

Learning	Unreal	Engine	Game
Development

Table	of	Contents

Learning	Unreal	Engine	Game	Development

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	An	Overview	of	Unreal	Engine

What	goes	into	a	game?

What	is	a	game	engine?

The	history	of	Unreal	Engine

Game	development

Artists

Cinematic	creators

Sound	designers

Game	designers

Programmers

The	components	of	Unreal	Engine	4

The	sound	engine

The	physics	engine

The	graphics	engine

Input	and	the	Gameplay	framework

Light	and	shadow

Post-process	effects

Artificial	intelligence

Online	and	multiplatform	capabilities

Unreal	Engine	and	its	powerful	editors

Unreal	Editor

Material	Editor

The	Cascade	particle	system

The	Persona	skeletal	mesh	animation

Landscape	–	building	large	outdoor	worlds	and	foliage

Sound	Cue	Editor

Matinee	Editor

The	Blueprint	visual	scripting	system

Unreal	programming

Unreal	objects

A	beginner’s	guide	to	the	Unreal	Editor

The	start	menu

Project	Browser

Content	Browser

Toolbar

Viewport

Scene	Outliner

Modes

Summary

2.	Creating	Your	First	Level

Exploring	preconfigured	levels

Creating	a	new	project

Navigating	the	viewport

Views

Control	keys

Creating	a	level	from	a	new	blank	map

Creating	the	ground	using	the	BSP	Box	brush

Useful	tip	–	selecting	an	object	easily

Useful	tip	–	changing	View	Mode	to	aid	visuals

Adding	light	to	a	level

Useful	tip	–	positioning	objects	in	a	level

Adding	the	sky	to	a	level

Adding	Player	Start

Useful	tip	–	rotating	objects	in	a	level

Viewing	a	level	that’s	been	created

Saving	a	level

Configuring	a	map	as	a	start	level

Adding	material	to	the	ground

Adding	a	wall

Duplicating	a	wall

Creating	an	opening	for	a	door

Adding	materials	to	the	walls

Sealing	a	room

Adding	props	or	a	static	mesh	to	the	room

Adding	Lightmass	Importance	Volume

Applying	finishing	touches	to	a	room

Useful	tip	–	using	the	drag	snap	grid

Summary

3.	Game	Objects	–	More	and	Move

BSP	Brush

Background

Brush	type

Brush	solidity

Static	Mesh

BSP	Brush	versus	Static	Mesh

Making	Static	Mesh	movable

Materials

Creating	a	Material	in	Unreal

Materials	versus	Textures

Texture/UV	mapping

How	to	create	and	use	a	Texture	Map

Multitexturing

A	special	form	of	texture	maps	–	Normal	Maps

Level	of	detail

Collisions

Collision	configuration	properties

Simulation	Generates	Hit	Events

Generate	Overlap	Events

Collision	Presets

Collision	Enabled

Object	Type

Collision	Responses

Trace	Responses

Object	Responses

Collision	hulls

Interactions

Static	Mesh	creation	pipeline

Introducing	volumes

Blocking	Volume

Camera	Blocking	Volume

Trigger	Volume

Nav	Mesh	Bounds	Volume

Physics	Volume

Pain	Causing	Volume

Kill	Z	Volume

Level	Streaming	Volume

Cull	Distance	Volume

Audio	Volume

PostProcess	Volume

Lightmass	Importance	Volume

Introducing	Blueprint

Level	Blueprint

Using	the	Trigger	Volume	to	turn	on/off	light

Using	Trigger	Volume	to	toggle	light	on/off	(optional)

Summary

4.	Material	and	Light

Materials

The	Material	Editor

The	rendering	system

Physical	Based	Shading	Model

High	Level	Shading	Language

Getting	started

Creating	a	simple	custom	material

Creating	custom	material	using	simple	textures

Using	custom	materials	to	transform	the	level

Rendering	pipeline

Shaders

APIs	–	DirectX	and	OpenGL

DirectX

DirectX12

Pipeline	state	representation

Work	submission

Resource	access

Lights

Configuring	a	Point	Light	with	more	settings

Attenuation	Radius

Intensity

Use	Inverse	Squared	Falloff

Color

Adding	and	configuring	a	Spot	Light

Inner	cone	and	outer	cone	angle

Using	the	IES	Profile

Downloading	IES	Light	Profiles

Importing	IES	Profiles	into	the	Unreal	Engine	Editor

Using	IES	Profiles

Adding	and	configuring	a	Directional	Light

Example	–	adding	and	configuring	a	Sky	light

Static,	stationary,	or	movable	lights

Common	light/shadow	definitions

Static	Light

Stationary	Light

Movable	Light

Exercise	–	extending	your	game	level	(optional)

Useful	tips

Guidelines

Area	expansion

Part	1	–	lengthening	the	current	walkway

Part	2	–	creating	a	big	room	(living	and	kitchen	area)

Part	3	–	creating	a	small	room	along	the	walkway

Part	4	–	Creating	a	den	area	in	the	big	room

Creating	windows	and	doors

Part	1	–	creating	large	glass	windows	for	the	dining	area

Part	2	–	creating	an	open	window	for	the	window	seat

Part	3	–	creating	windows	for	the	room

Part	4	–	creating	the	main	door	area

Creating	basic	furniture

Part	1	–	creating	a	dining	table	and	placing	chairs

Part	2	–	decorating	the	sitting	area

Part	3	–	creating	the	window	seat	area

Part	4	–	creating	the	Japanese	seating	area

Part	5	–	creating	the	kitchen	cabinet	area

Summary

5.	Animation	and	AI

What	is	animation?

Understanding	how	to	animate	a	3D	model

Preparing	before	animation

How	is	animation	created?

What	Unreal	Engine	4	offers	for	animation	in	games

Importing	animation	from	Maya/3ds	Max

Tutorial	–	importing	the	animation	pack	from	Marketplace

What	can	you	do	with	Persona?

Tutorial	–	assigning	existing	animation	to	a	Pawn

Why	do	we	need	to	blend	animations?

