with the arguments:

cv::dct(src, dst, flags | cv::DCT_INVERSE);

cv::idft()
void cv::idft(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Result array
 int flags = 0, // for row-by-row, etc.
 int nonzeroRows = 0 // only this many entries are nonzero
);

cv::idft() is just a convenient shorthand for the inverse discrete Fourier transform.
A call to cv::idft() is exactly equivalent to a call to cv::dft() with the arguments:

cv::dft(src, dst, flags | cv::DCT_INVERSE, outputRows);

Neither cv::dft() nor cv::idft() scales the output by default. So
you will probably want to call cv::idft() with the cv::DFT_SCALE
argument; that way, the transform and its “inverse” will be true
inverse operations.

cv::inRange()
void cv::inRange(
 cv::InputArray src, // Input array
 cv::InputArray upperb, // Array of upper bounds (inclusive)
 cv::InputArray lowerb, // Array of lower bounds (inclusive)

124 | Chapter 5: Array Operations

 cv::OutputArray dst // Result array, cv::U8C1 type
);

dsti = lowerbi ≤ srci ≤ upperbi

When applied to a one-dimensional array, each element of src is checked against the
corresponding elements of upperb and lowerb. The corresponding element of dst is
set to 255 if the element in src is between the values given by upperb and lowerb;
otherwise, it is set to 0.

However, in the case of multichannel arrays for src, upperb, and lowerb, the output
is still a single channel. The output value for element i will be set to 255 if and only if
the values for the corresponding entry in src all lay inside the intervals implied for
the corresponding channel in upperb and lowerb. In this sense, upperb and lowerb
define an n-dimensional hypercube for each pixel and the corresponding value in dst
is only set to true (255) if the pixel in src lies inside that hypercube.

cv::insertImageCOI()
void cv::insertImageCOI(
 cv::InputArray img, // Input array, single channel
 CvArr* arr, // Legacy (pre v2.1) output array
 int coi = -1 // Target channel
);

Like the cv::extractImageCOI() function we encountered earlier in this chapter, the
cv::insertImageCOI() function is designed to help us work with legacy (pre-v2.1)
arrays like IplImage and CvMat. Its purpose is to allow us to take the data from a
new-style C++ cv::Mat object and write that data onto one particular channel of a
legacy array. The input img is expected to be a single-channel cv::Mat object, while
the input arr is expected to be a multichannel legacy object. Both must be of the
same size. The data in img will be copied onto the coi channel of arr.

The function cv::extractImageCOI() is used when you want to
extract a particular COI from a legacy array into a single-channel
C++ array. On the other hand, cv::insertImageCOI() is used to
write the contents of a single-channel C++ array onto a particular
channel of a legacy array. If you aren’t dealing with legacy arrays
and you just want to insert one C++ array into another, you can do
that with cv::merge().

More Things You Can Do with Arrays | 125

cv::invert()
double cv::invert(// Return 0 if 'src' is singular
 cv::InputArray src, // Input Array, m-by-n
 cv::OutputArray dst // Result array, n-by-m
 int method = cv::DECOMP_LU // Method for (pseudo) inverse
);

cv::invert() inverts the matrix in src and places the result in dst. The input array
must be a floating-point type, and the result array will be of the same type. Because
cv::invert() includes the possibility of computing pseudo-inverses, the input array
need not be square. If the input array is n × m, then the result array will be m × n.
This function supports several methods of computing the inverse matrix (see
Table 5-5), but the default is Gaussian elimination. The return value depends on the
method used.

Table 5-5. Possible values of method argument to cv::invert()

Value of method argument Meaning
cv::DECOMP_LU Gaussian elimination (LU decomposition)
cv::DECOMP_SVD Singular value decomposition (SVD)
cv::DECOMP_CHOLESKY Only for symmetric positive matrices

In the case of Gaussian elimination (cv::DECOMP_LU), the determinant of src is
returned when the function is complete. If the determinant is 0, inversion failed and
the array dst is set to all 0s.

In the case of cv::DECOMP_SVD, the return value is the inverse condition number for
the matrix (the ratio of the smallest to the largest eigenvalues). If the matrix src is
singular, then cv::invert() in SVD mode will compute the pseudo-inverse. The
other two methods (LU and Cholesky decomposition) require the source matrix to be
square, nonsingular, and positive.

cv::log()
void cv::log(
 cv::InputArray src,
 cv::OutputArray dst
);

dsti = {logsrci srci ≠ 0
− C else

126 | Chapter 5: Array Operations

cv::log() computes the natural log of the elements in src1 and puts the results in
dst. Source pixels that are less than or equal to zero are marked with destination pix‐
els set to a large negative value.

cv::LUT()
void cv::LUT(
 cv::InputArray src,
 cv::InputArray lut,
 cv::OutputArray dst
);

dsti = lut(srci)

The function cv::LUT() performs a “lookup table transform” on the input in src.
cv::LUT() requires the source array src to be 8-bit index values. The lut array holds
the lookup table. This lookup table array should have exactly 256 elements, and may
have either a single channel or, in the case of a multichannel src array, the same
number of channels as the source array. The function cv::LUT() then fills the desti‐
nation array dst with values taken from the lookup table lut using the correspond‐
ing value from src as an index into that table.

In the case where the values in src are signed 8-bit numbers, they are automatically
offset by +128 so that their range will index the lookup table in a meaningful way. If
the lookup table is multichannel (and the indices are as well), then the value in src is
used as a multidimensional index into lut, and the result array dst will be single
channel. If lut is one-dimensional, then the result array will be multichannel, with
each channel being separately computed from the corresponding index from src and
the one-dimensional lookup table.

cv::magnitude()
void cv::magnitude(
 cv::InputArray x,
 cv::InputArray y,
 cv::OutputArray dst
);

dsti = xi
2 + yi

2

cv::magnitude() essentially computes the radial part of a Cartesian-to-polar conver‐
sion on a two-dimensional vector field. In the case of cv::magnitude(), this vector
field is expected to be in the form of two separate single channel arrays. These two
input arrays should have the same size. (If you have a single two-channel array,

More Things You Can Do with Arrays | 127

cv::split() will give you separate channels.) Each element in dst is computed from
the corresponding elements of x and y as the Euclidean norm of the two (i.e., the
square root of the sum of the squares of the corresponding values).

cv::Mahalanobis()
cv::Size cv::mahalanobis(
 cv::InputArray vec1,
 cv::InputArray vec2,
 cv::OutputArray icovar
);

cv::Mahalanobis() computes the value:

rmahalonobis = (x→ − μ→)T Σ−1(x→ − μ→)

The Mahalanobis distance is defined as the vector distance measured between a point
and the center of a Gaussian distribution; it is computed using the inverse covariance
of that distribution as a metric (see Figure 5-2). Intuitively, this is analogous to the
z-score in basic statistics, where the distance from the center of a distribution is
measured in units of the variance of that distribution. The Mahalanobis distance is
just a multivariable generalization of the same idea.

Figure 5-2. A distribution of points in two dimensions with superimposed ellipsoids rep‐
resenting Mahalanobis distances of 1.0, 2.0, and 3.0 from the distribution’s mean

128 | Chapter 5: Array Operations

5 Actually, the Mahalanobis distance is more generally defined as the distance between any two vectors; in any
case, the vector vec2 is subtracted from the vector vec1. Neither is there any fundamental connection
between mat in cvMahalanobiscv::Mahalanobis() and the inverse covariance; any metric can be imposed
here as appropriate.

The vector vec1 is presumed to be the point x, and the vector vec2 is taken to be the
distribution’s mean.5 That matrix icovar is the inverse covariance.

This covariance matrix will usually have been computed with
cv::calcCovarMatrix() (described previously) and then inverted
with cv::invert(). It is good programming practice to use the
cv::DECOMP_SVD method for this inversion because someday you
will encounter a distribution for which one of the eigenvalues is 0!

cv::max()
cv::MatExpr cv::max(
 const cv::Mat& src1, // First input array (first position)
 const cv::Mat& src2 // Second input array
);

MatExpr cv::max(// A matrix expression, not a matrix
 const cv::Mat& src1, // First input array (first position)
 double value // Scalar in second position
);

MatExpr cv::max(// A matrix expression, not a matrix
 double value, // Scalar in first position
 const cv::Mat& src1 // Input array (second position)
);

void cv::max(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst // Result array
);

void cv::max(
 const Mat& src1, // First input array
 const Mat& src2, // Second input array
 Mat& dst // Result array
);

void cv::max(
 const Mat& src1, // Input array
 double value, // Scalar input
 Mat& dst // Result array
);

More Things You Can Do with Arrays | 129

dsti = max(src1,i, src2,i)

cv::max() computes the maximum value of each corresponding pair of pixels in the
arrays src1 and src2. It has two basic forms: those that return a matrix expression
and those that compute a result and put it someplace you have indicated. In the
three-argument form, in the case where one of the operands is a cv::Scalar, com‐
parison with a multichannel array is done on a per-channel basis with the appropri‐
ate component of the cv::Scalar.

cv::mean()
cv::Scalar cv::mean(
 cv::InputArray src,
 cv::InputArray mask = cv::noArray(), // Optional, do only where nonzero
);

N = ∑
i,maski≠0

1

meanc = 1
N ∑

i,maski≠0
srci

The function cv::mean() computes the average value of all of the pixels in the input
array src that are not masked out. The result is computed on a per-channel basis if
src is multichannel.

cv::meanStdDev()
void cv::meanStdDev(
 cv::InputArray src,
 cv::OutputArray mean,
 cv::OutputArray stddev,
 cv::InputArray mask = cv::noArray(), // Optional, do only where nonzero
);

N = ∑
i,maski≠0

1

meanc = 1
N ∑

i,maski≠0
srci

stddevc = ∑
i,mask≠0

(srcc,i − meanc)2

130 | Chapter 5: Array Operations

The function cv::meanStdDev() computes the average value of the pixels in the input
array src that are not masked out, as well as their standard deviation. The mean and
standard deviation are computed on a per-channel basis if src is multichannel.

The standard deviation computed here is not the same as the cova‐
riance matrix. In fact, the standard deviation computed here is only
the diagonal elements of the full covariance matrix. If you want to
compute the full covariance matrix, you will have to use cv::calc
CovarMatrix().

cv::merge()
void cv::merge(
 const cv::Mat* mv, // C-style array of arrays
 size_t count, // Number of arrays pointed to by 'mv'
 cv::OutputArray dst // Contains all channels in 'mv'
);

void merge(
 const vector<cv::Mat>& mv, // STL-style array of arrays
 cv::OutputArray dst // Contains all channels in 'mv'
);

cv::merge() is the inverse operation of cv::split(). The arrays contained in mv are
combined into the output array dst. In the case in which mv is a pointer to a C-style
array of cv::Mat objects, the additional size parameter count must also be supplied.

cv::min()
cv::MatExpr cv::min(// A matrix expression, not a matrix
 const cv::Mat& src1, // First input array
 const cv::Mat& src2 // Second input array
);

MatExpr cv::min(// A matrix expression, not a matrix
 const cv::Mat& src1, // First input array (first position)
 double value // Scalar in second position
);

MatExpr cv::min(// A matrix expression, not a matrix
 double value, // Scalar in first position
 const cv::Mat& src1 // Input array (second position)
);

void cv::min(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst // Result array
);

More Things You Can Do with Arrays | 131

void cv::min(
 const Mat& src1, // First input array
 const Mat& src2, // Second input array
 Mat& dst // Result array
);

void cv::min(
 const Mat& src1, // Input array
 double value, // Scalar input
 Mat& dst // Result array
);

dsti = min(src1,i, src2,i)

cv::min() computes the minimum value of each corresponding pair of pixels in the
arrays src1 and src2 (or one source matrix and a single value). Note that the variants
of cv::min() that return a value or a matrix expression can then be manipulated by
OpenCV’s matrix expression machinery.

In the three-argument form, in the case where one of the operands is a cv::Scalar,
comparison with a multichannel array is done on a per-channel basis with the appro‐
priate component of the cv::Scalar.

cv::minMaxIdx()
void cv::minMaxIdx(
 cv::InputArray src, // Input array, single channel only
 double* minVal, // min value goes here (in not NULL)
 double* maxVal, // min value goes here (in not NULL)
 int* minIdx, // loc of min goes here (if not NULL)
 int* maxIdx, // loc of max goes here (if not NULL)
 cv::InputArray mask = cv::noArray() // search only nonzero values
);

void cv::minMaxIdx(
 const cv::SparseMat& src, // Input sparse array
 double* minVal, // min value goes here (in not NULL)
 double* maxVal, // min value goes here (in not NULL)
 int* minIdx, // C-style array, indices of min locs
 int* maxIdx, // C-style array, indices of max locs
);

These routines find the minimal and maximal values in the array src and (option‐
ally) returns their locations. The computed minimum and maximum values are
placed in minVal and maxVal. Optionally, the locations of those extrema can also be
returned; this will work for arrays of any number of dimensions. These locations will

132 | Chapter 5: Array Operations

be written to the addresses given by minIdx and maxIdx (provided that these argu‐
ments are non-NULL).

cv::minMaxIdx() can also be called with a cv::SparseMat for the src array. In this
case, the array can be of any number of dimensions and the minimum and maximum
will be computed and their location returned. In this case, the locations of the
extrema will be returned and placed in the C-style arrays minLoc and maxLoc. Both of
those arrays, if provided, should have the same number of elements as the number of
dimensions in the src array. In the case of cv::SparseMat, the minimum and maxi‐
mum are computed only for what are generally referred to as nonzero elements in the
source code; however, this terminology is slightly misleading, as what is really meant
is elements that exist in the sparse matrix representation in memory. In fact, there
may, as a result of how the sparse matrix came into being and what has been done
with it in the past, be elements that exist and are also zero. Such elements will be
included in the computation of the minimum and maximum.

When a single-dimensional array is supplied, the arrays for the
locations must still have memory allocated for two integers. This is
because cv::minMaxLoc() uses the convention that even a single-
dimensional array is, in essence, an N×1 matrix. The second value
returned will always be 0 for each location in this case.

cv::minMaxLoc()
void cv::minMaxLoc(
 cv::InputArray src, // Input array
 double* minVal, // min value goes here (in not NULL)
 double* maxVal, // min value goes here (in not NULL)
 cv::Point* minLoc, // loc of min goes here (if not NULL)
 cv::Point* maxLoc, // loc of max goes here (if not NULL)
 cv::InputArray mask = cv::noArray() // search only nonzero values
);

void cv::minMaxLoc(
 const cv::SparseMat& src, // Input sparse array
 double* minVal, // min value goes here (in not NULL)
 double* maxVal, // min value goes here (in not NULL)
 cv::Point* minLoc, // C-style array, indices of min locs
 cv::Point* maxLoc, // C-style array, indices of max locs
);

This routine finds the minimal and maximal values in the array src and (optionally)
returns their locations. The computed minimum and maximum values are placed in
minVal and maxVal, respectively. Optionally, the locations of those extrema can also
be returned. These locations will be written to the addresses given by minLoc and max
Loc (provided that these arguments are non-NULL). Because these locations are of

More Things You Can Do with Arrays | 133

type cv::Point, this form of the function should be used only on two-dimensional
arrays (i.e., matrices or images).

As with cv::MinMaxIdx(), in the case of sparse matrices, only active entries will be
considered when searching for the minimum or the maximum.

When working with multichannel arrays, you have several options. Natively, cv::min
MaxLoc() does not support multichannel input. Primarily this is because this opera‐
tion is ambiguous.

If you want the minimum and maximum across all channels, you
can use cv::reshape() to reshape the multichannel array into one
giant single-channel array. If you would like the minimum and
maximum for each channel separately, you can use cv::split() or
cv::mixChannels() to separate the channels out and analyze them
separately.

In both forms of cv::minMaxLoc, the arguments for the minimum or maximum value
or location may be set to NULL, which turns off the computation for that argument.

cv::mixChannels()
void cv::mixChannels(
 const cv::Mat* srcv, // C-style array of matrices
 int nsrc, // Number of elements in 'srcv'
 cv::Mat* dstv, // C-style array of target matrices
 int ndst, // Number of elements in 'dstv'
 const int* fromTo, // C-style array of pairs, ...from,to...
 size_t n_pairs // Number of pairs in 'fromTo'
);

void cv::mixChannels(
 const vector<cv::Mat>& srcv, // STL-style vector of matrices
 vector<cv::Mat>& dstv, // STL-style vector of target matrices
 const int* fromTo, // C-style array of pairs, ...from,to...
 size_t n_pairs // Number of pairs in 'fromTo'
);

There are many operations in OpenCV that are special cases of the general problem
of rearranging channels from one or more images in the input, and sorting them into
particular channels in one or more images in the output. Functions like cv::split(),
cv::merge(), and (at least some cases of) cv::cvtColor() all make use of such func‐
tionality. Those methods do what they need to do by calling the much more general
cv::mixChannels(). This function allows you to supply multiple arrays, each with
potentially multiple channels, for the input, and the same for the output, and to map

134 | Chapter 5: Array Operations

the channels from the input arrays into the channels in the output arrays in any man‐
ner you choose.

The input and output arrays can either be specified as C-style arrays of cv::Mat
objects with an accompanying integer indicating the number of cv::Mats, or as an
STL vector<> of cv::Mat objects. Output arrays must be preallocated with their size
and number of dimensions matching those of the input arrays.

The mapping is controlled by the C-style integer array fromTo. This array can contain
any number of integer pairs in sequence, with each pair indicating with its first value
the source channel and with its second value the destination channel to which that
should be copied. The channels are sequentially numbered starting at zero for the
first image, then through the second image, and so on (see Figure 5-3). The total
number of pairs is supplied by the argument n_pairs.

Figure 5-3. A single four-channel RGBA image is converted to one BGR and one alpha-
only image

Unlike most other functions in the post–version 2.1 library,
cv::mixChannels() does not allocate the output arrays. They must
be preallocated and have the same size and dimensionality as the
input arrays.

More Things You Can Do with Arrays | 135

cv::mulSpectrums()
doublevoid cv::mulSpectrums(
 cv::InputArray arr1, // First input array
 cv::InputArray arr2, // Second input array, same size as 'arr1'
 cv::OutputArray dst, // Result array, same size as 'arr1'
 int flags, // used to indicate independent rows
 bool conj = false // If true, conjugate arr2 first
);

In many operations involving spectra (i.e., the results from cv::dft() or
cv::idft()), one wishes to do a per-element multiplication that respects the packing
of the spectra (real arrays), or their nature as complex variables. (See the description
of cv::dft() for more details.) The input arrays may be one- or two-dimensional,
with the second the same size and type as the first. If the input array is two-
dimensional, it may either be taken to be a true two-dimensional spectrum, or an
array of one-dimensional spectra (one per row). In the latter case, flags should be set
to cv::DFT_ROWS; otherwise it can be set to 0.

When the two arrays are complex, they are simply multiplied on an element-wise
basis, but cv::mulSpectrums() provides an option to conjugate the second array ele‐
ments before multiplication. For example, you would use this option to perform cor‐
relation (using the Fourier transform), but for convolution, you would use
conj=false.

cv::multiply()
void cv::multiply(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
 double scale = 1.0, // overall scale factor
 int dtype = -1 // Output type for result array
);

dsti = saturate(scale*src1i*src2i)

cv::multiply() is a simple multiplication function; it multiplies the elements in
src1 by the corresponding elements in src2 and puts the results in dst.

cv::mulTransposed()
void cv::mulTransposed(
 cv::InputArray src1, // Input matrix
 cv::OutputArray dst, // Result array
 bool aTa, // If true, transpose then multiply
 cv::InputArray delta = cv::noArray(), // subtract from 'src1' before multiply

136 | Chapter 5: Array Operations

 double scale = 1.0, // overall scale factor
 int dtype = -1 // Output type for result array
);

dst = {scale*(src − delta)T (src − delta) aTa = true
scale*(src − delta)(src − delta)T aTa = false

cv::mulTransposed() is used to compute the product of a matrix and its own trans‐
pose—useful, for example, in computing covariance. The matrix src should be two-
dimensional and single-channel, but unlike cv::GEMM(), it is not restricted to the
floating-point types. The result matrix will be the same type as the source matrix
unless specified otherwise by dtype. If dtype is not negative (default), it should be
either CV_32F or cv::F64; the output array dst will then be of the indicated type.

If a second input matrix delta is provided, that matrix will be subtracted from src
before the multiplication. If no matrix is provided (i.e., delta=cv::noArray()), then
no subtraction is done. The array delta need not be the same size as src; if delta is
smaller than src, delta is repeated (also called tiling; see cv::repeat()) in order to
produce an array whose size matches the size of src. The argument scale is applied
to the matrix after the multiplication is done. Finally, the argument aTa is used to
select the multiplication in which the transposed version of src is multiplied either
from the left (aTa=true) or from the right (aTa=false).

cv::norm()
double cv::norm(// Return norm in double precision
 cv::InputArray src1, // Input matrix
 int normType = cv::NORM_L2, // Type of norm to compute
 cv::InputArray mask = cv::noArray() // do for nonzero values (if present)
);

double cv::norm(// Return computed norm of difference
 cv::InputArray src1, // Input matrix
 cv::InputArray src2, // Second input matrix
 int normType = cv::NORM_L2, // Type of norm to compute
 cv::InputArray mask = cv::noArray() // do for nonzero values (if present)
);

double cv::norm(
 const cv::SparseMat& src, // Input sparse matrix
 int normType = cv::NORM_L2, // Type of norm to compute
);

More Things You Can Do with Arrays | 137

6 At least in the case of the L2 norm, there is an intuitive interpretation of the difference norm as a Euclidean
distance in a space of dimension equal to the number of pixels in the images.

The cv::norm() function is used to compute the norm of an array (see Table 5-6) or
a variety of distance norms between two arrays if two arrays are provided (see
Table 5-7). The norm of a cv::SparseMat can also be computed, in which case zero-
entries are ignored in the computation of the norm.

Table 5-6. Norm computed by cv::norm() for different values of normType when
arr2=NULL

normType Result
cv::NORM_INF

cv::NORM_L1

cv::NORM_L2

If the second array argument src2 is non-NULL, then the norm computed is a differ‐
ence norm—that is, something like the distance between the two arrays.6 In the first
three cases (shown in Table 5-7), the norm is absolute; in the latter three cases, it is
rescaled by the magnitude of the second array, src2.

Table 5-7. Norm computed by cv::norm() for different values of normType when arr2 is
non-NULL

normType Result
cv::NORM_INF

cv::NORM_L1

cv::NORM_L2

cv::NORM_RELATIVE_INF

138 | Chapter 5: Array Operations

normType Result
cv::NORM_RELATIVE_L1

cv::NORM_RELATIVE_L2

In all cases, src1 and src2 must have the same size and number of channels. When
there is more than one channel, the norm is computed over all of the channels
together (i.e., the sums in Tables 5-6 and 5-7 are not only over x and y but also over
the channels).

cv::normalize()
void cv::normalize(
 cv::InputArray src1, // Input matrix
 cv::OutputArray dst, // Result matrix
 double alpha = 1, // first parameter (see Table 5-8)
 double beta = 0, // second parameter (see Table 5-8)
 int normType = cv::NORM_L2, // Type of norm to compute
 int dtype = -1 // Output type for result array
 cv::InputArray mask = cv::noArray() // do for nonzero values (if present)
);

void cv::normalize(
 const cv::SparseMat& src, // Input sparse matrix
 cv::SparseMat& dst, // Result sparse matrix
 double alpha = 1, // first parameter (see Table 5-8)
 int normType = cv::NORM_L2, // Type of norm to compute
);

dst ∞ ,L 1,L 2 = α

min(dst) = α, max(dst) = β

As with so many OpenCV functions, cv::normalize() does more than it might at
first appear. Depending on the value of normType, image src is normalized or other‐
wise mapped into a particular range in dst. The array dst will be the same size as
src, and will have the same data type, unless the dtype argument is used. Optionally,
dtype can be set to one of the OpenCV fundamental types (e.g., CV_32F) and the out‐
put array will be of that type. The exact meaning of this operation is dependent on
the normType argument. The possible values of normType are shown in Table 5-8.

More Things You Can Do with Arrays | 139

Table 5-8. Possible values of normType argument to cv::normalize()

norm_type Result
cv::NORM_INF dst ∞ = maxiabs(dsti) = α
cv::NORM_L1 dst L 1 = ∑

i
abs(dsti) = α

cv::NORM_L2 dst L 2 = ∑
i
dsti

2 = α

cv::NORM_MINMAX Map into range [α, β]

In the case of the infinity norm, the array src is rescaled such that the magnitude of
the absolute value of the largest entry is equal to alpha. In the case of the L1 or L2
norm, the array is rescaled so that the norm equals the value of alpha. If normType is
set to cv::MINMAX, then the values of the array are rescaled and translated so that they
are linearly mapped into the interval between alpha and beta (inclusive).

As before, if mask is non-NULL then only those pixels corresponding to nonzero values
of the mask image will contribute to the computation of the norm—and only those
pixels will be altered by cv::normalize(). Note that if the operation dtype=cv::MIN
MAX is used, the source array may not be cv::SparseMat. The reason for this is that
the cv::MIN_MAX operation can apply an overall offset, and this would affect the spar‐
sity of the array (specifically, a sparse array would become nonsparse as all of the zero
elements became nonzero as a result of this operation).

cv::perspectiveTransform()
void cv::perspectiveTransform(
 cv::InputArray src, // Input array, 2 or 3 channels
 cv::OutputArray dst, // Result array, size, type, as src1
 cv::InputArray mtx // 3-by-3 or 4-by-4 transoform matrix
);

The cv::perspectiveTransform() function performs a plane-plane projective trans‐
form of a list of points (not pixels). The input array should be a two- or three-channel
array, and the matrix mtx should be 3 × 3 or 4 × 4, respectively, in the two cases.

140 | Chapter 5: Array Operations

7 Technically, it is possible that after multiplying by mtx, the value of w′ will be zero, corresponding to points
projected to infinity. In this case, rather than dividing by zero, a value of 0 is assigned to the ratio.

cv::perspectiveTransform() thus transforms each element of src by first regarding
it as a vector of length src.channels() + 1, with the additional dimension (the pro‐
jective dimension) set initially to 1.0. This is also known as homogeneous coordinates.
Each extended vector is then multiplied by mtx and the result is rescaled by the value
of the (new) projective coordinate7 (which is then thrown away, as it is always 1.0
after this operation).

Note again that this routine is for transforming a list of points, not
an image as such. If you want to apply a perspective transform to
an image, you are actually asking not to transform the individual
pixels, but rather to move them from one place in the image to
another. This is the job of cv::warpPerspective().
If you want to solve the inverse problem to find the most probable
perspective transformation given many pairs of corresponding
points, use cv::getPerspectiveTransform() or cv::findHomogra
phy().

cv::phase()
void cv::phase(
 cv::InputArray x, // Input array of x-components
 cv::InputArray y, // Input array of y-components
 cv::OutputArray dst, // Output array of angles (radians)
 bool angleInDegrees = false // degrees (if true), radians (if false)
);

dsti = atan2(yi, xi)

cv::phase() computes the azimuthal (angle) part of a Cartesian-to-polar conversion
on a two-dimensional vector field. This vector field is expected to be in the form of
two separate single-channel arrays. These two input arrays should, of course, be of
the same size. (If you happen to have a single two-channel array, a quick call to
cv::split() will do just what you need.) Each element in dst is then computed from
the corresponding elements of x and y as the arctangent of the ratio of the two.

More Things You Can Do with Arrays | 141

cv::polarToCart()
void cv::polarToCart(
 cv::InputArray magnitude, // Input array of magnitudes
 cv::InputArray angle, // Input array of angles
 cv::OutputArray x, // Output array of x-components
 cv::OutputArray y, // Output array of y-components
 bool angleInDegrees = false // degrees (if true) radians (if false)
);

xi = magnitudei*cos(anglei)

yi = magnitudei*sin(anglei)

cv::polarToCart() computes a vector field in Cartesian (x, y) coordinates from
polar coordinates. The input is in two arrays, magnitude and angle, of the same size
and type, specifying the magnitude and angle of the field at every point. The output is
similarly two arrays that will be of the same size and type as the inputs, and which
will contain the x and y projections of the vector at each point. The additional flag
angleInDegrees will cause the angle array to be interpreted as angles in degrees
rather than in radians.

cv::pow()
void cv::pow(
 cv::InputArray src, // Input array
 double p, // power for exponentiation
 cv::OutputArray dst // Result array
);

dsti = { srci
p p ∈ ℤ

| srci | p else

The function cv::pow() computes the element-wise exponentiation of an array by a
given power p. In the case in which p is an integer, the power is computed directly.
For noninteger p, the absolute value of the source value is computed first, and then
raised to the power p (so only real values are returned). For some special values of p,
such as integer values, or ±½, special algorithms are used, resulting in faster
computation.

142 | Chapter 5: Array Operations

8 Uniform-distribution random numbers are generated using the Multiply-With-Carry algorithm [Goresky03].

9 In particular, this means that if you call the template form with a vector argument, such as:
cv::randu<Vec4f>, the return value, though it will be of the vector type, will be all zeros except for the first
element.

cv::randu()
template<typename _Tp> _Tp randu(); // Return random number of specific type

void cv::randu(
 cv::InputOutArray mtx, // All values will be randomized
 cv::InputArray low, // minimum, 1-by-1 (Nc=1,4), or 1-by-4 (Nc=1)
 cv::InputArray high // maximum, 1-by-1 (Nc=1,4), or 1-by-4 (Nc=1)
);

mtxi ∈ lowi, high i)

There are two ways to call cv::randu(). The first method is to call the template form
of randu<>(), which will return a random value of the appropriate type. Random
numbers generated in this way are uniformly distributed8 in the range from zero to
the maximum value available for that type (for integers), and in the interval from 0.0
to 1.0 (not inclusive of 1.0) for floating-point types. This template form generates
only single numbers.9

The second way to call cv::randu() is to provide a matrix mtx that you wish to have
filled with values, and two additional arrays that specify the minimum and maximum
values for the range from which you would like a random number drawn for each
particular array element. These two additional values, low and high, should be 1 × 1
with 1 or 4 channels, or 1 × 4 with a single channel; they may also be of type
cv::Scalar. In any case, they are not the size of mtx, but rather the size of individual
entries in mtx.

The array mtx is both an input and an output, in the sense that you must allocate the
matrix so that cv::randu() will know the number of random values you need and
how they are to be arranged in terms of rows, columns, and channels.

cv::randn()
void cv::randn(
 cv::InputOutArray mtx, // All values will be randomized
 cv::InputArray mean, // mean values, array is in channel space
 cv::InputArray stddev // standard deviations, channel space
);

More Things You Can Do with Arrays | 143

10 Gaussian-distribution random numbers are generated using the Ziggurat algorithm [Marsaglia00].

11 Note that stddev is not a square matrix; correlated number generation is not supported by cv::randn().

mtxi~N (meani, stddevi)

The function cv::randn() fills a matrix mtx with random normally distributed val‐
ues.10 The parameters from which these values are drawn are taken from two addi‐
tional arrays (mean and stddev) that specify the mean and standard deviation for the
distribution from which you would like a random number drawn for each particular
array element.

As with the array form of cv::randu(), every element of mtx is computed separately,
and the arrays mean and stddev are in the channel space for individual entries of mtx.
Thus, if mtx were four channels, then mean and stddev would be 1 × 4 or 1 × 1 with
four channels (or equivalently of type cv::Scalar).11

cv::randShuffle()
void cv::randShuffle(
 cv::InputOutArray mtx, // All values will be shuffled
 double iterFactor = 1, // Number of times to repeat shuffle
 cv::RNG* rng = NULL // your own generator, if you like
);

cv::randShuffle() attempts to randomize the entries in a one-dimensional array by
selecting random pairs of elements and interchanging their position. The number of
such swaps is equal to the size of the array mtx multiplied by the optional factor iter
Factor. Optionally, a random number generator can be supplied (for more on this,
see “Random Number Generator (cv::RNG)” on page 176 in Chapter 7). If none is sup‐
plied, the default random number generator theRNG() will be used automatically.

cv::reduce()
void cv::reduce(
 cv::InputArray src, // Input, n-by-m, 2-dimensional
 cv::OutputArray vec, // Output, 1-by-m or n-by-1
 int dim, // Reduction direction 0=row, 1=col
 int reduceOp = cv::REDUCE_SUM, // Reduce operation (see Table 5-9)
 int dtype = -1 // Output type for result array
);

With reduction, you systematically transform the input matrix src into a vector vec
by applying some combination rule reduceOp on each row (or column) and its neigh‐

144 | Chapter 5: Array Operations

12 Purists will note that averaging is not technically a proper fold in the sense implied here. OpenCV has a more
practical view of reductions and so includes this useful operation in cvReduce.

bor until only one row (or column) remains (see Table 5-9).12 The argument dim con‐
trols how the reduction is done, as summarized in Table 5-10.

Table 5-9. The reduceOp argument in cv::reduce() selects the reduction operator

Value of op Result
cv::REDUCE_SUM Compute sum across vectors
cv::REDUCE_AVG Compute average across vectors
cv::REDUCE_MAX Compute maximum across vectors
cv::REDUCE_MIN Compute minimum across vectors

Table 5-10. The dim argument in cv::reduce() controls the direction of the reduction

Value of dim Result
0 Collapse to a single row
1 Collapse to a single column

cv::reduce() supports multichannel arrays of any type. Using dtype, you can spec‐
ify an alternative type for dst.

Using the dtype argument to specify a higher-precision format for
dst is particularly important for cv::REDUCE_SUM and
cv::REDUCE_AVG, where overflows and summation problems are
possible.

cv::repeat()
void cv::repeat(
 cv::InputArray src, // Input 2-dimensional array
 int nx, // Copies in x-direction
 int ny, // Copies in y-direction
 cv::OutputArray dst // Result array
);

cv::Mat cv::repeat(// Return result array
 cv::InputArray src, // Input 2-dimensional array
 int nx, // Copies in x-direction
 int ny // Copies in y-direction
);

dsti , j = srci%src .rows , j%src .cols

More Things You Can Do with Arrays | 145

This function copies the contents of src into dst, repeating as many times as neces‐
sary to fill dst. In particular, dst can be of any size relative to src. It may be larger or
smaller, and it need not have an integer relationship between any of its dimensions
and the corresponding dimensions of src.

cv::repeat() has two calling conventions. The first is the old-style convention in
which the output array is passed as a reference to cv::repeat(). The second actually
creates and returns a cv::Mat, and is much more convenient when you are working
with matrix expressions.

cv::scaleAdd()
void cv::scaleAdd(
 cv::InputArray src1, // First input array
 double scale, // Scale factor applied to first array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
);

dsti = scale * src1i + src2i

cv::scaleAdd() is used to compute the sum of two arrays, src1 and src2, with a
scale factor scale applied to the first before the sum is done. The results are placed in
the array dst.

The same result can be achieved with the matrix algebra operation:
dst = scale * src1 + src2;

cv::setIdentity()
void cv::setIdentity(
 cv::InputOutputArray dst, // Array to reset values
 const cv::Scalar& value = cv::Scalar(1.0) // Apply to diagonal elements
);

dsti , j = {value i = j
0 else

cv::setIdentity() sets all elements of the array to 0 except for elements whose row
and column are equal; those elements are set to 1 (or to value if provided). cv::setI
dentity() supports all data types and does not require the array to be square.

146 | Chapter 5: Array Operations

This can also be done through the eye() member function of the
cv::Mat class. Using eye() is often more convenient when you are
working with matrix expressions.

cv::Mat A(3, 3, CV_32F);
cv::setIdentity(A, s);
C = A + B;

For some other arrays B and C, and some scalar s, this is equivalent
to:

C = s * cv::Mat::eye(3, 3, CV_32F) + B;

cv::solve()
int cv::solve(
 cv::InputArray lhs, // Lefthand side of system, n-by-n
 cv::InputArray rhs, // Righthand side of system, n-by-1
 cv::OutputArray dst, // Results array, will be n-by-1
 int method = cv::DECOMP_LU // Method for solver
);

The function cv::solve() provides a fast way to solve linear systems based on
cv::invert(). It computes the solution to:

C = argminX A ⋅ X − B

where A is a square matrix given by lhs, B is the vector rhs, and C is the solution
computed by cv::solve() for the best vector X it could find. That best vector X is
returned in dst. The actual method used to solve this system is determined by the
value of the method argument (see Table 5-11). Only floating-point data types are
supported. The function returns an integer value where a nonzero return indicates
that it could find a solution.

Table 5-11. Possible values of method argument to cv::solve()

Value of method argument Meaning
cv::DECOMP_LU Gaussian elimination (LU decomposition)
cv::DECOMP_SVD Singular value decomposition (SVD)
cv::DECOMP_CHOLESKY For symmetric positive matrices
cv::DECOMP_EIG Eigenvalue decomposition, symmetric matrices only
cv::DECOMP_QR QR factorization
cv::DECOMP_NORMAL Optional additional flag; indicates that the normal equations are to be solved instead

The methods cv::DECOMP_LU and cv::DECOMP_CHOLESKY cannot be used on singular
matrices. If a singular lhs argument is provided, both methods will exit and return 0

More Things You Can Do with Arrays | 147

(a 1 will be returned if lhs is nonsingular). You can use cv::solve() to solve overde‐
termined linear systems using either QR decomposition (cv::DECOMP_QR) or singular
value decomposition (cv::DECOMP_SVD) methods to find the least-squares solution
for the given system of equations. Both of these methods can be used in case the
matrix lhs is singular.

Though the first five arguments in Table 5-11 are mutually exclusive, the last option,
cv::DECOMP_NORMAL, may be combined with any of the first five (e.g., by logical OR:
cv_DECOMP_LU | cv::DECOMP_NORMAL). If provided, then cv::solve() will attempt to
solve the normal equations: lhs T ⋅ lhs ⋅ dst = lhs T ⋅ rhs instead of the usual system
lhs ⋅ dst = rhs .

cv::solveCubic()
int cv::solveCubic(
 cv::InputArray coeffs,
 cv::OutputArray roots
);

Given a cubic polynomial in the form of a three- or four-element vector coeffs,
cv::solveCubic() will compute the real roots of that polynomial. If coeffs has four
elements, the roots of the following polynomial are computed:

coeffs0x 3 + coeffs1x 2 + coeffs2x + coeffs3 = 0

If coeffs has only three elements, the roots of the following polynomial are
computed:

x 3 + coeffs0x 2 + coeffs1x + coeffs2 = 0

The results are stored in the array roots, which will have either one or three ele‐
ments, depending on how many real roots the polynomial has.

A word of warning about cv::solveCubic() and cv::solve
Poly(): the order of the coefficients in the seemingly analogous
input arrays coeffs is opposite in the two routines. In cv::solve
Cubic(), the highest-order coefficients come last, while in cv::sol
vePoly() the highest-order coefficients come first.

148 | Chapter 5: Array Operations

cv::solvePoly()
int cv::solvePoly (
 cv::InputArray coeffs,
 cv::OutputArray roots // n complex roots (2-channels)
 int maxIters = 300 // maximum iterations for solver
);

Given a polynomial of any order in the form of a vector of coefficients coeffs,
cv::solvePoly() will attempt to compute the roots of that polynomial. Given the
array of coefficients coeffs, the roots of the following polynomial are computed:

coeffsnx n + coeffsn−1x n−1 + … + coeffs1x + coeffs0 = 0

Unlike cv::solveCubic(), these roots are not guaranteed to be real. For an order-n
polynomial (i.e., coeffs having n+1 elements), there will be n roots. As a result, the
array roots will be returned in a two-channel (real, imaginary) matrix of doubles.

cv::sort()
void cv::sort(
 cv::InputArray src,
 cv::OutputArray dst,
 int flags
);

The OpenCV sort function is used for two-dimensional arrays. Only single-channel
source arrays are supported. You should not think of this like sorting rows or col‐
umns in a spreadsheet; cv::sort() sorts every row or column separately. The result
of the sort operation will be a new array, dst, which is of the same size and type as the
source array.

You can sort on every row or on every column by supplying either the
cv::SORT_EVERY_ROW or cv::SORT_EVERY_COLUMN flag. Sort can be in ascending or
descending order, which is indicated by the cv::SORT_ASCENDING or
cv::SORT_DESCENDING flag, respectively. One flag from each of the two groups is
required.

cv::sortIdx()
void cv::sortIdx(
 cv::InputArray src,
 cv::OutputArray dst,
 int flags
);

More Things You Can Do with Arrays | 149

Similar to cv::sort(), cv::sortIdx() is used only for single-channel two-
dimensional arrays. cv::sortIdx() sorts every row or column separately. The result
of the sort operation is a new array, dst, of the same size as the source array but con‐
taining the integer indices of the sorted elements. For example, given an array A, a call
to cv::sortIdx(A, B, cv::SORT_EVERY_ROW | cv::SORT_DESCENDING) would
produce:

In this toy case, every row was previously ordered from lowest to highest, and sorting
has indicated that this should be reversed.

cv::split()
void cv::split(
 const cv::Mat& mtx,
 cv::Mat* mv
);

void cv::split(
 const cv::Mat& mtx,
 vector<Mat>& mv // STL-style vector of n 1-channel cv::Mat's
);

The function cv::split() is a special, simpler case of cv::mixChannels(). Using
cv::split(), you separate the channels in a multichannel array into multiple single-
channel arrays. There are two ways of doing this. In the first, you supply a pointer to
a C-style array of pointers to cv::Mat objects that cv::split() will use for the results
of the split operation. In the second option, you supply an STL vector full of cv::Mat
objects. If you use the C-style array, you need to make sure that the number of
cv::Mat objects available is (at least) equal to the number of channels in mtx. If you
use the STL vector form, cv::split() will handle the allocation of the result arrays
for you.

cv::sqrt()
void cv::sqrt(
 cv::InputArray src,
 cv::OutputArray dst
);

As a special case of cv::pow(), cv::sqrt() will compute the element-wise square
root of an array. Multiple channels are processed separately.

150 | Chapter 5: Array Operations

13 Here “something like” means that if you were really writing a responsible piece of code, you would do a lot of
checking to make sure that the matrix you were handed was in fact what you thought it was (i.e., square). You
would also probably want to check the return values of cv::eigen() and cv::invert(), think more carefully
about the actual methods used for the decomposition and inversion, and make sure the eigenvalues were pos‐
itive before blindly calling sqrt() on them.

There is also (sometimes) such thing as a square root of a matrix;
that is, a matrix B whose relationship with some matrix A is that
BB = A. If A is square and positive definite, then if B exists, it is
unique.
If A can be diagonalized, then there is a matrix V (made from the
eigenvectors of A as columns) such that A = VDV–1, where D is a
diagonal matrix. The square root of a diagonal matrix D is just the
square roots of the elements of D. So to compute A ½, we simply
use the matrix V and get:

Math fans can easily verify that this expression is correct by explic‐
itly squaring it:

In code, this would look something like:13

void matrix_square_root(const cv::Mat& A, cv::Mat& sqrtA) {
 cv::Mat U, V, Vi, E;
 cv::eigen(A, E, U);
 V = U.T();
 cv::transpose(V, Vi); // inverse of the orthogonal V
 cv::sqrt(E, E); // assume that A is positively
 // defined, otherwise its
 // square root will be
 // complex-valued
 sqrtA = V * Mat::diag(E) * Vi;
}

More Things You Can Do with Arrays | 151

cv::subtract()
void cv::subtract(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
 cv::InputArray mask = cv::noArray(), // Optional, do only where nonzero
 int dtype = -1 // Output type for result array
);

dsti = saturate(src1i − src2i)

cv::subtract() is a simple subtraction function: it subtracts all of the elements in
src2 from the corresponding elements in src1 and puts the results in dst.

For simple cases, the same result can be achieved with the matrix
operation:

dst = src1 - src2;

Accumulation is also supported:
dst -= src1;

cv::sum()
cv::Scalar cv::sum(
 cv::InputArray arr
);

sumc = ∑
i, j

arrc i , j

cv::sum() sums all of the pixels in each channel of the array arr. The return value is
of type cv::Scalar, so cv::sum() can accommodate multichannel arrays, but only
up to four channels. The sum for each channel is placed in the corresponding compo‐
nent of the cv::scalar return value.

cv::trace()
cv::Scalar cv::trace(
 cv::InputArray mat
);

Tr (mat)c = ∑
i
matc i ,i

152 | Chapter 5: Array Operations

The trace of a matrix is the sum of all of the diagonal elements. The trace in OpenCV
is implemented on top of cv::diag(), so it does not require the array passed in to be
square. Multichannel arrays are supported, but the trace is computed as a scalar so
each component of the scalar will be the sum over each corresponding channel for up
to four channels.

cv::transform()
void cv::transform(
 cv::InputArray src,
 cv::OutputArray dst,
 cv::InputArray mtx
);

dstc,i , j = ∑
c′

mtx
c,c ′src

c ′ i , j

The function cv::transform() can be used to compute arbitrary linear image trans‐
forms. It treats a multichannel input array src as a collection of vectors in what you
could think of as “channel space.” Those vectors are then each multiplied by the
“small” matrix mtx to affect a transformation in this channel space.

The mtx matrix must have as many rows as there are channels in src, or that number
plus one. In the second case, the channel space vectors in src are automatically
extended by one and the value 1.0 is assigned to the extended element.

The exact meaning of this transformation depends on what you are
using the different channels for. If you are using them as color
channels, then this transformation can be thought of as a linear
color space transformation. Transformation between RGB and
YUV color spaces is an example of such a transformation. If you
are using the channels to represent the x,y or x,y,z coordinates of
points, then these transformations can be thought of as rotations
(or other geometrical transformations) of those points.

cv::transpose()
void cv::transpose(
 cv::InputArray src, // Input array, 2-dimensional, n-by-m
 cv::OutputArray dst, // Result array, 2-dimensional, m-by-n
);

cv::transpose() copies every element of src into the location in dst indicated by
reversing the row and column indices. This function does support multichannel

More Things You Can Do with Arrays | 153

arrays; however, if you are using multiple channels to represent complex numbers,
remember that cv::transpose() does not perform complex conjugation.

This same result can be achieved with the matrix member function
cv::Mat::t(). The member function has the advantage that it can
be used in matrix expressions like:

A = B + B.t();

Summary
In this chapter, we looked at a vast array of basic operations that can be done with the
all-important OpenCV array structure cv::Mat, which can contain matrices, images,
and multidimensional arrays. We saw that the library provides operations ranging
from very simple algebraic manipulations up through some relatively complicated
features. Some of these operations are designed to help us manipulate arrays as
images, while others are useful when the arrays represent other kinds of data. In the
coming chapters, we will look at more sophisticated algorithms that implement
meaningful computer vision algorithms. Relative to those algorithms, and many that
you will write, the operations in this chapter will form the basic building blocks for
just about anything you want to do.

Exercises
In the following exercises, you may need to refer to the reference manual for details
of the functions outlined in this chapter.

1. This exercise will accustom you to the idea of many functions taking matrix
types. Create a two-dimensional matrix with three channels of type byte with
data size 100 × 100. Set all the values to 0.
a. Draw a circle in the matrix using void cv::circle(InputOutputArray img,

cv::point center, intradius, cv::Scalar color, int thickness=1,

int line_type=8, int shift=0).
b. Display this image using methods described in Chapter 2.

2. Create a two-dimensional matrix with three channels of type byte with data size
100 × 100, and set all the values to 0. Use the cv::Mat element access functions to
modify the pixels. Draw a green rectangle between (20, 5) and (40, 20).

3. Create a three-channel RGB image of size 100 × 100. Clear it. Use pointer arith‐
metic to draw a green square between (20, 5) and (40, 20).

4. Practice using region of interest (ROI). Create a 210 × 210 single-channel byte
image and zero it. Within the image, build a pyramid of increasing values using

154 | Chapter 5: Array Operations

http://docs.opencv.org

ROI and cv::Mat::setTo(). That is: the outer border should be 0, the next inner
border should be 20, the next inner border should be 40, and so on until the final
innermost square is set to value 200; all borders should be 10 pixels wide. Display
the image.

5. Use multiple headers for one image. Load an image that is at least 100 × 100.
Create two additional headers that are ROIs where width = 20 and the height =
30. Their origins should be at (5, 10) and (50, 60), respectively. Pass these new
image subheaders to cv::bitwise_not(). Display the loaded image, which
should have two inverted rectangles within the larger image.

6. Create a mask using cv::compare(). Load a real image. Use cv::split() to split
the image into red, green, and blue images.
a. Find and display the green image.
b. Clone this green plane image twice (call these clone1 and clone2).
c. Find the green plane’s minimum and maximum value.
d. Set clone1’s values to thresh = (unsigned char)((maximum - minimum)/

2.0).
e. Set clone2 to 0 and use cv::compare (green_image, clone1, clone2,

cv::CMP_GE). Now clone2 will have a mask of where the value exceeds
thresh in the green image.

f. Finally, use cv::subtract (green_image,thresh/2, green_image,

clone2) and display the results.

Exercises | 155

1 There is a slightly confusing point here, which is mostly due to legacy in origin. The macro CV_RGB(r,g,b)
produces a cv::Scalar s with value s.val[] = { b, g, r, 0 }. This is as it should be, as general OpenCV
functions know what is red, green, or blue only by the order, and the ordering convention for image data is
BGR as stated in the text.

CHAPTER 6

Drawing and Annotating

Drawing Things
We often want to draw some kind of picture, or to draw something on top of an
image obtained from somewhere else. Toward this end, OpenCV provides a menag‐
erie of functions that will allow us to make lines, squares, circles, and the like.

OpenCV’s drawing functions work with images of any depth, but most of them affect
only the first three channels—defaulting to only the first channel in the case of single-
channel images. Most of the drawing functions support a color, a thickness, a line
type (which really refers to whether to anti-alias lines), and subpixel alignment of
objects.

When you specify colors, the convention is to use the cv::Scalar object, even
though only the first three values are used most of the time. (It is sometimes conve‐
nient to be able to use the fourth value in a cv::Scalar to represent an alpha chan‐
nel, but the drawing functions do not currently support alpha blending.) Also, by
convention, OpenCV uses BGR ordering1 for converting multichannel images to
color renderings (this is what is used by the draw function imshow(), which actually
paints images onto your screen for viewing). Of course, you don’t have to use this
convention, and it might not be ideal if you are using data from some other library
with OpenCV headers on top of it. In any case, the core functions of the library are
always agnostic to any “meaning” you might assign to a channel.

157

Line Art and Filled Polygons
Functions that draw lines of one kind or another (segments, circles, rectangles, etc.)
will usually accept a thickness and lineType parameter. Both are integers, but the
only accepted values for the latter are 4, 8, or cv::LINE_AA. thickness is the thick‐
ness of the line measured in pixels. For circles, rectangles, and all of the other closed
shapes, the thickness argument can also be set to cv::FILLED (which is an alias for
−1). In that case, the result is that the drawn figure will be filled in the same color as
the edges. The lineType argument indicates whether the lines should be
“4-connected,” “8-connected,” or anti-aliased. For the first two examples in
Figure 6-1, the Bresenham algorithm is used, while for the anti-aliased lines, Gaus‐
sian filtering is used. Wide lines are always drawn with rounded ends.

Figure 6-1. The same line as it would be rendered using the 4-connected (a),
8-connected (b), and anti-aliased (c) line types

For the drawing algorithms listed in Table 6-1, endpoints (lines), center points (cir‐
cles), corners (rectangles), and so on are typically specified as integers. However,
these algorithms support subpixel alignment through the shift argument. Where
shift is available, it is interpreted as the number of bits in the integer arguments to
treat as fractional bits. For example, if you say you want a circle centered at (5, 5), but
set shift to 1, then the circle will be drawn at (2.5, 2.5). The effect of this will typi‐
cally be quite subtle, and depend on the line type used. The effect is most noticeable
for anti-aliased lines.

Table 6-1. Drawing functions

Function Description
cv::circle() Draw a simple circle
cv::clipLine() Determine if a line is inside a given box
cv::ellipse() Draw an ellipse, which may be tilted or an elliptical arc
cv::ellipse2Poly() Compute a polygon approximation to an elliptical arc
cv::fillConvexPoly() Draw filled versions of simple polygons
cv::fillPoly() Draw filled versions of arbitrary polygons
cv::line() Draw a simple line

158 | Chapter 6: Drawing and Annotating

Function Description
cv::rectangle() Draw a simple rectangle
cv::polyLines() Draw multiple polygonal curves

The following sections describe the details of each function in Table 6-1.

cv::circle()
void circle(
 cv::Mat& img, // Image to be drawn on
 cv::Point center, // Location of circle center
 int radius, // Radius of circle
 const cv::Scalar& color, // Color, RGB form
 int thickness = 1, // Thickness of line
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

The first argument to cv::circle() is just your image, img. Next are the center, a
two-dimensional point, and the radius. The remaining arguments are the standard
color, thickness, lineType, and shift. The shift is applied to both the radius and
the center location.

cv::clipLine()
bool clipLine(// True if any part of line in 'imgRect'
 cv::Rect imgRect, // Rectangle to clip to
 cv::Point& pt1, // First endpoint of line, overwritten
 cv::Point& pt2 // Second endpoint of line, overwritten
);

bool clipLine(// True if any part of line in image size
 cv::Size imgSize, // Size of image, implies rectangle at 0,0
 cv::Point& pt1, // First endpoint of line, overwritten
 cv::Point& pt2 // Second endpoint of line, overwritten
);

This function is used to determine if a line specified by the two points pt1 and pt2
lies inside a rectangular boundary. In the first version, a cv::Rect is supplied and the
line is compared to that rectangle. cv::clipLine() will return False only if the line
is entirely outside of the specified rectangular region. The second version is the same
except it takes a cv::Size argument. Calling this second version is equivalent to call‐
ing the first version with a rectangle whose (x, y) location is (0, 0).

Drawing Things | 159

cv::ellipse()
bool ellipse(
 cv::Mat& img, // Image to be drawn on
 cv::Point center, // Location of ellipse center
 cv::Size axes, // Length of major and minor axes
 double angle, // Tilt angle of major axis
 double startAngle, // Start angle for arc drawing
 double endAngle, // End angle for arc drawing
 const cv::Scalar& color, // Color, BGR form
 int thickness = 1, // Thickness of line
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

bool ellipse(
 cv::Mat& img, // Image to be drawn on
 const cv::RotatedRect& rect, // Rotated rectangle bounds ellipse
 const cv::Scalar& color, // Color, BGR form
 int thickness = 1, // Thickness of line
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

The cv::ellipse() function is very similar to the cv::circle() function, with the
primary difference being the axes argument, which is of type cv::Size. In this case,
the height and width arguments represent the length of the ellipse’s major and
minor axes. The angle is the angle (in degrees) of the major axis, which is measured
counterclockwise from horizontal (i.e., from the x-axis). Similarly, the startAngle
and endAngle indicate (also in degrees) the angle for the arc to start and for it to fin‐
ish. Thus, for a complete ellipse, you must set these values to 0 and 360, respectively.

The alternate way to specify the drawing of an ellipse is to use a bounding box. In this
case, the argument box of type cv::RotatedRect completely specifies both the size
and the orientation of the ellipse. Both methods of specifying an ellipse are illustrated
in Figure 6-2.

160 | Chapter 6: Drawing and Annotating

Figure 6-2. An elliptical arc specified by the major and minor axes with tilt angle (left);
a similar ellipse specified using a cv::RotatedRect (right)

cv::ellipse2Poly()
void ellipse2Poly(
 cv::Point center, // Location of ellipse center
 cv::Size axes, // Length of major and minor axes
 double angle, // Tilt angle of major axis
 double startAngle, // Start angle for arc drawing
 double endAngle, // End angle for arc drawing
 int delta, // Angle between sequential vertices
 vector<cv::Point>& pts // Result, STL-vector of points
);

The cv::ellipse2Poly() function is used internally by cv::ellipse() to compute
elliptical arcs, but you can call it yourself as well. Given information about an ellipti‐
cal arc (center, axes, angle, startAngle, and endAngle—all as defined in
cv::ellipse()) and a parameter delta, which specifies the angle between subse‐
quent points you want to sample, cv::ellipse2Poly() computes a sequence of
points that form a polygonal approximation to the elliptical arc you specified. The
computed points are returned in the vector<> pts.

Drawing Things | 161

2 The algorithm used by cv::fillComvexPoly() is actually somewhat more general than implied here. It will
correctly draw any polygon whose contour intersects every horizontal line at most twice (though it is allowed
for the top or bottom of the polygon to be flat with respect to the horizontal). Such a polygon is said to be
“monotone with respect to the horizontal.”

cv::fillConvexPoly()
void fillConvexPoly(
 cv::Mat& img, // Image to be drawn on
 const cv::Point* pts, // C-style array of points
 int npts, // Number of points in 'pts'
 const cv::Scalar& color, // Color, BGR form
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

This function draws a filled polygon. It is much faster than cv::fillPoly()
(described next) because it uses a much simpler algorithm. The algorithm used by
cv::fillConvexPoly(), however, will not work correctly if the polygon you pass to it
has self-intersections.2 The points in pts are treated as sequential, and a segment
from the last point in pts and the first point is implied (i.e., the polygon is assumed
to be closed).

cv::fillPoly()
void fillPoly(
 cv::Mat& img, // Image to be drawn on
 const cv::Point* pts, // C-style array of arrays of points
 int npts, // Number of points in 'pts[i]'
 int ncontours, // Number of arrays in 'pts'
 const cv::Scalar& color, // Color, BGR form
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0, // Bits of radius to treat as fraction
 cv::Point offset = Point() // Uniform offset applied to all points
);

This function draws any number of filled polygons. Unlike cv::fillConvexPoly(), it
can handle polygons with self-intersections. The ncontours argument specifies how
many different polygon contours there will be, and the npts argument is a C-style
array that indicates how many points there are in each contour (i.e., npts[i] indi‐
cates how many points there are in polygon i). pts is a C-style array of C-style arrays
containing all of the points in those polygons (i.e., pts[i][j] contains the jth point
in the ith polygon). cv::fillPoly() also has one additional argument, offset,
which is a pixel offset that will be applied to all vertex locations when the polygons
are drawn. The polygons are assumed to be closed (i.e., a segment from the last ele‐
ment of pts[i][] to the first element will be assumed).

162 | Chapter 6: Drawing and Annotating

cv::line()
void line(
 cv::Mat& img, // Image to be drawn on
 cv::Point pt1, // First endpoint of line
 cv::Point pt2 // Second endpoint of line
 const cv::Scalar& color, // Color, BGR form
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

The function cv::line() draws a straight line from pt1 to pt2 in the image img.
Lines are automatically clipped by the image boundaries.

cv::rectangle()
void rectangle(
 cv::Mat& img, // Image to be drawn on
 cv::Point pt1, // First corner of rectangle
 cv::Point pt2 // Opposite corner of rectangle
 const cv::Scalar& color, // Color, BGR form
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

void rectangle(
 cv::Mat& img, // Image to be drawn on
 cv::Rect r, // Rectangle to draw
 const cv::Scalar& color, // Color, BGR form
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

The cv::rectangle() function draws a rectangle with corners pt1 to pt2 in the
image img. An alternate form of this function allows the rectangle’s location and size
to be specified by a single cv::Rect argument, r.

cv::polyLines()
void polyLines(
 cv::Mat& img, // Image to be drawn on
 const cv::Point* pts, // C-style array of arrays of points
 int npts, // Number of points in 'pts[i]'
 int ncontours, // Number of arrays in 'pts'
 bool isClosed, // If true, connect last and first pts
 const cv::Scalar& color, // Color, BGR form
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

This function draws any number of unfilled polygons. It can handle general poly‐
gons, including polygons with self-intersections. The ncontours argument specifies

Drawing Things | 163

how many different polygon contours there will be, and the npts argument is a C-
style array that indicates how many points there are in each contour (i.e., npts[i]
indicates how many points there are in polygon i). pts is a C-style array of C-style
arrays containing all of the points in those polygons (i.e., pts[i][j] contains the jth
point in the ith polygon). Polygons are not assumed to be closed. If the argument
isClosed is true, then a segment from the last element of pts[i][] to the first ele‐
ment will be assumed. Otherwise, the contour is taken to be an open contour con‐
taining only npts[i]-1 segments between the npts[i] points listed.

cv::LineIterator
LineIterator::LineIterator(
 cv::Mat& img, // Image to be drawn on
 cv::Point pt1, // First endpoint of line
 cv::Point pt2 // Second endpoint of line
 int lineType = 8, // Connectedness, 4 or 8
 bool leftToRight = false // If true, always start steps on the left
);

The cv::LineIterator object is an iterator that is used to get each pixel of a raster
line in sequence. The line iterator is our first example of a functor in OpenCV. We
will see several more of these “objects that do stuff” in the next chapter. The con‐
structor for the line iterator takes the two endpoints for the line as well as a line-type
specifier and an additional Boolean that indicates which direction the line should be
traversed.

Once initialized, the number of pixels in the line is stored in the member integer
cv::LineIterator::count. The overloaded dereferencing operator cv::LineItera
tor::operator*() returns a pointer of type uchar*, which points to the “current”
pixel. The current pixel starts at one end of the line and is incremented by means of
the overloaded increment operator cv::LineIterator::operator++(). The actual
traversal is done according to the Bresenham algorithm mentioned earlier.

The purpose of the cv::LineIterator is to make it possible for you to take some spe‐
cific action on each pixel along the line. This is particularly handy when you are cre‐
ating special effects such as switching the color of a pixel from black to white and
white to black (i.e., an XOR operation on a binary image).

When accessing an individual “pixel,” remember that this pixel may have one or
many channels and it might be any kind of image depth. The return value from the
dereferencing operator is always uchar*, so you are responsible for casting that
pointer to the correct type. For example, if your image were a three-channel image of
32-bit floating-point numbers and your iterator were called iter, then you would
want to cast the return (pointer) value of the dereferencing operator like this:
(Vec3f*)*iter.

164 | Chapter 6: Drawing and Annotating

The style of the overloaded dereferencing operator cv::LineItera
tor::operator*() is slightly different than what you are probably
used to from libraries like STL. The difference is that the return
value from the iterator is itself a pointer, so the iterator behaves not
like a pointer, but like a pointer to a pointer.

Fonts and Text
One additional form of drawing is to draw text. Of course, text creates its own set of
complexities, but—as always—OpenCV is more concerned with providing a simple
“down and dirty” solution that will work for simple cases than a robust, complex sol‐
ution (which would be redundant anyway given the capabilities of other libraries).
Table 6-2 lists OpenCV’s two text drawing functions.

Table 6-2. Text drawing functions

Function Description
cv::putText() Draw the specified text in an image
cv::getTextSize() Determine the width and height of a text string

cv::putText()
void cv::putText(
 cv::Mat& img, // Image to be drawn on
 const string& text, // write this (often from cv::format)
 cv::Point origin, // Upper-left corner of text box
 int fontFace, // Font (e.g., cv::FONT_HERSHEY_PLAIN)
 double fontScale, // size (a multiplier, not "points"!)
 cv::Scalar color, // Color, RGB form
 int thickness = 1, // Thickness of line
 int lineType = 8, // Connectedness, 4 or 8
 bool bottomLeftOrigin = false // true='origin at lower left'
);

This function is OpenCV’s one main text drawing routine; it simply throws some text
onto an image. The text indicated by text is printed with its upper-left corner of the
text box at origin and in the color indicated by color, unless the bottomLeftOrigin
flag is true, in which case the lower-left corner of the text box is located at origin.
The font used is selected by the fontFace argument, which can be any of those listed
in Table 6-3.

Drawing Things | 165

Table 6-3. Available fonts (all are variations of Hershey)

Identifier Description
cv::FONT_HERSHEY_SIMPLEX Normal size sans-serif
cv::FONT_HERSHEY_PLAIN Small size sans-serif
cv::FONT_HERSHEY_DUPLEX Normal size sans-serif; more complex than cv::FONT_HERSHEY_

SIMPLEX

cv::FONT_HERSHEY_COMPLEX Normal size serif; more complex than cv::FONT_HERSHEY_DUPLEX
cv::FONT_HERSHEY_TRIPLEX Normal size serif; more complex than cv::FONT_HERSHEY_COMPLEX
cv::FONT_HERSHEY_COMPLEX_SMALL Smaller version of cv::FONT_HERSHEY_COMPLEX
cv::FONT_HERSHEY_SCRIPT_SIMPLEX Handwriting style
cv::FONT_HERSHEY_SCRIPT_COMPLEX More complex variant of cv::FONT_HERSHEY_SCRIPT_SIMPLEX

Any of the font names listed in Table 6-3 can also be combined (via an OR operator)
with cv::FONT_HERSHEY_ITALIC to render the indicated font in italics. Each font has
a “natural” size. When fontScale is not 1.0, then the font size is scaled by this num‐
ber before the text is drawn. Figure 6-3 shows a sample of each font.

Figure 6-3. The eight fonts of Table 6-3, with the origin of each line separated from the
vertical by 30 pixels

166 | Chapter 6: Drawing and Annotating

3 The “baseline” is the line on which the bottoms of characters such as a and b are aligned. Characters such as y
and g hang below the baseline.

cv::getTextSize()
cv::Size cv::getTextSize(
 const string& text,
 cv::Point origin,
 int fontFace,
 double fontScale,
 int thickness,
 int* baseLine
);

The cv::getTextSize() function answers the question of how big some text would
be if you were to draw it (with some set of parameters) without actually drawing it on
an image. The only novel argument to cv::getTextSize() is baseLine, which is
actually an output parameter. baseLine is the y-coordinate of the text baseline rela‐
tive to the bottommost point in the text.3

Summary
In this short chapter we learned a few new functions that we can use to draw on and
annotate images. These functions all operate on the same cv::Mat image types we
have been using in the prior chapters. Most of these functions have very similar inter‐
faces, allowing us to draw lines and curves of various thicknesses and colors. In addi‐
tion to lines and curves, we also saw how OpenCV handles writing text onto an
image. All of these functions are extremely useful, in practice, when we are debugging
code, as well as for displaying results of our computations on top of the images they
are using for input.

Exercises
For the following exercises, modify the code of Example 2-1 to get an image dis‐
played, or modify the code from Example 2-3 to load and display video or camera
images.

1. Drawing practice: load or create and display a color image. Draw one example of
every shape and line that OpenCV can draw.

2. Grayscale: load and display a color image.
a. Turn it into three-channel grayscale (it is still an BGR image, but it looks gray

to the user).

Summary | 167

b. Draw color text onto the image.
3. Dynamic text: load and display video from a video or from a camera.

a. Draw a frame per second (FPS) counter somewhere on the image.
4. Make a drawing program. Load or create an image and display it.

a. Allow a user to draw a basic face.
b. Make the components of the face editable (you will have to maintain a list of

what was drawn, and when it is altered you might erase and redraw it the new
size).

5. Use cv::LineIterator to count pixels on different line segments in, say, a 300 ×
300 image.
a. At what angles do you get the same number of pixels for 4-connected and

8-connected lines?
b. For line segment angles other than the above, which counts more pixels:

4-connected or 8-connected lines?
c. For a given line segment, explain the difference in the length of the line com‐

pared to the number of pixels you count iterating along the line for
both 4-connected and 8-connected? Which connectedness is closer to the true
line length?

168 | Chapter 6: Drawing and Annotating

1 We encountered one of these objects briefly in the previous chapter with the cv::LineIterator object.

2 Here the word usually means “usually when people program function objects,” but does not turn out to mean
“usually for the OpenCV library.” There is a competing convention in the OpenCV library that uses the over‐
loaded operator() to load the configuration, and a named member to provide the fundamental service of the
object. This convention is substantially less canonical in general, but quite common in the OpenCV library.

CHAPTER 7

Functors in OpenCV

Objects That “Do Stuff”
As the OpenCV library has evolved, it has become increasingly common to introduce
new objects that encapsulate functionality that is too complicated to be associated
with a single function and which, if implemented as a set of functions, would cause
the overall function space of the library to become too cluttered.1

As a result, new functionality is often represented by an associated new object type,
which can be thought of as a “machine” that does whatever this functionality is. Most
of these machines have an overloaded operator(), which officially makes them func‐
tion objects or functors. If you are not familiar with this programming idiom, the
important idea is that unlike “normal” functions, function objects are created and can
maintain state information inside them. As a result, they can be set up with whatever
data or configuration they need, and they are “asked” to perform services through
either common member functions, or by being called as functions themselves (usu‐
ally via the overloaded operator()2).

Principal Component Analysis (cv::PCA)
Principal component analysis, illustrated in Figure 7-1, is the process of analyzing a
distribution in many dimensions and extracting from that distribution the particular

169

3 You might be thinking to yourself, “Hey, this sounds like machine learning—what is it doing in this chapter?”
This is not a bad question. In modern computer vision, machine learning is becoming intrinsic to an ever-
growing list of algorithms. For this reason, component capabilities, such as PCA and SVD, are increasingly
considered “building blocks.”

subset of dimensions that carry the most information. The dimensions computed by
PCA are not necessarily the basis dimensions in which the distribution was originally
specified. Indeed, one of the most important aspects of PCA is the ability to generate
a new basis whose axes can be ordered by their importance.3 These basis vectors will
turn out to be the eigenvectors of the covariance matrix for the distribution as a
whole, and the corresponding eigenvalues will tell us about the extent of the distribu‐
tion in that dimension.

Figure 7-1. (a) Input data is characterized by a Gaussian approximation; (b) the data
is projected into the space implied by the eigenvectors of the covariance of that approxi‐
mation; (c) the data is projected by the KLT projection to a space defined only by the
most “useful” of the eigenvectors; superimposed: a new data point (the white diamond)
is projected to the reduced dimension space by cv::PCA::project(); that same point is
brought back to the original space (the black diamond) by cv::PCA::backProject()

We are now in a position to explain why PCA is handled by one of these function
objects. Given a distribution once, the PCA object can compute and retain this new
basis. The big advantage of the new basis is that the basis vectors that correspond to
the large eigenvalues carry most of the information about the objects in the distribu‐

170 | Chapter 7: Functors in OpenCV

4 KLT stands for “Karhunen-Loeve Transform,” so the phrase KLT transform is a bit of a malapropism. It is,
however, at least as often said one way as the other.

tion. Thus, without losing much accuracy, we can throw away the less informative
dimensions. This dimension reduction is called a KLT transform.4 Once you have
loaded a sample distribution and the principal components are computed, you might
want to use that information to do various things, such as apply the KLT transform
to new vectors. When you make the PCA functionality a function object, it can
“remember” what it needs to know about the distribution you gave it, and thereafter
use that information to provide the “service” of transforming new vectors on
demand.

cv::PCA::PCA()
PCA::PCA();
PCA::PCA(
 cv::InputArray data, // Data, as rows or cols in 2d array
 cv::InputArray mean, // average, if known, 1-by-n or n-by-1
 int flags, // Are vectors rows or cols of 'data'
 int maxComponents = 0 // Max dimensions to retain
);

The PCA object has a default constructor, cv::PCA(), which simply builds the PCA
object and initializes the empty structure. The second form executes the default con‐
struction, then immediately proceeds to pass its arguments to PCA::operator()()
(discussed next).

cv::PCA::operator()()
PCA::operator()(
 cv::InputArray data, // Data, as rows or cols in 2d array
 cv::InputArray mean, // average, if known, 1-by-n or n-by-1
 int flags, // Are vectors rows or cols of 'data'
 int maxComponents = 0 // Max dimensions to retain
);

The overloaded operator()() for PCA builds the model of the distribution inside of
the PCA object. The data argument is an array containing all of the samples that con‐
stitute the distribution. Optionally, mean, a second array that contains the mean value
in each dimension, can be supplied (mean can either be n × 1 or 1 × n). The data can
be arranged as an n × D (n rows of samples, each of D dimensions) or D × n array (n
columns of samples, each of D dimensions). The flags argument is currently used
only to specify the arrangement of the data in data and mean. In particular, flags can
be set to either cv::PCA_DATA_AS_ROW or cv::PCA_DATA_AS_COL, to indicate that
either data is n × D and mean is n × 1 or data is D × n and mean is 1 × n, respectively.

Objects That “Do Stuff” | 171

The final argument, maxComponents, specifies the maximum number of components
(dimensions) that PCA should retain. By default, all of the components are retained.

Any subsequent call to cv::PCA::operator()() will overwrite the
internal representations of the eigenvectors and eigenvalues, so you
can recycle a PCA object whenever you need to (i.e., you don’t
have to reallocate a new one for each new distribution you want to
handle if you no longer need the information about the previous
distribution).

cv::PCA::project()
cv::Mat PCA::project(// Return results, as a 2d matrix
 cv::InputArray vec // points to project, rows or cols, 2d
) const;

void PCA::project(
 cv::InputArray vec // points to project, rows or cols, 2d
 cv::OutputArray result // Result of projection, reduced space
) const;

Once you have loaded your reference distribution with cv::PCA::operator()(), you
can start asking the PCA object to do useful things for you like compute the KLT pro‐
jection of some set of vectors onto the basis vectors computed by the principal com‐
ponent analysis. The cv::PCA::project() function has two forms; the first returns a
matrix containing the results of the projections, while the second writes the results to
a matrix you provide. The advantage of the first form is that you can use it in matrix
expressions.

The vec argument contains the input vectors. vec is required to have the same num‐
ber of dimensions and the same “orientation” as the data array that was passed to
PCA when the distribution was first analyzed (i.e., if your data was columns when
you called cv::PCA::operator()(), vec should also have the data arranged into
columns).

The returned array will have the same number of objects as vec with the same orien‐
tation, but the dimensionality of each object will be whatever was passed to maxCompo
nents when the PCA object was first configured with cv::PCA::operator()().

cv::PCA::backProject()
cv::Mat PCA::backProject(// Return results, as a 2d matrix
 cv::InputArray vec // Result of projection, reduced space
} const;

void PCA::backProject(
 cv::InputArray vec // Result of projection, reduced space

172 | Chapter 7: Functors in OpenCV

 cv::OutputArray result // "reconstructed" vectors, full dimension
) const;

The cv::PCA::backProject() function performs the reverse operation of
cv::PCA::project(), with the analogous restrictions on the input and output arrays.
The vec argument contains the input vectors, which this time are from the projected
space. They will have the same number of dimensions as you specified with maxCompo
nents when you configured the PCA object and the same “orientation” as the data
array that was passed to PCA when the distribution was first analyzed (i.e., if your
data was columns when you called cv::PCA::operator(), vec should also have the
data arranged into columns).

The returned array will have the same number of objects as vec with the same orien‐
tation, but the dimensionality of each object will be the dimensionality of the original
data you gave to the PCA object when the PCA object was first configured with
cv::PCA::operator()().

If you did not retain all of the dimensions when you configured the
PCA object in the beginning, the result of back-projecting vectors
—which are themselves projections of some vector x→ from the orig‐
inal data space—will not be equal to x→ . Of course, the difference
should be small, even if the number of components retained was
much smaller than the original dimension of x→ , as this is the point
of using PCA in the first place.

Singular Value Decomposition (cv::SVD)
The cv::SVD class is similar to cv::PCA in that it is the same kind of function object.
Its purpose, however, is quite different. The singular value decomposition is essen‐
tially a tool for working with nonsquare, ill-conditioned, or otherwise poorly behaved
matrices such those you encounter when solving underdetermined linear systems.

Mathematically, the singular value decomposition (SVD) is the decomposition of an
m × n matrix A into the form:

A = U ⋅ W ⋅ V T

where W is a diagonal matrix and U and V are m × m and n × n (unitary) matrices,
respectively. Of course, the matrix W is also an m × n matrix, so here “diagonal”
means that any element whose row and column numbers are not equal is necessarily
0.

Objects That “Do Stuff” | 173

cv::SVD()
SVD::SVD();
SVD::SVD(
 cv::InputArray A, // Linear system, array to be decomposed
 int flags = 0 // what to construct, can A can scratch
);

The SVD object has a default constructor, cv::SVD(), which simply builds the SVD
object and initializes the empty structure. The second form basically executes the
default construction, then immediately proceeds to pass its arguments to
cv::SVD::operator()() (discussed next).

cv::SVD::operator()()
SVD::& SVD::operator() (
 cv::InputArray A, // Linear system, array to be decomposed
 int flags = 0 // what to construct, can A be scratch
);

The operator cv::SVD::operator()() passes to the cv::SVD object the matrix to be
decomposed. The matrix A, as described earlier, is decomposed into a matrix U, a
matrix V (actually the transpose of V, which we will call Vt), and a set of singular
values (which are the diagonal elements of the matrix W).

The flags can be any one of cv::SVD::MODIFY_A, cv::SVD::NO_UV, or
cv::SVD::FULL_UV. The latter two are mutually exclusive, but either can be combined
with the first. The flag cv::SVD::MODIFY_A indicates that it is OK to modify the
matrix A when computing. This speeds up computation a bit and saves some mem‐
ory. It is more important when the input matrix is already very large. The flag
cv::SVD::NO_UV tells cv::SVD to not explicitly compute the matrices U and Vt, while
the flag cv::SVD::FULL_UV indicates that not only would you like U and Vt compu‐
ted, but that you would also like them to be represented as full-size square orthogonal
matrices.

cv::SVD::compute()
void SVD::compute(
 cv::InputArray A, // Linear system, array to be decomposed
 cv::OutputArray W, // Output array 'W', singular values
 cv::OutputArray U, // Output array 'U', left singular vectors
 cv::OutputArray Vt, // Output array 'Vt', right singular vectors
 int flags = 0 // what to construct, and if A can be scratch
);

This function is an alternative to using cv::SVD::operator()() to decompose the
matrix A. The primary difference is that the matrices W, U, and Vt are stored in the

174 | Chapter 7: Functors in OpenCV

user-supplied arrays, rather than being kept internally. The flags supported are
exactly those supported by cv::SVD::operator()().

cv::SVD::solveZ()
void SVD::solveZ(
 cv::InputArray A, // Linear system, array to be decomposed
 cv::OutputArray z // One possible solution (unit length)
);

z→ = argmin
x
→

: x
→

=1
A ⋅ x→

Given an underdetermined (singular) linear system, cv::SVD::solveZ() will
(attempt to) find a unit length solution of A ⋅ x→ = 0 and place the solution in the array
z. Because the linear system is singular, however, it may have no solution, or it may
have an infinite family of solutions. cv::SVD::solveZ() will find a solution, if one
exists. If no solution exists, then the return value z→ will be a vector that minimizes
A ⋅ x→ , even if this is not, in fact, zero.

cv::SVD::backSubst()
void SVD::backSubst(
 cv::InputArray b, // Righthand side of linear system
 cv::OutputArray x // Found solution to linear system
);

void SVD::backSubst(
 cv::InputArray W, // Output array 'W', singular values
 cv::InputArray U, // Output array 'U', left singular vectors
 cv::InputArray Vt, // Output array 'Vt', right singular vectors
 cv::InputArray b, // Righthand side of linear system
 cv::OutputArray x // Found solution to linear system
);

Assuming that the matrix A has been previously passed to the cv::SVD object (and
thus decomposed into U, W, and Vt), the first form of cv::SVD::backSubst()
attempts to solve the system:

(UWV T) ⋅ x→ = b
→

The second form does the same thing, but expects the matrices W, U, and Vt to be
passed to it as arguments. The actual method of computing dst is to evaluate the fol‐
lowing expression:

x→ = V t
T ⋅ diag(W)−1 ⋅ U T ⋅ b

→
~ A −1 ⋅ b

→

Objects That “Do Stuff” | 175

5 The object diag(W)–1 is a matrix whose diagonal elements λi
* are defined in terms of the diagonal elements λ1

of W by λi
* = λi

−1 for λi ≥ ε. This value ε is the singularity threshold, a very small number that is typically propor‐
tional to the sum of the diagonal elements of W (i.e., ε0 ∑i λi).

This method produces a pseudosolution for an overdetermined system, which is the
best solution in the sense of minimizing the least-squares error.5 Of course, it will also
exactly solve a correctly determined linear system.

In practice, it is relatively rare that you would want to use
cv::SVD::backSubst() directly. This is because you can do pre‐
cisely the same thing by calling cv::solve() and passing the
cv::DECOMP_SVD method flag—which is a lot easier. Only in the
less common case in which you need to solve many different sys‐
tems with the same lefthand side (x) would you be better off calling
cv::SVD::backSubst() directly—as opposed to solving the same
system many times with different righthand sides (b), which you
might as well do with cv::solve().

Random Number Generator (cv::RNG)
A random number tor (RNG) object holds the state of a pseudorandom sequence
that generates random numbers. The benefit of using it is that you can conveniently
maintain multiple streams of pseudorandom numbers.

When programming large systems, it is a good practice to use sepa‐
rate random number streams in different modules of the code. This
way, removing one module does not change the behavior of the
streams in the other modules.

Once created, the random number generator provides the “service” of generating
random numbers on demand, drawn from either a uniform or a Gaussian distribu‐
tion. The generator uses the Multiply with Carry (MWC) algorithm [Goresky03] for
uniform distributions and the Ziggurat algorithm [Marsaglia00] for the generation of
numbers from a Gaussian distribution.

cv::theRNG()
cv::RNG& theRNG(void); // Return a random number generator

The cv::theRNG() function returns the default random number generator for the
thread from which it was called. OpenCV automatically creates one instance of
cv::RNG for each thread in execution. This is the same random number generator

176 | Chapter 7: Functors in OpenCV

6 This “standard value” is not zero because, for that value, many random number generators (including the
ones used by RNG) will return nothing but zeros thereafter. Currently, this standard value is 232 – 1.

that is implicitly accessed by functions like cv::randu() or cv::randn(). Those
functions are convenient if you want a single number or to initialize a single array.
However, if you have a loop of your own that needs to generate a lot of random num‐
bers, you are better off grabbing a reference to a random number generator—in this
case, the default generator, but you could use your own instead—and using
RNG::operator T() to get your random numbers (more on that operator shortly).

cv::RNG()
cv::RNG::RNG(void);
cv::RNG::RNG(uint64 state); // create using the seed 'state'

You can create an RNG object with either the default constructor, or by passing it a
64-bit unsigned integer that it will use as the seed of the random number sequence. If
you call the default constructor (or pass 0 to the second variation) the generator will
initialize with a standardized value.6

cv::RNG::operator T(), where T is your favorite type
cv::RNG::operator uchar();
cv::RNG::operator schar();
cv::RNG::operator ushort();
cv::RNG::operator short int();
cv::RNG::operator int();
cv::RNG::operator unsigned();
cv::RNG::operator float();
cv::RNG::operator double();

cv::RNG::operator T() is really a set of different methods that return a new random
number from cv::RNG of some specific type. Each of these is an overloaded cast oper‐
ator, so in effect you cast the RNG object to whatever type you want, as shown in
Example 7-1. (The style of the cast operation is up to you; this example shows both
the int(x) and the (int)x forms.)

Example 7-1. Using the default random number generator to generate a pair of integers
and a pair of floating-point numbers

cv::RNG rng = cv::theRNG();
cout << "An integer: " << (int)rng << endl;
cout << "Another integer: " << int(rng) << endl;
cout << "A float: " << (float)rng << endl;
cout << "Another float: " << float(rng) << endl;

Objects That “Do Stuff” | 177

7 In case this notation is unfamiliar, in the designation of an interval using square brackets, [indicates that this
limit is inclusive, and in the designation using parentheses, (indicates that this limit is noninclusive. Thus the
notation [0.0,1.0) means an interval from 0.0 to 1.0 inclusive of 0.0 but not inclusive of 1.0.

When integer types are generated, they will be generated (using the MWC algorithm
described earlier and thus uniformly) across the entire range of available values.
When floating-point types are generated, they will always be in the range from the
interval [0.0, 1.0).7

cv::RNG::operator()
unsigned int cv::RNG::operator()(); // Return random value from 0-UINT_MAX
unsigned int cv::RNG::operator()(unsigned int N); // Return value from 0-(N-1)

When you are generating integer random numbers, the overloaded operator()()
allows a convenient way to just grab another one. In essence, calling my_rng() is
equivalent to calling (unsigned int)my_rng. The somewhat-more-interesting form
of cv::RNG::operator()() takes an integer argument N. This form returns (using the
MWC algorithm described earlier and thus uniformly) a random unsigned integer
modulo N. Thus, the range of integers returned by my_rng(N) is then the range of
integers from 0 to N-1.

cv::RNG::uniform()
int cv::RNG::uniform(int a, int b); // Return value from a-(b-1)
float cv::RNG::uniform(float a, float b); // Return value in range [a,b)
double cv::RNG::uniform(double a, double b); // Return value in range [a,b)

This function allows you to generate a random number uniformly (using the MWC
algorithm) in the interval [a, b).

The C++ compiler does not consider the return value of a function
when determining which of multiple similar forms to use, only the
arguments. As a result, if you call float x = my_rng.uni

form(0,1) you will get 0.f, because 0 and 1 are integers and the
only integer in the interval [0, 1) is 0. If you want a floating-point
number, you should use something like my_rng.uniform(0.f,
1.f), and for a double, use my_rng.uniform(0.,1.). Of course,
explicitly casting the arguments also works.

cv::RNG::gaussian()
double cv::RNG::gaussian(double sigma); // Gaussian number, zero mean,
 // std-dev='sigma'

178 | Chapter 7: Functors in OpenCV

This function allows you to generate a random number from a zero-mean Gaussian
distribution (using the Ziggurat algorithm) with standard deviation sigma.

cv::RNG::fill()
void cv::RNG::fill(
 InputOutputArray mat, // Input array, values will be overwritten
 int distType, // Type of distribution (Gaussian or uniform)
 InputArray a, // min (uniform) or mean (Gaussian)
 InputArray b // max (uniform) or std-deviation (Gaussian)
);

The cv::RNG::fill() algorithm fills a matrix mat of up to four channels with ran‐
dom numbers drawn from a specific distribution. That distribution is selected by the
distType argument, which can be either cv::RNG::UNIFORM or cv::RNG::NORMAL. In
the case of the uniform distribution, each element of mat will be filled with a random
value generated from the interval matc,i ∈ ac, bc). In the case of the Gaussian
(cv::RNG::NORMAL) distribution, each element is generated from a distribution with
the mean taken from a and the standard deviation taken from b:matc,i ∈ N (ac, bc). It is
important to note that the arrays a and b are not of the dimension of mat; instead,
they are nc × 1 or 1 × nc where nc is the number of channels in mat (i.e., there is not a
separate distribution for each element of mat; a and b specify one distribution, not
one distribution for every element of mat.)

If you have a multichannel array, then you can generate individual
entries in “channel space” from a multivariate distribution simply
by giving the appropriate mean and standard deviation for each
channel in the input arrays a and b. This distribution, however, will
be drawn from a distribution with only zero entries in the off-
diagonal elements of its covariance matrix. (This is because each
element is generated completely independently of the others.) If
you need to draw from a more general distribution, the easiest
method is to generate the values from an identity covariation
matrix with zero mean using cv::RNG::fill(), and then rotate
back to your original basis using cv::transform().

Summary
In this chapter we introduced the concept of functors, as well as the manner in which
they are used in the OpenCV library. We looked at a few such objects that are of gen‐
eral utility and saw how they worked. These included the PCA and SVD objects, as
well as the very useful random number generator RNG. Later on, as we delve into the
more advanced algorithms the library provides, we will see that this same concept is
used in many of the more modern additions to the library.

Summary | 179

Exercises
1. Using the cv::RNG random number generator:

a. Generate and print three floating-point numbers, each drawn from a uniform
distribution from 0.0 to 1.0.

b. Generate and print three double-precision numbers, each drawn from a
Gaussian distribution centered at 0.0 and with a standard deviation of 1.0.

c. Generate and print three unsigned bytes, each drawn from a uniform distri‐
bution from 0 to 255.

2. Using the fill() method of the cv::RNG random number generator, create an
array of:
a. 20 floating-point numbers with a uniform distribution from 0.0 to 1.0.
b. 20 floating-point numbers with a Gaussian distribution centered at 0.0 and

with a standard deviation of 1.0.
c. 20 unsigned bytes with a uniform distribution from 0 to 255.
d. 20 color triplets, each of three bytes with a uniform distribution from 0 to 255.

3. Using the cv::RNG random number generator, create an array of 100 three-byte
objects such that:
a. The first and second dimensions have a Gaussian distribution, centered at 64

and 192, respectively, each with a variance of 10.
b. The third dimension has a Gaussian distribution, centered at 128 and with a

variance of 2.
c. Using the cv::PCA object, compute a projection for which maxComponents=2.
d. Compute the mean in both dimensions of the projection; explain the result.

4. Beginning with the following matrix:

A =
1 1
0 1

− 1 1

a. First compute, by hand, the matrix AT A. Find the eigenvalues (e1, e2), and
eigenvectors (v→ 1, v→ 2), of AT A. From the eigenvalues, compute the singular val‐
ues (σ1, σ2) = (e1, e2).

b. Compute the matrices V = v→ 1, v→ 2 , and U = u→ 1, u→ 2, u→ 3 . Recall that u→ 1 = 1
σ1

Av→ 1,
u→ 2 = 1

σ2
Av→ 2, and u→ 3 is a vector orthogonal to both u→ 1 and u→ 2. Hint: recall that the

180 | Chapter 7: Functors in OpenCV

cross product of two vectors is always orthogonal to both terms in the cross
product.

c. The matrix Σ is defined (given this particular value of A) to be:

Σ =

σ1 0
0 σ2

0 0

Using this definition of Σ, and the preceding results for V and U, verify A = U
Σ VT by direct multiplication.

d. Using the cv::SVD object, compute the preceding matrices Σ, V, and U and
verify that the results you computed by hand are correct. Do you get exactly
what you expected? If not, explain.

Exercises | 181

CHAPTER 8

Image, Video, and Data Files

HighGUI: Portable Graphics Toolkit
The OpenCV functions that allow us to interact with the operating system, the file‐
system, and hardware such as cameras are mostly found in the module called High‐
GUI (which stands for “high-level graphical user interface”). HighGUI allows us to
read and write graphics-related files (both images and video), to open and manage
windows, to display images, and to handle simple mouse, pointer, and keyboard
events. We can also use it to create other useful doodads—like sliders, for example—
and then add them to our windows. If you are a GUI guru in your window environ‐
ment of choice, then you might find that much of what HighGUI offers is redundant.
Even so, you might find that the benefit of cross-platform portability is itself a tempt‐
ing morsel.

In this chapter, we will investigate the portion of HighGUI that deals with capture
and storage for both still and video images. In the following chapter, we will learn
how we can display images in windows using the cross-platform tools supplied by
HighGUI, as well as other native and cross-platform window toolkits.

From our initial perspective, the HighGUI library in OpenCV can be divided into
three parts: the hardware part, the filesystem part, and the GUI part. We will take a
moment to give an overview of what is in each part before we really dive in.

183

1 This is Qt, the cross-platform widget toolkit. We will talk more about how it works later in this chapter.

In OpenCV 3.0, HighGUI has been split into three modules: imgco
decs (image encoding/decoding), videoio (capturing and encod‐
ing video), and a portion now called highgui (which is the UI
part). For better backward compatibility, the highgui.hpp header
includes videoio.hpp and imgcodecs.hpp headers, so most of the
OpenCV 2.x code will be compatible with 3.x. Going forward, we
will be using the name HighGUI to refer to all of the image I/O,
video I/O, and UI functionality described in this chapter, and the
code examples should be compatible with both OpenCV 2.x and
3.x. But keep in mind that if you use OpenCV 3.0 and you need
just video capturing capabilities or you just read and write images,
you may use videoio/imgcodecs separately from other HighGUI
components.

The hardware part is primarily concerned with the operation of cameras. In most
operating systems, interaction with a camera is a tedious and painful task. HighGUI
provides an easy way to query a camera and retrieve its latest image. It hides all of the
nasty stuff, and tries to keep everyone happy.

The filesystem part is concerned primarily with loading and saving images. One nice
feature of the library is that it allows us to read video using the same methods we
would use to read a camera. We can therefore abstract ourselves away from the par‐
ticular device we’re using and get on with writing the interesting code. In a similar
spirit, HighGUI provides us with a (relatively) universal pair of functions to load and
save still images. These functions simply use the filename extension to determine the
file type and automatically handle all of the decoding or encoding that is necessary. In
addition to these image-specific functions, OpenCV provides a set of XML/YML-
based functions that make it convenient to load and store all sorts of other data in a
simple, human-readable, text-based format.

The third part of HighGUI is the window system (or GUI). The library provides
some simple functions that allow us to open a window and throw an image into that
window. It also allows us to register and respond to mouse and keyboard events on
that window. These features are most useful when we’re trying to get off the ground
with a simple application. By tossing in some slider bars, we are able to prototype a
surprising variety of applications using only the HighGUI library. If we want to link
to Qt, we can even get a little more functionality.1 We will cover all of this in the next
chapter on window toolkits.

184 | Chapter 8: Image, Video, and Data Files

Working with Image Files
OpenCV provides special functions for loading and saving images. These functions
deal, either explicitly or implicitly, with the complexities associated with compressing
and decompressing that image data. They differ in several respects from the more
universal XML/YAML-based functions that we will learn about in “Data Persistence”
on page 198. The primary distinction is that because the former functions are designed
for images specifically, as opposed to general arrays of data, they rely heavily on exist‐
ing backends for compression and decompression. In this way, they are able to han‐
dle each of the common file formats in the special manner it requires. Some of these
compression and decompression schemes have been developed with the idea that it is
possible to lose some information without degrading the visual experience of the
image. Clearly such lossy compression schemes are not a good idea for arrays of non‐
image data.

Artifacts introduced by lossy compression schemes can also cause
headaches for computer vision algorithms. In many cases, algo‐
rithms will find and respond to compression artifacts that are com‐
pletely invisible to humans.

The key difference to remember is that the loading and saving functions we will dis‐
cuss first are really interfaces to the resources for handling image files that are already
present in your operating system or its available libraries. In contrast, the XML/
YAML data persistence system mentioned earlier, which we will get to later in this
chapter, is entirely internal to OpenCV.

Loading and Saving Images
The most common tasks we will need to accomplish are loading and saving files from
disk. The easiest way to do this is with the high-level functions cv::imread() and
cv::imwrite(). These functions handle the complete task of decompression and
compression as well as the actual interaction with the file system.

Reading files with cv::imread()
The first thing to learn is how to get an image out of the filesystem and into our pro‐
gram. The function that does this is cv::imread():

cv::Mat cv::imread(
 const string& filename, // Input filename
 int flags = cv::IMREAD_COLOR // Flags set how to interpret file
);

Working with Image Files | 185

2 At the time of writing, “as is” does not support the loading of a fourth channel for those file types that support
alpha channels. In such cases, the fourth channel will be ignored and the file will be treated as if it had only
three channels.

When opening an image, cv::imread() doesn’t look at the file extension. Instead, it
analyzes the first few bytes of the file (a.k.a. its signature or “magic sequence”) and
determines the appropriate codec using that. The second argument, flags, can be set
to one of several values as described in Table 8-1. By default, flags is set to
cv::IMREAD_COLOR. This value indicates that images are to be loaded as three-channel
images with 8 bits per channel. In this case, even if the image is actually grayscale in
the file, the resulting image in memory will still have three channels, with all of the
channels containing identical information. Alternatively, if flags is set to
cv::IMREAD_GRAYSCALE, then the image will be loaded as grayscale, regardless of the
number of channels in the file. The final option is to set flags to cv::IMREAD_ANY
COLOR. In that case, the image will be loaded “as is,” with the result being three-
channel if the file is color, and one-channel if the file is grayscale.2

In addition to the color-related flags, cv::imread() supports the flag
cv::IMREAD_ANYDEPTH, which indicates that if an input image’s channels have more
than 8 bits, then it should be loaded without conversion (i.e., the allocated array will
be of the type indicated in the file).

Table 8-1. Flags accepted by cv::imread()

Parameter ID Meaning Default
cv::IMREAD_COLOR Always load to three-channel array. yes

cv::IMREAD_GRAYSCALE Always load to single-channel array. no

cv::IMREAD_ANYCOLOR Channels as indicated by file (up to three). no

cv::IMREAD_ANYDEPTH Allow loading of more than 8-bit depth. no

cv::IMREAD_UNCHANGED Equivalent to combining: cv::IMREAD_ANY
COLOR | cv::IMREAD_ANYDEPTHa

no

a This is not precisely true. IMREAD_UNCHANGED has another unique effect: it will preserve the alpha channel in an image
when that image is loaded. Note that even IMREAD_ANYCOLOR will still effectively crop the depth to three channels.

cv::imread() does not give a runtime error when it fails to load an image; it simply
returns an empty cv::Mat (i.e., cv::Mat::empty()==true).

186 | Chapter 8: Image, Video, and Data Files

Writing files with cv::imwrite()

The obvious complementary function to cv::imread() is cv::imwrite(), which
takes three arguments:

bool cv::imwrite(
 const string& filename, // Input filename
 cv::InputArray image, // Image to write to file
 const vector<int>& params = vector<int>() // (Optional) for parameterized fmts
);

The first argument gives the filename, whose extension is used to determine the for‐
mat in which the file will be stored. Here are some popular extensions supported by
OpenCV:

• .jpg or .jpeg: baseline JPEG; 8-bit; one- or three-channel input
• .jp2: JPEG 2000; 8-bit or 16-bit; one- or three-channel input
• .tif or .tiff: TIFF; 8- or 16-bit; one-, three-, or four-channel input
• .png: PNG; 8- or 16-bit; one-, three-, or four-channel input
• .bmp: BMP; 8-bit; one-, three-, or four-channel input
• .ppm, .pgm: NetPBM; 8-bit; one-channel (PGM) or three-channel (PPM)

The second argument is the image to be stored. The third argument is used for
parameters that are accepted by the particular file type being used for the write opera‐
tion. The params argument expects an STL vector of integers, with those integers
being a sequence of parameter IDs followed by the value to be assigned to that
parameter (i.e., alternating between the parameter ID and the parameter value). For
the parameter IDs, there are aliases provided by OpenCV, as listed in Table 8-2.

Table 8-2. Parameters accepted by cv::imwrite()

Parameter ID Meaning Range Default
cv::IMWRITE_JPG_QUALITY JPEG quality 0–100 95

cv::IMWRITE_PNG_COMPRESSION PNG compression (higher values mean more compression) 0-9 3

cv::IMWRITE_PXM_BINARY Use binary format for PPM, PGM, or PBM files 0 or 1 1

The cv::imwrite() function will store only 8-bit, single-, or three-channel images
for most file formats. Backends for flexible image formats like PNG, TIFF, or JPEG
2000 allow storing 16-bit or even float formats and some allow four-channel images

Working with Image Files | 187

3 The reason we say “should” is that, in some OS environments, it is possible to issue save commands that will
actually cause the operating system to throw an exception. Normally, however, a 0 value will be returned to
indicate failure.

(BGR plus alpha) as well. The return value will be true if the save was successful and
should be false if the save was not.3

A Note About Codecs
Remember, however, that cv::imwrite() is intended for images, and relies heavily
on software libraries intended for handling image file types. These libraries are gener‐
ically referred to as codecs (“co-mpression and dec-ompression librarie-s”). Your
operating system will likely have many codecs available, with (at least) one being
available for each of the different common file types.

OpenCV comes with the codecs you will need for some file formats (JPEG, PNG,
TIFF, etc.). For each of the codecs, there are three possibilities: a) to not include sup‐
port for this codec, b) to use the codec supplied with OpenCV (build it together with
other OpenCV modules), or c) use the external library (libjpeg, libpng, etc.) corre‐
spondingly. On Windows the default option is b. On OS X/Linux the default option
is c; if CMake did not find the codec, it will use b. You may explicitly override this
setting if you want. In Linux, if you want option c, install the codec together with the
development files (e.g., libjpeg and libjpeg-dev).

Compression and Decompression
As already mentioned, the cv::imread() and cv::imwrite functions are high-level
tools that handle a number of separate things necessary to ultimately get your image
written to or read from the disk. In practice, it is often useful to be able to handle
some of those subcomponents individually and, in particular, to be able to compress
or decompress an image in memory (using the codecs we just reviewed).

Compressing files with cv::imencode()
Images can be compressed directly from OpenCV’s array types. In this case, the
result will not be an array type, but rather a simple character buffer. This should not
be surprising, as the resulting object is now in some format that is meaningful only to
the codec that compressed it, and will (by construction) not be the same size as the
original image.

void cv::imencode(
 const string& ext, // Extension specifies codec
 cv::InputArray img, // Image to be encoded
 vector<uchar>& buf, // Encoded file bytes go here

188 | Chapter 8: Image, Video, and Data Files

4 You should not be surprised that the input buf is not type vector<int>&, as it was with cv::imencode().
Recall that the type cv::InputArray covers many possibilities and that vector<> is one of them.

 const vector<int>& params = vector<int>() // (Optional) for parameterized fmts
);

The first argument to cv::imencode() is ext, the file extension represented as a
string, which is associated with the desired compression. Of course, no file is actually
written, but the extension is not only an intuitive way to refer to the desired format.
Also, the extension is the actual key used by most operating systems to index the
available codecs. The next argument, img, is the image to be compressed, and the
argument following that, buf, is the character array into which the compressed image
will be placed. This buffer will be automatically resized by cv::imencode() to the
correct size for the compressed image. The final argument, params, is used to specify
any parameters that may be required (or desired) for the specific compression codec
to be used. The possible values for params are those listed in Table 8-2 for
cv::imwrite().

Uncompressing files with cv::imdecode()
cv::Mat cv::imdecode(
 cv::InputArray buf, // Encoded file bytes are here
 int flags = cv::IMREAD_COLOR // Flags set how to interpret file
);

Just as cv::imencode() allows us to compress an image into a character buffer,
cv::imdecode() allows us to decompress from a character buffer into an image
array. cv::imdecode() takes just two arguments, the first being the buffer4 buf
(which normally has std::vector<uchar> type) and the second being the flags
argument, which takes the same options as the flags used by cv::imread() (see
Table 8-1). As was the case with cv::imread(), cv::imdecode() does not need a file
extension (as cv::imencode() did) because it can deduce the correct codec to use
from the first bytes of the compressed image in the buffer.

Just as cv::imread() returns an empty (cv::Mat::empty()==true) array if it cannot
read the file it is given, cv::imdecode() returns an empty array if the buffer it is
given is empty, contains invalid or unusable data, and so on.

Working with Video
When working with video, we must consider several issues, including (of course)
how to read and write video files to and from disk. Of course, once we can do that, we
will want to know how to actually play back such files onscreen, either for debugging

Working with Video | 189

or as the final output of our program; we’ll start with disk IO and get to playback
next.

Reading Video with the cv::VideoCapture Object
The first thing we need is the cv::VideoCapture object. This is another one of those
“objects that do stuff” we encountered in the previous chapter. This object contains
the information needed for reading frames from a camera or video file. Depending
on the source, we use one of three different calls to create a cv::VideoCapture object:

cv::VideoCapture::VideoCapture(
 const string& filename, // Input filename
);
cv::VideoCapture::VideoCapture(
 int device // Video capture device id
);
cv::VideoCapture::VideoCapture();

In the case of the first constructor, we can simply give a filename for a video file
(.MPG, .AVI, etc.) and OpenCV will open the file and prepare to read it. If the open is
successful and we are able to start reading frames, the member function cv::Video
Capture::isOpened() will return true.

A lot of people don’t always check these sorts of things, assuming that nothing will go
wrong. Don’t do that here. The returned value of cv::VideoCapture::isOpened()
will be false if for some reason the file could not be opened (e.g., if the file does not
exist), but that is not the only possible cause. The constructed object will also not be
ready to be used if the codec with which the video is compressed is not known.
Because of the many issues surrounding codecs (legal as well as technical), this is not
as rare of an occurrence as one might hope.

As with the image codecs, you will need to have the appropriate library already resid‐
ing on your computer in order to successfully read the video file. This is why it is
always important for your code to check the return value of cv::VideoCap
ture::isOpened(), because even if it works on one machine (where the needed
codec DLL or shared library is available), it might not work on another machine
(where that codec is missing). Once we have an open cv::VideoCapture object, we
can begin reading frames and do a number of other things. But before we get into
that, let’s take a look at how to capture images from a camera.

The variant of cv::VideoCapture::VideoCapture() that takes an integer device
argument works very much like the string version we just discussed, except without

190 | Chapter 8: Image, Video, and Data Files

5 Of course, to be completely fair, we should confess that the headache caused by different codecs has been
replaced by the analogous headache of determining which cameras are supported on our system and/or the
camera driver software.

the headache from the codecs.5 In this case, we give an identifier that indicates a cam‐
era we would like to access and how we expect the operating system to talk to that
camera. For the camera, this is just an identification number—it is zero (0) when we
have only one camera and increments upward when there are multiple cameras on
the same system. The other part of the identifier is called the domain of the camera
and indicates (in essence) what type of camera we have. The domain can be any of
the predefined constants shown in Table 8-3.

Table 8-3. Camera “domain” indicating where HighGUI should look for your camera

Camera capture constant Numerical value
cv::CAP_ANY 0

cv::CAP_MIL 100

cv::CAP_VFW 200

cv::CAP_V4L 200

cv::CAP_V4L2 200

cv::CAP_FIREWIRE 300

cv::CAP_IEEE1394 300

cv::CAP_DC1394 300

cv::CAP_CMU1394 300

cv::CAP_QT 500

cv::CAP_DSHOW 700

cv::CAP_PVAPI 800

cv::CAP_OPENNI 900

cv::CAP_ANDROID 1000

...

When we construct the device argument for cv::VideoCapture::VideoCapture(),
we pass in an identifier that is the sum of the domain index and the camera index.
For example:

cv::VideoCapture capture(cv::CAP_FIREWIRE);

In this example, cv::VideoCapture::VideoCapture() will attempt to open the first
(i.e., number 0) FireWire camera. In most cases, the domain is unnecessary when we
have only one camera; it is sufficient to use cv::CAP_ANY (which is conveniently equal
to 0, so we don’t even have to type that in). One last useful hint before we move on:
on some platforms, you can pass -1 to cv::VideoCapture::VideoCapture(), which
will cause OpenCV to open a window that allows you to select the desired camera.

Working with Video | 191

Your last option is to create the capture object without providing any information
about what is to be opened.

cv::VideoCapture cap;

cap.open("my_video.avi");

In this case, the capture object will be there, but not ready for use until you explicitly
open the source you want to read from. You do this with the cv::VideoCap
ture::open() method, which, like the cv::VideoCapture constructor, can take
either an STL string or a device ID as arguments. In either case, cv::VideoCap
ture::open() will have exactly the same effect as calling the cv::VideoCapture con‐
structor with the same argument.

Reading frames with cv::VideoCapture::read()
bool cv::VideoCapture::read(
 cv::OutputArray image // Image into which to read data
);

Once you have a cv::VideoCapture object, you can start reading frames. The easiest
way to do this is to call cv::VideoCapture::read(), which will simply go to the open
file represented by cv::VideoCapture and get the next frame, inserting that frame
into the provided array image. This action will automatically “advance” the video
capture object such that a subsequent call to cv::VideoCapture::read() will return
the next frame, and so on.

If the read was not successful (e.g., if you have reached the end of your file), then this
function call will return false (otherwise, it will return true). Similarly, the array
object you supplied to the function will also be empty.

Reading frames with cv::VideoCapture::operator>>()
cv::VideoCapture& cv::VideoCapture::operator>>(
 cv::Mat& image // Image into which to read data
);

In addition to using the read method of cv::VideoCapture, you can use the overloa‐
ded function cv::VideoCapture::operator>>() (i.e., the “stream read” operator) to
read the next frame from your video capture object. In this case, cv::VideoCap
ture::operator>>() behaves exactly the same as cv::VideoCapture::read(),
except that because it is a stream operator, it returns a reference to the original
cv::VideoCapture object regardless of whether it succeeded. In this case, you must
check that the return array is not empty.

192 | Chapter 8: Image, Video, and Data Files

6 The currently supported multihead cameras are Kinect and Videre; others may be added later.

Reading frames with cv::VideoCapture::grab() and cv::VideoCapture::retrieve()
Instead of taking images one at a time from your camera or video source and decod‐
ing them as you read them, you can break this process down into a grab phase, which
is little more than a memory copy, and a retrieve phase, which handles the actual
decoding of the grabbed data.

bool cv::VideoCapture::grab(void);
bool cv::VideoCapture::retrieve(
 cv::OutputArray image, // Image into which to read data
 int channel = 0 // Used for multihead devices
);

The cv::VideoCapture::grab() function copies the currently available image to an
internal buffer that is invisible to the user. Why would you want OpenCV to put the
frame somewhere you can’t access it? The answer is that this grabbed frame is unpro‐
cessed, and grab() is designed simply to get it onto the computer (typically from a
camera) as quickly as possible.

There are many reasons to grab and retrieve separately rather than
together as would be the case in calling cv::VideoCap

ture::read(). The most common situation arises when there are
multiple cameras (e.g., with stereo imaging). In this case, it is
important to have frames that are separated in time by the mini‐
mum amount possible (ideally they would be simultaneous for
stereo imaging). Therefore, it makes the most sense to first grab all
the frames and then come back and decode them after you have
them all safely in your buffers.

As was the case with cv::VideoCapture::read(), cv::VideoCapture::grab()

returns true only if the grab was successful.

Once you have grabbed your frame, you can call cv::VideoCapture::retrieve(),
which handles the de coding as well as the allocation and copying necessary to return
the frame to you as a cv::Mat array. cv::VideoCapture::retrieve() functions anal‐
ogously to cv::VideoCapture::read() except that it operates from the internal
buffer to which cv::VideoCapture::grab() copies frames. The other important dif‐
ference between cv::VideoCapture::read() and cv::VideoCapture::retrieve() is
the additional argument channel. The channel argument is used when the device
being accessed natively has multiple “heads” (i.e., multiple imagers). This is typically
the case for devices designed specifically to be stereo imagers, as well as slightly more
exotic devices such as the Kinect.6 In these cases, the value of channel will indicate

Working with Video | 193

7 It should be understood that not all of the properties recognized by OpenCV will be recognized or handled by
the “backend” behind the capture. For example, the capture mechanisms operating behind the scenes on
Android, Firewire on Linux (via dc1394), QuickTime, or a Kinect (via OpenNI) are all going to be very differ‐
ent, and not all of them will offer all of the services implied by this long list of options. And expect this list to
grow as new system types make new options possible.

which image from the device is to be retrieved. In these cases, you would call cv::Vid
eoCapture::grab() just once and then call cv::VideoCapture::retrieve() as
many times as needed to retrieve all of the images in the camera (each time with a
different value for channel).

Camera properties: cv::VideoCapture::get() and cv::VideoCapture::set()
Video files contain not only the video frames themselves, but also important meta‐
data, which can be essential for handling the files correctly. When a video file is
opened, that information is copied into the cv::VideoCapture object’s internal data
area. It is very common to want to read that information from the cv::VideoCapture
object, and sometimes also useful to write to that data area ourselves. The cv::Video
Capture::get() and cv::VideoCapture::set() functions allow us to perform these
two operations:

double cv::VideoCapture::get(
 int propid // Property identifier (see Table 8-4)
);

bool cv::VideoCapture::set(
 int propid // Property identifier (see Table 8-4)
 double value // Value to which to set the property
);

The routine cv::VideoCapture::get() accepts any of the property IDs shown in
Table 8-4.7

Table 8-4. Video capture properties used by cv::VideoCapture::get() and
cv::VideoCapture::set()

Video capture property Camera only Meaning
cv::CAP_PROP_POS_MSEC Current position in video file (milliseconds) or video

capture timestamp
cv::CAP_PROP_POS_FRAMES Zero-based index of next frame
cv::CAP_PROP_POS_AVI_RATIO Relative position in the video (range is 0.0 to 1.0)
cv::CAP_PROP_FRAME_WIDTH Width of frames in the video
cv::CAP_PROP_FRAME_HEIGHT Height of frames in the video
cv::CAP_PROP_FPS Frame rate at which the video was recorded
cv::CAP_PROP_FOURCC Four character code indicating codec
cv::CAP_PROP_FRAME_COUNT Total number of frames in a video file

194 | Chapter 8: Image, Video, and Data Files

Video capture property Camera only Meaning
cv::CAP_PROP_FORMAT Format of the Mat objects returned (e.g., CV_8UC3)
cv::CAP_PROP_MODE Indicates capture mode; values are specific to video

backend being used (e.g., DC1394)
cv::CAP_PROP_BRIGHTNESS ✓ Brightness setting for camera (when supported)
cv::CAP_PROP_CONTRAST ✓ Contrast setting for camera (when supported)
cv::CAP_PROP_SATURATION ✓ Saturation setting for camera (when supported)
cv::CAP_PROP_HUE ✓ Hue setting for camera (when supported)
cv::CAP_PROP_GAIN ✓ Gain setting for camera (when supported)
cv::CAP_PROP_EXPOSURE ✓ Exposure setting for camera (when supported)
cv::CAP_PROP_CONVERT_RGB ✓ If nonzero, captured images will be converted to have

three channels
cv::CAP_PROP_WHITE_BALANCE ✓ White balance setting for camera (when supported)
cv::CAP_PROP_RECTIFICATION ✓ Rectification flag for stereo cameras (DC1394-2.x only)

Most of these properties are self-explanatory. POS_MSEC is the current position in a
video file, measured in milliseconds. POS_FRAME is the current position in frame num‐
ber. POS_AVI_RATIO is the position given as a number between 0.0 and 1.0. (This is
actually quite useful when you want to position a trackbar to allow folks to navigate
around your video.) FRAME_WIDTH and FRAME_HEIGHT are the dimensions of the indi‐
vidual frames of the video to be read (or to be captured at the camera’s current set‐
tings). FPS is specific to video files and indicates the number of frames per second at
which the video was captured; you will need to know this if you want to play back
your video and have it come out at the right speed. FOURCC is the four-character code
for the compression codec to be used for the video you are currently reading (more
on these shortly). FRAME_COUNT should be the total number of frames in the video, but
this figure is not entirely reliable.

All of these values are returned as type double, which is perfectly reasonable except
for the case of FOURCC (FourCC) [FourCC85]. Here you will have to recast the result
in order to interpret it, as shown in Example 8-1.

Example 8-1. Unpacking a four-character code to identify a video codec

cv::VideoCapture cap("my_video.avi");

unsigned f = (unsigned)cap.get(cv::CAP_PROP_FOURCC);
char fourcc[] = {
 (char) f, // First character is lowest bits
 (char)(f >> 8), // Next character is bits 8-15
 (char)(f >> 16), // Next character is bits 16-23
 (char)(f >> 24), // Last character is bits 24-31
 '\0' // and don't forget to terminate
 };

Working with Video | 195

For each of these video capture properties, there is a corresponding cv::VideoCap
ture::set() function that will attempt to set the property. These are not all mean‐
ingful things to do; for example, you should not be setting the FOURCC of a video you
are currently reading. Attempting to move around the video by setting one of the
position properties will work, but only for some video codecs (we’ll have more to say
about video codecs in the next section).

Writing Video with the cv::VideoWriter Object
The other thing we might want to do with video is writing it out to disk. OpenCV
makes this easy; it is essentially the same as reading video but with a few extra details.

Just as we did with the cv::VideoCapture device for reading, we must first create a
cv::VideoWriter device before we can write out our video. The video writer has two
constructors; one is a simple default constructor that just creates an uninitialized
video object that we will have to open later, and the other has all of the arguments
necessary to actually set up the writer.

cv::VideoWriter::VideoWriter(
 const string& filename, // Input filename
 int fourcc, // codec, use CV_FOURCC() macro
 double fps, // Frame rate (stored in output file)
 cv::Size frame_size, // Size of individual images
 bool is_color = true // if false, you can pass gray frames
);

You will notice that the video writer requires a few extra arguments relative to the
video reader. In addition to the filename, we have to tell the writer what codec to use,
what the frame rate is, and how big the frames will be. Optionally, we can tell
OpenCV that the frames are already in color (i.e., three-channel). If you set isColor
to false, you can pass grayscale frames and the video writer will handle them
correctly.

As with the video reader, you can also create the video writer with a default construc‐
tor, and then configure the writer with the cv::VideoWriter::open() method,
which takes the same arguments as the full constructor. For example:

cv::VideoWriter out;

out.open(
 "my_video.mpg",
 CV_FOURCC('D','I','V','X'), // MPEG-4 codec
 30.0, // Frame rate (FPS)
 cv::Size(640, 480), // Write out frames at 640x480 resolution
 true // Expect only color frames
);

196 | Chapter 8: Image, Video, and Data Files

Here, the codec is indicated by its four-character code. (For those of you who are not
experts in compression codecs, they all have a unique four-character identifier associ‐
ated with them.) In this case, the int that is named fourcc in the argument list for
cv::VideoWriter::VideoWriter() is actually the four characters of the fourcc
packed together. Since this comes up relatively often, OpenCV provides a convenient
macro, CV_FOURCC(c0,c1,c2,c3), that will do the bit packing for you. Don’t forget
that you are providing characters (single quotes), not strings (double quotes).

Once you have given your video writer all the information it needs to set itself up, it
is always a good idea to ask it if it is ready to go. You do this with the cv::Video
Writer::isOpened() method, which will return true if you are good to go. If it
returns false, that could mean that you don’t have write permission to the directory
for the file you indicated, or (most often) that the codec you specified is not available.

The codecs available to you depend on your operating system
installation and the additional libraries you have installed. For
portable code, it is especially important to be able to gracefully
handle the case in which the desired codec is not available on any
particular machine.

Writing frames with cv::VideoWriter::write()
Once you have verified that your video writer is ready to write, you can write frames
by simply passing your array to the writer:

cv::VideoWriter::write(
 const Mat& image // Image to write as next frame
);

This image must have the same size as the size you gave to the writer when you con‐
figured it in the first place. If you told the writer that the frames would be in color,
this must also be a three-channel image. If you indicated to the writer (via isColor)
that the images may not be in color, then you can supply a single-channel (grayscale)
image.

Writing frames with cv::VideoWriter::operator<<()
The video writer also supports the idiom of the overloaded output stream operator
(operator<<()). In this case, once you have your video writer open, you can write
images to the video stream in the same manner you would write to cout or a file
ofstream object:

my_video_writer << my_frame;

In practice, it is primarily a matter of style which method you will choose.

Working with Video | 197

Data Persistence
In addition to standard video compression, OpenCV provides a mechanism for seri‐
alizing and deserializing its various data types to and from disk in either YAML or
XML format. These methods can be used to load or store any number of OpenCV
data objects (including basic types like int, float, etc.) in a single file. Such functions
are separate from the specialized functions we saw earlier in this chapter that handle
the more particular situation of loading and saving compressed image files and video
data. In this section, we will focus on general object persistence: reading and writing
matrices, OpenCV structures, configuration, and logfiles.

The basic mechanism for reading and writing files is the cv::FileStorage object.
This object essentially represents a file on disk, but does so in a manner that makes
accessing the data represented in the file easy and natural.

Writing to a cv::FileStorage
FileStorage::FileStorage();
FileStorage::FileStorage(string fileName, int flag);

The cv::FileStorage object is a representation of an XML or YAML data file. You
can create it and pass a filename to the constructor, or you can just create an unop‐
ened storage object with the default constructor and open the file later with
cv::FileStorage::open(), where the flag argument should be either cv::FileStor
age::WRITE or cv::FileStorage::APPEND.

FileStorage::open(string fileName, int flag);

Once you have opened the file you want to write to, you can write using the operator
cv::FileStorage::operator<<() in the same manner you might write to stdout
with an STL stream. Internally, however, there is quite a bit more going on when you
write in this manner.

Data inside cv::FileStorage is stored in one of two forms, either as a “mapping”
(i.e., key/value pairs) or a “sequence” (a series of unnamed entries). At the top level,
the data you write to the file storage is all a mapping, and inside of that mapping you
can place other mappings or sequences, and mappings or sequences inside of those as
deep as you like.

myFileStorage << "someInteger" << 27; // save an integer
myFileStorage << "anArray" << cv::Mat::eye(3,3,CV_32F); // save an array

To create a sequence entry, you first provide the string name for the entry, and then
the entry itself. The entry can be a number (integer, float, etc.), a string, or any
OpenCV data type.

198 | Chapter 8: Image, Video, and Data Files

If you would like to create a new mapping or sequence, you can do so with the special
characters { (for a mapping) or [(for a sequence). Once you have started the map‐
ping or sequence, you can add new elements and then finally close the mapping or
sequence with } or] (respectively).

myFileStorage << "theCat" << "{";
myFileStorage << "fur" << "gray" << "eyes" << "green" << "weightLbs" << 16;
myFileStorage << "}";

Once you have created a mapping, you enter each element with a name and the data
following, just as you did for the top-level mapping. If you create a sequence, you
simply enter the new data one item after another until you close the sequence.

myFileStorage << "theTeam" << "[";
myFileStorage << "eddie" << "tom" << "scott";
myFileStorage << "]";

Once you are completely done writing, you close the file with the cv::FileStor
age::release() member function.

Example 8-2 is an explicit code sample from the OpenCV documentation.

Example 8-2. Using cv::FileStorage to create a .yml data file

#include "opencv2/opencv.hpp"
#include <time.h>

int main(int, char** argv)
{

 cv::FileStorage fs("test.yml", cv::FileStorage::WRITE);

 fs << "frameCount" << 5;

 time_t rawtime; time(&rawtime);
 fs << "calibrationDate" << asctime(localtime(&rawtime));

 cv::Mat cameraMatrix = (
 cv::Mat_<double>(3,3)
 << 1000, 0, 320, 0, 1000, 240, 0, 0, 1
);
 cv::Mat distCoeffs = (
 cv::Mat_<double>(5,1)
 << 0.1, 0.01, -0.001, 0, 0
);
 fs << "cameraMatrix" << cameraMatrix << "distCoeffs" << distCoeffs;

 fs << "features" << "[";
 for(int i = 0; i < 3; i++)
 {
 int x = rand() % 640;

Data Persistence | 199

 int y = rand() % 480;
 uchar lbp = rand() % 256;

 fs << "{:" << "x" << x << "y" << y << "lbp" << "[:";
 for(int j = 0; j < 8; j++)
 fs << ((lbp >> j) & 1);
 fs << "]" << "}";
 }
 fs << "]";
 fs.release();

 return 0;

}

The result of running this program would be a YAML file with the following
contents:

%YAML:1.0
frameCount: 5
calibrationDate: "Fri Jun 17 14:09:29 2011\n"
cameraMatrix: !!opencv-matrix
 rows: 3
 cols: 3
 dt: d
 data: [1000., 0., 320., 0., 1000., 240., 0., 0., 1.]
distCoeffs: !!opencv-matrix
 rows: 5
 cols: 1
 dt: d
 data: [1.0000000000000001e-01, 1.0000000000000000e-02,
 -1.0000000000000000e-03, 0., 0.]
features:
 - { x:167, y:49, lbp:[1, 0, 0, 1, 1, 0, 1, 1] }
 - { x:298, y:130, lbp:[0, 0, 0, 1, 0, 0, 1, 1] }
 - { x:344, y:158, lbp:[1, 1, 0, 0, 0, 0, 1, 0] }

In the example code, you will notice that sometimes all of the data in a mapping or
sequence is stored on a single line and other times it is stored with one element per
line. This is not an automatic formatting behavior. Instead, it is created by a variant
of the mapping and sequence creation strings: "{:" and "}" mappings, and "[:" and
"]" for sequences. This feature is meaningful only for YAML output; if the output file
is XML, this nuance is ignored and the mapping or sequence is stored as it would
have been without the variant.

Reading from a cv::FileStorage
FileStorage::FileStorage(string fileName, int flag);

The cv::FileStorage object can be opened for reading the same way it is opened for
writing, except that the flag argument should be set to cv::FileStorage::READ. As

200 | Chapter 8: Image, Video, and Data Files

with writing, you can also create an unopened file storage object with the default con‐
structor and open it later with cv::FileStorage::open().

FileStorage::open(string fileName, int flag);

Once the file has been opened, the data can be read with either the overloaded array
operator cv::FileStorage::operator[]() or with the iterator cv::FileNodeItera
tor. Once you are completely done reading, you then close the file with the cv::File
Storage::release() member function.

To read from a mapping, the cv::FileStorage::operator[]() is passed the string
key associated with the desired object. To read from a sequence, the same operator
can be called with an integer argument instead. The return value of this operator is
not the desired object, however; it is an object of type cv::FileNode, which repre‐
sents the value that goes with the given key in an abstract form. The cv::FileNode
object can be manipulated in a variety of ways, which we will now investigate.

cv::FileNode
Once you have a cv::FileNode object, you can do one of several things with it. If it
represents an object (or a number or a string), you can just load it into a variable of
the appropriate type with the overloaded extraction operator cv::FileNode::opera
tor>>().

cv::Mat anArray;
myFileStorage["calibrationMatrix"] >> anArray;

The cv::FileNode object also supports direct casting to any of the basic data types.

int aNumber;
myFileStorage["someInteger"] >> aNumber;

This is equivalent to:

int aNumber;
aNumber = (int)myFileStorage["someInteger"];

As mentioned earlier, there is also an iterator for moving through file nodes that can
be used as well. Given a cv::FileNode object, the member functions cv::File
Node::begin() and cv::FileNode::end() have their usual interpretations as provid‐
ing the first and “after last” iterator for either a mapping or a sequence. The iterator,
on dereferencing with the usual overloaded dereferencing operator cv::FileNodeIt
erator::operator*(), will return another cv::FileNode object. Such iterators sup‐
port the usual incrementing and decrementing operators. If the iterator was iterating
through a mapping, then the returned cv::FileNode object will have a name that can
be retrieved with cv::FileNode::name().

Data Persistence | 201

Of the methods listed in Table 8-5, one requires special clarification: cv::File
Node::type(). The returned value is an enumerated type defined in the class
cv::FileNode. The possible values are given in Table 8-6.

Table 8-5. Member functions of cv::FileNode

Example Description
cv::FileNode fn File node object default constructor

cv::FileNode fn1(fn0) File node object copy constructor; creates a node fn1 from a
node fn0

cv::FileNode fn1(fs, node) File node constructor; creates a C++ style cv::FileNode
object from a C-style CvFileStorage* pointer fs and a
C-style CvFileNode* pointer node

fn[(string)key]
fn[(const char*)key]

STL string or C-string accessor for named child (of mapping
node); converts key to the appropriate child node

fn[(int)id] Accessor for numbered child (of sequence node); converts ID
to the appropriate child node

fn.type() Returns node type enum

fn.empty() Determines if node is empty

fn.isNone() Determines if node has value None

fn.isSeq() Determines if node is a sequence

fn.isMap() Determines if node is a mapping

fn.isInt()
fn.isReal()
fn.isString()

Determines if node is an integer, a floating-point number, or
a string (respectively)

fn.name() Returns nodes name if node is a child of a mapping

size_t sz=fn.size() Returns a number of elements in a sequence or mapping

(int)fn
(float)fn
(double)fn
(string)fn

Extracts the value from a node containing an integer, 32-bit
float, 64-bit float, or string (respectively)

Table 8-6. Possible return values for cv::FileNode::type()

Example Description
cv::FileNode::NONE = 0 Node is of type None

cv::FileNode::INT = 1 Node contains an integer

cv::FileNode::REAL = 2
cv::FileNode::FLOAT = 2

Node contains a floating-point numbera

cv::FileNode::STR = 3
cv::FileNode::STRING = 3

Node contains a string

202 | Chapter 8: Image, Video, and Data Files

Example Description
cv::FileNode::REF = 4 Node contains a reference (i.e., a compound object)

cv::FileNode::SEQ = 5 Node is itself a sequence of other nodes

cv::FileNode::MAP = 6 Node is itself a mapping of other nodes

cv::FileNode::FLOW = 8 Node is a compact representation of a sequence or mapping

cv::FileNode::USER = 16 Node is a registered object (e.g., a matrix)

cv::FileNode::EMPTY = 32 Node has no value assigned to it

cv::FileNode::NAMED = 64 Node is a child of a mapping (i.e., it has a name)

a Note that the floating-point types are not distinguished. This is a somewhat subtle point. Recall that XML and YAML are
ASCII text file formats. As a result, all floating-point numbers are of no specific precision until cast to an internal machine
variable type. So, at the time of parsing, all floating-point numbers are represented only as an abstract floating-point type.

Note that the last four enum values are powers of two starting at 8. This is because a
node may have any or all of these properties in addition to one of the first eight listed
types.

Example 8-3 (also from the OpenCV documentation) shows how we could read the
file we wrote previously.

Example 8-3. Using cv::FileStorage to read a .yml file

cv::FileStorage fs2("test.yml", cv::FileStorage::READ);

// first method: use (type) operator on FileNode.
int frameCount = (int)fs2["frameCount"];

// second method: use cv::FileNode::operator >>
//
std::string date;
fs2["calibrationDate"] >> date;

cv::Mat cameraMatrix2, distCoeffs2;
fs2["cameraMatrix"] >> cameraMatrix2;
fs2["distCoeffs"] >> distCoeffs2;

cout << "frameCount: " << frameCount << endl
 << "calibration date: " << date << endl
 << "camera matrix: " << cameraMatrix2 << endl
 << "distortion coeffs: " << distCoeffs2 << endl;

cv::FileNode features = fs2["features"];
cv::FileNodeIterator it = features.begin(), it_end = features.end();
int idx = 0;
std::vector<uchar> lbpval;

Data Persistence | 203

// iterate through a sequence using FileNodeIterator
for(; it != it_end; ++it, idx++)
{
 cout << "feature #" << idx << ": ";
 cout << "x=" << (int)(*it)["x"] << ", y=" << (int)(*it)["y"] << ", lbp: (";

 // (Note: easily read numerical arrays using FileNode >> std::vector.)
 //
 (*it)["lbp"] >> lbpval;
 for(int i = 0; i < (int)lbpval.size(); i++)
 cout << " " << (int)lbpval[i];
 cout << ")" << endl;

}
fs.release();

Summary
In this chapter we saw several different ways to interact with disk storage and physi‐
cal devices. We learned that the HighGUI module in the library provides simple tools
for reading and writing common image file formats from disk and that these tools
would automatically handle the compression and decompression of these file for‐
mats. We also learned that video is handled in a similar way and that the same tools
that are used for reading video information from disk could also be used to capture
video from a camera. Finally, we saw that OpenCV provides a powerful tool for stor‐
ing and restoring its own native types into XML and YML files. These files allowed
the data to be organized into key/value maps for easy retrieval once read into
memory.

Exercises
This chapter completes our introduction to basic I/O programming and data struc‐
tures in OpenCV. The following exercises build on this knowledge and create useful
utilities for later use.

1. Create a program that (1) reads frames from a video, (2) turns the result to gray‐
scale, and (3) performs Canny edge detection on the image. Display all three
stages of processing in three different windows, with each window appropriately
named for its function.
a. Display all three stages of processing in one image. (Hint: create another

image of the same height but three times the width as the video frame. Copy
the images into this, either by using pointers or (more cleverly) by creating
three new image headers that point to the beginning of and to one-third and
two-thirds of the way into the imageData. Then use Mat::copyTo().)

204 | Chapter 8: Image, Video, and Data Files

b. Write appropriate text labels describing the processing in each of the three
slots.

2. Create a program that reads in and displays an image. When the user’s mouse
clicks on the image, read in the corresponding pixel values (blue, green, red) and
write those values as text to the screen at the mouse location.
a. For the program of Exercise 2, display the mouse coordinates of the individ‐

ual image when clicking anywhere within the three-image display.
3. Create a program that reads in and displays an image.

a. Allow the user to select a rectangular region in the image by drawing a rectan‐
gle with the mouse button held down, and highlight the region when the
mouse button is released. Be careful to save an image copy in memory so that
your drawing into the image does not destroy the original values there. The
next mouse click should start the process all over again from the original
image.

b. In a separate window, use the drawing functions to draw a graph in blue,
green, and red that represents how many pixels of each value were found in
the selected box. This is the color histogram of that color region. The x-axis
should be eight bins that represent pixel values falling within the ranges 0–31,
32–63,..., 223–255. The y-axis should be counts of the number of pixels that
were found in that bin range. Do this for each color channel, BGR.

4. Make an application that reads and displays a video and is controlled by sliders.
One slider will control the position within the video from start to end in 10
increments; another binary slider should control pause/unpause. Label both slid‐
ers appropriately.

5. Create your own simple paint program.
a. Write a program that creates an image, sets it to 0, and then displays it. Allow

the user to draw lines, circles, ellipses, and polygons on the image using the
left mouse button. Create an eraser function when the right mouse button is
held down.

b. Enable “logical drawing” by allowing the user to set a slider setting to AND,
OR, and XOR. That is, if the setting is AND then the drawing will appear only
when it crosses pixels greater than 0 (and so on for the other logical func‐
tions).

6. Write a program that creates an image, sets it to 0, and then displays it. When the
user clicks on a location, he or she can type in a label there. Allow Backspace to
edit and provide for an abort key. Hitting Enter should fix the label at the spot it
was typed.

Exercises | 205

7. Perspective transform:
a. Write a program that reads in an image and uses the numbers 1–9 on the key‐

pad to control a perspective transformation matrix (refer to our discussion of
the cv::warpPerspective() in the section “cv::warpPerspective(): Dense per‐
spective transform” on page 313 in Chapter 11). Tapping any number should
increment the corresponding cell in the perspective transform matrix; tapping
with the Shift key depressed should decrement the number associated with
that cell (stopping at 0). Each time a number is changed, display the results in
two images: the raw image and the transformed image.

b. Add functionality to zoom in or out.
c. Add functionality to rotate the image.

8. Face fun. Go to the /samples/cpp/ directory and build the facedetect.cpp code.
Draw a skull image (or find one on the Web) and store it to disk. Modify the
facedetect program to load in the image of the skull.
a. When a face rectangle is detected, draw the skull in that rectangle. Hint: you

could look up the cv::resize() function. You may then set the ROI to the
rectangle and use Mat::copyTo() to copy the properly resized image there.

b. Add a slider with 10 settings corresponding to 0.0 to 1.0. Use this slider to
alpha-blend the skull over the face rectangle using the cv::addWeighted()
function.

9. Image stabilization. Go to the /samples/cpp/ directory and build the lkdemo code
(the motion tracking or optical flow code). Create and display a video image in a
much larger window image. Move the camera slightly but use the optical flow
vectors to display the image in the same place within the larger window. This is a
rudimentary image stabilization technique.

10. Create a structure of an integer, a cv::Point and a cv::Rect; call it “my_struct.”
a. Write two functions: void write_my_struct(FileStorage& fs, const

string& name, const my_struct& ms) and void read_my_struct(const
FileStorage& fs, const FileNode& ms_node, my_struct& ms). Use them
to write and read my_struct.

b. Write and read an array of 10 my_struct structures.

206 | Chapter 8: Image, Video, and Data Files

1 They are “portable” because they make use of native window GUI tools on various platforms. This means X11
on Linux, Cocoa on Mac OS X, and the raw Win32 API on Microsoft Windows machines. However, this
portability extends only to those platforms for which there is an implementation in the library. There are plat‐
forms on which OpenCV can be used for which there are no available implementations of the HighGUI
library (e.g., Android).

CHAPTER 9

Cross-Platform and Native Windows

Working with Windows
The previous chapter introduced the HighGUI toolkit. There, we looked at how that
toolkit could help us with file- and device-related tasks. In addition to those features,
the HighGUI library also provides basic built-in features for creating windows, dis‐
playing images in those windows, and making some user interaction possible with
those windows. The native OpenCV graphical user interface (GUI) functions have
been part of the library for a long time, and have the advantages of being stable,
portable,1 and easy to use.

Though convenient, the UI features of the HighGUI library have the disadvantage of
being not particularly complete. As a result, there has been an effort to modernize the
UI portion of HighGUI, and to add a number of useful new features, by converting
from “native” interfaces to the use of Qt. Qt is a cross-platform toolkit, and so new
features need be implemented only a single time in the library, rather than once for
each supported platform. Needless to say, this has made development of the Qt inter‐
face more attractive, so it has more capabilities and will probably grow in the future,
leaving the features of the native interface to become static legacy code.

In this section, we will first take a look at the native functions, and then move on to
the differences, and particularly the new features, offered by the Qt-based interface.

207

2 In OpenCV, windows are referenced by name instead of by some unfriendly (and invariably OS-dependent)
“handle.” Conversion between handles and names happens under HighGUI’s hood, so you needn’t worry
about it.

3 Later in this chapter, we will look at the (optional) Qt-based backend for HighGUI. If you are using that back‐
end, there are more options available for cv::namedWindow() and other functions.

Finally, we will look at how you would integrate OpenCV data types with some exist‐
ing platform-specific toolkits for some popular operating systems.

HighGUI Native Graphical User Interface
This section describes the core interface functions that are part of OpenCV and
require no external toolkit support. If you compile OpenCV with Qt support, some of
these functions will behave somewhat differently or have some additional options; we
will cover that case in the following section. For the moment, however, we will focus
on the bare-bones HighGUI UI tools.

The HighGUI user input tools support only three basic interactions—specifically,
keypresses, mouse clicks on the image area, and the use of simple trackbars. These
basic functions are usually sufficient for simple mockups and debugging, but hardly
ideal for end-user-facing applications. For that, you will (at least) want to use the Qt-
based interface or some other more full-featured UI toolkit.

The main advantages of the native tools are that they are fast and easy to use, and
don’t require you to install any additional libraries.

Creating a window with cv::namedWindow()
First, we want to be able to create a window and show an image on the screen using
HighGUI. The function that does the first part for us is cv::namedWindow(), and it
expects a name for the new window and one flag. The name appears at the top of the
window, and is also used as a handle for the window that can be passed to other
HighGUI functions.2 The flag argument indicates whether the window should auto‐
size itself to fit an image we put into it. Here is the full prototype:

int cv::namedWindow(
 const string& name, // Handle used to identify window
 int flags = 0 // Used to tell window to autosize
);

For now, the only valid options available for flags are to set it to 0 (the default
value), which indicates that users are able (and required) to resize the window, or to
set it to cv::WINDOW_AUTOSIZE.3 If cv::WINDOW_AUTOSIZE is set, then HighGUI resizes
the window to fit automatically whenever a new image is loaded, but users cannot
resize the window.

208 | Chapter 9: Cross-Platform and Native Windows

Once we create a window, we usually want to put something inside it. But before we
do that, let’s see how to get rid of the window when it is no longer needed. For this,
we use cv::destroyWindow(), a function whose only argument is a string: the name
given to the window when it was created.

int cv::destroyWindow(
 const string& name, // Handle used to identify window
);

Drawing an image with cv::imshow()
Now we are ready for what we really want to do: load an image and put it into the
window where we can view it and appreciate its profundity. We do this via one sim‐
ple function, cv::imshow():

void cv::imshow(
 const string& name, // Handle used to identify window
 cv::InputArray image // Image to display in window
);

The first argument is the name of the window within which we intend to draw. The
second argument is the image to be drawn. Note that the window will keep a copy of
the drawn image and will repaint it as needed from that buffer, so a subsequent mod‐
ification of the input image will not change the contents of the window unless a sub‐
sequent call to cv::imshow() is made.

Updating a window and cv::waitKey()

The function cv::waitKey() is to wait for some specified (possibly indefinite)
amount of time for a keypress on the keyboard, and to return that key value when it
is received. cv::waitKey() accepts a keypress from any open OpenCV window (but
will not function if no such window exists).

int cv::waitKey(
 int delay = 0 // Milliseconds until giving up (0='never')
);

cv::waitKey() takes a single argument, delay, which is the amount of time (in milli‐
seconds) for which it will wait for a keypress before returning automatically. If the
delay is set to 0, cv::waitKey() will wait indefinitely for a keypress. If no keypress
comes before delay milliseconds has passed, cv::waitKey() will return –1.

There is a second, less obvious function of cv::waitKey(), which is to provide an
opportunity for any open OpenCV window to be updated. This means that if you do

Working with Windows | 209

4 What this sentence really means is that cv::waitKey() is the only function in HighGUI that can fetch and
handle events. This means that if it is not called periodically, no normal event processing will take place. As a
corollary to this, if HighGUI is being used within an environment that takes care of event processing, then
you may not need to call cv::waitKey(). For more information on this detail, see cv::startWindowThread()
in a few pages.

not call cv::waitKey(), your image may never be drawn in your window, or your
window may behave strangely (and badly) when moved, resized, or uncovered.4

An example displaying an image
Let’s now put together a simple program that will display an image on the screen (see
Example 9-1). We can read a filename from the command line, create a window, and
put our image in the window in 15 lines (including comments!). This program will
display our image as long as we want to sit and appreciate it, and then exit when the
Esc key (ASCII value of 27) is pressed.

Example 9-1. Creating a window and displaying an image in that window

int main(int argc, char** argv) {

 // Create a named window with the name of the file
 //
 cv::namedWindow(argv[1], 1);

 // Load the image from the given filename
 //
 cv::Mat = cv::imread(argv[1]);

 // Show the image in the named window
 //
 cv::imshow(argv[1], img);

 // Idle until the user hits the Esc key
 //
 while(true) {
 if(cv::waitKey(100 /* milliseconds */) == 27) break;
 }

 // Clean up and don't be piggies
 //
 cv::destroyWindow(argv[1]);

 exit(0);
}

210 | Chapter 9: Cross-Platform and Native Windows

For convenience, we have used the filename as the window name. This is nice
because OpenCV automatically puts the window name at the top of the window, so
we can tell which file we are viewing (see Figure 9-1). Easy as cake.

Figure 9-1. A simple image displayed with cv::imshow()

Before we move on, there are a few other window-related functions you ought to
know about. They are:

void cv::moveWindow(const char* name, int x, int y);
void cv::destroyAllWindows(void);
int cv::startWindowThread(void);

cv::moveWindow() simply moves a window on the screen so that its upper-left corner
is positioned at pixel location: x, y. cv::destroyAllWindows() is a useful cleanup
function that closes all of the windows and deallocates the associated memory.

On Linux and Mac OS X, cv::startWindowThread() tries to start a thread that
updates the window automatically, and handles resizing and so forth. A return value
of 0 indicates that no thread could be started—for example, because there is no sup‐
port for this feature in the version of OpenCV that you are using. Note that, if you do
not start a separate window thread, OpenCV can react to user interface actions only
when it is explicitly given time to do so (this happens when your program invokes
cv::waitKey()).

Working with Windows | 211

Mouse events
Now that we can display an image to a user, we might also want to allow the user to
interact with the image we have created. Since we are working in a window environ‐
ment and since we already learned how to capture single keystrokes with cv::wait
Key(), the next logical thing to consider is how to “listen to” and respond to mouse
events.

Unlike keyboard events, mouse events are handled by a more traditional callback
mechanism. This means that, to enable response to mouse clicks, we must first write
a callback routine that OpenCV can call whenever a mouse event occurs. Once we
have done that, we must register the callback with OpenCV, thereby informing
OpenCV that this is the correct function to use whenever the user does something
with the mouse over a particular window.

Let’s start with the callback. For those of you who are a little rusty on your event-
driven program lingo, the callback can be any function that takes the correct set of
arguments and returns the correct type. Here, we must be able to tell the function to
be used as a callback exactly what kind of event occurred and where it occurred. The
function must also be told if the user was pressing such keys as Shift or Alt when the
mouse event occurred. A pointer to such a function is called a cv::MouseCallback.
Here is the exact prototype that your callback function must match:

void your_mouse_callback(
 int event, // Event type (see Table 9-1)
 int x, // x-location of mouse event
 int y, // y-location of mouse event
 int flags, // More details on event (see Table 9-1)
 void* param // Parameters from cv::setMouseCallback()
);

Now, whenever your function is called, OpenCV will fill in the arguments with their
appropriate values. The first argument, called the event, will have one of the values
shown in Table 9-1.

Table 9-1. Mouse event types

Event Numerical value
cv::EVENT_MOUSEMOVE 0

cv::EVENT_LBUTTONDOWN 1

cv::EVENT_RBUTTONDOWN 2

cv::EVENT_MBUTTONDOWN 3

cv::EVENT_LBUTTONUP 4

cv::EVENT_RBUTTONUP 5

cv::EVENT_MBUTTONUP 6

cv::EVENT_LBUTTONDBLCLK 7

212 | Chapter 9: Cross-Platform and Native Windows

5 In general, this is not the same as the pixel coordinates of the event that would be returned by the OS. This is
because OpenCV is concerned with telling you where in the image the event happened, not in the window (to
which the OS typically references mouse event coordinates).

6 A common situation in which the param argument is used is when the callback itself is a static member func‐
tion of a class. In this case, you will probably want to pass the this pointer to indicate which class object
instance the callback is intended to affect.

Event Numerical value
cv::EVENT_RBUTTONDBLCLK 8

cv::EVENT_MBUTTONDBLCLK 9

The second and third arguments will be set to the x- and y-coordinates of the mouse
event. Note that these coordinates represent the pixel coordinates in the image inde‐
pendent of the other details of the window.5

The fourth argument, called flags, is a bit field in which individual bits indicate spe‐
cial conditions present at the time of the event. For example, cv::EVENT_FLAG_SHIFT
KEY has a numerical value of 16 (i.e., the fifth bit, or 1<<4); so, if we wanted to test
whether the Shift key were down, we could simply compute the bitwise AND of
flags & cv::EVENT_FLAG_SHIFTKEY. Table 9-2 shows a complete list of the flags.

Table 9-2. Mouse event flags

Flag Numerical value
cv::EVENT_FLAG_LBUTTON 1

cv::EVENT_FLAG_RBUTTON 2

cv::EVENT_FLAG_MBUTTON 4

cv::EVENT_FLAG_CTRLKEY 8

cv::EVENT_FLAG_SHIFTKEY 16

cv::EVENT_FLAG_ALTKEY 32

The final argument is a void pointer that can be used to have OpenCV pass addi‐
tional information, in the form of a pointer, to whatever kind of structure you need.6

Next, we need the function that registers the callback. That function is called cv::set
MouseCallback(), and it requires three arguments.

void cv::setMouseCallback(
 const string& windowName, // Handle used to identify window
 cv::MouseCallback on_mouse, // Callback function
 void* param = NULL // Additional parameters for callback fn.
);

The first argument is the name of the window to which the callback will be attached;
only events in that particular window will trigger this specific callback. The second

Working with Windows | 213

argument is your callback function. The third argument, param, allows us to specify
the param information that should be given to the callback whenever it is executed.
This is, of course, the same param we were just discussing with the callback prototype.

In Example 9-2, we write a small program to draw boxes on the screen with the
mouse. The function my_mouse_callback() responds to mouse events, and it uses
the events to determine what to do when it is called.

Example 9-2. Toy program for using a mouse to draw boxes on the screen

#include <opencv2/opencv.hpp>

// Define our callback which we will install for
// mouse events
//
void my_mouse_callback(
 int event, int x, int y, int flags, void* param
);

Rect box;
bool drawing_box = false;

// A little subroutine to draw a box onto an image
//
void draw_box(cv::Mat& img, cv::Rect box) {
 cv::rectangle(
 img,
 box.tl(),
 box.br(),
 cv::Scalar(0x00,0x00,0xff) /* red */
);
}

void help() {
 std::cout << "Call: ./ch4_ex4_1\n" <<
 " shows how to use a mouse to draw regions in an image." << std::endl;
}

int main(int argc, char** argv) {

 help();
 box = cv::Rect(-1,-1,0,0);
 cv::Mat image(200, 200, CV_8UC3), temp;
 image.copyTo(temp);

 box = cv::Rect(-1,-1,0,0);
 image = cv::Scalar::all(0);

 cv::namedWindow("Box Example");

214 | Chapter 9: Cross-Platform and Native Windows

 // Here is the crucial moment where we actually install
 // the callback. Note that we set the value of 'params' to
 // be the image we are working with so that the callback
 // will have the image to edit.
 //
 cv::setMouseCallback(
 "Box Example",
 my_mouse_callback,
 (void*)&image
);

 // The main program loop. Here we copy the working image
 // to the temp image, and if the user is drawing, then
 // put the currently contemplated box onto that temp image.
 // Display the temp image, and wait 15ms for a keystroke,
 // then repeat.
 //
 for(;;) {

 image.copyTo(temp);
 if(drawing_box) draw_box(temp, box);
 cv::imshow("Box Example", temp);

 if(cv::waitKey(15) == 27) break;
 }

 return 0;
}

// This is our mouse callback. If the user
// presses the left button, we start a box.
// When the user releases that button, then we
// add the box to the current image. When the
// mouse is dragged (with the button down) we
// resize the box.
//
void my_mouse_callback(
 int event, int x, int y, int flags, void* param
) {

 cv::Mat& image = *(cv::Mat*) param;

 switch(event) {

 case cv::EVENT_MOUSEMOVE: {
 if(drawing_box) {
 box.width = x-box.x;
 box.height = y-box.y;
 }
 }
 break;

Working with Windows | 215

 case cv::EVENT_LBUTTONDOWN: {
 drawing_box = true;
 box = cv::Rect(x, y, 0, 0);
 }
 break;

 case cv::EVENT_LBUTTONUP: {
 drawing_box = false;
 if(box.width < 0) {
 box.x += box.width;
 box.width *= -1;
 }
 if(box.height < 0) {
 box.y += box.height;
 box.height *= -1;
 }
 draw_box(image, box);
 }
 break;
 }

}

Sliders, trackbars, and switches
HighGUI provides a convenient slider element. In HighGUI, sliders are called track‐
bars. This is because their o riginal (historical) intent was for selecting a particular
frame in the playback of a video. Of course, once trackbars were added to HighGUI,
people began to use them for all of the usual things one might do with sliders, as well
as many unusual ones (we’ll discuss some of these in “Surviving without buttons” on
page 218).

As with the parent window, the slider is given a unique name (in the form of a char‐
acter string) and is thereafter always referred to by that name. The HighGUI routine
for creating a trackbar is:

int cv::createTrackbar(
 const string& trackbarName, // Handle used to identify trackbar
 const string& windowName, // Handle used to identify window
 int* value, // Slider position gets put here
 int count, // Total counts for slider at far right
 cv::TrackbarCallback onChange = NULL,// Callback function (optional)
 void* param = NULL // Additional params for callback fn.
);

The first two arguments are the name for the trackbar itself and the name of the par‐
ent window to which the trackbar will be attached. When the trackbar is created, it is

216 | Chapter 9: Cross-Platform and Native Windows

7 Whether it is added to the top or bottom depends on the operating system, but it will always appear in the
same place on a given platform.

added to either the top or the bottom of the parent window.7 The trackbar will not
occlude any image that is already in the window; rather, it will make the window
slightly bigger. The name of the trackbar will appear as a “label” for the trackbar. As
with the location of the trackbar itself, the exact location of this label depends on the
operating system, but most often it is immediately to the left, as in Figure 9-2.

Figure 9-2. A simple application displaying an image; this window has two trackbars
attached: Trackbar0 and Trackbar1

The next two arguments are value, a pointer to an integer that will automatically be
set to the value to which the slider has been moved, and count, a numerical value for
the maximum value of the slider.

The last argument is a pointer to a callback function that will be automatically called
whenever the slider is moved. This is exactly analogous to the callback for mouse
events. If used, the callback function must have the form specified by cv::Trackbar
Callback, which means that it must match the following prototype:

void your_trackbar_callback(
 int pos, // Trackbar slider position
 void* param = NULL // Parameters from cv::setTrackbarCallback()
);

Working with Windows | 217

8 For the less lazy, the common practice is to compose the image you are displaying with a “control panel” you
have drawn and then use the mouse event callback to test for the mouse’s location when the event occurs.
When the (x, y) location is within the area of a button you have drawn on your control panel, the callback is
set to perform the button action. In this way, all “buttons” are internal to the mouse event callback routine
associated with the parent window. But really, if you need this kind of functionality now, it is probably best
just to use the Qt backend.

This callback is not actually required, so if you don’t want a callback, then you can
simply set this value to NULL. Without a callback, the only effect of the user moving
the slider will be the value of *value being updated. (Of course, if you don’t have a
callback, you will be responsible for polling this value if you are going to respond to it
being changed.)

The final argument to cv::createTrackbar() is params, which can be any pointer.
This pointer will be passed to your callback as its params argument whenever the call‐
back is executed. This is very helpful for, among other things, allowing you to handle
trackbar events without having to introduce global variables.

Finally, here are two more routines that will allow you to programmatically read or
set the value of a trackbar just by using its name:

int cv::getTrackbarPos(
 const string& trackbarName, // Handle used to identify trackbar, label
 const string& windowName, // Handle used to identify window
);

void cv::setTrackbarPos(
 const string& trackbarName, // Handle used to identify trackbar, label
 const string& windowName, // Handle used to identify window
 int pos // Trackbar slider position
);

These functions allow you to read or set the value of a trackbar from anywhere in
your program.

Surviving without buttons
Unfortunately, the native interface in HighGUI does not provide any explicit support
for buttons. It is thus common practice, among the particularly lazy, to instead use
sliders with only two positions.8 Another option that occurs often in the OpenCV
samples in .../opencv/samples/c/ is to use keyboard shortcuts instead of buttons (see,
e.g., the floodfill demo in the OpenCV source-code bundle).

Switches are just sliders (trackbars) that have only two positions, “on” (1) and “off”
(0) (i.e., count has been set to 1). You can see how this is an easy way to obtain the
functionality of a button using only the available trackbar tools. Depending on
exactly how you want the switch to behave, you can use the trackbar callback to auto‐

218 | Chapter 9: Cross-Platform and Native Windows

matically reset the button back to 0 (as in Example 9-3; this is something like the
standard behavior of most GUI “buttons”) or to automatically set other switches to 0
(which gives the effect of a “checkbox” or, with a little more work, a “radio button”).

Example 9-3. Using a trackbar to create a “switch” that the user can turn on and off;
this program plays a video and uses the switch to create a pause functionality

// An example program in which the user can draw boxes on the screen.
//
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

//
// Using a trackbar to create a "switch" that the user can turn on and off.
// We make this value global so everyone can see it.
//
int g_switch_value = 1;
void switch_off_function() { cout << "Pause\n"; }; //YOU COULD DO MORE
void switch_on_function() { cout << "Run\n"; };

// This will be the callback that we give to the trackbar.
//
void switch_callback(int position, void*) {
 if(position == 0) {
 switch_off_function();
 } else {
 switch_on_function();
 }
}

void help() {
 cout << "Call: my.avi" << endl;
 cout << "Shows putting a pause button in a video." << endl;
}

int main(int argc, char** argv) {

 cv::Mat frame; // To hold movie images
 cv::VideoCapture g_capture;
 help();
 if(argc < 2 || !g_capture.open(argv[1])){
 cout << "Failed to open " << argv[1] << " video file\n" << endl;
 return -1;
 }

 // Name the main window
 //
 cv::namedWindow("Example", 1);

Working with Windows | 219

 // Create the trackbar. We give it a name,
 // and tell it the name of the parent window.
 //
 cv::createTrackbar(
 "Switch",
 "Example",
 &g_switch_value,
 1,
 switch_callback
);

 // This will cause OpenCV to idle until
 // someone hits the Esc key.
 //
 for(;;) {
 if(g_switch_value) {
 g_capture >> frame;
 if(frame.empty()) break;
 cv::imshow("Example", frame);
 }
 if(cv::waitKey(10)==27) break;
 }

 return 0;
}

You can see that this will turn on and off just like a light switch. In our example,
whenever the trackbar “switch” is set to 0, the callback executes the function
switch_off_function(), and whenever it is switched on, the switch_on_function()
is called.

Working with the Qt Backend
As we described earlier, the thinking in the development of the HighGUI portion of
OpenCV has been to rely on separate libraries for any serious GUI functionality. This
makes sense, as it is not OpenCV’s purpose to reinvent that particular wheel and
there are plenty of great GUI toolkits out there that are well maintained and which
evolve and adapt to the changing times under their own excellent development
teams.

The basic GUI tools we have seen so far provide what rudimentary functionality they
do by means of native libraries in various platforms that are wrapped up in such a
way that you, the developer, don’t see those native libraries. This has worked reasona‐
bly well, but, even before the addition of mobile platform support, it was becoming
difficult to maintain. For this reason, there is an increasing shift to relying on a single
cross-platform toolkit as the means of delivering even these basic functionalities.
That cross-platform toolkit is Qt.

220 | Chapter 9: Cross-Platform and Native Windows

9 You will see that the Qt-based HighGUI interface is still mainly intended for developers doing scientific work
or debugging systems. If you are doing end-user-facing commercial code, you will still almost certainly want a
more powerful and expressive UI toolkit.

10 This means that when you configured the build with cmake, you used the –D WITH_QT=ON option.

From the perspective of the OpenCV library, there is a great advantage to using such
an outside toolkit. Functionality is gained, and at the same time, development time is
reduced (which would otherwise be taken away from the library’s core goal).

In this section we will learn how to use the newer Qt-based HighGUI interface. It is
very likely that all future evolution of HighGUI functionality will happen in this com‐
ponent, as it is much more efficient to work here than in the multiple legacy native
interfaces.

It is important to note, however, that using HighGUI with the Qt backend is not the
same as using Qt directly (we will explore that possibility briefly at the end of this
chapter). The HighGUI interface is still the HighGUI interface; it simply uses Qt
behind the scenes in place of the various native libraries. One side effect of this is that
it isn’t that convenient to extend the Qt interface. If you want more than HighGUI
gives you, you are still pretty stuck with writing your own window layer. On the
bright side, the Qt interface gives you a lot more to work with, and so perhaps you
will not find that extra level of complexity necessary as often, or perhaps ever.9

Getting started
If you have built your OpenCV installation with Qt support on,10 then when you
open a window, it will automatically have two new features. These are the toolbar and
the status bar (see Figure 9-3). These objects come up complete, with all of the con‐
tents you see in the figure. In particular, the toolbar contains buttons that allow you
to pan (the first four arrow buttons), zoom (the next four buttons), save the current
image (the ninth button), and pop up a properties window (more on this last one a
little later).

Working with Windows | 221

11 There is also a CV_GUI_EXTENDED flag which, in theory, creates these decorations but its numerical value is
0x00, so it is the default behavior anyhow.

Figure 9-3. This image is displayed with the Qt interface enabled; it shows the toolbar,
the status bar, and a text overlay that, in this case, contains the name of the image

The status bar in Figure 9-3 contains information about what is under your mouse at
any given moment. The x, y location is displayed, as well as the RGB value of the
pixel at which the mouse currently points.

All of this you get “for free” just for compiling your code with the Qt interface
enabled. If you have compiled with Qt and you don’t want these decorations, then
you can simply add the cv::GUI_NORMAL flag when you call cv::namedWindow(), and
they will disappear.11

The actions menu

As you can see, when you create the window with cv::GUI_EXTENDED, you will see a
range of buttons in the toolbar. An alternative to the toolbar, which will always be
available whether you use cv::GUI_EXTENDED or not, is the pop-up menu. This pop-
up menu (shown in Figure 9-4) contains the same options as the toolbar, and you can
display it at any time by right-clicking on the image.

222 | Chapter 9: Cross-Platform and Native Windows

12 You can, however, insert new lines. So, for example, if you were to give the text string "Hello\nWorld", then
the word Hello would appear on the first (top) line, and the word World would appear on a second line right
below it.

Figure 9-4. Here the Qt extended UI window is shown with the pop-up menu, which
provides the same options as the toolbar (along with an explanation of the buttons and
their keyboard shortcuts)

The text overlay
Another option provided by the Qt GUI is the ability to put a short-lived banner
across the top of the image you are displaying. This banner is called the overlay, and
appears with a shaded box around it for easy reading. This is an exceptionally handy
feature if you just want to throw some simple information like the frame number or
frame rate on a video, or a filename of the image you are viewing. You can display an
overlay on any window, even if you are using cv::GUI_NORMAL.

int cv::displayOverlay(
 const string& name, // Handle used to identify window
 const string& text, // Text you want to display
 int delay // Milliseconds to show text (0='forever')
);

The cv::displayOverlay() function takes three arguments. The first is the name of
the window on which you want the overlay to appear. The second argument is what‐
ever text you would like to appear in the window. (One word of warning here:
the text has a fixed size, so if you try to cram too much stuff in there, it will just over‐
flow.12 By default, the text is always center justified.) The third and final argument,
delay, is the amount of time (in milliseconds) that the overlay will stay in place. If

Working with Windows | 223

delay is set to 0, then the overlay will stay in place indefinitely—or at least until you
write over it with another call to cv::displayOverlay(). In general, if you call
cv::displayOverlay() before the delay timer for a previous call is expired, the pre‐
vious text is removed and replaced with the new text, and the timer is reset to the new
delay value regardless of what is left in the timer before the new call.

Writing your own text into the status bar
In addition to the overlay, you can also write text into the status bar. By default, the
status bar contains information about the pixel over which your mouse pointer is
located (if any). You can see in Figure 9-3 that the status bar contains an x, y location
and the RGB color value of the pixel that was under the pointer when the figure was
made. You can replace this text with your own text with the cv::displayStatus
Bar() method:

int cv::displayStatusBar(
 const string& name, // Handle used to identify window
 const string& text, // Text you want to display
 int delay // Milliseconds to show text (0='forever')
);

Unlike cv::displayOverlay(), cv::displayStatusBar() can be used only on win‐
dows that were created with the cv::GUI_EXTENDED flag (i.e., ones that have a status
bar in the first place). When the delay timer is expired (if you didn’t set it to 0), then
the default x, y and RGB text will reappear in the status bar.

The properties window
So far, we haven’t really discussed the last button on the toolbar (which corresponds
to the last option on the pop-up menu, the one that is “darkened” in Figure 9-5). This
option opens up an entirely new window called the properties window. The properties
window is a convenient place to put trackbars and buttons (yes, the Qt GUI supports
buttons) that you don’t want in your face all the time. It’s important to remember,
however, that there is just one properties window per application, so you don’t really
create it, you just configure it.

224 | Chapter 9: Cross-Platform and Native Windows

Figure 9-5. This window contains two trackbars; you can also see the control panel,
which contains three push buttons, a trackbar, two radio buttons, and a checkbox

The properties window will not be available unless you have assigned some trackbars
or buttons to it (more on how to do this momentarily). If it is available, then you can
display it by clicking the Display Properties Window button on the toolbar (the one
on the far right), clicking the identical button on the action menu, or pressing Ctrl-P
while your mouse is over any window.

Trackbars revisited
In the previous section on the HighGUI native interface, we saw that it was possible
to add trackbars to windows. The trackbars in Figure 9-5 were created using the same
cv::createTrackbar() command we saw earlier. The only real difference is that the
trackbars in Figure 9-5 are prettier than the ones we created using the non-Qt inter‐
face (recall Figure 9-2).

The important new concept in the Qt interface, however, is that we can also create
trackbars in the properties window. We do so simply by creating the trackbar as we
normally would, but by specifying an empty string as the window name to which the
trackbar will be attached.

int contrast = 128;
cv::createTrackbar("Contrast:", "", &contrast, 255, on_change_contrast);

For example, this fragment would create a trackbar in the properties window that
would be labeled “Contrast:”, and whose value would start out at 128, with a maxi‐

Working with Windows | 225

mum value of 255. Whenever the slider is adjusted, the callback on_change_con
trast() will be called.

Creating buttons with cv::createButton()
One of the most helpful new capabilities provided by the Qt interface is the ability to
create buttons. This includes normal push buttons, radio-style (mutually exclusive)
buttons, and checkboxes. All buttons created are always located in the control panel.

All three styles of buttons are created with the same method:

int cv::createButton(
 const string& buttonName, // Handle used to identify trackbar
 cv::ButtonCallback onChange = NULL, // Callback for button event
 void* params, // (Optional) params for button event
 int buttonType = cv::PUSH_BUTTON, // PUSH_BUTTON or RADIOBOX
 int initialState = 0 // Start state of the button
);

The button expects a name, buttonName, that will appear on or next to the button. If
you like, you can neglect this argument and simply provide an empty string, in which
case the button name will be automatically generated in a serialized manner (e.g.,
“button 0,” “button 1,” etc.). The second argument, onChange, is a callback that will
be called whenever the button is clicked. The prototype for such a callback must
match the declaration for cv::ButtonCallback, which is:

void your_button_callback(
 int state, // Identifies button event type
 void* params // Parameters from cv::createButton()
);

When your callback is called as a result of someone clicking a button, it will be given
the value state, which is derived from what just happened to the button. The pointer
param that you gave to cv::createButton() will also be passed to your callback, fill‐
ing its param argument.

The buttonType argument can take one of three values: cv::PUSH_BUTTON, cv::RADIO
BOX, or cv::CHECKBOX. The first corresponds to your standard button—you click it, it
calls your callback. In the case of the checkbox, the value will be 1 or 0 depending on
whether the box was checked or unchecked. The same is true for a radio button,
except that when you click a radio button, the callback is called both for the button
you just clicked and for the button that is now unclicked (as a result of the mutex
nature of radio buttons). All buttons in the same row—button bars, described next—
are assumed to be part of the same mutex group.

When buttons are created, they are automatically organized into button bars. A but‐
ton bar is a group of buttons that occupies a “row” in the properties window. Con‐
sider the following code, which generated the control panel you saw in Figure 9-5.

226 | Chapter 9: Cross-Platform and Native Windows

13 Unfortunately, there is no “carriage return” for button placement.

14 You will notice that the name of this object is CvFont rather than what you might expect: cv::Font. This is a
legacy to the old pre-C++ interface. CvFont is a struct, and is not in the cv:: namespace.

cv::namedWindow("Image", cv::GUI_EXPANDED);
cv::displayOverlay("Image", file_name, 0);
cv::createTrackbar("Trackbar0", "Image", &mybar0, 255);
cv::createTrackbar("Trackbar1", "Image", &mybar1, 255);

cv::createButton("", NULL, NULL, cv::PUSH_BUTTON);
cv::createButton("", NULL, NULL, cv::PUSH_BUTTON);
cv::createButton("", NULL, NULL, cv::PUSH_BUTTON);
cv::createTrackbar("Trackbar2", "", &mybar1, 255);
cv::createButton("Button3", NULL, NULL, cv::RADIOBOX, 1);
cv::createButton("Button4", NULL, NULL, cv::RADIOBOX, 0);
cv::createButton("Button5", NULL, NULL, cv::CHECKBOX, 0);

You will notice that Trackbar0 and Trackbar1 are created in the window called
"Image", while Trackbar2 is created in an unnamed window (the properties win‐
dow). The first three cv::createButton() calls are not given a name for the button,
and you can see in Figure 9-5 the automatically assigned names are placed on the
buttons. You will also notice in Figure 9-5 that the first three buttons are in one row,
while the second group of three is on another. This is because of the trackbar.

Buttons are created one after another, each to the right of its predecessor, until
(unless) a trackbar is created. Because a trackbar consumes an entire row, it is given
its own row below the buttons. If more buttons are created, they will appear on a new
row thereafter.13

Text and fonts
Just as the Qt interface allowed for much prettier trackbars and other elements, Qt
also allows for much prettier and more versatile text. To write text using the Qt inter‐
face, you must first create a CvFont object,14 which you then use whenever you want
to put some text on the screen. Fonts are created via the cv::fontQt() function:

CvFont fontQt(// Return font characterization struct
 const string& fontName, // e.g., "Times"
 int pointSize, // Size of font, using "point" system.
 cv::Scalar color = cv::Scalar::all(0), // BGR color as scalar (no alpha)
 int weight = cv::FONT_NORMAL, // Font weight, 1-100 (Table 9-3)
 int spacing = 0 // Space between individual characters
);

The first argument to cv::fontQt() is the system font name. This might be some‐
thing like “Times.” If your system does not have an available font with this name,
then a default font will be chosen for you. The second argument, pointSize, is the

Working with Windows | 227

15 It is important to notice here that cv::addText() is somewhat unlike all of the rest of the functions in the Qt
interface—though not inconsistent with the behavior of its non-Qt analog cv::putText(). Specifically,
cv::addText() does not put text in or on a window, but rather in an image. This means that you are actually
changing the pixel values of the image—which is different than what would happen if, for example, you were
to use cv::displayOverlay().

size of the font (i.e., 12 = “12 point,” 14 = “14 point,” etc.) You may set this to 0, in
which case a default font size (typically 12 point) will be selected for you.

The argument color can be set to any cv::Scalar and will set the color in which the
font is drawn; the default value is black. weight can take one of several predefined
values, or any integer between 1 and 100. The predefined aliases and their values are
shown in Table 9-3.

Table 9-3. Predefined aliases for Qt-font weight and their associated values

Camera capture constant Numerical value
cv::FONT_LIGHT 25

cv::FONT_NORMAL 50

cv::FONT_DEMIBOLD 63

cv::FONT_BOLD 75

cv::FONT_BLACK 87

The final argument is spacing, which controls the spacing between individual char‐
acters. It can be negative or positive.

Once you have your font, you can put text on an image (and thus on the screen)15

with cv::addText().

void cv::addText(
 cv::Mat& image, // Image onto which to write
 const string& text, // Text to write
 cv::Point location, // Location of lower-left corner of text
 CvFont* font // OpenCV font characerization struct
);

The arguments to cv::addText() are just what you would expect: the image to write
on, the text to write, where to write it, and the font to use—with the latter being a
font you defined using cv::fontQt. The location argument corresponds to the
lower-left corner of the first character in text (or, more precisely, the beginning of
the baseline for that character).

228 | Chapter 9: Cross-Platform and Native Windows

Setting and getting window properties
Many of the state properties of a window set at creation are queryable when you are
using the Qt backend, and many of those can be changed (set) even after the win‐
dow’s creation.

void cv::setWindowProperty(
 const string& name, // Handle used to identify window
 int prop_id, // Identifies window property (Table 9-4)
 double prop_value // Value to which to set property
);

double cv::getWindowProperty(
 const string& name, // Handle used to identify window
 int prop_id // Identifies window property (Table 9-4)
);

To get a window property, you need only call cv::getWindowProperty() and supply
the name of the window and the property ID (prop_id argument) of the property you
are interested in (see Table 9-4). Similarly, you can use cv::setWindowProperty() to
set window properties with the same property IDs.

Table 9-4. Gettable and settable window properties

Property name Description
cv::WIND_PROP_FULL_SIZE Set to either cv::WINDOW_FULLSCREEN for fullscreen window, or to cv::WIN

DOW_NORMAL for regular window.
cv::WIND_PROP_AUTOSIZE Set to either cv::WINDOW_AUTOSIZE to have the window automatically size to

the displayed image, or cv::WINDOW_NORMAL to have the image size to the
window.

cv::WIND_PROP_ASPECTRATIO Set to either cv::WINDOW_FREERATIO to allow the window to have any aspect
ratio (as a result of user resizing) or cv::WINDOW_KEEPRATIO to allow user
resizing to affect only absolute size (and not aspect ratio).

Saving and recovering window state
The Qt interface also allows the state of windows to be saved and restored. This can
be very convenient, as it includes not only the location and size of your windows, but
also the state of all of the trackbars and buttons. The interface state is saved with the
cv::saveWindowParameters() function, which takes a single argument indicating
the window to be saved:

void cv::saveWindowParameters(
 const string& name // Handle used to identify window
);

Once the state of the window is saved, it can be restored with the complementary
cv::loadWindowParameters() function:

Working with Windows | 229

16 In order to use these commands, you will need to have built OpenCV with the CMake flag
–D WITH_QT_OPENGL=ON.

void cv::loadWindowParameters(
 const string& name // Handle used to identify window
);

The real magic here is that the load command will work correctly even if you have
quit and restarted your program. The nature of how this works is not important to us
here, but one detail you should know is that the state information, wherever it is
saved, is saved under a key that is constructed from the executable name. So if you
change the name of the executable, the state will not restore (though you can change
the executable’s location without having this problem).

Interacting with OpenGL
One of the most exciting things that the Qt interface allows you to do is to generate
imagery with OpenGL and overlay that imagery on top of your own image.16 This can
be extremely effective for visualizing and debugging robotic or augmented-reality
applications, or anywhere in which you are trying to generate a three-dimensional
model from your image and want to see the result on top of the original. Figure 9-6
shows a very simple example of what you can do.

Figure 9-6. Here OpenGL is used to render a cube on top of our previous image

230 | Chapter 9: Cross-Platform and Native Windows

The basic concept is very simple: you create a callback that is an OpenGL draw func‐
tion and then register it with the interface. From there, OpenCV takes care of the
rest. The callback is then called every time the window is drawn (which includes
whenever you call cv::imshow(), as you would with successive frames of a video
stream). Your callback should match the prototype for cv::OpenGLCallback(),
which means that it should be something like the following:

void your_opengl_callback(
 void* params // (Optional) Params from cv::createOpenGLCallback()
);

Once you have your callback, you can configure the OpenGL interface with cv::crea
teOpenGLCallback():

void cv::createOpenGLCallback(
 const string& windowName, // Handle used to identify window
 cv::OpenGLCallback callback, // OpenGL callback routine
 void* params = NULL // (Optional) parameters for callback
);

As you can see, there is not much you need to do in order to set things up. In addi‐
tion to specifying the name of the window on which the drawing will be done and
supplying the callback function, you have a third argument, params, which allows
you to specify a pointer that will be passed to callback whenever it is called.

It is probably worth calling out here explicitly that none of this sets
up the camera, lighting, or other aspects of your OpenGL activities.
Internally there is a wrapper around your OpenGL callback that
will set up the projection matrix using a call to gluPerspective().
If you want anything different (which you almost certainly will),
you will have to clear and configure the projection matrix at the
beginning of your callback.

In Example 9-4, we have taken a simple example from the OpenCV documentation
that draws a cube in OpenGL, but we have replaced the fixed rotation angles in that
cube with variables (rotx and roty), which we have made the values of the two slid‐
ers in our earlier examples. Now the user can rotate the cube with the sliders while
enjoying the beautiful scenery behind it.

Example 9-4. Slightly modified code from the OpenCV documentation that draws a
cube every frame; this modified version uses the global variables rotx and roty that are
connected to the sliders in Figure 9-6

void on_opengl(void* param) {

 glMatrixModel(GL_MODELVIEW);
 glLoadIdentity();

Working with Windows | 231

 glTranslated(0.0, 0.0, -1.0);

 glRotatef(rotx, 1, 0, 0);
 glRotatef(roty, 0, 1, 0);
 glRotatef(0, 0, 0, 1);

 static const int coords[6][4][3] = {
 { { +1, -1, -1 }, { -1, -1, -1 }, { -1, +1, -1 }, { +1, +1, -1 } },
 { { +1, +1, -1 }, { -1, +1, -1 }, { -1, +1, +1 }, { +1, +1, +1 } },
 { { +1, -1, +1 }, { +1, -1, -1 }, { +1, +1, -1 }, { +1, +1, +1 } },
 { { -1, -1, -1 }, { -1, -1, +1 }, { -1, +1, +1 }, { -1, +1, -1 } },
 { { +1, -1, +1 }, { -1, -1, +1 }, { -1, -1, -1 }, { +1, -1, -1 } },
 { { -1, -1, +1 }, { +1, -1, +1 }, { +1, +1, +1 }, { -1, +1, +1 } }
 };

 for (int i = 0; i < 6; ++i) {
 glColor3ub(i*20, 100+i*10, i*42);
 glBegin(GL_QUADS);
 for (int j = 0; j < 4; ++j) {
 glVertex3d(
 0.2 * coords[i][j][0],
 0.2 * coords[i][j][1],
 0.2 * coords[i][j][2]
);
 }
 glEnd();
 }
}

Integrating OpenCV with Full GUI Toolkits
Even OpenCV’s built-in Qt interface is still just a handy way of accomplishing some
simple tasks that come up often while we are developing code or exploring algo‐
rithms. When it comes time to actually build an end-user-facing application, neither
the native UI nor the Qt-based interface is going to do it. In this section, we will
(very) briefly explore some of the issues and techniques for working with OpenCV
and three existing toolkits: Qt, wxWidgets, and the Windows Template Library
(WTL).

There are countless UI toolkits out there, and we would not want to waste time dig‐
ging into each of them. Having said that, it is useful to explore how to handle the
issues that will arise if you want to use OpenCV with a more fully featured toolkit.
These few that we actually do explore here should give you enough insight about the
recurring issues that you should have no trouble figuring out what to do in some
other similar environment.

The primary issue is how to convert OpenCV images to the form that the toolkit
expects for graphics, and to know which widget or component in the toolkit is going

232 | Chapter 9: Cross-Platform and Native Windows

to do that display work for you. From there, you don’t need much else that is specific
to OpenCV. Notably, you will not need or want the features of the UI toolkits we
have covered in this chapter.

An example of OpenCV and Qt
Here we will show an example of using the actual Qt toolkit to write a program that
reads a video file and displays it on the screen. There are several subtleties, some of
which have to do with how one uses Qt, and others to do with OpenCV. Of course,
we will focus on the latter, but it is worth taking a moment to notice how the former
affects our current goal.

Example 9-5 shows the top-level code for our program; it just creates a Qt application
and adds our QMoviePlayer widget. Everything interesting will happen inside that
object.

Example 9-5. An example program ch4_qt.cpp, which takes a single argument
indicating a video file; that video file will be replayed inside of a Qt object that we will
define, called QMoviePlayer

#include <QApplication>
#include <QLabel>
#include <QMoviePlayer.hpp>
int main(int argc, char* argv[]) {

 QApplication app(argc, argv);

 QMoviePlayer mp;
 mp.open(argv[1]);
 mp.show();

 return app.exec();
}

The interesting stuff is in the QMoviePlayer object. Let’s take a look at the header file
which defines that object in Example 9-6.

Example 9-6. The QMoviePlayer object header file QMoviePlayer.hpp

#include "ui_QMoviePlayer.h"
#include <opencv2/opencv.hpp>
#include <string>

using namespace std;

class QMoviePlayer : public QWidget {

 Q_OBJECT;

Working with Windows | 233

 public:
 QMoviePlayer(QWidget *parent = NULL);
 virtual ~QMoviePlayer() {;}

 bool open(string file);

 private:
 Ui::QMoviePlayer ui;
 cv::VideoCapture m_cap;

 QImage m_qt_img;
 cv::Mat m_cv_img;
 QTimer* m_timer;

 void paintEvent(QPaintEvent* q);
 void _copyImage(void);

 public slots:
 void nextFrame();

};

There is a lot going on here. The first thing that happens is the inclusion of the file
ui_QMoviePlayer.h. This file was automatically generated by the Qt Designer. What
matters here is that it is just a QWidget that contains nothing but a QFrame called
frame. The member ui::QMoviePlayer is that interface object that is defined in
ui_QMoviePlayer.h.

In this file, there is also a QImage called m_qt_img and a cv::Mat called m_cv_img.
These will contain the Qt and OpenCV representations of the image we are getting
from our video. Finally, there is a QTimer, which is what will take the place of
cv::waitKey(), allowing us to replay the video frames at the correct rate. The
remaining functions will become clear as we look at their actual definitions in
QMoviePlayer.cpp (Example 9-7).

Example 9-7. The QMoviePlayer object source file: QMoviePlayer.cpp

#include "QMoviePlayer.hpp"
#include <QTimer>
#include <QPainter>

QMoviePlayer::QMoviePlayer(QWidget *parent)
 : QWidget(parent)
{
 ui.setupUi(this);
}

The top-level constructor for QMoviePlayer just calls the setup function, which was
automatically built for us for the UI member.

234 | Chapter 9: Cross-Platform and Native Windows

bool QMoviePlayer::open(string file) {

 if(!m_cap.open(file)) return false;

 // If we opened the file, set up everything now:
 //
 m_cap.read(m_cv_img);
 m_qt_img = QImage(
 QSize(m_cv_img.cols, m_cv_img.rows),
 QImage::Format_RGB888
);
 ui.frame->setMinimumSize(m_qt_img.width(), m_qt_img.height());
 ui.frame->setMaximumSize(m_qt_img.width(), m_qt_img.height());
 _copyImage();

 m_timer = new QTimer(this);
 connect(
 m_timer,
 SIGNAL(timeout()),
 this,
 SLOT(nextFrame())
);
 m_timer->start(1000. / m_cap.get(cv::CAP_PROP_FPS));

 return true;

}

When an open() call is made on the QMoviePlayer, several things have to happen.
The first is that the cv::VideoCapture member object m_cap needs to be opened. If
that fails, we just return. Next we read the first frame into our OpenCV image mem‐
ber m_cv_img. Once we have this, we can set up the Qt image object m_qt_img, giving
it the same size as the OpenCV image. After that, we resize the frame object in the UI
element to be the same size as the incoming images as well.

We will look at the call to QMoviePlayer::_copyImage() in a moment; this is going
to handle the very important process of converting the image we have already cap‐
tured into m_cv_img onto the Qt image m_qt_img, which we are actually going to have
Qt paint onto the screen for us.

The last thing we do in QMoviePlayer::open() is set up a QTimer such that, when it
“goes off,” it will call the function QMoviePlayer::nextFrame() (which will, not sur‐
prisingly, get the next frame). The call to m_timer->start() is how we both start the
timer running and indicate that it should go off at the correct rate implied by
cv::CAP_PROP_FPS (i.e., 1,000 milliseconds divided by the frame rate).

void QMoviePlayer::_copyImage(void) {

 // Copy the image data into the Qt QImage
 //

Working with Windows | 235

 cv::Mat cv_header_to_qt_image(
 cv::Size(
 m_qt_img.width(),
 m_qt_img.height()
),
 CV_8UC3,
 m_qt_img.bits()
);
 cv::cvtColor(m_cv_img, cv_header_to_qt_image, cv::BGR2RGB);

}

The QMoviePlayer::_copyImage() function is responsible for copying the image
from the buffer m_cv_img into the Qt image buffer m_qt_img. The way we do this
shows off a nice feature of the cv::Mat object. First, we define a cv::Mat object called
cv_hreader_to_qt_image. When we define that object, we actually tell it what area to
use for its data area, and hand it the data area for the Qt QImage object
m_qt_img.bits(). We then call cv::cvtColor to do the copying, which handles the
subtlety that OpenCV prefers BGR ordering, while Qt prefers RGB.

void QMoviePlayer::nextFrame() {

 // Nothing to do if capture object is not open
 //
 if(!m_cap.isOpened()) return;

 m_cap.read(m_cv_img);
 _copyImage();

 this->update();

}

The QMoviePlayer::nextFrame() function actually handles the reading of subse‐
quent frames. Recall that this routine is called whenever the QTimer expires. It reads
the new image into the OpenCV buffer, calls QMoviePlayer::_copyImage() to copy
it into the Qt buffer, and then makes an update call on the QWidget that this is all part
of (so that Qt knows that something has changed).

void QMoviePlayer::paintEvent(QPaintEvent* e) {

 QPainter painter(this);

 painter.drawImage(QPoint(ui.frame->x(), ui.frame->y()), m_qt_img);

}

Last but not least is the QMoviePlayer::paintEvent() function. This is called by Qt
whenever it is necessary to actually draw the QMoviePlayer widget. This function just

236 | Chapter 9: Cross-Platform and Native Windows

creates a QPainter and tells it to draw the current Qt image m_qt_img (starting at the
corner of the screen).

An example of OpenCV and wxWidgets
In Example 9-8, we will use a different cross-platform toolkit, wxWidgets. The
wxWidgets toolkit is similar in many ways to Qt in terms of its GUI components but,
naturally, it is in the details that things tend to become difficult. As with the Qt exam‐
ple, we will have one top-level file that basically puts everything in place and a code
and header file pair that defines an object that encapsulates our example task of play‐
ing a video. This time our object will be called WxMoviePlayer and we will build it
based on the UI classes provided by wxWidgets.

Example 9-8. An example program ch4_wx.cpp, which takes a single argument
indicating a video file; that video file will be replayed inside of a wxWidgets object that
we will define, called WxMoviePlayer

#include "wx/wx.h"
#include "WxMoviePlayer.hpp"

// Application class, the top level object in wxWidgets
//
class MyApp : public wxApp {
 public:
 virtual bool OnInit();
};

// Behind the scenes stuff to create a main() function and attach MyApp
//
DECLARE_APP(MyApp);
IMPLEMENT_APP(MyApp);

// When MyApp is initialized, do these things.
//
bool MyApp::OnInit() {

 wxFrame* frame = new wxFrame(NULL, wxID_ANY, wxT("ch4_wx"));
 frame->Show(true);

 WxMoviePlayer* mp = new WxMoviePlayer(
 frame,
 wxPoint(-1, -1),
 wxSize(640, 480)
);
 mp->open(wxString(argv[1]));
 mp->Show(true);

 return true;

}

Working with Windows | 237

The structure here looks a little more complicated than the Qt example, but the con‐
tent is very similar. The first thing we do is create a class definition for our applica‐
tion, which we derive from the library class wxApp. The only thing different about our
class is that it will overload the MyApp::OnInit() function with our own content.
After declaring class MyApp, we call two macros: DECLARE_APP() and IMPLE
MENT_APP(). In short, these are creating the main() function and installing an
instance of MyApp as “the application.” The last thing we do in our main program is to
actually fill out the function MyApp::OnInit() that will be called when our program
starts. When MyApp::OnInit() is called, it creates the window (called a frame in
wxWidgets), and an instance of our WxMoviePlayer object in that frame. It then calls
the open method on the WxMoviePlayer and hands it the name of the movie file we
want to open.

Of course, all of the interesting stuff is happening inside of the WxMoviePlayer object.
Example 9-9 shows the header file for that object.

Example 9-9. The WxMoviePlayer object header file WxMoviePlayer.hpp

#include "opencv2/opencv.hpp"

#include "wx/wx.h"
#include <string>

#define TIMER_ID 0

using namespace std;

class WxMoviePlayer : public wxWindow {

 public:
 WxMoviePlayer(
 wxWindow* parent,
 const wxPoint& pos,
 const wxSize& size
);
 virtual ~WxMoviePlayer() {};
 bool open(wxString file);

 private:

 cv::VideoCapture m_cap;
 cv::Mat m_cv_img;
 wxImage m_wx_img;
 wxBitmap m_wx_bmp;
 wxTimer* m_timer;
 wxWindow* m_parent;

 void _copyImage(void);

238 | Chapter 9: Cross-Platform and Native Windows

17 The astute reader will notice that the keyboard event is “hooked up” to the WxMoviePlayer widget and not to
the top-level application or the frame (as was the case for the Qt example, and as is the case for HighGUI).
There are various ways to accomplish this, but wxWidgets really prefers your keyboard events to be bound
locally to visible objects in your UI, rather than globally. Since this is a simple example, we chose to just do
the easiest thing and bind the keyboard events directly to the movie player.

 void OnPaint(wxPaintEvent& e);
 void OnTimer(wxTimerEvent& e);
 void OnKey(wxKeyEvent& e);

 protected:
 DECLARE_EVENT_TABLE();
};

There are several important things to notice in this declaration. The WxMoviePlayer
object is derived from wxWindow, which is the generic class used by wxWidgets for
just about anything that will be visible on the screen. We have three event-handling
methods, OnPaint(), onTimer(), and OnKey(); these will handle drawing, getting a
new image from the video, and closing the file with the Esc key, respectively. Finally,
you will notice that there is an object of type wxImage and an object of type wxBitmap,
in addition to the OpenCV cv:Mat type image. In wxWidgets, bitmaps (which are
operating system dependent) are distinguished from images (which are device-
independent representations of image data). The exact role of these two will be clear
shortly as we look at the code file WxMoviePlayer.cpp (see Example 9-10).

Example 9-10. The WxMoviePlayer object source file WxMoviePlayer.cpp

#include "WxMoviePlayer.hpp"

BEGIN_EVENT_TABLE(WxMoviePlayer, wxWindow)
 EVT_PAINT(WxMoviePlayer::OnPaint)
 EVT_TIMER(TIMER_ID, WxMoviePlayer::OnTimer)
 EVT_CHAR(WxMoviePlayer::OnKey)
END_EVENT_TABLE()

The first thing we do is to set up the callbacks that will be associated with individual
events. We do this through macros provided by the wxWidgets framework.17

WxMoviePlayer::WxMoviePlayer(
 wxWindow* parent,
 const wxPoint& pos,
 const wxSize& size
) : wxWindow(parent, -1, pos, size, wxSIMPLE_BORDER) {
 m_timer = NULL;
 m_parent = parent;
}

Working with Windows | 239

When the movie player is created, its timer element is NULL (we will set that up when
we actually have a video open). We do take note of the parent of the player, however.
(In this case, that parent will be the wxFrame we created to put it in.) We will need to
know which frame is the parent when it comes time to close the application in
response to the Esc key.

void WxMoviePlayer::OnPaint(wxPaintEvent& event) {
 wxPaintDC dc(this);

 if(!dc.Ok()) return;

 int x,y,w,h;
 dc.BeginDrawing();
 dc.GetClippingBox(&x, &y, &w, &h);
 dc.DrawBitmap(m_wx_bmp, x, y);
 dc.EndDrawing();

 return;
}

The WxMoviePlayer::OnPaint() routine is called whenever the window needs to be
repainted on screen. Notice that when we execute WxMoviePlayer::OnPaint(), the
information we need to actually do the painting is assumed to be in m_wx_bpm, the
wxBitmap object. Because the wxBitmap is the system-dependent representation, it is
already prepared to be copied to the screen. The next two methods, WxMovie
Player::_copyImage() and WxMoviePlayer::open(), will show how it got created in
the first place.

void WxMoviePlayer::_copyImage(void) {

 m_wx_bmp = wxBitmap(m_wx_img);

 Refresh(FALSE); // indicate that the object is dirty
 Update();

}

The WxMoviePlayer::_copyImage() method will get called whenever a new image is
read from the cv::VideoCapture object. It doesn’t appear to do much, but actually a
lot is going on in its short body. First and foremost is the construction of the wxBit
map m_wx_bmp from the wxImage m_wx_img. The constructor is handling the conver‐
sion from the abstract representation used by wxImage (which, we will see, looks very
much like the representation used by OpenCV) to the device- and system-specific
representation used by your particular machine. Once that copy is done, a call to
Refresh() indicates that the widget is “dirty” and needs redrawing, and the subse‐
quent call to Update() indicates that the time for that redrawing is now.

240 | Chapter 9: Cross-Platform and Native Windows

bool WxMoviePlayer::open(wxString file) {

 if(!m_cap.open(std::string(file.mb_str()))) {
 return false;
 }

 // If we opened the file, set up everything now:
 //
 m_cap.read(m_cv_img);

 m_wx_img = wxImage(
 m_cv_img.cols,
 m_cv_img.rows,
 m_cv_img.data,
 TRUE // static data, do not free on delete()
);

 _copyImage();

 m_timer = new wxTimer(this, TIMER_ID);
 m_timer->Start(1000. / m_cap.get(cv::CAP_PROP_FPS));

 return true;

}

The WxMoviePlayer::open() method also does several important things. The first is
to actually open the cv::VideoCapture object, but there is a lot more to be done.
Next, an image is read off of the player and is used to create a wxImage object that
“points at” the OpenCV cv::Mat image. This is the opposite philosophy to the one
we used in the Qt example: in this case, it turns out to be a little more convenient to
create the cv::Mat first and have it own the data, and then to create the GUI toolkit’s
image object second and have it be just a header to that existing data. Next, we call
WxMoviePlayer::_copyImage(), and that function converts the OpenCV image
m_cv_img into the native bitmap for us.