Tutorial	–	creating	a	Blend	Animation

Tutorial	–	setting	up	the	Animation	Blueprint	to	use	a	Blend	Animation

AnimGraph

EventGraph

Artificial	intelligence

Understanding	a	Behavior	Tree

Exercise	–	designing	the	logic	of	a	Behavior	Tree

Example	–	creating	a	simple	Behavior	Tree

How	to	implement	a	Behavior	Tree	in	Unreal	Engine	4

Navigation	Mesh

Tutorial	–	creating	a	Navigation	Mesh

Tutorial	–	setting	up	AI	logic

Creating	the	Blueprint	AIController

Creating	the	Blueprint	character

Adding	and	configuring	Mesh	to	a	Character	Blueprint

Linking	AIController	to	the	Character	Blueprint

Adding	basic	animation

Configuring	AIController

Nodes	to	add	in	EventGraph

Adjusting	movement	speed

Creating	the	BlackBoardData

Adding	a	variable	into	BlackBoardData

Creating	a	Behavior	Tree

Creating	a	simple	BT	using	a	Wait	task

Using	the	Behavior	Tree

Creating	a	custom	task	for	the	Behavior	Tree

Using	the	PickTargetLocation	custom	task	in	BT

Replacing	the	Wait	task	with	Move	To

Implementing	AI	in	games

Summary

6.	A	Particle	System	and	Sound

What	is	a	particle	system?

Exploring	an	existing	particle	system

The	main	components	of	a	particle	system

Modules

The	design	principles	of	a	particle	system

Research

The	iterative	creative	process

Example	–	creating	a	fireplace	particle	system

Crafting	P_Fireplace

Observing	the	solo	emitters	of	the	system

Deleting	non-essential	emitters

Focusing	on	editing	the	Flame	emitter

Looking	at	the	complete	particle	system

Sound	and	music

How	do	we	produce	sound	and	music	for	games?

Audio	quality

How	are	sounds	recorded?

The	Unreal	audio	system

Getting	audio	into	Unreal

The	audio	format

The	sampling	rate

Bit	depth

Supported	sound	channels

Unreal	sound	formats	and	terminologies

The	Sound	Cue	Editor

How	to	open	the	Sound	Cue	Editor

Exercise	–	importing	a	sound	into	the	Unreal	Editor

Exercise	–	adding	custom	sounds	to	a	level

Configuring	the	Sound	Cue	Editor

Summary

7.	Terrain	and	Cinematics

Introducing	terrain	manipulation

Exercise	–	creating	hills	using	the	Landscape	tool

Landscape	creation	options

Multiple	landscapes

Using	custom	material

Importing	height	maps	and	layers

Scale

The	number	of	components

Section	Size

Introducing	cinematics

Why	do	we	need	cut	scenes?

Cinematic	techniques

Adjusted	camera	functions

Zoom

Field	of	view

Depth	of	field

Camera	movement

Tilt

Pan

Dolly/track/truck

Pedestal

Capturing	a	scene

Lighting

Framing

Some	framing	rules

Shot	types

Shot	plan

Getting	familiar	with	the	Unreal	Matinee	Editor

Exercise	–	creating	a	simple	matinee	sequence

Summary

Index

Learning	Unreal	Engine	Game
Development

Learning	Unreal	Engine	Game
Development
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2016

Production	reference:	1240216

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-815-6

www.packtpub.com

http://www.packtpub.com

Credits
Author

Joanna	Lee

Reviewers

Michele	Bertolini

Kyle	Langley

Daniel	Jonathan	Valik

Commissioning	Editor

Edward	Bowkett

Acquisition	Editor

Subho	Gupta

Content	Development	Editor

Preeti	Singh

Technical	Editor

Ankita	Thakur

Copy	Editor

Sonia	Cheema

Project	Coordinator

Shweta	H.	Birwatkar

Proofreader

Safis	Editing

Indexer

Tejal	Daruwale	Soni

Production	Coordinator

Nilesh	Mohite

Cover	Work

Nilesh	Mohite

About	the	Author
Joanna	Lee	has	more	than	8	years	of	experience	in	game	development.	She	has	designed
and	programmed	various	video	games.	She	first	started	working	with	Unreal’s	game
engine	in	2005	and	is	very	excited	to	be	able	to	author	a	book	about	the	newest	Unreal
Engine	4.	She	has	also	worked	with	many	other	engines	as	well	as	reviewed	books	and
videos	on	Cry	Engine	4.

I	would	like	to	thank	my	parents	and	sister	for	their	constant	support	in	my	game
development	journey	and	my	brother,	Jerome,	who	first	drew	me	into	the	world	of
gaming.	I	also	want	to	thank	all	my	ex-colleagues	and	managers	for	their	patience	while
teaching	me	about	developing	games	and	making	each	work	day	a	pleasure.

Lastly,	I	would	also	like	to	thank	the	amazing	team	at	Packt	Publishing	for	guiding	me
through	the	publishing	process	and	making	this	book	possible.

About	the	Reviewers
Michele	“Budello”	Bertolini	always	had	a	passion	for	videogames,	but	his	way	into	the
industry	had	been	long	and	strange.	In	his	youth,	he	was	more	interested	in	becoming	a
professional	volleyball	player	despite	studying	computer	science	and	computer	graphics.

Then,	he	stopped	growing	and	he	only	had	one	choice	left.

Michele’s	education	and	background	are	strongly	technical	due	to	his	master’s	in
computer	engineering	degree.	Through	the	course	of	his	career,	he’s	developed	various
artistic	skills,	passing	drawing	and	photography	courses.	He’s	also	a	keen	observer	of
nature.	He	thinks	of	himself	as	a	technical	guy	with	a	good	taste.

34BigThings	is	a	small	indie	company	based	in	Turin,	Italy.	Currently,	it’s	involved	in	two
titles:	Redout,	a	tribute	to	old	racing	monsters,	such	as	F-Zero,	WipeOut,	Rollcage,	and
POD	and	Hyperdrive	Massacre,	an	80s	inspired	multiplayer	fragfest	for	up	to	four	local
players,	which	is	focused	on	kinesthetic,	tactical,	and	shooting	skills.

I’d	like	to	thank	all	the	guys	and	gals	in	34BigThings:	first	friends,	then	coworkers.