Finally, we create a wxTimer object and tell it to wake us up every few milliseconds—
with that number being computed from the FPS reported by the cv::VideoCapture
object. Whenever that timer expires, a wxTimerEvent is generated and passed to
WxMoviePlayer::OnTimer(), which you will recall is the handler of such events.

void WxMoviePlayer::OnTimer(wxTimerEvent& event) {

 if(!m_cap.isOpened()) return;

 m_cap.read(m_cv_img);
 cv::cvtColor(m_cv_img, m_cv_img, cv::BGR2RGB);
 _copyImage();

}

Working with Windows | 241

18 Special thanks to Sam Leventer, who is the original author of this WTL example code.

That handler doesn’t do too much; primarily it just reads a new frame from the video,
converts that frame from BGR to RGB for display, and then calls our WxMovie
Player::_copyImage(), which makes the next bitmap for us.

void WxMoviePlayer::OnKey(wxKeyEvent& e) {

 if(e.GetKeyCode() == WXK_ESCAPE) m_parent->Close();

}

Finally, we have our handler for any keypresses. It simply checks to see if that key was
the Esc key, and if so, closes the program. Note that we do not close the WxMovie
Player object, but rather the parent frame. Closing the frame is the same as closing
the window any other way; it shuts down the application.

An example of OpenCV and the Windows Template Library
In this example, we will use the native windows GUI API.18 The Windows Template
Library (WTL) is a very thin C++ wrapper around the raw Win32 API. WTL applica‐
tions are structured similarly to MFC, in that there is an application/document-view
structure. For the purposes of this sample, we will start by running the WTL Applica‐
tion Wizard from within Visual Studio (Figure 9-7), creating a new SDI Application,
and ensuring that Use a View Window is selected under User Interface Features (it
should be, by default).

Figure 9-7. The WTL Application Wizard

242 | Chapter 9: Cross-Platform and Native Windows

The exact filenames generated by the wizard will depend on the name you give your
project. For Example 9-11, the project is named OpenCVTest, and we will mostly be
working in the COpenCVTestView class.

Example 9-11. An example header file for our custom View class

class COpenCVTestView : public CWindowImpl<COpenCVTestView> {

public:
 DECLARE_WND_CLASS(NULL)

 bool OpenFile(std::string file);
 void _copyImage();

 BOOL PreTranslateMessage(MSG* pMsg);

 BEGIN_MSG_MAP(COpenCVTestView)
 MESSAGE_HANDLER(WM_ERASEBKGND, OnEraseBkgnd)
 MESSAGE_HANDLER(WM_PAINT, OnPaint)
 MESSAGE_HANDLER(WM_TIMER, OnTimer)
 END_MSG_MAP()

// Handler prototypes (uncomment arguments if needed):
// LRESULT MessageHandler(
// UINT /*uMsg*/,
// WPARAM /*wParam*/,
// LPARAM /*lParam*/,
// BOOL& /*bHandled*/
//);
// LRESULT CommandHandler(
// WORD /*wNotifyCode*/,
// WORD /*wID*/,
// HWND /*hWndCtl*/,
// BOOL& /*bHandled*/
//);
// LRESULT NotifyHandler(
// int /*idCtrl*/,
// LPNMHDR /*pnmh*/,
// BOOL& /*bHandled*/
//);

 LRESULT OnPaint(
 UINT /*uMsg*/,
 WPARAM /*wParam*/,
 LPARAM /*lParam*/,
 BOOL& /*bHandled*/
);
 LRESULT OnTimer(
 UINT /*uMsg*/,
 WPARAM /*wParam*/,

Working with Windows | 243

 LPARAM /*lParam*/,
 BOOL& /*bHandled*/
);
 LRESULT OnEraseBkgnd(
 UINT /*uMsg*/,
 WPARAM /*wParam*/,
 LPARAM /*lParam*/,
 BOOL& /*bHandled*/
);

private:
 cv::VideoCapture m_cap;
 cv::Mat m_cv_img;

 RGBTRIPLE* m_bitmapBits;
};

The structure here is very similar to the preceding wxWidgets example. The only
change outside of the view code is for the Open menu item handler, which will be in
your CMainFrame class. It will need to call into the view class to open the video:

LRESULT CMainFrame::OnFileOpen(
 WORD /*wNotifyCode*/,
 WORD /*wID*/,
 HWND /*hWndCtl*/,
 BOOL& /*bHandled*/
) {
 WTL::CFileDialog dlg(TRUE);
 if (IDOK == dlg.DoModal(m_hWnd)) {
 m_view.OpenFile(dlg.m_szFileName);
 }
 return 0;
}

bool COpenCVTestView::OpenFile(std::string file) {

 if(!m_cap.open(file)) return false;

 // If we opened the file, set up everything now:
 //
 m_cap.read(m_cv_img);

 // could create a DIBSection here, but let's just allocate memory for raw bits
 //
 m_bitmapBits = new RGBTRIPLE[m_cv_img.cols * m_cv_img.rows];

 _copyImage();

 SetTimer(0, 1000.0f / m_cap.get(cv::CAP_PROP_FPS));

 return true;
}

244 | Chapter 9: Cross-Platform and Native Windows

void COpenCVTestView::_copyImage() {

 // Copy the image data into the bitmap
 //
 cv::Mat cv_header_to_qt_image(
 cv::Size(
 m_cv_img.cols,
 m_cv_img.rows
),
 CV_8UC3,
 m_bitmapBits
);
 cv::cvtColor(m_cv_img, cv_header_to_qt_image, cv::BGR2RGB);
}

LRESULT COpenCVTestView::OnPaint(
 UINT /* uMsg */,
 WPARAM /* wParam */,
 LPARAM /* lParam */,
 BOOL& /* bHandled */
) {
 CPaintDC dc(m_hWnd);

 WTL::CRect rect;
 GetClientRect(&rect);

 if(m_cap.isOpened()) {

 BITMAPINFO bmi = {0};
 bmi.bmiHeader.biSize = sizeof(bmi.bmiHeader);
 bmi.bmiHeader.biCompression = BI_RGB;
 bmi.bmiHeader.biWidth = m_cv_img.cols;

 // note that bitmaps default to bottom-up, use negative height to
 // represent top-down
 //
 bmi.bmiHeader.biHeight = m_cv_img.rows * -1;

 bmi.bmiHeader.biPlanes = 1;
 bmi.bmiHeader.biBitCount = 24; // 32 if you use RGBQUADs for the bits

 dc.StretchDIBits(
 0, 0,
 rect.Width(), rect.Height(),
 0, 0,
 bmi.bmiHeader.biWidth, abs(bmi.bmiHeader.biHeight),
 m_bitmapBits,
 &bmi,
 DIB_RGB_COLORS,
 SRCCOPY

Working with Windows | 245

);

 } else {

 dc.FillRect(rect, COLOR_WINDOW);

 }

 return 0;
}

LRESULT COpenCVTestView::OnTimer(
 UINT /* uMsg */,
 WPARAM /* wParam */,
 LPARAM /* lParam */,
 BOOL& /* bHandled */
) {
 // Nothing to do if capture object is not open
 //
 if(!m_cap.isOpened()) return 0;

 m_cap.read(m_cv_img);
 _copyImage();

 Invalidate();

 return 0;
}

LRESULT COpenCVTestView::OnEraseBkgnd(
 UINT /* uMsg */,
 WPARAM /* wParam */,
 LPARAM /* lParam */,
 BOOL& /* bHandled */
) {
 // since we completely paint our window in the OnPaint handler, use
 // an empty background handler
 return 0;
}

This code illustrates how to use bitmap-based drawing in a C++ application in Win‐
dows. This method is simpler but less efficient than using DirectShow to handle the
video stream.

If you are using the .NET Runtime (either through C#, VB.NET, or
Managed C++), then you may want to look into a package that
completely wraps OpenCV, such as Emgu.

246 | Chapter 9: Cross-Platform and Native Windows

http://emgu.com

Summary
We have seen that OpenCV provides a number of ways to bring computer vision
programs to the screen. The native HighGUI tools are convenient and easy to use,
but not so great for functionality or final polish.

For a little more capability, the Qt-based HighGUI tools add buttons and some nice
gadgets for manipulating your image on the screen—which is very helpful for debug‐
ging, parameter tuning, and studying the subtle effects of changes in your program.
Because those methods lack extensibility and are likely unsuitable for the production
of professional applications, we went on to look at a few examples of how you might
combine OpenCV with existing fully featured GUI toolkits.

Exercises
1. Using HighGui only, create a window into which you can load and view four

images at once, each of size at least 300 × 300. You should be able to click on
each of the images and print out the correct (x, y) location of the click relative to
the image, not the larger window. The printout should be text written on the
image you clicked on.

2. Using QT, create a window into which you can load and view four images at
once. Implement the box drawing code of Example 9-2 such that you can draw
boxes within each window, but do not allow a box to draw over the image
boundary that you are drawing in.

3. Using QT, create a window sufficient to contain a 500 × 500 image. When a but‐
ton is pushed for that window, a smaller 100 × 100 window appears that magni‐
fies the area in the first image that the mouse is over. A slider should allow
magnifications of 1×, 2×, 3×, and 4×. Handle the case where the magnification
around the mouse will step over the boundary of the 500 × 500 image. Black pix‐
els should be shown in the magnification window. When the button is pushed
again, the small window vanishes and magnification doesn’t work. The button
toggles magnification on and off.

4. Using QT, create a 1,000 × 1,000 window. When a button is pushed on, you can
click in the window and type and edit text. Do not allow the text to go beyond
the boundary of the window. Allow for typing and backspacing.

5. Build and run the rotating cube described in Example 9-12. Modify it so that you
have buttons: rotate right, left, up, and down. When you press the buttons, the
cube should rotate.

Summary | 247

CHAPTER 10

Filters and Convolution

Overview
At this point, we have all of the basics at our disposal. We understand the structure of
the library as well as the basic data structures it uses to represent images. We under‐
stand the HighGUI interface and can actually run a program and display our results
on the screen. Now that we understand these primitive methods required to manipu‐
late image structures, we are ready to learn some more sophisticated operations.

We will now move on to higher-level methods that treat the images as images, and
not just as arrays of colored (or grayscale) values. When we say “image processing” in
this chapter, we mean just that: using higher-level operators that are defined on
image structures in order to accomplish tasks whose meaning is naturally defined in
the context of graphical, visual images.

Before We Begin
There are a couple of important concepts we will need throughout this chapter, so it
is worth taking a moment to review them before we dig into the specific image-
processing functions that make up the bulk of this chapter. First, we’ll need to under‐
stand filters (also called kernels) and how they are handled in OpenCV. Next, we’ll
take a look at how boundary areas are handled when OpenCV needs to apply a filter,
or another function of the area around a pixel, when that area spills off the edge of
the image.

Filters, Kernels, and Convolution
Most of the functions we will discuss in this chapter are special cases of a general con‐
cept called image filtering. A filter is any algorithm that starts with some image I(x, y)

249

1 These two terms can be considered essentially interchangeable for our purposes. The signal processing com‐
munity typically prefers the word filter, while the mathematical community tends to prefer kernel.

2 An example of a nonlinear kernel that comes up relatively often is the median filter, which replaces the pixel
at x, y with the median value inside of the kernel area.

3 For technical purists, the “support” of the kernel actually consists of only the nonzero portion of the kernel
array.

and computes a new image I′(x, y) by computing for each pixel location x, y in I′
some function of the pixels in I that are in some small area around that same x, y
location. The template that defines both this small area’s shape, as well as how the
elements of that small area are combined, is called a filter or a kernel.1 In this chapter,
many of the important kernels we encounter will be linear kernels. This means that
the value assigned to point x, y in I′ can be expressed as a weighted sum of the points
around (and usually including) x, y in I.2 If you like equations, this can be written as:

I ′(x, y) = ∑
i, j∈kernel

ki , j ⋅ I (x + i, y + j)

This basically says that for some kernel of whatever size (e.g., 5 × 5), we should sum
over the area of the kernel, and for each pair i, j (representing one point in the ker‐
nel), we should add a contribution equal to some value ki,j multiplied by the value of
the pixel in I that is offset from x, y by i, j. The size of the array I is called the support
of the kernel.3 Any filter that can be expressed in this way (i.e., with a linear kernel) is
also known as a convolution, though the term is often used somewhat casually in the
computer vision community to include the application of any filter (linear or other‐
wise) over an entire image.

It is often convenient (and more intuitive) to represent the kernel graphically as an
array of the values of ki,j (see Figure 10-1). We will typically use this representation
throughout the book when it is necessary to represent a kernel.

Figure 10-1. (A) A 5 × 5 box kernel, (B) a normalized 5 × 5 box kernel, (C) a 3 × 3
Sobel “x-derivative” kernel, and (D) a 5 × 5 normalized Gaussian kernel; in each case,
the “anchor” is represented in bold

250 | Chapter 10: Filters and Convolution

4 For example, MATLAB.
5 Actually, the pixels are usually not even really created; rather, they are just “effectively created” by the genera‐

tion of the correct boundary conditions in the evaluation of the particular function in question.

Anchor points
Each kernel shown in Figure 10-1 has one value depicted in bold. This is the anchor
point of the kernel. This indicates how the kernel is to be aligned with the source
image. For example, in Figure 10-1(D), the number 41 appears in bold. This means
that in the summation used to compute I′(x, y), it is I(x, y) that is multiplied by 41/273
(and similarly, the terms corresponding to I(x – 1, y) and I(x + 1, y) are multiplied by
26/273).

Border Extrapolation and Boundary Conditions
An issue that will come up with some frequency as we look at how images are pro‐
cessed in OpenCV is how borders are handled. Unlike some other image-handling
libraries,4 the filtering operations in OpenCV (cv::blur(), cv::erode(),
cv::dilate(), etc.) produce output images of the same size as the input. To achieve
that result, OpenCV creates “virtual” pixels outside of the image at the borders. You
can see this would be necessary for an operation like cv::blur(), which is going to
take all of the pixels in a neighborhood of some point and average them to determine
a new value for that point. How could a meaningful result be computed for an edge
pixel that does not have the correct number of neighbors? In fact, it will turn out that
in the absence of any clearly “right” way of handling this, we will often find ourselves
explicitly asserting how this issue is to be resolved in any given context.

Making borders yourself
Most of the library functions you will use will create these virtual pixels for you. In
that context, you will only need to tell the particular function how you would like
those pixels created.5 Just the same, in order to know what your options mean, it is
best to take a look at the function that allows you to explicitly create “padded” images
that use one method or another.

The function that does this is cv::copyMakeBorder(). Given an image you want to
pad out, and a second image that is somewhat larger, you can ask cv::copyMakeBor
der() to fill all of the pixels in the larger image in one way or another.

Before We Begin | 251

void cv::copyMakeBorder(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 int top, // Top side padding (pixels)
 int bottom, // Bottom side padding (pixels)
 int left, // Left side padding (pixels)
 int right, // Right side padding (pixels)
 int borderType, // Pixel extrapolation method
 const cv::Scalar& value = cv::Scalar() // Used for constant borders
);

The first two arguments to cv::copyMakeBorder() are the smaller source image and
the larger destination image. The next four arguments specify how many pixels of
padding are to be added to the source image on the top, bottom, left, and right
edges. The next argument, borderType, actually tells cv::copyMakeBorder() how to
determine the correct values to assign to the padded pixels (as shown in
Figure 10-2).

Figure 10-2. The same image is shown padded using each of the six different border‐
Type options available to cv::copyMakeBorder() (the “NO BORDER” image in the
upper left is the original for comparison)

To understand what each option does in detail, consider an extremely zoomed-in
section at the edge of each image (Figure 10-3).

252 | Chapter 10: Filters and Convolution

Figure 10-3. An extreme zoom in at the left side of each image—for each case, the
actual pixel values are shown, as well as a schematic representation; the vertical dotted
line in the schematic represents the edge of the original image

As you can see by inspecting the figures, some of the available options are quite dif‐
ferent. The first option, a constant border (cv::BORDER_CONSTANT) sets all of the pix‐
els in the border region to some fixed value. This value is set by the value argument
to cv::copyMakeBorder(). (In Figures 10-2 and 10-3, this value happens to be
cv::Scalar(0,0,0).) The next option is to wrap around (cv::BORDER_WRAP), assign‐
ing each pixel that is a distance n off the edge of the image the value of the pixel that
is a distance n in from the opposite edge. The replicate option, cv::BORDER_REPLI
CATE, assigns every pixel off the edge the same value as the pixel on that edge. Finally,
there are two slightly different forms of reflection available: cv::BORDER_REFLECT and
cv::BORDER_REFLECT_101. The first assigns each pixel that is a distance n off the edge
of the image the value of the pixel that is a distance n in from that same edge. In con‐
trast, cv::BORDER_REFLECT_101 assigns each pixel that is a distance n off the edge of
the image the value of the pixel that is a distance n + 1 in from that same edge (with
the result that the very edge pixel is not replicated). In most cases, cv::BOR
DER_REFLECT_101 is the default behavior for OpenCV methods. The value of cv::BOR
DER_DEFAULT resolves to cv::BORDER_REFLECT_101. Table 10-1 summarizes these
options.

Before We Begin | 253

Table 10-1. borderType options available to cv::copyMakeBorder(), as well as many other
functions that need to implicitly create boundary conditions

Border type Effect
cv::BORDER_CONSTANT Extend pixels by using a supplied (constant) value
cv::BORDER_WRAP Extend pixels by replicating from opposite side
cv::BORDER_REPLICATE Extend pixels by copying edge pixel
cv::BORDER_REFLECT Extend pixels by reflection
cv::BORDER_REFLECT_101 Extend pixels by reflection, edge pixel is not “doubled”
cv::BORDER_DEFAULT Alias for cv::BORDER_REFLECT_101

Manual extrapolation
On some occasions, you will want to compute the location of the reference pixel to
which a particular off-the-edge pixel is referred. For example, given an image of
width w and height h, you might want to know what pixel in that image is being used
to assign a value to virtual pixel (w + dx, h + dy). Though this operation is essentially
extrapolation, the function that computes such a result for you is (somewhat confus‐
ingly) called cv::borderInterpolate():

int cv::borderInterpolate(// Returns coordinate of "donor" pixel
 int p, // 0-based coordinate of extrapolated pixel
 int len, // Length of array (on relevant axis)
 int borderType // Pixel extrapolation method
);

The cv::borderInterpolate() function computes the extrapolation for one dimen‐
sion at a time. It takes a coordinate p, a length len (which is the actual size of the
image in the associated direction), and a borderType value. So, for example, you
could compute the value of a particular pixel in an image under a mixed set of
boundary conditions, using BORDER_REFLECT_101 in one dimension, and BOR
DER_WRAP in another:

float val = img.at<float>(
 cv::borderInterpolate(100, img.rows, BORDER_REFLECT_101),
 cv::borderInterpolate(-5, img.cols, BORDER_WRAP)
);

This function is typically used internally to OpenCV (for example, inside of cv::copy
MakeBorder) but it can come in handy in your own algorithms as well. The possible
values for borderType are exactly the same as those used by cv::copyMakeBorder.
Throughout this chapter, we will encounter functions that take a borderType argu‐
ment; in all of those cases, they take the same list of argument.

254 | Chapter 10: Filters and Convolution

6 The utility of this point of view will become clearer as we proceed through this chapter and look at other,
more complex convolution operations. Many useful operations in computer vision can be expressed as a
sequence of common convolutions, and more often than not, the last one of those convolutions is a threshold
operation.

Threshold Operations
You’ll often run into situations where you have done many layers of processing steps
and want either to make a final decision about the pixels in an image or to categori‐
cally reject those pixels below or above some value while keeping the others. The
OpenCV function cv::threshold() accomplishes these tasks (see survey [Sez‐
gin04]). The basic idea is that an array is given, along with a threshold, and then
something happens to every element of the array depending on whether it is below or
above the threshold. If you like, you can think of threshold as a very simple convolu‐
tion operation that uses a 1 × 1 kernel and then performs one of several nonlinear
operations on that one pixel:6

double cv::threshold(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 double thresh, // Threshold value
 double maxValue, // Max value for upward operations
 int thresholdType // Threshold type to use (Example 10-3)
);

As shown in Table 10-2, each threshold type corresponds to a particular comparison
operation between the ith source pixel (srci) and the threshold thresh. Depending on
the relationship between the source pixel and the threshold, the destination pixel dsti

may be set to 0, to srci, or the given maximum value maxValue.

Table 10-2. thresholdType options for cv::threshold()

Threshold type Operation
cv::THRESH_BINARY DSTI = (SRCI > thresh) ? MAXVALUE : 0
cv::THRESH_BINARY_INV DSTI = (SRCI > thresh) ? 0 : MAXVALUE
cv::THRESH_TRUNC DSTI = (SRCI > thresh) ? THRESH : SRCI

cv::THRESH_TOZERO DSTI = (SRCI > thresh) ? SRCI : 0
cv::THRESH_TOZERO_INV DSTI = (SRCI > thresh) ? 0 : SRCI

Figure 10-4 should help to clarify the exact implications of each available value for
thresholdType, the thresholding operation.

Threshold Operations | 255

Figure 10-4. Results of varying the threshold type in cv::threshold(); the horizontal line
through each chart represents a particular threshold level applied to the top chart and
its effect for each of the five types of threshold operations below

Let’s look at a simple example. In Example 10-1, we sum all three channels of an
image and then clip the result at 100.

Example 10-1. Using cv::threshold() to sum three channels of an image

#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;

void sum_rgb(const cv::Mat& src, cv::Mat& dst) {

 // Split image onto the color planes.
 //
 vector< cv::Mat> planes;
 cv::split(src, planes);

 cv::Mat b = planes[0], g = planes[1], r = planes[2], s;

 // Add equally weighted rgb values.
 //
 cv::addWeighted(r, 1./3., g, 1./3., 0.0, s);
 cv::addWeighted(s, 1., b, 1./3., 0.0, s);

256 | Chapter 10: Filters and Convolution

 // Truncate values above 100.
 //
 cv::threshold(s, dst, 100, 100, cv::THRESH_TRUNC);

}

void help() {
 cout << "Call: ./ch10_ex10_1 faceScene.jpg" << endl;
 cout << "Shows use of alpha blending (addWeighted) and threshold" << endl;
}

int main(int argc, char** argv) {

 help();

 if(argc < 2) { cout << "specify input image" << endl; return -1; }

 // Load the image from the given file name.
 //
 cv::Mat src = cv::imread(argv[1]), dst;
 if(src.empty()) { cout << "can not load " << argv[1] << endl; return -1; }
 sum_rgb(src, dst);

 // Create a named window with the name of the file and
 // show the image in the window
 //
 cv::imshow(argv[1], dst);

 // Idle until the user hits any key.
 //
 cv::waitKey(0);

 return 0;
}

Some important ideas are shown here. One is that we don’t want to add directly into
an 8-bit array (with the idea of normalizing next) because the higher bits will over‐
flow. Instead, we use equally weighted addition of the three color channels (cv::add
Weighted()); then the sum is truncated to saturate at the value of 100 for the return.
Had we used a floating-point temporary image for s in Example 10-1, we could have
substituted the code shown in Example 10-2 instead. Note that cv::accumulate()
can accumulate 8-bit integer image types into a floating-point image.

Threshold Operations | 257

Example 10-2. Alternative method to combine and threshold image planes

void sum_rgb(const cv::Mat& src, cv::Mat& dst) {

 // Split image onto the color planes.
 //
 vector<cv::Mat> planes;
 cv::split(src, planes);

 cv::Mat b = planes[0], g = planes[1], r = planes[2];

 // Accumulate separate planes, combine and threshold.
 //
 cv::Mat s = cv::Mat::zeros(b.size(), CV_32F);
 cv::accumulate(b, s);
 cv::accumulate(g, s);
 cv::accumulate(r, s);

 // Truncate values above 100 and rescale into dst.
 //
 cv::threshold(s, s, 100, 100, cv::THRESH_TRUNC);
 s.convertTo(dst, b.type());
}

Otsu’s Algorithm
It is also possible to have cv::threshold() attempt to determine the optimal value of
the threshold for you. You do this by passing the special value cv::THRESH_OTSU as
the value of thresh.

Briefly, Otsu’s algorithm is to consider all possible thresholds, and to compute the
variance σi

2 for each of the two classes of pixels (i.e., the class below the threshold and
the class above it). Otsu’s algorithm minimizes:

σw
2 ≡ w1(t) ⋅ σ1

2 + w2(t) ⋅ σ2
2

where w1(t) and w2(t) are the relative weights for the two classes given by the number
of pixels in each class, and σ1

2 and σ2
2 are the variances in each class. It turns out that

minimizing the variance of the two classes in this way is the same as maximizing the
variance between the two classes. Because an exhaustive search of the space of possi‐
ble thresholds is required, this is not a particularly fast process.

258 | Chapter 10: Filters and Convolution

Adaptive Threshold
There is a modified threshold technique in which the threshold level is itself variable
(across the image). In OpenCV, this method is implemented in the cv::adaptiveTh
reshold() [Jain86] function:

void cv::adaptiveThreshold(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 double maxValue, // Max value for upward operations
 int adaptiveMethod, // mean or Gaussian
 int thresholdType // Threshold type to use (Example 10-3)
 int blockSize, // Block size
 double C // Constant
);

cv::adaptiveThreshold() allows for two different adaptive threshold types depend‐
ing on the settings of adaptiveMethod. In both cases, we set the adaptive threshold
T(x, y) on a pixel-by-pixel basis by computing a weighted average of the b × b region
around each pixel location minus a constant, where b is given by blockSize and the
constant is given by C. If the method is set to cv::ADAPTIVE_THRESH_MEAN_C, then all
pixels in the area are weighted equally. If it is set to cv::ADAPTIVE_THRESH_GAUS
SIAN_C, then the pixels in the region around (x, y) are weighted according to a Gaus‐
sian function of their distance from that center point.

Finally, the parameter thresholdType is the same as for cv::threshold() shown in
Table 10-2.

The adaptive threshold technique is useful when there are strong illumination or
reflectance gradients that you need to threshold relative to the general intensity gra‐
dient. This function handles only single-channel 8-bit or floating-point images, and it
requires that the source and destination images be distinct.

Example 10-2 shows source code for comparing cv::adaptiveThreshold() and
cv::threshold(). Figure 10-5 illustrates the result of processing an image that has a
strong lighting gradient across it with both functions. The lower-left portion of the
figure shows the result of using a single global threshold as in cv::threshold(); the
lower-right portion shows the result of adaptive local threshold using cv::adapti
veThreshold(). We get the whole checkerboard via adaptive threshold, a result that
is impossible to achieve when using a single threshold. Note the calling-convention
comments at the top of the code in Example 10-2; the parameters used for
Figure 10-5 were:

./adaptThresh 15 1 1 71 15 ../Data/cal3-L.bmp

Threshold Operations | 259

Figure 10-5. Binary threshold versus adaptive binary threshold: the input image (top)
was turned into a Boolean image using a global threshold (lower left) and an adaptive
threshold (lower right); raw image courtesy of Kurt Konolige

Example 10-3. Threshold versus adaptive threshold

#include <iostream>

using namespace std;

int main(int argc, char** argv)
{
 if(argc != 7) { cout <<
 "Usage: " <<argv[0] <<" fixed_threshold invert(0=off|1=on) "
 "adaptive_type(0=mean|1=gaussian) block_size offset image\n"
 "Example: " <<argv[0] <<" 100 1 0 15 10 fruits.jpg\n"; return -1; }

 // Command line.
 //
 double fixed_threshold = (double)atof(argv[1]);
 int threshold_type = atoi(argv[2]) ? cv::THRESH_BINARY : cv::THRESH_BINARY_INV;
 int adaptive_method = atoi(argv[3]) ? cv::ADAPTIVE_THRESH_MEAN_C
 : cv::ADAPTIVE_THRESH_GAUSSIAN_C;
 int block_size = atoi(argv[4]);
 double offset = (double)atof(argv[5]);
 cv::Mat Igray = cv::imread(argv[6], cv::LOAD_IMAGE_GRAYSCALE);

 // Read in gray image.
 //

260 | Chapter 10: Filters and Convolution

 if(Igray.empty()){ cout << "Can not load " << argv[6] << endl; return -1; }

 // Declare the output images.
 //
 cv::Mat It, Iat;

 // Thresholds.
 //
 cv::threshold(
 Igray,
 It,
 fixed_threshold,
 255,
 threshold_type);
 cv::adaptiveThreshold(
 Igray,
 Iat,
 255,
 adaptive_method,
 threshold_type,
 block_size,
 offset
);

 // Show the results.
 //
 cv::imshow("Raw",Igray);
 cv::imshow("Threshold",It);
 cv::imshow("Adaptive Threshold",Iat);
 cv::waitKey(0);

 return 0;
}

Smoothing
Smoothing, also called blurring as depicted in Figure 10-6, is a simple and frequently
used image-processing operation. There are many reasons for smoothing, but it is
often done to reduce noise or camera artifacts. Smoothing is also important when we
wish to reduce the resolution of an image in a principled way (we will discuss this in
more detail in “Image Pyramids” on page 302 in Chapter 11).

OpenCV offers five different smoothing operations, each with its own associated
library function, which each accomplish slightly different kinds of smoothing. The
src and dst arguments in all of these functions are the usual source and destination
arrays. After that, each smoothing operation has parameters that are specific to the
associated operation. Of these, the only common parameter is the last, borderType.
This argument tells the smoothing operation how to handle pixels at the edge of the
image.

Smoothing | 261

Figure 10-6. Gaussian blur on 1D-pixel array

Simple Blur and the Box Filter
void cv::blur(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 cv::Size ksize, // Kernel size
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

The simple blur operation is provided by cv::blur(). Each pixel in the output is the
simple mean of all of the pixels in a window (i.e., the kernel), around the correspond‐
ing pixel in the input. The size of this window is specified by the argument ksize.
The argument anchor can be used to specify how the kernel is aligned with the pixel
being computed. By default, the value of anchor is cv::Point(-1,-1), which indi‐
cates that the kernel should be centered relative to the filter. In the case of multichan‐
nel images, each channel will be computed separately.

262 | Chapter 10: Filters and Convolution

The simple blur is a specialized version of the box filter, as shown in Figure 10-7. A
box filter is any filter that has a rectangular profile and for which the values ki, j are all
equal. In most cases, ki, j = 1 for all i, j, or ki, j = 1/A, where A is the area of the filter.
The latter case is called a normalized box filter, the output of which is shown in
Figure 10-8.

void cv::boxFilter(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 int ddepth, // Output depth (e.g., CV_8U)
 cv::Size ksize, // Kernel size
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 bool normalize = true, // If true, divide by box area
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

The OpenCV function cv::boxFilter() is the somewhat more general form of
which cv::blur() is essentially a special case. The main difference between cv::box
Filter() and cv::blur() is that the former can be run in an unnormalized mode
(normalize = false), and that the depth of the output image dst can be controlled.
(In the case of cv::blur(), the depth of dst will always equal the depth of src.) If the
value of ddepth is set to -1, then the destination image will have the same depth as
the source; otherwise, you can use any of the usual aliases (e.g., CV_32F).

Smoothing | 263

Figure 10-7. A 5 × 5 blur filter, also called a normalized box filter

Figure 10-8. Image smoothing by block averaging: on the left are the input images; on
the right, the output images

264 | Chapter 10: Filters and Convolution

7 Note that the median filter is an example of a nonlinear kernel, which cannot be represented in the pictorial
style shown back in Figure 10-1.

Median Filter
The median filter [Bardyn84] replaces each pixel by the median or “middle-valued”
pixel (as opposed to the mean pixel) in a rectangular neighborhood around the center
pixel.7 Results of median filtering are shown in Figure 10-9. Simple blurring by aver‐
aging can be sensitive to noisy images, especially images with large isolated outlier
values (e.g., shot noise in digital photography). Large differences in even a small
number of points can cause a noticeable movement in the average value. Median fil‐
tering is able to ignore the outliers by selecting the middle points.

void cv::medianBlur(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 cv::Size ksize // Kernel size
);

The arguments to cv::medianBlur are essentially the same as for the filters you’ve
learned about in this chapter so far: the source array src, the destination array dst,
and the kernel size ksize. For cv::medianBlur(), the anchor point is always
assumed to be at the center of the kernel.

Figure 10-9. Blurring an image by taking the median of surrounding pixels

Smoothing | 265

Gaussian Filter
The next smoothing filter, the Gaussian filter, is probably the most useful. Gaussian
filtering involves convolving each point in the input array with a (normalized) Gaus‐
sian kernel and then summing to produce the output array:

void cv::GaussianBlur(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 cv::Size ksize, // Kernel size
 double sigmaX, // Gaussian half-width in x-direction
 double sigmaY = 0.0, // Gaussian half-width in y-direction
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

For the Gaussian blur (an example kernel is shown in Figure 10-10), the parameter
ksize gives the width and height of the filter window. The next parameter indicates
the sigma value (half width at half max) of the Gaussian kernel in the x-dimension.
The fourth parameter similarly indicates the sigma value in the y-dimension. If you
specify only the x value, and set the y value to 0 (its default value), then the y and x
values will be taken to be equal. If you set them both to 0, then the Gaussian’s param‐
eters will be automatically determined from the window size through the following
formulae:

σx = (nx − 1

2) ⋅ 0.30 + 0.80, nx = ksize .width − 1

σy = (ny − 1

2) ⋅ 0.30 + 0.80, ny = ksize .height − 1

Finally, cv::GaussianBlur() takes the usual borderType argument.

Figure 10-10. An example Gaussian kernel where ksize = (5,3), sigmaX = 1, and
sigmaY = 0.5

The OpenCV implementation of Gaussian smoothing also provides a higher perfor‐
mance optimization for several common kernels. 3 × 3, 5 × 5, and 7 × 7 kernels with

266 | Chapter 10: Filters and Convolution

the “standard” sigma (i.e., sigmaX = 0.0) give better performance than other kernels.
Gaussian blur supports single- or three-channel images in either 8-bit or 32-bit
floating-point formats, and it can be done in place. Results of Gaussian blurring are
shown in Figure 10-11.

Figure 10-11. Gaussian filtering (blurring)

Bilateral Filter
void cv::bilateralFilter(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 int d, // Pixel neighborhood size (max distance)
 double sigmaColor, // Width param for color weight function
 double sigmaSpace, // Width param for spatial weight function
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

The fifth and final form of smoothing supported by OpenCV is called bilateral filter‐
ing [Tomasi98], an example of which is shown in Figure 10-12. Bilateral filtering is
one operation from a somewhat larger class of image analysis operators known as
edge-preserving smoothing. Bilateral filtering is most easily understood when contras‐
ted to Gaussian smoothing. A typical motivation for Gaussian smoothing is that pix‐
els in a real image should vary slowly over space and thus be correlated to their
neighbors, whereas random noise can be expected to vary greatly from one pixel to
the next (i.e., noise is not spatially correlated). It is in this sense that Gaussian
smoothing reduces noise while preserving signal. Unfortunately, this method breaks

Smoothing | 267

8 In the case of multichannel (i.e., color) images, the difference in intensity is replaced with a weighted sum
over colors. This weighting is chosen to enforce a Euclidean distance in the CIE Lab color space.

9 Technically, the use of Gaussian distribution functions is not a necessary feature of bilateral filtering. The
implementation in OpenCV uses Gaussian weighting even though the method allows many possible weight‐
ing functions.

10 This effect is particularly pronounced after multiple iterations of bilateral filtering.

down near edges, where you do expect pixels to be uncorrelated with their neighbors
across the edge. As a result, Gaussian smoothing blurs away edges. At the cost of
what is unfortunately substantially more processing time, bilateral filtering provides a
means of smoothing an image without smoothing away its edges.

Figure 10-12. Results of bilateral smoothing

Like Gaussian smoothing, bilateral filtering constructs a weighted average of each
pixel and its neighboring components. The weighting has two components, the first
of which is the same weighting used by Gaussian smoothing. The second component
is also a Gaussian weighting but is based not on the spatial distance from the center
pixel but rather on the difference in intensity8 from the center pixel.9 You can think of
bilateral filtering as Gaussian smoothing that weighs similar pixels more highly than
less similar ones, keeping high-contrast edges sharp. The effect of this filter is typi‐
cally to turn an image into what appears to be a watercolor painting of the same
scene.10 This can be useful as an aid to segmenting the image.

268 | Chapter 10: Filters and Convolution

Bilateral filtering takes three parameters (other than the source and destination). The
first is the diameter d of the pixel neighborhood that is considered during filtering.
The second is the width of the Gaussian kernel used in the color domain called sigma
Color, which is analogous to the sigma parameters in the Gaussian filter. The third is
the width of the Gaussian kernel in the spatial domain called sigmaSpace. The larger
the second parameter, the broader the range of intensities (or colors) that will be
included in the smoothing (and thus the more extreme a discontinuity must be in
order to be preserved).

The filter size d has a strong effect (as you might expect) on the speed of the algo‐
rithm. Typical values are less than or equal to 5 for video processing, but might be as
high as 9 for non-real-time applications. As an alternative to specifying d explicitly,
you can set it to -1, in which case, it will be automatically computed from sigma
Space.

In practice, small values of sigmaSpace (e.g., 10) give a very light
but noticeable effect, while large values (e.g., 150) have a very
strong effect and tend to give the image a somewhat “cartoonish”
appearance.

Derivatives and Gradients
One of the most basic and important convolutions is computing derivatives (or
approximations to them). There are many ways to do this, but only a few are well
suited to a given situation.

The Sobel Derivative
In general, the most common operator used to represent differentiation is the Sobel
derivative [Sobel73] operator (see Figures 10-13 and 10-14). Sobel operators exist for
any order of derivative as well as for mixed partial derivatives (e.g., ∂2/∂x∂y).

Derivatives and Gradients | 269

11 Either xorder or yorder must be nonzero.

Figure 10-13. The effect of the Sobel operator when used to approximate a first deriva‐
tive in the x-dimension

void cv::Sobel(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 int ddepth, // Pixel depth of output (e.g., CV_8U)
 int xorder, // order of corresponding derivative in x
 int yorder, // order of corresponding derivative in y
 cv::Size ksize = 3, // Kernel size
 double scale = 1, // Scale (applied before assignment)
 double delta = 0, // Offset (applied before assignment)
 int borderType = cv::BORDER_DEFAULT // Border extrapolation
);

Here, src and dst are your image input and output. The argument ddepth allows you
to select the depth (type) of the generated output (e.g., CV_32F). As a good example of
how to use ddepth, if src is an 8-bit image, then the dst should have a depth of at
least CV_16S to avoid overflow. xorder and yorder are the orders of the derivative.
Typically, you’ll use 0, 1, or at most 2; a 0 value indicates no derivative in that direc‐
tion.11 The ksize parameter should be odd and is the width (and the height) of the

270 | Chapter 10: Filters and Convolution

12 In practice, it really only makes sense to set the kernel size to 3 or greater. If you set ksize to 1, then the
kernel size will automatically be adjusted up to 3.

filter to be used. Currently, aperture sizes up to 31 are supported.12 The scale factor
and delta are applied to the derivative before storing in dst. This can be useful when
you want to actually visualize a derivative in an 8-bit image you can show on the
screen:

dsti = scale ⋅ { ∑
i, jε sobel_kernel

ki , j*I (x + i, y + j)} + delta

The borderType argument functions exactly as described for other convolution
operations.

Figure 10-14. The effect of the Sobel operator when used to approximate a first deriva‐
tive in the y-dimension

Sobel operators have the nice property that they can be defined for kernels of any
size, and those kernels can be constructed quickly and iteratively. The larger kernels
give a better approximation to the derivative because they are less sensitive to noise.
However, if the derivative is not expected to be constant over space, clearly a kernel
that is too large will no longer give a useful result.

Derivatives and Gradients | 271

13 As you might recall, there are functions cv::cartToPolar() and cv::polarToCart() that implement exactly
this transformation. If you find yourself wanting to call cv::cartToPolar() on a pair of x- and y-derivative
images, you should probably be using CV_SCHARR to compute those images.

To understand this more exactly, we must realize that a Sobel operator is not really a
derivative as it is defined on a discrete space. What the Sobel operator actually repre‐
sents is a fit to a polynomial. That is, the Sobel operator of second order in the x-
direction is not really a second derivative; it is a local fit to a parabolic function. This
explains why one might want to use a larger kernel: that larger kernel is computing
the fit over a larger number of pixels.

Scharr Filter
In fact, there are many ways to approximate a derivative in the case of a discrete grid.
The downside of the approximation used for the Sobel operator is that it is less accu‐
rate for small kernels. For large kernels, where more points are used in the approxi‐
mation, this problem is less significant. This inaccuracy does not show up directly for
the X and Y filters used in cv::Sobel(), because they are exactly aligned with the x-
and y-axes. The difficulty arises when you want to make image measurements that
are approximations of directional derivatives (i.e., direction of the image gradient by
using the arctangent of the ratio y/x of two directional filter responses).13

To put this in context, a concrete example of where you may want such image meas‐
urements is in the process of collecting shape information from an object by assem‐
bling a histogram of gradient angles around the object. Such a histogram is the basis
on which many common shape classifiers are trained and operated. In this case, inac‐
curate measures of gradient angle will decrease the recognition performance of the
classifier.

For a 3 × 3 Sobel filter, the inaccuracies are more apparent the farther the gradient
angle is from horizontal or vertical. OpenCV addresses this inaccuracy for small (but
fast) 3 × 3 Sobel derivative filters by a somewhat obscure use of the special ksize
value cv::SCHARR in the cv::Sobel() function. The Scharr filter is just as fast but
more accurate than the Sobel filter, so it should always be used if you want to make
image measurements using a 3 × 3 filter. The filter coefficients for the Scharr filter are
shown in Figure 10-15 [Scharr00].

272 | Chapter 10: Filters and Convolution

14 Note that the Laplacian operator is distinct from the Laplacian pyramid, which we will discuss in Chapter 11.

Figure 10-15. The 3 × 3 Scharr filter using flag cv::SCHARR

The Laplacian
OpenCV Laplacian function (first used in vision by Marr [Marr82]) implements a
discrete approximation to the Laplacian operator:14

Laplace (f) = ∂2 f
∂ x 2 + ∂2 f

∂ y 2

Because the Laplacian operator can be defined in terms of second derivatives, you
might well suppose that the discrete implementation works something like the
second-order Sobel derivative. Indeed it does, and in fact, the OpenCV implementa‐
tion of the Laplacian operator uses the Sobel operators directly in its computation:

void cv::Laplacian(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 int ddepth, // Depth of output image (e.g., CV_8U)
 cv::Size ksize = 3, // Kernel size
 double scale = 1, // Scale applied before assignment to dst
 double delta = 0, // Offset applied before assignment to dst
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

The cv::Laplacian() function takes the same arguments as the cv::Sobel() func‐
tion, with the exception that the orders of the derivatives are not needed. This aper‐
ture ksize is precisely the same as the aperture appearing in the Sobel derivatives
and, in effect, gives the size of the region over which the pixels are sampled in the
computation of the second derivatives. In the actual implementation, for ksize any‐
thing other than 1, the Laplacian operator is computed directly from the sum of the

Derivatives and Gradients | 273

corresponding Sobel operators. In the special case of ksize=1, the Laplacian operator
is computed by convolution with the single kernel shown in Figure 10-16.

Figure 10-16. The single kernel used by cv::Laplacian() when ksize = 1

The Laplacian operator can be used in a variety of contexts. A common application is
to detect “blobs.” Recall that the form of the Laplacian operator is a sum of second
derivatives along the x-axis and y-axis. This means that a single point or any small
blob (smaller than the aperture) that is surrounded by higher values will tend to max‐
imize this function. Conversely, a point or small blob that is surrounded by lower val‐
ues will tend to maximize the negative of this function.

With this in mind, the Laplacian operator can also be used as a kind of edge detector.
To see how this is done, consider the first derivative of a function, which will (of
course) be large wherever the function is changing rapidly. Equally important, it will
grow rapidly as we approach an edge-like discontinuity and shrink rapidly as we
move past the discontinuity. Hence, the derivative will be at a local maximum some‐
where within this range. Therefore, we can look to the 0s of the second derivative for
locations of such local maxima. Edges in the original image will be 0s of the Laplacian
operator. Unfortunately, both substantial and less meaningful edges will be 0s of the
Laplacian, but this is not a problem because we can simply filter out those pixels that
also have larger values of the first (Sobel) derivative. Figure 10-17 shows an example
of using a Laplacian operator on an image together with details of the first and sec‐
ond derivatives and their zero crossings.

274 | Chapter 10: Filters and Convolution

Figure 10-17. Laplace transform (upper right) of the racecar image: zooming in on the
tire (circled) and considering only the x-dimension, we show a (qualitative) representa‐
tion of the brightness as well as the first and second derivatives (lower three cells); the 0s
in the second derivative correspond to edges, and the 0 corresponding to a large first
derivative is a strong edge

Image Morphology
OpenCV also provides a fast, convenient interface for doing morphological transfor‐
mations [Serra83] on an image. Figure 10-18 shows the most popular morphological
transformations. Image morphology is its own topic and, especially in the early years
of computer vision, a great number of morphological operations were developed.
Most were developed for one specific purpose or another, and some of those found
broader utility over the years. Essentially, all morphology operations are based on just
two primitive operations. We will start with those, and then move on to the more
complex operations, each of which is typically defined in terms of its simpler
predecessors.

Image Morphology | 275

15 Here the term filled means those pixels whose value is nonzero. You could read this as “bright,” since the local
maximum actually takes the pixel with the highest intensity value under the template (kernel). It is worth
mentioning that the diagrams that appear in this chapter to illustrate morphological operators are in this
sense inverted relative to what would happen on your screen (because books write with dark ink on light
paper instead of light pixels on a dark screen).

Figure 10-18. Summary results for all morphology operators

Dilation and Erosion
The basic morphological transformations are called dilation and erosion, and they
arise in a wide variety of contexts such as removing noise, isolating individual ele‐
ments, and joining disparate elements in an image. More sophisticated morphology
operations, based on these two basic operations, can also be used to find intensity
peaks (or holes) in an image, and to define (yet another) particular form of an image
gradient.

Dilation is a convolution of some image with a kernel in which any given pixel is
replaced with the local maximum of all of the pixel values covered by the kernel. As
we mentioned earlier, this is an example of a nonlinear operation, so the kernel can‐
not be expressed in the form shown back in Figure 10-1. Most often, the kernel used
for dilation is a “solid” square kernel, or sometimes a disk, with the anchor point at
the center. The effect of dilation is to cause filled15 regions within an image to grow as
diagrammed in Figure 10-19.

276 | Chapter 10: Filters and Convolution

16 To be precise, the pixel in the destination image is set to the value equal to the minimal value of the pixels
under the kernel in the source image.

Figure 10-19. Morphological dilation: take the maximum under a square kernel

Erosion is the converse operation. The action of the erosion operator is equivalent to
computing a local minimum over the area of the kernel.16 Erosion is diagrammed in
Figure 10-20.

Figure 10-20. Morphological erosion: take the minimum under a square kernel

Image Morphology | 277

17 It should be noted that OpenCV does not actually have a Boolean image data type. The minimum size repre‐
sentation is 8-bit characters. Those functions that interpret an image as Boolean do so by classifying all pixels
as either zero (False or 0) or nonzero (True or 1).

Image morphology is often done on Boolean17 images that result
from a threshold operation. However, because dilation is just a
max operator and erosion is just a min operator, morphology may
be used on intensity images as well.

In general, whereas dilation expands a bright region, erosion reduces such a bright
region. Moreover, dilation will tend to fill concavities and erosion will tend to remove
protrusions. Of course, the exact result will depend on the kernel, but these state‐
ments are generally true so long as the kernel is both convex and filled.

In OpenCV, we effect these transformations using the cv::erode() and
cv::dilate() functions:

void cv::erode(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 cv::InputArray element, // Structuring, a cv::Mat()
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 int iterations = 1, // Number of times to apply
 int borderType = cv::BORDER_CONSTANT // Border extrapolation
 const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()
);
void cv::dilate(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 cv::InputArray element, // Structuring, a cv::Mat()
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 int iterations = 1, // Number of times to apply
 int borderType = cv::BORDER_CONSTANT // Border extrapolation
 const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()
);

Both cv::erode() and cv::dilate() take a source and destination image, and both
support “in place” calls (in which the source and destination are the same image).
The third argument is the kernel, to which you may pass an uninitialized array
cv::Mat(), which will cause it to default to using a 3 × 3 kernel with the anchor at its
center (we will discuss how to create your own kernels later). The fourth argument is
the number of iterations. If not set to the default value of 1, the operation will be
applied multiple times during the single call to the function. The borderType argu‐
ment is the usual border type, and the borderValue is the value that will be used for
off-the-edge pixels when the borderType is set to cv::BORDER_CONSTANT.

278 | Chapter 10: Filters and Convolution

The results of an erode operation on a sample image are shown in Figure 10-21, and
those of a dilation operation on the same image are shown in Figure 10-22. The erode
operation is often used to eliminate “speckle” noise in an image. The idea here is that
the speckles are eroded to nothing while larger regions that contain visually signifi‐
cant content are not affected. The dilate operation is often used to try to find connec‐
ted components (i.e., large discrete regions of similar pixel color or intensity). The
utility of dilation arises because in many cases a large region might otherwise be bro‐
ken apart into multiple components as a result of noise, shadows, or some other simi‐
lar effect. A small dilation will cause such components to “melt” together into one.

Figure 10-21. Results of the erosion, or “min,” operator: bright regions are isolated and
shrunk

Image Morphology | 279

Figure 10-22. Results of the dilation, or “max,” operator: bright regions are expanded
and often joined

To recap: when OpenCV processes the cv::erode() function, what happens beneath
the hood is that the value of some point p is set to the minimum value of all of the
points covered by the kernel when aligned at p; for the cv::dilate() operator, the
equation is the same except that max is considered rather than min:

erode(x, y) = min
(i, j)∈kernel

src(x + i, y + j)

dilate(x, y) = max
(i, j)∈kernel

src(x + i, y + j)

You might be wondering why we need a complicated formula when the earlier heu‐
ristic description was perfectly sufficient. Some users actually prefer such formulas
but, more importantly, the formulas capture some generality that isn’t apparent in
the qualitative description. Observe that if the image is not Boolean, then the min and
max operators play a less trivial role. Take another look at Figures 10-21 and 10-22,
which show the erosion and dilation operators (respectively) applied to two real
images.

280 | Chapter 10: Filters and Convolution

The General Morphology Function
When you are working with Boolean images and image masks where the pixels are
either on (>0) or off (=0), the basic erode and dilate operations are usually sufficient.
When you’re working with grayscale or color images, however, a number of addi‐
tional operations are often helpful. Several of the more useful operations can be han‐
dled by the multipurpose cv::morphologyEx() function.

void cv::morphologyEx(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 int op, // Operator (e.g. cv::MOP_OPEN)
 cv::InputArray element, // Structuring element, cv::Mat()
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 int iterations = 1, // Number of times to apply
 int borderType = cv::BORDER_DEFAULT // Border extrapolation
 const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()

);

In addition to the arguments that we saw with the cv::dilate() and cv::erode()
functions, cv::morphologyEx() has one new—and very important—parameter. This
new argument, called op, is the specific operation to be done. The possible values of
this argument are listed in Table 10-3.

Table 10-3. cv::morphologyEx() operation options

Value of operation Morphological operator Requires temp image?
cv::MOP_OPEN Opening No
cv::MOP_CLOSE Closing No
cv::MOP_GRADIENT Morphological gradient Always
cv::MOP_TOPHAT Top Hat For in-place only (src = dst)
cv::MOP_BLACKHAT Black Hat For in-place only (src = dst)

Opening and Closing
The first two operations, opening and closing, are actually simple combinations of the
erosion and dilation operators. In the case of opening, we erode first and then dilate
(Figure 10-23). Opening is often used to count regions in a Boolean image. For exam‐
ple, if we have thresholded an image of cells on a microscope slide, we might use ning
to separate out cells that are near each other before counting the regions.

Image Morphology | 281

Figure 10-23. Morphological opening applied to a simple Boolean image

In the case of closing, we dilate first and then erode (Figure 10-24). Closing is used in
most of the more sophisticated connected-component algorithms to reduce unwan‐
ted or noise-driven segments. For connected components, usually an erosion or clos‐
ing operation is performed first to eliminate elements that arise purely from noise,
and then an opening operation is used to connect nearby large regions. (Notice that,
although the end result of using opening or closing is similar to using erosion or dila‐
tion, these new operations tend to preserve the area of connected regions more
accurately.)

Figure 10-24. Morphological closing applied to a simple Boolean image

282 | Chapter 10: Filters and Convolution

When used on non-Boolean images, the most prominent effect of closing is to elimi‐
nate lone outliers that are lower in value than their neighbors, whereas the effect of
opening is to eliminate lone outliers that are higher than their neighbors. Results of
using the opening operator are shown in Figures 10-25 and 10-26, and results of the
closing operator are shown in Figures 10-27 and 10-28.

Figure 10-25. Morphological opening operation applied to a (one-dimensional) non-
Boolean image: the upward outliers are eliminated

Figure 10-26. Results of morphological opening on an image: small bright regions are
removed, and the remaining bright regions are isolated but retain their size

Image Morphology | 283

Figure 10-27. Morphological closing operation applied to a (one-dimensional) non-
Boolean image: the downward outliers are eliminated

Figure 10-28. Results of morphological closing on an image: bright regions are joined
but retain their basic size

One last note on the opening and closing operators concerns how the iterations
argument is interpreted. You might expect that asking for two iterations of closing
would yield something like dilate-erode-dilate-erode. It turns out that this would not
be particularly useful. What you usually want (and what you get) is dilate-dilate-
erode-erode. In this way, not only the single outliers but also neighboring pairs of
outliers will disappear. Figures 10-23(C) and 10-24(C) illustrate the effect of calling
open and close (respectively) with an iteration count of two.

284 | Chapter 10: Filters and Convolution

Morphological Gradient
Our next available operator is the morphological gradient. For this one, it is probably
easier to start with a formula and then figure out what it means:

gradient(src) = dilate(src) – erode(src)

As we can see in Figure 10-29, the effect of subtracting the eroded (slightly reduced)
image from the dilated (slightly enlarged) image is to leave behind a representation of
the edges of objects in the original image.

Figure 10-29. Morphological gradient applied to a simple Boolean image

With a grayscale image (Figure 10-30), we see that the value of the operator is telling
us something about how fast the image brightness is changing; this is why the name
“morphological gradient” is justified. Morphological gradient is often used when we
want to isolate the perimeters of bright regions so we can treat them as whole objects
(or as whole parts of objects). The complete perimeter of a region tends to be found
because a contracted version is subtracted from an expanded version of the region,
leaving a complete perimeter edge. This differs from calculating a gradient, which is
much less likely to work around the full perimeter of an object. Figure 10-31 shows
the result of the morphological gradient operator.

Image Morphology | 285

Figure 10-30. Morphological gradient applied to (one-dimensional) non-Boolean
image: as expected, the operator has its highest values where the grayscale image is
changing most rapidly

Figure 10-31. Results of the morphological gradient operator: bright perimeter edges are
identified

286 | Chapter 10: Filters and Convolution

18 Both of these operations (Top Hat and Black Hat) are most useful in grayscale morphology, where the struc‐
turing element is a matrix of real numbers (not just a Boolean mask) and the matrix is added to the current
pixel neighborhood before taking a minimum or maximum. As of this writing, however, this is not yet imple‐
mented in OpenCV.

Top Hat and Black Hat
The last two operators are called Top Hat and Black Hat [Meyer78]. These operators
are used to isolate patches that are, respectively, brighter or dimmer than their imme‐
diate neighbors. You would use these when trying to isolate parts of an object that
exhibit brightness changes relative only to the object to which they are attached. This
often occurs with microscope images of organisms or cells, for example. Both opera‐
tions are defined in terms of the more primitive operators, as follows:

TopHat(src) = src – open(src) // Isolate brighter
BlackHat(src) = close(src) – src // Isolate dimmer

As you can see, the Top Hat operator subtracts the opened form of A from A. Recall
that the effect of the open operation was to exaggerate small cracks or local drops.
Thus, subtracting open(A) from A should reveal areas that are lighter than the sur‐
rounding region of A, relative to the size of the kernel (see Figures 10-32 and 10-33);
conversely, the Black Hat operator reveals areas that are darker than the surrounding
region of A (Figures 10-34 and 10-35). Summary results for all the morphological
operators discussed in this chapter are shown back in Figure 10-18.18

Image Morphology | 287

Figure 10-32. Results of morphological Top Hat operation: bright local peaks are
isolated

Figure 10-33. Results of morphological Top Hat operation applied to a simple Boolean
image

288 | Chapter 10: Filters and Convolution

Figure 10-34. Results of morphological Black Hat operation: dark holes are isolated

Figure 10-35. Results of morphological Black Hat operation applied to a simple Boolean
image

Making Your Own Kernel
In the morphological operations we have looked at so far, the kernels considered
were always square and 3 × 3. If you need something a little more general than that,

Image Morphology | 289

OpenCV allows you to create your own kernel. In the case of morphology, the kernel
is often called a structuring element, so the routine that allows you to create your own
morphology kernels is called cv::getStructuringElement().

In fact, you can just create any array you like and use it as a structuring element in
functions like cv::dilate(), cv::erode(), or cv::morphologyEx(), but this is often
more work than is necessary. Often what you need is a nonsquare kernel of an other‐
wise common shape. This is what cv::getStructuringElement() is for:

cv::Mat cv::getStructuringElement(
 int shape, // Element shape, e.g., cv::MORPH_RECT
 cv::Size ksize, // Size of structuring element (odd num!)
 cv::Point anchor = cv::Point(-1,-1) // Location of anchor point
);

The first argument, shape, controls which basic shape will be used to create the ele‐
ment (Table 10-4), while ksize and anchor specify the size of the element and the
location of the anchor point, respectively. As usual, if the anchor argument is left
with its default value of cv::Point(-1,-1), then cv::getStructuringElement() will
take this to mean that the anchor should automatically be placed at the center of the
element.

Table 10-4. cv::getStructuringElement() element shapes

Value of shape Element Description
cv::MORPH_RECT Rectangular Ei, j = 1, ∀ i, j
cv::MORPH_ELLIPSE Elliptic Ellipse with axes ksize.width and ksize.height.
cv::MORPH_CROSS Cross-shaped Ei, j = 1, iff i == anchor.y or j == anchor.x

Of the options for the shapes shown in Table 10-4, the last is there
only for legacy compatibility. In the old C API (v1.x), there was a
separate struct used for the purpose of expressing convolution ker‐
nels. There is no need to use this functionality now, as you can
simply pass any cv::Mat to the morphological operators as a struc‐
turing element if you need something more complicated than the
basic shape-based elements created by cv::getStructuringEle
ment().

Convolution with an Arbitrary Linear Filter
In the functions we have seen so far, the basic mechanics of the convolution were
happening deep down below the level of the OpenCV API. We took some time to
understand the basics of convolution, and then went on to look at a long list of func‐
tions that implemented different kinds of useful convolutions. In essentially every
case, there was a kernel that was implied by the function we chose, and we just passed

290 | Chapter 10: Filters and Convolution

19 This statement is only exactly true for convolution in the spatial domain, which is how OpenCV handles only
small kernels.

20 We say “at first glance” because it is also possible to perform convolutions in the frequency domain. In this
case, for an n × n image and an m × m kernel with n >> m, the computational time will be proportional to
n2log(n) and not to the n2m2 that is expected for computations in the spatial domain. Because the frequency
domain computation is independent of the size of the kernel, it is more efficient for large kernels. OpenCV
automatically decides whether to do the convolution in the frequency domain based on the size of the kernel.

that function a little extra information that parameterized that particular filter type.
For linear filters, however, it is possible to just provide the entire kernel and let
OpenCV handle the convolution for us.

From an abstract point of view, this is very straightforward: we just need a function
that takes an array argument to describe the kernel and we are done. At a practical
level, there is an important subtlety that strongly affects performance. That subtlety is
that some kernels are separable, and others are not.

Figure 10-36. The Sobel kernel (A) is separable; it can be expressed as two one-
dimensional convolutions (B and C); D is an example of a nonseparable kernel

A separable kernel is one that can be thought of as two one-dimensional kernels,
which we apply by first convolving with the x-kernel and then with the y-kernel. The
benefit of this decomposition is that the computational cost of a kernel convolution is
approximately the image area multiplied by the kernel area.19 This means that con‐
volving your image of area A by an n × n kernel takes time proportional to An2, while
convolving your image once by an n × 1 kernel and then by a 1 × n kernel takes time
proportional to An + An = 2An. For even n as small as 3 there is a benefit, and the
benefit grows with n.

Applying a General Filter with cv::filter2D()
Given that the number of operations required for an image convolution, at least at
first glance,20 seems to be the number of pixels in the image multiplied by the number
of pixels in the kernel, this can be a lot of computation and so is not something you
want to do with some for loop and a lot of pointer dereferencing. In situations like
this, it is better to let OpenCV do the work for you and take advantage of the internal
optimizations. The OpenCV way to do all of this is with cv::filter2D():

Convolution with an Arbitrary Linear Filter | 291

cv::filter2D(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 int ddepth, // Output depth (e.g., CV_8U)
 cv::InputArray kernel, // Your own kernel
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 double delta = 0, // Offset before assignment
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

Here we create an array of the appropriate size, fill it with the coefficients of our lin‐
ear filter, and then pass it together with the source and destination images into
cv::filter2D(). As usual, we can specify the depth of the resulting image with
ddepth, the anchor point for the filter with anchor, and the border extrapolation
method with borderType. The kernel can be of even size if its anchor point is defined;
otherwise, it should be of odd size. If you want an overall offset applied to the result
after the linear filter is applied, you can use the argument delta.

Applying a General Separable Filter with cv::sepFilter2D
In the case where your kernel is separable, you will get the best performance from
OpenCV by expressing it in its separated form and passing those one-dimensional
kernels to OpenCV (e.g., passing the kernels shown back in Figures 10-36(B) and
10-36(C) instead of the one shown in Figure 10-36(A). The OpenCV function
cv::sepFilter2D() is like cv::filter2D(), except that it expects these two one-
dimensional kernels instead of one two-dimensional kernel.

cv::sepFilter2D(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 int ddepth, // Output depth (e.g., CV_8U)
 cv::InputArray rowKernel, // 1-by-N row kernel
 cv::InputArray columnKernel, // M-by-1 column kernel
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 double delta = 0, // Offset before assignment
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

All the arguments of cv::sepFilter2D() are the same as those of cv::filter2D(),
with the exception of the replacement of the kernel argument with the rowKernel
and columnKernel arguments. The latter two are expected to be n1 × 1 and 1 × n2
arrays (with n1 not necessarily equal to n2).

Kernel Builders
The following functions can be used to obtain popular kernels: cv::getDerivKer
nel(), which constructs the Sobel and Scharr kernels, and cv::getGaussianKer
nel(), which constructs Gaussian kernels.

292 | Chapter 10: Filters and Convolution

21 If you are, in fact, going to do this, you will need that normalization coefficient at some point. The normaliza‐
tion coefficient you will need is: 2ksize *2−dx −dy −2.

cv::getDerivKernel()

The actual kernel array for a derivative filter is generated by cv::getDerivKernel().

void cv::getDerivKernels(
 cv::OutputArray kx,
 cv::OutputArray ky,
 int dx, // order of corresponding derivative in x
 int dy, // order of corresponding derivative in y
 int ksize, // Kernel size
 bool normalize = true, // If true, divide by box area
 int ktype = CV_32F // Type for filter coefficients
);

The result of cv::getDerivKernel() is placed in the kx and ky array arguments. You
might recall that the derivative type kernels (Sobel and Scharr) are separable kernels.
For this reason, you will get back two arrays, one that is 1 × ksize (row coefficients,
kx) and another that is ksize × 1 (column coefficients, ky). These are computed from
the x- and y-derivative orders dx and dy. The derivative kernels are always square, so
the size argument ksize is an integer. ksize can be any of 1, 3, 5, 7, or cv::SCHARR.
The normalize argument tells cv::getDerivKernels() if it should normalize the
kernel elements “correctly.” For situations where you are operating on floating-point
images, there is no reason not to set normalize to true, but when you are doing
operations on integer arrays, it is often more sensible to not normalize the arrays
until some later point in your processing, so you won’t throw away precision that you
will later need.21 The final argument, ktype, indicates the type of the filter coefficients
(or, equivalently, the type of the arrays kx and ky). The value of ktype can be either
CV_32F or CV_64F.

cv::getGaussianKernel()

The actual kernel array for a Gaussian filter is generated by cv::getGaussianKer
nel().

cv::Mat cv::getGaussianKernel(
 int ksize, // Kernel size
 double sigma, // Gaussian half-width
 int ktype = CV_32F // Type for filter coefficients
);

As with the derivative kernel, the Gaussian kernel is separable. For this reason,
cv::getGaussianKernel() computes only a ksize × 1 array of coefficients. The
value of ksize can be any odd positive number. The argument sigma sets the stan‐

Convolution with an Arbitrary Linear Filter | 293

22 In this case, σ = 0.3 ⋅ (ksize − 1
2 − 1) + 0.8.

dard deviation of the approximated Gaussian distribution. The coefficients are com‐
puted from sigma according to the following function:

ki = α ⋅ e
−

(i −(ksize −1)2)2

(2σ)2

That is, the coefficient alpha is computed such that the filter overall is normalized.
sigma may be set to -1, in which case the value of sigma will be automatically compu‐
ted from the size ksize.22

Summary
In this chapter, we learned about general image convolution, including the impor‐
tance of how boundaries are handled in convolutions. We also learned about image
kernels, and the difference between linear and nonlinear kernels. Finally, we learned
how OpenCV implements a number of common image filters, and what those filters
do to different kinds of input data.

Exercises
1. Load an image with interesting textures. Smooth the image in several ways using

cv::smooth() with smoothtype=cv::GAUSSIAN.
a. Use a symmetric 3 × 3, 5 × 5, 9 × 9, and 11 × 11 smoothing window size and

display the results.
b. Are the output results nearly the same by smoothing the image twice with a

5 × 5 Gaussian filter as when you smooth once with two 11 × 11 filters? Why
or why not?

2. Create a 100 × 100 single-channel image. Set all pixels to 0. Finally, set the center
pixel equal to 255.
a. Smooth this image with a 5 × 5 Gaussian filter and display the results. What

did you find?
b. Do this again but with a 9 × 9 Gaussian filter.
c. What does it look like if you start over and smooth the image twice with the 5

× 5 filter? Compare this with the 9 × 9 results. Are they nearly the same? Why
or why not?

294 | Chapter 10: Filters and Convolution

3. Load an interesting image, and then blur it with cv::smooth() using a Gaussian
filter.
a. Set param1=param2=9. Try several settings of param3 (e.g., 1, 4, and 6). Display

the results.
b. Set param1=param2=0 before setting param3 to 1, 4, and 6. Display the results.

Are they different? Why?
c. Use param1=param2=0 again, but this time set param3=1 and param4=9.

Smooth the picture and display the results.
d. Repeat Exercise 3c but with param3=9 and param4=1. Display the results.
e. Now smooth the image once with the settings of Exercise 3c and once with

the settings of Exercise 3d. Display the results.
f. Compare the results in Exercise 3e with smoothings that use

param3=param4=9 and param3=param4=0 (i.e., a 9 × 9 filter). Are the results the
same? Why or why not?

4. Use a camera to take two pictures of the same scene while moving the camera as
little as possible. Load these images into the computer as src1 and src1.
a. Take the absolute value of src1 minus src1 (subtract the images); call it

diff12 and display. If this were done perfectly, diff12 would be black. Why
isn’t it?

b. Create cleandiff by using cv::erode() and then cv::dilate() on diff12.
Display the results.

c. Create dirtydiff by using cv::dilate() and then cv::erode() on diff12
and then display.

d. Explain the difference between cleandiff and dirtydiff.
5. Create an outline of an object. Take a picture of a scene. Then, without moving

the camera, put a coffee cup in the scene and take a second picture. Load these
images and convert both to 8-bit grayscale images.
a. Take the absolute value of their difference. Display the result, which should

look like a noisy mask of a coffee mug.
b. Do a binary threshold of the resulting image using a level that preserves most

of the coffee mug but removes some of the noise. Display the result. The “on”
values should be set to 255.

c. Do a cv::MOP_OPEN on the image to further clean up noise.
d. Using the erosion operator and logical XOR function, turn the mask of the

coffee cup image into an outline of the coffee cup (only the edge pixels
remaining).

Exercises | 295

6. High dynamic range: go into a room with strong overhead lighting and tables
that shade the light. Take a picture. With most cameras, either the lighted parts
of the scene are well exposed and the parts in shadow are too dark, or the lighted
parts are overexposed and the shadowed parts are OK. Create an adaptive filter
to help balance out such an image; that is, in regions that are dark on average,
boost the pixels up some, and in regions that are very light on average, decrease
the pixels somewhat.

7. Sky filter: create an adaptive “sky” filter that smooths only bluish regions of a
scene so that only the sky or lake regions of a scene are smoothed, not ground
regions.

8. Create a clean mask from noise. After completing Exercise 5, continue by keep‐
ing only the largest remaining shape in the image. Set a pointer to the upper left
of the image and then traverse the image. When you find a pixel of value 255
(“on”), store the location and then flood-fill it using a value of 100. Read the con‐
nected component returned from flood fill and record the area of filled region. If
there is another larger region in the image, then flood-fill the smaller region
using a value of 0 and delete its recorded area. If the new region is larger than the
previous region, then flood-fill the previous region using the value 0 and delete
its location. Finally, fill the remaining largest region with 255. Display the results.
We now have a single, solid mask for the coffee mug.

9. Use the mask created in Exercise 8 or create another mask of your own (perhaps
by drawing a digital picture, or simply use a square). Load an outdoor scene.
Now use this mask with copyTo() to copy an image of a mug into the scene.

10. Create a low-variance random image (use a random number call such that the
numbers don’t differ by much more than three and most numbers are near zero).
Load the image into a drawing program such as PowerPoint, and then draw a
wheel of lines meeting at a single point. Use bilateral filtering on the resulting
image and explain the results.

11. Load an image of a scene and convert it to grayscale.
a. Run the morphological Top Hat operation on your image and display the

results.
b. Convert the resulting image into an 8-bit mask.
c. Copy a grayscale value into the original image where the Top Hat mask (from

Part b of this exercise) is nonzero. Display the results.
12. Load an image with many details.

a. Use resize() to reduce the image by a factor of 2 in each dimension (hence
the image will be reduced by a factor of 4). Do this three times and display the
results.

296 | Chapter 10: Filters and Convolution

b. Now take the original image and use cv::pyrDown() to reduce it three times,
and then display the results.

c. How are the two results different? Why are the approaches different?
13. Load an image of an interesting or sufficiently “rich” scene. Using cv::thres

hold(), set the threshold to 128. Use each setting type in Figure 10-4 on the
image and display the results. You should familiarize yourself with thresholding
functions because they will prove quite useful.
a. Repeat the exercise but use cv::adaptiveThreshold() instead. Set param1=5.
b. Repeat part a of this exercise using param1=0 and then param1=-5.

14. Approximate a bilateral (edge preserving) smoothing filter. Find the major edges
in an image and hold these aside. Then use cv::pyrMeanShiftFiltering() to
segment the image into regions. Smooth each of these regions separately and
then alpha-blend these smooth regions together with the edge image into one
whole image that smooths regions but preserves the edges.

15. Use cv::filter2D() to create a filter that detects only 60-degree lines in an
image. Display the results on a sufficiently interesting image scene.

16. Separable kernels: create a 3 × 3 Gaussian kernel using rows [(1/16, 2/16, 1/16),
(2/16, 4/16, 2/16), (1/16, 2/16, 1/16)] and with anchor point in the middle.
a. Run this kernel on an image and display the results.
b. Now create two one-dimensional kernels with anchors in the center: one

going “across” (1/4, 2/4, 1/4), and one going down (1/4, 2/4, 1/4). Load the
same original image and use cv::filter2D() to convolve the image twice,
once with the first 1D kernel and once with the second 1D kernel. Describe
the results.

c. Describe the order of complexity (number of operations) for the kernel in
part a and for the kernels in part b. The difference is the advantage of being
able to use separable kernels and the entire Gaussian class of filters—or any
linearly decomposable filter that is separable, since convolution is a linear
operation.

17. Can you make a separable kernel from the Scharr filter shown in Figure 10-15? If
so, show what it looks like.

18. In a drawing program such as PowerPoint, draw a series of concentric circles
forming a bull’s-eye.
a. Make a series of lines going into the bull’s-eye. Save the image.
b. Using a 3 × 3 aperture size, take and display the first-order x- and y-

derivatives of your picture. Then increase the aperture size to 5 × 5, 9 × 9, and
13 × 13. Describe the results.

Exercises | 297

19. Create a new image that is just a 45-degree line, white on black. For a given series
of aperture sizes, we will take the image’s first-order x-derivative (dx) and first-
order y-derivative (dy). We will then take measurements of this line as follows.
The (dx) and (dy) images constitute the gradient of the input image. The magni‐
tude at location (i, j) is mag(i, j) = d x 2(i, j) + d y 2(i, j) and the angle is
Θ(i, j) = atan2(dy(i, j), dx(i, j)). Scan across the image and find places where
the magnitude is at or near maximum. Record the angle at these places. Average
the angles and report that as the measured line angle.
a. Do this for a 3 × 3 aperture Sobel filter.
b. Do this for a 5 × 5 filter.
c. Do this for a 9 × 9 filter.
d. Do the results change? If so, why?

298 | Chapter 10: Filters and Convolution

CHAPTER 11

General Image Transforms

Overview
In the previous chapters, we covered the class of image transformations that can be
understood specifically in terms of convolution. Of course, there are a lot of useful
operations that cannot be expressed in this way (i.e., as a little window scanning over
the image doing one thing or another). In general, transformations that can be
expressed as convolutions are local, meaning that even though they may change the
entire image, the effect on any particular pixel is determined by only a small number
of pixels around it. The transforms we will look at in this chapter generally will not
have this property.

Some very useful image transforms are simple, and you will use them all the time—
resize, for example. Others are for more specialized purposes. The image transforms
we will look at in this chapter convert one image into another. The output image will
often be a different size as the input, or will differ in other ways, but it will still be in
essence “a picture” in the same sense as the input. In Chapter 12, we will consider
operations that render images into some potentially entirely different representation.

There are a number of useful transforms that arise repeatedly in computer vision.
OpenCV provides complete implementations of some of the more common ones as
well as building blocks to help you implement your own, more complex, transforma‐
tions.

Stretch, Shrink, Warp, and Rotate
The simplest image transforms we will encounter are those that resize an image,
either to make it larger or smaller. These operations are a little less trivial than you

299

1 Either dsize must be cv::Size(0,0) or fx and fy must both be 0.

might think, because resizing immediately implies questions about how pixels are
interpolated (for enlargement) or merged (for reduction).

Uniform Resize
We often encounter an image of some size that we would like to convert to some
other size. We may want to upsize or downsize the image; both of these tasks are
accomplished by the same function.

cv::resize()

The cv::resize() function handles all of these resizing needs. We provide our input
image and the size we would like it converted to, and it will generate a new image of
the desired size.

void cv::resize(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 cv::Size dsize, // New size
 double fx = 0, // x-rescale
 double fy = 0, // y-rescale
 int interpolation = CV::INTER_LINEAR // interpolation method
);

We can specify the size of the output image in two ways. One way is to use absolute
sizing; in this case, the dsize argument directly sets the size we would like the result
image dst to be. The other option is to use relative sizing; in this case, we set dsize to
cv::Size(0,0), and set fx and fy to the scale factors we would like to apply to the x-
and y-axes, respectively.1 The last argument is the interpolation method, which
defaults to linear interpolation. The other available options are shown in Table 11-1.

Table 11-1. cv::resize() interpolation options

Interpolation Meaning
cv::INTER_NEAREST Nearest neighbor
cv::INTER_LINEAR Bilinear
cv::INTER_AREA Pixel area resampling
cv::INTER_CUBIC Bicubic interpolation
cv::INTER_LANCZOS4 Lanczos interpolation over 8 × 8 neighborhood.

Interpolation is an important issue here. Pixels in the source image sit on an integer
grid; for example, we can refer to a pixel at location (20, 17). When these integer loca‐
tions are mapped to a new image, there can be gaps—either because the integer

300 | Chapter 11: General Image Transforms

2 At least that’s what happens when cv::resize() shrinks an image. When it expands an image,
cv::INTER_AREA amounts to the same thing as cv::INTER_NEAREST.

3 The subtleties of the Lanczos filter are beyond the scope of this book, but this filter is commonly used in pro‐
cessing digital images because it has the effect of increasing the perceived sharpness of the image.

source pixel locations are mapped to float locations in the destination image and
must be rounded to the nearest integer pixel location, or because there are some loca‐
tions to which no pixels are mapped (think about doubling the image size by stretch‐
ing it; then every other destination pixel would be left blank). These problems are
generally referred to as forward projection problems. To deal with such rounding
problems and destination gaps, we actually solve the problem backward: we step
through each pixel of the destination image and ask, “Which pixels in the source are
needed to fill in this destination pixel?” These source pixels will almost always be on
fractional pixel locations, so we must interpolate the source pixels to derive the cor‐
rect value for our destination value. The default method is bilinear interpolation, but
you may choose other methods (as shown in Table 11-1).

The easiest approach is to take the resized pixel’s value from its closest pixel in the
source image; this is the effect of choosing the interpolation value cv::INTER_NEAR
EST. Alternatively, we can linearly weight the 2 × 2 surrounding source pixel values
according to how close they are to the destination pixel, which is what
cv::INTER_LINEAR does. We can also virtually place the new, resized pixel over the
old pixels and then average the covered pixel values, as done with cv::INTER_AREA.2

For yet smoother interpolation, we have the option of fitting a cubic spline between
the 4 × 4 surrounding pixels in the source image and then reading off the corre‐
sponding destination value from the fitted spline; this is the result of choosing the
cv::INTER_CUBIC interpolation method. Finally, we have the Lanczos interpolation,
which is similar to the cubic method, but uses information from an 8 × 8 area around
the pixel.3

It is important to notice the difference between cv::resize() and
the similarly named cv::Mat::resize() member function of the
cv::Mat class. cv::resize() creates a new image of a different
size, over which the original pixels are mapped. The
cv::Mat::resize() member function resizes the image whose
member you are calling, and crops that image to the new size. Pix‐
els are not interpolated (or extrapolated) in the case of
cv::Mat::resize().

Stretch, Shrink, Warp, and Rotate | 301

4 The +1s are there to make sure odd-sized images are handled correctly. They have no effect if the image was
even sized to begin with.

Image Pyramids
Image pyramids [Adelson84] are heavily used in a wide variety of vision applications.
An image pyramid is a collection of images—all arising from a single original image
—that are successively downsampled until some desired stopping point is reached.
(This stopping point could be a single-pixel image!)

There are two kinds of image pyramids that arise often in the literature and in appli‐
cations: the Gaussian [Rosenfeld80] and Laplacian [Burt83] pyramids [Adelson84].
The Gaussian pyramid is used to downsample images, and the Laplacian pyramid
(discussed shortly) is required when we want to reconstruct an upsampled image
from an image lower in the pyramid.

cv::pyrDown()
Normally, we produce layer (i + 1) in the Gaussian pyramid (we denote this layer
Gi+1) from layer Gi of the pyramid, by first convolving Gi with a Gaussian kernel and
then removing every even-numbered row and column. Of course, in this case, it fol‐
lows that each image is exactly one-quarter the area of its predecessor. Iterating this
process on the input image G0 produces the entire pyramid. OpenCV provides us
with a method for generating each pyramid stage from its predecessor:

void cv::pyrDown(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 const cv::Size& dstsize = cv::Size() // Output image size
);

The cv::pyrDown() method will do exactly this for us if we leave the destination size
argument dstsize set to its default value of cv::Size(). To be a little more specific,
the default size of the output image is ((src.cols+1)/2, (src.rows+1)/2).4

Alternatively, we can supply a dstsize, which will indicate the size we would like for
the output image; dstsize, however, must obey some very strict constraints. Specifi‐
cally:

| dstsize .width*2 − src.cols | ≤ 2

| dstsize .height *2 − src.rows | ≤ 2

This restriction means that the destination image is very close to half the size of the
source image. The dstsize argument is used only for handling somewhat esoteric
cases in which very tight control is needed on how the pyramid is constructed.

302 | Chapter 11: General Image Transforms

cv::buildPyramid()
It is a relatively common situation that you have an image and wish to build a
sequence of new images that are each downscaled from their predecessor. The func‐
tion cv::buildPyramid() creates such a stack of images for you in a single call.

void cv::buildPyramid(
 cv::InputArray src, // Input image
 cv::OutputArrayOfArrays dst, // Output images from pyramid
 int maxlevel // Number of pyramid levels
);

The argument src is the source image. The argument dst is of a somewhat unusual-
looking type cv::OutputArrayOfArrays, but you can think of this as just being an
STL vector<> or objects of type cv::OutputArray. The most common example of
this would be vector<cv::Mat>. The argument maxlevel indicates how many pyra‐
mid levels are to be constructed.

The argument maxlevel is any integer greater than or equal to 0, and indicates the
number of pyramid images to be generated. When cv::buildPyramid() runs, it will
return a vector in dst that is of length maxlevel+1. The first entry in dst will be iden‐
tical to src. The second will be half as large—that is, as would result from calling
cv::pyrDown(). The third will be half the size of the second, and so on (see the left‐
hand image in of Figure 11-1).

Figure 11-1. An image pyramid generated with maxlevel=3 (left); two pyramids inter‐
leaved together to create a 2 pyramid (right)

Stretch, Shrink, Warp, and Rotate | 303

5 This filter is also normalized to four, rather than to one. This is appropriate because the inserted rows have 0s
in all of their pixels before the convolution. (Normally, the sum of Gaussian kernel elements would be 1, but
in case of 2x pyramid upsampling—in the 2D case—all the kernel elements are multiplied by 4 to recover the
average brightness after the zero rows and columns are inserted.)

In practice, you will often want a pyramid with a finer logarithmic
scaling than factors of two. One way to achieve this is to simply call
cv::resize() yourself as many times as needed for whatever scale
factor you want to use—but this can be quite slow. An alternative
(for some common scale factors) is to call cv::resize() only once
for each interleaved set of images you want, and then call
cv::buildPyramid() on each of those resized “bases.” You can
then interleave these results together for one large, finer-grained
pyramid. Figure 11-1 (right) shows an example in which two pyra‐
mids are generated. The original image is first rescaled by a factor
of 2, and then cv::buildPyramid() is called on that one image to
make a second pyramid of four intermediate images. Once com‐
bined with the original pyramid, the result is a finer pyramid with a
scale factor of 2 across the entire pyramid.

cv::pyrUp()
Similarly, we can convert an existing image to an image that is twice as large in each
direction by the following analogous (but not inverse!) operation:

void cv::pyrUp(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 const cv::Size& dstsize = cv::Size() // Output image size
);

In this case, the image is first upsized to twice the original in each dimension, with
the new (even) rows filled with 0s. Thereafter, a convolution is performed with the
Gaussian filter5 to approximate the values of the “missing” pixels.

Analogous to cv::PyrDown(), if dstsize is set to its default value of cv::Size(), the
resulting image will be exactly twice the size (in each dimension) as src. Again, we
can supply a dstsize that will indicate the size we would like for the output image
dstsize, but it must again obey some very strict constraints. Specifically:

| dstsize .width*2 − src.cols | ≤ (dstsize .width%2)
| dstsize .height *2 − src.rows | ≤ (dstsize .height %2)

304 | Chapter 11: General Image Transforms

This restriction means that the destination image is very close to double the size of the
source image. As before, the dstsize argument is used only for handling somewhat
esoteric cases in which very tight control is needed over how the pyramid is construc‐
ted.

The Laplacian pyramid

We noted previously that the operator cv::pyrUp() is not the inverse of cv::pyr
Down(). This should be evident because cv::pyrDown() is an operator that loses
information. In order to restore the original (higher-resolution) image, we would
require access to the information that was discarded by the downsampling process.
This data forms the Laplacian pyramid. The ith layer of the Laplacian pyramid is
defined by the relation:

L i = Gi – UP(Gi+1)⊗ g5x5

Here the operator UP() upsizes by mapping each pixel in location (x, y) in the origi‐
nal image to pixel (2x + 1, 2y + 1) in the destination image; the ⊗ symbol denotes
convolution; and g5×5 is a 5 × 5 Gaussian kernel. Of course, UP(Gi+1)⊗g5×5 is the defi‐
nition of the cv::pyrUp() operator provided by OpenCV. Hence, we can use
OpenCV to compute the Laplacian operator directly as:

L i = Gi – pyrUp(Gi+1)

The Gaussian and Laplacian pyramids are shown diagrammatically in Figure 11-2,
which also shows the inverse process for recovering the original image from the sub‐
images. Note how the Laplacian is really an approximation that uses the difference of
Gaussians, as revealed in the preceding equation and diagrammed in the figure.

Stretch, Shrink, Warp, and Rotate | 305

6 We will cover these transformations in detail here, and will return to them in Chapter 19 when we discuss
how they can be used in the context of three-dimensional vision techniques.

7 This activity might seem a bit dodgy; after all, wouldn’t it be better to just use a recognition method that’s
invariant to local affine distortions? Nonetheless, this method has a long history and is quite useful in
practice.

Figure 11-2. The Gaussian pyramid and its inverse, the Laplacian pyramid

Nonuniform Mappings
In this section, we turn to geometric manipulations of images—that is, those transfor‐
mations that have their origin at the intersection of three-dimensional geometry and
projective geometry.6 Such manipulations include both uniform and nonuniform
resizing (the latter is known as warping). There are many reasons to perform these
operations: for example, warping and rotating an image so that it can be superim‐
posed on a wall in an existing scene or artificially enlarging a set of training images
used for object recognition.7 The functions that can stretch, shrink, warp, and/or
rotate an image are called geometric transforms (for an early exposition, see [Sem‐
ple79]). For planar areas, there are two flavors of geometric transforms: transforms
that use a 2 × 3 matrix, which are called affine transforms; and transforms based on a
3 × 3 matrix, which are called perspective transforms or homographies. You can think
of the latter transformation as a method for computing the way in which a plane in
three dimensions is perceived by a particular observer, who might not be looking at
that plane straight on.

306 | Chapter 11: General Image Transforms

8 One can even pull in such a manner as to invert the parallelogram.

9 Homography is the mathematical term for mapping points on one surface to points on another. In this sense,
it is a more general term than used here. In the context of computer vision, homography almost always refers
to mapping between points on two image planes that correspond to the same location on a planar object in
the real world. Such a mapping is representable by a single 3 × 3 orthogonal matrix (more on this in Chap‐
ter 19).

An affine transformation is any transformation that can be expressed in the form of a
matrix multiplication followed by a vector addition. In OpenCV, the standard style of
representing such a transformation is as a 2 × 3 matrix. We define:

You can easily see that the effect of the affine transformation A · X + B is exactly
equivalent to extending the vector X into the vector X′ and simply left-multiplying X′
by T.

Affine transformations can be visualized as follows: Any parallelogram ABCD in a
plane can be mapped to any other parallelogram A′B′C′D′ by some affine transforma‐
tion. If the areas of these parallelograms are nonzero, then the implied affine trans‐
formation is defined uniquely by (three vertices of) the two parallelograms. If you
like, you can think of an affine transformation as drawing your image into a big rub‐
ber sheet and then deforming the sheet by pushing or pulling8 on the corners to make
different kinds of parallelograms.

When we have multiple images that we know to be slightly different views of the
same object, we might want to compute the actual transforms that relate the different
views. In this case, affine transformations are often used, instead of perspective trans‐
forms, to model the views because they have fewer parameters and so are easier to
solve for. The downside is that true perspective distortions can be modeled only by a
homography,9 so affine transforms yield a representation that cannot accommodate
all possible relationships between the views. On the other hand, for small changes in
viewpoint the resulting distortion is affine, so in some circumstances, an affine trans‐
formation may be sufficient.

Affine transforms can convert rectangles to parallelograms. They can squash the
shape but must keep the sides parallel; they can rotate it and/or scale it. Perspective
transformations offer more flexibility; a perspective transform can turn a rectangle
into an arbitrary quadrangle. Figure 11-3 shows schematic examples of various affine
and perspective transformations; Figure 11-4, later in this chapter, shows such exam‐
ples using an image.

Stretch, Shrink, Warp, and Rotate | 307

Figure 11-3. Affine and perspective transformations

Affine Transformation
There are two situations that arise with affine transformations. In the first case, we
have an image (or a region of interest) we’d like to transform; in the second case, we
have a list of points for which we’d like to compute the result of a transformation.
These cases are very similar in concept, but quite different in terms of practical
implementation. As a result, OpenCV has two different functions for these situations.

cv::warpAffine(): Dense affine transformations
In the first case, the obvious input and output formats are images, and the implicit
requirement is that the warping assumes the pixels are a dense representation of the
underlying image. This means that image warping must necessarily handle interpola‐
tions so that the output images are smooth and look natural. The affine transforma‐
tion function provided by OpenCV for dense transformations is cv::warpAffine():

void cv::warpAffine(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 cv::InputArray M, // 2-by-3 transform mtx
 cv::Size dsize, // Destination image size
 int flags = cv::INTER_LINEAR, // Interpolation, inverse
 int borderMode = cv::BORDER_CONSTANT, // Pixel extrapolation
 const cv::Scalar& borderValue = cv::Scalar() // For constant borders
);

308 | Chapter 11: General Image Transforms

Here src and dst are your source and destination arrays, respectively. The input M is
the 2 × 3 matrix we introduced earlier that quantifies the desired transformation.
Each element in the destination array is computed from the element of the source
array at the location given by:

dst(x, y) = src(M00x + M01y + M02, M10x + M11y + M12)

In general, however, the location indicated by the righthand side of this equation will
not be an integer pixel. In this case, it is necessary to use interpolation to find an
appropriate value for dst(x, y). The next argument, flags, selects the interpolation
method. The available interpolation methods are those in Table 11-1, the same as
cv::resize(), plus one additional option, cv::WARP_INVERSE_MAP (which may be
added with the usual Boolean OR). This option is a convenience that allows for
inverse warping from dst to src instead of from src to dst. The final two arguments
are for border extrapolation, and have the same meaning as similar arguments in
image convolutions (see Chapter 10).

cv::getAffineTransform(): Computing an affine map matrix

OpenCV provides two functions to help you generate the map matrix M. The first is
used when you already have two images that you know to be related by an affine
transformation or that you’d like to approximate in that way:

cv::Mat cv::getAffineTransform(// Return 2-by-3 matrix
 const cv::Point2f* src, // Coordinates *three* of vertices
 const cv::Point2f* dst // Target coords, three vertices
);

Here src and dst are arrays containing three two-dimensional (x, y) points. The
return value is an array that is the affine transform computed from those points.

In essence, the arrays of points in src and dst in cv::getAffineTransform() define
two parallelograms. The points in src will be mapped by an application cv::warpAf
fine(), using the resulting matrix M, to the corresponding points in dst; all other
points will be dragged along for the ride. Once these three independent corners are
mapped, the mapping of all of the other points is completely determined.

Example 11-1 shows some code that uses these functions. In the example, we obtain
the cv::warpAffine() matrix parameters by first constructing two three-component
arrays of points (the corners of our representative parallelogram) and then convert
that to the actual transformation matrix using cv::getAffineTransform(). We then
do an affine warp followed by a rotation of the image. For our array of representative
points in the source image, called srcTri[], we take the three points: (0,0),
(0,height-1), and (width-1,0). We then specify the locations to which these points
will be mapped in the corresponding array dstTri[].

Stretch, Shrink, Warp, and Rotate | 309

Example 11-1. An affine transformation

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

int main(int argc, char** argv) {

 if(argc != 2) {
 cout << "Warp affine\nUsage: " <<argv[0] <<" <imagename>\n" << endl;
 return -1;
 }

 cv::Mat src = cv::imread(argv[1],1);
 if(src.empty()) { cout << "Can not load " << argv[1] << endl; return -1; }

 cv::Point3f srcTri[] = {
 cv::Point2f(0,0), // src Top left
 cv::Point2f(src.cols-1, 0), // src Top right
 cv::Point2f(0, src.rows-1) // src Bottom left
 };

 cv::Point2f dstTri[] = {
 cv::Point2f(src.cols*0.f, src.rows*0.33f), // dst Top left
 cv::Point2f(src.cols*0.85f, src.rows*0.25f), // dst Top right
 cv::Point2f(src.cols*0.15f, src.rows*0.7f) // dst Bottom left
 };

 // COMPUTE AFFINE MATRIX
 //
 cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
 cv::Mat dst, dst2;
 cv::warpAffine(
 src,
 dst,
 warp_mat,
 src.size(),
 cv::INTER_LINEAR,
 cv::BORDER_CONSTANT,
 cv::Scalar()
);
 for(int i = 0; i < 3; ++i)
 cv::circle(dst, dstTri[i], 5, cv::Scalar(255, 0, 255), -1, cv::AA);

 cv::imshow("Affine Transform Test", dst);
 cv::waitKey();

 for(int frame=0;;++frame) {

 // COMPUTE ROTATION MATRIX
 cv::Point2f center(src.cols*0.5f, src.rows*0.5f);

310 | Chapter 11: General Image Transforms

 double angle = frame*3 % 360, scale = (cos((angle - 60)* cv::PI/180) + 1.05)*0.8;

 cv::Mat rot_mat = cv::getRotationMatrix2D(center, angle, scale);

 cv::warpAffine(
 src,
 dst,
 rot_mat,
 src.size(),
 cv::INTER_LINEAR,
 cv::BORDER_CONSTANT,
 cv::Scalar()
);
 cv::imshow("Rotated Image", dst);
 if(cv::waitKey(30) >= 0)
 break;

 }

 return 0;
}

The second way to compute the map matrix M is to use cv::getRotationMatrix2D(),
which computes the map matrix for a rotation around some arbitrary point, com‐
bined with an optional rescaling. This is just one possible kind of affine transforma‐
tion, so it is less general than is cv::getAffineTransform(), but it represents an
important subset that has an alternative (and more intuitive) representation that’s
easier to work with in your head:

cv::Mat cv::getRotationMatrix2D(// Return 2-by-3 matrix
 cv::Point2f center // Center of rotation
 double angle, // Angle of rotation
 double scale // Rescale after rotation
);

The first argument, center, is the center point of the rotation. The next two argu‐
ments give the magnitude of the rotation and the overall rescaling. The function
returns the map matrix M, which (as always) is a 2 × 3 matrix of floating-point
numbers.

If we define α = scale * cos(angle) and β = scale * sin(angle), then this function com‐
putes the matrix M to be:

Stretch, Shrink, Warp, and Rotate | 311

You can combine these methods of setting the map_matrix to obtain, for example, an
image that is rotated, scaled, and warped.

cv::transform(): Sparse affine transformations

We have explained that cv::warpAffine() is the right way to handle dense map‐
pings. For sparse mappings (i.e., mappings of lists of individual points), it is best to
use cv::transform(). You will recall from Chapter 5 that the transform method has
the following prototype:

void cv::transform(
 cv::InputArray src, // Input N-by-1 array (Ds channels)
 cv::OutputArray dst, // Output N-by-1 array (Dd channels)
 cv::InputArray mtx // Transform matrix (Ds-by-Dd)
);

In general, src is an N × 1 array with Ds channels, where N is the number of points to
be transformed and Ds is the dimension of those source points. The output array dst
will be the same size but may have a different number of channels, Dd. The transfor‐
mation matrix mtx is a Ds × Dd matrix that is then applied to every element of src,
after which the results are placed into dst.

Note that cv::transform() acts on the channel indices of every
point in an array. For the current problem, we assume that the
array is essentially a large vector (N × 1 or 1 × N) of these multi‐
channel objects. The important thing to remember is that the index
that the transformation matrix is relative to is the channel index,
not the “vector” index of the large array.

In the case of transformations that are simple rotations in this channel space, our
transformation matrix mtx will be a 2 × 2 matrix only, and it can be applied directly
to the two-channel indices of src. In fact this is true for rotations, stretching, and
warping as well in some simple cases. Usually, however, to do a general affine trans‐
formation (including translations and rotations about arbitrary centers, and so on), it
is necessary to extend the number of channels in src to three, so that the action of the
more usual 2 × 3 affine transformation matrix is defined. In this case, all of the third-
channel entries must be set to 1 (i.e., the points must be supplied in homogeneous
coordinates). Of course, the output array will still be a two-channel array.

cv::invertAffineTransform(): Inverting an affine transformation
Given an affine transformation represented as a 2 × 3 matrix, it is often desirable to
be able to compute the inverse transformation, which can be used to “put back” all of
the transformed points to where they came from. This is done with cv::invertAffi
neTransform():

312 | Chapter 11: General Image Transforms

void cv::invertAffineTransform(
 cv::InputArray M, // Input 2-by-3 matrix
 cv::OutputArray iM // Output also a 2-by-3 matrix
);

This function takes a 2 × 3 array M and returns another 2 × 3 array iM that inverts M.
Note that cv::invertAffineTransform() does not actually act on any image, it just
supplies the inverse transform. Once you have iM, you can use it as you would have
used M, with either cv::warpAffine() or cv::transform().

Perspective Transformation
To gain the greater flexibility offered by perspective transforms (also called homogra‐
phies), we need a new function that will allow us to express this broader class of trans‐
formations. First we remark that, even though a perspective projection is specified
completely by a single matrix, the projection is not actually a linear transformation.
This is because the transformation requires division by the final dimension (usually
Z; see Chapter 19) and thus loses a dimension in the process.

As with affine transformations, image operations (dense transformations) are han‐
dled by different functions than transformations on point sets (sparse transforma‐
tions).

cv::warpPerspective(): Dense perspective transform
The dense perspective transform uses an OpenCV function that is analogous to the
one provided for dense affine transformations. Specifically, cv::warpPerspective()
has all of the same arguments as cv::warpAffine(), except with the small, but cru‐
cial, distinction that the map matrix must now be 3 × 3.

void cv::warpPerspective(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 cv::InputArray M, // 3-by-3 transform mtx
 cv::Size dsize, // Destination image size
 int flags = cv::INTER_LINEAR, // Interpolation, inverse
 int borderMode = cv::BORDER_CONSTANT, // Extrapolation method
 const cv::Scalar& borderValue = cv::Scalar() // For constant borders
);

Each element in the destination array is computed from the element of the source
array at the location given by:

dst(x, y) = src(M00x + M01y + M02

M20x + M21y + M22
,

M10x + M11y + M12

M20x + M21y + M22
)

Stretch, Shrink, Warp, and Rotate | 313

As with the affine transformation, the location indicated by the right side of this
equation will not (generally) be an integer location. Again the flags argument is
used to select the desired interpolation method, and has the same possible values as
the corresponding argument to cv::warpAffine().

cv::getPerspectiveTransform(): Computing the perspective map matrix

As with the affine transformation, for filling the map_matrix in the preceding code,
we have a convenience function that can compute the transformation matrix from a
list of point correspondences:

cv::Mat cv::getPerspectiveTransform(// Return 3-by-3 matrix
 const cv::Point2f* src, // Coordinates of *four* vertices
 const cv::Point2f* dst // Target coords, four vertices
);

The src and dst argument are now arrays of four (not three) points, so we can inde‐
pendently control how the corners of (typically) a rectangle in src are mapped to
(generally) some rhombus in dst. Our transformation is completely defined by the
specified destinations of the four source points. As mentioned earlier, for perspective
transformations, the return value will be a 3 × 3 array; see Example 11-2 for sample
code. Other than the 3 × 3 matrix and the shift from three to four control points, the
perspective transformation is otherwise exactly analogous to the affine transforma‐
tion we already introduced.

Example 11-2. Code for perspective transformation

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

int main(int argc, char** argv) {

 if(argc != 2) {
 cout << "Perspective Warp\nUsage: " <<argv[0] <<" <imagename>\n" << endl;
 return -1;
 }

 Mat src = cv::imread(argv[1],1);
 if(src.empty()) { cout << "Can not load " << argv[1] << endl; return -1; }

 cv::Point2f srcQuad[] = {
 cv::Point2f(0, 0), // src Top left
 cv::Point2f(src.cols-1, 0), // src Top right
 cv::Point2f(src.cols-1, src.rows-1), // src Bottom right
 cv::Point2f(0, src.rows-1) // src Bottom left
 };

314 | Chapter 11: General Image Transforms

 cv::Point2f dstQuad[] = {
 cv::Point2f(src.cols*0.05f, src.rows*0.33f),
 cv::Point2f(src.cols*0.9f, src.rows*0.25f),
 cv::Point2f(src.cols*0.8f, src.rows*0.9f),
 cv::Point2f(src.cols*0.2f, src.rows*0.7f)
 };

 // COMPUTE PERSPECTIVE MATRIX
 //
 cv::Mat warp_mat = cv::getPerspectiveTransform(srcQuad, dstQuad);
 cv::Mat dst;
 cv::warpPerspective(src, dst, warp_mat, src.size(), cv::INTER_LINEAR,
 cv::BORDER_CONSTANT, cv::Scalar());

 for(int i = 0; i < 4; i++)
 cv::circle(dst, dstQuad[i], 5, cv::Scalar(255, 0, 255), -1, cv::AA);

 cv::imshow("Perspective Transform Test", dst);
 cv::waitKey();
 return 0;

}

cv::perspectiveTransform(): Sparse perspective transformations

cv::perspectiveTransform() is a special function that performs perspective trans‐
formations on lists of points. Because cv::transform() is limited to linear opera‐
tions, it cannot properly handle perspective transforms. This is because such
transformations require division by the third coordinate of the homogeneous repre‐
sentation (x = f *X/Z,y = f * Y/Z). The special function cv::perspectiveTransform()
takes care of this for us:

void cv::perspectiveTransform(
 cv::InputArray src, // Input N-by-1 array (2 or 3 channels)
 cv::OutputArray dst, // Output N-by-1 array (2 or 3 channels)
 cv::InputArray mtx // Transform matrix (3-by-3 or 4-by-4)
);

As usual, the src and dst arguments are, respectively, the array of source points to be
transformed and the array of destination points resulting from the transformation.
These arrays should be two- or three-channel arrays. The matrix mat can be either a 3
× 3 or a 4 × 4 matrix. If it is 3 × 3, then the projection is from two dimensions to two;
if the matrix is 4 × 4, then the projection is from three dimensions to three.

In the current context, we are transforming a set of points in an image to another set
of points in an image, which sounds like a mapping from two dimensions to two
dimensions. This is not exactly correct, however, because the perspective transforma‐
tion is actually mapping points on a two-dimensional plane embedded in a three-
dimensional space back down to a (different) two-dimensional subspace. Think of

Stretch, Shrink, Warp, and Rotate | 315

this as being just what a camera does. (We will return to this topic in greater detail
when discussing cameras in later chapters.) The camera takes points in three dimen‐
sions and maps them to the two dimensions of the camera imager. This is essentially
what is meant when the source points are taken to be in “homogeneous coordinates.”
We are adding a dimension to those points by introducing the Z dimension and then
setting all of the Z values to 1. The projective transformation is then projecting back
out of that space onto the two-dimensional space of our output. This is a rather long-
winded way of explaining why, when mapping points in one image to points in
another, you will need a 3 × 3 matrix.

Outputs of the code in Examples 11-1 and 11-2 are shown in Figure 11-4 for affine
and perspective transformations. In these examples, we transform actual images; you
can compare these with the simple diagrams back in Figure 11-3.

Figure 11-4. Perspective and affine mapping of an image

General Remappings
The affine and perspective transformations we have seen so far are actually specific
cases of a more general process. Under the hood, those two transformations both
have the same basic behavior: they take pixels from one place in the source image and
map them to another place in the destination image. In fact, there are other useful
operations that have the same structure. In this section, we will look at another few
transformations of this kind, and then look at how OpenCV makes it possible to
implement your own general mapping transformations.

316 | Chapter 11: General Image Transforms

10 If you are not familiar with the concept of a vector field, it is sufficient for our purposes to think of this as a
two-component vector associated with every point in “image.”

Polar Mappings
In Chapter 5, we briefly encountered two functions, cv::cartToPolar() and
cv::polarToCart(), which could be used to convert arrays of points in an x, y Car‐
tesian representation to (or from) arrays of points in an r–θ polar representation.

There is a slight style inconsistency here between the polar map‐
ping functions and the perspective and affine transformation func‐
tions. The polar mapping functions expect pairs of single-channel
arrays, rather than double-channel arrays, as their way of repre‐
senting two-dimensional vectors. This difference stems from the
way the two functions are traditionally used, rather than any
intrinsic difference between what they are doing.

The functions cv::cartToPolar() and cv::polarToCart() are employed by more
complex routines such as cv::logPolar() (described later) but are also useful in
their own right.

cv::cartToPolar(): Converting from Cartesian to polar coordinates
To map from Cartesian coordinates to polar coordinates, we use the function
cv::cartToPolar():

void cv::cartToPolar(
 cv::InputArray x, // Input single channel x-array
 cv::InputArray y, // Input single channel y-array
 cv::OutputArray magnitude, // Output single channel mag-array
 cv::OutputArray angle, // Output single channel angle-array
 bool angleInDegrees = false // Set true for degrees, else radians
);

The first two arguments x, and y, are single-channel arrays. Conceptually, what is
being represented here is not just a list of points, but a vector field10—with the x-
component of the vector field at any given point being represented by the value of the
array x at that point, and the y-component of the vector field at any given point being
represented by the value of the array y at that point. Similarly, the result of this func‐
tion appears in the arrays magnitude and angle, with each point in magnitude repre‐
senting the length of the vector at that point in x and y, and each point in angle
representing the orientation of that vector. The angles recorded in angle will, by
default, be in radians—that is, [0, 2π). If the argument angleInDegrees is set to true,
however, then the angles array will be recorded in degrees [0, 360). Also note that the

General Remappings | 317

angles are computed using (approximately) atan2(y,x), so an angle of 0 corresponds
to a vector pointing in the direction.

As an example of where you might use this function, suppose you have already taken
the x- and y-derivatives of an image, either by using cv::Sobel() or by using convo‐
lution functions via cv::DFT() or cv::filter2D(). If you stored the x-derivatives in
an image dx_img and the y-derivatives in dy_img, you could now create an edge-angle
recognition histogram; that is, you could collect all the angles provided the magni‐
tude or strength of the edge pixel is above some desired threshold. To calculate this,
we would first create two new destination images (and call them img_mag and
img_angle, for example) for the directional derivatives and then use the function
cvCartToPolar(dx_img, dy_img, img_mag, img_angle, 1). We would then fill a
histogram from img_angle as long as the corresponding “pixel” in img_mag is above
our desired threshold.

In Chapter 22, we will discuss image recognition and image fea‐
tures. This process is actually the basis of how an important image
feature used in object recognition, called HOG (histogram of ori‐
ented gradients), is calculated.

cv::polarToCart(): Converting from polar to Cartesian coordinates

The function cv::cartToPolar() performs the reverse mapping from polar coordi‐
nates to Cartesian coordinates.

void cv::polarToCart(
 cv::InputArray magnitude, // Output single channel mag-array
 cv::InputArray angle, // Output single channel angle-array
 cv::OutputArray x, // Input single channel x-array
 cv::OutputArray y, // Input single channel y-array
 bool angleInDegrees = false // Set true for degrees, else radians
);

The inverse operation is also often useful, allowing us to convert from polar back to
Cartesian coordinates. It takes essentially the same arguments as cv::cartToPolar(),
with the exception that magnitude and angle are now inputs, and x and y are now
the results.

LogPolar
For two-dimensional images, the log-polar transform [Schwartz80] is a change from
Cartesian to log-polar coordinates: (x, y) ↔ re iθ, where r = x 2 + y 2 and θ = atan2(y, x).
Next, to separate out the polar coordinates into a (ρ, θ) space that is relative to some
center point (xc, yc), we take the log so that ρ = log((x − xc)2 + (y − yc)2) and
θ = atan2(y − yc, x − xc). For image purposes—when we need to “fit” the interesting

318 | Chapter 11: General Image Transforms

stuff into the available image memory—we typically apply a scaling factor m to ρ.
Figure 11-5 shows a square object on the left and its encoding in log-polar space.

Figure 11-5. The log-polar transform maps (x, y) into (log(r),θ); here, a square is dis‐
played in the log-polar coordinate system

You might be wondering why anyone would want to do this. The log-polar transform
takes its inspiration from the human visual system. Your eye has a small but dense
area of photoreceptors in its center (the fovea), and the density of receptors falls off
rapidly (exponentially) from there. Try staring at a spot on the wall and holding your
finger at arm’s length in your line of sight. Then, keep staring at the spot while slowly
moving your finger away from your face; note how the detail rapidly decreases as the
image of your finger on your retina moves away from your fovea. This structure also
has certain nice mathematical properties (beyond the scope of this book) that con‐
cern preserving the angles of line intersections.

More important for us is that the log-polar transform can be used to create two-
dimensional invariant representations of object views by shifting the transformed
image’s center of mass to a fixed point in the log-polar plane; see Figure 11-6. On the
left are three shapes that we want to recognize as “square.” The problem is, they look
very different. One is much larger than the others and another is rotated. The log-
polar transform appears on the right in Figure 11-6. Observe that size differences in
the (x, y) plane are converted to shifts along the log(r) axis of the log-polar plane and
that the rotation differences are converted to shifts along the θ-axis in the log-polar
plane. If we take the transformed center of each square in the log-polar plane and
then recenter that point to a certain fixed position, then all the squares will show up

General Remappings | 319

11 In Chapter 22, we’ll learn about recognition. For now, simply note that it wouldn’t be a good idea to derive a
log-polar transform for a whole object because such transforms are quite sensitive to the exact location of
their center points. What is more likely to work for object recognition is to detect a collection of key points
(such as corners or blob locations) around an object, truncate the extent of such views, and then use the cen‐
ters of those key points as log-polar centers. These local log-polar transforms could then be used to create
local features that are (partially) scale- and rotation-invariant and that can be associated with a visual object.

identically in the log-polar plane. This yields a type of invariance to two-dimensional
rotation and scaling.11

Figure 11-6. Log-polar transform of rotated and scaled squares: size goes to a shift on
the log(r) axis and rotation to a shift on the θ-axis

cv::logPolar()

The OpenCV function for a log-polar transform is cv::logPolar():

void cv::logPolar(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Output image
 cv::Point2f center, // Center of transform
 double m, // Scale factor
 int flags = cv::INTER_LINEAR // interpolation and fill modes
 | cv::WARP_FILL_OUTLIERS
);

The src and dst are the usual input and output images. The parameter center is the
center point (xc, yc) of the log-polar transform; m is the scale factor, which should be
set so that the features of interest dominate the available image area. The flags
parameter allows for different interpolation methods. The interpolation methods are

320 | Chapter 11: General Image Transforms

the same set of standard interpolations available in OpenCV (see Table 11-1). The
interpolation methods can be combined with either or both of the flags
CV::WARP_FILL_OUTLIERS (to fill points that would otherwise be undefined) or
CV::WARP_INVERSE_MAP (to compute the reverse mapping from log-polar to Cartesian
coordinates).

Sample log-polar coding is given in Example 11-3, which demonstrates the forward
and backward (inverse) log-polar transform. The results on a photographic image are
shown in Figure 11-7.

Figure 11-7. Log-polar example on an elk with transform centered at the white circle on
the left; the output is on the right

Example 11-3. Log-polar transform example

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

int main(int argc, char** argv) {

 if(argc != 3) {
 cout << "LogPolar\nUsage: " <<argv[0] <<" <imagename> <M value>\n"
 <<"<M value>~30 is usually good enough\n";
 return -1;
 }

 cv::Mat src = cv::imread(argv[1],1);

 if(src.empty()) { cout << "Can not load " << argv[1] << endl; return -1; }

General Remappings | 321

 double M = atof(argv[2]);
 cv::Mat dst(src.size(), src.type()), src2(src.size(), src.type());

 cv::logPolar(
 src,
 dst,
 cv::Point2f(src.cols*0.5f, src.rows*0.5f),
 M,
 cv::INTER_LINEAR | cv::WARP_FILL_OUTLIERS
);
 cv::logPolar(
 dst,
 src2,
 cv::Point2f(src.cols*0.5f, src.rows*0.5f),
 M,
 cv::INTER_LINEAR | cv::WARP_INVERSE_MAP
);
 cv::imshow("log-polar", dst);
 cv::imshow("inverse log-polar", src2);

 cv::waitKey();

 return 0;
}

Arbitrary Mappings
We sometimes want to accomplish interpolation programmatically; that is, we’d like
to apply some known algorithm that will determine the mapping. In other cases,
however, we’d like to do this mapping ourselves. Before diving into some methods
that will compute (and apply) these mappings for us, let’s take a moment to look at
the function responsible for applying the mappings that these other methods rely
upon.

One common use of cv::remap() is to rectify (correct distortions in) calibrated and
stereo images. We will see functions in Chapters 18 and 19 that convert calculated
camera distortions and alignments into mapx and mapy parameters.

The OpenCV function we want is called cv:remap().

cv::remap(): General image remapping
void cv::remap(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Output image
 cv::InputArray map1, // target x for src pix
 cv::InputArray map2, // target y for src pix
 int interpolation = cv::INTER_LINEAR, // Interpolation, inverse
 int borderMode = cv::BORDER_CONSTANT, // Extrapolation method

322 | Chapter 11: General Image Transforms

 const cv::Scalar& borderValue = cv::Scalar() // For constant borders
);

The first two arguments of cv::remap() are the source and destination images,
respectively. The next two arguments, map1 and map2, indicate the target x and y loca‐
tions, respectively, where any particular pixel is to be relocated. This is how you spec‐
ify your own general mapping. These should be the same size as the source and
destination images, and must be one of the following data types: CV::S16C2,
CV::F32C1, or CV::F32C2. Noninteger mappings are allowed: cv::remap() will do the
interpolation calculations for you automatically.

The next argument, interpolation, contains flags that tell cv::remap() exactly how
that interpolation is to be done. Any one of the values listed in Table 11-1 will work—
except for cv::INTER_AREA, which is not implemented for cv::remap().

Image Repair
Images are often corrupted by noise. There may be dust or water spots on a lens,
scratches on older images, or parts of an image that were vandalized. Inpainting
[Telea04] is a method for removing such damage by taking the color and texture at
the border of the damaged area and propagating and mixing it inside the damaged
area. See Figure 11-8 for an application that involves the removal of writing from an
image.

Figure 11-8. An image damaged by overwritten text (left) is restored by inpainting
(right)

Image Repair | 323

Inpainting
Inpainting works provided the damaged area is not too “thick” and enough of the
original texture and color remains around the boundaries of the damage. Figure 11-9
shows what happens when the damaged area is too large.

Figure 11-9. Inpainting cannot magically restore textures that are completely removed:
the navel of the orange has been completely blotted out (left); inpainting fills it back in
with mostly orangelike texture (right)

The prototype for cv::inpaint() is:

void cv::inpaint(
 cv::InputArray src, // Input image: 8-bit, 1 or 3 channels
 cv::InputArray inpaintMask, // 8-bit, 1 channel. Inpaint nonzeros
 cv::OutputArray dst, // Result image
 double inpaintRadius, // Range to consider around pixel
 int flags // Select NS or TELEA
);

Here src is an 8-bit, single-channel, grayscale image or a three-channel color image
to be repaired, and inpaintMask is an 8-bit, single-channel image of the same size as
src in which the damaged areas (e.g., the writing seen in the left panel of Figure 11-8)
have been marked by nonzero pixels; all other pixels are set to 0 in inpaintMask. The
output image will be written to dst, which must have the same size and number of
channels as src. The inpaintRadius is the area around each inpainted pixel that will
be factored into the resulting output color of that pixel. As in Figure 11-9, interior
pixels within a thick enough inpainted region may take their color entirely from
other inpainted pixels closer to the boundaries. Almost always, one uses a small
radius such as 3 because too large a radius will result in a noticeable blur. Finally, the
flags parameter allows you to experiment with two different methods of inpainting:

324 | Chapter 11: General Image Transforms

cv::INPAINT_NS (Navier-Stokes method), and cv::INPAINT_TELEA (A. Telea’s
method).

Denoising
Another important problem that arises is noise in the image. In many applications,
the primary source of noise arises from effects of low-light conditions. In low light,
the gain of a digital imager must be increased and the result is that noise is also
amplified. The character of this kind of noise is typically random isolated pixels that
appear either too bright or too dark, but discoloration is also possible in color images.

The denoising algorithm implemented in OpenCV is called Fast Non-Local Means
Denoising (FNLMD), and is based on work by Antoni Buades, Bartomeu Coll, and
Jean-Michel Morel [Buades05]. While simple denoising algorithms essentially rely on
averaging individual pixels with their neighbors, the central concept of FNLMD is to
look for similar pixels elsewhere in the image, and average among those. In this con‐
text, a pixel is considered to be a similar pixel not because it is similar in color or
intensity, but because it is similar in environment. The key logic here is that many
images contain repetitive structures, and so even if your pixel is corrupted by noise,
there will be many other similar pixels that are not.

The identification of similar pixels proceeds based on a window B(p, s) centered on
pixel p and of size s. Given such a window around the point we wish to update, we
can compare that window with an analogous window around some other pixel q. We
define the square distance between B(p, s) and B(q, s) to be:

d2(B(p, s), B(q, s)) =
1

3(2s + 1) ∑
c=1

3
∑

jεB(0,s)
(Ic(p + j) – Ic(q + j))2

Where c is the color index, Ic(p) is the intensity of the image in channel c at point p,
and the summation over j is over the elements of the patch. From this square dis‐
tance, a weight can be assigned to every other pixel relative to the pixel currently
being updated. This weight is given by the formula:

w(p, q) = e
−

max(d2−2σ2,0.0)
h2

In this weight function, σ is the standard deviation expected in the noise (in intensity
units), and h is a generic filtering parameter that determines how quickly patches will
become irrelevant as their square distance grows from the patch we are updating. In
general, increasing the value of h will increase the noise removed but at the expense
of some of the image detail. Decreasing the value of h will preserve detail, but also
more of the noise.

Image Repair | 325

12 There is one subtlety here, which is that the weight of the contribution of the pixel p in its own recalculation
would be w(p, p) = e0 = 1. In general this results in too high a weight relative to other similar pixels and very
little change occurs in the value at p. For this reason, the weight at p is normally chosen to be the maximum of
the weights of the pixels within the area B(p, s).

13 Note that though this image allows for multiple channels, it is not the best way to handle color images. For
color images, it is better to use cv::fastNlMeansDenoisingColored().

Typically, there is a decreasing return in considering patches very far away (in pixel
units) from the pixel being updated, as the number of such patches increases quad‐
ratically with the distance allowed. For this reason, normally an overall area, called
the search window, is defined and only patches in the search window contribute to
the update. The update of the current pixel is then given by a simple weighted aver‐
age of all other pixels in the search window using the given exponentially decaying
weight function.12 This is why the algorithm is called “non-local”; the patches that
contribute to the repair of a given pixel are only loosely correlated to the location of
the pixel being recomputed.

The OpenCV implementation of FNLMD contains several different functions, each
of which applies to slightly different circumstances.

Basic FNLMD with cv::fastNlMeansDenoising()
void cv::fastNlMeansDenoising(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Output image
 float h = 3, // Weight decay parameter
 int templateWindowSize = 7, // Size of patches used for comparison
 int searchWindowSize = 21 // Maximum patch distance to consider
);

The first of these four functions, cv::fastNlMeansDenoising(), implements the
algorithm as described exactly. We compute the result array dst from the input array
src using a patch area of templateWindowSize and a decay parameter of h, and
patches inside of searchWindowSize distance are considered. The image may be
one-, two-, or three-channel, but must be or type cv::U8.13 Table 11-2 lists some val‐
ues, provided from the authors of the algorithm, that you can use to help set the
decay parameter, h.

326 | Chapter 11: General Image Transforms

Table 11-2. Recommended values for cv::fastNlMeansDenoising() for grayscale images

Noise: σ Patch size: s Search window Decay parameter: h
0 < σ ≤ 15 3 × 3 21 × 21 0.40 · σ
15 < σ ≤ 30 5 × 5 21 × 21 0.40 · σ
30 < σ ≤ 45 7 × 7 35 × 35 0.35 · σ
45 < σ ≤ 75 9 × 9 35 × 35 0.35 · σ
75 < σ ≤ 100 11 × 11 35 × 35 0.30 · σ

FNLMD on color images with cv::fastNlMeansDenoisingColor()
void cv::fastNlMeansDenoisingColored(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Output image
 float h = 3, // Luminosity weight decay parameter
 float hColor = 3, // Color weight decay parameter
 int templateWindowSize = 7, // Size of patches used for comparison
 int searchWindowSize = 21 // Maximum patch distance to consider
);

The second variation of the FNLMD algorithm is used for color images. It accepts
only images of type cv::U8C3. Though it would be possible in principle to apply the
algorithm more or less directly to an RGB image, in practice it is better to convert the
image to a different color space for the computation. The function cv::fastNlMeans
DenoisingColored() first converts the image to the LAB color space, then applies the
FNLMD algorithm, then converts the result back to RGB. The primary advantage of
this is that in color there are, in effect, three decay parameters. In an RGB representa‐
tion, however, it would be unlikely that you would want to set any of them to distinct
values. But in the LAB space, it is natural to assign a different decay parameter to the
luminosity component than to the color components. The function cv::fastNlMeans
DenoisingColored() allows you to do just that. The parameter h is used for the lumi‐
nosity decay parameter, while the new parameter hColor is used for the color
channels. In general, the value of hColor will be quite a bit smaller than h. In most
contexts, 10 is a suitable value. Table 11-3 lists some values that you can use to help
set the decay parameter, h.

Table 11-3. Recommended values for cv::fastNlMeansDenoising() for color images

Noise: σ Patch size: s Search window Decay parameter: h
0 < σ ≤ 25 3 × 3 21 × 21 0.55 · σ
25 < σ ≤ 55 5 × 5 35 × 35 0.40 · σ
55 < σ ≤ 100 7 × 7 35 × 35 0.35 · σ

Image Repair | 327

FNLMD on video with cv::fastNlMeansDenoisingMulti() and
cv::fastNlMeansDenoisingColorMulti()

void cv::fastNlMeansDenoisingMulti(
 cv::InputArrayOfArrays srcImgs, // Sequence of several images
 cv::OutputArray dst, // Output image
 int imgToDenoiseIndex, // Index of image to denoise
 int temporalWindowSize, // Num images to use (odd)
 float h = 3, // Weight decay parameter
 int templateWindowSize = 7, // Size of comparison patches
 int searchWindowSize = 21 // Maximum patch distance
);
void cv::fastNlMeansDenoisingColoredMulti(
 cv::InputArrayOfArrays srcImgs, // Sequence of several images
 cv::OutputArray dst, // Output image
 int imgToDenoiseIndex, // Index of image to denoise
 int temporalWindowSize, // Num images to use (odd)
 float h = 3, // Weight decay param
 float hColor = 3, // Weight decay param for color
 int templateWindowSize = 7, // Size of comparison patches
 int searchWindowSize = 21 // Maximum patch distance
);

The third and fourth variations are used for sequential images, such as those that
might be captured from video. In the case of sequential images, it is natural to imag‐
ine that frames other than just the current one might contain useful information for
denoising a pixel. In most applications the noise will not be constant between images,
while the signal will likely be similar or even identical. The functions cv::fastNl
MeansDenoisingMulti() and cv::fastNlMeansDenoisingColorMulti() expect an
 array of images, srcImgs, rather than a single image. Additionally, they must be told
which image in the sequence is actually to be denoised; this is done with the parame‐
ter imgToDenoiseIndex. Finally, a temporal window must be provided that indicates
the number of images from the sequence to be used in the denoising. This parameter
must be odd, and the implied window is always centered on imgToDenoiseIndex.
(Thus, if you were to set imgToDenoiseIndex to 4 and temporalWindowSize to 5, the
images that would be used in the denoising would be 2, 3, 4, 5, and 6.)

Histogram Equalization
Cameras and image sensors must not only accommodate the naturally occurring
contrast in a scene but also manage the image sensors’ exposure to the available light
levels. In a standard camera, the shutter and lens aperture settings are used to ensure
that sensors receive neither too much nor too little light. However, the range of con‐
trasts in a particular image is often too much for the sensor’s available dynamic
range. As a result, there is a trade-off between capturing the dark areas (e.g., shad‐
ows), which require a longer exposure time, and the bright areas, which require

328 | Chapter 11: General Image Transforms

14 Histogram equalization is an old mathematical technique; its use in image processing is described in various
textbooks [Jain86; Russ02; Acharya05], conference papers [Schwarz78], and even in biological vision [Laugh‐
lin81]. If you are wondering why histogram equalization is not in the chapter on histograms (Chapter 13), it
is because histogram equalization makes no explicit use of any histogram data types. Although histograms are
used internally, the function (from the user’s perspective) requires no histograms at all.

shorter exposure to avoid saturating “whiteouts.” In many cases, both cannot be done
effectively in the same image.

After the picture has been taken, there’s nothing we can do about what the sensor
recorded; however, we can still take what’s there and try to expand the dynamic range
of the image to increase its contrast. The most commonly used technique for this is
histogram equalization.14 In Figure 11-10, we can see that the image on the left is poor
because there’s not much variation of the range of values. This is evident from the
histogram of its intensity values on the right. Because we are dealing with an 8-bit
image, its intensity values can range from 0 to 255, but the histogram shows that the
actual intensity values are all clustered near the middle of the available range. Histo‐
gram equalization is a method for stretching this range out.

Figure 11-10. The image on the left has poor contrast, as is confirmed by the histogram
of its intensity values on the right

The underlying math behind histogram equalization involves mapping one distribu‐
tion (the given histogram of intensity values) to another distribution (a wider and,
ideally, uniform distribution of intensity values). That is, we want to spread out the y
values of the original distribution as evenly as possible in the new distribution. It
turns out that there is a good answer to the problem of spreading out distribution
values: the remapping function should be the cumulative distribution function. An
example of the cumulative distribution function is shown in Figure 11-11 for the
somewhat idealized case of a density distribution that was originally pure Gaussian.
However, cumulative density can be applied to any distribution; it is just the running
sum of the original distribution from its negative to its positive bounds.

Histogram Equalization | 329

Figure 11-11. Result of cumulative distribution function (left) computed for a Gaussian
distribution (right)

We may use the cumulative distribution function to remap the original distribution
to an equally spread distribution (see Figure 11-12) simply by looking up each y value
in the original distribution and seeing where it should go in the equalized distribu‐
tion. For continuous distributions the result will be an exact equalization, but for
digitized/discrete distributions the results may be far from uniform.

Figure 11-12. Using the cumulative density function to equalize a Gaussian
distribution

330 | Chapter 11: General Image Transforms

15 In practice, separately applying histogram equalization to each channel in an RGB image is not likely to give
aesthetically satisfying results. It is probably better to convert to a more suitable space, such as LAB, and then
apply histogram equalization only to the luminosity channel.

Applying this equalization process to Figure 11-10 yields the equalized intensity dis‐
tribution histogram and resulting image in Figure 11-13.

Figure 11-13. Histogram equalized results: the spectrum has been spread out

cv::equalizeHist(): Contrast equalization
OpenCV wraps this whole process up in one neat function.

void cv::equalizeHist(
 const cv::InputArray src, // Input image
 cv::OutputArray dst // Result image
);

In cv::equalizeHist(), the source src must be a single-channel, 8-bit image. The
destination image dst will be the same. For color images, you will have to separate
the channels and process them one by one.15

Summary
In this chapter, we learned a variety of methods that can be used to transform images.
These transformations included scale transformations, as well as affine and perspec‐
tive transformations. We learned how to remap vector functions from Cartesian to
polar representations. What all of these functions have in common is their conver‐
sion of one image into another through a global operation on the entire image. We
saw one function that could handle even the most general remapping, relative to
which many of the functions discussed earlier in the chapter could be seen as special
cases.

Summary | 331

We also encountered some algorithms that are useful in computational photography,
such as inpainting, denoising, and histogram equalization. These algorithms are use‐
ful for handling images from camera and video streams generally, and are often
handy when you want to implement other computer vision techniques on top of
grainy or otherwise poor-quality video data.

Exercises
1. Find and load a picture of a face where the face is frontal, has eyes open, and

takes up most or all of the image area. Write code to find the pupils of the eyes.

A Laplacian “likes” a bright central point surrounded by dark.
Pupils are just the opposite. Invert and convolve with a suffi‐
ciently large Laplacian.

2. Look at the diagrams of how the log-polar function transforms a square into a
wavy line.
a. Draw the log-polar results if the log-polar center point were sitting on one of

the corners of the square.
b. What would a circle look like in a log-polar transform if the center point were

inside the circle and close to the edge?
c. Draw what the transform would look like if the center point were sitting just

outside of the circle.
3. A log-polar transform takes shapes of different rotations and sizes into a space

where these correspond to shifts in the θ-axis and log(r) axis. The Fourier trans‐
form is translation invariant. How can we use these facts to force shapes of differ‐
ent sizes and rotations to automatically give equivalent representations in the
log-polar domain?

4. Draw separate pictures of large, small, large rotated, and small rotated squares.
Take the log-polar transform of these each separately. Code up a two-
dimensional shifter that takes the center point in the resulting log-polar domain
and shifts the shapes to be as identical as possible.

5. Load an image, take a perspective transform, and then rotate it. Can this trans‐
form be done in one step?

6. Inpainting works pretty well for the repair of writing over textured regions. What
would happen if the writing obscured a real object edge in a picture? Try it.

332 | Chapter 11: General Image Transforms

7. Practice histogram equalization on images that you load in, and report the
results.

8. Explain the difference between histogram equalization of an image and denois‐
ing an image.

Exercises | 333

CHAPTER 12

Image Analysis

Overview
In the preceding chapter, we learned about the image transformations that OpenCV
makes available to us. These transformations were essentially mappings that con‐
verted an input image into an output image such that the output remained, essen‐
tially, a picture, just like the input. In this chapter we will consider operations that
render images into some potentially entirely different representation.

These new representations will usually still be arrays of values, but those values might
be quite different in meaning than the intensity values in the input image. For exam‐
ple, the first function we will consider is the discrete Fourier transform, in which the
output “image,” though still an array, contains a frequency representation of the
input image. In a few cases, the result of the transformation will be something like a
list of components, and not an array at all, as would be the case for the Hough line
transform.

Finally, we will learn about image segmentation methods that can be used to repre‐
sent an image in terms of meaningfully connected regions.

335

1 Joseph Fourier [Fourier] was the first to find that some functions can be decomposed into an infinite series of
other functions, which became a field known as Fourier analysis. Some key text on methods of decomposing
functions into their Fourier series are Morse for physics [Morse53] and Papoulis in general [Papoulis62]. The
fast Fourier transform was invented by Cooley and Tukey in 1965 [Cooley65], though Carl Gauss worked out
the key steps as early as 1805 [Johnson84]. Early use in computer vision is described by Ballard and Brown
[Ballard82].

Discrete Fourier Transform
For any set of values that are indexed by a discrete (integer) parameter, it is possible
to define a discrete Fourier transform (DFT)1 in a manner analogous to the Fourier
transform of a continuous function. For N complex numbers x0, x1, x2, ..., xN –1, the
one-dimensional DFT is defined by the following formula (where i = − 1):

gk = ∑
n=0

N −1
fne −

2πi
N kn

A similar transform can be defined for a two-dimensional array of numbers (of
course, higher-dimensional analogs exist also):

gk x ,k y
= ∑

nx=0

N x−1
∑

ny=0

N y−1
fnx ,ny

e −
2πi
N (k xnx+k yny)

In general, one might expect that the computation of the N different terms gk would
require O(N2) operations. In fact, there are several fast Fourier transform (FFT) algo‐
rithms capable of computing these values in O(N log N) time.

cv::dft(): The Discrete Fourier Transform
The OpenCV function cv::dft() implements one such FFT algorithm. The
cv::dft() function can compute FFTs for one- and two-dimensional arrays of
inputs. In the latter case, the two-dimensional transform can be computed or, if
desired, only the one-dimensional transforms of each individual row can be compu‐
ted (this operation is much faster than calling cv::dft() several times):

void cv::dft(
 cv::InputArray src, // Input array (real or complex)
 cv::OutputArray dst, // Output array
 int flags = 0, // for inverse, or other options
 int nonzeroRows = 0 // number of rows to not ignore
);

The input array must be of floating-point type and may be single- or double-channel.
In the single-channel case, the entries are assumed to be real numbers, and the output

336 | Chapter 12: Image Analysis

2 As a result of this compact representation, the size of the output array for a single-channel image is the same
as the size of the input array because the elements that are provably zero are omitted. In the case of the two-
channel (complex) array, the output size will, of course, also be equal to the input size.

3 When using this method, you must be sure to explicitly set the imaginary components to 0 in the two-channel
representation. An easy way to do this is to create a matrix full of 0s using cv::Mat::zeros() for the imagi‐
nary part and then call cv::merge() with a real-valued matrix to form a temporary complex array on which
to run cv::dft() (possibly in place). This procedure will result in full-size, unpacked, complex matrix of the
spectrum.

will be packed in a special space-saving format called complex conjugate symmetrical
(CCS).2 If the source and channel are two-channel matrices or images, then the two
channels will be interpreted as the real and imaginary components of the input data.
In this case, there will be no special packing of the results, and some space will be
wasted with a lot of 0s in both the input and output arrays.3

The special packing of result values that is used with single-channel CCS output is as
follows.

For a one-dimensional array:

Re Y 0 Re Y 1 Im Y 1 Re Y 2 Im Y 2 ... Re Y (N
2 –1) Im Y (N

2 –1) Re Y (N
2)

For a two-dimensional array:

It is worth taking a moment to look closely at the indices of these arrays. Certain val‐
ues in the array are guaranteed to be 0 (more accurately, certain values of fk are guar‐
anteed to be real). Also note that the last row listed in the table will be present only if
Ny is even and that the last column will be present only if Nx is even. In the case of the
two-dimensional array being treated as Ny separate one-dimensional arrays rather
than a full two-dimensional transform (we’ll take a look at how to do this), all of the
result rows will be analogous to the single row listed for the output of the one-
dimensional array.

The third argument, called flags, indicates exactly what operation is to be done. As
usual, flags is treated as a bit array, so you can combine any flags you need with

Discrete Fourier Transform | 337

4 With the inverse transform, the input is packed in the special format described previously. This makes sense
because, if we first called the forward DFT and then ran the inverse DFT on the results, we would expect to
wind up with the original data—that is, of course, if we remember to use the cv::DFT_SCALE flag!

5 This is not to say that it is in CCS format, only that it possesses the symmetry, as it would if (for example) it
were the result of a forward transform of a purely real array in the first place. Also, note that you are telling
OpenCV that the input array has this symmetry—it will trust you. It does not actually check to verify that this
symmetry is present.

Boolean OR. The transformation we started with is known as a forward transform
and is selected by default. The inverse transform4 is defined in exactly the same way
except for a change of sign in the exponential and a scale factor. To perform the
inverse transform without the scale factor, use the flag cv::DFT_INVERSE. The flag for
the scale factor is cv::DFT_SCALE, which results in all of the output being scaled by a
factor of N–1 (or (Nx Ny)–1 for a two-dimensional transform). This scaling is necessary
if the sequential application of the forward transform and the inverse transform is to
bring us back to where we started. Because one often wants to combine
cv::DFT_INVERSE with cv::DFT_SCALE, there are several shorthand notations for this
kind of operation. In addition to just combining the two operations, you can use
cv::DFT_INV_SCALE (or cv::DFT_INVERSE_SCALE if you’re not into brevity). The last
flag you may want to have handy is cv::DFT_ROWS, which allows you to tell
cv::dft() to treat a two-dimensional array as a collection of one-dimensional arrays
that should each be transformed separately as if they were Ny distinct vectors of
length Nx. This can significantly reduce overhead when you’re doing many transfor‐
mations at a time. By using cv::DFT_ROWS, you can also implement three-
dimensional (and higher) DFT.

Though the default behavior of the forward transform is to produce results in CCS
format (which results in an output array exactly the same size as the input array), you
can explicitly ask OpenCV to not do this with the flag cv::DFT_COMPLEX_OUTPUT. The
result will be the full complex array (with all of the zeros in it). Conversely, when
you’re performing an inverse transformation on a complex array, the result is nor‐
mally also a complex array. If the source array had complex conjugate symmetry,5

you can ask OpenCV to produce a purely real array (which will be smaller than the
input array) by passing the cv::DFT_REAL_OUTPUT flag.

In order to understand the last argument, nonzero_rows, we must digress for a
moment to explain that, in general, DFT algorithms strongly prefer input vectors of
some lengths over input vectors of other lengths; similarly, for arrays of some sizes
over arrays of other sizes. In most DFT algorithms, the preferred sizes are powers of 2
(i.e., 2n for some integer n). In the case of the algorithm used by OpenCV, the prefer‐
ence is that the vector lengths, or array dimensions, be 2p3q5r for some integers p, q,
and r. Hence the usual procedure is to create a somewhat larger array and then to
copy your array into that somewhat roomier zero-padded array. For convenience,

338 | Chapter 12: Image Analysis

there is a handy utility function, cv::getOptimalDFTSize(), which takes the (inte‐
ger) length of your vector and returns the first equal or larger size that can be
expressed in the form given (i.e., 2p3q5r). Despite the need for this padding, it is possi‐
ble to indicate to cv::dft() that you really do not care about the transform of those
rows that you had to add down below your actual data (or, if you are doing an inverse
transform, which rows in the result you do not care about). In either case, you can
use nonzero_rows to indicate how many rows contain meaningful data. This will pro‐
vide some savings in computation time.

cv::idft(): The Inverse Discrete Fourier Transform
As we saw earlier, the function cv::dft() can be made to implement not only the
discrete Fourier transform, but also the inverse operation (with the provision of the
correct flags argument). It is often preferable, if only for code readability, to have a
separate function that does this inverse operation by default.

void cv::idft(
 cv::InputArray src, // Input array (real or complex)
 cv::OutputArray dst, // Output array
 int flags = 0, // for variations
 int nonzeroRows = 0 // number of rows to not ignore
);

Calling cv::idft() is exactly equivalent to calling cv::dft() with the
cv::DFT_INVERSE flag (in addition to whatever flags you supply to cv::idft(), of
course).

cv::mulSpectrums(): Spectrum Multiplication
In many applications that involve computing DFTs, one must also compute the per-
element multiplication of the two resulting spectra. Because such results are complex
numbers, typically packed in their special high-density CCS format, it would be tedi‐
ous to unpack them and handle the multiplication via the “usual” matrix operations.
Fortunately, OpenCV provides the handy cv::mulSpectrums() routine, which per‐
forms exactly this function for us:

void cv::mulSpectrums(
 cv::InputArray src1, // Input array (ccs or complex)
 cv::InputArray src2, // Input array (ccs or complex)
 cv::OutputArray dst, // Result array
 int flags, // for row-by-row computation
 bool conj = false // true to conjugate src2
);

Note that the first two arguments are arrays, which must be either CCS packed
single-channel spectra or two-channel complex spectra—as you would get from calls
to cv::dft(). The third argument is the destination array, which will be of the same

Discrete Fourier Transform | 339

6 The primary usage of this argument is the implementation of a correlation in Fourier space. It turns out that
the only difference between convolution (which we will discuss in the next section) and correlation is the con‐
jugation of the second array in the spectrum multiplication.

7 Recall that OpenCV’s DFT algorithm implements the FFT whenever the data size makes the FFT faster.

size and type as the source arrays. The final argument, conj, tells cv::mulSpec
trums() exactly what you want done. In particular, it may be set to false for imple‐
menting the preceding pair multiplication or set to true if the element from the first
array is to be multiplied by the complex conjugate of the corresponding element of
the second array.6

Convolution Using Discrete Fourier Transforms
It is possible to greatly increase the speed of a convolution by using DFT via the con‐
volution theorem [Titchmarsh26] that relates convolution in the spatial domain to
multiplication in the Fourier domain [Morse53; Bracewell65; Arfken85].7 To accom‐
plish this, we first compute the Fourier transform of the image and then the Fourier
transform of the convolution filter. Once this is done, we can perform the convolu‐
tion in the transform space in linear time with respect to the number of pixels in the
image. It is worthwhile to look at the source code for computing such a convolution,
as it will also provide us with many good examples of using cv::dft(). The code is
shown in Example 12-1, which is taken directly from the OpenCV reference.

Example 12-1. Using cv::dft() and cv::idft() to accelerate the computation of
convolutions

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

int main(int argc, char** argv) {

 if(argc != 2) {
 cout << "Fourier Transform\nUsage: " <<argv[0] <<" <imagename>" << endl;
 return -1;
 }

 cv::Mat A = cv::imread(argv[1],0);

 if(A.empty()) { cout << "Cannot load " << argv[1] << endl; return -1; }

 cv::Size patchSize(100, 100);
 cv::Point topleft(A.cols/2, A.rows/2);
 cv::Rect roi(topleft.x, topleft.y, patchSize.width, patchSize.height);
 cv::Mat B = A(roi);

340 | Chapter 12: Image Analysis

8 By “slowest” we mean “asymptotically slowest”—in other words, that this portion of the algorithm takes the
most time for very large N. This is an important distinction. In practice, as we saw in the earlier section on
convolutions, it is not always optimal to pay the overhead for conversion to Fourier space. In general, when
you are convolving with a small kernel it is not worth the trouble to make this transformation.

 int dft_M = cv::getOptimalDFTSize(A.rows+B.rows-1);
 int dft_N = cv::getOptimalDFTSize(A.cols+B.cols-1);

 cv::Mat dft_A = cv::Mat::zeros(dft_M, dft_N, CV::F32);
 cv::Mat dft_B = cv::Mat::zeros(dft_M, dft_N, CV::F32);

 cv::Mat dft_A_part = dft_A(Rect(0, 0, A.cols,A.rows));
 cv::Mat dft_B_part = dft_B(Rect(0, 0, B.cols,B.rows));

 A.convertTo(dft_A_part, dft_A_part.type(), 1, -mean(A)[0]);
 B.convertTo(dft_B_part, dft_B_part.type(), 1, -mean(B)[0]);

 cv::dft(dft_A, dft_A, 0, A.rows);
 cv::dft(dft_B, dft_B, 0, B.rows);

 // set the last parameter to false to compute convolution instead of correlation
 //
 cv::mulSpectrums(dft_A, dft_B, dft_A, 0, true);
 cv::idft(dft_A, dft_A, DFT_SCALE, A.rows + B.rows - 1);

 cv::Mat corr = dft_A(Rect(0, 0, A.cols + B.cols - 1, A.rows + B.rows - 1));
 cv::normalize(corr, corr, 0, 1, NORM_MINMAX, corr.type());
 cv::pow(corr, 3., corr);

 cv::B ^= cv::Scalar::all(255);

 cv::imshow("Image", A);
 cv::imshow("Correlation", corr);
 cv::waitKey();

 return 0;

}

In Example 12-1, we can see that the input arrays are first created and then initial‐
ized. Next, two new arrays are created whose dimensions are optimal for the DFT
algorithm. The original arrays are copied into these new arrays and the transforms
are then computed. Finally, the spectra are multiplied together and the inverse trans‐
form is applied to the product. The transforms are the slowest8 part of this operation;
an N × N image takes O(N2 log N) time and so the entire process is also completed in
that time (assuming that N > M for an M × M convolution kernel). This time is much
faster than O(N2M2), the non-DFT convolution time required by the more naïve
method.

Discrete Fourier Transform | 341

9 Astute readers might object that the cosine transform is being applied to a vector that is not a manifestly even
function. However, with cv::dct(), the algorithm simply treats the vector as if it were extended to negative
indices in a mirrored manner.

cv::dct(): The Discrete Cosine Transform
For real-valued data, it is often sufficient to compute what is, in effect, only half of the
discrete Fourier transform. The discrete cosine transform (DCT) [Ahmed74; Jain77] is
defined analogously to the full DFT by the following formula:

ck = (1
N) 1

2 x0 + ∑
n=1

N –1 (2
N) 1

2 xn cos ((k +
1
2) n

N π)
Of course, there is a similar transform for higher dimensions. Note that, by conven‐
tion, the normalization factor is applied to both the cosine transform and its inverse
(which is not the convention for the discrete Fourier transform).

The basic ideas of the DFT apply also to the DCT, but now all the coefficients are
real-valued.9 The actual OpenCV call is:

void cv::dct(
 cv::InputArray src, // Input array (even size)
 cv::OutputArray dst, // Output array
 int flags = 0 // for row-by-row or inverse
);

The cv::dct() function expects arguments like those for cv::dft() except that,
because the results are real-valued, there is no need for any special packing of the
result array (or of the input array in the case of an inverse transform). Unlike
cv::dft(), however, the input array must have an even number of elements (you can
pad the last element with a zero if necessary to achieve this). The flags argument can
be set to cv::DCT_INVERSE to generate the inverse transformation, and may be com‐
bined with cv::DCT_ROWS with the same effect as with cv::dft(). Because of the dif‐
ferent normalization convention, both the forward and inverse cosine transforms
always contain their respective contribution to the overall normalization of the trans‐
form; hence, there is no analog to cv::DFT_SCALE for cv::dct().

As with cv::dft(), performance strongly depends on array size. In fact, deep down,
the implementation of cv::dct() actually calls cv::dft() on an array exactly half
the size of your input array. For this reason, the optimal size of an array to pass to
cv::dct() is exactly double the size of the optimal array you would pass to
cv::dft(). Putting everything together, the best way to get an optimal size for
cv::dct() is to compute:

342 | Chapter 12: Image Analysis

10 The citation given is the best for more details on the method, but it was actually introduced in computer
vision in 2001 in a paper titled “Robust Real-Time Object Detection” by the same authors. The method was
previously used as early as 1984 in computer graphics, where the integral image is known as a summed area
table.

size_t optimal_dct_size = 2 * cv::getOptimalDFTSize((N+1)/2);

where N is the actual size of your data that you want to transform.

cv::idct(): The Inverse Discrete Cosine Transform
Just as with cv::idft() and cv::dft(), cv::dct() can be asked to compute the
inverse cosine transform using the flags argument. As before, code readability is
often improved with the use of a separate function that does this inverse operation by
default:

void cv::idct(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Output array
 int flags = 0, // for row-by-row computation
);

Calling cv::idct() is exactly equivalent to calling cv::dct() with the
cv::DCT_INVERSE flag (in addition to any other flags you supply to cv::idct()).

Integral Images
OpenCV allows you to easily calculate an integral image with the appropriately
named cv::integral() function. An integral image [Viola04] is a data structure that
allows rapid summing of subregions.10 Such summations are useful in many applica‐
tions; a notable one is the computation of Haar wavelets, which are used in some face
recognition and similar algorithms.

OpenCV supports three variations of the integral image. They are the sum, the
square-sum, and the tilted-sum. In each case the resulting image is the same size as
the original image, plus one in each direction.

A standard integral image sum has the form:

sum(x, y) = ∑
y′<y

∑
x′<x

image(x′, y′)

The square-sum image is the sum of squares:

sumsquare(x, y) = ∑
y′<y

∑
x′<x

image(x′, y′) 2

Integral Images | 343

The tilted-sum is like the sum except that it is for the image rotated by 45 degrees:

sumtilted(x, y) = ∑
y′<y

∑
abs(x′−x)<y

image(x′, y′)

Using these integral images, you may calculate sums, means, and standard deviations
over arbitrary upright or “tilted” rectangular regions of the image. As a simple exam‐
ple, to sum over a simple rectangular region described by the corner points (x1, y1)
and (x2, y2), where x2 > x1 and y2 > y1, we’d compute:

∑
y1≤y<y2

∑
x1≤x<x2

image(x, y) = sum(x2, y2) − sum(x1, y2) − sum(x2, y1) + sum(x1, y1)

In this way, it is possible to do fast blurring, approximate gradients, compute means
and standard deviations, and perform fast block correlations even for variable win‐
dow sizes.

To make this all a little clearer, consider the 7 × 5 image shown in Figure 12-1; the
region is shown as a bar chart in which the height associated with the pixels repre‐
sents the brightness of those pixel values. The same information is shown in
Figure 12-2, numerically on the left and in integral form on the right. We compute
standard summation integral images I′(x, y) by going across rows, proceeding row by
row using the previously computed integral image values together with the current
raw image pixel value I(x, y) to calculate the next integral image value as follows:

I ′ (x, y) = I (x, y) − I (x − 1, y) − I (x, y − 1) + I (x − 1, y − 1)

The last term is subtracted because this value is double-counted when the second and
third terms are added. You can verify that this works by testing some values in
Figure 12-2.

344 | Chapter 12: Image Analysis

Figure 12-1. A simple 7 × 5 image shown as a bar chart with x, y, and height equal to
pixel value

When using the integral image to compute a region, we can see in Figure 12-2 that, in
order to compute the central rectangular area bounded by the 20s in the original
image, we’d calculate 398 – 9 – 10 + 1 = 380. Thus, a rectangle of any size can be
computed using four measurements, resulting in O(1) computational complexity.

Figure 12-2. The 7 × 5 image of Figure 12-1 shown numerically at left (with the origin
assumed to be the upper left) and converted to an 8 × 6 integral image at right

Integral Images | 345

11 This allows for the rows of zeros, which are implied by the fact that summing zero terms results in a sum of
zero.

12 It is worth noting that even though sum and tilted_sum allow 32-bit float as output for input images of 32-bit
float type, it is recommended to use 64-bit float, particularly for larger images. After all, a modern large image
can be many millions of pixels.

cv::integral() for Standard Summation Integral
The different forms of integral are (somewhat confusingly) distinguished in the C++
API only by their arguments. The form that computes the basic sum has only three.

void cv::integral(
 cv::InputArray image, // Input array
 cv::OutputArray sum, // Output sum results
 int sdepth = -1 // Results depth (e.g., cv::F32)
);

The first and second are the input and result images. If the input image is of size
W × H, then the output image will be of size (W + 1) × (H + 1).11 The third argument,
sdepth, specifies the desired depth of the sum (destination) image. sdepth can be any
of CV::S32, CV::F32, or CV::F64.12

cv::integral() for Squared Summation Integral
The squared sum is computed with the same function as the regular sum, except for
the provision of an additional output argument for the squared sum.

void cv::integral(
 cv::InputArray image, // Input array
 cv::OutputArray sum, // Output sum results
 cv::OutputArray sqsum, // Output sum of squares results
 int sdepth = -1 // Results depth (e.g., cv::F32)
);

The cv::OutputArray argument sqsum indicates to cv::integral() that the square
sum should be computed in addition to the regular sum. As before, sdepth specifies
the desired depth of the resulting images. sdepth can be any of CV::S32, CV::F32, or
CV::F64.

cv::integral() for Tilted Summation Integral
Similar to the squared sum, the tilted sum integral is essentially the same function,
with an additional argument for the additional result.

void cv::integral(
 cv::InputArray image, // Input array
 cv::OutputArray sum, // Output sum results

346 | Chapter 12: Image Analysis

13 We’ll have much more to say about contours later. As you await those revelations, keep in mind that the
cv::Canny() routine does not actually return objects of a contour type; if we want them, we will have to build
those from the output of cv::Canny() by using cv::findContours(). Everything you ever wanted to know
about contours will be covered in Chapter 14.

 cv::OutputArray sqsum, // Output sum of squares results
 cv::OutputArray tilted, // Output tilted sum results
 int sdepth = -1 // Results depth (e.g., cv::F32)
);

The additional cv::OutputArray argument tilted is computed by this form of
cv::integral(), in addition to the other sums; thus, all of the other arguments are
the same.

The Canny Edge Detector
Though it is possible to expose edges in images with simple filters such as the Laplace
filter, it is possible to improve on this method substantially. The simple Laplace filter
method was refined by J. Canny in 1986 into what is now commonly called the
Canny edge detector [Canny86]. One of the differences between the Canny algorithm
and the simpler, Laplace-based algorithm described in the previous chapter is that, in
the Canny algorithm, the first derivatives are computed in x and y and then com‐
bined into four directional derivatives. The points where these directional derivatives
are local maxima are then candidates for assembling into edges. The most significant
new dimension to the Canny algorithm is this phase in which it assembles the indi‐
vidual edge-candidate pixels into contours.13

The algorithm forms these contours by applying a hysteresis threshold to the pixels.
This means that there are two thresholds, an upper and a lower. If a pixel has a gradi‐
ent larger than the upper threshold, then it is accepted as an edge pixel; if a pixel is
below the lower threshold, it is rejected. If the pixel’s gradient is between the thresh‐
olds, then it will be accepted only if it is connected to a pixel that is above the high
threshold. Canny recommended a ratio of high:low threshold between 2:1 and 3:1.
Figures 12-3 and 12-4 show the results of applying cv::Canny() to a test pattern and
a photograph using high:low hysteresis threshold ratios of 5:1 and 3:2, respectively.

The Canny Edge Detector | 347

Figure 12-3. Results of Canny edge detection for two different images when the high
and low thresholds are set to 50 and 10, respectively

Figure 12-4. Results of Canny edge detection for two different images when the high
and low thresholds are set to 150 and 100, respectively

348 | Chapter 12: Image Analysis

14 Hough developed the transform for use in physics experiments [Hough59]; its use in vision was introduced
by Duda and Hart [Duda72].

cv::Canny()
The OpenCV implementation of the Canny edge detection algorithm converts an
input image into an “edge image.”

void cv::Canny(
 cv::InputArray image, // Input single channel image
 cv::OutputArray edges, // Output edge image
 double threshold1, // "lower" threshold
 double threshold2, // "upper" threshold
 int apertureSize = 3, // Sobel aperture
 bool L2gradient = false // true=L2-norm (more accurate)
);

The cv::Canny() function expects an input image, which must be single-channel,
and an output image, which will also be grayscale (but which will actually be a
Boolean image). The next two arguments are the low and high thresholds. The next-
to-last argument, apertureSize, is the aperture used by the Sobel derivative opera‐
tors that are called inside of the implementation of cv::Canny(). The final argument
L2gradient is used to select between computing the directional gradient “correctly”
using the proper L2-norm, or using a faster, less accurate L1-norm-based method. If
the argument L2gradient is set to true, the more accurate form is used:

| grad(x, y) | L 2
= (dI

dx)2 + (dI
dy)2

If L2gradient is set to false, the faster form is used:

| grad(x, y) | L 1
= | dI

dx | + | dI
dy |

Hough Transforms
The Hough transform14 is a method for finding lines, circles, or other simple forms in
an image. The original Hough transform was a line transform, which is a relatively
fast way of searching a binary image for straight lines. The transform can be further
generalized to cases other than just simple lines.

Hough Line Transform
The basic theory of the Hough line transform is that any point in a binary image
could be part of some set of possible lines. If we parameterize each line by, for exam‐

Hough Transforms | 349

ple, a slope a and an intercept b, then a point in the original image is transformed to a
locus of points in the (a, b) plane corresponding to all of the lines passing through
that point, of which it could potentially be a part (see Figure 12-5). If we convert
every nonzero pixel in the input image into such a set of points in the output image
and sum over all such contributions, then lines that appear in the input (i.e., (x, y)
plane) image will appear as local maxima in the output (i.e., (a, b) plane) image.
Because we are summing the contributions from each point, the (a, b) plane is com‐
monly called the accumulator plane.

Figure 12-5. The Hough line transform finds many lines in each image; some of the
lines found are expected, but others may not be

It might occur to you that the slope-intercept form is not really the best way to repre‐
sent all the lines passing through a point (i.e. because of the considerably different
density of lines as a function of the slope, and the related fact that the interval of pos‐
sible slopes goes from –∞ to +∞). This is why the actual parameterization of the
transform image used in numerical computation is somewhat different. The prefer‐
red parameterization represents each line as a point in polar coordinates (ρ, θ), with
the implied line being the line passing through the indicated point but perpendicular
to the radial from the origin to that point (see Figure 12-6). The equation for such a
line is:

ρ = xcosθ + ysinθ

350 | Chapter 12: Image Analysis

15 The probabilistic Hough transform (PHT) was introduced by Kiryati, Eldar, and Bruckshtein in 1991 [Kir‐
yati91]; the PPHT was introduced by Matas, Galambos, and Kittler in 1999 [Matas00].

Figure 12-6. A point (x0, y0) in the image plane (a) implies many lines, each parameter‐
ized by a different ρ and θ (b); these lines in the (ρ, θ) plane, taken together, form a
curve of characteristic shape (c)

The OpenCV Hough transform algorithm does not make this computation explicit to
the user. Instead, it simply returns the local maxima in the (ρ, θ) plane. However, you
will need to understand this process in order to understand the arguments to the
OpenCV Hough line transform function.

OpenCV supports three different kinds of Hough line transform: the standard Hough
transform (SHT) [Duda72], the multiscale Hough transform (MHT), and the progres‐
sive probabilistic Hough transform (PPHT).15 The SHT is the algorithm we just cov‐
ered. The MHT algorithm is a slight refinement that gives more accurate values for
the matched lines. The PPHT is a variation of this algorithm that, among other
things, computes an extent for individual lines in addition to the orientation (as
shown in Figure 12-7). It is called “probabilistic” because, rather than accumulating
every possible point in the accumulator plane, it accumulates only a fraction of them.
The idea is that if the peak is going to be high enough anyhow, then hitting it only a
fraction of the time will be enough to find it; the result of this conjecture can be a
substantial reduction in computation time.

Hough Transforms | 351

Figure 12-7. The Canny edge detector (param1=50, param2=150) is run first, with the
results shown in gray, and the progressive probabilistic Hough transform (param1=50,
param2=10) is run next, with the results overlaid in white; you can see that the strong
lines are generally picked up by the Hough transform

cv::HoughLines(): The standard and multiscale Hough transforms
The standard and multiscale Hough transforms are both implemented in a single
function—cv::HoughLines()—with the distinction being in the use (or nonuse) of
two optional parameters.

void cv::HoughLines(
 cv::InputArray image, // Input single channel image
 cv::OutputArray lines, // N-by-1 two-channel array
 double rho, // rho resolution (pixels)
 double theta, // theta resolution (radians)
 int threshold, // Unnormalized accumulator threshold
 double srn = 0, // rho refinement (for MHT)
 double stn = 0 // theta refinement (for MHT)
);

The first argument is the input image. It must be an 8-bit image, but the input is
treated as binary information (i.e., all nonzero pixels are considered to be equivalent).
The second argument is the place where the found lines will be stored. It will be an
N × 1 two-channel array of floating-point type (the number of columns, N, will be the

352 | Chapter 12: Image Analysis

16 As usual, depending on the object type you pass to lines, this could be either a 1 × N array with two chan‐
nels, or if you like, a std::vector<> with N entries, with each entry being of type Vec2f.

number of lines returned).16 The two channels will contain the rho (ρ) and theta (θ)
values for each found line.

The next two arguments, rho and theta, set the resolution desired for the lines (i.e.,
the resolution of the accumulator plane). The units of rho are pixels and the units of
theta are radians; thus, the accumulator plane can be thought of as a two-
dimensional histogram with cells of dimension rho pixels by theta radians. The
threshold value is the value in the accumulator plane that must be reached for the
algorithm to report a line. This last argument is a bit tricky in practice; it is not nor‐
malized, so you should expect to scale it up with the image size for SHT. Remember
that this argument is, in effect, indicating the number of points (in the edge image)
that must support the line for the line to be returned.

The parameters srn and stn are not used by the standard Hough transform; they
control an extension of the SHT algorithm called the multiscale Hough transform
(MHT). For MHT, these two parameters indicate higher resolutions to which the
parameters for the lines should be computed. MHT first computes the locations of
the lines to the accuracy given by the rho and theta parameters, and then goes on to
refine those results by a factor of srn and stn, respectively (i.e., the final resolution in
rho is rho divided by srn, and the final resolution in theta is theta divided by stn).
Leaving these parameters set to 0 causes the SHT algorithm to be run.

cv::HoughLinesP(): The progressive probabilistic Hough transform
void cv::HoughLinesP(
 cv::InputArray image, // Input single channel image
 cv::OutputArray lines, // N-by-1 4-channel array
 double rho, // rho resolution (pixels)
 double theta, // theta resolution (radians)
 int threshold, // Unnormalized accumulator threshold
 double minLineLength = 0, // required line length
 double maxLineGap = 0 // required line separation
);

The cv::HoughLinesP() function works very much like cv::HoughLines(), with two
important differences. The first is that the lines argument will be a four-channel
array (or a vector of objects all of type Vec4i). The four channels will be the (x0,y0)
and (x1,y1) (in that order), the (x,y) locations of the two endpoints of the found line
segment. The second important difference is the meaning of the two parameters. For
the PPHT, the minLineLength and maxLineGap arguments set the minimum length of
a line segment that will be returned, and the separation between collinear segments
required for the algorithm not to join them into a single longer segment.

Hough Transforms | 353

Hough Circle Transform
The Hough circle transform [Kimme75] (see Figure 12-8) works in a manner roughly
analogous to the Hough line transforms just described. The reason it is only
“roughly” is that—if you were to try doing the exactly analogous thing—the accumu‐
lator plane would have to be replaced with an accumulator volume with three dimen‐
sions: one for x and one for y (the location of the circle center), and another for the
circle radius r. This would mean far greater memory requirements and much slower
speed. The implementation of the circle transform in OpenCV avoids this problem
by using a somewhat trickier method called the Hough gradient method.

Figure 12-8. The Hough circle transform finds some of the circles in the test pattern and
(correctly) finds none in the photograph

The Hough gradient method works as follows. First, the image is passed through an
edge-detection phase (in this case, cv::Canny()). Next, for every nonzero point in
the edge image, the local gradient is considered (we compute the gradient by first
computing the first-order Sobel x- and y-derivatives via cv::Sobel()). Using this
gradient, we increment every point along the line indicated by this slope—from a
specified minimum to a specified maximum distance—in the accumulator. At the
same time, the location of every one of these nonzero pixels in the edge image is
noted. The candidate centers are then selected from those points in this (two-
dimensional) accumulator that are both above some given threshold and larger than
all of their immediate neighbors. These candidate centers are sorted in descending
order of their accumulator values, so that the centers with the most supporting pixels

354 | Chapter 12: Image Analysis

appear first. Next, for each center, all of the nonzero pixels (recall that this list was
built earlier) are considered. These pixels are sorted according to their distance from
the center. Working out from the smallest distances to the maximum radius, we
select a single radius that is best supported by the nonzero pixels. A center is kept if it
has sufficient support from the nonzero pixels in the edge image and if it is a suffi‐
cient distance from any previously selected center.

This implementation enables the algorithm to run much faster and, perhaps more
importantly, helps overcome the problem of the otherwise sparse population of a
three-dimensional accumulator, which would lead to a lot of noise and render the
results unstable. On the other hand, this algorithm has several shortcomings that you
should be aware of.

First, the use of the Sobel derivatives to compute the local gradient—and the attend‐
ant assumption that this can be considered equivalent to a local tangent—is not a
numerically stable proposition. It might be true “most of the time,” but you should
expect this to generate some noise in the output.

Second, the entire set of nonzero pixels in the edge image is considered for every can‐
didate center; hence, if you make the accumulator threshold too low, the algorithm
will take a long time to run. Third, because only one circle is selected for every center,
if there are concentric circles then you will get only one of them.

Finally, because centers are considered in ascending order of their associated accu‐
mulator value and because new centers are not kept if they are too close to previously
accepted centers, there is a bias toward keeping the larger circles when multiple cir‐
cles are concentric or approximately concentric. (It is only a “bias” because of the
noise arising from the Sobel derivatives; in a smooth image at infinite resolution, it
would be a certainty.)

cv::HoughCircles(): the Hough circle transform

The Hough circle transform function cv::HoughCircles() has similar arguments to
the line transform.

void cv::HoughCircles(
 cv::InputArray image, // Input single channel image
 cv::OutputArray circles, // N-by-1 3-channel or vector of Vec3f
 int method, // Always cv::HOUGH_GRADIENT
 double dp, // Accumulator resolution (ratio)
 double minDist, // Required separation (between lines)
 double param1 = 100, // Upper Canny threshold
 double param2 = 100, // Unnormalized accumulator threshold
 int minRadius = 0, // Smallest radius to consider
 int maxRadius = 0 // Largest radius to consider
);

Hough Transforms | 355

17 The function cv::Sobel(), not cv::Canny(), is called internally. The reason is that cv::HoughCircles()
needs to estimate the orientation of a gradient at each pixel, and this is difficult to do with a binary edge map.

The input image is again an 8-bit image. One significant difference between
cv::HoughCircles() and cv::HoughLines() is that the latter requires a binary
image. The cv::HoughCircles() function will internally (automatically) call
cv::Sobel()17 for you, so you can provide a more general grayscale image.

The result array, circles, will be either a matrix-array or a vector, depending on
what you pass to cv::HoughCircles(). If a matrix is used, it will be a one-
dimensional array of type CV::F32C3; the three channels will be used to encode the
location of the circle and its radius. If a vector is used, it must be of type std::vec
tor<Vec3f>. The method argument must always be set to cv::HOUGH_GRADIENT.

The parameter dp is the resolution of the accumulator image used. This parameter
allows us to create an accumulator of a lower resolution than the input image. It
makes sense to do this because there is no reason to expect the circles that exist in the
image to fall naturally into the same number of bins as the width or height of the
image itself. If dp is set to 1, then the resolutions will be the same; if set to a larger
number (e.g., 2), then the accumulator resolution will be smaller by that factor (in
this case, half). The value of dp cannot be less than 1.

The parameter minDist is the minimum distance that must exist between two circles
in order for the algorithm to consider them distinct circles.

For the method set to cv::HOUGH_GRADIENT, the next two arguments, param1 and
param2, are the edge (Canny) threshold and the accumulator threshold, respectively.
You may recall that the Canny edge detector actually takes two different thresholds
itself. When cv::Canny() is called internally, the first (higher) threshold is set to the
value of param1 passed into cv::HoughCircles(), and the second (lower) threshold
is set to exactly half that value. The parameter param2 is the one used to threshold the
accumulator and is exactly analogous to the threshold argument of cv::Hough
Lines().

The final two parameters are the minimum and maximum radius of circles that can
be found. This means that these are the radii of circles for which the accumulator has
a representation. Example 12-2 shows an example program using cv::HoughCir
cles().

356 | Chapter 12: Image Analysis

Example 12-2. Using cv::HoughCircles() to return a sequence of circles found in a
grayscale image

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace cv;
using namespace std;

int main(int argc, char** argv) {

 if(argc != 2) {
 cout << "Hough Circle detect\nUsage: " <<argv[0] <<" <imagename>\n" << endl;
 return -1;
 }

 cv::Mat src, image;

 src = cv::imread(argv[1], 1);
 if(src.empty()) { cout << "Cannot load " << argv[1] << endl; return -1; }

 cv::cvtColor(src, image, cv::BGR2GRAY);
 cv::GaussianBlur(image, image, Size(5,5), 0, 0);

 vector<cv::Vec3f> circles;
 cv::HoughCircles(image, circles, cv::HOUGH_GRADIENT, 2, image.cols/10);

 for(size_t i = 0; i < circles.size(); ++i) {
 cv::circle(
 src,
 cv::Point(cvRound(circles[i][0]), cvRound(circles[i][1])),
 cvRound(circles[i][2]),
 cv::Scalar(0,0,255),
 2,
 cv::AA
);
 }

 cv::imshow("Hough Circles", src);
 cv::waitKey(0);

 return 0;

}

It is worth reflecting momentarily on the fact that, no matter what tricks we employ,
there is no getting around the requirement that circles be described by three degrees
of freedom (x, y, and r), in contrast to only two degrees of freedom (ρ and θ) for lines.
The result will invariably be that any circle-finding algorithm requires more memory

Hough Transforms | 357

18 Although cv::HoughCircles() catches centers of the circles quite well, it sometimes fails to find the correct
radius. Therefore, in an application where only a center must be found (or where some different technique
can be used to find the actual radius), the radius returned by cv::HoughCircles() can be ignored.

and computation time than the line-finding algorithms we looked at previously. With
this in mind, it’s a good idea to bound the radius parameter as tightly as circumstan‐
ces allow in order to keep these costs under control.18 The Hough transform was
extended to arbitrary shapes by Ballard in 1981 [Ballard81] basically by considering
objects as collections of gradient edges.

Distance Transformation
The distance transform of an image is defined as a new image in which every output
pixel is set to a value equal to the distance to the nearest zero pixel in the input image
—according to some specific distance metric. It should be immediately obvious that
the typical input to a distance transform should be some kind of edge image. In most
applications the input to the distance transform is an output of an edge detector such
as the Canny edge detector that has been inverted (so that the edges have value 0 and
the nonedges are nonzero).

There are two methods available to compute the distance transform. The first method
uses a mask that is typically a 3 × 3 or 5 × 5 array. Each point in the array defines the
“distance” to be associated with a point in that particular position relative to the cen‐
ter of the mask. Larger distances are built up (and thus approximated) as sequences
of “moves” defined by the entries in the mask. This means that using a larger mask
will yield more accurate distances. When we use this method, given a specific dis‐
tance metric, the appropriate mask is automatically selected from a set known to
OpenCV. This is the “original” method developed by Borgefors (1986) [Borgefors86].
The second method computes exact distances, and is due to Felzenszwalb [Felzensz‐
walb04]. Both methods run in time linear in the total number of pixels, but the exact
algorithm is a bit slower.

The distance metric can be any of several different types including the classic L2
(Cartesian) distance metric. Figure 12-9 shows two examples of using the distance
transform on a pattern and an image.

358 | Chapter 12: Image Analysis

Figure 12-9. First a Canny edge detector was run with param1=100 and param2=200;
then the distance transform was run with the output scaled by a factor of 5 to increase
visibility

cv::distanceTransform() for Unlabeled Distance Transform
When you call the OpenCV distance transform function, the output image will be a
32-bit floating-point image (i.e., CV::F32).

void cv::distanceTransform(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 int distanceType, // Distance metric to use
 int maskSize // Mask to use (3, 5, or see below)
);

cv::distanceTransform() has two parameters. The first is distanceType, which
indicates the distance metric to be used. Your choices here are cv::DIST_C,
cv::DIST_L1, and cv::DIST_L2. These methods compute the distance to the nearest
zero based on integer steps along a grid. The difference between the methods is that
cv::DIST_C is the distance when the steps are counted on a four-connected grid (i.e.,
diagonal moves are not allowed), and cv::DIST_L1 gives the number of steps on an
eight-connected grid (i.e., diagonal moves are allowed). When distanceType is set to
cv::DIST_L2, cv::distanceTransform() attempts to compute the exact Euclidean
distances.

After the distance type is the maskSize, which may be 3, 5, or cv::DIST_MASK_PRE
CISE. In the case of 3 or 5, this argument indicates that a 3 × 3 or 5 × 5 mask should
be used with the Borgefors method. If you are using cv::DIST_L1 or cv::DIST_C, you
can always use a 3 × 3 mask and you will get exact results. If you are using
cv::DIST_L2, the Borgefors method is always approximate, and using the larger 5 × 5

Distance Transformation | 359

mask will result in a better approximation to the L2 distance, at the cost of a slightly
slower computation. Alternatively, cv::DIST_MASK_PRECISE can be used to indicate
the Felzenszwalb algorithm (when used with cv::DIST_L2).

cv::distanceTransform() for Labeled Distance Transform
It is also possible to ask the distance transform algorithm to not only calculate the
distances, but to also report which object that minimum distance is to. These
“objects” are called connected components. We will have a lot more to say about con‐
nected components in Chapter 14 but, for now, you can think of them as exactly what
they sound like: structures made of continuously connected groups of zeros in the
source image.

void cv::distanceTransform(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Result image
 cv::OutputArray labels, // Connected component ids
 int distanceType, // Distance metric to use
 int maskSize, // (3, 5, or see below)
 int labelType = cv::DIST_LABEL_CCOMP // How to label
);

If a labels array is provided, then as a result of running cv::distanceTransform()
it will be of the same size as dst. In this case, connected components will be compu‐
ted automatically, and the label associated with the nearest such component will be
placed in each pixel of labels. The output “labels” array will basically be the discrete
Voronoi diagram.

If you are wondering how to differentiate labels, consider that for
any pixel that is 0 in src, then the corresponding distance must
also be 0. In addition, the label for that pixel must be the label of
the connected component it is part of. As a result, if you want to
know what label was given to any particular zero pixel, you need
only look up that pixel in labels.

The argument labelType can be set either to cv::DIST_LABEL_CCOMP or
cv::DIST_LABEL_PIXEL. In the former case, the function automatically finds connec‐
ted components of zero pixels in the input image and gives each one a unique label.
In the latter case, all zero pixels are given distinct labels.

Segmentation
The topic of image segmentation is a large one, which we have touched on in several
places already, and will return to in more sophisticated contexts later in the book.
Here, we will focus on several methods of the library that specifically implement

360 | Chapter 12: Image Analysis

19 Users of contemporary painting and drawing programs should note that most of them now employ a filling
algorithm very much like cv::floodFill().

techniques that are either segmentation methods in themselves, or primitives that
will be used later by more sophisticated tactics. Note that, at this time, there is no
general “magic” solution for image segmentation, and it remains a very active area in
computer vision research. Despite this, many good techniques have been developed
that are reliable at least in some specific domain, and in practice can yield very good
results.

Flood Fill
Flood fill [Heckbert90; Shaw04; Vandevenne04] is an extremely useful function that
is often used to mark or isolate portions of an image for further processing or analy‐
sis. Flood fill can also be used to derive, from an input image, masks that can be used
by subsequent routines to speed or restrict processing to only those pixels indicated
by the mask. The function cv::floodFill() itself takes an optional mask that can be
further used to control where filling is done (e.g., for multiple fills of the same
image).

In OpenCV, flood fill is a more general version of the sort of fill functionality that
you probably already associate with typical computer painting programs. For both, a
seed point is selected from an image and then all similar neighboring points are col‐
ored with a uniform color. The difference is that the neighboring pixels need not all
be identical in color.19 The result of a flood fill operation will always be a single con‐
tiguous region. The cv::floodFill() function will color a neighboring pixel if it is
within a specified range (loDiff to upDiff) of either the current pixel or if (depend‐
ing on the settings of flags) the neighboring pixel is within a specified range of the
original seed value. Flood filling can also be constrained by an optional mask argu‐
ment. There are two different prototypes for the cv::floodFill() routine, one that
accepts an explicit mask parameter, and one that does not.

int cv::floodFill(
 cv::InputOutputArray image, // Input image, 1 or 3 channels
 cv::Point seed, // Start point for flood
 cv::Scalar newVal, // Value for painted pixels
 cv::Rect* rect, // Output bounds painted domain
 cv::Scalar lowDiff = cv::Scalar(),// Maximum down color distance
 cv::Scalar highDiff = cv::Scalar(),// Maximum up color distance
 int flags // Local/global, and mask-only
);

int cv::floodFill(
 cv::InputOutputArray image, // Input w-by-h, 1 or 3 channels
 cv::InputOutputArray mask, // 8-bit, w+2-by-h+2 (Nc=1)

Segmentation | 361

 cv::Point seed, // Start point for flood
 cv::Scalar newVal, // Value for painted pixels
 cv::Rect* rect, // Output bounds painted domain
 cv::Scalar lowDiff = cv::Scalar(), // Maximum down color distance
 cv::Scalar highDiff = cv::Scalar(), // Maximum up color distance
 int flags // Local/global, and mask-only
);

The parameter image is the input image, which can be 8-bit or a floating-point type,
and must either have one or three channels. In general, this image array will be modi‐
fied by cv::floodFill(). The flood-fill process begins at the location seed. The seed
will be set to value newVal, as will all subsequent pixels colored by the algorithm. A
pixel will be colorized if its intensity is not less than a colorized neighbor’s intensity
minus loDiff and not greater than the colorized neighbor’s intensity plus upDiff. If
the flags argument includes cv::FLOODFILL_FIXED_RANGE, then a pixel will be com‐
pared to the original seed point rather than to its neighbors. Generally, the flags
argument controls the connectivity of the fill, what the fill is relative to, whether we
are filling only a mask, and what values are used to fill the mask. Our first example of
flood fill is shown in Figure 12-10.

Figure 12-10. Results of flood fill (top image is filled with gray, bottom image with
white) from the dark circle located just off center in both images; in this case, the upDiff
and loDiff parameters were each set to 7.0

The mask argument indicates a mask that can function both as an input to cv::flood
Fill() (in which case, it constrains the regions that can be filled) and as an output

362 | Chapter 12: Image Analysis

20 This is done to make processing easier and faster for the internal algorithm. Note that since the mask is larger
than the original image, pixel (x,y) in image corresponds to pixel (x+1,y+1) in mask. Therefore, you may find
this an excellent opportunity to use cv::Mat::getSubRect().

21 The text here reads “add,” but recall that flags is really a bit-field argument. Conveniently, however, 4 and 8
are single bits. So you can use “add” or “OR,” whichever you prefer (e.g., flags = 8 | cv::FLOOD
FILL_MASK_ONLY).

from cv::floodFill() (in which case, it will indicate the regions that actually were
filled). mask must be a single-channel, 8-bit image whose size is exactly two pixels
larger in width and height than the source image.20

In the sense that mask is an input to cv::floodFill(), the algorithm will not flood
across nonzero pixels in the mask. As a result, you should zero it before use if you
don’t want masking to block the flooding operation.

When the mask is present, it will also be used as an output. When the algorithm runs,
every “filled” pixel will be set to a nonzero value in the mask. You have the option of
adding the value cv::FLOODFILL_MASK_ONLY to flags (using the usual Boolean OR
operator). In this case, the input image will not be modified at all. Instead, only mask
will be modified.

If the flood-fill mask is used, then the mask pixels corresponding to
the repainted image pixels are set to 1. Don’t be confused if you fill
the mask and see nothing but black upon display; the filled values
are there, but the mask image needs to be rescaled if you want to
display it so you can actually see it on the screen. After all, the dif‐
ference between 0 and 1 is pretty small on an intensity scale of 0 to
255.

Two possible values for flags have already been mentioned: cv::FLOOD

FILL_FIXED_RANGE and cv::FLOODFILL_MASK_ONLY. In addition to these, you can also
add the numerical values 4 or 8.21 In this case, you are specifying whether the flood-
fill algorithm should consider the pixel array to be four-connected or eight-connected.
In the former case, a four-connected array is one in which pixels are only connected
to their four nearest neighbors (left, right, above, and below). In the eight-connected
case, pixels are considered to be connected to diagonally neighboring pixels as well.

The flags argument is slightly tricky because it has three parts that are possibly less
intuitive than they could be. The low 8 bits (0–7) can be set to 4 or 8, as we saw
before, to control the connectivity considered by the filling algorithm. The high 8 bits
(16–23) are the ones that contain the flags such as cv::FLOODFILL_FIXED_RANGE and
cv::FLOODFILL_MASK_ONLY. The middle bits (8–15), however, are used a little bit dif‐

Segmentation | 363

ferently to actually represent a numerical value: the value with which you want the
mask to be filled. If the middle bits of flags are 0s, the mask will be filled with 1s (the
default), but any other value will be interpreted as an 8-bit unsigned integer. All these
flags may be linked together via OR. For example, if you want an eight-way connec‐
tivity fill, filling only a fixed range, filling the mask (not the image), and filling using a
value of 47, then the parameter to pass in would be:

flags = 8
 | cv::FLOODFILL_MASK_ONLY
 | cv::FLOODFILL_FIXED_RANGE
 | (47<<8);

Figure 12-11 shows flood fill in action on a sample image. Using cv::FLOOD
FILL_FIXED_RANGE with a wide range resulted in most of the image being filled (start‐
ing at the center). We should note that newVal, loDiff, and upDiff are prototyped as
type cv::Scalar so they can be set for three channels at once. For example, loDiff =
cv::Scalar(20,30,40) will set loDiff thresholds of 20 for red, 30 for green, and 40
for blue.

Figure 12-11. Results of flood fill (top image is filled with gray, bottom image with
white) from the dark circle located just off center in both images; in this case, flood fill
was done with a fixed range and with a high and low difference of 25.0

364 | Chapter 12: Image Analysis

Watershed Algorithm
In many practical contexts, we would like to segment an image but do not have the
benefit of any kind of separate background mask. One technique that is often effec‐
tive in this context is the watershed algorithm [Meyer92], which converts lines in an
image into “mountains” and uniform regions into “valleys” that can be used to help
segment objects. The watershed algorithm first takes the gradient of the intensity
image; this has the effect of forming valleys or basins (the low points) where there is
no texture, and of forming mountains or ranges (high ridges corresponding to edges)
where there are dominant lines in the image. It then successively floods basins start‐
ing from caller-specified points until these regions meet. Regions that merge across
the marks so generated are segmented as belonging together as the image “fills up.”
In this way, the basins connected to the marker point become “owned” by that
marker. We then segment the image into the corresponding marked regions.

More specifically, the watershed algorithm allows a user (or another algorithm) to
mark parts of an object or background that are known to be part of the object or
background. Alternatively, the caller can draw a simple line or collection of lines that
effectively tells the watershed algorithm to “group points like these together.” The
watershed algorithm then segments the image by allowing marked regions to “own”
the edge-defined valleys in the gradient image that are connected with the segments.
Figure 12-12 clarifies this process.

Figure 12-12. Watershed algorithm: after a user has marked objects that belong
together (left), the algorithm merges the marked area into segments (right)

Segmentation | 365

The function specification of the watershed segmentation algorithm is:

void cv::watershed(
 cv::InputArray image, // Input 8-bit, three channels
 cv::InputOutputArray markers // 32-bit float, single channel
);

Here, image must be an 8-bit, three-channel (color) image and markers is a single-
channel integer (CV::S32) image of the same (x, y) dimensions. On input, the value
of markers is 0 except where the caller has indicated by using positive numbers that
some regions belong together. For example, in the left panel of Figure 12-12, the
orange might have been marked with a “1,” the lemon with a “2,” the lime with “3,”
the upper background with “4,” and so on.

After the algorithm has run, all of the former zero-value pixels in markers will be set
to one of the given markers (i.e., all of the pixels of the orange are hoped to come out
with a “1” on them, the pixels of the lemon with a “2,” etc.), except the boundary pix‐
els between regions, which will be set to –1. Figure 12-12 (right) shows an example of
such a segmentation.

It is tempting to think that all regions will be separated by pixels
with marker value –1 at their boundaries. However, this is not
actually the case. Notably, if two neighboring pixels were input
originally with nonzero but distinct values, they will remain touch‐
ing and not separated by a –1 pixel on output.

Grabcuts
The Grabcuts algorithm, introduced by Rother, Kolmogorov, and Blake [Rother04],
extends the Graphcuts algorithm [Boykov01] for use in user-directed image segmen‐
tation. The Grabcuts algorithm is capable of obtaining excellent segmentations, often
with no more than a bounding rectangle around the foreground object to be
segmented.

The original Graphcuts algorithm used user-labeled foreground and user-labeled
background regions to establish distribution histograms for those two classes of
image regions. It then combined the assertion that unlabeled foreground or back‐
ground should conform to similar distributions with the idea that these regions tend
to be smooth and connected (i.e., a bunch of blobs). These assertions were then com‐
bined into an energy functional that gave a low energy (i.e., cost) to solutions that

366 | Chapter 12: Image Analysis

22 This minimization is a nontrivial problem. In practice it is performed through a technique called Mincut,
which is how both the Graphcuts and Grabcuts algorithms get their respective names.

23 Perhaps unintuitively, the algorithm, as implemented, does not allow for a “don’t know” prior labeling.

conformed to these assertions and a high energy to solutions that violated them. The
algorithm obtained the final result by minimizing this energy function.22

The Grabcuts algorithm extends Graphcuts in several important ways. The first is
that it replaces the histogram models with a different (Gaussian mixture) model, ena‐
bling the algorithm to work on color images. In addition, it solves the energy func‐
tional minimization problem in an iterative manner, which provides better results
overall, and allows much greater flexibility in the labeling provided by the user. Nota‐
bly, this latter point makes possible even one-sided labelings, which identify either
only background or only foreground pixels (where Graphcuts required both).

The implementation in OpenCV allows the caller to either just provide a rectangle
around the object to be segmented, in which case the pixels “under” the rectangle’s
boundary (i.e., outside of it) are taken to be background and no foreground is speci‐
fied. Alternatively, the caller can specify an overall mask in which pixels are catego‐
rized as being either definitely foreground, definitely background, probably
foreground, or probably background.23 In this case, the definite regions will be used
to classify the other regions, with the latter being classified into the definite categories
by the algorithm.

The OpenCV implementation of Grabcuts is implemented by the cv::Grabcuts()
function:

void cv::grabCut(
 cv::InputArray img,
 cv::InputOutputArray mask,
 cv::Rect rect,
 cv::InputOutputArray bgdModel,
 cv::InputOutputArray fgdModel,
 int iterCount,
 int mode = cv::GC_EVAL
);

Given an input image img, the resulting labeling will be computed by cv::grabCut()
and placed in the output array mask. This mask array can also be used as an input.
This is determined by the mode variable. If mode contains the flag

Segmentation | 367

24 Actually, the way that the cv::grabCut() is implemented, you do not need to explicitly provide the
cv::GC_INIT_WITH_MASK flag. This is because mask initialization is actually the default behavior. So, as long as
you do not provide the cv::GC_INIT_WITH_RECT flag, you will get mask initialization. However, this is not
implemented as a default argument, but rather a default in the procedural logic of the function, and is there‐
fore not guaranteed to remain unchanged in future releases of the library. It is best to either use the
cv::GC_INIT_WITH_MASK flag or the cv::GC_INIT_WITH_RECT flag explicitly; doing so not only adds future
proofing, but also enhances general clarity.

cv::GC_INIT_WITH_MASK,24 then the values currently in mask when it is called will be
used to initialize the labeling of the image. The mask is expected to be a single-
channel image of cv::U8 type in which every value is one of the following enumera‐
tions.

Enumerated value Numerical value Meaning
cv::GC_BGD 0 Definitely background
cv::GC_FGD 1 Definitely foreground
cv::PR_GC_BGD 2 Probably background
cv::PR_GC_FGD 3 Probably foreground

The argument rect is used only when you are not using mask initialization. When
the mode contains the flag cv::GC_INIT_WITH_RECT, the entire region outside of the
provided rectangle is taken to be “definitely background,” while the rest is automati‐
cally set to “probably foreground.”

The next two arrays are essentially temporary buffers. When you first call cv::grab
Cut(), they can be empty arrays. However, if for some reason you should run the
Grabcuts algorithm for some number of iterations and then want to restart the algo‐
rithm for more iterations (possibly after allowing a user to provide additional “defi‐
nite” pixels to guide the algorithm), you will need to pass in the same (unmodified)
buffers that were filled by the previous run (in addition to using the mask you got
back from the previous run as input for the next run).

Internally, the Grabcuts algorithm essentially runs the Graphcuts algorithm some
number of times (with the minor extensions mentioned previously). In between each
such run, the mixture models are recomputed. The itercount argument determines
how many such iterations will be applied. Typical values for itercount are 10 or 12,
though the number required may depend on the size and nature of the image being
processed.

Mean-Shift Segmentation
Mean-shift segmentation finds the peaks of color distributions over space [Comani‐
ciu99]. It is related to the mean-shift algorithm, which we will discuss later when we

368 | Chapter 12: Image Analysis

talk about tracking and motion in Chapter 17. The main difference between the two
is that the former looks at spatial distributions of color (and is thus related to our cur‐
rent topic of segmentation), while the latter tracks those distributions through time
in successive frames. The function that does this segmentation based on the color dis‐
tribution peaks is cv::pyrMeanShiftFiltering().

Given a set of multidimensional data points whose dimensions are (x, y, blue, green,
red), mean-shift can find the highest density “clumps” of data in this space by scan‐
ning a window over the space. Notice, however, that the spatial variables (x, y) can
have very different ranges from the color-magnitude ranges (blue, green, red). There‐
fore, mean-shift needs to allow for different window radii in different dimensions. In
this case we should have, at a minimum, one radius for the spatial variables (spatial
Radius) and one radius for the color magnitudes (colorRadius). As mean-shift win‐
dows move, all the points traversed by the windows that converge at a peak in the
data become connected to or “owned” by that peak. This ownership, radiating out
from the densest peaks, forms the segmentation of the image. The segmentation is
actually done over a scale pyramid—cv::pyrUp(), cv::pyrDown()—as described in
Chapter 11, so that color clusters at a high level in the pyramid (shrunken image)
have their boundaries refined at lower levels in the pyramid.

The output of the mean-shift segmentation algorithm is a new image that has been
“posterized,” meaning that the fine texture is removed and the gradients in color are
mostly flattened. You can then further segment such images using whatever algo‐
rithm is appropriate for your needs (e.g., cv::Canny() combined with cv::findCon
tours(), if in fact a contour segmentation is what you ultimately want).

The function prototype for cv::pyrMeanShiftFiltering() looks like this:

void cv::pyrMeanShiftFiltering(
 cv::InputArray src, // 8-bit, Nc=3 image
 cv::OutputArray dst, // 8-bit, Nc=3, same size as src
 cv::double sp, // Spatial window radius
 cv::double sr, // Color window radius
 int maxLevel = 1, // Max pyramid level
 cv::TermCriteria termcrit = TermCriteria(
 cv::TermCriteria::MAX_ITER | cv::TermCriteria::EPS,
 5,
 1
)
);

In cv::pyrMeanShiftFiltering() we have an input image src and an output image
dst. Both must be 8-bit, three-channel color images of the same width and height.
The spatialRadius and colorRadius define how the mean-shift algorithm averages
color and space together to form a segmentation. For a 640 × 480 color image, it
works well to set spatialRadius equal to 2 and colorRadius equal to 40. The next
parameter of this algorithm is max_level, which describes how many levels of scale

Segmentation | 369

pyramid you want used for segmentation. A max_level of 2 or 3 works well for a 640
× 480 color image.

The final parameter is cv::TermCriteria, which we have seen in some previous algo‐
rithms. cv::TermCriteria is used for all iterative algorithms in OpenCV. The mean-
shift segmentation function comes with good defaults if you just want to leave this
parameter blank.

Figure 12-13 shows an example of mean-shift segmentation using the following
values:

cv::pyrMeanShiftFiltering(src, dst, 20, 40, 2);

Figure 12-13. Mean-shift segmentation over scale using cv::pyrMeanShiftFiltering()
with parameters max_level=2, spatialRadius=20, and colorRadius=40; similar areas
now have similar values and so can be treated as super pixels (larger statistically simi‐
lar areas), which can speed up subsequent processing significantly

Summary
In this chapter, we expanded our repertoire of techniques for image analysis. Build‐
ing on the general image transforms from the previous chapter, we learned new
methods that we can use to better understand the images we are working with and
which, as we will see, will form the foundation for many more complex algorithms.
Tools such as the distance transform, integral images, and the segmentation techni‐
ques will turn out to be important building blocks for other algorithms in OpenCV as
well as for your own image analysis.

370 | Chapter 12: Image Analysis

Exercises
1. In this exercise, we learn to experiment with parameters by setting good low

Thresh and highThresh values in cv::Canny(). Load an image with suitably
interesting line structures. We’ll use three different high:low threshold settings of
1.5:1, 2.75:1, and 4:1.
a. Report what you see with a high setting of less than 50.
b. Report what you see with high settings between 50 and 100.
c. Report what you see with high settings between 100 and 150.
d. Report what you see with high settings between 150 and 200.
e. Report what you see with high settings between 200 and 250.
f. Summarize your results and explain what happens as best you can.

2. Load an image containing clear lines and circles such as a side view of a bicycle.
Use the Hough line and Hough circle calls and see how they respond to your
image.

3. Can you think of a way to use the Hough transform to identify any kind of shape
with a distinct perimeter? Explain how.

4. Take the Fourier transform of a small Gaussian distribution and the Fourier
transform of an image. Multiply them and take the inverse Fourier transform of
the results. What have you achieved? As the filters get bigger, you will find that
working in the Fourier space is much faster than in the normal space.

5. Load an interesting image, convert it to grayscale, and then take an integral
image of it. Now find vertical and horizontal edges in the image by using the
properties of an integral image.

Use long skinny rectangles; subtract and add them in place.

6. Write a function to compute an integral image that is rotated 45 degrees; you can
then use that image to find the sum of a 45-degree rotated rectangle from four
points.

7. Explain how you could use the distance transform to automatically align a
known shape with a test shape when the scale is known and held fixed. How
would this be done over multiple scales?

Exercises | 371

8. Write a function to blur an image using cv::GaussianBlur() with a kernel size
of (50,50). Time it. Use the DFT of a 50 × 50 Gaussian kernel to do the same kind
of blur much faster.

9. Write an image-processing function to interactively remove people from an
image. Use cv::grabCut() to segment the person, and then use cv::inpaint()
to fill in the resulting hole (recall that we learned about cv::inpaint() in the
previous chapter).

10. Take a sufficiently interesting image. Use cv::pyrMeanShiftFiltering() to seg‐
ment it. Use cv::floodFill() to mask off two resulting segments, and then use
that mask to blur all but those segments in the image.

11. Create an image with a 20 × 20 square in it. Rotate it to an arbitrary angle. Take a
distance transform of this image. Create a 20 × 20 square shape. Use the distance
transform image to algorithmically overlay the shape onto the rotated square in
the image you made.

12. In the 2005 DARPA Grand Challenge robot race, the authors on the Stanford
team used a kind of color clustering algorithm to separate road from nonroad.
The colors were sampled from a laser-defined trapezoid of road patch in front of
the car. Other colors in the scene that were close in color to this patch—and
whose connected component connected to the original trapezoid—were labeled
as road. See Figure 12-14 where the watershed algorithm was used to segment the
road after a trapezoid mark was used inside the road and an inverted “U” mark
outside the road. Suppose we could automatically generate these marks. What
could go wrong with this method of segmenting the road?

Figure 12-14. Using the watershed algorithm to identify a road: markers are put in
the original image (left), and the algorithm yields the segmented road (right)

372 | Chapter 12: Image Analysis

CHAPTER 13

Histograms and Templates

In the course of analyzing images, objects, and video information, we frequently want
to represent what we are looking at as a histogram. Histograms can be used to repre‐
sent such diverse things as the color distribution of an object, an edge gradient tem‐
plate of an object [Freeman95], or the distribution of probabilities representing our
current hypothesis about an object’s location. Figure 13-1 shows the use of histo‐
grams for rapid gesture recognition. Edge gradients were collected from “up,” “right,”
“left,” “stop,” and “OK” hand gestures. A webcam was then set up to watch a person
who used these gestures to control web videos. In each frame, color interest regions
were detected from the incoming video; then edge gradient directions were compu‐
ted around these interest regions, and these directions were collected into orientation
bins within a histogram. The histograms were then matched against the gesture mod‐
els to recognize the gesture. The vertical bars in Figure 13-1 show the match levels of
the different gestures. The gray horizontal line represents the threshold for accept‐
ance of the “winning” vertical bar corresponding to a gesture model.

373

Figure 13-1. Local histograms of gradient orientations are used to find the hand and its
gesture; here the “winning” gesture (longest vertical bar) is a correct recognition of “L”
(move left)

Histograms are used in many computer vision applications. For example, they’re
used to detect scene transitions in videos by indicating when the edge and color sta‐
tistics markedly change from frame to frame. You can use them to identify interest
points in images by assigning each interest point a “tag” consisting of histograms of
nearby features. Histograms of edges, colors, corners, and so on form a general fea‐
ture type that is passed to classifiers for object recognition. Sequences of color or edge
histograms are used to identify whether videos have been copied on the Web. And
the list goes on—histograms are one of the classic tools of computer vision.

Histograms are simply collected counts of the underlying data organized into a set of
predefined bins. They can be populated by counts of features computed from the
data, such as gradient magnitudes and directions, color, or just about any other char‐
acteristic. In any case, they are used to obtain a statistical picture of the underlying
distribution of data. The histogram usually has fewer dimensions than the source
data. Figure 13-2 depicts a typical situation. The figure shows a two-dimensional dis‐
tribution of points (upper left); we impose a grid (upper right) and count the data
points in each grid cell, yielding a one-dimensional histogram (lower right). Because
the raw data points can represent just about anything, the histogram is a handy way
of representing whatever it is that you have learned from your image.

374 | Chapter 13: Histograms and Templates

1 This is also true of histograms representing information that falls naturally into discrete groups when the his‐
togram uses fewer bins than the natural description would suggest or require. An example of this is represent‐
ing 8-bit intensity values in a 10-bin histogram: each bin would then combine the points associated with
approximately 25 different intensities, (erroneously) treating them all as equivalent.

Figure 13-2. Typical histogram example: starting with a cloud of points (upper left), a
counting grid is imposed (upper right) that yields a one-dimensional histogram of point
counts (lower right)

Histograms that represent continuous distributions do so by quantizing the points
into each grid cell.1 This is where problems can arise, as shown in Figure 13-3. If the
grid is too wide (upper left), then the output is too coarse and we lose the structure of
the distribution. If the grid is too narrow (upper right), then there is not enough aver‐
aging to represent the distribution accurately and we get small, “spiky” cells.

Histograms and Templates | 375

2 This is a substantial change in the C++ API relative to the C API. In the latter, there is a specific structure
called a CvHistogram for representing histogram data. The elimination of this structure in the C++ interface
creates a much simpler, more unified library.

Figure 13-3. A histogram’s accuracy depends on its grid size: a grid that is too wide
yields too coarse quantization in the histogram values (left); a grid that is too small
yields “spiky” and singleton results from too small samples (right)

OpenCV has a data type for representing histograms. The histogram data structure is
capable of representing histograms in one or many dimensions, and it contains all the
data necessary to track bins of both uniform and nonuniform sizes. And, as you
might expect, it comes equipped with a variety of useful functions that allow us to
easily perform common operations on our histograms.

Histogram Representation in OpenCV
Histograms are represented in OpenCV as arrays, using the same array structures as
are used for other data.2 This means that you can use cv::Mat if you have a one- or
two-dimensional array (with the array being N × 1 or 1 × N in the former case), vec
tor<> types, or sparse matrices. Of course, the interpretation of the array in a histo‐
grams context is different, even though the underlying data structure is identical. For
an n-dimensional array, the interpretation is as an n-dimensional array of histogram
bins, in which the value for any particular element represents the number of counts

376 | Chapter 13: Histograms and Templates

associated with (i.e., in the range represented by) that particular bin. This distinction
is important in the sense that bin numbers, being just indices into an array of some
dimensionality, are simple integers. The identity of the bin—that is, what it repre‐
sents—is separate from the bin’s integer index. Whenever you are working with his‐
tograms, you will need to convert between measured values and histogram bin
indices. For example, a histogram representing people’s weights might have bins for
20–40, 40–60, 60–80, and 80–100 kilograms. In this case, these weights are the values
represented by the bins, but the bin indices are still just 0, 1, 2, and 3. Many OpenCV
functions will do this task (or some part of this task) for you.

Often, when you are working with higher-dimensional histograms, it will be the case
that most of the entries in that histogram are zero. The cv::SparseMat class is very
good for representing such cases. In fact, histograms are the primary reason for the
existence of the cv::SparseMat class. Most of the basic functions that work on dense
arrays will also work on sparse rays, but we will touch on a few important exceptions
in the next section.

cv::calcHist(): Creating a Histogram from Data
The function cv::calcHist() computes the bin values for a histogram from one or
more arrays of data. Recall that the dimensions of the histogram are not related to the
dimensionality of the input arrays or their size, but rather to their number. Each
dimension of the histogram represents counting (and binning) across all pixels values
in one of the channels of one of the input arrays. You are not required to use every
channel in every image, however; you can pick whatever subset you would like of the
channels of the arrays passed to cv::calcHist(). The function interface to cv::cal
cHist() is as follows:

void cv::calcHist(
 const cv::Mat* images, // C-style array of images, 8U or 32F
 int nimages, // number of images in 'images' array
 const int* channels, // C-style list of int's, lists channels
 cv::InputArray mask, // in 'images' count, iff 'mask' nonzero
 cv::OutputArray hist, // output histogram array
 int dims, // hist dimensionality < cv::MAX_DIMS (32)
 const int* histSize, // C-style array, hist sizes in each dim
 const float** ranges, // C-style array, 'dims' pairs set bin sizes
 bool uniform = true, // true for uniform binning
 bool accumulate = false // true, add to 'hist' else replace
);

void cv::calcHist(
 const cv::Mat* images, // C-style array of images, 8U or 32F
 int nimages, // number of images in 'images' array
 const int* channels, // C-style list of int's, lists channels
 cv::InputArray mask, // in 'images' count, iff 'mask' nonzero
 cv::SparseMat& hist, // output histogram (sparse) array

Histogram Representation in OpenCV | 377

 int dims, // hist dimensionality < cv::MAX_DIMS (32)
 const int* histSize, // C-style array, hist sizes in each dim
 const float** ranges, // C-style array, 'dims' pairs set bin sizes
 bool uniform = true, // true for uniform binning
 bool accumulate = false // if true, add to 'hist', else replace
);

There are three forms of the cv::calcHist() function, two of which use “old-
fashioned” C-style arrays, while the third uses the now preferred STL vector template
type arguments. The primary distinction between the first two is whether the compu‐
ted results are to be organized into a dense or a sparse array.

The first arguments are the array data, with images being either a pointer to a C-style
list of arrays or the more modern cv::InputArrayOfArrays. In either case, the role of
images is to contain one or more arrays from which the histogram will be construc‐
ted. All of these arrays must be the same size, but each can have any number of chan‐
nels. These arrays may be 8-bit integers or of 32-bit floating-point type, but the type
of all of the arrays must match. In the case of the C-style array input, the additional
argument nimages indicates the number of arrays pointed to by images. The argu‐
ment channels indicates which channels to consider when creating the histogram.
Once again, channels may be a C-style array or an STL vector of integers. These inte‐
gers identify which channels from the input arrays are to be used for the output his‐
togram. The channels are numbered sequentially, so the first N c

(0) channels in
images[0] are numbered 0 through N c

(0) − 1, while the next N c
(1) channels in images[1]

are numbered N c
(0) through N c

(0) + N c
(1) − 1, and so on. Of course, the number of entries

in channels is equal to the number of dimensions of the histogram you are creating.

The array mask is an optional mask that, if present, will be used to select which pixels
of the arrays in images will contribute to the histogram. mask must be an 8-bit array
and the same size as the input arrays. Any pixel in images corresponding to a non‐
zero pixel in mask will be counted. If you do not wish to use a mask, you can pass
cv::noArray() instead.

The hist argument is the output histogram you would like to fill. The dims argument
is the number of dimensions that histogram will have. Recall that dims is also the
number of entries in the channels array, indicating how each dimension is to be
computed. The histSize argument may be a C-style array or an STL-style vector of
integers and indicates the number of bins that should be allocated in each dimension
of hist. The number of entries in histSize must also be equal to dims.

While histSize indicates the number of bins in each dimension, ranges indicates
the values that correspond to each bin in each dimension. ranges also can be a C-
style array or an STL vector. In the C-style array case, each entry ranges[i] is
another array, and the length of ranges must be equal to dims. In this case, the entry
ranges[i] indicates the bin structure of the corresponding ith dimension. How

378 | Chapter 13: Histograms and Templates

ranges[i] is interpreted depends on the value of the argument uniform. If uniform is
true, then all of the bins in the ith dimension are of the same size, and all you need
to do is specify the (inclusive) lower bound of the lowest bin and the (noninclusive)
upper bound of the highest bin (e.g., ranges[i] = {0,100.0}). If, on the other hand,
uniform is false, then if there are Ni bins in the ith dimension, there must be Ni + 1
entries in ranges[i]. Thus, the jth entry will be interpreted as the (inclusive) lower
bound of bin j and the (noninclusive) upper bound of bin j – 1. In the case in which
ranges is of type vector<float>, the entries have the same meaning as C-style array
values, but they are “flattened” into one single-level array (i.e., for the uniform case,
there are just two entries in ranges per histogram dimension and they are in the order
of the dimensions, while for the nonuniform case, there will be Ni + 1 entries per
dimension, and they are again all in the order of the dimensions). Figure 13-4 shows
these cases.

Figure 13-4. The ranges argument may be either a C-style array of arrays, or a single
STL-style vector of floating point numbers. In the case of a uniform histogram, only the
minimum and maximum bin edges must be supplied. For a nonuniform histogram, the
lower edge of each bin in each dimension must be supplied, as well as the maximum
value

The final argument, accumulate, tells OpenCV that the array hist is not to be
deleted, reallocated, or otherwise set to 0 before new counts are added from the
arrays in images.

Histogram Representation in OpenCV | 379

Basic Manipulations with Histograms
Even though the data structure for the histogram is the same as the data structure
used for matrices and image arrays, this particular interpretation of the data structure
invites new operations on these arrays that accomplish tasks specific to histograms.
In this section, we will touch on some simple operations that are specific to histo‐
grams, as well as review how some important histogram manipulations can be per‐
formed with array operations that we have already discussed in prior chapters.

Histogram Normalization
When dealing with a histogram, we first need to accumulate information into its var‐
ious bins. Once we have done this, however, it is often desirable to work with the his‐
togram in normalized form so that individual bins will represent the fraction of the
total number of events assigned to the entire histogram. In the C++ API, we can
accomplish this by simply using the array algebra operators and operations:

cv::Mat normalized = my_hist / sum(my_hist)[0];

or:

cv::normalize(my_hist, my_hist, 1, 0, NORM_L1);

Histogram Threshold
It is also common that you wish to threshold a histogram and (for example) throw
away all bins whose entries contain less than some minimum number of counts. Like
normalization, this operation can be accomplished without the use of any particular
special histogram routine. Instead, you can use the standard array threshold function:

cv::threshold(
 my_hist, // input histogram
 my_thresholded_hist, // result, all values<threshold set to zero
 threshold, // cutoff value
 0, // value does not matter in this case
 cv::THRESH_TOZERO // threshold type
);

Finding the Most Populated Bin
In some cases, you would like to find the bins that are above some threshold, and
throw away the others. In other cases, you would like to simply find the one bin that
has the most weight in it. This is particularly common when the histogram is being
used to represent a probability distribution. In this case, the array cv::minMaxLoc()
will give you what you want.

In the case of a two-dimensional array, you can use the cv::InputArray form of
cv::minMaxLoc():

380 | Chapter 13: Histograms and Templates

3 If you have a one-dimensional vector<> array, you can just use cv::Mat(vec).reshape(1) to make it an
N × 1 array in two dimensions.

void cv::minMaxLoc(
 cv::InputArray src, // Input array
 double* minVal, // put minimum value (if not NULL)
 double* maxVal = 0, // put maximum value (if not NULL)
 cv::Point* minLoc = 0, // put minimum location (if not NULL)
 cv::Point* maxLoc = 0, // put maximum location (if not NULL)
 cv::InputArray mask = cv::noArray() // ignore points for which mask is zero
);

The arguments minVal and maxVal are pointers to locations you provide for cv::min
MaxLoc() to store the minimum and maximum values that have been identified. Sim‐
ilarly, minLoc and maxLoc are pointers to variables (of type cv::Point, in this case)
where the actual locations of the minimum and maximum can be stored. If you do
not want one or more of these four results to be computed, you can simply pass NULL
for that (pointer) variable and that information will not be computed:

double max_val;
cv::Point max_pt;

cv::minMaxLoc(
 my_hist, // input histogram
 NULL, // don't care about the min value
 &max_val, // place to put the maximum value
 NULL, // don't care about the location of the min value
 &max_pt // place to put the maximum value location (a cv::Point)
);

In this example, though, the histogram would need to be two-dimensional.3 If your
histogram is of sparse array type, then there is no problem. Recall that there is an
alternate form of cv::minMaxLoc() for sparse arrays:

void cv::minMaxLoc(
 const cv::SparseMat& src, // Input (sparse) array
 double* minVal, // put min value (if not NULL)
 double* maxVal = 0, // put max value (if not NULL)
 cv::Point* minLoc = 0, // put min location (if not NULL)
 cv::Point* maxLoc = 0, // put max location (if not NULL)
 cv::InputArray mask = cv::noArray() // ignore points if mask is zero
);

Note that this form of cv::minMaxLoc() actually differs from the previous form in
several ways. In addition to taking a sparse matrix as the source, it also takes type
int* for the minIdx and maxIdx variables instead of cv::Point* for the analogous
minLoc and maxLoc variables. This is because the sparse matrix form of cv::minMax
Loc() supports arrays of any dimensionality. Therefore, you need to allocate the loca‐
tion variables yourself and make sure that they have the correct amount of space

Basic Manipulations with Histograms | 381

available for the n-dimensional index associated with a point in the (n-dimensional)
sparse histogram:

double maxval;
int max_pt[CV_MAX_DIM];

cv::minMaxLoc(
 my_hist, // input sparse histogram
 NULL, // don't care about the min value
 &max_val, // place to put the maximum value
 NULL, // don't care about the location of the min value
 max_pt // place to put the maximum value location (a cv::Point)
);

It turns out that if you want to find the minimum or maximum of an n-dimensional
array that is not sparse, you need to use another function. This function works essen‐
tially the same as cv::minMaxLoc(), and has a similar name, but is not quite the same
creature:

void cv::minMaxIdx(
 cv::InputArray src,
 double* minVal, // put min value (if not NULL)
 double* maxVal = 0, // put max value (if not NULL)
 int* minLoc = 0, // put min location indices (if not NULL)
 int* maxLoc = 0, // put max location indices (if not NULL)
 cv::InputArray mask = cv::noArray() // ignore points if mask is zero
);

In this case, the arguments have the same meanings as the corresponding arguments
in the two forms of cv::minMaxLoc(). You must allocate minIdx and maxIdx to C-
style arrays of the correct size yourself (as before). One word of warning is in order
here however: if the input array src is one-dimensional, you should allocate minIdx
and maxIdx to be of dimension two. The reason for this is that cv::minMaxIdx()
treats a one-dimensional array as a two-dimensional array internally. As a result, if
the maximum is found at position k, the return value for maxIdx will be (k,0) for a
single-column matrix and (0,k) for a single-row matrix.

Comparing Two Histograms
Yet another indispensable tool for working with histograms, first introduced by
Swain and Ballard [Swain91] and further generalized by Schiele and Crowley
[Schiele96], is the ability to compare two histograms in terms of some specific criteria
for similarity. The function cv::compareHist() does just this.

double cv::compareHist(
 cv::InputArray H1, // First histogram to be compared
 cv::InputArray H2, // Second histogram to be compared
 int method // comparison method (see options below)
);

382 | Chapter 13: Histograms and Templates

4 In OpenCV 2.4, there was a function that automated this subregion matching, cv::calcBackProject
Patch(), but it was removed from OpenCV 3.0 and onward because it was slow.

5 The chi-square test was invented by Karl Pearson [Pearson], who founded the field of mathematical statistics.

double cv::compareHist(
 const cv::SparseMat& H1, // First histogram to be compared
 const cv::SparseMat& H2, // Second histogram to be compared
 int method // comparison method (see options below)
);

The first two arguments are the histograms to be compared, which should be of the
same size. The third argument is where we select our desired distance metric. We can
use this method, of course, to match two whole images by taking the histogram of
each and comparing the histogram via the methods described next. We can also use it
to find objects in images by taking a histogram of the object and searching different
subregions of an image, taking their histograms and seeing how well they match
using one of the following histogram comparison methods.4

The four available options are as follows:

Correlation method (cv::COMP_CORREL)
The first comparison is based on statistical correlation; it implements the Pearson
correlation coefficient, and is typically appropriate when H1 and H2 can be inter‐
preted as probability distributions.

dcorrel(H1, H2) =
∑i H 1

′(i) ⋅ H 2
′(i)

∑i H 1
′ 2(i) ⋅ ∑i H 2

′ 2(i)

Here, Hk
′(i) = Hk (i) − N −1∑

j
h k (j) and N is equal to the number of bins in the histogram.

For correlation, a high score represents a better match than a low score. A perfect
match is 1 and a maximal mismatch is –1; a value of 0 indicates no correlation (ran‐
dom association).

Chi-square method (cv::COMP_CHISQR_ALT)
For chi-square,5 the distance metric is based on the chi-squared test statistic, which is
an alternate test of whether two distributions are correlated.

dchi-square(H1, H2) = ∑
i

(H 1(i) − H 2(i))2

H 1(i) + H 2(i)

Basic Manipulations with Histograms | 383

For this test, a low score represents a better match than a high score. A perfect match
is 0 and a total mismatch is unbounded (depending on the size of the histogram).

Intersection method (cv::COMP_INTERSECT)
The histogram intersection method is based on a simple intersection of the two histo‐
grams. This means that it asks, in effect, what do these two have in common, and
sums over all of the bins of the histograms.

dintersection(H1, H2) = ∑
i
min(H1(i), H2(i))

For this metric, high scores indicate good matches and low scores indicate bad
matches. If both histograms are normalized to 1, then a perfect match is 1 and a total
mismatch is 0.

Bhattacharyya distance method (cv::COMP_BHATTACHARYYA)
The last option, called the Bhattacharyya distance [Bhattacharyya43], is also a meas‐
ure of the overlap of two distributions.

dcorrel(H1, H2) = 1 −
∑i H 1(i) ⋅ H 2(i)

∑i H 1(i)∑i H 2(i)

In this case, low scores indicate good matches and high scores indicate bad matches.
A perfect match is 0 and a total mismatch is 1.

With cv::COMP_BHATTACHARYYA, a special factor in the code is used to normalize the
input histograms. In general, however, you should normalize histograms before com‐
paring them, because concepts like histogram intersection make little sense (even if
allowed) without normalization.

The simple case depicted in Figure 13-5 should clarify matters. In fact, this is about
the simplest case that could be imagined: a one-dimensional histogram with only two
bins. The model histogram has a 1.0 value in the left bin and a 0.0 value in the right
bin. The last three rows show the comparison histograms and the values generated
for them by the various metrics (the EMD metric will be explained shortly).

384 | Chapter 13: Histograms and Templates

Figure 13-5. Histogram matching measures

Figure 13-5 provides a quick reference for the behavior of different matching types.
Close inspection of these matching algorithms in the figure will reveal a disconcert‐
ing observation: if histogram bins shift by just one slot, as with the chart’s first and
third comparison histograms, then all these matching methods (except EMD) yield a
maximal mismatch even though these two histograms have a similar “shape.” The
rightmost column in Figure 13-5 reports values returned by EMD, also a type of dis‐
tance measure. In comparing the third to the model histogram, the EMD measure
quantifies the situation precisely: the third histogram has moved to the right by one
unit. We will explore this measure further in the section “Earth Mover’s Distance” on
page 389.

In the authors’ experience, intersection works well for quick-and-dirty matching, and
chi-square or Bhattacharyya work best for slower but more accurate matches. The
EMD measure gives the most intuitive matches but is much slower.

Histogram Usage Examples
It’s probably time for some helpful examples. The program in Example 13-1 (adapted
from the OpenCV code bundle) shows how we can use some of the functions just
discussed. This program computes a hue-saturation histogram from an incoming
image, and then draws that histogram as an illuminated grid.

Basic Manipulations with Histograms | 385

Example 13-1. Histogram computation and display

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

int main(int argc, char** argv){

 if(argc != 2) {
 cout << "Computer Color Histogram\nUsage: " <<argv[0] <<" <imagename>" << endl;
 return -1;
 }

 cv::Mat src = cv::imread(argv[1],1);
 if(src.empty()) { cout << "Cannot load " << argv[1] << endl; return -1; }

 // Compute the HSV image, and decompose it into separate planes.
 //
 cv::Mat hsv;
 cv::cvtColor(src, hsv, cv::COLOR_BGR2HSV);

 float h_ranges[] = {0, 180}; // hue is [0, 180]
 float s_ranges[] = {0, 256};
 const float* ranges[] = {h_ranges, s_ranges};
 int histSize[] = {30, 32}, ch[] = {0, 1};

 cv::Mat hist;

 // Compute the histogram
 //
 cv::calcHist(&hsv, 1, ch, cv::noArray(), hist, 2, histSize, ranges, true);
 cv::normalize(hist, hist, 0, 255, cv::NORM_MINMAX);

 int scale = 10;
 cv::Mat hist_img(histSize[0]*scale, histSize[1]*scale, CV_8UC3);

 // Draw our histogram.
 //
 for(int h = 0; h < histSize[0]; h++) {
 for(int s = 0; s < histSize[1]; s++){
 float hval = hist.at<float>(h, s);
 cv::rectangle(
 hist_img,
 cv::Rect(h*scale,s*scale,scale,scale),
 cv::Scalar::all(hval),
 -1
);
 }
 }

 cv::imshow("image", src);

386 | Chapter 13: Histograms and Templates

 cv::imshow("H-S histogram", hist_img);
 cv::waitKey();

 return 0;

}

In this example, we have spent a fair amount of time preparing the arguments for
cv::calcHist(), which is not uncommon.

In many practical applications, it is useful to consider the color histograms associated
with human skin tone. By way of example, Figure 13-6 contains histograms taken
from a human hand under various lighting conditions. The left column shows images
of a hand in an indoor environment, a shaded outdoor environment, and a sunlit
outdoor environment. In the middle column are the blue, green, and red (BGR) his‐
tograms corresponding to the observed flesh tone of the hand. In the right column
are the corresponding HSV histograms, where the vertical axis is V (value), the radius
is S (saturation), and the angle is H (hue). Notice that indoors is the darkest, outdoors
in shadow is a bit brighter, and outdoors in the sun is the brightest. Note also that the
colors shift somewhat as a result of the changing color of the illuminating light.

Figure 13-6. Histogram of flesh colors under indoor (upper left), shadowed outdoor
(middle left), and direct sun outdoor (lower left) lighting conditions; the center and
righthand columns display the associated BGR and HSV histograms, respectively

Basic Manipulations with Histograms | 387

As a test of histogram comparison, we could take a portion of one palm (e.g., the top
half of the indoor palm), and compare the histogram representation of the colors in
that image either with the histogram representation of the colors in the remainder of
that image or with the histogram representations of the other two hand images. Flesh
tones are often easier to pick out after conversion to an HSV color space. Restricting
ourselves to the hue and saturation planes is not only sufficient but also helps with
recognition of flesh tones across ethnic groups.

To put this experiment into practice (see Example 13-2), we take the three images of
a hand under different lighting conditions (Figure 13-6). First we construct a histo‐
gram from the hand portion of the top image (the dark one), which we will use as our
reference. We then compare that histogram to a histogram taken from the hand in
the bottom half of that same image, and then to the hands that appear in the next two
(whole) images. The first image is an indoor image, while the latter two are outdoors.
The matching results are shown in Table 13-1. Note that some of the distance metrics
return a small number when the distance is small, and a larger number when it is
high, while other metrics do the opposite. This is what we should have expected from
the simple analysis of the matching measures shown in Figure 13-5. Also note that
while the indoor, lower-half image matches well, the intensity and color of the light
outdoors creates bad matches for the skin.

Table 13-1. Histogram comparison, via four matching methods, of palm-flesh colors in
upper half of indoor palm with listed variant palm-flesh color. For reference, the expected
score for a perfect match is provided in the first row.

Comparison CORREL CHISQR INTERSECT BHATTACHARYYA
(Perfect match) (1.0) (0.0) (1.0) (0.0)
Indoor lower half 0.96 0.14 0.82 0.2
Outdoor shade 0.09 1.57 0.13 0.8
Outdoor sun 0.0 1.98 0.01 0.99

Some More Sophisticated Histograms Methods
Everything we’ve discussed so far was reasonably basic. Each of the functions pro‐
vided for a relatively obvious need. Collectively, they form a good foundation for
much of what you might want to do with histograms in the context of computer
vision (and probably in other contexts as well). At this point we want to look at some
more sophisticated methods available within OpenCV that are extremely useful in
certain applications. These routines include a more advanced method of comparing
two histograms as well as tools for computing and/or visualizing which portions of
an image contribute to a given portion of a histogram.

388 | Chapter 13: Histograms and Templates

Earth Mover’s Distance
We saw earlier that lighting changes can cause significant shifts in color values (see
Figure 13-6), although such shifts tend not to change the shape of the histogram of
color values, but instead shift the color value locations and thus cause the histogram-
matching schemes we’ve covered to fail. The difficulty with histogram match meas‐
ures is that they can return a large difference in the case where two histograms are
similarly shaped, but only displaced relative to one another. It is often desirable to
have a distance measure that performs like a match, but is less sensitive to such dis‐
placements. Earth mover’s distance (EMD) [Rubner00] is such a metric; it essentially
measures how much work it would take to “shovel” one histogram shape into
another, including moving part (or all) of the histogram to a new location. It works in
any number of dimensions.

Return again to Figure 13-5; we see the “earth shoveling” nature of EMD’s distance
measure in the rightmost column. An exact match is a distance of 0. Half a match is
half a “shovel full,” the amount it would take to spread half of the left histogram into
the next slot. Finally, moving the entire histogram one step to the right would require
an entire unit of distance (i.e., to change the model histogram into the “totally mis‐
matched” histogram).

The EMD algorithm itself is quite general; it allows users to set their own distance
metric or their own cost-of-moving matrix. You can record where the histogram
“material” flowed from one histogram to another, and employ nonlinear distance
metrics derived from prior information about the data. The EMD function in
OpenCV is cv::EMD():

float cv::EMD(
 cv::InputArray signature1, // sz1-by-(dims+1) float array
 cv::InputArray signature2, // sz2-by-(dims+1) float array
 int distType, // distance type (e.g., 'cv::DIST_L1')
 cv::InputArray cost = noArray(), // sz1-by-sz2 array (if cv::DIST_USER)
 float* lowerBound = 0, // input/output low bound on distance
 cv::OutputArray flow = noArray() // output, sz1-by-sz2
);

Although we’re applying the EMD to histograms, the interface prefers that we talk to
it in terms of what the algorithm calls signatures for the first two array parameters.
These signatures are arrays that are always of type float and consist of rows contain‐
ing the histogram bin count followed by its coordinates. For the one-dimensional
histogram of Figure 13-5, the signatures (listed array rows) for the lefthand column
of histograms (skipping the model) are as follows: top, [[1, 0], [0, 1]]; middle, [[0.5,
0], [0.5, 1]]; bottom, [[0, 0], [1, 1]]. If we had a bin in a three-dimensional histogram
with a bin count of 537 at (x, y, z) index (7, 43, 11), then the signature row for that
bin would be [537, 7, 43, 11]. In general, this will be a necessary step before calling

Some More Sophisticated Histograms Methods | 389

6 This is important because it is typically possible to compute the lower bound for a pair of histograms much
more quickly than the actual EMD. As a result, in many practical cases, if the EMD is above some bound, you
probably do not care about the actual value of the EMD, only that it is “too big” (i.e., the things you are com‐
paring are “not similar”). In this case, it is quite helpful to have cv::EMD() exit once it is known that the EMD
value will be big enough that you do not care about the exact value.

cv::EMD(); you will need to convert your histograms into signatures. (We will go
through this in a little more detail in Example 13-2.)

The parameter distType should be any of: Manhattan distance (cv::DIST_L1), Eucli‐
dean distance (cv::DIST_L2), checkerboard distance (cv::DIST_C), or a user-defined
distance metric (cv::DIST_USER). In the case of the user-defined distance metric, the
user supplies this information in the form of a (precalculated) cost matrix via the
cost argument. (In this case, cost is an n1 × n2 matrix, with n1 and n2 the sizes of
signature1 and signature2, respectively.)

The argument lowerBound has two functions (one as input, the other as output). As a
return value, it is a lower bound on the distance between the centers of mass of the
two histograms. In order for this lower bound to be computed, one of the standard
distance metrics must be in use (i.e., not cv::DIST_USER), and the total weights of the
two signatures must be the same (as would be the case for normalized histograms). If
you supply a lower-bound argument, you must also initialize that variable to a mean‐
ingful value. This value is used as the lower bound on separations for which the EMD
will be computed at all.6 Of course, if you want the EMD computed no matter what
the distance is, you can always initialize lowerBound to 0.

The next argument, flow, is an optional n1 × n2 matrix that can be used to record the
flow of mass from the ith point of signature1 to the jth point of signature2. In
essence, this tells you how the mass was rearranged to give the computed total EMD.

As an example, suppose we have two histograms, hist1 and hist2, which we want to
convert into two signatures, sig1 and sig2. Just to make things more difficult, let’s
suppose that these are two-dimensional histograms (as in the preceding code exam‐
ples) of dimension h_bins by s_bins. Example 13-2 shows how to convert these two
histograms into two signatures.

Example 13-2. Creating signatures from histograms for EMD; note that this code is the
source of the data in Table 13-1, in which the hand histogram is compared in different
lighting conditions

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

390 | Chapter 13: Histograms and Templates

void help(char** argv){
 cout << "\nCall is:\n"
 << argv[0] <<" modelImage0 testImage1 testImage2 badImage3\n\n"
 << "for example: "
 << " ./ch7_ex7_3_expanded HandIndoorColor.jpg HandOutdoorColor.jpg "
 << "HandOutdoorSunColor.jpg fruits.jpg\n"
 << "\n";
}

// Compare 3 images' histograms
int main(int argc, char** argv) {

 if(argc != 5) { help(argv); return -1; }

 vector<cv::Mat> src(5);
 cv::Mat tmp;
 int i;

 tmp = cv::imread(argv[1], 1);
 if(tmp.empty()) {
 cerr << "Error on reading image 1," << argv[1] << "\n" << endl;
 help();
 return(-1);
 }

 // Parse the first image into two image halves divided halfway on y
 //
 cv::Size size = tmp.size();
 int width = size.width;
 int height = size.height;
 int halfheight = height >> 1;

 cout <<"Getting size [[" <<tmp.cols <<"] [" <<tmp.rows <<"]]\n" <<endl;
 cout <<"Got size (w,h): (" <<size.width <<"," <<size.height <<")" <<endl;

 src[0] = cv::Mat(cv::Size(width,halfheight), CV_8UC3);
 src[1] = cv::Mat(cv::Size(width,halfheight), CV_8UC3);

 // Divide the first image into top and bottom halves into src[0] and src[1]
 //
 cv::Mat_<cv::Vec3b>::iterator tmpit = tmp.begin<cv::Vec3b>();

 // top half
 //
 cv::Mat_<cv::Vec3b>::iterator s0it = src[0].begin<cv::Vec3b>();
 for(i = 0; i < width*halfheight; ++i, ++tmpit, ++s0it) *s0it = *tmpit;

 // Bottom half
 //
 cv::Mat_<cv::Vec3b>::iterator s1it = src[1].begin<cv::Vec3b>();
 for(i = 0; i < width*halfheight; ++i, ++tmpit, ++s1it) *s1it = *tmpit;

Some More Sophisticated Histograms Methods | 391

 // Load the other three images
 //
 for(i = 2; i<5; ++i){
 src[i] = cv::imread(argv[i], 1);
 if(src[i].empty()) {
 cerr << "Error on reading image " << i << ": " << argv[i] << "\n" << endl;
 help();
 return(-1);
 }
 }

 // Compute the HSV image, and decompose it into separate planes.
 //
 vector<cv::Mat> hsv(5), hist(5), hist_img(5);
 int h_bins = 8;
 int s_bins = 8;
 int hist_size[] = { h_bins, s_bins }, ch[] = {0, 1};
 float h_ranges[] = { 0, 180 }; // hue range is [0,180]
 float s_ranges[] = { 0, 255 };
 const float* ranges[] = { h_ranges, s_ranges };
 int scale = 10;

 for(i = 0; i<5; ++i) {
 cv::cvtColor(src[i], hsv[i], cv::BGR2HSV);
 cv::calcHist(&hsv[i], 1, ch, noArray(), hist[i], 2, hist_size, ranges, true);
 cv::normalize(hist[i], hist[i], 0, 255, cv::NORM_MINMAX);
 hist_img[i] = cv::Mat::zeros(hist_size[0]*scale, hist_size[1]*scale, CV_8UC3);

 // Draw our histogram For the 5 images
 //
 for(int h = 0; h < hist_size[0]; h++)
 for(int s = 0; s < hist_size[1]; s++){
 float hval = hist[i].at<float>(h, s);
 cv::rectangle(
 hist_img[i],
 cv::Rect(h*scale, s*scale, scale, scale),
 cv::Scalar::all(hval),
 -1
);
 }
 }

 // Display
 //
 cv::namedWindow("Source0", 1);cv::imshow("Source0", src[0]);
 cv::namedWindow("HS Histogram0", 1);cv::imshow("HS Histogram0", hist_img[0]);

 cv::namedWindow("Source1", 1);cv::imshow("Source1", src[1]);
 cv::namedWindow("HS Histogram1", 1); cv::imshow("HS Histogram1", hist_img[1]);

 cv::namedWindow("Source2", 1); cv::imshow("Source2", src[2]);
 cv::namedWindow("HS Histogram2", 1); cv::imshow("HS Histogram2", hist_img[2]);

392 | Chapter 13: Histograms and Templates

 cv::namedWindow("Source3", 1); cv::imshow("Source3", src[3]);
 cv::namedWindow("HS Histogram3", 1); cv::imshow("HS Histogram3", hist_img[3]);

 cv::namedWindow("Source4", 1); cv::imshow("Source4", src[4]);
 cv::namedWindow("HS Histogram4", 1); cv::imshow("HS Histogram4", hist_img[4]);

 // Compare the histogram src0 vs 1, vs 2, vs 3, vs 4
 cout << "Comparison:\n"
 << "Corr Chi Intersect Bhat\n"
 << endl;

 for(i=1; i<5; ++i) { // For each histogram
 cout << "Hist[0] vs Hist[" << i << "]: " << endl;;
 for(int j=0; j<4; ++j) { // For each comparison type
 cout << "method[" << j << "]: " << cv::compareHist(hist[0],hist[i],j) << " ";
 }
 cout << endl;
 }

 //Do EMD and report
 //
 vector<cv::Mat> sig(5);
 cout << "\nEMD: " << endl;

 // Oi Vey, parse histograms to earth movers signatures
 //
 for(i=0; i<5; ++i) {

 vector<cv::Vec3f> sigv;

 // (re)normalize histogram to make the bin weights sum to 1.
 //
 cv::normalize(hist[i], hist[i], 1, 0, cv::NORM_L1);
 for(int h = 0; h < h_bins; h++)
 for(int s = 0; s < s_bins; s++) {
 float bin_val = hist[i].at<float>(h, s);
 if(bin_val != 0)
 sigv.push_back(cv::Vec3f(bin_val, (float)h, (float)s));
 }

 // make Nx3 32fC1 matrix, where N is the number of nonzero histogram bins
 //
 sig[i] = cv::Mat(sigv).clone().reshape(1);
 if(i > 0)
 cout << "Hist[0] vs Hist[" << i << "]: "
 << EMD(sig[0], sig[i], cv::DIST_L2) << endl;
 }

 cv::waitKey(0);

}

Some More Sophisticated Histograms Methods | 393

Back Projection
Back projection is a way of recording how well the pixels fit the distribution of pixels
in a histogram model. For example, if we have a histogram of flesh color, then we can
use back projection to find flesh-colored areas in an image. The function for doing
this kind of lookup has two variations, one for dense arrays and one for sparse arrays.

Basic back projection: cv::calcBackProject()
Back projection computes a vector from the selected channels of the input images
just like cv::calcHist(), but instead of accumulating events in the output histogram
it reads the input histogram and reports the bin value already present. In the context
of statistics, if you think of the input histogram as a (prior) probability distribution
for the particular vector (color) on some object, then back projection is computing
the probability that any particular part of the image is in fact drawn from that prior
distribution (e.g., part of the object).

void cv::calcBackProject(
 const cv::Mat* images, // C-style array of images, 8U or 32F
 int nimages, // number of images in 'images' array
 const int* channels, // C-style list, ints identifying channels
 cv::InputArray hist, // input histogram array
 cv::OutputArray backProject, // output single channel array
 const float** ranges, // C-style array, 'dims' pairs of bin sizes
 double scale = 1, // Optional scale factor for output
 bool uniform = true // true for uniform binning
);

void cv::calcBackProject(
 const cv::Mat* images, // C-style array of images, 8U or 32F
 int nimages, // number of images in 'images' array
 const int* channels, // C-style list, ints identifying channels
 const cv::SparseMat& hist, // input (sparse) histogram array
 cv::OutputArray backProject, // output single channel array
 const float** ranges, // C-style array, 'dims' pairs of bin sizes
 double scale = 1, // Optional scale factor for output
 bool uniform = true // true for uniform binning
);

void cv::calcBackProject(
 cv::InputArrayOfArrays images, // STL-vector of images, 8U or 32F
 const vector<int>& channels, // STL-vector, channels indices
 cv::InputArray hist, // input histogram array
 cv::OutputArray backProject, // output single channel array
 const vector<float>& ranges, // STL-style vector, range boundaries
 double scale = 1, // Optional scale factor for output
 bool uniform = true // true for uniform binning
);

394 | Chapter 13: Histograms and Templates

7 Of these three, the third is the generally preferred form in modern code (i.e., the use of the C-style arrays for
input is considered “old-fashioned” in most modern OpenCV code).

8 An alternative approach would have been to define another data type for histograms that inherited from
cv::Mat, but which also contained this bin information. The authors of the library chose not to take this route
in the 2.0 (and later) version of the library in favor of simplifying the library.

There are three versions of cv::calcBackProject(). The first two use C-style arrays
for their inputs. One of these supports dense histograms and one supports sparse his‐
tograms. The third version uses the newer style of template-based inputs rather than
C-style pointers.7 In both cases, the image is provided in the form of a set of single- or
multichannel arrays (the images variable), while the histogram is precisely the form
of histogram that is produced by cv::calcHist() (the hist variable). The set of
single-channel arrays is exactly the same form as what you would have used when
you called cv::calcHist() in the first place, only this time it is the image you want
to compare your histogram to. If the argument images is a C-style array (type
cv::Mat*), you will also need to tell cv::calcBackProject() how many elements it
has; this is the function of the nimages argument.

The channels argument is a list of the channels that will actually be used in the back
projection. Once again, the form of this argument is the same as the form of the cor‐
responding argument used by cv::calcHist(). We relate each integer entry in the
channels array to a channel in the arrays input by enumerating the channels in
order, starting with the first array (arrays[0]), then for the second array
(images[1]), and so on (e.g., if there were three matrices pointed to by images, with
three channels each, their channels would correspond to the values 0, 1, and 2 for the
first array; 3, 4, and 5 for the second array; and 6, 7, and 8 for the third array). As you
can see, though the number of entries in channels must be the same as the dimen‐
sionality of the histogram hist, that number need not be the same as the number of
arrays in (or the total number of channels represented by) images.

The results of the back-projection computation will be placed in the array backPro
ject, which will be the same size and type as images[0], and have a single channel.

Because histogram data is stored in the same matrix structures used for other data,
there is no place to record the bin information that was used in the original construc‐
tion of the histogram. In this sense, to really comprehend a histogram completely, the
associated cv::Mat (or cv::SparseMat or whatever) is needed, as well as the original
ranges data structure that was used when the histogram was created by cv::calc
Hist().8 This is why this range of information needs to be supplied to cv::calcBack
Project() in the ranges argument.

Finally, there are two optional arguments, scale and uniform. scale is an optional
scale factor that is applied to the return values placed in backProject. (This is partic‐

Some More Sophisticated Histograms Methods | 395

9 Specifically, in the case of our flesh-tone HS histogram, if C is the color of the pixel and F is the probability
that a pixel is flesh, then this probability map gives us p(C|F), the probability of drawing that color if the pixel
actually is flesh. This is not the same as p(F|C), the probability that the pixel is flesh given its color. However,
these two probabilities are related by Bayes’ theorem [Bayes1763], so, if we know the overall probability of
encountering a flesh-colored object in a scene as well as the total probability of encountering of the range of
flesh colors, then we can compute p(F|C) from p(C|F). Specifically, Bayes’ theorem establishes the following
relation:
p(F |C) = p(F)

p(C) p(C | F)

ularly useful if you want to visualize the results.) uniform indicates whether the input
histogram is a uniform histogram (in the sense of cv::calcHist()). Because uniform
defaults to true, this argument is needed only for nonuniform histograms.

Example 13-1 showed how to convert an image into single-channel planes and then
make an array of them. As just described, the values in backProject are set to the
values in the associated bin in hist. If the histogram is normalized, then this value
can be associated with a conditional probability value (i.e., the probability that a pixel
in image is a member of the type characterized by the histogram in hist).9 In
Figure 13-7, we use a flesh-color histogram to derive a probability of flesh image.

Figure 13-7. Back projection of histogram values onto each pixel based on its color: the
HS (hue and saturation planes of an HSV representation of the image) flesh-color his‐
togram (upper left) is used to convert the hand image (upper right) into the flesh-color
probability image (lower right); the lower-left panel is the histogram of the hand image

396 | Chapter 13: Histograms and Templates

One method of finding an object or a desired region in a new image is as follows:

1. Create a histogram of the object or region that you want to search for.
2. To find this object or region in a new image, use the histogram you calculated

together with cv::calcBackProject() to create a back-projected image. (In the
back-projected image, areas of peak values are likely to contain the object or
region matches of interest.)

3. In each of the high-valued areas in the back-projected image, take a local histo‐
gram and use cv::compareHist() with your object or region histogram to con‐
firm whether that area actually contains the object or region you are looking for.

When backProject is a byte image rather than a float image,
you should either not normalize the histogram or else scale it
up before use. The reason is that the highest possible value in a
normalized histogram is 1, so anything less than that will be
rounded down to 0 in the 8-bit image. You might also need to
scale backProject in order to see the values with your eyes,
depending on how high the values are in your histogram.

Template Matching
Template matching via cv::matchTemplate() is not based on histograms; rather, the
function matches an actual image patch against an input image by “sliding” the patch
over the input image using one of the matching methods described in this section.
One example is shown in Figure 13-8.

Template Matching | 397

Figure 13-8. Using cv::matchTemplate() with cv::TM_CCOEFF_NORMED to locate an
object (here, a coffee cup) whose size approximately matches the patch size (white box
in upper-right panel): the sought object is modeled by a hue-saturation histogram
(upper left), which can be compared with an HS histogram for the image as a whole
(lower left); the result of cv::matchTemplate() (lower right) is that the object is easily
picked out from the scene

If, as in Figure 13-9, we have an image patch containing a face, then we can slide that
face over an input image looking for strong matches that would indicate another face
is present.

void cv::matchTemplate(
 cv::InputArray image, // Input image to be searched, 8U or 32F, size W-by-H
 cv::InputArray templ, // Template to use, same type as 'image', size w-by-h
 cv::OutputArray result, // Result image, type 32F, size (W-w+1)-by(H-h+1)
 int method // Comparison method to use
);

398 | Chapter 13: Histograms and Templates

10 The normalized versions were first developed by Galton [Galton] as described by Rodgers [Rodgers88]. The
normalized methods are useful, as they can help reduce the effects of lighting differences between the tem‐
plate and the image. In each case, the normalization coefficient is the same.

Figure 13-9. cv::matchTemplate() sweeps a template image patch across another image
looking for matches

The input to cv::matchTemplate() starts with a single 8-bit or floating-point plane
or color image. The matching model in templ is just a patch from another (presuma‐
bly similar) image containing the object for which you are searching. The computed
output will be put in the result image, which should be a single-channel byte or
floating-point image of size (image.width – templ.width + 1, image.height –
templ.height + 1). The matching method is chosen from one of the options listed
next (we use I to denote the input image, T the template, and R the result image in
the definitions). For each of these, there is also a normalized version.10

Square Difference Matching Method (cv::TM_SQDIFF)
These methods match the squared difference, so a perfect match will be 0 and bad
matches will be large:

Rsq_diff = ∑
x′,y′

T (x ′ , y ′) − I (x + x ′ , y + y ′) 2

Template Matching | 399

Normalized Square Difference Matching Method
(cv::TM_SQDIFF_NORMED)
As with cv::TM_SQDIFF, a perfect match for cv::TM_SQDIFF_NORMED will return a 0.

Rsq_diff _normed =
∑x ′, y ′ T (x ′ , y ′) − I (x + x ′ , y + y ′)

2

∑x ′, y ′ T (x ′ , y ′)2 ⋅ ∑x ′, y ′ I (x + x ′ , y + y ′)2

Correlation Matching Methods (cv::TM_CCORR)
These methods multiplicatively match the template against the image, so a perfect
match will be large and bad matches will be small or 0.

Rccorr = ∑
x′,y′

T (x ′ , y ′) ⋅ I (x + x ′ , y + y ′)

Normalized Cross-Correlation Matching Method
(cv::TM_CCORR_NORMED)
As with cv::TM_CCORR, an extreme mismatch for cv::TM_CCORR_NORMED will return a
score near 0.

Rccorr_normed =
∑x ′, y ′ T (x ′ , y ′) ⋅ I (x + x ′ , y + y ′)

∑x ′, y ′ T (x ′ , y ′)2 ⋅ ∑x ′, y ′ I (x + x ′ , y + y ′)2

Correlation Coefficient Matching Methods (cv::TM_CCOEFF)
These methods match a template relative to its mean against the image relative to its
mean, so a perfect match will be 1 and a perfect mismatch will be –1; a value of 0
simply means that there is no correlation (random alignments).

Rccoeff = ∑
x′,y′

T ′ (x ′ , y ′) ⋅ I ′ (x + x ′ , y + y ′)

T ′ (x ′ , y ′) = T (x ′ , y ′) −
∑x ′′, y ′′ T (x ′′ , y ′′)

(w − h)

I ′ (x + x ′ , y + y ′) = I (x + x ′ , y + y ′) −
∑x ′′, y ′′ I (x ′′ , y ′′)

(w − h)

400 | Chapter 13: Histograms and Templates

Normalized Correlation Coefficient Matching Method
(cv::TM_CCOEFF_NORMED)
As with cv::TM_CCOEFF, a relative match for cv::TM_CCOEFF_NORMED will return a
positive score and a relative mismatch will return a negative score.

Rccoeff_normed =
∑x ′, y ′ T ′(x ′ , y ′) ⋅ I ′ (x + x ′ , y + y ′)

∑x ′, y ′ T ′(x ′ , y ′)2 ⋅ ∑x ′, y ′ I ′ (x + x ′ , y + y ′)2

Here T′ and I′ are as defined for cv::TM_CCOEFF.

As usual, we obtain more accurate matches (at the cost of more computations) as we
move from simpler measures (square difference) to more sophisticated ones (correla‐
tion coefficient). It’s best to do some test trials of all these settings and then choose
the one that best trades off accuracy for speed in your application.

Be careful when interpreting your results. The square-difference
methods show best matches with a minimum, whereas the correla‐
tion and correlation-coefficient methods show best matches at
maximum points.

Once we use cv::matchTemplate() to obtain a matching result image, we can then
use cv::minMaxLoc() or cv::minMaxIdx() to find the location of the best match.
Again, we want to ensure there’s an area of good match around that point in order to
avoid random template alignments that just happen to work well. A good match
should have good matches nearby, because slight misalignments of the template
shouldn’t vary the results too much for real matches. You can look for the best-
matching “hill” by slightly smoothing the result image before seeking the maximum
(for correlation or correlation-coefficient) or minimum (for square-difference
matching methods). The morphological operators (for example) can be helpful in
this context.

Example 13-3 should give you a good idea of how the different template-matching
techniques behave. This program first reads in a template and image to be matched,
and then performs the matching via the methods we’ve discussed in this section.

Example 13-3. Template matching

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

void help(argv){

Template Matching | 401

 cout << "\n"
 <<"Example of using matchTemplate(). The call is:\n"
 <<"\n"
 <<argv[0] <<" template image_to_be_searched\n"
 <<"\n"
 <<" This routine will search using all methods:\n"
 <<" cv::TM_SQDIFF 0\n"
 <<" cv::TM_SQDIFF_NORMED 1\n"
 <<" cv::TM_CCORR 2\n"
 <<" cv::TM_CCORR_NORMED 3\n"
 <<" cv::TM_CCOEFF 4\n"
 <<" cv::TM_CCOEFF_NORMED 5\n"
 <<"\n";
}

// Display the results of the matches
//
int main(int argc, char** argv) {

 if(argc != 3) {
 help(argv);
 return -1;
 }

 cv::Mat src, templ, ftmp[6]; // ftmp is what to display on

 // Read in the template to be used for matching:
 //
 if((templ=cv::imread(argv[1], 1)).empty()) {
 cout << "Error on reading template " << argv[1] << endl;
 help(argv);return -1;
 }

 // Read in the source image to be searched:
 //
 if((src=cv::imread(argv[2], 1)).empty()) {
 cout << "Error on reading src image " << argv[2] << endl;
 help(argv);return -1;
 }

 // Do the matching of the template with the image
 for(int i=0; i<6; ++i){
 cv::matchTemplate(src, templ, ftmp[i], i);
 cv::normalize(ftmp[i],ftmp[i],1,0,cv::MINMAX);
 }

 // Display
 //
 cv::imshow("Template", templ);
 cv::imshow("Image", src);

402 | Chapter 13: Histograms and Templates

 cv::imshow("SQDIFF", ftmp[0]);
 cv::imshow("SQDIFF_NORMED", ftmp[1]);
 cv::imshow("CCORR", ftmp[2]);
 cv::imshow("CCORR_NORMED", ftmp[3]);
 cv::imshow("CCOEFF", ftmp[4]);
 cv::imshow("CCOEFF_NORMED", ftmp[5]);

 // Let user view results:
 //
 cv::waitKey(0);
}

Note the use of cv::normalize() in this code, which allows us to display the results
in a consistent manner. (Recall that some of the matching methods can return
negative-valued results.) We use the cv::NORM_MINMAX flag when normalizing; this
tells the function to shift and scale the floating-point images so that all returned val‐
ues are between 0 and 1. Figure 13-10 shows the results of sweeping the face template
over the source image (shown in Figure 13-9) using each of cv::matchTemplate()’s
available matching methods. In outdoor imagery especially, it’s almost always better
to use one of the normalized methods. Among those, correlation coefficient gives the
most clearly delineated match—but, as expected, at a greater computational cost. For
a specific application, such as automatic parts inspection or tracking features in a
video, you should try all the methods and find the speed and accuracy trade-off that
best serves your needs.

Figure 13-10. Match results of six matching methods for the template search depicted in
Figure 13-9: the best match for square difference is 0 and for the other methods it’s the
maximum point; thus, matches are indicated by dark areas in the left column and by
bright spots in the other two columns

Template Matching | 403

Summary
In this chapter, we learned how OpenCV represents histograms as dense or sparse
matrix objects. In practice, such histograms are typically used to represent probability
density functions that associate a probability amplitude to every element of an array
of some number of dimensions. We also covered how this may be used for object or
region recognition. We learned how to do basic operations on these arrays, which is
useful when interpreting arrays as probability distributions—such as normalization
and comparison with other distributions. We concluded with a discussion of tem‐
plate matching. Template matching can be extremely powerful in highly structured
images.

Exercises
1. Generate 1,000 random numbers ri between 0 and 1. Decide on a bin size and

then take a histogram of 1/ri.
a. Are there similar numbers of entries (i.e., within a factor of ±10) in each his‐

togram bin?
b. Propose a way of dealing with distributions that are highly nonlinear so that

each bin has, within a factor of 10, the same amount of data.
2. Take three images of a hand in each of the three lighting conditions discussed in

the text. Use cv::calcHist() to make an BGR histogram of the flesh color of
one of the hands photographed indoors.
a. Try using just a few large bins (e.g., 2 per dimension), a medium number of

bins (16 per dimension), and many bins (256 per dimension). Then run a
matching routine (using all histogram matching methods) against the other
indoor lighting images of hands. Describe what you find.

b. Now add 8 and then 32 bins per dimension and try matching across lighting
conditions (train on indoor, test on outdoor). Describe the results.

3. As in Exercise 2, gather BGR histograms of hand flesh color. Take one of the
indoor histogram samples as your model and measure EMD (earth mover’s dis‐
tance) against the second indoor histogram and against the first outdoor shaded
and first outdoor sunlit histograms. Use these measurements to set a distance
threshold.
a. Using this EMD threshold, see how well you detect the flesh histogram of the

third indoor histogram, the second outdoor shaded, and the second outdoor
sunlit histograms. Report your results.

404 | Chapter 13: Histograms and Templates

b. Take histograms of randomly chosen nonflesh background patches to see how
well your EMD discriminates. Can it reject the background while matching
the true flesh histograms?

4. Using your collection of hand images, design a histogram that can determine
under which of the three lighting conditions a given image was captured. Toward
this end, you should create features—perhaps sampling from parts of the whole
scene, sampling brightness values, and/or sampling relative brightness (e.g., from
top to bottom patches in the frame) or gradients from center to edges.

5. Assemble three histograms of flesh models from each of our three lighting condi‐
tions (indoor, outdoor in the shade, and outdoor in the sun).
a. Use each histogram on images from indoor, outdoor shaded, and outdoor

sunlit on each of the three conditions. Report how well each histogram works
on images of its own condition and on the two other conditions.

b. Use what you learned to create a “switching histogram” model. First use the
scene detector to determine which histogram model to use: indoor, outdoor
shaded, or outdoor sunlit. Then use the corresponding flesh model to accept
or reject the second flesh patch under all three conditions. How well does this
switching model work?

6. Create a flesh-region interest (or “attention”) detector.
a. Just indoors for now, use several samples of hand and face flesh to create a

BGR histogram.
b. On three new indoor scenes, two with flesh and one without, use cv::calc

BackProject() to create a back-projected image.
c. Use cv::meanShift() at 16 equally spaced grid points in the image with

mean-shift window size equal to ¼ of the image width and height to find
peaks in the back-projected image.

d. In a ⅛ × ⅛ region around each peak, collect a histogram.
e. Use cv::compareHist() with all the methods of comparison to find flesh

regions in the three collected images.
f. Report your results. Which comparison methods are most accurate?

7. Create a flesh-region interest (or “attention”) detector.
a. Just indoors for now, use several samples of hand and face flesh to create an

RGB histogram.
b. Use cv::calcBackProject() to find areas of flesh.
c. Use cv::erode() from Chapter 10 to clean up noise and then cv::flood

Fill() (from Chapter 12) to find large areas of flesh in an image. These are
your “attention” regions.

Exercises | 405

8. Try some hand-gesture recognition. Photograph a hand about two feet from the
camera and create some (nonmoving) hand gestures: thumb up, thumb left,
thumb right.
a. Using your attention detector from Exercise 7, take image gradients in the

area of detected flesh around the hand and create a histogram model of resul‐
tant gradient orientations for each of the three gestures. Also create a gradient
histogram of the face (if there’s a face in the image) so that you’ll have a (non‐
gesture) model of that large flesh region. You might also take histograms of
some similar but nongesture hand positions, just so they won’t be confused
with the actual gestures.

b. Test for recognition using a webcam: use the flesh interest regions to find
“potential hands”; take gradients in each flesh region; use histogram matching
with the preceding gradient-model histograms and set a threshold to detect
the gesture. If two models are above threshold, take the better match as the
winner.

c. Move your hand one to two feet farther back and see if the gradient histogram
can still recognize the gestures. Report.

9. Repeat Exercise 8 but with EMD for the matching. What happens to EMD as you
move your hand back?

406 | Chapter 13: Histograms and Templates

CHAPTER 14

Contours

Although algorithms like the Canny edge detector can be used to find the edge pixels
that separate different segments in an image, they do not tell you anything about
those edges as entities in themselves. The next step is to be able to assemble those
edge pixels into contours. By now you have probably come to expect that there is a
convenient function in OpenCV that will do exactly this for you, and indeed there is:
cv::findContours(). We will start out this chapter with some basics that we will
need in order to use this function. With those concepts in hand, we will get into con‐
tour finding in some detail. Thereafter, we will move on to the many things we can
do with contours after they’ve been computed.

Contour Finding
A contour is a list of points that represent, in one way or another, a curve in an image.
This representation can be different depending on the circumstance at hand. There
are many ways to represent a curve. Contours are represented in OpenCV by STL-
style vector<> template objects in which every entry in the vector encodes informa‐
tion about the location of the next point on the curve. It should be noted that though
a sequence of 2D points (vector<cv::Point> or vector<cv::Point2f>) is the most
common representation, there are other ways to represent contours as well. One
example of such a construct is the Freeman chain, in which each point is represented
as a particular “step” in a given direction from the prior point. We will get into such
variations in more detail as we encounter them. For now, the important thing to
know is that contours are almost always STL vectors, but are not necessarily limited
to the obvious vectors of cv::Point objects.

The function cv::findContours() computes contours from binary images. It can
take images created by cv::Canny(), which have edge pixels in them, or images cre‐

407

1 There are some subtle differences between passing edge images and binary images to cvFindContours(); we
will discuss those shortly.

2 The retrieval methods derive from Suzuki [Suzuki85].

3 For clarity, the dark areas are depicted as gray in the figure, so simply imagine that this image is thresholded
such that the gray areas are set to black before passing to cv::findContours().

4 Contour trees first appeared in Reeb [Reeb46] and were further developed by [Bajaj97], [Kreveld97], [Pas‐
cucci02], and [Carr04].

ated by functions like cv::threshold() or cv::adaptiveThreshold(), in which the
edges are implicit as boundaries between positive and negative regions.1

Contour Hierarchies
Before getting down to exactly how to extract contours, it is worth taking a moment
to understand exactly what a contour is, and how groups of contours can be related
to one another. Of particular interest is the concept of a contour tree, which is impor‐
tant for understanding one of the most useful ways cv::findContours()2 can com‐
municate its results to us.

Take a moment to look at Figure 14-1, which depicts the functionality of cv::find
Contours(). The upper part of the figure shows a test image containing a number of
colored regions (labeled A through E) on a white background.3 Also shown in the fig‐
ure are the contours that will be located by cv::findContours(). Those contours are
labeled cX or hX, where c stands for “contour,” h stands for “hole,” and X is some
number. Some of those contours are dashed lines; they represent exterior boundaries
of the white regions (i.e., nonzero regions). OpenCV and cv::findContours() dis‐
tinguish between these exterior boundaries and the dotted lines, which you may
think of either as interior boundaries or as the exterior boundaries of holes (i.e., zero
regions).

The concept of containment here is important in many applications. For this reason,
OpenCV can be asked to assemble the found contours into a contour tree4 that enco‐
des the containment relationships in its structure. A contour tree corresponding to
this test image would have the contour called c0 at the root node, with the holes h00
and h01 as its children. Those would in turn have as children the contours that they
directly contain, and so on.

408 | Chapter 14: Contours

Figure 14-1. A test image (left side) passed to cv::findContours(). There are five colored
regions (labeled A, B, C, D, and E), but contours are formed from both the exterior and
interior edges of each colored region. The result is nine contours in total. Each contour
is identified and appears in an output list (the contours argument—upper right).
Optionally, a hierarchical representation can also be generated (the hierarchy argu‐
ment—lower right). In the graph shown lower right (corresponding to the constructed
contour tree), each node is a contour, and the links in the graph are labeled with the
index in the four-element data structure associated with each node in the hierarchy
array

There are many possible ways to represent such a tree. OpenCV represents such trees
with arrays (typically of vectors) in which each entry in the array represents one par‐
ticular contour. In that array, each entry contains a set of four integers (typically rep‐
resented as an element of type cv::Vec4i, just like an entry in a four-channel array).
In this case, however, there is a “special” meaning attached to each component of the
node’s vector representation. Each node in the hierarchy list has four integer compo‐
nents. Each component indicates another node in the hierarchy with a particular
relationship to the current node. Where a particular relationship does not exist, that
element of the data structure is set to -1 (e.g., element 3, the parent ID for the root
node, would have value -1 because it has no parent).

By way of example, consider the contours in Figure 14-1. The five colored regions
result in a total of nine contours (counting both the exterior and the interior edges of
each region). If a contour tree is constructed from these nine contours, each node will

Contour Finding | 409

have as children those contours that are contained within it. The resulting tree is
visualized in the lower right of Figure 14-1. For each node, those links that are valid
are also visualized, and the links are labeled with the index associated with that link
in the four-element data structure for that node (see Table 14-1).

Table 14-1. Meaning of each component in the four-element vector representation of each
node in a contour hierarchy list

Index Meaning
0 Next contour (same level)
1 Previous contour (same level)
2 First child (next level down)
3 Parent (next level up)

It is interesting to note the consequences of using cv::findCon
tours() on an image generated by cv::canny() or a similar edge
detector relative to what happens with a binary image such as the
test image shown in Figure 14-1. Deep down, cv::findContours()
does not really know anything about edge images. This means that,
to cv::findContours(), an “edge” is just a very thin “white” area.
As a result, for every exterior contour, there will be a hole contour
that almost exactly coincides with it. This hole is actually just
inside of the exterior boundary. You can think of it as the white-to-
black transition that marks the interior boundary of the edge.

Finding contours with cv::findContours()

With this concept of contour trees in hand, we can look at the cv::findContours()
function and see exactly how we tell it what we want and how we interpret its
response:

void cv::findContours(
 cv::InputOutputArray image, // Input "binary" 8-bit single channel
 cv::OutputArrayOfArrays contours, // Vector of vectors or points
 cv::OutputArray hierarchy, // (optional) topology information
 int mode, // Contour retrieval mode (Figure 14-2)
 int method, // Approximation method
 cv::Point offset = cv::Point() // (optional) Offset every point
);

void cv::findContours(
 cv::InputOutputArray image, // Input "binary" 8-bit single channel
 cv::OutputArrayOfArrays contours, // Vector of vectors or points
 int mode, // Contour retrieval mode (Figure 14-2)
 int method, // Approximation method
 cv::Point offset = cv::Point() // (optional) Offset every point
);

410 | Chapter 14: Contours

5 You are not very likely to use cv::RETR_LIST. This option primarily made sense in previous versions of the
OpenCV library in which the contour’s return value was not automatically organized into a list as the
vector<> type now implies.

The first argument is the input image; this image should be an 8-bit, single-channel
image and will be interpreted as binary (i.e., as if all nonzero pixels were equivalent to
one another). When it runs, cv::findContours() will actually use this image as
scratch space for computation, so if you need that image for anything later, you
should make a copy and pass that to cv::findContours(). The second argument is
an array of arrays, which in most practical cases will mean an STL vector of STL vec‐
tors. This will be filled with the list of contours found (i.e., it will be a vector of con‐
tours, where contours[i] will be a specific contour and thus contours[i][j] would
refer to a specific vertex in contour[i]).

The next argument, hierarchy, can be either supplied or not supplied (through one
of the two forms of the function just shown). If supplied, hierarchy is the output that
describes the tree structure of the contours. The output hierarchy will be an array
(again, typically an STL vector) with one entry for each contour in contours. Each
such entry will contain an array of four elements, each indicating the node to which a
particular link from the current node is connected (see Table 14-1).

The mode argument tells OpenCV how you would like the contours extracted. There
are four possible values for mode:

cv::RETR_EXTERNAL

Retrieves only the extreme outer contours. In Figure 14-1, there is only one exte‐
rior contour, so Figure 14-2 indicates that the first contour points to that outer‐
most sequence and that there are no further connections.

cv::RETR_LIST

Retrieves all the contours and puts them in the list. Figure 14-2 depicts the “hier‐
archy” resulting from the test image in Figure 14-1. In this case, nine contours
are found and they are all connected to one another by hierarchy[i][0] and
hierarchy[i][1] (hierarchy[i][2] and hierarchy[i][3] are not used here).5

cv::RETR_CCOMP

Retrieves all the contours and organizes them into a two-level hierarchy, where
the top-level boundaries are external boundaries of the components and the
second-level boundaries are boundaries of the holes. Referring to Figure 14-2, we
can see that there are five exterior boundaries, of which three contain holes. The
holes are connected to their corresponding exterior boundaries by hierarchy[i]
[2] and hierarchy[i][3]. The outermost boundary, c0, contains two holes.
Because hierarchy[i][2] can contain only one value, the node can have only

Contour Finding | 411

one child. All of the holes inside of c0 are connected to one another by the hier
archy[i][0] and hierarchy[i][1] pointers.

cv::RETR_TREE

Retrieves all the contours and reconstructs the full hierarchy of nested contours.
In our example (Figures 14-1 and 14-2), this means that the root node is the out‐
ermost contour, c0. Below c0 is the hole h00, which is connected to the other
hole, h01, at the same level. Each of those holes in turn has children (the con‐
tours c000 and c010, respectively), which are connected to their parents by verti‐
cal links. This continues down to the innermost contours in the image, which
become the leaf nodes in the tree.

Figure 14-2. The way in which the tree node variables are used to “hook up” all of the
contours located by cv::findContours(). The contour nodes are the same as in
Figure 14-1

The next values pertain to the method (i.e., how the contours are represented):

cv::CHAIN_APPROX_NONE

Translates all the points from the contour code into points. This operation will
produce a large number of points, as each point will be one of the eight neigh‐
bors of the previous point. No attempt is made to reduce the number of vertices
returned.

412 | Chapter 14: Contours

6 If you are interested in the details of how this algorithm works, you can consult C. H. Teh and R. T. Chin,
“On the Detection of Dominant Points on Digital Curve,” PAMI 11, no. 8 (1989): 859–872. Because the algo‐
rithm requires no tuning parameters, however, you can get quite far without knowing the deeper details of
the algorithm.

cv::CHAIN_APPROX_SIMPLE

Compresses horizontal, vertical, and diagonal segments, leaving only their end‐
ing points. For many special cases, this can result in a substantial reduction of the
number of points returned. The extreme example would be a rectangle (of any
size) that is oriented along the x-y axes. In this case, only four points would be
returned.

cv::CHAIN_APPROX_TC89_L1 or cv::CHAIN_APPROX_TC89_KCOS
Applies one of the flavors of the Teh-Chin chain approximation algorithm.6 The
Teh-Chin, or T-C, algorithm is a more sophisticated (and more compute-
intensive) method for reducing the number of points returned. The T-C algo‐
rithm requires no additional parameters to run.

The final argument to cv::findContours() is offset. This argument is optional. If
present, every point in the returned contour will be shifted by this amount. This is
particularly useful when either the contours are extracted from a region of interest
but you would like them represented in the parent image’s coordinate system, or the
reverse case, where you are extracting the contours in the coordinates of a larger
image but would like to express them relative to some subregion of the image.

Drawing Contours
One of the most straightforward things you might want to do with a list of contours,
once you have it, is to draw the contours on the screen. For this we have cv::drawCon
tours():

void cv::drawContours(
 cv::InputOutputArray image, // Will draw on input image
 cv::InputArrayOfArrays contours, // Vector of vectors or points
 int contourIdx, // Contour to draw (-1 is "all")
 const cv::Scalar& color, // Color for contours
 int thickness = 1, // Thickness for contour lines
 int lineType = 8, // Connectedness ('4' or '8')
 cv::InputArray hierarchy = noArray(), // optional (from findContours)
 int maxLevel = INT_MAX, // Max descent in hierarchy
 cv::Point offset = cv::Point() // (optional) Offset all points
)

The first argument, image, is simple: it is the image on which to draw the contours.
The next argument, contour, is the list of contours to be drawn. This is in the same
form as the contour output of cv::findContours(); it is a list of lists of points. The

Contour Finding | 413

contourIdx argument can be used to select either a single contour to draw or to tell
cv::drawContours() to draw all of the contours on the list provided in the contours
argument. If contourIdx is a positive number, that particular contour will be drawn.
If contourIdx is negative (usually it is just set to -1), all contours are drawn.

The color, thickness, and lineType arguments are similar to the corresponding
arguments in other draw functions such as cv::Line(). As usual, the color argument
is a four-component cv::Scalar, the thickness is an integer indicating the thickness
of the lines to be drawn in pixels, and the lineType may be either 4 or 8, indicating
whether the line is to be drawn as a four-connected (ugly), eight-connected (not too
ugly), or cv::AA (pretty) line.

The hierarchy argument corresponds to the hierarchy output from cv::findCon
tours(). The hierarchy works with the maxLevel argument. The latter limits the
depth in the hierarchy to which contours will be drawn in your image. Setting maxLe
vel to 0 indicates that only “level 0” (the highest level) in the hierarchy should be
drawn; higher numbers indicate that number of layers down from the highest level
that should be included. Looking at Figure 14-2, you can see that this is useful for
contour trees; it is also potentially useful for connected components
(cv::RETR_CCOMP) in case you would like only to visualize exterior contours (but not
“holes”—interior contours).

Finally, we can give an offset to the draw routine so that the contour will be drawn
elsewhere than at the absolute coordinates by which it was defined. This feature is
particularly useful when the contour has already been converted to center-of-mass or
other local coordinates. offset is particularly helpful in the case in which you have
used cv::findContours() one or more times in different image subregions (ROIs)
but now want to display all the results within the original large image. Conversely, we
could use offset if we’d extracted a contour from a large image and then wanted to
form a small mask for this contour.

A Contour Example
Example 14-1 is drawn from the OpenCV package. Here we create a window with an
image in it. A trackbar sets a simple threshold, and the contours in the thresholded
image are drawn. The image is updated whenever the trackbar is adjusted.

Example 14-1. Finding contours based on a trackbar’s location; the contours are
updated whenever the trackbar is moved

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

414 | Chapter 14: Contours

cv::Mat g_gray, g_binary;
int g_thresh = 100;

void on_trackbar(int, void*) {

 cv::threshold(g_gray, g_binary, g_thresh, 255, cv::THRESH_BINARY);
 vector< vector< cv::Point> > contours;
 cv::findContours(
 g_binary,
 contours,
 cv::noArray(),
 cv::RETR_LIST,
 cv::CHAIN_APPROX_SIMPLE
);
 g_binary = cv::Scalar::all(0);

 cv::drawContours(g_binary, contours, -1, cv::Scalar::all(255));
 cv::imshow("Contours", g_binary);

}

int main(int argc, char** argv) {

 if(argc != 2 || (g_gray = cv::imread(argv[1], 0)).empty()) {
 cout << "Find threshold dependent contours\nUsage: " <<argv[0]
 <<"fruits.jpg" << endl;
 return -1;
 }
 cv::namedWindow("Contours", 1);

 cv::createTrackbar(
 "Threshold",
 "Contours",
 &g_thresh,
 255,
 on_trackbar
);
 on_trackbar(0, 0);

 cv::waitKey();

 return 0;

}

Here, everything of interest to us is happening inside of the function on_trackbar().
The image g_gray is thresholded such that only those pixels brighter than g_thresh
remain nonzero. The cv::findContours() function is then called on this threshol‐
ded image. Finally, cv::drawContours() is called, and the contours are drawn (in
white) onto the grayscale image.

Contour Finding | 415

Another Contour Example
In Example 14-2, we find contours on an input image and then proceed to draw them
one by one. This is a good example to tinker with on your own to explore the effects
of changing either the contour finding mode (cv::RETR_LIST in the code) or the
max_depth that is used to draw the contours (0 in the code). If you set max_depth to a
larger number, notice that the example code steps through the contours returned by
cv::findContours() by means of hierarchy[i][1]. Thus, for some topologies
(cv::RETR_TREE, cv::RETR_CCOMP, etc.), you may see the same contour more than
once as you step through.

Example 14-2. Finding and drawing contours on an input image

#include <opencv2/opencv.hpp>
#include <algorithm>
#include <iostream>

using namespace std;

struct AreaCmp {
 AreaCmp(const vector<float>& _areas) : areas(&_areas) {}
 bool operator()(int a, int b) const { return (*areas)[a] > (*areas)[b]; }
 const vector<float>* areas;
};

int main(int argc, char* argv[]) {

 cv::Mat img, img_edge, img_color;

 // load image or show help if no image was provided
 //
 if(argc != 2 || (img = cv::imread(argv[1],cv::LOAD_IMAGE_GRAYSCALE)).empty()) {
 cout << "\nExample 8_2 Drawing Contours\nCall is:\n./ch8_ex8_2 image\n\n";
 return -1;
 }

 cv::threshold(img, img_edge, 128, 255, cv::THRESH_BINARY);
 cv::imshow("Image after threshold", img_edge);
 vector< vector< cv::Point > > contours;
 vector< cv::Vec4i > hierarchy;

 cv::findContours(
 img_edge,
 contours,
 hierarchy,
 cv::RETR_LIST,
 cv::CHAIN_APPROX_SIMPLE
);
 cout << "\n\nHit any key to draw the next contour, ESC to quit\n\n";

416 | Chapter 14: Contours

 cout << "Total Contours Detected: " << contours.size() << endl;

 vector<int> sortIdx(contours.size());
 vector<float> areas(contours.size());
 for(int n = 0; n < (int)contours.size(); n++) {
 sortIdx[n] = n;
 areas[n] = contourArea(contours[n], false);
 }

 // sort contours so that the largest contours go first
 //
 std::sort(sortIdx.begin(), sortIdx.end(), AreaCmp(areas));

 for(int n = 0; n < (int)sortIdx.size(); n++) {
 int idx = sortIdx[n];
 cv::cvtColor(img, img_color, cv::GRAY2BGR);
 cv::drawContours(
 img_color, contours, idx,
 cv::Scalar(0,0,255), 2, 8, hierarchy,
 0 // Try different values of max_level, and see what happens
);
 cout << "Contour #" << idx << ": area=" << areas[idx] <<
 ", nvertices=" << contours[idx].size() << endl;
 cv::imshow(argv[0], img_color);
 int k;
 if((k = cv::waitKey()&255) == 27)
 break;
 }
 cout << "Finished all contours\n";

 return 0;

}

Fast Connected Component Analysis
Another approach, closely related to contour analysis, is connected component analy‐
sis. After segmenting an image, typically by thresholding, we can use connected com‐
ponent analysis to efficiently isolate and process the resulting image regions one by
one. The input required by OpenCV’s connected component algorithm is a binary
(black-and-white) image, and the output is a labeled pixel map where nonzero pixels
from the same connected component get the same unique label. For example, there
are five connected components in Figure 14-1, the biggest one with two holes, two
smaller ones with one hole each, and two small components without holes. Connec‐
ted component analysis is quite popular in background segmentation algorithms as
the post-processing filter that removes small noise patches and in problems like OCR
where there is a well-defined foreground to extract. Of course, we want to run such a
basic operation quickly. A slower “manual” way to do this would be to use cv::find
Contours() (where you pass the cv::RETR_CCOMP flag) and then subsequently loop

Contour Finding | 417

over the resulting connected components where cv::drawContours() with
color=component_label and thickness=-1 is called. This is slow for several reasons:

• cv::findContours() first allocates a separate STL vector for each contour, and
there can be hundreds—sometimes thousands—of contours in the image.

• Then, when you want to fill a nonconvex area bounded by one or more contours,
cv::drawContours() is also slow and involves building and sorting a collection
of all the tiny line segments bounding the area.

• Finally, collecting some basic information about a connected component (such
as an area or bounding box) requires extra, sometimes expensive, calls.

Thankfully, as of OpenCV 3 there is a great alternative to all this complex stuff—
namely, the cv::connectedComponents() and cv::connectedComponentsWith

Stats() functions:

int cv::connectedComponents (
 cv::InputArrayn image, // input 8-bit single-channel (binary)
 cv::OutputArray labels, // output label map
 int connectivity = 8, // 4- or 8-connected components
 int ltype = CV_32S // Output label type (CV_32S or CV_16U)
);

int cv::connectedComponentsWithStats (
 cv::InputArrayn image, // input 8-bit single-channel (binary)
 cv::OutputArray labels, // output label map
 cv::OutputArray stats, // Nx5 matrix (CV_32S) of statistics:
 // [x0, y0, width0, height0, area0;
 // ... ; x(N-1), y(N-1), width(N-1),
 // height(N-1), area(N-1)]
 cv::OutputArray centroids, // Nx2 CV_64F matrix of centroids:
 // [cx0, cy0; ... ; cx(N-1), cy(N-1)]
 int connectivity = 8, // 4- or 8-connected components
 int ltype = CV_32S // Output label type (CV_32S or CV_16U)
);

cv::connectedComponents() simply creates the label map. cv::connectedCompo
nentsWithStats() does the same but also returns some important information about
each connected component, such as the bounding box, area, and center of mass (also
known as the centroid). If you do not need the centroids, pass cv::noArray() for the
OutputArray centroids parameter. Both functions return the number of found con‐
nected components. The functions do not use cv::findContours() and cv::drawCon
tours(); instead, they implement the direct and very efficient algorithm described in
“Two Strategies to Speed Up Connected Component Labeling Algorithms” [Wu08].

Let’s consider a short example that draws the labeled connected components while
removing small ones (see Example 14-3).

418 | Chapter 14: Contours

Example 14-3. Drawing labeled connected components

#include <opencv2/opencv.hpp>
#include <algorithm>
#include <iostream>

using namespace std;
int main(int argc, char* argv[]) {

 cv::Mat img, img_edge, labels, img_color, stats;

 // load image or show help if no image was provided
 if(argc != 2
 || (img = cv::imread(argv[1], cv::LOAD_IMAGE_GRAYSCALE)).empty()
) {
 cout << "\nExample 8_3 Drawing Connected componnents\n" \
 << "Call is:\n" <<argv[0] <<" image\n\n";
 return -1;
 }

 cv::threshold(img, img_edge, 128, 255, cv::THRESH_BINARY);
 cv::imshow("Image after threshold", img_edge);

 int i, nccomps = cv::connectedComponentsWithStats (
 img_edge, labels,
 stats, cv::noArray()
);
 cout << "Total Connected Components Detected: " << nccomps << endl;

 vector<cv::Vec3b> colors(nccomps+1);
 colors[0] = Vec3b(0,0,0); // background pixels remain black.
 for(i = 1; i <= nccomps; i++) {
 colors[i] = Vec3b(rand()%256, rand()%256, rand()%256);
 if(stats.at<int>(i-1, cv::CC_STAT_AREA) < 100)
 colors[i] = Vec3b(0,0,0); // small regions are painted with black too.
 }
 img_color = Mat::zeros(img.size(), CV_8UC3);
 for(int y = 0; y < img_color.rows; y++)
 for(int x = 0; x < img_color.cols; x++)
 {
 int label = labels.at<int>(y, x);
 CV_Assert(0 <= label && label <= nccomps);
 img_color.at<cv::Vec3b>(y, x) = colors[label];
 }
 cv::imshow("Labeled map", img_color);
 cv::waitKey();
 return 0;
}

Contour Finding | 419

7 For aficionados, the method we are discussing here is the Douglas-Peucker (DP) approximation [Douglas73].
Other popular methods are the Rosenfeld-Johnson [Rosenfeld73] and Teh-Chin [Teh89] algorithms. Of those
two, the Teh-Chin algorithm is not available in OpenCV as a reduction method, but is available at the time of
the extraction of the polygon (see “Finding contours with cv::findContours()” on page 410).

More to Do with Contours
When analyzing an image, there are many different things we might want to do with
contours. After all, most contours are—or are candidates to be—things that we are
interested in identifying or manipulating. The various relevant tasks include charac‐
terizing the contours, simplifying or approximating them, matching them to tem‐
plates, and so on.

In this section, we will examine some of these common tasks and visit the various
functions built into OpenCV that will either do these things for us or at least make it
easier for us to perform our own tasks.

Polygon Approximations
If we are drawing a contour or are engaged in shape analysis, it is common to
approximate a contour representing a polygon with another contour having fewer
vertices. There are many different ways to do this; OpenCV offers implementations
of two of them.

Polygon approximation with cv::approxPolyDP()

The routine cv::approxPolyDP() is an implementation of one of these two
algorithms:7

void cv::approxPolyDP(
 cv::InputArray curve, // Array or vector of 2-dimensional points
 cv::OutputArray approxCurve, // Result, type is same as 'curve'
 double epsilon, // Max distance from 'curve' to 'approxCurve'
 bool closed // If true, assume link from last to first vertex
);

The cv::approxPolyDP() function acts on one polygon at a time, which is given in
the input curve. The output of cv::approxPolyDP() will be placed in the approx
Curve output array. As usual, these polygons can be represented as either STL vectors
of cv::Point objects or as OpenCV cv::Mat arrays of size N × 1 (but having two
channels). Whichever representation you choose, the input and output arrays used
for curve and approxCurve should be of the same type.

The parameter epsilon is the accuracy of approximation you require. The meaning
of the epsilon parameter is that this is the largest deviation you will allow between
the original polygon and the final approximated polygon. closed, the last argument,

420 | Chapter 14: Contours

indicates whether the sequence of points indicated by curve should be considered a
closed polygon. If set to true, the curve will be assumed to be closed (i.e., the last
point is to be considered connected to the first point).

The Douglas-Peucker algorithm explained

To better understand how to set the epsilon parameter, and to better understand the
output of cv::approxPolyDP(), it is worth taking a moment to understand exactly
how the algorithm works. In Figure 14-3, starting with a contour (panel b), the algo‐
rithm begins by picking two extremal points and connecting them with a line (panel
c). Then the original polygon is searched to find the point farthest from the line just
drawn, and that point is added to the approximation.

The process is iterated (panel d), adding the next most distant point to the accumula‐
ted approximation, until all of the points are less than the distance indicated by the
precision parameter (panel f). This means that good candidates for the parameter are
some fraction of the contour’s length, or of the length of its bounding box, or a simi‐
lar measure of the contour’s overall size.

Figure 14-3. Visualization of the DP algorithm used by cv::approxPolyDP(): the origi‐
nal image (a) is approximated by a contour (b) and then—starting from the first two
maximally separated vertices (c)—the additional vertices are iteratively selected from
that contour (d–f)

Geometry and Summary Characteristics
Another task that one often faces with contours is computing their various summary
characteristics. These might include length or some other form of size measure of the
overall contour. Other useful characteristics are the contour moments, which can be
used to summarize the gross shape characteristics of a contour; we will address these
in the next section. Some of the methods we will discuss work equally well for any

More to Do with Contours | 421

collection of points (i.e., even those that do not imply a piecewise curve between
those points). We will mention along the way which methods make sense only for
curves (such as computing arc length) and which make sense for any general set of
points (such as bounding boxes).

Length using cv::arcLength()

The subroutine cv::arcLength() will take a contour and return its length.

double cv::arcLength(
 cv::InputArray points, // Array or vector of 2-dimensional points
 bool closed // If true, assume link from last to first vertex
);

The first argument of cv::arcLength() is the contour itself, whose form may be any
of the usual representations of a curve (i.e., STL vector of points or an array of two-
channel elements). The second argument, closed, indicates whether the contour
should be treated as closed. If the contour is considered closed, the distance from the
last point in points to the first contributes to the overall arc length.

cv::arcLength() is an example of a case where the points argument is implicitly
assumed to represent a curve, and so is not particularly meaningful for a general set
of points.

Upright bounding box with cv::boundingRect()
Of course, the length and area are simple characterizations of a contour. One of the
simplest ways to characterize a contour is to report a bounding box for that contour.
The simplest version of that would be to simply compute the upright bounding rec‐
tangle. This is what cv::boundingRect() does for us:

cv::Rect cv::boundingRect(// Return upright rectangle bounding the points
 cv::InputArray points, // Array or vector of 2-dimensional points
);

The cv::boundingRect() function just takes one argument, which is the curve whose
bounding box you would like computed. The function returns a value of type
cv::Rect, which is the bounding box you are looking for.

The bounding box computation is meaningful for any set of points, regardless of
whether those points represent a curve or are just some arbitrary constellation of
points.

A minimum area rectangle with cv::minAreaRect()

One problem with the bounding rectangle from cv::boundingRect() is that it
returns a cv::Rect and so can represent only a rectangle whose sides are oriented
horizontally and vertically. In contrast, the routine cv::minAreaRect() returns the

422 | Chapter 14: Contours

minimal rectangle that will bound your contour, and this rectangle may be inclined
relative to the vertical; see Figure 14-4. The arguments are otherwise similar to
cv::boundingRect(). The OpenCV data type cv::RotatedRect is just what is
needed to represent such a rectangle. Recall that it has the following definition:

class cv::RotatedRect {
 cv::Point2f center; // Exact center point (around which to rotate)
 cv::Size2f size; // Size of rectangle (centered on 'center')
 float angle; // degrees
};

So, in order to get a little tighter fit, you can call cv::minAreaRect():

cv::RotatedRect cv::minAreaRect(// Return rectangle bounding the points
 cv::InputArray points, // Array or vector of 2-dimensional points
);

As usual, points can be any of the standard representations for a sequence of points,
and is equally meaningful for curves and for arbitrary point sets.

Figure 14-4. cv::Rect can represent only upright rectangles, but cv::RotatedRect can
handle rectangles of any inclination

More to Do with Contours | 423

8 For more information on the inner workings of these fitting techniques, see Fitzgibbon and Fisher [Fitzgib‐
bon95] and Zhang [Zhang96].

9 Of course, if the number of points is sufficiently small (or in certain other degenerate cases—including all of
the points being collinear), it is possible for all of the points to lie on the ellipse. In general, however, some
points will be inside, some will be outside, and few if any will actually lie on the ellipse itself.

A minimal enclosing circle using cv::minEnclosingCircle()

Next, we have cv::minEnclosingCircle().8 This routine works pretty much the
same way as the bounding box routines, with the exception that there is no conve‐
nient data type for the return value. As a result, you must pass in references to vari‐
ables you would like set by cv::minEnclosingCircle():

void cv::minEnclosingCircle(
 cv::InputArray points, // Array or vector of 2-dimensional points
 cv::Point2f& center, // Result location of circle center
 float& radius // Result radius of circle
);

The input curve is just the usual sequence of points representation. The center and
radius variables are variables you will have to allocate and which will be set for you
by cv::minEnclosingCircle().

The cv::minEnclosingCircle function is equally meaningful for curves as for gen‐
eral point sets.

Fitting an ellipse with cv::fitEllipse()
As with the minimal enclosing circle, OpenCV also provides a method for fitting an
ellipse to a set of points:

cv::RotatedRect cv::fitEllipse(// Return rect bounding ellipse (Figure 14-5)
 cv::InputArray points // Array or vector of 2-dimensional points
);

cv::fitEllipse() takes just a points array as an argument.

At first glance, it might appear that cv::fitEllipse() is just the elliptical analog of
cv::minEnclosingCircle(). There is, however, a subtle difference between cv::minE
nclosingCircle() and cv::fitEllipse(), which is that the former simply com‐
putes the smallest circle that completely encloses the given points, whereas the latter
uses a fitting function and returns the ellipse that is the best approximation to the
point set. This means that not all points in the contour will even be enclosed in the
ellipse returned by cv::fitEllipse().9 The fitting is done through a least-squares
fitness function.

The results of the fit are returned in a cv::RotatedRect structure. The indicated box
exactly encloses the ellipse (see Figure 14-5).

424 | Chapter 14: Contours

Figure 14-5. Ten-point contour with the minimal enclosing circle superimposed (a) and
with the best fitting ellipsoid (b). A “rotated rectangle” is used by OpenCV to represent
that ellipsoid (c)

Finding the best line fit to your contour with cv::fitLine()
In many cases, your “contour” will actually be a set of points that you believe is
approximately a straight line—or, more accurately, that you believe to be a noisy
sample whose underlying origin is a straight line. In such a situation, the problem is
to determine what line would be the best explanation for the points you observe. In
fact, there are many reasons why one might want to find a best line fit, and as a result,
there are many variations of how to actually do that fitting.

We do this fitting by minimizing a cost function, which is defined to be:

cost(θ→) = ∑points:iρ(ri) , where ri = r(θ→ , xι
→)

Here θ→ is the set of parameters that define the line, xι
→ is the ith point in the contour,

and ri is the distance between that point and the line defined by θ→ . Thus, it is the func‐
tion ρ(ri) that fundamentally distinguishes the different available fitting methods. In
the case of ρ(ri) = 1

2 ri
2, the cost function will become the familiar least-squares fitting

procedure that is probably familiar to most readers from elementary statistics. The
more complex distance functions are useful when more robust fitting methods are
needed (i.e., fitting methods that handle outlier data points more gracefully).
Table 14-2 shows the available forms for ρ(r) and the associated OpenCV enum val‐
ues used by cv::fitLine().

More to Do with Contours | 425

Table 14-2. Available distance metrics for the distType parameter in cv::fitLine()

distType Distance metric
cv::DIST_L2 ρ(ri) =

1
2 ri

2 Least-squares method

cv::DIST_L1 ρ(ri) = ri
cv::DIST_L12 ρ(ri) = 2 ⋅ (1 +

1
2 r 2 − 1)

cv::DIST_FAIR ρ(ri) = C 2 ⋅ (
r
C − log(1 +

r
C)) C = 1.3998

cv::DIST_WELSCH ρ(ri) =
C 2

2 ⋅ (1 − exp(− (r
C)2)) C = 2.9846

cv::DIST_HUBER
ρ(ri) = {

1
2 ri

2 r < C

C ⋅ (r −
C
2) r ≥ C

C = 1.345

The OpenCV function cv::fitLine() has the following function prototype:

void cv::fitLine(
 cv::InputArray points, // Array or vector of 2-dimensional points
 cv::OutputArray line, // Vector of Vec4f (2d), or Vec6f (3d)
 int distType, // Distance type (Table 14-2)
 double param, // Parameter for distance metric (Table 14-2)
 double reps, // Radius accuracy parameter
 double aeps // Angle accuracy parameter
);

The argument points is mostly what you have come to expect, a representation of a
set of points either as a cv::Mat array or an STL vector. One very important differ‐
ence, however, between cv::fitLine() and many of the other functions we are look‐
ing at in this section is that cv::fitLine() accepts both two- and three-dimensional
points. The output line is a little strange. That entry should be of type cv::Vec4f
(for a two-dimensional line), or cv::Vec6f (for a three-dimensional line) where the
first half of the values gives the line direction and the second half a point on the line.
The third argument, distType, allows us to select the distance metric we would like
to use. The possible values for distType are shown in Table 14-2. The param argu‐
ment is used to supply a value for the parameters used by some of the distance met‐
rics (these parameters appear as the variables C in Table 14-2). This parameter can be
set to 0, in which case cv::fitLine() will automatically select the optimal value for
the selected distance metric. The parameters reps and aeps represent your required
accuracy for the origin of the fitted line (the x, y, z parts) and for the angle of the line
(the vx, vy, vz parts). Typical values for these parameters are 1e-2 for both of them.

Finding the convex hull of a contour using cv::convexHull()
There are many situations in which we need to simplify a polygon by finding its con‐
vex hull. The convex hull of a polygon or contour is the polygon that completely
contains the original, is made only of points from the original, and is everywhere

426 | Chapter 14: Contours

convex (i.e., the internal angle between any three sequential points is less than 180
degrees). An example of a convex hull is shown in Figure 14-6. There are many rea‐
sons to compute convex hulls. One particularly common reason is that testing
whether a point is inside a convex polygon can be very fast, and it is often worthwhile
to test first whether a point is inside the convex hull of a complicated polygon before
even bothering to test whether it is in the true polygon.

Figure 14-6. An image (a) is converted to a contour (b). The convex hull of that contour
(c) has far fewer points and is a much simpler piece of geometry

To compute the convex hull of a contour, OpenCV provides the function cv::convex
Hull():

void cv::convexHull(
 cv::InputArray points, // Array or vector of 2-d points
 cv::OutputArray hull, // Array of points or integer indices
 bool clockwise = false, // true='output points will be clockwise'
 bool returnPoints = true // true='points in hull', else indices
);

The points input to cv::convexHull() can be any of the usual representations of a
contour. The argument hull is where the resulting convex hull will appear. For this
argument, you have two options: if you like, you can provide the usual contour type
structure, and cv::convexHull() will fill that up with the points in the resulting con‐
vex hull. The other option (see returnPoints, discussed momentarily) is to provide
not an array of points but an array of integers. In this case, cv::convexHull() will
associate an index with each point that is to appear in the hull and place those indices
in hull. In this case, the indexes will begin at zero, and the index value i will refer to
the point points[i].

More to Do with Contours | 427

The clockwise argument indicates how you would like to have cv::convexHull()
express the hull it computes. If clockwise is set to true, then the hull will be in clock‐
wise order; otherwise, it will be in counterclockwise order. The final argument,
returnPoints, is associated with the option to return point indices rather than point
values. If points is an STL vector object, this argument is ignored, because the type of
the vector template (int versus cv::Point) can be used to infer what you want. If,
however, points is a cv::Mat type array, returnPoints must be set to true if you are
expecting point coordinates, and false if you are expecting indices.

Geometrical Tests
When you are dealing with bounding boxes and other summary representations of
polygon contours, it is often desirable to perform such simple geometrical checks as
polygon overlap or a fast overlap check between bounding boxes. OpenCV provides a
small but handy set of routines for this sort of geometrical checking.

Many important tests that apply to rectangles are supported through interfaces pro‐
vided by those rectangle types. For example, the contains() method of type
cv::Rect can be passed a point, and it will determine whether that point is inside the
rectangle.

Similarly, the minimal rectangle containing two rectangles can be computed with the
logical OR operator (e.g., rect1 | rect2), while the intersection of two rectangles
can be computed with the logical AND operator (e.g., rect1 & rect2). Unfortu‐
nately, at this time, there are no such operators for cv::RotatedRect.

For operations on general curves, however, there are library functions that can be
used.

Testing if a point is inside a polygon with cv::pointPolygonTest()

This first geometry toolkit function is cv::pointPolygonTest(), which allows you to
test whether a point is inside of a polygon (indicated by the array contour). In par‐
ticular, if the argument measureDist is set to true, then the function returns the dis‐
tance to the nearest contour edge; that distance is 0 if the point is inside the contour
and positive if the point is outside. If the measure_dist argument is false, then the
return values are simply +1, –1, or 0 depending on whether the point is inside, out‐
side, or on an edge (or vertex), respectively. As always, the contour itself can be either
an STL vector or an n × 1 two-channel array of points.

double cv::pointPolygonTest(// Return distance to boundary (or just side)
 cv::InputArray contour, // Array or vector of 2-dimensional points
 cv::Point2f pt, // Test point
 bool measureDist // true 'return distance', else {0,+1,-1} only
);

428 | Chapter 14: Contours

Testing whether a contour is convex with cv::isContourConvex()
It is common to want to know whether or not a contour is convex. There are lots of
reasons for this, but one of the most typical is that there are a lot of algorithms for
working with polygons that either work only on convex polygons or that can be sim‐
plified dramatically for the case of convex polygons. To test whether a polygon is
convex, simply call cv::isContourConvex() and pass it your contour in any of the
usual representations. The contour passed will always be assumed to be a closed poly‐
gon (i.e., a link between the last and first points in the contour is presumed to be
implied):

bool cv::isContourConvex(// Return true if contour is convex
 cv::InputArray contour // Array or vector of 2-dimensional points
);

Because of the nature of the implementation, cv::isContourConvex() requires that
the contour passed to it be a simple polygon. This means that the contour must not
have any self-intersections.

Matching Contours and Images
Now that you have a pretty good idea of what a contour is and how to work with
contours as objects in OpenCV, we’ll move to the topic of how to use them for some
practical purposes. The most common task associated with contours is matching
them in some way with one another. We may have two computed contours that we’d
like to compare, or a computed contour and some abstract template with which we’d
like to compare our contour. We will discuss both of these cases.

Moments
One of the simplest ways to compare two contours is to compute contour moments,
which represent certain high-level characteristics of a contour, an image, or a set of
points. (The entire discussion that follows will apply equally well to contours, images,
or point sets, so for convenience we will just refer to these options collectively as
objects.) Numerically, the moments are defined by the following formula:

mp,q = ∑
i=1

N
I (xi, yi)x p y q

In this expression, the moment mp,q is defined as a sum over all of the pixels in the
object, in which the value of the pixel at point x, y is multiplied by the factor xp yq. In
the case of the m00 moment, this factor is equal to 1—so if the image is a binary image
(i.e., one in which every pixel is either 0 or 1), then m00 is just the area of the nonzero

Matching Contours and Images | 429

10 Mathematical purists might object that m00 should be not the contour’s length but rather its area. But because
we are looking here at a contour and not a filled polygon, the length and the area are actually the same in a
discrete pixel space (at least for the relevant distance measure in our pixel space). There are also functions for
computing moments of cv::Array images; in that case, m00 would actually be the area of nonzero pixels.
Indeed, the distinction is not entirely academic, however; if a contour is actually represented as a set of vertex
points, the formula used to compute the length will not give precisely the same area as we would compute by
first rasterizing the contour (i.e., using cv::drawContours()) and then computing the area of that rasteriza‐
tion—though the two should converge to the same value in the limit of infinite resolution.

11 In the event that you may need to handle a set of points, rather than a contour, it is most convenient to simply
create an image containing those points.

pixels in the image. In the case of a contour, the result is the length of the contour,10

and in the case of a point set it is just the number of points. After a little thought, you
should be able to convince yourself that for the same binary image, the m10 and m01
moments, divided by the m00 moment, are the average x and y values across the
object. The term moments relates to the how this term is used in statistics, and the
higher-order moments can be related to what are called the moments of a statistical
distribution (i.e., area, average, variance, etc.). In this sense, you can think of the
moments of a nonbinary image as being the moments of a binary image in which any
individual pixel can be occupied by multiple objects.

Computing moments with cv::moments()
The function that computes these moments for us is:

cv::Moments cv::moments(// Return structure contains moments
 cv::InputArray points, // 2-dimensional points or an "image"
 bool binaryImage = false // false='interpret image values as "mass"'
)

The first argument, points, is the contour we are interested in, and the second, bina
ryImage, tells OpenCV whether the input image should be interpreted as a binary
image. The points argument can be either a two-dimensional array (in which case it
will be understood to be an image) or a set of points represented as an N × 1 or 1 × N
array (with two channels) or an STL vector of cv::Point objects. In the latter cases
(the sets of points), cv::moments will interpret these points not as a discrete set of
points, but as a contour with those points as vertices.11 The meaning of this second
argument is that if true, all nonzero pixels will be treated as having value 1, rather
than whatever actual value is stored there. This is particularly useful when the image
is the output of a threshold operation that might, for example, have 255 as its non‐
zero values. The cv::moments() function returns an instance of the cv::Moments
object. That object is defined as follows:

430 | Chapter 14: Contours

class Moments {
public:
 double m00; // zero order moment (x1)
 double m10, m01; // first order moments (x2)
 double m20, m11, m02; // second order moments (x3)
 double m30, m21, m12, m03; // third order moments (x4)
 double mu20, mu11, mu02; // second order central moments (x3)
 double mu30, mu21, mu12, mu03; // third order central moments (x4)
 double nu20, nu11, nu02; // second order Hu invariant moments (x3)
 double nu30, nu21, nu12, nu03; // third order Hu invariant moments (x4)
 Moments();
 Moments(
 double m00,
 double m10, double m01,
 double m20, double m11, double m02,
 double m30, double m21, double m12, double m03
);
 Moments(const CvMoments& moments); // convert v1.x struct to C++ object
 operator CvMoments() const; // convert C++ object to v1.x struct
}

A single call to cv::moments() will compute all of the moments up to third order
(i.e., moments for which p + q ≤ 3). It will also compute central moments and nor‐
malized central moments. We will discuss those next.

More About Moments
The moment computation just described gives some rudimentary characteristics of a
contour that can be used to compare two contours. However, the moments resulting
from that computation are not the best parameters for such comparisons in most
practical cases. In general, the moments we have discussed so far will not be the same
for two otherwise identical contours that are displaced relative to each other, of dif‐
ferent size, or rotated relative to each other.

Central moments are invariant under translation
Given a particular contour or image, the m00 moment of that contour will clearly be
the same no matter where that contour appears in an image. The higher-order
moments, however, clearly will not be. Consider the m10 moment, which we identi‐
fied earlier with the average x-position of a pixel in the object. Clearly given two
otherwise identical objects in different places, the average x-position is different. It
may be less obvious on casual inspection, but the second-order moments, which
tell us something about the spread of the object, are also not invariant under transla‐

Matching Contours and Images | 431

12 For those who are not into this sort of math jargon, the phrase “invariant under translation” means that some
quantity computed for some object is unchanged if that entire object is moved (i.e., “translated”) from one
place to another in the image. The phrase “invariant under rotation” similarly means that the quantity being
computed is unchanged of the object is rotated in the image.

tion.12 This is not particularly convenient, as we would certainly like (in most cases)
to be able to use these moments to compare an object that might appear anywhere in
an image to a reference object that appeared somewhere (probably somewhere else)
in some reference image.

The solution to this is to compute central moments, which are usually denoted μp, q
and defined by the following relation:

μp,q = ∑
i=1

N
I (xi, yi)(x − x̄) p(y − ȳ)q

where:

x̄ =
m10
m00

and:

ȳ =
m01
m00

Of course, it should be immediately clear that μ00 = m00 (because the terms involving
p and q vanish anyhow), and that the μ10 and μ01 central moments are both equal to 0.
The higher-order moments are thus the same as the noncentral moments but meas‐
ured with respect to the “center of mass” of (or in the coordinates of the center of
mass of) the object as a whole. Because these measurements are relative to this center,
they do not change if the object appears in any arbitrary location in the image.

You will notice that there are no elements mu00, mu10, or mu01 in
the object cv::Moments. This is simply because these values are
“trivial” (i.e., mu00 = m00, and mu10 = mu01 = 0). The same is true
for the normalized central moments (except that nu00 = 1, while
nu10 and nu01 are both 0). For this reason they are not included in
the structure, as they would just waste memory storing redundant
information.

432 | Chapter 14: Contours

Normalized central moments are also invariant under scaling
Just as the central moments allow us to compare two different objects that are in dif‐
ferent locations in our image, it is also often important to be able to compare two
different objects that are the same except for being different sizes. (This sometimes
happens because we are looking for an object of a type that appears in nature of dif‐
ferent sizes—e.g., bears—but more often it is simply because we do not necessarily
know how far the object will be from the imager that generated our image in the first
place.)

Just as the central moments achieve translational invariance by subtracting out the
average, the normalized central moments achieve scale invariance by factoring out the
overall size of the object. The formula for the normalized central moments is the
following:

νp,q =
μ p ,q

m00
(

p+q
2 +1)

This marginally intimidating formula simply says that the normalized central
moments are equal to the central moments up to a normalization factor that is itself
just some power of the area of the object (with that power being greater for higher-
order moments).

There is no specific function for computing normalized moments in OpenCV, as
they are computed automatically by cv::Moments() when the standard and central
moments are computed.

Hu invariant moments are invariant under rotation
Finally, the Hu invariant moments are linear combinations of the normalized central
moments. The idea here is that, by combining the different normalized central
moments, we can create invariant functions representing different aspects of the
image in a way that is invariant to scale, rotation, and (for all but the one called h1)
reflection.

For the sake of completeness, we show here the actual definitions of the Hu
moments:

Matching Contours and Images | 433

Looking at Figure 14-7 and Table 14-3, we can gain a sense of how the Hu moments
behave. Observe first that the moments tend to be smaller as we move to higher
orders. This should be no surprise because, by their definition, higher Hu moments
have more powers of various normalized factors. Since each of those factors is less
than 1, the products of more and more of them will tend to be smaller numbers.

Figure 14-7. Images of five simple characters; looking at their Hu moments yields some
intuition concerning their behavior

Table 14-3. Values of the Hu moments for the five simple characters shown in Figure 14-6

 h1 h2 h3 h4 h5 h6 h7

A 2.837e–1 1.961e–3 1.484e–2 2.265e–4 –4.152e–7 1.003e–5 –7.941e–9
I 4.578e–1 1.820e–1 0.000 0.000 0.000 0.000 0.000
O 3.791e–1 2.623e–4 4.501e–7 5.858e–7 1.529e–13 7.775e–9 –2.591e–13
M 2.465e–1 4.775e–4 7.263e–5 2.617e–6 –3.607e–11 –5.718e–8 –7.218e–24
F 3.186e–1 2.914e–2 9.397e–3 8.221e–4 3.872e–8 2.019e–5 2.285e–6

Other factors of particular interest are that the I, which is symmetric under 180-
degree rotations and reflection, has a value of exactly 0 for h3 through h7, and that the
O, which has similar symmetries, has all nonzero moments (though in fact, two of

434 | Chapter 14: Contours

these are essentially zero also). We leave it to the reader to look at the figures, com‐
pare the various moments, and build a basic intuition for what those moments
represent.

Computing Hu invariant moments with cv::HuMoments()

While the other moments were all computed with the same function cv::moments(),
the Hu invariant moments are computed with a second function that takes the
cv::Moments object you got from cv::moments() and returns a list of numbers for
the seven invariant moments:

void cv::HuMoments(
 const cv::Moments& moments, // Input is result from cv::moments() function
 double* hu // Return is C-style array of 7 Hu moments
);

The function cv::HuMoments() expects a cv::Moments object and a pointer to a C-
style array you should have already allocated with room for the seven invariant
moments.

Matching and Hu Moments
Naturally, with Hu moments we would like to compare two objects and determine
whether they are similar. Of course, there are many possible definitions of “similar.”
To make this process somewhat easier, the OpenCV function cv::matchShapes()
allows us to simply provide two objects and have their moments computed and com‐
pared according to a criterion that we provide.

double cv::MatchShapes(
 cv::InputArray object1, // First array of 2D points or cv:U8C1 image
 cv::InputArray object2, // Second array of 2D points or cv:U8C1 image
 int method, // Comparison method (Table 14-4)
 double parameter = 0 // Method-specific parameter
);

These objects can be either grayscale images or contours. In either case, cv::match
Shapes() will compute the moments for you before proceeding with the comparison.
The method used in cv::matchShapes() is one of the three listed in Table 14-4.

Table 14-4. Matching methods used by cv::matchShapes()

Value of method cv::matchShapes() return value
cv::CONTOURS_MATCH_I1 Δ1 = ∑

i=1..7
| 1

ηi
A −

1

ηi
B |

cv::CONTOURS_MATCH_I2 Δ2 = ∑
i=1..7

| ηi
A − ηi

B |

cv::CONTOURS_MATCH_I3
Δ1 = ∑

i=1..7
| ηi

A − ηi
B

ηi
A |

Matching Contours and Images | 435

In the table, ηi
A and ηi

B are defined as:

ηi
A = sign(hi

A) ⋅ log(hi
A)

and:

ηi
B = sign(hi

B) ⋅ log(hi
B)

In these expressions, hi
A and hi

B are the Hu invariant moments of images A and B,
respectively.

Each of the three values defined in Table 14-3 has a different meaning in terms of
how the comparison metric is computed. This metric determines the value ultimately
returned by cv::matchShapes(). The final parameter argument is not currently
used, so we can safely leave it at the default value of 0 (it is there for future compari‐
son metrics that may require an additional user-provided parameter).

Using Shape Context to Compare Shapes
Using moments to compare shapes is a classic technique that dates back to the 80s,
but there are much better modern algorithms designed for this purpose. In OpenCV
3 there is a dedicated module called shape that implements a few such algorithms, in
particular Shape Context [Belongie02].

The shape module is still under development, so we will cover only the high-level
structure (very briefly) and some very useful parts here that are available for immedi‐
ate use.

Structure of the shape module

The shape module is built around an abstraction called a cv::ShapeDistanceExtrac
tor. This abstract type is used for any functor whose purpose is to compare two (or
more) shapes and return some kind of distance metric that can be used to quantify
their dissimilarity. The word distance is chosen because, in most cases at least, the
dissimilarity will have the properties expected of a distance, such as being always
non-negative and being equal to zero only when the shapes are identical. Here are the
important parts of the definition of cv::ShapeDistanceExtractor.

class ShapeContextDistanceExtractor : public ShapeDistanceExtractor {
 public:
 ...
 virtual float computeDistance(InputArray contour1, InputArray contour2) = 0;
};

436 | Chapter 14: Contours

Individual shape distance extractors are derived from this class. We will cover two of
them that are currently available. Before we do, however, we need to briefly consider
two other abstract functor types: cv::ShapeTransformer and cv::HistogramCostEx
tractor.

class ShapeTransformer : public Algorithm {

public:
 virtual void estimateTransformation(
 cv::InputArray transformingShape,
 cv::InputArray targetShape,
 vector<cv::DMatch>& matches
) = 0;

 virtual float applyTransformation(
 cv::InputArray input,
 cv::OutputArray output = noArray()
) = 0;

 virtual void warpImage(
 cv::InputArray transformingImage,
 cv::OutputArray output,
 int flags = INTER_LINEAR,
 int borderMode = BORDER_CONSTANT,
 const cv::Scalar& borderValue = cv::Scalar()
) const = 0;
};

class HistogramCostExtractor : public Algorithm {

public:
 virtual void buildCostMatrix(
 cv::InputArray descriptors1,
 cv::InputArray descriptors2,
 cv::OutputArray costMatrix
) = 0;

 virtual void setNDummies(int nDummies) = 0;
 virtual int getNDummies() const = 0;

 virtual void setDefaultCost(float defaultCost) = 0;
 virtual float getDefaultCost() const = 0;
};

The shape transformer classes are used to represent any of a wide class of algorithms
that can remap a set of points to another set of points, or more generally, an image to
another image. Affine and perspective transformations (which we have seen earlier)
can be implemented as shape transformers, as is an important transformer called the
thin plate spline transform. The latter transform derives its name from a physical
analogy with a thin metal plate and essentially solves for the mapping that would

Matching Contours and Images | 437

result if some number of “control” points on a thin metal plate were moved to some
set of other locations. The resulting transform is the dense mapping that would result
if that thin metal plate were to respond to these deformations of the control points. It
turns out that this is a widely useful construction, and it has many applications in
image alignment and shape matching. In OpenCV, this algorithm is implemented in
the form of the functor cv::ThinPlateSplineShapeTransformer.

The histogram cost extractor generalizes the construction we saw earlier in the case of
the earth mover distance, in which we wanted to associate a cost with “shoveling dirt”
from one bin to another. In some cases, this cost is constant or linear in the distance
“shoveled,” but in other cases we would like to associate a different cost with moving
counts from one bin to another. The EMD algorithm had its own (legacy) interface
for such a specification, but the cv::HistogramCostExtractor base class and its
derived classes give us a way to handle general instances of this problem. Table 14-5
shows a list of derived cost extractors.

Table 14-5. Cost extractors derived from the cv::HistogramCostExtractor abstract class

Derived extractor class Cost used by extractor
cv::NormHistogramCostExtractor Cost computed from L2 or other norm
cv::ChiHistogramCostExtractor Compare using chi-squared distance
cv::EMDHistogramCostExtractor Cost is same as in EMD cost matrix using L2 norm
cv::EMDL1HistogramCostExtractor Cost is same as in EMD cost matrix using L1 norm

For each of these extractors and transformers, there is a factory method with a name
like createX(), with X being the desired functor name—for example, cv::createChi
HistogramCostExtractor(). With these two types in hand, we are now ready to look
at some specializations of the shape distance extractor.

The shape context distance extractor
As mentioned at the beginning of this section, OpenCV 3 contains an implementa‐
tion of shape context distance [Belongie02], packaged inside a functor derived from
cv:: ShapeDistanceExtractor. This method, called cv::ShapeContextDistanceEx
tractor, uses the shape transformer and histogram cost extractor functors in its
implementation.

namespace cv {

 class ShapeContextDistanceExtractor : public ShapeDistanceExtractor {

 public:
 ...
 virtual float computeDistance(
 InputArray contour1,
 InputArray contour2

438 | Chapter 14: Contours

) = 0;
 };

 Ptr<ShapeContextDistanceExtractor> createShapeContextDistanceExtractor(
 int nAngularBins = 12,
 int nRadialBins = 4,
 float innerRadius = 0.2f,
 float outerRadius = 2,
 int iterations = 3,
 const Ptr<HistogramCostExtractor> &comparer
 = createChiHistogramCostExtractor(),
 const Ptr<ShapeTransformer> &transformer
 = createThinPlateSplineShapeTransformer()
);

}

In the essence, the Shape Context algorithm computes representation of each of the
two (or N) compared shapes. Each representation considers a subset of points on the
shape boundary and, for each sampled point, it builds a certain histogram reflecting
the shape appearance in polar coordinates when viewed from that point. All histo‐
grams have the same size (nAngularBins * nRadialBins). Histograms for a point pi

in shape #1 and a point qj in shape #2 are compared using classical chi-squared dis‐
tance. Then the algorithm computes the optimal 1:1 correspondence between points
(p’s and q’s) so that the total sum of chi-squared distances is minimal. The algorithm
is not the fastest—even computing the cost matrix takes N*N*nAngularBins*nRadial
Bins, where N is the size of the sampled subsets of boundary points—but it gives
rather decent results, as you can see in Example 14-4.

Example 14-4. Using the shape context distance extractor

#include "opencv2/opencv.hpp"
#include <algorithm>
#include <iostream>
#include <string>

using namespace std;
using namespace cv;

static vector<Point> sampleContour(const Mat& image, int n=300) {

 vector<vector<Point> > _contours;
 vector<Point> all_points;
 findContours(image, _contours, RETR_LIST, CHAIN_APPROX_NONE);
 for (size_t i=0; i <_contours.size(); i++) {
 for (size_t j=0; j <_contours[i].size(); j++)
 all_points.push_back(_contours[i][j]);

 // If too little points, replicate them

Matching Contours and Images | 439

 //
 int dummy=0;
 for (int add=(int)all_points.size(); add<n; add++)
 all_points.push_back(all_points[dummy++]);

 // Sample uniformly
 random_shuffle(all_points.begin(), all_points.end());
 vector<Point> sampled;
 for (int i=0; i<n; i++)
 sampled.push_back(all_points[i]);
 return sampled;
}

int main(int argc, char** argv) {

 string path = "../data/shape_sample/";
 int indexQuery = 1;

 Ptr<ShapeContextDistanceExtractor> mysc = createShapeContextDistanceExtractor();

 Size sz2Sh(300,300);
 Mat img1=imread(argv[1], IMREAD_GRAYSCALE);
 Mat img2=imread(argv[2], IMREAD_GRAYSCALE);
 vector<Point> c1 = sampleContour(img1);
 vector<Point> c2 = sampleContour(img2);
 float dis = mysc->computeDistance(c1, c2);
 cout << "shape context distance between " <<
 argv[1] << " and " << argv[2] << " is: " << dis << endl;

 return 0;

}

Check out the ...samples/cpp/shape_example.cpp example in OpenCV 3 distribution,
which is a more advanced variant of Example 14-4.

Hausdorff distance extractor
Similarly to the Shape Context distance, the Hausdorff distance is another measure of
shape dissimilarity available through the cv::ShapeDistanceExtractor interface.
We define the Hausdorff [Huttenlocher93] distance, in this context, by first taking all
of the points in one image and for each one finding the distance to the nearest point
in the other. The largest such distance is the directed Hausdorff distance. The Haus‐
dorff distance is the larger of the two directed Hausdorff distances. (Note that the
directed Hausdorff distance is, by itself, not symmetric, while the Hausdorff distance
is manifestly symmetric by construction.) In equations, the Hausdorff distance H() is

440 | Chapter 14: Contours

13 Please excuse the use of H() for Hausdorff distance and h() for directed Hausdorff distance when, only a few
pages ago, we used h for Hu invariant moments.

defined in terms of the directed Hausdorff distance h() between two sets A and B as
follows:13

H (A, B) = maxx(h (A, B), h (B, a))

with:

h (A, B) = max
aεA

min
bεB

a − b

Here ⋅ is some norm relative to the points of A and B (typically the Euclidean
distance).

In essence, the Hausdorff distance measures the distance between the “worst
explained” pair of points on the two shapes. The Hausdorff distance extractor can be
created with the factory method: cv::createHausdorffDistanceExtractor().

cv::Ptr<cv::HausdorffDistanceExtractor> cv::createHausdorffDistanceExtractor(
 int distanceFlag = cv::NORM_L2,
 float rankProp = 0.6
);

Remember that the returned cv::HausdorffDistanceExtractor object will have the
same interface as the Shape Context distance extractor, and so is called using its
cv::computeDistance() method.

Summary
In this chapter we learned about contours, sequences of points in two dimensions.
These sequences could be represented as STL vectors of two-dimensional point
objects (e.g., cv::Vec2f), as N × 1 dual-channel arrays, or as N × 2 single-channel
arrays. Such sequences can be used to represent contours in an image plane, and
there are many features built into the library to help us construct and manipulate
these contours.

Contours are generally useful for representing spatial partitions or segmentations of
an image. In this context, the OpenCV library provides us with tools for comparing
such partitions to one another, as well as for testing properties of these partitions,
such as convexity, moments, or the relationship of an arbitrary point with such a
contour. Finally, OpenCV provides many ways to match contours and shapes. We

Summary | 441

saw some of the features available for this purposes, including both the older style
features and the newer features based on the Shape Distance Extractor interface.

Exercises
1. We can find the extremal points (i.e., the two points that are farthest apart) in a

closed contour of N points by comparing the distance of each point to every
other point.
a. What is the complexity of such an algorithm?
b. Explain how you can do this faster.

2. What is the maximal closed contour length that could fit into a 4 × 4 image?
What is its contour area?

3. Describe an algorithm for determining whether a closed contour is convex—
without using cv::isContourConvex().

4. Describe algorithms:
a. for determining whether a point is above a line.
b. for determining whether a point is inside a triangle.
c. for determining whether a point is inside a polygon—without using

cv::pointPolygonTest().
5. Using PowerPoint or a similar program, draw a white circle of radius 20 on a

black background (the circle’s circumference will thus be 2 π 20 ≈ 125.7. Save
your drawing as an image.
a. Read the image in, turn it into grayscale, threshold, and find the contour.

What is the contour length? Is it the same (within rounding) or different from
the calculated length?

b. Using 125.7 as a base length of the contour, run cv::approxPolyDP() using as
parameters the following fractions of the base length: 90%, 66%, 33%, 10%.
Find the contour length and draw the results.

6. Suppose we are building a bottle detector and wish to create a “bottle” feature.
We have many images of bottles that are easy to segment and find the contours
of, but the bottles are rotated and come in various sizes. We can draw the con‐
tours and then find the Hu moments to yield an invariant bottle-feature vector.
So far, so good—but should we draw filled-in contours or just line contours?
Explain your answer.

7. When using cv::moments() to extract bottle contour moments in Exercise 6,
how should we set isBinary? Explain your answer.

442 | Chapter 14: Contours

8. Take the letter shapes used in the discussion of Hu moments. Produce variant
images of the shapes by rotating to several different angles, scaling larger and
smaller, and combining these transformations. Describe which Hu features
respond to rotation, which to scale, and which to both.

9. Go to Google images and search for “ArUco markers.” Choose some larger ones.
a. Are moments good for finding ArUco images?
b. Are moments or Hu features good for reading ArUco codes?
c. Is cv::matchShapes() good for reading ArUco codes?

10. Make a shape in PowerPoint (or another drawing program) and save it as an
image. Make a scaled, a rotated, and a rotated and scaled version of the object,
and then store these as images. Compare them using cv::matchShapes().

11. Modify the shape context example or shape_example.cpp from OpenCV 3 to use
Hausdorff distance instead of a shape context.

12. Get five pictures of five hand gestures. (When taking the photos, either wear a
black coat or a colored glove so that a selection algorithm can find the outline of
the hand.)
a. Try recognizing the gestures with cv::matchShapes().
b. Try recognizing the gestures with cv::computeDistance().
c. Which one works better and why?

Exercises | 443

CHAPTER 15

Background Subtraction

Overview of Background Subtraction
Because of its simplicity and because camera locations are fixed in many contexts,
background subtraction (a.k.a. background differencing) remains a key image-
processing operation for many applications, notably video security ones. Toyama,
Krumm, Brumitt, and Meyers give a good overview and comparison of many techni‐
ques [Toyama99]. In order to perform background subtraction, we first must “learn”
a model of the background.

Once learned, this background model is compared against the current image, and
then the known background parts are subtracted away. The objects left after subtrac‐
tion are presumably new foreground objects.

Of course, “background” is an ill-defined concept that varies by application. For
example, if you are watching a highway, perhaps average traffic flow should be con‐
sidered background. Normally, background is considered to be any static or periodi‐
cally moving parts of a scene that remain static or periodic over the period of interest.
The whole ensemble may have time-varying components, such as trees waving in
morning and evening wind but standing still at noon. Two common but substantially
distinct environment categories that are likely to be encountered are indoor and out‐
door scenes. We are interested in tools that will help us in both of these
environments.

In this chapter, we will first discuss the weaknesses of typical background models,
and then will move on to discuss higher-level scene models. In that context, we
present a quick method that is mostly good for indoor static background scenes
whose lighting doesn’t change much. We then follow this with a “codebook” method
that is slightly slower but can work in both outdoor and indoor scenes; it allows for
periodic movements (such as trees waving in the wind) and for lighting to change

445

1 In cases in which a computer is expected to “learn” something from data, it is often the case that the primary
practical obstacle to success turns out to be having enough data. The more complex your model becomes, the
easier it is to get yourself into a situation in which the expressive power of your model vastly exceeds your
capability to generate training data for that model. We will revisit this issue in more detail in Chapter 20.

slowly or periodically. This method is also tolerant to learning the background even
when there are occasional foreground objects moving by. We’ll top this off with
another discussion of connected components (first seen in Chapters 12 and 14) in the
context of cleaning up foreground object detection. We will then compare the quick
background method against the codebook background method. This chapter will
conclude with a discussion of the implementations available in the OpenCV library
of two modern algorithms for background subtraction. These algorithms use the
principles discussed in the chapter, but also include both extensions and implementa‐
tion details that make them more suitable for real-world application.

Weaknesses of Background Subtraction
Although the background modeling methods mentioned here work fairly well for
simple scenes, they suffer from an assumption that is often violated: that the behavior
of all the pixels in the image is statistically independent from the behavior of all the
others. Notably, the methods we describe here learn a model for the variations a pixel
experiences without considering any of its neighboring pixels. In order to take sur‐
rounding pixels into account, we could learn a multipart model, a simple example of
which would be an extension of our basic independent pixel model to include a rudi‐
mentary sense of the brightness of neighboring pixels. In this case, we use the bright‐
ness of neighboring pixels to distinguish when neighboring pixel values are relatively
bright or dim. We then learn effectively two models for the individual pixel: one for
when the surrounding pixels are bright and one for when the surrounding pixels are
dim. In this way, we have a model that takes into account the surrounding context.
But this comes at the cost of twice as much memory uses and more computation,
since we now need different values for when the surrounding pixels are bright or
dim. We also need twice as much data to fill out this two-state model. We can gener‐
alize the idea of “high” and “low” contexts to a multidimensional histogram of single
and surrounding pixel intensities as well and perhaps make it even more complex by
doing all this over a few time steps. Of course, this richer model over space and time
would require still more memory, more collected data samples, and more computa‐
tional resources.1

Because of these extra costs, the more complex models are usually avoided. We can
often more efficiently invest our resources in cleaning up the false-positive pixels that
result when the independent pixel assumption is violated. This cleanup usually takes
the form of image-processing operations (cv::erode(), cv::dilate(), and

446 | Chapter 15: Background Subtraction

2 Here we are using mathematician’s definition of compact, which has nothing to do with size.

cv::floodFill(), mostly) that eliminate stray patches of pixels. We’ve discussed
these routines previously (Chapter 10) in the context of finding large and compact2

connected components within noisy data. We will employ connected components
again in this chapter and so, for now, will restrict our discussion to approaches that
assume pixels vary independently.

Scene Modeling
How do we define background and foreground? If we’re watching a parking lot and a
car comes in to park, then this car is a new foreground object. But should it stay fore‐
ground forever? How about a trash can that was moved? It will show up as fore‐
ground in two places: the place it was moved to and the “hole” it was moved from.
How do we tell the difference? And again, how long should the trash can (and its
hole) remain foreground? If we are modeling a dark room and suddenly someone
turns on a light, should the whole room become foreground? To answer these ques‐
tions, we need a higher-level “scene” model, in which we define multiple levels
between foreground and background states, and a timing-based method of slowly rel‐
egating unmoving foreground patches to background patches. We will also have to
detect and create a new model when there is a global change in a scene.

In general, a scene model might contain multiple layers, from “new foreground” to
older foreground on down to background. There might also be some motion detec‐
tion so that, when an object is moved, we can identify both its “positive” aspect (its
new location) and its “negative” aspect (its old location, the “hole”).

In this way, a new foreground object would be put in the “new foreground” object
level and marked as a positive object or a hole. In areas where there was no fore‐
ground object, we could continue updating our background model. If a foreground
object does not move for a given time, it is demoted to “older foreground,” where its
pixel statistics are provisionally learned until its learned model joins the learned
background model.

For global change detection such as turning on a light in a room, we might use global
frame differencing. For example, if many pixels change at once, then we could classify
it as a global rather than local change and then switch to using a different model for
the new situation.

A Slice of Pixels
Before we go on to modeling pixel changes, let’s get an idea of what pixels in an
image can look like over time. Consider a camera looking out a window on a scene of

Scene Modeling | 447

a tree blowing in the wind. Figure 15-1 shows what the pixels in a given line segment
of the image look like over 60 frames. We wish to model these kinds of fluctuations.
Before doing so, however, let’s take a small digression to discuss how we sampled this
line because it’s a generally useful trick for creating features and for debugging.

Figure 15-1. Fluctuations of a line of pixels in a scene of a tree moving in the wind over
60 frames: some dark areas (upper left) are quite stable, whereas moving branches
(upper center) can vary widely

Because this comes up quite often in various contexts, OpenCV makes it easy to sam‐
ple an arbitrary line of pixels. This is done with the object called the line iterator,
which we encountered way back in Chapter 6. The line iterator, cv::LineIterator,
is an object that, once instantiated, can be queried to give us information about all of
the points along a line in sequence.

The first thing we need to do is to instantiate a line iterator object. We do this with
the cv::LineIterator constructor:

cv::LineIterator::LineIterator(
 const cv::Mat& image, // Image to iterate over
 cv::Point pt1, // Start point for iterator
 cv::Point pt2, // End point for iterator
 int connectivity = 8, // Connectivity, either 4 or 8
 int left_to_right = 0 // 1='fixed iteration direction'
);

448 | Chapter 15: Background Subtraction

3 The left_to_right flag was introduced because a discrete line drawn from pt1 to pt2 does not always match
the line from pt2 to pt1. Therefore, setting this flag gives the user a consistent rasterization regardless of the
pt1, pt2 order.

4 In some cases, you can get away with being a little sloppy here. Specifically, when the image is already of
unsigned character type, you can just access the elements directly with constructions like (*line_iterator)
[0], (*line_iterator)[1], and so on. On close inspection, these are actually dereferencing the iterator to get
a character pointer, then using the built-in C offset dereference bracket operator, rather than casting the dere‐
ferenced iterator to an OpenCV vector type like Vec3f and accessing the channel through the overloaded
dereferencing operator of that class. In the end, for the special case of Vec3b (or any number of channels), it
happens to all come out the same in the end.

Here, the input image may be of any type or number of channels. The points pt1 and
pt2 are the ends of the line segment. The connectivity can be 4 (the line can step
right, left, up, or down) or 8 (the line can additionally step along the diagonals).
Finally, if left_to_right is set to 0 (false), then line_iterator scans from pt1 to
pt2; otherwise, it will go from the leftmost to the rightmost point.3

The iterator can then just be incremented through, pointing to each of the pixels
along the line between the given endpoints. We increment the iterator with the usual
cv::LineIterator::operator++(). All the channels are available at once. If, for
example, our line iterator is called line_iterator, then we can access the current
point by dereferencing the iterator (e.g., *line_iterator). One word of warning is in
order here, however: the return type of cv::LineIterator::operator*() is not a
pointer to a built-in OpenCV vector type (i.e., cv::Vec<> or some instantiation of
it), but rather a uchar* pointer. This means that you will typically want to cast this
value yourself to something like cv::Vec3f* (or whatever is appropriate for the array
image).4

With this convenient tool in hand, we can extract some data from a file. The program
in Example 15-1 generates from a movie file the sort of data seen in Figure 15-1.

Example 15-1. Reading out the RGB values of all pixels in one row of a video and
accumulating those values into three separate files

#include <opencv2/opencv.hpp>
#include <iostream>
#include <fstream>

using namespace std;

void help(argv) {
 cout << "\n"
 << "Read out RGB pixel values and store them to disk\nCall:\n"
 << argv[0] <<" avi_file\n"
 << "\n This will store to files blines.csv, glines.csv and rlines.csv\n\n"

Scene Modeling | 449

 << endl;
}

int main(int argc, char** argv) {

 if(argc != 2) { help(); return -1; }
 cv::namedWindow(argv[0], CV_WINDOW_AUTOSIZE);

 cv::VideoCapture cap;
 if((argc < 2)|| !cap.open(argv[1]))
 {
 cerr << "Couldn't open video file" << endl;
 help();
 cap.open(0);
 return -1;
 }

 cv::Point pt1(10,10), pt2(30,30);
 int max_buffer;
 cv::Mat rawImage;
 ofstream b,g,r;
 b.open("blines.csv");
 g.open("glines.csv");
 r.open("rlines.csv");

 // MAIN PROCESSING LOOP:
 //
 for(;;) {
 cap >> rawImage;
 if(!rawImage.data) break;

 cv::LineIterator it(rawImage, pt1, pt2, 8);
 for(int j=0; j<it.count; ++j,++it) {
 b << (int)(*it)[0] << ", ";
 g << (int)(*it)[1] << ", ";
 r << (int)(*it)[2] << ", ";
 (*it)[2] = 255; // Mark this sample in red
 }
 cv::imshow(argv[0], rawImage);
 int c = cv::waitKey(10);
 b << "\n"; g << "\n"; r << "\n";
 }

 // CLEAN UP:
 //
 b << endl; g << endl; r << endl;
 b.close(); g.close(); r.close();
 cout << "\n"
 << "Data stored to files: blines.csv, glines.csv and rlines.csv\n\n"
 << endl;
}

450 | Chapter 15: Background Subtraction

In Example 15-1, we stepped through the points, one at a time, and processed each
one. Another common and useful way to approach the problem is to create a buffer
(of the appropriate type), and then copy the entire line into it before processing the
buffer. In that case, the buffer copy would have looked something like the following:

cv::LineIterator it(rawImage, pt1, pt2, 8);

vector<cv::Vec3b> buf(it.count);

for(int i=0; i < it.count; i++, ++it)
 buf[i] = &((const cv::Vec3b*) it);

The primary advantage of this approach is that if the image rawImage were not of an
unsigned character type, this method handles the casting of the components to the
appropriate vector type in a somewhat cleaner way.

We are now ready to move on to some methods for modeling the kinds of pixel fluc‐
tuations seen in Figure 15-1. As we move from simple to increasingly complex mod‐
els, we will restrict our attention to those models that will run in real time and within
reasonable memory constraints.

Frame Differencing
The very simplest background subtraction method is to subtract one frame from
another (possibly several frames later) and then label any difference that is “big
enough” the foreground. This process tends to catch the edges of moving objects. For
simplicity, let’s say we have three single-channel images: frameTime1, frameTime2,
and frameForeground. The image frameTime1 is filled with an older grayscale image,
and frameTime2 is filled with the current grayscale image. We could then use the fol‐
lowing code to detect the magnitude (absolute value) of foreground differences in
frameForeground:

cv::absdiff(
 frameTime1, // First input array
 frameTime2, // Second input array
 frameForeground // Result array
);

Because pixel values always exhibit noise and fluctuations, we should ignore (set to 0)
small differences (say, less than 15), and mark the rest as big differences (set to 255):

cv::threshold(
 frameForeground, // Input image
 frameForeground, // Result image
 15, // Threshold value
 255, // Max value for upward operations
 cv::THRESH_BINARY // Threshold type to use
);

Scene Modeling | 451

The image frameForeground then marks candidate foreground objects as 255 and
background pixels as 0. We need to clean up small noise areas as discussed earlier; we
might do this with cv::erode() or by using connected components. For color
images, we could use the same code for each color channel and then combine the
channels with the cv::max() function. This method is much too simple for most
applications other than merely indicating regions of motion. For a more effective
background model, we need to keep some statistics about the means and average dif‐
ferences of pixels in the scene. You can look ahead to the section “A Quick Test” on
page 481 to see examples of frame differencing in Figures 15-6 and 15-7.

Averaging Background Method
The averaging method basically learns the average and standard deviation (or simi‐
larly, but computationally faster, the average difference) of each pixel as its model of
the background.

Consider the pixel line from Figure 15-1. Instead of plotting one sequence of values
for each frame (as we did in that figure), we can represent the variations of each pixel
throughout the video in terms of an average and average differences (Figure 15-2). In
the same video, a foreground object (a hand) passes in front of the camera. That fore‐
ground object is not nearly as bright as the sky and tree in the background. The
brightness of the hand is also shown in the figure.

Figure 15-2. Data from Figure 15-1 presented in terms of average differences: an object
(a hand) that passes in front of the camera is somewhat darker, and the brightness of
that object is reflected in the graph

The averaging method makes use of four OpenCV routines: cv::Mat::operator
+=(), to accumulate images over time; cv::absdiff(), to accumulate frame-to-frame
image differences over time; cv::inRange(), to segment the image (once a back‐

452 | Chapter 15: Background Subtraction

5 In the example here, the accumulator images are of type float-32. This is probably fine if the number of
frames is not too large, but otherwise it may be preferable to use a float-64 type.

ground model has been learned) into foreground and background regions; and
cv::max(), to compile segmentations from different color channels into a single
mask image. Because this is a rather long code example, we will break it into pieces
and discuss each piece in turn.

First, we create pointers for the various scratch and statistics-keeping images we will
need along the way (see Example 15-2). It will prove helpful to sort these pointers
according to the type of images they will later hold.

Example 15-2. Learning a background model to identify foreground pixels

#include <opencv2/opencv.hpp>
#include <iostream>
#include <fstream>

using namespace std;

// Global storage
//
// Float, 3-channel images
//
cv::Mat IavgF, IdiffF, IprevF, IhiF, IlowF;
cv::Mat tmp, tmp2;

// Float, 1-channel images
//
vector<cv::Mat> Igray(3);
vector<cv::Mat> Ilow(3);
vector<cv::Mat> Ihi(3);

// Byte, 1-channel image
//
cv::Mat Imaskt;

// Counts number of images learned for averaging later
//
float Icount;

Next, we create a single call to allocate all the necessary intermediate images.5 For
convenience, we pass in a single image (from our video) that can be used as a refer‐
ence for sizing the intermediate images:

// I is just a sample image for allocation purposes
// (passed in for sizing)
//

Averaging Background Method | 453

6 Notice our use of the word proxy. Average difference is not mathematically equivalent to standard deviation,
but in this context it is close enough to yield results of similar quality. The advantage of average difference is
that it is slightly faster to compute than standard deviation. With only a tiny modification of the code exam‐
ple you can use standard deviations instead and compare the quality of the final results for yourself; we’ll dis‐
cuss this more explicitly later in this section.

void AllocateImages(const cv::Mat& I) {

 cv::Size sz = I.size();

 IavgF = cv::Mat::zeros(sz, CV_32FC3);
 IdiffF = cv::Mat::zeros(sz, CV_32FC3);
 IprevF = cv::Mat::zeros(sz, CV_32FC3);
 IhiF = cv::Mat::zeros(sz, CV_32FC3);
 IlowF = cv::Mat::zeros(sz, CV_32FC3);
 Icount = 0.00001; // Protect against divide by zero

 tmp = cv::Mat::zeros(sz, CV_32FC3);
 tmp2 = cv::Mat::zeros(sz, CV_32FC3);
 Imaskt = cv::Mat(sz, CV_32FC1);

}

In the next piece of code, we learn the accumulated background image and the accu‐
mulated absolute value of frame-to-frame image differences (a computationally
quicker proxy6 for learning the standard deviation of the image pixels). This is typi‐
cally called for 30 to 1,000 frames, sometimes taking just a few frames from each sec‐
ond or sometimes taking all available frames. The routine will be called with a three-
color-channel image of depth 8 bits:

// Learn the background statistics for one more frame
// I is a color sample of the background, 3-channel, 8u
//
void accumulateBackground(cv::Mat& I){

 static int first = 1; // nb. Not thread safe
 I.convertTo(tmp, CV_32F); // convert to float
 if(!first){
 IavgF += tmp;
 cv::absdiff(tmp, IprevF, tmp2);
 IdiffF += tmp2;
 Icount += 1.0;
 }
 first = 0;
 IprevF = tmp;
}

We first use cv::Mat::convertTo() to turn the raw background 8-bit-per-channel,
three-color-channel image into a floating-point, three-channel image. We then accu‐
mulate the raw floating-point images into IavgF. Next, we calculate the frame-to-

454 | Chapter 15: Background Subtraction

frame absolute difference image using cv::absdiff() and accumulate that into
image IdiffF. Each time we accumulate these images, we increment the image count
Icount, a global variable, to use for averaging later.

Once we have accumulated enough frames, we convert them into a statistical model
of the background; that is, we compute the means and deviation measures (the aver‐
age absolute differences) of each pixel:

void createModelsfromStats() {

 IavgF *= (1.0/Icount);
 IdiffF *= (1.0/Icount);

 // Make sure diff is always something
 //
 IdiffF += cv::Scalar(1.0, 1.0, 1.0);
 setHighThreshold(7.0);
 setLowThreshold(6.0);
}

In this section, we use cv::Mat::operator*=() to calculate the average raw and
absolute difference images by dividing by the number of input images accumulated.
As a precaution, we ensure that the average difference image is at least 1; we’ll need to
scale this factor when calculating a foreground-background threshold and would like
to avoid the degenerate case in which these two thresholds could become equal.

The next two routines, setHighThreshold() and setLowThreshold(), are utility
functions that set a threshold based on the frame-to-frame average absolute differ‐
ences (FFAAD). The FFAAD can be thought of as the basic metric against which we
compare observed changes in order to determine whether they are significant. The
call setHighThreshold(7.0), for example, fixes a threshold such that any value that
is seven times the FFAAD above average for that pixel is considered foreground; like‐
wise, setLowThreshold(6.0) sets a threshold bound that is six times the FFAAD
below the average for that pixel. Within this range around the pixel’s average value,
objects are considered to be background. These threshold functions are:

void setHighThreshold(float scale) {
 IhiF = IavgF + (IdiffF * scale);
 cv::split(IhiF, Ihi);
}
void setLowThreshold(float scale) {
 IlowF = IavgF - (IdiffF * scale);
 cv::split(IlowF, Ilow);
}

In setLowThreshold() and setHighThreshold(), we first scale the difference image
(the FFAAD) prior to adding or subtracting these ranges relative to IavgF. This
action sets the IhiF and IlowF range for each channel in the image via cv::split().

Averaging Background Method | 455

7 In this circumstance, you could have used the bitwise OR operator as well, because the images being ORed are
unsigned character images and only the values 0x00 and 0xff are relevant. In general, however, the
cv::max() operation is a good way to get a “fuzzy” OR, which responds sensibly to a range of values.

Once we have our background model, complete with high and low thresholds, we use
it to segment the image into foreground (things not “explained” by the background
image) and the background (anything that fits within the high and low thresholds of
our background model). We perform segmentation by calling:

// Create a binary: 0,255 mask where 255 means foreground pixel
// I Input image, 3-channel, 8u
// Imask Mask image to be created, 1-channel 8u
//
void backgroundDiff(
 cv::Mat& I,
 cv::Mat& Imask
) {
 I.convertTo(tmp, CV::F32); // To float
 cv::split(tmp, Igray);

 // Channel 1
 //
 cv::inRange(Igray[0], Ilow[0], Ihi[0], Imask);

 // Channel 2
 //
 cv::inRange(Igray[1], Ilow[1], Ihi[1], Imaskt);
 Imask = cv::min(Imask, Imaskt);

 // Channel 3
 //
 cv::inRange(Igray[2], Ilow[2], Ihi[2], Imaskt);
 Imask = cv::min(Imask, Imaskt);

 // Finally, invert the results
 //
 Imask = 255 – Imask;
}

This function first converts the input image I (the image to be segmented) into a
floating-point image by calling cv::Mat::convertTo(). We then convert the three-
channel image into separate one-channel image planes using cv::split(). Next we
check these color channel planes to see whether they are within the high and low
range of the average background pixel via the cv::inRange() function, which sets the
grayscale 8-bit depth image Imaskt to max (255) when it’s in range and to 0 other‐
wise. For each color channel, we logically AND7 the segmentation results into a mask
image Imask, since strong differences in any color channel are considered evidence of
a foreground pixel here. Finally, we invert Imask using cv::operator-(), because

456 | Chapter 15: Background Subtraction

foreground should be the values out of range, not in range. The mask image is the
output result.

By way of putting it all together, we define the function main() that reads in a video
and builds a background model. For our example, we run the video in a training
mode until the user hits the space bar, after which the video runs in a mode in which
any foreground objects detected are highlighted in red:

void help(argv) {
 cout << "\n"
 << "Train a background model on incoming video, then run the model\n"
 << argv[0] <<" avi_file\n"
 << endl;
}

int main(int argc, char** argv) {

 if(argc != 2) { help(argv); return -1; }
 cv::namedWindow(argv[0], cv::WINDOW_AUTOSIZE);

 cv::VideoCapture cap;
 if((argc < 2)|| !cap.open(argv[1])) {
 cerr << "Couldn't open video file" << endl;
 help();
 cap.open(0);
 return -1;
 }

 // FIRST PROCESSING LOOP (TRAINING):
 //
 while(1) {
 cap >> image;
 if(!image.data) exit(0);

 accumulateBackground(image);

 cv::imshow(argv[0], rawImage);
 if(cv::waitKey(7) == 0x20) break;
 }

 // We have all of our data, so create the models
 //
 createModelsfromStats();

 // SECOND PROCESSING LOOP (TESTING):
 //
 cv::Mat mask;
 while(1) {
 cap >> image;
 if(!image.data) exit(0);

 backgroundDiff(image, mask);

Averaging Background Method | 457

8 For purists, our implementation is not exactly a purely incremental computation, as we divide by the number
of samples at the end. There does, however, exist a purely incremental method for updating the average when
a new data point is introduced, but the “nearly incremental” version used is substantially more computation‐
ally efficient. We will continue throughout the chapter to refer to methods as “incremental” if they can be
computed from purely cumulative functions of the data combined with factors associated with overall
normalization.

 // A simple visualization is to write to the red channel
 //
 cv::split(image, Igray);
 Igray[2] = cv::max(mask, Igray[2]);
 cv::merge(Igray, image);

 cv::imshow(argv[0], image);
 if(cv::waitKey(7) == 0x20) break;
 }

 exit(0);
}

We’ve just seen a simple method of learning background scenes and segmenting fore‐
ground objects. It will work well only with scenes that do not contain moving back‐
ground components (it would fail with a waving curtain or waving trees, features that
generate bi- or multi-modal signatures). It also assumes that the lighting remains
fairly constant (as in indoor static scenes). You can look ahead to Figure 15-6 to
check the performance of this averaging method.

Accumulating Means, Variances, and Covariances
The averaging background method just described made use of the accumulation
operator cv::Mat::operator+=() to do what was essentially the simplest possible
task: sum up a bunch of data that we could then normalize into an average. The aver‐
age is a convenient statistical quantity for a lot of reasons, of course, but one often-
overlooked advantage it has is the fact that it can be computed incrementally in this
way.8 This means that we can do processing incrementally without needing to accu‐
mulate all of the data before analyzing. We will now consider a slightly more sophisti‐
cated model, which can also be computed online in this way.

Our next model will represent the intensity (or color) variation within a pixel by
computing a Gaussian model for that variation. A one-dimensional Gaussian model
is characterized by a single mean (or average) and a single variance (which tells us
something about the expected spread of measured values about the mean). In the
case of a d-dimensional model (e.g., a three-color model), there will be a d-
dimensional vector for the mean, and a d2-element matrix that represents not only

458 | Chapter 15: Background Subtraction

the individual variances of the d-dimensions, but also the covariances, which repre‐
sent correlations between each of the individual dimensions.

As promised, each of these quantities—the means, the variances, and the covariances
—can be computed in an incremental manner. Given a stream of incoming images,
we can define three functions that will accumulate the necessary data, and three func‐
tions that will actually convert those accumulations into the model parameters.

The following code assumes the existence of a few global variables:

cv::Mat sum;
cv::Mat sqsum;
int image_count = 0;

Computing the mean with cv::Mat::operator+=()
As we saw in our previous example, the best method to compute the pixel means is to
add them all up using cv::Mat::operator+=() and then divide by the total number
of images to obtain the mean:

void accumulateMean(
 cv::Mat& I
) {
 if(sum.empty) {
 sum = cv::Mat::zeros(I.size(), CV_32FC(I.channels()));
 }
 I.convertTo(scratch, sum.type());
 sum += scratch;
 image_count++;
}

The preceding function, accumulateMean(), is then called on each incoming image.
Once all of the images that are going to be used for the background model have been
computed, you can call the next function, computeMean(), to get a single “image” that
contains the averages for every pixel across your entire input set:

cv::Mat& computeMean(
 cv::Mat& mean
) {
 mean = sum / image_count;
}

Computing the mean with cv::accumulate()
OpenCV provides another function, which is essentially similar to just using the
cv::Mat::operator+=() operator, but with two important distinctions. The first is
that it will automatically handle the cv::Mat::convertTo() functionality (and thus
remove the need for a scratch image), and the second is that it allows the use of an
image mask. This function is cv::accumulate(). The ability to use an image mask
when computing a background model is very useful, as you often have some other

Averaging Background Method | 459

information that some part of the image should not be included in the background
model. For example, you might be building a background model of a highway or
other uniformly colored area, and be able to immediately determine from color that
some objects are not part of the background. This sort of thing can be very helpful in
a real-world situation in which there is little or no opportunity to get access to the
scene in the complete absence of foreground objects.

The accumulate function has the following prototype:

void accumulate(

 cv::InputArray src, // Input, 1 or 3 channels, U8 or F32
 cv::InputOutputArray dst, // Result image, F32 or F64
 cv::InputArray mask = cv::noArray() // Use src pixel if mask pixel != 0
);

Here the array dst is the array in which the accumulation is happening, and src is
the new image that will be added. cv::accumulate() admits an optional mask. If
present, only the pixels in dst that correspond to nonzero elements in mask will be
updated.

With cv::accumulate(), the previous accumulateMean() function can be simplified
to:

void accumulateMean(
 cv::Mat& I
) {
 if(sum.empty) {
 sum = cv::Mat::zeros(I.size(), CV_32FC(I.channels()));
 }
 cv::accumulate(I, sum);
 image_count++;
}

Variation: Computing the mean with cv::accumulateWeighted()
Another alternative that is often useful is to use a running average. The running aver‐
age is given by the following formula:

acc(x,y) = (1 − α) ⋅ acc(x, y) + α ⋅ image(x, y)

For a constant value of α, running averages are not equivalent to the result of sum‐
ming with cv::Mat::operator+=() or cv::accumulate(). To see this, simply con‐
sider adding three numbers (2, 3, and 4) with α set to 0.5. If we were to accumulate
them with cv::accumulate(), then the sum would be 9 and the average 3. If we were
to accumulate them with cv::accumulateWeighted(), the first sum would give
0.5 ⋅ 2 + 0.5 ⋅ 3 = 2.5, and then adding the third term would give 0.5 ⋅ 2.5 + 0.5 ⋅ 4 = 3.25.
The reason the second number is larger is that the most recent contributions are

460 | Chapter 15: Background Subtraction

given more weight than those further in the past. Such a running average is also
called a tracker for just this reason. You can think of the parameter α as setting the
time scale necessary for the influence of previous frames to fade—the smaller it is, the
faster the influence of past frames fades away.

To accumulate running averages across entire images, we use the OpenCV function
cv::accumulateWeighted():

void accumulateWeighted(
 cv::InputArray src, // Input, 1 or 3 channels, U8 or F32
 cv::InputOutputArray dst, // Result image, F32 or F64
 double alpha, // Weight factor applied to src
 cv::InputArray mask = cv::noArray() // Use src pixel if mask pixel != 0
);

Here dst is the array in which the accumulation is happening, and src is the new
image that will be added. The alpha value is the weighting parameter. Like cv::accu
mulate(), cv::accumulateWeighted() admits an optional mask. If present, only the
pixels in dst that correspond to nonzero elements in mask will be updated.

Finding the variance with the help of cv::accumulateSquare()
We can also accumulate squared images, which will allow us to compute quickly the
variance of individual pixels. You may recall from your last class in statistics that the
variance of a finite population is defined by the formula:

σ 2 = 1
N ∑

i=0

N −1
(xi − x̄)2

where x̄ is the mean of x for all N samples. The problem with this formula is that it
entails making one pass through the images to compute x̄ and then a second pass to
compute σ2. A little algebra should convince you that the following formula will work
just as well:

σ 2 = (1
N ∑

i=0

N −1
xi

2) − (1
N ∑

i=0

N −1
xi)2

Using this form, we can accumulate both the pixel values and their squares in a single
pass. Then, the variance of a single pixel is just the average of the square minus the
square of the average. With this in mind, we can define an accumulation function
and a computation function as we did with the mean. As with the mean, one option
would be to first do an element-by-element squaring of the incoming image, and
then to accumulate that with something like sqsum += I.mul(I). This, however, has
several disadvantages, the most significant of which is that I.mul(I) does not do any
kind of implicit type conversion (as we saw that the cv::Mat::operator+=() opera‐

Averaging Background Method | 461

tor did not do either). As a result, elements of (for example) an 8-bit array, when
squared, will almost inevitably cause overflows. As with cv::accumulate(), however,
OpenCV provides us with a function that does what we need all in a single conve‐
nient package—cv::accumulateSquare():

void accumulateSquare(
 cv::InputArray src, // Input, 1 or 3 channels, U8 or F32
 cv::InputOutputArray dst, // Result image, F32 or F64
 cv::InputArray mask = cv::noArray() // Use src pixel if mask pixel != 0
);

With the help of cv::accumulateSquare(), we can write a function to accumulate
the information we need for our variance computation:

void accumulateVariance(
 cv::Mat& I
) {
 if(sum.empty) {
 sum = cv::Mat::zeros(I.size(), CV_32FC(I.channels()));
 sqsum = cv::Mat::zeros(I.size(), CV_32FC(I.channels()));
 }
 cv::accumulate(I, sum);
 cv::accumulateSquare(I, sqsum);
 image_count++;
}

The associated computation function would then be:

// note that 'variance' is sigma^2
//
void computeVariance(
 cv::Mat& variance
) {
 double one_by_N = 1.0 / image_count;
 variance = one_by_N * sqsum – (one_by_N * one_by_N) * sum.mul(sum);
}

Finding the covariance with cv::accumulateWeighted()
The variance of the individual channels in a multichannel image captures some
important information about how similar we expect background pixels in future
images to be to our observed average. This, however, is still a very simplistic model
for both the background and our “expectations.” One important additional concept
to introduce here is that of covariance. Covariance captures interrelations between
the variations in individual channels.

For example, our background might be an ocean scene in which we expect very little
variation in the red channel, but quite a bit in the green and blue channels. If we fol‐
low our intuition that the ocean is just one color really, and that the variation we see
is primarily a result of lighting effects, we might conclude that if there were a gain or

462 | Chapter 15: Background Subtraction

loss of intensity in the green channel, there should be a corresponding gain or loss of
intensity in the blue channel. The corollary of this is that if there were a substantial
gain in the blue channel without an accompanying gain in the green channel, we
might not want to consider this to be part of the background. This intuition is cap‐
tured by the concept of covariance.

In Figure 15-3, we visualize what might be the blue and green channel data for a par‐
ticular pixel in our ocean background example. On the left, only the variance has
been computed. On the right, the covariance between the two channels has also been
computed, and the resulting model fits the data much more tightly.

Figure 15-3. The same data set is visualized on the left and the right. On the left (a), the
(square root of the) variance of the data in the x and y dimensions is shown, and the
resulting model for the data is visualized. On the right (b), the covariance of the data is
captured in the visualized model. The model has become an ellipsoid that is narrower
in one dimension and wider in the other than the more simplistic model on the left

Mathematically, the covariance between any two different observables is given by the
formula:

Cov(x, y) = (1
N ∑

i=0

N −1
(xi ⋅ yi)) − (1

N ∑
i=0

N −1
xi)(1

N ∑
i=0

N −1
yi)

As you can see then, the covariance between any observable x and itself—Cov(x, x)—
is the same as the variance of that same observable σx

2. In a d-dimensional space (such
as the RGB values for a pixel, for which d = 3), it is convenient to talk about the cova‐
riance matrix Σx,y, whose components include all of the covariances between the vari‐
ables as well as the variances of the variables individually. As you can see from the
preceding formula, the covariance matrix is symmetric—that is, Σx,y = Σy,x.

Averaging Background Method | 463

In Chapter 5, we encountered a function that we could use when dealing with indi‐
vidual vectors of data (as opposed to whole arrays of individual vectors), cv::calcCo
varMatrix(). This function will allow us to provide N vectors of dimension d and
will spit out the d × d covariance matrix. Our problem now, however, is that we
would like to compute such a matrix for every point in an array (or at least, in the
case of a three-dimensional RGB image, we would like to compute the six unique
entries in that matrix).

In practice, the best way to do this is simply to compute the variances using the code
we already developed, and to compute the three new objects (the off-diagonal ele‐
ments of Σx,y) separately. Looking at the formula for the covariance, we see that
cv::accumulateSquare() will not quite work here, as we need to accumulate the (xi ·
yi) terms (i.e., the product of two different channel values from a particular pixel in
each image). The function that does this for us in OpenCV is cv::accumulateProd
uct():

void accumulateProduct(
 cv::InputArray src1, // Input, 1 or 3 channels, U8 or F32
 cv::InputArray src2, // Input, 1 or 3 channels, U8 or F32
 cv::InputOutputArray dst, // Result image, F32 or F64
 cv::InputArray mask = cv::noArray() // Use src pixel if mask pixel != 0
);

This function works exactly like cv::accumulateSquare(), except that rather than
squaring the individual elements of src, it multiplies the corresponding elements of
src1 and src2. What it does not do (unfortunately) is allow us to pluck individual
channels out of those incoming arrays. In the case of multichannel arrays in src1 and
src2, the computed result is done on a per-channel basis.

For our current need to compute the off-diagonal elements of a covariance model,
this is not really what we want. Instead, we want different channels of the same
image. To do this, we will have to split our incoming image apart using cv::split(),
as shown in Example 15-3.

Example 15-3. Computing the off-diagonal elements of a covariance model

vector<cv::Mat> planes(3);
vector<cv::Mat> sums(3);
vector<cv::Mat> xysums(6);

int image_count = 0;

void accumulateCovariance(
 cv::Mat& I
) {

 int i, j, n;

464 | Chapter 15: Background Subtraction

 if(sum.empty) {
 for(i=0; i<3; i++) { // the r, g, and b sums
 sums[i] = cv::Mat::zeros(I.size(), CV::F32C1);
 }
 for(n=0; n<6; n++) { // the rr, rg, rb, gg, gb, and bb elements
 xysums[n] = cv::Mat::zeros(I.size(), CV::F32C1));
 }
 }
 cv::split(I, rgb);
 for(i=0; i<3; i++) {
 cv::accumulate(rgb[i], sums[i]);
 }
 n = 0;
 for(i=0; i<3; i++) { // "row" of Sigma
 for(j=i; j<3; j++) { // "column" of Sigma
 n++;
 cv::accumulateProduct(rgb[i], rgb[j], xysums[n]);
 }
 }
 image_count++;

}

The corresponding compute function is also just a slight extension of the compute
function for the variances we saw earlier.

// note that 'variance' is sigma^2
//
void computeVariance(
 cv::Mat& covariance // a six-channel array, channels are the
 // rr, rg, rb, gg, gb, and bb elements of Sigma_xy
) {
 double one_by_N = 1.0 / image_count;

 // reuse the xysum arrays as storage for individual entries
 //
 int n = 0;
 for(int i=0; i<3; i++) { // "row" of Sigma
 for(int j=i; j<3; j++) { // "column" of Sigma
 n++;
 xysums[n] = one_by_N * xysums[n]
 – (one_by_N * one_by_N) * sums[i].mul(sums[j]);
 }
 }

 // reassemble the six individual elements into a six-channel array
 //
 cv::merge(xysums, covariance);
}

Averaging Background Method | 465

A brief note on model testing and cv::Mahalanobis()
In this section, we introduced some slightly more complicated models, but did not
discuss how to test whether a particular pixel in a new image is in the predicted
domain of variation for the background model. In the case of the variance-only
model (Gaussian models on all channels with an implicit assumption of statistical
independence between the channels) the problem is complicated by the fact that the
variances for the individual dimensions will not necessarily be equal. In this case,
however, it is common to compute a z-score (the distance from the mean divided by
the standard deviation: (x − x̄) / σx) for each dimension separately. The z-score tells us
something about the probability of the individual pixel originating from the distribu‐
tion in question. The z-scores for multiple dimensions are then summarized as the
square root of sum of squares; for example:

zred
2 + zgreen

2 + zblue
2

In the case of the full covariance matrix, the analog of the z-score is called the Maha‐
lanobis distance. This is essentially the distance from the mean to the point in ques‐
tion measured in constant-probability contours such as that shown in Figure 15-3.
Looking back at Figure 15-3, we see that a point up and to the left of the mean in the
model in (a) will appear to have a low Mahalanobis distance by that model. The same
point would have a much higher Mahalanobis distance by the model in (b). It is
worth noting that the z-score formula for the simplified model just given is precisely
the Mahalanobis distance under the model in Figure 15-3(a), as one would expect.

OpenCV provides a function for computing Mahalanobis distances:

double cv::Mahalanobis(// Return distance as F64
 cv::InputArray vec1, // First vector (1-dimensional, length n)
 cv::InputArray vec2, // Second vector (1-dimensional, length n)
 cv::InputArray icovar // Inverse covariance matrix, n-by-n
);

The cv::Mahalanobis() function expects vector objects for vec1 and vec2 of dimen‐
sion d, and a d × d matrix for the inverse covariance icovar. (The inverse covariance
is used because inverting this matrix is costly, and in most cases you have many vec‐
tors you would like to compare with the same covariance—so the assumption is that
you will invert it once and pass the inverse covariance to cv::Mahalanobis() many
times for each such inversion.)

466 | Chapter 15: Background Subtraction

9 YUV is a color space developed for early color television that needed to be backward-compatible with black-
and-white monochrome TV. The first signal is pixel brightness or “luma” Y that black-and-white television
used. To save space, only two chrominance signals then needed to be transmitted U (blue—luma) and V (red
—luma) from which RGB color could be reconstructed from a conversion formula.

10 The method OpenCV implements is derived from Kim, Chalidabhongse, Harwood, and Davis [Kim05], but
rather than using learning-oriented cylinders in RGB space, for speed, the authors use axis-aligned boxes in
YUV space. Fast methods for cleaning up the resulting background image can be found in Martins [Mar‐
tins99].

11 There is a large literature for background modeling and segmentation. OpenCV’s implementation is intended
to be fast and robust enough that you can use it to collect foreground objects mainly for the purposes of col‐
lecting data sets on which to train classifiers. Additional later work in background subtraction allows arbi‐
trary camera motion [Farin04; Colombari07] and dynamic background models using the mean-shift
algorithm [Liu07].

In our context of background subtraction, this is not entirely con‐
venient, as cv::Mahalanobis() wants to be called on a per-element
basis. Unfortunately, there is no array-sized version of this capabil‐
ity in OpenCV. As a result, you will have to loop through each
pixel, create the covariance matrix from the individual elements,
invert that matrix, and store the inverse somewhere. Then, when
you want to make a comparison, you will need to loop through the
pixels in your image, retrieve the inverse covariance you need, and
call cv::Mahalanobis() for each pixel.

A More Advanced Background Subtraction Method
Many background scenes contain complicated moving objects such as trees waving in
the wind, fans turning, curtains fluttering, and so on. Often, such scenes also contain
varying lighting, such as clouds passing by or doors and windows letting in different
light.

A nice method to deal with this would be to fit a time-series model to each pixel or
group of pixels. This kind of model deals with the temporal fluctuations well, but its
disadvantage is the need for a great deal of memory [Toyama99]. If we use 2 seconds
of previous input at 30 Hz, this means we need 60 samples for each pixel. The result‐
ing model for each pixel would then encode what it had learned in the form of 60
different adapted weights. Often we’d need to gather background statistics for much
longer than 2 seconds, which means that such methods are typically impractical on
present-day hardware.

To get fairly close to the performance of adaptive filtering, we take inspiration from
the techniques of video compression and attempt to form a YUV9 codebook10 to rep‐
resent significant states in the background.11 The simplest way to do this would be to
compare a new value observed for a pixel with prior observed values. If the value is

A More Advanced Background Subtraction Method | 467

12 In this case, we have chosen several pixels at random from the scan line to avoid excessive clutter. Of course,
there is actually a codebook for every pixel.

close to a prior value, then it is modeled as a perturbation on that color. If it is not
close, then it can seed a new group of colors to be associated with that pixel. The
result could be envisioned as a bunch of blobs floating in RGB space, each blob repre‐
senting a separate volume considered likely to be background.

In practice, the choice of RGB is not particularly optimal. It is almost always better to
use a color space whose axis is aligned with brightness, such as the YUV color space.
(YUV is the most common choice, but spaces such as HSV, where V is essentially
brightness, would work as well.) The reason for this is that, empirically, most of the
natural variation in the background tends to be along the brightness axis, not the
color axis.

The next detail is how to model these “blobs.” We have essentially the same choices
as before with our simpler model. We could, for example, choose to model the blobs
as Gaussian clusters with a mean and a covariance. It turns out that the simplest case,
in which the “blobs” are simply boxes with a learned extent in each of the three axes
of our color space, works out quite well. It is the simplest in terms of both the mem‐
ory required and the computational cost of determining whether a newly observed
pixel is inside any of the learned boxes.

Let’s explain what a codebook is by using a simple example (Figure 15-4). A code‐
book is made up of boxes that grow to cover the common values seen over time. The
upper panel of Figure 15-4 shows a waveform over time; you could think of this as
the brightness of an individual pixel. In the lower panel, boxes form to cover a new
value and then slowly grow to cover nearby values. If a value is too far away, then a
new box forms to cover it and likewise grows slowly toward new values.

In the case of our background model, we will learn a codebook of boxes that cover
three dimensions: the three channels that make up our image at each pixel.
Figure 15-5 visualizes the (intensity dimension of the) codebooks for six different
pixels learned from the data in Figure 15-1.12 This codebook method can deal with
pixels that change levels dramatically (e.g., pixels in a windblown tree, which might
alternately be one of many colors of leaves, or the blue sky beyond that tree). With
this more precise method of modeling, we can detect a foreground object that has
values between the pixel values. Compare this with Figure 15-2, where the averaging
method cannot distinguish the hand value (shown as a dotted line) from the pixel
fluctuations. Peeking ahead to the next section, we see the better performance of the
codebook method versus the averaging method shown later in Figure 15-8.

468 | Chapter 15: Background Subtraction

Figure 15-4. Codebooks are just “boxes” delimiting intensity values: a box is formed to
cover a new value and slowly grows to cover nearby values; if values are too far away
then a new box is formed

Figure 15-5. The intensity portion of learned codebook entries for fluctuations of six
chosen pixels (shown as vertical boxes): codebook boxes accommodate pixels that take
on multiple discrete values and so can better model discontinuous distributions; thus,
they can detect a foreground hand (value at dotted line) whose average value is
between the values that background pixels can assume. In this case, the codebooks are
one-dimensional and represent only variations in intensity

A More Advanced Background Subtraction Method | 469

13 Using an STL vector for each pixel (to represent the codebook) is quite inefficient; for a real-world implemen‐
tation a more efficient representation should be used. For example, limit the number of codebook entries to
MAX_CODES and use a statically allocated array CodeElement[MAX_CODES] instead.

In the codebook method of learning a background model, each box is defined by two
thresholds (max and min) over each of the three-color axes. These box boundary
thresholds will expand (max getting larger, min getting smaller) if new background
samples fall within a learning threshold (learnHigh and learnLow) above max or
below min, respectively. If new background samples fall outside of the box and its
learning thresholds, then a new box will be started. In the background difference
mode, there are acceptance thresholds maxMod and minMod; using these threshold val‐
ues, we say that if a pixel is “close enough” to a max or a min box boundary, then we
count it as if it were inside the box. At runtime, the threshold for inclusion in a “box”
can be set to a different value than was used in the construction of the boxes; often
this threshold is simply set to 0 in all three dimensions.

A situation we will not cover is a pan-tilt camera surveying a large
scene. When working with a large scene, we must stitch together
learned models indexed by the pan and tilt angles.

Structures
It’s time to look at all of this in more detail, so let’s create an implementation of the
codebook algorithm. First, we need our codebook structure, which will simply point
to a bunch of boxes in YUV space (see Example 15-4).

Example 15-4. Codebook algorithm implementation

class CodeBook : public vector<CodeElement> {

public:

 int t; // count every access

 CodeBook() { t=0; } // Default is an empty book
 CodeBook(int n) : vector<CodeElement>(n) { t=0; } // Construct book of size n

};

The codebook is derived from an STL vector of CodeElement objects as follows.13 The
variable t counts the number of points we’ve accumulated since the start or the last
clear operation. Here’s how the actual codebook elements are described:

470 | Chapter 15: Background Subtraction

#define CHANNELS 3

class CodeElement {

public:

 uchar learnHigh[CHANNELS]; // High side threshold for learning
 uchar learnLow[CHANNELS]; // Low side threshold for learning
 uchar max[CHANNELS]; // High side of box boundary
 uchar min[CHANNELS]; // Low side of box boundary
 int t_last_update; // Allow us to kill stale entries
 int stale; // max negative run (longest period of inactivity)

 CodeElement() {
 for(i = 0; i < CHANNELS; i++)
 learnHigh[i] = learnLow[i] = max[i] = min[i] = 0;
 t_last_update = stale = 0;
 }

 CodeElement& operator=(const CodeElement& ce) {
 for(i=0; i<CHANNELS; i++) {
 learnHigh[i] = ce.learnHigh[i];
 learnLow[i] = ce.learnLow[i];
 min[i] = ce.min[i];
 max[i] = ce.max[i];
 }
 t_last_update = ce.t_last_update;
 stale = ce.stale;
 return *this;
 }

 CodeElement(const CodeElement& ce) { *this = ce; }

};

Each codebook entry consumes 4 bytes per channel plus two integers, or (4 * CHAN
NELS + 4 + 4) bytes (20 bytes when we use three channels). We may set CHANNELS to
any positive number equal to or less than the number of color channels in an image,
but it is usually set to either 1 (Y, or brightness only) or 3 (for YUV or HSV images).
In this structure, for each channel, max and min are the boundaries of the codebook
box. The parameters learnHigh[] and learnLow[] are the thresholds that trigger
generation of a new code element. Specifically, a new code element will be generated
if a new pixel is encountered whose values do not lie between min – learnLow and
max + learnHigh in each of the channels. The time to last update (t_last_update)
and stale are used to enable the deletion of seldom-used codebook entries created
during learning. Now we can proceed to investigate the functions that use this struc‐
ture to learn dynamic backgrounds.

A More Advanced Background Subtraction Method | 471

Learning the Background
We will have one CodeBook of CodeElements for each pixel. We will need an array of
such codebooks that is equal in length to the number of pixels in the images we’ll be
learning. For each pixel, updateCodebook() is called for as many images as are suffi‐
cient to capture the relevant changes in the background. Learning may be updated
periodically throughout, and we can use clearStaleEntries() to learn the back‐
ground in the presence of (small numbers of) moving foreground objects. This is
possible because the seldom-used “stale” entries induced by a moving foreground will
be deleted. The interface to updateCodebook() is as follows:

// Updates the codebook entry with a new data point
// Note: cbBounds must be of length equal to numChannels
//
//
int updateCodebook(// return CodeBook index
 const cv::Vec3b& p, // incoming YUV pixel
 CodeBook& c, // CodeBook for the pixel
 unsigned* cbBounds, // Bounds for codebook (usually: {10,10,10})
 int numChannels // Number of color channels we're learning
) {
 unsigned int high[3], low[3], n;
 for(n=0; n<numChannels; n++) {
 high[n] = p[n] + *(cbBounds+n); if(high[n] > 255) high[n] = 255;
 low[n] = p[n] - *(cbBounds+n); if(low[n] < 0) low[n] = 0;
 }
 // SEE IF THIS FITS AN EXISTING CODEWORD
 //
 int i;
 int matchChannel;
 for(i=0; i<c.size(); i++) {

 matchChannel = 0;
 for(n=0; n<numChannels; n++) {
 if(// Found an entry for this channel
 (c[i].learnLow[n] <= p[n]) && (p[n] <= c[i].learnHigh[n])
)
 matchChannel++;
 }

 if(matchChannel == numChannels) { // If an entry was found
 c[i].t_last_update = c.t;

 // adjust this codeword for the first channel
 //
 for(n=0; n<numChannels; n++) {
 if(c[i].max[n] < p[n]) c[i].max[n] = p[n];
 else if(c[i].min[n] > p[n]) c[i].min[n] = p[n];
 }
 break;
 }

472 | Chapter 15: Background Subtraction

 }
. . .continued below

This function grows or adds a codebook entry when the pixel p falls outside the exist‐
ing codebook boxes. Boxes grow when the pixel is within cbBounds of an existing
box. If a pixel is outside the cbBounds distance from a box, a new codebook box is
created. The routine first sets high and low levels to be used later. It then goes
through each codebook entry to check whether the pixel value p is inside the learning
bounds of the codebook “box.” If the pixel is within the learning bounds for all chan‐
nels, then the appropriate max or min level is adjusted to include this pixel and the
time of last update is set to the current timed count, c.t. Next, the updateCodebook()
routine keeps statistics on how often each codebook entry is hit:

. . . continued from above

 // OVERHEAD TO TRACK POTENTIAL STALE ENTRIES
 //
 for(int s=0; s<c.size(); s++) {

 // Track which codebook entries are going stale:
 //
 int negRun = c.t - c[s].t_last_update;
 if(c[s].stale < negRun) c[s].stale = negRun;

 }

. . .continued below

Here, the variable stale contains the largest negative runtime (i.e., the longest span of
time during which that code was not accessed by the data). Tracking stale entries
allows us to delete codebooks that were formed from noise or moving foreground
objects and hence tend to become stale over time. In the next stage of learning the
background, updateCodebook() adds a new codebook if needed:

. . . continued from above

 // ENTER A NEW CODEWORD IF NEEDED
 //
 if(i == c.size()) { // if no existing codeword found, make one

 CodeElement ce;
 for(n=0; n<numChannels; n++) {
 ce.learnHigh[n] = high[n];
 ce.learnLow[n] = low[n];
 ce.max[n] = p[n];
 ce.min[n] = p[n];
 }
 ce.t_last_update = c.t;
 ce.stale = 0;

A More Advanced Background Subtraction Method | 473

 c.push_back(ce);

 }
. . .continued below

Finally, updateCodebook() slowly adjusts (by adding 1) the learnHigh and learnLow
learning boundaries if pixels were found outside of the box thresholds but still within
the high and low bounds:

. . . continued from above

 // SLOWLY ADJUST LEARNING BOUNDS
 //
 for(n=0; n<numChannels; n++) {

 if(c[i].learnHigh[n] < high[n]) c[i].learnHigh[n] += 1;
 if(c[i].learnLow[n] > low[n]) c[i].learnLow[n] -= 1;

 }
 return i;
}

The routine concludes by returning the index of the modified codebook. We’ve now
seen how codebooks are learned. In order to learn in the presence of moving fore‐
ground objects and to avoid learning codes for spurious noise, we need a way to
delete entries that were accessed only rarely during learning.

Learning with Moving Foreground Objects
The following routine, clearStaleEntries(), allows us to learn the background even
if there are moving foreground objects:

// During learning, after you've learned for some period of time,
// periodically call this to clear out stale codebook entries
//
int clearStaleEntries(// return number of entries cleared
 CodeBook &c // Codebook to clean up
){
 int staleThresh = c.t>>1;
 int *keep = new int[c.size()];
 int keepCnt = 0;

 // SEE WHICH CODEBOOK ENTRIES ARE TOO STALE
 //
 for(int i=0; i<c.size(); i++){
 if(c[i].stale > staleThresh)
 keep[i] = 0; // Mark for destruction
 else
 {
 keep[i] = 1; // Mark to keep
 keepCnt += 1;

474 | Chapter 15: Background Subtraction

 }
 }

 // move the entries we want to keep to the front of the vector and then
 // truncate to the correct length once all of the good stuff is saved.
 //
 int k = 0;
 int numCleared = 0
 for(int ii=0; ii<c.size(); ii++) {
 if(keep[ii]) {
 c[k] = c[ii];
 // We have to refresh these entries for next clearStale
 cc[k]->t_last_update = 0;
 k++;
 } else {
 numCleared++;
 }
 }
 c.resize(keepCnt);
 delete[] keep;

 return numCleared;
}

The routine begins by defining the parameter staleThresh, which is hardcoded (by a
rule of thumb) to be half the total running time count, c.t. This means that, during
background learning, if codebook entry i is not accessed for a period of time equal to
half the total learning time, then i is marked for deletion (keep[i] = 0). The vector
keep[] is allocated so that we can mark each codebook entry; hence, it is c.size()
long. The variable keepCnt counts how many entries we will keep. After recording
which codebook entries to keep, we go through the entries and move the ones we
want to the front of the vector in the codebook. Finally, we resize that vector so that
everything hanging off the end is chopped off.

Background Differencing: Finding Foreground Objects
We’ve seen how to create a background codebook model and how to clear it of
seldom-used entries. Next we turn to backgroundDiff(), where we use the learned
model to segment foreground pixels from the previously learned background:

// Given a pixel and a codebook, determine whether the pixel is
// covered by the codebook
//
// NOTES:
// minMod and maxMod must have length numChannels,
// e.g. 3 channels => minMod[3], maxMod[3]. There is one min and
// one max threshold per channel.
//
uchar backgroundDiff(// return 0 => background, 255 => foreground
 const cv::Vec3b& p, // Pixel (YUV)

A More Advanced Background Subtraction Method | 475

 CodeBook& c, // Codebook
 int numChannels, // Number of channels we are testing
 int* minMod, // Add this (possibly negative) number onto max level
 // when determining whether new pixel is foreground
 int* maxMod // Subtract this (possibly negative) number from min
 // level when determining whether new pixel is
 // foreground
) {
 int matchChannel;

 // SEE IF THIS FITS AN EXISTING CODEWORD
 //
 for(int i=0; i<c.size(); i++) {
 matchChannel = 0;
 for(int n=0; n<numChannels; n++) {
 if(
 (c[i].min[n] - minMod[n] <= p[n]) && (p[n] <= c[i].max[n] + maxMod[n])
) {
 matchChannel++; // Found an entry for this channel
 } else {
 break;
 }
 }
 if(matchChannel == numChannels) {
 break; // Found an entry that matched all channels
 }
 }

 if(i >= c.size()) return 0;
 return 255;
}

The background differencing function has an inner loop similar to the learning rou‐
tine updateCodebook, except here we look within the learned max and min bounds
plus an offset threshold, maxMod and minMod, of each codebook box. If the pixel is
within the box plus maxMod on the high side or minus minMod on the low side for each
channel, then the matchChannel count is incremented. When matchChannel equals
the number of channels, we’ve searched each dimension and know that we have a
match. If the pixel is not within a learned box, 255 is returned (a positive detection of
foreground); otherwise, 0 is returned (the pixel is background).

The three functions updateCodebook(), clearStaleEntries(), and background
Diff() constitute a codebook method of segmenting foreground from learned back‐
ground.

476 | Chapter 15: Background Subtraction

Using the Codebook Background Model
To use the codebook background segmentation technique, typically we take the fol‐
lowing steps:

1. Learn a basic model of the background over a few seconds or minutes using
updateCodebook().

2. Clean out stale entries with clearStaleEntries().
3. Adjust the thresholds minMod and maxMod to best segment the known foreground.
4. Maintain a higher-level scene model (as discussed previously).
5. Use the learned model to segment the foreground from the background via

backgroundDiff().
6. Periodically update the learned background pixels.
7. At a much slower frequency, periodically clean out stale codebook entries with

clearStaleEntries().

A Few More Thoughts on Codebook Models
In general, the codebook method works quite well across a wide number of condi‐
tions, and it is relatively quick to train and to run. It doesn’t deal well with varying
patterns of light—such as morning, noon, and evening sunshine—or with someone
turning lights on or off indoors. We can account for this type of global variability by
using several different codebook models, one for each condition, and then allowing
the condition to control which model is active.

Connected Components for Foreground Cleanup
Before comparing the averaging method to the codebook method, we should pause to
discuss ways to clean up the raw segmented image using connected component anal‐
ysis. This form of analysis is useful for noisy input mask images, and such noise is
more the rule than the exception.

The basic idea behind the method is to use the morphological operation open to
shrink areas of small noise to 0 followed by the morphological operation close to
rebuild the area of surviving components that was lost in opening. Thereafter, we
find the “large enough” contours of the surviving segments and can take statistics of
all such segments. Finally, we retrieve either the largest contour or all contours of size
above some threshold. In the routine that follows, we implement most of the func‐
tions that you would want for this connected component analysis:

Connected Components for Foreground Cleanup | 477

14 Observe that the value CVCLOSE_ITR is actually dependent on the resolution. For images of extremely high
resolution, leaving this value set to 1 is not likely to yield satisfactory results.

• Whether to approximate the surviving component contours by polygons or by
convex hulls

• Setting how large a component contour must be in order for it not to be deleted
• Returning the bounding boxes of the surviving component contours
• Returning the centers of the surviving component contours

The connected components header that implements these operations is shown in
Example 15-5.

Example 15-5. Cleanup using connected components

// This cleans up the foreground segmentation mask derived from calls
// to backgroundDiff
//
void findConnectedComponents(
 cv::Mat& mask, // Is a grayscale (8-bit depth) "raw" mask image
 // that will be cleaned up
 int poly1_hull0 = 1, // If set, approximate connected component by
 // (DEFAULT) polygon, or else convex hull (0)
 float perimScale = 4, // Len = (width+height)/perimScale. If contour
 // len < this, delete that contour (DEFAULT: 4)
 vector<cv::Rect>& bbs // Ref to bounding box rectangle return vector
 vector<cv::Point>& centers // Ref to contour centers return vector
);

The function body is listed next. First, we do morphological opening and closing in
order to clear out small pixel noise, after which we rebuild the eroded areas that sur‐
vive the erosion of the opening operation. The routine takes two additional parame‐
ters, which here are hardcoded via #define. The defined values work well, and you
are unlikely to want to change them. These additional parameters control how simple
the boundary of a foreground region should be (higher numbers simpler) and how
many iterations the morphological operators should perform; the higher the number
of iterations, the more erosion takes place in opening before dilation in closing.14

More erosion eliminates larger regions of blotchy noise at the cost of eroding the
boundaries of larger regions. Again, the parameters used in this sample code work
well, but there’s no harm in experimenting with them if you like:

// polygons will be simplified using DP algorithm with 'epsilon' a fixed
// fraction of the polygon's length. This number is that divisor.
//
#define DP_EPSILON_DENOMINATOR 20.0

478 | Chapter 15: Background Subtraction

// How many iterations of erosion and/or dilation there should be
//
#define CVCLOSE_ITR 1

We now discuss the connected component algorithm itself. The first part of the rou‐
tine performs the morphological open and closing operations:

void findConnectedComponents(
 cv::Mat& mask,
 int poly1_hull0,
 float perimScale,
 vector<cv::Rect>& bbs,
 vector<cv::Point>& centers
) {

 // CLEAN UP RAW MASK
 //
 cv::morphologyEx(
 mask, mask, cv::MOP_OPEN, cv::Mat(), cv::Point(-1,-1), CVCLOSE_ITR
);
 cv::morphologyEx(
 mask, mask, cv::MOP_CLOSE, cv::Mat(), cv::Point(-1,-1), CVCLOSE_ITR
);

Now that the noise has been removed from the mask, we find all contours:

// FIND CONTOURS AROUND ONLY BIGGER REGIONS
//
vector< vector<cv::Point> > contours_all; // all contours found
vector< vector<cv::Point> > contours; // just the ones we want to keep
cv::findContours(
 mask,
 contours_all,
 CV_RETR_EXTERNAL,
 CV_CHAIN_APPROX_SIMPLE
);

Next, we toss out contours that are too small and approximate the rest with polygons
or convex hulls:

for(
 vector< vector<cv::Point> >::iterator c = contours_all.begin();
 c != contours.end();
 ++c
) {

 // length of this contour
 //
 int len = cv::arcLength(*c, true);

 // length threshold a fraction of image perimeter
 //
 double q = (mask.rows + mask.cols) / DP_EPSILON_DENOMINATOR;

Connected Components for Foreground Cleanup | 479

 if(len >= q) { // If the contour is long enough to keep...

 vector<cv::Point> c_new;
 if(poly1_hull0) { // If the caller wants results as reduced polygons...
 cv::approxPolyDP(*c, c_new, len/20.0, true);
 } else { // Convex Hull of the segmentation
 cv::convexHull(*c, c_new);
 }
 contours.push_back(c_new);

 }

}

In the preceding code, we use the Douglas-Peucker approximation algorithm to
reduce polygons (if the user has not asked us to return just convex hulls). All this
processing yields a new list of contours. Before drawing the contours back into the
mask, we define some simple colors to draw:

// Just some convenience variables
const cv::Scalar CVX_WHITE = cv::RGB(0xff,0xff,0xff);
const cv::Scalar CVX_BLACK = cv::RGB(0x00,0x00,0x00);

We use these definitions in the following code, where we first analyze each contour
separately, then zero out the mask and draw the whole set of clean contours back into
the mask:

 // CALC CENTER OF MASS AND/OR BOUNDING RECTANGLES
 //
 int idx = 0;
 cv::Moments moments;
 cv::Mat scratch = mask.clone();
 for(
 vector< vector<cv::Point> >::iterator c = contours.begin();
 c != contours.end;
 c++, idx++
) {

 cv::drawContours(scratch, contours, idx, CVX_WHITE, CV_FILLED);

 // Find the center of each contour
 //
 moments = cv::moments(scratch, true);
 cv::Point p;
 p.x = (int)(moments.m10 / moments.m00);
 p.y = (int)(moments.m01 / moments.m00);
 centers.push_back(p);

 bbs.push_back(cv::boundingRect(c));

 Scratch.setTo(0);

480 | Chapter 15: Background Subtraction

15 In the context of frame differencing, an object is identified as “foreground” mainly by its velocity. This is rea‐
sonable in scenes that are generally static or in which foreground objects are expected to be much closer to
the camera than background objects (and thus appear to move faster by virtue of the projective geometry of
cameras).

16 The size threshold for the connected components has been tuned to give zero response in these empty frames.
The real question, then, is whether the foreground object of interest (the hand) survives pruning at this size
threshold. We will see (in Figure 15-8) that it does so nicely.

 }

 // PAINT THE FOUND REGIONS BACK INTO THE IMAGE
 //
 mask.setTo(0);
 cv::drawContours(mask, contours, -1, CVX_WHITE);

}

That concludes a useful routine for creating clean masks out of noisy raw masks.
Note that the new function cv::connectedComponentsWithStats() from OpenCV 3
can be used before cv::findContours() to mark and delete small connected
components.

A Quick Test
We start this section with an example to see how this really works in an actual video.
Let’s stick with our video of the tree outside the window. Recall from Figure 15-1 that
at some point a hand passes through the scene. You might expect that we could find
this hand relatively easily with a technique such as frame differencing (discussed pre‐
viously). The basic idea of frame differencing is to subtract the current frame from a
“lagged” frame and then threshold the difference.

Sequential frames in a video tend to be quite similar, so you might expect that, if we
take a simple difference of the original frame and the lagged frame, we won’t see too
much unless there is some foreground object moving through the scene.15 But what
does “won’t see too much” mean in this context? Really, it means “just noise.” Thus,
in practice the problem is sorting out that noise from the signal when a foreground
object really does come along.

To understand this noise a little better, first consider a pair of frames from the video
in which there is no foreground object—just the background and the resulting noise.
Figure 15-6 shows a typical frame from such a video (upper left) and the previous
frame (upper right). The figure also shows the results of frame differencing with a
threshold value of 15 (lower left). You can see substantial noise from the moving
leaves of the tree. Nevertheless, the method of connected components is able to clean
up this scattered noise quite well16 (lower right). This is not surprising, because there

Connected Components for Foreground Cleanup | 481

is no reason to expect much spatial correlation in this noise and so its signal is char‐
acterized by a large number of very small regions.

Figure 15-6. Frame differencing: a tree is waving in the background in the current
(upper left) and previous (upper right) frame images; the difference image (lower left) is
completely cleaned up (lower right) by the connected component method

Now consider the situation in which a foreground object (our ubiquitous hand)
passes through the frame. Figure 15-7 shows two frames that are similar to those in
Figure 15-6 except that now there is a hand moving across from left to right. As
before, the current frame (upper left) and the previous frame (upper right) are shown
along with the response to frame differencing (lower left) and the fairly good results
of the connected component cleanup (lower right).

482 | Chapter 15: Background Subtraction

17 For the uninitiated, bake-off is actually a bona fide term used to describe any challenge or comparison of mul‐
tiple algorithms on a predetermined data set.