Kyle	Langley	is	a	self-taught	game	designer	currently	working	for	Vex	Studios.	He	has
also	worked	with	Emotional	Robots	Inc,	Sony	Online	Entertainment,	and	High	Moon
Studios.	He	is	the	author	of	Learn	Programming	With	Unreal	Script,	which	is	aimed	at
teaching	beginners	the	concept	of	object-oriented	programming	as	well	as	the	initial
aspects	of	programming	for	the	Unreal	Development	Kit.	He	was	also	the	technical
reviewer	of	Source	SDK	Game	Development	Essentials,	Packt	Publishing.	You	can	find
more	about	him	on	his	website	(www.dotvawxgames.com).

Daniel	Jonathan	Valik	is	an	industry	expert	in	the	areas	of	Unified/Universal
Communications,	IaaS,	SaaS,	DevOps,	Cloud	Native	Apps,	WebRTC,	Cloud	Voice	and
Business	Voice,	mobile	computing,	social	networking	and	UC-enabled	Contact	Center
technologies.	Daniel	has	driven	these	topics	for	more	than	15	years	in	the	IT	and
telecommunication	industries,	and	he	has	also	lived	and	worked	in	different	regions,	such
as	Europe,	Southeast	Asia,	and	the	United	States.	Daniel	is	currently	a	senior	technical
product	marketing	manager	for	Cloud	Native	Apps,	DevOps	and	Cloud	Technologies	at
the	VMWare	HQ	in	Palo	Alto,	California.	He	was	previously	the	senior	technical	product
marketing	manager	for	the	Skype	Developer	Platform	and	Skype	for	Business	Online	at
the	Skype/Microsoft	HQ	in	Redmond,	Washington,	USA.	As	part	of	the	Skype	product
team,	Daniel	drove	the	positioning	of	Skype	for	Business,	Online,	Developer	Platform,	a
UC-enabled	contact	center,	and	other	emerging	technologies.	He	holds	a	number	of
technical	certifications,	including	Microsoft	Certified	Trainer;	he	has	a	double	master’s
degree	(MBA),	a	master’s	degree	(MAS)	in	general	business,	and	additionally	holds	a
degree	in	international	business	management.

http://www.dotvawxgames.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Many	people	know	what	a	game	is,	and	a	lot	of	people	play	games	every	day.	But	how
many	people	know	how	to	create	a	game?	Game	development	using	Unreal	Engine	4
allows	aspiring	game	creators	to	develop	professional-looking	games	quickly.	Unreal
Engine	4	provides	very	polished	game	development	tools	and	capabilities	that	allow	vast
amounts	of	customization	for	almost	any	game	that	you	can	dream	of.

What	this	book	covers
Chapter	1,	An	Overview	of	Unreal	Engine,	covers	introductory	content	about	what	a	game
engine	is,	specifically	for	Unreal	Engine	4	and	its	history.	You	will	get	an	overview	of	the
features	of	Unreal	Engine	4	and	how	it	can	help	you	to	create	a	game.

Chapter	2,	Creating	Your	First	Level,	explains	how	to	create	your	first	room	using	the	Box
Brush,	add	materials	to	texture	the	walls/floor,	and	learn	how	to	place	static	objects	to
enhance	the	look	of	the	room.

Chapter	3,	Game	Objects	–	More	and	Move,	covers	the	structure	of	a	simple	object	type,
known	as	Static	Mesh,	and	how	objects	in	Unreal	interact	with	one	another.	This	chapter
also	introduces	Blueprints,	which	is	the	graphical	scripting	of	Unreal	Engine	4.

Chapter	4,	Material	and	Light,	shows	you	how	to	customize	your	level	in	greater	detail	by
learning	how	to	create	your	own	basic	custom	Material	and	how	to	use	simple	lights	to
light	up	the	interior	of	the	level.

Chapter	5,	Animation	and	AI,	covers	how	animation	works	in	Unreal	Engine	and	how	to
implement	simple	AI	in	your	game	level.

Chapter	6,	A	Particle	System	and	Sound,	explains	how	to	add	visual	and	sound	effects	to
your	level.

Chapter	7,	Terrain	and	Cinematics,	shows	you	how	to	add	the	final	touches	to	your	level
using	terrain	manipulation	and	cinematics.

What	you	need	for	this	book
You	will	need	to	create	a	free	account	with	Epic	Games	to	start	using	Unreal	Engine	4.

Who	this	book	is	for
This	book	is	meant	for	those	of	you	who	are	new	to	game	development	and	want	to	learn
how	games	are	created.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“In	my
case,	it	will	be	Chapter2Level.”

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“The	Modes	window
gives	you	the	power	to	create	and	place	objects	into	the	game	world.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from:
http://www.packtpub.com/sites/default/files/downloads/LearningUnrealEngineGameDevelopment_ColorImages.pdf

http://www.packtpub.com/sites/default/files/downloads/LearningUnrealEngineGameDevelopment_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	An	Overview	of	Unreal	Engine
First	of	all,	thank	you	for	picking	up	this	book.	I	am	sure	you	are	excited	to	learn	how	to
make	your	own	game.	In	this	chapter,	I	will	run	you	through	the	different	fundamental
components	in	a	game	and	what	Unreal	Engine	4	offers	to	help	you	make	your	dream
game.

The	following	topics	will	be	covered	in	this	chapter:

What	is	in	a	game?
The	history	of	Unreal	Engine	(UE)
How	is	game	development	done?
The	components	of	UE	and	its	editors

What	goes	into	a	game?
When	you	play	a	game,	you	probably	are	able	to	identify	what	needs	to	go	into	a	game.	In
a	simple	PC	shooting	game	example,	when	you	press	the	left	mouse	button,	the	gun
triggers.	You	see	bullets	flying,	hear	the	sound	of	the	gun	and	look	around	to	see	if	you
have	shot	anything.	If	you	did	hit	something,	for	example,	a	wall,	the	target	receives	some
form	of	damage.

As	a	game	creator,	we	need	to	learn	breakdown	what	we	see	in	a	game	to	figure	out	what
we	need	for	a	game.	A	simple	breakdown	without	going	into	too	much	detail:	link	the
mouse	click	to	the	firing	of	the	bullets,	play	a	sound	file	that	sounds	like	a	gun	firing,
display	sparks	(termed	as	particle	effect)	near	the	barrel	of	the	gun	and	the	target	shows
some	visible	damage.