Figure 15-7. Frame difference method of detecting a hand, which is moving left to right
as the foreground object (upper two panels); the difference image (lower left) shows the
“hole” (where the hand used to be) toward the left and its leading edge toward the right,
and the connected component image (lower right) shows the cleaned-up difference

We can also clearly see one of the deficiencies of frame differencing: it cannot distin‐
guish between the region from where the object moved (the “hole”) and where the
object is now. Furthermore, in the overlap region, there is often a gap because “flesh
minus flesh” is 0 (or at least below threshold).

Thus, we see that using connected components for cleanup is a powerful technique
for rejecting noise in background subtraction. As a bonus, we were also able to
glimpse some of the strengths and weaknesses of frame differencing.

Comparing Two Background Methods
We have discussed two classes of background modeling techniques so far in this
chapter: the average distance method (and its variants) and the codebook method.
You might be wondering which method is better, or, at least, when you can get away
with using the easy one. In these situations, it’s always best to just do a straight bake-
off17 between the available methods.

Comparing Two Background Methods | 483

We will continue with the same tree video that we’ve been using throughout the
chapter. In addition to the moving tree, this film has a lot of glare coming off a build‐
ing to the right and off portions of the inside wall on the left. It is a fairly challenging
background to model.

In Figure 15-8, we compare the average difference method at the top against the
codebook method at bottom; on the left are the raw foreground images and on the
right are the cleaned-up connected components. You can see that the average differ‐
ence method leaves behind a sloppier mask and breaks the hand into two compo‐
nents. This is not too surprising; in Figure 15-2, we saw that using the average
difference from the mean as a background model often included pixel values associ‐
ated with the hand value (shown as a dotted line in that figure). Compare this with
Figure 15-5, where codebooks can more accurately model the fluctuations of the
leaves and branches and so more precisely identify foreground hand pixels (dotted
line) from background pixels. Figure 15-8 confirms not only that the background
model yields less noise but also that connected components can generate a fairly
accurate object outline.

Figure 15-8. With the averaging method (top row), the connected component cleanup
knocks out the fingers (upper right); the codebook method (bottom row) does much bet‐
ter at segmentation and creates a clean connected component mask (lower right)

484 | Chapter 15: Background Subtraction

18 Actually, as shown, this base class is not literally abstract (i.e., it does not contain any pure virtual functions).
However, it is always used in the library as if it were abstract—meaning that though the compiler will let you
instantiate an instance of cv::BackgroundSubtractor there is no purpose in, nor meaning to, doing so. We
considered coining the phrase “relatively abstract” for the circumstance, but later thought better of it.

OpenCV Background Subtraction Encapsulation
Thus far, we have looked in detail at how you might implement your own basic back‐
ground subtraction algorithms. The advantage of that approach is that it is much
clearer what is going on and how everything is working. The disadvantage is that as
time progresses, newer and better methods are developed that, though rooted in the
same fundamental ideas, become sufficiently complicated that you would prefer to
regard them as “black boxes” and just use them without getting into the gory details.

To this end, OpenCV now provides a genericized class-based interface to background
subtraction. At this time, there are two implementations that use this interface, but
more are expected in the future. In this section we will first look at the interface in its
generic form, then investigate the two implementations that are available. Both
implementations are based on a mixture of gaussians (MOG) approach, which essen‐
tially takes the statistical modeling concept we introduced for our simplest back‐
ground modeling scheme (see the section “Accumulating Means, Variances, and
Covariances” on page 458) and marries it with the multimodal capability of the code‐
book scheme (the one developed in the section “A More Advanced Background Sub‐
traction Method” on page 467). Both of these MOG methods are 21st-century
algorithms suitable for many practical day-to-day situations.

The cv::BackgroundSubtractor Base Class
The cv::BackgroundSubtractor (abstract) base class18 specifies only the minimal
number of necessary methods. It has the following definition:

class cv::BackgroundSubtractor {

public:
 virtual ~BackgroundSubtractor();
 virtual void apply()(
 cv::InputArray image,
 cv::OutputArray fgmask,
 double learningRate = -1
);

 virtual void getBackgroundImage(
 cv::OutputArray backgroundImage
) const;

};

OpenCV Background Subtraction Encapsulation | 485

19 If you find yourself looking up the citation given for this algorithm, the first three parameters—history, num‐
ber of Gaussian mixtures, and background ratio—are referred to in the paper as L, K, and T, respectively. The
last, noise strength, can be thought of as the initialization value of Θk for a newly created component.

As you can see, after the constructor, there are only two methods defined. The first is
the function operator, which in this context is used to both ingest a new image and to
produce the calculated foreground mask for that image. The second function pro‐
duces an image representation of the background. This image is primarily for visuali‐
zation and debugging; recall that there is much more information associated with any
single pixel in the background than just a color. As a result the image produced by
getBackgroundImage() can be only a partial presentation of the information that
exists in the background model.

One thing that might seem to be a glaring omission is the absence of a method that
accumulates background images for training. The reason for this is that there came to
be (relative) consensus in the academic literature that any background subtraction
algorithm that was not essentially continuously training was undesirable. The reasons
for this are many, with the most obvious being the effect of gradual illumination
change on a scene (e.g., as the sun rises and sets outside the window). The subtler
issues arise from the fact that in many practical scenes there is no opportunity to
expose the algorithm to a prolonged period in which no foreground objects are
present. Similarly, in many cases, things that seem to be background for an extended
period (such as a parked car) might finally move, leaving a permanent foreground
“hole” at the location of their absence. For these reasons, essentially all modern back‐
ground subtraction algorithms do not distinguish between training and running
modes; rather, they continuously train and build models in which those things that
are seen rarely (and can thus be understood to be foreground) are removed and those
things that are seen a majority of the time (which are understood to be the back‐
ground) are retained.

KaewTraKuPong and Bowden Method
The first of the available algorithms, KaewTraKuPong and Bowden (KB), brings us
several new capabilities that address real-world challenges in background subtrac‐
tion. These are: a multimodal model, continuous online training, two separate (auto‐
matic) training modes that improve initialization performance, and explicit detection
and rejection of shadows [KaewTraKulPong2001]. All of this is largely invisible to the
user. Not unexpectedly, however, this algorithm does have some parameters that you
may want to tune to your particular application. They are the history, the number of
Gaussian mixtures, the background ratio, and the noise strength.19

The first of these, the history, is the point at which the algorithm will switch out of
initialization mode and into its nominal run mode. The default value for this parame‐

486 | Chapter 15: Background Subtraction

ter is 200 frames. The number of Gaussian mixtures is the number of Gaussian com‐
ponents to the overall mixture model that is used to approximate the background in
any given pixel. The default value for this parameter is 5.

Given some number of Gaussian components to the model, each will have a weight
indicating the portion of the observed values of that pixel that are explained by that
particular component of the model. They are not all necessarily “background”; some
are likely to be foreground objects that have passed by at one point or another. With
the components ordered by weight, the ones that are included as true background are
the first b of them, where b is the minimum number required to “explain” some fixed
percentage of the total model. This percentage is called the background ratio, and its
default value is 0.7 (or 70%). Thus, by way of example, if there are five components,
with weights 0.40, 0.25, 0.20, 0.10, and 0.05, then b would be 3, because it required
the first three 0.40 + 0.25 + 0.20 to exceed the required background ratio of 0.70.

The last parameter, noise strength, sets the uncertainty assigned to a new Gaussian
component when it is created. New components are created whenever new unex‐
plained pixels appear, either because not all components have been assigned yet, or
because a new pixel value has been observed that is not explained by any existing
component (in which case the least valuable existing component is recycled to make
room for this new information). In practice, the effect of increasing the noise strength
is to allow the given number of Gaussian components to “explain” more. Of course,
the trade-off is that they will tend to explain perhaps even more than has been
observed. The default value for the noise strength is 15 (measured in units of 0–255
pixel intensities).

cv::BackgroundSubtractorMOG
The primary factor that distinguishes the object implementation of the KB back‐
ground segmentation algorithm from the generic interface is the constructor. You
might have noticed that the constructor was not defined in the base class; this is
because every implementation will have its own parameters to set, and so no truly
generic prototype is possible. The prototype for the constructor for the
cv::bgsegm::BackgroundSubtractorMOG class from the bgsegm module from the
opencv_contrib repository looks like this:

cv::Ptr<cv::bgsegm::BackgroundSubtractorMOG>
 cv::bgsegm::createBackgroundSubtractorMOG(
 int history = 200,
 int nmixtures = 5,
 double backgroundRatio = 0.7,
 double noiseSigma = 0
);

Here, the second constructor allows you to set all four of the parameters that the
algorithm needs to operate to whatever values you like. Alternatively, there is the

OpenCV Background Subtraction Encapsulation | 487

20 Recall that the Mahalanobis distance is essentially a z-score (i.e., a measurement of how far you are from the
center of a Gaussian distribution—measured in units of that distribution’s uncertainty) that takes into
account the complexities of a distribution in an arbitrary number of dimensions with arbitrary covariance
matrix σ.
rM

2 = (x→ − μ→)Σ−1(x→ − μ→)
You can also see why computing the squared Mahalanobis distance is more natural, which is why you provide
the threshold as rM

2 rather than rM.

default constructor, which will set all four values to the default values given earlier
(i.e., 200, 5, 0.70, and 15).

Zivkovic Method
This second background subtraction method, the Zivkovic method, is similar to the
KB algorithm in that it also uses a Gaussian mixture model to model the distribution
of colors observed in any particular pixel. One particularly notable distinction
between the two algorithms, however, is that the Zivkovic method does not use a
fixed number of Gaussian components; rather, it adapts the number dynamically to
give the best overall explanation of the observed distribution [Zivkovic04, Ziv‐
kovic06]. This has the downside that the more components there are, the more com‐
pute resources are consumed updating and comparing with the model. On the other
hand, it has the upside that the model is capable of potentially much higher fidelity.

This algorithm has some parameters in common with the KB method, but introduces
many new parameters as well. Fortunately, only two of the parameters are especially
important, while the others we can mostly leave at their default values. The two par‐
ticularly critical parameters are the history (also called the decay parameter) and the
variance threshold.

The first of these, the history, sets the amount of time over which some “experience”
of a pixel color will last. Essentially, it is the time it takes for the influence of that pixel
to decay away to nothing. The default value for this period is 500 frames. That value
is approximately the time before a measurement is “forgotten.” Internally to the algo‐
rithm, however, it is slightly more accurate to think of this as an exponential decay
parameter whose value is α = 1 / 500 = 0.002 (i.e., the influence of a measurement
decays like (1 − α)t .

The second parameter, the variance threshold, sets the confidence level that a new
pixel measurement must be within, relative to an existing Gaussian mixture compo‐
nent, to be considered part of that component. The units of the variance threshold
are in squared-Mahalanobis distance. This means essentially that if you wish to
include a pixel that is three sigma from the center of a component into that compo‐
nent, then you would set the variance threshold to 3 * 3 = 9.20 The default value for
this parameter is actually 4 * 4 = 16.

488 | Chapter 15: Background Subtraction

cv::BackgroundSubtractorMOG2

The constructor for cv::BackgroundSubtractorMOG2 allows us to set these two most
important parameters. The others may be set from outside once the background sub‐
tractor object has been constructed (meaning, they are public members):

Ptr<BackgroundSubtractorMOG2> createBackgroundSubtractorMOG2(
 int history = 500,
 double varThreshold = 16,
 bool detectShadows = true
);

The history and variance threshold parameters history and varThreshold are just as
described earlier. The new parameter, bShadowDetection, allows optional shadow
detection and removal to be turned on. When operational, pixels that are not obvi‐
ously part of the background are reconsidered to determine if they are just darker
versions of the background. If this is found to be the case, these pixels are marked
with a special value (typically distinct from the value for background or foreground
pixels).

In addition to the two most important parameters, there are the following parame‐
ters, which you can tinker with if you are feeling particularly brave:

class cv::BackgroundSubtractorMOG2 {

 ...

public:

 ...
 int getNMixtures() const; // Minimum number of mixture components
 void setNMixtures(int nmixtures);

 double getBackgroundRatio() const; // If component is significant enough
 void setBackgroundRatio(double backgroundRatio);

 double getVarInit() const; // Initial variance for new components
 void setVarInit(double varInit) const;

 double getVarMin() const; // Smallest allowed variance
 void setVarMin(double varMin);

 double getVarMax() const; // Largest allowed variance
 void setVarMax(double varMax);

 double getComplexityReductionThreshold() const; // Samples needed to prove that
 // the component exists
 void setComplexityReductionThreshold(double CT);

 bool getDetectShadows() const; // true try to detect shadows
 void setDetectShadows(bool detectShadows);

OpenCV Background Subtraction Encapsulation | 489

21 For a more technical definition of “simplifies substantially,” what really happens is that Zivkovic’s algorithm
simplifies into something very similar to the algorithm of Stauffer and Grimson. We do not discuss that algo‐
rithm here in detail, but it is cited in Zivkovic’s paper and was a relatively standard benchmark upon which
Zivkovic’s algorithm improved.

 int getShadowValue() const; // value of shadow pixels in
 void setShadowValue(int value); // output mask

 double getShadowThreshold() const; // Shadow threshold
 void setShadowThreshold(double shadowThreshold);
 ...

};

The meaning of these parameters is as follows: nmixtures is the maximum number of
Gaussian components any pixel model can have (the default is 5). Increasing this
improves model fidelity at the cost of runtime. backgroundRatio has the same mean‐
ing as in the KB algorithm (the default for this algorithm is 0.90). varInit, varMin,
and varMax are the initialization minimum and maximum values for the variance (σ 2)
of any particular Gaussian component (their default values are 15, 4, and 75, respec‐
tively). varInit is analogous to noiseSigma in the KB algorithm. CT is what Zivkovic
et al. call the complexity reduction prior. It is related to the number of samples needed
to accept that a component actually exists. The default value for this parameter is
0.05. Probably the most important thing to know about this value is that if you set it
to 0.00, then the entire algorithm simplifies substantially21 (both in terms of speed
and result quality). shadowValue is the value to which shadow pixels will be set in the
foreground image (assuming that the constructor argument detectShadows was set
to true). The default for this value is 127. Finally, shadowThreshold is a parameter
that is used to determine whether a pixel is a shadow. The interpretation of shadow
Threshold is that it is the relative brightness threshold for a pixel to be considered a
shadow relative to something already in the model (e.g., if fTau is 0.60, then any
pixel that has the same color as an existing component and is between 0.60 and 1.0
times as bright is considered a shadow). The default value for this parameter is 0.50.

Summary
In this chapter, we looked at the specific problem of background subtraction. This
problem plays a major role in a vast array of practical computer vision applications,
ranging from industrial automation to security to robotics. Starting with the basic
theory of background subtraction, we developed two models of how such subtraction
could be accomplished based on simple statistical methods. From there we showed

490 | Chapter 15: Background Subtraction

how connected component analysis could be used to increase the utility of back‐
ground subtraction results and compared the two basic methods we had developed.

We concluded the chapter by looking at the more advanced background subtraction
methods supplied by the OpenCV library as complete implementations. These meth‐
ods are similar in spirit to the simpler methods we developed in detail at the begin‐
ning of the chapter, but contain improvements that make them suitable for more
challenging real-world applications.

Exercises
1. Using cv::accumulateWeighted(), reimplement the averaging method of back‐

ground subtraction. In order to do so, learn the running average of the pixel val‐
ues in the scene to find the mean and the running average of the absolute
difference, cv::absdiff(), as a proxy for the standard deviation of the image.

2. Shadows are often a problem in background subtraction because they can show
up as a foreground object. Use the averaging or codebook method of background
subtraction to learn the background. Then have a person walk in the foreground.
Shadows will “emanate” from the bottom of the foreground object.
a. Outdoors, shadows are darker and bluer than their surroundings; use this fact

to eliminate them.
b. Indoors, shadows are darker than their surroundings; use this fact to elimi‐

nate them.
3. The simple background models presented in this chapter are often quite sensitive

to their threshold parameters. In Chapter 17, we’ll see how to track motion, and
this can be used as a reality check on the background model and its thresholds.
You can also use it when a known person is doing a “calibration walk” in front of
the camera: find the moving object and adjust the parameters until the fore‐
ground object corresponds to the motion boundaries. We can also use distinct
patterns on a calibration object itself (or on the background) for a reality check
and tuning guide when we know that a portion of the background has been
occluded.
a. Modify the code to include an autocalibration mode. Learn a background

model and then put a brightly colored object in the scene. Use color to find
the colored object and then use that object to automatically set the thresholds
in the background routine so that it segments the object. Note that you can
leave this object in the scene for continuous tuning.

b. Use your revised code to address the shadow-removal problem of Exercise 2.

Exercises | 491

4. Use background segmentation to segment a person with arms held out. Investi‐
gate the effects of the different parameters and defaults in the find_connec
ted_components() routine. Show your results for different settings of:
a. poly1_hull0

b. DP_EPSILON_DENOMINATOR

c. perimScale

d. CVCLOSE_ITR

5. From the directory where you installed OpenCV, using the .../samples/data/
tree.avi video file, compare and contrast how cv::BackgroundSubtractorMOG2
and cv::BackgroundSubtractorMOG2 work on segmenting the moving hand. Use
the first part of the video to learn the background, and then segment the moving
hand in the later part of the video.

6. Although it might be a little slow, try running background segmentation when
the video input is first prefiltered by using cv::bilateralFilter(). That is, the
input stream is first smoothed and then passed for background learning—and
later testing for foreground—by the codebook background segmentation routine.
a. Show the results compared to not running the bilateral filtering.
b. Try systematically varying the spatialSigma and colorSigma of the bilateral

filter (e.g., add sliders allowing you to change them interactively). Compare
those results.

492 | Chapter 15: Background Subtraction

1 In this chapter we restrict our attention primarily to the features in the main library that have the main
library’s licensing terms. There are more “nonfree” features and feature detectors and descriptors in xfea
tures2D module (see Appendix B), as well as new experimental features. Of the nonfree features, we will
cover only SIFT and SURF in this chapter due to their great historical, practical, and pedagogical importance.

CHAPTER 16

Keypoints and Descriptors

Keypoints and the Basics of Tracking
This chapter is all about informative feature points in images. We will begin by
describing what are called corners and exploring their definition in the subpixel
domain. We will then learn how to track such corners with optical flow. Historically,
the tracking of corners evolved into the theory of keypoints, to which we will devote
the remainder of this chapter, including extensive discussion of keypoint feature
detectors and descriptors implemented in the OpenCV library for you to use.1

The concept of corners, as well as that of keypoints, is based on the intuition that it
would be useful in many applications to be able to represent an image or object in an
invariant form that will be the same, or at least very similar, in other similar images of
the same scene or object. Corner and keypoint representations are powerful methods
for doing this. A corner is a small patch of an image that is rich in local information
and therefore likely to be recognized in another image. A keypoint is an extension of
this concept that encodes information from a small local patch of an image such that
the keypoint is highly recognizable and, at least in principle, largely unique. The
descriptive information about a keypoint is summarized in the form of its descriptor,
which is typically much lower-dimensional than the pixel patch that formed the key‐
point. The descriptor represents that patch so as to make it much easier to recognize
that patch when it appears in another, different image.

493

From an intuitive point of view, you can think of a keypoint like a piece from a jigsaw
puzzle. When you begin the puzzle, some pieces are easily recognized: the handle of a
door, a face, the steeple of a church. When you go to assemble the puzzle, you can
immediately relate these keypoints to the image on the puzzle box and know immedi‐
ately where to place them. In addition, if you and a friend had two unassembled puz‐
zles and you wanted to know if they were, for example, both different images of the
beautiful Neuschwanstein Castle, you could assemble both puzzles and compare, but
you could also just pick out the most salient pieces from each puzzle and compare
them. In this latter case, it would take only a few matches before you were convinced
that they were either literally the same puzzle, or two puzzles made from two differ‐
ent images of the same castle.

In this chapter, we will start by building up the basics of the theory of keypoints by
discussing the earliest ancestor of the modern keypoint: the Harris corner. From
there we will discuss the concept of optical flow for such corners, which captures the
basic idea of tracking such features from one frame to another in a video sequence.
After that we will move on to more modern keypoints and their descriptors and dis‐
cuss how OpenCV helps us find them as well as how the library will help us match
them between frames. Finally, we will look at a convenient method that allows us to
visualize keypoints overlaid on top of the images in which they were detected.

Corner Finding
There are many kinds of local features that you can track. It is worth taking a
moment to consider what exactly constitutes such a feature. Obviously, if we pick a
point on a large blank wall, then it won’t be easy to find that same point in the next
frame of a video.

If all points on the wall are identical or even very similar, then we won’t have much
luck tracking that point in subsequent frames. On the other hand, if we choose a
point that is unique, then we have a pretty good chance of finding that point again. In
practice, the point or feature we select should be unique, or nearly unique, and
should be parameterizable such that it can be compared to other points in another
image (see Figure 16-1).

Returning to our intuition from the large blank wall, we might be tempted to look for
points that have some significant change in them—for example, a strong derivative. It
turns out that this is not quite enough, but it’s a start. A point to which a strong
derivative is associated may be on an edge of some kind, but it still may look like all
of the other points along that same edge (see the aperture problem diagrammed in
Figure 16-8 and discussed in the section “Introduction to Optical Flow” on page 498).

494 | Chapter 16: Keypoints and Descriptors

Figure 16-1. The points marked with circles here are good points to track, whereas those
marked with boxes—even the ones that are sharply defined edges—are poor choices

However, if strong derivatives are observed nearby in two different directions, then
we can hope that this point is more likely to be unique. For this reason, many tracka‐
ble features are called corners. Intuitively, corners—not edges—are the points that
contain enough information to be picked out from one frame to the next.

The most commonly used definition of a corner was provided by Harris [Harris88].
This definition captures the intuition of the previous paragraph in a mathematically
specific form. We will look at the details of this method shortly, but for the moment,
what is important to know is that you can ask OpenCV to simply find the points in
the image that are good candidates for being tracked, and it will use Harris’s method
to identify them for you.

Finding corners using cv::goodFeaturesToTrack()

The cv::goodFeaturesToTrack() routine implements Harris’s method and a slight
improvement credited to Shi and Tomasi [Shi94]. This function conveniently com‐
putes the necessary derivative operators, analyzes them, and returns a list of the
points that meet our definition of being good for tracking:

void cv::goodFeaturesToTrack(
 cv::InputArray image, // Input, CV_8UC1 or CV_32FC1
 cv::OutputArray corners, // Output vector of corners
 int maxCorners, // Keep this many corners
 double qualityLevel, // (fraction) rel to best
 double minDistance, // Discard corner this close
 cv::InputArray mask = noArray(), // Ignore corners where mask=0
 int blockSize = 3, // Neighborhood used
 bool useHarrisDetector = false, // false='Shi Tomasi metric'
 double k = 0.04 // Used for Harris metric
);

The input image can be any 8-bit or 32-bit (i.e., 8U or 32F), single-channel image. The
output corners will be a vector or array (depending on what you provide) containing

Keypoints and the Basics of Tracking | 495

2 Later in this chapter, we will look at many ways to compute keypoints, which are essentially a generalization
of “corners.” In that section, we will discuss many keypoint finding algorithms in detail, including Harris’s
algorithm. We will get into more detailed descriptions of the algorithms and these parameters there.

all of the corners that were found. If it is a vector<>, it should be a vector of
cv::Point2f objects. If it is a cv::Mat, it will have one row for every corner and two
columns for the x and y locations of the points. You can limit the number of corners
that will be found with maxCorners, the quality of the returned points with quality
Level (typically between 0.10 and 0.01, and never greater than 1.0), and the mini‐
mum separation between adjacent corners with minDistance.

If the argument mask is supplied, it must be the same dimension as image, and cor‐
ners will not be generated anywhere mask is 0. The blockSize argument indicates
how large an area is considered when a corner is computed; a typical value is 3 but,
for high-resolution images, you may want to make this slightly larger. The useHarris
Detector argument, if set to true, will cause cv:: goodFeaturesToTrack() to use an
exact corner strength formula of Harris’s original algorithm; if set to false, Shi and
Tomasi’s method will be used. The parameter k is used only by Harris’s algorithm,
and is best left at its default value.2

Subpixel corners
If you are processing images for the purpose of extracting geometric measurements,
as opposed to extracting features for recognition, then you will normally need more
resolution than the simple pixel values supplied by cv::goodFeaturesToTrack().
Another way of saying this is that such pixels come with integer coordinates whereas
we sometimes require real-valued coordinates—for example, a pixel location of (8.25,
117.16).

If you imagine looking for a particular small object in a camera image, such as a dis‐
tant star, you would invariably be frustrated by the fact that the point’s location will
almost never be in the exact center of a camera pixel element. Of course, in this cir‐
cumstance, some of the light from the object will appear in the neighboring pixels as
well. To overcome this, you might try to fit a curve to the image values and then use a
little math to find where the peak occurred between the pixels. Subpixel corner detec‐
tion techniques all rely on approaches of this kind (for a review and newer techni‐
ques, see Lucchese [Lucchese02] and Chen [Chen05]). Common uses of such
measurements include tracking for three-dimensional reconstruction, calibrating a
camera, warping partially overlapping views of a scene to stitch them together in the
most natural way, and finding an external signal such as the precise location of a
building in a satellite image.

496 | Chapter 16: Keypoints and Descriptors

One of the most common tricks for subpixel refinement is based on the mathematical
observation that the dot product between a vector and an orthogonal vector is 0; this
situation occurs at corner locations, as shown in Figure 16-2.

Figure 16-2. Finding corners to subpixel accuracy: (a) the image area around the point
p is uniform and so its gradient is 0; (b) the gradient at the edge is orthogonal to the
vector q-p along the edge; in either case, the dot product between the gradient at p and
the vector q-p is 0 (see text)

In Figure 16-2, we assume a starting corner location q that is near the actual subpixel
corner location. We examine vectors starting at point q and ending at p. When p is in
a nearby uniform or “flat” region, the gradient there is 0. On the other hand, if the
vector q-p aligns with an edge, then the gradient at p on that edge is orthogonal to the
vector q-p. In either case, the dot product between the gradient at p and the vector q-
p is 0. We can assemble many such pairs of the gradient at a nearby point p and the
associated vector q-p, set their dot product to 0, and solve this assemblage as a system
of equations; the solution will yield a more accurate subpixel location for q, the exact
location of the corner.

The function that does subpixel corner finding is cv::cornerSubPix():

void cv::cornerSubPix(
 cv::InputArray image, // Input image
 cv::InputOutputArray corners, // Guesses in, and results out
 cv::Size winSize, // Area is NXN; N=(winSize*2+1)
 cv::Size zeroZone, // Size(-1,-1) to ignore
 cv::TermCriteria criteria // When to stop refinement
);

Keypoints and the Basics of Tracking | 497

3 Later, we will encounter another autocorrelation matrix in the context of the inner workings of Harris cor‐
ners. The two are unrelated, however.

The input image is the original image from which your corners were computed. The
corners array contains the integer pixel locations, such as those obtained from rou‐
tines like cv::goodFeaturesToTrack(), which are taken as the initial guesses for the
corner locations.

As described earlier, the actual computation of the subpixel location uses a system of
dot-product expressions that express the combinations that should sum to zero (see
Figure 16-2). Each of these equations arises from considering a single pixel in the
region around p. The parameter winSize specifies the size of window from which
these equations will be generated. This window is centered on the original integer
corner location and extends outward in each direction by the number of pixels speci‐
fied in winSize (e.g., if winSize.width = 4, then the search area is actually 4 + 1 + 4
= 9 pixels wide). These equations form a linear system that can be solved by the
inversion of a single autocorrelation matrix.3 In practice, this matrix is not always
invertible owing to small eigenvalues arising from the pixels very close to p. To pro‐
tect against this, it is common to simply reject from consideration those pixels in the
immediate neighborhood of p. The parameter zeroZone defines a window (analo‐
gously to winSize, but always with a smaller extent) that will not be considered in the
system of constraining equations and thus the autocorrelation matrix. If no such zero
zone is desired, then this parameter should be set to cv::Size(-1,-1).

Once a new location is found for q, the algorithm will iterate using that value as a
starting point and will continue until the user-specified termination criterion is
reached. Recall that this criterion can be of type cv::TermCriteria::MAX_ITER or of
type cv::TermCriteria::EPS (or both) and is usually constructed with the cv::Term
Criteria() function. Using cv::TermCriteria::EPS will effectively indicate the
accuracy you require of the subpixel values. Thus, if you specify 0.10, then you are
asking for subpixel accuracy down to one-tenth of a pixel.

Introduction to Optical Flow
The optical flow problem involves attempting to figure out where many (and possibly
all) points in one image have moved to in a second image—typically this is done in
sequences of video, for which it is reasonable to assume that most points in the first
frame can be found somewhere in the second. Optical flow can be used for motion
estimation of an object in the scene, or even for ego-motion of the camera relative to
the scene as a whole. In many applications, such as video security, it is motion itself
that indicates that a portion of the scene is of specific interest, or that something
interesting is going on. Optical flow is illustrated in Figure 16-3.

498 | Chapter 16: Keypoints and Descriptors

4 Black and Anandan have created dense optical flow techniques [Black93; Black96] that are often used in
movie production where, for the sake of visual quality, the movie studio is willing to spend the time necessary
to obtain detailed flow information. These techniques are slated for inclusion in later versions of OpenCV
(see Chapter 23).

Figure 16-3. Optical flow: target features (left) are tracked over time and their move‐
ment is converted into velocity vectors (right); original images courtesy of Jean-Yves
Bouguet

The ideal output of an optical flow algorithm would be the association of some esti‐
mate of velocity for each and every pixel in a frame pair or, equivalently, a displace‐
ment vector for every pixel in one image that indicates the relative location of that
pixel in the other image. Such a construction, when it applies to every pixel in the
image, is usually referred to as dense optical flow. There is an alternative class of algo‐
rithms, called sparse optical flow algorithms, that track only some subset of the points
in the image. These algorithms are often fast and reliable because they restrict their
attention to specific points in the image that will be easier to track. OpenCV has
many ways of helping us identify points that are well suited for tracking, with the cor‐
ners introduced earlier being only one among a long list. For many practical applica‐
tions, the computational cost of sparse tracking is so much less than dense tracking
that the latter is relegated to only academic interest.4 In this section, we will look at
one sparse optical flow technique. Later, we will look at more powerful tools for
sparse optical flow, and then finally move on to dense optical flow.

Keypoints and the Basics of Tracking | 499

5 The definitive description of Lucas-Kanade optical flow in a pyramid framework implemented in OpenCV is
an unpublished paper by Bouguet [Bouguet04].

Lucas-Kanade Method for Sparse Optical Flow
The Lucas-Kanade (LK) algorithm [Lucas81], as originally proposed in 1981, was an
attempt to produce dense optical flow (i.e., flow for every pixel). Yet, because the
method is easily applied to a subset of the points in the input image, it has become an
important technique for sparse optical flow. The algorithm can be applied in a sparse
context because it relies only on local information that is derived from some small
window surrounding each point of interest. The disadvantage of using small local
windows in Lucas-Kanade is that large motions can move points outside of the local
window and thus become impossible for the algorithm to find. This problem led to
development of the “pyramidal” LK algorithm, which tracks starting from highest
level of an image pyramid (lowest detail) and working down to lower levels (finer
detail). Tracking over image pyramids allows large motions to be caught by local
windows.5

Because this is an important and effective technique, we will go into some mathemat‐
ical detail; readers who prefer to forgo such details can skip to the function descrip‐
tion and code. However, it is recommended that you at least scan the intervening text
and figures, which describe the assumptions behind Lucas-Kanade optical flow, so
that you’ll have some intuition about what to do if tracking isn’t working well.

How Lucas-Kanade works
The basic idea of the LK algorithm rests on three assumptions:

Brightness constancy
A pixel from the image of an object in the scene does not change in appearance
as it (possibly) moves from frame to frame. For grayscale images (LK can also be
done in color), this means we assume that the brightness of a pixel does not
change as it is tracked from frame to frame.

Temporal persistence, or “small movements”
The image motion of a surface patch changes slowly in time. In practice, this
means the temporal increments are fast enough relative to the scale of motion in
the image that the object does not move much from frame to frame.

Spatial coherence
Neighboring points in a scene belong to the same surface, have similar motion,
and project to nearby points on the image plane.

500 | Chapter 16: Keypoints and Descriptors

We now look at how these assumptions, illustrated in Figure 16-4, lead us to an effec‐
tive tracking algorithm. The first requirement, brightness constancy, is just the
requirement that pixels in one tracked patch look the same over time, defining:

f (x, t) ≡ I (x(t), t) = I (x(t + dt), t + dt)

Figure 16-4. Assumptions behind Lucas-Kanade optical flow: for a patch being tracked
on an object in a scene, the patch’s brightness doesn’t change (left); motion is slow rela‐
tive to the frame rate (center); and neighboring points stay neighbors (right); compo‐
nent images courtesy of Michael Black [Black92]

The requirement that our tracked pixel intensity exhibits no change over time can
simply be expressed as:

∂ f (x)
∂ t = 0

The second assumption, temporal persistence, essentially means that motions are
small from frame to frame. In other words, we can view this change as approximating
a derivative of the intensity with respect to time (i.e., we assert that the change
between one frame and the next in a sequence is differentially small). To understand
the implications of this assumption, first consider the case of a single spatial
dimension.

In this case, we can start with our brightness consistency equation, substitute the def‐
inition of the brightness f(x, t) while taking into account the implicit dependence of x
on t, I(x(t)t), and then apply the chain rule for partial differentiation. This yields:

I x ⋅ v + I t = ∂ I
∂ x |t (∂ x

∂ t) + ∂ I
∂ t |x(t) = 0

where Ix is the spatial derivative across the first image, It is the derivative between
images over time, and v is the velocity we are looking for. We thus arrive at the sim‐
ple equation for optical flow velocity in the simple one-dimensional case:

Keypoints and the Basics of Tracking | 501

v = −
I t
I x

Let’s now try to develop some intuition for this one-dimensional tracking problem.
Consider Figure 16-5, which shows an “edge”—consisting of a high value on the left
and a low value on the right—that is moving to the right along the x-axis. Our goal is
to identify the velocity v at which the edge is moving, as plotted in the upper part of
Figure 16-5. In the lower part of the figure, we can see that our measurement of this
velocity is just “rise over run,” where the rise is over time and the run is the slope
(spatial derivative). The negative sign corrects for the slope of x.

Figure 16-5. Lucas-Kanade optical flow in one dimension: we can estimate the velocity
of the moving edge (upper panel) by measuring the ratio of the derivative of the inten‐
sity over time divided by the derivative of the intensity over space

Figure 16-5 reveals another aspect to our optical flow formulation: our assumptions
are probably not quite true. That is, image brightness is not really stable; and our time
steps (which are set by the camera) are often not as fast relative to the motion as we’d
like. Thus, our solution for the velocity is not exact. However, if we are “close
enough,” then we can iterate to a solution. Iteration is shown in Figure 16-6 where we
use our first (inaccurate) estimate of velocity as the starting point for our next itera‐
tion and then repeat. Note that we can keep the same spatial derivative in x as com‐
puted on the first frame because of the brightness constancy assumption—pixels
moving in x do not change. This reuse of the spatial derivative already calculated
yields significant computational savings. The time derivative must still be recompu‐
ted each iteration and each frame, but if we are close enough to start with, then these

502 | Chapter 16: Keypoints and Descriptors

iterations will converge to near exactitude within about five iterations. This is known
as Newton’s method. If our first estimate was not close enough, then Newton’s
method will actually diverge.

Figure 16-6. Iterating to refine the optical flow solution (Newton’s method): using the
same two images and the same spatial derivative (slope) we solve again for the time
derivative; convergence to a stable solution usually occurs within a few iterations

Now that we’ve seen the one-dimensional solution, let’s generalize it to images in two
dimensions. At first glance, this seems simple: just add in the y-coordinate. Slightly
changing notation, we’ll call the y-component of velocity v and the x-component of
velocity u; then we have:

I xu + I yv + I t = 0

This is often written as a single vector equation:

∇
→

I ⋅ u→ = − I t

where:

Unfortunately, for this single equation there are two unknowns for any given pixel.
This means that measurements at the single-pixel level are underconstrained and
cannot be used to obtain a unique solution for the two-dimensional motion at that
point. Instead, we can solve only for the motion component that is perpendicular or

Keypoints and the Basics of Tracking | 503

“normal” to the line described by our flow equation. Figure 16-7 illustrates the
geometry.

Figure 16-7. Two-dimensional optical flow at a single pixel: optical flow at one pixel is
underdetermined and so can yield at most motion, which is perpendicular (“normal”)
to the line described by the flow equation (figure courtesy of Michael Black)

Normal optical flow results from the aperture problem, which arises when you have a
small aperture or window in which to measure motion. When motion is detected
with a small aperture, you often see only an edge, not a corner. But an edge alone is
insufficient to determine exactly how (i.e., in what direction) the entire object is mov‐
ing; see Figure 16-8.

Figure 16-8. Aperture problem: a) An object is moving to the right and down. (b)
Through a small aperture, we see an edge moving to the right but cannot detect the
downward part of the motion

So then how do we get around this problem that, at one pixel, we cannot resolve the
full motion? We turn to the last optical flow assumption for help. If a local patch of

504 | Chapter 16: Keypoints and Descriptors

6 Of course, the window could be 3 × 3, 7 × 7, or anything you choose. If the window is too large, then you will
end up violating the coherent motion assumption and will not be able to track well. If the window is too
small, you will encounter the aperture problem again.

pixels moves coherently, then we can easily solve for the motion of the central pixel
by using the surrounding pixels to set up a system of equations. For example, if we
use a 5 × 56 window of brightness values (you can simply triple this for color-based
optical flow) around the current pixel to compute its motion, we can then set up 25
equations as follows:

We now have an overconstrained system for which we can solve provided it contains
more than just an edge in that 5 × 5 window. To solve for this system, we set up a
least-squares minimization of the equation, whereby min Ad − b 2 is solved in stan‐
dard form as:

(A T A)2×2 ⋅ d2×1 = (A T b)2×2

From this relation we obtain our u and v motion components. Writing this out in
more detail yields:

The solution to this equation is then:

When can this be solved? When (ATA) is invertible. And (ATA) is invertible when it
has full rank (2), which occurs when it has two large eigenvectors. This will happen in
image regions that include texture running in at least two directions. In this case,
(ATA) will have the best properties when the tracking window is centered over a cor‐
ner region in an image. This ties us back to our earlier discussion of the Harris corner
detector. In fact, those corners were “good features to track” (see our previous

Keypoints and the Basics of Tracking | 505

remarks concerning cv::goodFeaturesToTrack()) for precisely the reason that
(ATA) had two large eigenvectors there! We’ll see shortly how all this computation is
done for us by the cv::calcOpticalFlowPyrLK() function.

The reader who understands the implications of our assuming small and coherent
motions will now be bothered by the fact that, for most video cameras running at 30
Hz, large and noncoherent motions are commonplace. In fact, Lucas-Kanade optical
flow by itself does not work very well for exactly this reason: we want a large window
to catch large motions, but a large window too often breaks the coherent motion
assumption! To circumvent this problem, we can track first over larger spatial scales
using an image pyramid and then refine the initial motion velocity assumptions by
working our way down the levels of the image pyramid until we arrive at the raw
image pixels.

Hence, the recommended technique is first to solve for optical flow at the top layer
and then to use the resulting motion estimates as the starting point for the next layer
down. We continue going down the pyramid in this manner until we reach the lowest
level. Thus we minimize the violations of our motion assumptions and so can track
faster and longer motions. This more elaborate function is known as pyramid Lucas-
Kanade optical flow and is illustrated in Figure 16-9. The OpenCV function that
implements Pyramid Lucas-Kanade optical flow is cv::calcOpticalFlowPyrLK(),
which we examine next.

Figure 16-9. Pyramid Lucas-Kanade optical flow: running optical flow at the top of the
pyramid first mitigates the problems caused by violating our assumptions of small and
coherent motion; the motion estimate from the preceding level is taken as the starting
point for estimating motion at the next layer down

506 | Chapter 16: Keypoints and Descriptors

7 In older versions of the library, only single- or three-channel images could be used. The new implementation
(as of v2.4) can handle images with arbitrary numbers of channels. This enables the use of textural descriptors
or other dense descriptors to pixel tracking (so long as the descriptors can be compared using Euclidean
norm).

Pyramid Lucas-Kanade code: cv::calcOpticalFlowPyrLK()
We come now to OpenCV’s algorithm that computes Lucas-Kanade optical flow in a
pyramid, cv::calcOpticalFlowPyrLK(). As we will see, this optical flow function
makes use of “good features to track” and also returns indications of how well the
tracking of each point is proceeding.

void cv::calcOpticalFlowPyrLK(
 cv::InputArray prevImg, // Prior image (t-1), CV_8UC1
 cv::InputArray nextImg, // Next image (t), CV_8UC1
 cv::InputArray prevPts, // Vector of 2d start points (CV_32F)
 cv::InputOutputArray nextPts, // Results: 2d end points (CV_32F)
 cv::OutputArray status, // For each point, found=1, else=0
 cv::OutputArray err, // Error measure for found points
 cv::Size winSize = Size(15,15), // size of search window
 int maxLevel = 3, // Pyramid layers to add
 cv::TermCriteria criteria = TermCriteria(// How to end search
 cv::TermCriteria::COUNT | cv::TermCriteria::EPS,
 30,
 0.01
),
 int flags = 0, // use guesses, and/or eigenvalues
 double minEigThreshold = 1e-4 // for spatial gradient matrix
);

This function has a lot of inputs, so let’s take a moment to figure out what they all do.
Once we have a handle on this routine, we can move on to the problem of which
points to track and how to compute them. The basic plan is simple, however: you
supply the images, list the points you want to track in prevPts, and call the routine.
When the routine returns, you check the status array to see which points were suc‐
cessfully tracked and then check nextPts to find the new locations of those points.
Now let’s proceed into the details.

The first two arguments of cv::calcOpticalFlowPyrLK(), prevImg and nextImg, are
the initial and final images. Both should be the same size and have the same number
of channels.7 The next two arguments, prevPts and nextPts, are the input list of fea‐
tures from the first image, and the output list to which matched points in the second
image will be written. These can be either N × 2 arrays or vectors of points. The
arrays status and err will be filled with information to tell you how successful the
matching was. In particular, each entry in status will tell whether the corresponding
feature in prevPts was found at all (status[i] will be nonzero if and only if
prevPts[i] was found in nextImg). Similarly, err[i] will indicate an error measure

Keypoints and the Basics of Tracking | 507

8 When we get to the details of the Harris algorithm later in this chapter, the meaning of this flag will become
more clear.

for any point prevPts[i] that was found in nextImg (if point i was not found, then
err[i] is not defined).

The window used for computing the local coherent motion is given by winSize.
Because we are constructing an image pyramid, the argument maxLevel is used to set
the depth of the stack of images. If maxLevel is set to 0, then the pyramids are not
used. The argument criteria is used to tell the algorithm when to quit searching for
matches; recall that cv::TermCriteria is the structure used by many OpenCV algo‐
rithms that iterate to a solution:

struct cv::TermCriteria(

public:
 enum {
 COUNT = 1,
 MAX_ITER = COUNT,
 EPS = 2
 };

 TermCriteria();
 TermCriteria(int _type, int_maxCount, double _epsilon);

 int type, // one of the enum types above
 int max_iter,
 double epsilon
);

The default values will be satisfactory for most situations. As is often the case, how‐
ever, if your image is unusually large, you may want to slightly increase the maximum
allowed number of iterations.

The argument flags can have one or both of the following values:

cv::OPTFLOW_LK_GET_MIN_EIGENVALS

Set this flag for a somewhat more detailed error measure. The default error meas‐
ure for the error output is the average per-pixel change in intensity between the
window around the previous corner and the window around the new corner.
With this flag set to true, that error is replaced with the minimum eigenvalue of
the Harris matrix associated with the corner.8

cv::OPTFLOW_USE_INITIAL_FLOW

Use when the array nextPts already contains an initial guess for the feature’s
coordinates when the routine is called. (If this flag is not set, then the initial
guesses will just be the point locations in prevPts.)

508 | Chapter 16: Keypoints and Descriptors

The final argument, minEigThreshold, is used as a filter for removing points that are,
in fact, not such good choices to track after all. In effect, it is somewhat analogous to
the qualityLevel argument to cv::goodFeaturesToTrack, except its exact method
of computation is different. The default value of 10–4 is a good choice; it can be
increased in order to throw away more points.

A worked example
Putting this all together, we now know how to find features that are good ones to
track, and we know how to track them. We can obtain good results by using the com‐
bination of cv::goodFeaturesToTrack() and cv::calcOpticalFlowPyrLK(). Of
course, you can also use your own criteria to determine which points to track.

Let’s now look at a simple example (Example 16-1) that uses both cv::goodFeatures
ToTrack() and cv::calcOpticalFlowPyrLK(); see also Figure 16-10.

Example 16-1. Pyramid Lucas-Kanade optical flow code

// Pyramid L-K optical flow example
//
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

static const int MAX_CORNERS = 1000;

void help(argv) {
 cout << "Call: " <<argv[0] <<" [image1] [image2]" << endl;
 cout << "Demonstrates Pyramid Lucas-Kanade optical flow." << endl;
}

int main(int argc, char** argv) {

 if(argc != 3) { help(argv); exit(-1); }

 // Initialize, load two images from the file system, and
 // allocate the images and other structures we will need for
 // results.
 //
 cv::Mat imgA = cv::imread(argv[1], cv::LOAD_IMAGE_GRAYSCALE);
 cv::Mat imgB = cv::imread(argv[2], cv::LOAD_IMAGE_GRAYSCALE);
 cv::Size img_sz = imgA.size();
 int win_size = 10;
 cv::Mat imgC = cv::imread argv[2], cv::LOAD_IMAGE_UNCHANGED);

 // The first thing we need to do is get the features
 // we want to track.
 //

Keypoints and the Basics of Tracking | 509

 vector< cv::Point2f > cornersA, cornersB;
 const int MAX_CORNERS = 500;
 cv::goodFeaturesToTrack(
 imgA, // Image to track
 cornersA, // Vector of detected corners (output)
 MAX_CORNERS, // Keep up to this many corners
 0.01, // Quality level (percent of maximum)
 5, // Min distance between corners
 cv::noArray(), // Mask
 3, // Block size
 false, // true: Harris, false: Shi-Tomasi
 0.04 // method specific parameter
);
 cv::cornerSubPix(
 imgA, // Input image
 cornersA, // Vector of corners (input and output)
 cv::Size(win_size, win_size), // Half side length of search window
 cv::Size(-1,-1), // Half side length of dead zone (-1=none)
 cv::TermCriteria(
 cv::TermCriteria::MAX_ITER | cv::TermCriteria::EPS,
 20, // Maximum number of iterations
 0.03 // Minimum change per iteration
)
);

 // Call the Lucas Kanade algorithm
 //
 vector<uchar> features_found;
 cv::calcOpticalFlowPyrLK(
 imgA, // Previous image
 imgB, // Next image
 cornersA, // Previous set of corners (from imgA)
 cornersB, // Next set of corners (from imgB)
 features_found, // Output vector, elements are 1 for tracked
 noArray(), // Output vector, lists errors (optional)
 cv::Size(win_size*2+1, win_size*2+1), // Search window size
 5, // Maximum pyramid level to construct
 cv::TermCriteria(
 cv::TermCriteria::MAX_ITER | cv::TermCriteria::EPS,
 20, // Maximum number of iterations
 0.3 // Minimum change per iteration
)
);

 // Now make some image of what we are looking at:
 // Note that if you want to track cornersB further, i.e.
 // pass them as input to the next calcOpticalFlowPyrLK,
 // you would need to "compress" the vector, i.e., exclude points for which
 // features_found[i] == false.
 for(int i = 0; i < (int)cornersA.size(); i++) {
 if(!features_found[i])
 continue;

510 | Chapter 16: Keypoints and Descriptors

9 In the next chapter, we will talk extensively about tracking (following things from one frame to another) and
about object recognition (finding a thing in an image about which you have some information in a database
of prior experience). A third very important case, which we will not talk about much in these chapters, is
sparse stereo. In sparse stereo, one is interested in locating keypoints in two or more images taken at the same
time from different points of view. Until we get to discussing stereo vision in Chapter 19, the only important
fact you will need to keep in mind is that from the point of view of the library, sparse stereo will use the same
methods and interfaces as tracking; that is, you will have two images in hand and want to find corresponden‐
ces (matches) between the keypoints in each image.

10 In fact, this is the text from the first edition of the very book you are reading.

 line(imgC, cornersA[i], cornersB[i], Scalar(0,255,0), 2, cv::AA);
 }
 cv::imshow("ImageA", imgA);
 cv::imshow("ImageB", imgB);
 cv::imshow("LK Optical Flow Example", imgC);
 cv::waitKey(0);

 return 0;
}

Generalized Keypoints and Descriptors
Two of the essential concepts that we will need to understand tracking, object detec‐
tion, and a number of related topics are keypoints and descriptors. Our first task is to
understand what these two things are and how they differ from one another.

At the highest level of abstraction, a keypoint is a small portion of an image that, for
one reason or another, is unusually distinctive, and which we believe we might be
able to locate in another related image. A descriptor is some mathematical construc‐
tion, typically (but not always) a vector of floating-point values, which somehow
describes an individual keypoint, and which can be used to determine whether—in
some context—two keypoints are “the same.”9

Historically, one of the first important keypoint types was the Harris corner, which
we encountered at the beginning of this chapter. Recall that the basic concept behind
the Harris corner was that any point in an image that seemed to have a strong change
in intensity along two different axes was a good candidate for matching another
related image (for example, an image in a subsequent frame of a video stream).

Take a look at the images in Figure 16-10; the image is of text from a book.10 You can
see that the Harris corners are found at the locations where lines that make up the
individual text characters begin or end, or where there are intersections of lines (such
as the middle of an h or b. You will notice that “corners” do not appear along the
edges of long lines in the characters, only at the end. This is because a feature found
on such an edge looks very much like any other feature found anywhere on that edge.

Generalized Keypoints and Descriptors | 511

11 The exact meaning of rotational invariance is actually that the feature is invariant under rotation. Specifically,
this means that when a rotation operation is applied to the underlying image, the feature descriptor is
unchanged. Such invariances (also called symmetries) are of central importance when you are selecting or
designing feature descriptors. Ideally, this includes not only rotations in the plane of the image, but also (at
least small) three-dimensional rotations of the object that, from the point of view of the imager, will appear as
affine transformations in the image plane.

It stands to reason that if something is not unique in the current image, it will not be
unique in another image, so such pixels do not qualify as good features.

Figure 16-10. Two images containing text, with the Harris corners shown on the right
as white circles; note that in the portion of the image that is slightly out of focus, no
corners are detected at all

To our human eyes, each feature will look somewhat different than any other. The
question of feature descriptors addresses the problem of how to have the computer
make such associations. We mentioned that the three-way intersections that appear
in an h or a b make good “features,” but how would the computer tell the difference
between them? This is what feature descriptors do.

We could construct a feature descriptor any way we would like—for example, we
might make a vector from the intensity values of the 3 × 3 area around the keypoint.
A problem with such a prescription is that the descriptor can have different values if
the keypoint is seen from even a slightly different angle. In general, rotational invari‐
ance11 is a desirable property for a feature descriptor. Of course, whether or not you

512 | Chapter 16: Keypoints and Descriptors

need a rotationally invariant descriptor depends on your application. When detecting
and tracking people, gravity plays a strong role in creating an asymmetric world in
which people’s heads are usually at the top and their feet are usually at the bottom. In
such applications, a descriptor lacking rotational symmetry may not be a problem. In
contrast, aerial imagery of the ground “rotates” when the aircraft travels in a different
direction, and so the imagery may appear in what seems to be a random orientation.

Optical Flow, Tracking, and Recognition
In the previous section, we discussed optical flow in the context of the Lucas Kanade
algorithm. In that case, OpenCV provided us with a single high-level tool that would
take a list of keypoints and try to locate the best matches for those points in a new
frame. These points did not have a lot of structure or identity, just enough to make
them locatable from one frame to the next in two very similar frames. Generalized
keypoints can have associated descriptors that are very powerful and will allow those
points to be matched not only in sequential frames of video, but even in completely
different images. This can allow us to locate known objects in new environments, or
to track an object through complex changing scenery, as well as many other
applications.

The three major categories of tasks for which keypoints (and their descriptors) are
useful are tracking, object recognition, and stereoscopy.

Tracking is the task of following the motion of something as the scene evolves in a
sequential image stream. Tracking comes up in two major subcategories: the first is
tracking objects in a stationary scene, and the other is tracking the scene itself for the
purpose of estimating the motion of the camera. Usually, the term tracking alone
refers to the former, and the latter is referred to as visual odometry. Of course, it is
very common to want to do both of these things at once.

The second task category is object recognition. In this case, one is looking at a scene
and attempting to recognize the presence of one or more known objects. The idea
here is to associate certain keypoint descriptors with each object, with the reasoning
that if you were to see enough keypoints associated with a particular object, you
could reasonably conclude that this object was present in the scene.

Finally, there is stereoscopy. In this case, we are interested in locating corresponding
points in two or more camera views of the same scene or object. Combining these
locations with information about the camera locations and the optical properties of
the cameras themselves, we can compute the location, in three dimensions, of the
individual points we were able to match.

OpenCV provides methods for handling many types of keypoints and many kinds of
keypoint descriptors. It also provides methods for matching them, either between

Generalized Keypoints and Descriptors | 513

pairs of frames (in the manner of sparse optical flow, tracking and visual odometry,
or stereoscopy) or between a frame and a database of images (for object recognition).

How OpenCV Handles Keypoints and Descriptors, the General Case
When you are doing tracking, as well as many other kinds of analysis for which key‐
points and their descriptors are useful, there are typically three things you would like
to do. The first is to search an image and find all of the keypoints that are in that
image, according to some keypoint definition. The second is to create a descriptor for
every keypoint you found. The third is to compare those keypoints you found, by
means of their descriptors, to some existing set of descriptors, and see whether you
can find any matches. In tracking applications, this last step involves looking for fea‐
tures in one frame of a sequence and trying to match those with features in the previ‐
ous frame. In object-detection applications, one is often searching for features in
some (potentially vast) database of “known” features that are “known” to be associ‐
ated with either individual objects or object classes.

For each of these layers, OpenCV provides a generalized mechanism that follows the
“classes that do stuff” (functor) model. Thus, for each of these stages, there is an
abstract base class that defines a common interface for a family of objects that are
derived from it; each derived class implements a particular algorithm.

The cv::KeyPoint object
Of course, if we are going to find keypoints, we will need some way to represent
them. Recall that the keypoint is not the feature descriptor, so most of what we need
to know when we have a keypoint is where it is located. After that, there are some
secondary features that some keypoints have and some do not. Here is the actual defi‐
nition of the cv::KeyPoint class:

class cv::KeyPoint {

public:

 cv::Point2f pt; // coordinates of the keypoint
 float size; // diameter of the meaningful keypoint neighborhood
 float angle; // computed orientation of the keypoint (-1 if none)
 float response; // response for which the keypoints was selected
 int octave; // octave (pyramid layer) keypoint was extracted from
 int class_id; // object id, can be used to cluster keypoints by object

 cv::KeyPoint(
 cv::Point2f _pt,
 float _size,
 float _angle=-1,
 float _response=0,
 int _octave=0,
 int _class_id=-1

514 | Chapter 16: Keypoints and Descriptors

12 For experts, this is a little subtler of a point than it might at first appear. Most, if not all, keypoints are actually
extended objects with some number of pixels that contribute to them. For each keypoint type, however, there
is a “center” that is defined in terms of that neighborhood (or, perhaps more accurately, the neighborhood is
defined in terms of that center). In this sense the center of a keypoint is similar to the anchor point of a filter
or morphological operator.

);
 cv::KeyPoint(
 float x,
 float y,
 float _size,
 float _angle=-1,
 float _response=0,
 int _octave=0,
 int _class_id=-1
);
...
};

As you can see, every keypoint has a cv::Point2f member that just tells us where it is
located.12 The concept of size tells us something about the region around the key‐
point that either was somehow included in the determination that the keypoint exis‐
ted in the first place, or is going to play a role in that keypoint’s descriptor. The angle
of a keypoint is meaningful only for some keypoints. Many keypoints achieve rota‐
tional symmetry not by actually being invariant in the strictest sense, but by having
some kind of natural orientation that you can take into account when comparing two
descriptors. (This is not a complicated idea; if you were looking at two images of pen‐
cils, rotation obviously matters, but if you wanted to compare them, you could easily
visualize them both in the same orientation before making the comparison.)

The response is used for detectors that can respond “more strongly” to one keypoint
than another. In some cases, this can be interpreted as a probability that the feature is
in fact present. The octave is used when the keypoint was found in an image pyra‐
mid. In these cases, it is important to know which scale a keypoint was found at
because, in most cases, we would expect to find matches at the same or similar scale
in new images. Finally, there is the class ID. You use class_id when constructing
keypoint databases to distinguish the keypoints that are associated with one object
from those that are associated with another (we will return to this point when we dis‐
cuss the keypoint matching interface in the section “The (abstract) keypoint match‐
ing class: cv::DescriptorMatcher” on page 520).

The cv::KeyPoint object has two constructors, which are essentially the same; their
only difference is that you can set the location of the keypoint either with two
floating-point numbers or with a single cv::Point2f object. In fact, though, unless
you are writing your own keypoint finder, you will not tend to use these functions. If
you are using the detection, descriptor construction, and comparison functions avail‐

Generalized Keypoints and Descriptors | 515

able to you from the library, you will typically never even look inside the keypoint
objects.

The (abstract) class that finds keypoints and/or computes descriptors for them: cv::Feature2D
For finding keypoints or computing descriptors (or performing both these tasks
simultaneously), OpenCV provides the cv::Feature2D class. There are classes called
cv::FeatureDetector and cv::DescriptorExtractor that used to be separate
classes for pure feature detection or descriptor extraction algorithms, but since
OpenCV 3.x they are all synonyms of cv::Feature2D. This abstract class has just a
few methods, described next. Derived classes add some more methods to set and
retrieve various properties, as well as static methods that construct the algorithm
instance and return a smart pointer to it. There are two methods for actually asking
the cv::Feature2D class to detect keypoints, functions that allow you to save and
restore from disk, and a handy (static) function that allows you to create a feature
detector–derived class by providing the name of the detector type (as a string). The
two provided detection methods (as well as the two provided “compute” methods)
differ only in that one operates on a single image, while the other operates on a set of
images. There is some amount of efficiency to be gained by operating on many
images at once (this is more true for some detectors than for others). Here is the rele‐
vant excerpt from the class description of cv::Feature2D:

class cv::Feature2D : public cv::Algorithm {

public:

 virtual void detect(
 cv::InputArray image, // Image on which to detect
 vector< cv::KeyPoint >& keypoints, // Array of found keypoints
 cv::InputArray mask = cv::noArray()
) const;

 virtual void detect(
 cv::InputArrayOfArrays images, // Images on which to detect
 vector<vector< cv::KeyPoint > >& keypoints, // keypoints for each image
 cv::InputArrayOfArrays masks = cv::noArray ()
) const;

 virtual void compute(
 cv::InputArray image, // Image where keypoints are located
 std::vector<cv::KeyPoint>& keypoints, // input/output vector of keypoints
 cv::OutputArray descriptors); // computed descriptors, M x N matrix,
 // where M is the number of keypoints
 // and N is the descriptor size
 virtual void compute(
 cv::InputArrayOfArrays image, // Images where keypoints are located
 std::vector<std::vector<cv::KeyPoint> >& keypoints, //I/O vec of keypnts
 cv::OutputArrayOfArrays descriptors); // computed descriptors,

516 | Chapter 16: Keypoints and Descriptors

 // vector of (Mi x N) matrices, where
 // Mi is the number of keypoints in
 // the i-th image and N is the
 // descriptor size
 virtual void detectAndCompute(
 cv::InputArray image, // Image on which to detect
 cv::InputArray mask, // Optional region of interest mask
 std::vector<cv::KeyPoint>& keypoints, // found or provided keypoints
 cv::OutputArray descriptors, // computed descriptors
 bool useProvidedKeypoints=false); // if true,
 // the provided keypoints are used,
 // otherwise they are detected

 virtual int descriptorSize() const; // size of each descriptor in elements
 virtual int descriptorType() const; // type of descriptor elements
 virtual int defaultNorm() const; // the recommended norm to be used
 // for comparing descriptors.
 // Usually, it's NORM_HAMMING for
 // binary descriptors and NORM_L2
 // for all others.

 virtual void read(const cv::FileNode&);
 virtual void write(cv::FileStorage&) const;

 ...
};

The actual implementation may implement just cv::Feature2D::detect(), if it’s a
pure keypoint detection algorithm (like FAST); just cv::Feature2D::compute(), if
it’s a pure feature description algorithm (like FREAK); or cv::Feature2D::detec
tAndCompute() in the case of “complete solution” algorithm, like SIFT, SURF, ORB,
BRISK, and so on, in which case detect() and compute() will call it implicitly:

• detect(image, keypoints, mask) ~ detectAndCompute(image, mask, key

points, noArray(), false)

• compute(image, keypoints, descriptors) ~ detectAndCompute(image,

noArray(), keypoints, descriptors, true)

cv::Feature2D::detect() methods are the ones that do the basic work of finding
keypoints for you—directly or through a call to detectAndCompute(). The first takes
an image, a vector of keypoints, and an optional mask. It then searches the image (or
the portion corresponding to the mask, if you provided one) for keypoints, and
places whatever it finds in the vector you provided. The second variant does exactly
the same thing, except that it expects a vector of images, a vector of masks (or none at
all), and a vector of vectors of keypoints. The number of images, the number of
masks (if not zero), and the number of keypoint vectors must all be equal. Then every

Generalized Keypoints and Descriptors | 517

image will be searched, and the corresponding keypoint vector in keypoints will be
filled with the found keypoints.

The actual method used to find the keypoints is, of course, different for each of the
many available derived classes from cv::Feature2D. We will get to the details of
these shortly. In the meantime, it is important to keep in mind that the actual key‐
points detected may be different (if and how some of the internal parameters are
used) from one detector to another. This will mean that keypoints detected by one
method may not be universally usable by every kind of feature descriptor.

Once you have found your keypoints, the next thing to do is to compute descriptors
for them. As was mentioned earlier, these descriptors will allow you to compare key‐
points to one another (based on their appearance, as opposed to by their location).
This capability can then serve as the basis for tracking or object recognition.

The descriptors are computed by the compute() methods (that may also use detect
AndCompute()). The first compute() method requires an image, a list of keypoints
(presumably produced by the detect() method of the same class, but possibly a dif‐
ferent one), and the output cv::Mat (passed as cv::OutputArray) that is used by com
pute() as a place to put the computed features. All descriptors generated by objects
derived from cv::Feature2D are representable as vectors of fixed length. As a result,
it’s possible to arrange them all into an array. The convention used is that each row of
descriptors is a separate descriptor, and the number of such rows is equal to the
number of elements in keypoints.

The second compute() method is used when you have several images you would like
to process at once. In this case the images argument expects an STL vector containing
all the images you would like to process. The keypoints argument expects a vector
containing vectors of keypoints, and the descriptors argument expects a vector con‐
taining arrays that can be used to store all of the resulting descriptors. This method is
a companion to the multiple-image detect() method and expects the images as you
would have given them to that detect() method, and the keypoints as you would
have received them from that method.

Depending on when the algorithm was implemented, many of the keypoint feature
detectors and extractors are bundled together into a single object. In this case the
method cv::Feature2D::detectAndCompute() is implemented. Whenever a certain
algorithm provides detectAndCompute(), it’s strongly recommended to use it instead
of subsequent calls to detect() and then to compute(). The obvious reason for that is
a better performance: normally such algorithms require special image representation
(called a scale-space representation), and it may be quite expensive to compute. When
you find keypoints and compute descriptors in two separate steps, the scale-space
representation is basically computed twice.

518 | Chapter 16: Keypoints and Descriptors

13 In the case of binary descriptor (we will encounter these later in the chapter), this method returns the number
of bytes in the descriptor—not the number of bits. Generally, descriptorSize() returns the number of col‐
umns in the descriptor matrix that cv::DescriptorExtractor::compute() would return.

14 In all currently implemented cases, the descriptor type is single channel. The convention is to always “flatten”
any channel-like elements of the descriptors into the descriptor’s overall length. As a result a descriptor might
be, for example, 10-dimensional for a grayscale image or 30-dimensional for a color image, but would never
be a 10-dimensional array of three channel objects.

In addition to the main compute methods, there are the methods descriptorSize(),
descriptorType(), and defaultNorm(). The first of these, descriptorSize(), tells
us the length of the vector representation of the descriptor,13 The descriptorType()
method returns information about the specific type of the elements of the vector
descriptor (e.g., CV_32FC1 for 32-bit floating-point numbers, CV_8UC1 for 8-bit
descriptors or binary descriptors, etc.).14 The defaultNorm() basically tells you how
to compare the descriptors. In the case of binary descriptors, it’s NORM_HAMMING, and
you would rather use it. In the case of descriptors like SIFT or SURF, it’s NORM_L2
(e.g., Euclidean distance), but you can obtain equally good or even better results by
using NORM_L1.

The cv::DMatch object
Before we get deep into the topic of how matchers work, we need to know how
matches are expressed. In general, a matcher will be an object that tries to match key‐
points in one image with either a single other image or a collection of other images
called a dictionary. When matches are found, OpenCV describes them by generating
lists (STL vectors) of cv::DMatch objects. Here is the class definition for the
cv::DMatch object:

class cv::DMatch {

public:

 DMatch(); // sets this->distance
 // to std::numeric_limits<float>::max()

 DMatch(int _queryIdx, int _trainIdx, float _distance);
 DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance);

 int queryIdx; // query descriptor index
 int trainIdx; // train descriptor index
 int imgIdx; // train image index
 float distance;

 bool operator<(const DMatch &m) const; // Comparison operator
 // based on 'distance'

Generalized Keypoints and Descriptors | 519

15 This is a somewhat awkward piece of terminology, and is a bit confusing, as the word train is also used to
refer to the process of digesting all of the images in the object recognition case into a dictionary that can sub‐
sequently be queried. We will use this terminology because it is what is used in the library, but where possible
we will always say “training image” to make clear that this noun is distinct from the verb train.

}

The data members of cv::DMatch are queryIdx, trainIdx, imgIdx, and distance.
The first two identify the keypoints that were matched relative to the keypoint lists in
each image. The convention used by the library is to always refer to these two images
as the query image (the “new” image) and the training image (the “old” image),
respectively.15 imgIdx is used to identify the particular image from which the training
image came in such cases that a match was sought between an image and a dictio‐
nary. The last member, distance, is used to indicate the quality of the match. In
many cases, this is something like a Euclidean distance between the two keypoints in
the many-dimensional vector space in which they live. Though this is not always the
metric, it is guaranteed that if two different matches have different distance values,
the one with the lower distance is the better match. To facilitate such comparisons
(particularly for the purpose of sorting), the operator cv::DMatch::operator<() is
defined, which allows two cv::DMatch objects to be compared directly with the
meaning that it is their distance members that are actually compared.

The (abstract) keypoint matching class: cv::DescriptorMatcher
The third stage in the process of detect-describe-match is also implemented through
a family of objects that are all derived from a common abstract base class whose
interface they all share. This third layer is based on the cv::DescriptorMatcher class.

Before we get deep into how the interface works, it is important to understand that
there are two basic situations in which you would want to use a matcher: object rec‐
ognition and tracking, as described earlier in the chapter. In the object recognition
case, one first compiles keypoints associated with a variety of objects into a kind of
database called a dictionary. Thereafter, when a new scene is presented, the keypoints
in that image are extracted and compared to the dictionary to estimate what objects
from the dictionary might be present in the new scene. In the tracking case, the goal
is to find all the keypoints in some image, typically from a video stream, and then to
look for all of those keypoints in another image, typically the prior or next image in
that video stream.

Because there are these two different situations, the matching methods in the class
have two corresponding variations. For the object recognition case, we need to first
train the matcher with a dictionary of descriptors, and then be able to present a single
descriptor list to the matcher and have it tell us which (if any) keypoints that the

520 | Chapter 16: Keypoints and Descriptors

matcher has stored are matches with the ones in the list we provided. For the tracking
case, we would like to provide two lists of descriptors and have the matcher tell us
where the matches are between them. The cv:DescriptorMatcher class interface
provides three functions, match(), knnMatch(), and radiusMatch(); and for each,
there are two different prototypes—one for recognition (takes one list of features and
uses the trained dictionary) and another for tracking (takes two lists of features).

Here is the part of the class definition relevant to us for the generic descriptor
matcher base class:

class cv::DescriptorMatcher {

public:

 virtual void add(InputArrayOfArrays descriptors); // Add train descriptors
 virtual void clear(); // Clear train descriptors
 virtual bool empty() const; // true if no descriptors
 void train(); // Train matcher
 virtual bool isMaskSupported() const = 0; // true if supports masks
 const vector<cv::Mat>& getTrainDescriptors() const; // Get train descriptors

 // methods to match descriptors from one list vs. "trained" set (recognition)
 //
 void match(
 InputArray queryDescriptors,
 vector<cv::DMatch>& matches,
 InputArrayOfArrays masks = noArray ()
);
 void knnMatch(
 InputArray queryDescriptors,
 vector< vector<cv::DMatch> >& matches,
 int k,
 InputArrayOfArrays masks = noArray (),
 bool compactResult = false
);
 void radiusMatch(
 InputArray queryDescriptors,
 vector< vector<cv::DMatch> >& matches,
 float maxDistance,
 InputArrayOfArrays masks = noArray (),
 bool compactResult = false
);

 // methods to match descriptors from two lists (tracking)
 //
 // Find one best match for each query descriptor
 void match(
 InputArray queryDescriptors,
 InputArray trainDescriptors,
 vector<cv::DMatch>& matches,
 InputArray mask = noArray ()

Generalized Keypoints and Descriptors | 521

) const;
 // Find k best matches for each query descriptor (in increasing
 // order of distances)
 void knnMatch(
 InputArray queryDescriptors,
 InputArray trainDescriptors,
 vector< vector<cv::DMatch> >& matches,
 int k,
 InputArray mask = noArray(),
 bool compactResult = false
) const;
 // Find best matches for each query descriptor with distance less
 // than maxDistance
 void radiusMatch(
 InputArray queryDescriptors,
 InputArray trainDescriptors,
 vector< vector<cv::DMatch> >& matches,
 float maxDistance,
 InputArray mask = noArray (),
 bool compactResult = false
) const;

 virtual void read(const FileNode&); // Reads matcher from a file node
 virtual void write(FileStorage&) const; // Writes matcher to a file storage

 virtual cv::Ptr<cv::DescriptorMatcher> clone(
 bool emptyTrainData=false
) const = 0;
 static cv::Ptr<cv::DescriptorMatcher> create(
 const string& descriptorMatcherType
);
...
};

The first set of methods is used to match an image against prestored set of descrip‐
tors, one array per image. The purpose is to build up a keypoint dictionary that can be
referenced when novel keypoints are provided. The first method is the add()
method, which expects an STL vector of sets of descriptors, each of which is in the
form of a cv::Mat object. Each cv::Mat object should have N rows and D columns,
where N is the number of descriptors in the set, and D is the dimensionality of each
descriptor (i.e., each “row” is a separate descriptor of dimension D). The reason that
add() accepts an array of arrays (which is usually represented as std::vec
tor<cv::Mat>) is that in practice, one often computes a set of descriptors from each

522 | Chapter 16: Keypoints and Descriptors

16 Typically, these images contain individual objects that one hopes to be able to find by means of the appear‐
ance of their keypoints in subsequent images. For this reason, the keypoints provided as part of the keypoints
argument should have their class_id fields set such that, for each object to be recognized, the class_id for
the associated keypoints is distinct.

image in a set of images.16 That set of images was probably presented to a
cv::Feature2D-based class as a vector of images, and returned as a vector of sets of
keypoint descriptors.

Once you have added some number of keypoint descriptor sets, if you would like to
access them, you may do so with the (constant) methods getTrainDescriptors(),
which will return the descriptors to you in the same way you first provided them (i.e.,
as a vector of descriptor sets, each of type cv::Mat, with each row of each cv::Mat
being a single descriptor). If you would like to clear the added descriptors, you may
do so with the clear() method, and if you would like to test whether a matcher has
descriptors stored in it, you may do so with the empty() method.

Once you have loaded all of the keypoint descriptors you would like to load, you may
need to call train(). Only some implementations require the train() operation (i.e.,
some classes derived from cv::DescriptorMatcher). This method’s purpose is to tell
the matcher that you are done loading images, and that it can proceed to precompute
any internal information that it will need in order to perform matches on the pro‐
vided keypoints. By way of example, if a matcher performs matches using only the
Euclidean distance between a provided new keypoint and those in the existing dictio‐
nary, it would be prudent to construct a quad-tree or similar data structure to greatly
accelerate the task of finding the closest dictionary keypoint to the provided keypoint.
Such data structures can require substantial effort to compute, and are computed
only once after all of the dictionary keypoints are loaded. The train() method tells
the matcher to take the time to compute these sorts of adjunct internal data struc‐
tures. Typically, if a train() method is provided, you must call it before calling any
matching method that uses the internal dictionary.

The next set of methods is the set of matching methods used in object recognition.
They each take a list of descriptors, called a query list, which they compare with the
descriptors in the trained dictionary. Within this set, there are three methods:
match(), knnMatch(), and radiusMatch(). Each of these methods computes matches
in a slightly different way.

The match() method expects a single list of keypoint descriptors, queryDescriptors,
in the usual cv::Mat form. In this case, recall that each row represents a single
descriptor, and each column is one dimension of that descriptor’s vector representa‐
tion. match() also expects an STL vector of cv::DMatch objects that it can fill with the

Generalized Keypoints and Descriptors | 523

17 Recall that this typically means “one of the objects in your dictionary.”

18 The order is always starting with the best and working down to the kth-best (i.e., j ∈ 0, k − 1).

19 It should be noted, however, that the term distance here is defined by the metric used by a particular matcher,
and may or may not be the standard Euclidean distance between the vector representations of the descriptors.

individual detected matches. In the case of the match() method, each keypoint on the
query list will be matched to the “best match” from the train list.

The match() method also supports an optional mask argument. Unlike most mask
arguments in OpenCV, this mask does not operate in the space of pixels, but rather
in the space of descriptors. The type of mask, however, should still be CV_8U. The
mask argument is an STL-vector of cv::Mat objects. Each entire matrix in that vector
corresponds to one of the training images in the dictionary.17 Each row in a particular
mask corresponds to a row in queryDescriptors (i.e., one descriptor). Each column
in the mask corresponds to one descriptor associated with the dictionary image.
Thus, masks[k].at<uchar>(i,j) should be nonzero if descriptor j from image
(object) k should be compared with descriptor i from the query image.

The next method is the knnMatch() function, which expects the same list descriptors
as match(). In this case, however, for each descriptor in the query list, it will find a
specific number of best matches from the dictionary. That number is given by the k
integer argument. (The “knn” in the function name stands for k-nearest neighbors.)
The vector of cv::DMatch objects from match() is replaced by a vector of vectors of
cv::DMatch objects called matches in the knnMatch() method. Each element of the
top-level vector (e.g., matches[i]) is associated with one descriptor from queryDe
scriptors. For each such element, the next-level element (e.g., matches[i][j]) is the
jth best match from the descriptors in trainDescriptors.18 The mask argument to
knnMatch() has the same meaning as for match(). The final argument for
knnMatch() is the Boolean compactResult. If compactResult is set to the default
value of false, the matches vector of vectors will contain one vector entry for every
entry in queryDescriptors—even those entries that have no matches (for which the
corresponding vector of cv::DMatch objects is empty). If, however, compactResult is
set to true, then such noninformative entries will simply be removed from matches.

The third matching method is radiusMatch(). Unlike k-nearest neighbor matching,
which searches for the k best matches, radius matching returns all of the matches
within a particular distance of the query descriptor.19 Other than the substitution of
the integer k for the maximum distance maxDistance, the arguments and their mean‐
ings for radiusMatch() are the same as those for knnMatch().

524 | Chapter 16: Keypoints and Descriptors

20 Note that even though this second list is called the “train” list, it is not the list “trained” into the matcher with
the add() method; rather, it is being used in place of the internal “trained” list.

Don’t forget that in the case of matching, “best” is determined by
the individually derived class that implements the cv::Descriptor
Matcher interface, so the exact meaning of “best” may vary from
matcher to matcher. Also, keep in mind that there is typically no
“optimal assignment” being done, so one descriptor on the query
list could match several on the train list, or vice versa.

The next three methods—the alternate forms of match(), knnMatch(), and radius
Match()—support two lists of descriptors. These are typically used for tracking. Each
of these has the same inputs as their aforementioned counterparts, with the addition
of the trainDescriptors argument. These methods ignore any descriptors in the
internal dictionary, and instead compare the descriptors in the queryDescriptors list
only with the provided trainDescriptors.20

After these six matching methods, there are some methods that you will need for
general handling of matcher objects. The read() and write() methods require a
cv::FileNode and cv::FileStorage object, respectively, and allow you to read and
write a matcher from or to disk. This is particularly important when you are dealing
with recognition problems in which you have “trained” the matcher by loading infor‐
mation in from what might be a very large database of files. This saves you from
needing to keep the actual images around and reconstruct the keypoints and their
descriptors from every image every time you run your code.

Finally, the clone() and create() methods allow you to make a copy of a descriptor
or create a new one by name, respectively. The first method, clone(), takes a single
Boolean, emptyTrainData, which, if true, will create a copy with the same parameter
values (for any parameters accepted by the particular matcher implementation) but
without copying the internal dictionary. Setting emptyTrainData to false is essen‐
tially a deep copy, which copies the dictionary in addition to the parameters. The
create() method is a static method, which will accept a single string from which a
particular derived class can be constructed. The currently available values for the
descriptorMatcherType argument to create() are given in Table 16-1. (The mean‐
ing of the individual cases will be described in the next section.)

Generalized Keypoints and Descriptors | 525

Table 16-1. Available options for descriptorMatcherType argument to
cv::DescriptorMatcher::create() method

descriptorMatcherType string Matcher type
"FlannBased" FLANN (Fast Library for Approximate Nearest Neighbors) method; L2

norm will be used by default
"BruteForce" Element-wise direct comparison using L2 norm
"BruteForce-SL2" Element-wise direct comparison using squared L2 norm
"BruteForce-L1" Element-wise direct comparison using L1 norm
"BruteForce-Hamming" Element-wise direct comparison using Hamming distancea

"BruteForce-Hamming(2)" Element-wise direct comparison using Multilevel Hamming distance
(two levels)

a All the Hamming distance methods can be applied only to binary descriptors that are encoded with the CV_8UC1 type (i.e.,
eight components of the descriptor per each descriptor byte).

Core Keypoint Detection Methods
In the last 10 years, there has been tremendous progress in tracking and image recog‐
nition. Within this space, one very important theme has been the development of
keypoints that, as you now know, are small fragments of an image that contain the
highest density of information about the image and its contents. One of the most
important features of the keypoint concept is that it allows an image to be “digested”
into a finite number of essential elements, even as the resolution of the image
becomes very high. In this sense, keypoints offer a way to get from an image in a
potentially very high dimensionality pixel representation into a more compact repre‐
sentation whose quality increases with image size, but whose actual size does not. It is
thought that the human visual cortex “chunks” individual retinal responses (essen‐
tially pixels) up into higher-level blocks of information, at least some of which are
analogous to the kind of information contained in a keypoint.

Early work that focused on concepts like corner detection (which we saw earlier) gave
way to increasingly sophisticated keypoints with increasingly expressive descriptors
(the latter we will visit in the next section), which exhibit a variety of desirable char‐
acteristics—such as rotational or scale invariance, or invariance to small affine trans‐
formations—that were not present in the earlier keypoint detectors.

The current state of the art, however, is that there is a large number of keypoint-
detection algorithms (and keypoint descriptors), none of which is “clearly better”
than the others. As a result, the approach of the OpenCV library has been to provide
a common interface to all of the detectors, with the hope of encouraging and facilitat‐
ing experimentation and exploration of their relative merits within your individual
context. Some are fast, and some are comparatively quite slow. Some find features for
which very rich descriptors can be extracted, and some do not. Some exhibit one or

526 | Chapter 16: Keypoints and Descriptors

21 These features were once associated with the name “Good Features To Track” (i.e., cvGoodFeaturesTo
Track()) in older versions of the library. This is why the associated detector is now called cv::GFTTDetector,
rather than something potentially more intuitive like cv::HarrisCornerDetector.

more useful invariance properties, of which some might be quite necessary in your
application, and some might actually work against you.

In this section, we will look at each keypoint detector in turn, discussing its relative
merits and delving into the actual science of each detector, at least deeply enough that
you will get a feel for what each one is for and what it offers that may be different
than the others. As we have learned, for each descriptor type, there will be a detector
that locates the keypoints and a descriptor extractor. We will cover each of these as
we discuss each detection algorithm.

In general, it is not absolutely necessary to use the feature extractor
that is historically associated with a particular keypoint detector. In
most cases, it is meaningful to find keypoints using any detector
and then proceed to characterize those keypoints with any feature
extractor. In practice, however, these two layers are usually devel‐
oped and published together, and so the OpenCV library uses this
pattern as well.

The Harris-Shi-Tomasi feature detector and cv::GoodFeaturesToTrackDetector
The most commonly used definition of a corner was provided by Harris [Harris88],
though others proposed similar definitions even earlier. Such corners, known as Har‐
ris corners, can be thought of as the prototypical keypoint.21 Figure 16-11 shows the
Harris corners on a pair of images that we will continue to use for other keypoints in
this section (for convenient visual comparison). Their definition relies on a notion of
autocorrelation between the pixels in a small neighborhood. In plain terms, this
means “if the image is shifted a small amount (Δx, Δy), how similar is it to its original
self?”

Generalized Keypoints and Descriptors | 527

22 That is, a first-order Taylor approximation.

Figure 16-11. Two images of the same vehicle; in each image are the 1,000 strongest
Harris-Shi-Tomasi corners. Notice that, in the image on the right, the corners in the
background are stronger than those on the car, and so most of the corners in that image
originate from there

Harris began with the following autocorrelation function, for image intensity pixels
I(x, y):

c(x, y, Δx, Δy) = ∑
(i, j)∈W (x,y)

wi , j(I (i, j) − I (i + Δx, j + Δy))2

This is just a weighted sum over a small window around a point (x,y) of the squared
difference between the image at some point (i,j) in the window and some other point
displaced by (Δx, Δy). (The weighting factor wi, j is a Gaussian weighting that makes
the differences near the center of the window contribute more strongly than those
farther away from the center.)

What follows in Harris’s derivation is a small amount of algebra, and the approxima‐
tion that because Δx and Δy are assumed to be small, the term I(i + Δx, j + Δy) can be
estimated by I(i, j) + Ix (i, j)Δx + Iy (i, j)Δy) (here Ix and Iy are the first-order partial
derivatives of I(x,y) in x and y, respectively).22 The result is the re-expression of the
autocorrelation in the form:

528 | Chapter 16: Keypoints and Descriptors

23 If there had been only one large eigenvalue, then this point would be something like an edge, in that motion
along the edge would not seem to change the image, while motion perpendicular to the edge would change
the image. If there were no large eigenvalues at all, this would have meant that you could displace the little
window in any direction and nothing would happen at all; in other words, the image intensity is constant
here.

Where M(x, y) is the symmetric autocorrelation matrix defined by:

Corners, by Harris’s definition, are places in the image where the autocorrelation
matrix has two large eigenvalues. In essence, this means that moving a small distance
in any direction will change the image.23 This way of looking at things has the advan‐
tage that, when we consider only the eigenvalues of the autocorrelation matrix, we
are considering quantities that are invariant also to rotation, which is important
because objects that we are tracking might rotate as well as translate.

In this case these two eigenvalues of the Harris corner do more
than determine whether a point is a good feature to track (i.e., a
keypoint); they also provide an identifying signature for the point
(i.e., a keypoint descriptor). It is a common, though by no means
universal, feature of keypoints that they are intimately tied to their
descriptors in this way. In many cases, the keypoint is, in essence,
any point for which the associated descriptor (in this case the two
eigenvalues of M(x, y)) meets some threshold criteria. At the same
time, it is also noteworthy that Harris’s original threshold criterion
was not the same as that later proposed by Shi and Tomasi; the lat‐
ter turns out to be superior for most tracking applications.

Harris’s original definition involved taking the determinant of M(x, y) and subtract‐
ing its squared trace (with some weighting coefficient):

H = det(M) − κtrace2(M) = λ1λ2 − κ(λ1 + λ2)2

One then found the “corners” (what we now call keypoints) by searching for local
maxima of this function (and often also comparing this function to a predetermined
threshold). This function H, known as the Harris measure, effectively compares the

Generalized Keypoints and Descriptors | 529

24 Making this number smaller increases the sensitivity of the algorithm, so the value of 0.04 is on the more
sensitive side.

eigenvalues of M (which we refer to as λ1 and λ2 in our definition of H) without
requiring their explicit computation. This comparison implicitly contains the param‐
eter κ, termed the sensitivity, which can be set meaningfully to any value between 0
and 0.24, but is typically set to about 0.04.24 Figure 16-12 shows an image in which
the regions around some individual keypoint candidates are shown enlarged.

Figure 16-12. In a classic image (a), keypoints found by the Shi-Tomasi method are
shown as black dots. Below that are three images that are enlargements of a small sub‐
section of the original. On the left (b) are shown (as Xs) points that are not keypoints.
These points have small eigenvalues in both dimensions. In the center (c) are shown (as
Xs) points that are also not keypoints; these are edges, and have one small eigenvalue
and one large eigenvalue associated with them. On the right (d) are actual found key‐
points; for these points, both eigenvalues are large. The ovals visualize the inverse of
these eigenvalues

It was later found by Shi and Tomasi [Shi94] that good corners resulted as long as the
smaller of the two eigenvalues was greater than a minimum threshold. Shi and Tom‐
asi’s method was not only sufficient, but in many cases gave more satisfactory results
than Harris’s method. The OpenCV implementation of cv::GFTTDetector, as a
default, uses Shi and Tomasi’s measure, but other keypoint detectors we will discuss
later often use either Harris’s original measure or a variation of it.

530 | Chapter 16: Keypoints and Descriptors

25 Because the method of returning keypoints by the detect() method is to fill an STL vector of cv::KeyPoint
objects, there is no real upper bound on how many keypoints you could ask for. In practice, however, it is
often useful to limit the number of keypoints for the purpose of computational efficiency, or to bound com‐
putation time in downstream processing (particularly in real-time applications). In any case, the returned
corners will be “best” corners found, in terms of the magnitude of the smaller eigenvalue of the autocorrela‐
tion matrix M(x, y).

Keypoint finder. The Harris-Shi-Tomasi corner detector is also the simplest imple‐
mentation of the cv::Feature2D (the detector part) interface:

class cv::GFTTDetector : public cv::Feature2D {
public:
 static Ptr<GFTTDetector> create(
 int maxCorners = 1000, // Keep this many corners
 double qualityLevel = 0.01, // fraction of largest eigenvalue
 double minDistance = 1, // Discard corners if this close
 int blockSize = 3, // Neighborhood used
 bool useHarrisDetector = false, // If false, use Shi Tomasi
 double k = 0.04 // Used for Harris metric
);
...
};

The constructor for cv::GFTTDetector takes arguments that set all of the basic run‐
time parameters for the algorithm. The maxCorners parameter indicates the maxi‐
mum number of points that you would like returned.25 The parameter qualityLevel
indicates the minimal acceptable lower eigenvalue for a point to be included as a cor‐
ner. The actual minimal eigenvalue used for the cutoff is the product of the quality
Level and the largest lower eigenvalue observed in the image. Hence, the
qualityLevel should not exceed 1 (a typical value might be 0.10 or 0.01). Once
these candidates are selected, a further culling is applied so that multiple points
within a small region need not be included in the response. In particular, the minDi
stance guarantees that no two returned points are within the indicated number of
pixels.

The blockSize is the region around a given pixel that is considered when you are
computing the autocorrelation matrix of derivatives. It turns out that in almost all
cases you will get superior results if you sum these derivatives over a small window
than if you simply compute their value at only a single point (i.e., at a blockSize of
1).

If useHarris is true, then the Harris corner definition is used rather than the Shi-
Tomasi definition, and the value k is the weighting coefficient used to set the relative
weight given to the trace of the autocorrelation matrix Hessian compared to the
determinant of the same matrix.

Generalized Keypoints and Descriptors | 531

Of course, when you want to actually compute keypoints, you do that with the
detect() method, which cv::GFTTDetector inherits from the cv::Feature2D base
class.

Additional functions. cv::GFTTDetector also supports setting and retrieving various
properties using set/get methods; for example, you can turn on the Harris detector
instead of the default minimum eigenvalue based (Shi-Tomasi) GFTT algorithm by
calling the gfttdetector->setHarrisDetector(true) method.

A brief look under the hood

Internally, cv::goodFeaturesToTrack() and cv::GFTTDetector have a few specific
phases: the computation of the autocorrelation matrix M(x, y), the analysis of this
matrix, and some kind of threshold applied. The critical steps are accomplished with
the functions cv::cornerHarris() and cv::cornerMinEigenVal():

void cv::cornerHarris(
 cv::InputArray src, // Input array CV_8UC1
 cv::OutputArray dst, // Result array CV_32FC1
 int blockSize, // Autocorrelation block sz
 int ksize, // Sobel operator size
 double k, // Harris's trace weight
 int borderType = cv::BORDER_DEFAULT // handle border pix
);
void cv::cornerMinEigenVal(
 cv::InputArray src, // Input array CV_8UC1
 cv::OutputArray dst, // Result array CV_32FC1
 int blockSize, // Autocorrelation block sz
 int ksize, = 3 // Sobel operator size
 int borderType = cv::BORDER_DEFAULT // handle border pix
);

The arguments to these two functions are exactly analogous to the function cv::good
FeaturesToTrack(), with the first filling dst with the characteristic values used by
Harris:

dst(x, y) = detM (x , y) − k ⋅ (trM (x , y))2

and the second filling dst with the characteristic values used by Shi and Tomasi—
that is, the minimal eigenvalue of the autocorrelation matrix M(x, y).

If you would like to implement your own variation of the GFTT algorithm, a final
function is provided for you that computes and gives to you the eigenvalues and
eigenvectors of the autocorrelation matrix for every point on your image. This func‐
tion is called cv::cornerEigenValsAndVecs():

532 | Chapter 16: Keypoints and Descriptors

 void cornerEigenValsAndVecs(
 cv::InputArray src, // Input array CV_8UC1
 cv::OutputArray dst, // Result array CV_32FC1
 int blockSize, // Autocorrelation block sz
 int ksize, // Sobel operator size
 int borderType = cv::BORDER_DEFAULT // handle border pix
);

The only significant difference between this function and cv::cornerMinEigenVal()
is the nature of the output. In this case, the results array dst will be of type CV_32FC6.
The six channels will contain the two eigenvalues, the two components of the eiven‐
vector for the first eigenvalue, and the two components in the eigenvector for the sec‐
ond eigenvalue (in that order).

The simple blob detector and cv::SimpleBlobDetector
The corner detection concept embodied by the work of Harris, and later Shi and
Tomasi, represents what will turn out to be one major approach to the keypoint con‐
cept. From this point of view, keypoints are highly localized structures that exist at
points in an image where a larger-than-normal amount of information is present. An
alternative point of view is the concept of a blob (see Figure 16-13). Blobs are, by
nature, not so clearly localized, but represent regions of interest that might be
expected to have some stability over time (see Figure 16-14).

Figure 16-13. The simple blob detector run on two similar images of the same vehicle.
There is little consistency between the blobs found in the two images. Blob detection
works best in simple environments where there are expected to be a few very well-
defined objects to locate

Generalized Keypoints and Descriptors | 533

26 As we will see as we investigate other more complex feature detectors in this section, there are many other
possible approaches to blob detection. Many of them will appear as components of more complex algorithms,
and we will look at how they work as we get to them. Difference of Gaussian (DoG), Laplacian of Gaussian
(LoG), and Determinant of Hessian (DoH) are all examples of blob detection mechanisms.

Figure 16-14. Starting with an image of countryside scene (left), six thresholded images
are generated (center). One set of overlapping blob candidates, corresponding to the
building in the bottom center of the original image, are shown (right). These candidates
will be combined to produce a final estimation of the associated blob (not shown). The
contours contributing to these blob candidates are highlighted (in black) in the center
thresholded images

There are many algorithms for blob detection. The cv::SimpleBlobDetector class
implements just one of them.26 The simple blob detector works by first converting the
input image to grayscale, and then computing a series of thresholded (binary) images
from that grayscale image. The number of binary images is determined by parameters
to the algorithm: minimum threshold, maximum threshold, and a threshold step.
Once converted to binary, connected components are extracted—for example, by
cv::findContours()—and the centers of each such contour are computed; they are
the candidate blob centers. Next, candidate blob centers near one another in space
(controlled by a minimum distance parameter, minDistBetweenBlobs) and from
images with adjacent thresholds (differing by one step in the list of applied thresh‐
olds) are grouped together. Once these groups have been determined, the groups are
assigned a radius and a center, which is computed from all of the contours that form
the group. The resulting objects are the keypoints.

Once the blobs have been located, some built-in filtering can be turned on to reduce
the number of blobs. Blobs may be filtered by color (which really means intensity,
since this is a grayscale image), by size (area), by circularity (ratio of the area of the
actual blob to a circle of the blob’s computed effective radius), by what is called the
inertia ratio (the ratio of the eigenvalues of the second moment matrix), or by the
convexity (the ratio of the blob’s area to the area of its convex hull).

534 | Chapter 16: Keypoints and Descriptors

Keypoint finder. Start by taking a look at (a somewhat simplified version of) the blob
detector’s declaration:

class SimpleBlobDetector : public Feature2D {

public:
 struct Params {
 Params();
 float minThreshold; // First threshold to use
 float maxThreshold; // Highest threshold to use
 float thresholdStep; // Step between thresholds

 size_t minRepeatability; // Blob must appear
 // in this many images
 float minDistBetweenBlobs; // Blob must be this far
 // from others

 bool filterByColor; // True to use color filter
 uchar blobColor; // always 0 or 255

 bool filterByArea; // True to use area filter
 float minArea, maxArea; // min and max area to accept

 // True to filter on "circularity", and min/max
 // ratio to circle area
 bool filterByCircularity;
 float minCircularity, maxCircularity;

 // True to filter on "inertia", and min/max eigenvalue ratio
 bool filterByInertia;
 float minInertiaRatio, maxInertiaRatio;

 // True to filter on convexity, and min/max ratio to hull area
 bool filterByConvexity;
 float minConvexity, maxConvexity;

 void read(const FileNode& fn);
 void write(FileStorage& fs) const;
 };

 static Ptr<SimpleBlobDetector> create(
 const SimpleBlobDetector::Params ¶meters
 = SimpleBlobDetector::Params()
);

 virtual void read(const FileNode& fn);
 virtual void write(FileStorage& fs) const;

 ...
};

Generalized Keypoints and Descriptors | 535

As you can see from scanning over this declaration, it is clear that there is not actually
much going on here. There is a definition for cv::SimpleBlobDetector::Params, a
structure that can hold all of the information needed to actually run a simple blob
detector, a constructor (which takes a Params argument), and read() and write()
functions that will allow us to store the state of our detector. Of course, there are also
the all-important detect() routines inherited from the cv::FeatureDetector inter‐
face.

We already know how the detect() member works, in the sense that what it does is
entirely generic to all feature detectors; what really matters to us here is how to set up
the parameters in the Params argument to the constructor. The first group of five
parameters controls the basic functioning of the algorithm. We use thresholdStep,
minThreshold, and maxThreshold to configure the set of thresholded images to gen‐
erate. We do so by starting at minThreshold and stepping up by thresholdStep each
time up until, but not including, maxThreshold. It is typical to start with a value
around 50 to 64 and step in small increments (e.g., 10) up to about 220 to 235, thus
avoiding the often-less-informative ends of the intensity distribution. minRepeatabil
ity determines how many (consecutive) threshold images must contain overlapping
blob candidates in order for the candidates to be combined into a blob. This number
is typically a small integer, but rarely less than two. The actual meaning of “overlap‐
ping” is controlled by minDistBetweenBlobs. If two blob candidates have their cen‐
ters within this distance, they are considered to be related to the same blob. Keep in
mind that this one is in pixel units, and so should scale with your image. The default
constructor for cv::SimpleBlobDetector::Params sets this to 10, which is probably
only suitable for images of about 640 × 480.

The remaining parameters affect the different filtering options, and are arranged into
small groups, each of which contains a Boolean that turns on or off the particular fil‐
tering feature, and a parameter or two that control the filtering (if it is turned on).
The first is filterByColor, which has only one associated parameter. That parame‐
ter, blobColor, is an intensity value required for a blob candidate to be kept. Because
the blob candidates are generated on binary thresholded images, only the values 0
and 255 are meaningful. (Use the former to extract only dark blobs and the latter to
extract only light blobs; turn off the feature all together to get both kinds of blobs.)

The filterByArea parameter, if true, will cause only blobs whose area is greater than
or equal to minArea, yet strictly less than maxArea, to be kept. Similarly the filterBy
Circularity parameter, if true, will cause only blobs whose circularity is greater
than or equal to minCircularity, yet strictly less than maxCircularity, to be kept.

536 | Chapter 16: Keypoints and Descriptors

27 Recall that the exact definitions of circularity, inertia (or inertia ratio), and convexity were covered previously
in the algorithm description for the blob finder.

The same goes for filterByInertial, minInertiaRatio, and maxInertiaRatio, as
well as for filterByConvexity, minConvexity, and maxConvexity.27

The FAST feature detector and cv::FastFeatureDetector
The FAST (Features from Accelerated Segments Test) feature-detection algorithm,
originally proposed by Rosten and Drummond [Rosten06], is based on the idea of a
direct comparison between a point P and a set of points on a small circle around it
(see Figure 16-15). The basic idea is that if only a few of the points nearby are similar
to P, then P is going to be a good keypoint. An earlier implementation of this idea,
the SUSAN algorithm, compared all of the points in a disk around P. FAST, which
could be thought of as a successor to SUSAN, improves on this idea in two ways.

Figure 16-15. Two images of the same vehicle; in each image are the 1,000 strongest
FAST features. Notice that in the image on the right, as with the Harris-Shi-Tomasi
features, the corners in the background are stronger than those on the car, and so again
most of the corners in the right image originate from the background

The first difference is that FAST only uses the points on a ring around P. The second
is that individual points on the ring are classified as either darker than P, lighter than
P, or similar to P. This classification is done with a threshold t, such that the darker
pixels are ones that are less bright than IP – t, the lighter pixels are ones that are more
bright than IP + t, and the similar pixels are those that are in between IP – t and IP + t.
Once this classification has been done, the FAST detector requires some number of
contiguous points on the ring to be either all brighter or all darker than P. If the
number of points on the ring is N, then the arc that contains only lighter or darker
pixels must contain at least N/2 + 1 pixels (i.e., more than half the total number on
the ring).

This algorithm is already very fast, but a moment’s thought will also reveal that this
test permits a convenient optimization in which only four equidistant points are

Generalized Keypoints and Descriptors | 537

tested. In this case, if there is not at least a pair of consecutive points that are brighter
or darker than P, then the point P cannot be a FAST feature. In practice this optimi‐
zation greatly reduces the time required to search an entire image.

One difficulty with the algorithm as described so far is that it will tend to return mul‐
tiple adjacent pixels all as corners. In Figure 16-16, for example, the pixel directly
above P, among others, is also a FAST keypoint. In general this is not desirable.

Figure 16-16. The point P is a keypoint candidate for the FAST algorithm. The ring of
points that contribute to the classification of P are identified by a circle around p. In
this case there are 16 pixels on that circle, numbered 0–15 here

To avoid this problem, the FAST algorithm defines a score for each corner, and can
remove all keypoints that are adjacent to keypoints of higher score. We construct the
score by first computing the sum of absolute differences between the “lighter” pixels
and the center pixel, then doing the same for the darker pixels, and finally taking the
greater of these two.

score = max(∑
x∈{brighter}

| I x − IP | − t , ∑
x∈{darker}

| I x − IP | − t)
It is worth noting, mainly because we will come back to this point later when we dis‐
cuss the ORB feature, that the FAST feature, as defined here, does not have any kind
of intrinsic orientation.

Keypoint finder. The FAST feature detector is very simple, and looks very much like
the Harris corner detector cv::GoodFeaturesToTrackDetector:

class cv::FastFeatureDetector : public cv::Feature2D {
public:
 enum {
 TYPE_5_8 = 0, // 8 points, requires 5 in a row
 TYPE_7_12 = 1, // 12 points, requires 7 in a row
 TYPE_9_16 = 2 // 16 points, requires 9 in a row

538 | Chapter 16: Keypoints and Descriptors

28 Unlike the open and free algorithms using cv::features2d, cv::xfeatures2d is suspected of having patent
issues and so is relegated to a special opencv_contrib directory.

 };

 static Ptr<FastFeatureDetector> create(
 int threshold = 10, // center to periphery diff
 bool nonmaxSupression = true, // suppress non-max corners?
 int type = TYPE_9_16 // Size of circle (see enum)
);
...
};

The constructor for the cv::FastFeatureDetector has three arguments: the thres‐
hold, a Boolean flag, and the operator type. The value of threshold is measured in
pixel intensity units and is therefore an integer. The Boolean value, nonMaxSupres
sion, turns on or off the suppression of neighboring points with inferior scores. The
last argument sets the type of operator, with this type determining the circumference
of the circle of sampled points. There are three available types, defined in the
cv::FastFeatureDetector class as enumerations. Each type specifies both the cir‐
cumference of the circle and the number of contiguous points required for the center
of that circle to be considered a keypoint. For example, the value cv::FastFeatureDe
tector::TYPE_9_16 conveys that 9 out of 16 points should be either all brighter or all
darker than the center point.

In most cases, you will want to set the threshold to a somewhat
large number, like 30. If the threshold is too low, you will get a lot
of spurious points in areas of very minor real intensity variation.

The SIFT feature detector and cv::xfeatures2d::SIFT
The SIFT feature (Scale Invariant Feature Transform),28 originally proposed by David
Lowe in 2004 [Lowe04], is widely used and the basis for many subsequently devel‐
oped features (see Figure 16-17). SIFT features are computationally expensive com‐
pared to many other feature types, but they are highly expressive, and thus are well
suited to both tracking and recognition tasks.

Generalized Keypoints and Descriptors | 539

Figure 16-17. Two images of the same vehicle from different angles. On the left 237
SIFT features are found, while on the right 490 are found. In this case, you can see that
the features on the vehicle are relatively stable and can find many correspondences by
eye. The density of features on the car is approximately the same in both images,
despite the many more features found on the background in the righthand image

The scale invariant property that gives SIFT features their name results from an ini‐
tial phase of the SIFT algorithm in which a set of convolutions are computed between
the input image and Gaussian kernels of increasing size. These convolutions are then
combined, each with its successor, which is the one convolved with a slightly larger
Gaussian. The result of this process is a new set of images that approximate the differ‐
ence of Gaussian (DoG) operator. Given this set of images, which you might visualize
as a stack, each pixel in each image in the stack is compared with not only its neigh‐
bors in its own image (of which there are eight), but also with itself and its neighbors
in the images above and below in the stack (of which there are nine more in the
image above and nine more in the image below). If a pixel has a higher value in the
difference of Gaussian convolution than all 26 of these neighbors, it is considered a
scale space extremum of the difference of Gaussian operator (see Figure 16-18).

The intuition here is straightforward. Consider an image that is black except for a
white disk in the center. The difference of Gaussians kernel (Figure 16-19) will give
the strongest response when the zero crossings are exactly at the edges of the white
disk. In this configuration, the positive part of the kernel is multiplied by the positive
image values of the white disk, while the negative part of the kernel is entirely multi‐
plied by the zero values of the black background. Neighboring locations or different
sizes at the same location will give weaker responses. In this sense, the “feature” of the
disk is found, both in position and in scale.

540 | Chapter 16: Keypoints and Descriptors

Figure 16-18. We locate scale space extrema by first convolving the original image with
Gaussian kernels of various sizes and then computing difference images between convo‐
lutions of neighboring sizes. In the difference images, each pixel (shown as a solid
square) is compared to all of its neighbors (shown as Xs) in both the same layer and the
adjacent layers. If the difference of Gaussians signal is stronger than all neighbors on all
three layers, that pixel is considered a scale space extremum

Figure 16-19. The Gaussian kernels G1 and G2, along with the difference G1–G2

Once a set of features is found, the algorithm tests each feature both to determine its
quality as a feature and to refine the estimate of its location. It does so by fitting a
paraboloid to the 3 × 3 × 3 volume around the extremum (the three dimensions
being x, y, and scale). From this quadratic form, we can extract two important pieces
of information. The first is an offset to be added to the location of the keypoint; this

Generalized Keypoints and Descriptors | 541

29 For the curious, the way the algorithm does this is to first rescale the pixels around the keypoint using the
scale already determined. Then, in this scale-normalized image, Sobel derivatives are used in the x- and y-
directions, and then converted to a polar form (magnitude and orientation). These derivatives, one for each
point in the area of the feature, are then put into a histogram of orientations, each weighted by its magnitude.
Finally, the maximum of the histogram is found, a parabola is fit to that maximum and its immediate neigh‐
bors, and the maximum of that parabola serves as an interpolated angle for the overall orientation of the
feature.

offset is a subpixel correction for spatial location, and interpolates in scale as well as
in between the discrete scales available from the original set of Gaussian convolu‐
tions. The second is an estimate of the local curvature at this extremal point, in the
form of a Hessian matrix whose determinant can be used as a thresholdable value by
which to reject keypoints of low discriminating power. Similarly, a large ratio
between the eigenvalues of the purely spatial part of this matrix indicates that the fea‐
ture is primarily an edge (rather than a “corner”), and is also a means by which can‐
didate features can be rejected. These considerations can be compared to the figure of
merit used in the Harris corner or Shi-Tomasi feature we saw earlier in this chapter.

Once all such scale space extrema have been found, the SIFT algorithm proceeds to
construct a descriptor for each such object as shown in Figure 16-20. The first step
here is to assign an orientation to the keypoint. The orientation is based on essen‐
tially comparing the directional derivatives over the points around the keypoint and
picking the orientation that corresponds to the largest derivatives.29 Once such an
orientation is found, all subsequent properties of the descriptor can be assigned rela‐
tive to this primary orientation. In this way, SIFT features are not only scale invari‐
ant, but also orientation invariant—the latter in the sense that given a new rotated
image, the same keypoint would be found; its orientation would be found to be dif‐
ferent, but the rest of the feature descriptors, because they are measured relative to
the orientation, would be found to match.

Finally, with the scale and orientation computed, the local image descriptor can be
computed. The local image descriptor is also formed from local image gradients, but
this time after the local region has been rotated to a fixed orientation relative to the
descriptor orientation. Next, they are clumped into regions (typically 16 in a 4 × 4
pattern around the keypoint, or more), and for each region an angle histogram is cre‐
ated from all of the points in the associated region. Typically this histogram will have
8 entries. Combining the 8 entries per region with the 16 regions gives a vector of 128
components. This 128-component vector is the SIFT keypoint descriptor. This large
number of components is essential to the highly descriptive nature of the SIFT
keypoints.

542 | Chapter 16: Keypoints and Descriptors

Figure 16-20. A SIFT feature is extracted from an image (a). That feature has a size
and an orientation, shown in (b). The area around the feature is divided up into blocks
(c), and for each block, a directional derivative is computed for every pixel in the cell
(d). These directional derivatives are aggregated into a histogram for each block (e),
and the magnitudes in each bin in all of the histograms for all of the blocks are con‐
catenated into a vector descriptor for the feature (f)

Keypoint finder and feature extractor. The SIFT implementation in OpenCV imple‐
ments both the feature detection and descriptor extraction parts of cv::Feature2D
interface, and, as usual, we recommend using the detectAndCompute() method,
which combines the keypoint detection and feature extraction into one step. Note
that because SIFT algorithm is patented, it’s placed in the opencv_contrib repository,
in the module xfeatures2d, starting from OpenCV 3.0. Here is (a slightly abbrevi‐
ated version of) the class definition for the cv::xfeatures2d::SIFT object:

class SIFT : public Feature2D {

public:

 static Ptr<SIFT> create (
 int nfeatures = 0, // Number of features to use
 int nOctaveLayers = 3, // Layers in each octave
 double contrastThreshold = 0.04, // to filter out weak features
 double edgeThreshold = 10, // to filter out "edge" features
 double sigma = 1.6 // variance of level-0 Gaussian
);

 int descriptorSize() const; // descriptor size, always 128
 int descriptorType() const; // descriptor type, always CV_32F
 ...
};

Generalized Keypoints and Descriptors | 543

30 In general, it has been found that SIFT works best with 128 element descriptors. Similarly, some other values
used by the descriptor computation (such as the magnification, if you are a SIFT expert) have been found to
have values that are essentially always left unchanged. In future implementations, some of these may be
exposed if there is found to be value in doing so.

All of the parameters required by the cv::xfeatures2d::SIFT constructor are used
in the construction of the scale-space image representation and also at the keypoint-
detection portion of the algorithm. In the current implementation, the actual feature
descriptors are always computed with a fixed set of parameters.30

The first argument, nfeatures, indicates the maximum number of features you
would like be computed from the image. If it is left set to the default value of 0, the
algorithm will return all features that can be found. The next argument, nOctaveLay
ers, determines how many layers (different scales of Gaussian convolutions) should
be computed for each octave (images in the image pyramid). The number of layers
actually computed is the value of the nOctaveLayers argument plus three. Thus, the
illustration in Figure 16-18 shows the case of five layers for each image in the pyra‐
mid, which corresponds to a value for nOctaveLayers of two.

The next two parameters are threshold values, which are used to determine whether a
found keypoint candidate should be retained. Recall that once a keypoint candidate is
generated by scale space search, that keypoint is then subjected to two tests. The first
test is whether or not the local extremum of the DoG operator is sufficiently distinct
from the surrounding region. This test is against the value of contrastThreshold;
typical values of this argument are of the order of 0.04 (the default value). The sec‐
ond test has to do with the ratio of spatial eigenvalues, and serves the purpose of
rejecting edges. This test is against the value of edgeThreshold; typical values of this
argument are of the order 10.0 (the default value).

The final parameter, sigma, is used to create a presmoothing of the image, which
incidentally effectively also sets the scale of the very first layer in the scale space. Typ‐
ical values are of the order of a pixel (the default is 1.6 pixels), but it is often useful to
make this value slightly larger for images that contain a bit of noise or other artifacts.

You could just prefilter an image by convolving with your own
Gaussian filter, instead of using the sigma parameter, but if you do
this, the algorithm will not be aware that there is no information
below the scale you used in the filtering. As a result, it will waste
time computing layers whose purpose is to search for features that
cannot exist. Therefore, it is much more efficient to use the sigma
parameter provided for presmoothing. In effect, you are telling the
algorithm “I don’t care about anything smaller than this size.”

544 | Chapter 16: Keypoints and Descriptors

31 As was the case with SIFT, because SURF is a patented algorithm, it’s placed in the xfeatures2d module of
the opencv_contrib repository as of the OpenCV 3.0 release.

Once you have created your cv::xfeatures2d::SIFT object, you can use the descrip
torSize() and descriptorType() functions to query the size of the features it will
compute and the type of elements the feature vector will contain. These two func‐
tions always return 128 and CV_32F, respectively, but are often handy when you are
using many kinds of feature objects and are handling them by a base class pointer,
but need to query an individual one to find out about the feature vectors it will
return.

The main function you will be using is the overloaded detectAndCompute() method.
Depending on the arguments given, this operator will either just compute keypoints,
or compute keypoints and their associated descriptors. The keypoints-only case
requires just three arguments: img, mask, and keypoints. The first argument is the
image you want keypoints extracted from (which can be color or grayscale, but in the
former case it will be changed to a grayscale representation internally before the algo‐
rithm begins). The image argument should always be of type CV_8U. The mask argu‐
ment is used in order to restrict the keypoints generated to only those within some
specified area. The mask array should be a single channel of type CV_8U, but can be set
to cv::noArray() if no filtering of this kind is required. The next argument to
cv::xfeatures2d::SIFT::detectAndCompute() is keypoints, which must be a refer‐
ence to an STL-style vector of cv::KeyPoint objects. This is where SIFT will put the
keypoints it finds.

The next argument, descriptors, is an output array, analogous to other feature-
point descriptors we have seen already. If descriptors is an array, then each row of
the array will be a separate descriptor, and the number of such rows is equal to the
number of keypoints.

The final argument is the Boolean useProvidedKeypoints. If this argument is set to
true, then a keypoint search will not be undertaken, and the keypoints argument
will instead be treated as an input. In this case, descriptors will be generated for every
keypoint indicated in the keypoints vector.

The SURF feature detector and cv::xfeatures2d::SURF
The SURF feature (Speeded-Up Robust Features)31 was originally proposed in 2006
by Bay et al. [Bay06, Bay08], and is in many ways an evolution of the SIFT feature we
just discussed (see Figure 16-21). The creators of SURF were interested in ways in
which the different components of the SIFT features could be replaced with more
computationally efficient techniques that might give similar or better performance in
(primarily) recognition tasks. The resulting features are not only much faster to

Generalized Keypoints and Descriptors | 545

32 The Hessian is normally understood to be the matrix of second-order derivatives. In this case, however, it is
really the matrix of so-called “Gaussian second-order derivatives,” which are defined by ∂2

∂ xi∂ x j
G(x→ , σ), where G(x→ , σ)

is a normalized Gaussian of size σ by which the image is convolved before the derivative is approximated.

33 Note that in the SIFT case the actual technique was to convolve with the two different Gaussian kernels and
then subtract the results. In the SURF case the kernels are first subtracted and a single convolution is done
with the differenced kernel. The two operations are equivalent, but the second operation is more natural and
more efficient in the case of the box filter approximation used by SURF.

compute; in many cases, their slightly simpler nature results in greater robustness to
changes in orientation or lighting than is observed with SIFT features.

Figure 16-21. SURF features are computed for the same vehicle from two different ori‐
entations. On the left, 224 features are found, while on the right 591 features are found,
with many new features being associated with the visible background in the righthand
image. SURF features are orientable like SIFT features. This image was generated with
the hessianThreshold set to 1500

Relevant to several phases of the SURF feature detector’s operation is the concept of
the integral image. Recall that we encountered integral images in Chapter 12; where
we saw that they enable us to make a single transform of a whole image and, there‐
after, that transformed image allows us to compute sums over any rectangular area
with only a few simple operations. The SURF feature relies heavily on computations
that can be greatly accelerated by the use of the integral image technique.

Like many other detectors, SURF defines a keypoint in terms of the local Hessian32 at
a given point. Previously, we saw that in order to introduce the concept of scale, the
SIFT detector computed the local Hessian using a difference of Gaussian convolu‐
tions with slightly differing widths (Figure 16-19). The SURF detector, however,
computes the local Hessian by convolving with a box filter that approximates the dif‐
ference of the two Gaussian kernels (Figure 16-22).33 The primary advantage of these
box filters is that we can evaluate them quickly using the integral image technique.

546 | Chapter 16: Keypoints and Descriptors

34 This procedure might seem quite convoluted, but note that the actual number of evaluations required to com‐
pute this orientation is actually very small. With only nine cells, and each cell requiring only six additions, the
81 points are computed in fewer than 500 operations.

Figure 16-22. The difference of two continuous Gaussian kernels is shown on the left
(a). A discrete 9 × 9 filter kernel is shown in the center (b) that approximates the second
derivative in the vertical direction. A box filter approximation of the DoG filter kernel
is shown on the right (c)

Because the cost of the box filters does not change with the size of the filter (because
of the integral image), it is not necessary to generate a scale pyramid of the images as
was done with SIFT. Instead, a variety of ever larger box filters can be used to evalu‐
ate the Hessian at different scales. From the response to these box filters, keypoint
features are defined in SURF to be the local extrema of the determinant of this Hes‐
sian that also exceed some threshold.

Like SIFT, SURF includes the notion of orientation for a feature, which we compute
by using the integral image again to estimate a local bulk gradient of the region
around the feature. We do so using a pair of simple Haar wavelets (Figure 16-23c) to
approximate local gradients, and by applying these wavelets to different areas of the
region around where the scale space extremum was found. If the scale of the feature
was found to be s, then we calculate the gradients using wavelets of size 4s, spaced at
intervals a distance s apart in a region of radius 6s centered on the feature
(Figure 16-23b). We then aggregate these gradient estimations by considering a slid‐
ing window in angle of size π

3 . By summing all of the gradients in this orientation
window (with a weighting factor determined by the area’s distance from the feature
center), we choose the maximum orientation found as the orientation of the feature
(Figure 16-23d).34 Once an orientation has been computed, the feature vector can
then be generated in a manner relative to that orientation and, as was the case with
SIFT, the feature becomes effectively invariant to orientation.

Generalized Keypoints and Descriptors | 547

35 Note that x and y as used here are in the rotated coordinate system of the feature descriptor, not the coordi‐
nate system of the image.

Figure 16-23. We determine the SURF orientation of an image (a) by analyzing the
region around where a scale space extremum was found (b). Two simple wavelets (c)
are used to approximate a local gradient and are convolved with the image in many
positions near that extremum (dashed boxes in b regularly sampled from the region
shown by the solid circle in b). The final orientation is extracted from an analysis of all
of the gradients measured in this way (d)

The features themselves are also computed in a manner analogous to the SIFT feature
design. For a feature of scale s, the 20s × 20s region centered on the feature is first
divided into 16 cells in a 4 × 4 grid. This grid is rotated relative to the feature by an
angle given by the orientation just computed. For every such cell, 25 pairs of Haar
wavelets (identical to those shown in Figure 16-23c, other than being much smaller)
are used to approximate the x- and y-gradients of the image in each of a 5 × 5 array
(within each cell of the 4 × 4 grid).35 For each cell of this kind, the 25 x-direction
wavelet convolutions are summed, as are the 25 y-direction wavelet convolutions. For
each direction, both the sum as well as the sum of absolute values are computed. This
gives 4 numbers for each cell in the 4 × 4 grid, or a total of 64 numbers. These 64
values form the entries in a 64-dimensional feature vector for the individual SURF
feature (see Figure 16-24).

There is a variant SURF feature, called an “extended” SURF feature, that sums sepa‐
rately the sums of the convolutions into eight sums rather than four. It does so by
summing those values of the x-direction wavelet convolutions for which the corre‐
sponding y-direction wavelet convolution was positive from those for which the cor‐
responding y-direction wavelet convolution was negative (and similarly for the
y-direction wavelet convolutions sums depending on the sign of the corresponding x-
direction convolution). The resulting descriptors are larger, which means that match‐
ing them will be slower, but in some cases the greater descriptive power of the
extended features has been found to improve recognition performance.

548 | Chapter 16: Keypoints and Descriptors

Figure 16-24. We compute the SURF feature from estimating a gradient in each of 400
subcells. The area around the feature is first divided into a 4 × 4 grid of cells (a). Each
cell is then divided into 25 subcells, and directional derivatives are estimated for each
subcell (b). The directional derivatives for the subcells are then summed to compute
four values for each cell in the large grid (c)

Keypoint finder and feature extractor. As with SIFT, the best and most recent imple‐
mentation of SURF in OpenCV uses the cv::Feature2D interface. The construction
process is done by a single constructor for the cv::xfeatures2d::SURF object, which
then provides an interface for keypoint finding as well as feature descriptor extrac‐
tion—as well as a few other useful functions. Here is the (slightly abbreviated) defini‐
tion of the SURF object:

class cv::xfeatures2d::SURF : public cv::Feature2D {

public:
 static Ptr<SURF> create (
 double hessianThreshold = 100, // Keep features above this
 int nOctaves = 4, // Num of pyramid octaves
 int nOctaveLayers = 3, // Num of images in each octave
 bool extended = false, // false: 64-element,
 // true: 128-element descriptors
 bool upright = false, // true: don't compute orientation
 // (w/out is much faster)
);

 int descriptorSize() const; // descriptor size, 64 or 128
 int descriptorType() const; // descriptor type, always CV_32F

 ...
};
typedef SURF SurfFeatureDetector;
typedef SURF SurfDescriptorExtractor;

The constructor method create() for the cv::xfeatures2d::SURF object has five
arguments that are used to configure the algorithm. The first, hessianThreshold, sets

Generalized Keypoints and Descriptors | 549

36 For the car images in Figure 16-21, the Hessian threshold was empirically adjusted to give a similar number
of features to the number found by SIFT in Figure 16-11. For comparison, the OpenCV default value of 100
would have generated 2,017 and 2,475 features, respectively, for the left and right images in Figure 16-21.

37 It is worth noting here that unlike SIFT, which actually reduces the size of the image with each octave, SURF
is instead increasing the size of the kernels with which it is convolving. In addition, the step between “adja‐
cent” evaluations of the kernels is also being increased as the kernels themselves are enlarged. As a result,
because the kernels have fixed cost regardless of size (remember the integral image trick?), the cost of evaluat‐
ing higher octaves decreases rapidly.

the threshold value for the determinant of the Hessian that is required in order for a
particular local extremum to be considered a keypoint. The value assigned by the
default constructor is 100, but this is a very low value that could be interpreted as
meaning “all of them.” A typical value for reasonable selectivity would be something
like 1500.36

The extended parameter tells the feature extractor to use the extended (128-
dimensional) feature set (described in the previous section). The parameter upright
indicates that orientations should not be computed for features, and they should all
be treated as “vertical”; this is also known as “upright SURF” or just “U-SURF.”

In uses such as automotive or mobile robot applications, it is often
safe to assume that the orientation of the camera is fixed relative to
the orientation of the objects one wants to detect. Consider, for
example, the case of an automobile detecting road signs. In this
case, the use of the upright argument will improve speed and most
likely improve matching performance as well.

The final arguments, nOctaves and nOctaveLayers, are closely analogous to the cor‐
responding arguments for cv::xfeatures2d::SIFT(). The nOctaves argument
determines how many “doublings” of scale will be searched for keypoints. In the case
of SURF, the minimal size feature that can be found is calculated by convolution with
a 9 × 9 pixel filter. The default number of octaves is four, which is normally sufficient
for most applications. When using very high resolution imagers, however, you might
wish to increase this number. Reducing it to three produces only a very small
improvement in speed, however, as the scale search for the higher octaves is very
inexpensive compared to the lower octaves.37

For each octave, several different kernels will be evaluated. Unlike SIFT however, the
kernels are not distributed to evenly subdivide the octaves. In fact, if more than two
octave layers are used, there will be overlap between the size of the kernels used in
successive octaves. (This does not mean that a larger value is not useful, only that the
effect of larger numbers of octave layers is not entirely intuitive.) The default value

550 | Chapter 16: Keypoints and Descriptors

for nOctaveLayers is 3, but some studies have found increasing it to as high as four
useful (though at increasing computational cost).

The descriptorSize() and descriptorType() methods return the number of ele‐
ments in the descriptor vector (64 normally, and 128 for extended SURF features)
and the type of the descriptor vector. (Currently the latter is always CV_32F.)

There are overloaded methods SURF::detect(), SURF::compute(), and SURF::detec
tAndCompute(). As usual, when you need both the keypoints and their descriptors,
it’s recommended to use the latter method. The parameters are absolutely identical to
those of SIFT::detectAndCompute().

Additional functions provided by cv::xfeatures2d::SURF. cv::xfeatures2d::SURF also
provides a bunch of methods to set and retrieve the algorithm’s parameters on the fly.
Make sure that you do not alter parameters while processing a set of images. Find the
optimal parameters and keep using them; otherwise, you may get incomparable
descriptors.

The Star/CenSurE feature detector and cv::xfeatures2d::StarDetector
The Star features (see Figure 16-25) were developed originally for visual odometry,
measuring the self-motion of a video camera from the image data alone [Agarwal08].
In this context, features such as Harris corner or FAST are desirable because they are
highly localized. In contrast, features like SIFT, which rely on image pyramids, can
become poorly localized in the original image space as you move higher up the pyra‐
mid. Unfortunately, features like the Harris corner or FAST are not scale invariant
like SIFT is, precisely because of the lack of a scale space search. The Star feature, also
known as the Center Surround Extremum (or CenSurE) feature, attempts to solve the
problem of providing the level of localization of Harris corners or FAST features
while also providing scale invariance. There is no associated unique descriptor
attached to the Star/CenSurE feature; in the paper in which it was first introduced,
the authors used a variant of the “Upright SURF” or U-SURF feature descriptors.

Conceptually, the approach of Star is to compute all variants of some feature at all
scales and select the extrema across scale and location. At the same time, the goal was
to have the features be very fast to compute (recall that visual odometry has applica‐
tions in robotic and many other real-time environments). The CenSurE feature
addresses these competing goals with a two-stage process. The first stage is a very fast
approximation to something like the difference of Gaussians (DoG) operation used
by SIFT (and others), and the extraction of the local extrema of this operation. The
second stage attempts to cull things that look too much like edges (as opposed to cor‐
ners) using a scale-adapted version of the Harris measure.

Generalized Keypoints and Descriptors | 551

Figure 16-25. Star features computed for the same vehicle from two slightly different
orientations. At default parameters, 137 are found on the left image and 336 are found
on the right. In both cases, the number on the automobile is about the same, with the
additional features on the background accounting for the greater number in the second
image. The found features on the vehicle are few compared to other methods, but you
can easily see correspondences, suggesting the features are very stable

To understand how the fast DoG approximation is done, it is useful to think back to
how SURF computed the box approximation to similar objects (Figure 16-22). In this
case however, the DoG is approximating a feature that looks like the difference of two
similarly sized Gaussians that are both rotationally symmetric in the image plane. As
a result the feature is particularly simple.

The approximation used is square (Figure 16-26) and so it can be constructed at any
size. It has only two regions, which can both be computed via integral images. Thus,
the entire evaluation of the feature amounts to three operations for the outer square,
three for the inner square, two more to scale them, and one final operation to add the
two terms: nine operations. This simplicity is why every point can be tested at many
scales. In practice, the smallest feature that can be constructed this way has a side
length of 4 and, in principle, every size above that can be computed. In practice, of
course, it is natural to distribute the sizes of the features actually computed in an
exponential, rather than linear, way. The result of this stage of the process is that for
every point in the image, there is a particular size DoG kernel for which the response
was the largest and the particular magnitude for that response.

552 | Chapter 16: Keypoints and Descriptors

Figure 16-26. Box representation of DoG kernel used by CenSureE keypoint finder; for
a particular size S, the center portion of the feature is of size S/2

Once the DoG kernel has been approximated everywhere, the next step is to thres‐
hold this value and then reject those points that are not local extrema. We do this by
comparing to the usual 3 × 3 × 3 cube of neighbors in (x, y, scale)–space and keeping
only those with the highest (or lowest) value in that 27-element set.

Finally, because features of this kind can still respond rather strongly to edges, the
Star algorithm computes a scale-adapted Harris measure. The scale-adapted Harris
measure is computed from a matrix very similar to the one we encountered in the
Harris-Shi-Tomasi corners discussion earlier, with two important exceptions. The
first is that the window over which the summations are done for the individual ele‐
ments of the autocorrelation matrix is sized proportional to the scale of the feature.
The second is that the autocorrelation matrix is constructed from the maximal
responses to the censure features rather than the image intensity. The actual test then
performed is the test used by Harris, which compares the determinant of this matrix
to the squared trace multiplied by the sensitivity constant.

In the OpenCV implementation, there is also a second test, which is similar to the
scale-adapted Harris measure described except that it constructs an autocorrelation
matrix from the size values associated with the response at each point in the window.
This measure is called the binarized scale-adapted Harris measure. It is called “binar‐
ized” because for each point in the window, a value of 1, 0, or –1 is assigned based on
the rate of change of the size of the maximal response at that point relative to its
neighbors. Recall that the original Harris measure used a rate of change of image
intensity, and the scale-adapted Harris measure used a rate of change of response to
the DoG operator; the binarized measure uses the rate of change of the size of the
maximal DoG operator. This binarized test is a way of quantifying the extent to
which a particular point is a scale space extremum.

Keypoint finder. As was mentioned earlier, there is no specific feature descriptor
extractor associated with the Star algorithm. The detector cv::StarDetector is
derived directly from the cv::Feature2D base class. Here is the slightly abbreviated
cv::StarDetector object definition:

Generalized Keypoints and Descriptors | 553

// Constructor for the Star detector object:
//
class cv::xfeatures2d::StarDetector : public cv::Feature2D {

public:

 static Ptr<StarDetector> create(
 int maxSize = 45, // Largest feature considered
 int responseThreshold = 30, // Minimum wavelet response
 int lineThresholdProjected = 10, // Threshold on Harris measure
 int lineThresholdBinarized = 8, // Threshold on binarized Harris
 int suppressNonmaxSize = 5 // Keep only best features
 // in this size space
);

 ...
);

The Star detector constructor takes five arguments. The first is the largest size of fea‐
ture that will be searched for. The maxSize argument can be set to only one of a finite
list of values: 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, or 128. For any value you
might choose, all of the lower values in this list will also be checked.

The responseThreshold argument indicates the threshold applied to the convolution
with the CenSurE kernel (Figure 16-26c) in order to find keypoint candidates. For all
scales above the smallest, the kernel is normalized such that the threshold at all larger
scales is equivalent to the given value on the smallest kernel (i.e., of size 4).

The next two arguments, lineThresholdProjected and lineThresholdBinarized,
are thresholds associated with the scale-adapted Harris measure described earlier.
The projected line threshold is effectively the inverse of the sensitivity constant in the
Harris test on the response values; raising lineThresholdProjected will reject more
features as lines. The lineThresholdBinarized value does something very similar,
except that it is the sensitivity constant for the binarized scale-adapted Harris meas‐
ure. This second parameter enforces the requirement that the CenSurE feature be a
scale space extrema. Both comparisons are made, and a keypoint candidate must suc‐
ceed relative to both criteria in order to be accepted.

The final argument, supressNonmaxSize, sets the region over which Star features will
be rejected if they are not the strongest feature within that distance.

The BRIEF descriptor extractor and cv::BriefDescriptorExtractor
BRIEF, which stands for Binary Robust Independent Elementary Features, is a rela‐
tively new algorithm for assigning a novel kind of feature to a keypoint (see
Figure 16-27). BRIEF features were introduced by Calonder et al. and for this reason
are also often known as Calonder features [Calonder10]. BRIEF does not locate

554 | Chapter 16: Keypoints and Descriptors

38 In the paper in which they were introduced, BRIEF descriptors were used with features found through U-
SURF.

39 Many modern processors contain single-cycle instructions that will perform an XOR on a 256-bit word (e.g.,
the Intel SSE4™ instruction set).

keypoints; rather, it is used to generate descriptors for keypoints that can be located
through any of the other available feature-detector algorithms.38

Figure 16-27. A visualization of pixel-to-pixel tests that collectively comprise a single
BRIEF descriptor; each line connects a pair of pixels that are compared by the test

The basic concept behind the BRIEF descriptor is that a feature is described as a ser‐
ies of tests, each of which simply compares a single pixel in the area of the feature to
some other single pixel, yielding a simple binary result (i.e., 0 or 1) based on which
portion was brighter (Figure 16-27). The BRIEF descriptor is simply the result of n
such tests arranged into a bit string. In order to keep the descriptor from being overly
sensitive to noise, the BRIEF descriptor first smooths the image by convolution with
a Gaussian kernel. Because the descriptors are binary strings, they not only can be
computed quickly and stored efficiently, but they can also be compared to one
another extremely efficiently.39

There are many ways to generate the actual pairs that will be matched to form the
BRIEF descriptor. One of the best ways is simply to randomly generate all of the pairs
by first drawing a point from a Gaussian distribution around the center of the

Generalized Keypoints and Descriptors | 555

feature, and then computing the second point by drawing from a Gaussian distribu‐
tion around the first (with one half the standard deviation). The area within which
the points are drawn (the total footprint of the feature) is called the patch size, while
the standard deviation of the distribution from which the points are drawn is called
the kernel size. In the case of Figure 16-27, the ratio of the kernel size to the patch size
is approximately 1:5. The current OpenCV implementation fixes these sizes, but in
principle they are tunable parameters of the algorithm. The number of such tests gen‐
erated overall is typically 128, 256, or 512, but following the style of the original crea‐
tors of the feature, it is traditional to refer to this size in terms of the number of bytes
in the descriptor (i.e., 16, 32, or 64 bytes, respectively).

Feature extractor. As was mentioned earlier, the BRIEF algorithm is specifically for
extracting feature descriptors, and so the associated method is derived directly from
the cv::Feature2D base class, implementing only the descriptor extraction part. The
relevant parts of the class definition are the following:

class cv::xfeatures2d::BriefDescriptorExtractor : public cv::Feature2D {

public:

 static Ptr<BriefDescriptorExtractor> create(
 int bytes = 32, // can be equal 16, 32 or 64 bytes
 bool use_orientation = false // true if point pairs are "rotated"
 // according to keypoint orientation
);

 virtual int descriptorSize() const; // number of bytes for features
 virtual int descriptorType() const; // Always returns CV_8UC1
};

At this time, the only two user-configurable parameters of the BRIEF descriptor
extractor are the number of bytes of information comprising the feature (equal to the
total number of tests divided by eight) and the use_orientation flag which is analo‐
gous to the role of the upright parameter of SURF algorithm. The same considera‐
tions are applicable here also—when the features are unlikely to rotate much—for
example, you recognize road signs or stitch images—use_orientation should likely
be set to false. Otherwise, you may wish to set it to true.

In order to actually compute descriptors from an image and a set of keypoint loca‐
tions, cv::xfeatures2d::BriefDescriptorExtractor uses the compute() interfaces
defined in the cv::Feature2D base class.

The BRISK algorithm
Not long after the introduction of the BRIEF descriptor, several new techniques
appeared that use a similar notion of point-wise comparison as a means to produce a

556 | Chapter 16: Keypoints and Descriptors

40 “BRISK” does not appear to stand for anything; it is not an acronym. Rather, the name is essentially a play on
words similar to BRIEF.

41 The feature detector called “AGAST” (Adaptive and Generic Corner Detection Based on the Accelerated Seg‐
ment Test) [Mair10] is an improvement on FAST and a precursor to BRISK. It is mentioned here for com‐
pleteness, but is not implemented separately in the OpenCV library.

42 In the original implementation there was just one intra-octave per scale, thus creating just some number N of
scales, and N – 1 intra-octaves for a total of 2N – 1 images.

compact descriptor that could be compared quickly. The BRISK40 descriptor (see
Figure 16-28), introduced by Leutenegger et al., attempts to improve on BRIEF in
two distinct ways [Leutenegger11]. Firstly, BRISK introduces a feature detector of its
own (recall that BRIEF is only a method for computing descriptors). Second, the
BRISK feature itself, though similar to BRIEF in principle, attempts to organize the
binary comparisons in a manner that improves robustness of the feature as a whole.

Figure 16-28. Here the BRISK feature detector is used on our two reference images. The
left image contains 232 features, while the right contains 734. The more complex visible
background in the right image contributes most of the new features, however, and the
features on the car are relatively stable in both number and location

The feature-detector portion of BRISK is essentially based on the FAST-alike
AGAST41 detector, with the improvement that it attempts to identify a scale for the
feature as well as an orientation. BRISK identifies the scale by first creating a scale
space pyramid with a fixed number of scales (factors of two in size), and then com‐
puting a fixed number of intra-octaves per scale.42 The first step of the BRISK feature
detector is to apply FAST (or actually AGAST) to find features at all of these scales.
Once this is done, nonmaxima suppression is applied; that is, features whose score
(called ρ0 in our discussion of FAST) is not the largest of all of its neighbors are
removed; this leaves only the “maximal” features.

Once a list of features is found in this way, BRISK then goes on to compute the
AGAST score at the corresponding locations in the image immediately larger and
immediately smaller (Figure 16-29). At this point, a simple quadratic is fit to the

Generalized Keypoints and Descriptors | 557

AGAST scores (as a function of scale), and the maximum point of that quadratic is
taken to be the true scale of the BRISK feature. In this way, a continuous value is
extracted and the BRISK feature is not forced to be associated with one of the discrete
images computed in the pyramid. A similar interpolation method is applied in pixel
coordinates to assign a subpixel location to the feature.

Figure 16-29. BRISK constructs the scale space using several octaves with “intra-
octaves” in between. When a FAST feature is found at one scale, its FAST strength is
computed at that scale and at the scale immediately above and below (left). These
strengths are used to fit a quadratic curve and the scale at which the maximum score is
expected is extrapolated from that curve (right)

In addition to a scale, BRISK features also have an orientation. To see how, we need
to first understand how the sampling pattern used by BRISK differs from the random
sampling pattern used by BRIEF. The BRISK descriptor is constructed by a series of
rings around the center point. Each ring has some number Ki of sample points alloca‐
ted to it, and each sample point is assigned a circular area of diameter equal to the
circumference of the particular circle Ci divided by Ki (Figure 16-30). This area corre‐
sponds to the image being convolved by a Gaussian of that particular radius (σi =
Ci/2Ki) and sampled at the indicated point.

558 | Chapter 16: Keypoints and Descriptors

Figure 16-30. The test points in the BRISK descriptor are identified in the figure by the
small solid dots. The regions contributing to each test point are shown as circles around
each point. Note that as the test points move out from the center of the descriptor the
size of the associated regions is increased. The left image shows only the points and
their associated regions (a). The center image shows all long-range pairings associated
with one particular point (b). The right image shows all of the short-range pairings
associated with that same point (c)

The brightness comparisons that comprise the bitwise descriptor (analogous to
BRIEF) are computed between pairings in all of the circles. In particular, these pair‐
ings are divided into two subsets, called short- and long-range pairings. The short-
range pairings are all the pairings between points that are less than some specific
distance dmax apart, while the long-range pairings are all of the pairings between
points that are more than a specific distance dmin apart. The short-range pairings form
the descriptor, while the long-range pairings are used to compute a dominant
orientation.

To see how this dominant orientation is constructed, first note that the BRISK
descriptor, like the BRIEF descriptor, computes differences in intensity between
point pairs. The BRISK descriptor, however, goes on to normalize those differences
by the distance between the points, thus creating what is in effect a local gradient. By
summing these local gradients over all of the long-range pairs, we compute an orien‐
tation that can be used to orient the descriptor. The short-range features are then
computed relative to this orientation such that the descriptor, made by thresholding
these short-range gradients, is effectively orientation independent. By tuning the
number of points per circle and the value of dmax, we can give the descriptor any
length. By convention, these values are chosen so as to make the descriptor 512 bits
long, the same as the (typical) BRIEF descriptor.

Generalized Keypoints and Descriptors | 559

43 Deep inside of the BRISK code, BRISK calls cv::FAST and passes precisely this threshold value to the FAST
algorithm.

Keypoint finder and feature extractor. The cv::BRISK object inherits from the cv::Fea
ture2D interface, and thus provides both a feature-finding capability and a
descriptor-extraction capability. Here is the (abbreviated as usual) definition of the
cv::BRISK object:

class cv::BRISK : public cv::Feature2D {

public:
 static Ptr<BRISK> create(
 int thresh = 30, // Threshold passed to FAST
 int octaves = 3, // N doublings in pyramid
 float patternScale = 1.0f // Rescale default pattern
);

 int descriptorSize() const; // descriptor size
 int descriptorType() const; // descriptor type

 static Ptr<BRISK> create(// Compute BRISK features
 const vector<float>& radiusList, // Radii of sample circles
 const vector<int>& numberList, // Sample points per circle
 float dMax = 5.85f, // Max distance for short pairs
 float dMin = 8.2f, // Min distance for long pairs
 const vector<int>& indexChange = std::vector<int>() // Unused
);

};

The cv::BRISK::create() constructor method accepts three arguments: the AGAST
threshold, the number of octaves, and an overall scale factor for the pattern. If you
use this constructor, the locations of the sample points will be taken from a fixed
lookup table inside of the library. The threshold argument, thresh, sets the threshold
that will be used by the AGAST feature detector.43 The number of octaves, octaves,
sets the number of full octaves. Remember that if you set this to some number N,
then the total number of levels computed will be 2N – 1 (including the intra-octaves).
The final patternScale argument applies an overall scale factor to the built-in
pattern.

The overloaded cv::BRISK::detectAndCompute() method implements the usual
feature detection and descriptor extraction, which are inherited from the cv::Fea
ture2D interface.

560 | Chapter 16: Keypoints and Descriptors

44 The feature used in ORB is also referred to (by its creators as well as others) as an rBRIEF (or rotation-aware
BRIEF) feature, and is closely related to the BRIEF feature we just encountered. In fact this is the origin of the
name ORB, which is derived from “Oriented FAST and Rotation Aware BRIEF.”

45 You will recall from our earlier discussion that Harris originally proposed a slightly different constraint than
the one later proposed by Shi and Tomasi. The cv::GoodFeaturesToTrackDetector() algorithm (by default)
uses the latter, while ORB uses the former.

Additional functions provided by cv::BRISK. In addition to the preceding methods, which
you would expect from any function that inherits from cv::Feature2D, cv::BRISK
has an extra extended constructor: cv::BRISK::create(). This function is used if
you do not want to rely on the built-in pattern for the sample points, which is pro‐
vided by the library. If you would rather build your own pattern, then you must pro‐
vide a list of radii for the circles in the form of an STL-style vector of numbers for the
radiusList argument. Similarly, you must provide an STL-style list of integers (of
the same length as radiusList) to numberList that indicates the number of sample
points to be used at each radius. You can then (optionally) specify dMax and dMin, the
maximum distance for short-range pairings and the minimum distance for long-
range pairings (dmax and dmin from the previous section). The final argument, index
Change, currently has no effect, and should best be omitted.

The ORB feature detector and cv::ORB
For many applications, feature detector speed is not only helpful, but essential. This is
particularly true for tasks that are expected to run in real time on video data, such as
augmented reality or robotics applications. For this reason, the SURF feature was
developed with the goal of providing similar capability to SIFT, but at a much higher
speed. Similarly, the ORB feature [Rublee11] was created with the goal of providing a
higher-speed alternative to either SIFT or SURF (see Figure 16-31). The ORB feature
uses a keypoint detector that is very closely based on FAST (which we saw earlier in
this chapter), but uses a substantially different descriptor, based primarily on BRIEF.
The BRIEF descriptor is augmented in ORB by an orientation computation that
essentially gives ORB features the same sort of rotational invariance enjoyed by SIFT
and SURF.44

This first stage of the ORB algorithm is to use FAST to locate a candidate set of fea‐
tures. FAST features are inexpensive to locate, but have several shortcomings. One is
that they tend to respond to edges as well as corners. In order to overcome this, the
ORB algorithm computes the Harris corner measure for the located FAST points.
This measure, you may recall, is a constraint on the eigenvalues of an autocorrelation
matrix formed from pixels near the location of the feature.45 Using this process, we
then construct an image pyramid so that a scale space search can be done. Because
the Harris corner measure provides not only a test for the quality of a FAST feature,

Generalized Keypoints and Descriptors | 561

but also a better metric for feature quality, it can also be used to select for the “best”
features in an image. When some particular number of features is desired (which is
commonly the case in practical applications), the features are ordered by the Harris
corner measure; those that are the best are retained until the desired number is
found.

Figure 16-31. Two images of the same vehicle each produce 500 ORB features. An inter‐
esting characteristic of ORB is visible here, namely that if a corner is large in the image,
many ORB features of differing sizes will be found on that same corner

An important contribution of the ORB algorithm relative to FAST (or the Harris cor‐
ners) is the introduction of an orientation to the located keypoints. The orientation is
assigned in a two-step process. First the first moments (in x and y) are computed for
the distribution of intensities inside of a box around the feature. This box is of side
length equal to twice the scale at which the feature was found (an approximation to a
disk of radius given by the scale). Figure 16-32 shows the normalized x- and y-
gradients (they are divided by their mean) that gives the orientation of the gradient
direction relative to the center of the feature. For this reason, this ORB feature is also
known as an oFAST feature, or oriented-FAST feature.

Figure 16-32. We compute the orientation of the ORB feature by analyzing the first
moments (average intensity) of the image in a box whose size is given by the scale at
which the FAST feature was found; the orientation of the feature is given by the direc‐
tion vector from the center of the feature to the point indicated by those moments

562 | Chapter 16: Keypoints and Descriptors

46 Recall from our earlier discussion of BRIEF that the BRIEF descriptor used a random array of “tests.” This
array, however, had no ability to be “aligned” with the feature (e.g., in the manner of SIFT).

47 The astute reader will recognize that the first two properties are actually the same property for a distribution
of binary variables.

48 This data set is known as the PASCAL-2006 data set, and is publicly available on the Internet. It is a well-
known benchmark data set widely used in computer vision research and widely cited in computer vision
papers. It is an open question, however, whether performance on any specialized type of data set might be
affected by the choice to train the ORB feature set on PASCAL-2006 (rather generic) data rather than data
from the specialized type.

Once the feature has been located and an orientation has been assigned, it is possible
to compute a feature vector relative to that orientation. The resulting feature can then
be used in a rotationally invariant way.46 The feature descriptor used by ORB, as
mentioned earlier, is based on the descriptor used in the BRIEF algorithm, but the
introduction of orientation information is an important differentiator of the ORB
feature relative to its predecessor BRIEF.

The second significant difference between the ORB and BRIEF features is that
BRIEF’s authors actually produced the rotation-aware BRIEF descriptor by analyzing
a large data set of images and looking for test pairs that had particular properties: a
high variance, an average result close to 0.5, and a minimal correlation with the
other tests pairs.47 In order to do this analysis, however, they converted each descrip‐
tor to a representation that located the test points relative to the orientation of the
feature. This analysis was done once in the construction of the ORB descriptor by its
authors, and is hereafter “built into” the descriptor. The data set they used was a well-
known image data set containing many kinds of images.48

Keypoint finder and feature extractor. As with SIFT and SURF, the ORB algorithm is
implemented in OpenCV via the cv::Feature2D interface. Here is the (slightly
abbreviated) definition of the cv::ORB object that implements the ORB algorithm:

class ORB : public Feature2D {
public:
 // the size of the signature in bytes
 enum { kBytes = 32, HARRIS_SCORE = 0, FAST_SCORE = 1 };

 static Ptr<ORB> create(
 int nfeatures = 500, // Maximum features to compute
 float scaleFactor = 1.2f, // Pyramid ratio (greater than 1.0)
 int nlevels = 8, // Number of pyramid levels to use
 int edgeThreshold = 31, // Size of no-search border
 int firstLevel = 0, // Always '0'
 int WTA_K = 2, // Pts in each comparison: 2, 3, or 4
 int scoreType = 0, // Either HARRIS_SCORE or FAST_SCORE
 int patchSize = 31, // Size of patch for each descriptor
 int fastThreshold = 20 // Threshold for FAST detector

Generalized Keypoints and Descriptors | 563

);

 int descriptorSize() const; // descriptor size (bytes), always 32
 int descriptorType() const; // descriptor type, always CV_8U
};

The ORB constructor supports a somewhat intimidating list of arguments. Most of
these can safely be left at their default values and you will get satisfactory results. The
first argument, nfeatures, is probably the one you are most likely to change; it sim‐
ply determines the number of keypoints you would like cv::ORB to find at a time.

Because the ORB detector uses an image pyramid, you must tell the detector both
what the scale factor is between each layer in the pyramid and how many levels the
pyramid is to have. You do not want to use a coarse factor-of-two type pyramid of
the kind that would be created by cv::buildPyramid() because too many features
would get lost in between. The default value for the scale factor is only 1.2. The vari‐
ables that control the scale factor and the number of levels in the pyramid are scale
Factor and nlevels, respectively.

Because the keypoints are of a specific size in pixels, it is necessary to avoid the
boundaries of the image. This distance is set by edgeThreshold. The size of the patch
used for individual features can also be set with the patchSize argument. You will
notice that they have the same default value of 31. If you change patchSize, you
should make sure that edgeThreshold remains equal to or greater than patchSize.

The firstLevel argument allows you to set the scale pyramid such that the level
whose scale is unity is not necessarily the first level. In effect, setting firstLevel to a
value other than zero means that some number of images in the pyramid will actually
be larger than the input image. This is meaningful with ORB features because their
descriptors rely intrinsically on a smoothed version of the image anyhow. In most
cases, however, making the firstLevel very high will produce features at the result‐
ing smaller scales that are mainly driven by noise.

The argument WTA_K controls the tuple size, which in turn controls precisely how the
descriptor is constructed from the binary tests. The case of WTA_K=2 is the scenario we
described before in which each bit of each descriptor byte is a separate comparison
between pairs of test points. These test points are drawn from a pregenerated list. In
the case of WTA_K=3, the bits of the descriptor are set two at a time through a three-
way comparison between sets of three test points from that list. Similarly, for
WTA_K=4, the bits of the descriptor are set two at a time through a four-way compari‐
son between sets of four test points.

564 | Chapter 16: Keypoints and Descriptors

49 As implemented, when you request some specific number of features, exactly twice that many will be retained
using the FAST metric, and then for those, the Harris metric will be computed and the best half by that metric
will be kept.

It is important to understand, however, that the pregenerated list
of test points described in the beginning of this section is only
really meaningful for a tuple size of 2, and for a feature size of 31. If
you use features of any other size, the test points will be generated
randomly (instead of the precomputed list). If you use a tuple size
other than 2, the test points will also be arranged randomly into
tuples of the correct length. (So if you use a feature size of 31, but a
tuple size other than 2, you will be using the precomputed list of
test points, but in a random manner, which is arguably no better
than just using random test points altogether.)

The last argument to the cv::ORB constructor is the score type. The scoreType
argument can be set to one of two values: cv::ORB::HARRIS_SCORE or
cv::ORB::FAST_SCORE. The former case was described in the beginning of this sec‐
tion, in which a large number of features are found, all have their scores recomputed
using the Harris metric, and only the best ones by that metric are kept. Unfortu‐
nately, this incurs compute cost in two ways. One is that the Harris metric takes time
to compute, and the other is the need to compute more feature metrics in the first
place.49 The alternative is to use the metric natively associated with FAST. The fea‐
tures are not as good, but it improves run speed slightly.

Additional functions provided by cv::ORB. cv::ORB also includes a bunch of get*/set*
methods that can be used to retrieve or modify various algorithm parameters after
the class instance is constructed.

The FREAK descriptor extractor and cv::xfeatures2d::FREAK
As with the BRIEF descriptor, the FREAK algorithm (see Figure 16-33) computes a
descriptor only, and does not have a naturally associated keypoint detector. Origi‐
nally introduced as an advancement on BRIEF, BRISK, and ORB, the FREAK
descriptor is a biologically inspired descriptor that functions much like BRIEF, differ‐
ing primarily in the manner in which it computes the areas for binary comparison
[Alahi12]. The second, more subtle, distinction is that rather than making point com‐
parisons of pixels around a uniformly smoothed image, FREAK uses points for com‐
parison that each correspond to a different sized region of integration, with points
farther from the center of the descriptor being assigned larger regions. In this way
FREAK captures an essential feature of the human visual system, and thus derives its
name Fast Retinal Keypoint.

Generalized Keypoints and Descriptors | 565

Figure 16-33. A diagram representing the operation of the FREAK descriptor. Straight
lines represent possible comparisons between vertices. The circles represent the “recep‐
tive field” associated with each vertex. Notice that the sizes of the receptive fields grow
as the vertices get farther from the center of the descriptor;. Figure taken with permis‐
sion from [Alahi12]

To understand the FREAK feature, it is useful to first revisit the BRIEF feature, but
from a slightly different perspective than when it was introduced earlier. Recall that
the BRIEF feature involves bitwise comparisons between a large number of pairs of
individual pixel intensities in the immediate proximity of the feature. To improve
robustness to noise, the BRIEF algorithm first applies a Gaussian filter to the image
before computing these pixel intensities.

Alternatively, we can think of each of the pixels used in the comparison as represent‐
ing Gaussian weighted sums over the pixels in the input image corresponding to the
immediate vicinity of the output pixel. Mathematically these two are exactly equiva‐
lent, but intuitively, this new picture naturally introduces the idea of the receptive
field of a comparison pixel, and calls to mind the relationship between the ganglion
cells of the retina and the set of individual photoreceptors to which that ganglion cell
responds.

One substantial difference, however, between the receptive fields of the BRIEF feature
and those of the human eye is that while the receptive fields in BRIEF are of uniform
size (recall the Gaussian convolution), those of the human retina are increasingly
large as one moves farther from the center of the retina. Inspired by this biological

566 | Chapter 16: Keypoints and Descriptors

observation, the FREAK descriptor employs a series of receptive fields that increase
in size with distance from the center of the feature (the circles in Figure 16-33). In the
standard construction there are 43 such visual fields.

As was the case with the ORB descriptor, the creators of the FREAK descriptor then
went on to use a learning technique to organize the possible comparisons between
these receptive fields in order of their decreasing utility. In this way the comparisons
with the greatest discriminative power (across a large training set of features) could
be given priority over those with comparatively less discriminative power. Once this
ordering was complete, pairs were retained only if they showed strong decorrelation
with pairs of higher individual utility. In application, given a few dozen fields of vary‐
ing sizes and thousands of possible comparisons, only the most useful 512 were
found to be worth keeping.

Of these 512 comparisons, the FREAK descriptor organizes them into four sets of
128. Empirically, it was observed that each group appears to successively employ
more of the small-scale receptive fields near the center, but that the most initially dis‐
criminative comparisons are between the large field areas. As a result, it is possible to
first make comparisons only with these large field values and then, if enough similar‐
ity is found, to proceed to the finer areas to refine the match. Each set of 128 compar‐
isons corresponds only to an XOR operation (and bit summation) across a single 16-
byte value. This number is significant, as many modern processors can make such a
comparison in a single cycle. Because it is possible to reject the overwhelming major‐
ity of possible matches with just this single comparison, the FREAK descriptor has
been found to be extremely efficient.

Feature extractor. The FREAK feature is implemented in OpenCV by the class of the
same name: cv::xfeatures2d::FREAK, which inherits from the cv::Features2D
interface and implements the descriptor extraction part.

class FREAK : public Features2D {

public:

 static Ptr<FREAK> create(
 bool orientationNormalized = true, // enable orientation normalization
 bool scaleNormalized = true, // enable scale normalization
 float patternScale = 22.0f, // scaling of the description pattern
 int nOctaves = 4, // octaves covered by detected keypoints
 const vector<int>& selectedPairs = vector<int>() // user selected pairs
);

 virtual int descriptorSize() const; // returns the descriptor length in bytes
 virtual int descriptorType() const; // returns the descriptor type

 ...
};

Generalized Keypoints and Descriptors | 567

50 Recall that a similar trade-off was possible between the intrinsically oriented SURF features and the “upright”
(U-SURF) features.

51 If you are wondering why the terminology for this is “octave,” remember that the cv::KeyPoint object has an
element octave, which indicates the scale at which that keypoint was found. The nOctaves argument to
cv::FREAK::FREAK() corresponds to this same octave value. nOctaves should be set to (at least) the maxi‐
mum octave of the keypoint detector used, or to the max octave in the set of keypoints for which we want to
compute a description.

The FREAK constructor has a number of arguments that, as is often the case, can be
left safely at their default arguments most of the time. The first two represent slight
extensions to the published algorithm. As originally proposed, the FREAK features
have a fixed orientation and scale. By setting orientationNormalized to true, you
can ask the OpenCV FREAK object to build descriptors that are orientation invari‐
ant. This option reduces the discriminatory power of the keypoints, but in exchange
you get orientation invariance.50

To understand the roles of the argument scaleNormalized, you must recall first that
(most) keypoints have a size, which is set by the keypoint detector that located them
in the first place. If scaleNormalized is true, then the image patch around the fea‐
ture will first be rescaled by this keypoint size before the feature vector is computed.

The patternScale argument is used to uniformly rescale the FREAK receptor field
pattern. It is unlikely you will want to change this. Closely related to the pattern
Scale argument is the nOctaves argument. When the FREAK descriptor object is
created, a lookup table is generated containing all of the necessary information to
compute the FREAK descriptor at a range of scales. The combination of the pattern
Scale and nOctaves arguments allows you to control the span of this lookup table (in
terms of the size of the patterns). The exact scales generated are given by the follow‐
ing formula:

scalei = patternScale * 2i*(nOctaves
nbScales), for i ∈ {0, 1, … , nbScales}

Here nbScales is the total number of scales, equal to 64 in the current implementa‐
tion. Note that in every case the number of scales generated is the same, but the spac‐
ing between the scales is increased or reduced when nOctaves is increased or
reduced.51

The final argument to the constructor is selectedPairs. This argument is for real
experts, and allows you to override the lists of pairs used for comparison in the
descriptor’s construction. If present, selectedPairs must be a vector of exactly 512

568 | Chapter 16: Keypoints and Descriptors

52 The pairs are indexed from 0 to 902, starting at (1,0), (2,0), (2,1), and so on up to (42,41). There is no natural
explanation for this particular ordering, other than that the authors of this module opted to enclose a loop
running from index i = 1 to i < 43 around a loop running from j = 0 to j < i, and to construct all of the pairs
as pair[k] = (i,j). What is most important, however, is that you will be unlikely to interact with these indi‐
ces directly. If you are using these indices, chances are that OpenCV constructed them for you with the
cv::FREAK::selectPairs() function.

53 DenseFeatureDetector is not (yet?) available in OpenCV 3.0.

54 This density of features is unrealistically low, but was chosen for clarity of illustration.

integers. These integers index into an internal table of all possible pairings of fields.52

In this way, you can give your own pairs as integers. It is unlikely that most users
would ever use this feature; it is exposed only for serious power users—those who,
after reading the original paper on FREAK, would conclude that it was necessary to
repeat the learning process used by the creators of FREAK with some hope of maxi‐
mizing the efficacy of the descriptor on their own unique data set.

Dense feature grids and the cv::DenseFeatureDetector class
There is one other feature detector, which is really a sort of “almost” feature detector
in that it does not really detect features, it just generates them. The purpose of the
cv::DenseFeatureDetector class53 is just to generate a regular array of features in a
grid across your image (see Figure 16-34). In this case, nothing is done yet with these
features (i.e., no descriptors are computed). Once these keypoints are generated,
however, you can then compute any descriptor for them that you like. It turns out
that, in many applications, it is not only sufficient, but especially desirable, to com‐
pute a descriptor everywhere, in the sense that “everywhere” is represented by a uni‐
form grid of some density you choose.

Figure 16-34. Here dense features are generated on the two views of an automobile; in
this case, there are three levels, with a starting spatial step of 50, a scale step of 2.0, and
feature step being scaled as well as feature size.54

Generalized Keypoints and Descriptors | 569

55 The default value for the scale multiplier is 0.1. It can be a number larger than 1 as well. It is essentially a
matter of personal style as to whether you like to think of the grids as getting “finer” or “coarser” with each
step.

It is also often useful to be able to compute not only a uniform grid of features in
image space, but also to sample that space at a uniform number of scales. cv::Dense
FeatureDetector will also do this for you if you so desire.

Keypoint finder. The keypoint finder for the dense feature class is just derived from
the cv::FeatureDetector interface, as it has no descriptor extraction functionality.
Thus, the main thing we need to understand about it is how to use its constructor in
order to configure it:

class cv::DenseFeatureDetector : public cv::FeatureDetector {

public:
 explicit DenseFeatureDetector(
 float initFeatureScale = 1.f, // Size of first layer
 int featureScaleLevels = 1, // Number of layers
 float featureScaleMul = 0.1f, // Scale factor for layers
 int initXyStep = 6, // Spacing between features
 int initImgBound = 0, // No-generate boundary
 bool varyXyStepWithScale = true, // if true, scale 'initXyStep'
 bool varyImgBoundWithScale = false // if true, scale 'initImgBound'
);

 cv::AlgorithmInfo* info() const;

 ...
};

The constructor for the dense feature detector has a lot of arguments because there
are a lot of different ways you might want to generate feature grids. The first argu‐
ment, initFeatureScale, sets the size of the first layer of features. The default value
of 1.0 is almost certainly not what you want, but remember that the right size for
features depends not only on the nature of your image, but also on the descriptor
type you are going to use.

By default, the dense feature detector will generate a single grid of keypoints. You can
generate a pyramid of such keypoints, however, by setting the featureScaleLevels
to any value larger than 1. Each grid generated after the first will assign the scale of
the generated features to be the initFeatureScale multiplied by one factor of fea
tureScaleMul for each level above the first that scale was generated on.55

Figure 16-35 shows a representation of the use of this detector. Note that by default
the locations of the features are not scaled, only the scale value assigned to them.

570 | Chapter 16: Keypoints and Descriptors

Figure 16-35. cv::DenseFeatureDetector generates one or more grids of keypoints of
varying scale

The spacing between the features is set by initXyStep. This will be the spacing
between all of the features on all levels, unless varyXyStepWithScale is set to true, in
which case the step between the features will also be scaled by one power of feature
ScaleMul for each level above the first that scale was generated on.

Features will not be generated on the boundary of the image. You can increase the
width of the area in which features will not be generated by setting initImgBound. In
most cases, it makes sense to set initImgBound to be equal to initFeatureScale (i.e.,
such that generated features do not spill over the edges of the image). In order to
have this boundary scale up in the case of multiple levels, however, you must set vary
ImgBoundWithScale to true; otherwise, it will keep a constant size.

Keypoint Filtering
It is a relatively common situation that you find yourself with a list of keypoints that
needs to be pruned in some way. Sometimes this happens because the list is just too
long, and you want to throw out some of the lower-quality ones until you get a man‐
ageable number. Other times, you need to remove duplicates or all of the keypoints
that are outside of some region. OpenCV handles all of these sorts of tasks with an
object called a keypoint filter. The keypoint filter provides a variety of methods you
can use to cull lists of keypoints. These functions are heavily used internally by the

Generalized Keypoints and Descriptors | 571

implementations of various keypoint finders, but you will probably find them very
useful as standalone tools in many of your applications as well.

The cv::KeyPointsFilter class

All keypoint filtering is done by methods of a single cv::KeyPointsFilter class. The
cv::KeypointFilter class is used internally by many of the keypoint detectors we
have already encountered in order to filter by location (apply a mask) or reduce the
number of keypoints to some number that are the “best” from a list. The salient part
of the definition of this class is as follows:

class cv::KeyPointsFilter {
public:
 static void runByImageBorder(
 vector< cv::KeyPoint >& keypoints, // in/out list of keypoints
 cv::Size imageSize, // Size of original image
 int borderSize // Size of border in pixels
);
 static void runByKeypointSize(
 vector< cv::KeyPoint >& keypoints, // in/out list of keypoints
 float minSize, // Smallest keypoint to keep
 float maxSize = FLT_MAX // Largest one to keep
);
 static void runByPixelsMask(
 vector< cv::KeyPoint >& keypoints, // in/out list of keypoints
 const cv::Mat& mask // Keep where mask is nonzero
);
 static void removeDuplicated(
 vector< cv::KeyPoint >& keypoints // in/out list of keypoints
);
 static void retainBest(
 vector< cv::KeyPoint >& keypoints, // in/out list of keypoints
 int npoints // Keep this many
);
}

The first thing you probably noticed was that all of these methods were static, so
really cv::KeyPointsFilter is more of a namespace than an object. Each of the five
filter methods takes a reference to an STL-style vector of cv::KeyPoint objects called
keypoints. This is both the input and the output of the function (i.e., you will give
the function your keypoints, and when you check, you will find some of them are
now missing).

The cv::KeyPointsFilter::runByImageBorder() function removes all of the key
points that are within borderSize of the edge of the image. You must also tell
cv::KeyPointsFilter::runByImageBorder() how big the image was in the first
place with the imageSize argument.

572 | Chapter 16: Keypoints and Descriptors

The cv::KeyPointsFilter::runByKeypointSize() function removes all of the key
points that are either smaller than minSize or larger than maxSize.

The cv::KeyPointsFilter::runByPixelsMask() function removes all of the key
points that are associated with zero-valued pixels in mask.

The cv::KeyPointsFilter::removeDuplicated() function removes all duplicate
keypoints.

The cv::KeyPointsFilter::retainBest() function removes keypoints until the
target number given by npoints is reached. Keypoints are removed in ascending
order of their quality, as indicated by response.

Matching Methods
Once you have your keypoints, you will want to use them to do something useful. As
we discussed early on, the two most common applications for keypoint methods are
object recognition and tracking. In both cases, we saw that it was objects derived
from the cv::DescriptorMatcher base class that would provide this functionality for
us. In this section, we will look at the options available to us for doing this kind of
matching.

At this time, there are essentially two different matching methods you can use. The
first is brute force matching, which is the most basic and obvious choice—just com‐
pare everything in set A to everything in set B. The second is called FLANN, and is
really an interface to a collection of methods for locating nearest neighbors.

Brute force matching with cv::BFMatcher

The (important part of the) declaration of the cv::BFMatcher class is shown here:

class cv::BFMatcher : public cv::DescriptorMatcher {

public:

 BFMatcher(int normType, bool crossCheck=false);

 virtual ~BFMatcher() {}

 virtual bool isMaskSupported() const { return true; }
 virtual Ptr<DescriptorMatcher> clone(
 bool emptyTrainData=false
) const;
 ...

};

The brute force matcher essentially implements the most straightforward solution to
the matching problem. It takes each descriptor in the query set and attempts to match

Generalized Keypoints and Descriptors | 573

56 Recall that these masks were the ones that did not mask the image, but rather indicated which features should
and should not be compared during matching.

it with each descriptor in the training set (either the internal dictionary, or a set pro‐
vided with the query set). The only thing you need to decide when you create a brute
force matcher is what distance metric it will use in order to compute distances for
comparison. The available options are shown in Table 16-2.

Table 16-2. Available metrics for the brute force matcher, with their associated formulas;
the summations are over the dimensions of the feature vector

Metric Function
NORM_L2

NORM_L2SQR

NORM_L1

NORM_HAMMING

NORM_HAMMING2

It is worth noting that the member function isMaskSupported() always returns true.
We will see that this is not the case for the FLANN matcher in the next section. Only
the brute force matcher (at this time) supports the mask construct described when we
discussed the cv::DescriptorMatcher base class.56

The final feature of the brute force matching object is what is called cross-checking.
Cross-checking is turned on with the argument crosscheck to the cv::BFMatcher
constructor. When cross-checking is enabled, a match between object i of the query
set and object j of the training set will be reported only if both train[j] is
query[i]’s closest neighbor in the training set and query[i] is train[j]’s closest
neighbor in the query set. This is very useful for eliminating false matches, but costs
additional time to calculate.

574 | Chapter 16: Keypoints and Descriptors

Fast approximate nearest neighbors and cv::FlannBasedMatcher
The term FLANN refers to the Fast Library for Approximate Nearest Neighbor com‐
putation. OpenCV provides an interface to FLANN, which itself provides a variety of
algorithms for finding (or at least approximately finding) the nearest neighbors of
points in high-dimensional spaces. Conveniently, this is precisely what we need for
descriptor matching. The common interface to FLANN is through the cv::FlannBa
sedMatcher object, which of course is derived from the cv::DescriptorMatcher base
class:

class cv::FlannBasedMatcher : public cv::DescriptorMatcher {

public:

 FlannBasedMatcher(
 const cv::Ptr< cv::flann::IndexParams>& indexParams
 = new cv::flann::KDTreeIndexParams(),
 const cv::Ptr< cv::flann::SearchParams>& searchParams
 = new cv::flann::SearchParams()
);

 virtual void add(const vector<Mat>& descriptors);
 virtual void clear();
 virtual void train();
 virtual bool isMaskSupported() const;

 virtual void read(const FileNode&); // Read from file node
 virtual void write(FileStorage&) const; // Write to file storage

 virtual cv::Ptr<DescriptorMatcher> clone(
 bool emptyTrainData = false
) const;
 ...
};

Pretty much everything in the preceding declaration is what you should have
expected by now. The one important feature is the constructor for cv::FlannBased
Matcher, which takes some special structures that are used to actually configure the
matching. These arguments determine both what method the FLANN matcher will
use, as well as how to parameterize the selected method. For example, the default
value for the indexParams argument is new cv::flann::KDTreeIndexParams(). This
tells the FLANN matcher that the index method it should use is kd-trees as well as
how many kd-trees to use (the number of trees is an argument to the
cv::flann::KDTreeIndexParams() constructor, whose default happens to be 4). The
searchParams argument is somewhat more generic, and plays a role somewhat analo‐
gous to cv::TermCriteria, but with a little more general function. We will look at
each of the indexing methods, and then return to the cv::flann::SearchParams
object.

Generalized Keypoints and Descriptors | 575

57 This is kind of a subtle point, but what happens is that there is one master list of nearest neighbors, and as
each tree is descended, the nearest neighbor candidates are compared not only with what has been found so
far on that tree, but with what has been found on all trees thus far.

58 We will get to the k-means algorithm when we get to the machine learning library in Chapter 20. For now, it
is enough to know that it attempts to organize some large number of points into k distinct clusters.

Linear indexing with cv::flann::LinearIndexParams. You can ask the FLANN library to do
essentially the same thing that cv::BFMatcher would have done. This is usually use‐
ful for benchmark comparisons, but also can be used as a comparison to verify that
other, more approximating methods are giving satisfactory results. The constructor
for cv::LinearIndexParams takes no arguments. By way of example, the following
code generates a matcher that is essentially equivalent to cv::BFMatcher:

cv::FlannBasedMatcher matcher(
 new cv::flann::LinearIndexParams(), // Default index parameters
 new cv::flann::SearchParams() // Default search parameters
);

KD-tree indexing with cv::flann::KDTreeIndexParams. The cv::flann::KDTreeIndexPar
ams index parameters tell the FLANN matcher that you would like to use randomized
kd-trees for matching. FLANN’s normal behavior is to assume that you want many
such randomized trees to be generated as the indexing method, and then it will
search them all when you attempt to match.57 The constructor for the
cv::flann::KDTreeIndexParams accepts one argument, which specifies the number
of such trees to construct. The default value is 4, but it is common to make this num‐
ber as large as 16 or so. The declaration for cv::flann::KDTreeIndexParams is the
following:

struct cv::flann::KDTreeIndexParams : public cv::flann::IndexParams {
 KDTreeIndexParams(int trees = 4); // kd-tree needs number of trees
};

An example declaration of a matcher using cv::flann::KDTreeIndexParams is
shown here:

cv::FlannBasedMatcher matcher(
 new cv::flann::KDTreeIndexParams(16), // Index using 16 kd-trees
 new cv::flann::SearchParams() // Default search parameters
);

Hierarchical k-means tree indexing with cv::flann::KMeansIndexParams. Another option
for constructing the index is to use hierarchical k-means clustering.58 The advantage
of k-means clustering is that it makes some intelligent use of the density of points in
the database. Hierarchical k-means clustering is a recursive scheme by which the data
points are first grouped into some number of clusters, and then each cluster is grou‐

576 | Chapter 16: Keypoints and Descriptors

59 Recall that k-means is an NP-hard problem, so most algorithms used to compute k-means clustering are
approximate, and use an iterative scheme to find a locally optimal solution given some particular starting set
of cluster center candidates.

60 If this parameter is nonzero, it indicates that the algorithm should take into account the overall size of the
domain as part of its consideration of where to go next.

ped into some number of subclusters, and so on. Obviously this is going to be more
helpful when you have reason to believe that such structure exists in the data in the
first place. The declaration for cv::flann::KMeansIndexParams is the following:

struct cv::flann::KMeansIndexParams : public cv::flann::IndexParams {

 KMeansIndexParams(
 int branching = 32, // Branching factor for tree
 int iterations = 11, // Max for k-means stage
 float cb_index = 0.2, // Probably don't mess with
 cv::flann::flann_centers_init_t centers_init
 = cv::flann::CENTERS_RANDOM
);

};

The default parameters for the cv::flann::KMeansIndexParams structure are all per‐
fectly reasonable values, so in many cases, you will just leave these. The first argu‐
ment, branching, is the branching factor that is used in the hierarchical k-means tree.
It determines how many clusters will be formed at each level of the tree. The next
argument, iterations, determines how many iterations will be allowed to the k-
means algorithm for the formation of each cluster.59 It can be set to -1 to force the
clustering algorithm to run to completion at every node in the tree. The third argu‐
ment controls how the cluster centers are initialized. Traditionally, random initializa‐
tion was common (cv::flann::CENTERS_RANDOM), but in recent years it has been
shown that in most cases, a prudent choice of starting centers can give substantially
better results. The two additional options cv::flann::CENTERS_GONZALES (Gon‐
zales’s algorithm [Tou77]) and cv::flann::CENTERS_KMEANSPP (the so called “k-
means++” algorithm [Arthur07]) are available, with the latter being an increasingly
standard choice. The final argument, cb_index (cluster boundary index), is really
there for true experts in the FLANN library; it is used when the tree is being searched,
and controls how the tree will be explored. It is best left at its default value, or set to 0
(which indicates that searches that exhaust one domain should move directly to the
closest unexplored domain60).

Combining KD-trees and k-means with cv::flann::CompositeIndexParams. This method
simply combines the random kd-tree and k-means methods described earlier and
attempts to find the best matches as found by either method. Because these are all

Generalized Keypoints and Descriptors | 577

approximate methods, there is always potential benefit to searching another way.
(You could think of this as an extension of the logic behind having multiple random
trees in the kd-tree method.) The constructor for the cv::flann::CompositeIndex
Params object combines the arguments for the kd-tree and k-means methods:

struct cv::flann::CompositeIndexParams : public cv::flann::IndexParams {

 CompositeIndexParams(
 int trees = 4, // Number of trees
 int branching = 32, // Branching factor for tree
 int iterations = 11, // Max for k-means stage
 float cb_index = 0.2, // Usually leave as-is
 cv::flann::flann_centers_init_t centers_init
 = cv::flann::CENTERS_RANDOM

);

};

Locality-sensitive hash (LSH) indexing with cv::flann::LshIndexParams. Another, very dif‐
ferent method of indexing the space of known objects is to attempt to use hash func‐
tions to map similar objects into the same buckets. To the extent that this can be
done, these hash functions can be used to generate a list of candidate objects very
quickly, which can then be evaluated and compared to one another. This technique is
called locality-sensitive hashing (LSH). The variation of LSH implemented in
OpenCV as part of the FLANN library was first proposed by Lv et al. [Lv07]:

struct cv::flann::LshIndexParams : public cv::flann::IndexParams {

 LshIndexParams(
 unsigned int table_number, // Number of hash tables to use
 unsigned int key_size, // key bits, usually '10' to '20'
 unsigned int multi_probe_level // Best to just set this to '2'
);

};

The first argument, table_number, is the number of actual hash tables to use. This
number is typically tens of tables, with 10 to 30 being reasonable numbers. The sec‐
ond argument, key_size, is the size of the hash key (in bits). This number is typically
also more than 10 and usually less than 20. The last argument, multi_probe_level,
controls how neighboring buckets are searched; it is part of what distinguishes the
multiprobe algorithm (cited earlier) from previous LSH implementations. The rec‐
ommended value for multi_probe_level is 2. If it is set to 0, the algorithm will
degenerate into non-multiprobe LSH.

578 | Chapter 16: Keypoints and Descriptors

LSH indexing in FLANN works only for binary features (using
Hamming distances); it should not be applied to other distance
metrics.

Automatic index selection with cv::flann::AutotunedIndexParams. You can also ask
OpenCV/FLANN to attempt to identify for you what the best indexing scheme is.
Needless to say, this will take a while. The basic idea behind this approach is that you
set a target precision, which is the percentage of nearest neighbor searches you would
like to return the correct exact solution. Of course, the higher you make this, the
more difficult it will be for the algorithm to find an indexing scheme that can deliver,
and the longer it will take to actually generate a full index for all of your data of that
type:

struct cv::flann::AutotunedIndexParams : public cv::flann::IndexParams {

 AutotunedIndexParams(
 float target_precision = 0.9, // Percentage of searches required
 // to return an exact result
 float build_weight = 0.01, // Priority for building fast
 float memory_weight = 0.0, // Priority for saving memory
 float sample_fraction = 0.1 // Fraction of training data to use
);

};

The target precision is set by the argument targetPrecision. When you create a
FLANN-based matcher using cv::flann::AutotunedIndexParams, you will also
have to indicate how important it is to you that the index builds quickly; this is con‐
trolled by the build_weight argument. If you do not care much how long it takes to
build the index, so long as your returns are quick, you can set this to a very small
value (such as the default of 0.01). If you need to build your index often, you will
want to set this number higher. Similarly, the memory_weight controls the priority
you want to put on minimizing the amount of memory consumed by the indexes.
The default value of this parameter is 0, which means you don’t care.

Finally, there is the question of how much of the training data to actually use in this
search. This is controlled by the sample_fraction argument. Clearly, if you make
this fraction too big, it will take an enormous amount of time to find a satisfactory
solution. On the other hand, if you make it too small, the observed performance on
your full data set may be much worse than you saw when you generated the index.
For large data sets, the default value of 0.1 is generally found to be a good choice.

FLANN search parameters and cv::flann::SearchParams. In addition to the previous argu‐
ments used for the indexParams argument, the cv::FlannBasedMatcher constructor

Generalized Keypoints and Descriptors | 579

61 If you are an expert in the FLANN library, you will know that the eps parameter is used by the variant of kd-
tree called KDTreeSingleIndex (which is not currently exposed in the OpenCV interface). In that context, it
determines when a search down a particular branch can be terminated because a found point is considered
close enough that a yet closer point is unlikely to be found.

62 The sorted argument has no effect on kNN search, because in that case the returned hits will already always
be in ascending order.

requires an object of type cv::flann::SearchParams. This is a straightforward struc‐
ture that controls some of the matcher’s general behavior. It has the following simple
definition:

struct cv::flann::SearchParams : public cv::flann::IndexParams {

 SearchParams(
 int checks = 32, // Limit on NN candidates to check
 float eps = 0, // (Not used right now)
 bool sorted = true // Sort multiple returns if 'true'
);

};

The parameter checks is used by the kd-tree and k-means algorithms differently, but
in each case it essentially limits the number of nearest neighbor candidates that are
evaluated in the attempt to find the truly nearest neighbor(s). The eps parameter is
currently not used.61 The sorted parameter indicates that, in the case of searches that
can return multiple hits (e.g., radius search), the hits returned should be in ascending
order of distance from the query point.62

Displaying Results
Now that you can compute all of these feature types and compute matches between
them from one image to another, the next logical thing to want to do is to actually
display the keypoints and matches on the screen. OpenCV provides one function for
each of these tasks.

Displaying keypoints with cv::drawKeypoints
void cv::drawKeypoints(
 const cv::Mat& image, // Image to draw keypoints
 const vector< cv::KeyPoint >& keypoints, // List of keypoints to draw
 cv::Mat& outImg, // image and keypoints drawn
 const Scalar& color = cv::Scalar::all(-1),
 int flags = cv::DrawMatchesFlags::DEFAULT
);

Given an image and a set of keypoints, cv::drawKeypoints will annotate all of the
keypoints onto the image and put the result in outImg. The color of the annotations

580 | Chapter 16: Keypoints and Descriptors

63 Many of the figures appearing earlier in this chapter were made with cv::drawKeypoints. In these figures,
DrawMatchesFlags::DRAW_RICH_KEYPOINTS was always used, but where scale or angle information was not
present for the feature type, it was not displayed by cv::drawKeypoints. Figures 16-2, 16-4, and 16-9 are
examples where only location data was available; only location and scale were available; and location, scale,
and orientation date were available, respectively.

can be set with color, which can be set to the special value cv::Scalar::all(-1),
indicating that they should be all different colors. The flags argument can be set to
cv::DrawMatchesFlags::DEFAULT or to cv::DrawMatchesFlags:: DRAW_RICH_KEY
POINTS. In the former case, keypoints will be visualized as small circles. In the latter,
they will be visualized as circles with radius equal to their size member (if available),
and an orientation line given by their angle member (if available).63

Displaying keypoint matches with cv::drawMatches

Given a pair of images, the associated keypoints, and a list of cv::DMatch objects gen‐
erated by one of the matchers, cv::drawMatches() will compose an image for you
containing the two input images, visualizations of all of the keypoints (in the style of
cv::drawKeypoints()), and indicate for you which keypoints in the first image
matched which keypoints in the second image (Figure 16-36). There are two varia‐
tions of cv::drawMatches(); they are the same except for two arguments.

Figure 16-36. Here SIFT keypoints and their descriptors are extracted for two views of
the same automobile. Matches were generated using a FLANN-based matcher and
visualized with cv::drawMatches(). Matches that were found are marked in white with
a line connecting the corresponding features. Keypoints in either image that were not
found to have a match are indicated in black

void cv::drawMatches(
 const cv::Mat& img1, // "Left" image
 const vector< cv::KeyPoint >& keypoints1, // Keypoints (lt. img)
 const cv::Mat& img2, // "Right" image
 const vector< cv::KeyPoint >& keypoints2, // Keypoints (rt. img)
 const vector< cv::DMatch >& matches1to2, // List of matches

Generalized Keypoints and Descriptors | 581

 cv::Mat& outImg, // Result images
 const cv::Scalar& matchColor = cv::Scalar::all(-1),
 const cv::Scalar& singlePointColor = cv::Scalar::all(-1),
 const vector<char>& matchesMask = vector<char>(),
 int flags
 = cv::DrawMatchesFlags::DEFAULT
)

void cv::drawMatches(
 const cv::Mat& img1, // "Left" image
 const vector< cv::KeyPoint >& keypoints1, // Keypoints (lt. img)
 const cv::Mat& img2, // "Right" image
 const vector< cv::KeyPoint >& keypoints2, // Keypoints (rt. img)
 const vector< vector<cv::DMatch> >& matches1to2, // List of lists
 // of matches
 cv::Mat& outImg, // Result images
 const cv::Scalar& matchColor // and connecting line
 = cv::Scalar::all(-1),
 const cv::Scalar& singlePointColor // unmatched ones
 = cv::Scalar::all(-1),
 const vector< vector<char> >& matchesMask // only draw for nonzero
 = vector< vector<char> >(),
 int flags = cv::DrawMatchesFlags::DEFAULT
);

In both cases the two images are supplied by the img1 and img2 arguments, while the
corresponding keypoints are supplied by the keypoints1 and keypoints2 arguments.
An argument that differs in the two cases is matches1to2. It has the same meaning in
both versions of cv::drawMatches(), but in one case it is an STL vector of
cv::DMatch objects, while in the other it is a vector of such vectors. The second form
is just a convenience, which is useful when you want to visualize the response to
many different match computations at once.

The results are placed in the image outImg. When the output is drawn, those features
that have matches will be drawn in the color matchColor (along with a line connect‐
ing them), while those features that are not matched will be drawn in singlePoint
Color. The vector matchesMask indicates which matches should be visualized; only
those matches for which matchesMask[i] is nonzero will be drawn. The variation of
cv::drawMatches() that expects a vector of vectors for the matches also expects a
vector of vectors for the matchesMask argument.

The final argument to cv::drawMatches() is flags. The flags argument can have
any of four values, which can be combined (where relevant) with the OR operator.

582 | Chapter 16: Keypoints and Descriptors

64 Actually, the value cv::DrawMatchesFlags::DEFAULT is numerically equal to zero, so combining it with the
others, while legal, will be meaningless.

If flags is set to cv::DrawMatchesFlags::DEFAULT, then the output image will be
created for you in outImg, and the keypoints will be visualized as small circles
(without additional size or orientation information).64

If flags contains cv::DrawMatchesFlags::DRAW_OVER_OUTIMG, then the output
image will not be reallocated, but the annotations will be drawn onto it. This is useful
when you have several sets of matches you would like to visualize in different colors;
in this case, you can make multiple calls to cv::drawMatches() and use cv::Draw
MatchesFlags::DRAW_OVER_OUTIMG for all of the calls after the first.

By default, keypoints that are not part of any match will be drawn in the color indica‐
ted by singlePointColor. If you would prefer to not have them drawn at all, you can
set the flag cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS.

Finally, the flag cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS has the same func‐
tion as in cv::drawKeypoints; it causes the keypoints to be visualized with scale and
orientation information (as in Figure 16-36).

Summary
We started this chapter by reviewing the basic concepts of subpixel corner location
and of sparse optical flow, and then we discussed the essential role played by key‐
points. From there we saw how OpenCV handles keypoints as a general concept, and
looked at a wide array of keypoint-detection schemes implemented by the library. We
also saw that the process of identifying keypoints was distinct from the process of
characterizing them. This characterization was accomplished by descriptors. As with
keypoint identification methods, there were many descriptor types, and we saw how
OpenCV handles these descriptors as a general class.

Thereafter, we considered how keypoints and their descriptors could be matched in
an efficient manner for object recognition or object tracking. We concluded this
chapter by looking at a useful function in the library that allows us to easily visualize
the keypoints in the context of the image in which they were found. Note that there
are more feature detectors and descriptors in xfeatures2d, mentioned in Appen‐
dix B.

Summary | 583

Exercises
There are sample code routines included with OpenCV in its .../samples/cpp directory
that demonstrate many of the algorithms discussed in this chapter. Use these exam‐
ples in the following exercises:

• matchmethod_orb_akaze_brisk.cpp (feature matching in samples/cpp)
• videostab.cpp (feature tracking to stabilize video in samples/cpp)
• video_homography.cpp (planar tracking in opencv_contrib/modules/xfeatures2d/

samples)
• lkdemo.cpp (optical flow in samples/cpp)

1. The covariance Hessian matrix used in cv::goodFeaturesToTrack() is compu‐
ted over some square region in the image set by block_size in that function.
a. Conceptually, what happens when block size increases? Do we get more or

fewer “good features”? Why?
b. Dig into the lkdemo.cpp code, search for cv::goodFeaturesToTrack(), and

try playing with the block_size to see the difference.
2. Refer to Figure 16-2 and consider the function that implements subpixel corner

finding, cv::findCornerSubPix().
a. What would happen if, in Figure 16-2, the corner was twisted so that the

straight dark-light lines formed curves that met in a point? Would subpixel
corner finding still work? Explain.

b. If you expand the window size around the twisted checkerboard’s corner
point (after expanding the win and zero_zone parameters), does subpixel cor‐
ner finding become more accurate or does it rather begin to diverge? Explain
your answer.

3. Modify matchmethod_orb_akaze_brisk.cpp to train on a planar object (a maga‐
zine or book cover, for instance) and track it with a video camera. Study and
report how well it finds the correct keypoints using AKAZE, ORB, and BRISK fea‐
tures in the modified code.

4. Run video_homography.cpp on the same planar pattern as in Exercise 3. Learn
the pattern using the key control in the program and then track it, noting how
the homography is used to generate a stable output. How many features must be
found in order to compute the homography matrix H?

5. Using what you learned in Exercise 3, test out videostab.cpp and describe how it
works to stabilize video.

584 | Chapter 16: Keypoints and Descriptors

6. Features and their descriptors can also be used for recognition. Take one top-
down photo of three different book covers against a blank background, then take
10 different off-center photos of each book cover against varied backgrounds,
and finally take 10 photos with no books in varied backgrounds. Modify match‐
method_orb_akaze_brisk.cpp to separately store the descriptors for each book.
Then modify matchmethod_orb_akaze_brisk.cpp again to detect (as best you can)
the correct book in the off-center photos and to indicate no book in the photos
with no books. Report the results.

7. Optical flow:
a. Describe an object that would be better tracked by block matching than by

Lucas-Kanade optical flow.
b. Describe an object that would be better tracked by Lucas-Kanade optical flow

than by block matching.
8. Compile lkdemo.cpp. Set up a web camera to view a well-textured object (or use a

previously captured sequence of a textured moving object). In running the pro‐
gram, note that r autoinitializes tracking, c clears tracking, and a mouse click will
enter a new point or turn off an old point. Run lkdemo.cpp and initialize the
point tracking by typing r. Observe the effects.
a. Now go into the code and remove the subpixel point placement function

cv::findCornerSubPix(). Does this hurt the results? In what way?
b. Go into the code again and, in place of cv::goodFeaturesToTrack(), just put

down a grid of points in an ROI around the object. Describe what happens to
the points and why.

Hint: part of what happens is a consequence of the aperture problem—given a
fixed window size and a line, we can’t tell how the line is moving.

9. Modify the lkdemo.cpp program to create a program that performs simple image
stabilization for moderately moving cameras. Display the stabilized results in the
center of a much larger window than the one output by your camera (so that the
frame may wander while the first points remain stable).

Exercises | 585

CHAPTER 17

Tracking

Concepts in Tracking
When we are dealing with a video source, as opposed to individual still images, we
often have a particular object or objects that we would like to follow through the vis‐
ual field. In previous chapters, we saw various ways we might use to isolate a particu‐
lar shape, such as a person or an automobile, on a frame-by-frame basis. We also saw
how such objects could be represented as collections of keypoints, and how those
keypoints could be related between different images or different frames in a video
stream.

In practice, the general problem of tracking in computer vision appears in one of two
forms. Either we are tracking objects that we have already identified, or we are track‐
ing unknown objects and, in many cases, identifying them based on their motion.
Though it is often possible to identify an object in a frame using techniques from pre‐
vious chapters, such as moments or color histograms, on many occasions we will
need to analyze the motion itself in order to infer the existence or the nature of the
objects in which we are interested.

In the previous chapter, we studied keypoints and descriptors, which form the basis
of sparse optical flow. In this chapter we will introduce several techniques that can be
applied to dense optical flow. An optical flow result is said to be dense if it applies to
every pixel in a given region.

In addition to tracking, there is the problem of modeling. Modeling helps us address
the fact that tracking techniques, even at their best, give us noisy measurements of an
object’s actual position from frame to frame. Many powerful mathematical techni‐
ques have been developed for estimating the trajectory of an object measured in such
a noisy manner. These methods are applicable to two- or three-dimensional models
of objects and their locations. In the latter part of this chapter, we will explore tools

587

that OpenCV provides to help you with this problem and discuss some of the theory
behind them.

We will begin this chapter with a detailed discussion of dense optical flow, including
several different algorithms available in the OpenCV library. Each algorithm has a
slightly different definition of dense optical flow and, as a result, gives slightly differ‐
ent results and works best in slightly different circumstances. From there we will
move on to tracking. The first tracking solutions we will look at are used to track
regions in what is essentially a dense manner for those regions. These methods
include the mean-shift and camshift tracking algorithms as well as motion templates.
We will conclude the chapter with a discussion of the Kalman filter, a method for
building a model of a tracked object’s motion that will help us integrate our many,
typically noisy, observations with any prior knowledge we might have about the
object’s behavior to generate a best estimate of what the object is actually doing in the
real world. Note that further optical flow and tracking algorithms are referenced in
optflow and tracking functions in the separate opencv_contrib directory described
in Appendix B.

Dense Optical Flow
So far, we have looked at techniques that would allow us to locate individual features
from one image in another image. When applied to the problem of optical flow, this
necessarily gives us a sparse representation of the overall motion of objects in the
scene. In this context, if a car is moving in a video, we will learn where certain parts
of the car went, and perhaps make reasonable conclusions about the bulk motion of
the car, but we do not necessarily get a sense of the overall activity in the scene. In
particular, it is not always so easy to determine which car features go with which car
in a complex scene containing many cars. The conceptual alternative to sparse optical
flow is a dense construction in which a motion vector is assigned to each and every
pixel in our images. The result is a velocity vector field that allows us many new ways
to analyze that data.

In practice, calculating dense optical flow is not easy. Consider the motion of a white
sheet of paper. Many of the white pixels in the previous frame will simply remain
white in the next. Only the edges may change, and even then only those perpendicu‐
lar to the direction of motion. The result is that dense methods must have some
method of interpolating between points that are more easily tracked so as to solve for
those points that are more ambiguous. These difficulties manifest themselves most
clearly in the high computational costs of dense optical flow.

The early Horn-Schunck algorithm [Horn81] attempted to compute just such a veloc‐
ity field and address these interpolation issues. This method was an improvement
over the straightforward but problematic strategy called block matching, in which one
simply attempted to match windows around each pixel from one frame to the next.

588 | Chapter 17: Tracking

Both of these algorithms were implemented in early versions of the OpenCV library,
but neither was either particularly fast or reliable. Much later work in this field, how‐
ever, has produced algorithms that, while still slow compared to sparse keypoint
methods, are fast enough to be used and accurate enough to be useful. The current
version of the OpenCV library supports two of these newer algorithms, called Polyno‐
mial Expansion, and The Dual TV-L1 algorithm.

Both the Horn-Schunck and the block matching algorithms are still supported in the
legacy portion of the library (i.e., they have C interfaces), but are officially deprecated.
We will investigate only the Polynomial Expansion algorithm here, and some more
modern algorithms that, though they ultimately owe their genesis to the work of
Horn and Schunck, have evolved significantly and show much better performance
than the original algorithm.

The Farnebäck Polynomial Expansion Algorithm
The Polynomial Expansion algorithm, developed by G. Farnebäck [Farnebäck03],
attempts to compute optical flow based on an analytical technique that starts with an
approximation of the image as a continuous surface. Of course, real images are dis‐
crete, so there are also some additional complexities of the Farnebäck method that
allow us to apply the basic method to real images. The basic idea of the Farnebäck
algorithm is to approximate the image, as a function, by locally fitting a polynomial
to the image at every point.

The first phase of the algorithm, from which it gets its name, is the transformation of
the image into a representation that associates a quadratic polynomial with each
point. This polynomial is approximated based on a window around a pixel in which a
weighting is applied to make the fitting more sensitive to the points closer to the cen‐
ter of the window. As a result, the scale of the window determines the scale of the
features to which the algorithm is sensitive.

In the idealized case, in which the image can be treated as a smooth continuous func‐
tion, a small displacement of a portion of the image results in an analytically calcula‐
ble change in the coefficients of the polynomial expansion at that same point. From
this change it is possible to work backward and compute the magnitude of that dis‐
placement (Figure 17-1). Of course, this makes sense only for small displacements.
However, there is a nice trick for handling larger displacements.

Dense Optical Flow | 589

Figure 17-1. In the one-dimensional case the image is represented by the gray histo‐
gram I(x), both before (left) and after (right) a small displacement d. At any given point
(dashed line) a parabolic curve can be fitted to the intensity values nearby. In the
approximations of smooth functions I(x) and small displacement, the resulting second-
order polynomials, f1 and f2, are related by the following analytical formulae: a2 = a1, b2
= b1 – 2a1 d, and c2 = a1 d2 – b1 d + c1. Given the coefficients of the fit before and after,
and making use of the second of these relations, d can be solved for analytically:
d = − 1

2 a1
−1(b2 − b1)

The trick is to first notice that if you knew something about a displacement, you
could compare the two images not at the same point, but at points related by your
estimate of the displacement. In this case, the analytical technique would then com‐
pute only a (hopefully small) correction to your original estimate of the displacement.
In fact, this mechanism can be used to simply iterate the algorithm and get successive
improvements on the motion estimation at each iteration.

This insight can also be used to help find larger motions. Consider the case of first
estimating these displacements on a pair of lower-resolution images from image pyr‐
amids. In this case, motions appear smaller and the necessary “small displacement”
approximation may hold. Then, moving down the pyramid, the result of each prior
computation can be used as an initial guess for the next. In the end, it is possible to
get results on the scale of the original image by accumulating these successive correc‐
tions.

Computing dense optical flow with cv::calcOpticalFlowFarneback
OpenCV provides a complete implementation of the dense Farnebäck method; see
Figure 17-2 for an example output. This functionality is entirely contained in the
cv::calcOpticalFlowFarneback() method, which has the following prototype:

void cv::calcOpticalFlowFarneback(
 cv::InputArray prevImg, // An input image
 cv::InputArray nextImg, // Image immediately subsequent to 'prevImg'
 cv::InputOutputArray flow, // Flow vectors will be recorded here
 double pyrScale, // Scale between pyramid levels (< '1.0')
 int levels, // Number of pyramid levels
 int winsize, // Size of window for pre-smoothing pass

590 | Chapter 17: Tracking

 int iterations, // Iterations for each pyramid level
 int polyN, // Area over which polynomial will be fit
 double polySigma, // Width of fit polygon, usually '1.2*polyN'
 int flags // Option flags, combine with OR operator
);

Figure 17-2. Motion from the left and center frames are compared, and represented
with a field of vectors on the right. The original images were 640x480, winsize=13,
numIters=10, polyN=5, polySigma=1.1, and a box kernel was used for pre-smoothing.
Motion vectors are shown only on a lower density subgrid, but the actual results are
valid for every pixel

The first two arguments are the pair of previous and next images you want to com‐
pute a displacement between. Both should be 8-bit, single-channel images and be the
same size. The next argument, flow, is the result image; it will be the same size as
prevImg and nextImg but be two channels and of the 32-bit floating-point type
(CV_32FC2). pyrScale and levels affect how the image pyramid is constructed. pyr
Scale must be less than 1, and indicates the size of each level of the pyramid relative
to its predecessor (e.g., if pyrScale is 0.5, then the pyramid will be a “typical” factor-
of-two scaling pyramid). levels determines how many levels the pyramid will have.

The winsize argument controls a presmoothing pass done before the fitting. If you
make this an odd number greater than 5, then image noise will not cause as much
trouble for the fitting and it will be possible to detect larger (faster) motions. On the
other hand, it will also tend to blur the resulting motion field and make it difficult to
detect motion on small objects. This smoothing pass can be either a Gaussian blur‐
ring or a simple sliding-average window (controlled by the flags argument,
described shortly).

The iterations argument controls how many iterations are used at each level in the
pyramid. In general, increasing the number of iterations will increase accuracy of the
final result. Though in some cases, three or even one iteration is sufficient, the algo‐
rithm’s author found six to be a good number for some scenes.

The polyN argument determines the size of the area considered when fitting the poly‐
nomial around a point. This is different from winsize, which is used only for pre‐
smoothing. polyN could be thought of as analogous to the window size associated

Dense Optical Flow | 591

1 The actual smoothing kernel applied has sigma equal to 0.3 ⋅ (winsize / 2). In practice, this means that the area
in which the bulk of the mass of the Gaussian is contained is only about 60–70% of the kernel area. As a
result, one expects that the kernel will need to be about 30% larger in order to see the benefit over a box
kernel.

with Sobel derivatives. If this number is large, high-frequency fluctuations will not
contribute to the polynomial fitting. Closely related to polyN is polySigma, which is
the source of the intrinsic scale for the motion field. The derivatives computed as part
of the fit use a Gaussian kernel (not the one associated with the smoothing) with var‐
iance polySigma and whose total extent is polyN. The value of polySigma should be a
bit more than 20% of polyN. (The pairings polyN=5, polySigma=1.1, and polyN=7,
polySigma=1.5 have been found to work well and are recommended in source code.)

The final argument to cv::calcOpticalFlowFarneback() is flags, which (as usual)
supports several options that may be combined with the logical OR operator. The
first option is cv::OPTFLOW_USE_INITIAL_FLOW, which indicates to the algorithm that
the array flow should also be treated as an input, and should be used as an initial esti‐
mation for the motion in the scene. This is commonly used when one is analyzing
sequential frames in video, on the theory that one frame is likely to contain similar
motion to the next. The second option is cv::OPTFLOW_FARNEBACK_GAUSSIAN, which
tells the algorithm to use a Gaussian kernel in the presmoothing (the one controlled
by winsize). In general, one gets superior results with the Gaussian presmoothing
kernel, but at a cost of somewhat greater compute time. The higher cost comes not
just from the multiplication of the kernel weight values in the smoothing sum, but
also because one tends to need a larger value for winsize with the Gaussian kernel.1

The Dual TV-L1 Algorithm
The Dual TV-L1 algorithm is an evolution on the algorithm of Horn and Schunck
(HS), which we encountered briefly earlier in this chapter. The implementation in
OpenCV is based on the original paper by Christopher Zach, Thomas Pock, and
Horst Bischof [Zach07] as well as improvements proposed later by Javier Sánchez,
Enric Meinhardt-Llopis, and Gabriele Facciolo [Sánchez13]. Whereas the original HS
algorithm was based on a formulation of the optical flow problem that made solving
the problem amenable to straightforward (though not necessarily fast) numerical
methods, the Dual TV- L1 algorithm relies on a slightly different formulation of the
problem that turns out to be solvable in a much more efficient manner. Because the
HS algorithm plays a central role in the evolution of the Dual TV- L1 algorithm, we
will review it very briefly, and then explain the differences that define the Dual TV- L1

algorithm.

The HS algorithm operated by defining a flow vector field and by defining an energy
cost that was a function of the intensities in the prior frame, the intensities in the sub‐

592 | Chapter 17: Tracking

2 In general, the fidelity constraint (the first squared difference in the energy functional) represents one con‐
straint per pixel. Because the flow field has two dimensions, such a problem is always underspecified. Funda‐
mentally, this is why some kind of continuity constraint is always required.

3 The change from α2 to λ is simply to maintain consistency with the variables used by the original authors of
both methods. The two are otherwise exactly equivalent.

sequent frame, and that flow vector field. This energy was defined by the following
functional:

E(x→ , u→) = ∑
x→ εimage

I t +1(x→ + u→) − I t(x→)2 + α 2(∇ux
2 + ∇uy

2)

In this expression, I t(x→) is the intensity of the image at time t and at location
x→ = (x, y). The values ux = ux(x→) and uy = uy(x→) are the x- and y-components of the
flow field at location x→ . The vector u→ is simply a convenient shorthand for (ux, uy).
The value α 2 is a weight parameter that affects the relative influence of the first (fidel‐
ity) constraint with respect to the second (smoothness) constraint.2 The HS algorithm
attempts to minimize this energy functional across all possible flow fields u→ . The
method of actually achieving this minimization (proposed by the original authors)
was to convert the energy functional to the associated Euler-Lagrange equations and
solve those iteratively. The primary problem with this method is that because the
Euler-Lagrange equations are entirely local, each iteration only solves the problem
relative to the nearest neighbors of a pixel, and thus the practical number of these
computationally expensive iterations can be prohibitively large, but hierarchical
approaches might help.

This brings us to the Dual TV-L1 algorithm, which differs from the HS algorithm
both in terms of the formulation of the energy functional and the method used to
solve that problem. The name “TV-L1” is meant to convey that the fidelity constraint
is replaced with a total variation (TV) while the smoothness constraint uses an L1-
norm. Both of these are in contrast to the HS algorithm. The term total variation
means that the differences are simply summed, rather than squared and summed,
while the L1-norm is applied to the gradients in the smoothness constraint instead of
the L2-norm used by the HS algorithm. Thus the energy functional used by the TV-L1

algorithm is:

E(x→ , u→) = ∑
x̄εimage

λ | I t +1(x→ + u→) − I t(x→) | + (| ∇ux | + | ∇uy |)

The primary advantage of the shift to the L1-norm is that local gradients are not so
severely penalized and so the algorithm performs much better at discontinuities.3 The
importance of the shift to the total variation rather than the sum of squared differ‐
ences is in the effect that this has on the solution method for this alternative energy

Dense Optical Flow | 593

4 In practice, the algorithm is implemented on a pyramid of images, such that the coarsest scales can be solved
for first, and the results can be propagated to ever-finer scales. In this way, the estimate u→ 0 is always available.

functional. Whereas Horn and Schunck relied on an iterative Euler-Lagrange
method, the Dual TV-L1 algorithm relies on a clever trick that separates the energy
minimization into two separate problems, one of which has a known solution (which
happens to be the origin of the “dual” in the Dual TV- L1 algorithm’s name), while
the other has the very desirable property of being entirely local to each pixel, and so
can be solved pointwise. Let’s see how this works.

First, assume for the moment that we have a flow field u→ 0 that is very close to the final
flow field u→ .4 Using this assumption, we can approximate the difference in the energy
equation using the first-order Taylor expansion, as follows:

ρ(u) ≡ ∇ I t +1(x→ + u→ 0) ⋅ (u→ − u→ 0) + I t +1(x→ + x→ 0) − I t(x, y)

Thus, under this approximation, we can write the energy as:

E(x→ , u→) = ∑
x→ εimage

λ | ρ(u→) | + | ∇ux | + | ∇uy |

What comes next is the heart of the method, which is to introduce a new field v→ , such
that the energy becomes:

E(x→ , u→ , v→) = ∑
x→ εimage

| ∇ux | + | ∇uy | + 1
2θ | u→ − v→ | + λ | ρ(v→) |

This decouples the fidelity and smoothness terms in what will turn out to be a very
useful way. Of course, we now have another field to solve for, but in the limit, with a
very small θ, u→ and v→ are effectively forced to become equal. However, the biggest
benefit of this change is that we can now solve the fields u→ and v→ first by fixing one
and solving for the other, then fixing the other and solving for the first (and iterating
in this manner). When v→ is fixed, we find the value of u→ , which minimizes:

∑
x→ εimage

| ∇ux | + | ∇uy | + 1
2θ | u→ − v→ |

When u→ is fixed, we find the value of v→ , which minimizes:

∑
x→ εimage

1
2θ | u→ − v→ | + λ | ρ(v→) |

594 | Chapter 17: Tracking

5 This is the so-called total variation denoising model, and can be solved by Chambolle’s duality-based algo‐
rithm [Chambolle04].

The first of these is the problem that has a known solution,5 while the second is the
one that is entirely local and can be solved on a per-pixel basis. This first procedure,
however, introduces two new parameters: the time step and the stopping criterion.
These parameters control how and when convergence is reached for the computation
of u→ when v→ is fixed.

Computing dense optical flow with cv::createOptFlow_DualTVL1
The OpenCV implementation of the Dual TV- L1 algorithm uses a slightly different
interface style than the other optical flow algorithms in this section. There is a sepa‐
rate factory-like function in the library called cv::createOptFlow_DualTVL1(),
which constructs an object of type cv::OpticalFlow_DualTVL1 (derived from the
base class cv::DenseOpticalFlow) and returns a pointer to it:

cv::Ptr<cv::DenseOpticalFlow> createOptFlow_DualTVL1();

The resulting object has member variables that you will need to override directly if
you want to change them from their default values. Here is the relevant portion of the
definition of cv::OpticalFlow_DualTVL1:

// Function to get a dense optical flow object
//
cv::Ptr<cv::DenseOpticalFlow> createOptFlow_DualTVL1();

class OpticalFlowDual_TVL1 : public DenseOpticalFlow {

public:

 OpticalFlowDual_TVL1();

 void calc(InputArray I0, InputArray I1, InputOutputArray flow);
 void collectGarbage();

 double tau; // timestep for solver (default = 0.25)
 double lambda; // weight of smoothness term (default = 0.15)
 double theta; // tightness parameter (default = 0.3)
 int nscales; // scales in pyramid (default = 5)
 int warps; // warpings per scale (default = 5)
 double epsilon; // stopping criterion (default = 0.01)
 int iterations; // max iterations (default = 300)
 bool useInitialFlow; // use 'flow' as starting guess (default = false)

};

The variables you can set to configure the algorithm are the arguments to the create
function. tau is the timestep used by the numerical solver. It can be set to any value

Dense Optical Flow | 595

less than 0.125 and convergence is guaranteed, but empirically it can be set as high as
0.25 for faster convergence (in fact, this is the default value). lambda is the most
important parameter; it sets the weight of the smoothness term in the energy. The
ideal value of lambda will vary depending on the image sequence, with smaller values
corresponding to smoother solutions. The default value for lambda is 0.15. The
parameter theta is called (by the authors of the original paper) the “tightness param‐
eter.” This is the parameter that couples the two stages of the overall solver. In princi‐
ple it should be very small, but the algorithm is stable for a wide range of values. The
default tightness parameter is 0.30.

The number of scales in the image pyramid is set by nscales. For each scale, the
number of warps is the number of times ∇ I t +1(x→ + u→ 0) and I t +1(x→ + u→ 0) are computed per
scale. This parameter allows a trade-off between speed (fewer warps) and accuracy
(more warps). By default there are five scales and five warps per scale.

epsilon is the stopping criterion used by the numerical solver. Additionally there is
an iterations criterion, which sets the maximum number of iterations allowed. The
default for epsilon is 0.01, while the default for iterations is 300. Making epsilon
smaller will give more accurate solutions, but at the cost of more computational time.

The final parameter that you might want to set is useInitialFlow. If this parameter
is set to true, then when you call the calc() method for the cv::Optical
Flow_DualTVL1 object, the flow parameter you pass will be used as a starting point
for the computation. In many cases it makes sense to use the previous result when
you are running on sequential video.

The method cv::OpticalFlow_DualTVL1::calc() is what you use when you want to
actually compute optical flow. The calc() method expects two 8-bit, single-channel
images as input and will compute the flow output for you from those. As just
described, flow is an input-output parameter, and if you set the useInitialFlow
member variable of the cv::OpticalFlow_DualTVL1 object to true, then any data
currently in flow will be used as a starting point for the next calculation. In any case,
flow will be the same size as the input images and will be of type CV_32FC2.

The final method of cv::OpticalFlow_DualTVL1 is collectGarbage(). This method
takes no arguments and simply releases any internally allocated memory inside of the
cv::OpticalFlow_DualTVL1 object.

The Simple Flow Algorithm
Another, recent algorithm for computing optical flow is the Simple Flow algorithm.
Originally proposed by Michael Tao et al. [Tao12], this algorithm has the important

596 | Chapter 17: Tracking

6 Technically speaking, the Simple Flow algorithm is not sublinear, as it has a component that must operate on
every pixel. However, the expensive operations in the algorithm need not be applied to every pixel, and so in
practice the cost is effectively sublinear. In their paper [Tao12], the authors demonstrate sublinear time
behavior for images as large as 4K images (i.e., “quad hd,” 4,096 × 2,160).

7 For a brief review of what a bilateral filter is, return to the discussion in Chapter 10 of the function cv::bilat
eralFilter().

feature of requiring time that is sublinear6 in the number of pixels in the image. This
is achieved by a pyramid-based scheme that, as it moves from coarse to fine layers in
the pyramid, ascertains whether optical flow calculation is needed at the pixels in the
new layer. Where it is found that no new information will be gained at the finer level,
no optical flow calculation is done. Instead, the flow is simply propagated to and
interpolated on the new level.

The Simple Flow algorithm attempts to establish a local flow vector for each point
that best explains the motion of the neighborhood around that point. It does this by
computing the (integer) flow vector that optimizes an energy function. This energy
function is essentially a sum over terms for each pixel in the neighborhood in which
the energy grows quadratically with the difference between the intensities of the pixel
in the neighborhood at time t and the corresponding pixel (i.e., displaced by the flow
vector) at time t + 1. Defining the pixelwise energy function e(x, y, u, v) (where u and
v are the components of the flow vector):

e(x, y, u, v) = I t(x, y) − I t +1(x + u, y + v) 2

we can then express the actual energy, which is minimized as:

E(x, y, u, v) = ∑
(i, j)εN

wd wce(x + i, y + j, u, v)

Here the parameters wd and wc have the following definitions:

wd = exp(− (x , y) − (x + i , y + j) 2

2σd
)

and:

wc = exp(−
I t (x , y) − I t (x + i , y + j) 2

2σc
)

The result of these two terms is to create the effect of a bilateral filter.7 Notice how for
small values of σd, the term wd becomes very small for pixels far from the centerpoint

Dense Optical Flow | 597

8 For real experts, there is a subtle point about this second filter, which is that it is not applied to regions in
which there was found to be occlusion. For details on how this is done and what it means exactly, visit the
original paper [Tao12].

(x, y). Similarly, for small values of σc, the term wc becomes very small for pixels
whose intensity is substantially different from that of the center point (x, y).

The energy E(x, y, u, v) is first minimized with respect to a range of possible integer
values for (u, v). Once this is complete, a parabola is fit to a 3 × 3 set of cells around
the integer (x, y) found to minimize E(x, y, u, v). In this way, the optimal noninteger
value can be interpolated. The resulting flow field (i.e., the set of all (u, v) pairs found
in this way) is then passed through another bilateral filter.8 Notice, however, that this
filter is now operating on the (u, v) vectors rather than the energy density e(x, y, u, v).
Thus this is a separate filter with separate parameters σd

fix and σc
fix that are not only

independent of σd and σc, but don’t even have the same units. (The former is a veloc‐
ity variance, while the latter is an intensity variance.)

This solves part of the problem, but in order to compute motions that are more than
a few pixels in a frame, it would be necessary to search large windows in velocity
space in order to find the optimal values of E(x, y, u, v). Simple Flow solves this prob‐
lem, as is often the case in computer vision, with an image pyramid. In this way, gross
motions can be found at higher levels in the pyramid and refined at finer levels of the
pyramid. Starting at the coarsest image in the pyramid, we begin computing each
subsequent level by upsampling the prior level and interpolating all of the new pixels.
This upsampling is done through a method called joint bilateral upsampling
[Kopf07]. This technique makes use of the fact that though we are upsampling the
solution for the velocity field, we have access to an image at the higher resolution
already. The joint bilateral filter introduces two more parameters that characterize
the spatial and color extent of the filter: σd

up and σc
up.

An important contribution of the Simple Flow algorithm is what the authors call a
flow irregularity map. The essential idea behind this map is to compute for every
point the amount by which the neighboring pixel flows differ from the flow at that
pixel:

H(x, y) = max
(i,j)εN

(u(x + i, y + j), v(x + i, y + j)) − (u(x, y), v(x, y))

Where the flow irregularity is found to be small, relative to some cutoff parameter τ,
the flow is computed at the corners of the patch N and interpolated within the patch.
Where the irregularity exceeds τ, the flow computation just described is repeated at
this finer level of hierarchy.

598 | Chapter 17: Tracking

9 Starting from OpenCV 3.0, calcOpticalFlowSF() is moved to opencv_contrib, in the optflow module.

Computing Simple Flow with cv::optflow::calcOpticalFlowSF()
We are now ready to look at the OpenCV function that implements the Simple Flow
algorithm.9 It is called cv::optflow::calcOpticalFlowSF().

void cv::optflow::calcOpticalFlowSF(
 InputArray from, // Initial image (input)
 InputArray to, // Subsequent image (input)
 OutputArray flow, // Output flow field, CV_32FC2
 int layers, // Number of layers in pyramid
 int averaging_block_size, // Size of neighborhoods (odd)
 int max_flow // Velocities search region sz (odd)
);

void cv::calcOpticalFlowSF(
 InputArray from, // Initial image (input)
 InputArray to, // Subsequent image (input)
 OutputArray flow, // Output flow field, CV_32FC2
 int layers, // Number of layers in pyramid
 int averaging_block_size, // Size of neighborhoods (odd)
 int max_flow // Velocities search region sz (odd)
 double sigma_dist, // sigma_d
 double sigma_color, // sigma_c
 int postprocess_window, // Velocity filter window sz (odd)
 double sigma_dist_fix, // Sigma_d^fix
 double sigma_color_fix, // Sigma_c^fix
 double occ_thr, // Threshold used in occlusion detection
 int upscale_averaging_radius, // Window for joint bilateral upsampling
 double upscale_sigma_dist, // Sigma_d^up
 double upscale_sigma_color, // Sigma_c^up
 double speed_up_thr // Tao
);

The first form of the cv::calcOpticalFlowSF() function does not require you to
have a particularly deep understanding of the Simple Flow algorithm. It requires the
previous and current images, from and to, and returns the velocity field to you in the
array flow. The input images should be 8-bit, three-channel images (CV_8UC3); the
result array, flow, will be a 32-bit, two-channel image (CV_32FC2). The only parame‐
ters you need to specify for this version of the function are the number of layers, the
neighborhood size, and the largest flow velocity that you would like the algorithm to
consider when running the initial velocity solver (at each level). These three parame‐
ters—layers, averaging_block_size, and max_flow (respectively)—can reasonably
be set to 5, 11, and 20.

The second form of cv::calcOpticalFlowSF() allows you to really get in there and
tune every parameter of the algorithm. In addition to the arguments used by the

Dense Optical Flow | 599

short form, the long form allows you to set the bilateral filter parameters used in the
energy minimization (sigma_dist and sigma_color, the same as σd and σc in the pre‐
vious discussion), the window size for the velocity field cross-bilateral filters (postpro
cess_window), the parameters for the velocity field cross-bilateral filter
(sigma_dist_fix and sigma_color_fix, the same as σd

fix and σc
fix in the previous dis‐

cussion), the threshold used for occlusion detection, the window size for the upsam‐
pling joint bilateral filter (upscale_averaging_radius), the parameters for the
upsampling joint bilateral filter (upscale_sigma_dist and upscale_sigma_color,
the same as σd

up and σc
up in the previous discussion), and the threshold used to deter‐

mine when the irregularity map dictates that flows must be recalculated at a finer
pyramid level (speed_up_thr, the same as τ in the previous discussion).

Detailed tuning of these parameters is clearly a topic for experts, and you should read
the original paper if you want to understand them deeply. For our needs here, how‐
ever, it is helpful to know the nominal values—used by default by the short argument
version of cv::calcOpticalFlowSF()—listed in Table 17-1.

Table 17-1. Nominal values for the detail arguments of cv::calcOpticalFlowSF()

Argument Nominal value
sigma_dist 4.1

sigma_color 25.5

postprocess_window 18

sigma_dist_fix 55.0

sigma_color_fix 25.5

occ_thr 0.35

upscale_averaging_radius 18

upscale_sigma_dist 55.0

upscale_sigma_color 25.5

speed_up_thr 10

Mean-Shift and Camshift Tracking
In this section, we will look at two techniques, mean-shift and Camshift (where Cam‐
shift stands for “continuously adaptive mean-shift”). The former is a general techni‐
que for data analysis in many applications (discussed in Chapter 12 in the context of
segmentation), of which computer vision is only one. After introducing the general
theory of mean-shift, we’ll describe how OpenCV allows you to apply it to tracking in
images. The latter technique, Camshift, builds on mean-shift to allow for the tracking
of objects whose size may change during a video sequence.

600 | Chapter 17: Tracking

10 Because mean-shift is a fairly deep topic, our discussion here is aimed mainly at developing intuition for the
user. For the original formal derivation, see Fukunaga [Fukunaga90] and Comaniciu and Meer [Comani‐
ciu99].

11 The word essentially is used because there is also a scale-dependent aspect of mean-shift. To be exact: mean-
shift is equivalent in a continuous distribution to first convolving with the mean-shift kernel and then apply‐
ing a hill-climbing algorithm.

12 Iterations are typically restricted to some maximum number or to some epsilon change in center shift
between iterations; however, they are guaranteed to converge eventually.

Mean-Shift
The mean-shift algorithm10 is a robust method of finding local extrema in the density
distribution of a data set. This is an easy process for continuous distributions; in that
context, it is essentially just hill climbing applied to a density histogram of the data.11

For discrete data sets, however, this is a somewhat less trivial problem.

The term robust is used here in its statistical sense; that is, mean-shift ignores outliers,
data points that are far away from peaks in the data. It does so by processing only
points within a local window of the data and then moving that window.

The mean-shift algorithm runs as follows:

1. Choose a search window:

• its initial location;
• its type (uniform, polynomial, exponential, or Gaussian);
• its shape (symmetric or skewed, possibly rotated, rounded, or rectangular);
• its size (extent at which it rolls off or is cut off).

2. Compute the window’s (possibly weighted) center of mass.
3. Center the window at the center of mass.
4. Return to Step 2 until the window stops moving (it always will).12

To give a more formal sense of what the mean-shift algorithm is: it is related to the
discipline of kernel density estimation, where by kernel we refer to a function that has
mostly local focus (e.g., a Gaussian distribution). With enough appropriately weigh‐
ted and sized kernels located at enough points, one can express a distribution of data
entirely in terms of those kernels. Mean-shift diverges from kernel density estimation
in that it seeks only to estimate the gradient (direction of change) of the data distribu‐
tion. When this change is 0, we are at a stable (though perhaps local) peak of the dis‐
tribution. There might be other peaks nearby or at other scales.

Mean-Shift and Camshift Tracking | 601

13 A rectangular kernel is a kernel with no falloff with distance from the center, until a single sharp transition to
0 value. This is in contrast to the exponential falloff of a Gaussian kernel and the falloff with the square of
distance from the center in the commonly used Epanechnikov kernel.

Figure 17-3 shows the equations involved in the mean-shift algorithm. We can sim‐
plify these equations by considering a rectangular kernel,13 which reduces the mean-
shift vector equation to calculating the center of mass of the image pixel distribution:

xc =
M 10
M 00

, yc =
M 01
M 00

Here the zeroth moment is calculated as:

M00 = ∑
x
∑
y

I (x, y)

and the first moments are:

M01 = ∑
x
∑
y

x ⋅ I (x, y) and M10 = ∑
x
∑
y

y ⋅ I (x, y)

Figure 17-3. Mean-shift equations and their meaning

602 | Chapter 17: Tracking

The mean-shift vector in this case tells us to recenter the mean-shift window over the
calculated center of mass within that window. This movement will, of course, change
what is “under” the window and so we iterate this recentering process. Such recenter‐
ing will always converge to a mean-shift vector of 0 (i.e., where no more centering
movement is possible). The location of convergence is at a local maximum (peak) of
the distribution under the window. Different window sizes will find different peaks
because “peak” is fundamentally a scale-sensitive construct.

In Figure 17-4, we see an example of a two-dimensional distribution of data and an
initial (in this case, rectangular) window. The arrows indicate the process of conver‐
gence on a local mode (peak) in the distribution. Observe that, as promised, this peak
finder is statistically robust in the sense that points outside the mean-shift window do
not affect convergence—the algorithm is not “distracted” by faraway points.

Figure 17-4. Mean-shift algorithm in action: an initial window is placed over a two-
dimensional array of data points and is successively recentered over the mode (or local
peak) of its data distribution until convergence

In 1998, it was realized that this mode-finding algorithm could be used to track mov‐
ing objects in video [Bradski98a; Bradski98b], and the algorithm has since been
greatly extended [Comaniciu03]. The OpenCV function that performs mean-shift is
implemented in the context of image analysis. This means in particular that, rather
than taking some arbitrary set of data points (possibly in some arbitrary number of
dimensions), the OpenCV implementation of mean-shift expects as input an image
representing the density distribution being analyzed. You could think of this image as

Mean-Shift and Camshift Tracking | 603

14 Again, mean-shift will always converge, but convergence may be very slow near the local peak of a distribu‐
tion if that distribution is fairly “flat” there.

15 For the curious, the original algorithm was named CAMSHIFT (all capitals), but is not an acronym. Because
the mean-shift algorithm (on which is it based) is hyphenated, it is common to see “cam-shift,” even though
this is not correct. The name in the OpenCV library, cv::CamShift, is actually derived from the incorrect
hyphenation. Because the algorithm name is not an acronym, it is also common to see it written as Camshift
(including by its authors), and so we use that representation here.

a two-dimensional histogram measuring the density of points in some two-
dimensional space. It turns out that, for vision, this is precisely what you want to do
most of the time: it’s how you can track the motion of a cluster of interesting features.

int cv::meanShift(// Return number of iterations to converge
 cv::InputArray probImage, // density of locations (CV_8U or CV_32F)
 cv::Rect& window, // initial location (and size) of kernel window
 cv::TermCriteria criteria // limits location update iterations
);

In cv::meanShift(), the probImage, which represents the density of probable loca‐
tions, may be only one channel but of either type (byte or float). The window is set at
the initial desired location and size of the kernel window. On completion, it will con‐
tain the final location of the kernel window. (Its size will remain unchanged.) The
termination criteria sets the maximum limit on the number of mean-shift location
update iterations and a minimal movement for which we consider the window loca‐
tions to have converged.14 The return value will be the number of iterations before
convergence.

The function cv::meanShift() is one expression of the mean-shift algorithm for rec‐
tangular windows, but it may also be used for tracking. In this case, you first choose
the feature distribution to represent an object (e.g., color + texture), then start the
mean-shift window over the feature distribution generated by the object, and finally
compute the chosen feature distribution over the next video frame. Starting from the
current window location, the mean-shift algorithm will find the new peak or mode of
the feature distribution, which (presumably) is centered over the object that pro‐
duced the color and texture in the first place. In this way, the mean-shift window
tracks the movement of the object frame by frame.

Camshift
A related algorithm is the Camshift15 tracker. It differs primarily from the mean-shift
algorithm in that the search window adjusts itself in size. If you have well-segmented
distributions (say, face features that stay compact), then this algorithm will, for exam‐
ple, automatically adjust itself for the size of face as the person moves closer to and
farther from the camera. The function that implements the Camshift algorithm is:

604 | Chapter 17: Tracking

RotatedRect cv::CamShift(// Return final window size and rotation
 cv::InputArray probImage, // Density of locations (CV_8U or CV_32F)
 cv::Rect& window, // Initial location (and size) of kernel window
 cv::TermCriteria criteria // Limits location update iterations
);

The three parameters used by the cv::CamShift() function have the same interpre‐
tations as for the cv::meanShift() algorithm. The return value will contain the
newly resized box, which also includes the orientation of the object as computed via
second-order moments. For tracking applications, we would use the resulting resized
box in the previous frame as the window in the next frame.

Many people think of mean-shift and Camshift as tracking using
color features, but this is not entirely correct. Both of these algo‐
rithms track the distribution of any kind of feature that is
expressed in the probImage; hence, they make for very lightweight,
robust, and efficient trackers.

Motion Templates
Motion templates were invented in the MIT Media Lab by Bobick and Davis
[Bobick96; Davis97] and were further developed jointly with one of the authors of
this book [Davis99; Bradski00]. This more recent work forms the basis for the imple‐
mentation in OpenCV.

Motion templates are an effective way to track general movement and are especially
applicable to gesture recognition. Using motion templates requires a silhouette (or
part of a silhouette) of an object. Object silhouettes can be obtained in a number of
ways:

• The simplest method of obtaining object silhouettes is to use a reasonably sta‐
tionary camera and then employ frame-to-frame differencing (as discussed in
Chapter 15). This will give you the moving edges of objects, which is enough to
make motion templates work.

• You can use chroma keying. For example, if you have a known background color
such as bright green, you can simply take as foreground anything that is not
bright green.

• As also discussed in Chapter 15, you can learn a background model from which
you can isolate new foreground objects/people as silhouettes.

• You can use active silhouetting techniques—for example, creating a wall of near-
infrared light and having a near-infrared-sensitive camera look at the wall. Any
intervening object will show up as a silhouette.

Motion Templates | 605

16 Starting from OpenCV 3.0 motion templates functions, described in this section, are moved to the optflow
module of opencv_contrib repository, under the motempl namespace.

• You can use thermal imagers; any hot object (such as a face) can be taken as
foreground.

• Finally, you can generate silhouettes by using the segmentation techniques (e.g.,
pyramid segmentation or mean-shift segmentation) described in Chapter 15.

For now, assume that we have a good, segmented object silhouette as represented by
the white rectangle of Figure 17-5(A). Here we use white to indicate that all the pixels
are set to the floating-point value of the most recent system timestamp. As the rec‐
tangle moves, new silhouettes are captured and overlaid with the (new) current time‐
stamp; the new silhouette is the white rectangle of Figures 17-5(B) and 17-5(C).
Older motions are shown in Figure 17-5(C) as successively darker rectangles. These
sequentially fading silhouettes record the history of previous movement and thus are
referred to as the motion history image.

Figure 17-5. Motion template diagram: (a) a segmented object at the current time‐
stamp (white); (b) at the next time step, the object moves and is marked with the (new)
current timestamp, leaving the older segmentation boundary behind; (c) at the next
time step, the object moves farther, leaving older segmentations as successively darker
rectangles whose sequence of encoded motion yields the motion history image

Silhouettes whose timestamp is more than a specified duration older than the cur‐
rent system timestamp are set to 0, as shown in Figure 17-6. The OpenCV function
that accomplishes this motion template construction is cv::motempl::updateMotion
History():16

void cv::motempl::updateMotionHistory(
 cv::InputArray silhouette, // Nonzero pixels where motion occurs
 cv::InputeOutputArray mhi, // Motion history image
 double timestamp, // Current time (usually milliseconds)
 double duration // Max track duration ('timestamp' units)
);

606 | Chapter 17: Tracking

Figure 17-6. Motion template silhouettes for two moving objects (left); silhouettes older
than a specified duration are set to 0 (right)

In cv::motempl::updateMotionHistory(), all image arrays consist of single-channel
images. The silhouette image is a byte image in which nonzero pixels represent the
most recent segmentation silhouette of the foreground object. The argument mhi is a
floating-point image that represents the motion template (a.k.a. motion history
image). Here timestamp is the current system time (typically a millisecond count)
and duration, as just described, sets how long motion history pixels are allowed to
remain in the mhi. In other words, any mhi pixels that are older (less) than timestamp
minus duration are set to 0.

Once the motion template has a collection of object silhouettes overlaid in time, we
can derive an indication of overall motion by taking the gradient of the mhi. When we
take these gradients (e.g., by using the Scharr or Sobel gradient functions discussed in
Chapter 12), some gradients will be large and invalid. Gradients are invalid when
older or inactive parts of the mhi are set to 0, which produces artificially large gradi‐
ents around the outer edges of the silhouettes; see Figure 17-6. Because we know the
time-step duration with which we’ve been introducing new silhouettes into the mhi
via cv::motempl::updateMotionHistory(), we know how large our gradients
(which are just dx and dy step derivatives) should be. We can therefore use the gradi‐
ent magnitude to eliminate gradients that are too large, as in Figure 17-6. Finally, we
can collect a measure of global motion; see Figure 17-6. The function that does all of
this for us is cv::motempl::calcMotionGradient():

void cv::motempl::calcMotionGradient(
 cv::InputArray mhi, // Motion history image
 cv::OutputArray mask, // Nonzero where valid gradients were found
 cv::OutputArray orientation, // Orientation of found gradients
 double delta1, // Minimal gradient allowed
 double delta2, // Maximal gradient allowed
 int apertureSize = 3 // Size of gradient operator ('-1'=SCHARR)
);

Motion Templates | 607

In cv::motempl::calcMotionGradient(), all image arrays are single-channel. The
argument mhi must be a floating-point motion history image. The input variables
delta1 and delta2 are (respectively) the minimal and maximal gradient magnitudes
allowed. The expected gradient magnitude will be just the average number of milli‐
seconds in the timestamp between each silhouette in successive calls to
cv::motempl::updateMotionHistory(). Setting delta1 halfway below and delta2
halfway above this average value usually works well. The variable apertureSize sets
the size in width and height of the gradient operator. This value can be set to -1 (the
3 × 3 cv::SCHARR gradient filter), 1 (a simple two-point central difference derivative),
3 (the default 3 × 3 Sobel filter), 5 (for the 5 × 5 Sobel filter), or 7 (for the 7 × 7 filter).
The function results will be placed in mask and orientation. The former will be a
single-channel, 8-bit image in which nonzero entries indicate where valid gradients
were found, and the latter will be a floating-point image that gives the gradient direc‐
tion’s angle at each point. Entries in orientation will be in degrees and confined to
the range from 0 to 360.

The function cv::motempl::calcGlobalOrientation() finds the overall direction of
motion as the vector sum of the valid gradient directions:

double cv::motempl::calcGlobalOrientation(
 cv::InputArray orientation, // Orientation image from calcMotionGradient()
 cv::InputArray mask, // Nonzero where direction is to be calculated
 cv::InputArray mhi, // Motion history img from updateMotionHistory()
 double timestamp, // Current time (usually milliseconds)
 double duration // Maximum duration of track ('timestamp' units)
);

When using cv::motempl::calcGlobalOrientation(), we pass in the orientation
and mask images computed in cv::motempl::calcMotionGradient() along with the
timestamp, duration, and resulting mhi from cv::motempl::updateMotionHis
tory(). The vector-sum global orientation is returned, as in Figure 17-7. This orien‐
tation will be in degrees and confined to the range from 0 to 360.

Figure 17-7. Motion gradients of the MHI image: (a) gradient magnitudes and direc‐
tions; (b) large gradients are eliminated; (c) overall direction of motion is found

608 | Chapter 17: Tracking

The timestamp, together with duration, tells the function how much motion to con‐
sider from the mhi and motion orientation images. You could compute the global
motion from the center of mass of each of the mhi silhouettes, but summing up the
precomputed motion vectors is much faster.

We can also isolate regions of the motion template mhi and determine the local
motion within that region, as shown in Figure 17-8. In the figure, the mhi is scanned
for current silhouette regions. When a region marked with the most current time‐
stamp is found, the region’s perimeter is searched for sufficiently recent motion
(recent silhouettes) just outside its perimeter. When such motion is found, a
downward-stepping flood fill is performed to isolate the local region of motion that
“spilled off” the current location of the object of interest. Once found, we can calcu‐
late local motion gradient direction in the spill-off region, then remove that region,
and repeat the process until all regions are found (as diagrammed in Figure 17-8).

Figure 17-8. Segmenting local regions of motion in the MHI: In (A) (a) scan the MHI
for current silhouettes and, when they’re found, go around the perimeter looking for
other recent silhouettes; when a recent silhouette (b) is found, perform downward-
stepping flood fills (c) to isolate local motion. In (B) use the gradients found within the
isolated local motion region to compute local motion. In (C) remove the previously
found region and (d) search for the next current silhouette region (e), scan along it and
(f) perform downward-stepping flood fill on it. (D) Compute motion within the newly
isolated region and continue the process until no current silhouette remains

Motion Templates | 609

The function that isolates and computes local motion is cv::motempl::segment
Motion():

void cv::motempl::segmentMotion(
 cv::InputArray mhi, // Motion history image
 cv::OutputArray segMask, // Output image, found segments (CV_32FC1)
 vector<cv::Rect>& boundingRects, // ROI's for motion connected components
 double timestamp, // Current time (usually milliseconds)
 double segThresh // >= interval between motion history steps
);

In cv::motempl::segmentMotion(), the mhi must be a single-channel, floating-point
input. The argument segMask is used for output; when returned it will be a single-
channel, 32-bit floating-point image. The individual segments will be “marked” onto
this image, with each segment being given a distinct nonzero identifier (e.g., 1, 2, etc.;
zero (0) is reserved to mean “no motion”). Similarly, the vector boundingRects will
be filled with regions of interest (ROIs) for the motion-connected components. (This
allows you to use cv::motempl::calcGlobalOrientation separately on each such
connected component to determine the motion of that particular component.)

The timestamp input should be the value of the most current silhouettes in the mhi
(the ones from which you want to segment local motions). The last argument is seg
Thresh, which is the maximum downward step (from current time to previous
motion) that you’ll accept as attached motion. This parameter is provided because
there might be overlapping silhouettes from recent and much older motion that you
don’t want to connect together. It’s generally best to set segThresh to something like
1.5 times the average difference in silhouette timestamps.

Given the discussion so far, you should now be able to understand the motempl.cpp
example that ships with OpenCV in the opencv_contrib/modules/optflow/samples/
directory. We will now extract and explain some key points from the update_mhi()
function in motempl.cpp. The update_mhi() function extracts templates by thresh‐
olding frame differences and then passing the resulting silhouette to
cv::motempl::updateMotionHistory():

...
cv::absdiff(buf[idx1], buf[idx2], silh);

cv::threshold(silh, silh, diff_threshold, 1, cv::THRESH_BINARY);

cv::updateMotionHistory(silh, mhi, timestamp, MHI_DURATION);
...

610 | Chapter 17: Tracking

The gradients of the resulting mhi are then taken, and a mask of valid gradients is
produced via cv::motempl::calcMotionGradient(). Then resulting local motions
are segmented into cv::Rect structures:

...
cv::motempl::calcMotionGradient(
 mhi,
 mask,
 orient,
 MAX_TIME_DELTA,
 MIN_TIME_DELTA,
 3
);

vector<cv::Rect> brects;

cv::motempl::segmentMotion(
 mhi,
 segmask,
 brects,
 timestamp,
 MAX_TIME_DELTA
);
...

A for loop then iterates through the bounding rectangles for each motion. The itera‐
tion starts at -1, which has been designated as a special case for finding the global
motion of the whole image. For the local motion segments, small segmentation areas
are first rejected and then the orientation is calculated via cv::motempl::calcGlobal
Orientation(). Instead of using exact masks, this routine restricts motion calcula‐
tions to ROIs that bound the local motions; it then calculates where valid motion
within the local ROIs was actually found. Any such motion area that is too small is
rejected. Finally, the routine draws the motion. Examples of the output for a person
flapping their arms is shown in Figure 17-9, where the output is drawn above the raw
image for eight sequential frames (arranged in two rows). (For the full code, see
opencv_contrib (as described in Appendix B). If you download opencv_contrib, the
code is in .../opencv_contrib/modules/optflow/samples/motempl.cpp.) In the same
sequence, “Y” postures were recognized by the shape descriptors (Hu moments) dis‐
cussed in Chapter 14, although the shape recognition is not included in the samples
code.

...
 for(i = -1; i < (int)brects.size(); i++) {

 cv::Rect roi; Scalar color; double magnitude;
 cv::Mat maski = mask;
 if(i < 0) {

 // case of the whole image

Motion Templates | 611

 //
 roi = Rect(0, 0, img.cols, img.rows);
 color = Scalar::all(255);
 magnitude = 100;

 } else {

 // i-th motion component
 //
 roi = brects[i];
 if(roi.area() < 3000) continue; // reject very small components
 color = Scalar(0, 0, 255);
 magnitude = 30;
 maski = mask(roi);

 }

 double angle = cv::motempl::calcGlobalOrientation(
 orient(roi),
 maski,
 mhi(roi),
 timestamp,
 MHI_DURATION
);

 // ...[find regions of valid motion]...

 // ...[reset ROI regions]...

 // ...[skip small valid motion regions]...

 // ...[draw the motions]...
 }
...

612 | Chapter 17: Tracking

Figure 17-9. Results of motion template routine: going across and top to bottom, a per‐
son moving and the resulting global motions indicated in large octagons and local
motions indicated in small octagons; also, the “Y” pose can be recognized via shape
descriptors (Hu moments)

Estimators
Suppose we are tracking a person who is walking across the view of a video camera.
At each frame, we make a determination of the person’s location. We could do this
any number of ways, as we have seen, but for now all that is important is that we
determine an estimate of the person’s position at each frame. This estimation is not
likely to be extremely accurate. The reasons for this are many—for example, inaccur‐
acies in the sensor, approximations in earlier processing stages, issues arising from
occlusion or shadows, or the apparent shape change due to the person’s legs and
arms swinging as they walk. Whatever the source, we expect that these measurements
will vary, perhaps somewhat randomly, about the “actual” values that might be
received from some more ideal sensor or sensing pathway. We can think of all these
inaccuracies, taken together, as simply contributing noise to our measurement
process.

We’d like to be able to estimate this person’s motion in a way that makes maximal
use of the measurements we’ve made. Thus, the cumulative effect of our many meas‐
urements could allow us to detect the part of the person’s observed trajectory that
does not arise from noise. The trivial example would be if we knew the person was
not moving. In this case, our intuition tells us that we could probably average all of

Estimators | 613

the measurements we had made to get the best notion of the person’s actual location.
The problem of motion estimation addresses both why our intuition gives this pre‐
scription for a stationary person, and more importantly, how we would generalize
that result to moving objects.

The key additional ingredient we will need is a model for the person’s motion. For
example, we might model the person’s motion with the following statement: “A per‐
son enters the frame from one side and walks across the frame at constant velocity.”
Given this model, we can ask not only where the person is but also what parameters
of the model (in this case, the person’s velocity) are best supported by our
observations.

This task is divided into two phases (see Figure 17-10). In the first phase, typically
called the prediction phase, we use information learned in the past to further refine
our model for what the next location of the person (or object) will be. In the second
phase, the correction phase, we make a measurement and then reconcile that meas‐
urement with the predictions based on our previous measurements (i.e., our model).

Figure 17-10. Two-phase estimator cycle: prediction based on prior data followed by
reconciliation of the newest measurement

The machinery for accomplishing the two-phase estimation task falls generally under
the heading of estimators, with the Kalman filter [Kalman60] being the most widely
used technique. In addition to the Kalman filter, another important method is the
condensation algorithm, which is a computer-vision implementation of a broader
class of methods known as particle filters. The primary difference between the Kal‐
man filter and the condensation algorithm is how the state probability density is
described. In the following sections, we will explore the Kalman filter in detail and
then touch on some related techniques. We will not dwell on the condensation algo‐
rithm, as there is no implementation of it in the OpenCV library. We will, however,
touch on what it is and how it differs from the Kalman filter–related techniques as we
progress.

614 | Chapter 17: Tracking

17 By “reasonable,” we mean something like “sufficiently unrestrictive that the method is useful for a variety of
actual problems arising in the real world.” “Reasonable” just seemed like less of a mouthful.

18 The modifier a posteriori is academic jargon for “with hindsight.” Thus, when we say that such and such a
distribution “maximizes the a posteriori probability,” what we mean is that that distribution, which is essen‐
tially a possible explanation of “what really happened,” is actually the most likely one given the data we have
observed—that is, looking back on it all in retrospect.

The Kalman Filter
First introduced in 1960, the Kalman filter has risen to great prominence in a wide
variety of signal-processing contexts. The basic idea behind the Kalman filter is that,
under a strong but reasonable set of assumptions,17 it is possible—given a history of
measurements of a system—to build a model for the current state of the system that
maximizes the a posteriori18 probability given those previous measurements. In addi‐
tion, it turns out that we can do this estimation without keeping a long history of the
previous measurements themselves. Instead, we iteratively update our model of a sys‐
tem’s state as we make successive measurements and keep only the most recent
model for use in the next iteration. This greatly simplifies the computational implica‐
tions of this method. We will provide a basic introduction to the Kalman filter here;
for a more detailed (but still very accessible) introduction, see Welsh and Bishop
[Welsh95].

What goes in and what comes out
The Kalman filter is an estimator. This means that it helps us integrate information
we have about the state of a system, information we have about the dynamics of the
system, and new information we might learn by observation while the system is oper‐
ating. In practice, there are important limitations to how we can express each of these
things. The first important limitation is that the Kalman filter will help us only with
systems whose state can be expressed in terms of a vector, representing what we think
the current value is for each of its degrees of freedom, and a matrix, expressing our
uncertainty about those same degrees of freedom. (It is a matrix because such an
uncertainty includes not only the variance of individual degrees of freedom, but also
possible covariance between them.)

The state vector can contain any variables we think are relevant to the system we are
working with. In the example of a person walking across an image, the components
of this state vector might be their current position and their velocity: x→ i

* = (x *, vx
*). In

some cases, it is appropriate to have two dimensions each for position and velocity:
x→ i

* = (x *, y *, vx
*, vy

*). In complex systems there may be many more components to this
vector. State vectors are normally accompanied by a subscript indicating the time
step; the little “star” indicates that we are talking about our best estimate at that

Estimators | 615

19 Many authors will use a “hat” instead of the “star.” We opt for the latter as it allows us to make vectors explicit
without the visual clutter of putting hats on top of arrows.

20 The particle filter or condensation algorithm alluded to earlier is most primarily an alternative way of formu‐
lating the state such that the state need not be unimodal, or even Gaussian.

particular time.19 The state vector is accompanied by a covariance matrix, normally
written as Σi

*. This matrix will be an n × n matrix if x→ i
* has n elements.

The Kalman filter will allow us to start with a state (x→ 0
*, Σ0

*), and to estimate subsequent
states (x→ i

*, Σi
*) at later times. Two very important observations are in order about this

statement. The first is that every one of these states has the same form; that is, it is
expressed as a mean, which represents what we think the most likely state of the sys‐
tem is, and the covariance, which expresses our uncertainty about that mean. This
means that only certain kinds of states can be handled by a Kalman filter. Consider,
for example, a car that is driving down the road. It is perfectly reasonable to model
such a system with a Kalman filter. Consider, however, the case of the car coming to a
fork in the road. It could proceed to the right, or to the left, but not straight ahead. If
we do not yet know which way the car has turned, the Kalman filter will not work for
us. This is because the states represented by the filter are Gaussian distributions—
basically, blobs with a peak in the middle. In the fork-in-the-road case, the car is
likely to have gone right, and likely to have gone left, but unlikely to have gone
straight and crashed. Unfortunately, any Gaussian distribution that gives equal
weight to the right and left sides must give yet greater weight to the middle. This is
because the Gaussian distribution is unimodal.20

The second important assumption is that the system must have started out in a state
we can describe by such a Gaussian distribution. This state, written (x→ 0

*, Σ0
*), is called a

prior distribution (note the zero subscript). We will see that it is always possible to
start a system with what is called an uninformative prior, in which the mean is arbi‐
trary and the covariance is taken to have huge values in it—which will basically
express the idea that we “don’t know anything.” But what is important is that the
prior must be Gaussian and that we must always provide one.

Assumptions required by the Kalman filter
Before we go into the details of how to work with the Kalman filter, let’s take a
moment to look at the “strong but reasonable” set of assumptions we mentioned ear‐
lier. There are three important assumptions required in the theoretical construction
of the Kalman filter: (1) the system being modeled is linear, (2) the noise that meas‐
urements are subject to is “white,” and (3) this noise is also Gaussian in nature. The
first assumption means (in effect) that the state of the system at time k can be
expressed as a vector, and that the state of the system a moment later, at time k + 1
(also a vector), can be expressed as the state at time k multiplied by some matrix F.

616 | Chapter 17: Tracking

21 For a more detailed explanation that follows a similar trajectory, refer to J. D. Schutter, J. De Geeter, T. Lefeb‐
vre, and H. Bruyninckx, “Kalman Filters: A Tutorial”.

22 The notation N (x̄, σ 2) is common shorthand for the Gaussian or normal distribution, and means “A normal
distribution with mean x̄ and variance σ2.” We will use the notation N (x; x̄, σ 2) when it is helpful to explicitly
describe a function of x that happens to be a normal distribution.

The additional assumptions that the noise is both white and Gaussian means that any
noise in the system is not correlated in time and that its amplitude can be accurately
modeled with only an average and a covariance (i.e., the noise is completely described
by its first and second moments). Although these assumptions may seem restrictive,
they actually apply to a surprisingly general set of circumstances.

What does it mean to “maximize the a posteriori probability given the previous
measurements”? It means that the new model we construct after making a measure‐
ment—taking into account both our previous model with its uncertainty and the new
measurement with its uncertainty—is the model that has the highest probability of
being correct. For our purposes, this means that the Kalman filter is, given the three
assumptions, the best way to combine data from different sources or from the same
source at different times. We start with what we know, we obtain new information,
and then we decide to change what we know based on how certain we are about the
old and new information using a weighted combination of the old and the new.

Let’s work all this out with a little math for the case of one-dimensional motion. You
can skip the next section if you want, but linear systems and Gaussians are so friendly
that Dr. Kalman might be upset if you didn’t at least give it a try.

Information fusion
So what’s the gist of the Kalman filter? Information fusion. Suppose you want to
know where some point is on a line—a simple one-dimensional scenario.21 As a result
of noise, suppose you have two unreliable (in a Gaussian sense) reports about where
the object is: locations x1 and x2. Because there is Gaussian uncertainty in these meas‐
urements, they have means of x̄1 and x̄2 together with standard deviations σ1 and σ2.
The standard deviations are, in fact, expressions of our uncertainty regarding how
good our measurements are. For each measurement, the implied probability distribu‐
tion as a function of location is the Gaussian distribution:22

pi(x) = N (x; x̄ i, σi
2) ≡ 1

σi 2π
exp(− (x − x̄ i)2

2σi
2), (i = 1, 2)

Given two such measurements, each with a Gaussian probability distribution, we
would expect that the probability density for some value of x given both measure‐
ments would be proportional to p12(x) = p1(x) ⋅ p2(x). It turns out that this product is

Estimators | 617

http://citeseer.ist.psu.edu/443226.html

23 The rearranging is a bit messy. If you want to verify all this, it is much easier to (1) start with the equation for
the Gaussian distribution p12(x) in terms of x̄12 and σ12, (2) substitute in the equations that relate x̄12 to x̄1 and
x̄2 and those that relate σ12 to σ1 and σ2, and (3) verify that the result can be separated into the product of the
Gaussians with which we started.

another Gaussian distribution, and we can compute the mean and standard deviation
of this new distribution as follows. Given that:

p12(x) ∝ exp(− (x − x̄ 1)2

2σ1
2)exp(− (x − x̄ 2)2

2σ2
2) = exp(− (x − x̄ 1)2

2σ1
2 − (x − x̄ 2)2

2σ2
2)

Given also that a Gaussian distribution is maximal at the average value, we can find
that average value simply by computing the derivative of p(x) with respect to x.
Where a function is maximal its derivative is 0, so:

d p12
dx | x̄ 12

= −
x̄ 12 − x̄ 1

σ1
2 +

x̄ 12 − x̄ 2

σ2
2 ⋅ p12(x̄12) = 0

Since the probability distribution function p(x) is never 0, it follows that the term in
brackets must be 0. Solving that equation for x gives us this very important relation:

x̄12 = (σ2
2

σ1
2 + σ2

2)x̄1 + (σ1
2

σ1
2 + σ2

2)x̄2

Thus, the new mean value x̄12 is just a weighted combination of the two measured
means. What is critically important, however, is that the weighting is determined by
(and only by) the relative uncertainties of the two measurements. Observe, for exam‐
ple, that if the uncertainty σ2 of the second measurement is particularly large, then the
new mean will be essentially the same as the mean x1, the more certain previous
measurement.

With the new mean x̄12 in hand, we can substitute this value into our expression for
p12(x) and, after substantial rearranging,23 identify the uncertainty σ12

2 as:

σ12
2 =

σ1
2σ2

2

σ1
2 + σ2

2 .

At this point, you are probably wondering what this tells us. Actually, it tells us a lot.
It says that when we make a new measurement with a new mean and uncertainty, we
can combine that measurement with the mean and uncertainty we already have to
obtain a new state characterized by a still newer mean and uncertainty. (We also now
have numerical expressions for these things, which will come in handy momentarily.)

618 | Chapter 17: Tracking

This property that two Gaussian measurements, when combined, are equivalent to a
single Gaussian measurement (with a computable mean and uncertainty) is the most
important feature for us. It means that when we have M measurements, we can com‐
bine the first two, then the third with the combination of the first two, then the
fourth with the combination of the first three, and so on. This is what happens with
tracking in computer vision: we obtain one measurement followed by another fol‐
lowed by another.

Thinking of our measurements (xi, σi) as time steps, we can compute the current state
of our estimation (xi

*, σi
*) as follows. First, assume we have some initial notion of

where we think our object is; this is the prior probability. This initial notion will be
characterized by a mean and an uncertainty x0

* and σ0
*. (Recall that we introduced the

little stars or asterisks to denote that this is a current estimate, as opposed to a meas‐
urement.)

Next, we get our first measurement (x1, σ1) at time step 1. All we have to go on is this
new measurement and the prior, but we can substitute these into our optimal estima‐
tion equation. Our optimal estimate will be the result of combining our previous state
estimate—in this case the prior (x0

*, σ0
*)—with our new measurement (x1, σ1).

x1
* = (σ1

2

σ0
* 2 + σ1

2)x0
* + (σ0

* 2

σ0
* 2 + σ1

2)x1

Rearranging this equation gives us the following useful iterable form:

x1
* = x0

* + (σ0
* 2

σ0
* 2 + σ1

2)(x1 − x0
*)

Before we worry about just what this is useful for, we should also compute the analo‐
gous equation for σ1

*.

σ1
* 2 =

σ0
* 2σ1

2

σ0
* 2 + σ1

2

A rearrangement similar to what we did for x1
* yields an iterable equation for estimat‐

ing variance given a new measurement:

σ1
* 2 = (1 −

σ0
* 2

σ0
* 2 + σ1

2)σ0
* 2

In their current form, these equations allow us to separate clearly the “old” informa‐
tion (what we knew before a new measurement was made—the part with the stars)
from the “new” information (what our latest measurement told us—no stars). The

Estimators | 619

new information (x1 − x0
*), seen at time step 1, is called the innovation. We can also see

that our optimal iterative update factor is now:

K = (σ0
* 2

σ0
* 2 + σ1

2)
This factor is known as the update gain. Using this definition for K, we obtain a con‐
venient recursion form. This is because there is nothing special about the derivation
up to this point or about the prior distribution or the new measurement. In effect,
after our first measurement, we have a new state estimate (x1

*, σ1
*), which is going to

function relative to the new measurement (x2, σ2) in exactly the same way as (x0
*, σ0

*) did
relative to (x1, σ1). In effect, (x1

*, σ1
*) is a new prior (i.e., what we “previously believed”

before the next measurement arrived). Putting this realization into equations:

xk
* = xk −1

* + K (xk − xk −1
*)

σk
* 2 = (1 − K)σk −1

* 2

and

K = (σk −1
* 2

σk −1
* 2 + σk

2)
In the Kalman filter literature, if the discussion is about a general series of measure‐
ments, then it is traditional to refer to the “current” time step as k, and the previous
time step is thus k – 1 (as opposed to k + 1 and k, respectively). Figure 17-11 shows
this update process sharpening and converging on the true distribution.

620 | Chapter 17: Tracking

Figure 17-11. Combining our prior belief N(xk−1
* , σk−1

* 2) [left] with our measurement
observation N(xk, σk

2) [right], the result is our new estimate: N(xk
*, σk

* 2) [center]

Systems with dynamics
In our simple one-dimensional example, we considered the case of an object being
located at some point x, and a series of successive measurements of that point. In that
case we did not specifically consider the case in which the object might actually be
moving in between measurements. In this new case we will have what is called the
prediction phase. During the prediction phase, we use what we know to figure out
where we expect the system to be before we attempt to integrate a new measurement.

In practice, the prediction phase is done immediately after a new measurement is
made, but before the new measurement is incorporated into our estimation of the
state of the system. An example of this might be when we measure the position of a
car at time t, then again at time t + dt. If the car has some velocity v, then we do not
just incorporate the second measurement directly. We first fast-forward our model
based on what we knew at time t so that we have a model not only of the system at
time t but also of the system at time t + dt, the instant before the new information is
incorporated. In this way, the new information, acquired at time t + dt, is fused not
with the old model of the system, but with the old model of the system projected for‐
ward to time t + dt. This is the meaning of the cycle depicted in Figure 17-10. In the
context of Kalman filters, there are three kinds of motion that we would like to
consider.

Estimators | 621

The first is dynamical motion. This is motion that we expect as a direct result of the
state of the system when last we measured it. If we measured the system to be at posi‐
tion x with some velocity v at time t, then at time t + dt we would expect the system
to be located at position x + v · dt, possibly still with velocity v.

The second form of motion is called control motion. Control motion is motion that
we expect because of some external influence applied to the system of which, for
whatever reason, we happen to be aware. As the name implies, the most common
example of control motion is when we are estimating the state of a system that we
ourselves have some control over, and we know what we did to bring about the
motion. This situation arises often in robotic systems where the control is the system
telling the robot, for example, to accelerate or to go forward. Clearly, in this case, if
the robot was at x and moving with velocity v at time t, then at time t + dt we expect
it to have moved not only to x + v · dt (as it would have done without the control),
but also a little farther, since we know we told it to accelerate.

The final important class of motion is random motion. Even in our simple one-
dimensional example, if whatever we were looking at had a possibility of moving on
its own for whatever reason, we would want to include random motion in our predic‐
tion step. The effect of such random motion will be to simply increase the uncertainty
of our state estimate with the passage of time. Random motion includes any motions
that are not known or under our control. As with everything else in the Kalman filter
framework, however, there is an assumption that this random motion is either Gaus‐
sian (i.e., a kind of random walk) or that it can at least be effectively modeled as
Gaussian.

These dynamical elements are input into our simulation model by the update step
before a new measurement can be fused. This update step first applies any knowledge
we have about the motion of the object according to its prior state, then any addi‐
tional information resulting from actions that we ourselves have taken or that we
know have been taken on the system from another outside agent, and then finally our
estimation of random events that might have changed the state of the system along
the way. Once those factors have been applied, we can incorporate our next new
measurement.

In practice, the dynamical motion is particularly important when the state of the sys‐
tem is more complex than our simulation model. Often when an object is moving,
there are multiple components to the state vector, such as the position as well as the
velocity. In this case, of course, the state is evolved according to the velocity that we
believe it to have. Handling systems with multiple components to the state is the
topic of the next section. In order to handle these new aspects of the situation, how‐
ever, we will need to develop our mathematical machinery a little further as well.

622 | Chapter 17: Tracking

24 The astute reader, or one who already knows something about Kalman filters, will notice another important
assumption we slipped in—namely, that there is a linear relationship (via matrix multiplication) between the
controls uk and the change in state. In practical applications, this is often the first assumption to break down.

Kalman equations
We are now ready to put everything together and understand how to handle a more
general model. Such a model will include a multidimensional state vector, dynamical
motion, control motion, random motion, measurement, measurement uncertainty,
and the techniques necessary to fuse together our estimates of where the system has
gone with what we subsequently measure.

The first thing we need to do is to generalize our discussion to states that contain
many state variables. The simplest example of this might be in the context of video
tracking, where objects can move in two or three dimensions. In general, the state
might contain additional elements, such as the velocity of an object being tracked.
We will generalize the description of the state at time step k to be the following func‐
tion of the state at time step k – 1:

x→ k = F x→ k −1 + Bu→ k + w→ k

Here x→ k is now the n-dimensional vector of state components and F is an n × n
matrix, sometimes called the transfer matrix or transition matrix, which multiplies
x→ k −1. The vector u→ k is new. It’s there to allow external controls on the system, and it
consists of a c-dimensional vector referred to as the control inputs; B is an n × c
matrix that relates these control inputs to the state change.24 The variable w→ k is a ran‐
dom variable (usually called the process noise) associated with random events or
forces that directly affect the actual state of the system. We assume that the compo‐
nents of w→ k have a zero mean Gaussian distribution, N (0

→
, Qk) for some n × n cova‐

riance matrix Qk (which could, in principle, vary with time, but typically it does not).

In general, we make measurements Zk
→ that may or may not be direct measurements

of the state variable X k
→ . (For example, if you want to know how fast a car is moving

then you could either measure its speed with a radar gun or measure the sound com‐
ing from its tailpipe; in the former case, Zk

→ will be X k
→ with some added measurement

noise, but in the latter case, the relationship is not direct in this way.) We can sum‐
marize this situation by saying that we measure the m-dimensional vector of meas‐
urements Zk

→ given by:

z→ k = H x→ k + v→ k

Estimators | 623

25 The k in these terms allows for them to vary with time but does not require this. In actual practice, it’s com‐
mon for H and R not to vary with time.

Here H is an m × n matrix and v→ k is the measurement error, which is also assumed to
have Gaussian distributions N(0, Rk) for some m × m covariance matrix Rk.25

Before we get totally lost, let’s consider a particular realistic situation of taking meas‐
urements on a car driving in a parking lot. We might imagine that the state of the car
could be summarized by two position variables, x and y, and two velocities, Vx and
Vy. These four variables would be the elements of the state vector X

→
k . This suggests

that the correct form for F is:

However, when using a camera to make measurements of the car’s state, we probably
measure only the position variables:

This implies that the structure of H is something like:

In this case, we might not really believe that the velocity of the car is constant and so
would assign a value of Qk to reflect this. The actions of a driver not under our con‐
trol are, in a sense, random from our point of view. We would choose Rk based on
our estimate of how accurately we have measured the car’s position using (for exam‐
ple) our image-analysis techniques on a video stream.

All that remains now is to plug these expressions into the generalized forms of the
update equations. The basic idea is the same, however. First we compute the a priori
estimate xk

− of the state. It is relatively common (though not universal) in the litera‐
ture to use the superscript minus sign to mean “at the time immediately prior to the
new measurement”; we’ll adopt that convention here as well. Thus the a priori esti‐
mate is given by:

x→ k
− = F x→ k −1 + Bu→ k −1 + w→ k

624 | Chapter 17: Tracking

Using Σk
− to denote the error covariance, the a priori estimate for this covariance at

time k is obtained from the value at time k – 1 by:

Σk
− = F Σk −1F T + Qk −1

This equation forms the basis of the predictive part of the estimator, and it tells us
“what we expect” based on what we’ve already seen. From here we’ll state (without
derivation) what is often called the Kalman gain or the blending factor, which tells us
how to weight new information against what we think we already know:

Kk = Σk
−Hk

T (Hk Σk
−Hk

T + Rk)−1

Though this equation looks intimidating, it’s really not so bad. We can understand it
more easily by considering various simple cases. For our one-dimensional example in
which we measured one position variable directly, Hk is just a 1 × 1 matrix containing
only a 1! Thus, if our measurement error is σk +1

2 , then Rk is also a 1 × 1 matrix contain‐
ing that value. Similarly, Σk is just the variance σk

2. So that big equation boils down to
just this:

Kk =
σk

2

σk
2 + σk +1

2

Note that this is exactly what we thought it would be. The gain, which we first saw in
the previous section, allows us to optimally compute the updated values for x→ k and σk
when a new measurement is available:

x→ k = x→ k
− + Kk (z→ k

− − Hk x→ k
−)

and:

Σk = (I − Kk Hk)Σk
−

Once again, these equations look intimidating at first, but in the context of our sim‐
ple one-dimensional discussion, it’s really not as bad as it looks. The optimal weights
and gains are obtained by the same methodology as for the one-dimensional case,
except this time we minimize the uncertainty of our position state x by setting to 0
the partial derivatives with respect to x before solving. We can show the relationship
with the simpler one-dimensional case by first setting F = I (where I is the identity
matrix), B = 0, and Q = 0. The similarity to our one-dimensional filter derivation is
then revealed as we make the following substitutions in our more general equations:

Estimators | 625

Tracking in OpenCV with cv::KalmanFilter
With all of this at our disposal, you probably feel either that you don’t need OpenCV
to do anything for you, or that you desperately need OpenCV to do all of this for you.
Fortunately, the library and its authors are amenable to either interpretation. The
Kalman filter is (not surprisingly) represented in OpenCV by an object called
cv::KalmanFilter. The declaration for the cv::KalmanFilter object has the follow‐
ing form:

class cv::KalmanFilter {

public:
 cv::KalmanFilter();

 cv::KalmanFilter(
 int dynamParams, // Dimensionality of state vector
 int measureParams, // Dimensionality of measurement vector
 int controlParams = 0, // Dimensionality of control vector
 int type = CV_32F // Type for matrices (CV_32F or F64)
);

 //! re-initializes Kalman filter. The previous content is destroyed.
 void init(
 int dynamParams, // Dimensionality of state vector
 int measureParams, // Dimensionality of measurement vector
 int controlParams = 0, // Dimensionality of control vector
 int type = CV_32F // Type for matrices (CV_32F or F64)
);

626 | Chapter 17: Tracking

 //! computes predicted state
 const cv::Mat& predict(
 const cv::Mat& control = cv::Mat() // External applied control vector (u_k)
);

 //! updates the predicted state from the measurement
 const cv::Mat & correct(
 const cv::Mat& measurement // Measurement vector (z_k)
);

 cv::Mat transitionMatrix; // state transition matrix (F)
 cv::Mat controlMatrix; // control matrix (B) (w/o control)
 cv::Mat measurementMatrix; // measurement matrix (H)
 cv::Mat processNoiseCov; // process noise covariance matrix (Q)
 cv::Mat measurementNoiseCov; // measurement noise covariance matrix (R)

 cv::Mat statePre; // predicted state (x'_k):
 // x_k = F * x_(k-1) + B * u_k

 cv::Mat statePost; // corrected state (x_k):
 // x_k = x'_k + K_k * (z_k – H * x'_k)

 cv::Mat errorCovPre; // a-priori error estimate covariance matrix (P'_k):
 // \Sigma'_k = F * \Sigma_(k-1) * F^t + Q

 cv::Mat gain; // Kalman gain matrix (K_k):
 // K_k = \Sigma'_k * H^t * inv(H*\Sigma'_k*H^t+R)

 cv::Mat errorCovPost; // a posteriori error covariance matrix (\Sigma_k):
 // \Sigma_k = (I - K_k * H) * \Sigma'_k

 ...
};

You can either create your filter object with the default constructor and then config‐
ure it with the cv::KalmanFilter::init() method, or just call the constructor that
shares the same argument list with cv::KalmanFilter::init(). In either case, there
are four arguments you will need.

The first is dynamParams; this is the number of dimensions of the state vector x→ k . It
does not matter what dynamical parameters you will have—only the number of them
matters. Remember that their interpretation will be set by the various other compo‐
nents of the filter (notably the state transition matrix F). The next parameter is meas
ureParams; this is the number of dimensions that are present in a measurement, the
dimension of zk. As with xk, it is the other components of the filter that ultimately
give z→ k its meaning, so all we care about right now is the total dimension of the vector
(in this case the meaning of z→ k is primarily coming from the way we define the meas‐
urement matrix H, and its relationship to x→ k). If there are to be external controls to
the system, then you must also specify the dimension of the control vector u→ k . By

Estimators | 627

26 In recent OpenCV versions, the correction step may be omitted when there is no measurement available (e.g.,
the tracked object is occluded). In that case, statePost will set to the value of statePre.

default, all of the internal components of the filter will be created as 32-bit floating-
point type numbers. If you would like the filter to run in higher precision, you can set
the final argument, type, to cv::F64.

The next two functions implement the Kalman filter process (Figure 17-10). Once the
data is in the structure (we will talk about this in a moment), we can compute the
prediction for the next time step by calling cv::KalmanFilter::predict() and then
integrate our new measurements by calling cv::KalmanFilter::correct().26 The
prediction method (optionally) accepts a control vector u→ k , while the correction
method requires the measurement vector z→ k . After running each of these routines, we
can read the state of the system being tracked. The result of cv::KalmanFilter::cor
rect() is placed in statePost, while the result of cv::KalmanFilter::predict() is
placed in statePre. You can read these values out of the member variables of the fil‐
ter, or you can just use the return values of the two methods.

You will notice that, unlike many objects in OpenCV, all of the member variables are
public. There are not “get/set” routines for them, so you just access them directly
when you need to do so. For example, the state-transition matrix F, which is called
cv::KalmanFilter::transitionMatrix in this context, is something you will just set
up yourself for your system. This will all make a little more sense with an example.

Kalman filter example code
Clearly it is time for a good example. Let’s take a relatively simple one and implement
it explicitly. Imagine that we have a point moving around in a circle, like a car on a
racetrack. The car moves with mostly a constant velocity around the track, but there
is some variation (i.e., process noise). We measure the location of the car using a
method such as tracking it via our vision algorithms. This generates some (unrelated
and probably different) noise as well (i.e., measurement noise).

So our model is quite simple: the car has a position and an angular velocity at any
moment in time. Together these factors form a two-dimensional state vector x→ k .
However, our measurements are only of the car’s position and so form a one-
dimensional “vector” z→ k .

We’ll write a program (Example 17-1) whose output will show the car circling around
(in red) as well as the measurements we make (in yellow) and the location predicted
by the Kalman filter (in white).

628 | Chapter 17: Tracking

We begin with the usual calls to include the library header files. We also define a
macro that will prove useful when we want to transform the car’s location from angu‐
lar to Cartesian coordinates so we can draw on the screen.

Example 17-1. Kalman filter example code

#include "opencv2/opencv.hpp"
#include <iostream>

using namespace std;

#define phi2xy(mat) \
 cv::Point(cv::cvRound(img.cols/2 + img.cols/3*cos(mat.at<float>(0))), \
 cv::cvRound(img.rows/2 - img.cols/3*sin(mat.at<float>(0))))

int main(int argc, char** argv) {

...

Next, we will create a random-number generator, an image to draw to, and the Kal‐
man filter structure. Notice that we need to tell the Kalman filter how many dimen‐
sions the state variables are (2) and how many dimensions the measurement variables
are (1).

...

 // Initialize, create Kalman filter object, window, random number
 // generator etc.
 //
 cv::Mat img(500, 500, CV_8UC3);
 cv::KalmanFilter kalman(2, 1, 0);

...

Once we have these building blocks in place, we create a matrix (really a vector, but
in OpenCV we call everything a matrix) for the state x_k (x→ k), the process noise w_k
(w→ k), the measurements z_k (z→ k), and the all-important transition matrix transition
Matrix (F). The state needs to be initialized to something, so we fill it with some rea‐
sonable random numbers that are narrowly distributed around zero.

The transition matrix is crucial because it relates the state of the system at time k to
the state at time k + 1. In this case, the transition matrix will be 2 × 2 (since the state
vector is two-dimensional). It is, in fact, the transition matrix that gives meaning to
the components of the state vector. We view x_k as representing the angular position
of the car (φ) and the car’s angular velocity (ω). In this case, the transition matrix has
the components [[1, dt], [0, 1]]. Hence, after we multiply by F, the state (ϕ, ω)
becomes (ϕ + ω dt , ω)—that is, the angular velocity is unchanged but the angular
position increases by an amount equal to the angular velocity multiplied by the time

Estimators | 629

step. In our example we choose dt = 1.0 for convenience, but in practice we’d need
to use something like the time between sequential video frames.

...

 // state is (phi, delta_phi) - angle and angular velocity
 // Initialize with random guess.
 //
 cv::Mat x_k(2, 1, CV_32F);
 randn(x_k, 0., 0.1);

 // process noise
 //
 cv::Mat w_k(2, 1, CV_32F);

 // measurements, only one parameter for angle
 //
 cv::Mat z_k = cv::Mat::zeros(1, 1, CV_32F);

 // Transition matrix 'F' describes relationship between
 // model parameters at step k and at step k+1 (this is
 // the "dynamics" in our model.
 //
 float F[] = { 1, 1, 0, 1 };
 kalman.transitionMatrix = Mat(2, 2, CV_32F, F).clone();

...

The Kalman filter has other internal parameters that must be initialized. In particu‐
lar, the 1 × 2 measurement matrix H is initialized to [1, 0] by a somewhat unintuitive
use of the identity function. The covariances of the process noise and the measure‐
ment noise are set to reasonable but interesting values (you can play with these your‐
self), and we initialize the posterior error covariance to the identity as well (this is
required to guarantee the meaningfulness of the first iteration; it will subsequently be
overwritten).

Similarly, we initialize the posterior state (of the hypothetical step previous to the first
one!) to a random value since we have no information at this time.

...

 // Initialize other Kalman filter parameters.
 //
 cv::setIdentity(kalman.measurementMatrix, cv::Scalar(1));
 cv::setIdentity(kalman.processNoiseCov, cv::Scalar(1e-5));
 cv::setIdentity(kalman.measurementNoiseCov, cv::Scalar(1e-1));
 cv::setIdentity(kalman.errorCovPost, cv::Scalar(1));

 // choose random initial state
 //
 randn(kalman.statePost, 0., 0.1);

630 | Chapter 17: Tracking

 for(;;) {
...

Finally we are ready to start up on the actual dynamics. First we ask the Kalman filter
to predict what it thinks this step will yield (i.e., before giving it any new informa‐
tion); we call this y_k (x→ k

−). Then we proceed to generate the new value of z_k (z→ k , the
measurement) for this iteration. By definition, this value is the “real” value x_k (x→ k)
multiplied by the measurement matrix H with the random measurement noise
added. We must remark here that, in anything but a toy application such as this, you
would not generate z_k from x_k; instead, a generating function would arise from the
state of the world or your sensors. In this simulated case, we generate the measure‐
ments from an underlying “real” data model by adding random noise ourselves; this
way, we can see the effect of the Kalman filter.

...

 // predict point position
 //
 cv::Mat y_k = kalman.predict();

 // generate measurement (z_k)
 //
 cv::randn(z_k, 0., sqrt((double)kalman.measurementNoiseCov.at<float>(0,0)));
 z_k = kalman.measurementMatrix*x_k + z_k;

...

Draw the three points corresponding to the observation we synthesized previously,
the location predicted by the Kalman filter, and the underlying state (which we hap‐
pen to know in this simulated case).

...

 // plot points (e.g., convert to planar co-ordinates and draw)
 //
 img = Scalar::all(0);
 cv::circle(img, phi2xy(z_k), 4, cv::Scalar(128,255,255)); // observed
 cv::circle(img, phi2xy(y_k), 4, cv::Scalar(255,255,255), 2); // predicted
 cv::circle(img, phi2xy(x_k), 4, cv::Scalar(0,0,255)); // actual

 cv::imshow("Kalman", img);

...

At this point we are ready to begin working toward the next iteration. The first thing
to do is again call the Kalman filter and inform it of our newest measurement. Next
we will generate the process noise. We then use the transition matrix F to time-step
x_k forward one iteration, and then add the process noise we generated; now we are
ready for another trip around.

Estimators | 631

...

 // adjust Kalman filter state
 //
 kalman.correct(z_k);

 // Apply the transition matrix 'F' (e.g., step time forward)
 // and also apply the "process" noise w_k
 //
 cv::randn(w_k, 0., sqrt((double)kalman.processNoiseCov.at<float>(0,0)));
 x_k = kalman.transitionMatrix*x_k + w_k;

 // exit if user hits 'Esc'
 if((cv::waitKey(100) & 255) == 27) break;
 }

 return 0;
}

As you can see, the Kalman filter part was not that complicated; half of the required
code was just generating some information to push into it. In any case, we should
summarize everything we’ve done, just to be sure it all makes sense.

We started out by creating matrices to represent the state of the system and the meas‐
urements we would make. We defined both the transition and measurement matri‐
ces, and then initialized the noise covariances and other parameters of the filter.

After initializing the state vector to a random value, we called the Kalman filter and
asked it to make its first prediction. Once we read out that prediction (which was not
very meaningful this first time through), we drew to the screen what was predicted.
We also synthesized a new observation and drew that on the screen for comparison
with the filter’s prediction. Next we passed the filter new information in the form of
that new measurement, which it integrated into its internal model. Finally, we syn‐
thesized a new “real” state for the model so that we could iterate through the loop
again.

When we run the code, the little red ball orbits around and around. The little yellow
ball appears and disappears about the red ball, representing the noise that the Kalman
filter is trying to “see through.” The white ball rapidly converges down to moving in a
small space around the red ball, showing that the Kalman filter has given a reasonable
estimate of the motion of the particle (the car) within the framework of our model.

One topic that we did not address in our example is the use of control inputs. For
example, if this were a radio-controlled car and we had some knowledge of what the
person with the controller was doing, we could include that information into our
model. In that case it might be that the velocity is being set by the controller. We’d
then need to supply the matrix B (kalman.controlMatrix) and also to provide a

632 | Chapter 17: Tracking

second argument for cv::KalmanFilter::predict() to accommodate the control
vector u→ k .

A Brief Note on the Extended Kalman Filter
You might have noticed that requiring the dynamics of the system to be linear in the
underlying parameters is quite restrictive. It turns out that the Kalman filter is still
useful to us when the dynamics are nonlinear, and the OpenCV Kalman filter rou‐
tines remain useful as well.

Recall that “linear” meant (in effect) that the various steps in the definition of the
Kalman filter could be represented with matrices. When might this not be the case?
There are actually many possibilities. For example, suppose our control measure is
the amount by which our car’s gas pedal is depressed; the relationship between the
car’s velocity and the gas pedal’s depression is not a linear one. Another common
problem is a force on the car that is more naturally expressed in Cartesian coordi‐
nates, while the motion of the car (as in our example) is more naturally expressed in
polar coordinates. This might arise if our car were instead a boat moving along a cir‐
cular path but in uniform water current moving to some particular direction.

In all these cases, the Kalman filter is not, by itself, sufficient; the state at time t + 1
will not be a linear function of the state at time t. One way to address these nonlinear‐
ities is to locally linearize the relevant processes (e.g., the update F or the control
input response B). Thus, we’d need to compute new values for F and B at every time
step based on the state x. These values would only approximate the real update and
control functions in the vicinity of the particular value of x, but in practice this is
often sufficient. This extension to the Kalman filter is known simply enough as the
extended Kalman filter or simply EKF [Schmidt66].

OpenCV does not provide any specific routines to implement the EKF, but none are
actually needed. All we have to do is recompute and reset the values of kalman.tran
sitionMatrix and kalman.controlMatrix before each update.

In general, the matrix update equations we encountered earlier when we introduced
the Kalman filter are now understood as a special case of the more general form:

x→ k = f
→

(x→ k −1, u→ k) + w→ k

z→ k = h
→

(x→ k) + v→ k

Here f(xk – 1, uk) and h(xk) are arbitrary nonlinear functions of their arguments. In
order to use the linear formulation of the Kalman filter provided, we recomputed the
matrices F and H at each time step according to the matrices Fk and Hk defined by:

Estimators | 633

27 You will have noticed that the matrix B disappeared. This is because in the general nonlinear case, it is not
uncommon for the state x→ k and the control u→ k to be coupled in the update. For this reason, the generalization
of F x→ k + Bu→ k is expressed as f

→
(x→ k , u→ k)—rather than, for example, f

→
(xk −1) + b

→
(u→ k)—in the EKF case, and the effect

of u→ k is thus absorbed into Fk.

Fk i , j =
∂ f i
∂ x j |

xk −1
* ,uk

Hk i , j =
∂ h i
∂ x j |

xk −1
*

Note that the evaluations of the partial derivatives that form the new matrices are
performed at the estimated position from the previous time step xk −1

* (note the star).
We can then substitute the values of Fk and Hk into our usual update equations.27

x→ k = Fk x→ k −1 + w→ k

z→ k = Hk x→ k + v→ k

The Kalman filter has since been more elegantly extended to nonlinear systems in a
formulation called the unscented particle filter [Merwe00]. A very good overview of
the entire field of Kalman filtering, including the recent advances, as well as particle
filters (which we touched on only briefly along the way), is given in [Thrun05].

Summary
In this chapter we continued our investigation of tracking, adding dense optical flow
techniques, mean-shift, Camshift, and motion templates to the sparse tracking meth‐
ods that we learned in the previous chapter. We concluded the chapter with a discus‐
sion of recursive estimators such as the Kalman filter. After an overview of the
mathematical theory of the Kalman filter, we saw how OpenCV makes this construct
available to us. We concluded with a brief note on more advanced filters that can be
used instead of the Kalman filter to handle more complex situations that do not con‐
form perfectly to the assumptions required by the Kalman filter. Further optical flow
and tracking algorithms are referenced in the optflow and tracking functions in the
opencv_contrib directory described in Appendix B.

Exercises
There are sample code routines included with the library that demonstrate many of
the algorithms discussed in this chapter. Use these examples in the following exerci‐
ses:

634 | Chapter 17: Tracking

• lkdemo.cpp (sparse optical flow in opencv/samples/cpp)
• fback.cpp (Farnebäck dense optical flow in samples/cpp)
• tvl1_optical_flow.cpp (dense optical flow in samples/cpp)
• camshiftdemo.cpp (mean-shift tracking of colored regions in samples/cpp)
• motempl.cpp (motion templates, in opencv_contrib/modules/optflow/samples)
• kalman.cpp (Kalman filter in samples/cpp)
• 768x576.avi (movie data files in samples/data)

1. Use a motion model that posits that the current state depends on the previous
state’s location and velocity. Combine the lkdemo.cpp (using only a few click
points) with the Kalman filter to track Lucas-Kanade points better. Display the
uncertainty around each point. Where does this tracking fail?
Hint: use Lucas-Kanade as the observation model for the Kalman filter, and
adjust noise so that it tracks. Keep motions reasonable.

2. Compile and run fback.cpp demo with Farnebäck’s dense optical flow algorithm
on 768x576.avi. Modify it to print the pure algorithm execution time. Install
OpenCL drivers on your machine (if you’re using a Mac, you are probably
already good to go), and see if it performs faster with OpenCL (make sure you
are using OpenCV 3.0 or later version). Try to substitute Farnebäck’s with TV-L1

(see tvl1_optical_flow.cpp) or Simple Flow calls and measure time again.
3. Compile and run camshiftdemo.cpp using a web camera or color video of a mov‐

ing colored object. Use the mouse to draw a (tight) box around the moving
object; the routine will track it.
a. In camshiftdemo.cpp, replace the cv::camShift() routine with cv::mean

Shift(). Describe situations where one tracker will work better than another.
b. Write a function that will put down a grid of points in the initial cv::mean

Shift() box. Run both trackers at once.
c. How can these two trackers be used together to make tracking more robust?

Explain and/or experiment.
4. Compile and run the motion template code motempl.cpp with a web camera or

using a previously stored movie file.
a. Modify motempl.cpp so that it can do simple gesture recognition.
b. If the camera was moving, explain how you would use motion stabilization

code to enable motion templates to work also for moderately moving
cameras.

Exercises | 635

5. A Kalman filter depends on linear dynamics and on Markov independence (i.e.,
it assumes the current state depends only on the immediate past state, not on all
past states). Suppose you want to track an object whose movement is related to
its previous location and its previous velocity but that you mistakenly include a
dynamics term only for state dependence on the previous location—in other
words, forgetting the previous velocity term.
a. Do the Kalman assumptions still hold? If so, explain why; if not, explain how

the assumptions were violated.
b. How can a Kalman filter be made to still track when you forget some terms of

the dynamics?
Hint: think of the noise model.

6. Describe how you can track circular (nonlinear) motion using a linear state
model (not extended) Kalman filter.
Hint: how could you preprocess this to get back to linear dynamics?

636 | Chapter 17: Tracking

1 Knowledge of lenses goes back at least to Roman times. The pinhole camera model goes back almost 1,000
years to al-Hytham (1021) and is the classic way of introducing the geometric aspects of vision. Mathematical
and physical advances followed in the 1600s and 1700s with Descartes, Kepler, Galileo, Newton, Hooke,
Euler, Fermat, and Snell (see O’Connor [O’Connor02]). Some key modern texts for geometric vision include
those by Trucco [Trucco98], Jaehne (also sometimes spelled Jähne) [Jaehne95; Jaehne97], Hartley and Zisser‐
man [Hartley06], Forsyth and Ponce [Forsyth03], Shapiro and Stockman [Shapiro02], and Xu and Zhang
[Xu96].

CHAPTER 18

Camera Models and Calibration

Vision begins with the detection of light from the world. That light begins as rays
emanating from some source (e.g., a light bulb or the sun), which travel through
space until striking some object. When that light strikes the object, much of the light
is absorbed, and what is not absorbed we perceive as the color of the object. Reflected
light that makes its way to our eye (or our camera) is collected on our retina (or our
imager). The geometry of this arrangement—particularly of the rays’ travel from the
object, through the lens in our eye or camera, and to the retina or imager—is of par‐
ticular importance to practical computer vision.

A simple but useful model of how this happens is the pinhole camera model.1 A pin‐
hole is an imaginary wall with a tiny hole in the center that blocks all rays except
those passing through the tiny aperture in the center. In this chapter, we will start
with a pinhole camera model to get a handle on the basic geometry of projecting rays.
Unfortunately, a real pinhole is not a very good way to make images because it does
not gather enough light for rapid exposure. This is why our eyes and cameras use len‐
ses to gather more light than what would be available at a single point. The downside,
however, is that gathering more light with a lens not only forces us to move beyond
the simple geometry of the pinhole model but also introduces distortions from the
lens itself.

637

In this chapter, we will learn how, using camera calibration, to correct (mathemati‐
cally) for the main deviations from the simple pinhole model that the use of lenses
imposes on us. Camera calibration is also important for relating camera measure‐
ments to measurements in the real, three-dimensional world. This is important
because scenes are not only three-dimensional; they are also physical spaces with
physical units. Hence, the relation between the camera’s natural units (pixels) and the
units of the physical world (e.g., meters) is a critical component of any attempt to
reconstruct a three-dimensional scene.

The process of camera calibration gives us both a model of the camera’s geometry
and a distortion model of the lens. These two informational models define the intrin‐
sic parameters of the camera. In this chapter, we use these models to correct for lens
distortions; in Chapter 19, we will use them to interpret the entire geometry of the
physical scene.

We will begin by looking at camera models and the causes of lens distortion. From
there, we will explore the homography transform, the mathematical instrument that
allows us to capture the effects of the camera’s basic behavior and of its various dis‐
tortions and corrections. We will take some time to discuss exactly how the transfor‐
mation that characterizes a particular camera can be calculated mathematically. Once
we have all this in hand, we’ll move on to the OpenCV functions that handle most of
this work for us.

Just about all of this chapter is devoted to building enough theory that you will truly
understand what is going into (and coming out of) the OpenCV function cv::cali
brateCamera() as well as what that function is doing “under the hood.” This is
important stuff if you want to use the function responsibly. Having said that, if you
are already an expert and simply want to know how to use OpenCV to do what you
already understand, jump right ahead to “Calibration function” on page 671 and get
to it. Note that Appendix B references other calibration patterns and techniques in
the ccalib function group.

Camera Model
We begin by looking at the simplest model of a camera, the pinhole. In this simple
model, light is envisioned as entering from the scene or a distant object, but only a
single ray enters the pinhole from any particular point in that scene. In a physical
pinhole camera, this point is then “projected” onto an imaging surface. As a result,
the image on this image plane (also called the projective plane) is always in focus, and
the size of the image relative to the distant object is given by a single parameter of the
camera: its focal length. For our idealized pinhole camera, the distance from the

638 | Chapter 18: Camera Models and Calibration

2 You are probably used to thinking of the focal length in the context of lenses, in which case the focal length is
a property of a particular lens, not the projection geometry. This is the result of a common abuse of terminol‐
ogy. It might be better to say that the “projection distance” is the property of the geometry and the “focal
length” is the property of the lens. The f in the previous equations is really the projection distance. For a lens,
the image is in focus only if the focus length of the configuration matches the focal length of the lens, so peo‐
ple tend to use the terms interchangeably.

3 Typical of such mathematical abstractions, this new arrangement is not one that can be built physically; the
image plane is simply a way of thinking of a “slice” through all of those rays that happen to strike the center of
projection. This arrangement is, however, much easier to draw and do math with.

pinhole aperture to the screen is precisely the focal length.2 This is shown in
Figure 18-1, where f is the focal length of the camera, Z is the distance from the cam‐
era to the object, X is the length of the object, and x is the object’s image on the imag‐
ing plane. In the figure, we can see by similar triangles that –x/f = X/Z, or:

−x = f ⋅ X
Z

Figure 18-1. Pinhole camera model: a pinhole (the pinhole aperture) lets through only
those light rays that intersect a particular point in space; these rays then form an image
by “projecting” onto an image plane

We will now rearrange our pinhole camera model to a form that is equivalent but in
which the math comes out easier. In Figure 18-2, we swap the pinhole and the image
plane.3 The main difference is that the object now appears right side up. The point in
the pinhole is reinterpreted as the center of projection. In this way of looking at
things, every ray leaves a point on the distant object and heads for the center of pro‐
jection. The point at the intersection of the image plane and the optical axis is
referred to as the principal point. On this new frontal image plane (see Figure 18-2),
which is the equivalent of the old projective or image plane, the image of the distant
object is exactly the same size as it was on the image plane in Figure 18-1. The image
is generated by intersecting these rays with the image plane, which happens to be

Camera Model | 639

4 Here the subscript screen is intended to remind you that the coordinates being computed are in the coordi‐
nate system of the screen (i.e., the imager). The difference between (xscreen,yscreen) in the equation and (x,y) in
Figure 18-2 is precisely the point of cx and cy. Having said that, we will subsequently drop the “screen” sub‐
script and simply use lowercase letters to describe coordinates on the imager.

exactly a distance f from the center of projection. This makes the similar triangles
relationship x/f = X/Z more directly evident than before. The negative sign is gone
because the object image is no longer upside down.

Figure 18-2. A point Q→ = (X, Y, Z) is projected onto the image plane by the ray passing
through the center of projection, and the resulting point on the image is q→ = (x, y, f);
the image plane is really just the projection screen “pushed” in front of the pinhole (the
math is equivalent but simpler this way)

You might think that the principal point is equivalent to the center of the imager, but
this would imply that some guy with tweezers and a tube of glue was able to attach
the imager in your camera to micron accuracy. In fact, the center of the imager chip
is usually not on the optical axis. We thus introduce two new parameters, cx and cy, to
model a possible displacement (away from the optic axis) of the center of coordinates
on the projection screen. The result is that a relatively simple model in which a point
Q
→

 in the physical world, whose coordinates are (X, Y, Z), is projected onto the imager
at some pixel location given by (xscreen, yscreen) in accordance with the following equa‐
tions:4

xscreen = f x ⋅
X
Z + cx , and yscreen = f y ⋅

Y
Z + cy

640 | Chapter 18: Camera Models and Calibration

5 Of course, millimeter is just a stand-in for any physical unit you like. It could just as easily be meter, micron,
or furlong. The point is that sx converts physical units to pixel units.

6 The approach OpenCV takes to camera intrinsics is derived from Heikkila and Silven; see [Heikkila97].

Note that we have introduced two different focal lengths; the reason for this is that
the individual pixels on a typical low-cost imager are rectangular rather than square.
The focal length fx, for example, is actually the product of the physical focal length of
the lens and the size sx of the individual imager elements (this should make sense
because sx has units of pixels per millimeter,5 while f has units of millimeters, which
means that fx is in the required units of pixels). Of course, similar statements hold for
fy and sy. It is important to keep in mind, though, that sx and sy cannot be measured
directly via any camera calibration process, and neither is the physical focal length f
directly measurable. We can derive only the combinations fx = F · sx and fy = F · sy
without actually dismantling the camera and measuring its components directly.

The Basics of Projective Geometry
The relation that maps a set of points Qι

→ in the physical world with coordinates (Xi,
Yi, Zi) to the points on the projection screen with coordinates (xi, yi) is called a projec‐
tive transform. When you are working with such transforms, it is convenient to use
what are known as homogeneous coordinates. The homogeneous coordinates associ‐
ated with a point in a projective space of dimension n are typically expressed as an
(n + 1)-dimensional vector (e.g., x, y, z becomes x, y, z, w), with the additional restric‐
tion that any two points whose values are proportional are, in fact, equivalent points.
In our case, the image plane is the projective space and it has two dimensions, so we
will represent points on that plane as three-dimensional vectors q→ = (q1, q2, q3). Recall‐
ing that all points having proportional values in the projective space are equivalent,
we can recover the actual pixel coordinates by dividing through by q3. This allows us
to arrange the parameters that define our camera (i.e., fx, fy, cx and cy) into a single
3 × 3 matrix, which we will call the camera intrinsics matrix.6 The projection of the
points in the physical world into the camera is now summarized by the following
simple form:

q→ = M ⋅ Q
→

where:

Camera Model | 641

7 There is also a third function, cv::convertPointsHomogeneous(), which is just a convenient way to call
either of the former two. It will look at the dimensionality of the points provided in dst and determine auto‐
matically whether you want it to convert to or from homogeneous coordinates. This function is now consid‐
ered obsolete. It is primarily present for backward compatibility. It should not be used in new code, as it
substantially reduces code clarity.

Multiplying this out, you will find that w = Z and so, since the point q→ is in homoge‐
neous coordinates, we can divide through by w (or Z) in order to recover our earlier
definitions. The minus sign is gone because we are now looking at the noninverted
image on the projective plane in front of the pinhole rather than the inverted image
on the projection screen behind the pinhole.

While we are on the topic of homogeneous coordinates, there are a few functions in
the OpenCV library that are appropriate to introduce here. The functions cv::con
vertPointsToHomogeneous() and cv::convertPointsFromHomogeneous() allow us
to convert to and from homogeneous coordinates.7 They have the following proto‐
types:

void cv::convertPointsToHomogeneous(
 cv::InputArray src, // Input vector of N-dimensional points
 cv::OutputArray dst // Result vector of (N+1)-dimensional points
);

void cv::convertPointsFromHomogeneous(
 cv::InputArray src, // Input vector of N-dimensional points
 cv::OutputArray dst // Result vector of (N-1)-dimensional points
);

The first function expects a vector of N-dimensional points (in any of the usual rep‐
resentations) and constructs a vector of (N + 1)-dimensional points from that vector.
All of the entries of the newly constructed vector associated with the added dimen‐
sion are set to 1. The result is that:

dstι
→

= (srci ,0 srci ,1 … srci ,N −1 1)

The second function does the conversion back from homogeneous coordinates.
Given an input vector of points of dimension N, it constructs a vector of (N – 1)-
dimensional points by first dividing all of the components of each point by the value
of the last components of the point’s representation and then throwing away that
component. The result is that:

dstι
→

= (srci ,0
srci ,N −1

srci ,1
srci ,N −1

…
srci ,N −2
srci ,N −1

)

642 | Chapter 18: Camera Models and Calibration

8 This “easier” representation is not just for humans. Rotation in three-dimensional space has only three com‐
ponents. For numerical optimization procedures, it is more efficient to deal with the three components of the
Rodrigues representation than with the nine components of a 3 × 3 rotation matrix.

9 Rodrigues was a 19th-century French mathematician.

With the ideal pinhole, we have a useful model for some of the three-dimensional
geometry of vision. Remember, however, that very little light goes through a pinhole;
thus, in practice, such an arrangement would make for very slow imaging while we
wait for enough light to accumulate on whatever imager we are using. For a camera
to form images at a faster rate, we must gather a lot of light over a wider area and
bend (i.e., focus) that light to converge at the point of projection. To accomplish this,
we use a lens. A lens can focus a large amount of light on a point to give us fast imag‐
ing, but it comes at the cost of introducing distortions.

Rodrigues Transform
When dealing with three-dimensional spaces, one most often represents rotations in
that space by 3 × 3 matrices. This representation is usually the most convenient
because multiplying a vector by this matrix is equivalent to rotating the vector in
some way. The downside is that it can be difficult to intuit just what 3 × 3 matrix goes
with what rotation. Briefly, we are going to introduce an alternative representation
for such rotations that is used by some of the OpenCV functions in this chapter, as
well as a useful function for converting to and from this alternative representation.

This alternate, and somewhat easier-to-visualize,8 representation for a rotation is
essentially a vector about which the rotation operates together with a single angle. In
this case it is standard practice to use only a single vector whose direction encodes the
direction of the axis to be rotated around, and to use the length of the vector to
encode the amount of rotation in a counterclockwise direction. This is easily done
because the direction can be equally well represented by a vector of any magnitude;
hence, we can choose the magnitude of our vector to be equal to the magnitude of the
rotation. The relationship between these two representations, the matrix and the vec‐
tor, is captured by the Rodrigues transform.9

Let r→ be the three-dimensional vector r→ = rx r y rz ; this vector implicitly defines θ,
the magnitude of the rotation by the length (or magnitude) of r→ . We can then convert
from this axis-magnitude representation to a rotation matrix R as follows:

Camera Model | 643

10 The approach to modeling lens distortion taken here derives mostly from Brown [Brown71] and earlier Fryer
and Brown [Fryer86].

We can also go from a rotation matrix back to the axis-magnitude representation by
using:

Thus we find ourselves in the situation of having one representation (the matrix rep‐
resentation) that is most convenient for computation and another representation (the
Rodrigues representation) that is a little easier on the brain. OpenCV provides us
with a function for converting from either representation to the other:

void cv::Rodrigues(
 cv::InputArray src, // Input rotation vector or matrix
 cv::OutputArray dst, // Output rotation matrix or vector
 cv::OutputArray jacobian = cv::noArray() // Optional Jacobian (3x9 or 9x3)
);

Suppose we have the vector r→ and need the corresponding rotation matrix representa‐
tion R; we set src to be the 3 × 1 vector r→ and dst to be the 3 × 3 rotation matrix R.
Conversely, we can set src to be a 3 × 3 rotation matrix R and dst to be a 3 × 1 vector
r→ . In either case, cv::Rodrigues() will do the right thing. The final argument is
optional. If jacobian is something other than cv::noArray(), then it should be a
pointer to a 3 × 9 or a 9 × 3 matrix that will be filled with the partial derivatives of the
output array components with respect to the input array components. The jacobian
outputs are mainly used for the internal optimization of the cv::solvePnP() and
cv::calibrateCamera() functions; your use of the cv::Rodrigues() function will
mostly be limited to converting the outputs of cv::solvePnP() and cv::calibrate
Camera() from the Rodrigues format of 1 × 3 or 3 × 1 axis-angle vectors to rotation
matrices. For this, you can leave jacobian set to cv::noArray().

Lens Distortions
In theory, it is possible to define a lens that will introduce no distortions. In practice,
however, no lens is perfect. This is mainly for reasons of manufacturing; it is much
easier to make a “spherical” lens than to make a more mathematically ideal “para‐
bolic” lens. It is also difficult to mechanically align the lens and imager exactly. Here
we describe the two main lens distortions and how to model them.10 Radial distor‐
tions arise as a result of the shape of lens, whereas tangential distortions arise from the
assembly process of the camera as a whole.

644 | Chapter 18: Camera Models and Calibration

11 If you don’t know what a Taylor series is, don’t worry too much. The Taylor series is a mathematical techni‐
que for expressing a (potentially) complicated function in the form of a polynomial of similar value to the
approximated function in at least a small neighborhood of some particular point (the more terms we include
in the polynomial series, the more accurate the approximation). In our case we want to expand the distortion
function as a polynomial in the neighborhood of r = 0. This polynomial takes the general form f(r) = a0 + a1r
+ a2r2 + ..., but in our case the fact that f(r = 0) at r = 0 implies a0 = 0. Similarly, because the function must be
symmetric in r, only the coefficients of even powers of r will be nonzero. For these reasons, the only parame‐
ters that are necessary for characterizing these radial distortions are the coefficients of r2, r4, and (sometimes)
higher even powers of r.

We start with radial distortion. The lenses of real cameras often noticeably distort the
location of pixels near the edges of the imager. This bulging phenomenon is the
source of the “barrel” or “fisheye” effect (see the room-divider lines at the top of
Figure 18-17 for a good example). Figure 18-3 gives some intuition as to why this
radial distortion occurs. With some lenses, rays farther from the center of the lens are
bent more than those closer in. A typical inexpensive lens is, in effect, stronger than it
ought to be as you get farther from the center. Barrel distortion is particularly notice‐
able in cheap web cameras but less apparent in high-end cameras, where a lot of
effort is put into fancy lens systems that minimize radial distortion.

Figure 18-3. Radial distortion: rays farther from the center of a simple lens are bent too
much compared to rays that pass closer to the center; thus, the sides of a square appear
to bow out on the image plane (this is also known as barrel distortion)

For radial distortions, the distortion is 0 at the (optical) center of the imager and
increases as we move toward the periphery. In practice, this distortion is small and
can be characterized by the first few terms of a Taylor series expansion around r = 0.11

For cheap web cameras, we generally use the first two such terms; the first of which is
conventionally called k1 and the second k2. For highly distorted cameras such as fish‐

Camera Model | 645

12 Now it’s possible to use much more complex “rational” and “thin prism” models in OpenCV. There is also
support for omni (180-degree) cameras, omni stereo, and multicamera calibration. See samples of use in the
opencv_contrib/modules/ccalib/samples directory.

13 Some old cameras had nonrectangular sensors. These sensors were actually parallelograms, due to some
imperfect manufacturing technology (and some other possible reasons). The camera-intrinsic matrices for
such cameras had the form f x skew cx 0 f y cy 0, 0, 1 . This is the origin of the “skew” in Figure 18-4.
Almost all modern cameras have no skew, so the OpenCV calibration functions assume it is zero and do not
compute it.

eye lenses, we can use a third radial distortion term, k3. In general, the radial location
of a point on the imager will be rescaled according to the following equations:12

xcorrected = x ⋅ (1 + k1r 2 + k2r 4 + k3r 6)

and:

ycorrected = y ⋅ (1 + k1r 2 + k2r 4 + k3r 6)

Here, (x, y) is the original location (on the imager) of the distorted point and
(xcorrected, ycorrected) is the new location as a result of the correction. Figure 18-4 shows dis‐
placements of a rectangular grid that are due to radial distortion. External points on a
front-facing rectangular grid are increasingly displaced inward as the radial distance
from the optical center increases.

Figure 18-4. Radial distortion plot for a particular camera lens: the arrows show where
points on an external rectangular grid are displaced in a radially distorted image (cour‐
tesy of Jean-Yves Bouguet)13

646 | Chapter 18: Camera Models and Calibration

14 The derivation of these equations is beyond the scope of this book, but the interested reader is referred to the
“plumb bob” model; see D. C. Brown, “Decentering Distortion of Lenses,” Photometric Engineering 32, no. 3
(1966): 444–462.

The second-largest common distortion is tangential distortion. This distortion is due
to manufacturing defects resulting from the lens not being exactly parallel to the
imaging plane; see Figure 18-5.

Figure 18-5. Tangential distortion results when the lens is not fully parallel to the image
plane; in cheap cameras, this can happen when the imager is glued to the back of the
camera (image courtesy of Sebastian Thrun)

Tangential distortion is minimally characterized by two additional parameters: p1 and
p2, such that:14

xcorrected = x + 2p1xy + p2(r 2 + 2x 2)

and:

ycorrected = y + p1(r 2 + 2y 2) + 2p2xy

Thus in total there are five distortion coefficients that we require. Because all five are
necessary in most of the OpenCV routines that use them, they are typically bundled
into one distortion vector; this is just a 5 × 1 matrix containing k1, k2, p1, p2, and k3 (in
that order). Figure 18-6 shows the effects of tangential distortion on a front-facing
external rectangular grid of points. The points are displaced elliptically as a function
of location and radius.

Camera Model | 647

15 For a great online tutorial of camera calibration, see Jean-Yves Bouguet’s calibration website.

Figure 18-6. Tangential distortion plot for a particular camera lens: the arrows show
where points on an external rectangular grid are displaced in a tangentially distorted
image (courtesy of Jean-Yves Bouguet)

There are many other kinds of distortions that occur in imaging systems, but they
typically have lesser effects than radial and tangential distortions. Hence, neither we
nor OpenCV will deal with them further.

Calibration
Now that we have some idea of how we’d describe the intrinsic and distortion prop‐
erties of a camera mathematically, the next question that naturally arises is how we
can use OpenCV to compute the intrinsics matrix and the distortion vector.15

OpenCV provides several algorithms to help us compute these intrinsic parameters.
The actual calibration is done via cv::calibrateCamera(). In this routine, the
method of calibration is to target the camera on a known structure that has many
individual and identifiable points. By viewing this structure from a variety of angles,
we can then compute the (relative) location and orientation of the camera at the time
of each image as well as the intrinsic parameters of the camera (see Figure 18-10 in
the section “Finding chessboard corners with cv::findChessboardCorners()” on page

648 | Chapter 18: Camera Models and Calibration

http://www.vision.caltech.edu/bouguetj/calib_doc

16 As these are highly specialized cases, their details are beyond the scope of this book. However, you should
find them easily understandable once you are comfortable with the calibration of more common cameras as
we describe here.

17 This image was originally contributed to the OpenCV library by Baisheng Lai.

655). To provide multiple views, we rotate and translate the object, so let’s pause to
learn a little more about rotation and translation.

OpenCV continues to improve its calibration techniques; there are now many differ‐
ent types of calibration board patterns, as described in the section “Calibration
Boards” on page 652. There are also specialized calibration techniques for “out of the
ordinary” cameras. For fisheye lenses, you want to use the fisheye methods in the
cv::fisheye class in the user documentation.

There are also techniques for omnidirectional (180-degree) camera and multicamera
calibration; see opencv_contrib/modules/ccalib/samples, opencv_contrib/modules/
ccalib/tutorial/omnidir_tutorial.markdown, opencv_contrib/modules/ccalib/tutorial/
multi_camera_tutorial.markdown, and/or search on “omnidir” and “multiCamera‐
Calibration,” respectively, in the user documentation; see Figure 18-7.16

Figure 18-7. An omnidirectional camera17

Calibration | 649

18 Just to be clear: the rotation we are describing here is first around the z-axis, then around the new position of
the y-axis, and finally around the new position of the x-axis.

Rotation Matrix and Translation Vector
For each image the camera takes of a particular object, we can describe the pose of the
object relative to the camera coordinate system in terms of a rotation and a transla‐
tion; see Figure 18-8.

Figure 18-8. Converting from object to camera coordinate systems: the point P on the
object is seen as point p on the image plane; we relate the point p to point P by applying
a rotation matrix R and a translation vector t to P

In general, a rotation in any number of dimensions can be described in terms of mul‐
tiplication of a coordinate vector by a square matrix of the appropriate size. Ulti‐
mately, a rotation is equivalent to introducing a new description of a point’s location
in a different coordinate system. Rotating the coordinate system by an angle θ is
equivalent to counter-rotating our target point around the origin of that coordinate
system by the same angle θ. The representation of a two-dimensional rotation as
matrix multiplication is shown in Figure 18-9. Rotation in three dimensions can be
decomposed into a two-dimensional rotation around each axis in which the pivot
axis measurements remain constant. If we rotate around the x-, y-, and z-axes in
sequence18 with respective rotation angles ψ, φ, and θ, the result is a total rotation
matrix R that is given by the product of the three matrices Rx(ψ), Ry(φ), and Rz(θ),
where:

650 | Chapter 18: Camera Models and Calibration

Figure 18-9. Rotating points by θ (in this case, around the z-axis) is the same as
counter-rotating the coordinate axis by θ; by simple trigonometry, we can see how rota‐
tion changes the coordinates of a point

Thus R = Rx(ψ) ⋅ Ry(φ) ⋅ Rz(θ). The rotation matrix R has the property that its inverse is
its transpose (we just rotate back); hence, we have R T ⋅ R = R ⋅ R T = I3, where I3 is the
3 × 3 identity matrix consisting of 1s along the diagonal and 0s everywhere else.

The translation vector is how we represent a shift from one coordinate system to
another system whose origin is displaced to another location; in other words, the
translation vector is just the offset from the origin of the first coordinate system to
the origin of the second coordinate system. Thus, to shift from a coordinate system
centered on an object to one centered at the camera, the appropriate translation vec‐
tor is simply T→ = originobject − origincamera. We then know (with reference to Figure 18-8)

Calibration | 651

19 The specific use of this calibration object—and much of the calibration approach itself—comes from Zhang
[Zhang99; Zhang00] and Sturm [Sturm99].

20 There are also random-pattern calibration pattern generators in the opencv_contrib/modules/ccalib/samples
directory. These patterns can be used for multicamera calibration, as seen in the tutorial in that directory.

21 These boards came from Augmented Reality 2D barcodes called ArUco [Garrido-Jurado]. Their advantage is
that the whole board does not have to be in view to get labeled corners on which to calibrate. The authors
recommend you use the ChArUco pattern. The OpenCV documentation describes how to make and use
these patterns (search on “ChArUco”). The code and tutorials are in the opencv_contrib/modules/aruco
directory.

that a point in the object (or world) coordinate frame Po
→ has coordinates Pc

→ in the
camera coordinate frame:

Pc
→

= R ⋅ (Po
→

− T
→

)

Combining this equation for Pc
→ with the camera intrinsic-corrections will form the

basic system of equations that we will be asking OpenCV to solve. The solution to
these equations will contain the camera calibration parameters we seek.

We have just seen that a three-dimensional rotation can be specified with three
angles and that a three-dimensional translation can be specified with the three
parameters (x, y, z); thus we have six parameters so far. The OpenCV intrinsics
matrix for a camera has four parameters (fx, fy, cx, and cy), yielding a grand total of 10
parameters that must be solved for each view (but note that the camera-intrinsic
parameters stay the same between views). Using a planar object, we’ll soon see that
each view fixes eight parameters. Because the six parameters of rotation and transla‐
tion change between views, for each view we have constraints on two additional
parameters that we then use to resolve the camera-intrinsic matrix. Thus, we need (at
least) two views to solve for all the geometric parameters.

We’ll provide more details on the parameters and their constraints later in the chap‐
ter, but first we’ll discuss the calibration object. The calibration objects used in
OpenCV are flat patterns of several types described next. The first OpenCV calibra‐
tion object was a “chessboard” as shown in Figure 18-10. The following discussion
will mostly refer to this type of pattern, but other patterns are available, as we will see.

Calibration Boards
In principle, any appropriately characterized object could be used as a calibration
object. One practical choice is a regular pattern on a flat surface, such as a chess‐
board19 (see Figure 18-10), circle-grid (see Figure 18-15), randpattern20 (see
Figure 18-11), ArUco (see Figure 18-12), or ChArUco patterns21 (see Figure 18-13).
Appendix C has usable examples of all the calibration patterns available in OpenCV.

652 | Chapter 18: Camera Models and Calibration

Some calibration methods in the literature rely on three-dimensional objects (e.g., a
box covered with markers), but flat chessboard patterns are much easier to deal with;
among other things, it is rather difficult to make (and to store and distribute) precise
three-dimensional calibration objects. OpenCV thus opts for using multiple views of
a planar object rather than one view of a specially constructed three-dimensional
object. For the moment, we will focus on the chessboard pattern. The use of a pattern
of alternating black and white squares (see Figure 18-10) ensures that there is no bias
toward one side or the other in measurement. Also, the resulting grid corners lend
themselves naturally to the subpixel localization function discussed in Chapter 16.
We will also discuss another alternative calibration board, called a circle-grid (see
Figure 18-15), which has some desirable properties, and which in some cases may
give superior results to the chessboard. For the other patterns, please see the docu‐
mentation referenced in the figures in this chapter. The authors have had particularly
good success using the ChArUco pattern.

Figure 18-10. Images of a chessboard being held at various orientations (left) provide
enough information to completely solve for the locations of those images in global coor‐
dinates (relative to the camera) and the camera intrinsics

Calibration | 653

22 This image was originally contributed to the OpenCV library by Baisheng Lai.

23 This image was originally contributed to the OpenCV library by Sergio Garrido.

Figure 18-11. A calibration pattern made up of a highly textured random pattern; see
the multicamera calibration tutorial in the opencv_contrib/modules/ccalib/tutorial
directory22

Figure 18-12. A calibration pattern made up of a grid of ArUco (2D barcode) squares.
Note that because each square is identified by its ArUco pattern, much of the board can
be occluded and yet still have enough spatially labeled points to be used in calibration.
See “ArUco marker detection (aruco module)” in the OpenCV documentation23

654 | Chapter 18: Camera Models and Calibration

24 This image was originally contributed to the OpenCV library by Sergio Garrido.

25 In practice, it is often more convenient to use a chessboard grid that is asymmetric and of even and odd
dimensions—for example, (5, 6). Using such even-odd asymmetry yields a chessboard that has only one sym‐
metry axis, so the board orientation can always be defined uniquely.

Figure 18-13. Checkerboard with embedded ArUco (ChArUco). A checkerboard cali‐
bration pattern where each corner is labeled with an ArUco (2D barcode) pattern. This
allows much of the checkerboard to be occluded while allowing for the higher positional
accuracy of corner intersections. See “ArUco marker detection (aruco module)” in the
OpenCV documentation24

Finding chessboard corners with cv::findChessboardCorners()
Given an image of a chessboard (or a person holding a chessboard, or any other scene
with a chessboard and a reasonably uncluttered background), you can use the
OpenCV function cv::findChessboardCorners() to locate the corners of the chess‐
board:

bool cv::findChessboardCorners(// Return true if corners were found
 cv::InputArray image, // Input chessboard image, 8UC1 or 8UC3
 cv::Size patternSize, // corners per row, and per column
 cv::OutputArray corners, // Output array of detected corners
 int flags = cv::CALIB_CB_ADAPTIVE_THRESH
 | cv::CALIB_CB_NORMALIZE_IMAGE
);

This function takes as arguments a single image containing a chessboard. This image
must be an 8-bit image. The second argument, patternSize, indicates how many
corners are in each row and column of the board (e.g., cv::Size(cols,rows)). This
count is the number of interior corners; thus, for a standard chess game board, the
correct value would be cv::Size(7,7).25 The next argument, corners, is the output

Calibration | 655

26 In this context, ordered means that a model of the found points could be constructed that was consistent with
the proposition that they are in fact sets of collinear points on a plane. Obviously not all images containing 49
points, for example, are generated by a regular 7 × 7 grid on a plane.

array where the corner locations will be recorded. The individual values will be set to
the locations of the located corners in pixel coordinates. The final flags argument
can be used to implement one or more additional filtration steps to help find the cor‐
ners on the chessboard. You may combine any or all of the following arguments
using a Boolean OR:

cv::CALIB_CB_ADAPTIVE_THRESH

The default behavior of cv::findChessboardCorners() is first to threshold the
image based on average brightness, but if this flag is set, then an adaptive thres‐
hold will be used instead.

cv::CALIB_CB_NORMALIZE_IMAGE

If set, this flag causes the image to be normalized via cv::equalizeHist() before
the thresholding is applied.

cv::CALIB_CB_FILTER_QUADS

Once the image is thresholded, the algorithm attempts to locate the quadrangles
resulting from the perspective view of the black squares on the chessboard. This
is an approximation because the lines of each edge of a quadrangle are assumed
to be straight, which isn’t quite true when there is radial distortion in the image.
If this flag is set, then a variety of additional constraints are applied to those
quadrangles in order to reject false quadrangles.

cv::CALIB_CV_FAST_CHECK

When this option is present, a fast scan will be done on the image to make sure
that there actually are any corners in the image. If there are not, then the image is
skipped entirely. This is not necessary if you are absolutely certain that your
input data is “clean” and has no images without the chessboard in them. On the
other hand, you will save a great deal of time using this option if there actually
turn out to be images without chessboards in them in your input.

The return value of cv::findChessboardCorners() will be set to true if all of the
corners in the pattern could be found and ordered;26 otherwise, it will be false.

Subpixel corners on chessboards and cv::cornerSubPix()

The internal algorithm used by cv::findChessboardCorners() gives only the
approximate location of the corners. Therefore, cv::cornerSubPix() is automati‐
cally called by cv::findChessboardCorners() in order to give more accurate results.
What this means in practice is that the locations are going to be relatively accurate.

656 | Chapter 18: Camera Models and Calibration

However, if you would like them located to very high precision, you will want to call
cv::cornerSubPix() yourself (effectively calling it again) on the output, but with
tighter termination criteria.

Drawing chessboard corners with cv::drawChessboardCorners()
Particularly when one is debugging, it is often desirable to draw the found chessboard
corners onto an image (usually the image that we used to compute the corners in the
first place); this way, we can see whether the projected corners match up with the
observed corners. Toward this end, OpenCV provides a convenient routine to handle
this common task. The function cv::drawChessboardCorners() draws the corners
found by cv::findChessboardCorners() onto an image that you provide. If not all
of the corners were found, then the available corners will be represented as small red
circles. If the entire pattern was found, then the corners will be painted into different
colors (each row will have its own color) and connected by lines representing the
identified corner order.

void cv::drawChessboardCorners(
 cv::InputOutputArray image, // Input/output chessboard image, 8UC3
 cv::Size patternSize, // Corners per row, and per column
 cv::InputArray corners, // corners from findChessboardCorners()
 bool patternWasFound // Returned from findChessboardCorners()
);

The first argument to cv::drawChessboardCorners() is the image to which the
drawing will be done. Because the corners will be represented as colored circles, this
must be an 8-bit color image. In most cases, this will be a copy of the image you gave
to cv::findChessboardCorners() (but you must convert it to a three-channel image
yourself, if it wasn’t already). The next two arguments, patternSize and corners, are
the same as the corresponding arguments for cv::findChessboardCorners(). The
argument count is an integer equal to the number of corners. Finally, the argument
patternWasFound indicates whether the entire chessboard pattern was successfully
found; this can be set to the return value from cv::findChessboardCorners().
Figure 18-14 shows the result of applying cv::drawChessboardCorners() to a chess‐
board image.

We now turn to what a planar object such as the calibration board can do for us.
Points on a plane undergo a perspective transformation when viewed through a pin‐
hole or lens. The parameters for this transform are contained in a 3 × 3 homography
matrix, which we will describe shortly, after a brief discussion of an alternative pat‐
tern to square grids.

Calibration | 657

Figure 18-14. Result of cv::drawChessboardCorners(); once you find the corners using
cv::findChessboardCorners(), you can project where these corners were found (small
circles on corners) and in what order they belong (as indicated by the lines between
circles)

Circle-grids and cv::findCirclesGrid()
An alternative to the chessboard is the circle-grid. Conceptually, the circle-grid is sim‐
ilar to the chessboard, except that rather than an array of alternating black and white
squares, the board contains an array of black circles on a white background.

Calibration with a circle-grid proceeds exactly the same as with cv::findChessboard
Corners() and the chessboard, except that a different function is called and a differ‐
ent calibration image is used. That different function is cv::findCirclesGrid(), and
it has the following prototype:

bool cv::findCirclesGrid(// Return true if corners were found
 cv::InputArray image, // Input chessboard image, 8UC1 or 8UC3
 cv::Size patternSize, // corners per row, and per column
 cv::OutputArray centers, // Output array of detected circle centers
 int flags = cv::CALIB_CB_SYMMETRIC_GRID,
 const cv::Ptr<cv::FeatureDetector>& blobDetector
 = new SimpleBlobDetector()
);

Like cv::findChessboardCorners(), it takes an image and a cv::Size object defin‐
ing the number (and arrangement) of the circle pattern. It outputs the location of the
centers, which are equivalent to the corners in the chessboard.

658 | Chapter 18: Camera Models and Calibration

The flags argument tells the function what sort of array the circles are arranged into.
By default, cv::findCirclesGrid() expects a symmetric grid of circles. A “symmet‐
ric” grid is a grid in which the circles are arranged neatly into rows and columns in
the same way as the chessboard corners. The alternative is an asymmetric grid. We
use the asymmetric grid by setting the flags argument to cv::CALIB_CB_ASYMMET
RIC_GRID. In an “asymmetric” grid, the circles in each row are staggered transverse to
the row. (The grid shown in Figure 18-15 is an example of an asymmetric grid.)

Figure 18-15. With the regular array of circles (upper left), the centers of the circles
function analogously to the corners of the chessboard for calibration. When seen in per‐
spective (lower right), the deformation of the circles is regular and predictable

When you are using an asymmetric grid, it is important to remember how rows and
columns are counted. By way of example, in the case shown in Figure 18-15, because
it is the rows that are “staggered,” then the array shown has only 4 rows, and 11 col‐
umns. The final option for flags is cv::CALIB_CB_CLUSTERING. It can be set along
with cv::CALIB_CB_SYMMETRIC_GRID or cv::CALIB_CB_ASYMMETRIC_GRID with the
logical OR operator. If this option is selected, then cv::findCirclesGrid() will use a
slightly different algorithm for finding the circles. This alternate algorithm is more
robust to perspective distortions, but (as a result) is also a lot more sensitive to back‐
ground clutter. This is a good choice when you are trying to calibrate a camera with
an unusually wide field of view.

Calibration | 659

27 The term homography has different meanings in different sciences; for example, it has a somewhat more gen‐
eral meaning in mathematics. The homographies of greatest interest in computer vision are a subset of the
other more general meanings of the term.

In general, one often finds the asymmetric circle-grid to be supe‐
rior to the chessboard, both in terms of the quality of final results,
as well as the stability of those results between multiple runs. For
these reasons, asymmetric circle-grids increasingly became part of
the standard toolkit for camera calibration. In very modern times,
patterns such as ChArUco (see the contrib experimental code sec‐
tion of the library) are gaining significant traction as well.

Homography
In computer vision, we define planar homography as a projective mapping from one
plane to another.27 Thus, the mapping of points on a two-dimensional planar surface
to the imager of our camera is an example of planar homography. It is possible to
express this mapping in terms of matrix multiplication if we use homogeneous coor‐
dinates to express both the viewed point Q

→
 and the point q→ on the imager to which Q

→

is mapped. If we define:

then we can express the action of the homography simply as:

q→ = s ⋅ H ⋅ Q
→

Here we have introduced the parameter s, which is an arbitrary scale factor (intended
to make explicit that the homography is defined only up to that factor). It is conven‐
tionally factored out of H, and we’ll stick with that convention here.

With a little geometry and some matrix algebra, we can solve for this transformation
matrix. The most important observation is that H has two parts: the physical trans‐
formation, which essentially locates the object plane we are viewing, and the projec‐
tion, which introduces the camera intrinsics matrix. See Figure 18-16.

660 | Chapter 18: Camera Models and Calibration

28 Here is a 3 × 4 matrix whose first three columns comprise the nine entries of R and whose last
column consists of the three-component vector t→ .

Figure 18-16. View of a planar object as described by homography: a mapping—from
the object plane to the image plane—that simultaneously comprehends the relative
locations of those two planes as well as the camera projection matrix

The physical transformation part is the sum of the effects of some rotation R and
some translation t

→
 that relate the plane we are viewing to the image plane. Because

we are working in homogeneous coordinates, we can combine these within a single
matrix as follows:28

Then, the action of the camera matrix M, which we already know how to express in
projective coordinates, is multiplied by Q

→
, which yields:

q→ = s ⋅ M ⋅ W ⋅ Q
→

where:

Calibration | 661

29 The astute reader will have noticed that we have been a little cavalier with the factor s. The s that appears in
this final expression is not identical to those that appear in the previous equations, but rather the product of
them. In any case, the product of two arbitrary scale factors is itself an arbitrary scale factor, so no harm is
done.

It would seem that we are done. However, it turns out that in practice our interest is
not the coordinate Q

→
 that is defined for all of space, but rather a coordinate Q→ ′ that

is defined only on the plane we are looking at. This allows for a slight simplification.

Without loss of generality, we can choose to define the object plane so that Z = 0. We
do this because, if we also break up the rotation matrix into three 3 × 1 columns (i.e.,
R = r1

→ r2
→ r3

→), then one of those columns is no longer needed. In particular:

The homography matrix H that maps a planar object’s points onto the imager is then
described completely by H = s ⋅ M ⋅ r1

→ r2
→ t→ , where:

q→ = s ⋅ H ⋅ Q ′
→

Observe that H is now a 3 × 3 matrix.29

OpenCV uses the preceding equations to compute the homography matrix. It uses
multiple images of the same object to compute both the individual translations and
rotations for each view as well as the intrinsics (which are the same for all views). As
we have discussed, rotation is described by three angles and translation is defined by
three offsets; hence there are six unknowns for each view. This is OK, because a
known planar object (such as our chessboard) gives us eight equations—that is, the
mapping of a square into a quadrilateral can be described by four (x, y) points. Each
new frame gives us eight equations at the cost of six new extrinsic unknowns, so
given enough images we should be able to compute any number of intrinsic
unknowns (more on this shortly).

The homography matrix H relates the positions of the points on a source image plane
to the points on the destination image plane (usually the imager plane) by the follow‐
ing simple equations:

662 | Chapter 18: Camera Models and Calibration

30 Of course, an exact solution is guaranteed only when there are four correspondences. If more are provided,
then what’s computed is a solution that is optimal in the sense of least-squares error (possibly also with some
points rejected; see the upcoming RANSAC discussion).

Notice that we can compute H without knowing anything about the camera intrin‐
sics. In fact, computing multiple homographies from multiple views is the method
OpenCV uses to solve for the camera intrinsics, as we’ll see.

OpenCV provides us with a handy function, cv::findHomography(), that takes a list
of correspondences and returns the homography matrix that best describes those cor‐
respondences. We need a minimum of four points to solve for H, but we can supply
many more if we have them30 (as we will with any chessboard bigger than 3 × 3).
Using more points is beneficial, because invariably there will be noise and other
inconsistencies whose effect we would like to minimize:

cv::Mat cv::findHomography(
 cv::InputArray srcPoints, // Input array source points (2-d)
 cv::InputArray dstPoints, // Input array result points (2-d)
 cv::int method = 0, // 0, cv::RANSAC, cv::LMEDS, etc.
 double ransacReprojThreshold = 3, // Max reprojection error
 cv::OutputArray mask = cv::noArray() // use only non-zero pts
);

The input arrays srcPoints and dstPoints contain the points in the original plane
and the target plane, respectively. These are all two-dimensional points, so they must
be N × 2 arrays, N × 1 arrays of CV_32FC2 elements, or STL vectors of cv::Point2f
objects (or any combination of these).

The input called method determines the algorithm that will be used to compute the
homography. If left as the default value of 0, all of the points will be considered and
the computed result will be the one that minimizes the reprojection error. In this case,
the reprojection error is the sum of squared Euclidean distances between H times the
“original” points and the target points.

Conveniently, fast algorithms exist to solve such problems in the case of an error
metric of this kind. Unfortunately, however, defining the error in this way leads to a
system in which outliers—individual data points that seem to imply a radically differ‐
ent solution than the majority—tend to have a drastic effect on the solution. In prac‐
tical cases such as camera calibration, it is common that measurement errors will
produce outliers, and the resulting solution will often be very far from the correct
answer because of these outliers. OpenCV provides three robust fitting methods that

Calibration | 663

31 For more information on robust methods, consult the original papers: Fischler and Bolles [Fischler81] for
RANSAC; Rousseeuw [Rousseeuw84] for least median squares; and Inui, Kaneko, and Igarashi [Inui03] for
line fitting using LMedS.

can be used as an alternative, and tend to give much better behavior in the presence
of noise.

The first such option, which we select by setting method to cv::RANSAC, is the RAN‐
SAC method (also known as the “random sampling with consensus” method). In the
RANSAC method, subsets of the provided points are selected at random, and a
homography matrix is computed for just that subset. It is then refined by all of the
remaining data points that are roughly consistent with that initial estimation. The
“inliers” are those that are consistent, while the “outliers” are those that are not.
The RANSAC algorithm computes many such random samplings, and keeps the one
that has the largest portion of inliers. This method is extremely efficient in practice
for rejecting noisy outlier data and finding the correct answer.

The second alternative is the LMeDS algorithm (also known as the “least median of
squares” algorithm). As the name suggests, the idea behind LMeDS is to minimize
the median error, as opposed to what is essentially the mean squared error mini‐
mized by the default method.31

The advantage of LMeDS is that it does not need any further information or parame‐
ters to run. The disadvantage is that it will perform well only if the inliers constitute
at least a majority of the data points. In contrast, RANSAC can function correctly and
give a satisfactory answer given almost any signal-to-noise ratio. The cost of this,
however, is that you will have to tell RANSAC what constitutes “roughly consistent”
—the maximum distance reprojected points can be from its source and still be con‐
sidered worth including in the refined model. If you are using the cv::RANSAC
method, then the input ransacReprojThreshold controls this distance. If you are
using any other method, this parameter can be ignored.

The value of ransacReprojThreshold is measured in pixels. For
most practical cases, it is sufficient to set it to a small integer value
(i.e., less than 10) but, as is often the case, this number must be
increased for very high-resolution images.

Finally, there is RHO algorithm, introduced in [Bazargani15] and available in
OpenCV 3, which is based on a “weighted” RANSAC modification called PROSAC
and runs faster in the case of many outliers.

664 | Chapter 18: Camera Models and Calibration

32 It is commonplace to refer to the total set of the camera intrinsic matrix parameters and the distortion param‐
eters as simply the intrinsic parameters or the intrinsics. In some cases, the matrix parameters will also be
referred to as the linear intrinsic parameters (because they collectively define a linear transformation), while
the distortion parameters are referred to as the nonlinear intrinsic parameters.

The final argument, mask, is used only with the robust methods, and it is an output. If
an array is provided, cv::findHomography() will fill that array indicating which
points were actually used in the best computation of H.

The return value will be a 3 × 3 matrix. Because there are only eight free parameters
in the homography matrix, we chose a normalization where H33 = 1 (which is usually
possible except for the quite rare singular case H33 = 0). Scaling the homography
could be applied to the ninth homography parameter, but usually prefer to instead
scale by multiplying the entire homography matrix by a scale factor, as described ear‐
lier in this chapter.

Camera Calibration
We finally arrive at camera calibration for camera intrinsics and distortion parame‐
ters. In this section, we’ll explain how to compute these values using cv::calibrate
Camera() and also how to use these models to correct distortions in the images that
the calibrated camera would have otherwise produced. First we will say a little more
about just how many views of a chessboard are necessary in order to solve for the
intrinsics and distortion. Then we’ll offer a high-level overview of how OpenCV
actually solves this system before moving on to the code that makes it all easy to do.

How many chess corners for how many parameters?
To begin, it will prove instructive to review our unknowns; that is, how many param‐
eters are we attempting to solve for through calibration? In the OpenCV case, we
have four parameters associated with the camera intrinsic matrix (fx, fy, cx, cy) and five
(or more) distortion parameters—the latter consisting of three (or more) radial
parameters (k1, k2, k3 [, k4, k5, k6]) and the two tangential (p1, p2).32 The intrinsic
parameters control the linear projective transform that relates a physical object to the
produced image. As a result, they are entangled with the extrinsic parameters, which
tell us where that object is actually located.

The distortion parameters are tied to the two-dimensional geometry of how a pattern
of points gets distorted in the final image. In principle, then, it would seem that just
three corner points in a known pattern, yielding six pieces of information, might be
all that is needed to solve for our five distortion parameters. Thus a single view of our
calibration chessboard could be enough.

Calibration | 665

However, because of the coupling between the intrinsic parameters and the extrinsic
parameters, it turns out that one will not be enough. To understand this, first note
that the extrinsic parameters include three rotation parameters (ψ, ϕ, θ) and three
translation parameters (Tx, Ty, Tz) for a total of six per view of the chessboard.
Together, the four parameters of the camera intrinsic matrix and six extrinsic param‐
eters make 10 altogether that we must solve for, in the case of a single view, and 6
more for each additional view.

Let’s say we have N corners and K images of the chessboard (in different positions).
How many views and corners must we see so that there will be enough constraints to
solve for all these parameters?

• K images of the chessboard provide 2 · N · K constraints (the factor of 2 arises
because each point on the image has both an x- and a y-coordinate).

• Ignoring the distortion parameters for the moment, we have 4 intrinsic parame‐
ters and 6 · K extrinsic parameters (since we need to find the 6 parameters of the
chessboard location in each of the K views).

• Solving then requires that we have: 2 · N · K ≥ 6 · K + 4 (or, equivalently, (N – 3) ·
K ≥ 2).

So it would seem that if N = 5, then we need only K = 1 image, but watch out! For us,
K (the number of images) must be more than 1. The reason for requiring K > 1 is that
we are using chessboards for calibration to fit a homography matrix for each of the K
views. As discussed previously, a homography can yield at most eight parameters
from four (x, y) pairs. This is because only four points are needed to express every‐
thing that a planar perspective view can do: it can stretch a square in four different
directions at once, turning it into any quadrilateral (see the perspective images in
Chapter 11). So, no matter how many corners we detect on a plane, we only get four
corners’ worth of information. Per chessboard view, then, the equation can give us
only four corners of information or (4 – 3) · K > 1, which means K > 1. This implies
that two views of a 3 × 3 chessboard (counting only internal corners) are the mini‐
mum that could solve our calibration problem. Consideration for noise and numeri‐
cal stability is typically what requires the collection of more images of a larger
chessboard. In practice, for high-quality results, you’ll need at least 10 images of a
7 × 8 or larger chessboard (and that’s only if you move the chessboard enough
between images to obtain a “rich” set of views).

This disparity between the theoretically minimal 2 images and the practically
required 10 or more views is a result of the very high degree of sensitivity that the
intrinsic parameters have on even very small noise.

666 | Chapter 18: Camera Models and Calibration

What’s under the hood?
This subsection is for those who want to go deeper; it can be safely skipped if you just
want to call the calibration functions.

If you’re still with us, the question remains: how does the actual mathematics work
for calibration? Although there are many ways to solve for the camera parameters,
OpenCV chose one that works well on planar objects. The algorithm OpenCV uses to
solve for the focal lengths and offsets is based on Zhang’s method [Zhang00], but
OpenCV uses a different method based on Brown [Brown71] to solve for the distor‐
tion parameters.

To get started, we pretend that there is no distortion in the camera while solving for
the other calibration parameters. For each view of the chessboard, we collect a
homography H, as described previously (i.e., a map from the physical object to the
imager). We’ll write H out as column vectors, H = h 1

→
, h 2

→
, h 3

→
, where each h is a 3 × 1

vector. Then, in view of the preceding homography discussion, we can set H equal to
the camera intrinsics matrix M multiplied by a combination of the first two rotation
matrix columns, r1

→ and r2
→ , and the translation vector t

→
. After we include the scale fac‐

tor s, this yields:

H = h 1
→

, h 2
→

, h 3
→

= s ⋅ M ⋅ r1
→ , r2

→ , t
→

Reading off these equations, we have:

h 1
→

= s ⋅ M ⋅ r1
→ or r1

→ = λ ⋅ M −1 ⋅ h 1
→

h 2
→

= s ⋅ M ⋅ r2
→ or r2

→ = λ ⋅ M −1 ⋅ h 2
→

h 3
→

= s ⋅ M ⋅ t
→

or t
→

= λ ⋅ M −1 ⋅ h 3
→

with:

λ = 1
s

The rotation vectors are orthogonal to each other by construction, and since the scale
is extracted we can take r1

→ and r2
→ to be orthonormal. Orthonormal implies two things:

the rotation vector’s dot product is 0, and the vectors’ magnitudes are equal. Starting
with the dot product, we have:

r1
→ T ⋅ r2

→ = 0

Calibration | 667

For any vectors a→ and b
→
 we have (a→ ⋅ b

→)T = b
→ T ⋅ a→ T , so we can substitute for r1

→ and r2
→ to

derive our first constraint:

h 1
→ T ⋅ M −T ⋅ M −1 ⋅ h 2

→
= 0

where M–T is shorthand for (M–1)T. We also know that the magnitudes of the rotation
vectors are equal:

r1
→ = r2

→ or r1
→ T ⋅ r1

→ = r2
→ T ⋅ r2

→

Substituting for r1
→ and r2

→ yields our second constraint:

h 1
→ T ⋅ M −T ⋅ M −1 ⋅ h 1

→
= h 2

→ T ⋅ M −T ⋅ M −1 ⋅ h 2
→

To make things easier to manage, we define B = M–T · M–1. Writing this out, we have:

It so happens that this matrix B has a general closed-form solution:

Using the B-matrix, both constraints have the general form h i
→ T ⋅ B ⋅ h j

→ in them. Let’s
multiply this out to see what the components are. Because B is symmetric, it can be
written as one six-dimensional vector dot product. Arranging the necessary elements
of B into the new vector b

→
, we have:

668 | Chapter 18: Camera Models and Calibration

Using this definition for vi , j
→ T , our two constraints may now be written as:

If we collect K images of chessboards together, then we can stack K of these equations
together:

V ⋅ b
→

= 0,

where V is a 2 · K × 6 matrix. As before, if K ≥ 2 then this equation can be solved for
our vector b→ = B11 B12 B22 B13 B23 B33

T . The camera intrinsics are then pulled directly
out of our closed-form solution for the B-matrix:

f x = λ / B11

f y =
λ B11

B11B22 − B12
2

cx =
B13 f x

2

λ

and:

cy =
B12B13 − B11B23

B11B22 − B12
2

Calibration | 669

33 This is mainly due to precision errors.

with:

λ = B33 −
(B13

2 + cy(B12B13 − B11 − B23))
B11

The extrinsics (rotation and translation) are then computed from the equations we
read off of the homography condition:

r1
→ = λ ⋅ M −1 ⋅ h 1

→

r2
→ = λ ⋅ M −1 ⋅ h 2

→

r3
→ = r1

→ × r2
→

and:

t
→

= λ ⋅ M −1 ⋅ h 3
→

Here the scaling parameter is determined from the orthonormality condition
λ − 1 / M −1 ⋅ h

→ . Some care is required because, when we solve using real data and
put the r-vectors together (R = r1

→ r2
→ r3

→), we will not likely end up with an exact rota‐
tion matrix for which R T R = RR T = I3 holds.33

To get around this problem, the usual trick is to take the singular value decomposi‐
tion (SVD) of R. As discussed in Chapter 5, SVD is a method of factoring a matrix
into two orthonormal matrices, U and V, and a middle matrix D of scale values on its
diagonal. This allows us to turn R into R = U ⋅ D ⋅ V T . Because R is itself orthonormal,
the matrix D must be the identity matrix I3 such that R = U ⋅ I3 ⋅ V T . We can thus
“coerce” our computed R into being a rotation matrix by taking R’s singular value
decomposition, setting its D matrix to the identity matrix, and multiplying by the
SVD again to yield our new, conforming rotation matrix R.

Despite all this work, we have not yet dealt with lens distortions. We use the camera
intrinsics found previously—together with the distortion parameters set to 0—for our
initial guess to start solving a larger system of equations.

The points we “perceive” on the image are really in the wrong place owing to distor‐
tion. Let (xp, yp) be the point’s location if the pinhole camera were perfect and let
(xd, yd) be its distorted location; then:

670 | Chapter 18: Camera Models and Calibration

34 Camera calibration functionality is now very expanded to include fisheye and omni cameras; see the
opencv_contrib/modules/ccalib/src and the opencv_contrib/modules/ccalib/samples directories.

35 The cv::calibrateCamera() function is used internally in the stereo calibration functions we will see in
Chapter 19. For stereo calibration, we’ll be calibrating two cameras at the same time and will be looking to
relate them together through a rotation matrix and a translation vector.

We use the results of the calibration without distortion using the following substitu‐
tion:34

A large list of these equations are collected and solved to find the distortion parame‐
ters, after which the intrinsics and extrinsics are re-estimated. That’s the heavy lifting
that the single function cv::calibrateCamera()35 does for you!

Calibration function

Once we have the corners for several images, we can call cv::calibrateCamera().
This routine will do the number crunching and give us the information we want. In
particular, the results we receive are the camera intrinsics matrix, the distortion coeffi‐
cients, the rotation vectors, and the translation vectors. The first two of these consti‐
tute the intrinsic parameters of the camera, and the latter two are the extrinsic
measurements that tell us where the objects (i.e., the chessboards) were found and
what their orientations were. The distortion coefficients (k1, k2, p1, p2, and any higher
orders of kj) are the coefficients from the radial and tangential distortion equations
we encountered earlier; they help us when we want to correct that distortion away.
The camera intrinsic matrix is perhaps the most interesting final result, because it is
what allows us to transform from three-dimensional coordinates to the image’s two-
dimensional coordinates. We can also use the camera matrix to do the reverse opera‐
tion, but in this case we can only compute a line in the three-dimensional world to
which a given image point must correspond. We will return to this shortly.

Let’s now examine the camera calibration routine itself:

double cv::calibrateCamera(
 cv::InputArrayOfArrays objectPoints, // K vecs (N pts each, object frame)
 cv::InputArrayOfArrays imagePoints, // K vecs (N pts each, image frame)

Calibration | 671

36 In principle, you could use a different object for each calibration image. In practice, the outer vector will typi‐
cally just contain K copies of the same list of point locations where K is the number of views.

 cv::Size imageSize, // Size of input images (pixels)
 cv::InputOutputArray cameraMatrix, // Resulting 3-by-3 camera matrix
 cv::InputOutputArray distCoeffs, // Vector of 4, 5, or 8 coefficients
 cv::OutputArrayOfArrays rvecs, // Vector of K rotation vectors
 cv::OutputArrayOfArrays tvecs, // Vector of K translation vectors
 int flags = 0, // Flags control calibration options
 cv::TermCriteria criteria = cv::TermCriteria(
 cv::TermCriteria::COUNT | cv::TermCriteria::EPS,
 30, // ...after this many iterations
 DBL_EPSILON // ...at this total reprojection error
)
);

When calling cv::calibrateCamera(), you have many arguments to keep straight.
The good news is that we’ve covered (almost) all of them already, so hopefully they’ll
all make sense.

The first argument is objectPoints. It is a vector of vectors, each of which contains
the coordinates of the points on the calibration pattern for a particular image. Those
coordinates are in the coordinate system of the object, so it is acceptable to make
them simply integers in the x- and y-dimensions and zero in the z-dimension.36

The imagePoints argument follows. It is also a vector of vectors, and contains the
location of each point as it was found in each image. If you are using the chessboard,
each vector will be the corners output array from the corresponding image.

When you are defining the objectPoints input, you are implicitly
altering the scale for some of the outputs of cv::calibrateCamera.
Specifically, you are affecting the tvecs output. If you say that one
corner on the chessboard is at (0, 0, 0), the next is at (0, 1, 0), and
the next is at (0, 2, 0), and so on, then you are implicitly saying that
you would like the distances measured in “chessboard squares.” If
you want physical units for the outputs, you must measure the
chessboard in physical units. For example, if you want distances in
meters, then you will have to measure your chessboard and use the
correct square size in meters. If the squares turn out to be 25mm
across, then you should set the same corners to (0, 0, 0), (0, 0.025,
0), (0, 0.050, 0), and so on. In contrast, the camera intrinsic matrix
parameters are always reported in pixels.

The imageSize argument just tells cv::calibrateCamera() how large the images
were (in pixels) from which the points in imagePoints were extracted.

672 | Chapter 18: Camera Models and Calibration

The camera intrinsics are returned in the cameraMatrix and distCoeffs arrays. The
former will contain the linear intrinsics, and should be a 3 × 3 matrix. The latter may
be 4, 5, or 8 elements. If distCoeffs is of length 4, then the returned array will con‐
tain the coefficients (k1, k2, p1, and p2). If the length is 5 or 8, then the elements will be
either (k1, k2, p1, p2, and k3) or (k1, k2, p1, p2, k3, k4, k5, and k6), respectively. The five-
element form is primarily for use fisheye lenses, and is generally useful only for them.
The eight-element form is run only if you set the cv::CALIB_RATIONAL_MODEL, and is
for very high-precision calibration of exotic lenses. It is important to remember,
however, that the number of images you require will grow dramatically with the
number of parameters you wish to solve for.

The rvecs and tvecs arrays are vectors of vectors, like the input points arrays. They
contain a representation of the rotation matrix (in Rodrigues form—that is, as a
three-component vector) and the translation matrix for each of the chessboards
shown.

Because precision is very important in calibration, the cameraMa
trix and distCoeffs arrays (as well as the rvecs and tvecs arrays)
will always be computed and returned in double precision, even if
you do not initially allocate these input arrays in this form.

Finding parameters through optimization can be something of an art. Sometimes try‐
ing to solve for all parameters at once can produce inaccurate or divergent results,
especially if your initial starting position in parameter space is far from the actual sol‐
ution. Thus, it is often better to “sneak up” on the solution by getting close to a good
parameter starting position in stages. For this reason, we often hold some parameters
fixed, solve for other parameters, then hold the other parameters fixed and solve for
the original, and so on. Finally, when we think all of our parameters are close to the
actual solution, we use our close parameter setting as the starting point and solve for
everything at once. OpenCV allows you this control through the flags setting.

The flags argument allows for some finer control of exactly how the calibration will
be performed. The following values may be combined together with a Boolean OR
operation as needed:

cv::CALIB_USE_INTRINSIC_GUESS

Normally the intrinsic matrix is computed by cv::calibrateCamera() with no
additional information. In particular, the initial values of the parameters cx and cy

(the image center) are taken directly from the imageSize argument. If this argu‐
ment is set, then cameraMatrix is assumed to contain valid values that will be
used as an initial guess to be further optimized by cv::calibrateCamera().

Calibration | 673

37 This is a slight oversimplification. Recall that the focal lengths that appear in the intrinsics matrix are meas‐
ured in units of pixels. So if you have a 2,048 × 1,536 pixel imager with a 1/1.8” sensor format, that gives you
3.45μm pixels. If your camera has a 25.0mm focal length lens, then the initial guesses for f are not 25 (mm)
but 7,246.38 (pixels) or, if you are realistic about significant digits, just 7,250.

In many practical applications, we know the focal length of a
camera because we can read it off the side of the lens.37 In such
cases, it is usually a good idea to leverage this information
by putting it into the camera matrix and using cv::CALIB_
USE_INTRINSIC_GUESS. In most such cases, it is also safe (and a
good idea) to use cv::CALIB_FIX_ASPECT_RATIO, discussed
shortly.

cv::CALIB_FIX_PRINCIPAL_POINT

This flag can be used with or without cv::CALIB_USE_INTRINSIC_GUESS. If used
without, then the principal point is fixed at the center of the image; if used with,
then the principal point is fixed at the supplied initial value in the cameraMatrix.

cv::CALIB_FIX_ASPECT_RATIO

If this flag is set, then the optimization procedure will vary only fx and fy together
and will keep their ratio fixed to whatever value is set in the cameraMatrix when
the calibration routine is called. (If the cv::CALIB_USE_INTRINSIC_GUESS flag is
not also set, then the values of fx and fy in cameraMatrix can be any arbitrary val‐
ues and only their ratio will be considered relevant.)

cv::CALIB_FIX_FOCAL_LENGTH

This flag causes the optimization routine to just use the fx and fy that were passed
in the cameraMatrix.

cv::CALIB_FIX_K1, cv::CALIB_FIX_K2, ... cv::CALIB_FIX_K6
Fix the radial distortion parameters k1, k2, up through k6. You may set the radial
parameters in any combination by adding these flags together.

cv::CALIB_ZERO_TANGENT_DIST

This flag is important for calibrating high-end cameras that, as a result of preci‐
sion manufacturing, have very little tangential distortion. Trying to fit parame‐
ters that are near 0 can lead to noisy, spurious values and to problems of
numerical stability. Setting this flag turns off fitting the tangential distortion
parameters p1 and p2, which are thereby both set to 0.

cv::CALIB_RATIONAL_MODEL

This flag tells OpenCV to compute the k4, k5, and k6 distortion coefficients. This
is here because of a backward compatibility issue; if you do not add this flag, only

674 | Chapter 18: Camera Models and Calibration

38 In fact, this task is a component of the overall task of camera calibration, and this function is called internally
by cv::calibrateCamera().

the first three kj parameters will be computed (even if you gave an eight-element
array for distCoeffs).

The final argument to cv::calibrateCamera() is the termination criteria. As usual,
the termination criteria can be a number of iterations, an “epsilon” value, or both. In
the case of the epsilon value, what is being computed is called the reprojection error.
The reprojection error, as with the case of cv::findHomography(), is the sum of the
squares of the distances between the computed (projected) locations of the three-
dimensional points onto the image plane and the actual location of the correspond‐
ing points on the original image.

It is increasingly common to use asymmetric circle-grids for cam‐
era calibration. In this case, it is important to remember that the
objectPoints argument must be set accordingly. For example, a
possible set of coordinates for the object points in Figure 18-15
would be (0, 0, 0), (1, 1, 0), (2, 1, 0), (3, 1, 0), and so on, with the
ones on the next row being (0, 2, 0), (1, 3, 0), (2, 2, 0), (3, 3, 0), and
so on through all of the rows.

Computing extrinsics only with cv::solvePnP()
In some cases, you will already have the intrinsic parameters of the camera and there‐
fore need only to compute the location of the object(s) being viewed. This scenario
clearly differs from the usual camera calibration, but it is nonetheless a useful task to
be able to perform.38 In general, this task is called the Perspective N-Point or PnP
problem:

bool cv::solvePnP(
 cv::InputArray objectPoints, // Object points (object frame)
 cv::InputArray imagePoints, // Found pt locations (img frame)
 cv::InputArray cameraMatrix, // 3-by-3 camera matrix
 cv::InputArray distCoeffs, // Vector of 4, 5, or 8 coeffs
 cv::OutputArray rvec, // Result rotation vector
 cv::OutputArray tvec, // Result translation vector
 bool useExtrinsicGuess = false, // true='use vals in rvec and tvec'
 int flags = cv::ITERATIVE
);

The arguments to cv::solvePnP() are similar to the corresponding arguments for
cv::calibrateCamera() with two important exceptions. First, the objectPoints and
imagePoints arguments are those from just a single view of the object (i.e., they are
of type cv::InputArray, not cv::InputArrayOfArrays). Second, the intrinsic matrix

Calibration | 675

and the distortion coefficients are supplied rather than computed (i.e., they are inputs
instead of outputs). The resulting rotation output is again in the Rodrigues form:
three-component rotation vector that represents the three-dimensional axis around
which the chessboard or points were rotated, with the vector magnitude or length
representing the counterclockwise angle of rotation. This rotation vector can be con‐
verted into the 3 × 3 rotation matrix we’ve discussed before via the cv::Rodrigues()
function. The translation vector is the offset in camera coordinates to where the
chessboard origin is located.

The useExtrinsicGuess argument can be set to true to indicate that the current val‐
ues in the rvec and tvec arguments should be considered as initial guesses for the
solver. The default is false.

The final argument, flags, can be set to one of three values—cv::ITERATIVE,
cv::P3P, or cv::EPNP—to indicate which method should be used for solving the
overall system. In the case of cv::ITERATIVE, a Levenberg-Marquardt optimization is
used to minimize reprojection error between the input imagePoints and the projec‐
ted values of objectPoints. In the case of cv::P3P, the method used is based on
[Gao03]. In this case, exactly four object and four image points should be provided.
The return value for cv::SolvePNP will be true only if the method succeeds. Finally,
in the case of cv::EPNP, the method described in [Moreno-Noguer07] will be used.
Note that neither of the latter two methods is iterative and, as a result, should be
much faster than cv::ITERATIVE.

Though we introduced cv::solvePnP() as a way to compute the
pose of an object (e.g., the chessboard) in each of many frames rel‐
ative to which the camera is imagined to be stationary, the same
function can be used to solve what is effectively the inverse prob‐
lem. In the case of, for example, a mobile robot, we are more inter‐
ested in the case of a stationary object (maybe a fixed object, maybe
just the entire scene) and a moving camera. In this case, you can
still use cv::solvePnP(); the only difference is in how you inter‐
pret the resulting rvec and tvec vectors.

Computing extrinsics only with cv::solvePnPRansac()

One shortcoming with cv::solvePnP is that it is not robust to outliers. In camera cal‐
ibration, this is not as much of a problem, mainly because the chessboard itself gives
us a reliable way to find the individual features we care about and to verify that we
are looking at what we think we are looking at through their relative geometry. How‐
ever, in cases in which we are trying to localize the camera relative to points not on a
chessboard, but in the real world (e.g., using sparse keypoint features), mismatches
are likely and will cause severe problems. Recall from our discussion in “Homogra‐

676 | Chapter 18: Camera Models and Calibration

39 For the PnP problem, what is effectively sought is a perspective transform, which is fully determined by four
points. Thus, for a RANSAC iteration, the initial number of selected points is four. The default value of repro
jectionError corresponds to an average distance of 2 between each of these points and its corresponding
reprojection.

phy” on page 660 that the RANSAC method can be an effective way to handle outli‐
ers of this kind:

bool cv::solvePnPRansac(
 cv::InputArray objectPoints, // Object points (object frame)
 cv::InputArray imagePoints, // Found pt locations (img frame)
 cv::InputArray cameraMatrix, // 3-by-3 camera matrix
 cv::InputArray distCoeffs, // Vector of 4, 5, or 8 coeffs
 cv::OutputArray rvec, // Result rotation vector
 cv::OutputArray tvec, // Result translation vector
 bool useExtrinsicGuess = false, // read vals in rvec and tvec ?
 int iterationsCount = 100, // RANSAC iterations
 float reprojectionError = 8.0, // Max error for inclusion
 int minInliersCount = 100, // terminate if this many found
 cv::OutputArray inliers = cv::noArray(), // Contains inlier indices
 int flags = cv::ITERATIVE // same as solvePnP()
)

All of the arguments for cv::solvePnP() that are shared by cv::solvePnPRansac()
have the same interpretation. The new arguments control the RANSAC portion of
the algorithm. In particular, the iterationsCount argument sets the number of
RANSAC iterations and the reprojectionError argument indicates the maximum
reprojection error that will still cause a configuration to be considered an inlier.39 The
argument minInliersCount is somewhat misleadingly named; if at any point in the
RANSAC process the number of inliers exceeds minInliersCount, the process is ter‐
minated, and this group is taken to be the inlier group. This can improve perfor‐
mance substantially, but can also cause a lot of problems if set too low. Finally, the
inliers argument is an output that, if provided, will be filled with the indices of the
points (from objectPoints and imagePoints) selected as inliers.

Undistortion
As we have alluded to already, there are two things that one often wants to do with a
calibrated camera: correct for distortion effects and construct three-dimensional rep‐
resentations of the images it receives. Let’s take a moment to look at the first of these
before diving into the more complicated second task in the next chapter.

OpenCV provides us with a ready-to-use undistortion algorithm that takes a raw
image and the distortion coefficients from cv::calibrateCamera() and produces a
corrected image (Figure 18-17). We can access this algorithm either through the
function cv::undistort(), which does everything we need in one shot, or through

Undistortion | 677

40 We should take a moment to clearly make a distinction here between undistortion, which mathematically
removes lens distortion, and rectification, which mathematically aligns the two (or more) images with respect
to each other. The latter will be important in the next chapter.

41 As is typically the case, the interpolation is actually performed in the opposite direction. This means that,
given the map, we compute a pixel in the final image by determining which pixels in the original image map
into its vicinity, and then interpolating between those pixel values appropriately.

the pair of routines cv::initUndistortRectifyMap() and cv::remap(), which
allow us to handle things a little more efficiently for video or other situations where
we have many images from the same camera.40

Figure 18-17. Camera image before undistortion (left) and after (right)

Undistortion Maps
When performing undistortion on an image, we must specify where every pixel in the
input image is to be moved in the output image. Such a specification is called an
undistortion map (or sometimes just a distortion map). There are several representa‐
tions available for such maps.

The first and most straightforward representation is the two-channel float representa‐
tion. In this representation, a remapping for an N × M image is represented by an N
× M array of two-channel floating-point numbers as shown in Figure 18-18. For any
given entry (i, j) in the image, the value of that entry will be a pair of numbers (i*, j*)
indicating the location to which pixel (i, j) of the input image should be relocated. Of
course, because (i*, j*) are floating-point numbers, interpolation in the target image is
implied.41

678 | Chapter 18: Camera Models and Calibration

Figure 18-18. In the float-float representation, two different floating-point arrays, the
X-map and the Y-map, encode the destination of a pixel at (i, j) in the original image.
A pixel at (i, j) is mapped to (x_map(i, j), y_map(i, j)) in the destination image.
Because that destination is not necessarily integer, the interpolation is used to compute
the final image pixel intensities

The next representation is the two-array float representation. In this representation,
the remapping is described by a pair of N × M arrays, each of which is a single-
channel floating-point array. The first of these arrays contains at location (i, j) the
value i*, the x-coordinate of the remapped location of pixel (i, j) from the original
array. Similarly, the second array contains at the same location j*, the y-coordinate of
the remapped location of pixel (i, j).

The final representation is the fixed-point representation. In this representation, a
mapping is specified by a two-channel signed integer array (i.e., of type CV_16SC2).
The interpretation of this array is the same as the two-channel float representation,
but operations with this format are much faster. In the case in which higher precision
is required, the necessary information required for interpolation during the remap‐
ping is encoded in a second single-channel unsigned integer array (i.e., CV_16UC1).
The entries in this array refer to an internal lookup table, which is used for the inter‐
polation (and thus there are no “user-serviceable parts” in this array).

Converting Undistortion Maps Between Representations with
cv::convertMaps()
Because there are multiple representations available for undistortion maps, it is natu‐
ral that one might want to convert between them. We do this with the cv::convert

Undistortion | 679

Maps() function. This function allows you to provide a map in any of the four
formats we just discussed, and convert it into any of the others. The prototype for
cv::convertMaps() is the following:

void cv::convertMaps(
 cv::InputArray map1, // First in map: CV_16SC2/CV_32FC1/CV_32FC2
 cv::InputArray map2, // Second in map: CV_16UC1/CV_32FC1 or none
 cv::OutputArray dstmap1, // First out map
 cv::OutputArray dstmap2, // Second out map
 int dstmap1type, // dstmap1 type: CV_16SC2/CV_32FC1/CV_32FC2
 bool nninterpolation = false // For conversion to fixed point types
);

The inputs map1 and map2 are your existing maps, and the outputs dstmap1 and
dstmap2 are the outputs where the converted maps will be stored. The argument
dstmap1type tells cv::convertMaps() what sort of maps to create for you; from the
type specified here, the remapping you want is then inferred. You use the final argu‐
ment, nninterpolation, when converting to the fixed point type to indicate whether
you would like the interpolation tables to be computed as well. The possible conver‐
sions are shown in Table 18-1, along with the correct settings for dstmap1type and
nninterpolation for each conversion.

Table 18-1. Possible map type conversions for cv::convertMaps()

map1 map2 dstmap1type nninterpolation dstmap1 dstmap2
CV_32FC1 CV_32FC1 CV_16SC2 true CV_16SC2 CV_16UC1

CV_32FC1 CV_32FC1 CV_16SC2 false CV_16SC2 cv::noArray()

CV_32FC2 cv::noArray() CV_16SC2 true CV_16SC2 CV_16UC1

CV_32FC2 cv::noArray() CV_16SC2 false CV_16SC2 cv::noArray()

CV_16SC2 CV_16UC1 CV_32FC1 true CV_32FC1 CV_32FC1

CV_16SC2 cv::noArray() CV_32FC1 false CV_32FC1 CV_32FC1

CV_16SC2 CV_16UC1 CV_32FC2 true CV_32FC2 cv::noArray()

CV_16SC2 cv::noArray() CV_32FC2 false CV_32FC2 cv::noArray()

Note that, because the conversion from floating point to fixed point naturally loses
precision (even if nninterpolation is used), if you convert one way and then convert
back again, you should not expect to necessarily receive back exactly what you started
with.

Computing Undistortion Maps with cv::initUndistortRectifyMap()
Now that we understand undistortion maps, the next step is to see how to compute
them from camera parameters. In fact, distortion maps are much more general than
just this one specific situation, but for our current purpose, the interesting thing is to
know how we can use the results of our camera calibrations to create nicely rectified

680 | Chapter 18: Camera Models and Calibration

images. So far, we have been discussing the situation of monocular imaging. In fact,
one of the more important applications of rectification is in preparing a pair of
images to be used for stereoscopic computation of depth images. We will get back to
the topic of stereo in the next chapter, but it is worth keeping this application in
mind, partially because some of the arguments to the functions that do undistortion
are primarily for use in that stereo vision context.

The basic process is to first compute the undistortion maps, and then to apply them
to the image. The reason for this separation is that, in most practical applications,
you will compute the undistortion maps for your camera only once, and then you
will use those maps again and again as new images come streaming in from your
camera. The function cv::initUndistortRectifyMap() computes the distortion
map from camera-calibration information:

void cv::initUndistortRectifyMap(
 cv::InputArray cameraMatrix, // 3-by-3 camera matrix
 cv::InputArray distCoeffs, // Vector of 4, 5, or 8 coefficients
 cv::InputArray R, // Rectification transformation
 cv::InputArray newCameraMatrix, // New camera matrix (3-by-3)
 cv::Size size, // Undistorted image size
 int m1type, // 'map1' type: 16SC2, 32FC1, or 32FC2
 cv::OutputArray map1, // First output map
 cv::OutputArray map2, // Second output map
);

The function cv::initUndistortRectifyMap() computes the undistortion map (or
maps). The first two arguments are the camera intrinsic matrix and the distortion
coefficients, both in the form you received them from cv::calibrateCamera().

The next argument, R, may be used or, alternatively, set to cv::noArray(). If used, it
must be a 3 × 3 rotation matrix, which will be preapplied before rectification. The
function of this matrix is to compensate for a rotation of the camera relative to some
global coordinate system in which that camera is embedded.

Similar to the rotation matrix, newCameraMatrix can be used to affect how the images
are undistorted. If used, it will “correct” the image before undistortion to how it
would have looked if taken from a different camera with different intrinsic parame‐
ters. In practice, the aspect that one changes in this way is the camera center, not the
focal length. You will typically not use this when dealing with monocular imaging,
but it is important in the case of stereo image analysis. For monocular images, you
will typically just set this argument to cv::noArray().

Undistortion | 681

42 The exceptionally astute reader may have noticed that the camera-matrix is a 3 × 3 matrix, while the return
values from cv::stereoRectify() called P1 and P2 are in fact 3 × 4 projection matrices. Not to worry. In fact,
the first three columns of P1 and P2 contain the same information as the camera matrix, and this is the part
that is actually used internally by cv::initUndistortRectifyMap().

It is unlikely that you will use the rotation or newCameraMatrix
arguments unless you are dealing with stereo images. In that case,
the correct arrays to give to cv::initUndistortRectifyMap() will
be computed for you by cv::stereoRectify(). After calling
cv::stereoRectify(), you will rectify the image from the first
camera with the R1 and P1 arrays, and the image from the second
camera with the R2 and P2 arrays. We will revisit this topic in the
next chapter when we discuss stereo imaging.42

The argument size simply sets the size of the output maps; this should correspond to
the size of images you will be undistorting.

The final three arguments—m1type, map1, and map2—specify the final map type and
provide a place for that map to be written, respectively. The possible values of m1type
are CV_32FC1 or CV_16SC2, and correspond to the type that will be used to represent
map1. In the case of CV_32FC1, map2 will also be of type CV_32FC1. This corresponds to
the two-array float representation of the map we encountered in the previous section.
In the case of CV_16SC2, map1 will be in the fixed-point representation (recall that this
single-channel array contains the interpolation table coefficients).

Undistorting an Image with cv::remap()
Once you have computed the undistortion maps, you can apply them to incoming
images using cv::remap(). We encountered cv::remap() earlier, when discussing
general image transforms; this is one specific, but very important, application for that
function.

As we saw previously, the cv::remap() function has two map arguments that corre‐
spond to the undistortion maps, such as those computed by cv::initUndistortRec
tifyMap(). cv::remap() will accept any of the distortion map formats we have
discussed: the two-channel float, the two-array float, or the fixed-point format (with
or without the accompanying array of interpolation table indexes).

If you use the cv::remap() with the two different two-channel
float representations, or the fixed-point representation without the
interpolation table array, you should just pass cv::noArray() for
the map2 argument.

682 | Chapter 18: Camera Models and Calibration

Undistortion with cv::undistort()
In some cases, you will either have only one image to rectify, or need to recompute
the undistortion maps for every image. In such cases, you can use the somewhat
more compact cv::undistort(), which effectively computes the maps and applies
them in a single go.

void cv::undistort(
 cv::InputArray src, // Input distorted image
 cv::OutputArray dst, // Result corrected image
 cv::InputArray cameraMatrix, // 3-by-3 camera matrix
 cv::InputArray distCoeffs, // Vector of 4, 5, or 8 coeffs
 cv::InputArray newCameraMatrix = noArray() // Optional new camera matrix
);

The arguments to cv::undistort() are identical to the corresponding arguments to
cv::initUndistortRectifyMap().

Sparse Undistortion with cv::undistortPoints()
Another situation that arises occasionally is that, rather than rectifying an entire
image, you have a set of points you have collected from an image, and you care only
about the location of those points. In this case, you can use cv::undistortPoints()
to compute the “correct” locations for your specific list of points:

void cv::undistortPoints(
 cv::InputArray src, // Input array, N pts. (2-d)
 cv::OutputArray dst, // Result array, N pts. (2-d)
 cv::InputArray cameraMatrix, // 3-by-3 camera matrix
 cv::InputArray distCoeffs, // Vector of 4, 5, or 8 coeffs
 cv::InputArray R = cv::noArray(), // 3-by-3 rectification mtx.
 cv::InputArray P = cv::noArray() // 3-by-3 or 3-by-4 new camera
 // or new projection matrix
);

As with cv::undistort(), the arguments to cv::undistortPoints() are analogous
to the corresponding arguments to cv::initUndistortRectifyMap(). The primary
difference is that the src and dst arguments are vectors of two-dimensional points,
rather than two-dimensional arrays. (As always, these vectors can be of any of the
usual forms: N × 1 array of cv::Vec2i objects, N × 1 array of float objects, an STL-
style vector of cv::Vec2f objects, etc.)

The argument P of cv::undistortPoints() corresponds to newCameraMatrix of
cv::undistortPoints(). As before, these two extra parameters relate primarily to
the function’s use in stereo rectification, which we will discuss in Chapter 19. The
rectified camera matrix P can have dimensions of 3 × 3 or 3 × 4 deriving from the
first three or four columns of cv::stereoRectify()’s return value for camera matri‐

Undistortion | 683

ces P1 or P2 (for the left or right camera; see Chapter 19). These parameters are by
default cv::noArray(), which the function interprets as identity matrices.

Putting Calibration All Together
Now it’s time to put all of this together in an example. Example 18-1 presents a pro‐
gram that performs the following tasks: it looks for chessboards of the dimensions
that the user specified, grabs as many full images (i.e., those in which it can find all
the chessboard corners) as the user requested, and computes the camera intrinsics
and distortion parameters. Finally, the program enters a display mode whereby an
undistorted version of the camera image can be viewed.

When using this program, you’ll want to substantially change the
chessboard views between successful captures. Otherwise, the
matrices of points used to solve for calibration parameters may
form an ill-conditioned (rank-deficient) matrix and you will end
up with either a bad solution or no solution at all.

Example 18-1. Reading a chessboard’s width and height, reading and collecting the
requested number of views, and calibrating the camera

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

void help(char *argv[]) {
 ...
}

int main(int argc, char* argv[]) {

 int n_boards = 0; // Will be set by input list
 float image_sf = 0.5f;
 float delay = 1.f;
 int board_w = 0;
 int board_h = 0;

 if(argc < 4 || argc > 6) {
 cout << "\nERROR: Wrong number of input parameters";
 help(argv);
 return -1;
 }
 board_w = atoi(argv[1]);
 board_h = atoi(argv[2]);
 n_boards = atoi(argv[3]);
 if(argc > 4) delay = atof(argv[4]);
 if(argc > 5) image_sf = atof(argv[5]);

684 | Chapter 18: Camera Models and Calibration

 int board_n = board_w * board_h;
 cv::Size board_sz = cv::Size(board_w, board_h);

 cv::VideoCapture capture(0);
 if(!capture.isOpened()) {
 cout << "\nCouldn't open the camera\n";
 help(argv);
 return -1;
 }

 // ALLOCATE STORAGE
 //
 vector< vector<cv::Point2f> > image_points;
 vector< vector<cv::Point3f> > object_points;

 // Capture corner views: loop until we've got n_boards successful
 // captures (all corners on the board are found).
 //
 double last_captured_timestamp = 0;
 cv::Size image_size;

 while(image_points.size() < (size_t)n_boards) {

 cv::Mat image0, image;
 capture >> image0;
 image_size = image0.size();
 cv::resize(image0, image, cv::Size(), image_sf, image_sf, cv::INTER_LINEAR);

 // Find the board
 //
 vector<cv::Point2f> corners;
 bool found = cv::findChessboardCorners(image, board_sz, corners);

 // Draw it
 //
 drawChessboardCorners(image, board_sz, corners, found);

 // If we got a good board, add it to our data
 //
 double timestamp = (double)clock()/CLOCKS_PER_SEC;

 if(found && timestamp - last_captured_timestamp > 1) {

 last_captured_timestamp = timestamp;
 image ^= cv::Scalar::all(255);

 cv::Mat mcorners(corners); // do not copy the data
 mcorners *= (1./image_sf); // scale the corner coordinates
 image_points.push_back(corners);
 object_points.push_back(vector<Point3f>());
 vector<cv::Point3f>& opts = object_points.back();

Putting Calibration All Together | 685

 opts.resize(board_n);
 for(int j=0; j<board_n; j++) {
 opts[j] = cv::Point3f((float)(j/board_w), (float)(j%board_w), 0.f);
 }
 cout << "Collected our " << (int)image_points.size() <<
 " of " << n_boards << " needed chessboard images\n" << endl;
 }
 cv::imshow("Calibration", image); //show in color if we did collect the image

 if((cv::waitKey(30) & 255) == 27)
 return -1;
 }
 // END COLLECTION WHILE LOOP.

 cv::destroyWindow("Calibration");
 cout << "\n\n*** CALIBRATING THE CAMERA...\n" << endl;

 // CALIBRATE THE CAMERA!
 //
 cv::Mat intrinsic_matrix, distortion_coeffs;
 double err = cv::calibrateCamera(
 object_points,
 image_points,
 image_size,
 intrinsic_matrix,
 distortion_coeffs,
 cv::noArray(),
 cv::noArray(),
 cv::CALIB_ZERO_TANGENT_DIST | cv::CALIB_FIX_PRINCIPAL_POINT
);

 // SAVE THE INTRINSICS AND DISTORTIONS
 cout << " *** DONE!\n\nReprojection error is " << err <<
 "\nStoring Intrinsics.xml and Distortions.xml files\n\n";
 cv::FileStorage fs("intrinsics.xml", FileStorage::WRITE);

 fs << "image_width" << image_size.width << "image_height" << image_size.height
 <<"camera_matrix" << intrinsic_matrix << "distortion_coefficients"
 << distortion_coeffs;
 fs.release();

 // EXAMPLE OF LOADING THESE MATRICES BACK IN:
 fs.open("intrinsics.xml", cv::FileStorage::READ);
 cout << "\nimage width: " << (int)fs["image_width"];
 cout << "\nimage height: " << (int)fs["image_height"];

 cv::Mat intrinsic_matrix_loaded, distortion_coeffs_loaded;
 fs["camera_matrix"] >> intrinsic_matrix_loaded;
 fs["distortion_coefficients"] >> distortion_coeffs_loaded;
 cout << "\nintrinsic matrix:" << intrinsic_matrix_loaded;
 cout << "\ndistortion coefficients: " << distortion_coeffs_loaded << endl;

686 | Chapter 18: Camera Models and Calibration

 // Build the undistort map which we will use for all
 // subsequent frames.
 //
 cv::Mat map1, map2;
 cv::initUndistortRectifyMap(
 intrinsic_matrix_loaded,
 distortion_coeffs_loaded,
 cv::Mat(),
 intrinsic_matrix_loaded,
 image_size,
 CV_16SC2,
 map1,
 map2
);

 // Just run the camera to the screen, now showing the raw and
 // the undistorted image.
 //
 for(;;) {
 cv::Mat image, image0;
 capture >> image0;
 if(image0.empty()) break;
 cv::remap(
 image0,
 image,
 map1,
 map2,
 cv::INTER_LINEAR,
 cv::BORDER_CONSTANT,
 cv::Scalar()
);
 cv::imshow("Undistorted", image);
 if((cv::waitKey(30) & 255) == 27) break;
 }

 return 0;
}

Summary
We began the chapter with a brief review of the pinhole camera model and an over‐
view of the basics of projective geometry. After introducing the Rodrigues transform
as an alternate representation of rotations, we introduced the concept of lens distor‐
tions and learned how they are modeled in OpenCV and that this model is summar‐
ized by the camera intrinsics matrix.

With this model in hand, we proceeded to learn how to calibrate a camera using
chessboards or circle-grids (and that there are yet other calibration patterns and tech‐
niques, referenced in Appendix B, in the ccalib function group). We saw how we

Summary | 687

could have OpenCV compute these intrinsic and extrinsic parameters for us using
the results of intersection or circle finding from many calibration images. The cali‐
bration function led us to the topic of image homography. We learned the difference
between intrinsic and extrinsic parameters in calibration, and related those extrinsics
to the general “PnP” pose estimation problem. We saw finally how to undistort
images by making use of the computed intrinsic parameters of a camera to correct
away common distortions that arise from real-world lenses.

We finished off with a complete example in which images were captured, calibration
data was extracted from those images, camera intrinsics were computed from that
data, and incoming video was corrected using that camera information.

Exercises
1. If you had only a ruler, how could you determine the focal length of a camera?

Assume that the camera has negligible distortion and that the principal point is
the center of the image.

2. Use Figure 18-2 to derive the equations x = fx · (X/Z) + cx and y – fy · (Y/Z) + cy
using similar triangles with a center-position offset.

3. Will errors in estimating the true center location (cx, cy) affect the estimation of
other parameters such as focus?
Hint: See the q = MQ equation.

4. Draw an image of a square:
a. under radial distortion;
b. under tangential distortion; and
c. under both distortions.

5. Refer to Figure 18-19. For perspective views, explain the following.
a. Where does the “line at infinity” come from?
b. Why do parallel lines on the object plane converge to a point on the image

plane?
c. Assume that the object and image planes are perpendicular to one another.

On the object plane, starting at a point p1, move 10 units directly away from
the image plane to p2. What is the corresponding movement distance on the
image plane?

6. Figure 18-3 shows the outward-bulging “barrel distortion” effect of radial distor‐
tion, which is especially evident in the left panel of Figure 18-12. Could some len‐
ses generate an inward-bending effect? How would this be possible?

688 | Chapter 18: Camera Models and Calibration

7. Using a cheap web camera or cell phone, take pictures that show examples of
radial and tangential distortion using images of concentric squares or chess‐
boards.
a. Calibrate the camera using cv::calibrateCamera() and at least 15 images of

chessboards. Then use cv::projectPoints() to project an arrow orthogonal
to the chessboards (the surface normal) into each of the chessboard images
using the rotation and translation vectors from the camera calibration.

b. Display the distorted pictures before and after undistortion.
8. What would happen to your calibration for focal length and principal point if

you subsampled the image array by a factor of 2 (skip every other pixel in the x-
and y-direction)?

9. Experiment with numerical stability and noise by collecting many images of
chessboards and doing a “good” calibration on all of them. Then see how the cal‐
ibration parameters change as you reduce the number of chessboard images.
Graph your results: camera parameters as a function of number of chessboard
images.

Figure 18-19. Homography diagram showing intersection of the object plane with
the image plane and a viewpoint representing the center of projection

10. High-end cameras typically have systems of lenses that correct physically for dis‐
tortions in the image. What might happen if you nevertheless use a multiterm
distortion model for such a camera?
Hint: This condition is known as overfitting.

Exercises | 689

11. Three-dimensional joystick trick. Calibrate a camera. Using video, wave a chess‐
board around and use cv::solvePnP() as a three-dimensional joystick. Remem‐
ber that cv::solvePnP() outputs rotation as a 3 × 1 or 1 × 3 vector axis of
rotation, where the magnitude of the vector represents the counterclockwise
angle of rotation along with a three-dimensional translation vector.
a. Output the chessboard’s axis and angle of the rotation along with where it is

(i.e., the translation) in real time as you move the chessboard around. Handle
cases where the chessboard is not in view.

b. Use cv::Rodrigues() to translate the output of cv::solvePnP() into a 3 × 3
rotation matrix and a translation vector. Use this to animate a simple three-
dimensional stick figure of an airplane rendered back into the image in real
time as you move the chessboard in view of the video camera.

690 | Chapter 18: Camera Models and Calibration

1 Also that, as alluded to in Chapter 18, and as described in Appendix B, opencv_contrib contains further cali‐
bration algorithms for omni cameras and multicameras (in ccalib), different types of calibration patterns (in
aruco and ccalib), and finally color balance and denoising algorithms (xphoto). As this is experimental code,
we will not cover it in detail here, but many of these tools can be very useful in improving your work in stereo
calibration and vision.

2 This is a recurrent problem in robotics as well as many other vision applications.

CHAPTER 19

Projection and Three-Dimensional Vision

In this chapter, we’ll move into three-dimensional vision. First, we will investigate
three- to two-dimensional projections and the inverse operation (as much as this
operation can be inverted), and then move on to multicamera stereo depth percep‐
tion. To do this, we’ll have to carry along some of the concepts from Chapter 18.
We’ll need the camera intrinsics matrix M, the distortion coefficients, the rotation
matrix R, the translation vector T

→
, and especially the homography matrix H.1

We’ll start by discussing projection into the three-dimensional world using a calibra‐
ted camera and reviewing affine and projective transforms (which we first encoun‐
tered in Chapter 11); then we’ll move on to an example of how to get a bird’s-eye
view of a ground plane.2 We’ll also discuss, in a little more detail, cv::solvePnP(),
which we first saw in Chapter 18. In this context, we will see how this algorithm can
be used to find the three-dimensional pose (position and rotation) of a known three-
dimensional object in an image.

With those concepts in hand, we will then move into the three-dimensional geometry
and multiple imagers. In general, there is no reliable way to do calibration or to
extract three-dimensional information without multiple images. The most obvious
case in which we use multiple images to reconstruct a three-dimensional scene is
stereo vision. In stereo vision, features in two (or more) images taken at the same time
from separate cameras are matched with the corresponding features in the other

691

images, and the differences are analyzed to yield depth information. Another case is
structure from motion. In this case, we may have only a single camera, but we have
multiple images taken at different times and from different places. In the former case,
we are primarily interested in disparity effects (triangulation) as a means of comput‐
ing distance. In the latter, we compute the fundamental matrix (which relates two dif‐
ferent views together) as the source of our scene understanding.

Because all of these problems rely, in one way or another, on the ability to project
from the three-dimensional world into the two-dimensional image or the camera,
we’ll start with what we learned in Chapter 18 and build our way up from there.

Projections
Once we have calibrated the camera (see Chapter 18), it is possible to unambiguously
project points in the physical world to points in the image. This means that, given a
location in the three-dimensional physical coordinate frame attached to the camera,
we can compute where on the imager, in pixel coordinates, an external three-
dimensional point should appear. This transformation is accomplished by the
OpenCV routine cv::projectPoints():

void cv::projectPoints(
 cv::InputArray objectPoints, // 3xN/Nx3 Nc=1, 1xN/Nx1 Nc=3,
 // or vector<Point3f>
 cv::InputArray rvec, // Rotation *vector*
 // (see cv::Rodrigues())
 cv::InputArray tvec, // Translation vector
 cv::InputArray cameraMatrix, // 3x3 Camera intrinsics matrix
 cv::InputArray distCoeffs, // 4, 5, or 8 elements vector,
 // or cv::noArray()
 cv::OutputArray imagePoints, // 2xN/Nx2 Nc=1, 1xN/Nx1 Nc=2,
 // or vector<Point2f>
 cv::OutputArray jacobian = cv::noArray(), // Optional,
 // 2N x (10+nDistCoeff)
 double aspectRatio = 0 // If nonzero, fix
 // fx/fy at this value
);

At first glance, the number of arguments might be a little intimidating, but in fact this
is a simple function to use. The cv::projectPoints() routine was designed to
accommodate the (very common) circumstance where the points you want to project
are located on some rigid body. In this case, it is natural to represent the points not
just as a list of locations in the camera coordinate system but rather as a list of loca‐
tions in the object’s own body-centered coordinate system; then we can add a rota‐
tion and a translation to specify the relationship between the object coordinates and
the camera’s coordinate system. In fact, cv::projectPoints() is used internally in
cv::calibrateCamera(), and of course this is the way cv::calibrateCamera()
organizes its own internal operation. All of the optional arguments are primarily

692 | Chapter 19: Projection and Three-Dimensional Vision

3 The “rotation vector” is in the usual Rodrigues representation that we learned about in the beginning of
Chapter 18.

4 Remember that this rotation vector is an axis-angle representation of the rotation, so being set to all 0s means
it has zero magnitude and thus “no rotation.”

there for use by cv::calibrateCamera(), but sophisticated users might find them
handy for their own purposes as well.

The first argument, objectPoints, is the list of points you want projected; it can be in
any of the usual forms: N × 3 array, 3 × N array, N × 1 or 1 × N array of cv::Vec3f
objects, or just a plain old STL-style vector of cv::Vec3f objects containing the point
locations. You supply these in the object’s own local coordinate system and then pro‐
vide the vectors rotationVector3 and translationVector that relate the object coor‐
dinates to the camera coordinates. If, in your particular context, it is easier to work
directly in the camera coordinates, then you can just give objectPoints in that sys‐
tem and set both rotationVector and translationVector to contain 0s.4

The cameraMatrix and distortionCoeffs are just the camera intrinsic information
and the distortion coefficients that come from cv::calibrateCamera() discussed in
Chapter 18. The imagePoints argument is an array of two-dimensional points (in
any of the usual forms) to which the results of the computation will be written.

Next is the optional argument jacobian which, if provided, will be filled with values
corresponding to the partial derivatives of each point location with respect to the
components of the rotation and translation vectors, the elements of the camera
matrix, and the distortion coefficients. As a result, jacobian will be an (2 · Np) ×
(10 + Nd) array—where Np is the number of points and Nd is the number of distortion
coefficients. The exact entries in jacobian are shown in Figure 19-1. If you do not
need jacobian computed (and in most cases, you probably will not) you can just
leave it set to cv::noArray() and these values will not be computed.

The last parameter, aspectRatio, is also optional; it is used for derivatives only when
the aspect ratio is fixed in cv::calibrateCamera() or cv::stereoCalibrate(). If
this parameter is not 0.0, then the derivatives appearing in jacobian are adjusted.

Projections | 693

5 Recall from Chapter 18 that this special kind of homography is known as a planar homography.

Figure 19-1. Entries in the jacobian array

Affine and Perspective Transformations
Two transformations we have discussed that come up often in the OpenCV routines
—as well as in other applications you might write yourself—are the affine and per‐
spective transformations. We first encountered these in Chapter 11. Recall that, as
implemented in OpenCV, these routines affect either lists of points or entire images,
and they map points on one location in the image to a different location, often per‐
forming subpixel interpolation along the way. You may also recall that an affine
transform can produce any parallelogram from a rectangle; the perspective transform
is more general and can produce any trapezoid from a rectangle.

The perspective transformation is closely related to the perspective projection. Recall
that the perspective projection maps points in the three-dimensional physical world
onto points on the two-dimensional image plane along a set of projection lines that
all meet at a single point called the center of projection. The perspective transforma‐
tion, which is a specific kind of homography,5 relates two different images that are
alternative projections of the same three-dimensional object onto two different pro‐
jective planes. Importantly, for nondegenerate configurations (such as the plane phys‐
ically intersecting the three-dimensional object) we could equally say that the
homography relates two different centers of projection.

Though these projective transformation-related functions were discussed in detail in
Chapter 11, for convenience, we summarize them here in Table 19-1.