Bearing	this	example	in	mind,	try	visualizing	and	breaking	any	game	down	into	its
fundamental	components.	This	will	greatly	help	you	in	designing	and	creating	a	game
level.

There	is	a	lot	going	on	behind	the	scenes	when	you	are	playing	a	game.	With	the	help	of
Unreal	Engine,	the	interaction	of	the	many	components	has	been	designed	and	you	will
need	to	customize	it	for	your	own	game.	This	is	a	huge	time	saver	when	you	use	an	engine
to	create	a	game.

What	is	a	game	engine?
What	a	game	engine	does	is	that	it	provides	you	with	tools	and	programs	to	help	you
customize	and	build	a	game;	it	gives	you	a	head-start	in	making	your	own	game.	Unreal
Engine	is	one	of	the	more	popular	choices	in	the	market	currently	and	it	is	free	for	anyone
to	use	for	development	(royalties	need	to	be	paid	only	if	your	game	makes	a	profit;	visit
https://www.unrealengine.com/custom-licensing	for	more	information).	Its	popularity	is
mainly	due	to	its	extensive	customizability,	multiplatform	capabilities,	and	the	ability	to
create	high	quality	AAA	games	with	it.	If	you	intend	to	start	a	career	in	game
development,	this	is	definitely	one	of	the	engines	you	want	to	start	playing	with	and	using
to	build	your	portfolio.

https://www.unrealengine.com/custom-licensing

The	history	of	Unreal	Engine
Before	explaining	what	this	amazingly	powerful	game	engine	can	do	and	how	it	works,	let
us	take	a	short	trip	back	into	the	past	to	see	how	UE	came	about	and	how	it	has	evolved
into	what	we	have	today.

For	gamers,	you	are	probably	familiar	with	the	Unreal	game	series.	Do	you	know	how	the
first	Unreal	game	was	made?	The	engineers	at	Epic	Games	built	an	engine	to	help	them
create	the	very	first	Unreal	game.	Over	the	years,	with	the	development	of	each	generation
the	Unreal	game	series,	more	and	more	functionalities	were	added	to	the	engine	to	aid	in
the	development	of	the	game.	This,	in	turn,	increased	UE’s	capabilities	and	improved	the
game	engine	very	quickly	over	the	years.

In	1998,	the	first	version	of	UE	made	the	modding	of	a	first	player	shooting	game
possible.	You	could	replace	Unreal	content	using	your	own	and	tweak	the	behavior	of	the
non-player	characters	(NPCs),	also	known	as	bots	(players	that	are	controlled	by	the
computer	through	artificial	intelligence)	using	UnrealScript.	Then	multiplayer	online
features	were	added	into	UE	through	the	development	of	Unreal	Tournament,	which	is	an
online	game.	This	game	also	added	PlayStation	2	to	the	list	of	compatible	platforms	in
addition	to	the	PC	and	Mac.

By	2002,	UE	had	improved	by	leaps	and	bounds,	bringing	it	into	the	next	generation	with
the	development	of	a	particle	system	(a	system	to	generate	effects	such	as	fog	and	smoke),
static	mesh	tools	(tools	to	manipulate	objects),	a	physics	engine	(allows	interaction
between	objects	such	as	collisions)	and	a	Matinee	(a	tool	to	create	cut	scenes,	which	is	a
brief,	non	interactive	movie).	This	improvement	saw	to	the	development	of	the	Unreal
Championship	and	Unreal	Tournament	2003.	The	release	of	Unreal	Championship	also
added	the	Xbox	game	console	to	the	list,	with	multiplayer	capabilities	in	Xbox	Live.

The	development	of	Epic’s	next	game	Unreal	II:	The	Awakening	edged	UE	forward	with
an	animation	system	and	overall	improvement	with	their	existing	engine.	The
development	of	faster	Internet	speeds	in	the	early	2000s	also	increased	the	demand	of
multiplayer	online	gaming.	Unreal	Tournament	2004	allowed	players	to	engage	in	online
battles	with	one	another.	This	saw	the	creation	of	vehicles	and	large	battlefields,	plus
improvements	in	online	network	capabilities.	In	2005,	the	release	of	Unreal	Champion	2
on	the	Xbox	game	console	reinforced	UE	capabilities	on	the	Xbox	console.	It	also	saw	the
creation	of	a	very	important	feature	of	a	new	third-person	camera.	This	opened	up	greater
possibilities	in	the	types	of	games	that	could	be	created	using	the	engine.

Gears	of	War,	one	of	the	most	well-known	franchises	in	the	video	games	industry,	pushed
Epic	Games	to	create	and	release	the	third	version	of	its	game	engine,	Unreal	Engine	3,	in
2006.

The	improvement	of	the	graphics	engine	used	DirectX	9/10	to	allow	more	realistic
characters	and	objects	to	be	made.	The	introduction	of	Kismet,	which	is	a	visual	scripting
system,	allowed	game	and	level	designers	to	create	game	play	logic	for	more	engaging
combat	play	without	having	to	delve	into	writing	codes.	Platform	capabilities	of	UE3

include	Xbox360	and	PlayStation	3	was	added.	There	was	a	revamp	in	the	light	control
and	materials.	UE3	also	had	a	new	physics	engine.	Gears	of	War	2	released	in	2008	saw
the	progressive	improvements	to	UE3.	In	2013,	the	Gears	of	War	Judgment	was	released.

PC	online	gaming	was	also	under	the	radar	of	Epic	Game’s	developers.	In	2009,	Atlas
Technology	was	released	to	be	used	in	conjunction	with	UE	to	allow	massively
multiplayer	online	games	(MMOG)	to	be	created.

The	increasing	demand	of	mobile	gaming	also	led	to	UE3	being	pushed	in	the	direction	of
increasing	its	supportability	for	various	mobile	platforms.	All	these	advancements	and
technological	capabilities	have	made	UE3	the	most	popular	version	of	Unreal	Engine	and
it	is	still	very	widely	used	today.

UE3	dominated	the	market	for	8	years	until	UE4	came	along.	UE4	was	launched	in	2014
and	introduced	the	biggest	change	by	replacing	Kismet	with	the	new	concept	of
Blueprint.	We	will	discuss	more	about	the	features	of	UE4	later	in	the	chapter.