694 | Chapter 19: Projection and Three-Dimensional Vision

Table 19-1. Affine and perspective transform functions

Function Use
cv::transform() Affine transform a list of points
cv::warpAffine() Affine transform a whole image
cv::getAffineTransform() Calculate affine matrix from points
cv::getRotationMatrix2D() Calculate affine matrix to achieve rotation
cv::perspectiveTransform() Perspective transform a list of points
cv::warpPerspective() Perspective transform a whole image
cv::getPerspectiveTransform() Fill in perspective transform matrix parameters

Bird’s-Eye-View Transform Example
A common task in robotic navigation, typically used for planning purposes, is to con‐
vert the robot’s camera view of the scene into a top-down “bird’s-eye” view. In
Figure 19-2, a robot’s view of a scene is turned into a bird’s-eye view so that it can be
subsequently used for planning and navigation in that plane, possibly also overlaid
with alternative representations of the world created from sonar, scanning laser range
finders, or similar sensors natively operating in the plane of motion. Using what
we’ve learned so far, we’ll look in detail at some code to use our calibrated camera to
compute such a view.

Figure 19-2. Bird’s-eye view: A camera on a robot car looks out at a road scene where
laser range finders have identified a region of “road” in front of the car and marked it
with a box (a); vision algorithms have segmented the flat, road-like areas (b); the seg‐
mented road areas are converted to a bird’s-eye view and merged with the bird’s-eye-
view laser map (c)

Affine and Perspective Transformations | 695

6 The bird’s-eye view technique also works for transforming perspective views of any plane (e.g., a wall or ceil‐
ing) into frontal parallel views.

To get a bird’s-eye view,6 we’ll need our camera matrix and distortion parameters
from the calibration routine. Just for the sake of variety, we’ll read these from data
files on disk. For our example, we will put a chessboard on the floor and use that to
obtain a ground plane image for a miniature robot car; we then remap that image
into a bird’s-eye view. The algorithm runs as follows:

1. Read the intrinsics and distortion models for the camera.
2. Find a known object on the ground plane (in this case, a chessboard). Get at least

four points at subpixel accuracy.
3. Enter the found points into cv::getPerspectiveTransform() (see Chapter 11)

to compute the homography matrix H for the ground plane view.
4. Use cv::warpPerspective() (Chapter 11) with the flags cv::WARP_INVERSE_MAP

| cv::INTER_LINEAR to obtain a frontal parallel (bird’s-eye) view of the ground
plane.

Example 19-1 shows the full working code for bird’s-eye view.

Example 19-1. Bird’s-eye view

#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;

void help(char *argv[]){
 ...
}

// args: [board_w] [board_h] [intrinsics.xml] [checker_image]
//
int main(int argc, char* argv[]) {

 if(argc != 5) {
 cout << "\nERROR: too few parameters\n";
 help(argv);
 return -1;
 }

 // Input Parameters:
 //
 int board_w = atoi(argv[1]);
 int board_h = atoi(argv[2]);
 int board_n = board_w * board_h;
 cv::Size board_sz(board_w, board_h);

696 | Chapter 19: Projection and Three-Dimensional Vision

 cv::FileStorage fs(argv[3], cv::FileStorage::READ);
 cv::Mat intrinsic, distortion;

 fs["camera_matrix"] >> intrinsic;
 fs["distortion_coefficients"] >> distortion;
 if(!fs.isOpened() || intrinsic.empty() || distortion.empty())
 {
 cout << "Error: Couldn't load intrinsic parameters from "
 << argv[3] << endl;
 return -1;
 }
 fs.release();

 cv::Mat gray_image, image, image0 = cv::imread(argv[4], 1);
 if(image0.empty())
 {
 cout << "Error: Couldn't load image " << argv[4] << endl;
 return -1;
 }

 // UNDISTORT OUR IMAGE
 //
 cv::undistort(image0, image, intrinsic, distortion, intrinsic);
 cv::cvtColor(image, gray_image, cv::BGR2GRAY);

 // GET THE CHECKERBOARD ON THE PLANE
 //
 vector<cv::Point2f> corners;
 bool found = cv::findChessboardCorners(// True if found
 image, // Input image
 board_sz, // Pattern size
 corners, // Results
 cv::CALIB_CB_ADAPTIVE_THRESH | cv::CALIB_CB_FILTER_QUADS
);
 if(!found) {
 cout << "Couldn't acquire checkerboard on " << argv[4]
 <<", only found " << corners.size() << " of " << board_n
 << " corners\n";
 return -1;
 }

 // Get Subpixel accuracy on those corners
 //
 cv::cornerSubPix(
 gray_image, // Input image
 corners, // Initial guesses, also output
 cv::Size(11,11), // Search window size
 cv::Size(-1,-1), // Zero zone (in this case, don't use)
 cv::TermCriteria(
 cv::TermCriteria::EPS | cv::TermCriteria::COUNT,
 30, 0.1
)

Affine and Perspective Transformations | 697

);

 // GET THE IMAGE AND OBJECT POINTS:
 // Object points are at (r,c):
 // (0,0), (board_w-1,0), (0,board_h-1), (board_w-1,board_h-1)
 // That means corners are at: corners[r*board_w + c]
 //
 cv::Point2f objPts[4], imgPts[4];
 objPts[0].x = 0; objPts[0].y = 0;
 objPts[1].x = board_w-1; objPts[1].y = 0;
 objPts[2].x = 0; objPts[2].y = board_h-1;
 objPts[3].x = board_w-1; objPts[3].y = board_h-1;
 imgPts[0] = corners[0];
 imgPts[1] = corners[board_w-1];
 imgPts[2] = corners[(board_h-1)*board_w];
 imgPts[3] = corners[(board_h-1)*board_w + board_w-1];

 // DRAW THE POINTS in order: B,G,R,YELLOW
 //
 cv::circle(image, imgPts[0], 9, cv::Scalar(255, 0, 0), 3);
 cv::circle(image, imgPts[1], 9, cv::Scalar(0, 255, 0), 3);
 cv::circle(image, imgPts[2], 9, cv::Scalar(0, 0, 255), 3);
 cv::circle(image, imgPts[3], 9, cv::Scalar(0, 255, 255), 3);

 // DRAW THE FOUND CHECKERBOARD
 //
 cv::drawChessboardCorners(image, board_sz, corners, found);
 cv::imshow("Checkers", image);

 // FIND THE HOMOGRAPHY
 //
 cv::Mat H = cv::getPerspectiveTransform(objPts, imgPts);

 // LET THE USER ADJUST THE Z HEIGHT OF THE VIEW
 //
 double Z = 25;
 cv::Mat birds_image;
 for(;;) { // escape key stops
 H.at<double>(2, 2) = Z;
 // USE HOMOGRAPHY TO REMAP THE VIEW
 //
 cv::warpPerspective(
 image, // Source image
 birds_image, // Output image
 H, // Transformation matrix
 image.size(), // Size for output image
 cv::WARP_INVERSE_MAP | cv::INTER_LINEAR,
 cv::BORDER_CONSTANT,
 cv::Scalar::all(0) // Fill border with black
);
 cv::imshow("Birds_Eye", birds_image);
 int key = cv::waitKey() & 255;

698 | Chapter 19: Projection and Three-Dimensional Vision

 if(key == 'u') Z += 0.5;
 if(key == 'd') Z -= 0.5;
 if(key == 27) break;
 }

 // SHOW ROTATION AND TRANSLATION VECTORS
 //
 vector<cv::Point2f> image_points;
 vector<cv::Point3f> object_points;
 for(int i=0; i<4; ++i){
 image_points.push_back(imgPts[i]);
 object_points.push_back(
 cv::Point3f(objPts[i].x, objPts[i].y, 0)
);
 }

 cv::Mat rvec, tvec, rmat;
 cv::solvePnP(
 object_points, // 3-d points in object coordinate
 image_points, // 2-d points in image coordinates
 intrinsic, // Our camera matrix
 cv::Mat(), // Since we corrected distortion in the
 // beginning,now we have zero distortion
 // coefficients
 rvec, // Output rotation *vector*.
 tvec // Output translation vector.
);
 cv::Rodrigues(rvec, rmat);

 // PRINT AND EXIT
 cout << "rotation matrix: " << rmat << endl;
 cout << "translation vector: " << tvec << endl;
 cout << "homography matrix: " << H << endl;
 cout << "inverted homography matrix: " << H.inv() << endl;

 return 1;
}

Once we have the homography matrix and the height parameter set as we wish, we
could then remove the chessboard and drive the miniature car around, making a
bird’s-eye-view video of the path, but we’ll leave that as an exercise for the reader.
Figure 19-3 shows the input at left and output at right for the bird’s-eye-view code.

Affine and Perspective Transformations | 699

Figure 19-3. Bird’s-eye-view example

Three-Dimensional Pose Estimation
The problem of estimating the pose of three-dimensional objects can be tackled with
a single camera as well as with multiple cameras. In the multicamera case, we use cor‐
respondences between what is seen from each of the separate cameras to draw con‐
clusions about where the object is (i.e., by triangulation). The advantage of such a
technique is that it will work with even unknown objects or entire unknown scenes.
The disadvantage is that it requires multiple cameras. It is possible, however, to com‐
pute the pose of a known object with only one camera. We will consider that case
first. In addition to being a useful technique in its own right, understanding the
single-camera pose estimation problem will give us important insights into the multi‐
ple camera problem, which we will consider next.

Pose Estimation from a Single Camera
To understand how this problem is solved, consider Figure 19-4. An object is
“known” to the extent that we have identified some number of keypoints on the
object (Chapter 16), whose location we know in the coordinate system of the object
(Figure 19-4a). Now if we are presented with the same object in a novel pose, we can
look for those same keypoints (Figure 19-4b). If we now want to figure out the rela‐
tionship between the pose of the object and the camera, the essential observation is
that for each point that we find, that point must lie on a particular ray emanating
from a pixel location on the camera’s imager out through the aperture of the camera.

700 | Chapter 19: Projection and Three-Dimensional Vision

7 Actually, it is a little more complicated than this for objects that have some kind of intrinsic symmetry. If this
is the case, there may be multiple solutions that meet the constraints. Depending on the symmetry of the
object, these solutions may be discrete or form a continuous family.

8 cv::solvePnP() is a more general way to solve the rigid-object pose problem than the older POSIT routine
[DeMenthon92] in the C version of the library. POSIT is still in OpenCV; you can find a tutorial for it by
searching on “POSIT tutorial” in the OpenCV online documentation.

Of course, individually we cannot know the distance from the camera to a particular
point, but given many such constraints, a rigid object will only be able to meet all of
those constraints one way (Figure 19-4c).7

Figure 19-4. Given a known set of keypoints (a), which can be found in an image of the
same object (b), it is possible to reconstruct the pose of the object relative to the camera
(c)

Computing the pose of a known object with cv::solvePnP()
The function in OpenCV that solves this problem is one we have already encoun‐
tered; it is cv::solvePnP(), or the closely related cv::solvePnPRansac().8 In Chap‐
ter 18, we introduced this function primarily as a way to solve the problem of the
pose of a chessboard or other calibration device. In fact, however, this function can
be used to solve the general Perspective N-Point (PNP) problem. To understand the
generality of the problem, consider Figure 19-4. The inset (Figure 19-4a) shows a
schematic representation of an airplane; overlaid are circles representing features on
the aircraft that we both know the exact location of (in the body coordinates of the

Three-Dimensional Pose Estimation | 701

9 If the object is symmetric in some way, then there may be multiple solutions corresponding to the possible
symmetric arrangements of the object.

10 As a practical tip, in many cases you can estimate the orientation of a distant object very roughly simply by
considering what keypoints can be seen at all. This does not use cv::solvePnP(), but is a useful technique in
real systems that can often derive great benefit from a less accurate fallback when a full solution using
cv::solvePnP() is not possible.

aircraft) and believe we could successfully recognize if the plane were seen from some
arbitrary viewpoint.

With this information, we can extract features from some image (e.g., Figure 19-4b)
and try to compute the pose of the object that would map the individual points we
know to the locations where we observe them in the image. Because each of those
points must lie on a ray that passes through the camera aperture and lands on the
imager at some specific point, this problem will typically have a unique solution.9 To
get some intuition for this, consider Figure 19-4c; the found features are each con‐
strained to be on a particular ray. Even though we don’t know where on that ray the
point is actually located, there is only one way in which the object can be placed such
that all of these ray constraints are simultaneously satisfied. Example 19-1 shows
cv::solvePnP() in use.

It is not necessary that we be able to see all—or even a majority—of
the features on an object in order to recognize it and compute its
pose. It is also not necessary that we associate only one feature with
a particular physical location. In practice, keypoint detectors will
recognize a feature only from a small window of angles, so it is
often helpful to have multiple descriptors at a location to capture
the way that feature is perceived from different locations.

Note that the PNP problem does not always have a unique solution. There are two
important cases in which PNP cannot provide reliable results. The first case is when
you just don’t have enough points. In theory, the problem can be solved with as little
as three matches. In practice, with so few points, and the natural noise in their loca‐
tion resulting from the accuracy of whatever method was used to find them (e.g., key‐
point matching), the pose can be off by a significant amount. As a good rule of
thumb, it is better to have a dozen or more matches. The second case is when the
object is very far away. In this situation, the rays that constrain the locations of the
features become effectively parallel. It is the divergence of the rays that guarantees a
unique scale for the object—or equivalently a unique solution for the distance to the
object.10

This monocular method of estimating the pose (and this distance) of an object is very
similar to how your own eyes work when looking at distant objects. This is why it is

702 | Chapter 19: Projection and Three-Dimensional Vision

11 In this context, and often in machine learning and computer vision, the word novel means a situation that has
never been encountered by the system before and about which the system has no prior knowledge.

12 Here we give just a high-level understanding. For details, we recommend the following texts: Trucco and
Verri [Trucco98], Hartley and Zisserman [Hartley06], Forsyth and Ponce [Forsyth03], and Shapiro and
Stockman [Shapiro02]. The stereo rectification sections of these books will give you the background to tackle
the original papers cited in this chapter.

13 Every time we refer to left and right cameras, you can also use vertically oriented up and down cameras,
where disparities are in the y-direction rather than the x-direction.

impossible to gauge the distance to an object whose actual size (and thus the location
of its features in its own coordinate frame) is not known without other context. It is
also the basis of “forced perspective” illusions, such as why some buildings have
increasingly small windows on higher floors, in order to make the building appear
much taller from the ground. In the next section, we will discuss stereo imaging,
which uses two or more cameras as a means of removing this final ambiguity, and as
a result also allows us to simultaneously deduce both the structure and pose of a
novel11 object.

Stereo Imaging
Now we are in a position to address stereo imaging.12 We are all familiar with the
stereo imaging capability that our eyes give us. To what degree can we emulate this
capability in computational systems? Computers accomplish this task by finding cor‐
respondences between points that are seen by both imagers. With such correspond‐
ences and a known baseline separation between cameras, we can compute the three-
dimensional location of the points. Although the search for corresponding points can
be computationally expensive, we can use our knowledge of the geometry of the sys‐
tem to narrow down the search space as much as possible. In practice, stereo imaging
involves four steps when you are using two cameras:

1. Mathematically remove radial and tangential lens distortion; this is called undis‐
tortion and is detailed in Chapter 18. The outputs of this step are undistorted
images.

2. Adjust for the angles and distances between cameras, a process called rectifica‐
tion. The outputs of this step are images that are rectified and row-aligned (the
latter meaning that the two image planes are coplanar and that corresponding
image rows on the two imagers are in fact collinear relative to each other).

3. Find the same features in the left and right13 camera views, a process known as
correspondence. The output of this step is a disparity map, where the disparities
are the differences in x-coordinates on the image planes of the same feature
viewed in the left and right cameras: xl – xr.

Stereo Imaging | 703

14 Still, don’t confuse these principal points with the centers of the images. A principal point is defined as the
place where the principal ray intersects the imaging plane. This intersection depends on the optical axis of the
lens and, as we saw in Chapter 18, the image plane is essentially never aligned exactly with the lens, so the
center of the imager is not going to be exactly aligned with the principal point, other than perhaps in an
“ideal” stereo rig.

15 This makes for quite a few assumptions, but we are just looking at the basics right now. Remember that the
process of rectification (to which we will return shortly) is how we get things done mathematically when these
assumptions are not physically true. Similarly, in the next sentence we will temporarily “assume away” the
correspondence problem.

4. If we know the geometric arrangement of the cameras, then we can turn the dis‐
parity map into distances by triangulation. This step is called reprojection, and
the output is a depth map.

We start with the last step to motivate the first three.

Triangulation
Consider first an “ideal” stereo rig as shown in Figure 19-5. In this case, we imagine
that we have a perfectly undistorted, aligned, and measured system: two cameras
whose image planes are exactly coplanar with each other, with exactly parallel optical
axes (the optical axis is the ray from the center of projection O through the principal
point c and is also known as the principal ray) that are a known distance apart, and
with equal focal lengths: fl = fr. Also, assume that the principal points cx

left and cx
right have

been calibrated to have the same pixel coordinates in their respective left and right
images.14

Further, let’s also assume for the moment that the imagers are perfectly row-aligned,
such that every pixel row of one camera aligns exactly with the corresponding row in
the other camera15 (we will call such a camera arrangement frontal parallel). We will
also assume that we can find a point P

→
 in the physical world in the left and the right

image views at pl
→ and pr

→ , which we will assign respective horizontal coordinates xl
→ and

xr
→ .

704 | Chapter 19: Projection and Three-Dimensional Vision

16 This formula is predicated on the principal rays intersecting at infinity. However, as you will see in the section
“Stereo Rectification” on page 726, we derive stereo rectification relative to the principal points cx

left and cx
right. In

our derivation, if the principal rays intersect at infinity, then the principal points have the same coordinates
and so the formula for depth holds as is. However, if the principal rays intersect at a finite distance, then the
principal points will not be equal and so the equation for depth becomes Z =

f T x

d – (cx
left − cx

right) .

Figure 19-5. With a perfectly undistorted, aligned stereo rig and known correspond‐
ence, the depth Z can be found by similar triangles; the principal rays of the imagers
begin at the centers of projection Ol and Or and extend through the principal points of
the two image planes at cl and cr

In this simplified case, we can see that the depth is inversely proportional to the dis‐
parity between these views, where the disparity is defined simply by d = xl

→ − xr
→. This

situation is shown in Figure 19-5, where we can easily derive the depth Z by using
similar triangles. Referring to the figure, we have:16

T − (xl − xr)
Z − f = T

Z ⇒ Z = f ⋅ T
xl − xr

Since depth is inversely proportional to disparity, there is obviously a nonlinear rela‐
tionship between these two terms. When disparity is near zero, small disparity differ‐
ences make for large depth differences. When disparity is large, small disparity
differences do not change the depth by much. The consequence is that stereo vision
systems have high depth resolution only for objects relatively near the camera, as
Figure 19-6 makes clear.

Stereo Imaging | 705

Figure 19-6. Depth and disparity are inversely related, so fine depth measurements are
restricted to nearby objects

Figure 19-7 shows the two- and three-dimensional coordinate systems used in
OpenCV for stereo vision. Note that it is a right-handed coordinate system: if you
point your right index finger in the direction of the x-axis and bend your right mid‐
dle finger in the direction of the y-axis, then your thumb will point in the direction of
the principal ray. The left and right imager pixels have image origins at upper-left in
the image, and pixels are denoted by coordinates (xl , yl) and (xr , yr), respectively. The
centers of projection are at Ol

→ and Or
→ with principal rays intersecting the image plane

at the principal point (not the center) (cx, cy). After mathematical rectification, the
cameras are row-aligned (coplanar and horizontally aligned), displaced from one
another by T

→
, and of the same focal length f. With this arrangement, it is relatively

easy to solve for distance.

706 | Chapter 19: Projection and Three-Dimensional Vision

17 The exception to this advice is applications where we want more resolution at close range; in this case, we tilt
the cameras slightly in toward each other so that their principal rays intersect at a finite distance. After mathe‐
matical alignment, the effect of such inward-verging cameras is to introduce an x-offset that is subtracted
from the disparity. This may result in negative disparities, but we can thus gain finer depth resolution at the
nearby depths of interest.

Figure 19-7. Stereo coordinate system used by OpenCV for undistorted rectified cam‐
eras: the pixel coordinates are relative to the upper-left corner of the image, and the two
planes are row-aligned; the camera coordinates are relative to the left camera’s center
of projection

Now, with this simplified model in mind, we can get down to the more serious busi‐
ness of understanding how we can map a real-world camera setup into a geometry
that resembles this ideal arrangement. In the real world, cameras will not be exactly
aligned in the frontal parallel configuration depicted in Figure 19-5. Instead, we will
mathematically find image projections and distortion maps that will rectify the left
and right images into a frontal parallel arrangement. When designing your stereo rig,
it is usually best to arrange the cameras approximately frontal parallel and as close to
horizontally aligned as practical (though there is utility in some contexts to deliber‐
ately creating a converging geometry). Such a frontal parallel physical alignment will
make the mathematical transformations more tractable. If you don’t align the cam‐
eras at least approximately, then the resulting mathematical alignment can produce
extreme image distortions and so reduce or eliminate the stereo overlap area of the
resulting images.17 For good results, you’ll also need synchronized cameras. If they

Stereo Imaging | 707

18 Of course “same” is really a matter of context. What is critical here is that no moving object in the scene, nor
any motion of the cameras themselves, be sufficiently fast that the two imagers capture the scene at suffi‐
ciently different times that objects will appear to have moved in between captures.

19 Since we are actually dealing with real lenses and not pinhole cameras, it is important that the two images be
undistorted; see Chapter 18.

don’t capture their images at the same time,18 then you will have problems if anything
is moving in the scene (including the cameras themselves) and you will be limited to
using stationary cameras viewing static scenes.

Figure 19-8 depicts the real situation between two cameras and the mathematical
alignment we want to achieve. To perform this mathematical alignment, we need to
learn more about the geometry of two cameras viewing a scene. Once we have that
geometry defined and some terminology and notation to describe it, we can return to
the problem of alignment.

Figure 19-8. Our goal will be to mathematically (rather than physically) align the two
cameras into one viewing plane so that pixel rows between the cameras are exactly
aligned with each other

Epipolar Geometry
The basic geometry of a stereo imaging system is referred to as epipolar geometry. In
essence, this geometry combines two pinhole models (one for each camera19) and
some interesting new points called the epipoles (see Figure 19-9). Before explaining

708 | Chapter 19: Projection and Three-Dimensional Vision

20 You can see why the epipoles did not come up before: as the planes approach being perfectly parallel, the
epipoles head out toward infinity!

what epipoles are good for, we will start by taking a moment to define them clearly
and to add some new related terminology. When we are done, we will have a concise
understanding of this overall geometry and will also find that we can narrow down
considerably the possible locations of corresponding points on the two stereo cam‐
eras. This added discovery will have important implications for practical stereo
implementations.

Figure 19-9. The epipolar plane is defined by the observed point P and the two centers
of projection, Ol and Or; the epipoles are located at the point of intersection of the line
joining the centers of projection and the two projective planes

For each camera there is now a separate center of projection, Ol
→ and Or

→ , and a pair of
corresponding projective planes, Πl and Πr . The point R

→
 in the physical world has a

projection onto each of the projective planes that we can label pl
→ and pr

→ . The new
points of interest are the epipoles. An epipole el

→ (or er
→) on image plane Πl (or Πr) is

defined as the image of the center of projection of the other camera Ol
→ (or Or

→) on that
plane. The plane in space formed by the actual viewed point P

→
 and the two epipoles el

→

and er
→ (or, equivalently, through the two centers of projection Ol

→ and Or
→) is called the

epipolar plane, and the lines plel̄ and prer̄ (from the points of projection to the corre‐
sponding epipoles) are called the epipolar lines.20

To understand the utility of the epipoles first recall that, when we see a point in the
physical world projected onto our right (or left) image plane, that point could
actually be located anywhere along an entire line of points formed by the ray going

Stereo Imaging | 709

21 Because of occlusions and areas of overlapping view, it is certainly possible that both cameras do not see the
same points. Nevertheless, order is maintained. If points A

→
, B

→
, and C

→
 are arranged left to right on the left

imager and if B
→

 is not seen on the right imager owing to occlusion, then the right imager will still see points A
→

and C
→

 left to right.

from Or
→ out through pr

→ (or Ol
→ through pl

→) because, with just that single camera, we
do not know the distance to the point we are viewing. More specifically, take for
example the point p→ as seen by the camera on the right. Because that camera sees only
pr
→ (the projection of P

→
 onto Πr), the actual point P

→
 could be located anywhere on the

line defined by pr
→ and Or

→ . This line obviously contains P
→

, but it contains a lot of other
points, too. What is interesting, though, is to ask what that line looks like projected
onto the left image plane Πl ; in fact, it is the epipolar line defined by pl

→ and el
→ . To put

that into English, the image of all of the possible locations of a point seen in one
imager is the line that goes through the corresponding point and the epipole on the
other imager.

We’ll now summarize some facts about stereo camera epipolar geometry (and why
we care):

• Every three-dimensional point in view of the cameras is contained in an epipolar
plane that intersects each image. The resulting line of intersection is an epipolar
line.

• Given a feature in one image, its matching view in the other image must lie along
the corresponding epipolar line. This is known as the epipolar constraint.

• The epipolar constraint means that the possible two-dimensional search for
matching features across two imagers becomes a one-dimensional search along
the epipolar lines once we know the epipolar geometry of the stereo rig. This is
not only a vast computational savings; it also allows us to reject a lot of points
that could otherwise lead to spurious correspondences.

• Order is preserved. If points A
→

 and B
→

 are visible in both images and occur hori‐
zontally in that order in one imager, then they occur horizontally in that order in
the other imager.21

The Essential and Fundamental Matrices
You might think that the next step would be to introduce some OpenCV function
that computes these epipolar lines for us, but we actually need two more ingredients
before we can arrive at that point. These ingredients are the essential matrix E and

710 | Chapter 19: Projection and Three-Dimensional Vision

22 The next subsections are a bit mathy. If you do not like math, then just skim over them; at least you’ll have
confidence that somewhere, someone understands all of this stuff. For simple applications, you can just use
the machinery that OpenCV provides without the need for all of the details in these next few pages.

23 The astute reader will recognize that E was described in almost the exact same way as the homography matrix
H in the previous section. Although both are constructed from similar information, they are not the same
matrix and should not be confused. An essential part of the definition of H is that we were considering a
plane viewed by a camera and thus could relate one point in that plane to the point on the camera plane. The
matrix E makes no such assumption and so will only be able to relate a point in one image to a line in the
other.

the fundamental matrix F.22 The matrix E contains information about the translation
and rotation that relate the two cameras in physical space (see Figure 19-10), and F
contains the same information as E in addition to information about the intrinsics of
both cameras.23 Because F embeds information about the intrinsic parameters, it
relates the two cameras in pixel coordinates.

Figure 19-10. The essential geometry of stereo imaging is captured by the essential
matrix E, which contains all of the information about the translation T and the rota‐
tion R, which describe the location of the second camera relative to the first in global
coordinates

To reinforce the differences between E and F: the essential matrix E is purely geomet‐
rical and knows nothing about imagers. It relates the location, in physical coordi‐
nates, of the point P as seen by the left camera to the location of the same point as
seen by the right camera (i.e., it relates pl

→ and pr
→). The fundamental matrix F relates

the points on the image plane of one camera in image coordinates (pixels) to the
points on the image plane of the other camera in image coordinates (for which we
will use the notation ql

→ and qr
→).

Stereo Imaging | 711

24 Please do not confuse pl
→ and pr

→ , which are points on the projective image planes, with Pl
→ and Pr

→ , which are
the locations of the point P

→
 in the coordinate frames of the two cameras.

25 The cross product of vectors produces a third vector orthogonal to the first two. Its direction is defined by the
“right hand rule”: if you point in the direction â and bend your middle finger in the direction b̂, then the cross
product â × b̂ points perpendicular to â and b̂ in the direction of your thumb.

26 Here we have replaced the dot product with matrix multiplication by the transpose of the normal vector.

Essential matrix math
We will now dive into some math so we can better understand the OpenCV function
calls that do the hard work for our stereo geometry problems.

Given a point P
→

, we would like to derive a relation that connects the observed loca‐
tions pl

→ and pr
→ of P

→
 on the two imagers. This relationship will turn out to serve as the

definition of the essential matrix. We begin by considering the relationship between
pl
→ and pr

→ , the physical locations of the point we are viewing in the coordinates of the
two cameras. We can relate these by using epipolar geometry, as we have already
seen.24

Let’s pick one set of coordinate systems, left or right, to work in and do our calcula‐
tions there. Either one is just as good, but we’ll choose the coordinates centered on Ol

→

of the left camera. In these coordinates, the location of the observed point is pl
→ and

the origin of the other camera is located at O
→

. The point P
→

 as seen by the right camera
is pr

→ in that camera’s coordinates, where pr
→ = R ⋅ (Pl

→
− T

→
). The key step is the introduc‐

tion of the epipolar plane, which we already know relates all of these things. We
could, of course, represent a plane any number of ways, but for our purpose it is most
helpful to recall that all points x→ on a plane with normal vector n→ and passing through
point a→ obey the following constraint:

(x→ − a→) ⋅ n→ = 0

Recall now that the epipolar plane contains the vectors Pl
→ and T

→
; thus, if we had a

vector (e.g., Pl
→

× T
→) perpendicular to both,25 then we could use that for n→ in our plane

equation. This gives us an equation for all possible points Pl
→ through the point T

→
 and

containing both vectors:26

(Pl
→

− T
→

)T (Pl
→

× T
→

) = 0

Remember that our goal was to relate ql
→ and qr

→ by first relating Pl
→ and Pr

→ . We bring Pr
→

into the picture via our equality Pr
→

= R ⋅ (Pl
→

− T
→

), which we can conveniently rewrite as:
(Pl

→
− T

→
) = R −1 ⋅ Pr

→. Making this substitution and using that R–1 = RT yields:

712 | Chapter 19: Projection and Three-Dimensional Vision

27 For a square n × n matrix like E, rank deficient essentially means that there are fewer than n nonzero eigenval‐
ues. As a result, a system of linear equations specified by a rank-deficient matrix does not have a unique solu‐
tion. If the rank (number of nonzero eigenvalues) is n – 1, then there will be a line formed by a set of points,
all of which satisfy the system of equations. A system specified by a matrix of rank n – 2 will form a plane, and
so forth.

(R T ⋅ Pr
→)T (Pl

→
× T

→
) = 0

It is always possible to rewrite a cross-product as a (somewhat bulky) matrix multi‐
plication. We use this fact to define the matrix S such that:

This leads to our first result. Making this substitution for the cross-product gives:

Pr
→ T ⋅ R ⋅ S ⋅ Pl

→
= 0

This product R · S is what we define to be the essential matrix E, which leads to the
compact equation:

Pr
→ T ⋅ E ⋅ Pl

→
= 0

Of course, what we really wanted was a relation between the points as we observe
them on the imagers, but this is just a step away. We can simply substitute using the
projection equations pl

→ = (f l / zl) ⋅ Pl
→ and pr

→ = (f r / zr) ⋅ Pr
→ and then divide the whole thing

by Zl Zr/fl fr to obtain our final result:

pr
→ T ⋅ E ⋅ pl

→

This might look at first like it completely specifies one of the p-terms if the other is
given, but E turns out to be a rank-deficient matrix27 (the 3 × 3 essential matrix has
rank 2) and so this actually ends up being an equation for a line. There are five
parameters in the essential matrix—three for rotation and two for the direction of
translation (scale is not set)—along with two other constraints. The two additional
constraints on the essential matrix are: (1) the determinant is 0 because it is rank-
deficient; and (2) its two nonzero singular values are equal because the matrix S is
skew-symmetric and R is a rotation matrix. This yields a total of seven constraints.
Note again that E contains nothing intrinsic to the cameras; thus, it relates points to
each other in physical or camera coordinates, not pixel coordinates.

Stereo Imaging | 713

28 Note the equation that relates the fundamental matrix to the essential matrix. If we have rectified images and
we normalize the points by dividing by the focal lengths, then the intrinsic matrix M becomes the identity
matrix and F = E.

Fundamental matrix math
The matrix E contains all of the information about the geometry of the two cameras
relative to each other but no information about the cameras themselves. In practice,
we are usually interested in pixel coordinates. In order to find a relationship between
a pixel in one image and the corresponding epipolar line in the other image, we will
have to introduce intrinsic information about the two cameras. To do this, for p→ (the
pixel coordinate) we substitute q→ and the camera intrinsics matrix that relates them.
Recall that q→ = M ⋅ p→ (where M is the camera intrinsics matrix) or equivalently:
p→ = M −1 ⋅ q→ . Hence our equation for E becomes:

qr
→ T ⋅ (M r

−1)T ⋅ E ⋅ M l
−1 ⋅ ql

→ = 0

Though this looks like a bit of a mess, we clean it up by defining the fundamental
matrix F as:

F = (M r
−1)T ⋅ E ⋅ M l

−1

so that:

qr
→ T ⋅ F ⋅ ql

→ = 0

In a nutshell: the fundamental matrix F is just like the essential matrix E, except that
F operates in image pixel coordinates whereas E operates in physical coordinates.28

Just like E, the fundamental matrix F is of rank 2. The fundamental matrix has seven
parameters, two for each epipole and three for the homography that relates the two
image planes (the scale aspect is missing from the usual four parameters).

How OpenCV handles all of this
We can compute F in a manner analogous to computing the image homography in
the previous section, by providing a number of known correspondences. In this case,
we don’t even have to calibrate the cameras separately because we can solve directly
for F, which contains implicitly the fundamental matrices for both cameras. The rou‐
tine that does all of this for us is called cv::findFundamentalMat():

cv::Mat cv::findFundamentalMat(// computed fundamental mtx
 cv::InputArray points1, // Points image 1 (floats)
 cv::InputArray points2, // Points image 2 (floats)

714 | Chapter 19: Projection and Three-Dimensional Vision

29 You might be wondering what the N × 3 or three-channel matrix is for. The algorithm will deal just fine with
actual three-dimensional points (x, y, z) measured on the calibration object. Three-dimensional points will
end up being scaled to (x/z, y/z) or you could enter two-dimensional points in homogeneous coordinates,
(x, y, 1), which will be treated in the same way. If you enter (x, y, 0), then the algorithm will just ignore the 0.
Using actual three-dimensional points would be rare because usually you have only the two-dimensional
points detected on the calibration object.

 int method = cv::FM_RANSAC, // Method for computing mtx
 double param1 = 3.0, // RANSAC max distance
 double param2 = 0.99, // RANSAC/LmedS confidence
 cv::OutputArray mask = cv::noArray() // (Optional) array
 // indicates used elements
);

The first two arguments are arrays of two- or three-dimensional points, arranged in
any of the usual ways.29

The third argument determines the method to be used in computing the fundamental
matrix from the corresponding points, and it can take one of four values. For each
value, there are particular restrictions on the number of points required (or allowed)
in points1 and points2, as shown in Table 19-2.

Table 19-2. Restrictions on argument for method in cvFindFundamentalMat()

Value of method Number of points Algorithm
cv::FM_7POINT N = 7 Seven-point algorithm
cv::FM_8POINT N ≥ 8 Eight-point algorithm
cv::FM_RANSAC N ≥ 8 RANSAC algorithm
cv::FM_LMEDS N ≥ 8 LMedS algorithm

The seven-point algorithm uses exactly seven points, and it uses the fact that the
matrix F must be of rank 2 to fully constrain the matrix. The advantage of this con‐
straint is that F is then always exactly of rank 2 and so cannot have one very small
eigenvalue that is not quite zero. The disadvantage is that this constraint is not abso‐
lutely unique and so three different matrices might be returned (this is the case where
the returned array may be a 9 × 3 matrix, in which all three returns are placed). The
eight-point algorithm just solves F as a linear system of equations. If more than eight
points are provided, then a linear least-squares error is minimized across all points.
The problem with both the seven-point and eight-point algorithms is that they are
extremely sensitive to outliers (even if you have many more than eight points in the
eight-point algorithm). This is addressed by the RANSAC and LMedS algorithms
which, as we saw in Chapter 18, are considered robust methods because they have

Stereo Imaging | 715

30 For more information, consult the original papers: Fischler and Bolles [Fischler81] for RANSAC; Rousseeuw
[Rousseeuw84] for least median squares; and Inui, Kaneko, and Igarashi [Inui03] for line fitting using LMedS.

some capacity to recognize and remove outliers.30 For both these methods, it is desir‐
able to have many more than the minimal eight points.

The next two arguments are parameters used only by RANSAC and/or LMedS. The
first, param1, used by RANSAC, is the maximum distance from a point to the epipo‐
lar line (in pixels) beyond which the point is considered an outlier. The second
parameter, param2, used by RANSAC and LMeDS, is the desired confidence
(between 0 and 1), which essentially tells the algorithm how many times to iterate.

The result is returned as a cv::Mat array, which will typically be a 3 × 3 matrix of the
same precision as the points. (Recall that in the special case of the seven-point algo‐
rithm, it is possible also for the returned array to be a 9 × 3). The calculated funda‐
mental matrix will typically next be passed to cv::computeCorrespondEpilines() to
find the epipolar lines corresponding to the specified points or to cv::stereoRecti
fyUncalibrated() to compute the rectification transformation. Example 19-2 gives
example code for finding the fundamental matrix.

Example 19-2. Computing the fundamental matrix using RANSAC

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

void help(char* argv[]) {
 ...
}

// args: [board_w] [board_h] [number_of_boards] [delay]? [scale]?
//
int main(int argc, char* argv[]) {

 int n_boards = 0; // Will be set by input list
 float image_sf = 0.5f;
 float delay = 1.f;
 int board_w = 0;
 int board_h = 0;

 if(argc < 4 || argc > 6) {
 cout << "\nERROR: Wrong number of input parameters";
 help(argv);
 return -1;
 }
 board_w = atoi(argv[1]);

716 | Chapter 19: Projection and Three-Dimensional Vision

 board_h = atoi(argv[2]);
 n_boards = atoi(argv[3]);
 if(argc > 4) delay = atof(argv[4]);
 if(argc > 5) image_sf = atof(argv[5]);

 int board_n = board_w * board_h;
 cv::Size board_sz = cv::Size(board_w, board_h);
 cv::VideoCapture capture(0);
 if(!capture.isOpened()) {
 cout << "\nCouldn't open the camera\n"; help();
 return -1;
 }

 // Allocate Storage
 //
 vector< vector< cv::Point2f> > image_points;
 vector< vector< cv::Point3f> > object_points;

 // Capture corner views; loop until we've got n_boards number of
 // successful captures (meaning: all corners on each
 // board are found).
 //
 double last_captured_timestamp = 0;
 cv::Size image_size;
 while(image_points.size() < (size_t) n_boards) {

 cv::Mat image0, image;
 capture >> image0;
 image_size = image0.size();
 resize(
 image0, image, cv::Size(),
 image_sf, image_sf, cv::INTER_LINEAR
);

 // Find the board
 //
 vector< cv::Point2f > corners;
 bool found = cv::findChessboardCorners(
 image, board_sz, corners
);

 // Draw it
 //
 cv::drawChessboardCorners(image, board_sz, corners, found);

 // If we got a good board, add it to our data
 //
 double timestamp = (double) clock() / CLOCKS_PER_SEC;
 if(found && timestamp - last_captured_timestamp > 1) {

 last_captured_timestamp = timestamp;
 image ^= cv::Scalar::all(255);

Stereo Imaging | 717

 cv::Mat mcorners(corners); // do not copy the data
 mcorners *= (1./ image_sf); // scale corner coordinates
 image_points.push_back(corners);
 object_points.push_back(vector< cv::Point3f >());
 vector< cv::Point3f >& opts = object_points.back();
 opts.resize(board_n);
 for(int j=0; j<board_n; j++) {
 opts[j] = cv::Point3f(
 (float)(j/board_w), (float)(j%board_w), 0.f
);
 }
 cout << "Collected our " <<(int) image_points.size()
 <<" of " << n_boards <<" needed chessboard images\n" << endl;
 }

 // in color if we did collect the image
 //
 cv::imshow("Calibration", image);
 if((cv::waitKey(30) & 255) == 27)
 return -1;

 } // end collection while() loop.

 cv::destroyWindow("Calibration");
 cout <<"\n\n*** CALIBRATING THE CAMERA...\n" << endl;

 // Calibrate the camera!
 //
 cv::Mat intrinsic_matrix, distortion_coeffs;
 double err = cv::calibrateCamera(
 object_points, // Vector of vectors of points
 // from the calibration pattern
 image_points, // Vector of vectors of projected
 // locations (on images)
 image_size, // Size of images used
 intrinsic_matrix, // Output camera matrix
 distortion_coeffs, // Output distortion coefficients
 cv::noArray(), // We'll pass on the rotation vectors...
 cv::noArray(), // ...and the translation vectors
 cv::CALIB_ZERO_TANGENT_DIST | cv::CALIB_FIX_PRINCIPAL_POINT
);

 // Save the intrinsics and distortions
 cout << " *** DONE!\n\nReprojection error is " << err
 <<"\nStoring Intrinsics.xml and Distortions.xml files\n\n";
 cv::FileStorage fs("intrinsics.xml", cv::FileStorage::WRITE);

 fs << "image_width" << image_size.width << "image_height"
 << image_size.height << "camera_matrix" << intrinsic_matrix
 << "distortion_coefficients" << distortion_coeffs;
 fs.release();

718 | Chapter 19: Projection and Three-Dimensional Vision

 // Example of loading these matrices back in:
 //
 fs.open("intrinsics.xml", cv::FileStorage::READ);
 cout << "\nimage width: " << (int)fs["image_width"];
 cout << "\nimage height: " << (int)fs["image_height"];

 cv::Mat intrinsic_matrix_loaded, distortion_coeffs_loaded;
 fs["camera_matrix"] >> intrinsic_matrix_loaded;
 fs["distortion_coefficients"] >> distortion_coeffs_loaded;
 cout << "\nintrinsic matrix:" << intrinsic_matrix_loaded;
 cout << "\ndistortion coefficients: " << distortion_coeffs_loaded
 << endl;

 // Compute Fundamental Matrix Between the first
 // and the second frames:
 //
 cv::undistortPoints(
 image_points[0], // Observed point coordinates (from frame 0)
 image_points[0], // undistorted coordinates (in this case,
 // the same array as above)
 intrinsic_matrix, // Intrinsics, from cv::calibrateCamera()
 distortion_coeffs, // Distortion coefficients, also
 // from cv::calibrateCamera()
 cv::Mat(), // Rectification transformation (but
 // here, we don't need this)
 intrinsic_matrix // New camera matrix
);
 cv::undistortPoints(
 image_points[1], // Observed point coordinates (from frame 1)
 image_points[1], // undistorted coordinates (in this case,
 // the same array as above)
 intrinsic_matrix, // Intrinsics, from cv::calibrateCamera()
 distortion_coeffs, // Distortion coefficients, also
 // from cv::calibrateCamera()
 cv::Mat(), // Rectification transformation (but
 // here, we don't need this)
 intrinsic_matrix // New camera matrix
);

 // Since all the found chessboard corners are inliers, i.e., they
 // must satisfy epipolar constraints, here we are using the
 // fastest, and the most accurate (in this case) 8-point algorithm.
 //
 cv::Mat F = cv::findFundamentalMat(// Return computed matrix
 image_points[0], // Points from frame 0
 image_points[1], // Points from frame 1
 cv::FM_8POINT // Use the 8-point algorithm
);
 cout << "Fundamental matrix: " << F << endl;

Stereo Imaging | 719

 // Build the undistort map which we will use for all
 // subsequent frames.
 //
 cv::Mat map1, map2;
 cv::initUndistortRectifyMap(
 intrinsic_matrix_loaded, // Our camera matrix
 distortion_coeffs_loaded, // Our distortion coefficients
 cv::Mat(), // (Optional) Rectification, don't
 // need.
 intrinsic_matrix_loaded, // "New" matrix, here it's the same
 // as the first argument.
 image_size, // Size of undistorted image we want
 CV_16SC2, // Specifies the format of map to use
 map1, // Integerized coordinates
 map2 // Fixed-point offsets for
 // elements of map1
);
 // Just run the camera to the screen, now showing the raw and
 // the undistorted image.
 //
 for(;;) {
 cv::Mat image, image0;
 capture >> image0;
 if(image0.empty()) break;
 cv::remap(
 image0, // Input image
 image, // Output image
 map1, // Integer part of map
 map2, // Fixed point part of map
 cv::INTER_LINEAR,
 cv::BORDER_CONSTANT,
 cv::Scalar() // Set border values to black
);
 cv::imshow("Undistorted", image);
 if((cv::waitKey(30) & 255) == 27) break;
 }
 return 1;
}

One word of warning—related to the possibility of returning cv::noArray()—is that
these algorithms can fail if the points supplied form degenerate configurations. These
degenerate configurations arise when the points supplied provide less than the
required amount of information, such as when one point appears more than once or
when multiple points are collinear or coplanar with too many other points. It is
important to always check the return value of cv::findFundamentalMat().

Computing Epipolar Lines
Now that we have the fundamental matrix, we want to be able to compute epipolar
lines. The OpenCV function cv::computeCorrespondEpilines() computes, for a list

720 | Chapter 19: Projection and Three-Dimensional Vision

of points in one image, the epipolar lines in the other image. Recall that, for any given
point in one image, there is a different corresponding epipolar line in the other
image. Each computed line is encoded in the form of a vector of three points (a, b, c)
such that the epipolar line is defined by the equation:

a ⋅ x + b ⋅ y + c = 0

To compute these epipolar lines, the function requires the fundamental matrix that
we computed with cv::findFundamentalMat():

void cv::computeCorrespondEpilines(
 cv::InputArray points, // Input points, Nx1 or 1xN (Nc=2)
 // or vector<Point2f>
 int whichImage, // Index of image which contains
 // points ('1' or '2')
 cv::InputArray F, // Fundamental matrix
 cv::OutputArray lines // Output vector of lines, encoded as
 // tuples (a,b,c)
);

Here the first argument, points, is the input array of two- or three-dimensional
points—it can be in any of the usual forms, but the points should be of floating-point
type. The argument whichImage must be either 1 or 2, and indicates which image the
points are defined on, relative to the points1 and points2 arrays in cv::findFunda
mentalMat(). F is the 3 × 3 matrix returned by cv::findFundamentalMat(). Finally,
lines will be a floating-point array in which the result lines will be written. Each line
is encoded as a three-component vector L

→
≡ (a, b, c), containing the coefficients for

the line equation a ⋅ x + b ⋅ y + c = 0. Because the line equation is independent of the
overall normalization of the parameters a, b, and c, they are normalized by default
such that a2 + b2 = 1.

Stereo Calibration
We’ve built up a lot of theory and machinery behind cameras and three-dimensional
points that we can now put to use. This section will cover stereo calibration, and the
next section will cover stereo rectification. Stereo calibration is the process of com‐
puting the geometrical relationship between the two cameras in space. In contrast,
stereo rectification is the process of “correcting” the individual images so that they
appear as if they had been taken by two cameras with row-aligned image planes
(review Figures 19-5 and 19-8). With such a rectification, the optical axes (or princi‐
pal rays) of the two cameras are parallel (and so we say that they intersect at infinity).
We could, of course, calibrate the two camera images to be in many other configura‐
tions, but here (and in OpenCV generally) we focus on the more common and sim‐
pler case of setting the principal rays to intersect at infinity.

Stereo Imaging | 721

31 Let’s be careful about what these terms mean: Pl
→ and Pr

→ denote the locations of the three-dimensional point P
→

from the coordinate system of the left and right cameras, respectively; Rl and T l
→ (respectively, Rr and T r

→)
denote the rotation and translation vectors from the camera to the three-dimensional point for the left (resp.
right) camera; and R and T

→
 are the rotation and translation that bring the right-camera coordinate system

into the left.

32 You can reverse the left and right cameras in these equations either by reversing the subscripts in both equa‐
tions or by reversing the subscripts and dropping the transpose of R in the translation equation only.

Stereo calibration depends on finding the rotation matrix R and translation vector T
→

between the two cameras, as depicted back in Figure 19-10. Both R and T
→

 are calcula‐
ted by the function cv::stereoCalibrate(), which is similar to the function
cv::calibrateCamera() that we saw in Chapter 18 except that we now have two
cameras and our new function can compute (or make use of any prior computation
of) the camera, distortion, essential, or fundamental matrices. The other main differ‐
ence between stereo and single-camera calibration is that, in cv::calibrateCa
mera(), we ended up with a list of rotation and translation vectors between the
camera and the chessboard views. In cv::stereoCalibrate(), we seek a single rota‐
tion matrix and translation vector that relate the right camera to the left camera.

We’ve already shown how to compute the essential and fundamental matrices. The
next problem is how to compute R and T

→
 between the left and right cameras. We

begin with the observation that for any given three-dimensional point P
→

 in object
coordinates, we can separately use single-camera calibration for the two cameras to
put P

→
 into the camera coordinates for either camera: Pl

→
= Rl ⋅ P

→
+ T l

→ and Pr
→

= Rr ⋅ P
→

+ T r
→

(for the left and right cameras, respectively). It should be evident from Figure 19-10
that the two views of P

→
 (from the two cameras) are related by Pl

→
= R T ⋅ (Pr

→
− T

→
),31 where

R and T
→

 are, respectively, the rotation matrix and translation vector between the
cameras. Taking these three equations and solving for the rotation and translation
separately yields the following simple relations:32

R = Rr ⋅ Rl
T

and:

T
→

= T r
→

− R ⋅ T l
→

Given many joint views of chessboard corners or a similar calibration object,
cv::stereoCalibrate() uses cv::calibrateCamera() to solve for rotation and
translation parameters of the views for each camera separately (see Chapter 18’s dis‐
cussion in “What’s under the hood?” on page 667 to recall how this is done). The
routine then plugs these left and right rotation and translation solutions into the pre‐
ceding equations to solve for the rotation and translation parameters between the two

722 | Chapter 19: Projection and Three-Dimensional Vision

cameras. Because of image noise and rounding errors, each chessboard pair results in
slightly different values for R and T

→
. The cv::stereoCalibrate() routine then takes

the median values for the R and T
→

 parameters as the initial approximation of the true
solution and runs a robust Levenberg-Marquardt iterative algorithm to find the
(local) minimum of the reprojection error of the calibration points for both camera
views, and the final solution for R and T

→
 is returned. To be clear on what stereo cali‐

bration gives you: the rotation matrix will put the right camera in the same plane as
the left camera; this renders the two image planes parallel but not row-aligned (we’ll
see how row-alignment is accomplished in the section “Stereo Rectification” on page
726).

The function cv::stereoCalibrate() has a lot of parameters, but they are all fairly
straightforward and many are the same as for cv::calibrateCamera() from Chap‐
ter 18:

double cv::stereoCalibrate(// Return reprojection error
 cv::InputArrayOfArrays objectPoints, // Vector of vectors of
 // calib. pattern points
 cv::InputArrayOfArrays imagePoints1, // Vector of vectors of
 // image points (cam 1)
 cv::InputArrayOfArrays imagePoints2, // Vector of vectors of
 // image points (cam 2)
 cv::InputOutputArray cameraMatrix1, // Intrinsics for cam 1
 // (input/output)
 cv::InputOutputArray distCoeffs1, // Distortion coeffs for
 // cam 1 (input/output)
 cv::InputOutputArray cameraMatrix2, // Intrinsics for cam 2 (
 // input/output)
 cv::InputOutputArray distCoeffs2, // Distortion coeffs for
 // cam 2 (input/output)
 cv::Size imageSize, // Size of images (assume both
 // cams are same)
 cv::OutputArray R, // Computed relative
 // rotation *matrix*
 cv::OutputArray T, // Computed relative
 // translation vector
 cv::OutputArray E, // Computed essential matrix
 cv::OutputArray F, // Computed fundamental matrix
 cv::TermCriteria criteria = cv::TermCriteria(
 cv::TermCriteria::COUNT
 | cv::TermCriteria::EPS,
 30,
 1e-6
),
 int flags = cv::CALIB_FIX_INTRINSIC
);

The first parameter, objectPoints, is an array of arrays of points. Each entry in the
top-level arrays is associated with one of the calibration images. Each such entry is
itself an array containing the locations of the points on the calibration image (in the

Stereo Imaging | 723

33 For simplicity, we normally think of “1” as denoting the left camera and “2” as denoting the right camera. In
fact, you can interchange these as long as you consistently treat the resulting rotation and translation solu‐
tions in the opposite fashion to the text discussion. The most important thing is to physically align the cam‐
eras so that their scan lines approximately match in order to achieve good calibration results.

34 The third and higher radial distortion parameters are last because they were added later in OpenCV’s
development.

coordinate system of the calibration image itself). These should be three-dimensional
points, though in most cases the z-coordinate of each point location will be zero.
(This is precisely the same as the situation for cv::calibrateCamera(); you don’t
actually have to use a flat calibration object, but usually it is the most convenient
thing to do.)

imagePoints1 and imagePoints2 are also arrays of arrays, and again the top level
contains entries corresponding to the input images. Each such entry contains the
observed locations of the calibration points; imagePoints1 contains the points as
seen by the first (typically the left) camera, while imagePoints2 contains the points as
seen by the second (typically the right) camera.33 Unlike the points in objectPoints,
the points in imagePoints1 and imagePoints2 are two-dimensional points, as they
are pixel locations on the images.

If you performed calibration for the two cameras using a chess‐
board or circle grid, then imagePoints1 and imagePoints2 will be
just the returned values for the corresponding calls to the cv::find
ChessboardCorners() function, or to one of the other corner (or
circle) grid-finding functions, for the left and right camera views,
respectively.

The parameters cameraMatrix1 and cameraMatrix2 are the 3 × 3 camera matrices,
and distCoeffs1 and distCoeffs2 are the four-entry (or five- or seven-entry) vec‐
tors of distortion coefficients for cameras 1 and 2, respectively. Remember that, in
these matrices, the first two radial parameters come first; these are followed by the
two tangential parameters and finally the subsequent radial parameters (see the dis‐
cussion in Chapter 18 on distortion coefficients).34

The way in which the camera intrinsics are used by cv::stereoCalibrate() is con‐
trolled by the flags parameter. If flags contains cv::CALIB_FIX_INTRINSIC, then
the values in these matrices are used as they were found by the calibration process
(i.e., they are not computed by this algorithm). If flags is set to
cv::CALIB_USE_INTRINSIC_GUESS, then these matrices are used as a starting point to
optimize further the intrinsic and distortion parameters for each camera and will be
set to the refined values on return from cv::stereoCalibrate(). In the case in

724 | Chapter 19: Projection and Three-Dimensional Vision

35 Be careful. Trying to solve for too many parameters at once will sometimes cause the solution to diverge to
nonsense values. Solving systems of equations is something of an art, and you must verify your results. You
can see some of these considerations in the calibration and rectification code example, where we check our
calibration results by using the epipolar constraint in Example 19-2.

which neither of these flags is used, the camera intrinsics will be computed from
scratch by cvStereoCalibrate(). Thus, if you like, you can compute the intrinsic,
extrinsic, and stereo parameters in a single pass using cvStereoCalibrate().35

You may also add any of the flags values provided to cv::calibrateCamera() (as
discussed in Chapter 18). In addition to these, one new flag is available:
cv::CALIB_SAME_FOCAL_LENGTH. This flag is a somewhat less strict alternative to
cv::CALIB_FIX_FOCAL_LENGTH. While the latter forces the focal lengths to be equal to
those found in cameraMatrix1 and cameraMatrix2, the former only enforces the
requirement that the two be equal. In this case, cv::stereoCalibrate() will solve for
the single unknown focal length shared by the two cameras.

The parameter imageSize is the image size in pixels. It is used only if you are refining
or computing intrinsic parameters, as when flags is not equal to
cv::CALIB_FIX_INTRINSIC.

The terms R and T are output parameters that are filled on function return with the
rotation matrix and translation vector (relating the right camera to the left camera)
that we seek. The parameters E and F are optional. If they are not set to cv::noAr
ray(), then cv::stereoCalibrate() will calculate and fill these arrays with the 3 × 3
essential and fundamental matrices. Finally, there is termCrit, which we have seen
many times before. It sets the internal optimization either to terminate after a certain
number of iterations or to stop when the computed parameters change by less than
the threshold indicated in the termCrit structure. A typical argument for this func‐
tion is cv::TermCriteria(cv::TermCriteria::COUNT | cv::TermCriteria::EPS,
30, 1e-6). In the case of cv::TERMCRIT_EPS, the value of the associated termination
criterion is the value of the total reprojection error given by the current estimate of
the parameters. Just as with cv::calibrateCamera(), the algorithm is minimizing
the total reprojection error for all the points in all the available views, but now for
both cameras. The return value of cv::stereoCalibrate() is the final value of the
reprojection error.

Stereo Imaging | 725

If you’ve calibrated both cameras and are sure of the result, then
you can “hard set” the previous single-camera calibration results by
using cv::CALIB_FIX_INTRINSIC. If you think the two cameras’
initial calibrations were OK but not great, you can ask the algo‐
rithm to refine the intrinsic and distortion parameters by setting
flags to cv::CALIB_USE_INTRINSIC_GUESS. If the cameras have
not been individually calibrated, then you can use the same settings
as we used for the flags parameter in cv::calibrateCamera() in
Chapter 18.

Once we have either the rotation and translation values (R, T
→

) or the fundamental
matrix F, we may use these results to rectify the two stereo images so that the epipolar
lines are arranged along image rows and the scan lines are the same across both
images. Though R and T don’t define a unique stereo rectification, we’ll see how to
use these terms together with other constraints to rectify our image pairs. We will
explore how to do this in the next section.

Stereo Rectification
It is easiest to compute the stereo disparity when the two image planes align exactly
(as shown in Figure 19-5). Unfortunately, as discussed previously, a perfectly aligned
configuration is rare with a real stereo system, since the two cameras almost never
have exactly coplanar, row-aligned imaging planes. Figure 19-8 shows the goal of
stereo rectification: we want to reproject the image planes of our two cameras so that
they reside in the exact same plane, with image rows perfectly aligned into a frontal
parallel configuration. How we choose the specific plane in which to mathematically
align the cameras depends on the algorithm being used. In what follows, we discuss
two cases addressed by OpenCV.

Ultimately, after rectification, we want the image rows between the two cameras to be
aligned so that stereo correspondence (finding the same point in the two different
camera views) will be more reliable and computationally tractable. Specifically, relia‐
bility and computational efficiency are both enhanced by having to search only one
row for a match with a point in the other image. The result of aligning horizontal
rows within a common image plane containing each image is that the epipoles them‐
selves are then located at infinity; that is, the image of the center of projection in one
image is parallel to the other image plane. However, because there are an infinite
number of possible frontal parallel planes to choose from, we will still need to add a
few more constraints; such constraints are based on maximizing view overlap and/or
minimizing distortion.

The result of the process of aligning the two image planes will be eight terms, four
each for the left and the right cameras. For each camera we’ll get a distortion vector
distCoeffs, a rotation matrix Rrect (to apply to the image), and the rectified and

726 | Chapter 19: Projection and Three-Dimensional Vision

36 Stereo rectification of an image in OpenCV is possible only when the epipole is outside of the image rectan‐
gle. Hence, this rectification algorithm may not work with stereo configurations that are characterized by
either a very wide baseline or when the cameras point toward each other too much.

37 The Bouguet algorithm is a completion and simplification of the method first presented by Tsai [Tsai87] and
Zhang [Zhang99; Zhang00]. Jean-Yves Bouguet never published this algorithm beyond its well-known imple‐
mentation in his Camera Calibration Toolbox Matlab.

unrectified camera matrices (Mrect and M, respectively). From these terms, we can
make a map, using cv::initUndistortRectifyMap() (to be discussed shortly),
which will tell us where to interpolate pixels from the original image in order to cre‐
ate a new rectified image.36

There are many ways to compute our rectification terms, of which OpenCV imple‐
ments two: (1) Hartley’s algorithm [Hartley98], which can yield uncalibrated stereo
using just the fundamental matrix; and (2) Bouguet’s algorithm,37 which uses the
rotation and translation parameters from two calibrated cameras. Hartley’s algorithm
can be used to derive structure from motion recorded by a single camera but may
(when stereo-rectified) produce more distorted images than Bouguet’s calibrated
algorithm.

In situations where you can employ calibration patterns—such as
on a robot arm or for security camera installations—Bouguet’s
algorithm is the natural one to use.

Uncalibrated stereo rectification: Hartley’s algorithm
Hartley’s algorithm attempts to find homographies that map the epipoles to infinity
while minimizing the computed disparities between the two stereo images; it does
this by matching points between two image pairs. With this approach we bypass hav‐
ing to compute the camera intrinsics for the two cameras because such intrinsic
information is implicitly contained in the point matches. Thus, we need only com‐
pute the fundamental matrix, which can be obtained from any matched set of seven
or more points between the two views of the scene via cv::findFundamentalMat() as
already described. Alternatively, the fundamental matrix can be computed from
cv::stereoCalibrate().

The advantage of Hartley’s algorithm is that we can perform online stereo calibration
simply by observing points in the scene. The disadvantage is that we have no sense of
image scale. For example, if we used a chessboard for generating point matches, then
we would not be able to tell whether the chessboard were 100 meters on each side and
far away or 100 centimeters on each side and nearby. Neither do we explicitly learn
the intrinsic camera matrices, without which the cameras might have different focal

Stereo Imaging | 727

lengths, skewed pixels, different centers of projection, and/or different principal
points. As a result, we can determine three-dimensional object reconstruction only
up to a projective transform. This means that different scales or projections of an
object can appear the same to us (i.e., the feature points have the same two-
dimensional coordinates even though the three-dimensional objects differ). Both of
these issues are illustrated in Figure 19-11.

Figure 19-11. Stereo reconstruction ambiguity: if we do not know object size, then dif‐
ferent size objects can appear the same depending on their distance from the camera
(left); if we don’t know the camera intrinsics, then different projections can appear the
same—for example, by having different focal lengths and principal points (right)

Assuming we have the fundamental matrix F (which required seven or more points
to compute), Hartley’s algorithm proceeds as follows (see Hartley’s original paper
[Hartley98] for more details):

1. We use the fundamental matrix to compute the two epipoles via the relations
F ⋅ el

→ = 0 and er
→ T ⋅ F = 0 for the left and right epipoles, respectively.

2. We seek a first homography Hr, which will map the right epipole to the two-
dimensional homogeneous point at infinity (1, 0, 0)T. Since a homography has
seven constraints (scale is missing), and we use three to do the mapping to infin‐
ity, we have four degrees of freedom left in which to choose our Hr . These four
degrees of freedom are mostly freedom to make a mess since most choices of Hr
will result in highly distorted images. To find a good Hr, we choose a point in the
image where we want minimal distortion to happen, allowing only rigid rotation
and translation (but specifically not shearing) there. A reasonable choice for such
a point is the image origin, and we’ll further assume that the epipole er

→ = (k , 0, 1)T

lies on the x-axis (a rotation matrix will accomplish this, as explained later).
Given these coordinates, the matrix:

728 | Chapter 19: Projection and Three-Dimensional Vision

will take such an epipole to infinity.
3. For a selected point of interest in the right image (we chose the origin), we com‐

pute the translation T
→

 that will take that point to the left image origin (0 in our
case) and the rotation R that will take the epipole to er

→ = (k , 0, 1)T . The homogra‐
phy we want will then be given by Hr = G · R · T. (Here, T is a 4 × 4 transforma‐
tion matrix constructed from T

→
).

4. We next search for a matching homography Hl that will send the left epipole to
infinity and align the rows of the two images. We easily send the left epipole to
infinity by using up three constraints as in Step 2. To align the rows, we use the
fact that aligning the rows minimizes the total distance between all matching
points between the two images. That is, we find the Hl that minimizes the total
disparity in left-right matching points ∑

i
d(H l ⋅ pi ,l

→, H r ⋅ pi ,r
→). These two homographies define

the stereo rectification.

Although the details of this algorithm are a bit tricky, cv::stereoRectifyUncalibra
ted() does all the hard work for us. The function is a bit misnamed because it does
not rectify uncalibrated stereo images; rather, it computes homographies that may be
used for rectification. The algorithm prototype is:

bool cv::stereoRectifyUncalibrated(
 cv::InputArray points1, // Feature points from image 1
 cv::InputArray points2, // Corresponding points in image 2
 cv::InputArray F, // Fundamental matrix
 cv::Size imgSize, // Size of images used
 cv::OutputArray H1, // Rectification (homography) matrix
 // for image 1
 cv::OutputArray H2, // Rectification (homography) matrix
 // for image 2
 double threshold = 5.0 // (Optional) outlier
 // threshold ('0'=ignore)
);

In cv::stereoRectifyUncalibrated(), the algorithm takes as input two arrays of
two-dimensional feature points, which are corresponding points between the left and
right images, in the arrays points1 and points2. The fundamental matrix we just cal‐
culated is passed as the array F(F). We are familiar with imageSize, which just
describes the width and height of the images that were used during calibration. Our
results, the rectifying homographies, are returned in the function variables H1 (Hl)

Stereo Imaging | 729

38 Hartley’s algorithm works best for images that have been rectified previously by single-camera calibration. It
won’t work at all for images with high distortion. It is rather ironic that our “calibration-free” routine works
only for undistorted image inputs whose parameters are typically derived from prior calibration. For another
uncalibrated three-dimensional approach, see Pollefeys [Pollefeys99a].

and H2 (Hr). Finally, if the distance from points to their corresponding epilines
exceeds a set threshold, the corresponding point is eliminated by the algorithm.38

If our cameras have roughly the same parameters and are set up in an approximately
horizontally aligned frontal parallel configuration, then our eventual rectified outputs
from Hartley’s algorithm will look very much like the calibrated case described next.
If we know the size or the three-dimensional geometry of objects in the scene, we can
obtain the same results as the calibrated case.

Calibrated stereo rectification: Bouguet’s algorithm
Given the rotation and translation (R, T

→
) that relate the two stereo images, Bouguet’s

algorithm for stereo rectification attempts to minimize the amount of change repro‐
jection produces for each of the two images (and thereby minimize the resulting
reprojection distortions) while maximizing common viewing area.

To minimize image reprojection distortion, the rotation matrix R that rotates the
right camera’s image plane into the left camera’s image plane is split in half between
the two cameras; we call the two resulting rotation matrices rr and rl for the left and
right camera, respectively. Each camera rotates half a rotation, so their principal rays
each end up parallel to the vector sum of where their original principal rays had been
pointing. As we have noted, such a rotation puts the cameras into coplanar alignment
but not into row alignment. To compute the matrix Rrect that will take the left cam‐
era’s epipole to infinity and align the epipolar lines horizontally, we create a rotation
matrix by starting with the direction of the epipole e1

→ itself. Taking the principal point
(cx, cy) as the left image’s origin, the (unit normalized) direction of the epipole is
directly along the translation vector between the two cameras’ centers of projection:

e1
→ = T

→

T
→

The next vector, e2
→ , must be orthogonal to e1

→ , but is otherwise unconstrained. For e2
→ ,

selecting a direction orthogonal to the principal ray (which tends to be along the
image plane) is a good choice. We accomplish this by using the cross-product of e1

→

with the direction of the principal ray, and then normalizing so that we’ve got
another unit vector:

e2
→ = 1

T x
2 + T y

2
(−Ty, T x, 0)T

730 | Chapter 19: Projection and Three-Dimensional Vision

We can always find a third vector, e3
→ , that is orthogonal to e1

→ and e2
→ by using the cross-

product operation:

e3
→ = e1

→ × e2
→ .

Our matrix that takes the epipole in the left camera to infinity is then:

This matrix rotates the left camera about the center of projection so that the epipolar
lines become horizontal and the epipoles are at infinity. The row alignment of the
two cameras is then achieved by setting:

Rl = Rrect ⋅ rl

and:

Rr = Rrect ⋅ rr

We will also compute the rectified left and right camera matrices M rect ,l and M rect ,r but
return them combined with projection matrices Pl

′ and Pr
′:

and:

(Here αl and αr allow for a pixel skew factor that, as we saw in Chapter 18, is almost
always effectively 0 in modern cameras.) The projection matrices take a three-
dimensional point in homogeneous coordinates to a two-dimensional point in
homogeneous coordinates as follows:

Stereo Imaging | 731

The screen coordinates can be calculated according to (x, y) = (x/w, y/w). Points in
two dimensions can also be reprojected into three dimensions given their screen
coordinates and the camera intrinsics matrix. The reprojection matrix is:

Here the parameters are from the left image except for cx
′, which is the principal point

x-coordinate in the right image. If the principal rays intersect at infinity, then cx = cx
′

and the term in the lower-right corner is 0. Given a two-dimensional homogeneous
point and its associated disparity d, we can project the point into three dimensions
using:

The three-dimensional coordinates are then (X/W, Y/W, Z/W).

Applying the Bouguet rectification method just described yields our ideal stereo con‐
figuration as per Figure 19-5. New image centers and new image boundaries are then
chosen for the rotated images so as to maximize the overlapping viewing area. Mainly
this just sets a uniform camera center and a common maximal height and width of
the two image areas as the new stereo viewing planes.

In the context of the OpenCV library, the Bouget algorithm is implemented by the
function cv::stereoRectify(). Given the intrinsics and distortion coefficients for
the two cameras, as well as the translation and rotation that related the location of the
two cameras, cv::stereoRectify() will compute for us the rectification, projection,
and disparity maps that we need to extract depth information from stereo images
from that camera pair.

void cv::stereoRectify(
 cv::InputArray cameraMatrix1, // Intrinsics (cam 1)
 cv::InputArray distCoeffs1, // Distortion coefficients (cam 1)

732 | Chapter 19: Projection and Three-Dimensional Vision

39 cv::stereoRectify() is a bit of a misnomer because the function computes the terms that we can use for
rectification but doesn’t actually rectify the stereo images.

 cv::InputArray cameraMatrix2, // Intrinsics (cam 2)
 cv::InputArray distCoeffs2, // Distortion coefficients (cam 2)
 cv::Size imageSize, // Size of imgs used for calibration
 cv::InputArray R, // Rotation *matrix* between
 // camera coordinates
 cv::InputArray T, // Translation vector between
 // camera coordinates
 cv::OutputArray R1, // 3x3 Rectification xform (cam 1)
 cv::OutputArray R2, // 3x3 Rectification xform (cam 2)
 cv::OutputArray P1, // 3x4 (New) projection mtx (cam 1)
 cv::OutputArray P2, // 3x4 (New) projection mtx (cam 2)
 cv::OutputArray Q, // 4x4 Disparity to depth
 // mapping matrix
 int flags = cv::CALIB_ZERO_DISPARITY,
 double alpha = -1, // [0,1] output crop
 cv::Size newImageSize = cv::Size(), // Output mig size (use
 // '0,0' = "as input")
 cv::Rect* validPixROI1 = 0, // (Optional) guaranteed
 // valid pix (img1)
 cv::Rect* validPixROI2 = 0 // (Optional) guaranteed
 // valid pix (img2)
);

For cv::stereoRectify(),39 we first input the familiar camera matrices and distor‐
tion vectors returned by cv::stereoCalibrate(). These are followed by imageSize,
the size of the chessboard images used to perform the calibration. We also pass in the
rotation matrix R (R) and translation vector T(T

→
) between the right and left cameras

that was also returned by cv::stereoCalibrate().

Return parameters are R1 (Rl) and R2 (Rr), the 3 × 3 row-aligned rectification rotations
for the left and right image planes as derived in the preceding equations. Similarly, we
get back the 3 × 4 left and right projection equations P1 (Pl) and P2 (Pr). An optional
return parameter is Q (Q), the 4 × 4 reprojection matrix described previously.

The flags parameter is defaulted to set disparity at infinity, the normal case as per
Figure 19-5. Unsetting flags means that we want the cameras verging toward each
other (i.e., slightly “cross-eyed”) so that zero disparity occurs at a finite distance (this
might be necessary for greater depth resolution in the proximity of that particular
distance).

If the flags parameter was not set to cv::CALIB_ZERO_DISPARITY, then we must be
more careful about how we achieve our rectified system. Recall that we rectified our
system relative to the principal points (cx, cy) in the left and right cameras. Thus, our
measurements in Figure 19-5 must also be relative to these positions. Basically, we

Stereo Imaging | 733

have to modify the distances so x̃ l = xr − cx
right and x̃ l = xr − cx

left. When disparity has been
set to infinity, we have cx

right = cx
left (i.e., when cv::CALIB_ZERO_DISPARITY is passed to

cv::stereoRectify()), and we can pass plain pixel coordinates (or disparity) to the
formula for depth. But if cv::stereoRectify() is called without
cv::CALIB_ZERO_DISPARITY then cx

right ≠ cx
left in general. Therefore, even though the

formula Z = f ⋅ T x / (xl − xr) remains the same, one should keep in mind that xl and xr
are not counted from the image center but rather from the respective principal points
cx

left and cx
right, which could differ from xl and xr. Hence, if you computed disparity d = xl

– xr then you should adjust it before computing Z = f ⋅ T x / (d − cx
left − cx

right).

Rectification map
Once we have our stereo calibration terms, we can precompute left and right rectifi‐
cation lookup maps for the left and right camera views using separate calls to
cv::initUndistortRectifyMap(). As with any image-to-image mapping function, a
forward mapping (in which we just compute where pixels go from the source image
to the destination image) will not, owing to floating-point destination locations, hit
all the pixel locations in the destination image—and the destination image will thus
look like Swiss cheese. So instead we follow the usual procedure of working back‐
ward: for each integer pixel location in the destination image, we look up what
floating-point coordinate it came from in the source image and then interpolate from
its surrounding source pixels a value to use in that integer destination location. This
source lookup typically uses bilinear interpolation, which we encountered with
cv::remap() in Chapter 11.

The process of rectification is illustrated in Figure 19-12. As shown by the equation
flow in that figure, the actual rectification process proceeds backward from (c) to (a)
in a process known as reverse mapping. For each integer pixel in the rectified image
(c), we find its coordinates in the undistorted image (b) and use those to look up the
actual (floating-point) coordinates in the raw image (a). The floating-point coordi‐
nate pixel value is then interpolated from the nearby integer pixel locations in the
original source image, and that value is used to fill in the rectified integer pixel loca‐
tion in the destination image (c). After the rectified image is filled in, it is typically
cropped to emphasize the overlapping areas between the left and right images.

734 | Chapter 19: Projection and Three-Dimensional Vision

Figure 19-12. Stereo rectification: for the left and right camera, the raw image (a) is
undistorted (b) and rectified (c) and finally cropped (d) to focus on overlapping areas
between the two cameras; the rectification computation actually works backward from
(c) to (a)

The function that implements the math depicted in Figure 19-12 is called cv::initUn
distortRectifyMap(). We call this function twice, once for the left and once for the
right image of stereo pair:

void cv::initUndistortRectifyMap(
 cv::InputArray cameraMatrix, // Camera intrinsics matrix
 cv::InputArray distCoeffs, // Camera distortion coefficients
 cv::InputArray R, // (Optional) 3x3 rectification
 // transformation
 cv::InputArray newCameraMatrix, // New camera matrix usually
 // from cv::stereoRectify()
 cv::Size size, // Undistorted image size
 int m1type, // Method for encoding result maps
 cv::OutputArray map1, // First output undistortion map
 cv::OutputArray map2 // Second output undistortion map
);

The cv::initUndistortRectifyMap() function takes as input the 3 × 3 camera
matrix cameraMatrix, the 5 × 1 camera distortion parameters in distCoeffs, the
3 × 3 rotation matrix R, and the rectified 3 × 3 camera matrix newCameraMatrix.

If we calibrated our stereo cameras using cv::stereoRectify(), then we can read
our input to cv::initUndistortRectifyMap() straight out of cv::stereoRectify()

Stereo Imaging | 735

using first the left parameters to rectify the left camera and then the right parameters
to rectify the right camera. For R, use Rl and Rr from cv::stereoRectify(); for cam
eraMatrix, use cameraMatrix1 or cameraMatrix2. For newCameraMatrix we could
use the first three columns of the 3 × 4 Pl or Rr from cv::stereoRectify(), but as a
convenience the function allows us to pass Pl or Pr directly and it will read newCamera
Matrix from them.

If, on the other hand, we used cv::stereoRectifyUncalibrated() to calibrate our
stereo cameras, then we must preprocess the homography a bit. Although we could—
in principle and in practice—rectify stereo without using the camera intrinsics,
OpenCV does not have a function for doing this directly. If we do not have new
CameraMatrix from some prior calibration, the proper procedure is to set newCamera
Matrix equal to cameraMatrix. Then, for R in cv::initUndistortRectifyMap(), we
need to compute Rrect ,l = M rect ,l

−1 ⋅ H l ⋅ M l (or just Rrect ,l = M l
−1 ⋅ H l ⋅ M l if M rect ,l

−1 is unavailable)
and Rrect ,l = M rect ,l

−1 ⋅ H l ⋅ M l (or just Rrect ,r = M r
−1 ⋅ H r ⋅ M r if M rect ,r

−1 is unavailable) for the left
and the right rectification, respectively. Finally, we will also need the distortion coef‐
ficients for each camera to fill in the 5 × 1 distCoeffs parameters.

The argument size indicates the size of the image to be undistorted (and thus the
size of the map arrays to be generated). The m1type argument is used to determine
the format of the maps generated. As discussed in Chapter 18, it can be set to either
CV_32C1 or CV_16SC2, and the result will be generated maps being in either the float‐
ing point or integer form, respectively.

The function cv::initUndistortRectifyMap() returns lookup maps map1 and map2
as output. These maps indicate from where we should interpolate source pixels for
each pixel of the destination image; the maps can then be plugged directly into
cv::remap(), the function we first saw in Chapter 11. As we mentioned, the function
cv::initUndistortRectifyMap() is called separately for the left and the right cam‐
eras so that we can obtain their distinct map1 and map2 remappings. We may then call
the function cv::remap(), using the left and then the right maps each time we have
new left and right stereo images to rectify. Figure 19-13 shows the results of stereo
undistortion and rectification of a stereo pair of images. Note how feature points
become horizontally aligned in the undistorted rectified images.

736 | Chapter 19: Projection and Three-Dimensional Vision

Figure 19-13. Stereo rectification: original left and right image pair (upper panels) and
the stereo rectified left and right image pair (lower panels); note that the barrel distor‐
tion (in top of chessboard patterns) has been corrected and the scan lines are aligned in
the rectified images

Stereo Correspondence
Stereo correspondence—matching a three-dimensional point in the two different
camera views—can be computed only over the visual areas in which the views of the
two cameras overlap. Once again, this is one reason why you will tend to get better
results if you arrange your cameras to be as nearly frontal parallel as possible (at least
until you become quite an expert at stereo vision). Then, once we know the physical
coordinates of the cameras or the sizes of objects in the scene, we can derive depth
measurements from the triangulated disparity measures d = x l − x r (or
d = x l − x r − (cx

left − cx
right), if the principal rays intersect at a finite distance) between the

corresponding points in the two different camera views. Without such physical infor‐
mation, we can compute depth only up to a scale factor. If we don’t have the camera
intrinsics, as when using Hartley’s algorithm, we can compute point locations only
up to a projective transform (recall Figure 19-11).

OpenCV implements two different stereo correspondence algorithms that share a
(nearly) common object interface. The first, called the block matching (BM) algo‐
rithm, is a fast and effective algorithm that is similar to the one developed by Kurt
Konolige [Konolige97]. It works by using small “sum of absolute difference” (SAD)

Stereo Imaging | 737

40 This algorithm is available in an FPGA stereo hardware system from Videre.

41 Typically in OpenCV, the pixels in the depth image will correspond to the pixels in the left camera image,
though this convention is far from universal.

42 Because there is such a commonality, you might expect that some virtual base class would be used to define a
common interface for objects implementing both methods, as is done elsewhere in the library. In fact, how‐
ever, because the information required to initialize each algorithm is slightly different, the actual implementa‐
tion is not to use a common interface (at least not for the time being), but rather two separate but otherwise
very similar-looking classes.

windows to find matching points between the left and right stereo-rectified images.40

This algorithm finds only strongly matching (high-texture) points between the two
images. Thus, in a highly textured scene such as might occur outdoors in a forest,
every pixel might have computed depth. In a very low-textured scene, such as an
indoor hallway, very few points might register depth. The second algorithm is called
the semi-global block matching (SGBM) algorithm. SGBM, a variation of SGM intro‐
duced in [Hirschmuller08], differs from BM primarily in two respects. The first is
that matching is done at subpixel level using the Birchfield-Tomasi metric [Birch‐
field99]. The second difference is that SGBM attempts to enforce a global smoothness
constraint on the computed depth information that it approximates by considering
many one-dimensional smoothness constraints through the region of interest. These
two methods are complementary, in the sense that BM is quite a bit faster, but does
not provide the reliability and accuracy of SGBM.

The stereo matching classes: cv::StereoBM and cv::StereoSGBM
The different stereo matching algorithms both serve the same basic function: to con‐
vert two images, one left and one right, into a single depth image. The depth image
will associate with each pixel a distance from the cameras to the object this pixel rep‐
resents.41 OpenCV provides implementations for both of the different stereo match‐
ing algorithms just described: block matching (BM), and semi-global block matching
(SGBM). Though these two algorithms are historically related (as their names indi‐
cate, they serve an essentially identical purpose), each has its own interface.42

Block matching
The block matching stereo algorithm implemented in OpenCV is a slightly modified
version of what has come to be regarded as a (and perhaps the) canonical technique
for stereo computation. The basic mechanism is to rectify and align the images such
that comparisons need be made only in individual rows, and then to have the algo‐
rithm search rows in the two images for matching groups of pixels. Of course, there
are some extra details that variously make the algorithm either work a little better or
run a little faster. The net result is a fast, relatively reliable algorithm that is still heav‐
ily used in a wide variety of applications.

738 | Chapter 19: Projection and Three-Dimensional Vision

There are three stages to the block matching stereo correspondence algorithm, which
works on undistorted, rectified stereo image pairs:

1. Prefiltering to normalize image brightness and enhance texture.
2. Correspondence search along horizontal epipolar lines using an SAD window.
3. Postfiltering to eliminate bad correspondence matches.

In the prefiltering step, we normalize the input images to reduce lighting differences
and to enhance image texture. We do this by running a window—of size 5 × 5, 7 × 7
(the default), ..., 21 × 21 (the maximum)—over the image. The center pixel Ic under
the window is replaced by min(max(Ic − Ī , − Icap), Icap), where Ī is the average value in
the window and Icap is a positive numeric limit whose default value is 30. The alterna‐
tive is to essentially convert the incoming images to their x-Sobel derivatives. This
also has the effect of removing many lighting-related artifacts.

Next, we compute correspondence by sliding the SAD window. For each feature in
the left image, we search the corresponding row in the right image for a best match.
After rectification, each row is an epipolar line, so the matching location in the right
image must be along the same row (same y-coordinate) as in the left image; this
matching location can be found if the feature has enough texture to be detectable and
if it is not occluded in the right camera’s view (see Figure 19-17). If the left feature
pixel coordinate is at (x0, y0), then, for a horizontal frontal parallel camera arrange‐
ment, the match (if any) must be found on the same row and at, or to the left of, x0
(see Figure 19-14). For frontal parallel cameras, x0 is at zero disparity and larger dis‐
parities are to the left. For cameras that are angled toward each other, the match may
occur at negative disparities (to the right of x0). The algorithm needs to be told the
minimum disparity it will encounter.

The disparity search is then carried out over a preselected number of disparities,
which are counted in pixels (the default is 64 pixels). Disparities have a discrete sub‐
pixel resolution that is equal to 4 bits of resolution below the individual pixel level.
When the output image is a 32-bit floating point image, noninteger disparities will be
returned. When the output image is a 16-bit integer, the disparity will be returned in
4-bit fixed-point form (i.e., multiplied by 16 and rounded to an integer).

Stereo Imaging | 739

Figure 19-14. Any right-image match of a left-image feature must occur on the same
row and at (or to the left of) the same coordinate point, where the match search starts
at the minDisparity point (here, 0) and moves to the left for the set number of dispari‐
ties; the characteristic matching function of window-based feature matching is shown
in the lower part of the figure

Setting the minimum disparity and the number of disparities to be searched estab‐
lishes the horopter, the three-dimensional volume that is covered by the search range
of the stereo algorithm. Figure 19-14 shows disparity search limits of five pixels start‐
ing at three different disparity limits: 20, 17, and 16. Each disparity limit defines a
plane at a fixed depth from the cameras (see Figure 19-15). As shown in Figure 19-14,
each disparity limit—together with the number of disparities—sets a different horop‐
ter at which depth can be detected. Outside of this range, depth will not be found and
will represent a “hole” in the depth map where depth is not known. You can make
horopters larger by decreasing the baseline distance T

→ between the cameras, by
making the focal length smaller, by increasing the stereo disparity search range, or by
increasing the pixel width.

Correspondence within the horopter has one in-built constraint, called the order con‐
straint, which simply states that the order of the features cannot change from the left
view to the right. There may be missing features—where, owing to occlusion and
noise, some features found on the left cannot be found on the right—but the ordering
of those features that are found remains the same. Similarly, there may be many fea‐
tures on the right that were not identified on the left (these are called insertions), but
insertions do not change the order of features although they may spread those fea‐
tures out. The procedure illustrated in Figure 19-16 reflects the ordering constraint
when features are being matched on a horizontal scan line.

740 | Chapter 19: Projection and Three-Dimensional Vision

Figure 19-15. Each line represents a plane of constant disparity in integer pixels from
20 to 12; a disparity search range of five pixels will cover different horopter ranges, as
shown by the vertical arrows, and different maximal disparity limits establish different
horopters

Figure 19-16. A fixed disparity forms a plane of fixed distance from the cameras

Given the smallest allowed disparity increment Δd, we can determine smallest achiev‐
able depth range resolution Δz by using the formula:

Δz = z 2

f ⋅ T x
Δd

Stereo Imaging | 741

It is useful to keep this formula in mind so that you know what kind of depth resolu‐
tion to expect from your stereo rig.

After correspondence, we turn to postfiltering. The lower part of Figure 19-13 shows
a typical matching function response as a feature is “swept” from the minimum dis‐
parity out to maximum disparity. Note that matches often have the characteristic of a
strong central peak surrounded by side lobes. Once we have candidate feature corre‐
spondences between the two views, we use postfiltering to prevent false matches.
OpenCV makes use of the matching function pattern via the concept of a uniqueness
ratio. This ratio essentially enforces the requirement that the match value for the cur‐
rent pixel is more than the minimum match value observed by some margin.

Figure 19-17. Stereo correspondence starts by assigning point matches between corre‐
sponding rows in the left and right images: left and right images of a lamp (upper
panel); an enlargement of a single scan line (middle panel); visualization of the corre‐
spondences assigned (lower panel)

To make sure that there is enough texture to overcome random noise during match‐
ing, OpenCV also employs a texture threshold. This is just a limit on the SAD win‐
dow response such that no match is considered whose response is below some
minimal value.

Finally, block-based matching can have problems near the boundaries of objects
because the matching window catches the foreground on one side and the back‐
ground on the other side. This results in a local region of large and small disparities

742 | Chapter 19: Projection and Three-Dimensional Vision

that we call speckle. To prevent these borderline matches, we can set a speckle detec‐
tor over a speckle window. The way this works is that each pixel is used as a basis for
the construction of a connected component defined by a variable range flood fill. The
variable range flood fill includes a neighboring pixel only if it is within some range of
the current pixel. Once that connected component is computed, if it is smaller than
the speckle window, then it is considered speckle. The size of that range is called the
speckle range. (This range is typically a small number; 1 or 2 works most of the time,
though values as large as 4 are not uncommon.)

Computing stereo depths with cv::StereoBM
In OpenCV, the block matching algorithm is implemented as an object that holds all
of the necessary parameters and provides an overloaded compute() method that is
used to compute disparity images. The algorithm is represented by cv::StereoBM
class, which is derived from cv::StereoMatcher class. Here is how the classes are
defined:

class StereoMatcher : public Algorithm {

public:
 // the returned depth map has CV_16UC1 type and the elements are
 // actually fixed-point numbers with DISP_SHIFT=4 fractional bits
 enum {
 DISP_SHIFT = 4,
 DISP_SCALE = (1 << DISP_SHIFT)
 };

 // the main method, takes two grayscale 8-bit rectified images and
 // outputs 16-bit fixed-point disparity map
 virtual void compute(
 InputArray left,
 InputArray right,
 OutputArray disparity
) = 0;

 // the minimum disparity, usually 0 (points are at the infinity
 virtual int getMinDisparity() const = 0;
 virtual void setMinDisparity(int minDisparity) = 0;

 // the range of disparities, between minimum (inclusive) and
 // maximum (exclusive) disparity
 virtual int getNumDisparities() const = 0;
 virtual void setNumDisparities(int numDisparities) = 0;

 // size of blocks used by algorithm
 virtual int getBlockSize() const = 0;
 virtual void setBlockSize(int blockSize) = 0;

 // maximum size of a speckle to be considered as speckle

Stereo Imaging | 743

 // and marked as such
 virtual int getSpeckleWindowSize() const = 0;
 virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;

 // the allowed difference between neighbor pixels;
 // used by floodfill-based speckle filtering algorithm
 virtual int getSpeckleRange() const = 0;
 virtual void setSpeckleRange(int speckleRange) = 0;
 ...
};

class cv::StereoBM : public cv::StereoMatcher {

 enum {
 PREFILTER_NORMALIZED_RESPONSE = 0,
 PREFILTER_XSOBEL = 1
 };

 // choose between PREFILTER_NORMALIZED_RESPONSE and
 // PREFILTER_XSOBEL
 //
 virtual int getPreFilterType() const = 0;
 virtual void setPreFilterType(int preFilterType) = 0;

 // size of block used in PREFILTER_NORMALIZED_RESPONSE mode
 //
 virtual int getPreFilterSize() const = 0;
 virtual void setPreFilterSize(int preFilterSize) = 0;

 // saturation threshold applied after pre-filtering
 //
 virtual int getPreFilterCap() const = 0;
 virtual void setPreFilterCap(int preFilterCap) = 0;

 // textureness threshold, the blocks with textureness
 // characteristics (sum of abs derivatives) less than the
 // threshold are marked as areas without defined disparity
 //
 virtual int getTextureThreshold() const = 0;
 virtual void setTextureThreshold(int textureThreshold) = 0;

 // if there is no clear winner in the cost function across the
 // disparity range, the pixel is having no defined disparity.
 // Uniqueness threshold defines what it means to be a
 // "clear winner," the margin in %% between the best and
 // second-best.
 //
 virtual int getUniquenessRatio() const = 0;
 virtual void setUniquenessRatio(int uniquenessRatio) = 0;

 // the constructor function, the first parameter is made default
 // for techinical reasons, but you should actually specify it

744 | Chapter 19: Projection and Three-Dimensional Vision

 // here or later using setNumDisparities()
 //
 static Ptr<StereoBM> create(
 int numDisparities = 0,
 int blockSize = 21
);
};

The most important elements of cv::StereoMatcher and cv::StereoBM are the com
pute() and create() methods.

The static create() method takes two arguments, numDisparities and blockSize.

The argument numDisparities is the total number of distinct possible disparities to
be returned. In effect, this sets the range over which the algorithm will even attempt
to find a correspondence.

The second argument is blockSize. This sets the size of the region around each pixel
around which the “sign of absolute difference” metric will be computed. The larger
this value is, the fewer false matches you are likely to find. You should keep in mind,
however, that not only does the computational cost of the algorithm scale with the
area of the window (i.e., the square of the window size), but there is also a problem
arising from the implicit assumption that the disparity is actually the same over the
area of the window. Near to discontinuities (the edges of objects) this assumption will
not hold, and you are likely to find no match at all. The result will be empty regions
where you have no disparity at all near the edges of objects. The thickness of these
empty regions will grow with increased window size. Also, with larger blockSize you
will likely get vaguer depth maps, meaning that the objects’ silhouettes in the dispar‐
ity map will be smoother, capturing the real silhouettes in only an approximate
manner.

After you call create() and obtain a smart pointer to the cv::StereoBM object, you
can further configure it by calling various set* methods. Of the various members of
this structure, the ones you might want to modify are the primarily the prefilter
parameters and the postfilter parameters.

The prefilters attempt to remove variations from illumination or other sources that
would cause a mismatch between the two images under the SAD metric. The possible
values for preFilterType are cv::StereoBM::PREFILTER_NORMALIZED_RESPONSE and
cv::StereoBM::PREFILTER_XSOBEL. The former just normalizes the intensities in the
window, while the latter actually converts the images into (clipped versions of) their
first Sobel derivative (in the x-direction). The value of preFilterSize just sets the
size of the filter used (for the NORMALIZED_RESPONSE case only), and preFilterCap is
the value of the parameter Icap used to clamp the output of the prefiltering (as
described in the previous section).

Stereo Imaging | 745

43 At current processor speeds, it is typically possible to run BM on relatively high-resolution frames at a frame
rate acceptable for real-time processing of video, even in a CPU-only implementation. In contrast, SGBM
takes approximately an order of magnitude more compute time, and so is typically considered not yet suitable
for real-time video applications. (However, there have been FPGA implementations of SGBM that will run at
very high speed on even very large images. Similarly, BM has been implemented on FPGAs, as well as on
GPU—with support for the latter being available in OpenCV already.)

The post filters attempt to remove outliers and noise in the output image. The textur
eThreshold sets a minimum amount of texture that must be present before disparity
will be computed between two regions.

The uniquenessRatio applies to SAD windows, and is interpreted as the degree of
difference between the best match and the second-best match that is required in
order for the disparity to be considered unambiguous. The threshold is defined by
the relation SAD(d) ≥ SAD(d *) ⋅ (1.0 + uniquenessRatio

100.0). Here d and d * are the current disparity and
the next-best disparity, respectively. Typical values for the uniqueness ratio are
between 5 and 15.

The speckleWindowSize and speckleRange parameters work together. They enable a
postfilter that will attempt to remove any small, isolated blobs that are substantially
different from their surrounding values. The speckleWindowSize sets the size of such
blobs, while speckleRange sets the largest difference between disparities that will
include them in the same blob. This parameter is compared directly to the values of
the disparities. This means that if you are using fixed-precision representation for
disparity then this value will, in effect, be multiplied by 16. You should take this into
account when setting this parameter.

Once you have configured your cv::StereoBM object, you can compute disparity
images with compute(). The overloaded method expects three arguments: the left and
right images (left and right) and the output image (disparity). The produced dis‐
parity will have fixed-point representation, with 4 bits of fractional precision, so you
will want to divide by 16 when using these disparities.

Semi-global block matching
The alternative to block matching provided by OpenCV is the semi-global block
matching algorithm (SGBM), a variation of SGM algorithm [Hirschmuller08]. Devel‐
oped almost a decade later than block matching, the SGM algorithm applied several
new ideas, but at a computational cost far greater than that of BM.43 The most impor‐
tant new ideas introduced by SGM are the use of mutual information (OpenCV’s
implementation used Birchfield-Tomasi metrics, also used in the original paper as a
simpler option) as a superior measure of local correspondence and the enforcement
of consistency constraints along directions other than the horizontal (epipolar) line.
At a high level, the effects of these additions are to provide much greater robustness

746 | Chapter 19: Projection and Three-Dimensional Vision

to lighting and other variations between the left and right images, and to help elimi‐
nate errors by enforcing stronger geometrical constraints across the image.

Like BM, SGBM operates on undistorted, rectified stereo image pairs. SGBM has the
following basic steps:

1. Preprocess each image just like in StereoBM with PREFILTER_XSOBEL mode. Pre‐
compute a C(x, y, d) per-pixel cost map that matches left_image(x, y) and
right_image(x-d, y) using Birchfield-Tomasi metrics. Initialize the accumulator
3D cost map S(x, y, d) with zeros.

2. For each of the three-, five-, or eight-direction (r) (see Figure 19-18), compute S(r)

(x, y, d) using an iterative procedure. Add S(r)(x, y, d) for all r’s to S(x, y, d). In
order to optimize the memory flow and minimize the memory footprint, the first
three or the first five directions (W, E, N[, NW, NE]) are processed together in
the forward pass, and in the case of eight-directional mode there is a second pass
that processes the remaining three directions (S, SW, SE). In the case of three- or
five-directional algorithm, C(x, y, d) and S(x, y, d) are not explicitly stored for all
pixels; we only need to store the last three or four rows of the buffers at once.

3. Once S(x, y, d) is complete, we find d *(x, y) as argmin of S(x, y, d). We use the
same uniqueness check and the same subpixel interpolation as in the StereoBM
algorithm.

4. Do the left-right check to make sure that left-to-right and right-to-left corre‐
spondences are consistent. Mark pixels without perfect matches as “invalid
disparity.”

5. Filter speckles using cv::filterSpecles, just like in the StereoBM algorithm.

The key element of the algorithm (as well as practically any other stereo-
correspondence algorithm) is how we assign a cost to each pixel for any possible dis‐
parity, denoted here as S(x, y, d). Essentially, this is analogous to what we did in block
matching, but there are some new twists. The first twist is that we use some more
optimistic subpixel Birchfield-Tomasi metrics to compare pixels, instead of simple
absolute difference. The second twist is that we engage a very important disparity
continuity assumption (neighbor pixels are likely to have the same or similar dispar‐
ity) and at the same time use much smaller block size (sometimes 3 × 3 or 5 × 5)
instead of using the much bigger, completely independent, windows in StereoBM (11
× 11 and above). Those big windows turn out to be a real problem for BM because to
compare two windows, you must first assume that they ought to match when you
have the right disparity; but this means that there exists a single disparity that
explains the relationship of the two windows. Near a discontinuity (the edge of some‐
thing) this assumption breaks down, and so you get a lot of problems in BM near
such discontinuities.

Stereo Imaging | 747

In SGBM, the alternative to large windows is the use of smaller windows (to compen‐
sate for the noise) combined with paths (see Figure 19-18). These paths, in principle,
extend from the edge of the image to the individual pixel and (again in principle)
include every possible path from the edge to the pixel. What SGBM is concerned with
is the path of this kind with the lowest cost along the path (analogous to the lowest-
cost window in BM). The cost along any path is a cost for each individual pixel (i.e.
small block surrounding it) plus a little penalty when a pixel has a slight change in
disparity from its neighbor or a big penalty for those that have big changes in dispar‐
ity from their neighbors.

Figure 19-18. In a simple scene, some possible paths are visualized to several points.
The path AGHIJ leads to the end of the lamp chain. Disparities along this chain change
only slowly, so it is likely to be preferred over paths like EFGHIJ or DHIJ. To compute
the cost at J, all we need to know about I is that BGHI is the lowest cost to I. In practice,
the links in these paths are on the pixel scale

To see how the cost for a particular disparity at some pixel can be computed without
an impossible number of summations along a vast number of paths, we need only
realize that if we knew the costs for neighboring pixels (at various disparities), the
only possible case is that the minimum cost path to this new pixel comes from one of
those nearby pixels. Thus we can start at the edges and work our way across the

748 | Chapter 19: Projection and Three-Dimensional Vision

44 It should be clear that we are glossing over an important issue here, which is that even an edge pixel could
have its lowest-cost path coming from the opposite side of the image. In effect, as we have described it, there
is no right place to start. In fact, it turns out to be possible to process the entire image for each direction
sequentially. So the actual algorithm does not proceed on a pixel-by-pixel basis. However, the exact details of
how this is implemented are well beyond the scope of this book.

image. First we compute the cost for all possible disparities for those pixels we can
compute for, find the best disparity, and then move on to its neighbors.44

Ideally, we would consider every possible route into a new pixel. In principle, this is
not limited to just the eight nearest neighbors of the pixel, but in fact could include a
route into this pixel along a line of any angle. In practice, we are going to have to
limit the number of neighbors we consider to compute for each pixel (see
Figure 19-19). In theory, it’s best to set the number of paths to 8 or 16 (as in the origi‐
nal SGM paper) for high-quality results, with the latter giving substantially better
results in many real scenes, but at a substantial cost in computation time. In practice,
one can use 5, or even as few as 3, directions with very similar results in most cases.
Naively, the computational cost of the algorithm will grow linearly in the number of
paths considered but there are significant nonlinear effects that can easily be over‐
looked. When we move from 5 to 8 directions, however, because of the necessity to
store C(x, y, d) and S(x, y, d) for all of the pixels (in order to do two passes over these
huge arrays), the algorithm can run much slower than expected.

Figure 19-19. The original semi-global block matching used 8-path or 16-path compu‐
tations. OpenCV uses 8 paths for quality, but 5 or 3 paths for speed

Stereo Imaging | 749

Computing stereo depths with cv::StereoSGBM

As with cv::StereoBM, the semi-global block matching algorithm is presented by
OpenCV as an object that holds all of the necessary parameters and provides an over‐
loaded compute() for actually computing disparities.

class StereoSGBM : public StereoMatcher {

public:

 enum {
 MODE_SGBM = 0,// 5-dir mode
 MODE_HH = 1,// 8-dir mode (slow, eats lots of memory!)
 MODE_SGBM_3WAY = 2 // 3-dir mode, the fastest one
 };

 // same as in StereoBM
 //
 virtual int getPreFilterCap() const = 0;
 virtual void setPreFilterCap(int preFilterCap) = 0;

 // same as in StereoBM
 //
 virtual int getUniquenessRatio() const = 0;
 virtual void setUniquenessRatio(int uniquenessRatio) = 0;

 // penalty for the difference in disparity between
 // neighbor pixels = 1.
 //
 virtual int getP1() const = 0;
 virtual void setP1(int P1) = 0;

 // penalty for the difference in disparity between
 // neighbor pixels > 1.
 //
 virtual int getP2() const = 0;
 virtual void setP2(int P2) = 0;

 // choose between MODE_SGBM, MODE_HH, MODE_SGBM_3WAY
 //
 virtual int getMode() const = 0;
 virtual void setMode(int mode) = 0;

 // the constructor function
 //
 static Ptr<StereoSGBM> create(
 int minDisparity,
 int numDisparities,
 int blockSize,
 int P1 = 0,
 int P2 = 0,
 int disp12MaxDiff = 0,

750 | Chapter 19: Projection and Three-Dimensional Vision

45 The actual memory required is approximately the area of the image multiplied by the number of possible dis‐
parities. For a 640 × 480 image with 1,024 possible disparities, this is 600MB at 16 bits per disparity. For an
HD image, this increases to over 4GB.

 int preFilterCap = 0,
 int uniquenessRatio = 0,
 int speckleWindowSize = 0,
 int speckleRange = 0,
 int mode = StereoSGBM::MODE_SGBM
);

};

When we are creating an cv:: StereoSGBM() object, there are three required param‐
eters, and then a whole host of optional parameters. The first, minDisparity, is the
smallest disparity that will be considered (typically 0). numDisparities is the total
number of disparities to be considered, so the maximum possible disparity will be
equal to minDisparity plus numDisparities.

The parameter blockSize has the same meaning as in StereoBM, but here it’s recom‐
mended to set it to a much lower value; usually 3 or 5 would be enough, but it can
actually be set to 1 to mimic the behavior of the original paper (although OpenCV
does not implement the more complex metrics based on the mutual information).
This value must always be odd.

P1, P2 parameters correspond to the respective parameters of the SGM algorithm;
leaving them as zeros makes the implementation compute some optimal values for
them based on the image resolution and blockSize. Of the subsequent arguments,
preFilterCap, uniquenessRatio, speckleWindowSize, and speckleRange all have
the same meanings as for cv::StereoBM.

The value disp12MaxDiff is used in the final comparison between the disparities
computed in the left-to-right computation and those computed in the right-to-left
computation. If the two are mismatched by more than disp12MaxDiff, then the pixel
is declared unknown.

The value mode defaults to StereoSGBM::MODE_SGBM (the five-directional version of
the algorithm). If set to StereoSGBM::MODE_SGBM_3WAY, it will be even faster; if set to
StereoSGBM::MODE_HH, the algorithm will proceed as described in the previous sec‐
tion, and it will resolve all eight directions of propagation using a double pass
method. The problem with the double pass method is that, as we described earlier, it
requires a great deal of memory to store the intermediate results between passes.45

As an alternative, leaving mode at StereoSGBM::MODE_SGBM or Stereo

SGBM::MODE_SGBM_3WAY will effectively compute the costs per pixel using only three

Stereo Imaging | 751

46 OpenCV does not (yet) deal with the case of rectifying stereo images when the epipole is within the image
frame. See, for example, Pollefeys, Koch, and Gool [Pollefeys99b] for a discussion of this case.

or five of the eight directions. This reduces accuracy of the final result but does not
incur the cost of the huge memory buffer needed for double pass.

Stereo Calibration, Rectification, and Correspondence Code Example
Let’s put this all together with code in an example program that will read in a number
of circle grid patterns from a file called list.txt. This file contains a list of alternating
left and right stereo image pairs, which are used to calibrate the cameras and then
rectify the images. Note once again that we’re assuming you’ve arranged the cameras
so that their image scan lines are roughly physically aligned and such that each cam‐
eras have essentially the same field of view. This will help avoid the problem of the
epipole being within the image46 and will also tend to maximize the area of stereo
overlap while minimizing the distortion from reprojection.

In the code (Example 19-3), we first read in the left and right image pairs, find the
circles to subpixel accuracy, and then set object and image points for the images
where all the circle grids could be found. This process may optionally be displayed.
Given this list of found points on the good circle grid images, the code calls cv::ster
eoCalibrate() to calibrate the camera. This calibration gives us the camera matrix
_M and the distortion vector _D for the two cameras; it also yields the rotation matrix
_R, the translation vector _T, the essential matrix _E, and the fundamental matrix _F.

Next comes a little interlude where we assess the accuracy of calibration by checking
how nearly the points in one image lie on the epipolar lines of the other image. To do
this, we undistort the original points using cv::undistortPoints() (see Chapter 18),
compute the epilines using cv::computeCorrespondEpilines(), and then compute
the dot product of the points with the lines (in the ideal case, these dot products
would all be 0). The accumulated absolute distance forms the error.

The code then optionally moves on to computing the rectification maps using the
uncalibrated (Hartley) method cv::stereoRectifyUncalibrated() or the calibrated
(Bouguet) method cv::stereoRectify(). If uncalibrated rectification is used, the
code further allows for either computing the needed fundamental matrix from
scratch or for just using the fundamental matrix from the stereo calibration. We then
compute the rectified images using cv::remap(). In our example, lines are drawn
across the image pairs to help you see how well the rectified images are aligned. An
example result is shown back in Figure 19-13, where we can see that the barrel distor‐
tion in the original images is largely corrected from top to bottom and that the
images are aligned by horizontal scan lines.

752 | Chapter 19: Projection and Three-Dimensional Vision

47 The code also contains (commented out) the case of using cv::StereoBM. In this case cv::Ster
eoBM::BASIC_PRESET is used, and then some additional parameters of the state member variable in the
cv::StereoBM object are tuned directly.

Finally, if we have rectified the images, we can then compute the disparity maps by
using cv::StereoSGBM.47 Our code example allows you to use either horizontally
aligned (left-right) or vertically aligned (top-bottom) cameras; note, however, that for
the vertically aligned case the function cv::StereoSGBM() can compute disparity
only for uncalibrated rectification unless you add code to transpose the images your‐
self. For horizontal camera arrangements, cv::StereoSGBM() can find disparity for
calibrated or uncalibrated rectified stereo image pairs. (See Figure 19-20 in the next
section for example disparity results.)

Example 19-3. Stereo calibration, rectification, and correspondence

#pragma warning(disable: 4996)

#include <opencv2/opencv.hpp>
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

using namespace std;

void help(char* argv[]) {
 ...
}

static void StereoCalib(
 const char* imageList,
 int nx,
 int ny,
 bool useUncalibrated
) {

 bool displayCorners = false;
 bool showUndistorted = true;
 bool isVerticalStereo = false; // horiz or vert cams
 const int maxScale = 1;
 const float squareSize = 1.f; // actual square size
 FILE* f = fopen(imageList, "rt");
 int i, j, lr;
 int N = nx*ny;
 vector<string> imageNames[2];
 vector< cv::Point3f > boardModel;
 vector< vector<cv::Point3f> > objectPoints;

Stereo Imaging | 753

 vector< vector<cv::Point2f> > points[2];
 vector< cv::Point2f > corners[2];
 bool found[2] = {false, false};
 cv::Size imageSize;

 // READ IN THE LIST OF CIRCLE GRIDS:
 //
 if(!f) {
 cout << "Cannot open file " << imageList << endl;
 return;
 }

 for(i = 0; i < ny; i++)
 for(j = 0; j < nx; j++)
 boardModel.push_back(
 cv::Point3f((float)(i*squareSize), (float)(j*squareSize), 0.f)
);

 i = 0;
 for(;;) {

 char buf[1024];
 lr = i % 2;
 if(lr == 0) found[0] = found[1] = false;

 if(!fgets(buf, sizeof(buf)-3, f)) break;
 size_t len = strlen(buf);
 while(len > 0 && isspace(buf[len-1])) buf[--len] = '\0';
 if(buf[0] == '#') continue;

 cv::Mat img = cv::imread(buf, 0);
 if(img.empty()) break;
 imageSize = img.size();
 imageNames[lr].push_back(buf);

 i++;

 // If we did not find board on the left image,
 // it does not make sense to find it on the right.
 //
 if(lr == 1 && !found[0])
 continue;

 // Find circle grids and centers therein:
 for(int s = 1; s <= maxScale; s++) {

 cv::Mat timg = img;
 if(s > 1)
 resize(img, timg, cv::Size(), s, s, cv::INTER_CUBIC);
 found[lr] = cv::findCirclesGrid(
 timg,

754 | Chapter 19: Projection and Three-Dimensional Vision

 cv::Size(nx, ny),
 corners[lr],
 cv::CALIB_CB_ASYMMETRIC_GRID | cv::CALIB_CB_CLUSTERING
);
 if(found[lr] || s == maxScale) {
 cv::Mat mcorners(corners[lr]);
 mcorners *= (1./s);
 }
 if(found[lr]) break;

 }
 if(displayCorners) {

 cout << buf << endl;
 cv::Mat cimg;
 cv::cvtColor(img, cimg, cv::GRAY2BGR);

 // draw chessboard corners works for circle grids too
 cv::drawChessboardCorners(
 cimg, cv::Size(nx, ny), corners[lr], found[lr]
);
 cv::imshow("Corners", cimg);
 if((cv::waitKey(0)&255) == 27) // Allow ESC to quit
 exit(-1);

 }
 else
 cout << '.';

 if(lr == 1 && found[0] && found[1]) {

 objectPoints.push_back(boardModel);
 points[0].push_back(corners[0]);
 points[1].push_back(corners[1]);

 }
 }
 fclose(f);

 // CALIBRATE THE STEREO CAMERAS
 cv::Mat M1 = cv::Mat::eye(3, 3, CV_64F);
 cv::Mat M2 = cv::Mat::eye(3, 3, CV_64F);
 cv::Mat D1, D2, R, T, E, F;
 cout <<"\nRunning stereo calibration ...\n";
 cv::stereoCalibrate(
 objectPoints,
 points[0],
 points[1],
 M1, D1, M2, D2,
 imageSize, R, T, E, F,
 cv::TermCriteria(
 cv::TermCriteria::COUNT | cv::TermCriteria::EPS, 100, 1e-5

Stereo Imaging | 755

),
 cv::CALIB_FIX_ASPECT_RATIO
 | cv::CALIB_ZERO_TANGENT_DIST
 | cv::CALIB_SAME_FOCAL_LENGTH
);
 cout <<"Done\n\n";

 // CALIBRATION QUALITY CHECK
 // because the output fundamental matrix implicitly
 // includes all the output information,
 // we can check the quality of calibration using the
 // epipolar geometry constraint: m2^t*F*m1=0
 vector< cv::Point3f > lines[2];

 double avgErr = 0;
 int nframes = (int)objectPoints.size();

 for(i = 0; i < nframes; i++) {

 vector< cv::Point2f >& pt0 = points[0][i];
 vector< cv::Point2f >& pt1 = points[1][i];

 cv::undistortPoints(pt0, pt0, M1, D1, cv::Mat(), M1);
 cv::undistortPoints(pt1, pt1, M2, D2, cv::Mat(), M2);
 cv::computeCorrespondEpilines(pt0, 1, F, lines[0]);
 cv::computeCorrespondEpilines(pt1, 2, F, lines[1]);

 for(j = 0; j < N; j++) {
 double err = fabs(
 pt0[j].x*lines[1][j].x + pt0[j].y*lines[1][j].y + lines[1][j].z
) + fabs(
 pt1[j].x*lines[0][j].x + pt1[j].y*lines[0][j].y + lines[0][j].z
);
 avgErr += err;
 }

 }

 cout << "avg err = " << avgErr/(nframes*N) << endl;

 // COMPUTE AND DISPLAY RECTIFICATION
 //
 if(showUndistorted) {

 cv::Mat R1, R2, P1, P2, map11, map12, map21, map22;

 // IF BY CALIBRATED (BOUGUET'S METHOD)
 //
 if(!useUncalibrated) {
 stereoRectify(
 M1, D1, M2, D2,
 imageSize,

756 | Chapter 19: Projection and Three-Dimensional Vision

 R, T, R1, R2, P1, P2,
 cv::noArray(), 0
);
 isVerticalStereo =
 fabs(P2.at<double>(1, 3)) > fabs(P2.at<double>(0, 3));
 // Precompute maps for cvRemap()
 initUndistortRectifyMap(
 M1, D1, R1, P1, imageSize, CV_16SC2, map11, map12
);
 initUndistortRectifyMap(
 M2, D2, R2, P2, imageSize, CV_16SC2, map21, map22
);
 }
 // OR ELSE HARTLEY'S METHOD
 //
 else {
 // use intrinsic parameters of each camera, but
 // compute the rectification transformation directly
 // from the fundamental matrix
 vector< cv::Point2f > allpoints[2];
 for(i = 0; i < nframes; i++) {
 copy(
 points[0][i].begin(),
 points[0][i].end(),
 back_inserter(allpoints[0])
);
 copy(
 points[1][i].begin(),
 points[1][i].end(),
 back_inserter(allpoints[1])
);
 }
 cv::Mat F = findFundamentalMat(
 allpoints[0], allpoints[1], cv::FM_8POINT
);
 cv::Mat H1, H2;
 cv::stereoRectifyUncalibrated(
 allpoints[0], allpoints[1],
 F,
 imageSize,
 H1, H2,
 3
);

 R1 = M1.inv()*H1*M1;
 R2 = M2.inv()*H2*M2;
 // Precompute map for cvRemap()
 //
 cv::initUndistortRectifyMap(
 M1, D1, R1, P1,
 imageSize,
 CV_16SC2,

Stereo Imaging | 757

 map11, map12
);
 cv::initUndistortRectifyMap(
 M2, D2, R2, P2,
 imageSize,
 CV_16SC2,
 map21, map22
);
 }

 // RECTIFY THE IMAGES AND FIND DISPARITY MAPS
 //
 cv::Mat pair;
 if(!isVerticalStereo)
 pair.create(imageSize.height, imageSize.width*2, CV_8UC3);
 else
 pair.create(imageSize.height*2, imageSize.width, CV_8UC3);

 // Setup for finding stereo corrrespondences
 //
 cv::Ptr<cv::StereoSGBM> stereo = cv::StereoSGBM::create(
 -64, 128, 11, 100, 1000,
 32, 0, 15, 1000, 16,
 StereoSGBM::MODE_HH
);

 for(i = 0; i < nframes; i++) {

 cv::Mat img1 = cv::imread(imageNames[0][i].c_str(), 0);
 cv::Mat img2 = cv::imread(imageNames[1][i].c_str(), 0);
 cv::Mat img1r, img2r, disp, vdisp;

 if(img1.empty() || img2.empty())
 continue;

 cv::remap(img1, img1r, map11, map12, cv::INTER_LINEAR);
 cv::remap(img2, img2r, map21, map22, cv::INTER_LINEAR);
 if(!isVerticalStereo || !useUncalibrated) {
 // When the stereo camera is oriented vertically,
 // Hartley method does not transpose the
 // image, so the epipolar lines in the rectified
 // images are vertical. Stereo correspondence
 // function does not support such a case.
 stereo->compute(img1r, img2r, disp);
 cv::normalize(disp, vdisp, 0, 256, cv::NORM_MINMAX, CV_8U);
 cv::imshow("disparity", vdisp);
 }
 if(!isVerticalStereo)
 {
 cv::Mat part = pair.colRange(0, imageSize.width);
 cvtColor(img1r, part, cv::GRAY2BGR);
 part = pair.colRange(imageSize.width, imageSize.width*2);

758 | Chapter 19: Projection and Three-Dimensional Vision

 cvtColor(img2r, part, cv::GRAY2BGR);

 for(j = 0; j < imageSize.height; j += 16)
 cv::line(
 pair,
 cv::Point(0,j),
 cv::Point(imageSize.width*2,j),
 cv::Scalar(0,255,0)
);
 }
 else {
 cv::Mat part = pair.rowRange(0, imageSize.height);
 cv::cvtColor(img1r, part, cv::GRAY2BGR);
 part = pair.rowRange(imageSize.height, imageSize.height*2);
 cv::cvtColor(img2r, part, cv::GRAY2BGR);

 for(j = 0; j < imageSize.width; j += 16)
 line(
 pair,
 cv::Point(j,0),
 cv::Point(j,imageSize.height*2),
 cv::Scalar(0,255,0)
);
 }
 cv::imshow("rectified", pair);
 if((cv::waitKey()&255) == 27)
 break;
 }
 }
}

int main(int argc, char** argv) {

 help(argv);
 int board_w = 9, board_h = 6;
 const char* board_list = "ch12_list.txt";
 if(argc == 4) {
 board_list = argv[1];
 board_w = atoi(argv[2]);
 board_h = atoi(argv[3]);
 }
 StereoCalib(board_list, board_w, board_h, true);
 return 0;

}

Depth Maps from Three-Dimensional Reprojection
Many algorithms will just use the disparity map directly—for example, to detect
whether objects are on (stick out from) a table. But for three-dimensional shape
matching, three-dimensional model learning, robot grasping, and so on, we need the

Stereo Imaging | 759

actual three-dimensional reconstruction or depth map. Fortunately, all the stereo
machinery we’ve built up so far makes this easy. Recall the 4 × 4 reprojection matrix
Q introduced in the section on calibrated stereo rectification. Also recall that, given
the disparity d and a two-dimensional point (x, y), we can derive the three-
dimensional depth using

Here the three-dimensional coordinates are now given by: (X/W, Y/W, Z/W).
Remarkably, Q encodes whether or not the cameras’ lines of sight were converging
(cross-eyed) as well as the camera baseline and the principal points in both images.
As a result, we need not explicitly account for converging or frontal parallel cameras
and may instead simply extract depth by matrix multiplication. OpenCV has two
functions that do this for us. The first, which you are already familiar with, operates
on an array of points and their associated disparities. It’s called cv::perspective
Transform():

void cv::perspectiveTransform(
 cv::InputArray src, // Input 2 or 3 channel array (a list
 // of 2d or 3d vectors)
 cv::OutputArray dst, // Output array, same size as 'src'
 cv::InputArray Q // 3x3 or 4x4 floaring point
 // transformation matrix
);

The second function (which we have not yet encountered) is cv::reprojectIma
geTo3D(), which operates on whole images:

void cv::reprojectImageTo3D(
 cv::InputArray disparity, // Input disparity image, any of:
 // U8, S16, S32, or F32
 cv::OutputArray _3dImage, // image: 3d location of each pixel
 cv::InputArray Q, // 4x4 Perspective Transformation
 // (from stereoRectify())
 cv::bool handleMissingValues = false, // map "unknowns" to
 // large distance
 cv::int ddepth = -1 // depth for '_3dimage',
 // can be any of:
 // CV_16S, CV_32S,
 // or CV_32F (default)
);

This routine takes the single-channel disparity image and transforms each pixel’s
(x, y) coordinates along with that pixel’s disparity (i.e., the vector (x, y, d)T) to the
corresponding three-dimensional point (X/W, Y/W, Z/W) by using the 4 × 4 repro‐
jection matrix Q. The output will be a three-channel image of the same size as the

760 | Chapter 19: Projection and Three-Dimensional Vision

input. By default, this image will be of 32-bit floating-point type, but this can be con‐
trolled with the ddepth argument, which can be set to any of CV_32F, CV_32S, or
CV_16S. The final argument, handleMissingValues, controls what cv::reprojectIma
geTo3D does with pixels in the disparity image for which no disparity could be com‐
puted. In the case in which handleMissingValues is false, these points will simply
not appear in the output image; if it is true, then points will be generated, but they
will be assigned a very large depth value (currently 10000).

Of course, both functions let you pass an arbitrary perspective transformation (e.g.,
the canonical one) computed by cv::stereoRectify or a superposition of that and
the arbitrary three-dimensional rotation, translation, and so on. The results of
cv::reprojectImageTo3D() on an image of a mug and chair are shown in
Figure 19-20.

Figure 19-20. Example output of depth maps (for a mug and a chair) computed using
StereoBM and reprojectImageTo3D() (image courtesy of Willow Garage)

Structure from Motion
Structure from motion (SfM) is an important topic in mobile robotics as well as in
the analysis of more general video imagery such as might come from a handheld
video camera. The topic of structure from motion is a broad one, and a great deal of
research has been done in this field. However, we can accomplish much by making
one simple observation: in a static scene, an image taken by a camera that has moved

Structure from Motion | 761

48 The information we need is encoded in the essential matrix E, which can be computed from the fundamental
matrix F and the camera intrinsics matrix M. We would need to extract this information for every sequential
pair of frames in the video stream.

49 This was the result of a Google Summer of Code (GSoC) project in 2015.

is no different than an image taken by a second camera. Thus, all of our intuition, as
well as our mathematical and algorithmic machinery, is immediately portable to this
situation. Of course, the descriptor static is crucial, but in many practical situations
the scene is either static or sufficiently static that the few moved points can be treated
as outliers by robust fitting methods.

Consider the case of a camera moving through a building. If the environment is rela‐
tively rich in recognizable features, then we should be able to compute corresponden‐
ces between consecutive frames. For example, we could find corresponding points
with optical flow techniques such as cv::calcOpticalFlowPyrLK(). If we could track
enough points from frame to frame, we could reconstruct the trajectory of the cam‐
era.48 With this trajectory, we could then proceed to construct the overall three-
dimensional structure of the building and the locations of all the aforementioned
features in that building. The brand-new (at the time of writing) module in
opencv_contrib/modules/sfm,49 contains a ready-to-use SfM pipeline implementation
together with tutorials of its use; see Appendix B. This code makes use of the libmv
and Ceres libraries with instructions on how to download them.

Fitting Lines in Two and Three Dimensions
A final topic of interest in this chapter is that of general line fitting. This can arise for
many reasons and in many contexts. We have chosen to discuss it here because one
especially frequent context in which line fitting arises is analyzing points in three
dimensions (although the function described here can also fit lines in two dimen‐
sions). Line-fitting algorithms generally use statistically robust techniques [Inui03,
Meer91, Rousseeuw87]. The OpenCV line-fitting algorithm cv::fitLine() can be
used whenever line fitting is needed.

void cv::fitLine(
 cv::InputArray points, // 2d or 3d, can be Nx2, 2xN,
 // vector<Point2d> etc...
 cv::OutputArray line, // Output lines, array of:
 // Vec4f (2d) or Vec6f (3d)
 int distType, // Distance type used (see Table 19-3)
 double param, // Parameter 'C' used by some distance
 // types (see Table 19-3)
 double reps, // Sufficient accuracy radius
 double aeps // Sufficient accuracy angle
);

762 | Chapter 19: Projection and Three-Dimensional Vision

The array points can be in any of the usual forms, and may contain either two- or
three-dimensional points. The argument distType indicates the distance metric that
is to be minimized across all of the points (see Table 19-3).

Table 19-3. Metrics used for computing distType values

Value of distType Metric
cv::DIST_L1 ρ(r) = r
cv::DIST_L2 ρ(r) =

r 2

2

cv::DIST_L12
ρ(r) = 1 +

r 2

2 − 1

cv::DIST_FAIR ρ(r) = c 2 r
c − log(1 +

r
c) c = 1.3998

cv::DIST_WELSCH ρ(r) =
c 2

2 1 − exp − (r
c)2 c = 1.3998

cv::DIST_HUBER

ρ(r) = { r 2

2
r < c

c(r −
c
2) r ≥ c

c = 1.345

The parameter param is used to set the parameter c listed in Table 19-3. This can be
left set to 0, in which case the listed value from the table will be selected. We’ll get
back to reps and aeps after describing line.

The argument line is the location where the result is stored. If points contains two-
dimensional points, then line will be an STL-style array of four floating-point num‐
bers (e.g., cv::Vec4f). If points contains three-dimensional points, then line will be
an STL-style array of six floating-point numbers (e.g., cv::Vec6f). In the former case,
the return values will be (vx, vy, x0, y0), where (vx, vy) is a normalized vector parallel to
the fitted line and (x0, y0) is a point on that line. Similarly, in the latter (three-
dimensional) case, the return values will be (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a
normalized vector parallel to the fitted line and (x0, y0, z0) is a point on that line.
Given this line representation, the estimation accuracy parameters reps and aeps are
as follows: reps is the requested accuracy of x0, y0[, z0] estimates and aeps is the
requested angular accuracy for vx, vy[, vz]. The OpenCV documentation recom‐
mends values of 0.01 for both accuracy values.

We will end with a program for line fitting, shown in Example 19-4. In this code, we
first synthesize some two-dimensional points noisily around a line, then add some
random points that have nothing to do with the line (i.e., outlier points), and finally
fit a line to the points and display it. The cv::fitLine() routine is good at ignoring
the outlier points; this is important in real applications, where some measurements
might be corrupted by high noise, sensor failure, and so on.

Fitting Lines in Two and Three Dimensions | 763

Example 19-4. Two-dimensional line fitting

#include "opencv2/opencv.hpp"
#include <iostream>
#include <math.h>

using namespace std;

void help(argv) {
 ...
}

int main(int argc, char** argv) {

 cv::Mat img(500, 500, CV_8UC3);
 cv::RNG rng(-1);
 help(argv);
 for(;;) {

 char key;
 int i, count = rng.uniform(0,100) + 3, outliers = count/5;
 float a = (float) rng.uniform(0., 200.);
 float b = (float) rng.uniform(0., 40.);
 float angle = (float) rng.uniform(0., cv::PI);
 float cos_a = cos(angle), sin_a = sin(angle);
 cv::Point pt1, pt2;
 vector< cv::Point > points(count);
 cv::Vec4f line;
 float d, t;

 b = MIN(a*0.3f, b);

 // generate some points that are close to the line
 for(i = 0; i < count - outliers; i++) {
 float x = (float)rng.uniform(-1.,1.)*a;
 float y = (float)rng.uniform(-1.,1.)*b;
 points[i].x = cvRound(x*cos_a - y*sin_a + img.cols/2);
 points[i].y = cvRound(x*sin_a + y*cos_a + img.rows/2);
 }

 // generate outlier points
 for(; i < count; i++) {
 points[i].x = rng.uniform(0, img.cols);
 points[i].y = rng.uniform(0, img.rows);
 }

 // find the optimal line
 cv::fitLine(points, line, cv::DIST_L1, 1, 0.001, 0.001);

 // draw the points
 img = cv::Scalar::all(0);
 for(i = 0; i < count; i++)

764 | Chapter 19: Projection and Three-Dimensional Vision

 cv::circle(
 img,
 points[i],
 2,
 i < count - outliers
 ? cv::Scalar(0, 0, 255)
 : cv::Scalar(0,255,255),
 cv::FILLED,
 cv::AA,
 0
);

 // ... and the long enough line to cross the whole image
 d = sqrt((double)line[0]*line[0] + (double)line[1]*line[1]);
 line[0] /= d;
 line[1] /= d;
 t = (float)(img.cols + img.rows);
 pt1.x = cvRound(line[2] - line[0]*t);
 pt1.y = cvRound(line[3] - line[1]*t);
 pt2.x = cvRound(line[2] + line[0]*t);
 pt2.y = cvRound(line[3] + line[1]*t);
 cv::line(img, pt1, pt2, cv::Scalar(0,255,0), 3, cv::AA, 0);

 cv::imshow("Fit Line", img);

 key = (char) cv::waitKey(0);
 if(key == 27 || key == 'q' || key == 'Q') // 'ESC'
 break;
 }
 return 0;

}

Summary
We began this chapter with a review of the geometry of a camera system, and we
learned that the basic mapping that takes points in the three-dimensional world to
the two-dimensional world of the imager is a projective transformation. We learned
that in some cases—specifically those in which we know that a set of points lies on a
plane—this transformation can be inverted.

Even though the mapping from the three-dimensional world to the image plane is
not generally invertable, we learned that if we could see the same set of points in
many images, we could reconstruct the three-dimensional scene or the pose of a
known object. The separately loaded directory, opencv_contrib, described in Appen‐
dix B, has further calibration algorithms for omni cameras and multicameras (in cca
lib), for different types of calibration patterns (aruco and ccalib), and for color
balance and denoising routines (xphoto).

Summary | 765

Finally, we saw how this same geometrical information could be used to construct
stereoscopic depth measurements. In order to do this reliably, we had to compute the
exact relationship between the stereo imaging cameras—a process called stereo cali‐
bration. Once the stereo cameras were calibrated, we could use one of two available
algorithms provided by OpenCV to compute depth. The block matching algorithm
was faster, but provided less complete coverage of the scene, while the semi-global
block matching algorithm gave much better results at the cost of substantially more
computing time.

Finally, we covered a number of other useful functions for handling points and lines
in three dimensions, such as projective transformation, reprojection, and line fitting.

Exercises
1. Affine and projective (perspective projection) transform (see Figure 11-3):

(a1 a2 b1

a3 a4 b2

c1 c2 1
)

The as form the rotation, scaling, and skew matrix, and make up the affine trans‐
form. The bs form an (x, y) translation vector, the cs form the perspective projec‐
tion vector, and together they all make up the full perspective projection matrix.
a. Imagine a camera facing a chessboard. What camera movements can be mod‐

eled equally as both an affine and a perspective projection transform?
b. How many points on a plane define an affine transform? How many points

define a perspective projection transform?
c. In affine projection: Do lines stay lines? Does their length stay the same? Do

parallel lines stay parallel? If two lines intersect in the original image, do they
always intersect after affine projection?

d. In perspective projection: Do lines stay lines? Does their length stay the same?
Do parallel lines stay parallel? If two lines intersect in the original image, do
they always intersect after perspective projection?

2. Calibrate a camera using cv::calibrateCamera() and at least 15 images of
chessboards. Then use cv::projectPoints() to project an arrow orthogonal to
the chessboards (the surface normal) into each of the chessboard images using
the rotation and translation vectors from the camera calibration.

3. Three-dimensional joystick: Use a simple known object with at least four meas‐
ured, noncoplanar, trackable feature points as input into the cv::solvePnP()

766 | Chapter 19: Projection and Three-Dimensional Vision

algorithm. Use the object as a three-dimensional joystick to move a little stick
figure in the image.

4. In the text’s bird’s-eye-view example, with a camera above the plane looking out
horizontally along the plane, we saw that the homography of the ground plane
had a horizon line beyond which the homography wasn’t valid. How can an
infinite plane have a horizon? Why doesn’t it just appear to go on forever?
Hint: draw lines to an equally spaced series of points on the plane going out away
from the camera. How does the angle from the camera to each next point on the
plane change from the angle to the point before?

5. Implement a bird’s-eye view in a video camera looking at the ground plane. Run
it in real time and explore what happens as you move objects around in the nor‐
mal image versus the bird’s-eye-view image.

6. Set up two cameras or a single camera that you move between taking two images.
a. Compute, store, and examine the fundamental matrix.
b. Repeat the calculation of the fundamental matrix several times. How stable is

the computation?
7. If you had a calibrated stereo camera and were tracking moving points in both

cameras, can you think of a way of using the fundamental matrix to find tracking
errors?

8. Compute and draw epipolar lines on two cameras set up to do stereo.
9. Set up two video cameras; implement stereo calibration and rectification and

experiment with depth accuracy.
a. What happens when you bring a mirror into the scene?
b. Vary the amount of texture in the scene and report the results.
c. Try different disparity methods and report on the results.

10. Set up stereo cameras and wear something that is textured over one of your arms.
Fit a line to your arm using all the distType methods. Compare the accuracy and
reliability of the different methods.

11. Imagine sending a downward-looking camera attached to a helium balloon up
on a clear day. The balloon flies upward until at some height the balloon pops.
Using just the camera and its frame rate, how could you find out how high the
camera was when the balloon popped?

Exercises | 767

1 Note that machine learning, as with so many things, has been extended in the experimental opencv_contrib
code as described in Appendix B. For more details, see the deep neural network repositories cnn_3dobj and
dnn.

CHAPTER 20

The Basics of Machine Learning in OpenCV

In this chapter, we’ll begin a discussion of the machinery that is used to turn vision
into perception—in other words, the machinery that turns the visual inputs into
meaningful visual semantics.

In the previous chapters we have discussed how to turn 2D or 2D+3D sensor infor‐
mation into features, clusters, or geometric information. In the next three chapters,
we’ll use the results of these techniques to turn features, segmentations, and their
geometry into recognition of scenes or objects; it is this step that turns raw informa‐
tion into a percept: what the machine is seeing and where it is relative to the camera.

In this chapter we will cover the basics of machine learning, focusing mainly on what
it is. We will look at some simple machine learning capabilities of the library that
form a good starting point for understanding the basic ideas in machine learning as a
whole. In the next chapter, we will get into more detail about how modern machine
learning methods are implemented in the library.1

769

2 Machine learning is a vast topic. OpenCV deals mostly with statistical machine learning rather than subjects
such as Bayesian networks, Markov random fields, and graphical models. Some good texts in machine learn‐
ing include those by Hastie, Tibshirani, and Friedman [Hastie01]; Duda and Hart [Duda73]; Duda, Hart, and
Stork [Duda00]; and Bishop [Bishop07]. For discussions on how to parallelize machine learning, see Ranger
et al. [Ranger07] and Chu et al. [Chu07].

3 As of this writing, OpenCV does not include deep learning since, although promising, such techniques are
still too new to know what to include. However, Convolutional Neural Networks [Fukushima80; LeCun98a;
Ciresan11] are definitely a future candidate.

What Is Machine Learning?
The goal of machine learning (ML)2 is to turn data into information. After learning
from a collection of data, we want a machine to be able to answer questions about the
data: What other data is most similar to this data? Is there a car in the image? What
ad will the user respond to? There is often a cost component, so this question could
become: “Of our most profitable products, which one will the user most likely buy if
we show them an ad for it?” Machine learning turns data into information by extract‐
ing rules or patterns from that data.

Training and Test Sets
The sort of machine learning we are interested in works on raw numerical data, such
as temperature values, stock prices, and color intensities. The data is often prepro‐
cessed into features.3 We might, for example, take a database of 10,000 face images,
run an edge detector on the faces, and then collect features such as edge direction,
edge strength, and offset from face center for each face. We might obtain 500 such
values per face or a feature vector of 500 entries. We could then use machine learning
techniques to construct some kind of model from this collected data. If we want to
see only how faces fall into different groups (wide, narrow, etc.), then a clustering
algorithm would be the appropriate choice. If we want to learn to predict the age of a
person from, for example, the pattern of edges detected on his or her face, then a
classifier algorithm would be appropriate. To meet our goals, machine learning algo‐
rithms analyze our collected features and adjust weights, thresholds, and other model
parameters to maximize performance according to those goals. This process of
parameter adjustment to meet a goal is what we mean by the term learning.

It is always important to know how well machine learning methods are working, and
this can be a subtle task. Traditionally, one breaks up the available data set into a
large training set (perhaps 9,000 faces, in our example) and a smaller test set (the
remaining 1,000 faces). We can then run our classifier over the training set to learn
our age prediction model given the data feature vectors. When we are done, we can
test the age prediction classifier on the remaining images in the test set.

770 | Chapter 20: The Basics of Machine Learning in OpenCV

The test set is not used in training, and we do not let the classifier “see” the test set
age labels. Only after training, we run the classifier over each of the 1,000 faces in the
test set of data and record how well the ages it predicts (based on the feature vector)
match the actual ages. If the classifier does poorly, we might try adding new features
to our data or consider a different type of classifier. We’ll see in this chapter that
there are many kinds of classifiers and many algorithms for training them.

If the classifier does well, we now have a potentially valuable model that we can
deploy on data in the real world. Perhaps this system will be used to set the behavior
of a video game based on age. As the person prepares to play, his or her face will be
processed into 500 features (edge direction, edge strength, offset from face center,
etc.). This data will be passed to the classifier; the age it returns will set the game play
behavior accordingly. After it has been deployed, the classifier sees faces that it never
saw before and makes decisions according to what it learned on the training set.

Finally, when developing a classification system, we often use a validation data set.
Sometimes, testing the whole system at the end is too big a step to take. We often
want to tweak parameters along the way before submitting our classifier to final test‐
ing. We might do this by breaking our example 10,000-face data set into three parts: a
training set of 8,000 faces, a validation set of 1,000 faces, and a test set of 1,000 faces.
Now, while we’re running through the training data set, we can “sneak” pretests on
the validation data to see how we are doing. Only when we are satisfied with our per‐
formance on the validation set do we run the classifier on the test set for final
judgment.

It might strike you that you could do better than to train with 8,000
examples and validate on 1,000 in a 9,000-example training set. If
so, you would be correct. The standard practice in such cases is
actually to repeat this partitioning multiple times. In this case, nine
times would make the most sense. In each case you would set aside
a different group of 1,000 points to use for validation and train on
the remaining 8,000. This process is called k-fold cross-validation,
with k-fold meaning “done in k variations”—in our example, nine.

Supervised and Unsupervised Learning
Data sometimes has no labels; for example, we might just want to see what kinds of
groups faces naturally form based on our edge-detection information. Sometimes the
data has labels, such as the age of the person featured in each image. What this means
is that machine learning data may be supervised (i.e., may utilize a teaching “signal”
or “label” that goes with the data feature vectors), or it may be unsupervised, in which
case the machine learning algorithm has no access to such labels and is expected to
figure out the structure of the data on its own (see Figure 20-1).

What Is Machine Learning? | 771

Figure 20-1. Machine learning includes two broad subcategories: supervised and unsu‐
pervised learning. Supervised learning itself has two important subcomponents: classifi‐
cation and regression

Supervised learning can be categorical, such as learning to associate a name with a
face, or the data can have numeric or ordered labels, such as age. When the data has
names (categories) as labels, we say we are doing classification. When the data is
numeric, we say we are doing regression: trying to fit a numeric output given some
categorical or numeric input data.

Supervised learning also comes in shades of gray: it can involve one-to-one pairing of
labels with data vectors or it may consist of reinforcement learning (sometimes called
deferred learning). In reinforcement learning, the data label (also called the reward or
punishment) can come long after the individual data vectors were observed. When a
mouse is running down a maze to find food, the mouse may face a series of turns
before it finally finds the food, its reward. That reward must somehow cast its influ‐
ence back on all the sights and actions that the mouse took before finding the food.
Reinforcement learning works the same way: the system receives a delayed signal (a
reward or a punishment) and tries to infer a behavior (formally called a policy) for
future runs. In this case, the policy being learned is actually the way of making deci‐
sions; e.g., which way to go at each step through the maze. Supervised learning can
also have partial labeling, where some labels are missing (this is also called semisuper‐
vised learning), or it might have noisy labels, where some of the supplied labels are
just wrong. Most ML algorithms handle only one or two of the situations just
described. For example, the ML algorithms might handle classification but not

772 | Chapter 20: The Basics of Machine Learning in OpenCV

regression; the algorithm might be able to do semisupervised learning but not rein‐
forcement learning; the algorithm might be able to deal with numeric but not catego‐
rical data; and so on.

In contrast, often we don’t have labels for our data and are interested in seeing
whether the data falls naturally into groups. The algorithms for this kind of unsuper‐
vised learning are often called clustering algorithms. In this situation, the goal is to
group unlabeled data vectors that are “close” (in some predetermined or possibly
even learned sense). We might just want to see how faces are distributed: do they
form clumps of thin, wide, long, or short faces? If we’re looking at cancer data, do
some cancers cluster into groups having different chemical signals? Unsupervised
clustered data is also often used to form a feature vector for a higher-level supervised
classifier. We might first cluster faces into face types (wide, narrow, long, short) and
then use that as an input, perhaps with other data, such as average vocal frequency, to
predict the gender of a person.

These two common machine learning tasks, classification and clustering, overlap
with two of the most common tasks in computer vision, recognition and segmenta‐
tion. This is sometimes referred to as the “what” and the “where.” That is, we often
want our computer to name the object in an image (recognition, or “what”) and also
to say where the object appears (segmentation, or “where”). Because computer vision
makes such heavy use of machine learning, OpenCV includes many powerful
machine learning algorithms in the ML libraries, located in the .../opencv/modules/ml
and the .../opencv/modules/flann directories.

The OpenCV machine learning code is general; that is, although it
is highly useful for vision tasks, the code itself is not specific to
vision. One could learn, say, genomic sequences using the appro‐
priate routines. Of course, our concern here is mostly with object
recognition given feature vectors derived from images.

Generative and Discriminative Models
Many algorithms have been devised to perform classification and clustering.
OpenCV supports some of the most useful currently available statistical approaches
to machine learning. Probabilistic approaches to machine learning, such as Bayesian
networks or graphical models, are less well supported in OpenCV, partly because
they are newer and still under active development. OpenCV tends to support discrim‐
inative algorithms, which give us the probability of the label given the data, P(L|D),
rather than generative algorithms, which give the distribution of the data given the
label, P(D|L). Although the distinction is not always clear, discriminative models are
good for yielding predictions given the data, while generative models are good for
giving you more powerful representations of the data or for conditionally synthesiz‐

What Is Machine Learning? | 773

ing new data (think of “imagining” an elephant; you’d be generating data given a
condition “elephant”).

It is often easier to interpret a generative model because it models (correctly or incor‐
rectly) the cause of the data. Discriminative learning often comes down to making a
decision based on some threshold that may seem arbitrary. For example, suppose a
patch of road is identified in a scene partly because its color “red” is less than 125. But
does this mean that red = 126 is definitely not road? Such issues can be hard to inter‐
pret. With generative models you are usually dealing with conditional distributions
of data given the categories, so you can develop a feel for what it means to be “close”
to the resulting distribution.

OpenCV ML Algorithms
The machine learning algorithms included in OpenCV are given in Table 20-1. Many
of the algorithms listed are in the ML module; Mahalanobis and K-means are in the
core module; face detection and object detection methods are in the objdetect mod‐
ule; FLANN takes a dedicated module, flann; and other algorithms are placed in
opencv_contrib.

Table 20-1. Machine learning algorithms supported in OpenCV; original references to the
algorithms are provided after the descriptions

Algorithm Comment
Mahalanobis A distance measure that accounts for the “stretchiness” of the data space by dividing out the

covariance of the data. If the covariance is the identity matrix (identical variance), then this measure
is identical to the Euclidean distance measure [Mahalanobis36].

K-means An unsupervised clustering algorithm that represents a distribution of data using K centers, where K
is chosen by the user. The difference between this algorithm and expectation maximization
(described shortly) is that here the centers are not Gaussian and the resulting clusters look more like
soap bubbles, since centers (in effect) compete to “own” the closest data points. These cluster
regions are often used as sparse histogram bins to represent the data. Invented by Steinhaus
[Steinhaus56], as used by Lloyd [Lloyd57].

Normal/Naïve Bayes
classifier

A generative classifier in which features are assumed to be Gaussian distributed and statistically
independent from one another, a strong assumption that is generally not true. For this reason, it’s
often called a “naïve Bayes” classifier. However, this method often works surprisingly well. Original
mention [Maron61; Minsky61].

Decision trees A discriminative classifier. The tree finds one data feature and a threshold at the current node that
best divides the data into separate classes. The data is split and we recursively repeat the procedure
down the left and right branches of the tree. Though not usually the top performer, it’s often the
first thing you should try because it is fast and has high functionality [Breiman84].

Expectation
maximization (EM)

A generative unsupervised algorithm that is used for clustering. It will fit N multidimensional
Gaussians to the data, where N is chosen by the user. This can be an effective way to represent a
more complex distribution with only a few parameters (means and variances). Often used in
segmentation. Compare with K-means listed previously [Dempster77].

774 | Chapter 20: The Basics of Machine Learning in OpenCV

Algorithm Comment
Boosting A discriminative group of classifiers. The overall classification decision is made from the combined

weighted classification decisions of the group of classifiers. In training, we learn the group of
classifiers one at a time. Each classifier in the group is a “weak” classifier (only just above chance
performance). These weak classifiers are typically composed of single-variable decision trees called
stumps. In training, the decision stump learns its classification decisions from the data and also
learns a weight for its “vote” from its accuracy on the data. Between training each classifier one by
one, the data points are reweighted so that more attention is paid to data points where errors were
made. This process continues until the total error over the data set, arising from the combined
weighted vote of the decision trees, falls below a set threshold. This algorithm is often effective
when a large amount of training data is available [Freund97].

Random trees A discriminative forest of many decision trees, each built down to a large or maximal splitting depth.
During learning, each node of each tree is allowed to choose splitting variables only from a random
subset of the data features. This helps ensure that each tree becomes a statistically independent
decision maker. In run mode, each tree gets an unweighted vote. This algorithm is often very
effective and can also perform regression by averaging the output numbers from each tree
implemented [Ho95; Criminisi13; Breiman01].

K-nearest neighbors The simplest possible discriminative classifier. Training data are simply stored with labels.
Thereafter, a test data point is classified according to the majority vote of its K nearest other data
points (in a Euclidean sense of nearness). This is probably the simplest thing you can do. It is often
effective but it is slow and requires lots of memory [Fix51], but see the FLANN entry.

Fast Approximate
Nearest Neighbors
(FLANN)a

OpenCV includes a full fast approximate nearest neighbor library developed by Marius Muja
[Muja09]. This allows fast approximations to nearest neighbor and K nearest neighbor matching.

Support vector
machine (SVM)

A discriminative classifier that can also do regression. A distance function between any two data
points in a higher-dimensional space is defined. (Projecting data into higher dimensions makes the
data more likely to be linearly separable.) The algorithm learns separating hyperplanes that
maximally separate the classes in the higher dimension. It tends to be among the best with limited
data, losing out to boosting or random trees only when large data setsb are available [Vapnik95].

Face detector/cascade
classifier

An object detection application based on a clever use of boosting. The OpenCV distribution comes
with a trained frontal face detector that works remarkably well. You may train the algorithm on
other objects with the software provided. You may also use other features or create your own
features for this classifier. It works well for rigid objects and characteristic views. After its inventors,
this classifier is also commonly known as a “Viola-Jones Classifier” [Viola04].

Waldboost A derivative of the cascade method of Viola (see the preceding entry), Waldboost is an object
detector that is very fast and often outperforms the traditional cascade classifier for a variety of tasks
[Sochman05]. It is in .../opencv_contrib/modules.

Latent SVM The Latent SVM method uses a parts-based model to identify composite objects based on
recognizing the individual components of the object and learning a model of how those components
should expect to be found relative to one another [Felzenszwalb10].

Bag of Words The Bag of Words method generalizes techniques heavily used in document classification to visual
image classification. This method is powerful because it can be used to identify not only individual
objects, but often scenes and environments as well.

a Since you are wondering, the L in FLANN stands for library (FLANN = Fast Library for Approximate Nearest Neighbors).
b What is “large data”? There is no answer, since it depends on how fast the underlying generating process changes. But
here’s a very crude rule of thumb: 10 data points per category/object per meaningful dimension (feature). So, two classes,
three dimensions needs at least 2*10*10*10 = 2,000 data points to be “large” for that problem.

What Is Machine Learning? | 775

4 See Lowe’s SIFT keypoint feature demo.

Using Machine Learning in Vision
In general, all the algorithms in Table 20-1 take as input a data vector made up of
many features, where the number of features might well be in the thousands. Suppose
your task is to recognize a certain type of object—for example, a person. The first
problem that you will encounter is how to collect and label training data that falls
into positive (there is a person in the scene) and negative (no person) cases. You will
soon realize that people appear at different scales: their image may consist of just a
few pixels, or you may be looking at an ear that fills the whole screen. Even worse,
people will often be occluded: a man inside a car; a woman’s face; one leg peeking
from behind a tree. You need to define what you actually mean by saying a person is
in the scene.

Next, you have the problem of collecting data. Do you collect it from a security cam‐
era, go to photo-sharing websites and attempt to find “person” labels, or both (and
more)? Do you collect movement information? Do you collect other information,
such as whether a gate in the scene is open, the time, the season, the temperature? An
algorithm that finds people on a beach might fail on a ski slope. You need to capture
the variations in the data: different views of people, lightings, weather conditions,
shadows, and so on.

After you have collected lots of data, how will you label it? You must first decide what
you mean by “label.” Do you want to know where the person is in the scene? Are
actions (running, walking, crawling, following) important? You might end up with a
million images or more. How will you label all that? There are many tricks, such as
doing background subtraction in a controlled setting and collecting the segmented
foreground humans who come into the scene. You can use data services to help in
classification; for example, you can pay people to label your images through Ama‐
zon’s Mechanical Turk. If you arrange tasks to be simple, you can get the cost down
to somewhere around a penny per label. Finally, you may use GPUs and/or clusters
of computers to render objects/people/faces/hands using computer graphics. Using
camera model parameters, you can often generate very realistic images where ground
truth is known since you generated the data.

After labeling the data, you must decide which features to extract from the objects.
Again, you must know what you are after. If people always appear right side up,
there’s no reason to use rotation-invariant features and no reason to try to rotate the
objects beforehand. In general, you must find features that express some invariance
in the objects, such as scale-tolerant histograms of gradients or colors or the popular
SIFT features.4 If you have background scene information, you might want to first
remove it to make other objects stand out. You then perform your image processing,

776 | Chapter 20: The Basics of Machine Learning in OpenCV

http://www.cs.ubc.ca/~lowe/keypoints/
http://www.mturk.com/mturk/welcome

5 One typically does the train (possibly validation) and test cycle 5 to 10 times.

which may consist of normalizing the image (rescaling, rotation, histogram equaliza‐
tion, etc.) and computing many different feature types. The resulting data vectors are
each given the label associated with that object, action, or scene.

Once the data is collected and turned into feature vectors, you often want to break up
the data into training, (possibly) validation, and test sets. As we saw earlier, is a “best
practice” to do your learning, validation, and testing within a cross-validation frame‐
work. Recall that there the data is divided into K subsets and you run many training
(possibly validation) and test sessions, where each session consists of different sets of
data taking on the roles of training (validation) and test.5 The test results from these
separate sessions are then averaged to get the final performance result. Cross-
validation gives a more accurate picture of how the classifier will perform when
deployed in operation on novel data. (We’ll have more to say about this in what
follows.)

Now that the data is prepared, you must choose your classifier. Often this choice is
dictated by computational, data, or memory considerations. For some applications,
such as online user preference modeling, you must train the classifier rapidly. In this
case, nearest neighbors, normal Bayes, or decision trees would be a good choice. If
memory is a consideration, decision trees or neural networks are space efficient. If
you have time to train your classifier but it must run quickly, neural networks are a
good choice, as are naïve Bayes classifiers and support vector machines. If you have
time to train and some time to run, but need high accuracy, then boosting and ran‐
dom trees are likely to fit your needs. If you just want an easy, understandable sanity
check that your features are chosen well, then decision trees or nearest neighbors are
good bets. For best “out of the box” classification performance, try boosting or ran‐
dom trees first.

There is no “best” classifier (see http://en.wikipedia.org/wiki/
No_free_lunch_theorem). Averaged over all possible types of data
distributions, all classifiers perform the same. Thus, we cannot say
which algorithm in Table 20-1 is the “best.” Over any given data
distribution or set of data distributions, however, there is a best
classifier. Thus, when faced with real data it’s a good idea to try
many classifiers. Consider your purpose: Is it just to get the right
score, or is it to interpret the data? Do you seek fast computation,
small memory requirements, or confidence bounds on the deci‐
sions? Different classifiers have different properties along these
dimensions.

What Is Machine Learning? | 777

http://en.wikipedia.org/wiki/No_free_lunch_theorem
http://en.wikipedia.org/wiki/No_free_lunch_theorem

6 This is commonly known as variable importance—meaning the importance of a variable, not importance that
varies or fluctuates.

7 This technique by itself would be very sensitive to noise. What binary trees really do is build surrogate splits
(other features to split on that result in almost the same decisions) for each node and compute the importance
over all splits in all the nodes.

8 The actual implementation for random trees shuffles the feature values instead of generating completely new
values.

Variable Importance
Two of the algorithms in Table 20-1 allow you to assess a variable’s importance.6

Given a vector of features, how do you determine the importance of those features for
classification accuracy? Binary decision trees do this directly: you train them by
selecting which variable best splits the data at each node. The top node’s variable is
the most important variable; the next-level variables are the second most important,
and so on.7 Random trees can measure variable importance using a technique devel‐
oped by Leo Breiman [Breiman02]; this technique can be used with any classifier, but
so far it is implemented only for decision and random trees in OpenCV.

One use of variable importance is to reduce the number of features your classifier
must consider. Starting with many features, you train the classifier and then find the
importance of each feature relative to the other features. You can then discard unim‐
portant features. Eliminating unimportant features improves speed (since it elimi‐
nates the processing it took to compute those features) and makes training and
testing quicker. Also, if you don’t have enough data, which is often the case, then
eliminating unimportant variables can increase classification accuracy; this yields
faster processing with better results.

Breiman’s variable importance algorithm runs as follows.

1. Train a classifier on the training set.
2. Use a validation or test set to determine the accuracy of the classifier.
3. For every data point and a chosen feature, randomly choose a new value for that

feature from among the values the feature has in the rest of the data set (called
“sampling with replacement”). This ensures that the distribution of that feature
will remain the same as in the original data set, but now the actual structure or
meaning of that feature is erased (because its value is chosen at random from the
rest of the data).8

4. Train the classifier on the altered set of training data and then measure the accu‐
racy of classification on the altered test or validation data set. If randomizing a
feature hurts accuracy a lot, then that feature is very important. If randomizing a

778 | Chapter 20: The Basics of Machine Learning in OpenCV

9 Professor Andrew Ng at Stanford University gives the details in a web lecture entitled “Advice for Applying
Machine Learning”.

10 An astute observer might note that since ages are likely to be reported as integers, this could be a classification
problem rather than a regression problem. However, it is not the continuousness of the output that makes a
problem a regression problem, it is the orderability of the output. Thus, even for integer ages, this is a regres‐
sion problem.

feature does not hurt accuracy much, then that feature is of little importance and
is a candidate for removal.

5. Restore the original test or validation data set and try the next feature until we
are done. The result is an ordering of each feature by its importance.

This procedure is built into random trees and decision trees. Thus, you can use ran‐
dom trees or decision trees to decide which variables you will actually use as features;
then you can use the slimmed-down feature vectors to train the same (or another)
classifier.

Diagnosing Machine Learning Problems
Getting machine learning to work well can be more of an art than a science. Algo‐
rithms often “sort of” work but not quite as well as you need them to. That’s where
the art comes in; you must figure out what’s going wrong in order to fix it. Although
we can’t go into all the details here, we’ll give an overview of some of the more com‐
mon problems you might encounter.9

First, some rules of thumb: more data beats less data, and better features beat better
algorithms. If you design your features well—maximizing their independence from
one another and minimizing how they vary under different conditions—then almost
any algorithm will work well. Beyond that, there are three common problems:

Bias
Your model assumptions are too strong for the data, so the model won’t fit well.

Variance
Your algorithm has memorized the data including the noise, so it can’t general‐
ize.

Bugs
It is not uncommon for machine learning code that contains seemingly severe
bugs to “learn its way around” the bugs, often yielding only degraded perfor‐
mance when absolute failure would be expected.

Figure 20-2 shows the basic setup for statistical machine learning. Our job is to model
the true function f that transforms the underlying inputs to some output. This func‐
tion may be a regression problem (e.g., predicting a person’s age from their face10) or

What Is Machine Learning? | 779

http://www.stanford.edu/class/cs229/materials/ML-advice.pdf
http://www.stanford.edu/class/cs229/materials/ML-advice.pdf

a category prediction problem (e.g., identifying a person given their facial features).
For problems in the real world, noise and unconsidered effects can cause the
observed outputs to differ from the theoretical outputs. For example, in face recogni‐
tion we might learn a model of the measured distance between eyes, mouth, and nose
to identify a face. But lighting variations from a nearby flickering bulb might cause
noise in the measurements, or a poorly manufactured camera lens might cause a sys‐
tematic distortion in the measurements that wasn’t considered as part of the model.
These effects will cause accuracy to suffer.

Figure 20-2. Setup for statistical machine learning: we train a classifier to fit a data set;
the true model f is almost always corrupted by noise or unknown influences

Figure 20-3 shows model bias (resulting in underfitting) and variance (resulting in
overfitting) of data in the upper two panels and the consequences in terms of error
with training set size in the lower two panels. On the left side of Figure 20-3 we
attempt to train a classifier to predict the data in the lower panel of Figure 20-2. If we
use a model that’s too restrictive—indicated here by the heavy, straight dashed line—
then we can never fit the underlying true parabola f indicated by the thinner dashed
line. Thus, the fit to both the training data and the test data will be poor, even with a
lot of data. In this case we have bias because both training and test data are predicted
poorly. On the right side of Figure 20-3 we fit the training data exactly, but this pro‐
duces a nonsense function that fits every bit of noise. Thus, it memorizes the training
data as well as the noise in that data. Once again, the resulting fit to the test data is
poor. Low training error combined with high test error indicates a variance (overfit)
problem.

780 | Chapter 20: The Basics of Machine Learning in OpenCV

Figure 20-3. Poor model fitting in machine learning and its effect on training and test
prediction performance, where the true function is graphed by the lighter dashed line at
top: a biased (underfit) model for the data (upper left) yields high error in predicting
the training and the test set (lower left), whereas a variance (overfit) model for the data
(upper right) yields low error in the training data but high error in the test data (lower
right)

Sometimes you have to be careful that you are solving the correct problem. If your
training and test set error are low but the algorithm does not perform well in the real
world, the data set may have been chosen from unrealistic conditions—perhaps
because these conditions made collecting or simulating the data easier. If the algo‐
rithm just cannot reproduce the test or training set data, then perhaps the algorithm
is the wrong one to use, the features that were extracted from the data are ineffective,
or the “signal” just isn’t in the data you collected. Table 20-2 lays out some possible
fixes to the problems we’ve described here. Of course, this is not a complete list of the
possible problems or solutions. It takes careful thought and design of what data to
collect and what features to compute in order for machine learning to work well. It
can also take some systematic thinking to diagnose machine learning problems.

What Is Machine Learning? | 781

11 For more information on these techniques, see “What Are Cross-Validation and Bootstrapping?”.

Table 20-2. Problems encountered in machine learning and possible solutions to try; coming
up with better features will help any problem

Problem Possible solutions
Bias • More features can help make a better fit.

• Use a more powerful model/algorithm.

Variance • More training data can help smooth the model.

• Fewer features can reduce overfitting.

• Use a less powerful model/algorithm.

Good test/train, bad real world • Collect a more realistic set of data.

Model can’t learn test or train • Redesign features to better capture invariance in the data.

• Collect new, more relevant data.

• Use a more powerful model/algorithm.

Cross-validation, bootstrapping, ROC curves, and confusion matrices
Finally, there are some basic tools that are used in machine learning to measure
results. In supervised learning, one of the most basic problems is simply knowing
how well your algorithm has performed: how accurate is it at classifying or fitting the
data? You might think: “Easy, I’ll just run it on my test or validation data and get the
result.” But for real problems, we must account for noise, sampling fluctuations, and
sampling errors. Simply put, your test or validation set of data might not accurately
reflect the actual distribution of data. To get closer to “guessing” the true perfor‐
mance of the classifier, we employ the technique of cross-validation and/or the closely
related technique of bootstrapping.11

Recall that, in its most basic form, cross-validation involves dividing the data into K
different subsets of data. You train on K – 1 of the subsets and test on the final subset
of data (the “validation set”) that wasn’t trained on. You do this K times, where each
of the K subsets gets a “turn” at being the validation set, and then average the results.

Bootstrapping is similar to cross-validation, but the validation set is selected at ran‐
dom from the training data. Selected points for that round are used only in test, not
training. Then the process starts again from scratch. You do this N times, where each
time you randomly select a new set of validation data and average the results in the

782 | Chapter 20: The Basics of Machine Learning in OpenCV

http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-12.html

12 One of the main goals of bootstrapping is to find the optimal training parameters, because while it’s easy to
average the training error, it may be nontrivial and/or inefficient to “average” several models into one.

13 It is worth noting that there are endless varieties of “figures of merit” for classifiers in the literature, and
equally many reasons to prefer one over another. This particular one is relatively common, however, not
because it is necessarily a better representation of the quality of a classifier, but because it is easily understood
and well defined for almost any classification problem.

end. Note that this means some and/or many of the data points are reused in differ‐
ent validation sets, but the results are often superior compared to cross-validation.12

Using either one of these techniques can yield more accurate measures of actual per‐
formance. This increased accuracy can in turn be used to tune parameters of the
learning system as you repeatedly change, train, and measure.

Two other immensely useful ways of assessing, characterizing, and tuning classifiers
are plotting the receiver operating characteristic (ROC, often pronounced “rock”)
curve and the confusion matrix; see Figure 20-4. The ROC curve measures the
response of the performance parameter of the classifier over the full range of settings
of that parameter (each point on a ROC curve may also be computed with cross-
validation). Let’s say the parameter is a threshold. Just to make this more concrete,
suppose we are trying to recognize yellow flowers in an image and that we have a
threshold on the color yellow as our detector. Setting the yellow threshold extremely
high would mean that the classifier would fail to recognize any yellow flowers, yield‐
ing a false positive rate of 0 but at the cost of a true positive rate also at 0 (lower-left
part of the curve in Figure 20-4). On the other hand, if the yellow threshold is set to 0,
then any signal at all counts as a recognition. This means that all of the true positives
(the yellow flowers) are recognized as well as all the false positives (orange and red
flowers); thus, we have a false positive rate of 100% (upper-right part of the curve in
Figure 20-4). The best possible ROC curve would be one that follows the y-axis up to
100% and then cuts horizontally over to the upper-right corner. Failing that, the
closer the curve comes to the upper-left corner, the better. In practice, one often
computes the fraction of area under the ROC curve versus the total area of the ROC
plot as a summary statistic of merit: the closer that ratio is to 1, the better is the
classifier.13

What Is Machine Learning? | 783

Figure 20-4. ROC curve and associated confusion matrix: the former shows the
response of correct classifications to false positives along the full range of varying a per‐
formance parameter of the classifier; the latter shows the false positives (false recogni‐
tions) and false negatives (missed recognitions)

Figure 20-4 also shows a confusion matrix—a chart of true and false positives along
with true and false negatives. It is another quick way to assess the performance of a
classifier: ideally we’d see 100% along the diagonal and 0% elsewhere. If we have a
classifier that can learn more than one class (e.g., a multilayer perceptron or random
forest classifier, which can learn many different class labels at once), then the confu‐
sion matrix is generalized to cover all class labels, and the entries represent the overall
percentages of true and false positives and negatives over all class labels. The ROC
curve for multiple classes just records the true and false decisions over the test data
set.

Cost of misclassification. One thing we haven’t discussed much here is the cost of mis‐
classification. That is, if our classifier is built to detect poisonous mushrooms (we’ll
see an example that uses just such a data set in the next chapter), then we are willing
to have more false negatives (edible mushrooms mistaken as poisonous) as long as we
minimize false positives (poisonous mushrooms mistaken as edible). The ROC curve
can help with this; we can set our ROC parameter to choose an operation point lower
on the curve—toward the lower left of the graph in Figure 20-4. The other way of
doing this is to weight false positive errors more than false negatives when generating
the ROC curve. For example, you can set the cost of each false positive error to be

784 | Chapter 20: The Basics of Machine Learning in OpenCV

14 This is useful if you have some specific a priori notion of the relative cost of the two error types. For example,
the cost of misclassifying one product as another in a supermarket checkout would be easy to quantify exactly
beforehand.

15 Decision trees are not affected by variance differences in feature variables because each variable is searched
only for effective separating thresholds. In other words, it doesn’t matter how large the variable’s range is as
long as a clear separating value can be found.

equal to 10 false negatives.14 With some OpenCV machine learning algorithms, such
as decision trees and SVM, you can regulate this balance of “hit rate versus false
alarm” by specifying prior probabilities of the classes themselves (which classes are
expected to be more likely and which less) or by specifying weights of the individual
training samples.

Mismatched feature variance. Another common problem with training some classifiers
arises when the feature vector comprises features of widely different variances. For
instance, if one feature is represented by lowercase ASCII characters, then it ranges
over only 26 different values. In contrast, a feature that is represented by the count of
biological cells on a microscope slide might vary over several billion values. An algo‐
rithm such as K-nearest neighbors might then see the first feature as relatively con‐
stant (nothing to learn from) compared to the cell-count feature. The way to correct
this problem is to preprocess each feature variable by normalizing for its variance.
This practice is acceptable provided the features are not correlated with each other;
when features are correlated, you can normalize by their average variance or by their
covariance. Some algorithms, such as decision trees,15 are not adversely affected by
widely differing variance and so this precaution need not be taken. A rule of thumb is
that if the algorithm depends in some way on a distance measure (e.g., weighted val‐
ues), then you should normalize for variance. One may normalize all features at once
and account for their covariance by using the Mahalanobis distance, which is dis‐
cussed later in this chapter. Readers familiar with machine learning or signal process‐
ing might recognize this as the technique called “whitening” the data.

We now turn to discussing some of the machine learning algorithms supported in
OpenCV.

Legacy Routines in the ML Library
Much of the ML library uses a common C++ interface that is object based and imple‐
ments each algorithm inside of an object derived from this common base class. In
this way, the access to the algorithms and their usage is standardized across the
library. However, some of the most basic methods in the library do not conform to

Legacy Routines in the ML Library | 785

16 At this time it is an open “to do” item of the library for someone to come along and write new interfaces to
these legacy functions that conform to the object-based style used by the rest of MLL.

17 Specifically K-means is similar to the Expectation Maximization algorithm for Gaussian mixture models. This
EM algorithm is also implemented in OpenCV (as cv::EM() in the ML library). We will encounter this algo‐
rithm later in the chapter.

this standard interface because they were implemented in the early days of the library
when the common interface had not yet been designed.16

Because it is the most basic methods that do not conform to the object interface, we
will look at these first. In the next chapter, we will move on to the object interface and
the many algorithms implemented through it. For now, the methods we will cover
are K-means clustering, the Mahalanobis distance (and its utility in the context of K-
means clustering), and finally a partitioning technique that is normally used as a
means of improving both the speed and the accuracy of K-means clustering.

K-Means
K-means attempts to find the natural clusters in a set of vector-valued data. The user
sets the desired number of clusters and then the K-means algorithm rapidly finds a
good placement for the centers of those clusters. Here, “good” means that the cluster
centers tend to end up located in the middle of the natural clumps of data. The K-
means algorithm is one of the most used clustering techniques and has strong simi‐
larities to the Expectation Maximization algorithm17 as well as some similarities to
the mean-shift algorithm discussed in Chapter 17 (implemented as cv::meanShift()
in the CV library). K-means is an iterative algorithm and, as implemented in
OpenCV, is also known as Lloyd’s algorithm [Lloyd82] or (equivalently) “Voronoi
iteration.” The algorithm runs as follows.

1. Take as input a data set D and desired number of clusters K (chosen by the user).
2. Randomly assign (sufficiently separated) cluster center locations.
3. Associate each data point with its nearest cluster center.
4. Move cluster centers to the centroid of their data points.
5. Return to Step 3 until convergence (i.e., centroid does not move).

Figure 20-5 shows K-means in action; in this case, it takes just three iterations to con‐
verge. In real cases the algorithm often converges rapidly, but there are still times
when it will require a large number of iterations.

786 | Chapter 20: The Basics of Machine Learning in OpenCV

Figure 20-5. K-means in action for three iterations: (a) cluster centers are placed ran‐
domly and each data point is then assigned to its nearest cluster center; (b) cluster cen‐
ters are moved to the centroid of their points; (c) data points are again assigned to their
nearest cluster centers; (d) cluster centers are again moved to the centroid of their
points

Problems and solutions
K-means is an extremely effective clustering algorithm, but it does have three impor‐
tant shortcomings:

• It isn’t guaranteed to find the best possible solution to locating the cluster cen‐
ters. However, it is guaranteed to converge to some solution (i.e., the iterations
won’t continue indefinitely).

• It doesn’t tell you how many cluster centers you should use. If we had chosen two
or four clusters for the example in Figure 20-5, then the results would be differ‐
ent and perhaps less than intuitive.

• It presumes that the covariance in the space either doesn’t matter or has already
been normalized (we will return to this, and the Mahalanobis distance, shortly).

Each one of these problems has a “solution,” or at least an approach that helps. The
first two of these solutions depends on “explaining the variance of the data.” In

Legacy Routines in the ML Library | 787

18 In this context the variance of a point is the distance of the point from the cluster center. The variance of the
points (plural) is typically the quadrature sum over the points. This sum is also called compactness.

K-means, each cluster center “owns” its data points and we compute the variance of
those points.18

The best clustering minimizes the variance without causing too much complexity
(too many clusters). With that in mind, we can ameliorate the listed problems as
follows:

1. Run K-means several times, each with different placement of the cluster centers;
then choose the run whose results exhibit the least variance. OpenCV can do this
automatically; you need only specify the number of such clustering attempts (see
the attempts parameter of cv::kmeans).

2. Start with one cluster and try an increasing number of clusters (up to some
limit), each time employing the method of Step 1 as well. Usually the total var‐
iance will shrink quite rapidly, after which an “elbow” will appear in the variance
curve; this indicates that a new cluster center does not significantly reduce the
total variance. Stop at the elbow and keep that many cluster centers.

3. Multiply the data by the inverse covariance matrix (as described in the section
“Mahalanobis Distance” on page 793). For example, if the input data vectors D are
organized as rows with one data point per row, then normalize the “stretch” in
the space by computing a new data vector D *, where D * = DΣ−1/2.

K-means code
The call for K-means is simple:

double cv::kmeans(// returns (best) compactness
cv::InputArray data, // Your data, in a float type
int K, // Number of clusters
cv::InputOutputArray bestLabels, // Result cluster indices (int's)
cv::TermCriteria criteria, // iterations and/or min dist
int attempts, // starts to search for best fit
int flags, // initialization options
cv::OutputArray centers = cv::noArray() // (optional) found centers
);

The data array is a matrix of multidimensional data points, one per row, where each
element of the data is a regular floating-point value (i.e., CV_32FC1). Alternatively,
data may be simply a single column of entries, each of which is a multidimensional

788 | Chapter 20: The Basics of Machine Learning in OpenCV

19 Recall that this case is in fact exactly equivalent to an N × M matrix in which the N rows are the data points,
the M columns are the individual components of each point’s location, and the underlying data type is cv::
32FC1. Recall that, owing to the memory layout used for arrays, there is no distinction between these repre‐
sentations.

point (i.e., of type CV_32FC2 or CV_32FC3 or even CV_32FC(M)).19 The parameter K is
the number of clusters you want to find, and the return vector bestLabels contains
the final cluster index for each data point. In the case of criteria, you may specify
either the maximum number of iterations you would like the algorithm to run, or the
small distance that will be used to determine when a cluster center is effectively sta‐
tionary (i.e. if it moves less than the given small distance). Of course, you can specify
both of these criteria as well.

The parameter attempts tells cv::kmeans() to automatically run some number of
times, each time starting with a new set of seed points, and to keep only the best
result. The quality of the results is gauged by the compactness—that is, the sum of
squared distances between every point and the center of the cluster to which that
point was associated.

The flags parameter may be any of the following values (with the first being
the default): cv::KMEANS_RANDOM_CENTERS, cv::KMEANS_USE_INITIAL_LABELS, or
cv::KMEANS_PP_CENTERS. In the case of cv::KMEANS_RANDOM_CENTERS, we assign the
starting cluster centers as described earlier, by randomly selecting from the points in
the data set. In the case of cv::KMEANS_USE_INITIAL_LABELS, the values stored in the
parameter bestLabels at the time the function is called will be used to compute the
initial cluster centers. Finally, the cv::KMEANS_PP_CENTERS option instructs
cv::kmeans() to use the method of Sergei Vassilvitskii and David Arthur [Arthur07]
called K-means++ to assign the cluster centers. The details of this method are not
critical to us here, but what is important is that this method more prudently chooses
the starting points for the cluster centers and typically gives better results in fewer
iterations than the default method. In modern applications, K-means++ is increas‐
ingly the standard being used.

Legacy Routines in the ML Library | 789

Even though, in theory, the K-means algorithm can behave rather
badly, it is heavily used in practice because most of the time it does
quite well. The fact that, in the worst case, the cluster assignment
problem is NP-hard means that you are unlikely to ever get a truly
optimal answer, but for most applications, a “good” answer is good
enough. Still, there are some unsettling problems with the K-means
algorithm. One of them is that, in certain cases, it can be tricked
into producing what mathematicians call “arbitrarily bad” results.
This means that no matter how wrong you might fear the answer
might be, some tricky person can come up with a circumstance in
which it will be at least that wrong, or worse. As a result there has
been some interest in past years (and continues to be) in techni‐
ques that provide either some general improvement in perfor‐
mance, or in the best case, some provable bounds that can give the
user a little more confidence in the results. One such algorithm is
K-means++.

Finally, on completion, the computed centers for the clusters will be placed into the
array centers. You can omit centers if you do not require them (in this case by
passing cv::noArray()). The function always returns the computed compactness.

It’s instructive to see a complete example of K-means in code (Example 20-1). An
added benefit of the example is that the data-generation sections can be used to test
other machine learning routines as well.

Example 20-1. Using K-means

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/core/core.hpp"
#include <iostream>

using namespace cv;
using namespace std;

static void help(char* argv[]) {
 cout << "\nThis program demonstrates kmeans clustering.\n"
 " It generates an image with random points, then assigns a random number\n"
 " of cluster centers and uses kmeans to move those cluster centers to their\n"
 " representative location\n"
 "Usage:\n"
 <<argv[0] <<"\n" << endl;
}

int main(int /*argc*/, char** /*argv*/) {

 const int MAX_CLUSTERS = 5;
 cv::Scalar colorTab[] = {
 cv::Scalar(0, 0, 255),

790 | Chapter 20: The Basics of Machine Learning in OpenCV

 cv::Scalar(0, 255, 0),
 cv::Scalar(255, 100, 100),
 cv::Scalar(255, 0, 255),
 cv::Scalar(0, 255, 255)
 };

 cv::Mat img(500, 500, CV_8UC3);
 cv::RNG rng(12345);

 for(;;) {

 int k, clusterCount = rng.uniform(2, MAX_CLUSTERS+1);
 int i, sampleCount = rng.uniform(1, 1001);
 cv::Mat points(sampleCount, 1, CV_32FC2), labels;

 clusterCount = MIN(clusterCount, sampleCount);
 cv::Mat centers(clusterCount, 1, points.type());

 /* generate random sample from multigaussian distribution */
 for(k = 0; k < clusterCount; k++) {
 cv::Point center;
 center.x = rng.uniform(0, img.cols);
 center.y = rng.uniform(0, img.rows);
 cv::Mat pointChunk = points.rowRange(
 k*sampleCount/clusterCount,
 k == clusterCount - 1 ? sampleCount : (k+1)*sampleCount/clusterCount
);
 rng.fill(
 pointChunk,
 RNG::NORMAL,
 cv::Scalar(center.x, center.y),
 cv::Scalar(img.cols*0.05, img.rows*0.05)
);
 }

 randShuffle(points, 1, &rng);

 kmeans(
 points,
 clusterCount,
 labels,
 cv::TermCriteria(
 cv::TermCriteria::EPS | cv::TermCriteria::COUNT,
 10,
 1.0
),
 3,
 KMEANS_PP_CENTERS,
 centers
);

Legacy Routines in the ML Library | 791

20 This is an example of the legacy issue again. cv::kmeans() predates the formal creation of the ML library, and
so its prototype is in core.hpp rather than ml.hpp (as you probably imagined it would be).

 img = Scalar::all(0);

 for(i = 0; i < sampleCount; i++) {
 int clusterIdx = labels.at<int>(i);
 cv::Point ipt = points.at<cv::Point2f>(i);
 cv::circle(img, ipt, 2, colorTab[clusterIdx], cv::FILLED, cv::LINE_AA);
 }

 cv::imshow("clusters", img);

 char key = (char)waitKey();
 if(key == 27 || key == 'q' || key == 'Q') // 'ESC'
 break;
 }

 return 0;
}

In this code we used highgui to create a window output interface and include
core.hpp because it contains cv::kmeans().20 The basic operation of the program is to
first choose a number of clusters to generate, generate centers for those clusters, and
then generate a cloud of points around the generated center. We will then come back
and see whether cv::kmeans() can effectively rediscover this structure we put into
the sample data. In main(), we first do some minor housekeeping, like setting up the
coloring we will later use for displayed clusters. We then set up a main loop, which
will let users run over and over again, generating different sets of test data.

This loop begins by determining how many clusters there will be in the underlying
data and how many data points will be generated. Then for each cluster the center is
generated and points are generated from a Gaussian distribution around that center.
The points are then shuffled so that they will not be in cluster order.

At this point we turn the K-means algorithm loose on the data. In this example we
don’t search the possible cluster counts, we just tell cv::kmeans() how many clusters
there will be. The resulting labeling is computed and placed in labels.

The final for{} loop just draws the results. This is followed by deallocating the allo‐
cated arrays and displaying the results in the “clusters” image. Finally, we wait
indefinitely (cv::waitKey(0)) to allow the user to do another run or to quit via the
Esc key.

792 | Chapter 20: The Basics of Machine Learning in OpenCV

Mahalanobis Distance
We encountered the Mahalanobis distance earlier in Chapter 5 as a means of com‐
puting the distance between a point and a distribution center that was sensitive to the
shape of the distribution. In the context of the K-means algorithm, the concept of the
Mahalanobis distance can serve us in two different ways. The first application comes
from understanding the Mahalanobis distance from an alternative point of view in
which we regard it as measuring Euclidean distance on a deformed space. This allows
us to use what we know about the Mahalanobis distance to create a rescaling of data
that can substantially improve the performance of the K-means algorithm. The sec‐
ond application of the Mahalanobis distance is as a means of assigning novel data
points to the clusters defined by the K-means algorithm.

Using the Mahalanobis distance to condition input data
In Example 20-1, we mentioned briefly the possibility that the data might be arranged
in the space in a highly asymmetrical way. Of course, the entire point of using K-
means is to assert that the data is clustered in a nonuniform way and to try to dis‐
cover something about that clustering. However, there is an important distinction
between “asymmetrical” and “nonuniform.” If, for example, all of your data is spread
out a great distance in some dimensions and relatively little distance in others, then
the K-means algorithm will behave poorly. An example of such a situation is shown
in Figure 20-6.

Figure 20-6. The Mahalanobis computation allows us to reinterpret the data’s cova‐
riance as a “stretch” of the space: (a) the vertical distance between raw data sets is less
than the horizontal distance; (b) after the space is normalized for variance, the hori‐
zontal distance between data sets is less than the vertical distance

Such situations often arise simply because there are different underlying units to dif‐
ferent dimensions of a data vector. For example, if persons in a community are repre‐
sented by their height, age, and the total number of years of schooling they have had,
the simple fact that the units of height and age are different will result in a very differ‐

Legacy Routines in the ML Library | 793

ent dispersion of the data those dimensions. Similarly, age and years of schooling,
though they have the same units, have a naturally very different variance among nat‐
ural populations.

This example, however, suggests a simple technique that can be very helpful. This
technique is to look at the data set as a whole, and to compute the covariance matrix
for the entire data set. Once this is done, we can rescale the entire data set using that
covariance. By using such a technique, we can rescale the data in Figure 20-6(a) into
something more like in Figure 20-6(b).

Recall that we encountered the Mahalanobis distance in Chapter 5 when we looked at
the function cv::Mahalonobis(). The traditional use of the Mahalanobis distance is
to measure the distance of a point from a distribution in such a way that the distance
is measured in units of the distribution’s variance in the particular direction of the
point. (For those familiar with the concept of the Z-score from statistics, the Mahala‐
nobis distance is the generalization of the Z-score to multidimensional spaces.) We
compute the Mahalanobis distance using the inverse of the covariance of the distribu‐
tion:

Σi,j = E (X
→

i − μ→)(X
→

i − μ→)T = 1
N ∑

i
(X

→
i − μ→)(X

→
i − μ→)T

where E[·] is the “expectation operator.” The actual formula for the Mahalanobis dis‐
tance is then:

Dmahalanobis(x→ , y→) = (x→ − y→)T Σ−1(x→ − y→)

At this point, we can look at the situation in one of two ways: we can either say that
we would like to use the Mahalanobis distance rather than the Euclidean distance in
the K-means algorithm, or we can think of rescaling the data first and then using the
Euclidean distance in the rescaled space. The first is probably a more intuitive way to
look at things, but the second is much easier computationally—if only because we
don’t want to actually crack open and modify the nice K-means implementation that
is already provided for us. In the end, because the transformation is a linear one,
either interpretation is possible.

After a little thought, it should be clear that we can simply rescale the data with the
following operation:

D * = DΣ −1/2

794 | Chapter 20: The Basics of Machine Learning in OpenCV

21 If you are wondering why the inverse covariance is on the right in this formula, it is because the convention in
the ML library is to represent a data set D as N rows of points and M columns for each point. Thus the data
are rows and not columns.

22 DECOMP_SVD could also be used in this case, but it is somewhat slower and less accurate than DECOMP_EIG.
DECOMP_EIG, even if it is slower than DECOMP_LU, still should be used if the dimensionality of the space is much
smaller than the number of data points. In such a case the overall computing time will be dominated by
cv::calcCovarMatrix() anyway. So it may be wise to spend a little bit more time on computing inverse
covariance matrix more accurately (much more accurately, if the set of points is concentrated in a subspace of
a smaller dimensionality). Thus, DECOMP_EIG is usually the best choice for this task.

23 There is no general function in the library to compute this square root, but because the matrix Σ–1 is very well
behaved (as matrices go), the square root can be computed by first diagonalizing it, then taking the square
root of the eigenvalues individually, and then rotating back to the original coordinate frame using the same
eigenvectors you used to diagonalize it in the first place. (Not surprisingly this technique is called “The
Method of Diagonalization”).

24 The problem is that the odds of finding an extremely strange lizard that looks like a dinosaur are still much
better than the odds of finding a relatively normal dinosaur. This is because actual dinosaurs are much rarer
than lizards.

Here D* is the set of new data vectors we will use, and D is the original data. The fac‐
tor of Σ–1/2 is just the square root of the inverse covariance.21

In this case, we do not actually make direct use of cv::Mahalanobis(). Instead, we
compute the set covariance using the cv::calcCovarMatrix(), invert it with
cv::invert() (using cv::DECOMP_EIG22) and finally compute the square root.23

Using the Mahalanobis distance for classification
Given a set of cluster labels, from K-means clustering or any other method, we can
use those labels to attempt to guess what cluster some novel point most likely belongs
to. In the case where the clusters themselves are, or are thought to be, Gaussian dis‐
tributed, it makes sense to apply the concept of the Mahalanobis distance also to this
assignment problem.

The first step we need to take in order to make such assignments is to characterize
each cluster in terms of its mean and covariance. Once we have done this, we can
compute a Mahalanobis distance to each cluster center for any novel point.

From here you might guess that the point with the smallest Mahalanobis distance
would be the winner, but it is not quite that simple. This would be true if all of the
clusters had the same number of elements (or as a statistician would say, “if the prior
probability of being a member of each cluster is equal”).24

This distinction is succinctly captured by Bayes’ rule, which states (in words) that, for
two propositions A and B, the probability that A is true given B is (in general) not
equal to the probability that B is true given A. In equation form, this looks like:

Legacy Routines in the ML Library | 795

25 You will notice that P(x→) has conspicuously disappeared. This is because not only do we have no prior reason
to believe that any value of x→ would be more likely than any other (in the absence of a cluster assignment), but
also it would not even matter if that were true, because that factor would be common to all of the things we
were comparing.

P(A|B) ≠ P(B|A)

Instead, it says (again in words) that the probability that A is true given B multiplied
by the probability that B is true in the first place is equal to the probability that B is
true given A multiplied by the probability that A is true in the first place. In equation
form, this looks like:

P(A|B)P(B) = P(B|A)P(A)

If you are trying to figure out how to tie this back to our Mahalanobis distance prob‐
lem, remember that the Mahalanobis distance is telling us something about the prob‐
ability that a particular sample came from a particular cluster, but—and here is the
key point—that is the probability provided it came from that cluster at all. Seen a dif‐
ferent way, we want to know the probability that our point is in cluster C given its
value of x→ . But the Mahalanobis distance is telling us the opposite, namely the proba‐
bility of getting x→ if we are in cluster C. Here it is written out as an equation (Bayes’s
rule, slightly rearranged):

This means that in order to compare two Mahalanobis distances between two differ‐
ent clusters, we should take into account the sizes of the clusters. Given that the prob‐
ability is asserted to be Gaussian for each cluster, the figure of merit that we should be
comparing, called the likelihood, is:25

In this equation the ratio Nc divided by ND is the fraction of data points in cluster C
relative to the total number of data points. This ratio is the prior probability of cluster
C. The second term contains the inverse square root of the determinant of the cova‐
riance of cluster C, and the exponential factor that contains the squared Mahalanobis
distance.

796 | Chapter 20: The Basics of Machine Learning in OpenCV

Summary
In this chapter we started with a basic discussion of what machine learning is and
looked at which parts of that large problem space are addressed by the OpenCV
library and which are not. We looked at the distinction between training and test
data. We learned that generative models are those that attempt to find structure in
existing data without supervision or labeled training data, while discriminative mod‐
els are those that learn from examples and attempt to generalize from what they have
been shown. We then moved on to look at two very fundamental tools that are avail‐
able in the OpenCV library, K-means clustering and Mahalanobis distance. We saw
how these could be used to build simple models and solve interesting problems. We
note, in passing, that OpenCV now also supports deep neural networks, but that in
their current form they are in the experimental opencv_contrib. That code is
described in Appendix B (cnn_3dobj and dnn).

Exercises
1. If features in each data point vary widely in scale (say the first feature varies from

1 to 100 and the second feature varies from 0.0001 to 0.0002), explain whether
and why it would pose a problem for:
a. SVM
b. Decision trees
c. Back-propagation

2. One way of removing the scale differences across features is to normalize the
data. Two ways of doing this are to divide by the standard deviation of each fea‐
ture or to divide by the maximum minus the minimum value. For each method
of normalization, describe a set of data this would work well for and one that it
would not work well for.

3. Consider the case of rescaling the input data set using the Mahalanobis distance
before using the K-means algorithm. Prove that prescaling the data according to
the formula D * = DΣ−1/2 is exactly equivalent to modifying the algorithm to use the
Mahalanobis distance internally.

4. Consider trying to learn the next stock price from several past stock prices. Sup‐
pose you have 20 years of daily stock data. Discuss the effects of various ways of
turning your data into training and testing data sets. What are the advantages
and disadvantages of the following approaches?
a. Take the even-numbered points as your training set and the odd-numbered

points as your test set.
b. Randomly select points into training and test sets.

Summary | 797

c. Divide the data in two, where the first half is for training and the second half
for testing.

5. Divide the data into many small windows of several past points and one predic‐
tion point. Refer to Figure 20-3. Can you imagine conditions under which the
test set error would be lower than the training set error?

6. Figure 20-3 was drawn for a regression problem. Label the first point on the
graph A, the second point B, the third point A, the fourth point B, and so on.
Draw a separation line for these two classes (A and B) that shows:
a. bias
b. variance

7. Refer to Figure 20-4.
a. Draw the generic best-possible ROC curve.
b. Draw the generic worst-possible ROC curve.

8. Draw a curve for a classifier that performs randomly on its test data.
9. Consider variable importance.

a. If two features are exactly the same, will variable importance as described ear‐
lier find out whether one or both are important?

b. If not, what would fix the algorithm to detect that these two identical features
are either important or not?

798 | Chapter 20: The Basics of Machine Learning in OpenCV

1 Note that OpenCV is currently being extended to support deep neural networks; see Appendix B, repositories
cnn_3dobj and dnn. At the time of this writing, DNNs are emerging as a profoundly important tool for com‐
puter vision. However, their implementation in OpenCV is still under development, so they will not be cov‐
ered here.

CHAPTER 21

StatModel: The Standard Model for
Learning in OpenCV

In the previous chapter we discussed machine learning broadly and looked at just a
few basic algorithms that were implemented in the library long ago. In this chapter
we will look at several more modern techniques that will prove to be of very wide
application. Before we start on those, however, we will introduce cv::ml::StatMo
del, which forms the basis of the implementation for the interfaces to all of the more
advanced algorithms we will see in this chapter. Once armed with an understanding
of cv::ml::StatModel, we will spend the remainder of the chapter looking at various
learning algorithms available in the OpenCV library. The algorithms are presented
here in an approximately chronological order relative to their introduction into the
computer vision community.1

Common Routines in the ML Library
The contemporary routines in the ML library are implemented within classes that are
derived from the common base class cv::ml::StatModel. This base class defines the
interface methods that are universal to all of the available algorithms. Some of the
methods are declared in the base class cv::Algorithm, from which cv::ml::StatMo
del itself is derived. Here is the (somewhat abbreviated) cv::ml::StatModel base
class definition straight from the machine learning (ML) library:

799

// Somewhere above...
// namespace cv {
// namespace ml {

class StatModel : public cv::Algorithm {

public:

 /** Predict options */
 enum Flags {
 UPDATE_MODEL = 1,
 RAW_OUTPUT = 1,
 COMPRESSED_INPUT = 2,
 PREPROCESSED_INPUT = 4
 };

 virtual int getVarCount() const = 0; // number training samples
 virtual bool empty() const; // true if no data loaded

 virtual bool isTrained() const = 0; // true if the model is trained
 virtual bool isClassifier() const = 0; // true if the model is a classifier

 virtual bool train(
 const cv::Ptr<cv::ml::TrainData>& trainData, // data to be loaded
 int flags = 0 // (depends on model)
);

 // Trains the statistical model
 //
 virtual bool train(
 InputArray samples, // training samples
 int layout, // layout See ml::SampleTypes
 InputArray responses // responses associated with the training samples
);

 // Predicts response(s) for the provided sample(s)
 //
 virtual float predict(
 InputArray samples, // input samples, float matrix
 OutputArray results = cv::noArray(), // optional output results matrix
 int flags = 0 // (model-dependent)
) const = 0;

 // Computes error on the training or test dataset
 //
 virtual float calcError(
 const Ptr<TrainData>& data, // training samples
 bool test, // true: compute over test set
 // false: compute over training set
 cv::OutputArray resp // the optional output responses
) const;

800 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

2 In the distant past, there were two pairs of functions for reading and writing: save()/load() and write()/
read(), with the latter pair being lower-level functions that interacted with the now legacy CvFileStorage file
interface structure. That pair should now be considered deprecated, along with the structure they once
accessed, and the only interface that should be used in modern code is the save()/load() interface.

 // In addition, each class must implement static `create()` method with no
 // parameters or with all default parameter values.
 //
 // example:
 // static Ptr<SVM> SVM::create();
};

You will notice that cv::ml::StatModel inherits from cv::Algorithm. Though we
will not include everything from that class here, these are a few salient methods that
are likely to come up often in the context of cv::ml::StatModel and your usage of it:

// Somewhere above
// namespace cv:: {
// namespace ml:: {

class Algorithm {
...
public:

 virtual void save(
 const String& filename
) const;

 // Calling example: Ptr<SVM> svm = Algorithm::load<SVM>("my_svm_model.xml");
 //
 template<typename _Tp> static Ptr<_Tp> static load(
 const String& filename,
 const String& objname = String()
);

 virtual void clear();
...
}

The methods of cv::StatModel provide mechanisms for reading and writing trained
models from and to disk, and a method for clearing the data in the model. These
three actions are essentially universal.2 On the other hand, the routines for training
the algorithms and for applying them for prediction vary in interface from algorithm
to algorithm. This is natural because the training and prediction aspect of the differ‐
ent algorithms will have different capabilities and, at the very least, will require differ‐
ent parameters to be configured.

Common Routines in the ML Library | 801

Training and the cv::ml::TrainData Structure
The training and prediction methods shown in the cv::ml::StatModel prototype
will naturally vary from one learning technique to the next. In this section we will
look at how those methods are structured and how they are used.

Recall that there were two methods called train() in the cv::ml::StatModel proto‐
type. The first train() method takes the training data in the form of a
cv::ml::TrainData structure pointer and various algorithm-dependent training
flags. The second method is a shortcut variant that constructs that same training data
structure using the provided samples and the ground-truth responses directly. As we
will see, the cv::ml::TrainData interface allows us to prepare the data in some use‐
ful ways, so it is generally the more expressive way of training a model.

Constructing cv::ml::TrainData

The cv::ml::TrainData class allows you to package up your data, along with some
instructions about how it is to interpreted and used in training. In practice, this addi‐
tional information is extremely useful. Here is the create() method used to generate
a new cv::ml::TrainData object.

// Construct training data from the specified matrix of data points and responses.
// It's possible to use a subset of features (a.k.a. variables) and/or subset of
// samples; it's possible to assign weights to individual samples.
//
static cv::Ptr<cv::ml::TrainData> cv::ml::TrainData::create(
 cv::InputArray samples, // Array of samples (CV_32F)
 int layout, // row/col (see ml::SampleTypes)
 cv::InputArray responses, // Float array of responses
 cv::Inputarray varIdx = cv::noArray(), // Specifies training variables
 cv::InputArray sampleIdx = cv::noArray(), // Specifies training samples
 cv::InputArray sampleWeights = cv::noArray(), // Optional sample wts (CV_32F)
 cv::InputArray varType = cv::noArray() // Optional, types for each
 // input and output
 // variable (CV_8U)
);

This method constructs training data from the preallocated arrays of training sam‐
ples and the associated responses. The matrix of samples must be of type CV_32FC1
(32-bit, floating-point, and single-channel). Though the cv::Mat class is clearly capa‐
ble of representing multichannel images, the machine learning algorithms take only a
single channel—that is, just a two-dimensional array of numbers. Typically, this array
is organized as rows of data points, where each “point” is represented as a vector of
features. Hence, the columns contain the individual features for each data point and
the data points are stacked to yield the 2D single-channel training matrix. To belabor
the topic: the typical data matrix is thus composed of (rows, columns) = (data points,
features).

802 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

3 Note that this is different than one input whose value is binary encoded. The value 0100000b = 32 is very
different than a seven-dimensional input vector whose value is [0, 1, 0, 0, 0, 0, 0].

Some of the algorithms can handle transposed matrices directly. The parameter lay
out specifies how the data is stored:

layout = cv::ml::ROW_SAMPLE

Means that the feature vectors are stored as rows (this is the most common
layout)

layout = cv::ml::COL_SAMPLE

Means that the feature vectors are stored as columns

You may well ask: What if my training data is not floating-point numbers but instead
is letters of the alphabet or integers representing musical notes or names of plants?
The answer is: Fine, just turn them into unique 32-bit floating-point numbers when
you fill the cv::Mat. If you have letters as features or labels, you can cast the ASCII
character to floats when filling the data array. The same applies to integers. As long as
the conversion is unique, things should work out fine. Remember, however, that
some routines are sensitive to widely differing variances among features. It’s gener‐
ally best to normalize the variance of features, as we saw in the previous section. With
the exception of the tree-based algorithms (decision trees, random trees, and boost‐
ing) that support both categorical and ordered input variables, all other OpenCV ML
algorithms work only with ordered inputs. A popular technique for making ordered-
input algorithms work with categorical data is to represent them in “1-radix” or “1-
hot” notation; for example, if the input variable color may have seven different
values, then it may be replaced by seven binary variables, where one and only one of
the variables may be set to 1.3

The responses parameter will contain either categorical labels such as poisonous or
nonpoisonous, in the case of mushroom identification, or are regression values
(numbers) such as body temperatures taken with a thermometer. The response val‐
ues, or “labels,” are usually a one-dimensional vector with one value per data point.
One important exception is neural networks, which can have a vector of responses
for each data point. For categorical responses, the response value type must be an
integer (CV_32SC1); for regression problems, the response should be of 32-bit
floating-point type (CV_32FC1). In the special case of neural networks, as alluded to
before, it is common to put a little twist on this, and actually perform categorization
using a regression framework. In this case, the 1-hot encoding mentioned earlier is
used to represent the various categories and floating-point output is used for all of
the multiple outputs. In this case the network is, in essence, being trained to regress
to something like the probability that the input is in each category.

Common Routines in the ML Library | 803

4 To be clear, this means the number of input features, not the number of input data points.

Recall, however, that some algorithms can deal only with classification problems and
others only with regression, while still others can handle both. In this last case, the
type of output variable is passed either as a separate parameter or through the var
Type vector. This vector can be either a single column or a single row, and must be of
type CV_8UC1 or cv::S8C1. The number of entries in varType is equal to the number
of input variables (N f) plus the number of responses (typically one).4 The first N f

entries will tell the algorithm the type of the corresponding input feature, while the
remainder indicate the types of the output. Each entry in varType should be set to
one of the following values:

cv::ml::VAR_CATEGORICAL

Means that the output values are discrete class labels

cv::ml::VAR_ORDERED (= cv::ml::VAR_NUMERICAL)

Means that the output values are ordered; that is, different values can be com‐
pared as numbers and so this is a regression problem

Algorithms of the regression type can handle only ordered-input
variables. Sometimes it is possible to make up an ordering for cate‐
gorical variables as long as the order is kept consistent, but this can
sometimes cause difficulties for regression because the pretend
“ordered” values may jump around wildly when they have no phil‐
osophical basis for their imposed order.

Many models in the ML library may be trained on a selected feature subset and/or on
a selected sample subset of the training set. To make this easier for the user, the
cv::ml::TrainData::create() method includes the vectors varIdx and sampleIdx
as parameters. The varIdx vector can be used to identify specific variables (features)
of interest, while sampleIdx can identify specific data points of interest. Either of
these may simply be omitted or set to cv::noArray() (the default value) to indicate
that you would like to use “all of the features” or “all of the points.” Both vectors are
either provided as lists of zero-based indices or as masks of active variables/samples,
where a nonzero value signifies active. In the former case, the vector must be of type
CV_32SC1 and may have any length. In the latter case, the array must be of type
CV_8UC1 and must have the same length as the number of features or samples (as
appropriate). The parameter sampleIdx is particularly helpful when you’ve read in a
chunk of data and want to use some of it for training and some of it for testing
without having to first break it into two different vectors.

804 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

5 That is, the ROW_SAMPLE layout is assumed.

6 “Pretty much” means that there is a funny exception where, if the output variable is always an integer, then it
will still be considered categorical.

Constructing cv::ml::TrainData from stored data
Often, you will have data already saved on disk. If this data is in CSV (comma-
separated value) format, or you can put it into this format, you can create a new
cv::ml::TrainData object from that CSV file using cv::ml::TrainData::load
FromCSV().

// Load training data from CSV file; part of each row may be treated as the
// scalar or vector responses; the rest are input values.
//
static cv::Ptr<cv::ml::TrainData> cv::ml::TrainData::loadFromCSV(
 const String& filename, // Input file name
 int headerLineCount, // Ignore this many lines
 int responseStartIdx = -1, // Idx of first out var (-1=last)
 int responseEndIdx = -1, // Idx of last out var plus one
 String& varTypeSpec = String(), // Optional, specifies var types
 char delimiter = ',', // Char used to separate values
 char missch = '?' // Used for missing data in CSV
);

The CSV reader skips the first headerLineCount lines and then reads the data. The
data is read row by row5 and individual features are separated based on commas. If
some other separator is used in the CSV file, the delimeter argument may be used to
replace the default comma (e.g., by a space or semicolon). Often, the responses will be
found in the leftmost or the rightmost column, but the user may specify any column
(or a range of columns) as necessary. The responses will be drawn from the interval
[responseStartIdx, responseEndIdx), inclusive of responseStartIdx but exclusive
of responseEndIdx. The variable types, if required, are specified via single compact
text string, vatTypeSpec. For example:

"ord[0-9,11]cat[10]"

means that the data has 12 columns, the first 10 columns contain ordered values,
then there is column of categorical values, and then there is yet another column of
ordered values.

If you do not provide a variable type specification, then the reader tries to “do the
right thing” by following a few simple rules. It considers input variables to be ordered
(numerical) unless they clearly contain non-numerical values (e.g., "dog", "cat"), in
which case they are made categorical. If there is only one output variable, then it will
follow pretty much the same rule,6 but if there are multiple, then they are always con‐
sidered ordered.

Common Routines in the ML Library | 805

7 Various algorithms, such as decision tree and naïve Bayes, handle missing values in different ways. Decision
trees use alternative splits (called “surrogate splits” by Breiman [Breiman84]), while the naïve Bayes algorithm
infers the values. Unfortunately, the current implementation of ML decision trees/random trees in OpenCV
is not yet able to handle such missing measurements.

It is also possible to specify a special character, using the missch argument, to be used
for missing measurements. However, it is important to know that some of the algo‐
rithms cannot handle such missing values. In such cases missing points should be
interpolated or otherwise handled by the user before training or the corrupted
records should be rejected in advance.7

The problem of missing data comes up in real world problems
quite often. For example, when the authors were working with
manufacturing data, some measurement features would end up
missing during the time that workers took coffee breaks. Some‐
times experimental data simply is forgotten, such as forgetting to
take a patient’s temperature one day during a medical experiment.

Secret sauce and cv::ml::TrainDataImpl

Were you to go to the source code and look at the class definition for cv::ml::Train
Data, you would see that it is full of pure virtual functions. In fact, it is just an inter‐
face, from which you can derive and create your own training data containers. This
fact immediately leads to two obvious questions: why would you want to do this, and
what exactly is going on inside of cv::ml::TrainData::create() if cv::ml::Train
Data is a virtual class type?

As for the why, training data can be very complex in real-life situations and the data
itself can be very large. In many cases it is necessary to implement more sophisticated
strategies for managing the data and for storing it. For these reasons, you might want
to implement your own training data container that, for example, uses a database for
the management of the bulk of the available data. Using the cv::ml::TrainData
interface, you can implement your own data container and the available algorithms
will run on that data transparently.

For the second question, the how, the answer is that the cv::ml::TrainData::cre
ate() method actually creates an object of a different class than it appears to. There is
a class called cv::ml::TrainDataImpl that is essentially the default implementation
of a data container. This object manages the data just the way you would expect—in
the form of a few arrays inside that hold the various things you think you have put in
there.

806 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

In fact, the existence of this class will be largely invisible to you unless (until) you
start looking at the library source code directly. Of course, if you do find yourself
wanting to build your own cv::ml::TrainData–derived container class, it will be
very useful to look at the implementation of cv::ml::TrainDataImpl in .../opencv/
modules/ml/src/data.cpp.

Splitting training data
In practice, when you are training a machine learning system, you don’t want to use
all of the data you have to train the algorithm. You will need to hold some back to test
the algorithm when it is done. If you don’t do this, you will have no way of estimating
how your trained system will behave when presented with novel data. By default,
when you construct a new instance of TrainData, it’s all considered available to be
used for training data, and none of it is held back for such testing. Using
cv::ml::TrainData::setTrainTestSplit(), you can split the data into a training
and a test part, and just use the training part for training your model. Using just this
training data is the automatic behavior of cv::ml::StatModel::train(), assuming
you have marked what data you want it to use.

// Splits the training data into the training and test parts
//
void cv::ml::TrainData::setTrainTestSplit(
 int count,
 bool shuffle = true
);

void cv::ml::TrainData::setTrainTestSplitRatio(
 double ratio,
 bool shuffle = true
);

void cv::ml::TrainData::shuffleTrainTest();

The three members of cv::ml::TrainData that will help you out with this are: set
TrainTestSplit(), setTrainTestSplitRatio(), and shuffleTrainTest(). The first
takes a count argument that specifies how many of the vectors in the data set should
be labeled as training data (with the remainder being test data). Similarly the second
function does the same thing, but allows you to specify the ratio of points (e.g., 0.90 =
90%) that will be labeled as training data. Finally, the third “shuffle” method will ran‐
domly assign the train and test vectors (while keeping the number of each fixed).
Either of the first two methods supports a shuffle argument. If true, then the test
and train labels will be assigned randomly; otherwise, the train samples will start
from the beginning and the test samples will be those vectors thereafter.

Note that internally, the default implementation IMPL has three separate indices that
do similar things: the sample index, the train index, and the test index. Each is a list of
indices into the overall array of samples in the container that indicates which samples

Common Routines in the ML Library | 807

are to be used in a particular context. The sample index is an array listing all samples
that will be used. The train index and test index are similar, but list which samples are
for training and which are for testing. As implemented, these three indices have a
relationship that some might find unintuitive.

If the train index is defined, it should always be the case that the test index is defined.
This is the natural result of the use of the functions just described to create these
internal indices. If either (both) is defined, then its behavior will always define how
train() responds; this is regardless of anything that might be in the sample index.
Only when these two indices are undefined will the sample index be used. In that
case, all data indicated by the sample index will be assumed available for training, and
no data will be marked as test data.

Accessing cv::ml::TrainData
Once the training data is constructed, it’s possible to retrieve its parts, with or
without preprocessing, using the methods described next. The function
cv::ml::TrainData::getTrainSamples() retrieves a matrix only of the training
data.

// Retrieve only the active training data into a cv::Mat array.
//
cv::Mat cv::ml::TrainData::getTrainSamples(
 int layout = ROW_SAMPLE,
 bool compressSamples = true,
 bool compressVars = true
) const;

When compressSamples or compressVars are true, the method will retain only rows
or columns set by sampleIdx and varIdx, respectively (typically at construction
time). The method also transposes the data if the desired layout is different from the
original one. If the sample index or the train index is defined, then only the indicated
samples will be returned. Recall, however, that, if both are defined, it will be the train
index that determines what is returned.

Similarly, the cv::ml::TrainData::getTrainResponses() method extracts only the
active response vector elements.

// Return the train responses (for the samples selected using sampleIdx).
//
cv::Mat cv::ml::TrainData::getTrainResponses() const;

As with cv::ml::TrainData::getTrainSamples(), if the sample index or the train
index is defined, then only the indicated samples will be returned. Recall, however,
that, if both are defined, it will be the train index that determines what is returned.

Similarly, there are two functions—cv::ml::TrainData::getTestSamples() and
cv::ml::TrainData::getTestResponses()—that return the analogous arrays con‐

808 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

8 The var_idx parameter you used with train() is “remembered” and applied to extract only the necessary
components from the input sample when you use the predict() method. As a result, the number of columns
in the sample should be the same as were in train_data, even if you are using var_idx to ignore some of the
columns.

structed from only the test samples. In this case, however, if the test index is not
defined, then an empty array will be returned.

Finally, there are accessors that will simply tell you how many of various kinds of
samples are in the data container. We list them here.

int getNTrainSamples() const; // Number of samples indicated by train idx
 // or total samples if samples idx is not defined

int getNTestSamples() const; // Number of samples indicated by test idx
 // or zero test idx is not defined

int getNSamples() const; // Number of samples indicated by samples idx
 // or total samples if samples idx is not defined

int getNVars() const; // Number of features indicated by variable idx
 // or total samples if variable idx is not defined

int getNAllVars() const; // Number of features total

Prediction
Recall from the prototype that the general form of the predict() method is as
follows:

float cv::ml::StatModel::predict(
 cv::InputArray samples, // input samples, float matrix
 cv::OutputArray results = cv::noArray(), // optional output matrix of results
 int flags = 0 // (model-dependent)
) const;

This method is used to predict the response for a new input data vector. When you
are using a classifier, predict() returns a class label. For the case of regression, this
method returns a numerical value. Note that the input sample must have as many
components as the train_data that was used for training.8 In general, samples will
be an input floating-point array, with one sample per row, and results will be one
result per row. When only a single sample is provided, the predicted result will be
returned form the predict() function. Keep in mind, however, that in some cases,
these general behaviors will be slightly different for any particular derived classifier.
Additional flags are algorithm-specific and allow for such things as missing feature
values in tree-based methods. The function suffix const tells us that prediction does
not affect the internal state of the model. This method is thread-safe and can be run

Common Routines in the ML Library | 809

in parallel, which is useful for web servers performing image retrieval for multiple cli‐
ents and for robots that need to accelerate the scanning of a scene.

In addition to being able to generate a prediction, we can compute the error of the
model over the training or test data. When the model is being used for classification,
this is the percentage of incorrectly classified samples; when we are using the model
for regression, this is the mean squared error. The method that does it is called
cv::ml::StatModel::calcError():

float cv::ml::StatModel::calcError(
 const cv::Ptr<cv::ml::TrainData>& data, // training samples
 bool test, // false: compute over training set
 // true: compute over test set
 cv::OutputArray resp // the optional output responses
) const;

In this case, we typically pass in the same cv::ml::TrainData data container that we
used for training. We then use the test argument to determine if we want to know
how well the trained algorithm did on either the training data used (test set to
false) or on the test data that we withheld from the training process (test set to
true). Finally, we can use the resp array to collect the responses to the individual
vectors tested. Though this is optional, the argument is not. If you are not interested
in the output responses, you must pass cv::noArray() here.

We are now ready to move on to the ML library proper with the normal Bayes classi‐
fier, after which we will discuss decision-tree algorithms (decision trees, boosting,
random trees, and Haar cascade). For the other algorithms we’ll provide short
descriptions and usage examples.

Machine Learning Algorithms Using cv::StatModel
Now that we have a good feel for how the ML library in OpenCV works, we can
move on to how to use individual learning methods. This section looks briefly at
eight machine learning routines, that latter four of which have recently been added to
OpenCV. Each implements a well-known learning technique, by which we mean that
a substantial body of literature exists on each of these methods in books, published
papers, and on the Internet. In time, it is expected that more new algorithms will
appear.

Naïve/Normal Bayes Classifier
Earlier, we looked at some legacy routines from before the machine learning library
was systematized; now we will look at a simple classifier that uses the new
cv::ml::StatModel interface introduced in this chapter. We’ll begin with OpenCV’s
simplest supervised classifier, cv::ml::NormalBayesClassifier, which is alterna‐
tively known as a normal Bayes classifier or a naïve Bayes classifier. It’s “naïve”

810 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

9 For an accessible introduction to the topic see, for example, [Neapolitan04]. For a detailed discussion of the
topic of probabilistic graphical models generally, see, for example, [Koller09].

because, in its mathematical implementation, it assumes that all the features we
observe are independent variables from one another (even though this is seldom
actually the case). For example, finding one eye usually implies that another eye is
lurking nearby; these are not uncorrelated observations. However, it is often possible
to ignore this correlation in practice and still get good results. Zhang discusses possi‐
ble reasons for the sometimes surprisingly good performance of this classifier
[Zhang04]. Naïve Bayes is not used for regression, but it is an effective classifier that
can handle multiple classes, not just two. This classifier is the simplest possible case of
what is now the large and growing field of Bayesian networks, or “probabilistic
graphical models.”9

By way of example, consider the case in which we have a collection of images, some
of which are images of faces, while others are images of other things (maybe cars and
flowers). Figure 21-1 portrays a model in which certain measureable features are
caused to exist if the object we are looking at is, in fact, a face. In general, Bayesian
networks are causal models. In the figure, facial features in an image are asserted to
be caused by (or not caused by) the existence of an object, which may (or may not) be
a face. Loosely translated into words, the graph in the figure says, “An object, which
may be of type ‘face’ or of some other type, would imply either the truth of falsehood
of five additional assertions: ‘there is a left eye,’ ‘there is a right eye,’ etc., for each of
five facial features.” In general, such a graph is normally accompanied by additional
information that tells us the possible values of each node and the actual probabilities
of each value in each bubble as a function of the values of the nodes that have arrows
pointing into the bubble. In our case, the node O can take values “face,” “car,” or
“flower,” and the other five nodes can take the values present or absent. The proba‐
bilities for each feature, given the nature of the object, we will learn from data.

Note that this is precisely where the “uncorrelated” nature of the
graph comes in; specifically, the probability that there is a nose
depends only on whether the object is a face, and is independent
(or at least is asserted to be independent) of whether or not there is
a mouth, a hairline, and so on. As a result, there are a lot fewer
combinations of cases to learn, because everything we care about
essentially factorizes into the question of how each feature is statis‐
tically related to the object’s presence. This factorization is the pre‐
cise meaning of uncorrelated.

Machine Learning Algorithms Using cv::StatModel | 811

10 More generically, a model is said to be generative if an entire synthetic data set can be produced from it. In
this context the opposite of generative is discriminative. A discriminative model is any model that can tell you
something about any data point provided to it, but cannot be used to synthesize data.

11 Generating a face would be silly with the naïve Bayes algorithm because it assumes independence of features.
But a more general Bayesian network can easily build in feature dependence as needed.

12 Recall that we first encountered Bayes’ rule in Chapter 20 when we discussed the utility of the Mahalanobis
distance in the context of K-means classification.

Figure 21-1. A (naïve) Bayesian network, where the lower-level features are caused by
the presence of an object (such as a face)

In use, the object variable in a naïve Bayes classifier is usually a hidden variable and
the features—via image processing operations on the input image—constitute the
observed evidence that the value of the object variable is of whatever type (i.e.,
“face”). Models such as this are called generative models because the object causally
generates (or fails to generate) the face features.10 Because it is generative, after train‐
ing, we could instead start by assuming the value of the object node is “face” and then
randomly sample what features are probabilistically generated given that we have
assumed a face to exist.11 This top-down generation of data with the same statistics as
the learned causal model is a useful capability. For example, one might generate faces
for computer graphics display, or a robot might literally “imagine” what it should do
next by generating scenes, objects, and interactions. In contrast to Figure 21-1, a dis‐
criminative model would have the direction of the arrows reversed.

Bayesian networks, in their generality, are a deep field and initially can be a difficult
topic. However, the naïve Bayes algorithm derives from a simple application of Bayes’
rule.12 In this case, the probability (denoted p) that an object is a face, given that the
features are found (denoted, left to right in Figure 21-1, by LE, RE, N, M, and H) is:

812 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

In words, the components of this equation are typically read as:

posterior probability = likelihood * prior probability
evidence

The significance of this equation is that, in practice, we compute some evidence and
then decide what object caused it (not the other way around). Since the computed
evidence term is the same for any object, we can ignore that term in comparisons.
Said another way, if we have many object types then we need only find the one with
the maximum numerator. The numerator is exactly the joint probability of the model
with the data: p(O=“face”, LE, RE, N, M, H).

Up to this point, we have not really used the “naïve” part of the naïve Bayes classifier.
So far, these equations would be true for any Bayesian classifier. In order to make use
of the assumption that the different features are statistically independent of one
another (recall that this is the primary informative content of the graph in
Figure 21-1), we now use the chain rule for probability to derive the joint probability:

Finally, when we apply our assumption of independence of features, the conditional
features drop out. For example, the probability of a nose, given that the object is a
face, and that we observe both a left eye and a right eye (i.e.,
p(N |O = " face " , LE , RE)) is, by our assumption, equal to the probability of a nose
given just by the fact of a face being present: p(N |O = " face "). Similar logic applies
to every term on the righthand side of the preceding equation, with the result that:

So, generalizing face to “object” and our list of features to “all features,” we obtain the
reduced equation:

p(object, all features) = p(object) Π
i=1

all features
p(feature

i | object)

Machine Learning Algorithms Using cv::StatModel | 813

To use this as an overall classifier, we learn models for the objects that we want. In
run mode we compute the features and find particular objects that maximize this
equation. Typically, we then test to see whether the probability for that “winning”
object is over a given threshold. If it is, then we declare the object to be found; if not,
we declare that no object was recognized.

If (as frequently occurs) there is only one object of interest, then
you might ask: “The probability I’m computing is the probability
relative to what?” In such cases, there is always an implicit second
object—namely, the background—which is everything that is not
the object of interest that we’re trying to learn and recognize.

In practice, learning the models is easy. We take many images of the objects; we then
compute features over those objects and compute the fraction of how many times a
feature occurred over the training set for each object. In general, if you don’t have
much data, then simple models such as naïve Bayes will tend to outperform more
complex models, which will “assume” too much about the data (bias).

The naïve/normal Bayes classifier and cv::ml::NormalBayesClassifier
The following is the class definition for the normal Bayes classifier. Note that the
class name cv::ml::NormalBayesClassifier is actually another layer of interface
definition, while cv::ml::NormalBayesClassifierImpl is the name of the actual
class that implements the normal Bayes classifier. For convenience, this definition
lists some important inherited methods as comments.

// Somewhere above...
// namespace cv {
// namespace ml {
//
class NormaBayesClassifierImpl : public NormaBayesClassifier {
 // cv::ml::NormaBayesClassifier is derived
 // from cv::ml::StatModel
public:

 ...

 float predictProb(
 InputArray inputs,
 OutputArray outputs,
 OutputArray outputProbs,
 int flags = 0
);

 ...

814 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

13 Note that you can pass cv::noArray() for resultProbs if you don’t need the probabilities. In fact,
cv::ml::NormalBayesClassifier::predict() is just a wrapper around predictProb() that does exactly
this.

 // From class NormaBayesClassifier
 //
 // Ptr<NormaBayesClassifier> NormaBayesClassifier::create(); // constructor

};

The training method for the normal Bayes classifier, inherited from cv::ml::StatMo
del, is:

bool cv::ml::NormalBayesClassifier::train(
 const Ptr<cv::ml::TrainData>& trainData, // your data
 int flags = 0 // 0=new data or UPDATE_MODEL=add
);

The flags parameter may be 0 or include the cv::ml::StatModel::UPDATE_MODEL
flag, which means that the model needs to be updated using the additional training
data rather than retrained from scratch.

The cv::NormalBayesClassifier implements the inherited predict() interface
described in cv::ml::StatModel, which computes and returns the most probable
class for its input vectors. If more than one input data vector (row) is provided in the
samples matrix, the predictions are returned in corresponding rows of the results
vector. If there is only a single input in samples, then the resulting prediction is also
returned as a float value by the predict() method and the results array may be set
to cv::noArray().

float cv::ml::NormalBayesClassifier::predict(
 cv::InputArray samples, // input samples, float matrix
 cv::OutputArray results = cv::noArray(), // optional output results matrix
 int flags = 0 // (model-dependent)
) const;

Alternatively, the normal Bayes classifier also offers the method predictProb(). This
method takes the same arguments as cv::ml::NormalBayesClassifier::predict(),
but also the arrray resultProbs. This is a floating-point matrix of number_of_sam
ples × number_of_classes size, where the computed probabilities (that the corre‐
sponding samples belong to the particular classes) will be stored.13 The format for this
prediction method is:

float cv::ml::NormalBayesClassifier::predictProb(// prob if single sample
 InputArray samples, // one sample per row
 OutputArray results, // predictions, one per row
 OutputArray resultProbs, // row=sample, column=class

Machine Learning Algorithms Using cv::StatModel | 815

14 Leo Breiman et al., Classification and Regression Trees (Belmont, CA: Wadsworth, 1984).

15 Clearly, these two decisions are entirely arbitrary. However, not sticking to them is a good way to do nothing
useful while really confusing people who have experience with decision trees.

 int flags = 0 // 0 or StatModel::RAW_OUTPUT
) const;

Though the naïve Bayes classifier is extremely useful for small data sets, it does not
generally perform well when the data has a great degree of structure. With this in
mind, we move next to a discussion of tree-based classifiers, which can dramatically
outperform something as simple as the naïve Bayes classifier, particularly when suffi‐
cient data is present.

Binary Decision Trees
We will go through decision trees in detail, since they are highly useful and use most
of the functionality in the machine learning library (and thus serve well as an instruc‐
tional example more generally). Binary decision trees were invented by Leo Breiman
and colleagues,14 who named them classification and regression trees (CART). This is
the decision tree algorithm that OpenCV implements. The gist of the algorithm is to
define what is called an impurity metric relative to the data in every node of a tree of
decisions, and to try to minimize the impurity with those decisions. When using
CART for regression to fit a function, one often uses the sum of squared differences
between the true values and the predicted values; thus, minimizing the impurity
means making the predicted function more similar to the data. For categorical labels,
one typically defines a measure that is minimal when most values in a node are of the
same class. Three common measures to use are entropy, Gini index, and misclassifica‐
tion (all described in this section). Once we have such a metric, a binary decision tree
searches through the feature vector to find which feature, combined with which
threshold for the value of that feature, most “purifies” the data. By convention, we say
that features above the threshold are true and that the data thus classified will branch
to the left; the other data points branch right.15 This procedure is then used recur‐
sively down each branch of the tree until the data is of sufficient purity at the leaves
or until the number of data points in a node reaches a set minimum. Figure 21-2
shows an example.

816 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

Figure 21-2. In this example, a hypothetical group of 100 laptop computers is analyzed
and the primary factors determining failure rate are used to build the classification
tree; all 100 computers are accounted for by the leaf nodes of the tree

The equations for several available definitions of node impurity i(N) are given next.
Different definitions are suited to the distinct problem cases, and for regression ver‐
sus classification.

Regression impurity
For regression or function fitting, the equation for node impurity is simply the square
of the difference in value between the node value y and the data value x. We want to
minimize:

i(N) = Σ
j
(y j − x j)2

Classification impurity
For classification, decision trees often use one of three methods: entropy impurity,
Gini impurity, or misclassification impurity. For these methods, we use the notation
P(ωi) to denote the fraction of patterns at node N that are in class ωi. Each of these
impurities has slightly different effects on the splitting decision. Gini is the most
commonly used, but all the algorithms attempt to minimize the impurity at a node.

Machine Learning Algorithms Using cv::StatModel | 817

Figure 21-3 graphs the impurity measures that we want to minimize. In practice, it is
best to just try each impurity to determine on a validation set which one works best.

Figure 21-3. Decision tree impurity measures

Entropy impurity:

i(N) = Σ
j
P(ω j)logP(ω j)

Gini impurity:

i(N) = Σ
j
1 − maxP(ω j)

Misclassification impurity:

i(N) = Σ
j
P(ωj)P(ωj)

Decision trees are perhaps the most widely used classification technology. This is due
to their simplicity of implementation, ease of interpretation of results, flexibility with
different data types (categorical, numerical, unnormalized, and mixes thereof), ability
to handle missing data through surrogate splits, and natural way of assigning impor‐
tance to the data features by order of splitting. Decision trees form the basis of other
algorithms such as boosting and random trees, which we will discuss shortly.

818 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

OpenCV implementation

The following is the abbreviated declaration of cv::ml::DTrees. The train() meth‐
ods are just derived from the base class; most of what we need in the definition is how
the parameters to the model are set and loaded.

// Somewhere above...
// namespace cv {
// namespace ml {
//
class DTreesImpl : public Dtrees { // cv::ml::DTrees is derived
 // from cv::ml::StatModel
public:

 // (Inherited from cv::ml::DTrees)
 //
 //enum Flags {
 // PREDICT_AUTO = 0,
 // PREDICT_SUM = (1<<8),
 // PREDICT_MAX_VOTE = (2<<8),
 // PREDICT_MASK = (3<<8)
 //};

 int getCVFolds() const; // get num cross validation folds
 int getMaxCategories() const; // get max number of categories
 int getMaxDepth() const; // get max tree depth
 int getMinSampleCount() const; // get min sample count
 Mat getPriors() const; // get priors for categories
 float getRegressionAccuracy() const; // get required regression acc.
 bool getTruncatePrunedTree() const; // get to truncate pruned trees
 bool getUse1SERule() const; // get for use 1SE rule in pruning
 bool getUseSurrogates() const; // get to use surrogates

 void setCVFolds(int val); // set num cross validation folds
 void setMaxCategories(int val); // set max number of categories
 void setMaxDepth(int val); // set max tree depth
 void setMinSampleCount(int val); // set min sample count
 void setPriors(const cv::Mat &val); // set priors for categories
 void setRegressionAccuracy(float val); // set required regression acc.
 void setTruncatePrunedTree(bool val); // set to truncate pruned trees
 void setUse1SERule(bool val); // set for use 1SE rule in pruning
 void setUseSurrogates(bool val); // set to use surrogates

 ...

 // Experts can use these, but non-experts can ignore them.
 //
 const std::vector<Node>& getNodes() const;
 const std::vector<int>& getRoots() const;
 const std::vector<Split>& getSplits() const;
 const std::vector<int>& getSubsets() const;

Machine Learning Algorithms Using cv::StatModel | 819

 ...

 // From class DTrees
 //
 //Ptr<DTrees> DTrees::create(); // The algorithm "constructor",
 // // returns Ptr<DTreesImpl>

};

First of all, you might have noticed that the name is plural: DTrees. This is because in
computer vision it’s not standalone decision trees that are primarily used, but rather
ensembles of decision trees—that is, collections of decision trees that produce some
joint decision. Two such popular ensembles, implemented in OpenCV and discussed
later in this chapter, are RTrees (random trees) and Boost (boosting). Both share a lot
of internal machinery and so DTrees is a sort of base class that, in our current case,
can be viewed as an ensemble consisting of a single tree.

The second thing you might have noticed is that again, as we saw with the data con‐
tainer cv::ml::TrainData, these prototypes are mostly pure virtual. This is essen‐
tially the same thing again. There is actually a hidden class called
cv::ml::DTreesImpl that is derived from cv::ml::DTrees and that contains all of
the default implementation. The bottom line is that you can effectively ignore the fact
that those functions are pure virtual in the preceding class definition. If, however, at
some point you would like to go and look at the default implementation, you will
need this information in order to find the member functions you want in .../
modules/ml/src/tree.cpp.

Once you have constructed a cv::ml::DTrees object using cv::ml::DTrees::cre
ate(), you will need to configure the various runtime parameters. You can do this
one of two ways. You will need to construct a structure that contains the needed
parameters to configure the tree. This structure is called cv::ml::TreeParams. The
salient parts of its definition are given next.

You will notice that you can create the structure either with the form of its construc‐
tor that has an argument for every component, or you can just create it using the
default constructor—in which case everything will be set to default values—and then
use individual accessors to set the values you want to customize.

Table 21-1 contains a brief description of the components of cv::ml::TreeParams(),
their default values, and their meanings.

820 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

16 More detail on categorical versus ordered splits: whereas a split on an ordered variable has the form “if x < a
then go left, else go right,” a split on a categorical variable has the form “if xε{v1, v2, v3, … , vk } then go left, else
go right,” where the vi are some possible values of the variable. Thus, if a categorical variable has N possible
values then, in order to find a best split on that variable, one needs to try 2N – 2 subsets (empty and full
subsets are excluded). Thus, an approximate algorithm is used whereby all N values are grouped into K ≤
(max_categories) clusters (via the K-means algorithm) based on the statistics of the samples in the currently
analyzed node. Thereafter, the algorithm tries different combinations of the clusters and chooses the best
split, which often gives quite a good result. Note that for the two most common tasks, two-class classification
and regression, the optimal categorical split (i.e., the best subset of values) can be found efficiently without
any clustering. Hence, the clustering is applied only in n > 2-class classification problems for categorical vari‐
ables with N > (max_categories) possible values. Therefore, you should think twice before setting max_cate
gories to anything greater than 20, which would imply more than a million operations for each split!

Table 21-1. Arguments for cv::ml::TreeParams() constructor and their meanings

Params() argument Value for default
constructor

Definition

maxDepth INT_MAX Tree will not exceed this depth, but may be less deep.
minSampleCount 10 Do not split a node if there are fewer than this number of samples at

that node.
regressionAccuracy 0.01f Stop splitting if difference between estimated value and value in the

train samples is less than regressionAccuracy.
useSurrogates false Allow surrogate splits to handle missing data. [Not yet implemented.]
maxCategories 10 Limits the number of categorical values before which the decision tree

will precluster those categories.
CVFolds 10 If (CVFolds > 1) then prune the decision tree using K-fold cross-

validation where K is equal to CVFolds.
use1SERule true true for more aggressive pruning. Resulting tree will be smaller, but

less accurate. This can help with overfitting, however.
truncatePrunedTree true If true, remove pruned branches from the tree.
priors cv::Mat() Sets alternative weights for incorrect answers.

Two of these arguments warrant a little further investigation. maxCategories limits
the number of categorical values before which the decision tree will precluster
those categories so that it will have to test no more than 2max_categories – 2 possible value
subsets.16 Those variables that have more categories than maxCategories will have
their category values clustered down to maxCategories possible values. In this way,
decision trees will have to test no more than maxCategories levels at a time, which
results in considering no more than 2max_categories possible decision subsets for each cate‐
gorical input. This parameter, when set to a low value, reduces computation but at
the cost of accuracy.

The last parameter, priors, sets the relative weight that you give to misclassification.
That is, if we build a two-class classifier and if the weight of the first output class is 1

Machine Learning Algorithms Using cv::StatModel | 821

and the weight of the second output class is 10, then each mistake in predicting the
second class is equivalent to making 10 mistakes in predicting the first class. In the
example we will look at momentarily, we use edible and poisonous mushrooms. In
this context, it makes sense to “punish” mistaking a poisonous mushroom for an edi‐
ble one 10 times more than mistaking an edible mushroom for a poisonous one. The
parameter priors is an array of floats with the same number of elements as there
are classes. The assigned values are in the same order as the classes themselves.

The train() method is derived directly from cv::ml::StatModel:

// Work directly with decision trees:
//
bool cv::ml::DTrees::train(
const cv::Ptr<cv::ml::TrainData>& trainData, // your data
int flags = 0 // use UPDATE_MODEL to add data
);

In the train() method, we have the floating-point trainData matrix. With decision
trees, you can set the layout to cv::COL_SAMPLE when constructing trainData if you
want to arrange your data into columns instead of the usual rows, which is the most
efficient layout for this algorithm. Example 21-1 details the creation and training of a
decision tree.

The function for prediction with a decision tree is the same as for its base class,
cv::ml::StatModel:

float cv::ml::DTrees::predict(
 cv::InputArray samples,
 cv::OutputArray results = cv::noArray(),
 int flags = 0
) const;

Here, samples is a floating-point matrix, with one row per sample. In the case of a
single input, the return value will be enough and results can be set to cv::noAr
ray(). In the case of multiple vectors to be evaluated, the output results will contain
a prediction for each input vector. Finally, flags specifies various possible options.
For example, cv::ml::StatModel::PREPROCESSED_INPUT indicates that the values of
each categorical variable j are normalized to the range 0..Nj – 1, where Nj is the num‐
ber of categories for jth variable. For example, if some variable may take just two val‐
ues, A and B, after normalization A is converted to 0 and B to 1. This is mainly used
in ensembles of trees to speed up prediction. Normalizing data to fit within the (0, 1)
interval is simply a computational speedup because the algorithm then knows the
bounds in which data may fluctuate. Such normalization has no effect on accuracy.
This method returns the predicted value, normalized (when flags includes
cv::ml::StatModel::RAW_OUTPUT) or converted to the original label space (when
flags does not include the RAW_OUTPUT flag).

822 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

17 This data set is widely used in machine learning for education and testing of algorithms. It is broadly available
on the Web, notably from the UCI Machine Learning Repository. The original mushroom records were
drawn from G. H. Lincoff (Pres.), The Audubon Society Field Guide to North American Mushrooms (New
York: Alfred A. Knopf, 1981).

18 Recall the cv::ml::DTrees cannot handle missing data at this time. Such support has existed in older imple‐
mentations, and will likely return in time, but for the moment, you might wish to remove the entries contain‐
ing the '?' marker.

Most users will only train and use the decision trees, but advanced or research users
may sometimes wish to examine and/or modify the tree nodes or the splitting crite‐
ria. As stated in the beginning of this section, the information for how to do this is in
the ML documentation online at http://docs.opencv.org. The sections of interest for
such advanced analysis are the class structure cv::ml::DTrees, the node structure
cv::ml::DTrees::Node, and its contained split structure cv::ml::DTrees::Split.

Decision tree usage
We will now explore the details by looking at a specific example. Consider a program
whose purpose is to learn to identify poisonous mushrooms. There is a public data
set called agaricus-lepiota.data that contains information about some 8,000 different
kinds of mushrooms. It lists many features that might distinguish a mushroom visu‐
ally, such as the color of the cap, the size and spacing of the gills, as well as—and this
is very important—whether or not that type of mushroom is poisonous.17 The data
file is in CSV format and consists of a label 'p' or 'e' (denoting poisonous or edible,
respectively) followed by 22 categorical attributes, each represented by a single letter.
It should also be noted that the file contains examples in which certain data is miss‐
ing (i.e., one or more of the attributes is unknown for that particular type of mush‐
room). In this case, the entry is a '?' for that feature.

Let’s take the time to look at this program in detail, which will use binary decision
trees to learn to recognize poisonous from edible mushrooms based on their various
visible attributes (Example 21-1).18

Example 21-1. Creating and training a decision tree

#include <opencv2/opencv.hpp>
#include <stdio.h>
#include <iostream>

using namespace std;
using namespace cv;

int main(int argc, char* argv[]) {

 // If the caller gave a filename, great. Otherwise, use a default.

Machine Learning Algorithms Using cv::StatModel | 823

https://archive.ics.uci.edu/ml/datasets/Mushroom
http://docs.opencv.org

 //
 const char* csv_file_name = argc >= 2
 ? argv[1]
 : "agaricus-lepiota.data";

 cout <<"OpenCV Version: " <<CV_VERSION <<endl;

 // Read in the CSV file that we were given.
 //
 cv::Ptr<cv::ml::TrainData> data_set = cv::ml::TrainData::loadFromCSV(
 csv_file_name, // Input file name
 0, // Header lines (ignore this many)
 0, // Responses are (start) at thie column
 1, // Inputs start at this column
 "cat[0-22]" // All 23 columns are categorical
); // Use defaults for delimeter (',') and missch ('?')

 // Verify that we read in what we think.
 //
 int n_samples = data_set->getNSamples();
 if(n_samples == 0) {
 cerr <<"Could not read file: " <<csv_file_name <<endl;
 exit(-1);
 } else {
 cout <<"Read " <<n_samples <<" samples from " <<csv_file_name <<endl;
 }

 // Split the data, so that 90% is train data
 //
 data_set->setTrainTestSplitRatio(0.90, false);
 int n_train_samples = data_set->getNTrainSamples();
 int n_test_samples = data_set->getNTestSamples();

 cout <<"Found " <<n_train_samples <<" Train Samples, and "
 <<n_test_samples <<" Test Samples" <<endl;

 // Create a DTrees classifier.
 //
 cv::Ptr<cv::ml::RTrees> dtree = cv::ml::RTrees::create();

 // set parameters
 //
 // These are the parameters from the old mushrooms.cpp code

 // Set up priors to penalize "poisonous" 10x as much as "edible"
 //
 float _priors[] = { 1.0, 10.0 };
 cv::Mat priors(1, 2, CV_32F, _priors);

 dtree->setMaxDepth(8);
 dtree->setMinSampleCount(10);
 dtree->setRegressionAccuracy(0.01f);

824 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

 dtree->setUseSurrogates(false /* true */);
 dtree->setMaxCategories(15);
 dtree->setCVFolds(0 /*10*/); // nonzero causes core dump
 dtree->setUse1SERule(true);
 dtree->setTruncatePrunedTree(true);
 //dtree->setPriors(priors);
 dtree->setPriors(cv::Mat()); // ignore priors for now...

 // Now train the model
 // NB: we are only using the "train" part of the data set
 //
 dtree->train(data_set);

 // Having successfully trained the data, we should be able
 // to calculate the error on both the training data, as well
 // as the test data that we held out.
 //
 cv::Mat results;
 float train_performance = dtree->calcError(
 data_set,
 false, // use train data
 results //cv::noArray()
);
 std::vector<cv::String> names;
 data_set->getNames(names);
 Mat flags = data_set->getVarSymbolFlags();

 // Compute some statistics on our own:
 //
 {
 cv::Mat expected_responses = data_set->getResponses();
 int good=0, bad=0, total=0;

 for(int i=0; i<data_set->getNTrainSamples(); ++i) {
 float received = results.at<float>(i,0);
 float expected = expected_responses.at<float>(i,0);
 cv::String r_str = names[(int)received];
 cv::String e_str = names[(int)expected];

 cout <<"Expected: " <<e_str <<", got: " <<r_str <<endl;

 if(received==expected) good++; else bad++; total++;
 }
 cout <<"Correct answers: " <<(float(good)/total) <<"%" <<endl;
 cout <<"Incorrect answers: " <<(float(bad)/total) <<"%" <<endl;
 }

 float test_performance = dtree->calcError(
 data_set,
 true, // use test data
 results //cv::noArray()
);

Machine Learning Algorithms Using cv::StatModel | 825

19 This can be a good habit, particularly when working with the Machine Learning Library as this portion of
OpenCV is under relatively active development.

 cout <<"Performance on training data: " <<train_performance <<"%" <<endl;
 cout <<"Performance on test data: " <<test_performance <<"%" <<endl;

 return 0;
}

We start out by parsing the command line for a single argument, the CSV file to read;
if there is no such file, we read the mushroom file by default. We print the OpenCV
version number,19 and then continue on to parse the CSV file. This file has no header,
but the results are in the first column, so it is important to specify that. Finally, all of
the inputs are categorical, so we state that explicitly. Once we have read the CSV file,
we state how many samples were read, which is a good way to verify that the reading
went well and that you read the file you thought you were reading.

Next, we set the train-test split. In this case, we do so with setTrainTestRatio(), and
so we specify what fraction we would like to be training data; in this case it is 90%
(0.90). Also note that the default behavior of the split is to also shuffle the data. If we
do not want to do that shuffling, we need to pass false as the second argument.
Once this split is done, we print out how many training samples there are and how
many test samples.

Once the data is all prepared, we can go on and create the cv::ml::DTrees object
that we will be training. This object is configured with a series of calls to its various
set*() methods. Notably, we pass an array of values to setPriors(). This allows us
to set relative weight of missing a poisonous mushroom as opposed to incorrectly
marking an edible mushroom as poisonous. The reason the 1.0 comes first and the
10.0 comes after is because e comes before p in the alphabet (and thus, once con‐
verted to ASCII, then to a floating-point number, it comes first numerically).

In this example, we simply train DTrees and then use it to predict results on some test
data. In a more realistic application, the decision tree may also be saved to disk via
save() and loaded via load() (see the following). In this way, it is possible to train a
classifier and then distribute the trained classifier in your code, without having to dis‐
tribute the data (or make your users retrain every time!) The following code shows
how to save and to load a tree file called tree.xml.

// To save your trained classifier to disk:
//
dtree->save("tree.xml","MyTree");

// To load a trained classifier from disk:
//

826 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

20 There are other decision tree implementations that grow the tree only until complexity is balanced with per‐
formance and so combine the pruning phase with the learning phase. However, during development of the
ML library, it was found that trees that are fully grown first and then pruned (as implemented in OpenCV)
tended to perform better than those that combine training with pruning in their generation phase.

dtree->load("tree.xml","MyTree");

// You can also clear an existing trained classifier.
//
dtree->clear();

Using the .xml extension stores an XML data file; if we used a .yml
or .yaml extension, it would store a YAML data file. The optional
"MyTree" is a tag that labels the tree within the tree.xml file. As
with other statistical models in the machine learning module, you
cannot store multiple objects in a single .xml or .yml file when
using save(); for multiple storage, you need to use cv::FileStor
age() and operator<<(). However, load() is a different story: this
function can load an object by its name even if there is some other
data stored in the file.

Decision tree results
By tinkering with the previous code and experimenting with various parameters, we
can learn several things about edible or poisonous mushrooms from the agaricus-
lepiota.data file. If we just train a decision tree without pruning and without priors,
so that it learns the data perfectly, we might get the tree shown in Figure 21-4.
Although the full decision tree may learn the training set of data perfectly, remember
the lessons from the section “Diagnosing Machine Learning Problems” on page 779
in Chapter 20 about variance/overfitting. What’s happened in Figure 21-4 is that the
data has been memorized along with its mistakes and noise. Such a tree unlikely to
perform well on real data. For this reason, OpenCV decision trees (and CART type
trees generally) typically include the additional step of penalizing complex trees and
pruning them back until complexity is in balance with performance.20

Figure 21-5 shows a pruned tree that will still do quite well (but not perfectly) on the
training set but will probably perform better on real data because it has a better bal‐
ance between bias and variance. However, the classifier shown has a serious short‐
coming: although it performs well on the data, it now labels poisonous mushrooms as
edible 1.23% of the time.

Machine Learning Algorithms Using cv::StatModel | 827

Figure 21-4. Full decision tree for poisonous (p) or edible (e) mushrooms: this tree was
built out to full complexity for 0% error on the training set and so would probably suf‐
fer from variance problems on test or real data

Figure 21-5. Pruned decision tree for poisonous (p) and edible (e) mushrooms. Despite
being pruned, this tree shows low error on the training set and would likely work well
on real data

828 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

As you might imagine, there are big advantages to a classifier that may label many
edible mushrooms as poisonous but which nevertheless does not invite us to eat a
poisonous mushroom! As we saw previously, we can create such a classifier by inten‐
tionally biasing (or as adding a cost to) the classifier and/or the data. This is what we
did in Example 21-1, we added a higher cost for misclassifying poisonous mush‐
rooms than for misclassifying edible mushrooms. By adjusting the priors vector, we
imposed a cost into the classifier and, as a result, changed the weighting of how much
a “bad” data point counts versus a “good” one. Alternatively, if one did not, or could
not, modify the classifier code to change the prior, one can equivalently impose addi‐
tional cost by duplicating (or resampling from) “bad” data. Duplicating “bad” data
points implicitly gives a higher weight to the “bad” data, a technique that can work
with almost any classifier.

Figure 21-6 shows a tree where a 10× bias was imposed against poisonous mush‐
rooms. This tree makes no mistakes on poisonous mushrooms at a cost of many
more mistakes on edible mushrooms, a case of “better safe than sorry.” Confusion
matrices for the (pruned) unbiased and biased trees are shown in Figure 21-7.

Figure 21-6. An edible mushroom decision tree with 10× bias against misidentification
of poisonous mushrooms as edible; note that the lower-right rectangle, though contain‐
ing a vast majority of edible mushrooms, does not contain a 10× majority and so would
be classified as inedible

Machine Learning Algorithms Using cv::StatModel | 829

21 Recall that the “no free lunch” theorem informs us that there is no a priori “best” classifier. But on many data
sets of interest in vision, boosting and random trees perform quite well.

Figure 21-7. Confusion matrices for (pruned) edible mushroom decision trees: the
unbiased tree yields better overall performance (top panel) but sometimes misclassifies
poisonous mushrooms as edible; the biased tree does not perform as well overall (lower
panel) but never misclassifies poisonous mushrooms

Boosting
Decision trees are extremely useful but, used by themselves, are often not the best-
performing classifiers. In this and the next section we present two techniques, boost‐
ing and random trees, that use trees in their inner loop and so inherit many of the
trees’ useful properties (e.g., being able to deal with mixed and unnormalized data
types, categorical or ordered). These techniques typically perform at or near the state
of the art; thus they are often the best “out of the box” supervised classification tech‐
niques available in the library.21

In the field of supervised learning there is a meta-learning algorithm (first described
by Michael Kerns in 1988) called statistical boosting. Kerns wondered whether it was
possible to learn a strong classifier out of many weak classifiers. The output of a “weak
classifier” is only weakly correlated with the true classifications, whereas that of a
“strong classifier” is strongly correlated with true classifications. Thus, weak and
strong are defined in a statistical sense.

830 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

22 This procedure is an example of the machine learning metatechnique known as voodoo learning or voodoo
programming. Although unprincipled, it is often an effective method of achieving the best possible perfor‐
mance. Sometimes, after careful thought, one can figure out why the best-performing method was the best,
and this can lead to a deeper understanding of the data. Sometimes not.

23 There is a trick called unrolling that can be used to adapt any binary classifier (including boosting) for N-class
classification problems, but this makes both training and prediction significantly more expensive. See .../
opencv/samples/c/letter_recog.cpp.

The first boosting algorithm, known as AdaBoost, was formulated shortly thereafter
by Freund and Schapire [Freund97]. Subsequently, other variations of this original
boosting algorithm were developed. OpenCV ships with the four types of boosting
listed in Table 21-2.

Table 21-2. Available boosting methods; each is a variant of AdaBoost

Boosting method OpenCV enum value
Discrete AdaBoost cv::ml::Boost::DISCRETE

Real AdaBoost cv::ml::Boost::REAL

LogitBoost cv::ml::Boost::LOGIT

Gentle AdaBoost cv::ml::Boost::GENTLE

Of these, one often finds that the (only slightly different) “real” and “gentle” variants
of AdaBoost work best. Real AdaBoost is a technique that utilizes confidence-rated
predictions and works well with categorical data. Gentle AdaBoost puts less weight on
outlier data points and for that reason is often good with regression data. LogitBoost
can also produce good regression fits. Because you need only set a flag, there’s no rea‐
son not to try all types on a data set and then select the boosting method that works
best.22 Here we’ll describe the original AdaBoost. For classification it should be noted
that, as implemented in OpenCV, boosting is a two-class (yes or no) classifier,23

unlike the decision tree or random tree classifiers, which can handle multiple classes
at once.

One word of warning: though in theory LogitBoost and GentleBoost (referenced
previously, and in the subsection “Boosting code” on page 832) can be used to perform
regression in addition to binary classification, in OpenCV boosting can only be
trained for classification as implemented at this time.

AdaBoost
Boosting algorithms are used to train Nw weak classifiers hw, wε{1, … , Nw}. These clas‐
sifiers are generally very simple individually. In most cases these classifiers are deci‐
sion trees with only one split (called decision stumps) or at most a few levels of splits
(perhaps up to three). Each of the classifiers is assigned a weighted vote αw in the final
decision-making process for the resulting final strong classifier. We use a labeled data

Machine Learning Algorithms Using cv::StatModel | 831

set of input feature vectors x→ i, each with scalar label yi (where iε{1, … , N t} indexes the
data points). For AdaBoost the label is binary, yiε{ − 1, + 1}, though it can be any
floating-point number in other algorithms. We also initialize a data point weighting
distribution Dw(i); this tells the algorithm how much misclassifying a data point will
“cost.” The key feature of boosting is that, as the algorithm progresses, this cost will
evolve so that weak classifiers trained later will focus on the data points that the ear‐
lier trained weak classifiers tended to do poorly on. The algorithm is as follows:

1. Dw(i) = 1 / N t , i = 1, … , N t .
2. For wε{1, … , Nw}:

a. Find the classifier hw that minimizes the Dw(i) weighted error:
h = argminh j

ɛ j, where ɛ j = Σi
Nt Dt(i) (for yi ≠ hj(x→ j) as long as ɛ < 0.5; else quit).

b. Set the hw “voting weight” αi = 1
2 log

1 − ɛi

ɛi
, where ɛi is the argmin error from Step 2a.

c. Update the data point weights:

Dw+1(i) = 1
Zw

Dw(i)e−αw yi h w(x
→

i)

Here, Zw normalizes the equation over all data points iε{1, … , N t}, so that ∑
i=1

N t

Dw(i) = 1 for
all w.

Note that, in Step 2a, if we can’t find a classifier with less than a 50% error rate then
we quit; we probably need better features.

When the training algorithm just described is finished, the final strong classifier takes
a new input vector x→ and classifies it using a weighted sum over the learned weak
classifiers hw:

H (x) = sign(Σ
w=1

T
αwh w(x→))

Here, the sign function converts anything positive into a 1 and anything negative
into a –1 (zero remains 0). For performance reasons the leaf values of the just trained
ith decision tree are scaled by αi and then H(x) reduces to the sign of the sum of weak
classifier responses on x.

Boosting code

The code for boosting is similar to the code for decision trees, and the cv::ml::Boost
class is derived from cv::ml::DTrees with a few extra control parameters. As we
have seen elsewhere in the library, when you call cv::ml::Boost::create(), you will

832 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

get back an object of type cv::Ptr<cv::ml::Boost>, but this object will actually be a
pointer to an object of the (generally invisible) cv::ml::BoostImpl class type.

// Somewhere above..
// namespace cv {
// namespace ml {
//
class BoostImpl : public Boost { // cv::ml::Boost is derived from cv::ml::DTrees

public:

 // types of boosting
 // (Inherited from cv::ml::Boost)
 //
 //enum Types {
 // DISCRETE = 0,
 // REAL = 1,
 // LOGIT = 2,
 // GENTLE = 3
 //};

 // get/set one of boosting types:
 //
 int getBoostType() const; // get type: DISCRETE, REAL, LOGIT, GENTLE
 int getWeakCount() const; // get the number of weak classifiers
 double getWeightTrimRate() const; // get the trimming rate, see text

 void setBoostType(int val); // get type: DISCRETE, REAL, LOGIT, GENTLE
 void setWeakCount(int val); // get the number of weak classifiers
 void setWeightTrimRate(double val); // get the trimming rate, see text

 ...

 // from class Boost
 //
 //static Ptr<Boost> create(); // The algorithm "constructor",
 // // returns Ptr<BoostImpl>

};

The member setWeakCount() sets the number of weak classifiers that will be used to
form the final strong classifier. The default value for this number is 100.

The number of weak classifiers is distinct from the maximum complexity that is
allowed to each of the individual classifiers. The latter is controlled by setMax
Depth(), which sets the maximum number of layers that an individual weak classifier
can have. As mentioned earlier, a value of 1 is common, in which case these little
trees are just “stumps” and contain only a single decision.

The next parameter, the weight trim rate, is used to make the computation more effi‐
cient and therefore much faster. As training goes on, many data points become

Machine Learning Algorithms Using cv::StatModel | 833

24 Equivalently, one might say that the classifier is being trained to sort propositions of the kind xi
→ → yi (i.e., “the

vector xi
→ implies the result yi”) into two classes, those propositions that are true and those propositions that

are false.

unimportant. That is, the weight Dt(i) for the ith data point becomes very small. The
setWeightTrimRate() function sets a threshold, between 0 and 1 (inclusive), that is
implicitly used to throw away some training samples in a given boosting iteration.
For example, suppose weight trim rate is set to 0.95 (the default value). This means
that the “heaviest” samples (i.e., samples that have the largest weights) with a total
weight of at least 95% are accepted into the next iteration of training, while the
remaining “lightest” samples with a total weight of at most 5% are temporarily exclu‐
ded from the next iteration. Note the words “from the next iteration”—the samples
are not discarded forever. When the next weak classifier is trained, the weights are
computed for all samples and so some previously insignificant samples may be
returned to the next training set. Typically, because of the trimming, only about 20%
of samples or so take part in each individual round of training and therefore the
training accelerates by factor of 5 or so. To turn this functionality off, call setWeight
TrimRate(1.0).

For other parameters, note that cv::ml::BoostImpl inherits (via cv::ml::Boost)
from cv::ml::DTrees, so we may set the parameters that are related to the decision
trees themselves through the inherited interface functions. Overall, training of the
boosting model and then running prediction is done in precisely the same way as
with cv::ml::DTrees or essentially any other StatModel derived class from the ml
module.

The code .../opencv/samples/cpp/letter_recog.cpp from the OpenCV package shows an
example of the use of boosting. The training code snippet is shown in Example 21-2.
This example uses the classifier to try to recognize a–z characters, starting with a
public data set. That data set has 20,000 entries, each with 16 features and one
“result.” The features are floating-point numbers and the result is a single character.
Because boosting can only be used for two-class discrimination, this program uses
the “unrolling” technique that we (briefly) encountered earlier. We will discuss that
technique in more detail here.

In unrolling, the data set is essentially expanded from one set of training data to 26
sets, each of which is extended such that what was once the response is now added as
a feature. At the same time, the new responses for these extended vectors are now just
1 or 0: true or false. In this way the classifier is being trained to, in effect, answer
the question: is xi

→ equal to zi by learning the relationships {xi
→ , yi} and

{xi
→ , not yi} = false ?24 See Example 21-2.

834 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

25 Recall that we saw earlier that multiplying the number of positive or negative examples was essentially equiva‐
lent to weighting the prior. In this case, we multiplied the number of negative vectors for a different reason
(the unrolling), so we are inflating the prior for the positive cases for the purpose of compensating the de
facto increase of the role of negative examples.

Example 21-2. Training snippet for boosted classifiers

...
cv::Mat var_type(1, var_count + 2, CV_8U); // var_count is # features (16 here)
var_type.setTo(cv::Scalar::all(VAR_ORDERED));
var_type.at<uchar>(var_count) = var_type.at<uchar>(var_count+1) = VAR_CATEGORICAL;
...

The first thing to do is to create the array var_type that indicates how to treat each
feature and the results (Example 21-2). Then the training data structure is created.
Note that this is wider than you might expect by one. Not only are there var_count
(in this case, this happens to be 16) features from the original data, there is the one
extra column for the response, and there is one more column in between for the
extension of the features to include what was once the alphabet-character response
(before the unrolling).

cv::Ptr<cv::ml::TrainData> tdata = cv::ml::TrainData::create(
 new_data, // extended, 26x as many vectors, each contains y_i
 ROW_SAMPLE, // feature vectors are stored as rows
 new_responses, // extended, 26x as many vectors, true or false
 cv::noArray(), // active variable index, here just "all"
 cv::noArray(), // active sample index, here just "all"
 cv::noArray(), // sample weights, here just "all the same"
 var_type // extended, has 16+2 entries now
);

The next thing to do is to construct the classifier. Most of this is pretty usual stuff, but
one thing that is unusual is the priors. Note that the price of getting a wrong answer
has been inflated to 25 over the price of getting a wrong answer. This is not because
some letters are poisonous, but because of the unrolling. What this is saying is that it
is 25 times costlier to say that a letter is not something that it is, than to say that it is
something that it is not. This needs to be done because there are 25× more vectors
effectively enforcing the “negative” rules, so the “positive” rules need correspondingly
more weight.25

vector<double> priors(2);
priors[0] = 1; // For false (0) answers
priors[1] = 25 // For true (1) answers

model = cv::ml::Boost::create();
model->setBoostType(cv::ml::Boost::GENTLE);
model->setWeakCount(100);
model->setWeightTrimRate(0.95);

Machine Learning Algorithms Using cv::StatModel | 835

model->setMaxDepth(5);
model->setUseSurrogates(false);

cout << "Training the classifier (may take a few minutes)...\n";
model->setPriors(cv::Mat(priors));

model->train(tdata);

The prediction function for boosting is also similar to that for decision trees, in this
case using model->predict(). As described earlier, in the context of boosting, this
method computes the weighted sum of weak classifier responses, takes the sign of the
sum, and then converts it to the output class label. In some cases, it may be useful to
get the actual sum value—for example, to evaluate how confident the decision is. In
order to do that, pass the cv::ml::StatModel::RAW_OUTPUT flag to the predict
method. In fact, that is what needs to be done in this case. When dealing with unrol‐
led data, it is not so rare to get two (or more) “true” responses. In this case, one typi‐
cally chooses the most confident answer.

Mat temp_sample(1, var_count + 1, CV_32F); // An extended sample "proposition"
float* tptr = temp_sample.ptr<float>(); // Pointer to start of proposition

double correct_train _answers = 0, correct_test _answers = 0;

for(i = 0; i < nsamples_all; i++) {

 int best_class = 0; // Strongest proposition found so far
 double max_sum = -DBL_MAX; // Strength of current best prop
 const float* ptr = data.ptr<float>(i); // Points at current sample

 // Copy features from current sample into temp extended sample
 //
 for(k = 0; k < var_count; k++) tptr[k] = ptr[k];

 // Add class to sample proposition, then make a prediction for this proposition
 // If this proposition is more true than any previous one, then record this
 // one as the new "best".
 //
 for(j = 0; j < class_count; j++) {
 tptr[var_count] = (float)j;
 float s = model->predict(
 temp_sample, noArray(), StatModel::RAW_OUTPUT
);
 if(max_sum < s) { max_sum = s; best_class = j + 'A'; }
 }

 // If the strongest (truest) proposition matched the correct response, then
 // score 1, else 0.
 //
 double r = std::abs(best_class - responses.at<int>(i)) < FLT_EPSILON ? 1 : 0;

 // If we are still in the train samples, record one more correct train result.

836 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

26 Most of Breiman’s work on random forests is conveniently collected on a single website: http://www.stat.berke
ley.edu/users/breiman/RandomForests/cc_home.htm.

 // Otherwise, record one more correct test result.
 // Hope nobody shuffled the samples!
 //
 if(i < ntrain_samples)
 correct_train _answers += r;
 else
 correct_test _answers += r;
}

Of course, this isn’t the fastest or most convenient method of dealing with many class
problems. Random trees may be a preferable solution, and we will consider it next.

Random Trees
OpenCV contains a random trees class, which is implemented following Leo Brei‐
man’s theory of random forests.26 Random trees can learn more than one class at a
time simply by collecting the class “votes” at the leaves of each of many trees and
selecting the class receiving the maximum votes as the winner. We perform regres‐
sion by averaging the values across the leaves of the “forest.” Random trees consist of
randomly perturbed decision trees and were among the best-performing classifiers
on data sets studied while the ML library was being assembled. Random trees also
have the potential for parallel implementation, even on nonshared-memory systems,
a feature that lends itself to increased use in the future. The basic subsystem on which
random trees are built is once again a decision tree. This decision tree is built all the
way down until it’s pure. Thus (see the upper-right panel of Figure 20-3), each tree is
a high-variance classifier that nearly perfectly learns its training data. To counterbal‐
ance the high variance, we average together many such trees (hence the name “ran‐
dom trees”).

Of course, averaging trees will do us no good if the trees are all very similar to (corre‐
lated with) one another. To overcome this, the random trees method attempts to
cause each tree to be different (statistically independent) by randomly selecting a dif‐
ferent feature subset of the total features from which the tree may learn at each node.
For example, an object-recognition tree might have a long list of potential features:
colors, textures, gradient magnitudes, gradient directions, variances, ratios of values,
and so on. Each node of the tree is allowed to choose from a random subset of these
features when determining how best to split the data, and each subsequent node of
the tree gets a new, randomly chosen, subset of features on which to split. The size of
these random subsets is often chosen as the square root of the number of features.
Thus, if we had 100 potential features, then each node would randomly choose 10 of
the features and find a best split of the data from among those 10 features. To

Machine Learning Algorithms Using cv::StatModel | 837

http://www.stat.berkeley.edu/users/breiman/RandomForests/cc_home.htm
http://www.stat.berkeley.edu/users/breiman/RandomForests/cc_home.htm

27 This means that some data points might be randomly repeated.

increase robustness, random trees use an out of bag measure to verify splits; that is, at
any given node, training occurs on a new subset of the data that is randomly selected
with replacement,27 and the rest of the data—those values not randomly selected, or
the “out of bag” (OOB) data—are used to estimate the performance of the split. The
OOB data is usually set to have about one-third of all the data points.

Like all tree-based methods, random trees inherit many of the good properties of
trees: surrogate splits for missing values, handling of categorical and numerical val‐
ues, no need to normalize values, and easy methods for finding variables that are
important for prediction. Also, because random trees use the OOB error results to
estimate how well they will do on unseen data, performance prediction can be quite
accurate if the training data has a similar distribution to the test data.

Finally, random trees can be used to determine, for any two data points, their proxim‐
ity (which in this context means “how alike” they are, not “how near” they are). The
algorithm does this by (1) “dropping” the data points into the trees, (2) counting how
many times they end up in the same leaf, and (3) dividing this “same leaf” count by
the total number of trees. A proximity result of 1 is exactly similar and 0 means very
dissimilar. This proximity measure can be used to identify outliers (those points very
unlike any other) and to cluster points (group together points with close proximity).

Random trees code
We are by now familiar with how the ML module works, and random trees are no
exception. We start with the class declaration. Once again, there is a class
cv::ml::RTreesImpl that inherits from cv::ml::RTrees, which itself inherits from
the cv::ml::DTrees class:

// Somewhere above..
// namespace cv {
// namespace ml {
//
class RTreesImpl: public RTrees { // cv::ml::RTrees is derived from cv::ml::DTrees

public:

 // whether variable importance should be computed during the training
 // makes the training noticeably slower
 //
 bool getCalculateVarImportance() const; // Get if importance should be
 // computed during training
 int getActiveVarCount() const; // Get N Var for each split
 TermCriteria getTermCriteria() const; // Get max N trees or accuracy

 void setCalculateVarImportance(bool val); // Get if importance should be

838 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

 // computed during training
 void setActiveVarCount(int val); // Set N Var for each split
 void setTermCriteria(const TermCriteria& val); // Set max N trees or accuracy

 ...

 Mat getVarImportance() const;

 ...

 // from class RTrees
 //
 //static Ptr<RTrees> create(); // The algorithm "constructor",
 // // returns Ptr<RTreesImpl>
};

A new method, setCalculateVarImportance(), is a switch to enable calculation of
the variable importance of each feature during training (at a slight cost in additional
computation time).

Figure 21-8 shows the variable importance computed on a subset of the mushroom
data set that we discussed earlier agaricus-lepiota.data.

Figure 21-8. Variable importance over the mushroom data set for random trees, boost‐
ing, and decision trees: random trees used fewer significant variables and achieved the
best prediction (100% correct on a randomly selected test set covering 20% of data).
Note that in OpenCV 3.x one can explicitly get the variable importance only for RTrees,
and not for decision trees or boosting

Machine Learning Algorithms Using cv::StatModel | 839

The setActiveVarCount() method sets the size of the randomly selected subset of
features to be tested at any given node and, if not set by the user explicitly, is typically
set to the square root of the total number of features.

Using setTermCriteria(), you can set the termination criteria that contains both the
maximum number of trees (cv::TermCriteria::maxIter) and the OOB error, below
which the tree generating need not continue (cv::TermCriteria::epsilon). As
usual, either or both of the usual two stopping criteria can be applied (usually it’s
both: cv::TERMCRIT_ITER | cv::TERMCRIT_EPS). Otherwise, random trees training
has the same form as decision trees training, boosting training, and so on.

The same multiclass learning example that we looked at before in the case of boost‐
ing, .../opencv/samples/cpp/letter_recog.cpp, also provides for training random forests.
The following excerpt shows some salient points. Note that, unlike with boosting, we
can train directly on the multiclass data.

using namespace cv;
...
Ptr<ml::RTrees> forest = ml::RTrees::create();
forest->setMaxDepth(10);
forest->setMinSampleCount(10);
forest->setMaxCategories(15);
forest->setCalculateVarImportance(true);
forest->setActiveVarCount(4);
forest->setTermCriteria(
 TermCriteria(
 TermCriteria::MAX_ITER+TermCriteria::EPSILON,
 100,
 0.01
)
);
forest->train(tdata, 0);

...

Random trees prediction is no different from all other models from ml. Here’s an
example prediction call from the letter_recog.cpp file:

...

for(int i = 0; i < nsamples_all; i++) {

 cv::Mat sample = mydata.row(i);

 float r = forest->predict(&sample);
r = fabs((float)r - responses.at<float>[i]) <= FLT_EPSILON ? 1 : 0;

// Accumulate some statistics using 'r'
 if(i < ntrain_samples)
 correct_train _answers += r;
 else

840 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

 correct_test _answers += r;

}

In this code, the return variable r is converted into a count of correct predictions.
You can compute the same statistics using the universal method cv::ml::StatMo
del::calcError().

Finally, there are random tree analysis and utility functions. Assuming that setCalcu
lateVarImportance(true) was called before training, we can obtain the relative
importance of each variable using the cv::ml::RTrees member function:

cv::Mat RTrees::getVarImportance() const;

In this case, the return will be a vector containing the relative importances of each of
the features.

Using random trees
We’ve remarked that the random trees algorithm often performs the best (or among
the best) on the data sets we tested, but the best policy is still to try many classifiers
once you have your training data defined. We ran random trees, boosting, and deci‐
sion trees on the mushroom data set. From the 8,124 data points we randomly extrac‐
ted 1,624 test points, leaving the remainder as the training set. After training these
three tree-based classifiers with their default parameters, we obtained the results
shown in Table 21-3 on the test set. The mushroom data set is fairly easy and so—
although random trees did the best—it wasn’t such an overwhelming favorite that we
can definitively say which of the three classifiers works better on this particular data
set.

Table 21-3. Results of tree-based methods on the OpenCV mushroom data set (1,624
randomly chosen test points with no extra penalties for misclassifying poisonous
mushrooms)

Classifier Performance results
Random trees 100%
AdaBoost 99%
Decision trees 98%

What is more interesting is the variable importance (which we also measured from
the classifiers), shown in Figure 21-8. The figure shows that random trees and boost‐
ing each used significantly fewer important variables than required by decision trees.
Above 15% significance, random trees used only 3 variables and boosting used 6,
whereas decision trees needed 13. We could thus shrink the feature set size to save
computation and memory and still obtain good results. Of course, for the decision
trees algorithm you have just a single tree, while for random trees and AdaBoost you

Machine Learning Algorithms Using cv::StatModel | 841

28 Though the expectation maximization algorithm is in fact much more general than just Gaussian mixtures,
OpenCV supports only the special case of EM with Gaussian mixtures that we describe here.

must evaluate multiple trees; thus, which method has the least computational cost
depends on the nature of the data being used.

Expectation Maximization
Expectation maximization (EM) is a popular unsupervised clustering technique. The
basic concept behind EM is similar to the K-Means algorithm, in that a distribution is
modeled by a mixture of Gaussian components.28 In this case, however, the process of
learning those Gaussian components is an iterative one that alternates between two
stages called expectation and maximization, respectively (hence the name of the
algorithm).

In the formulation of the EM algorithm, each data point in the training set is associ‐
ated with a latent variable that represents the Gaussian mixture component thought
to be responsible for that variable taking its observed value (such variables are typi‐
cally called responsibilities). Ideally, one would like to compute the parameters of the
Gaussian components as well as these responsibilities such that they maximize the
likelihood of the observed variables. In practice, however, it is not typically possible
to maximize all of these variables simultaneously. This is subtly different than K-
means in that a responsibility assigned to a data point is not necessarily to the closest
cluster center.

The EM algorithm handles these two aspects of the problem by separately addressing
the responsibilities (in the expectation or “E-step”), and then the parameters of the
Gaussian components (in the maximization or “M-step”), and continuing to alter‐
nate between these two steps until convergence is reached.

Expectation maximization with cv::EM()

In OpenCV, the EM algorithm is implemented in the cv::ml::EM class, which has
the following declaration:

// Somewhere above..
// namespace cv {
// namespace ml {
//
class EMImpl: public EM { // cv::ml::EM is derived from cv::ml::StatModel

public:

 // Types of covariation matrices
 // (Inherited from cv::ml::EM)
 //

842 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

 //enum Types {
 // COV_MAT_SPHERICAL = 0,
 // COV_MAT_DIAGONAL = 1,
 // COV_MAT_GENERIC = 2,
 // COV_MAT_DEFAULT = COV_MAT_DIAGONAL
 //};

 // get/set the number of clusters/mixtures (5 by default)
 //
 int getClustersNumber() const; // Get number of clusters
 int getCovarianceMatrixType() const; // Get cov. mtx. type
 TermCriteria getTermCriteria() const; // Get max iter/accuracy

 void setClustersNumber(int val) ; // Set number of clusters
 void setCovarianceMatrixType(int val); // Set cov. mtx. type
 void setTermCriteria(const TermCriteria& val); // Set max iter/accuracy

 ...

 // the prediction method, see below
 //
 Vec2d predict2(
 InputArray sample,
 OutputArray probs
) const;
 bool trainEM(...); // see below
 bool trainE(...); // see below
 bool trainM(...); // see below

 ...

 // from class EM
 //
 //static Ptr create(); // The algorithm "constructor",
 // // returns Ptr<EMImpl>

};

When constructing and configuring a cv::EM object, we must tell the algorithm how
many clusters there will be. We do this with the setClusterNumber() method. As in
the case of the K-means algorithm, it is always possible to do tests with different
numbers of clusters separately, but the basic cv::EM object can handle only one spe‐
cific number of clusters at a time.

The next member function, setCovarianceMatrixType(), specifies the constraints
that you wish to have the EM algorithm apply to the covariance matrices associated
with the individual components of the Gaussian mixture model. This argument must
take one of three possible values:

Machine Learning Algorithms Using cv::StatModel | 843

• cv::ml::EM::COV_MAT_SPHERICAL

• cv::ml::EM::COV_MAT_DIAGONAL

• cv::ml::EM::COV_MAT_GENERIC

In the first case, each mixture component is assumed to be rotationally symmetric.
This means that it has only one free parameter that can be maximized in the M-step.
Each covariance is just that parameter multiplied by an identity matrix. In the second
case, cv::EM::COV_MAT_DIAGONAL (which is the default), each matrix is expected to be
diagonal, and so the number of parameters is equal to the number of dimensions of
the matrix (i.e., the dimensionality of the data). Finally, there is the case of
cv::EM::COV_MAT_GENERIC, where each covariance matrix is characterized by the
(Nd

2 − Nd) / 2 variables needed to characterize an arbitrary symmetric matrix. In gen‐
eral, the complexity of the model that can be trained is strongly dependent on the
amount of data available. In practice, if one has very little data,
cv::EM::COV_MAT_SPHERICAL is probably a good idea. Conversely, unless one has a
vast amount of data, cv::EM::COV_MAT_GENERIC is probably not a good idea.

How much is not enough, and how much is a lot? If you are
doing EM in Nd dimensions with Nk clusters, then it is easy to
compute how many free variables you are solving for. In the case of
the spherically symmetric distributions (COV_MAT_SPHERICAL), you
are trying to compute only one covariance per cluster plus the
location of the cluster center, or Nk (Nd + 1) total variables. For the
diagonal covariances (COV_MAT_DIAGONAL), there are Nd degrees of
freedom for the covariance of each cluster or Nk (Nd + Nd) = 2Nk Nd

total variables. In the case of the completely general covariance
matrices (COV_MAT_GENERIC), there are (Nd

2 − Nd) / 2 degrees of
freedom for the covariance of each cluster or
Nk (Nd + (Nd

2 − Nd) / 2) = Nk Nd
2 + 1

2 Nk Nd total variables to solve for. Thus, at
an absolute minimum there are O(Nd) times more things you are
trying to find in the general case than in the most restricted case.
Unfortunately, even the most efficient learning algorithms will be
much worse than linear in this ratio in terms of the amount of data
they require.

The final configuration that EM requires is the termination criteria, set by means of
setTermCriteria(). The termCrit argument required is of the usual cv::TermCrite
ria type, and specifies the maximum number of iterations allowed and (or) the maxi‐
mum change in likelihood that will be considered “small enough” to terminate the
algorithm.

844 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

Once you have created an instance of the cv::EM object and set the parameters, you
can train it with one of three train*() methods specific to the EM algorithm—
trainEM(), trainE(), and trainM().

bool cv::ml::EM::train(
 cv::InputArray samples,
 cv::OutputArray logLikelihoods = cv::noArray(),
 cv::OutputArray labels = cv::noArray(),
 cv::OutputArray probs = cv::noArray()
);

virtual bool cv::ml::EM::trainE(
 cv::InputArray samples,
 cv::InputArray means0,
 cv::InputArray covs0 = cv::noArray(),
 cv::InputArray weights0 = cv::noArray(),
 cv::OutputArray logLikelihoods = cv::noArray(),
 cv::OutputArray labels = cv::noArray(),
cv::OutputArray probs = cv::noArray()
);

bool cv::ml::EM::trainM(
 cv::InputArray samples,
 cv::InputArray probs0,
 cv::OutputArray logLikelihoods = cv::noArray(),
 cv::OutputArray labels = cv::noArray(),
cv::OutputArray probs = cv::noArray()
);

The trainEM() method of cv::EM expects the usual input array of samples and
returns the responses (labels), the likelihoods (logLikelihoods), and the assign‐
ment probabilities (probs). The responses appear in the labels array, which will
have a single column containing one row for each data point. The value on the ith
row will be an integer identifying the cluster to which that data point was assigned.
This integer is the largest of the membership probabilities computed across the Nk

clusters (set by nclusters when you called the constructor). The array probs will
actually contain these individual probabilities, with each row giving the probabilities
for a given point, and the column being the probability for that cluster (i.e.,
probs.at<int>(i,k) is the probability of point i being a member of cluster k).
Finally, the likelihoods associated with each point are returned in the logLikeli
hoods array; in essence these likelihoods indicate (in a relative sense) how probable
an individual observation was under the final model. As the name suggests, the val‐
ues returned are actually the natural logarithm of the likelihoods. Any of these three
outputs may be replaced with cv::noArray() if they are not needed. Once the model
is trained, it can be used for prediction.

In addition to the train method just described, there are two additional methods,
trainE() and trainM(). These methods start the algorithm off in the E- or M-step

Machine Learning Algorithms Using cv::StatModel | 845

29 For those of you who are experts in machine learning algorithms, it is noteworthy that the OpenCV imple‐
mentation of KNN, when doing regression, uses an unweighted average of the Nk neighbor points. (Other
implementations often weight these points differently, for example by their inverse distance from the input
point.)

(respectively) and provide, in the case of trainE(), an initial model to use, or in the
case of trainM(), a set of initial cluster assignment probabilities.

In the case of trainE(), the model is supplied in the form of the input arrays means0,
covs0, and weights0. The form of the means should be an array with Nk rows and Nd

columns, where Nk is the number of clusters and Nd is the dimensionality of the sam‐
ple data. The covariances should be supplied as an STL vector containing Nk separate
arrays, each being Nd × Nd and containing the covariance matrix for Gaussian com‐
ponent k. Finally, the array weights0 should have a single column and Nk rows. The
entry in the kth row should be the mixture probability associated with Gaussian com‐
ponent k (i.e., the marginal probability that any random sample will be drawn from
component k, as opposed to some other component).

In the case of trainM(), you must supply probs0, the membership probabilities asso‐
ciated with each point, in the same form that they would be computed by train() as
just described. This means that probs0 is an N s × Nk array with one row for each
sample and the membership probabilities for each Gaussian component in the corre‐
sponding columns for that data point.

Once you have trained your model, you can use the cv::EM::predict() method to
have the trained algorithm attempt to predict what cluster a novel point would most
likely be a member of. The return value of predict() will be of type cv::Vec2d. The
first component of the returned vector will give the probability associated with the
assignment under the current model, while the second will give the cluster label.

K-Nearest Neighbors
One of the simplest classification techniques is K-nearest neighbors (KNN), which
stores all the training data points and labels new points based on proximity to them.
When you want to classify a new point, KNN looks up the Nk nearest points that it
has stored and then labels the new point according to which class from the training
set contains the majority of its Nk neighbors. Alternatively, KNN can be used for
regression; in this case the returned result is the average of the values associated with
the Nk nearest neighbors.29 This algorithm is implemented in the cv::ml::KNearest
class in OpenCV. The KNN classification technique can be very effective, but it
requires that you store the entire training set; hence, it can use a lot of memory and
become quite slow. People often cluster the training set to reduce its size before using
this method. Readers interested in how dynamically adaptive nearest neighbor–type

846 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

techniques might be used in the brain (and in machine learning) can see Grossberg
[Grossberg87] or a more recent summary of advances in Carpenter and Grossberg
[Carpenter03].

Using K-nearest neighbors with cv::ml::KNearest()

The KNN algorithm is implemented in OpenCV by the cv::ml::KNearest class. The
class declaration for cv::ml::KNearest has the following form:

// Somewhere above..
// namespace cv {
// namespace ml {
//
class KNearestImpl: public KNearest { // cv::ml::KNearest is derived
 // from cv::ml::StatModel
public:

 // (Inherited from cv::ml:: KNearest)
 //
 //enum Types {
 // BRUTE_FORCE = 1,
 // KDTREE = 2
 //};

 // use K-nearest for regression or for classification

 //
 int getDefaultK() const; // Get the default number of neighbors
 bool getIsClassifier() const; // Get if classifier, else it is regression
 int getEmax() const; // Get max "close" neighbors (KDTree)
 int getAlgorithmType() const; // Get whether brute-force or KD-Tree search
 // (will be either BRUTE_FORCE or KDTREE)

 void setDefaultK(int val); // Set the default number of neighbors
 void setIsClassifier(bool val); // Set if classifier, else it is regression
 void setEmax(int val); // Set max "close" neighbors (KDTree)
 void setAlgorithmType(int val); // Set whether brute-force or KD-Tree search
 // (must be either BRUTE_FORCE or KDTREE)
 ...

 // find the k nearest neighbors for each sample
 //
 float findNearest(
 InputArray samples,
 int k,
 OutputArray results,
 OutputArray neighborResponses = noArray(),
 OutputArray dist = noArray()
) const = 0;

 ...

Machine Learning Algorithms Using cv::StatModel | 847

 // from class KNearest
 //
 //static Ptr<KNearest> create(); // The algorithm "constructor",
 // // returns Ptr<KNearestImpl>
};

The method setDefaultK() sets the number of neighbors to be considered if you
plan to use cv::ml::StatModel::predict instead of cv::ml::KNearest::findNear
est(), where this parameter is specified explicitly (k corresponds to Nk in our pre‐
ceding discussion of the KNN algorithm).

The setIsClassifier() function is used if you are using KNN for regression (i.e.,
you plan to approximate some function using the discrete training set). In this case,
you should call setIsClassifier(false) prior to calling the train() method.

You train the KNN model as usual by calling the cv::ml::StatModel::train()
method. The trainData input is the usual array containing N s rows and Nd columns,
with N s being the number of samples and Nd being the number of dimensions of the
data. The responses array must contain the usual N s rows and a single column. How
the algorithm then handles this data depends on the setAlgorithmType() method.
You can call this method with either BRUTE_FORCE or KDTREE.

If the algorithm is set to BRUTE_FORCE, this training data is simply stored internally as
an array and then scanned sequentially in order to find the nearest neighbors. In the
case of KDTree, the BBF (best-bin-first) algorithm (introduced by D. Lowe) will be
used, which is much more efficient when Nd ≪ log(N s).

It’s important to note that unlike many other models in the ml module, the KNN
model can be updated with new trained data after it’s trained. In order to do this,
pass the flag cv::ml::StatModel::UPDATE_MODEL to the train() method.

Once the data is trained, you can use your cv::ml::KNearest object to make predic‐
tions about it. The cv::ml::KNearest object provides the usual predict() method as
well as the more model-specific findNearest(), which is equivalent to findNear
est(samples, getDefaultK(), results, noArray(), noArray()). But the
method findNearest() method allows you to retrieve some additional information
about the neighbors. The findNearest() method has the following definition:

virtual float cv::ml::KNearest::findNearest(
 cv::InputArray samples,
 int k,
 cv::OutputArray results,
 cv::OutputArray neighborResponses = cv::noArray(),
 cv::OutputArray dist = cv::noArray()
) const = 0;

The method takes one or more samples at a time, with the samples argument being
any number of rows with each row containing a single input. The value of k that is

848 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

30 If you wish to use your own weighting function in a regression, you can use this information to do so.

31 Note that this is the core algorithm used in deep neural networks, but this does not implement a deep neural
network beyond one or two hidden layers. We will discuss shortly the new support for deep neural networks
that is currently being added to the library.

used for the comparison (the argument k) can be any value up to the value of Nk

given when the object was trained. The predictions will be placed in the array
results, which will have a single column and one row corresponding to each point
(row) in samples. If provided, the arrays neighborResponses and dists will be filled
with the responses from and distances to the various neighbors identified for each
query point. Each of these will have one row per point (row) in samples and one col‐
umn for each of the k neighbors found for that point.30

Both methods will return a single floating-point value; this is used when the number
of query points in samples is just one so only one computed response will be
returned. In this case, you do not need to provide a results array at all.

Multilayer Perceptron
The multilayer perceptron (MLP; also known as back propagation, which actually
refers to the weight update rule) is a neural network that ranks among the top-
performing classifiers for text recognition as well as a rapidly growing list of other
tasks.31 In fact, MLP plays an important role in the currently evolving topic of deep
learning where it, along with other neural network–based methods, has shown signif‐
icant successes in recent years.

When used to perform predictions, MLP can be very fast; evaluation of a new input
requires just a series of dot products followed by a simple nonlinear “squashing”
function. On the other hand, it can be rather slow in training because it relies on gra‐
dient descent, in a rather difficult environment, to minimize error by adjusting a
potentially vast number of weighted connections between the numerical classification
nodes within the layers.

The essential idea behind the multilayer perceptron is taken from biology, where
studies of mammalian neural networks motivate the idea of layers on neurons, each
of which takes in some number of inputs from the prior layer, sums those inputs with
learned weights, and outputs some kind of nonlinear transformation on that sum of
weighted inputs (Figure 21-9). This simplified model of a biological neuron, often
called an artificial neuron (or, collectively, an artificial neural network) was created
with the goal of capturing the basic functionality of the biological neuron with the
hope that, when aggregated into networks, those networks would display learning

Machine Learning Algorithms Using cv::StatModel | 849

32 At best, most current neural networks as well as deep learning architectures represent a possible feed-forward
processing stream in the brain, and even that neglects substantial attention and other biases in processing.
Most models entirely neglect the 10x greater feedback processes in the brain, which may have to do with sim‐
ulation, as speculated in the last chapter in this book.

33 For you aficionados, there is a further point here that in this context, we use the term fully connected network
to also imply that all of the weights are unconstrained, and thus fully independent of one another.

34 In the neural network literature, the term input layer is sometimes used to mean the first layer of neurons,
and sometimes used to mean the number of inputs before the first layer. To avoid ambiguity, we will simply
avoid this terminology altogether. We will always use the term first layer to mean the first layer of computa‐
tional nodes, the number of which is completely independent of the number of inputs to the network.

and generalization behavior similar to that observed in biological systems—ideally up
to and including human beings.32

Figure 21-9. An artificial neuron used in MLP and other neural network applications
models the behavior of a physical neuron with a typically nonlinear activation function
f, which acts on the weighted sum of inputs. Learning in an MLP is embodied in the
tuning of these weights w→

These artificial neurons, often called simply nodes, aggregated into a multilayered
network (Figure 21-10), along with an algorithm to train them, form the basis of the
MLP algorithm. Such multilayered networks can take many forms, the simplest of
which is called a fully connected multilayer network.33 In such a network, all of the
inputs to the network can feed any of the nodes in the first layer.34 Similarly, all of the

850 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

outputs of the first layer can feed any of the nodes in the second layer, and so on.
Such a network can have any number of nodes in any layer, with the last layer having
the number of nodes required to express the desired response function.

Figure 21-10. In analogy to biological neurons, artificial neurons can be arranged into
layers. The inputs to this network feed all of the neurons in the first layer in a weighted
dot product, w→ ⋅ x→ which is filtered by a nonlinear function, f(w.x), to produce the out‐
put at that node. The outputs of the first-layer neurons feed all of the inputs to the next
layer, and so on

The number of nodes in such a network can be very large, and the number of weights
much larger still. Consider a network with N x inputs, N y outputs (which defines the
number of nodes in the last layer), N l layers total, and Nn nodes in each layer (except
for the last—which has N y nodes). Such a network would have N x Nn weights for
inputs to the first layer, and Nn

2 weights for every layer after the first, up to the
last layer, which would require NnN y weights. Together, that is
Nn(N x + N y + (N l − 2)Nn) different weights, something on the order of N l Nn

2. To train a
network of this kind means to find the optimal values of all of these weights such
that, for your training data set, the outputs from the network for any given input
match—as closely as possible—the results associated with that input.

One way in which you might imagine tackling such a multidimensional optimization
problem would be through a simple algorithm such as gradient descent, by means of
which you could start with some random set of values and incrementally optimize
them in a greedy way until no improvement is possible. This is exactly what was done

Machine Learning Algorithms Using cv::StatModel | 851

35 Interested readers can find deeper treatments of this algorithm in any good book on machine learning (e.g.,
[Bishop07]). For more technical details, and for detail on using MLP effectively for text and object, the reader
might be directed toward LeCun, Bottou, Bengio, and Haffner [LeCun98a]. Implementation and tuning
details are given in LeCun, Bottou, and Muller [LeCun98b]. More recent work on brain-like hierarchical net‐
works that propagate probabilities can be found in Hinton, Osindero, and Teh [Hinton06].

in the early days of neural networks. However, given the very large number of param‐
eters in even a simple practical network, the most straightforward implementations
of such a method proved too slow to be useful in real-world problems (or equiva‐
lently, networks that could be trained in practical amounts of time performed too
poorly to be useful). It was not until the invention of the back-propagation algorithm
[Rumelhart88] that it became possible to train very large networks. Back propagation
is a particular variant of gradient descent that makes special use of the structure of
the particular problem of training a neural network. It is this algorithm that is
embodied in the training step of the OpenCV implementation of MLP.

Back propagation
Refer to Figure 21-11. We can use a trained back-propagation network to make deci‐
sions or to fit functions by feeding an input in at the “bottom” that is weighted and
transformed through nonlinearities (usually sigmoid or rectifier functions). This sig‐
nal is propagated up layer by layer in the network until an output is produced at the
“top.” In training mode, we use a loss function to gauge how well the network is
doing. In Figure 21-11, this loss function is the square of target value minus the
actual value. The essential issue that back propagation addresses is how to update the
weights in the neural network so that the loss function is minimized over the data set.

To minimize the loss function, the chain rule in calculus is used to derive, from top-
to-bottom (“back propagation”), how the weights must change in relation to the loss
function at the top.35 The back-propagation algorithm is a message-passing algorithm
that takes advantage of the topology of the multilayer perceptron. It first computes
the error at the output nodes (the difference between what you want and what you
get). It then propagates this information backward to those nodes that feed the out‐
put nodes. They combine the information they received from the output nodes to
compute the necessary derivatives relative to their own weights. This information is
then passed on again to the next layer toward the input layer. In this way, we can
compute the portion of the gradient that pertains to each weight locally, using only
information about that node and information passed to that node from the layer one
step closer to the output to which it is connected.

852 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

Figure 21-11. Back-propagation setup. The goal is to update the weights vij, wki in order
to minimize the loss function. Each hidden and output node gets weighted activation
Σivijzi, Σk wkixk, which then goes through a nonlinearity function g or f. In practice, these
nonlinear functions are all the same, often a sigmoid or a rectifier function, but for gen‐
erality, they can be different

In the network of Figure 21-11, the output weight change function is:

dE
d vij

= − (t j − y j)zi f ′ (Σ
i
vijzi)

The hidden unit weight change function is:

dE
d wki

= Σ
i

− (t j − y j)vij f ′ (Σ
i
vijzi)xk g ′ (Σ

k
wki xk)

where t j represents the target values, and the input, hidden, and outlook activations
are xk , zi,y j. The last two activations are transformed by the nonlinear functions g and
f having input weights wki , vij, respectively. This forms the basic core of the back-
propagation algorithm.

Machine Learning Algorithms Using cv::StatModel | 853

OpenCV now supports reading and efficiently running the deep
neural networks produced by the deep net packages Caffe, Tensor‐
Flow, CNTK, Torch, and Theano; see ...opencv_contrib/
modules/dnn as referenced in Appendix B. Deep networks are
often broken up into block convolution layers to save on the num‐
ber of parameters that must be learned. That—combined with
other training tricks (such as batch normalization), dropout and
tuning pretrained early layers, increasing compute power, and
huge data stores—has allowed the recent remarkable progress
toward human-level machine vision performance.

The Rprop algorithm
The Rprop (resilient back propagation) was introduced by Martin Riedmiller and
Heinrich Braun [Riedmiller93] and provides an often-superior method of doing the
update step of the back-propagation algorithm just described. The essential differ‐
ence between back propagation and Rprop is that, while back propagation explicitly
computes the magnitude of each step by which each weight is updated, Rprop uses
only the sign (direction) of the computed update. When computing the magnitude of
the update, Rprop computes and stores the direction of the update, then makes a
change by a standard step (called Δ0). On the next pass, if the direction changes
(meaning that the algorithm essentially overshot the goal), the step is reduced by a
constant scale factor (usually called η −). If the step does not change sign, then the
algorithm increases the step size of the next iteration by multiplying by a different
scale factor (usually called η +). Clearly η − must be less than 1 and η + must be greater
than 1; canonical values for these parameters are 0.5 and 1.2, respectively. In the
OpenCV implementation, the step is never allowed to be smaller than some absolute
minimum, nor larger than some absolute maximum (called Δmin and Δmax, respec‐
tively).

Using artificial neural networks and back propagation with cv::ml::ANN_MLP
The OpenCV implementation of multilayer perceptron learning handles the con‐
struction and evaluation of the network, and implements the back-propagation algo‐
rithm (or Rprop algorithm) just described for training the network. All of this is
contained within the cv::ml::ANN_MLP class, which implements the usual interface
inherited from the statistical learning base class. The cv::ml::ANN_MLP class has the
usual hidden implementation class, in this case with the following definition:

// Somewhere above..
// namespace cv {
// namespace ml {
//
class ANN_MLPImpl: public ANN_MLP { // cv::ml::ANN_MLP is derived
 // from cv::ml::StatModel
public:

854 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

 // (Inherited from cv::ml::ANN_MLP)
 //
 //enum TrainingMethods {
 // BACKPROP = 0, // The back-propagation algorithm.
 // RPROP = 1 // The RPROP algorithm.
 //};
 //
 //enum ActivationFunctions {
 // IDENTITY = 0,
 // SIGMOID_SYM = 1,
 // GAUSSIAN = 2
 //};
 //
 //enum TrainFlags {
 // UPDATE_WEIGHTS = 1,
 // NO_INPUT_SCALE = 2,
 // NO_OUTPUT_SCALE = 4
 //};

 int getTrainMethod() const; // Get backpropagation or RPROP method
 int getActivationFunction() const; // Get the activation function
 // (IDENTITY, SIGMOID_SYM or GAUSSIAN)
 Mat getLayerSizes() const; // Get size of all the layers
 TermCriteria getTermCriteria() const; // Get max it / reproject error
 double getBackpropWeightScale() const; // Set Backprop parameter
 double getBackpropMomentumScale() const; // "
 double getRpropDW0() const; // Set Rprop parameter
 double getRpropDWPlus() const; // "
 double getRpropDWMinus() const; // "
 double getRpropDWMin() const; // "
 double getRpropDWMax() const; // "

 void setTrainMethod(// Set backpropagation or RPROP method
 int method, // either of: BACKPROP or RPROP
 double param1 = 0,
 double param2 = 0
);
 void setActivationFunction(// Set activation function
 int type, // IDENTITY, SIGMOID_SYM, or GAUSSIAN
 double param1 = 0,
 double param2 = 0
);
 void setLayerSizes(InputArray _layer_sizes); // Set size of all the layers
 void setTermCriteria(TermCriteria val); // Set max it / reproject error
 void setBackpropWeightScale(double val); // Get Backprop parameter
 void setBackpropMomentumScale(double val); // "
 void setRpropDW0(double val); // Set Rprop parameter
 void setRpropDWPlus(double val); // "
 void setRpropDWMinus(double val); // "
 void setRpropDWMin(double val); // "

Machine Learning Algorithms Using cv::StatModel | 855

36 One of the classic “dark arts” in back propagation and in deep learning is how many neurons to set in each
layer. You can use fewer neurons in the hidden layer to achieve data compression or more neurons to overre‐
present the data, which can improve performance given enough data.

37 By this counting, the network in Figure 21-14 would be described by a column having 3, 3, and 3 in its rows—
the first corresponding to the three inputs, the second to the first row, and the third to the final row. Remem‐
ber that the number of outputs is exactly equal to the number of nodes in the final layer, so you don’t need
another 3 after the third row.

38 The implementation of the Gaussian function is not entirely complete at this time.

 void setRpropDWMax(double val); // "

 ...

 Mat getWeights(int layerIdx) const; // Get the computed weights for
 // the interlayer connections
 ...

 // from class ANN_MLP
 //
 //static Ptr<ANN_MLP> create(); // The algorithm "constructor",
 // // returns Ptr<ANN_MLPImpl>
};

To use the multilayer perceptron, you first construct the empty network with the
cv::ml::ANN_MLP::create() method, and then set the size of all the layers. Next,
once you have set all the parameters (activation function, the training method, and its
parameters), you can finally call the cv::ml::StatModel::train() method, as usual.

The argument of the setLayerSizes() method specifies the basic structure of the
network.36 This should be a single-column array in which the rows specify the num‐
ber of inputs, the number of nodes in the first layer, the number of nodes in the sec‐
ond layer, and so on, until finally, the last row gives the number of nodes in the final
layer (and thus the number of outputs from the network).37

The method setActivationFunction() specifies the function that is applied to the
weighted sum of the inputs. The computed output of any node in the network yi is
given by some function f () of the weighted sum of inputs x→ ⋅ w→ plus an offset term: θ.
The weights and the offset term will be learned in the training phase, but the function
itself is a property of the network. At this time, there are three functions you can
choose from: a linear function, a sigmoid, and a Gaussian function.38 The values and
corresponding arguments for setActivationFunction are shown in Table 21-4.

856 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

Table 21-4. Options for the artificial neuron activation function used by cv::ANN_MLP.
Each is a function of z = x→ ⋅ w→ + θ

Value of activateFunc Activation function
cv::ANN_MLP::IDENTITY f (z) = z

cv::ANN_MLP::SIGMOID_SYM f (z) = β
(1 − e −αz)
(1 + e −αz)

cv::ANN_MLP::GAUSSIAN f (z) = βe −α z 2

The final two arguments, fparam1 and fparam2, correspond to the variables α and β
in Table 21-4. Unless you are an expert however, in almost all cases, you will want to
use the default sigmoid activation function, and in the majority of those, you will
want to set these parameters at their generic values (of 1.0).

Once you have created your artificial neural network, you will want to train the net‐
work with the data you have. In order to train the network, you will need to construct
cv::ml::TrainData as usual, and then pass it to the cv::ml::StatModel::train()
method, overridden in cv::ml::ANN_MLP. Unlike all other models from ml, neural
nets are able to handle vector outputs, not only scalar outputs, so that the response is
not necessarily a single-column vector—it can be a matrix, one row per sample. And
the vector output can actually be used to implement a multiclass classifier using neu‐
ral networks.

Artificial neural networks are not natively structured to handle cat‐
egorical data, either on the input or on the output. The most com‐
mon solution to this is to use a “one of many” (also known as “one
hot”) encoding in which a K-element class is represented by K sep‐
arate inputs (or outputs) with one being associated with each class.
In this scheme, if an input object is a member of class k, then net‐
work input k will be nonzero (typically 1.0) while all of the others
will be 0. The same system can be used to encode outputs. One
interesting feature of such encodings is that in practice, even
though inputs are exactly unit vectors, the outputs will typically
have an imperfect structure (small values for nonclasses and less
than unity value for the selected class). This has the advantage of
revealing something about the quality of the categorization.

Also, neural networks can handle the nonempty sampleWeights vector, passed to
cv::ml::TrainData::create, which allows you to assign a relative importance to
each data sample (row) in inputs and outputs. Each row in sampleWeights can be
set to an arbitrary positive floating-point value, corresponding to the data in the same
rows of inputs and outputs. The weights are automatically normalized, so all that
matters is their relative sizes. The sampleWeights argument is only respected by the

Machine Learning Algorithms Using cv::StatModel | 857

39 If you have sample weights, the error terms are also weighted by the sample weights.

Rprop algorithm, so if you are using back propagation it will be ignored (see next
discussion).

Parameters for training

The method setTermCriteria() specifies when training will terminate, and has the
same meaning if you are using back propagation or RProp (see setTrainMethod(),
next). The number of iterations in the termination criteria is exactly the maximum
number of steps the update will take. The epsilon portion of the termination criteria
sets the minimum change in the reprojection error required for the iteration to con‐
tinue; this reprojection error is equal to 0.5 times the sum of the squared differences
between training set results and computed outputs over the entire training set.39

You can set train_method to either cv::ANN_MLP::BACKPROP or cv::ANN_

MLP::RPROP. By default, this parameter will be set to RPROP, as this method is gener‐
ally more effective for training the network in most circumstances. In the case of
RPROP, param1 and param2 in the constructor correspond to the initial update step
size and the smallest update Δ0 step size Δmin (respectively). In the case of BACKPROP,
param1 and param2 correspond to what are called the weight gradient and the
momentum, respectively. Alternatively, you may set these parameters using the set
BackpropWeightScale() and setBackpropMomentumScale() member accessor func‐
tions. The weight gradient value multiplies the weight gradient term in the back-
propagation update step and essentially controls how fast the updates move in the
desired direction. A typical value for this term is 0.1. The momentum value multi‐
plies an additional term in the update that is proportional to the difference in the
value between the prior step and the step prior to that—giving something like a
velocity for the weight. The momentum term premultiplies this velocity, which has
the effect of smoothing out large fluctuations in the update. If set to 0, this term is
effectively eliminated. However, a small value (typically about 0.1 also) often gives a
substantially faster overall convergence. In addition to these two parameters, there
are the accessors setRpropDWPlus(), setRpropDWMinus(), setRpropDW0(), setR
propDWMin(), and setRpropDWMax(), which can be used to set the values η +, η −, Δ0,
Δmin, and Δmax respectively (as well as the corresponding get*() methods to simply
inspect these values).

Once you have trained your network, you can then use it to make predictions in the
usual way using the overridden cv::ml::StatModel::predict() method. As usual,
samples must be an array with one row per input data point and the correct number
of columns (the same number as the training data). The results array will have as
many rows as inputs did, but the number of columns equal to the number of nodes

858 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

40 It is only there to conform to the interface specified by cv::ml::StatModel::predict().

41 It is also often called the feature space. This terminology is confusing, however, as other authors use it to refer
to the lower-dimensional space of the original input features. To prevent this confusion, we will avoid this
terminology.

42 More precisely, the offset is b / w→ .

in the output layer of the network. The return value is meaningless and can be
ignored.40

Support Vector Machine
The support vector machine (SVM) is a classification algorithm that, in its basic
form, is used to separate two classes based on a set of exemplars. Extensions of the
SVM algorithm can be used to implement multiclass (N c > 2) classification. The con‐
cept that underlies the SVM is the use of kernels by means of which the data points in
some particular number of dimensions Nd are mapped into a space of much higher
dimension N KS , called the kernel space.41 In that space, a linear classifier can often be
found that separates the two classes, even if no such linear separation was possible in
the original, lower dimensional space. The SVM is called a maximum margin classi‐
fier because it selects a hyperplane in the kernel space that not only separates the two
classes, but does so with the largest amount of distance (margin) to those exemplars
of each class that are closest to the hyperplane. Those exemplars that are close to the
hyperplane, and which define its location, are called the support vectors. The signifi‐
cance of the support vectors is that once they have been identified, only they need to
be retained in order to make a decision about a future data point whose class identity
is to be predicted.

More formally, this decision hyperplane can be described by the equation
w→ ⋅ x→ + b = 0 for a linear SVM. Note that although this decision plane is linear in the
higher-dimensional space, it can be very nonlinear in the original, lower-dimensional
space, as shown in Figure 21-12. In this case, the x→ are points in the kernel space and
the vector w→ defines the normal to the hyperplane. By convention, w→ is normalized
such that the distance between the decision hyperplane and the support vectors is
1 / w→ in either direction. The value b gives an offset of the hyperplane (relative to
the parallel hyperplane that passes through the origin).42 Given such a parameteriza‐
tion, the support vectors themselves will lie on the planes defined by w→ .x→ + b = + 1
and w→ .x→ + b = − 1.

Machine Learning Algorithms Using cv::StatModel | 859

Figure 21-12. The points in the original low-dimensional space (left) are separated by
first being mapped into a higher-dimensional space (right). Though the decision surface
is linear (a hyperplane) in the high-dimensional space, it can be very nonlinear in the
low-dimensional space

Though the full argument for this is beyond the scope of this book, looking at
Figure 21-13 should make it at least seem reasonable that the vector w→ can be
expressed in terms only of the support vectors themselves—the logic being that ulti‐
mately the hyperplane is defined only by these elements of the training set. This is
analogous to the “front line” on a battlefield being defined only by the people near
the opposition—it doesn’t really matter where the people in the back arrange them‐
selves. Somewhat less intuitively, it can be shown that the vector w→ can be expressed
specifically by a linear combination of the support vectors. Similarly, the value of b
can be computed directly from the support vectors. Once we have these two parame‐
ters that define the decision hyperplane, any new point x→ can be passed to the classi‐
fier and can be determined to be in one of four regions: well inside of class 1 (i.e.,
w→ .x→ + b ≥ + 1), marginally inside of class 1 (w→ .x→ + b > 0), marginally inside of class 2
(w→ .x→ + b < 0), or strongly inside of class 2 (w→ .x→ + b ≥ + 1).

860 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

Figure 21-13. The same kernel space from Figure 21-12 is shown here rotated so that we
are looking at the edge of the decision hyperplane. The support vectors (circled) are
equidistant on both sides of the hyperplane

About kernels
The kernel is the mapping that takes points from the native space of the input train‐
ing vectors to the higher-dimensional feature space and back again. Remember that it
is in this higher-dimensional space that we intend to find the separating hyperplane.
The kernel is composed of two parts: the part that takes us from the space of the
input features to the kernel space and the inverse transformation that takes us back.
Customarily, the kernel is written as K (x→ , x→ ′), while the mappings are written as
φ→ (x→) and φ→ T (x→ ′), respectively. The kernel, by definition, can then be expressed as:

K (x→ , x→ ′) = φ→ T (x→)φ→ (x→ ′)

It is easiest to understand a kernel by way of example. One of the kernels available to
OpenCV’s SVM is called the polynomial kernel. This kernel has the form:

K (x→ , x→ ′) = (x→ ⋅ x→ ′ + c)q

for some value of c > 0 and integer q > 0. The mapping φq,c
→(x→) that corresponds to

this kernel can have a very large number of components. Even for the simplest case

Machine Learning Algorithms Using cv::StatModel | 861

43 It is not hard to verify that φ→ 2,c
T (x→)φ→ 2,c(x→ ′) = φ→ 2,c(x→) ⋅ φ→ 2,c(x→ ′) = K (x→ , x→ ′) = (x→ ⋅ x→ ′ + c)2; you can just multiply it out.

where q = 2 and c = 0, given an input vector of three dimensions (Nd = 3), with
x→ = (x1, x2, x3):43

φ→ 2,0(x1, x2, x3) = (x3
2, x2

2, x1
2, 2x3x2, 2x3x1, 2x2x1)

For comparison, for c = 1:

φ→ 2,1(x1, x2, x3) = (x3
2, x2

2, x1
2, 2x3x2, 2x3x1, 2x2x1, 2x3, 2x2, 2x1, 1)

Notice that for the first choice of kernel, Nd = 3 corresponds to a kernel space of
dimension of N KS = 6; for the second kernel with the same input dimension, N KS = 10.

What is particularly important about these kernels, however, is that the mappings
φ→ (x→) never need to be computed in the course of computing the separation hyper‐
plane for the SVM. The reason for this critical fact is that all of the computations in
the feature space that are needed only involve dot products between the points. This
means that, wherever we find φ→ (x→), it will be in the form φ→ T (x→)φ→ (x→ ′) for some pair of
points x→ and x→ ′ . Worded differently, we never need to evaluate φ→ (x→ ′); we only need
to evaluate K (x→ , x→ ′). The implications of this are profound, since even though the
dimension of the kernel space might be very high (even infinite!), we need only be
able to evaluate K (x→ , x→ ′) for vectors of the input feature space dimension to train
and use the SVM. This property is called the kernel trick in SVM literature.

In practice then, one only needs to select a kernel and from there, the SVM can do
the work. The actual kernel selected will have a heavy influence on how the construc‐
ted hyperplane is generated, how well it separates the training data, and how well that
separation generalizes to future data. OpenCV currently provides six different ker‐
nels you can use in your support vector machines (see Table 21-5).

Table 21-5. The available kernel functions for the OpenCV SVM implementation

Kernel OpenCV name (kernel_type) Kernel function Parameters
Linear cv::ml::SVM::LINEAR K (x→ , x

→′) = x
→ T

x
→′

Polynomial cv::ml::SVM::POLY K (x→ , x
→′) = (γ x

→ T
x
→′

+ c0)q degree (q),
gamma (γ > 0),
coef0 (c0)

Radial basis
functions

cv::ml::SVM::RBF
K (x→ , x

→′) = e −γ x
→ T x
→′ 2 gamma (γ > 0)

Sigmoid cv::ml::SVM::SIGMOID K (x→ , x
→′) = tanh(γ x→ T x

→′
+ c0) gamma (γ > 0),

coef0 (c0)

862 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

44 That is a “nu” as in the Greek letter, but is pronounced like the English word “new.” The pun is presumably
intentional.

45 The “other” option is one-versus-many, which is not implemented in OpenCV.

Kernel OpenCV name (kernel_type) Kernel function Parameters
Exponential
chi-squared

cv::ml::SVM::CHI2
K (x→ , x

→′) = e −γ
x
→

− x ′
→

x
→

− x ′
→ gamma (γ > 0)

Histogram
intersection

cv::ml::SVM::INTER K (x→ , x
→′) = min(x→ , x

→′
)

Handling outliers
OpenCV supports two different variants of SVM called C-vector SVM and v-vector
SVM.44 These extensions support the possibility of outliers. In this context, an outlier
is a data point that cannot be assigned to the correct class (or equivalently a data set
that cannot be separated by a hyperplane in the kernel space). In addition to outliers,
the implementation of both of these methods in OpenCV allows for multiclass
(N c > 2) classification.

The C-vector SVM, also known as a soft margin SVM, allows for the possibility that
any particular point is an outlier by penalizing the outlier by an amount proportional
to the distance that point is found to be past the decision boundary. Such distances
are customarily called slack variables, while this constant of proportionality is con‐
ventionally called C (the latter being the origin of the name for this method).

The second extension, which also allows for the possibility of outliers, is called the v-
vector SVM [Schölkopf00]. In this case, the proportionality constant analogous to C
takes a constant (predetermined) value. Instead, however, there is the new parameter
v. This parameter sets an upper bound on the number of training errors (i.e., misclas‐
sifications), as well as a lower bound on the fraction of training points that are sup‐
port vectors. The parameter v must be between 0.0 and 1.0.

Comparing the two, the C-vector SVM has a more straightforward implementation,
and so is often faster to train. However, because there is no natural interpretation of
C, it is difficult to find a good value other than through trial and error. On the other
hand, the parameter of the v-vector SVM has a natural interpretation, and so in prac‐
tice is often easier to use.

Multiclass extension of SVM
Both the C-vector SVM and the v-vector SVM, as implemented in OpenCV, support
the possibility of more than two classes. Though there are many possible ways to do
this, OpenCV uses the method called one-versus-one.45 In this method, if there are k
classes, a total of k(k – 1)/2 classifiers are trained. When an object is to be classified,

Machine Learning Algorithms Using cv::StatModel | 863

every classifier is run and the class that has the majority of wins is taken to be the
result.

One-class SVM
Another interesting variant of the SVM is the one-class SVM. In this case, all of the
training data is taken to be exemplary of a single class, and a decision boundary is
sought that separates that one class from everything else. As with the multiclass
extensions just described, the one-class SVM also supports outliers with a mechanism
of slack variables similar to the C-vector SVM (and having the same parameter).

Support vector regression
In addition to extensions for single class and multiclass, support vector machines
have also been extended to allow for the possibility of regression (as opposed to clas‐
sification). In the regression case, the input results are sequential values, rather than
class labels, and the output is an interpolation (or extrapolation) based on the input
values which were provided. OpenCV supports two different algorithms for support
vector regression (SVR): ɛ-SVR [Drucker97] and v-SVR [Schölkopf00].

In its most abstract form, the SVR and the SVM are essentially the same, with the
exception that the error function that is being minimized in SVM always has the out‐
put equal to one of two values (typically +1 and –1), while the SVR has a different
objective for each input example. The nuance, however, arises from how the slack
variables are handled, and what points are considered “outliers.” Recall that in the
SVM, points were assigned to classes that were separated by the maximum margin
hyperplane. Thus, being an outlier was a statement about the location of a point,
given its label, relative to the hyperplane. In the SVR case, the hyperplane is the
model for the function. (Recall that this plane in the kernel space can be very compli‐
cated in the input feature space.) Thus, it is the points that are more than some dis‐
tance from the hyperplane that are outliers (in either direction). It is how this
distance is handled that differentiates the two algorithms we have available to us for
SVR in OpenCV.

The first form algorithm, ɛ-SVR, uses a parameter called ɛ that defines a space
around the hyperplane within which no cost is assigned to predictions being off by
this much or less. Beyond this distance, a cost is assigned that grows linearly with dis‐
tance. This is true for points both above and below the hyperplane.

The second algorithm, v-SVR, has a relationship with ɛ-SVR similar to that between
v-SVM and C-SVM. Specifically, the v-SVR uses the parameter v to set the minimum
fraction of input vectors that will be support vectors. In this manner, the meaning of
the parameter v in the v-SVR, as with the v-SVM, is substantially more intuitive, and
therefore easier to set to a sensible value.

864 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

Using support vector machines and cv::ml::SVM()

The SVM classification interface is defined in OpenCV by the cv::ml::SVM class in
the ML library. cv::ml::SVM, like the other objects we have looked at in this section,
is derived from cv::ml::StatModel class, and itself serves as the interface to an
implementation class, in this case called cv::ml::SVMImpl:

// Somewhere above..
// namespace cv {
// namespace ml {
//
class SVMImpl: public SVM { // cv::ml::SVM is derived
 // from cv::ml::StatModel
public:

 // (Inherited from cv::ml::SVM)
 //
 //enum Types {
 // C_SVC = 100,
 // NU_SVC = 101,
 // ONE_CLASS = 102,
 // EPS_SVR = 103,
 // NU_SVR = 104
 //};
 //
 //enum KernelTypes {
 // CUSTOM = -1,
 // LINEAR = 0,
 // POLY = 1,
 // RBF = 2,
 // SIGMOID = 3,
 // CHI2 = 4,
 // INTER = 5
 //};
 //
 //enum ParamTypes {
 // C = 0,
 // GAMMA = 1,
 // P = 2,
 // NU = 3,
 // COEF = 4,
 // DEGREE = 5
 //};

 class Kernel : public Algorithm {

 public:

 int getType() const;
 void calc(
 int vcount,
 int n,

Machine Learning Algorithms Using cv::StatModel | 865

 const float* vecs,
 const float* another,
 float* results
);
 };

 int getType() const; // get the SVM type (C-SVM, etc.)
 double getGamma() const; // get the gamma param of kernel
 double getCoef0() const; // get the coeff0 param of kernel
 double getDegree() const; // get degree param of kernel
 double getC() const; // get C param of C-SVM or eps-SVR
 double getNu() const; // get nu param of nu-SVM or nu-SVR
 double getP() const; // get P param of eps-SVR
 cv::Mat getClassWeights() const; // get the class priors
 cv::TermCriteria getTermCriteria() const; // get training term criteria
 int getKernelType() const; // get the kernel type

 void setType(int val); // set the SVM type (C-SVM, etc.)
 void setGamma(double val); // set the gamma param of kernel
 void setCoef0(double val); // set the coeff0 param of kernel
 void setDegree(double val); // set degree param of kernel
 void setC(double val); // set C param of C-SVM or eps-SVR
 void setNu(double val); // set nu param of nu-SVM or nu-SVR
 void setP(double val); // set P param of eps-SVR
 void setClassWeights(const Mat &val); // set the class priors
 void setTermCriteria(const TermCriteria &val); // set training term criteria
 void setKernel(int kernelType); // set the kernel type

 ...

 // set the custom SVM kernel if needed
 //
 void setCustomKernel(const Ptr<Kernel> &_kernel);

 Mat getSupportVectors() const;
 Mat getUncompressedSupportVectors() const;
 double getDecisionFunction(
 int i,
 OutputArray alpha,
 OutputArray svidx
);

 ParamGrid getDefaultGrid(int param_id); // return default grid for any param
 // Choose from SVM::ParamTypes above
 bool trainAuto(
 const Ptr<TrainData>& data,
 int kFold = 10,
 ParamGrid Cgrid = getDefaultGrid(C),
 ParamGrid gammaGrid = getDefaultGrid(GAMMA),
 ParamGrid pGrid = getDefaultGrid(P),
 ParamGrid nuGrid = getDefaultGrid(NU),
 ParamGrid coeffGrid = getDefaultGrid(COEF),

866 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

 ParamGrid degreeGrid = getDefaultGrid(DEGREE),
 bool balanced = false
);

 ...

 // from class SVM
 //
 //static Ptr<SVM> create(); // The algorithm "constructor",
 // // returns Ptr<SVMImpl>
};

As usual, you first create the instance of the class using the static create() method,
then configure its parameters using the “setters,” and then run the train method. The
first method, setType(), determines the SVM or SVR algorithm that is to be used. It
can be any of the five values shown in Table 21-6. The next important method is
setKernelType(), which may be any of the values from Table 21-5.

Table 21-6. The available types for the SVM and the corresponding values for the setType()
method of cv::ml::SVM. The rightmost column lists the related properties of cv::ml::SVM
that could be set for the SVM type along with the values to which they correspond (as
described in the previous section)

SVM type OpenCV name (svm_type) Parameters
C-SVM classifier cv::ml::SVM::C_SVC C (C)
v-SVM classifier cv::ml::SVM::NU_SVC Nu (v)
One-class SVM cv::ml::SVM::ONE_CLASS C (C), Nu (v)
ɛ-SVR cv::ml::SVM::EPS_SVR P (ɛ), C (C)
v-SVR cv::ml::SVM::NU_SVR Nu (v), C (C)

Once you have selected the type of SVM and the kernel type you would like to use,
you should configure the kernel parameters with their associated set*() methods.
The Parameters columns of Tables 21-5 and 21-6 indicate which parameters are
needed in which cases, and which parameters in the equations of the previous sec‐
tions are associated with each parameter. The default values of degree, gamma, coef0,
C, Nu, and P are 0.0, 1.0, 0.0, 1.0, 0.0, and 0.0, respectively.

The setClassWeights() method allows you to supply a single-column array that
provides an additional weighting factor for the slack variables. This is used only by
the C-SVM classifier. The values you supply will multiply C for each individual train‐
ing vector. In this way, you can assign a greater importance to some subset of the
training examples, which will in turn help to guarantee that if any training vectors
cannot be classified correctly, it will not be those. By default, class weights are not
used.

Machine Learning Algorithms Using cv::StatModel | 867

The final method is setTermCriteria(), which can almost always be safely left at its
default of 1000 iterations and FLT_EPSILON.

At this point, you might be looking at all of the parameters to the SVM and the ker‐
nels and wondering how you could possibly choose the right values for all of these
things. If so, you would not be alone. In fact, it is common practice to simply step
through ranges of all of these parameters and find the one that works the very best on
the available data. This process is automated for you by the cv::ml::SVM::train
Auto() method.

When you are using cv::ml::SVM::trainAutio(), the train data you supply is the
same as you would supply to cv::ml::StatModel::train(). The kFold argument
controls how the validation is done for each parameter set. The method used is k-fold
cross-validation (so the parameter should probably just be called k), by which the data
set is automatically divided into k-subsets and then run k times; each time it is run, a
different subset is held back for validating after training on the other (k – 1) subsets.

The next six parameters control the grids, which are the sets of values that will be tes‐
ted for each of the parameters. A grid is a simple object with three data members:
minVal, maxVal, and logStep. If you set the step to something less than 1, then the
grid will not be used and instead the relevant value from params will be used for all
runs. Typically, you will not grid-search over every parameter. You can construct a
grid with the constructors:

cv::ml::ParamGrid::ParamGrid() {
 minVal = maxVal = 0;
 logStep = 1;
}
cv:: ml::ParamGrid::ParamGrid(
 double minVal,
 double maxVal,
 double logStep
);

or you can use the cv::ml::SVM method cv::ml::SVM::getDefaultGrid(int). In
this latter case, you need to tell getDefaultGrid() what parameter you would like a
grid for. This is because the default grid is different for each argument. The valid val‐
ues you can pass to getDefaultGrid are cv::ml::SVM::C, cv::ml::SVM::GAMMA,
cv::ml::SVM::P, cv::ml::SVM::NU, cv::ml::SVM::COEF, or cv::ml::SVM::DEGREE.
If you just want to create the grids yourself, you can do that as well, of course. Note
that the argument logStep is interpreted as a multiplicative scale, so if you set it (for
example) to 2.0, each value tried will be double the previous value until maxVal is
reached (or exceeded).

Finally, now that you have trained your classifier, you can make predictions using the
cv::ml::StatModel::predict() interface as usual:

868 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

float cv::ml::SVM::predict(
 InputArray samples,
 OutputArray results = noArray(),
 int flags = 0
) const;

As usual, the predict() method expects one or more samples, one per row, and
returns the resulting predictions. In the case of one-class or two-class classification
it’s possible to retrieve the computed value instead of the chosen class label. In order
to do that, pass the cv::ml::StatModel::RAW_OUTPUT flag. The returned signed value
will correlate with the distance between sample and the decision surface; this is what
you want in two class classification problems. Otherwise, a class label will be returned
(for multiclass). In the case of regression, the return value will be the estimated value
of the function, regardless of the flag.

Additional members of cv::ml::SVM

The cv::ml::SVM object also provides a few utility functions, which allow you to get
at the data in the object. This includes data you put in at training time, but also
includes useful things like the computed support vectors as well as the default grids.
The available functions are:

// get all the support vectors
//
cv::Mat cv::ml::SVM::getSupportVectors() const;

// get uncompressed support vectors as found by the training procedure
//
cv::Mat cv::ml::SVM::getUncompressedSupportVectors() const;

// get the i-th decision function (out of n*(n-1)/2 in the case of n-class problem
//
double cv::ml::SVM::getDecisionFunction(
 int i,
 cv::OutputArray alpha,
 cv::OutputArray svidx
) const;

The method cv::ml::SVM::getSupportVectors() gives you all the support vectors
used to compute the decision hyperplane or hypersurface. In the case of linear SVM,
all the support vectors for each decision plane can be compressed into a single vector
that will basically describe the separating hyperplane. That’s why linear SVM is
super-fast at the prediction. However, users may be interested in looking at the origi‐
nal support vectors, which can be accessed via cv::ml::SVM::getUncompressedSup
portVectors(). In the case of nonlinear SVM, uncompressed and compressed
support vectors are the same thing. Then it’s possible to get access to each decision
hyperplane or hypersurface. We do so using the method cv::ml::SVM::getDecision
Function. In the case of regression, or one-class or two-class classification, there will

Machine Learning Algorithms Using cv::StatModel | 869

be just one decision function, and so i=0. In the case of N-class classification, there
will be N*(N-1)/2 decision functions, and so 0<=i<N*(N-1)/2. The method returns
the coefficients for the support vectors used in the particular function, the indices of
the support vectors (within the matrix returned by cv::ml::SVM::getSupportVec
tors()), and the value b (see the preceding formulas), which is added to the weighted
sum before the decision is made.

In addition to the training and prediction methods, cv::ml::SVM supports the usual
save(), load(), and clear() methods.

Summary
We began this chapter by learning about cv::ml::StatModel, which is the standard
object-based interface used by OpenCV to encapsulate all of the modern learning
methods. We saw how training data was handled and how predictions could be made
from the model once the training data was learned. Thereafter, we looked at various
learning techniques that have been implemented using that interface.

Along the way, we learned that both cv::ml::TrainingData and the individual clas‐
sifiers derived from cv::ml::StatModel use a construction by which an interface is
specified at one class level, and a derived implementation class is provided that does
all of the work. This implementation class was something largely invisible to the
users, because the create() member of classifier X always returned an instance of the
implementation class XImpl. For this reason, when we looked at class definitions for
important classifier objects, it was the *Impl objects that we actually looked at.

We learned that the naïve Bayes classifier assumes that all the features are independ‐
ent from one another and that it was surprisingly useful for multiclass discriminative
learning. We saw that binary decision trees use what is called an impurity metric,
which it tries to minimize as it builds the tree. Binary decision trees were also useful
for multiclass learning and have the useful feature that different weights could be
assigned to misclassifications for different classes. Boosting and random trees use
binary decision trees internally, but build larger structures containing many such
trees. Both are capable of multiclass learning, but random trees also introduce a
notion of similarity between input data points relative to the classes.

Expectation maximization is an unsupervised technique that was similar to K-means,
but different in that a responsibility assigned to a data point is not necessarily to the
closest cluster center. The K-nearest neighbors method is a classifier that can be very
effective, but requires storing the entire training set; as a result, it can use a lot of
memory and be quite slow. Multilayer perceptrons are a biologically inspired techni‐
que that can be used for classification or regression. They are notably very slow to
train, but can be very fast to operate, and achieve state-of-the-art performance on
many important tasks. Finally, we introduced support vector machines (SVM), a

870 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

robust technique used typically for two-class classification, but which has variants for
multiclass learning. SVMs operate by evaluating data in a kernel space where separa‐
tion between classes can be easily expressed. Because they require only a small subset
of the training data when used for classification, they can be very fast and have a
small memory requirement. Finally, OpenCV is being extended to support deep neu‐
ral networks; see the Appendix B repositories cnn_3dobj and dnn.

Exercises
1. Figure 21-14 depicts a distribution of “false” and “true” classes. The figure also

shows several potential places (a, b, c, d, e, f, g) where a threshold could be set.

Figure 21-14. A Gaussian distribution of two classes, “false” and “true”

a. Draw the points a–g on an ROC curve.
b. If the “true” class is poisonous mushrooms, at which letter would you set the

threshold?
c. How would a decision tree split this data?

2. Refer back to Figure 20-2.
a. Draw how a decision tree would approximate the true curve (the dashed line)

with three splits (here we seek a regression, not a classification model).

The “best” split for a regression takes the average value of
the data values contained in the leaves that result from the
split. The output values of a regression-tree fit thus look
like a staircase.

b. Draw how a decision tree would fit the true data in seven splits.
c. Draw how a decision tree would fit the noisy data in seven splits.

Exercises | 871

d. Discuss the difference between (b) and (c) in terms of overfitting.
3. Why do the splitting measures (e.g., Gini) still work when we want to learn mul‐

tiple classes in a single decision tree?
4. Review Figure 20-6, which depicts a two-dimensional space with unequal var‐

iance at left and equalized variance at right. Let’s say that these are feature values
related to a classification problem. That is, data near one “blob” belongs to one of
two classes, while data near another blob belongs to the same or another of two
classes. Would the variable importance be different between the left or the right
space for:
a. Decision trees?
b. K-nearest neighbors?
c. Naïve Bayes?

5. Modify the sample code for data generation in Example 20-1, near the top of the
outer for loop in the K-means section, to produce a randomly generated labeled
data set. We’ll use a single normal distribution of 10,000 points centered at pixel
(63, 63) in a 128 × 128 image with standard deviation (img.cols/6,
img.rows/6). To label these data, we divide the space into four quadrants cen‐
tered at pixel (63, 63). To derive the labeling probabilities, we use the following
scheme. If x < 64 we use a 20% probability for class A; else if x ≥ 64 we use a 90%
factor for class A. If y < 64 we use a 40% probability for class A; else if y ≥ 64 we
use a 60% factor for class A. Multiplying the x and y probabilities together yields
the total probability for class A by quadrant with values listed in the 2 × 2 matrix
shown. If a point isn’t labeled A, then it is labeled B by default. For example, if x
< 64 and y < 64, we would have an 8% chance of a point being labeled class A and
a 92% chance of that point being labeled class B. The four-quadrant matrix for
the probability of a point being labeled class A (and if not, it’s class B) is:

0.2 × 0.6 = 0.12 0.9 × 0.6 = 0.54
0.2 × 0.4 = 0.08 0.9 × 0.4 = 0.36

Use these quadrant odds to label the data points. For each data point, determine
its quadrant. Then generate a random number from 0 to 1. If this is less than or
equal to the quadrant odds, label that data point as class A; else, label it class B.
We will then have a list of labeled data points together with x and y as the fea‐
tures. The reader will note that the x-axis is more informative than the y-axis as
to which class the data might be. Train random forests on this data and calculate
the variable importance to show x is indeed more important than y.

872 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

6. Using the same data set as in Exercise 5, use discrete AdaBoost to learn two mod‐
els: one with weak_count set to 20 trees and one set to 500 trees. Randomly select
a training and a test set from the 10,000 data points. Train the algorithm and
report test results when the training set contains:
a. 150 data points;
b. 500 data points;
c. 1,200 data points;
d. 5,000 data points.
Explain your results. What is happening?

7. Repeat Exercise 5, but use the random trees classifier with 50 and 500 trees.
8. Repeat Exercise 5, but this time use 60 trees and compare random trees versus

SVM.
9. In what ways is the random tree algorithm more robust against overfitting than

decision trees?
10. The “no free lunch” theorem states that no classifier is optimal over all distribu‐

tions of labeled data.
a. Describe a labeled data distribution over which no classifier described in this

chapter would work well.
b. What distribution would be hard for naïve Bayes to learn?
c. What distribution would be hard for decision trees to learn?
d. How would you preprocess the distributions in Parts b and c so that the clas‐

sifiers could learn from the data more easily?
11. Use the mushroom data set agaricus-lepiota.data, but take the data and remove

all the labels. Then duplicate this data, but randomly shuffle each column with
replacement. Now label the original data class A and the shuffled data class B.
Split the data into a large training set and a smaller test set. Train a random tree
classifier on the training data.
a. How well can the random trees classifier tell class A and class B apart on the

test set?
b. Run variable importance and note what features are important.
c. Train a network on the unaltered mushroom data set. Run variable impor‐

tance. Are the choices of the important variables similar? This is an example
of how one might handle unsupervised data for learning invented by Leo
Brieman.

Exercises | 873

12. Back propagation uses the calculus chain rule in order to compute how to change
each weight in a neural network so as to reduce the loss function error at the out‐
put. Using Figure 21-11, the back-propagation discussion, and the chain rule,
derive the weight update equations given in the back propagation section.

13. The nonlinear function (the f or g function in Figure 21-11) is often a “sigmoid”
or S-shaped function that rises from near zero for large negative values to one for
large positive values. One typical form of this function is σ(x) = 1

1 − e −x . Prove that the
derivative σ ′(x) = dσ (x)

dx takes the form σ ′(x) = σ(x)(1 − σ(x)).

874 | Chapter 21: StatModel: The Standard Model for Learning in OpenCV

CHAPTER 22

Object Detection

In the previous two chapters, we covered the basics of machine learning and then
moved on to investigate, in some depth, a large number of techniques that the
OpenCV library provides for discriminative and generative learning. Now it’s time to
put it all together, to combine the computer vision techniques we have been learning
throughout the book with the machine learning techniques, and to actually apply
learning to practical problems in computer vision. One of the most important such
problems is object detection—the process of determining whether an image contains
some particular object and, where possible, the localization of that object in pixel
space. In this chapter, we will look at several methods that achieve these goals, in
every case by making use of the lower-level machine learning techniques from the
previous chapter.

Tree-Based Object Detection Techniques
Having looked at many of the lower-level methods for machine learning in the
library, we now turn to some higher-level functions that make use of those various
learning methods in order to detect objects of interest in images. There are currently
two such detectors ented on OpenCV. The first is the cascade classifier, which gener‐
alizes the very successful algorithm of Viola and Jones [Viola01] for face detection,
and the second is the soft cascade, a further evolution of that algorithm that uses a
new approach to give what is, in most cases, a more robust classification than the cas‐
cade classifier. Both algorithms have been very successfully used for detection of
many object classes other than faces. In general, objects with rigid structure and rich
texture tend to respond well to these methods.

These methods not only encapsulate the machine learning components on which
they are based, but they also involve other stages that actually condition the input for
learning or post-process the output of the learning algorithm. Not surprisingly, these

875

1 The Haar wavelet is the first known wavelet basis, and was originally proposed by Alfred Haar in 1909.

object detection algorithms do not have such a uniform interface as the core machine
learning algorithms. This is the case both because of the greater natural variation in
the needs and results of such higher-level methods, but also because—as a matter of
practice—these algorithms were often contributed to the library by their creators, and
have interfaces more like their original implementations.

Cascade Classifiers
The first such classifier we will look at is a tree-based technique called the cascade
classifier, which is built on the important concept of the boosted rejection cascade. It
has a different format from the bulk of the ML library in OpenCV because it was
originally developed as a full-fledged face-detection application, and later modern‐
ized (somewhat) to be a little more general than the original implementation. In this
section we will cover it in detail and show how it can be trained to recognize faces
and other rigid objects.

Computer vision is a broad and fast-changing field, so the parts of
OpenCV that implement a specific technique—rather than a com‐
ponent algorithmic piece—are more at risk of becoming out of
date. The original face detector (back then called the Haar classi‐
fier) that was part of OpenCV for many years was in this “risk” cat‐
egory. However, face detection is such a common need that it was
worth having a baseline technique that worked well. As the techni‐
que was built on the well-known and often-used field of statistical
boosting, it actually had more general utility. Since that time, sev‐
eral companies have engineered the “face” detector in OpenCV to
detect “mostly rigid” objects (faces, cars, bikes, human bodies) by
training new detectors on many thousands of selected training
images for each view of the object. This technique has been used to
create state-of-the-art detectors, although with a different detector
trained for each view or pose of the object. Thus, this classifier is a
valuable tool to keep in mind for such recognition tasks. In its cur‐
rent form in the library, some of this generality is more manifest,
and effort has been made to make the implementation more exten‐
sible as future advancements are made.

The cascade classifier in OpenCV implements a version of the technique for face-
detection first developed by Paul Viola and Michael Jones, commonly known as the
Viola-Jones detector [Viola01]. Originally, this technique, and its OpenCV implemen‐
tation, supported only one particular set of features, the Haar wavelets.1 The techni‐
que was later extended by Rainer Lienhart and Jochen Maydt [Lienhart02] to use

876 | Chapter 22: Object Detection

what are known as diagonal features (more on this distinction to follow), which were
then incorporated into the OpenCV implementation. This extended set of features is
commonly referred to as the “Haar-like” features. In OpenCV 3.x, cascades are fur‐
ther extended to work with local binary patterns, or LBP [Abonen04].

As implemented, the OpenCV version of the Viola-Jones detector operates in two
layers. The first layer is the feature detector, which encapsulates and modularizes the
feature computation. The second layer is the actual boosted cascade, which uses sums
and differences over rectangular regions of the computed features; it is agnostic about
how the features were computed.

Haar-like features
The Haar-like features used in the classifier by default are shown in Figure 22-1. At
all scales, these features form the “raw material” that will be used by the boosted clas‐
sifiers. They all have the feature that they can be rapidly computed from an integral
image (see Chapter 12) taken from the original grayscale image.

Figure 22-1. Haar-like features from the OpenCV source distribution (the rectangular
and rotated regions are easily calculated from the integral image). In this diagram‐
matic representation of the wavelets, the light region is interpreted as “add that area”
and the dark region as “subtract that area”

Currently, there are two distinct feature sets supported. These include both the “orig‐
inal” Haar wavelet features (including the “diagonal” features) and the alternate fea‐
ture, LBP. In the future, other feature types may also be supported, or you may write
or use other features (since the cascade feature interface is now fully extensible) by
following how LBP was added.

Tree-Based Object Detection Techniques | 877

Local binary pattern features
The LBP feature was originally proposed by [Ojala94] and intended as a kind of tex‐
ture descriptor. It was only later adapted for use in the boosted cascade environment
of the Viola-Jones object detection algorithm. Recall that the Haar wavelet feature is
associated with a small patch (e.g., 11 × 11 pixels) and assigns the “feature vector” of
that patch to be the wavelet transform (projection onto the Haar basis) of the pixels
in that patch. As seen in Figure 22-2, the LBP feature has a very different way of con‐
structing that feature vector. It takes a rectangle whose width and height are both
divisible by 3, which it then splits into a 3 × 3 array of nonoverlapping tiles. For each
tile, it computes the sum of pixels (using the integral image). Finally, it compares
sums of pixels in each of the eight noncentral tiles with the sum of pixels in the cen‐
tral tile and thus constructs an 8-bit pattern. This 8-bit pattern is used as descriptor of
the rectangle. The 8-bit value is then used as a categorical value passed to the classi‐
fier (as long as the corresponding rectangle is chosen during the training as the
discriminative-enough feature).

Figure 22-2. The LBP feature is computed for an example region of texture (a). For
each pixel in the region, we compute a binary representation by comparing that pixel to
its neighbors (b). The LBP feature is the histogram of these computed values (c). In this
example, there are only two nonzero bins in the histogram (a result of the simple and
repetitive structure of the texture)

Training and pretrained detectors
OpenCV ships with a set of pretrained object-recognition files, but there is also code
that allows you to train and store new object models for the detector. If these are not
enough for your uses, there is also an application in the bundle (opencv_traincas
cade in .../opencv/apps) that you can use to train detectors for just about any rigid
object, though its suitability will vary substantially from object to object.

The pretrained objects that come with OpenCV for this detector are in the .../opencv/
data/haarcascades and .../opencv/data/lbpcascades directories. Currently, the model
that works best for frontal face detection is haarcascade_frontalface_alt2.xml. Side

878 | Chapter 22: Object Detection

face views are harder to detect accurately with this technique (as we will describe
shortly), and those shipped models work less well but have been much improved due
to work during Google Summer of Code 2012. If you end up training good object
models, perhaps you will consider contributing them as open source back to the
community.

Supervised Learning and Boosting Theory
The cascade classifier that is included in OpenCV is a supervised classifier (these
were discussed in Chapter 21). In this case we typically present histogram- and size-
equalized image patches to the classifier, which are then labeled as containing (or not
containing) the object of interest, which for this classifier is most commonly a face.

The Viola-Jones detector uses AdaBoost, but inside of a larger context called a rejec‐
tion cascade. This “cascade” is a series of nodes, where each node is itself a distinct
multitree AdaBoosted classifier. The basic operation of the cascade is that subwind‐
ows from an image are sequentially tested against all of the nodes, in a particular
order, and those windows that “pass” every classifier are deemed to be members of
the class being sought.

To make this possible, each node is designed to have a high (say, 99.9%) detection
rate (low false negatives, or missed faces) at the cost of a low (near 50%) rejection rate
(high false positives, or “nonfaces” wrongly classified). For each node, a “not in class”
result at any stage of the cascade thus safely terminates the computation, and the
algorithm then declares that no face exists at that location.

A true class detection is declared only if the area under consideration makes it
through the entire cascade. When the true class is rare (e.g., a face in a picture), rejec‐
tion cascades can greatly reduce total computation because most of the regions being
searched for a face terminate quickly in a nonclass decision. This is further enhanced
by the placement of the simplest nodes (fastest to compute) at the beginning of the
cascade.

Boosting in the Haar cascade
For the Viola-Jones rejection cascade, each node is itself a collection of weak classifi‐
ers that are combined, through boosting, to form one strong classifier node. These
individual weak classifiers are themselves decision trees that often are only one level
deep (i.e., decision stumps). A decision stump is allowed just one decision of the fol‐
lowing form: “Is the value v of a particular feature h above or below some threshold
t”; then, for example, a “yes” indicates face and a “no” indicates no face:

h w = { +1 νw ≥ tw

− 1 νw < tw

Tree-Based Object Detection Techniques | 879

2 This should all look familiar from the discussion of AdaBoost in Chapter 21.

3 There is sometimes confusion about boosting lowering the classification weight on points it classifies correctly
in training and raising the weight on points it classified wrongly. The reason is that boosting attempts to focus
on correcting the points that it has “trouble” on and to ignore points that it already “knows” how to classify.
One of the technical terms for this is that boosting is a margin maximizer.

The number of Haar-like or LBP features that the Viola-Jones classifier uses in each
weak classifier can be set in training, but one mostly sticks with the single feature
stump; at most about three features may be used in some contexts.2 Boosting then
iteratively builds up the strong classifier node as a weighted sum of these kinds of
weak classifiers. The Viola-Jones classifier uses the classification function:

H = sign(α1h 1 + α2h 2 + … + αN w
h N w

)

Here, the sign function returns –1 if the number is less than zero, 0 if the number
equals zero, and +1 if the number is positive. On the first pass through the data set,
we learn the threshold tw for each hw that best classifies the input. Boosting then uses
the resulting errors to calculate the weighted vote, αw. As in traditional AdaBoost,
each feature vector (data point) is also reweighted low or high according to whether it
was classified correctly3 in that iteration of the classifier. Once a node is learned this
way, the surviving data from higher up in the cascade is used to train the next node,
and so on.

Rejection cascades. Figure 22-3 visualizes the Viola-Jones rejection cascade, com‐
posed of many boosted classifier groups. In the figure, each of the nodes Fj contains
an entire boosted cascade of groups of decision stumps (or trees) trained on the fea‐
tures from faces and nonfaces (or other objects the user has chosen to train on).
Recall that one minimizes computational cost by ordering the nodes from least to
most complex. Typically, the boosting in each node is tuned to have a very high
detection rate (at the usual cost of many false positives). When training on faces, for
example, almost all (99.9%) of the faces are found, but many (about 50%) of the non‐
faces are erroneously “detected” at each node. This is OK however, because using,
say, 20 nodes will still yield a face detection rate (through the whole cascade) of
0.99920 ≈ 98% with a false positive rate of only 0.520 ≈ 0.0001%!

880 | Chapter 22: Object Detection

Figure 22-3. Rejection cascade used in the Viola-Jones classifier: each node represents a
multitree boosted classifier ensemble tuned to rarely miss a true face while rejecting a
possibly small fraction of nonfaces; however, almost all nonfaces have been rejected by
the last node, leaving only true faces

In the run mode, a search region of different sizes is swept over the original image. In
practice, 70–80% of nonfaces are rejected in the first two nodes of the rejection cas‐
cade, where each node uses about 10 decision stumps. This quick and early “atten‐
tional reject” vastly speeds up face detection and is the basis of the practicality of the
Viola-Jones algorithm.

As mentioned earlier, this technique implements face detection but is not limited to
faces; it also works fairly well on some other (mostly rigid) objects that have distinc‐
tive views. Front views of faces work well; backs, sides, or fronts of cars work well; but
side views of faces or “corner” views of cars work less well—mainly because these
views introduce variations in the template that the “blocky” features used in this
detector don’t handle well. For example, a side view of a face must catch part of the
changing background in its learned model in order to include the profile curve. To
detect side views of faces, you may try haarcascade_profileface.xml, but to do a better
job you should really collect much more data than this model was trained with and
perhaps expand the data with different backgrounds behind the face profiles. In Goo‐
gle Summer of Code 2012, lbpcascade_profileface.xml was introduced with improved
performance.

Tree-Based Object Detection Techniques | 881

4 This relates to a more general principle in machine learning. It is never profitable to force an algorithm to
learn a symmetry that you already know to exist. It is always better to train the algorithm on a canonically
broken instance of that symmetry and then to map the input according to the symmetry before giving it to
the algorithm.

Profile views are hard for the Haar cascade classifier because it uses
block features and so is forced to attempt to learn the background
variability that “peeks through” the informative profile edge of the
side view of faces. This problem is a somewhat general one that
affects both the Haar and, to a lesser extent, LBP features. In most
cases, you are best off training the detector to find a square region
that is a subset of the object you are looking for. This is precisely
how the pretrained cascades in the package deal with the fact that
heads are round: they look for the square region that is circumscri‐
bed by the face.

In training, it’s more efficient to learn only one profile view (e.g., just the right side).
Then the test procedure would be to (1) run the right-side-profile detector, and then
(2) flip the image on its vertical axis and run the right-side-profile detector again to
detect left-facing profiles.4

To recap, detectors based on these Haar-like features as well as the LBP features work
well with “blocky” features—such as eyes, mouth, and hairline—but less well with
tree branches (for example) or when the object’s outline shape is its most distinguish‐
ing characteristic (as with a coffee mug). LBP has some advantage here because the
background regions may just add some gradient noise into the LBP histogram,
whereas Haar-like features are influenced by summations (offset level) over chunks
of background.

All that being said, if you are willing to gather lots of good, well-segmented data on
fairly rigid objects, then this classifier can still compete with the best, and its con‐
struction as a rejection cascade makes it very fast to run (though not to train). Here,
“lots of data” means thousands of object examples and tens of thousands of nonob‐
ject examples. By “good” data we mean that one shouldn’t mix, for instance, tilted
faces with upright faces; instead, keep the data divided and use two classifiers, one for
tilted and one for upright. “Well-segmented” data means data that is consistently
boxed. Sloppiness in box boundaries of the training data will often lead the classifier
to try to correct for fictitious variability in the data. For example, different placement
of the eye locations in the face data location boxes can lead the classifier to assume
that eye locations are not a geometrically fixed feature of the face and so can move
around. Performance is almost always worse when a classifier attempts to adjust to
things that aren’t actually in the real data.

882 | Chapter 22: Object Detection

5 Well, most of them are now standard tricks in the toolkit of a modern computer vision researcher or
practitioner.

Viola-Jones classifier summary
The Viola-Jones classifier employs AdaBoost at each node in the cascade to learn a
multitree (mostly multistump) classifier. In addition to this, the algorithm incorpo‐
rates several other innovative features:5

• It uses features that can be computed very quickly (i.e., the Haar feature is a
threshold applied to sums and differences of rectangular image regions).

• Its integral image technique enables rapid computation of the value of rectangu‐
lar regions or such regions rotated 45 degrees (see Chapter 6). This data structure
is used to accelerate computation of the input features.

• It uses statistical boosting to create binary (face/not face) classification nodes
characterized by high detection and weak rejection.

It organizes these classifier nodes into a rejection cascade. In other words, the first
group of classifiers is selected that best detects image regions containing an object
while allowing many mistaken detections; the next classifier group is the second-best
at detection with weak rejection; and so forth. In test mode, an object is detected only
if it makes it through the entire cascade.

The cv::CascadeClassifer object
As with many of the routines in the Machine Learning library from Chapter 21, the
cascade classifier is implemented in OpenCV as an object. This object is called
cv::CascadeClassifier, and stores the loaded (or trained) cascade, as well as pro‐
viding the interface for running a detection pass on an image.

The constructor for the cv::CascadeClassifier object is:

cv::CascadeClassifier::CascadeClassifier(
const String& filename
);

This constructor takes just one argument: the name of the file in which your cascade
is stored. There is also a default constructor you can use, if you would like to load the
cascade later with the load() member.

Tree-Based Object Detection Techniques | 883

Searching an image with detectMultiScale()

The function that actually implements the cascade classification is the detectMulti
Scale() method of the cv::CascadeClassifier object:

cv::CascadeClassifier::detectMultiScale(
const cv::Mat& image, // Input (grayscale) image
vector<cv::Rect>& objects, // Output boxes (boxen?)
double scaleFactor = 1.1, // Factor between scales
int minNeighbors = 3, // Required neighbors to count
int flags = 0, // Flags (old style cascades)
cv::Size minSize = cv::Size(), // Smallest we will consider
cv::Size maxSize = cv::Size() // Largest we will consider
);

The first input, image, is a grayscale image of type CV_8U. The cv::CascadeClassi
fier:: detectMultiScale() function scans the input image for faces at all scales.
Objects successfully located will be returned in the vector objects, in the form of
their bounding rectangles. Setting the scaleFactor parameter determines how big of
a jump there is between each scale; setting this to a higher value means faster compu‐
tation time at the cost of possible missed detections if the scaling misses faces of cer‐
tain sizes. The minNeighbors parameter is a control for preventing false detection.
Actual face locations in an image tend to get multiple “hits” in the same area because
the surrounding pixels and scales often indicate a face. Setting this to the default (3)
in the face-detection code indicates that we will decide a face is present in a location
only if there are at least three overlapping detections.

The flags parameter is ignored at this time, unless you are using a cascade that was
created with the older OpenCV 1.x cascade tools. In that case, it may be set to the
(also OpenCV 1.x vintage) value: CV_HAAR_DO_CANNY_PRUNING. In that case, the
Canny edge detector will be used to reject some regions.

The final parameters, minSize and maxSize, are the smallest and largest region sizes
in which to search for a face. Setting these values will reduce computation at the cost
of missing faces that are either unusually small or unusually large. (This is desirable
in many practical cases, as you often have an expectation for how much frame faces
will occupy in your images. Anything else you find would probably just be noise any‐
way.) Figure 22-4 shows results for using the face-detection code on a scene with
faces.

884 | Chapter 22: Object Detection

Figure 22-4. Face detection in a park scene: even tilted faces are detected; for the 1,111
× 827 image shown, more than a million sites and scales were searched to achieve this
result in about 0.25 seconds on a 3 GHz machine

There are two other similar detection methods:

void detectMultiScale(
 cv::InputArray image,
 vector<cv::Rect>& objects,
 vector<int>& numDetections,
 double scaleFactor = 1.1,
 int minNeighbors = 3,
 int flags = 0,
 cv::Size minSize = cv::Size(),
 cv::Size maxSize = cv::Size()
);

void detectMultiScale(
 cv::InputArray image,
 vector<cv::Rect>& objects,
 vector<int>& rejectLevels,
 vector<double>& levelWeights,
 double scaleFactor = 1.1,
 int minNeighbors = 3,
 int flags = 0,
 cv::Size minSize = cv::Size(),
 cv::Size maxSize = cv::Size(),
 bool outputRejectLevels = false
);

Tree-Based Object Detection Techniques | 885

The first of these is essentially identical to the constructor we saw before, but adds the
new argument numDetections. This is an output that contains the same number of
entries as objects. For each entry in numDetections, the value indicates the number
of object detections that contributed to the corresponding entry in objects.

The second alternative form of detectMultiScale() has three additional parameters:
rejectLevels, levelWeights, and outputRejectLevels. The former two will only be
returned, however, if the latter is set to true. Both rejectLevels and levelWeights
are vectors with one entry for each entry in objects. In the case of rejectLevels,
this entry contains the level at which the subimage was rejected from the cascade. The
levelWeights array contains the weighted sum of the weak classifiers for the last
level, whether accepted or rejected. This allows the caller to handle marginal cases in
whatever manner they choose, by considering this additional information.

Face detection example

The detectAndDraw() code shown in Example 22-1 will detect faces and draw their
found locations in different-colored rectangles on the image. As shown in the com‐
ment lines, this code presumes that a previously trained classifier cascade has been
loaded and that memory for detected faces has been created.

Example 22-1. Detecting and drawing faces

// Detect and draw detected object boxes on image
//
// Presumes 2 Globals:
//
// cascade is loaded by something like:
// cv::Ptr<CascadeClassifier> cascade(new CascadeClassifier(cascade_name));
//
void detectAndDraw(
cv::Mat& img, // Input image
cv::Ptr<cv::CascadeClassifier> classifer, // Preloaded classifier
 double scale = 1.3 // resize image by...
){

 // Just some pretty colors to draw with
 //
 enum { BLUE, AQUA, CYAN, GREEN };
 static cv::Scalar colors[] = {
 cv::Scalar(0, 0, 255),
 cv::Scalar(0, 128, 255),
 cv::Scalar(0, 255, 255),
 cv::Scalar(0, 255, 0)
 };

 // IMAGE PREPARATION:
 //

886 | Chapter 22: Object Detection

 cv::Mat gray(img.size(), CV_8UC1);
 cv::May small_img(
 cvSize(cvRound(img.cols/scale), cvRound(img.rows/scale)),
 CV_8UC1
);
 cv::cvtColor(img, gray, cv::BGR2GRAY);
 cv::resize(gray, small_img, cv::INTER_LINEAR);
 cv::equalizeHist(small_img, small_img);

 // DETECT OBJECTS IF ANY
 //
 vector<cv::Rect> objects;
 classifier->detectMultiScale(
 small_img, // The input image
 objects, // A place for the results
 1.1, // Scale Factor
 2, // Minimum number of neighbors
 cv::HAAR_DO_CANNY_PRUNING, // (old format cascades only)
 cv::Size(30, 30) // Throw away detections smaller than this
);

 // LOOP THROUGH FOUND OBJECTS AND DRAW BOXES AROUND THEM
 //
 for(vector<cv::rect>::iterator r=objects.begin(); r!=objects.end; ++r) {
 Rect r_ = (*r)*scale;
 cv::rectangle(img, r_, colors[i%4]);
}

}

For convenience, in this code the detectAndDraw() function has a static vector of
colors colors[] that can be indexed to draw found faces in different colors. The clas‐
sifier works on grayscale images, so the color BGR image img passed into the function
is converted to grayscale via cv::cvtColor() and then optionally resized in
cv::resize().

This is followed by histogram equalization via cv::equalizeHist(), which spreads
out the brightness values. This is a very important step. It is necessary because the
integral image features are based on differences of rectangle regions and, if the histo‐
gram is not balanced, these differences might be skewed by overall lighting or expo‐
sure of the test images. (This is also important to do to the input data when training a
cascade.)

The actual detection takes place just above the for loop, and then the loop steps
through the found-face rectangle regions and draws them in different colors using
cv::rectangle().

Tree-Based Object Detection Techniques | 887

6 You can still train cascades with the older haartraining application, but the resulting cascades will be of the
legacy type, so this is not recommended. Among other things, only traincascade supports the LBP features
(in addition to the Haar features). In addition, only traincascade supports TBB for multithreading, and so is
much faster (assuming you built the library with TBB support—i.e., with –D WITH_TBB=ON).

Learning New Objects
We’ve seen how to load and run a previously trained classifier cascade stored in an
XML file; we loaded it either during our initial call to the cv::CascadeClassifier
constructor, or afterward with the cv::CascadeClassifier::load() method. Once
we had the classifier loaded, we were then able to actually detect objects with the
cv::CascadeClassifier::detectMultiScale() function. We now turn to the ques‐
tion of how to train our own classifiers to detect other objects such as eyes, walking
people, cars, and so on. We do this with the OpenCV traincascade application,6

which creates a classifier given a training set of positive and negative samples. The
four steps of training a classifier are:

1. Gather a data set consisting of examples of the object you want to learn (e.g.,
front views of faces, side views of cars). These may be stored in one or more
directories indexed by a text file in the following collection description file format:

<path>/<img_name_1> <count_1> <x11> <y11> <w11> <h11> <x12> <y12> ...
<path>/<img_name_2> <count_2> <x21> <y21> <w21> <h21> <x22> <y22> ...
...

Each of these lines contains the path (if any) and filename of the image contain‐
ing the object(s). This is followed by the count of how many objects are in that
image, and then a list of rectangles containing the objects. The format of the rec‐
tangles is the x- and y-coordinates of the upper-left corner followed by the width
and height in pixels.
To be more specific, if we had a data set of faces located in the directory data/
faces/, then the collection description file faces.dat might look like this:

data/faces/face_000.jpg 2 73 100 25 37 133 123 30 45
data/faces/face_001.jpg 1 155 200 55 78
 . . .

If you want your classifier to work well, you will need to gather high-quality data,
and a lot of it (1,000–10,000 positive examples). “High quality” means that
you’ve removed all unnecessary variance from the data. For example, if you are
learning faces, you should align the eyes (and preferably the nose and mouth) as
much as possible. The intuition here is that otherwise you are teaching the classi‐
fier that eyes need not appear at fixed locations in the face but instead could be
anywhere within some region. Since this is not true of real data, your classifier
will not perform as well. One strategy is to first train a cascade on a subpart, say

888 | Chapter 22: Object Detection

7 A collection file (used for counterexamples) is a file containing just a list of filenames, while a collection
description file (used for positive examples) is a file containing a list of filenames and information about
where to find objects of interest in each file.

“eyes,” which are easier to align. Then use eye detection to find the eyes and
rotate/resize the face until the eyes are aligned. For asymmetric data, the “trick”
of flipping an image on its vertical axis was described previously in the subsec‐
tion “Rejection cascades” on page 880.

2. Once you have your data set, use the utility application createsamples to build a
“vector” output file of the positive samples. Using this file, you can repeat the
upcoming training procedure on many runs, trying different parameters while
using the same computed vector file. Here is an example of how to use create
samples:

createsamples -info faces.dat -vec faces.vec -w 30 -h 40

This command reads in the faces.dat file described in Step 1 and outputs a for‐
matted vector file, in this case called faces.vec. Internally, createsamples extracts
the positive samples from the images, normalizes them, and resizes them to the
specified width and height (in this example, 30 × 40 pixels). Note that you can
also use createsamples to synthesize data by applying geometric transforma‐
tions, adding noise, altering colors, and so on. This procedure is particularly use‐
ful when you have only a single archetype, like a corporate logo, and you want to
take just this one image and put it through various distortions that might appear
in real imagery. (More details on these options will be covered shortly.)

3. Generate your set of counterexamples. The training process will use these “no”
samples to learn what does not look like our object. For training purposes, any
image that does not contain the object of interest can be turned into a negative
sample. It is best to take the “no” images from the same type of data we will test
on; that is, if we want to learn faces in online videos, for best results we should
take our negative samples from comparable frames (other frames from the same
video). However, we can still achieve respectable results using negative samples
taken from just about anywhere (e.g., Internet image collections). Again, we put
the images into one or more directories and then make a collection file consisting
of a list of these image filenames, with their paths, one per line.7 For example, we
might create an image collection file and call it backgrounds.dat and its contents
might include the following paths and filenames of images:

data/vacations/beach.jpg
data/nonfaces/img_043.bmp
data/nonfaces/257-5799_IMG.JPG
...

Tree-Based Object Detection Techniques | 889

8 You do not need to do this for the negative samples because traincascade is going to dynamically select ran‐
dom examples from the list of negative files you provide. Thus, since there is no detailed cropping or prepara‐
tion to be done, you don’t need to go through this extra step for the negatives.

4. Train the cascade. Here is an example of what you might type on a command
line in order to create a trained cascade called face_classifier_take_3.xml:

traincascade /
 -data face_classifier_take_3 /
 -vec opencv/data/vec_files/trainingfaces_24-24.vec /
 -w 24 -h 24 /
 -bg backgrounds.dat /
 -nstages 20 /
 -nsplits 1 /
 [-nonsym] /
 -minhitrate 0.998 /
 -maxfalsealarm 0.5

The .xml file extension will automatically be added to the –data argument, in this
case to create the output file face_classifier_take_3.xml. Here, trainingfaces_24-24.vec
is the set of positive samples (sized to width-by-height of 24 × 24), while random
images extracted from backgrounds.dat will be used as negative samples. The cascade
is set to have 20 (-nstages) stages, where every stage is trained to have a detection
rate (-minhitrate) of 0.998 or higher. The false hit rate (-maxfalsealarm) has been
set at 50% (or lower) for each stage to allow for the overall hit rate of 0.998. The weak
classifiers are specified in this case as “stumps,” which means they can have only one
split (-nsplits); we could ask for more, and this might improve the results in some
cases. For more complicated objects one might use as many as six splits, but mostly
you want to keep this number smaller, using no more than three splits.

Even on a fast machine, training may take several hours to days depending on the
size of the data set. The training procedure must test approximately 100,000 features
within the training window over all positive and negative samples. This search is par‐
allelizable and can take advantage of multicore machines (using TBB). This parallel
version is the one shipped with OpenCV (assuming you built the library with TBB
support—i.e., with –D WITH_TBB=ON).

Detailed arguments to createsamples
As we saw, in order to arrange your positive samples such that they can be ingested
by traincascade, you will need to use the createsamples program.8 The createsam
ples program not only crops out the individual samples from the images they are
found in, it can also generate automatically modified representations of those sam‐
ples that have slightly different orientation, lighting, and other characteristics. Here

890 | Chapter 22: Object Detection

9 Which is to say, the mode is not selected by some argument with a name like “–mode,” but rather it is inferred
from the other arguments you supply.

10 The results of this process would look pretty strange to your eye—for example, disembodied slightly rotated
heads floating in the middle of whatever background scenes you provided—but this is necessary to ensure
that the rotation and distortions do not introduce black or empty pixels into the final training images.

we will look in detail at the options available to you when you call createsamples
and what those options do.

When you call traincascade, you will run in one of four modes. The mode is deter‐
mined by which options you select.9 In particular, the options –img, -info, -vec, and
–bg collectively determine the run mode. The four run modes are:

Mode 1: Create training samples from a single image (by applying distortions)
Starting from a single image (specified by –img), generate some number of new
test images (specified by –num) by applying distortions to the single input image
and then pasting it into images from the background set (specified by the –bg
argument). Because training images are being generated, the output will be a vec‐
tor file (specified by the –vec argument).

createsamples –img <image_file> -vec <vector_file> \
-bg <collection_file> -num <n_samples> ...

Mode 2: Create test samples from a single image (by applying distortions)
This form is very similar to Mode 1, differing primarily in the output file format.
It is used to create new images you can use to test your detector on. It applies
rotations and distortions to the input image (-img argument) from the objects in
your collection description file and then generates new images by combining the
distorted originals with background images (the collection file given by the –bg
argument).10 The point of this is to have an image where the object of interest
(albeit a distorted one) is placed at a known location so that you can test
your detector. The generated files will have filenames like <num‐
ber>_<x>_<y>_<width>_<height>.jpg, where the values of <x>, <y>, and so on,
specify the location and size of the object that was injected into the (otherwise
background) image. Because test samples are being generated, the results will be
in a collection description file (your –info argument), which will contain the
generated filenames and the locations of the inserted objects in those files.

createsamples –img <image_file> -bg <collection_file> \
-info <collection_description_file> ...

Mode 3: Create training samples from an image collection (no distortion)
This is the usage we described in the previous section; it can be thought of as a
file format conversion. It simply collects all of the images specified by the –info
file, crops them as specified, and builds the vector file specified by -vec.

Tree-Based Object Detection Techniques | 891

createsamples –info <collection_description_file> \
 -vec <vector_file> \
-w <width> –h <height> ...

Mode 4: View samples from the .vec file
In this mode, all of the samples in the .vec file will be displayed to the screen one-
by-one. This is mainly for debugging and as an aid to understanding the process.

createsamples -vec <vector_file>

Of these four modes, the one you probably want to use most is not
on the list. In practice, you will typically find yourself with some
number of exemplar images (maybe 1,000) and wanting to gener‐
ate some much larger number of exemplars through distortion and
transformation (maybe 7,000). In this case, what you want to do is
actually use Mode 1 1,000 times, creating, for example, 7 new
images for each original. In this case you will need to do a little of
your own minor automation of the process. You will find yourself
in the same situation if you want to generate a large collection of
test images.

Here are the detailed descriptions of each option:

-vec <file_name>

This is the name of the file that will be created by createsamples. It should have
a .vec file extension.

-info <file_name>

This is the name of the file that specifies the input collection of examples, includ‐
ing both the filenames as well as the location of the example objects in those
images (i.e., the faces.dat file described previously).

-img <file_name>

This is the alternative to -info (you must supply one or the other). Using -img,
you can supply a single cropped positive exemplar. In the modes that use -img,
multiple outputs will be created, all from this one input.

-bg <file_name>

The -bg extension allows you to specify a file (again one with a .dat extension)
that contains the names and ancillary information for the list of provided back‐
ground images.

-num <n_samples>

-num sets the number of positive samples that should be generated (i.e., by trans‐
formations on the input samples specified by -vec).

892 | Chapter 22: Object Detection

-bgcolor <color>

This intensity value is interpreted as “transparent” in the input images. Note that
grayscale images are assumed. This is used when you are overlaying positive
exemplars onto alternate backgrounds.

-bgthresh <delta>

In many practical cases, the input images will contain compression artifacts
(e.g., .jpg files). Because of these artifacts, the background may not always be the
same fixed color. Used in conjunction with –bgthresh <color>, -bgthresh
<delta> will cause all pixels within the range [color – delta, color + delta] to
be interpreted as transparent.

-inv

If specified, all images will be inverted before the sample is extracted.

-randinv

If specified, each image will be either inverted or not inverted (randomly) before
the sample is extracted.

-maxidev <deviation>

If specified, each image will randomly be (uniformly) lightened or darkened by
up to this amount before extraction.

-maxxangle <angle>, -maxyangle <angle>, -maxzangle <angle>
If specified, each image will be distorted by a random rotation by up to the given
amount in each direction. This provides an approximation of possible viewpoint
perspective shifts of the object (though, to define these transformations, it is
assumed that the objects are effectively flat cards). The units of these rotations
are radians.

-show

If specified, each sample will be shown. Pressing the Esc key will continue the
samples-creation process without showing further samples.

-w <width>

The width (in pixels) of generated samples.

-h <height>

The height (in pixels) of generated samples.

Much experimentation has been done to determine the best sizes
to use for samples for face detection. In general, 18 × 18 or 20 × 20
seems to perform very well. For objects other than faces, you will
likely need to experiment to find out what works best for your par‐
ticular case.

Tree-Based Object Detection Techniques | 893

As you can see, there are a lot of options for createsamples. The important thing to
keep in mind is that most of these options are used to automatically create variants of
the images you have provided in your available examples. Using these options you
can (and typically will) turn hundreds or thousands of sample images into thousands
or tens of thousands of images on which to actually train the classifier.

Detailed arguments to traincascade

As with createsamples, there are myriad options that can be passed to traincascade
in order to fine-tune its behavior. These include parameters to tune the cascade itself,
the boosting method, the types of features used, and more. These parameters will
heavily affect the training time for the cascade, but also the quality of the final result.

-data <classifier_file>

The -data parameter specifies the name of the output-trained classifier file to be
created. You do not need to provide the .xml file extension; it will be added for
you.

-vec <vector_file>

The -vec parameter specifies the filename for the input vector file of positive
exemplars (i.e., created using createsamples).

-bg <collection_file>

This parameter specifies the name of the background images collection file.

-numPos <n_samples>

This is the number of positive examples that will be used in training each classi‐
fier stage (typically less than the number of examples that are provided).

-numNeg <n_samples>

This is the number of negative examples that will be used in training each classi‐
fier stage (typically less than the number of examples that are provided).

-numStages <stages>

The –numStages parameter specifies the number of cascade stages that will be
trained for the classifier as a whole.

-precalcValBufSize <size-megabytes>

This is the size of the buffer allocated for storage of precalculated feature values.
The buffer size is specified in megabytes. This buffer is used by the Boost imple‐
mentation to store results of feature evaluations so that they don’t have to be
recomputed every time they are needed. The net result is that making this cache
larger will substantially improve the runtime of training. The current default
value is 256 megabytes.

894 | Chapter 22: Object Detection

-precalcIdxBufSize <size-megabytes>

This is similar to -precalcValBufSize, and also used by the Boost implementa‐
tion. -precalcIdxBufSize sets the size of the cache used for the “buffer index
values.” What these things are exactly is not important to us; what is important
about these objects is that the ability to cache them improves performance, simi‐
lar to -precalcValBufSize. The current default value is 256 megabytes, and it is
best to keep these two values the same if you choose to change either of them.

-baseFormatSave <{true,false}>

This can be set to true if you are using the Haar-type features and want to save
your cascade out in the “old style” format. The default value of this argument is
false.

-stageType <{BOOST}>

This argument sets the type of stages that will be used in the classifier training. At
the moment, it has only one option, BOOST (meaning “boosted classifier cas‐
cade”), which is currently the default, so you can safely ignore it for now. This
argument is here for future development.

-featureType <{HAAR, LBP}>

Currently the cascade classifier supports two different feature types: the Haar(-
like) features, and the local binary pattern features. You can select which one you
would like to use by setting -featureType to HAAR or LBP (respectively).

-w <sample_width-pixels>

The -w parameter tells traincascade the width of the samples that you provided
to createsamples. The value passed to the -w parameter must be equal to the
value used by createsamples. The units of -w are pixels.

-h <sample_width-pixels>

The -h parameter tells traincascade the height of the samples that you provided
to createsamples. The value passed to the -h parameter must be equal to the
value used by createsamples. The units of -h are pixels.

-bt <{DAB, RAB, LB, GAB}>

traincascade can train the cascade using any of four available variants of boost‐
ing (see our earlier discussion on boosting). The available options are Discrete
AdaBoost (DAB), Real AdaBoost (RAB), LogitBoost (LB), and Gentle AdaBoost
(GAB). The default value is GAB.

-minHitRate <rate>

The minimum hit rate, -minHitRate, sets the target percentage of real occur‐
rences in a window that should be flagged as hits. Of course, ideally this would be
100%. However, the training algorithm will never be able to achieve this. The

Tree-Based Object Detection Techniques | 895

value of this parameter is unit-normalized, so the default value of 0.995 corre‐
sponds to 99.5%. This is the target hit rate per stage, so the final hit rate will be
(approximately) this target raised to the power of the number of stages.

-maxFalseAlarmRate <rate>

The maximum false alarm rate, -maxFalseAlarmRate, sets the target percentage
of false occurrences in a window that can be expected to be (erroneously) flagged
as hits. Ideally this would be 0%, but in practice it is quite large and we rely on
the cascade to reject false alarms incrementally. The value of this parameter is
unit-normalized, so the default value of 0.50 corresponds to 50%. This is the tar‐
get false positive rate per stage, so the final hit rate will be (approximately) this
target raised to the power of the number of stages.

-weightTrimRate <rate>

We encountered this argument earlier as a parameter to the boosting algorithms.
It is used to select which training samples to use in a particular boosting itera‐
tion. Only those samples whose weight is more than 1.0 minus the weight trim
rate participate in the training on any given iteration. The default value for this
parameter is 0.95.

-maxDepth <depth>

This parameter sets the maximum depth of the individual weak classifiers. Note
that this is not the depth of the cascade, it is the depth of the individual trees that
themselves comprise the elements of the cascade. The default value for this
parameter is 1, which corresponds to simple decision stumps.

-maxWeakCount <count>

Like -maxDepth, the –maxWeakCount parameter is passed directly to the boosting
component of the cascade classifier and sets the maximum number of weak clas‐
sifiers that can be used to form each strong classifier (i.e., each stage in the cas‐
cade). The default value for this parameter is 100, but remember that this doesn’t
mean that this number of weak classifiers will be used.

-mode <BASIC | CORE | ALL>

The –mode parameter is used with Haar-like features and determines whether just
the original Haar features are to be used (BASIC or CORE) or whether extended
features are to be used (ALL). The features used are shown in Figure 22-5.

896 | Chapter 22: Object Detection

Figure 22-5. The options for the -mode parameter. BASIC includes just the simplest
possible set of Haar wavelets (one even and one odd wavelet in each direction). CORE
includes four additional higher-order Haar wavelets, while ALL also includes diagonal
elements that are rotated versions of (some of) the other wavelets

Despite the potentially intimidating number of options available to traincascade,
you will probably find that the default values will serve you well for many real-world
situations. If you are training cascades for specific object types (not faces), it is worth
a web or literature search to see if anyone else has tried to train a cascade for your
particular object. Often, it will turn out that others have already done much of the
hard work in optimizing the selection of training parameters for your object or, at the
very least, a similar one.

Object Detection Using Support Vector Machines
Similar to the object-detection techniques based on tree-based methods, there is
another class of algorithms in OpenCV that use support vector machines as the basis
of their learning strategies. But as we saw with the tree-based functions, there are a
large number of additional components that are used to condition, organize, and
handle both the data and the reusable representation of the training process.

In this section, we will look at two methods: the Latent SVM and the Bag of Words
methods. These two methods are very different, despite their common reliance on the
support vector machine. The Latent SVM is well suited to recognition of deformable
objects (such as pedestrians), as it explicitly conceptualizes the idea of multiple sub‐

Object Detection Using Support Vector Machines | 897

11 The name HOG-SVM is actually a coinage; this algorithm was never given a name by its creators, but “the
method of Dalal and Triggs” is a bit of a mouthful. The acronym HOG was coined by those authors and is
now a standard term of art to refer to the features used by HOG-SVM, and since the algorithm is essentially
applying an SVM to these HOG features, HOG-SVM seems like a reasonable enough name.

12 The actual HOG-SVM algorithm is implemented in OpenCV, but only as part of the GPU library. For more
information, see cv::gpu::HOGDescriptor in the online documentation at OpenCV.org. There is no current
CPU library implementation of HOG-SVM.

components that are linked together by a deformable structure. The Bag of Words
takes a different approach and ignores large-scale structure entirely, taking inspira‐
tion from techniques in document recognition in which only the list of components
of the target is considered. In this way, Bag of Words generalizes beyond object
detection alone, and can be used for entire scenes and for context analysis.

Latent SVM for Object Detection
The Latent SVM algorithm, created by Pedro Felzenszwalb [Felzenszwalb10], is an
algorithm for detecting (originally) pedestrians in images, but it generalizes well to
many kinds of objects such as bicycles and automobiles. It builds on a well-known
prior technique, HOG-SVM,11 which was first proposed by Navneet Dalal and Bill
Triggs [Dalal05]. HOG-SVM used a sliding window, analogous to the face detection
cascade classifier that we saw earlier in this chapter. The algorithm identified pedes‐
trians by subsectioning the window into smaller tiles and by computing a histogram
of the orientations of image gradients in each tile. These histograms, often called
“HOG” (histogram of oriented gradients) for short, could then be concatenated in
order to form a feature vector that could then be passed to an SVM classifier.12

Felzenszwalb’s technique, called either part-based object detection or Latent SVM,
starts with a HOG feature similar to the one used by HOG-SVM. However, in addi‐
tion to the detection of the whole object (as in HOG-SVM), it represents distinct
parts of the object separately: those that might be expected to move relative to one
another, or to the object as a whole (e.g., the arms, legs, and head of a pedestrian). In
practice, the locations of the parts relative to the center of the image (called the root
node by Felzenszwalb) are unknown; they are the latent variables in the model from
which the algorithm derives its name. Once the root node has been located (by a
detector very similar to that in HOG-SVM) and the parts have been located, an object
hypothesis can be formed, taking into account the likelihoods that the found parts
will be in the locations detected relative to the root node.

As implemented in OpenCV, the Latent SVM method can make use of already
trained detectors that ship with the library.

898 | Chapter 22: Object Detection

13 In general, we have not included work in opencv_contrib in this book. The reason for this exception is that
this particular implementation, in addition to simply being very useful, has been available for quite a long
time and is considered very stable.

Object detection with cv::dpm::DPMDetector
To use the Latent SVM classifier in OpenCV, you will first need to instantiate a
cv::dpm::DPMDetector object (which resides in the opencv_contrib/dpm module, so
you’d need to build OpenCV together with opencv_contrib).13 This is done through
the type of create() function we saw a lot of in Chapter 21 (complete with a derived
implementation class that we will never really see: DPMDetectorImpl). Typically,
when you instantiate this object, you will supply the cascades in the form of (fully
qualified) filenames for the detectors themselves. Optionally, you can also supply
class names for these detectors; if you don’t, class names will be automatically
induced from the detector filenames.

static cv::Ptr<cv::dpm::DPMDetector> create(
 std::vector<std::string> const &filenames,
 std::vector<std::string> const &classNames = std::vector<std::string>()
);

The filenames should be an STL-style vector of strings containing fully qualified file‐
names. Your class names, if present, should just be an STL-style vector of strings to
be used as class names.

Once you have a model loaded, you can proceed to apply the model to find objects in
your own images:

void cv::dpm::DPMDetector::detect(
 cv::Mat &image,
 std::vector<ObjectDetection> &objects
);

The image argument is your input image. The objects argument is an STL-style vec‐
tor you provide that detect() will fill with cv::dpm::DPMDetector::ObjectDetec
tion instances, which will contain all of the information about individual detections
found in image.

Object detections returned to you will be in the form of cv::dpm::DPMDetector::
ObjectDetection objects. These objects have the following definition:

class cv::dpm::DPMDetector {

public:

 ...

 struct ObjectDetection {

Object Detection Using Support Vector Machines | 899

14 Internally, this is just turned into a call to the std::vector<>::empty() method of the vector member of
cv::dpm::DPMDetector that contains the detectors.

 ObjectDetection();
 ObjectDetection(const cv::Rect& rect, float score, int classID = -1);

 cv::Rect rect;
 float score;
 int classID;
 };

 ...

};

As you can see, this structure is very simple. The three elements it contains—rect,
score, and classID—indicate the size and location of the window in which the object
was found, the confidence assigned to that detection, and the integer class identifier
for the particular class that was found, respectively. These IDs will correspond to the
order in which you loaded the detectors when you first called cv::dpm::DPMDetec
tor::load().

Other methods of cv::dpm::DPMDetector

The cv::dpm::DPMDetector object also provides a few useful utility and accessor
methods:

virtual bool isEmpty() const;

size_t getClassCount() const;

const std::vector<String>& getClassNames() const;

The isEmpty() method returns true if there are no detectors loaded.14

The getClassCount() method just returns the number of classes you loaded when
you called load(), while the getClassNames() method returns an STL-style vector
containing all of the names of the detectors. This is particularly useful when you did
not supply these names yourself, but need to know what names were assigned by
cv::dpm::DPMDetector::load() (based on the filenames).

Where to get models for cv::dpm::DPMDetector
At this time, OpenCV does not provide code that will allow you to train your own
models for Latent SVM. Currently, opencv_contrib/modules/dpm/samples/data/ con‐
tains a few pretrained models. If these are not enough for you, or you need something
particularly unique, and you do have to train your own detector, the original creators

900 | Chapter 22: Object Detection

of the Latent SVM maintain a website that contains their MATLAB implementation.
This MATLAB implementation contains the necessary component (called “pascal”)
to train your own detectors. Once trained, the resulting .xml file can be loaded by the
OpenCV detector.

The Bag of Words Algorithm and Semantic Categorization
Also called Bag of Keypoints, the Bag or Words (BOW) algorithm is a method for
visual categorization, or identifying the object content of a scene. The algorithm takes
its inspiration from methods used in document categorization that attempt to orga‐
nize documents into semantic categories by the presence of certain keywords that are
identified as having a strong discriminatory capability between the classes. For exam‐
ple, in attempting to categorize medical documents, it might be found that the pres‐
ence of the word tumor is an effective indicator that the document belongs to the
category cancer documents. In this case, each document is not really read in any
meaningful way, it is just treated as a collection (“bag”) of words, and the relative fre‐
quencies of important words are the only thing used to discriminate the categories.

In the case of computer vision, it is possible to define features that have strong dis‐
criminating power to determine that an image is, for example, in the category auto‐
mobile or bicycle. The BOW algorithm addresses both the problem of identifying
which features are most salient, and of attempting to identify the features in a novel
image and compare them to that database to categorize the image.

The first phase of the BOW algorithm is where it learns the features that it will subse‐
quently use for categorization. During this phase, you provide the part of the algo‐
rithm called the trainer with images from every semantic category of interest to you
(e.g., cars, people, chickens, or whatever you like). In the OpenCV implementation,
you will actually first extract from each image your favorite flavor of keypoints (see
Chapter 16) and give the resulting lists of descriptors to the BOW trainer.

At this point, it is not necessary to segregate the images in any way; the purpose of
the trainer is to figure out which keypoints seem to form meaningful clusters. These
clusters are groups of similar keypoint descriptors that came from the images you
supplied and are close together in the vector space in which the keypoints are repre‐
sented. These clusters are then abstracted into keypoint centers, which are essentially
new keypoints, constructed by the BOW trainer, that live at the centers of the identi‐
fied clusters. These keypoint centers play the role of words in the document-

Object Detection Using Support Vector Machines | 901

15 Note that it is impractical to use every descriptor found in every image in the training phase. The purpose of
the clustering is to aggregate similar descriptors in the inputs into a smaller, more manageable number. In
principle, those that are clustered together have similar meaning. You could think of this in the analogy of
document categorization as clustering words walk, walked, walking, and the like into a single category—
rather than counting the occurrence of each separately.

categorization analogy, and for this reason are often referred to as visual words.15

Collectively, the set of visual words that have been identified is called the vocabulary.

Once the BOW trainer has generated the vocabulary, you can give it any image and it
will convert that image into a presence vector. A presence vector is a vector of Boolean
entries that represent the presence (or absence) of each word in the vocabulary. Note
that this is a very high-dimensional vector; in practice, it is hundreds or even thou‐
sands of dimensions.

At this point, the normal process is to train a classification algorithm. Given all of the
images in your data set, the BOW algorithm can convert them into presence vectors,
which are then used to train the algorithm to produce the correct class label. You can
use any classification algorithm you like that is capable of multiclass classification,
but the canonical choice is either the naïve Bayes classifier or the support vector
machine (SVM), both of which we have already come across in Chapter 21. The most
important point, however, is that the BOW algorithm produces presence vectors
from your known images that you can use to train a classifier, and it produces pres‐
ence vectors from your novel images that you can give to that classifier so that it can
associate a category with that image.

Training with cv::BOWTrainer
The essential task of converting a large number of input feature descriptors into a
manageable number of visual words can be done using any number of clustering
techniques. The abstract base class cv::BOWTrainer defines the interface for any
object that can perform this function for the BOW algorithm:

class cv::BOWTrainer {

public:

 BOWTrainer(){}
 virtual ~BOWTrainer(){}

 void add(const Mat& descriptors);
 const vector<Mat>& getDescriptors() const;
 int descriptorsCount() const;

 virtual void clear();
 virtual Mat cluster() const = 0;
 virtual Mat cluster(const Mat& descriptors) const = 0;

902 | Chapter 22: Object Detection

 ...

};

The cv::BOWTrainer::add() method is used to add keypoint descriptors to the
trainer. It expects an array that it will interpret such that each row is a separate
descriptor. You can call cv::BOWTrainer::add() any number of times to accumulate
your descriptors. At any point, you can find out how many descriptors have been
added with cv::BOWTrainer::descriptorsCount(), or return all of them in one big
array with cv::BOWTrainer::getDescriptors().

Once you have loaded all of your descriptors in from all of your images, you can call
cv::BOWTrainer::cluster(), which will actually compute the visual word vocabu‐
lary. It then returns the vocabulary to you as an array in which each row is inter‐
preted as a separate visual word. There is also a one-argument version of
cv::BOWTrainer::cluster() that expects a single array containing descriptors and
will immediately compute the visual words for the set of descriptors in that array; it
ignores any descriptors you might have already stored with cv::BOWTrainer::add().

Finally, there is the method cv::BOWTrainer::clear(), which empties all of the
loaded descriptors.

K-means and cv::BOWKMeansTrainer

At this point, there is just one implementation of the cv::BOWTrainer interface—
cv::BOWKMeansTrainer. The only member of cv::BOWKMeansTrainer() that is really
new is the constructor, which has the following prototype:

cv::BOWKMeansTrainer::BOWKMeansTrainer(
 int clusterCount,
 const cv::TermCriteria& termcrit = cv::TermCriteria(),
 int attempts = 3,
 int flags = cv::KMEANS_PP_CENTERS
);

The heart of the cv::BOWKMeansTrainer() implementation is the use of the K-means
clustering algorithm. Recall that the K-means algorithm takes this large number of
points and attempts to find a specific number of clusters that adequately explain the
data. In the cv::BOWKMeansTrainer() constructor, this number of clusters is called
clusterCount, which in this case is going to be the number of visual words gener‐
ated, or the size of the vocabulary. Making this number too small will result in

Object Detection Using Support Vector Machines | 903

16 In one paper [Csurka04], a canonical reference for this algorithm, the authors have 1,776 images representing
7 classes. From each class they extract 5,000 keypoints from the images in that class, giving them a total of
35,000 keypoints. They find that setting the number of clusters (per class) to anywhere between 1,000 and
2,500 gives similar results, and so they opt to use 1,000 for their published results. One might fairly conclude
from this that a number of clusters equal to a few percent of the number of points in the class is a reasonable
number.

extremely poor classification results. Making it too large will make subsequent stages
of the process operate very slowly and may render classification impossible.16

The remaining three arguments can be left at their default values if you are not an
expert in the K-means algorithm. Should you choose to modify them, they have the
same meaning to the constructor as they do to the K-means implementation we stud‐
ied earlier in Chapter 20.

Categorization with cv::BOWImgDescriptorExtractor
Once you have computed the cluster centers with the trainer, you can ask the BOW
algorithm to try to convert the descriptors for an image into a presence vector that
can be used for classification. Here is (the important part of) the class declaration for
cv::BOWImgDescriptorExtractor, the routine responsible for this phase of the BOW
algorithm:

class cv::BOWImgDescriptorExtractor {

public:

 BOWImgDescriptorExtractor(
 const cv::Ptr< cv::DescriptorExtractor >& dextractor,
 const cv::Ptr< cv::DescriptorMatcher >& dmatcher
);
 virtual ~BOWImgDescriptorExtractor() {;}

 void setVocabulary(const cv::Mat& vocabulary);
 const cv::Mat& getVocabulary() const;
 void compute(
 const cv::Mat& image,
 vector< cv::KeyPoint >& keypoints,
 cv::Mat& imgDescriptor,
 vector< vector<int> >* pointIdxsOfClusters = 0,
 cv::Mat* descriptors = 0
);
 int descriptorSize() const;
 int descriptorType() const;

 ...

};

904 | Chapter 22: Object Detection

17 Under the hood, what is happening here is just that all of the descriptors in the vocabulary are being added to
the train set of the matcher you gave the extractor when you created it.