Game	development
Each	game	studio	has	its	own	set	of	processes	to	ensure	the	successful	launch	of	its	game.
Game	production	typically	goes	through	several	stages	before	a	game	is	launched.	In
general,	there	is	a	preproduction/planning,	production	stage,	and	postproduction	stage.
Most	of	the	time	is	normally	spent	in	the	production	stage.

Game	development	is	an	iterative	process.	The	birth	of	an	idea	is	the	start	of	this	process.
The	idea	of	the	game	must	first	be	tested	to	see	if	it	is	actually	fun	to	the	target	audience.
This	is	done	through	prototyping	the	level	quickly.	Iterations	of	this	prototype	into	a	fully-
fledged	game	can	go	from	weeks	to	months	to	years.

The	development	team	takes	care	of	this	iteration	process.	Everyone’s	contribution	of	the
game	throughout	the	development	cycle	directly	affects	the	game	and	its	success.

Development	teams	loosely	consist	of	several	specialized	groups:	artists	(2D/3D	modeler,
animator),	cinematic	creators,	sound	designers,	game	designers,	and	programmers.

Artists
They	create	all	visible	objects	in	the	game	from	menu	buttons	to	the	trees	in	the	game
level.	Some	artists	specialize	in	3D	modeling,	while	others	are	focused	on	animation.
Artists	make	the	game	look	beautiful	and	realistic.	Artists	have	to	learn	how	to	import
their	created	images/models,	which	are	normally	created	first	using	other	software	such	as
3DMax,	Maya,	and	MODO	into	UE4.	They	would	most	likely	need	to	make	use	of
Blueprint	to	create	certain	custom	behaviors	for	the	game.

Cinematic	creators
Many	cinematic	experts	are	also	trained	artists.	They	have	a	special	eye	and	creative	skills
to	create	short	movie	scenes/cut	scenes.	The	Matinee	tool	in	UE4	will	be	what	they	would
be	using	most	of	the	time.

Sound	designers
Sound	designers	have	an	acute	sense	of	hearing	and	they	are	mostly	musically	trained.
They	work	in	the	sound	labs	to	create	custom	sounds/music	for	the	game.	They	are	in
charge	of	importing	sound	files	into	UE4	to	be	played	at	suitable	instances	in	the	game.
When	using	UE4,	they	would	be	spending	most	of	their	time	using	the	Sound	Cue	Editor.

Game	designers
Designers	determine	what	happens	in	the	game,	what	goes	on	in	the	game,	and	what	the
game	will	be	about.	In	the	planning	stage,	most	of	the	time	will	be	spent	in	discussion,
presentations,	and	documentation.	In	the	production	stage,	they	will	oversee	the	game
prototyping	process	to	ensure	that	the	game	level	is	created	as	designed.	Very	often
designers	spend	their	time	in	the	Unreal	Editor	to	customize	and	fine-tune	the	level.

Programmers
They	are	the	group	that	looks	into	the	technology	and	software	the	team	needs	to	create
the	game.	In	pre-production,	they	are	responsible	for	deciding	which	software	programs
are	required	and	are	capable	of	creating	the	game.	They	also	have	to	ensure	that	the
different	software	used	are	compatible	with	one	another.	Programmers	also	write	codes	to
make	the	objects	created	by	the	artist	come	alive	according	to	the	idea	that	the	designers
came	up	with.	They	program	the	rules	and	functionality	of	the	game.	Some	programmers
are	also	involved	in	creating	tools	and	research	for	the	games.	They	are	not	directly
involved	in	creating	the	game	but	instead	are	supporting	the	production	pipeline.	Games
with	extreme	graphics	usually	have	a	team	of	researchers	optimizing	the	graphics	and
creating	more	realistic	graphics	for	the	game.	They	spend	most	of	their	time	in	codes,
probably	coding	in	Visual	Studio	using	C++.	They	are	also	able	to	modify	and	extend	the
features	of	UE4	to	support	the	needs	of	the	game	that	they	are	developing.

The	components	of	Unreal	Engine	4
Unreal	Engine	is	a	game	engine	that	helps	you	make	games.	Unreal	Engine	is	made	up	of
several	components	that	work	together	to	drive	the	game.	Its	massive	system	of	tools	and
editors	allows	you	to	organize	your	assets	and	manipulate	them	to	create	the	gameplay	for
your	game.

Unreal	Engine	components	include	a	sound	engine,	physics	engine,	graphics	engine,	input
and	the	Gameplay	framework,	and	an	online	module.

The	sound	engine
The	sound	engine	is	responsible	for	having	music	and	sounds	in	the	game.	Its	integration
into	Unreal	allows	you	to	play	various	sound	files	to	set	the	mood	and	add	realism	to	the
game.	There	are	many	uses	for	sounds	in	the	game.	Ambient	sounds	are	constantly	in	the
background.	Sound	effects	can	be	repeated	when	needed	or	one-off	and	are	triggered	by
specific	events	in	the	game.

In	a	forest	setting,	you	can	have	a	combination	of	bird	sounds,	wind,	trees,	and	leaves
rustling	as	the	ambient	sound.	These	individual	sounds	can	be	combined	as	a	forest
ambient	sound	and	be	constantly	playing	softly	in	the	background	when	the	game
character	is	in	the	forest.	Recurring	sounds	such	as	footprint	sound	files	can	be	connected
to	the	animation	of	the	walking	movement.	One-time	sound	effects,	such	as	the	explosion
of	a	particular	building	in	the	city,	can	be	linked	to	an	event	trigger	in	the	game.	In	Unreal,
the	triggering	of	the	sounds	is	implemented	through	cues	known	as	Sound	Cue.

The	physics	engine
In	the	real	world,	objects	are	governed	by	the	laws	of	physics.	Objects	collide	and	are	set
in	motion	according	to	Newton’s	laws	of	motion.	Attraction	between	objects	also	obeys
the	law	of	gravity	and	Einstein’s	theory	of	general	relativity.	In	the	game	world,	for
objects	to	react	similarly	to	real	life,	it	has	to	have	the	same	system	built	through
programming.	Unreal	physics	engine	makes	use	of	the	PhysX	engine,	developed	by
NVIDIA,	to	perform	calculations	for	lifelike	physical	interactions,	such	as	collisions	and
fluid	dynamics.	The	presence	of	this	advanced	physics	engine	in	place	allows	us	to
concentrate	on	making	the	game	instead	of	spending	time	making	objects	interact	with	the
game	world	correctly.

The	graphics	engine
For	an	image	to	show	up	on	screen,	it	has	to	be	rendered	onto	your	display	monitor	(such
as	your	PC/TV	or	mobile	devices)	The	graphics	engine	is	responsible	for	the	output	on
your	display	by	taking	in	information	about	the	entire	scene	such	as	color,	texture,
geometry,	the	shadow	of	an	individual	object	and	lighting,	and	the	viewpoint	of	a	scene,
and	consider	the	cross-interaction	of	the	factors	that	affect	the	overall	color,	light,	shadow,
and	occlusion	of	the	objects.

The	graphics	engine	then	undergoes	massive	calculations	in	the	background	using	all	these
information	before	it	is	able	to	output	the	final	pixel	information	to	the	screen.	The	power
of	a	graphics	engine	affects	how	realistic	your	scene	will	look.	Unreal	graphics	engine	has
the	capabilities	to	output	photorealistic	qualities	for	your	game.	Its	ability	to	optimize	the
scene	and	to	process	huge	amount	calculations	for	real-time	lighting	allows	users	to	create
realistic	objects	in	the	game.

This	engine	can	be	used	to	create	games	for	all	platforms	(PC,	Xbox,	PlayStation,	and
mobile	devices).	It	supports	DirectX	11/12,	OpenGL,	and	JavaScript/WebGL	rendering.

Input	and	the	Gameplay	framework
Unreal	Engine	consists	of	an	input	system	that	converts	key	and	button	presses	by	the
player	into	actions	performed	by	the	in-game	character.	This	input	system	can	be
configured	through	the	Gameplay	framework.	The	Gameplay	framework	contains	the
functionality	to	track	game	progress	and	control	the	rules	of	the	game.	Heads-up	displays
(HUDs)/user	interfaces	(UIs)	are	part	of	the	Gameplay	framework	to	provide	feedback	to
the	player	during	the	course	of	the	game.	Gameplay	classes	such	as	GameMode,	GameState,
and	PlayerState	set	the	rules	and	control	the	state	of	the	game.	The	in-game	characters
are	controlled	either	by	players	(using	the	PlayerController	class)	or	AI	(using
AIController	class).	In-game	characters,	whether	controlled	by	the	player	or	AI,	are	part
of	a	base	class	known	as	the	Pawn	class.	The	Character	class	is	a	subset	of	the	Pawn
class,	which	is	specifically	made	for	vertically-oriented	player	representation,	for	example,
a	human.

With	the	Unreal	Gameplay	framework	and	controllers	in	place,	it	allows	for	full
customization	of	the	player’s	behavior	and	flexibility,	as	shown	in	the	following	figure:

Light	and	shadow
Light	is	a	powerful	tool	in	game	creation.	It	can	be	used	in	many	ways,	such	as	to	create
the	mood	of	a	scene	or	focus	a	player’s	attention	on	objects	in	the	game.	Unreal	Engine	4
provides	a	set	of	basic	lights	that	could	be	easily	placed	in	your	game	level.	They	are
Directional	Light,	Point	Light,	Spot	Light,	and	Sky	Light.

Directional	Light	emits	beams	of	parallel	lights,	Point	Light	emits	light	like	a	light	bulb
(from	a	single	point	radially	outward	in	all	directions),	Spot	Light	emits	light	in	a	conical
shape	outwards,	and	Sky	Light	mimics	light	from	the	sky	downwards	on	the	objects	in	the
level:

The	effective	design	of	light	also	creates	realistic	shadows	for	your	game.	By	choosing	the
types	of	light	in	the	level,	you	can	affect	both	the	mood	and	time	it	takes	to	render	the
scene,	which	in	turns	affect	the	frames	per	second	of	your	game.	In	the	game	world,	you
can	have	two	types	of	shadows:	static	and	dynamic.	Static	shadows	can	be	prebaked	into
the	scene	and,	which	makes	them	quick	to	render.	Dynamic	shadows	are	changed	during
runtime	and	are	more	expensive	to	render.	We	will	learn	more	about	lights	and	shadows	in
Chapter	4,	Light	and	Environment	Control.

Post-process	effects
Post-process	effects	are	effects	that	are	added	at	the	end	to	improve	the	quality	of	the
scene.	Unreal	Engine	4	provides	a	very	good	selection	of	post-process	effects,	which	you
can	add	to	your	level	to	accentuate	the	overall	scene.

It	offers	full	scene	high	dynamic	range	rendering	(HDRR).	This	allows	objects	that	are
bright	to	be	very	bright	and	dark	to	be	very	dark,	but	we	are	still	able	to	see	details	in
them.	(This	is	NVDIA’s	motivation	for	HDR	rendering.)

UE4	post-process	effects	include	Anti-Aliasing	using	Temporal	Anti-Aliasing	(TXAA),
Bloom,	Color	Grading,	Depth	of	Field,	Eye	Adaptation,	Lens	Flare,	Post	Process
Materials,	Scene	Fringe,	Screen	Space	Reflection,	and	Vignette.	Although	a	game	is	often
designed	with	the	post-process	effects	in	mind,	users	are	normally	given	the	option	to	turn
them	off,	if	desired.	This	is	because	they	often	consume	reasonable	amount	of	additional
resources	in	return	for	better	visuals.

Artificial	intelligence
If	you	are	totally	new	to	the	concept	of	artificial	intelligence	(AI),	it	can	be	thought	of	as
intelligence	created	by	humans	to	mimic	real	life.	Humans	created	AI	to	give	objects	a
brain,	the	ability	to	think,	and	make	decisions	on	their	own.

Fundamentally,	AI	is	made	up	of	complex	rule	sets	that	help	objects	make	decisions	and
perform	their	designed	function/behavior.	In	games,	NPCs	are	given	some	form	of	AI	so
that	players	can	interact	with	them.	For	example,	give	NPCs	the	ability	to	find	a	sweet
spot	to	attack.	If	being	attacked,	they	will	run,	hide,	and	find	a	better	position	to	fight
back.