The first thing you will notice is that when we construct a cv::BOWImgDescriptorEx
tractor object, we need to provide it a descriptor extractor and a descriptor matcher.
The extractor you provide should be the same as the one you used to extract the
descriptors when you computed the cluster centers with the trainer. The matcher can
be any one you like. For example:

cv::Ptr< cv::DescriptorExtractor > descExtractor;
cv::Ptr< cv::DescriptorMatcher > descMatcher;
cv::Ptr< cv::BOWImgDescriptorExtractor > bowExtractor;

descExtractor = cv::DescriptorExtractor::create("SURF");
descMatcher = cv::DescriptorMatcher::create("BruteForce");
bowExtractor = new cv::BOWImgDescriptorExtractor(descExtractor, descMatcher);

Once you have constructed your BOW descriptor extractor, you will need to give it
the vocabulary you built using the trainer. The vocabulary input to cv::BOWImgDe
scriptorExtractor::setVocabulary() is exactly the output you got from cv::BOW
Trainer::cluster().17

Finally, once you have given a vocabulary to the descriptor extractor, you can then
supply cv::BOWImgDescriptorExtractor::compute() with an image and it will
compute imageDescriptor, which is the presence vector. The presence vector will
have one row, and as many columns as there are rows in the vocabulary. Each ele‐
ment will be the number of elements matched to a particular cluster center.

The optional arguments pointsIdxsOfClusters and descriptors tell you something
about the actual matching that happened to generate the presence vector. pointsIdx
sOfClusters is a vector of vectors, with the first index relating to the cluster; thus,
pointsIdxsOfClusters[i] refers to the ith cluster center (the ith entry in the
vocabulary), and is itself a vector. The entries pointsIdxsOfClusters[i] list the
indices for the descriptors in image that were matched to that cluster center. Those
indexes indicate row numbers for descriptors. The descriptors array, if computed,
is the list of the original descriptors (before association with cluster centers) extracted
from the image by the feature extractor you gave the BOW extractor when you cre‐
ated it. To recap: if pointsIdxsOfClusters[i][j] = q, this means that descrip
tors.row(i) is the jth one of the descriptors, and was matched to
vocabulary.row(q).

Putting it together using a support vector machine
To actually implement the entire BOW algorithm, you will need one more step: to
take the presence vectors and train a multiclass classifier with them. Of course, there

Object Detection Using Support Vector Machines | 905

18 You might recall that we mentioned one-against-many briefly when we looked at support vector machines in
detail. In our current context, we could just use the one-against-one approach supplied by OpenCV, but that
is relatively slower, so we use one-against-many for this example.

are a lot of ways to implement multiclass classifiers; the one we will look at here is the
support vector machine. Because SVMs don’t natively support multiclass classifica‐
tion, we use the one-against-many approach.18 In this approach, if one has Nc classes,
one trains Nc different classifiers, each of which addresses the question of whether a
query vector is in class i or not in class i (i.e., in any of the other classes j ≠ i).

We train each SVM using the same set of presence vectors, but with different label‐
ings for the responses. The following code fragment is from the samples included
with the OpenCV release and is from the bagofwords_classification.cpp example code;
it constructs the trainData and responses arrays that will be passed to the SVM
training routine. This will be done once for each class:

cv::Mat trainData((int)images.size(), bowExtractor->getVocabulary().rows, CV_32FC1);
cv::Mat responses((int)images.size(), 1, CV_32SC1);

// Transfer bag of words vectors and responses across to the training data matrices
//
for(size_t imageIdx = 0; imageIdx < images.size(); imageIdx++) {

 // Transfer image descriptor (bag of words vector) to training data matrix
 //
 cv::Mat submat = trainData.row((int)imageIdx);
 if(bowImageDescriptors[imageIdx].cols != bowExtractor->descriptorSize()) {
 cout << "Error: computed bow image descriptor size "
 << bowImageDescriptors[imageIdx].cols
 << " differs from vocabulary size"
 << bowExtractor->getVocabulary().cols
 << endl;
 exit(-1);
 }
 bowImageDescriptors[imageIdx].copyTo(submat);

 // Set response value
 //
 responses.at<int>((int)imageIdx) = objectPresent[imageIdx] ? 1 : -1;
};

This is not quite the entire story, though. The possibility exists in the one-against-
many method that an image will be found to be “not in this class” for every class, or
“in this class” for more than one class. Recall, however, that the SVM works by build‐
ing a linear decision boundary in the high-dimensional kernel space. Because this is a
linear boundary in that space, once a query point is mapped into the kernel space, we
can also compute rather easily which side of that decision boundary the point lies on.
We can also compute how far the point is from that boundary. It is common to inter‐

906 | Chapter 22: Object Detection

pret this distance as a kind of confidence, and this is the key to resolving the prob‐
lems of nonassociation and multiple association.

Typically, in the case of multiple association, the association with the largest margin
is taken to be the correct association. In the nonassociation case, if one has prior
knowledge that every image is in fact part of one of the known classes, then the one
with the minimum negative margin can be selected. If images that are of unknown
classes are possible, then one might set a threshold negative margin (possibly, but not
necessarily, 0) past which an image will be assigned to the “unknown” category if all
classifiers return worse than this value.

Summary
In this chapter we studied several methods that the OpenCV library provides for
determining if an object is present in an image. In some cases, these methods provide
some notion of the localization of the object in terms of the pixels that compose the
object in the image. The tree-based methods, as well as the Latent SVM, had this
property, which arose from their use of sliding windows. On the other hand, the Bag
of Words method did not have this property. One advantage of the Bag of Words,
however, was that it could be used for more abstract queries, like scene categoriza‐
tion.

All of these methods made use of the computer vision techniques we learned in the
earlier chapters of this book combined with the machine learning methods of the
most recent chapters. If we add to these detectors the methods of tracking and
motion modeling we learned along the way, we now have all the tools necessary to
approach very practical and contemporary problems in computer vision, such as the
location, localization, and tracking of objects in a video sequence, as well as many
others.

Exercises
1. If you had a limited amount of training data, which would be more likely to gen‐

eralize the test data better, a decision tree or an SVM classifier? Why?
2. Set up and run the Haar classifier to detect your face in a web camera.

a. How much scale change can it work with?
b. How much blur?
c. Through what angles of head tilt will it work?
d. Through what angles of chin down and up will it work?
e. Through what angles of head yaw (motion left and right) will it work?
f. Explore how tolerant it is of 3D head poses. Report on your findings.

Summary | 907

3. Repeat Exercise 2, but this time for an LBP cascade. Where is it better or worse?
And why is it better or worse?

4. Use blue or green screening to collect a thumbs-up hand gesture (static pose).
Collect examples of other hand poses and of random backgrounds. Collect sev‐
eral hundred images and then:
a. Train the Haar classifier to detect the thumbs-up gesture. Test the classifier in

real time and compute its confusion matrix.
b. Train and test a LBP cascade classifier and compute its confusion matrix on

the thumbs-up data.
c. Train and test a soft cascade classifier and compute its confusion matrix on

the thumbs-up data.
d. Compare and contrast the train time, run time, and detection results of these

three algorithms.
5. Using the data set of Exercise 4 and three features of your own invention:

a. Use random trees to recognize the thumbs-up data.
b. Add a feature or features to improve the results.
c. Use data analysis, variable importance, normalization, and cross validation to

improve your results.
d. Use your knowledge of random trees to improve your results.

6. Use the data set of Exercise 4 to train a cv::dpm::DPMDetector to recognize the
thumbs-up gesture.
a. Create a confusion matrix of the results.

7. Collect some streetview imagery (one image each) from your local neighborhood
—say, 10 different places.
a. Train a BOW classifier to recognize these 10 different places. Test recognition

from nearby streetviews.
8. One can imagine using a Latent SVM to also classify where you are in streetview

imagery in addition to the BOW classifier approach. What are some relative
advantages and disadvantages for these algorithms when used for map localiza‐
tion?
Hint: there is a difference between topology and geometry. The first might be
associated with imagery, the second with triangulation.

9. The cascade classifier produces a two-class classifier (face or not face, for exam‐
ple). If you had 10 classes, describe a method by which you could use a cascade
classifier methodology to train and recognize all 10 classes. What are the advan‐
tages and disadvantages of such an approach?

908 | Chapter 22: Object Detection

CHAPTER 23

Future of OpenCV

Past and Present
OpenCV was launched in August 1999 at the Computer Vision and Pattern Recogni‐
tion conference (and so turns 17 years old at the publication of this book). Gary
Bradski founded OpenCV at Intel with the intention to accelerate both the research
and use of real applications of computer vision in society. Few things in life go
according to their original plan, but OpenCV is one of those few. As of this writing,
OpenCV has nearly 3,000 functions, has had 14 million downloads, is trending well
above 200,000 downloads per month, and is used daily in millions of cell phones, rec‐
ognizing bar codes, stitching panoramas together, and improving images through
computational photography. OpenCV is at work in robotics systems—picking let‐
tuce, recognizing items on conveyor belts, helping self-driving cars see, flying quad-
rotors, doing tracking and mapping in virtual and augmented reality systems, helping
unload trucks and pallets in distribution centers, and more—and is built into the
Robotics Operating System (ROS). It is used in applications that promote mine
safety, prevent swimming pool drownings, process Google Maps and streetview
imagery, and implement Google X robotics, to name a few examples.

Since the previous edition of this book, OpenCV has been re-architected from C to
modern, modular C++ compatible with STL and Boost. The library has been brought
up to modern software development standards with distributed development on Git,
continuous build bots, Google unit tests, comprehensive documentation, and tutori‐
als. OpenCV was intended to be cross-platform from the beginning when it spanned
Windows, Linux, and Mac OS X. It continues active support for these desktop OSes,
but now also covers mobile with Android and iOS versions. It has optimized versions
for Intel architectures, ARM, GPU, NVidia GPUs, and Movidius chips but also works
with Xylinx Zync FPGAs. In addition to efficient C++ source code, it has extensive
interfaces in Python (compatible with NumPy), Java, and MATLAB.

909

https://github.com/opencv/opencv
http://bit.ly/cv-bots
http://docs.opencv.org
http://bit.ly/2gkuGN1
http://bit.ly/2gkuGN1

OpenCV has also added a new, independent section maintained by users. In that
repository, all routines are standalone and follow OpenCV style and documentation,
as well as pass the Buildbot tests. With opencv_contrib, OpenCV keeps up with the
latest algorithms and applications in computer vision; see Appendix B for a snapshot
of the directory’s contents.

OpenCV 3.x
OpenCV started as a purely C library, and version 1.0 focused mostly on building
useful algorithmic content. OpenCV 2.0’s main focus was on bringing the library up
to modern C++ development standards, including the move to Git, Google-style unit
tests, compatibility with STD, and of course a C++ interface. All new development
has been in C++, but the older C functions were just wrapped in C++. Along the way,
complete interfaces in Python, Java, and MATLAB were added.

OpenCV 3.0 focuses on modularity; it is written entirely in native C++ so that only
one code base needs to be maintained. Computer vision’s increasing success has led
to a problem that there are too many potentially useful algorithms to be maintained
in one monolithic code base. OpenCV 3.x solved that problem by keeping a strong
supported core and turning everything else into easy-to-create and easier-to-
maintain small, independent modules that may be mixed and matched as desired.
More and more computer vision students and research groups are releasing new
algorithms built on OpenCV data structures. OpenCV 3.x makes it easy for them to
produce a module complete with documentation, unit tests, and example code that
can be easily linked into OpenCV (or not).

OpenCV 3.x’s independent modules will also help cloud, embedded, and mobile
applications by allowing for smaller, more focused computer vision memory foot‐
prints. One of the mission statements of OpenCV is to foster increasing use of com‐
puter vision in society; embedded vision devices will help spread the use of visual
sensing in robotics, mobile, security, safety, inspection, entertainment, education,
and automation. For such applications, memory use is a key consideration. On the
other side, cloud computing also has memory constraints—as algorithms scale across
large numbers of machines running a wide mix of jobs, memory use becomes a key
bottleneck.

Our hope is that by making it easy to assemble a mix of independent modules,
including perhaps one’s own module, OpenCV 3.x will not only enable the aforemen‐
tioned areas but also foster something that may look like a “vision app store” in
opencv_contrib. Such a collection of well-defined modules that plug directly into
OpenCV will allow much wider and more creative uses of vision-enabled applica‐
tions. External modules might be open, closed, free, or commercial, all aimed at
allowing developers who know very little about vision to infuse vision capability into
their applications.

910 | Chapter 23: Future of OpenCV

https://github.com/opencv/opencv_contrib

How Well Did Our Predictions Go Last Time?
In the previous edition of this book, we made some predictions about OpenCV’s
future. How did we do? We said that OpenCV would support robotics and 3D; this
clearly came true. One of the authors, Gary, launched a robotics company, Industrial
Perception Inc., that used OpenCV and 3D vision routines to allow robots to handle
boxes in distribution centers. Google bought that company in 2013. At the same time,
the other author, Adrian, ran many industry, government, and military robotics con‐
tract projects incorporating OpenCV while he was working at Applied Minds.

Calibration was forecast to be expanded and to include passive and active sensing.
True to form, OpenCV now includes ArUco augmented reality markers and the
combination of checkerboard and ArUco patterns so you no longer need to see the
whole board, and multiple cameras can see different pieces of the same calibration
pattern (see Appendix C). All these routines now exist to solve more challenging cali‐
bration and multicamera pose problems.

We predicted new 3D object recognition and pose recognition capabilities, and these
were also integrated—from human-defined features in linemod to deep network 3D
object recognition and pose. Indeed, opencv_contrib was itself predicted as a modular
repository that would make user contribution much easier.

Most of the applications predicted in the previous book, from much better stereo
vision algorithms to dense optical flow, have come true. Back then, we said that 2D
features would be expanded and supported by an engine, all of which happened in
features2D(), which covers a large percentage of the hand-crafted 2D point detec‐
tors and descriptors. Improved functionality with Google data structures is also
under way. We also said that better support for approximate nearest neighbor techni‐
ques would be added, and it was with the incorporation of FLANN (Fast Library for
Approximate Nearest Neighbor) into OpenCV. We have long since run developer
workshops at computer vision conferences as outlined in the previous book. Finally,
better documentation did finally show up (http://docs.opencv.org).

What were we wrong about? We did not yet get a more general camera interface for
higher-bit or multispectral cameras. SLAM (Simultaneous Localization And Map‐
ping) support is in, but not as a robust complete implementation. Bayesian networks
were not pursued because deep networks outpaced them. We did not yet implement
anything special for artists, but artists nevertheless have continued to expand the use
of OpenCV.

How Well Did Our Predictions Go Last Time? | 911

http://bit.ly/2fJ9WuS
http://bit.ly/2gksqFs
http://bit.ly/2gksqFs
http://docs.opencv.org

Future Functions
This book has mentioned OpenCV’s past and detailed its present state. Here are
some future directions:

Deep learning
OpenCV can already read and run networks such as Caffe, Torch, and Theano.
This code is at https://github.com/opencv/opencv_contrib/tree/master/modules/
cnn_3dobj. You can expect to see OpenCV integrate a full deep-learning module
focused on running and training in embedded systems and smart cameras built
around and expanding on an external code base called tiny_dnn.

Mobile
The growth in “computationally capable” cameras is still phenomenal. So, one
obvious direction OpenCV will take is increasing support of mobile. This sup‐
port includes algorithms as well as mobile hardware and mobile OS. OpenCV
already has ports to iOS and Android, which we hope to support by allowing
smaller static memory footprints.

Glasses
Augmented reality glasses that overlay the incoming scene with data and objects
will be an increasingly supported area. Tracking the user’s head pose in 3D will
also aid virtual reality localization within a room. Already, we’ve expanded
ArUco AR tags to ChArUco (checkerboard with ArUco) that give a much more
accurate pose. We have some contributors working on adding SLAM support for
Google Cardboard.

Embedded apps
Embedded applications are also growing in importance and will become a whole
new device area. Seeing this trend, Xilinx already has a port of OpenCV to its
Zync architecture. We can expect to see vision showing up in a range of items,
from toys to security devices, automotive applications, manufacturing uses, and
unmanned vehicles on land, underwater, and in the air. OpenCV wants to help
enable these developments.

3D
Depth sensors are under development by many companies and will increasingly
show up in mobile. OpenCV has a growing number of dense-depth support rou‐
tines, from computing fast normals, surface finding, and depth feature extraction
to refinement.

912 | Chapter 23: Future of OpenCV

https://github.com/opencv/opencv_contrib/tree/master/modules/cnn_3dobj
https://github.com/opencv/opencv_contrib/tree/master/modules/cnn_3dobj

Light field cameras
This is an area dating back to 1910 but having intense activity in the 1990s. We
predict it will become increasingly popular, with cheaper cameras and embedded
processors allowing lens arrays to capture wide multipoint views, apertures, and
fields of view, perhaps using different lens configuration. Expect to see support
for such cameras as they come into existence and get less expensive.

Robotics
All of the preceding features directly benefit robotics. New hardware, cheaper
cameras, and radically more flexible robot arms, coupled with better planning
and control algorithms, mark the start of a whole new industry in sensor-guided
robotics. Several key contributors to OpenCV work in robotics, and you can
expect to see continued growth in support of this area.

Cloud
Over time, expect to see support to make it easier to work across arrays of
embedded cameras interoperating with servers running the same processing
stack and tightly integrated with OpenCV, deep neural networks, graphics, opti‐
mization, and parallel capable libraries. There will be some effort to have this
working seamlessly on commercial providers such as Amazon and Google
servers using C++ or Python.

Online education
We would like to provide online courses that cover computer vision problem
solving using OpenCV. We hope to expand our visibility at conferences and
workshops and perhaps offer our own “things you need to know” conferences.

Current GSoC Work
For the last several years, Google has been kind enough, through its Google Summer
of Code (GSoC) program, to support interns working over the summer on OpenCV.
You may view a wiki page on these efforts. You can also view videos covering this
new functionality at the following URLs:

• 2015: https://youtu.be/OUbUFn71S4s
• 2014: https://youtu.be/3f76HCHJJRA
• 2013: https://youtu.be/_TTtN4frMEA

In 2015, 15 interns were supported. This support has been invaluable both to the
interns (many of whom go on to prominent positions in the field) and to OpenCV.
The topics covered in 2015, almost all with accepted pull requests into OpenCV
trunk, were:

Future Functions | 913

https://github.com/opencv/opencv/wiki
https://youtu.be/OUbUFn71S4s
https://youtu.be/3f76HCHJJRA
https://youtu.be/_TTtN4frMEA

Omnidirectional cameras calibration and stereo 3D reconstruction
opencv_contrib/ccalib module (Baisheng Lai, Bo Li)

Structure from motion
opencv_contrib/sfm module (Edgar Riba, Vincent Rabaud)

Improved deformable part-based models
opencv_contrib/dpm module (Jiaolong Xu, Bence Magyar)

Real-time multi-object tracking using kernelized correlation filter
opencv_contrib/tracking module (Laksono Kurnianggoro, Fernando J. Iglesias
Garcia)

Improved and expanded scene text detection
opencv_contrib/text module (Lluis Gomez, Vadim Pisarevsky)

Stereo correspondence improvements
opencv_contrib/stereo module (Mircea Paul Muresan, Sergei Nosov)

Structured-light system calibration
opencv_contrib/structured_light module (Roberta Ravanelli, Delia Passalacqua,
Stefano Fabri, Claudia Rapuano)

Chessboard + ArUco for camera calibration
opencv_contrib/aruco module (Sergio Garrido, Prasanna Krishnasamy, Gary
Bradski)

Implementation of universal interface for deep neural network frameworks
opencv_contrib/dnn module (Vitaliy Lyudvichenko, Anatoly Baksheev) [this may
be replaced by tiny-dnn in the future]

Recent advances in edge-aware filtering, improved SGBM stereo algorithm
opencv/calib3d and opencv_contrib/ximgproc modules (Alexander Bokov, Mak‐
sim Shabunin)

Improved ICF detector, Waldboost implementation
opencv_contrib/xobjdetect module (Vlad Shakhuro, Alexander Bovyrin)

Multitarget TLD tracking
opencv_contrib/tracking module (Vladimir Tyan, Antonella Cascitelli)

3D pose estimation using CNNs
opencv_contrib/cnn_3dobj module (Yida Wang, Manuele Tamburrano, Stefano
Fabri)

As of the final editing of this book, the following 13 new algorithms are being worked
on for GSoC 2016:

914 | Chapter 23: Future of OpenCV

• Adding tiny-dnn deep learning training and test functions into OpenCV (Edgar
Riba, Yida Wang, Stefano Fabri, Manuele Tamburrano, Taiga Nomi, Gary Brad‐
ski)

• Enhancing the existing dnn module to read and run Caffe models (Vludv, Anat‐
oly Baksheev)

• Better visual tracking, GOTURN tracker (Tyan Vladimir, Antonella Cascitelli)
• Accurate, dynamic structured light (Ambroise Moreau, Delia Passalacqua)
• Adding very fast, dense optical flow (Alexander Bokov, Maksim Shabunin)
• Extending the text module with deep word-spotting CNN (Anguelos, Lluis

Gomez)
• Improvement of the dense optical flow algorithm (VladX, Ethan Rublee)
• Multilanguage support in OpenCV tutorials: Python, C++, and Java (Carucho,

Vincent Rabaud)
• New image stitching pipeline (Jiri Horner, Bo Li)
• Adding better file storage for OpenCV (Myls, Vadim Piarevsky)

Community Contributions
The OpenCV community has become much more active as well. During the time of
GSoC 2015, the community contributed:

• A plotting module (Nuno Moutinho)
• Ni-black thresholding algorithm: ximgproc (Samyak Datta)
• Superpixel segmentation using linear spectral clustering, SLIC superpixels: ximg‐

proc (Balint Cristian)
• HDF (HDF5) support module (Balint Cristian)
• Depth to external RGB camera registration: rgbd (Pat O’Keefe)
• Computing normals for a point cloud: rgbd (Félix Martel-Denis)
• Fuzzy image processing (Pavel Vlasanek)
• Rolling shutter guidance filter: ximgproc (Zhou Chao)
• 3× faster SimpleFlow: optflow (Francisco Facioni)
• Code and docs for CVPR 2015 paper “DNNs Are Easily Fooled” (Anh Nguyen)
• Efficient graph-based image segmentation algorithm: ximgproc (Maximilien

Cuony)
• Sparse-to-dense optical flow: optflow (Sergey Bokov)

Future Functions | 915

• Unscented Kalman filter (UKF) and augmented UKF tracking (Svetlana Fili‐
cheva)

• Fast Hough transform: ximgproc, xolodilnik
• Improved performance of haartraining (Teng Cao)
• Python samples made compatible with Python 3: bastelflp

We hope that Google and the community continue this great work!

OpenCV.org
In the time between the publication of the book’s previous edition and this one,
OpenCV became a California nonprofit foundation aimed at advancing computer
vision in general, promoting computer vision education, and providing OpenCV as a
free and open infrastructure for furthering vision algorithms in particular. To date,
the foundation has had support from Intel, Google, Willow Garage, and NVidia. In
addition, DARPA (through Intel) provided funding for a “People’s Choice Best
Paper” award at CVPR (Computer Vision And Pattern Recognition) 2015, and Intel
has sponsored this contest to run again in 2016. The results from 2015 are available
online. The winning entries resulted in several new algorithms hosted in the .../
opencv_contrib directory. Prebuilt code for OpenCV can be downloaded from the
user site, while raw code can be obtained from the developer site; see https://
github.com/opencv/opencv for the core library and https://github.com/opencv/
opencv_contrib for the user-contributed modules. The wiki for OpenCV is at https://
github.com/opencv/opencv/wiki. There is also a Facebook page.

As the writing of this book comes to a close, the founding author, Gary Bradski, is in
the process of turning OpenCV.org into a federal nonprofit 501(c)(3) corporation.
Previously, OpenCV had no paid staff (beyond summer mentor stipends provided by
Google), no office, and no equipment, and had been trying to pay out within the
same year everything that came in. Now, there is an effort under way to turn
OpenCV.org into a robust, full-featured nonprofit. This will involve bringing on
some dedicated board members (unpaid), raising funds to support some paid full-
time staff, developing educational materials and contests, putting on annual confer‐
ences that would emphasize new, useful vision solutions, providing in-depth training
tutorials, sponsoring or at least supporting greater sensing and autonomy in robotics
leagues, providing support and education for learning and using computer vision at
the high school level, offering support and training for using computer vision in the
artist community, and more.

We also hope to add more cooperation with OpenCV in China, founded by Prof.
Riuzhen Liu. This is hosted at the Shanghai Academy of Artificial Intelligence (also
known as AIV: Artificial Intelligence Valley), which is sponsored by the Chinese
Academy of Science and Fudan University. It is a subscriber organization aiming to

916 | Chapter 23: Future of OpenCV

https://github.com/opencv/opencv/wiki/VisionChallenge
http://opencv.org/downloads.html
http://opencv.org/downloads.html
https://github.com/opencv/opencv
https://github.com/opencv/opencv
https://github.com/opencv/opencv_contrib
https://github.com/opencv/opencv_contrib
https://github.com/opencv/opencv/wiki
https://github.com/opencv/opencv/wiki
https://www.facebook.com/opencvlibrary
http://www.opencv.org.cn

be an independent research organization focused on artificial intelligence, automa‐
tion, intelligent device control, and pattern recognition. Over time, we hope to
increase similar links to other organizations around the world.

If OpenCV.org can generate enough funding, it is possible that OpenCV can offer
full-time phone and web support, develop courseware in vision and machine learning
(possibly including partnering with manufacturers to provide compatible develop‐
ment kits), and certify vision developers who can be trusted to build applications in
computer vision and deep learning perception. We may also develop a certification
program for other camera functionality offered by partners where “Certified by
OpenCV” can become a trusted brand. In so doing, we look forward to vastly
expanding the reach and scope of OpenCV!

Some AI Speculation
We are clearly at a turning point in the development of artificial intelligence (AI). As
of this writing, AlphaGo from Google’s Deep Mind group has beat the world cham‐
pion, Lee Sedol, at the very difficult “spatial strategy” game Go. Using AI, robots are
learning to drive, fly, walk, and manipulate objects. Meanwhile, AI technology is
making speech, sound, music, and image recognition natural in our devices and
across the Web. Silicon Valley has seen many “gold rushes” since the original one for
real gold in 1848. The winners and losers in this new AI gold rush remain to be seen,
but it is clear that the world will never be the same. In its function of accelerating
progress in perception, OpenCV plays a role in this historical movement toward sen‐
tient (self-aware) machines.

It’s clear that deep neural networks have essentially solved the problem of feed-
forward recognition of patterns (one can say that they are superb function approxi‐
mators), but such networks are nowhere near sentient or “alive.” First, there is the
problem of experience itself. We humans don’t just see, say, a color; we experience it
subjectively. How this subjective experience arises is called the problem of “qualia.”
Second, machines also don’t seem to ever really be autonomously creative. They can
generate new things within an explicit domain, but they don’t invent new domains,
nor actively drive experimentation and open-loop discovery.

What may be missing is “embodiment.” Humans and many robots have a model of
their own being, their “self,” acting in the world. This self can be simulated in isola‐
tion for planning actions, but this simulated model of self is more often coupled to
the world by sensors. Using this coupled model, the embodied mind gives causal
meaning to the world (choosing where to walk, avoiding danger, observing conse‐
quences to its plan), and this gives the embodied mind a sense of meaning in relation
to its model of itself.

Some AI Speculation | 917

We believe that such a world-coupled model of itself allows the AI to make
metaphors [Lakoff08] that are used to generalize to later experience. When young,
for example, humans experience putting things into and taking things out of contain‐
ers. Later in life, this embodied experience informs what it means to be, say, “in” a
garden; in other words, the early experience of playing with containers is used to gen‐
eralize what it means to be in a garden. Causal experience of the model of self, cou‐
pled to the world, allows an entity to attach meaning to things. Such meaning
stabilizes perception since categories don’t just come and go—they have causal and
time-stable consequences to our simulated model of self within the world. It is com‐
plete speculation, but qualia, or subjective experience, may arise from simulating how
our model of the world affects our simulated model of the self; that is, we experience
our model’s simulated reaction to the world, not the world itself.

Stanley, the robot that won the $2 million prize for the 2005 DARPA Grand Chal‐
lenge robot race across the desert, used many sensors such as GPS, accelerometers,
gyros, laser range finders, and vision to sense the world and fused these sensed results
into a computationally efficient “bird’s-eye view” world model. The model consisted
of a tilted plane reflecting the general angle of the terrain that was then marked with
drivable, un-drivable, and unknown regions derived from the sensor readings. In this
world model, Stanley ran physics simulations of itself driving in the general direction
of the next few GPS waypoints. The resulting paths were rated to find the most effi‐
cient path that would not tip the robot over. Stanley’s brain was sufficient to win the
DARPA Grand Challenge, but consider what it wasn’t sufficient to do: it could not
represent love, politics, astrophysics, or Shakespeare very well. If Stanley could ask us
what a Shakespeare play meant, at best we could say it was something like the bound‐
aries between the drivable and unknown areas in a difficult map. Stanley’s model of
itself and its interaction with the world are too sparse for understanding most of the
things in the world. It seems obvious that we ape-like beings that live mostly in low-
lying temperate watersheds are similarly limited in our ultimate ability to even detect
what we don’t know about the universe. In this way, “we are all Stanley.”

We humans find it pretty easy to understand something such as the need for food (a
natural part of our model), but we find it extremely difficult to figure out how to cre‐
ate a more intelligent AI or to fathom what qualia is. As another example, if we raised
a kitten and had it listen to Shakespeare all day until it was grown, we wouldn’t
expect our grown cat to understand a sonnet. If we want to explain to the cat what a
sonnet means, the best we could do is use a metaphor from the cat’s natural models,
such as, “Shakespeare’s sonnet is like a kitten that inevitably gets lost in bad places.”
The cat might think, “Now I understand,” but it has no means by which to even
understand what it does not understand! Again, we humans must also be similarly
limited. Perhaps we can build more powerful machines to which the problem of
qualia is simple. But when we ask the machine to explain it to us, it might get flus‐

918 | Chapter 23: Future of OpenCV

tered and then finally say, “Qualia is like a kitten that inevitably gets lost in bad
places.”

In Stanley the robot, the nature of its perception is entirely in terms of its model.
Stanley doesn’t perceive the world; instead, its cameras and sensors transduce signals
that populate a causal model of the robot in the world. But the model is only like the
real world in terms of the navigational needs of the robot car. By way of another
example: in a laptop computer, you might see a GUI and conclude, for example, that
there’s a trash can inside the computer since you see one on the screen. A more clever
physicist might look closely at the screen and cry out, “Everything is made up of
quanta” (pixels)! But, in fact, the GUI is only a causal model to a linear Von Neu‐
mann machine reality inside. What is real is that things dragged into the trash are
erased—the causal consequences of the model are real. Again, we humans must be
similarly limited in what we can know of our own universe, since we’ve inherited a
causal model mainly directed at our direct physical and social experience. But our
machines may see further.

Today, there is a lot of debate about the dangers of AI. People confuse their
metaphors around this. They think the “AI,” the intelligence, is what drives the
behaviors of the larger system. But look to ourselves. Our “programming language”
as humans isn’t our intellect, but our moods and drives—our emotions! Stanley’s goal
was to safely traverse GPS points as fast as possible in the correct order. It found an
orderly following of GPS waypoints to be attractive and so that’s what it employed its
intelligence to do. Our programming isn’t “thought,” it’s emotion. The emotions
guide “what” to do; the intellect guides “how.” The same will be true of our future
machines. Design the motives well, and the machines will pursue them.

Ah, but the reader may worry that perhaps those machines will alter the goals given
to the next generation of machines? First of all, it will be no easier for a greater
machine intelligence to understand and create the minds of a yet greater machine
than it is for us to create the first generation. The problem just shifts upward. The
intelligent machines also will face the same dangers to themselves from their next
evolution of AI that we do from the first evolution, and they will tend to program
goals and emotions accordingly. In the end, AIs will be consumed with their own
goals, which have evolved from our goals as embodied beings. The danger from AIs is
not from the possible malevolence of their goals, but from the nonhuman differences
in their goals, which to us may seem like indifference or even hostility. This is what
made H. P. Lovecraft’s alien monsters so interesting and frightening in his fiction—
they were not so much malevolent as driven by wholly different motives and so
wholly indifferent to our fate. We, for example, give little thought to the lives of ants
and thereby sometimes bring them to harm.

However, and for the record, the authors don’t fear AI, but rather see it as absolutely
essential to solve many of humanity’s vexing problems, such as providing reliable

Some AI Speculation | 919

1 There is a sort of spiritual or religious sense to such thoughts, but they have an interesting inversion to “old
time” religion. In the past, it was felt that a God chose a people and a purpose. In this new sense, people
choose a purpose, which may result in a God-like AI (Google’s algorithms and servers have what is to us
almost omniscient knowledge, for example). In this sense, we move from a chosen people who hark back to
some glorious past from a diminished present, to a choosing people who look out from a diminished present
to a glorious future.

health care for all people, ending hunger, curing diseases, providing and maintaining
new energy generation and storage techniques while protecting the environment, and
helping run our ever-more-complex world. Rather than a threat, in AI we see pur‐
pose. We would not want the spark of self-aware intelligent life to die out with our
world, but instead would rather see intelligence grow outward in space and in time.
This, in a way, may be (or could be chosen to be1) humanity’s ultimate purpose, and
so is also, hereby, an indirect purpose of OpenCV!

Afterword
We’ve covered a lot of theory and practice in this book, and we’ve described some of
the plans for what comes next. Of course, as we’re developing the software, the hard‐
ware is also changing. Cameras are now increasingly cheaper and more capable and
have proliferated from cell phones to traffic lights and into factory and home moni‐
toring. A group of manufacturers are aiming to develop cell phone projectors—per‐
fect for robots, because most cell phones are lightweight, low-energy devices whose
circuits already include an embedded camera. This opens the way for close-range
portable structured light and thereby accurate detailed depth maps, which are just
what we need, together with the development of light field cameras for robot manip‐
ulation and 3D object scanning.

Both authors participated in creating the vision system for Stanley, Stanford’s robot
racer that won the 2005 DARPA Grand Challenge. In that effort, a vision system cou‐
pled with a laser range scanner worked flawlessly for the seven-hour desert road race
[Dahlkamp06]. For us, this drove home the power of combining vision with other
perception systems: we converted the previously unsolved problem of reliable road
perception into a solvable engineering challenge by merging vision with other forms
of perception. It is our hope that—by making vision easier to use and more accessible
through this book—others can add vision to their own problem-solving tool kits and
thus find new ways to solve important problems. That is, with commodity camera
hardware, cheap embedded processors, and OpenCV, people can start solving real
problems, such as using stereo vision as an automobile backup safety system (or to
make automotive improvements in general), monitoring all rail lines for people and
vehicles on the tracks, implementing swimming safety measures, building new game
controls, developing new security systems, and so on. Be sure to keep an eye on tiny-

920 | Chapter 23: Future of OpenCV

dnn, a fully featured deep net library with a focus on embedded computing in
opencv_contrib. Finally: get hacking!

Computer vision has a rich future ahead, and it seems likely to be one of the key ena‐
bling technologies for the 21st century. OpenCV seems likely to be (at least in part)
one of the key enabling technologies for computer vision. Endless opportunities for
creativity and profound contribution lie ahead. We hope that this book encourages,
excites, and enables all who are interested in joining the vibrant computer vision
community!

Afterword | 921

APPENDIX A

Planar Subdivisions

Delaunay Triangulation, Voronoi Tesselation
Delaunay triangulation is a technique invented in 1934 [Delaunay34] for connecting
points in a space into triangular groups such that the minimum angle of all the angles
in the triangulation is a maximum. This means that Delaunay triangulation tries to
avoid long skinny triangles when triangulating points. See Figure A-1 to get the gist
of triangulation, which is done in such a way that any circle that is fit to the points at
the vertices of any given triangle contains no other vertices. This is called the circum-
circle property (see panel c).

Figure A-1. Delaunay triangulation: (a) set of points; (b) Delaunay triangulation of the
point set with trailers to the outer bounding triangle; (c) example circles showing the
circum-circle property

Planar Subdivisions | 923

For computational efficiency, the Delaunay algorithm invents a faraway outer bound‐
ing triangle from which the algorithm starts. Figure A-1(b) represents the fictitious
outer triangle by dotted lines going out to its vertex. Figure A-1(c) shows some exam‐
ples of the circum-circle property, including one of the circles (the one at the bottom-
right corner) linking two outer points of the real data to one of the vertices of the
fictitious external triangle.

There are now many algorithms to compute Delaunay triangulation; some are very
efficient but with difficult internal details. The gist of one of the simpler algorithms is
as follows:

1. Add the external triangle.
2. Add an internal point, and then search over all the triangles’ circum-circles con‐

taining that point and remove those triangulations.
3. Retriangulate the graph, including the new point in the circum-circles of the just-

removed triangulations.
4. Return to Step 2 until there are no more points to add.

The order of complexity of this algorithm is O(n2) in the number of data points. The
best algorithms are (on average) as low as O(n log log n).

Great—but what is it good for? For one thing, remember that this algorithm started
with a fictitious outer triangle. Thus, all of the real outside points are actually connec‐
ted to one (or two) of the fictitious triangle’s vertices. Now recall the circum-circle
property: circles that are fit through any two of the real outside points and to an
external fictitious vertex contain no other inside points. This means that a computer
may directly look up exactly which real points form the outside of a set of points by
looking at which points are connected to the three outer fictitious vertices. In other
words, we can find the convex hull of a set of points almost instantly after a Delaunay
triangulation has been done.

We can also find who “owns” the space between points—that is, which coordinates
are nearest neighbors to each of the Delaunay vertex points. Thus, using Delaunay
triangulation of the original points, you can immediately find the nearest neighbor to
a new point. Such a partition is called a Voronoi tessellation (see Figure A-2). This
tessellation is the dual image of the Delaunay triangulation, because the Delaunay
lines define the distance between existing points and so the Voronoi lines “know”
where they must intersect the Delaunay lines in order to keep equal distance between
points. These two methods, calculating the convex hull and nearest neighbor, are
important basic operations for many operations that require clustering or classifying
of points and point sets.

924 | Appendix A: Planar Subdivisions

Figure A-2. Voronoi tessellation, whereby all points within a given Voronoi cell are
closer to their Delaunay point than to any other Delaunay point: (a) the Delaunay tri‐
angulation in bold with the corresponding Voronoi tessellation in fine lines; (b) the
Voronoi cells around each Delaunay point

If you’re familiar with 3D computer graphics, you may recognize that Delaunay tri‐
angulation is often the basis for representing 3D shapes. If we render an object in
three dimensions, we can create a 2D view of that object by its image projection and
then use the 2D Delaunay triangulation to analyze and identify this object and/or
compare it with a real object. Delaunay triangulation is thus a bridge between com‐
puter vision and computer graphics. However, one deficiency of OpenCV (soon to be
rectified, we hope; see Chapter 23) is that OpenCV performs Delaunay triangulation
only in two dimensions. If we could triangulate point clouds in three dimensions—
say, from stereo vision (see Chapter 19)—then we could move seamlessly between 3D
computer graphics and computer vision. Nevertheless, 2D Delaunay triangulation is
often used in computer vision to register the spatial arrangement of features on an
object or a scene for motion tracking, object recognition, or matching views between
two different cameras (as in deriving depth from stereo images). Figure A-3 shows a
tracking and recognition application of Delaunay triangulation [Göktürk01; Gök‐
türk02] wherein key facial feature points are spatially arranged according to their tri‐
angulation.

Planar Subdivisions | 925

1 According to Merriam-Webster’s dictionary, the term subdivision can mean either “one of the parts into
which something is divided” or “an area of land that has been divided into smaller areas on which houses are
built.” Though perhaps unintuitively, the use of this word in OpenCV always refers to the latter (i.e., it means
a collection of parts, not the parts themselves).

Figure A-3. Delaunay points can be used in tracking objects; here, a face is tracked
using points that are significant in expressions so that emotions may be detected

Now that we’ve established the potential usefulness of Delaunay triangulation once
given a set of points, how do we derive the triangulation? OpenCV ships with exam‐
ple code for this in the .../opencv/samples/cpp/delaunay2.cpp file. OpenCV refers to
Delaunay triangulation as a Delaunay subdivision, whose critical and reusable pieces
we discuss next.1

Creating a Delaunay or Voronoi Subdivision
First we’ll need someplace to store the Delaunay subdivision in memory. We’ll also
need an outer bounding box (remember, to speed computations, the algorithm works
with a fictitious outer triangle positioned outside a rectangular bounding box). To set
this up, suppose the points must be inside a 600 × 600 image:

// STRUCTURE FOR DELAUNAY SUBDIVISION
//
...
cv::Rect rect(0, 0, 600, 600); // Our outer bounding box
cv::Subdiv2D subdiv(rect); // Create the initial subdivision

926 | Appendix A: Planar Subdivisions

http://www.merriam-webster.com/dictionary/subdivision

This code creates an initial subdivision with a triangle containing the specified rec‐
tangle.

Next we’ll need to know how to insert points. These points must be either of 32-bit
floating-point type, or points with integer coordinates (i.e., cv::Point). In the latter
case, they will be automatically converted to floating-point format. We add the points
using the cv::Subdiv3D::insert() function:

cv::Point2f fp; //This is our point holder

for(int i = 0; i < as_many_points_as_you_want; i++) {

 // However you want to set points
 //
 fp = your_32f_point_list[i];

 subdiv.insert(fp);
}

Now that we have entered the points, we can obtain a Delaunay triangulation. To
compute triangles from the Delaunay triangulation, we use the cv::Subdiv3D:: get
TriangleList() function:

vector<cv::Vec6f> triangles;
subdiv.getTriangleList(triangles);

After the call returns, each Vec6f in triangles will contain three triangle vertices:
(x1, y1, x2, y2, x3, y3). We can compute and retrieve the associated Voronoi tessella‐
tion with the cv::Subdiv2D::getVoronoiFacetList() function:

vector<vector<cv::Point2f> > facets;
vector<cv::Point2f> centers;
subdiv.getVoronoiFacetList(vector<int>(), facets, centers);

The first output vector of vectors will contain Voronoi facets—polygons outlining the
“proximity” regions for the previously inserted points. The second vector will contain
the corresponding points—the region centers.

It’s important to note that Delaunay triangulation is built iteratively; that is, each
time you insert a new point the triangulation is updated, so it’s always up-to-date.
However, the Voronoi tessellation is built in batch mode when you call cv::Sub
div2D::calcVoronoi(). (This function does not take any parameters and does not
return anything; it just updates the internal subdivision representation.) Alterna‐
tively, you can call the aforementioned cv::Subdiv2D::getVoronoiFacetList()
(which calls calcVoronoi() internally). If you insert a new point after the Voronoi
tessellation is computed, the tessellation is marked as invalid and it’s recomputed
from scratch the next time you need it (the compute cost for this is O(N), where N is
the number of vertices).

Planar Subdivisions | 927

Now that we can create Delaunay subdivisions of two-dimensional point sets and
their corresponding Voronoi tessellations, the next step is to learn how to navigate
across the subdivisions. Though simply having the triangulation or tessellation in
enough in many cases, it is also often useful to be able to step from edge to point or
from edge to edge in a subdivision. We describe how to do this in the next section.

Navigating Delaunay Subdivisions
The basic data element of the planar subdivision is an edge. The edge is accessed via
its index, and other neighboring edges can be accessed via this index and an addi‐
tional parameter that indicates what new edge we would like relative to the one we
started with. Every edge is associated with the points at either end (called the origin
and the destination, respectively). It is also associated, through these points, with
other edges that share those points. Finally, it is associated with its corresponding
(i.e., “dual”) edge; for every edge in the Delaunay triangulation there is an associated
edge in the Voronoi diagram, and vice versa. The library supplies mechanisms to get
from any edge to any of these related elements.

Note that, in the cv::Subdiv2D interface, edges are always treated as being direc‐
tional. This is actually just done for convenience; there is no intrinsic sense of orien‐
tation for edges in either the Delaunay triangulation or the Voronoi diagram.
However, this construction is very helpful when one is navigating the data structures
that describe these entities. Notably, it is a way to distinguish things at one end of a
particular edge (the origin) from the other (the destination).

Points from edges
The simplest thing we can do with a Delaunay or Voronoi edge is to find the location
of the points at either end. Each edge, regardless of whether it is a Delaunay or Voro‐
noi edge, has two points associated with it: its origin point, and its destination point.
You can obtain either of these points by using:

int cv::Subdiv2D::edgeOrg(int edge, cv::Point2f* orgpt = 0) const;
int cv::Subdiv2D::edgeDst(int edge, cv::Point2f* dstpt = 0) const;

These methods give you the indices of the respective vertices and optionally the
points themselves. Given the vertex index, it’s possible to retrieve the point and the
associated edge:

cv::Point2f cv::Subdiv2D::getVertex(int vertex, int* firstEdge = 0) const;

Note that, just like with the edges, every point has an index. Points also have a loca‐
tion. It is important to keep track of which one is required in any particular context.
The cv::Subdiv2D interface is designed with the idea that you will primarily use the
indices for points and edges in most of the interface’s functions.

928 | Appendix A: Planar Subdivisions

Locating a point within a subdivision
It does happen, however, that you may have the location of a particular point and
want to look up the index of that point in the subdivision. Similarly, you may have a
point that is not actually a vertex in the subdivision at all, but you would like to find
the triangle or facet that contains this point. The method cv::Subdiv2D::locate()
takes one point as input and returns either one of the edges on which this point lies,
or one of the edges on the triangle or facet that contains the point (if the point is not
a vertex). Note, however, that in this case it is not necessarily the closest edge that is
returned; it is simply one of the edges in the containing triangle or facet. When the
point is a vertex, cv::Subdiv2D::locate() will also return the vertex ID that has
been assigned to it.

int cv::Subdiv2D::locate(
 cv::Point2f pt,
 int& edge,
 int& vertex
);

This function’s return value tells us where the point landed, as follows:

cv::Subdiv2D::PTLOC_INSIDE

The point falls into some facet; *edge will contain one of edges of the facet.

cv::Subdiv2D::PTLOC_ON_EDGE

The point falls onto the edge; *edge will contain this edge.

cv::Subdiv2D::PTLOC_VERTEX

The point coincides with one of subdivision vertices; *vertex will contain a
pointer to the vertex.

cv::Subdiv2D::PTLOC_OUTSIDE_RECT

The point is outside the subdivision reference rectangle; the function returns and
no pointers are filled.

cv::Subdiv2D::PTLOC_ERROR

One of input arguments is invalid.

Orbiting around a vertex
Given an edge, you may want to get new edges that are associated with a particular
point on that edge—either the beginning or the end of it. The way this works is that
we specify the edge we are starting with and then we retrieve either the next edge
clockwise or counterclockwise around the head (the destination) or the next edge
going clockwise or counterclockwise around the tail (called the origin). This arrange‐
ment is illustrated in Figure A-4. We do this with the cv:Subdiv2D::getEdge()
function:

Planar Subdivisions | 929

int cv:Subdiv2D::getEdge(
 int edge,
 int nextEdgeType // see text below
) const;

Figure A-4. A cv::Subdiv2D::Vertex point and its associated edge e along with other
associated edges that may be accessed via cvSubdiv2DGetEdge()

When calling cv:Subdiv2D::getEdge() we provide the current edge and the argu‐
ment nextEdgeType, which must take one of the following values:

• cv::Subdiv2D::NEXT_AROUND_ORG, next around the edge origin (eOnext)
• cv::Subdiv2D::NEXT_AROUND_DST, next around the edge destination vertex

(eDnext)
• cv::Subdiv2D::PREV_AROUND_ORG, previous around the edge origin (reversed
eRnext)

• cv::Subdiv2D::PREV_AROUND_DST, previous around the edge destination
(reversed eLnext)

Depending on how you like to think about the way you are navigating, you can also
specify the step motions using the following (ultimately equivalent) values:

• cv::Subdiv2D::NEXT_AROUND_LEFT, next around the left facet (eLnext)
• cv::Subdiv2D::NEXT_AROUND_RIGHT, next around the right facet (eRnext)

930 | Appendix A: Planar Subdivisions

• cv::Subdiv2D::PREV_AROUND_LEFT, previous around the left facet (reversed
eOnext)

• cv::Subdiv2D::PREV_AROUND_RIGHT, previous around the right facet (reversed
eDnext)

We can use these to step around a Delaunay triangle if we’re on a Delaunay edge or
to step around a Voronoi cell if we’re on a Voronoi edge.

Alternatively, where convenient and appropriate, you can also use the slightly simpli‐
fied cv:Subdiv2D::nextEdge() function:

// equivalent to getEdge(edge, cv::Subdiv2D::NEXT_AROUND_ORG)
//
int cv:Subdiv2D::nextEdge(
 int edge
) const;

Calling cv:Subdiv2D::nextEdge() is exactly equivalent to calling cv:Sub

div2D::getEdge() with nextEdgeType set to cv::Subdiv2D::NEXT_AROUND_ORG. This
construction is handy when, for example, we are given an edge associated with a ver‐
tex and we want to find all other edges from that vertex. This is helpful for finding
things like the convex hull starting from the vertices of the (fictitious) outer bound‐
ing triangle.

Rotating an edge
Assuming that you have a particular index in hand, either because you got it from
some other function or because you are just starting arbitrarily at some particular
index and wandering around the graphs, you can get from that edge on the Delaunay
triangulation to an edge on the associated Voronoi diagram (or the reverse) with the
following function:

int cv::Subdiv2D::rotateEdge(
 int edge,
 int rotate // get other edges in the same quad-edge: modulo 4 operation
) const;

In this case edge is the index of your current edge, and the rotate parameter indi‐
cates what edge you would like. You specify that next edge by using one of the follow‐
ing arguments (see Figure A-5):

• 0, the input edge (e in Figure A-5 if e is the input edge)
• 1, the rotated edge (eRot)
• 2, the reversed edge (reversed e)
• 3, the reversed rotated edge (reversed eRot)

Planar Subdivisions | 931

Figure A-5. Quad edges that may be accessed by cv::Subdiv2DRotateEdge() include the
Delaunay edge and its reverse (along with their associated vertex points) as well as the
related Voronoi edges and points

More About Vertices and Edges
Vertices and Their Numbering

Because of the way that the Delaunay triangulation is initialized, it will always be the
case that:

1. The 0th vertex is a null vertex having no location. (It is just a bookkeeping
abstraction.)

2. The next three vertices are the “virtual” vertices outside of the given bounding
rectangle, each having made up locations far from the input points.

3. All subsequent vertices are part of the set provided to the cv::Subdiv2D object.

Edges and Their Numbering

Every edge in the cv::Subdiv2D object is identified by an integer. These integers are
constructed such that every sequential set of four correspond to:

edge % 4 == 0

A Delaunay edge

932 | Appendix A: Planar Subdivisions

edge % 4 == 1

The Voronoi edge perpendicular to the original edge

edge % 4 == 2

The original Delaunay edge, with reverse orientation

edge % 4 == 3

The above Voronoi edge, with reverse orientation

Virtual and Null Edges

The 0th edge is a null edge pointing to nowhere (or, more accurately having the 0th—
also null—vertex at either end). Edges 1, 2, and 3, will always be the virtual Delaunay
edges connecting the virtual vertices; we will refer to these as unanchored virtual
edges, as both vertices are virtual. The null edge will always report a location for their
origin and destination of (0,0).

Any attempt to retrieve a rotated edge from the null edge will give another null edge.
The “first edge” from the null vertex is also a null edge, as are any subsequent edges
retrieved with cv:Subdiv2D::nextEdge(). The “first edge” retrieved from any of the
virtual vertices will always connect to another virtual vertex.

Identifying the bounding triangle
Given that, conveniently for us, when we create a Delaunay subdivision of a set of
points, it is always the first three points that form the outer triangle (not including
point 0; see the sidebar “More About Vertices and Edges” on page 932). We can then
access these three vertices in the following way:

Point2f outer_vtx[3];
for(int i = 0; i < 3; i++) {
 outer_vtx[i] = subdiv.getVertex(i+1);
}

We can also obtain the three sides of the outer bounding triangle:

int outer_edges[3];
outer_edges[0] = 1*4;
outer_edges[1] = subdiv.getEdge(outer_edges[0], Subdiv2D::NEXT_AROUND_LEFT);
outer_edges[2] = subdiv.getEdge(outer_edges[1], Subdiv2D::NEXT_AROUND_LEFT);

Now that we know how to get on the graph and move around, we can investigate
questions like when we’re on the outer edge or boundary of the points.

Identifying the bounding triangle or edges on the convex hull and walking the hull

Recall that we used a bounding rectangle rect to initialize the Delaunay triangulation
with the constructor call cv::Subdiv2D(rect). In this case, the following statements
hold:

Planar Subdivisions | 933

2 There are actually many ways to do this; the description given here is just one illustration of how this could be
done.

3 Recall that because some outer vertices are connected to two vertices of a fictitious triangle, one call to
cv::Subdiv2D::nextEdge() may not be enough. It would be best to check the resulting edge and verify that
the destination (cv::Subdiv2D::edgeDst() on the new edge) is not one of the outer vertices. If it is, one more
call to cv::Subdiv2D::nextEdge() will be required.

• If you are on an edge where both the origin and destination points are out of the
rect bounds, then that edge is on the fictitious bounding triangle of the subdivi‐
sion. These are what we call unanchored virtual edges.

• If you are on an edge with one point inside and one point outside the rect
bounds, then the point in bounds is on the convex hull of the set; each point on
the convex hull is connected to two vertices of the fictitious outer bounding tri‐
angle, and these two edges occur one after another. We will call those edges that
connect a point inside the rectangular boundary to a virtual point outside anch‐
ored virtual edges.

If we wish to find the convex hull of the set of points, we can make use of these facts
and quickly generate that hull.2 For example, starting with the vertices 1, 2, and 3,
which we know to be the virtual vertices, we can quickly generate, using cv:Sub
div2D::nextEdge(), the set of all anchored virtual edges (by simply rejecting the
unanchored virtual edges). A quick call to cv:Subdiv2D::rotateEdge(2) flips that
around, and a call or two to cv:Subdiv2D::nextEdge puts you on the convex hull of
the point set.3 There is precisely one such hull edge for each such anchored virtual
edge, and the union of all of these edges is the convex hull of the point set.

We now know how to initialize Delaunay and Voronoi subdivisions, find the initial
edges, and step through the edges and points of the graph. In the next section we
present some practical applications.

Usage Examples
We can use cv::Subdiv2D::locate() to step around the edges of a Delaunay trian‐
gle. In this example, we write a function that does “something” to every edge around
the triangulation that contains some given point:

void locate_point(
 cv::Subdiv2D& subdiv,
 const cv::Point2f& fp,
 ...
) {
 int e;
 int e0 = 0;
 int vertex = 0;

934 | Appendix A: Planar Subdivisions

 subdiv.locate(fp, e0, vertex);
 if(e0 > 0) {
 e = e0;
 do // Always 3 edges -- this is a triangulation, after all.
 {
 // [Insert your code here]
 //
 // Do something with e ...
 e = subdiv.getEdge(e, cv::Subdiv2D::NEXT_AROUND_LEFT);
 }
 while(e != e0);
 }
}

We can also find the closest point to an input point by using:

int Subdiv2D::findNearest(
 cv::Point2f pt,
 cv::Point2f* nearestPt
);

Unlike cv::Subdiv2D::locate(), cv::Subdiv2D::findNearest() will return the
integer ID of the nearest vertex point in the subdivision. This point is not necessarily
on the facet or triangle that the point lands on. Note that this is a nonconstant
method, because it computes the Voronoi tessellation if it’s missing or not up-to-
date.

Similarly, we could step around a Voronoi facet (here we draw it) using:

 void draw_subdiv_facet(
 cv::Mat& img,
 cv::Subdiv2D& subdiv,
 int edge
) {

 int t = edge;
 int i, count = 0;
 vector<cv::Point> buf;

 // Count number of edges in facet
 do{
 count++;
 t = subdiv.getEdge(t, cv::Subdiv2D::NEXT_AROUND_LEFT);
 } while (t != edge);

 // Gather points
 //
 buf.resize(count);
 t = edge;
 for(i = 0; i < count; i++) {
 cv::Point2f pt;
 if(subdiv.edgeOrg(t, &pt) <= 0)
 break;

Planar Subdivisions | 935

 buf[i] = cv::Point(cvRound(pt.x), cvRound(pt.y));
 t = subdiv.getEdge(t, cv::Subdiv2D::NEXT_AROUND_LEFT);
 }

 // Around we go
 //
 if(i == count){
 cv::Point2f pt;
 subdiv.edgeDst(subdiv.rotateEdge(edge, 1), &pt);
 fillConvexPoly(
 img, buf,
 cv::Scalar(rand()&255,rand()&255,rand()&255),
 8, 0
);
 vector< vector<cv::Point> > outline;
 outline.push_back(buf);
 polylines(img, outline, true, cv::Scalar(), 1, cv::LINE_AA, 0);
 draw_subdiv_point(img, pt, cv::Scalar(0,0,0));
 }
}

Exercises
1. Modify the .../opencv/samples/cpp/delaunay2.cpp code to allow mouse-click point

entry (instead of via the existing method where points are selected at a random).
Experiment with triangulations on the results.

2. Modify the delaunay2.cpp code again so that you can use a keyboard to draw the
convex hull of the point set.

3. Do three points in a line have a Delaunay triangulation?
4. Is the triangulation shown in Figure A-6(a) a Delaunay triangulation? If so,

explain your answer. If not, how would you alter the figure so that it is a Delau‐
nay triangulation?

5. Perform a Delaunay triangulation by hand on the points in Figure A-6(b). For
this exercise, you need not add an outer fictitious bounding triangle.

936 | Appendix A: Planar Subdivisions

Figure A-6. Exercises 4 and 5

Planar Subdivisions | 937

APPENDIX B

opencv_contrib

An Overview of the opencv_contrib Modules
The opencv_contrib repository is where most new user-generated content goes; it
often contains more complete vision applications than you will find in OpenCV
itself. It is composed of many modules that have no dependencies between them.
Each module is required to have documentation, unit tests, and sample code, and
many also have tutorials. Each module has to comply with all the other formatting,
Buildbot tests, unit tests, and so on that OpenCV’s core modules have to pass. Each
one is documented in the same way as regular OpenCV functions and thus together
they form a fairly self-maintaining superset of more advanced computer vision capa‐
bility, ready to be used.

The opencv_contrib directory is located at https://github.com/opencv/opencv_contrib
and needs to be built separately from the main OpenCV library. You can find docu‐
mentation for these modules (and the regular OpenCV modules) at the nightly build
site. The content summary as of this writing appears next.

Contents of opencv_contrib
This following list gives an overview of all modules available inside the opencv_con‐
trib repository as of this writing. These modules must be downloaded and built sepa‐
rately. If you do decide to build this repository, but do not want to build all of the
functions, you can turn off building any given function by replacing <reponame> in
the build code that follows with the name of the function.

$ cmake -D OPENCV_EXTRA_MODULES_PATH=<opencv_contrib>/modules \
 -D BUILD_opencv_<reponame>=OFF \
 <opencv_source_directory>

The functions in opencv_contrib as of this writing are:

opencv_contrib | 939

https://github.com/opencv/opencv_contrib
http://docs.opencv.org/master
http://docs.opencv.org/master

aruco

ArUco and ChArUco markers. Includes augmented reality ArUco markers and
ChARUco markers (ArUco markers embedded inside the white areas of the
checkerboard).

bgsegm

Background segmentation. Improved adaptive background mixture model and
use for real-time human tracking under variable lighting conditions.

bioinspired

Biological vision. A biologically inspired vision model providing methods to
minimize noise and luminance variance, handle transient event segmentation,
and perform high-dynamic-range (HDR) tone mapping.

ccalib

Custom calibration. Patterns for 3D reconstruction, omnidirectional camera cali‐
bration, random pattern calibration, and multicamera calibration.

cnn_3dobj

Deep object recognition and pose. Uses Caffe deep neural net library to build,
train, and test a CNN model of visual object recognition and pose.

contrib_world

opencv_contrib holder. contrib_world is the module that, when built, contains
all other opencv_contrib modules. It may be used for the more convenient redis‐
tribution of OpenCV binaries.

cvv

Computer vision debugger. Simple code that you can add to your program that
pops up a GUI allowing you to interactively and visually debug computer vision
programs.

datasets

Data sets reader. Code for reading existing computer vision databases and sam‐
ples of using the readers to train, test, and run using that data set’s data.

dnn

Deep neural networks (DNNs). This module can read in image-recognition net‐
works trained in the Caffe neural network library and run them efficiently on
CPU.

dnns_easily_fooled

Subvert DNNs. This code can use the activations in a network to fool the net‐
works into recognizing something else.

940 | Appendix B: opencv_contrib

dpm

Deformable part model. Felzenszwalb’s cascade with deformable parts object rec‐
ognition code.

face

Face recognition. Face recognition techniques include Eigen, Fisher, and local
binary pattern histograms (LBPH) methods.

fuzzy

Fuzzy logic in vision. Fuzzy logic image transform and inverse; Fuzzy image pro‐
cessing.

hdf

Hierarchical data storage. This module contains I/O routines for hierarchical
data format; meant to store large amounts of data.

line_descriptor

Line segment extract and match. Methods of extracting, describing, and latching
line segments using binary descriptors. One of the authors, Gary, built a robotic
box handling company (Industrial Perception Inc.) out of a modification of this
algorithm.

matlab

MATLAB interface. OpenCV MATLAB Mex wrapper code generator for certain
OpenCV core modules.

optflow

Optical flow. Algorithms for running and evaluating deepflow, simpleflow, spar‐
setodenseflow, and motion templates (silhouette flow).

plot

Plotting. The plot module allows you to easily plot data in 1D or 2D.

reg

Image registration. Pixel-based image registration for precise alignment. Follows
the paper by Richard Szeliski [Szeliski04].

rgbd

RGB depth processing module. Linemod 3D object recognition; fast surface nor‐
mal, and 3D plane finding. 3D visual odometry.

saliency

Saliency API. Where humans would look in a scene. Has routines for static,
motion, and “objectness” saliency.

opencv_contrib | 941

https://en.m.wikipedia.org/wiki/Hierarchical_Data_Format
https://en.m.wikipedia.org/wiki/Hierarchical_Data_Format

sfm

Structure from motion. This module contains algorithms to perform 3D recon‐
struction from 2D images. The core of the module is a light version of Libmv.

stereo

Stereo correspondence. Stereo matching done with different descriptors: Census,
CS-Census, MCT, BRIEF, and MV.

structured_light

Structured light use. How to generate and project gray code patterns and use
them to find dense depth in a scene.

surface_matching

Point pair features. Implements 3D object detection and localization using multi‐
modal point pair features.

text

Visual text matching. In a visual scene, detect text, segment words, and recognize
the text!

tracking

Vision-based object tracking. Use and/or evaluate one of five different visual
object tracking techniques.

xfeatures2d

Features2D extra. Extra 2D features framework containing experimental and
paid 2D feature detector/descriptor algorithms: SURF, SIFT, BRIEF, Censure,
Freak, LUCID, Daisy, and Self-similar.

ximgproc

Extended image processing. Includes structured forests, domain transform filter,
guided filter, adaptive manifold filter, joint bilateral filter, and superpixels.

xobjdetect

Boosted 2D object detection. Uses a Waldboost cascade and local binary patterns
computed as integral features for 2D object detection.

xphoto

Extra computational photography. Provides additional photo processing algo‐
rithms: color balance, denoising, and inpainting.

942 | Appendix B: opencv_contrib

APPENDIX C

Calibration Patterns

Calibration Patterns Used by OpenCV
There are many different kinds of calibration patterns. Each pattern or marker could
be used in a calibration procedure or just to find the 3D pose of that marker. Figures
C-1 through C-7 show seven different patterns or markers.

Figure C-1. Chessboard pattern (9 × 6 corners) for camera calibration or pose. This
pattern can be used with the standard calibration technique described in Chapter 18, or
in the camera calibration tutorial available online at opencv.org

Calibration Patterns | 943

Figure C-2. Circular features calibration or pose pattern. For this we can use the stan‐
dard calibration technique described in this book or in tutorial_camera_calibra‐
tion.html online using the findCirclesGrid() function

Figure C-3. Random pattern for calibration or pose. You can find an example of how to
use this pattern by following the code in .../opencv_contrib/modules/ccalib/samples/
random_pattern_calibration.cpp

944 | Appendix C: Calibration Patterns

http://docs.opencv.org
http://docs.opencv.org

Figure C-4. ArUco board for calibration or pose. See the “Calibration with ArUco and
ChArUco” tutorial online at opencv.org for how to detect and calibrate with this board

Figure C-5. ChArUco board for calibration or pose; see the “Calibration with ArUco
and ChArUco” tutorial online for how to detect and calibrate with this board

Calibration Patterns | 945

Figure C-6. ArUco marker; see the “Detection of ArUco Markers” tutorial online for
how to detect an ArUco marker

Figure C-7. ChArUco marker. See the “Detection of Diamond Markers” tutorial for
how to detect a ChArUco marker. This is the diamond marker that appears on the
front cover of this book

Figure C-7 shows a diamond ChArUco marker. If you build opencv_contrib modules
with OpenCV, then in the associated bin directory, you can run the following to cre‐
ate this marker:

./example_aruco_create_diamond -bb=1 \
 -d=0 -sl=200 -ml=130 -ids=1,2,3,4 \
 -m=10 -si=true diamond.png

This code creates a diamond ChArUco marker where –bb=1 creates a marker border
as wide as the marker bits; -d=0 creates a 4- × 4-bit marker (there are only four mark‐
ers; we don’t need markers to be able to represent large numbers); -sl=200 draws a
chessboard square of 200 × 200 pixels; –ml=130 draws the ArUco marker to be a 130

946 | Appendix C: Calibration Patterns

1 It is left as a final exercise to the reader to use the detected marker on the cover of this book to create some
interesting augmented reality overlay!

× 130-pixel square; -ids=1,2,3,4 just sets the ArUco markers to have coded values
of 1, 2, 3, and 4, respectively; -m=10 puts a 10-pixel-wide border around the diamond
marker; and –si=true tells the program to show the generated image onscreen.
Finally, diamond.png is the name of the output image.

To detect this image and also the one on the cover of this book, use the following
code:

./example_aruco_detect_diamonds -as=1.0 -ci=0 -d=0 -ml=130 -sl=200

This code runs a camera that finds the marker shown both on the cover and in
Figure C-7. Once found, the code decodes the ArUco markers and shows detected
boxes and corners on the image. This code should work on the marker on the front
cover of the book.1 In this command line, -as=1.0 tells the program to autoscale the
detection, –ci=0 tells the code to look for default system camera, -d=0 tells the code
to use the 4 × 4 ArUco detection/decode library, and -ml=130 and –sl=200 give the
relative sizes of the ArUco and checkerboard squares (since we are autoscaling, it
needs only relative sizes).

Calibration Patterns | 947

Bibliography

[Ahonen04] Ahonen, Timo, Abdenour Hadid, and Matti Pietikäinen. “Face recogni‐
tion with local binary patterns.” European conference on computer vision. Springer
Berlin Heidelberg, 2004.

[Acharya05] Acharya, T., and A. Ray. Image Processing: Principles and Applications.
New York: Wiley, 2005.

[Adelson84] Adelson, E. H., C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden.
“Pyramid methods in image processing,” RCA Engineer 29 (1984): 33–41.

[Agarwal08] Agrawal, M., K. Konolige, and M. R. Blas. “CenSurE: Center Surround
Extremas for Realtime Feature Detection and Matching,” European Conference on
Computer Vision, 2008.

[Ahmed74] Ahmed, N., T. Natarajan, and K. R. Rao. “Discrete cosine transform,”
IEEE Transactions on Computers 23 (1974): 90–93.

[Alahi12] Alahi, Alexandre, Raphael Ortiz, and Pierre Vandergheynst. “Freak: Fast
retina keypoint.” Computer vision and pattern recognition (CVPR), 2012 IEEE confer‐
ence on. IEEE, 2012.

[Arfken85] Arfken, G. “Convolution theorem,” in Mathematical Methods for Physi‐
cists, 3rd ed. (pp. 810–814), Orlando, FL: Academic Press, 1985.

[Arraiy] Arraiy Corporation, http://www.arraiy.ai.

[Arthur07] Arthur, D., and S. Vassilvitskii., “k-means++: the advantages of careful
seeding.” Proceedings of the eighteenth annual ACM-SIAM symposium on discrete
algorithms. (2007) pp. 1027–1035.

[Bajaj97] Bajaj, C. L., V. Pascucci, and D. R. Schikore. “The contour spectrum,” Pro‐
ceedings of IEEE Visualization 1997 (pp. 167–173), 1997.

[Ballard81] Ballard, D. H. “Generalizing the Hough transform to detect arbitrary
shapes,” Pattern Recognition 13 (1981): 111–122.

Bibliography | 949

http://www.arraiy.ai

[Ballard82] Ballard, D., and C. Brown. Computer Vision. Englewood Cliffs, NJ:
Prentice-Hall, 1982.

[Bardyn84] Bardyn, J. J. et al. “Une architecture VLSI pour un operateur de filtrage
median,” Congres reconnaissance des formes et intelligence artificielle (vol. 1, pp. 557–
566), Paris, 25–27, January 1984.

[Bay06] Bay, H., T. Tuytelaars, and L. V. Gool. “SURF: Speeded up robust features,”
Proceedings of the Ninth European Conference on Computer Vision (pp. 404–417),
May 2006.

[Bay08] Bay, Herbert, Andreas Ess, Tinne Tuytelaars, and Luc J. Van Gool. “SURF:
Speeded up robust features,” Computer Vision and Image Understanding (CVIU) 110
(3) (2008) 346–359.

[Bayes1763] Bayes, T. “An essay towards solving a problem in the doctrine of chan‐
ces. By the late Rev. Mr. Bayes, F.R.S. communicated by Mr. Price, in a letter to John
Canton, A.M.F.R.S.,” Philosophical Transactions, Giving Some Account of the Present
Undertakings, Studies and Labours of the Ingenious in Many Considerable Parts of the
World 53 (1763): 370–418.

[Bazargani15] Bazargani, Hamid, Olexa Bilaniuk, and Robert Laganiere. “A fast and
robust homography scheme for real-time planar target detection.” Journal of Real-
Time Image Processing (2015): 1–20.

[Belongie02] Belongie, S., J. Malik, and J. Puzicha. “Shape matching and object recog‐
nition using shape contexts,” in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol.24, no. 4, pp. 509–522, Apr 2002.

[Bhattacharyya43] Bhattacharyya, A. “On a measure of divergence between two stat‐
istical populations defined by probability distributions,” Bulletin of the Calcutta
Mathematical Society 35 (1943): 99–109.

[BirchfieldTomasi99] Birchfield, Stan, and Carlo Tomasi. “Depth discontinuities by
pixel-to-pixel stereo.” International Journal of Computer Vision 35.3 (1999): 269–293.

[Bishop07] Bishop, C. M. Pattern Recognition and Machine Learning. New York:
Springer-Verlag, 2007.

[Black92] Black, M. J. “Robust incremental optical flow” (YALEU-DCS-RR-923),
Ph.D. thesis, Department of Computer Science, Yale University, New Haven, CT,
1992.

[Black93] Black, M. J., and P. Anandan. “A framework for the robust estimation of
optical flow,” Fourth International Conference on Computer Vision (pp. 231–236),
May 1993.

950 | Bibliography

[Black96] Black, M. J., and P. Anandan. “The robust estimation of multiple motions:
Parametric and piecewise-smooth flow fields,” Computer Vision and Image Under‐
standing 63 (1996): 75–104.

[Bobick96] Bobick, A., and J. Davis. “Real-time recognition of activity using temporal
templates,” IEEE Workshop on Applications of Computer Vision (pp. 39–42), Decem‐
ber 1996.

[Borgefors86] Borgefors, G., “Distance transformations in digital images,” Computer
Vision, Graphics and Image Processing 34 (1986): 344–371.

[Bouguet04] Bouguet, J.-Y. “Pyramidal implementation of the Lucas Kanade feature
tracker description of the algorithm,” http://robots.stanford.edu/cs223b04/algo_track
ing.pdf.

[Boykov01] Boykov, Yuri, Olga Veksler, and Ramin Zabih. “Fast approximate energy
minimization via graph cuts.” IEEE Transactions on pattern analysis and machine
intelligence 23.11 (2001): 1222-1239.

[Bracewell65] Bracewell, R. “Convolution” and “Two-dimensional convolution,” in
The Fourier Transform and Its Applications (pp. 25–50 and 243–244). New York:
McGraw-Hill, 1965.

[Bradski] Gary Bradski, founder of OpenCV in 1999 and maintainer ever since.
https://en.wikipedia.org/wiki/Gary_Bradski.

[Bradski00] Bradski, G., and J. Davis. “Motion segmentation and pose recognition
with motion history gradients,” IEEE Workshop on Applications of Computer Vision,
2000.

[Bradski98a] Bradski, G. R. “Real time face and object tracking as a component of a
perceptual user interface,” Proceedings of the 4th IEEE Workshop on Applications of
Computer Vision, October 1998.

[Bradski98b] Bradski, G. R. “Computer video face tracking for use in a perceptual
user interface,” Intel Technology Journal Q2 (1998): 705–740.

[Breiman01] Breiman, L. “Random forests,” Machine Learning 45 (2001): 5–32.

[Breiman02] Breiman, Leo. “Manual on setting up, using, and understanding ran‐
dom forests v3. 1.” Statistics Department, University of California Berkeley, CA, USA
1 (2002).

[Breiman84] Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Monterey, CA: Wadsworth, 1984.

[Brown71] Brown, D. C. “Close-range camera calibration,” Photogrammetric Engi‐
neering 37 (1971): 855–866.

Bibliography | 951

http://robots.stanford.edu/cs223b04/algo_tracking.pdf
http://robots.stanford.edu/cs223b04/algo_tracking.pdf
https://en.wikipedia.org/wiki/Gary_Bradski

[Buades05] Mahmoudi, Mona, and Guillermo Sapiro. “Fast image and video denois‐
ing via nonlocal means of similar neighborhoods.” IEEE signal processing letters 12.12
(2005): 839–842.

[Burt83] Burt, P. J., and E. H. Adelson. “The Laplacian pyramid as a compact image
code,” IEEE Transactions on Communications 31 (1983): 532–540.

[Calonder10] Calonder, M., V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust
independent elementary features. In European Conference on Computer Vision
(ECCV), 2010.

[Canny86] Canny, J. “A computational approach to edge detection,” IEEE Transac‐
tions on Pattern Analysis and Machine Intelligence 8 (1986): 679–714.

[Carpenter03] Carpenter, G. A., and S. Grossberg. “Adaptive resonance theory,” in
M. A. Arbib (Ed.), The Handbook of Brain Theory and Neural Networks, 2nd ed. (pp.
87–90), Cambridge, MA: MIT Press, 2003.

[Carr04] Carr, H., J. Snoeyink, and M. van de Panne. “Progressive topological simpli‐
fication using contour trees and local spatial measures,” 15th Western Computer
Graphics Symposium, Big White, British Columbia, March 2004.

[Chambolle04] Chambolle, Antonin. “An algorithm for total variation minimization
and applications.” Journal of Mathematical imaging and vision 20.1–2 (2004): 89–97.

[Chen05] Chen, D., and G. Zhang. “A new sub-pixel detector for x-corners in camera
calibration targets,” WSCG Short Papers (2005): 97–100.

[Chu07] Chu, C.-T., S. K. Kim, Y.-A. Lin, Y. Y. Yu, G. Bradski, A. Y. Ng, and K. Olu‐
kotun. “Map-reduce for machine learning on multicore,” Proceedings of the Neural
Information Processing Systems Conference (vol. 19, pp. 304–310), 2007.

[Ciresan11] Ciresan, Dan Claudiu, et al. “Convolutional neural network committees
for handwritten character classification.” 2011 International Conference on Docu‐
ment Analysis and Recognition. IEEE, 2011.

[Colombari07] Colombari, A., A. Fusiello, and V. Murino. “Video objects segmenta‐
tion by robust background modeling,” International Conference on Image Analysis
and Processing (pp. 155–164), September 2007.

[Comaniciu99] Comaniciu, D., and P. Meer. “Mean shift analysis and applications,”
IEEE International Conference on Computer Vision (vol. 2, p. 1197), 1999.

[Comaniciu03] Comaniciu, D. “Nonparametric information fusion for motion esti‐
mation,” IEEE Conference on Computer Vision and Pattern Recognition (vol. 1, pp.
59–66), 2003.

[Cooley65] Cooley, J. W., and O. W. Tukey. “An algorithm for the machine calcula‐
tion of complex Fourier series,” Mathematics of Computation 19 (1965): 297–301.

952 | Bibliography

[Criminisi13] Criminisi, Antonio, and Jamie Shotton, eds. Decision forests for com‐
puter vision and medical image analysis. Springer Science & Business Media, 2013.

[Csurka04] Csurka, Gabriella, et al. “Visual categorization with bags of keypoints.”
Workshop on statistical learning in computer vision, ECCV. Vol. 1. No. 1–22. 2004.

[Dahlkamp06] Dahlkamp, H., A. Kaehler, D. Stavens, S. Thrun, and G. Bradski. “Self-
supervised monocular road detection in desert terrain,” Robotics: Science and Sys‐
tems, Philadelphia, 2006.

[Dalal05] Dalal, N., and B. Triggs. “Histograms of oriented gradients for human
detection,” Computer Vision and Pattern Recognition (vol. 1, pp. 886–893), June
2005.

[Davis97] Davis, J., and A. Bobick. “The representation and recognition of action
using temporal templates” (Technical Report 402), MIT Media Lab, Cambridge, MA,
1997.

[Davis99] Davis, J., and G. Bradski. “Real-time motion template gradients using Intel
CVLib,” ICCV Workshop on Framerate Vision, 1999.

[Delaunay34] Delaunay, B. “Sur la sphère vide,” Izvestia Akademii Nauk SSSR, Otde‐
lenie Matematicheskikh i Estestvennykh Nauk 7 (1934): 793–800.

[DeMenthon92] DeMenthon, D. F., and L. S. Davis. “Model-based object pose in 25
lines of code,”Proceedings of the European Conference on Computer Vision (pp. 335–
343), 1992.

[Dempster77] Dempster, A., N. Laird, and D. Rubin. “Maximum likelihood from
incomplete data via the EM algorithm,” Journal of the Royal Statistical Society, Series
B 39 (1977): 1–38.

[Douglas73] Douglas, D., and T. Peucker. “Algorithms for the reduction of the num‐
ber of points required for represent a digitized line or its caricature,” Canadian Car‐
tographer 10(1973): 112–122.

[Drucker97] Drucker, Harris, Chris J.C. Burges, Linda Kaufman, Alex Smola, and
Vladimir Vapnik. “Support vector regression machines.” Advances in neural informa‐
tion processing systems 9 (1997): 155-161.

[Duda72] Duda, R. O., and P. E. Hart. “Use of the Hough transformation to detect
lines and curves in pictures,” Communications of the Association for Computing
Machinery 15 (1972): 11–15.

[Duda73] Duda, R. O., and P. E. Hart. Pattern Recognition and Scene Analysis. New
York: Wiley, 1973.

[Duda00] Duda, R. O., P. E. Hart, and D. G. Stork. Pattern Classification. New York:
Wiley, 2001.

Bibliography | 953

[Farin04] Farin, D., P. H. N. de With, and W. Effelsberg. “Video-object segmentation
using multi-sprite background subtraction,” Proceedings of the IEEE International
Conference on Multimedia and Expo, 2004.

[Farnebäck03] Farnebäck, Gunnar. “Two-frame motion estimation based on polyno‐
mial expansion.” Scandinavian conference on image analysis. Springer Berlin Heidel‐
berg, 2003.

[Faugeras93] Faugeras, O. Three-Dimensional Computer Vision: A Geometric View‐
point. Cambridge, MA: MIT Press, 1993.

[Felzenszwalb2004] Felzenszwalb, Pedro, and Daniel Huttenlocher. Distance trans‐
forms of sampled functions. Cornell University, 2004.

[Felzenszwalb2006] Felzenszwalb, Pedro F., and Daniel P. Huttenlocher. “Efficient
belief propagation for early vision.” International Journal of Computer Vision, 70(1),
October 2006.

[Felzenszwalb2010] Felzenszwalb, Pedro F., et al. “Object detection with discrimina‐
tively trained part-based models.” IEEE transactions on pattern analysis and machine
intelligence 32.9 (2010): 1627–1645.

[Fischler81] Fischler, M. A., and R. C. Bolles. “Random sample consensus: A para‐
digm for model fitting with applications to image analysis and automated cartogra‐
phy,” Communications of the Association for Computing Machinery 24 (1981): 381–
395.

[Fitzgibbon95] Fitzgibbon, A. W., and R. B. Fisher. “A buyer’s guide to conic fitting,”
Proceedings of the 5th British Machine Vision Conference (pp. 513–522), Birmingham,
1995.

[Fix51] Fix, E., and J. L. Hodges. “Discriminatory analysis, nonparametric discrimi‐
nation: Consistency properties” (Technical Report 4), USAF School of Aviation Med‐
icine, Randolph Field, Texas, 1951.

[Forsyth03] Forsyth, D., and J. Ponce. Computer Vision: A Modern Approach. Engle‐
wood Cliffs, NJ: Prentice-Hall, 2003.

[FourCC85] Morrison, J. “EA IFF 85 standard for interchange format files,” http://
www.martinreddy.net/gfx/2d/IFF.txt.

[Fourier] “Joseph Fourier,” http://en.wikipedia.org/wiki/Joseph_Fourier.

[Freeman95] Freeman, W. T., and M. Roth. “Orientation histograms for hand gesture
recognition,” International Workshop on Automatic Face and Gesture Recognition
(pp. 296–301), June 1995.

954 | Bibliography

http://www.martinreddy.net/gfx/2d/IFF.txt
http://www.martinreddy.net/gfx/2d/IFF.txt
http://en.wikipedia.org/wiki/Joseph_Fourier

[Freund97] Freund, Y., and R. E. Schapire. “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of Computer and System
Sciences 55 (1997): 119–139.

[Fryer86] Fryer, J. G., and D. C. Brown. “Lens distortion for close-range photogram‐
metry,” Photogrammetric Engineering and Remote Sensing 52 (1986): 51–58.

[Fukunaga90] Fukunaga, K. Introduction to Statistical Pattern Recognition. Boston:
Academic Press, 1990.

[Fukushima80] Fukushima, Kunihiko. “Neocognitron: A self-organizing neural net‐
work model for a mechanism of pattern recognition unaffected by shift in position.”
Biological cybernetics 36.4 (1980): 193-202.

[Galton] “Francis Galton,” http://en.wikipedia.org/wiki/Francis_Galton.

[Gao03] Gao, Xiao-Shan, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei Cheng.
“Complete solution classification for the perspective-three-point problem,” IEEE
Transactions Pattern Analysis and Machine Intelligence 25 (2003), 930–943.

[Garrido-Jurado] Garrido-Jurado, S., R. Munoz-Salinas, F. J. Madrid-Cuevas and M.
J. Marin-Jimenez. “Automatic generation and detection of highly reliable fiducial
markers under occlusion,” Pattern Recognition 47, no. 6 (June 2014).

[Göktürk01] Göktürk, S. B., J.-Y. Bouguet, and R. Grzeszczuk. “A data-driven model
for monocular face tracking,” Proceedings of the IEEE International Conference on
Computer Vision (vol. 2, pp. 701–708), 2001.

[Göktürk02] Göktürk, S. B., J.-Y. Bouguet, C. Tomasi, and B. Girod. “Model-based
face tracking for view-independent facial expression recognition,” Proceedings of the
Fifth IEEE International Conference on Automatic Face and Gesture Recognition (pp.
287–293), May 2002.

[Goresky03] Goresky, Mark, and Andrew Klapper. “Efficient multiply-with-carry
random number generators with maximal period.” ACM Transactions on Modeling
and Computer Simulation (TOMACS) 13.4 (2003): 310-321.

[Grossberg87] Grossberg, S., “Competitive learning: From interactive activation to
adaptive resonance,” Cognitive Science 11 (1987): 23–63.

[Harris88] Harris, C., and M. Stephens. “A combined corner and edge detector,” Pro‐
ceedings of the 4th Alvey Vision Conference (pp. 147–151), 1988.

[Hartley98] Hartley, R. I. “Theory and practice of projective rectification,” Interna‐
tional Journal of Computer Vision 35 (1998): 115–127.

[Hartley06] Hartley, R., and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge, UK: Cambridge University Press, 2006.

Bibliography | 955

http://en.wikipedia.org/wiki/Francis_Galton

[Hastie01] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. New York: Springer-Verlag, 2001.

[Heckbert90] Heckbert, P. A Seed Fill Algorithm (Graphics Gems I). New York: Aca‐
demic Press, 1990.

[Heikkila97] Heikkila, J., and O. Silven. “A four-step camera calibration procedure
with implicit image correction,” Proceedings of the 1997 Conference on Computer
Vision and Pattern Recognition (p. 1106), 1997.

[Hinton06] Hinton, G. E., S. Osindero, and Y. Teh. “A fast learning algorithm for
deep belief nets,” Neural Computation 18 (2006): 1527–1554.

[Hirschmuller 08] Hirschmuller, H. “Stereo Processing by Semiglobal Matching and
Mutual Information,” Pattern Analysis and Machine Intelligence PAMI 30, No. 2,
February 2008, pp. 328–341.

[Ho95] Ho, T. K. “Random decision forest,” Proceedings of the 3rd International Con‐
ference on Document Analysis and Recognition (pp. 278–282), August 1995.

[Horn81] Horn, B. K. P., and B. G. Schunck. “Determining optical flow,” Artificial
Intelligence 17 (1981): 185–203.

[Hough59] Hough, P. V. C. “Machine analysis of bubble chamber pictures,” Proceed‐
ings of the International Conference on High Energy Accelerators and Instrumentation
(pp. 554–556), 1959.

Huttenlocher, Daniel P., Gregory A. Klanderman, and William J. Rucklidge. “Com‐
paring images using the Hausdorff distance.” IEEE Transactions on pattern analysis
and machine intelligence 15.9 (1993): 850-863.

[Intel] Intel Corporation, http://www.intel.com/.

[Inui03] Inui, K., S. Kaneko, and S. Igarashi. “Robust line fitting using LmedS cluster‐
ing,” Systems and Computers in Japan 34 (2003): 92–100.

[IPP] Intel Integrated Performance Primitives, https://software.intel.com/en-us/intel-
ipp.

[Itseez] A computer vision company that grew out of the original OpenCV project
and one of the key maintainers of the free and open OpenCV.org. Now sold to Intel
Corporation.

[Jaehne95] Jaehne, B. Digital Image Processing, 3rd ed. Berlin: Springer-Verlag, 1995.

[Jaehne97] Jaehne, B. Practical Handbook on Image Processing for Scientific Applica‐
tions. Boca Raton, FL: CRC Press, 1997.

956 | Bibliography

http://www.intel.com/
https://software.intel.com/en-us/intel-ipp
https://software.intel.com/en-us/intel-ipp

[Jain77] Jain, A. “A fast Karhunen-Loeve transform for digital restoration of images
degraded by white and colored noise,” IEEE Transactions on Computers 26 (1997):
560–571.

[Jain86] Jain, A. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ:
Prentice-Hall, 1986.

[Johnson84] Johnson, D. H. “Gauss and the history of the fast Fourier transform,”
IEEE Acoustics, Speech, and Signal Processing Magazine 1 (1984): 14–21.

[KaewTraKulPong2001] KaewTraKulPong, P., and R. Bowden. “An Improved Adap‐
tive Background Mixture Model for Realtime Tracking with Shadow Detection,”
Proc. 2nd European Workshop on Advanced Video Based Surveillance Systems,
AVBS01. Sept 2001.

[Kalman60] Kalman, R. E. “A new approach to linear filtering and prediction prob‐
lems,” Journal of Basic Engineering 82 (1960): 35–45.

[Kim05] Kim, K., T. H. Chalidabhongse, D. Harwood, and L. Davis. “Real-time
foreground-background segmentation using codebook model,” Real-Time Imaging
11 (2005): 167–256.

[Kimme75] Kimme, C., D. H. Ballard, and J. Sklansky. “Finding circles by an array of
accumulators,” Communications of the Association for Computing Machinery 18
(1975): 120–122.

[Kiryati91] Kiryati, N., Y. Eldar, and A. M. Bruckshtein. “A probablistic Hough trans‐
form,” Pattern Recognition 24 (1991): 303–316.

[Koller09] Koller, Daphne, and Nir Friedman. Probabilistic graphical models: princi‐
ples and techniques. Cambridge, MA: MIT Press, 2009.

[Konolige97] Konolige, K., “Small vision system: Hardware and implementation,”
Proceedings of the International Symposium on Robotics Research (pp. 111–116), Hay‐
ama, Japan, 1997.

[Kopf07] Kopf, Johannes, et al. “Joint bilateral upsampling.” ACM Transactions on
Graphics (TOG). Vol. 26. No. 3. ACM, 2007.

[Kreveld97] van Kreveld, M., R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. R.
Schikore. “Contour trees and small seed sets for isosurface traversal,” Proceedings of
the 13th ACM Symposium on Computational Geometry (pp. 212–220), 1997.

[Lakoff08] Lakoff, G., and M. Johnson. “Metaphors we live by,” University of Chi‐
cago Press, 2008.

[Laughlin81] Laughlin, S. B. “A simple coding procedure enhances a neuron’s infor‐
mation capacity,” Zeitschrift für Naturforschung 9/10 (1981): 910–912.

Bibliography | 957

[LeCun98a] LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learn‐
ing applied to document recognition,” Proceedings of the IEEE 86 (1998): 2278–2324.

[LeCun98b] LeCun, Y., L. Bottou, G. Orr, and K. Muller. “Efficient BackProp,” in G.
Orr and K. Muller (Eds.), Neural Networks: Tricks of the Trade. New York: Springer-
Verlag, 1998.

[Leutenegger11] Leutenegger, Stefan, Margarita Chli, and Roland Y. Siegwart.
“BRISK: Binary robust invariant scalable keypoints.” 2011 International conference on
computer vision. IEEE, 2011.

[Lienhart02] Lienhart, Rainer, and Jochen Maydt. “An extended set of haar-like fea‐
tures for rapid object detection.” Proceedings 2002 International Conference on Image
Processing. Vol. 1. IEEE, 2002.

[Liu07] Liu, Y. Z., H. X. Yao, W. Gao, X. L. Chen, and D. Zhao. “Nonparametric
background generation,” Journal of Visual Communication and Image Representation
18 (2007): 253–263.

[Lloyd57] Lloyd, S. “Least square quantization in PCM’s” (Bell Telephone Laborato‐
ries Paper), 1957. [“Lloyd’s algorithm” was later published in IEEE Transactions on
Information Theory 28 (1982): 129–137.]

[Lloyd82] Lloyd, Stuart. “Least squares quantization in PCM.” IEEE transactions on
information theory 28.2 (1982): 129-137.

[Lowe04] Lowe, D. G. “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision 60, no. 2 (2004): 91–110.

[LTI] LTI-Lib, Vision Library, http://ltilib.sourceforge.net/doc/homepage/index.shtml.

[Lucas81] Lucas, B. D., and T. Kanade. “An iterative image registration technique
with an application to stereo vision,” Proceedings of the 1981 DARPA Imaging Under‐
standing Workshop (pp. 121–130), 1981.

[Lucchese02] Lucchese, L., and S. K. Mitra. “Using saddle points for subpixel feature
detection in camera calibration targets,” Proceedings of the 2002 Asia Pacific Confer‐
ence on Circuits and Systems (pp. 191–195), December 2002.

[Lv07] Lv, Q., W. Josephson, Z. Wang, M. Charikar, and K. Li. “Multiprobe LSH:
efficient indexing for high-dimensional similarity search.” In VLDB, pages 950–961,
2007.

[Mahalanobis36] Mahalanobis, P. “On the generalized distance in statistics,” Proceed‐
ings of the National Institute of Science 12 (1936): 49–55.

[Mair10] Mair, Elmar, et al. “Adaptive and generic corner detection based on the
accelerated segment test.” European conference on Computer vision. Springer Berlin
Heidelberg, 2010.

958 | Bibliography

http://ltilib.sourceforge.net/doc/homepage/index.shtml

[Maron61] Maron, M. E. “Automatic indexing: An experimental inquiry,” Journal of
the Association for Computing Machinery 8 (1961): 404–417.

[Marr82] Marr, D. Vision. San Francisco: Freeman, 1982.

[Marsaglia00] Marsaglia, George, and Wai Wan Tsang. “The ziggurat method for
generating random variables.” Journal of statistical software 5.8 (2000): 1-7.

[Martins99] Martins, F. C. M., B. R. Nickerson, V. Bostrom, and R. Hazra. “Imple‐
mentation of a real-time foreground/background segmentation system on the Intel
architecture,” IEEE International Conference on Computer Vision Frame Rate Work‐
shop, 1999.

[Matas00] Matas, J., C. Galambos, and J. Kittler. “Robust detection of lines using the
progressive probabilistic Hough transform,” Computer Vision Image Understanding
78 (2000): 119–137.

[Meer91] Meer, P., D. Mintz, and A. Rosenfeld. “Robust regression methods for com‐
puter vision: A review,” International Journal of Computer Vision 6 (1991): 59–70.

[Merwe00] van der Merwe, R., A. Doucet, N. de Freitas, and E. Wan. “The unscented
particle filter,” Advances in Neural Information Processing Systems, December 2000.

[Meyer78] Meyer, F. “Contrast feature extraction,” in J.-L. Chermant (Ed.), Quantita‐
tive Analysis of Microstructures in Material Sciences, Biology and Medicine [Special
issue of Practical Metallography], Stuttgart: Riederer, 1978.

[Meyer92] Meyer, F. “Color image segmentation,” Proceedings of the International
Conference on Image Processing and Its Applications (pp. 303–306), 1992.

[Minsky61] Minsky, M. “Steps toward artificial intelligence,” Proceedings of the Insti‐
tute of Radio Engineers 49 (1961): 8–30.

[Moreno-Noguer07] Moreno-Noguer, F., Lepetit, V., Fua, P. “Accurate Non-Iterative
O(n) Solution to the PnP Problem,” ICCV 2007. IEEE 11th International Conference
on Computer Vision, pp. 1–8, 2007.

[Morse53] Morse, P. M., and H. Feshbach. “Fourier transforms,” in Methods of Theo‐
retical Physics (Part I, pp. 453–471), New York: McGraw-Hill, 1953.

[Muja09] Muja, Marius, and David G. Lowe. “Fast Approximate Nearest Neighbors
with Automatic Algorithm Configuration.” VISAPP (1) 2.331–340 (2009): 2.

[Neapolitan04] Neapolitan, Richard E. Learning Bayesian Networks. Upper Saddle
River, New Jersey: Pearson, 2004.

[O’Connor02] O’Connor, J. J., and E. F. Robertson. “Light through the ages: Ancient
Greece to Maxwell,” http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/
Light_1.html.

Bibliography | 959

http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Light_1.html
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Light_1.html

[Ojala94] Ojala, T., M. Pietikäinen, and D. Harwood. “Performance evaluation of tex‐
ture measures with classification based on Kullback discrimination of distributions,”
Pattern Recognition, 1994. Vol. 1 [Oliva06] A. Oliva and A. Torralba, “Building the
gist of a scene: The role of global image features in recognition visual perception,”
Progress in Brain Research 155 (2006): 23–36.

[OpenCV] Open Source Computer Vision Library (OpenCV) (free, BSD license),
http://opencv.org.

[opencv_contrib] Newer content and higher functionality is separated into this
repository. https://github.com/opencv/opencv_contrib.

[Papoulis62] Papoulis, A. The Fourier Integral and Its Applications. New York:
McGraw-Hill, 1962.

[Pascucci02] Pascucci, V., and K. Cole-McLaughlin. “Efficient computation of the
topology of level sets,” Proceedings of IEEE Visualization 2002 (pp. 187–194), 2002.

[Pearson] “Karl Pearson,” http://en.wikipedia.org/wiki/Karl_Pearson.

[Pollefeys99a] Pollefeys, M. “Self-calibration and metric 3D reconstruction from
uncalibrated image sequences,” Ph.D. thesis, Katholieke Universiteit, Leuven, 1999.

[Pollefeys99b] Pollefeys, M., R. Koch, and L. V. Gool. “A simple and efficient rectifi‐
cation method for general motion,” Proceedings of the 7th IEEE Conference on Com‐
puter Vision, 1999.

[Porter84] Porter, T., and T. Duff. “Compositing digital images,” Computer Graphics
18 (1984): 253–259.

[Ranger07] Ranger, C., R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
“Evaluating mapreduce for multi-core and multiprocessor systems,” Proceedings of
the 13th International Symposium on High-Performance Computer Architecture (pp.
13–24), 2007.

[Reeb46] Reeb, G. “Sur les points singuliers d’une forme de Pfaff completement inte‐
grable ou d’une fonction numerique,” Comptes Rendus de l’Academie des Sciences de
Paris 222 (1946): 847–849.

[Riedmiller93] Riedmiller, Martin, and Heinrich Braun. “A direct adaptive method
for faster backpropagation learning: The RPROP algorithm.” 1993 IEEE International
Conference on Neural Networks.. IEEE, 1993.

[Rodgers88] Rodgers, J. L., and W. A. Nicewander. “Thirteen ways to look at the cor‐
relation coefficient,” American Statistician 42 (1988): 59–66.

[Rosenfeld73] Rosenfeld, A., and E. Johnston. “Angle detection on digital curves,”
IEEE Transactions on Computers 22 (1973): 875–878.

960 | Bibliography

http://opencv.org
https://github.com/opencv/opencv_contrib
http://en.wikipedia.org/wiki/Karl_Pearson

[Rosenfeld80] Rosenfeld, A. “Some Uses of Pyramids in Image Processing and Seg‐
mentation,” Proceedings of the DARPA Imaging Understanding Workshop (pp. 112–
120), 1980.

[Rosten06] Rosten, Edward. “FAST corner detection.” Engineering Department,
Machine Intelligence Laboratory, University of Cambridge, 2006.

[Rother04] Rother, Carsten, Vladimir Kolmogorov, and Andrew Blake. “Grabcut:
Interactive foreground extraction using iterated graph cuts.” ACM transactions on
graphics (TOG). Vol. 23. No. 3. ACM, 2004.

[Rousseeuw84] Rousseeuw, P. J. “Least median of squares regression,” Journal of the
American Statistical Association, 79 (1984): 871–880.

[Rousseeuw87] Rousseeuw, P. J., and A. M. Leroy. Robust Regression and Outlier
Detection. New York: Wiley, 1987.

[Rublee11] Rublee, E., V. Rabaud, K. Konolige, and G. Bradski. “ORB an efficient
alternative to SIFT or SURF.” Proceedings of the 2011 IEEE International Conference
on Computer Vision, 2011.

[Rubner00] Rubner, Y., C. Tomasi, and L. J. Guibas. “The earth mover’s distance as a
metric for image retrieval,” International Journal of Computer Vision 40 (2000): 99–
121.

[Rumelhart88] Rumelhart, D. E., G. E. Hinton, and R. J. Williams. “Learning internal
representations by error propagation,” in D. E. Rumelhart, J. L. McClelland, and PDP
Research Group (Eds.), Parallel Distributed Processing. Explorations in the Micro‐
structures of Cognition (vol. 1, pp. 318–362), Cambridge, MA: MIT Press, 1988.

[Russ02] Russ, J. C. The Image Processing Handbook, 4th ed. Boca Raton, FL: CRC
Press, 2002.

[Sánchez13] Sánchez, Javier, Enric Meinhardt-Llopis, and Gabriele Facciolo. “TV-L1
optical flow estimation.” Image Processing On Line 2013 (2013): 137-150.

[Scharr00] Scharr, Hanno. “Optimal operators in digital image processing.” Diss.
2000.

[Schiele96] Schiele, B., and J. L. Crowley. “Object recognition using multidimensional
receptive field histograms,” European Conference on Computer Vision (vol. I, pp.
610–619), April 1996.

[Schmidt66] Schmidt, S. “Applications of state-space methods to navigation prob‐
lems,” in C. Leondes (Ed.), Advances in Control Systems (vol. 3, pp. 293–340), New
York: Academic Press, 1966.

[Schölkopf00] Schölkopf, Bernhard, et al. “New support vector algorithms.” Neural
computation 12.5 (2000): 1207-1245.

Bibliography | 961

[Schwartz80] Schwartz, E. L. “Computational anatomy and functional architecture of
the striate cortex: A spatial mapping approach to perceptual coding,” Vision Research
20 (1980): 645–669.

[Schwarz78] Schwarz, A. A., and J. M. Soha. “Multidimensional histogram normal‐
ization contrast enhancement,” Proceedings of the Canadian Symposium on Remote
Sensing (pp. 86–93), 1978.

[Semple79] Semple, J., and G. Kneebone. Algebraic Projective Geometry. Oxford, UK:
Oxford University Press, 1979.

[Serra83] Serra, J. Image Analysis and Mathematical Morphology. New York: Aca‐
demic Press, 1983.

[Sezgin04] Sezgin, M., and B. Sankur. “Survey over image thresholding techniques
and quantitative performance evaluation,” Journal of Electronic Imaging 13 (2004):
146–165.

[Shannon49] Shannon, C. E.. “Communication in the presence of noise,” Proc. Insti‐
tute of Radio Engineers, vol. 37, no. 1, pp. 10–21, Jan. 1949. Reprint as classic paper
in: Proc. IEEE, vol. 86, no. 2, (Feb. 1998), http://www.stanford.edu/class/ee104/shan‐
nonpaper.pdf.

[Shapiro02] Shapiro, L. G., and G. C. Stockman. Computer Vision. Englewood Cliffs,
NJ: Prentice-Hall, 2002.

[Shaw04] Shaw, J. R. “QuickFill: An efficient flood fill algorithm,” http://www.codepro
ject.com/gdi/QuickFill.asp.

[Shi94] Shi, J., and C. Tomasi. “Good features to track,” 9th IEEE Conference on Com‐
puter Vision and Pattern Recognition, June 1994.

[Smith79] Smith, A. R. “Painting tutorial notes,” Computer Graphics Laboratory,
New York Institute of Technology, Islip, NY, 1979.

[Sobel73] Sobel, I., and G. Feldman. “A 3 x 3 Isotropic Gradient Operator for Image
Processing,” in R. Duda and P. Hart (Eds.), Pattern Classification and Scene Analysis
(pp. 271–272), New York: Wiley, 1973.

[Sochman05] Sochman, J., and J. Matas. “WaldBoost - learning for time constrained
sequential detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005.

[Steinhaus56] Steinhaus, H. “Sur la division des corp materiels en parties,” Bulletin of
the Polish Academy of Sciences and Mathematics 4 (1956): 801–804.

[Sturm99] Sturm, P. F., and S. J. Maybank. “On plane-based camera calibration: A
general algorithm, singularities, applications,” IEEE Conference on Computer Vision
and Pattern Recognition, 1999.

962 | Bibliography

http://en.wikipedia.org/wiki/Claude_E._Shannon
http://www.stanford.edu/class/ee104/shannonpaper.pdf
http://www.stanford.edu/class/ee104/shannonpaper.pdf
http://www.codeproject.com/gdi/QuickFill.asp
http://www.codeproject.com/gdi/QuickFill.asp

[Suzuki85] Suzuki, S., and K. Abe, “Topological structural analysis of digital binary
images by border following,” Computer Vision, Graphics and Image Processing 30
(1985): 32–46.

[Swain91] Swain, M. J., and D. H. Ballard. “Color indexing,” International Journal of
Computer Vision 7 (1991): 11–32.

[Szeliski04] Szeliski, R. “Image Alignment and Stitching: A Tutorial,” http://
research.microsoft.com/apps/pubs/default.aspx?id=70092. October 2004.

[Tao12] Tao, Michael, et al. “SimpleFlow: A Non-iterative, Sublinear Optical Flow
Algorithm.” Computer Graphics Forum. Vol. 31. No. 2pt1. Blackwell Publishing Ltd,
2012.

[Teh89] Teh, C. H., and R. T. Chin. “On the detection of dominant points on digital
curves,” IEEE Transactions on Pattern Analysis and Machine Intelligence 11 (1989):
859–872.

[Telea04] Telea, A. “An image inpainting technique based on the fast marching
method,” Journal of Graphics Tools 9 (2004): 25–36.

[Thrun05] Thrun, S., W. Burgard, and D. Fox. Probabilistic Robotics: Intelligent
Robotics and Autonomous Agents, Cambridge, MA: MIT Press, 2005.

[Thrun06] Thrun, S., M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V.
Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C.
Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney. “Stanley, the robot that won the DARPA
Grand Challenge,” Journal of Robotic Systems 23 (2006): 661–692.

[Titchmarsh26] Titchmarsh, E. C. “The zeros of certain integral functions,” Proceed‐
ings of the London Mathematical Society 25 (1926): 283–302.

[Tomasi98] Tomasi, C., and R. Manduchi. “Bilateral filtering for gray and color
images,” Sixth International Conference on Computer Vision (pp. 839–846), New
Delhi, 1998.

[Tou77] Tou, J., and R. Gonzales. Pattern Recognition Principles. Addison Wesley
Publishing (1977), p. 377.

[Toyama99] Toyama, K., J. Krumm, B. Brumitt, and B. Meyers. “Wallflower: Princi‐
ples and practice of background maintenance,” Proceedings of the 7th IEEE Interna‐
tional Conference on Computer Vision (pp. 255–261), 1999.

[Trucco98] Trucco, E., and A. Verri. Introductory Techniques for 3-D Computer
Vision. Englewood Cliffs, NJ: Prentice-Hall, 1998.

Bibliography | 963

http://research.microsoft.com/apps/pubs/default.aspx?id=70092
http://research.microsoft.com/apps/pubs/default.aspx?id=70092

[Tsai87] Tsai, R. Y. “A versatile camera calibration technique for high accuracy 3D
machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE Journal
of Robotics and Automation 3 (1987): 323–344.

[Vandevenne04] Vandevenne, Lode. “Lode’s computer graphics tutorial, flood fill.”
2004.

[Vapnik95] Vapnik, V. The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[Viola01] Viola, Paul, and Michael Jones. “Rapid object detection using a boosted
cascade of simple features.” Computer Vision and Pattern Recognition, 2001. CVPR
2001. Proceedings of the 2001 IEEE Computer Society Conference on. Vol. 1. IEEE,
2001.

[Viola04] Viola, P., and M. J. Jones. “Robust real-time face detection,” International
Journal of Computer Vision 57 (2004): 137–154.

[Welsh95] Welsh, G., and G. Bishop. “An introduction to the Kalman filter” (Techni‐
cal Report TR95-041), University of North Carolina, Chapel Hill, NC, 1995.

[Wharton71] Wharton, W., and D. Howorth. Principles of Television Reception. Lon‐
don: Pitman, 1971.

[Wu08] Wu, K., O. Ekow and K. Suzuki. Two Strategies to Speed up Connected
Component Labeling Algorithms, http://escholarship.org/uc/item/5pc9s496,
06-02-2008.

[Xu96] Xu, G., and Z. Zhang. Epipolar Geometry in Stereo, Motion and Object Recog‐
nition. Dordrecht: Kluwer, 1996.

[Zach07] Zach, Christopher, Thomas Pock, and Horst Bischof. “A duality based
approach for realtime TV-L 1 optical flow.” Joint Pattern Recognition Symposium.
Springer Berlin Heidelberg, 2007.

[Zhang96] Zhang, Z. “Parameter estimation techniques: A tutorial with application
to conic fitting,” Image and Vision Computing 15 (1996): 59–76.

[Zhang99] Zhang, R., P.-S. Tsi, J. E. Cryer, and M. Shah. “Shape form shading: A sur‐
vey,” IEEE Transactions on Pattern Analysis and Machine Intelligence 21 (1999): 690–
706.

[Zhang99] Zhang, Z. “Flexible camera calibration by viewing a plane from unknown
orientations,” Proceedings of the 7th International Conference on Computer Vision
(pp. 666–673), Corfu, September 1999.

[Zhang00] Zhang, Z. “A flexible new technique for camera calibration,” IEEE Trans‐
actions on Pattern Analysis and Machine Intelligence 22 (2000): 1330–1334.

964 | Bibliography

http://escholarship.org/uc/item/5pc9s496

[Zhang04] Zhang, H. “The optimality of naive Bayes,” Proceedings of the 17th Inter‐
national FLAIRS Conference, 2004.

[Zivkovic04] Zivkovic, Z. “Improved adaptive Gaussian mixture model for back‐
ground subtraction,” International Conference Pattern Recognition, UK, August 2004.

[Zivkovic06] Zivkovic, Z., and F. van der Heijden. “Efficient Adaptive Density Esti‐
mation per Image Pixel for the Task of Background Subtraction,” Pattern Recognition
Letters, vol. 27, no. 7, pages 773–780, 2006.

Bibliography | 965

Index

A
AdaBoost algorithm, 831-832

use by Viola-Jones detector, 879
adaptive threshold, 259-261
affine transforms, 306, 308-313, 694-700

bird's-eye view transform example, 695-700
computing affine map matrix, 309

example transfom using cv::warpAf‐
fine() and cv::getAffineTransform(),
309

using cv::getRotationMatrix2D(), 311
dense affine transforms with cv::warpAf‐

fine(), 308
functions for, 694
inverting, 312
output images from code example, 316
sparse transforms with cv::transform(), 312

AGAST feature detector, 557
algebraic expressions, from matrix arrays and

singletons, 85-87
allocation/deallocation of images, 25
alpha blending, 104

program to alpha blend the ROI, 104
AMD 32-bit and 64-bit architectures, OpenCV

support for, 18
anchor points (kernel), 251, 262
anti-aliased lines, 158
aperture problem, 504
arbitrary mappings, 322
arctangent, computing with cv::fastAtan2(), 62
Arraiy, 1
arrays

allocation with cv::allocate(), 62
cv::InputArray and cv::OutputArray, 59

data in, not attached rigidly to array object,
74

large array types, 41, 71-98
accessing elements by block, 84
accessing elements individually, 78-81
accessing sparse array elements, 90-92
creating an array, 73-78
cv::Mat class, 72
cv::SparseMat class, 89
functions for sparse arrays, 92-94
matrix expressions, algebra and cv::Mat,

85-87
more class member functions of cv::Mat,

88
N-ary array iterator, 81-84
saturation casting, 87
template structures for, 94-96

operations, 99-155
basic matrix and image operators, 99

artificial intelligence (AI), speculation about,
917-920

artificial neural networks, 849
and back propagation, using with

cv::ml::ANN_MLP, 854-858
parameters for training, 858

tiny-dnn library, 920
artificial neurons, 850
ArUco pattern, 653
automatic index selection (FLANN), 579
averaging background method, 452-467

accumulating means, variances, and cova‐
riances, 458-467
computing mean with cv::accumulate(),

459

Index | 967

computing mean with cv::accumulate‐
Weighted(), 460

computing mean with cv::Mat::operator
+=(), 459

finding covariance with cv::accumulate‐
Weighted(), 462

finding variance with cv::accumulateS‐
quare(), 461

model testing and cv::Mahalanobis(),
466

comparing with codebook method, 483
learning a background model to identify

foreground pixels, 453
AVI file, writing to, 36

B
back projection, 394-397

basic, using cv::calcBackProject(), 394
back propagation, 849

(see also multilayer perceptron)
cv::ml::ANN_MLP training parameters and,

858
Rprop versus, 854

background
defined, 445
learning, 472

with moving foreground objects, 474
using codebook background segmentation

technique, 477
background modeling and segmentation, 467
background subtraction, 445-492, 605

averaging background method, 452-467
codebook method, 467-477

finding foreground objects using back‐
ground differencing, 475

learning the background, 472-474
learning with moving foreground

objects, 474
structures, 470

comparison of averaging and codebook
methods, 483

connected components for foreground
cleanup, 477-483

OpenCV encapsulation of, 485-490
scene modeling, 447-452
weaknesses of, 446

Bag of Words (BOW) algorithm, 775
and semantic categorization, 901-907

categorization with cv::BOWImgDe‐
scriptorExtractor, 904

K-means and cv::BOWKMeansTrainer,
903

putting it together using an SVM, 905
training with cv::BOWTrainer, 902

Latent SVM versus, 897
baseline (text), 167
basic data types, 41

detailed look at, 44-52
complex number classes, 51
cv::Scalar class, 45
fixed matrix classes, 49
fixed vector classes, 51
point classes, 44
rectangle classes, 47
size classes, 46

overview, 42
Bayesian classifiers, 774, 810-816
Bayes’ rule, 812
best matches, 525
BGR color, 157
bgsegm module, 487
Bhattacharyya distance, 384
bias (machine learning), 779

possible solutions to, 781
bilateral filters, 267
binarized scale-adapted Harris measure, 553
binary decision trees (see decision trees)
Binary Robust Independent Elementary Fea‐

tures (see BRIEF algorithm)
bitwise operations

AND, 106
exclusive or (XOR), 108
NOT, 107
OR, 107

Black Hat operator, 287
blob detector, cv::SimpleBlobDetector, 533

keypoint finder, 535
blobs, 533
block access methods of cv::Mat, 85
block matching (BM) algorithm, 737

implementation in OpenCV, 738
blurring, 261

(see also smoothing)
boosted rejection cascade, 876
boosting, 775, 830-837

AdaBoost algorithm, 831
code for, 832-837

968 | Index

bootstrapping, 782
borders, 251

creating, 251
cv::borderType options, 252
manual extrapolation, 254
using cv::copyMakeBorder(), 251

options in dilation and erosion, 278
smoothing operations, borderType options,

261
Bouguet's algorithm, 730
boundary conditions, borders and, 253
bounding box for contours, 422
box filters, 263

approximation of DoG filter kernel, 546
Bradski, Gary, 6
Breiman's variable importance algorithm, 778
Bresenham algorithm, 158
BRIEF (Binary Robust Independent Elemen‐

tary Features) algorithm, 554-556
feature extractor implementation, 556
ORB algorithm and, 563
receptive fields, 566

BRISK algorithm, 556-561
brute force matching (cv::BFMatcher), 573
bugs in machine learning code, 779

C
C and C++, 1

CvPoint and CvPoint2D32f interface types
in C, 45

CvScalar interface type in C, 46
primitive data types in C++, 41
traits in C++, 56

C-vector SVM (or soft margin SVM), 863
calibration patterns, 652-655, 727, 943-947
calibration, camera (see camera models and

calibration)
callbacks

cv::MouseCallback, 212
for trackbars, 217

Calonder features, 554
camera intrinsics matrix, 671, 693
camera models and calibration, 637-690

calibration, 638, 648-677
calibration boards, 652
mathematics of, 667
rotation matrix and translation vector,

650-652
camera models, 638-648

lens distortion, 644-648
projective geometry, 641
Rodrigues transform, 643

example, putting calibration all together,
684-687

undistortion, 677-684
cameras

camera data, computer vision decisions
based on, 6

input from, working with, 35
operation of, HighGUI toolkit, 184
present state of, 920
reading frames from with cv::VideoCapture,

190
camera domain, 191
camera properties, 194

Camshift algorithm, 604
Canny edge detector, 33, 347-349, 354

cv::Canny(), 349
use in cascade classifier, 884

CART (classification and regression trees), 816
Cartesian coordinates

converting from polar coordinates to, 318
converting to log-polar coordinates, 318
converting to polar coordinates, 317

Cartesian distance metric, 358
cascade classifiers, 775, 876-879

Haar-like features, 877
learning new objects, 888-897
local binary pattern (LBP) features, 878
supervised learning and boosting theory,

879-887
boosting in the Haar cascade, 879
cv::CascadeClassifier, 883
face detection example, 886-887
rejection cascades, 880
searching an image with cv::detectMul‐

tiScale(), 884
Viola-Jones classifier summary, 883

training and pretrained detectors, 878
casting

in cv::FileNode, 201
saturation casting, 87, 101

causal models, 811
ccalib function group, 638
CCS (complex conjugate symmetrical), 337
cell phone projectors, 920
center of projection, 639

Index | 969

Center Surround Extremum (or CenSurE) fea‐
ture, 551

central moments, 432
centroids, 418
channel of interest (COI), 114, 121
ChArUco pattern, 653
checkerboard distance, 390
chessboard, using as calibration board,

652-665, 943
finding chessboard corners with cv::find‐

ChessboardCorners(), 655
chi-square method (histogram comparison),

383
Cholesky decomposition, 87

in cv::invert(), 126
circle-grids and cv::findCirclesGrid(), 658
classification, 772

algorithms dealing with, 804
boosting algorithms in OpenCV, 831
classification impurity, 817
cost of misclassification, 784
using Mahalanobis distance, 795

classification and regression trees (CART), 816
classifiers, 770

choosing, 777
naive/normal Bayes classifier, 810-816

closing operations (morphological), 282
on non-Boolean images, 283

cloud computing, 913
clustering algorithms, 773
CMake

in Linux installations of OpenCV, 12
in Mac OS X installations, 13

codebook method, 467-477
comparing with averaging background

method, 483
finding foreground objects using back‐

ground differencing, 475
learning background with moving fore‐

ground objects, 474
learning the background, 472-474
more thoughts on codebook models, 477
structures, 470
using background segmentation technique,

477
codecs, 37, 188

availability of, for cv::VideoWriter, 197
deciphering video codecs from

cv::CAP_PROP_FOURCC, 195

indication in cv::VideoWriter, 197
CodeElement object, 470
COI (channel of interest), 114, 121, 125
collection description file format, 888
color

color-related flags, cv::imread(), 186
histogram of flesh colors under different

conditions, 387
spatial distributions of, in mean-shift seg‐

mentation, 369
color spaces

converting, 117
transformation between, 153

community contributions, 910, 915, 939
(see also opencv_contrib repository)

comparison operators in cv::compare() com‐
parisons, 111

complex conjugate symmetrical (CCS), 337
complex number classes, 51
compression and decompression, 185, 188

codecs, 188
compressing files with cv::imencode(), 188
decompressing files with cv::imdecode(),

189
computeMean(), 459
computer vision, 1

challenges in, 5
defined, 3
uses of, 2

condensation algorithm, 614
confusion matrices, 784
connected components, 360

fast analysis of, 417
drawing labeled connected components,

418
using for foreground cleanup, 477-483

contextual knowledge in vision systems, 5
contour moments, 421, 429

computing central moments, 431
computing with cv::moments(), 430
Hu invariant moments, 433

computing with cv::HuMoments(), 435
normalized central moments, 433

contour trees, 408
contours, 407-443

finding, 407-420, 479
contour hierarchies, 408
drawing contours, 413

970 | Index

example, finding and drawing contours
on input image, 416

example, finding contours based on
trackbar position, 414

fast connected component analysis, 417
with cv::findContours(), 410

geometrical tests, 428
testing if point is inside a polygon, 428
testing whether a contour is convex, 429

geometry and summary characteristics, 421
length, finding with cv::arcLength(), 422
minimal enclosing circle with cv::minE‐

nclosingCircle(), 424
minimum area rectangle with cv::minA‐

reaRect(), 422
upright bounding box, with cv::boun‐

dingRect(), 422
matching, 429-441

and Hu moments, 435
moments, 429-435
using shape context to compare shapes,

436
polygon approximations, 420

contrast, increasing in histogram equalization,
328-331

contribution repository (OpenCV), 17
control motion, 622
convex hull, finding for a contour, 426
convolutions, 250

threshold operations as, 255
using discrete Fourier transforms, 340
with an arbitrary linear filter, 290, 294

coordinates
converting from object to camera coordi‐

nate systems, 650
homogeneous, 141, 641
of mouse events, 213

corners, 493
(see also keypoints)
finding, 494-498

correction phase (motion estimation), 614
correlation method in cv::compareHist(), 383
covariance

finding with cv::accumulateWeighted(), 462
inverse covariance, 466

covariance matrix, 108, 129, 463
Mahalanobis distance, 466
standard deviation and, 131

createsamples application, 889

detailed arguments to createsamples, 890
cross-validation, 782
cumulative distribution function, 329
cv namespace, 23
cv::abs(), 102
cv::absDiff(), 103, 452, 455
cv::accumulate(), 257, 459
cv::accumulateMean(), 459
cv::accumulateProduct(), 464
cv::accumulateSquare(), 462
cv::accumulateWeighted(), 460
cv::adaptiveThreshold(), 259
cv::add(), 103
cv::addWeighted(), 104, 257
cv::Algorithm class, 799
cv::alignPtr(), 61
cv::alignSize(), 61
cv::allocate(), 62
cv::approxPolyDP(), 420

Douglas-Peucker algorithm, 421
cv::arcLength(), 422
cv::at<>(), 78
cv::backgroundDiff(), 475
cv::BackgroundSubtractor class, 485
cv::BackgroundSubtractorMOG2, 489
cv::BFMatcher class, 573
cv::bgsegm::BackgroundSubtractorMOG, 487
cv::bitwise_and(), 106
cv::bitwise_not(), 107
cv::bitwise_or(), 107
cv::bitwise_xor(), 108
cv::blur(), 251, 262
cv::borderInterpolate(), 254
cv::boundingRect(), 422
cv::BOWImgDescriptorExtractor, 904
cv::BOWKMeansTrainer, 903
cv::BOWTrainer class, 902
cv::boxFilter(), 263
cv::BRISK object, 560

additional functions provided by, 561
cv::buildPyramid(), 303
cv::calcBackProject(), 394
cv::calcCovarMatrix(), 108, 464, 795
cv::calcHist(), 377
cv::calcOpticalFlowFarneback(), 590
cv::calcOpticalFlowPyrLK(), 507

in pyramid LK code example, 509
cv::calibrateCamera(), 644, 665, 671, 692, 722
cv::CamShift(), 604

Index | 971

cv::Canny(), 33, 349, 354
using cv::findContours() on image gener‐

ated by, 410
cv::CAP_PROP_FOURCC, 195
cv::cartToPolar(), 110, 317, 317
cv::CascadeClassifier object, 883
cv::CascadeClassifier:: detectMultiScale(), 884
cv::checkRange(), 111
cv::circle(), 159
cv::clearStaleEntries(), 472, 474, 476
cv::clipLine(), 159
cv::compare(), 111
cv::compareHist(), 382, 397

Bhattacharyya distance method,
cv::COMP_BHATTACHARYYA, 384

chi-square method,
cv::COMP_CHISQR_ALT, 383

correlation method, cv::COMP_CORREL,
383

intersection method, cv::COMP_INTER‐
SECT, 384

cv::completeSymm(), 112
cv::computeCorrespondEpilines(), 720
cv::connectedComponents(), 418
cv::connectedComponentsWithStats(), 418, 481
cv::convertMaps(), 679
cv::convertPointsFromHomogeneous(), 642
cv::convertPointsToHomogeneous(), 642
cv::convertScaleAbs(), 113
cv::convexHull(), 427
cv::copyMakeBorder(), 251
cv::cornerEigenValsAndVecs(), 532
cv::cornerHarris(), 532
cv::cornerMinEigenVal(), 532
cv::cornerSubPix(), 497, 656
cv::countNonZero(), 113
cv::createOptFlow_DualTVL1(), 595
cv::createTrackbar(), 27, 30, 218
cv::cubeRoot(), 62
cv::cvarrToMat(), 113
cv::cvtColor(), 33, 117
cv::DataType<>, 79
cv::dct(), 115, 124, 342
cv::deallocate(), 62
cv::DECOMP_CHOLESKY, 87
cv::DECOMP_LU, 87
cv::DECOMP_SVD, 87
cv::DenseFeatureDetector class, 569
cv::DescriptorMatcher class, 520-526, 573

options for descriptorMatcherType, in cre‐
ate() method, 525

cv::destroyAllWindows(), 211
cv::destroyWindow(), 25
cv::determinant(), 119
cv::dft(), 65, 115, 124, 336, 342
cv::dilate(), 278, 280
cv::distanceTransform()

labeled distance transform, 360
unlabeled distance transform, 359

cv::divide(), 120
cv::DMatch object, 519, 581
cv::DMatch::operator<(), 520
cv::dpm::DPMDetector, 899

getting models for, 900
other methods, 900

cv::drawChessboardCorners(), 657
cv::drawContours(), 413
cv::drawKeypoints(), 580
cv::drawMatches(), 581
cv::eigen(), 121
cv::ellipse(), 160
cv::ellipse2Poly(), 161
cv::EMD(), 389
cv::equalizeHist(), 331
cv::erode(), 278, 280, 452
cv::error(), 63
cv::Exception class, 56
cv::exp(), 121
cv::extractImageCOI(), 114, 121, 125
cv::fastAtan2(), 62
cv::FastFeatureDetector class, 538
cv::fastFree(), 63
cv::FastMallocc(), 64
cv::fastNlMeansDenoising(), 326
cv::fastNlMeansDenoisingColored(), 327
cv::fastNlMeansDenoisingColorMulti(), 328
cv::fastNlMeansDenoisingMulti(), 328
cv::Feature2D class, 516, 563
cv::Feature2D::compute(), 517
cv::Feature2D::detect(), 517
cv::Feature2D::detectAndCompute(), 518
cv::FileNode object, 201-203, 525

member functions, 202
cv::FileNode::operator>>(), 201
cv::FileNode::type(), 202

possible return values, 202
cv::FileNodeIterator, 201
cv::FileNodeIterator::operator*(), 201

972 | Index

cv::FileStorage object, 198, 525
data stored as mappings or sequences, 198
reading a .yml file with, 203
reading from, 200

cv::FileStorage::open(), 198
cv::FileStorage::operator<<(), 198
cv::FileStorage::operator[](), 201
cv::FileStorage::release(), 199
cv::fillConvexPoly(), 162
cv::fillPoly(), 162
cv::filter2D(), 291
cv::findChessboardCorners(), 655
cv::findCirclesGrid(), 658
cv::findContours(), 407, 479

connected component analysis with, 417
finding contours with, 410
using on image generated by cv::Canny(),

410
cv::findFundamentalMat(), 714
cv::findHomography(), 663
cv::fitEllipse(), 424
cv::fitLine(), 425, 762
cv::flann::AutotunedIndexParams, 579
cv::flann::CompositeIndexParams, 578
cv::flann::KDTreeIndexParams, 576
cv::flann::KMeansIndexParams, 577
cv::flann::SearchParams, 580
cv::FlannBasedMatcher object, 575
cv::flip(), 122
cv::floodFill(), 361

flags argument, 363
mask argument, 362

cv::format(), 64
cv::GaussianBlur(), 32
cv::gemm(), 122
cv::getAffineTransform(), 309
cv::getConvertElem(), 123
cv::getConvertScaleElem(), 123
cv::getCPUTickCount(), 64
cv::getDerivKernel(), 292
cv::getGaussianKernel(), 293
cv::getNumThreads(), 65
cv::getOptimalDFTSize(), 65, 115
cv::getPerspectiveTransform(), 314
cv::getRotationMatrix2D(), 311
cv::getStructuringElement(), 290

element shapes, 290
cv::getTextSize(), 167
cv::getThreadNum(), 65

cv::getTickCount(), 65
cv::getTickFrequency(), 66
cv::getTrackbarPos(), 218
cv::GFTTDetector class, 531
cv::goodFeaturesToTrack(), 495, 506, 532

in pyramid LK code example, 509
cv::grabCut(), 367
cv::HausdorffDistanceExtractor, 441
cv::HistogramCostExtractor, 437

cost extractors derived from, 438
cv::HoughCircles(), 355
cv::HoughLines()

standard and multiscale Hough transforms,
352

cv::HoughLinesP(), 353
cv::HuMoments(), 435
cv::idct(), 124, 343
cv::idft(), 124

using to increase speed of computation of
convolutions, 340

cv::imdecode(), 189
cv::imencode(), 188
cv::imread(), 24, 185

flags acepted by, 186
cv::imshow(), 26, 32

drawing an image, 209
cv::imwrite(), 187

parameters accepted by, 187
cv::initUndistortRectifyMap(), 677, 681, 727,

734
cv::inpaint(), 324
cv::InputArray and cv::OutputArray classes, 59
cv::InputArrayOfArrays, 378
cv::inRange(), 125, 452, 456
cv::insertImageCOI(), 125
cv::integral(), 343

for squared summation integral, 346
for standard summation integral, 346
for tilted summation integral, 346

cv::invert(), 126, 795
cv::invertAffineTransform(), 312
cv::isContourConvex(), 429
cv::KalmanFilter class, 626
cv::KeyPoint object, 514
cv::KeyPointsFilter class, 572
cv::kmeans(), 788
cv::Laplacian(), 273
cv::line(), 163
cv::LinearIndexParams object, 576

Index | 973

cv::LineIterator object, 164, 448
cv::LineIterator::operator*(), 164, 449
cv::LineIterator::operator++(), 164, 449
cv::log(), 127
cv::logPolar(), 320
cv::LUT(), 127
cv::magnitude(), 127
cv::Mahalanobis(), 128, 466, 794
cv::Mat class, 24, 32, 41, 71

accessing array elements by block, 84
accessing individual array elements, 78
constructors for pre-version 2.1 data types,

76
constructors that copy data from other

cv::Mats, 75
constructors that do not copy data, 74
converting old-style image or matrix type

to, 113
creating an array, 73
matrix expressions, algebra and cv::Mat,

85-87
more class member functions, 88
N-ary iterator, NAryMatIterator, 81
n-dimensional dense arrays, 72
static functions that create cv::Mat, 78
template constructors, 77

cv::Mat::convertTo(), 454, 456
cv::Mat::eye(), 50
cv::Mat::operator*=(), 455
cv::Mat::operator+=(), 452, 458, 459
cv::Mat::resize(), 301
cv::Mat::t(), 154
cv::matchShapes(), 435

matching methods used by, 435
cv::matchTemplate(), 397-404

matching methods
cv::TM_CCOEFF, 400
cv::TM_CCOEFF_NORMED, 401
cv::TM_CCORR, 400
cv::TM_CCORR_NORMED, 400
cv::TM_SQDIFF, 399
cv::TM_SQDIFF_NORMED, 400

cv::MatConstIterator<>, 80
cv::MatIterator<>, 80
cv::Matx<> object, 43, 49

operations supported by, 49
cv::Mat_<>, 94
cv::max(), 129, 452, 453
cv::mean(), 130

cv::meanShift(), 604, 786
cv::meanStdDev(), 131
cv::medianBlur(), 265
cv::merge(), 125, 131
cv::min(), 132
cv::minAreaRect(), 422
cv::minEnclosingCircle(), 424, 424
cv::minMaxIdx(), 132, 382
cv::minMaxLoc(), 133, 380

for sparse arrays, 381
cv::mixChannels(), 134
cv::ml::ANN_MLP class, 854-858
cv::ml::Boost class, 832
cv::ml::DTrees, 819
cv::ml::DTrees::predict(), 822
cv::ml::DTrees::train(), 822
cv::ml::DTreesImpl, 820
cv::ml::EM class, 842-846
cv::ml::KNearest class, 846-849
cv::ml::NormalBayesClassifier, 810
cv::ml::NormalBayesClassifier::predict(), 815
cv::ml::NormalBayesClassifier::train(), 815
cv::ml::NormalBayesClassifierImpl, 814
cv::ml::RTrees, 838
cv::ml::RTreesImpl, 838
cv::ml::StatModel, 799

machine learning algorithms using, 810-870
predict() method, 809
train() methods, 802

cv::ml::StatModel::calcError(), 810
cv::ml::SVM class, 865-870
cv::ml::SVMImpl, 865
cv::ml::TrainData structure, 802-809

accessing, 808
constructing, 802
constructing from stored data, 805
splitting training data, 807

cv::ml::TrainDataImpl, 806
cv::ml::TreeParams, 820
cv::Moments object, 430
cv::moments(), 430
cv::morphologyEx(), 281

operation options, 281
cv::motempl::calcGlobalOrientation(), 608
cv::motempl::calcMotionGradient(), 608, 611
cv::motempl::segmentMotion(), 610
cv::motempl::updateMotionHistory(), 606
cv::MouseCallback object, 212

mouse event types, 212

974 | Index

cv::moveWindow(), 211
cv::mulSpectrums(), 136, 339
cv::multiply(), 136
cv::mulTransposed(), 137
cv::namedWindow(), 24, 208
cv::NAryMatIterator, 81-84
cv::noArray(), 60, 418, 644
cv::norm(), 137
cv::normalize(), 139, 380
cv::operator-(), 457
cv::optflow::calcOpticalFlowSF(), 599
cv::ORB object, 563
cv::OutputArrayOfArrays, 303
cv::PCA::backProject(), 173
cv::PCA::operator()(), 171
cv::PCA::PCA(), 171
cv::PCA::project(), 172
cv::perspectiveTransform(), 140, 315
cv::phase(), 141
cv::pointPolygonTest(), 428
cv::polarToCart(), 142, 317, 318
cv::polyLines(), 163
cv::pow(), 142
cv::projectPoints(), 692
cv::Ptr template, 53
cv::putText(), 165
cv::pyrDown(), 33, 302, 369

combining with cv::Canny(), 34
cv::pyrMeanShiftFiltering(), 369
cv::pyrUp(), 304, 369
cv::randn(), 144
cv::randShuffle(), 144
cv::randu(), 143
cv::Range object, 53
cv::Rect object, 43

operations supported directly, 47
overloaded operators taking ojects of type

cv::Rect, 48
cv::rectangle(), 163
cv::reduce(), 144
cv::remap(), 322, 677, 682
cv::repeat(), 146
cv::reshape(), 134
cv::resize(), 300, 304

interpolation options, 300
cv::RNG object, 176
cv::RNG(), 177
cv::RNG::fill(), 179
cv::RNG::gaussian(), 179

cv::RNG::operator T(), 177
cv::RNG::operator()(), 178
cv::RNG::uniform(), 178
cv::Rodrigues(), 644, 676
cv::RotatedRect object, 44, 48

ellipse specified by, 160
operations supported directly, 48
representing an ellipsoid, 424

cv::saturate_cast<>(), 87
cv::Scalar object, 43

detailed look at, 45
operations supported directly, 45

use in specifying colors, 157
cv::scaleAdd(), 146
cv::sepFilter2D(), 292
cv::setIdentity(), 146
cv::setMouseCallback(), 213
cv::setNumThreads(), 66
cv::setTrackbarPos(), 31, 218
cv::setUseOptimized(), 67
cv::ShapeContextDistanceExtractor, 438

usage example, 439
cv::ShapeDistanceExtractor, 436
cv::ShapeTransformer, 437
cv::SimpleBlobDetector class, 534

keypoint finder, 535
cv::Size object, 43
cv::Sobel(), 270, 354
cv::solve(), 147
cv::solveCubic(), 148
cv::solvePnP(), 644, 675, 701
cv::solvePnPRansac(), 701
cv::solvePoly(), 148
cv::sort(), 149
cv::sortIdx(), 150
cv::SparseMat class, 42, 89, 377

accessing array elements, 90
additional class member functions, 92-94

cv::SparseMat::find(), 90
cv::SparseMat::Node, 92
cv::SparseMat::ptr(), 90
cv::SparseMat::ref(), 90
cv::SparseMat::value(), 90
cv::SparseMat_<>, 94
cv::split(), 134, 150, 455, 456, 464
cv::sqrt(), 150
cv::startWindowThread(), 211
cv::StereoBM class, 738, 743
cv::stereoCalibrate(), 722-726

Index | 975

cv::StereoMatcher class, 743
cv::stereoRectify(), 682, 732
cv::stereoRectifyUncalibrated(), 729
cv::StereoSGBM class, 738

computing stereo depths with, 750
cv::subtract(), 152
cv::sum(), 82, 152
cv::SVD class, 173-176
cv::SVD(), 174
cv::SVD::backSubst(), 175
cv::SVD::compute(), 174
cv::SVD::operator()(), 174
cv::SVD::solveZ(), 175
cv::TermCriteria object, 52, 498

using with pryamid LK algorithm code, 508
cv::theRNG(), 176
cv::threshold(), 255, 380, 452

comparison to results of cv::adaptiveThres‐
hold(), 259

thresholdType options, 255
using Otsu's algorithm, 258
using to sum three channels of an image

(example), 256
cv::TM_CCOEFF, 400
cv::TM_CCOEFF_NORMED, 401
cv::TM_CCORR, 400
cv::TM_CCORR_NORMED, 400
cv::TM_SQDIFF, 399
cv::TM_SQDIFF_NORMED, 400
cv::trace(), 153
cv::TrackbarCallback object, 217
cv::transform(), 153, 312
cv::transpose(), 153
cv::undistort(), 677, 683
cv::undistortPoints(), 683
cv::useOptimized(), 67
cv::Vec<> object, 42, 51

operations supported by, 51
cv::VideoCapture object, 26

configuring properties of, 30
reading video with, 190
working with camera files, 35

cv::VideoCapture::get(), 194
cv::VideoCapture::grab(), 193
cv::VideoCapture::isOpened(), 190
cv::VideoCapture::operator>>(), 192
cv::VideoCapture::read(), 192
cv::VideoCapture::retrieve(), 193
cv::VideoCapture::set(), 194

cv::VideoCapture::VideoCapture(), 190
cv::VideoReader object, 37
cv::VideoWriter object, 36

writing video with, 196
cv::VideoWriter::isOpened(), 197
cv::VideoWriter::open(), 196
cv::VideoWriter::operator<<(), 197
cv::VideoWriter::VideoWriter(), 197
cv::VideoWriter::write(), 197
cv::waitKey(), 25, 27

updating a window and, 209
cv::warpAffine(), 308
cv::warpPerspective(), 313
cv::watershed(), 366
cv::xfeatures2d::BriefDescriptorExtractor, 556
cv::xfeatures2d::FREAK object, 567
cv::xfeatures2d::SIFT object, 543
cv::xfeatures2d::StarDetector, 553
cv::xfeatures2d::SURF object, 549
CvArr* structures, converting to cv::Mat, 113
cvCeil(), 62
cvFloor(), 64
cvIsInf(), 66
cvIsNaN(), 66
CvMat structure, 76
CvMatND structure, 114
CvPoint and CvPoint2D32f interface types in

C, casting point classes to and from, 45
cvRound(), 66
CvSparseMat, 93
CV_Assert() macro, 56, 63
CV_DbgAssert() macro, 56, 63
CV_Error() macro, 56, 63
CV_Error_() macro, 56, 63
CV_FOURCC() macro, 37, 197

D
DARPA Grand Challenge, 920
data files, 198-204

cv::FileNode object, 201
reading from cv::FileStorage, 200
writing to cv::FileStorage, 198

data types, 41-69
basic, 41

detailed look at, 44-52
overview of, 42

categories in OpenCV, 41
conversions in OpenCV, 123
helper objects, 41, 52-60

976 | Index

cv::DataType<> template, 56
large array types, 41
template structures, 67

deallocation of images, 25
decision stumps, 831, 879
decision trees, 774, 816-830

assessing a variable's importance, 778
classification impurity, 817
creating and training, code example,

823-827
results, 827

impurity measures, 816
OpenCV implementation, 819

deep learning, 912
deep neural networks, packages for, 854
degenerate configurations, 720
Delaunay triangulation, 923-936

creating a Delaunay subdivision, 926-928
navigating Delaunay subdivisions, 928-934
usage examples, 934-936
vertices and edges, 932

denoising images, 325
dense affine transforms, 308
dense arrays, 71
dense feature grids, 569
dense optical flow, 499, 588-600

computing with cv::calcOpticalFlowFarne‐
back(), 590

computing with cv::createOpt‐
Flow_DualTVL1(), 595

techniques for, 587
dense perspective transforms, 313
derivatives, 269

Laplacian, 273
Scharr filter, 272

descriptors (and keypoints), 511-583
OpenCV handling of, 514-526

computing descriptors, cv::Feature2D
class, 516

cv::DescriptorMatcher class, 520
optical flow, tracking, and recognition, 513

descriptors, defined, 511
DFT (see discrete Fourier transforms)
diagonal features, 877
dictionaries (in keypoint matching), 519, 520
difference of Gaussian (DoG) filter kernel, 540

box filter approximation of, 546
in Star/CenSurE feature detector, 551

dilation, 276

opening and closing operations, 282
directional derivatives, 272
discrete cosine transform, 115, 342

inverse, 343
discrete Fourier transforms, 335-343

convolution using, 340
cv::dft(), 115, 336
discrete cosine transform, 115, 342
inverse discrete cosine transform, 343
inverse discrete Fourier transform, 339
spectrum multiplication with cv::mulSpec‐

trums(), 339
discriminative algorithms, 773
displaying a picture (example), 23
distance metrics

Bhattacharyya distance, 384
distance member in cv::DMatch, 520
earth mover's distance (EMD), 389-394
for cv::fitLine(), distType parameter, 425
Hausdorff distance, 440
Mahalanobis distance, 466
shape comparisons and, 436

distance transformation, 358-360
distance metrics, 358
labeled, 360
methods for computing, 358
unlabeled, 359

distortions, 644-648
distortion coefficients, 671, 693, 724

in stereo rectification, 726
undistortion, 677-684, 703

sparse, with cv::undistortPoints(), 683
using cv::undistort, 683

undistortion maps, 678
applying with cv::remap(), 682
computing with cv::initUndistortRecti‐

fyMap(), 680
converting between representations, 679

DLLs (dynamic link libraries), OpenCV, 11
documentation for OpenCV, 13
Douglas-Peucker (DP) algorithm, 421, 480
downloads of OpenCV, 10
downsampling an image, 32
drawing, 157-168

functions for, 158
line art and filled polygons, 158
text and fonts, 165
using a mouse to draw boxes on a screen,

program for, 214

Index | 977

Dual TV-L1 algorithm, 592-596
dynamic link libraries (DLLs), OpenCV, 11
dynamical motion, 622

E
earth mover's distance (EMD) algorithm, 384,

389-394
creating signatures from histograms for

EMD, 390
cv::EMD() function, 389

edge detection, 5
Canny edge detector, 347-349
using cv::findContours() on image gener‐

ated by edge detectors, 410
using Laplacian operator, 274

edge-preserving smoothing, 267
education, online, 913
eigenvectors and eigenvalues, 121
elements (array), vector-valued, 72
ellipses, fitting to a set of points, 424
EM (see expectation maximization)
embedded apps, 912
EMD (see earth mover's distance algorithm)
entropy (impurity metric), 816
epipolar lines, computing, 720
epsilon (EPS), 52
erosion, 277

opening and closing versus, 282
Eruhimov, Victor, 7
essential matrix (stereo imaging), 710, 714
Euclidean distance, 390
exceptions, cv::Exception class and exception

handling, 56
expectation maximization, 774, 842-846

K-means algorithm and, 786
with cv::ml::EM(), 842-846

extended Kalman filter (EKF), 633
extrinsics (camera)

computing only with cv::solvePnP(), 675
computing only with cv::solvePnpRansac(),

676

F
face detection

cascade classifiers and, 876
code example with cascade classifier,

886-887
Haar cascade classifier, 882

face detector/cascade classifier, 775

false-positive pixels, cleaning up, 446
Farnebäck Polynomial Expansion algorithm,

589-592
FAST (Features from Accelerated Segments

Test) algorithm, 537
BRISK algorithm, 557
cv::FastFeatureDetector class, 538
cv::Feature2D class implementation, 517
ORB algorithm and, 562

fast Fourier transforms, 336
Fast Library for Approximate Nearest Neighbor

(see FLANN)
Fast Non-Local Means Denoising (see

FNLMD)
Fast Retinal Keypoint, 565

(see also FREAK algorithm)
feature descriptors, 512

(see also descriptors)
cv::Feature2D class, 516

features (in machine learning), 770
deciding which features to extract, 776
determining importance of, 778

ffmpeg library, 12
FFT (see fast Fourier transforms)
file extensions (image files), supported by

OpenCV, 187
filesystem functionality (HighGUI), 184
filters, 249-254

borders and, 251
box filter, 263
convolution with an arbitrary linear filter,

290-294
applying general filter with cv::filter2D(),

291
applying general separable filter with

cv::sepFilter2D(), 292
Gaussian filter, 266
keypoint filter, 571
Scharr filter, 272

fisheye lenses, calibration, 649
fixed matrix classes, 43

detailed look at, 49
fixed vector classes, 42

detailed look at, 51
FLANN (Fast Library for Approximate Nearest

Neighbor), 575, 774, 775
automatic index selection, 579
combining kd-trees and k-means indexing,

577

978 | Index

cv::FlannBasedMatcher, 575
hierarchical k-means indexing, 576
kd-tree indexing, 576
linear indexing with cv::flann::LinearIndex‐

Params, 576
locally-sensitive hash (LSH) indexing, 578
search parameters and cv::flann::SearchPar‐

ams, 579
flexible image formats, saving, 188
flood fill, 361-365
flow irregularity map, 598
FNLMD (Fast Non-Local Means Denoising),

325
on color images, 327
on sequential images, 328

focal length, 638
and offsets, OpenCV algorithm for, 667

fonts, 165
foreground

finding foreground objects using back‐
ground differencing, 475

moving foreground objects, background
learning with, 474

forward projection problems, 301
frame-to-frame differencing, 605
frames

dereferencing, 451
frame differencing, 481
frame-to-frame average absolute differences

(FFAAD), 455
FREAK algorithm, 565-569

cv::Feature2D class implementation, 517
implementation in OpenCV, 567

function objects (see functors)
functions

including with opencv.hpp include file, 22
utility functions in OpenCV, 60-67

functors, 164, 169-181
principal component analysis (PCA),

cv::PCA object, 170-173
random number generator (cv::RNG),

176-179
singular value decomposition (cv::SVD),

173-176
fundamental matrix (stereo imaging), 711, 727

computation in OpenCV, 714-720
math, 714

future of OpenCV, 909-921

artificial intelligence (AI), speculation
about, 917-920

community contributions, 915
future directions, 912
GSoC (Google Summer of Code), current

work, 913
OpenCV 3.x, 910
OpenCV.org, 916-917
past and present of OpenCV, 909
predictions in previous edition, 911

G
garbage collection, cv::Ptr template and, 53
Gaussian blurring

using in downsampling an image, 32
using to smooth an image, 31

Gaussian distributions, 616
cumulative distribution function for, 329

Gaussian elimination, 119
in cv::invert(), 126

Gaussian filters, 32, 266
comparison of bilateral filtering to, 267
difference of Gaussian (DoG) filter kernel,

540, 540
box filter approximation of, 546
in Star/CenSurE feature detector, 551

getting kernels, 293
use with anti-aliased lines, 158

Gaussian mixture models
in KB method, 486
in Zivkovic method, 488
mixture of Gaussians (MOG), 485

Gaussian model, 458
Gaussian pyramids, 302

and inverse Laplacian pyramid, 305
generalized matrix multiplication (GEMM),

122
generative algorithms, 773, 812
geometric transforms, 306
gesture recognition, 373
GFTT (Good Features to Track) algorithm,

527, 533
Gini index (impurity metric), 816
Git, 10

command-line client for Linux, OS X, and
Windows, 13

GitHub, active development branch of
OpenCV, 10, 13

glasses, augmented reality, 912

Index | 979

Google Summer of Code (GSoC), current work,
913

Grabcuts algorithm, 366-368
gradients, 272

morphological, 285
Graphcuts algorithm, 366
graphics toolkit (see HighGUI library)
grayscale images

converting BGR color image to, 33
converting to and from color images, 119
recommended values for cv::fastNlMeans‐

Denoising(), 326
GTK+ (2.x or higher), 11
GUI functions, 207
g_ preceding global variables, 29
g_cap, 29
g_cap.get(), 30
g_cap.set(), 30
g_dontset, 29
g_run, 29
g_slider_position, 29

H
Haar wavelets

computation of, 343
using to approximate local gradients, 547

Haar-like features, 877
boosting in the Haar cascade, 879
–mode parameter, 896

hardware acceleration layer (HAL), 8
Harris corners, 495, 505, 511
Harris measure, 529

scale-adapted, in Star algorithm, 553
Harris-Shi-Tomasi feature detector, 527

cv::Feature2D class and, 531
Hartley’s algorithm, 727
Hausdorff distance, 440
header files, 21
helper objects, 41, 52-60

cv::DataType<> template, 56
cv::Exception class and exception handling,

56
cv::InputArray and cv::OutputArray, 59
cv::Ptr template, garbage collection and, 53
cv::Range class, 53
cv::TermCriteria, 52

Hessian, 546
in cv::xfeatures2d::SURF object, 550

hierarchical k-means indexing (FLANN), 576

highgui (UI) module (HighGUI), 184
HighGUI library, 23, 183-184, 207

filesystem part, 184
hardware part, 184
native graphical user interface, 208

creating a window and displaying an
image (example), 210

creating a window with cv::name‐
dWindow(), 208

more window functions, 211
mouse events, 212
sliders, trackbars, and switches, 216
updating a window, cv::waitKey() and,

209
split into three modules in OpenCV 3.0, 184

histogram equalization, 328-331
histogram intersection, 384
histogram of oriented gradients (HOG), 318,

898
histograms, 373-397

basic manipulations with, 380-388
comparing two histograms, 382
finding most populated bin, 380
histogram usage examples, 385
normalization, 380
threshold, 380

example of typical histogram, 374
histogram cost extractor, 438
more sophisticated methods, 388-397

back projection, 394-397
representation in OpenCV, 376-379

cv::calcHist(), 377
representing continuous distributions, 375

HOG-SVM, 898
homogeneous coordinates, 141, 641
homographies, 306

(see also perspective transforms)
perspective transforms, 694
planar homography, 660

homography transforms, 638
Horn-Schunck algorithm, 588
horopter, 740
Hough gradient method, 354
Hough transforms, 349-358

Hough circle transform, 354
example program using cv::HoughCir‐

cles(), 356
Hough line transform, 349

kinds of, 351

980 | Index

progressive probabilistic Hough trans‐
form, 353

standard and multiscale, 352
HSV color space, 468
Hu invariant moments, 433

computing with cv::HuMoments(), 435
matching and, 435

I
im and re member variables, OpenCV complex

number classes, 51
image analysis, 335-372

Canny edge detector, 347-349
discrete Fourier transform, 336-343
distance transformation, 358-360
Hough transforms, 349-358
integral images, 343-347
segmentation, 360-370

image filtering (see filters)
image morphology, 275

(see also morphological transformations)
image plane, 638
image processing functions, 22
image pyramids, 33, 302, 369
image transforms, general, 299-333

histogram equalization, 328-331
image repair, 323-328
perspective transforms, 313
remappings, 316-323

arbitrary mappings, 322
LogPolar, 318

resizing, 299
affine transforms, 308
image pyramids, 302
nonuniform mappings, 306
uniform resize, 300

images
alpha blending, 104
drawing with cv::imshow(), 209
perspective transforms, 141
working with image files, 185-189

codecs, 188
compression and decompression, 188
loading and saving images, 185

imgcodecs module (HighGUI), 184
impurity measures, 816

classification impurity, 817
include files, 21
inertia ratio, 534

information fusion, 617
inpainting, 323
installation of OpenCV, 10
integral images, 343-347

standard summation integral, 346
sum, square-sum, and tilted-sum, 343
tilted summation integral, 346

Integrated Performance Primitives (IPP) libra‐
ries, 1
speeding up OpenCV with, 9

Intel
and origin of OpenCV, 6
OpenCV.org support, 916

Intel and AMD 32-bit and 64-bit architectures,
OpenCV support for, 18

Intel architectures, IPP libraries, 1
intersection (histogram), 384
intra-octaves, 557
intrinsic parameters (camera), 638, 641
inverse covariance, 466
inverse discrete cosine transform, 124, 342, 343
inverse discrete Fourier transform, 124, 339
inversions (matrix), 86
IplImage structure, 76

converting to and from cv::Mat, 114
Itseez, 1

J
joint bilateral upsampling, 598

K
k-fold cross-validation, 771, 868
K-means algorithm, 774, 774, 786-792

and cv::BOWKMeansTrainer, 903
limitations and solutions to, 787
using, code example, 788

K-nearest neighbors algorithm, 775, 846-849
knnMatch(), 524
using with cv::ml::KNearest(), 847-849

KaewTraKuPong and Bowden (KB) method,
486

Kalman filter, 614-634
assumptions required by, 616
equations, 623
example code, 628
extended Kalman filter (EKF), 633
information fusion, 617
input and output, 615

Index | 981

representation in OpenCV, cv::KalmanFil‐
ter, 626

systems with dynamics, 621
kd-tree indexing (FLANN), 576

combining with k-means, 577
kernel space, 859
kernels, 250, 861

(see also filters)
anchor points, 251
available kernel functions for OpenCV SVM

implementation, 862
functions used to obtain, 292
graphical representation of, 250
in dilation operations, 276
in erosion operations, 277
in Gaussian filters, 266
in linear and non-linear filters, 290
in median filters, cv::medianBlur(), 265
in Scharr filter, 272
in simple blur and the box filter, 262
kernel density estimation, 601
Laplacian operator and, 273
making your own in morphological opera‐

tions, 289
Sobel operators and, 271

keypoints, 493-585
Bag of Words (BOW) algorithm and, 901
corners, finding, 494, 498

subpixel corners, 496
using cv::goodFeaturesToTrack(), 495

generalized keypoints and descriptors,
511-583
core keypoint detection methods,

526-571
displaying results, 580-583
Harris corners, 511
keypoint filtering, 571
matching methods, 573-580
OpenCV handling of, 514-526
optical flow, tracking, and recognition,

513
optical flow

introduction to, 498-499
Lucas_Kanade (LK) algorithm, 500-511

KLT (Karhunen-Loeve Transform), 171
Kuriakin, Valery, 7

L
labeled distance transform, 360

labeling machine learning data, 776
Laplacian pyramids, 305
large array types, 41, 71-98

accessing array elements by block, 84
accessing array elements individually, 78-81
creating an array, 73-78
cv::Mat class, 72
matrix expressions, algebra and cv::Mat,

85-87
more class member functions of cv::Mat, 88
N-ary iterator, NAryMatIterator, 81-84
saturation casting, 87
sparse arrays

cv::SparseMat class, 89
functions unique to, 92-94

template structures for, 94-96
Latent SVM algorithm, 775

Bag of Words (BOW) versus, 897
cv::dpm::DPMDetector

getting models for, 900
other methods of, 900

object detection with cv::dpm::DPMDetec‐
tor, 899

least median of squares algorithm (see LMeDS
algorithm)

legacy code, including in OpenCV programs,
22

lens distortions (see distortions)
licensing

libav/ffmpeg packages on Linux, 12
OpenCV, 2

light field cameras, 913
line fitting, 762-765

two dimensional, 763
line iterator, 448
linear kernels, 250
lines, drawing, 158
lineType parameter, 158
Linux

codecs, 188
downloading and installing OpenCV, 11

Lloyd’s algorithm, 786
(see also K-means algorithm)

LMeDS (least median of squares) algorithm,
664, 715

local binary patterns (LBP), 877
features, 878

locality-sensitive hashing (LSH), 578
log-polar transforms, 318

982 | Index

code example, 321
cv::logPolar(), 320
of rotated and scaled squares, 319
program to transform video, 36

lookup table transform (LUT), 127
lossy compression schemes, 185
LSH (locality-sensitive hashing), 578
LU decomposition, 126
Lucas-Kanade (LK) algorithm, 500-511

basic assumptions, 500
LUT (lookup table transform), 127

M
Mac OS X

codecs, 188
downloading and installing OpenCV, 13

machine learning, 769-798
algorithms using cv::ml::StatModel, 810-870

binary decision trees, 816-830
boosting, 830-837
expectation maximization, 842-846
K-nearest neighbors, 846-849
multilayer perceptron, 849-859
naive/normal Bayes classifier, 810-816
random trees, 837-842
support vector machine, 859-870

assessing a variable's importance, 778
common routines in ML library, 799-810

prediction, 809
training and cv::ml::TrainData, 802-809

defined, 770
diagnosing problems in, 779-785

cross-validation, ROC curves and confu‐
sion matrices, 782

generative versus discriminative models,
773

legacy routines in the ML library, 785-796
K-means, 786-792
Mahalanobis distance, 793-796

OpenCV algorithms, 774
supervised and unsupervised, 771
training and test sets, 770
using in vision, 776-777

Machine Learning library (ML module), 2
Mahalanobis distance, 128, 466, 774, 785,

793-796
using for classification, 795
using to condition input data, 793

main(), 457

Manhattan distance, 390
mapping transforms, 316-323

arbitrary mappings, 322
polar mappings, 317

mappings (cv::FileStorage), 199, 200
matrices

fixed matrix classes, 43, 49
getting a pointer to the data in, 80
inversion of, 87
trace, 153

matrix expressions, 85-87
operations available for, 86

matrix operations
addition, 103
bitwise conjunction, 106
bitwise NOT, 107
bitwise OR, 107
bitwise XOR, 108
element-wise comparison between pixels in

two arrays, 112
subtraction, 152

maxCount member variable, cv::TermCriteria
objects, 52

maximum margin classifiers, 859
mean-shift algorithm, 369, 601-604

cv::meanShift(), 604
mean-shift segmentation, 368-370
means

computing mean with cv::Mat::operator
+=(), 459

computing with cv::accumulate(), 459
computing with cv::accumulateWeighted(),

460
Mechanical Turk (Amazon), 776
median filters, 265
misclassification

cost of, 784
impurity metric, 816, 817

mixture of Gaussians (MOG), 485
MJPG codec, 38
ML (see machine learning)
MLP (see multilayer perceptron)
mobile technologies, future of OpenCV, 912
modeling, 587
modules

available in OpenCV contribution reposi‐
tory, 17

in online wiki Reference documentation, 14
moments (see contour moments)

Index | 983

morphological transformations, 275-290
dilation and erosion, 276
general morphology function, 281
making your own kernel, 289
morphological gradient, 285
opening and closing operations, 281
Top Hat and Black Hat, 287

motion estimation, 614-634
motion history image, 606
motion templates, 605-613

diagram of, 606
mouse events, 212

coordinates of, 213
event types in mouse callbacks, 212
flags, 213
program using a mouse to draw boxes on a

screen, 214
multicamera calibration, 649
multichannel arrays, 72

accessing individual array elements, 79
generating individual entries in channel

space, 179
minimum and maximum values and their

locations, 134
multilayer perceptron, 849-859

back propagation, 852
using artifical neural networks and back

propagation with cv::ml::ANN_MLP
parameters for training, 858

using artificial neural networks and back
propagation with cv::ml::ANN_MLP,
854-858

Multiply with Carry (MWC) algorithm, 176
multiscale Hough transform (MHT), 351, 353

N
N-ary array iterator, cv::NAryMatIterator,

81-84
naïve Bayes classifiers, 777
naïve/normal Bayes classifiers, 774, 810-816

and cv::ml::NormalBayesClassifier, 814
neural networks, 849

(see also multilayer perceptron)
neurons, 849
Newton's method, 502
noise

in computer vision, 5
in machine learning data, 780

noisy images

denoising, 325
eliminating speckle noise, 279
simple burring and, 265

norm of arrays, computing, 138
normal Bayes classifiers, 810

in OpenCV, 814
normalization (histogram), 380
normalized central moments, 433
Nyquist-Shannon Sampling Theorem, 33

O
object detection, 875-908

tree-based techniques, 875-897
cascade classifiers, 876-879
learning new objects, 888-897
supervised learning and boosting theory,

879-887
using support vector machines, 897-907

Latent SVM, 898-901
object recognition

database or dictionary, 520
keypoints and, 513

octaves, 550
intra-octaves per scale, 557

omnidirectional (180-degree) camera, calibra‐
tion, 649

online education, 913
open source license for OpenCV, 2
OpenCV

about, 1
block diagram, 8
contribution repository, 17
documentation, 13
downloading and installing, 10
getting latest version via Git, 13
include files, 21
initial goals for, 7
origin of, 6
overviews of, online resources, 22
ownership of, 10
past and present, 909
portability, 18
speeding up with IPP, 9
uses of, 2
versions 3.x, 910

OpenCV foundation (OpenCV.org), 7, 916-917
opencv.hpp include file, 22
opencv_contrib repository, 939-942

contents of, overview, 939-942

984 | Index

SIFT algorithm, 543
opening operations (morphological), 281

on non-Boolean images, 283
operating systems

supported by OpenCV, 18
supported, in OpenCV block diagram, 8

operator(), overloaded, in functors, 169
optical flow, 494, 498-511

dense, 588-600
dense and sparse, 499
Lucas-Kanade (LK) algorithm, 500-511

coarse-to-fine optical flow estimation,
506

optical flow in 1D, 501
optical flow in 2D, 503
pyramid LK code, cv::calcOpticalFlow‐

PyrLK(), 507
pyramid LK code, worked example,

509-511
refining velocity vector, using iteration,

502
optimizations, use of, 67
ORB feature detector, 561

implementation in OpenCV, 563
order constraint, 740
ordered-input algorithms, working with cate‐

gorical data, 803
Otsu's algorithm, 258
overfitting and underfitting data in machine

learning, 780

P
part-based object detection, 898

(see also Latent SVM)
particle filters, 614
PCA (see principal component analysis)
Pearson correlation coefficient, 383
Perspective N-Point (PnP) problem, 675, 701
perspective transforms, 306, 313, 657, 694-700

bird's-eye view transform example, 695-700
code (example), 314
computing perspective map matrix, 314
functions for, 694
output images from code example, 316
sparse transforms, 315

pinhole camera model, 637, 638-648
Pisarevsky, Vadim, 7
pixels, getting and setting, 34
planar homography, 660

planes (in arrays), 81
PnP (Perspective N-Point) problem, 675, 701
point classes, 43

detailed look at, 44
operations supported directly, 45

pointers
aligned, 61
smart pointer in C++, cv::Ptr template and

garbage collection, 53
points

perspective transforms, 140
testing if a point is inside a polygon, 428

polar mappings, 317
converting from Cartesian to polar coordi‐

nates, 317
converting from polar to Cartesian coordi‐

nates, 318
polygons

approximations of, 420
unfilled, 163

Polynomial Expansion algorithm (Farnebäck),
589-592

portability of OpenCV, 18
pose estimation, three-dimensional, 700-703

from a single camera, 700
computing pose with cv::solvePnP(), 701

prediction
in machine learning, 809

normal Bayes classifier, 815
with decision trees, 822

with boosting, 836
with random trees, 840
with support vector machine, 868

prediction phase (motion estimation), 614
presence vector, 902
pretrained object detectors, 878
principal component analysis (PCA), cv::PCA

object, 169-173
principal point, 639
printf(), 95
prior distribution, 616
progressive probabilistic Hough transform

(PPHT), 351, 353
projection, 692-693
projective plane, 638
projective transforms, 641
projectors, 920
PROSAC algorithm, 664
ptr<>(), 80

Index | 985

Python, bindings for OpenCV on Linux, 11

Q
Qt toolkit, 207, 220-232
query image, 520

R
radial distortions (lens), 644
radius matching, 524
random forests, 784, 837

(see also multilayer perceptron)
random motion, 622
random number generator object (cv::RNG),

176-179
random trees, 775, 837-842

code for, 838-841
using, 841

ranges, cv::Range class, 53
RANSAC (random sampling with consensus)

method, 664, 676, 715
computing fundamental array with, 716

re and im member variables, OpenCV complex
number classes, 51

receptive fields, BRIEF feature versus human
eye, 566

rectangle classes, 43
cv::Rect class, 47

operations supported directly, 47
overloaded operators taking objects of

type cv::Rect, 48
cv::RotatedRect, 48

operations supported directly, 48
rectangles

cv::boundingRect(), 422
cv::minAreaRect(), 422
in geometrical tests of contours, 428

reduction, 144
Reference documentation (online wiki), 14
region of interest (ROI), program to alpha-

blend, 104
regression, 772, 779

algorithms handling, 804
and OpenCV boosting algorithm , 831
regression impurity, 817
support vector, 864
with random trees, 837

reinforcement learning, 772
rejection cascades, 880
repairing images, 323-328

denoising, 325
resilient back propagation (see Rprop algo‐

rithm)
resizing images

affine transforms, 308
image pyramids, 302
nonuniform mappings, 306
uniform resize, 300

responsibilities (in EM), 842
reverse mapping, 734
RGB color space, 468
RHO algorithm, 664
robotics

future developments in OpenCV, 913
visual software for robots, 5

Robotics Operating System (ROS), 909
robust methods, 715
ROC (receiver operating characteristic) curves,

783
Rodrigues transform, 643
ROI (region of interest), program to alpha-

blend, 104
rotation and translation vectors, 722
rotation matrix and translation vector, 650-652
rotation vectors, 671
rotations, computing map matrix for, 311
Rprop algorithm, 854, 858
running average, 460

S
SAD window, 739
saturation casting, 87, 101
Scale Invariant Feature Transform algorithm

(see SIFT feature detector)
scale space, 32
scale space extrema (DoG operator), 540, 547
scale-adapted Harris measure, 553
scene modeling, 447-452

changes in pixels over time, 447
frame dereferencing, 451
reading out RGB values of pixels in row of

video and accumulating them into files,
449

Scharr filters, 272
getting kernels, 293

search parameters (FLANN), 579
segmentation, 360-370, 456

flood fill, 361-365

986 | Index

foreground from learned background in
codebook method, 476

Grabcuts algorithm, 366-368
mean-shift, 368-370
watershed algorithm, 365-366

semi-global block matching (SGBM) algorithm,
738, 746
computing stereo depths with cv::Ster‐

eoSGBM, 750
semisupervised learning, 772
separable kernels, 291
sequence entries (cv::FileStorage), 198, 200
setHighThreshold(), 455
setLowThreshold(), 455
SfM (structure from motion), 761
shape transformer classes, 437
shapes

comparing using shape context, 436-441
Hausdorff distance extractor, 440
shape context distance extractor, 438
structure of the shape module, 436

Shi and Tomasi corners, 530
SIFT (Scale Invariant Feature Transform) fea‐

ture detector, 539
implementation in OpenCV, 543

signatures, creating from histograms for EMD,
390

Simple Flow algorithm, 596-600
OpenCV implementation, 599

singular value decomposition (SVD), 87, 120,
670
cv::SVD class, 173
in cv::invert(), 126

size classes, 43, 46
operations supported directly, 46

sliders, 216
(see also trackbars)

smart pointers, 53
smoothing, 31, 261-269

bilateral filter, 267
Gaussian filter, 266
median filter, 265
simple blur and the box filter, 262

Sobel derivative, 269, 354
getting kernels, 293
separable kernels, 291

sparse affine transforms, 312
sparse arrays, 71

accessing array elements, 90-92

cv::minMaxLoc(), 381
cv::SparseMat class, 89
functions unique to, 92-94

sparse optical flow, 499, 587
sparse perspective transforms, 315
speckle, 742
spectra, operations involving, 136
spectrum multiplication, 339
Speeded-Up Robust Features (see SURF feature

detector)
sprintf() function, cv::format() and, 64
squared difference matching method, 399
squared summation integral, 343, 346
standard Hough transform (SHT), 351, 352
standard summation integral, 343, 346
Standard Template Library (STL), 42

complex number classes, 51
Stanley (Stanford robot), 2
Star/CenSurE feature detector, 551-554

Star detector implementation in OpenCV,
553

state vector, 615
statistical boosting, 830

(see also boosting)
statistical correlation in histogram comparison,

383
StatModel, 799-874

common routines in ML library, 799-810
machine learning algorithms using

cv::ml::StatModel, 810-870
stereo imaging, 703-761

computing epipolar lines, 720
depth maps from three-dimensional repro‐

jection, 759-761
stereo calibration, 721-726
stereo calibration, rectification, and corre‐

spondence code example, 752-759
stereo correspondence, 737-752

block matching, 738
computing stereo depths with cv::Ster‐

eoBM, 743
computing stereo depths with cv::Ster‐

eoSGBM, 750
semi-global block matching, 746
stereo matching classes, cv::StereoBM

and cv::StereoSGBM, 738
stereo rectification, 726-737

calibrated, using Bouguet's algorithm,
730

Index | 987

rectification map, 734
uncalibrated, using Hartley's algorithm,

727
triangulation, 704-710

essential and fundamental matrices,
710-720

undistorting stereo images, 682
stereoscopy, 513
structure from motion, 761
structuring element (kernel), 290
subpixel corners, finding, 496
subtraction, background (see background sub‐

traction)
sum, square-sum, and tilted-sum (integral

images), 343
summary characteristics (contours), 421
supervised learning, 771

classification and regression, 772
support vector machine (SVM), 775, 859-870

additional members of cv::ml::SVM, 869
handling outliers, 863
kernels, 861
multiclass extension in OpenCV, 863
object detection using, 897-907

Latent SVM, 898-901
one-class SVM, 864
support vector regression, 864
using with cv::ml::SVM(), 865-869

support vector regression (SVR), 864
support vectors, 859
SURF (Speeded-Up Robust Features) feature

detector, 545-551
OpenCV implementation, 549

SVD (singular value decomposition), 87, 120,
670

switches, 218
creating on/off switch using a trackbar

(example), 219

T
tangential distortions (lens), 644, 647
template structures, 67

common fixed length templates, 68
for large array types, 94-96

templates
matching with, 397-404

code example, 401-404
correlation coefficient methods, 400
correlation methods, 400

normalized correlation coefficient
method, 401

normalized cross-correlation method,
400

normalized square difference method,
400

square difference method, 399
template constructors in cv::Mat, 77

test sets, 771, 777
problems with, and solutions, 781

text, drawing, 165
available fonts, 165

thickness (lines), 158
thin plate spline transform, 437
three-dimensional pose estimation, 700-703
3D and future of OpenCV, 912
threshold operations, 255-261

adaptive threshold, 259-261
alternative method to combine and thres‐

hold image planes, 257
cv::threshold(), 255
histogram, 380
setting a threshold based on frame-to-frame

average absolute differences, 455
thresholdType options for cv::threshold(),

255
using cv::threshold() to sum three channels

of an image, 256
using Otsu's algorithm to determine opti‐

mal threshold value, 258
tilted-summation integral, 344
tiny-dnn library, 920
Top Hat operator, 287
TortoiseGit (for Windows), 13
trace of a matrix, 153
trackbars, 216

adding to basic viewer window for video, 27
creating using HighGUI, 216
using to create an on/off switch (example),

218
trackers, 461
tracking, 493, 587-636

(see also keypoints)
Camshift algorithm, 604
dense optical flow, 588-600

Farnebäck Polynomial Expansion algo‐
rithm, 589-592

estimators, 613-634
extended Kalman filter (EKF), 633

988 | Index

Kalman filter, 615-633
keypoints and, 513

cv::DescriptorMatcher class, 520
mean-shift, 600-604
modeling and, 587
motion templaes, 605-613

traincascade application, 888
creating a trained cascade, 890
detailed arguments to traincascade, 894

training
and cv::ml::TrainData structure, 802-809

constructing cv::ml::TrainData, 802
constructing cv::ml::TrainData from

stored data, 805
cv::ml::TrainDataImpl class, 806
retrieving its parts, 808
splitting training data, 807

cascade classifiers, 878
for boosted classifiers, 834
in K-nearest neighbors model, 848
normal Bayes classifier, 815
of cascade classifiers, 888
with cv::BOWKMeansTrainer, 903
with cv::BOWTrainer, 902
with decision trees, 822
with support vector machine, 868

training image, 520
training sets, 770, 777

problems with, and solutions, 781
traits (in C++), 56
transformations

arbitrary linear image transforms, 153
downsampling an image, 32
shape transformer classes, 437
smoothing an image, 31

transition matrix, 629
translation vectors, 651, 671, 722
tree-based techniques, object detection with,

875-897
cascade classifiers, 876-879
learning new objects, 888-897
supervised learning and boosting theory,

879-887
triangulation, 704-710

Delaunay triangulation, 923-936
two-dimensional line fitting, 763
type, maxCount, and epsilon member variables,

cv::TermCriterial objects, 52
typedefs (aliases)

for cv::Matx<>, 43
for cv::Vec<>, 42
for point classes, 43, 44
in cv::DataType<> definition, 57

U
UI functionality, HighGUI, 207
underfitting and overfitting data in machine

learning, 780
undistortion, 677-684, 703

sparse undistortion with cv::undistort‐
Points(), 683

undistorting an image using cv::remap(),
682

undistortion maps, 678
converting between representations, 679

using cv::undistort(), 683
uninformative prior, 616
uniqueness ratio, 742
unlabeled distance transform, 359
unscented particle filter, 634
unsupervised learning, 771
updateCodebook(), 472, 476
user-defined distance metric, 390
using namespace cv; directive, 23
utility functions, 60-67

V
v-vector SVM, 863
validation (in machine learning), 771, 777, 782
variance (machine learning), 779

mismatched feature variance, 785
possible solutions to, 781

variances
finding variance with cv::accumulateS‐

quare(), 461
variance in Gaussian model, 458

vector-valued arrays, 72
vectors

fixed vector classes, 51
fixed vector classes, cv::Vec<> container for,

42
video codecs, 37
video, playing (example), 25

adding a trackbar slider for moving around
in video file, 27

videoio module (HighGUI), 184
videos, 189-197

FNLMD algorithm, using on, 328

Index | 989

loading from a camera or a file, 35
program playing a video with on/off switch

for user, 219
reading with cv::VideoCapture object, 190
writing to an AVI file, 36
writing with cv::VideoWriter, 196, 197

Viola-Jones classifier, 775, 876-883
Haar-like features, 877
rejection cascade, 880
summary of, 883

vision (computer) (see computer vision)
vision, human versus computer, 3
visual odometry, 513
visual words, 902
Voronoi iteration, 786

(see also K-means algorithm)
Voronoi tesselation, 924

creating a Voronoi subdivision, 927

W
Waldboost, 775
warping images, 306
watershed algorithm, 365-366
wiki (OpenCV documentation), 14
windows, 207-247

HighGUI native graphical user interface,
208-220
creating a window and displaying an

image (example), 210

creating a window with cv::name‐
dWindow(), 208

more window functions, 211
mouse events, 212
sliders, trackbars, and switches, 216
surviving without buttons, 218
updating, cv::waitKey() and, 209

working with Qt backend, 220-232
Windows systems

codecs, 188
downloading and installing OpenCV, 10

X
Xcode developent environment (OS X), 13
XML/YML data files, 198

cv::FileStorage representation of, 198
using cv::FileStorage to create a .yml data

file, 199
using cv::FileStorage to read a .yml file, 203

XML/YML-based functions, 184

Y
Yahoo Groups forum, 2
YUV color space, 467

Z
Ziggurat algorithm, 176
Zivkovic method, 488

990 | Index

About the Authors
Gary Bradski founded and still directs the Open Source Computer Vision library,
OpenCV (now a nonprofit organization) starting from his work at Intel Labs as a
principal engineer. While there he abstracted some of the machine learning algo‐
rithms from the manufacturing effort he was leading into the machine learning mod‐
ule (ml) in OpenCV. From there, he helped start VideoSurf, one of the first video
search engines, which sold to Microsoft in 2011. He organized the vision team for
Stanley, the robot that won the $2 million DARPA Grand Challenge robot race across
the desert. This car, which launched the ongoing wave of self-driving automotive
research, now sits in the Smithsonian. As a consulting professor at Stanford Univer‐
sity’s Computer Science Department, Gary cofounded the Stanford AI Robotics pro‐
gram (STAIR). Out of this grew the PR1 robot and indirectly Willow Garage (which
Gary later joined). Willow produced the PR2 robot and the ROS robot operating sys‐
tem. From there, Gary organized and cofounded Industrial Perception Inc., a sensor-
guided robotics company focused on distribution centers that sold to Google in 2013.
Along the way, Gary made sure OpenCV stayed current with the mobile and now
deep neural network revolutions. Gary has been involved in founding, running, and
advising startups ever since.

Born in 1973, Adrian Kaehler is a scientist, inventor, and engineer, whose work
spans a wide variety of disciplines. His fields of expertise include robotics, physics,
electrical engineering, computer algorithms, machine vision, biometrics, machine
learning, computer games, system engineering, human machine interface, numerical
programming, and design. At the age of 14, he enrolled in UC Santa Cruz, studying
mathematics, computer science, and physics, graduating at 18 with a BA in physics.
He went on to Columbia University, where he received his PhD in 1998 under pro‐
fessor Norman Christ for his work in lattice gauge theory and on the QCDSP super‐
computer project. From 1994 through 1998, Adrian worked on the QCDSP
supercomputer project. The QCDSP supercomputer was one of the first Teraflop-
scale supercomputers every built. For this, Adrian and his team were awarded the
Gordon Bell Prize in 1998. In the 2005 DARPA Grand Challenge, Adrian was on
Stanford’s winning team, where he designed the computer vision system that played a
central role in the team’s victory. Adrian went on to found and run the many robotics
and machine learning efforts at Applied Minds, a high-end research consulting firm,
and is now a Fellow of Applied Invention, a spinout of Applied Minds. Adrian now
focuses on advising and creating startups in Silicon Valley. He is also a founder of
The Silicon Valley Deep Learning Group, an educational nonprofit focused on
expanding, empowering, and connecting the growing community of deep learning
practitioners and entrepreneurs.

Colophon
The animal on the cover of Learning OpenCV 3 is a giant, or great, peacock moth
(Saturnia pyri). Native to Europe, the moth’s range includes southern France and
Italy, the Iberian Peninsula, and parts of Siberia and northern Africa. It inhabits open
landscapes with scattered trees and shrubs and can often be found in parklands,
orchards, and vineyards, where it rests under shade trees during the day.

The largest of the European moths, giant peacock moths have a wingspan of up to six
inches; their size and nocturnal nature can lead some observers to mistake them for
bats. Their wings are gray and grayish-brown with accents of white and yellow. In the
center of each wing, giant peacock moths have a large eyespot, a distinctive pattern
most commonly associated with the birds they are named for.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Cassell’s Natural History, Volume 5. The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the head‐
ing font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Purpose of This Book
	Who This Book Is For
	What This Book Is Not

	About the Programs in This Book
	Prerequisites
	How This Book Is Best Used
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	We’d Like to Hear from You
	Acknowledgments
	Thanks for Help on OpenCV
	Thanks for Help on This Book
	Adrian Adds...
	Gary Adds...

	Chapter 1. Overview
	What Is OpenCV?
	Who Uses OpenCV?
	What Is Computer Vision?
	The Origin of OpenCV
	OpenCV Block Diagram
	Speeding Up OpenCV with IPP
	Who Owns OpenCV?

	Downloading and Installing OpenCV
	Installation

	Getting the Latest OpenCV via Git
	More OpenCV Documentation
	Supplied Documentation
	Online Documentation and the Wiki

	OpenCV Contribution Repository
	Downloading and Building Contributed Modules

	Portability
	Summary
	Exercises

	Chapter 2. Introduction to OpenCV
	Include Files
	Resources

	First Program—Display a Picture
	Second Program—Video
	Moving Around
	A Simple Transformation
	A Not-So-Simple Transformation
	Input from a Camera
	Writing to an AVI File
	Summary
	Exercises

	Chapter 3. Getting to Know OpenCV Data Types
	The Basics
	OpenCV Data Types
	Overview of the Basic Types
	Basic Types: Getting Down to Details
	Helper Objects
	Utility Functions
	The Template Structures

	Summary
	Exercises

	Chapter 4. Images and Large Array Types
	Dynamic and Variable Storage
	The cv::Mat Class: N-Dimensional Dense Arrays
	Creating an Array
	Accessing Array Elements Individually
	The N-ary Array Iterator: NAryMatIterator
	Accessing Array Elements by Block
	Matrix Expressions: Algebra and cv::Mat
	Saturation Casting
	More Things an Array Can Do
	The cv::SparseMat Class: Sparse Arrays
	Accessing Sparse Array Elements
	Functions Unique to Sparse Arrays
	Template Structures for Large Array Types

	Summary
	Exercises

	Chapter 5. Array Operations
	More Things You Can Do with Arrays
	cv::abs()
	cv::absdiff()
	cv::add()
	cv::addWeighted()
	cv::bitwise_and()
	cv::bitwise_not()
	cv::bitwise_or()
	cv::bitwise_xor()
	cv::calcCovarMatrix()
	cv::cartToPolar()
	cv::checkRange()
	cv::compare()
	cv::completeSymm()
	cv::convertScaleAbs()
	cv::countNonZero()
	cv::cvarrToMat()
	cv::dct()
	cv::dft()
	cv::cvtColor()
	cv::determinant()
	cv::divide()
	cv::eigen()
	cv::exp()
	cv::extractImageCOI()
	cv::flip()
	cv::gemm()
	cv::getConvertElem() and cv::getConvertScaleElem()
	cv::idct()
	cv::idft()
	cv::inRange()
	cv::insertImageCOI()
	cv::invert()
	cv::log()
	cv::LUT()
	cv::magnitude()
	cv::Mahalanobis()
	cv::max()
	cv::mean()
	cv::meanStdDev()
	cv::merge()
	cv::min()
	cv::minMaxIdx()
	cv::minMaxLoc()
	cv::mixChannels()
	cv::mulSpectrums()
	cv::multiply()
	cv::mulTransposed()
	cv::norm()
	cv::normalize()
	cv::perspectiveTransform()
	cv::phase()
	cv::polarToCart()
	cv::pow()
	cv::randu()
	cv::randn()
	cv::randShuffle()
	cv::reduce()
	cv::repeat()
	cv::scaleAdd()
	cv::setIdentity()
	cv::solve()
	cv::solveCubic()
	cv::solvePoly()
	cv::sort()
	cv::sortIdx()
	cv::split()
	cv::sqrt()
	cv::subtract()
	cv::sum()
	cv::trace()
	cv::transform()
	cv::transpose()

	Summary
	Exercises

	Chapter 6. Drawing and Annotating
	Drawing Things
	Line Art and Filled Polygons
	Fonts and Text

	Summary
	Exercises

	Chapter 7. Functors in OpenCV
	Objects That “Do Stuff”
	Principal Component Analysis (cv::PCA)
	Singular Value Decomposition (cv::SVD)
	Random Number Generator (cv::RNG)

	Summary
	Exercises

	Chapter 8. Image, Video, and Data Files
	HighGUI: Portable Graphics Toolkit
	Working with Image Files
	Loading and Saving Images
	A Note About Codecs
	Compression and Decompression

	Working with Video
	Reading Video with the cv::VideoCapture Object
	Writing Video with the cv::VideoWriter Object

	Data Persistence
	Writing to a cv::FileStorage
	Reading from a cv::FileStorage
	cv::FileNode

	Summary
	Exercises

	Chapter 9. Cross-Platform and Native Windows
	Working with Windows
	HighGUI Native Graphical User Interface
	Working with the Qt Backend
	Integrating OpenCV with Full GUI Toolkits

	Summary
	Exercises

	Chapter 10. Filters and Convolution
	Overview
	Before We Begin
	Filters, Kernels, and Convolution
	Border Extrapolation and Boundary Conditions

	Threshold Operations
	Otsu’s Algorithm
	Adaptive Threshold

	Smoothing
	Simple Blur and the Box Filter
	Median Filter
	Gaussian Filter
	Bilateral Filter

	Derivatives and Gradients
	The Sobel Derivative
	Scharr Filter
	The Laplacian

	Image Morphology
	Dilation and Erosion
	The General Morphology Function
	Opening and Closing
	Morphological Gradient
	Top Hat and Black Hat
	Making Your Own Kernel

	Convolution with an Arbitrary Linear Filter
	Applying a General Filter with cv::filter2D()
	Applying a General Separable Filter with cv::sepFilter2D
	Kernel Builders

	Summary
	Exercises

	Chapter 11. General Image Transforms
	Overview
	Stretch, Shrink, Warp, and Rotate
	Uniform Resize
	Image Pyramids
	Nonuniform Mappings
	Affine Transformation
	Perspective Transformation

	General Remappings
	Polar Mappings
	LogPolar
	Arbitrary Mappings

	Image Repair
	Inpainting
	Denoising

	Histogram Equalization
	cv::equalizeHist(): Contrast equalization

	Summary
	Exercises

	Chapter 12. Image Analysis
	Overview
	Discrete Fourier Transform
	cv::dft(): The Discrete Fourier Transform
	cv::idft(): The Inverse Discrete Fourier Transform
	cv::mulSpectrums(): Spectrum Multiplication
	Convolution Using Discrete Fourier Transforms
	cv::dct(): The Discrete Cosine Transform
	cv::idct(): The Inverse Discrete Cosine Transform

	Integral Images
	cv::integral() for Standard Summation Integral
	cv::integral() for Squared Summation Integral
	cv::integral() for Tilted Summation Integral

	The Canny Edge Detector
	cv::Canny()

	Hough Transforms
	Hough Line Transform
	Hough Circle Transform

	Distance Transformation
	cv::distanceTransform() for Unlabeled Distance Transform
	cv::distanceTransform() for Labeled Distance Transform

	Segmentation
	Flood Fill
	Watershed Algorithm
	Grabcuts
	Mean-Shift Segmentation

	Summary
	Exercises

	Chapter 13. Histograms and Templates
	Histogram Representation in OpenCV
	cv::calcHist(): Creating a Histogram from Data

	Basic Manipulations with Histograms
	Histogram Normalization
	Histogram Threshold
	Finding the Most Populated Bin
	Comparing Two Histograms
	Histogram Usage Examples

	Some More Sophisticated Histograms Methods
	Earth Mover’s Distance
	Back Projection

	Template Matching
	Square Difference Matching Method (cv::TM_SQDIFF)
	Normalized Square Difference Matching Method (cv::TM_SQDIFF_NORMED)
	Correlation Matching Methods (cv::TM_CCORR)
	Normalized Cross-Correlation Matching Method (cv::TM_CCORR_NORMED)
	Correlation Coefficient Matching Methods (cv::TM_CCOEFF)
	Normalized Correlation Coefficient Matching Method (cv::TM_CCOEFF_NORMED)

	Summary
	Exercises

	Chapter 14. Contours
	Contour Finding
	Contour Hierarchies
	Drawing Contours
	A Contour Example
	Another Contour Example
	Fast Connected Component Analysis

	More to Do with Contours
	Polygon Approximations
	Geometry and Summary Characteristics
	Geometrical Tests

	Matching Contours and Images
	Moments
	More About Moments
	Matching and Hu Moments
	Using Shape Context to Compare Shapes

	Summary
	Exercises

	Chapter 15. Background Subtraction
	Overview of Background Subtraction
	Weaknesses of Background Subtraction
	Scene Modeling
	A Slice of Pixels
	Frame Differencing

	Averaging Background Method
	Accumulating Means, Variances, and Covariances

	A More Advanced Background Subtraction Method
	Structures
	Learning the Background
	Learning with Moving Foreground Objects
	Background Differencing: Finding Foreground Objects
	Using the Codebook Background Model
	A Few More Thoughts on Codebook Models

	Connected Components for Foreground Cleanup
	A Quick Test

	Comparing Two Background Methods
	OpenCV Background Subtraction Encapsulation
	The cv::BackgroundSubtractor Base Class
	KaewTraKuPong and Bowden Method
	Zivkovic Method

	Summary
	Exercises

	Chapter 16. Keypoints and Descriptors
	Keypoints and the Basics of Tracking
	Corner Finding
	Introduction to Optical Flow
	Lucas-Kanade Method for Sparse Optical Flow

	Generalized Keypoints and Descriptors
	Optical Flow, Tracking, and Recognition
	How OpenCV Handles Keypoints and Descriptors, the General Case
	Core Keypoint Detection Methods
	Keypoint Filtering
	Matching Methods
	Displaying Results

	Summary
	Exercises

	Chapter 17. Tracking
	Concepts in Tracking
	Dense Optical Flow
	The Farnebäck Polynomial Expansion Algorithm
	The Dual TV-L1 Algorithm
	The Simple Flow Algorithm

	Mean-Shift and Camshift Tracking
	Mean-Shift
	Camshift

	Motion Templates
	Estimators
	The Kalman Filter
	A Brief Note on the Extended Kalman Filter

	Summary
	Exercises

	Chapter 18. Camera Models and Calibration
	Camera Model
	The Basics of Projective Geometry
	Rodrigues Transform
	Lens Distortions

	Calibration
	Rotation Matrix and Translation Vector
	Calibration Boards
	Homography
	Camera Calibration

	Undistortion
	Undistortion Maps
	Converting Undistortion Maps Between Representations with cv::convertMaps()
	Computing Undistortion Maps with cv::initUndistortRectifyMap()
	Undistorting an Image with cv::remap()
	Undistortion with cv::undistort()
	Sparse Undistortion with cv::undistortPoints()

	Putting Calibration All Together
	Summary
	Exercises

	Chapter 19. Projection and Three-Dimensional Vision
	Projections
	Affine and Perspective Transformations
	Bird’s-Eye-View Transform Example

	Three-Dimensional Pose Estimation
	Pose Estimation from a Single Camera

	Stereo Imaging
	Triangulation
	Epipolar Geometry
	The Essential and Fundamental Matrices
	Computing Epipolar Lines
	Stereo Calibration
	Stereo Rectification
	Stereo Correspondence
	Stereo Calibration, Rectification, and Correspondence Code Example
	Depth Maps from Three-Dimensional Reprojection

	Structure from Motion
	Fitting Lines in Two and Three Dimensions
	Summary
	Exercises

	Chapter 20. The Basics of Machine Learning in OpenCV
	What Is Machine Learning?
	Training and Test Sets
	Supervised and Unsupervised Learning
	Generative and Discriminative Models
	OpenCV ML Algorithms
	Using Machine Learning in Vision
	Variable Importance
	Diagnosing Machine Learning Problems

	Legacy Routines in the ML Library
	K-Means
	Mahalanobis Distance

	Summary
	Exercises

	Chapter 21. StatModel: The Standard Model for Learning in OpenCV
	Common Routines in the ML Library
	Training and the cv::ml::TrainData Structure
	Prediction

	Machine Learning Algorithms Using cv::StatModel
	Naïve/Normal Bayes Classifier
	Binary Decision Trees
	Boosting
	Random Trees
	Expectation Maximization
	K-Nearest Neighbors
	Multilayer Perceptron
	Support Vector Machine

	Summary
	Exercises

	Chapter 22. Object Detection
	Tree-Based Object Detection Techniques
	Cascade Classifiers
	Supervised Learning and Boosting Theory
	Learning New Objects

	Object Detection Using Support Vector Machines
	Latent SVM for Object Detection
	The Bag of Words Algorithm and Semantic Categorization

	Summary
	Exercises

	Chapter 23. Future of OpenCV
	Past and Present
	OpenCV 3.x

	How Well Did Our Predictions Go Last Time?
	Future Functions
	Current GSoC Work
	Community Contributions
	OpenCV.org

	Some AI Speculation
	Afterword

	Appendix A. Planar Subdivisions
	Delaunay Triangulation, Voronoi Tesselation
	Creating a Delaunay or Voronoi Subdivision
	Navigating Delaunay Subdivisions
	Usage Examples

	Exercises

	Appendix B. opencv_contrib
	An Overview of the opencv_contrib Modules
	Contents of opencv_contrib

	Appendix C. Calibration Patterns
	Calibration Patterns Used by OpenCV

	Bibliography
	Index
	About the Authors
	Colophon