Unreal	Engine	4	provides	a	good	basic	AI	and	lays	the	foundation	for	you	to	customize
and	improve	the	AI	of	the	NPCs	in	your	game.	More	details	on	how	AI	is	designed	in
Unreal	Engine	will	be	discussed	in	Chapter	5,	Animation	and	AI.

Online	and	multiplatform	capabilities
Unreal	Engine	4	offers	the	ability	to	create	game	for	many	platforms.	If	you	create	a	game
using	Unreal	Engine	4,	it	is	portable	into	different	platforms,	such	as	Web,	iOS,	Linux,
Windows,	and	Android.	Also,	Universal	Windows	Platform	(UWP)	will	soon	be	added
as	well.	It	also	has	an	online	subsystem	to	provide	games	the	ability	to	integrate
functionalities	that	are	available	on	Xbox	Live,	Facebook,	Steam,	and	so	on.

Unreal	Engine	and	its	powerful	editors
After	learning	about	the	different	components	of	Unreal	Engine,	it	is	time	to	learn	more
about	the	various	editors	and	how	they	are	able	to	empower	us	with	the	actual
functionalities	to	create	a	game.

Unreal	Editor
Unreal	Engine	has	a	number	of	editors	that	help	in	the	creation	of	the	game.	By	default,
the	Unreal	Editor	is	the	startup	editor	for	Unreal	Engine.	It	can	be	considered	as	the	main
editor	that	allows	access	to	other	subsystems,	such	as	the	Material	and	Blueprint
subsystems.

The	Unreal	Editor	provides	a	visual	interface	made	up	of	viewports	and	windows	to
enable	you	to	import,	organize,	edit,	and	add	behaviors/interactions	to	your	game	assets.
Other	subeditors/subsystems	have	very	specialized	functions	that	allow	you	to	control
details	of	an	asset	(how	it	looks,	how	it	behaves).

The	Unreal	Editor,	together	with	all	the	subsystems,	is	a	great	tool	especially	for
designers.	It	allows	physical	placement	of	assets	and	gives	users	the	ability	to	control
gameplay	variables	without	having	to	make	changes	in	the	code.

Material	Editor
Shaders	and	Materials	give	objects	its	unique	color	and	texture.	Unreal	Engine	4	makes
use	of	physically-based	shading.	This	new	material	pipeline	gives	artists	greater	control
over	the	look	and	feel	of	an	object.	Physically-based	shading	has	a	more	detailed
relationship	of	light	and	its	surface.	This	theory	binds	two	physical	attributes	(micro
surface	detail	and	reflectivity)	to	achieve	the	final	look	of	the	object.

In	the	past,	much	of	the	final	look	is	achieved	by	tweaking	values	in	the	shader/material
algorithms.	In	Unreal	Engine	4,	we	are	now	able	to	achieve	high	quality	content	by
adjusting	the	values	of	the	light	and	shading	algorithms,	which	produces	more	consistent
and	predictable	results.	More	details	about	Shaders	and	Materials	will	be	provided	in
Chapter	4,	Light	and	Environment	Control.	The	following	screenshot	shows	the	Material
Editor	in	UE4:

The	Cascade	particle	system
The	Cascade	particle	system	provides	extensive	capabilities	to	design	and	create	particle
effects.	Effects	from	things	such	as	smoke,	sparks,	and	fire	can	be	created	by	designing	the
size,	color,	and	texture	of	each	particle	and	how	groups	of	these	particles	interact	with
each	other	to	mimic	real-life	particle	effect	behavior.	The	following	screenshot	shows	the
Cascade	particle	system	in	UE4:

The	Persona	skeletal	mesh	animation
The	Persona	animation	system	lets	you	design	and	control	the	animation	of	the	skeleton,
skeleton	mesh,	and	sockets	of	a	character.	This	tool	can	be	used	to	preview	a	character’s
animation	and	set	up	blend	animation	between	key	frames.	The	physics	and	collision
properties	can	also	be	adjusted	through	Physics	Asset	Tool	(PhAT).	The	following
screenshot	shows	the	Persona	animation	system	in	UE4:

Landscape	–	building	large	outdoor	worlds	and	foliage
To	create	large	outdoor	spaces	using	the	editor,	Unreal	Engine	provides	sculpting	and
painting	tools	through	the	Landscape	system	to	help	us	with	it.	An	efficient	level	of	detail
(LOD)	system	and	memory	utilization	allows	large	scaled	terrain	shaping.	There	is	also	a
Foliage	editor	to	apply	grass,	snow,	and	sand	into	the	outdoor	environment.

Sound	Cue	Editor
The	control	of	sound	and	music	is	done	via	the	Sound	Cue	Editor.	Sounds	and	music	are
triggered	to	play	via	cues	known	as	Sound	Cues.	The	ability	to	start/stop/repeat/fade	in	or
out	can	be	achieved	using	this	editor.	The	following	screenshot	shows	the	Sound	Cue
Editor	in	UE4:

Matinee	Editor
The	Matinee	Editor	toolset	enables	the	creation	of	game	cut	scenes	and	movies.	These
short	clips	created	could	be	used	to	introduce	the	start	of	a	game	level,	tell	a	story	before
the	game	begins	or	even	as	a	promotional	video	for	the	game.	The	following	screenshot
shows	the	Matinee	Editor	in	UE4:

The	Blueprint	visual	scripting	system
The	Blueprint	system	is	a	new	feature	in	Unreal	Engine.	Unreal	Engine	4	is	the	first
engine	to	utilize	this	revolutionary	system.	For	those	who	are	familiar	with	Unreal	Engine
3,	it	can	be	thought	of	as	the	enhanced	and	improved	combined	version	of	the	Unreal
scripting	system,	Kismet,	and	the	Prefab	functionality.	The	Blueprint	visual	scripting
system	enables	you	to	extend	code	functionality	using	visual	scripting	language	(box-like
flow	diagrams	joined	with	lines).	This	capability	means	that	you	do	not	have	to	write	or
compile	code	in	order	to	create,	arrange,	and	customize	behavior/interaction	of	in-game
objects.	This	also	provides	nonprogrammers	(artists/designers)	with	the	ability	to
prototype	or	create	a	level	quickly	and	manipulate	gameplay	without	having	to	tackle	the
challenges	of	game	programming.	A	cool	feature	of	Blueprint	is	that	you	can	create
variables	like	in	programming	by	clicking	on	the	object	and	selecting	Create	Variable.
This	opens	up	what	developers	can	do	without	messing	around	with	complex	coding.

To	help	developers	debug	Blueprint	scripting	logic,	you	can	see	the	sequence	of	events
and	property	values	visually	on	the	flow	diagrams	as	it	is	being	executed.	Similar	to
troubleshooting	in	coding,	break	points	can	also	be	set	to	pause	a	Blueprint	sequence.	The
following	screenshot	shows	the	Level	Blueprint	Editor	in	UE4:

Unreal	programming
The	access	to	Unreal	Engine’s	source	code	gives	users	the	freedom	to	create	almost	about
anything	they	can	dream	of.	Functionalities	of	the	base	code	can	be	extended	and
customized	to	create	whatever	the	game	needs	to	have.	Learning	how	Unreal	Engine
works	from	the	inside	can	unlock	its	full	potential	in	game	creation.

Unreal	Engine	has	also	incorporated	very	useful	debugging	features	for	the	coding	folks.
One	of	them	is	the	Hot	Reload	function.	This	tool	enables	changes	in	the	C++	code	to	be
reflected	immediately	in	the	game.	To	facilitate	quick	changes	in	code,	Unreal	Engine	has
also	included	Code	View.	By	clicking	on	a	function	of	an	object	in	the	Code	View
category,	it	shows	you	directly	the	relevant	codes	in	Visual	Studio	where	you	could	make
code	changes	to	the	object.

Versioning	and	source	control	can	be	set	up	for	game	projects	that	include	code	changes.

Unreal	objects
Actors	are	the	base	class	of	all	gameplay	objects	in	Unreal.	For	the	Actors	to	have	more
properties	and	functionalities,	the	Actor	class	is	extended	to	various	more	complex
classes.	In	terms	of	programming,	the	Actor	class	acts	as	a	container	class	to	hold
specialized	objects	called	Components.	The	combination	of	the	functionalities	of	the
Components	gives	the	Actor	its	unique	properties.

A	beginner’s	guide	to	the	Unreal	Editor
This	is	a	quick	overview	of	what	we	can	do	with	the	Unreal	Editor.	We	will	briefly	touch
on	how	we	can	use	the	various	windows	in	the	editor	to	create	a	game.

The	start	menu
When	starting	up	Unreal	Engine,	you	will	be	first	brought	to	a	menu	window	by	default.
This	new	start	menu	is	simple	and	easy	to	navigate.	It	features	a	large	tab	that	allows	you
to	select	which	version	of	game	engine	you	want	to	launch	and	has	a	clear	representation
of	the	projects	you	have	created.	It	also	provides	access	to	Marketplace,	which	is	a	library
of	game	samples	that	are	created	by	others,	which	you	could	download	(some	free,	some
paid).	The	menu	also	provides	latest	updates	and	news	from	Epic	to	ensure	developers	are
kept	abreast	of	the	latest	development	and	changes.	The	following	screenshot	shows	the
start	menu:

Project	Browser
After	launching	the	desired	version	of	Unreal	Engine,	the	Unreal	Project	Browser	pops	up.
This	browser	provides	you	with	the	option	to	create	game	levels	that	have	been	pre-
customized.	This	means	that	you	have	a	list	of	generic	levels,	which	you	can	start	building
your	game	levels	with.	For	those	who	are	new	to	game	making,	this	feature	lets	you	dive
straight	into	building	various	types	of	games	quickly.	You	can	have	a	first-person	shooting
level	and	third-person	game	setup,	or	a	2D/3D	side-scrolling	platform	level	directly	in
either	Blueprint	or	C++	as	the	base	template.	What	is	so	awesome	about	the	New	Project
tab	is	that	it	also	allows	you	to	select	your	target	device	(PC/mobile),	image	quality	target,
with	or	without	the	Unreal	content	included	in	the	startup	project.	The	following
screenshot	shows	the	Project	Browser:

Content	Browser
When	the	Unreal	Editor	starts,	there	is	a	default	layout	of	various	windows	and	panels.
One	of	them	is	the	Content	Browser.	The	Content	Browser	is	a	window	where	you	can
find	all	the	content	(game	assets)	that	you	have.	It	categorizes	your	assets	into	different
folders	such	as	Audio,	Materials,	Animations,	Particle	Effects,	and	so	on.	This
window	has	also	the	Import	button,	which	lets	you	bring	in	game	assets	that	were	created
using	other	software	into	the	game.	The	following	screenshot	shows	the	default	location	of
the	Content	Browser	(outlined	in	green):

Toolbar
The	Toolbar	is	a	customizable	ribbon	that	provides	quick	access	to	tools	and	editors.	The
default	layout	includes	quick	access	to	the	Blueprint	and	Matinee	editors.	Quick	play	and
launch	game	function	is	also	part	of	the	standard	ribbon	layout.	These	buttons	allow	you
to	quickly	view	your	creation	in-game.	The	following	screenshot	shows	the	default
Toolbar:

Viewport
The	Viewport	is	the	window	to	the	game	world	so	what	you	see	is	what	is	in	the	game.	If
you	have	created	a	level	using	one	of	the	options	provided	in	the	New	Project	menu,	you
would	notice	that	the	camera	has	been	adjusted	accordingly	to	the	settings	of	that	pre-
customized	level.	This	is	the	window	that	you	will	use	to	place	objects	into	and	move
them	around.	When	you	click	on	the	Play	button	in	the	toolbar,	this	Viewport	window
comes	alive	and	allows	you	to	interact	with	game	level.	The	following	screenshot	shows
the	Viewport	window	being	highlighted	in	the	editor:

Scene	Outliner
The	Scene	Outliner	contains	the	list	of	objects	that	are	placed	in	the	scene.	It	is	only	what
is	loaded	currently	in	the	scene.	You	can	create	folders	and	have	customized	names	for	the
objects	(to	help	you	identify	the	objects	easily).	It	is	also	a	quick	way	to	group	items	so
that	you	can	select	them	and	make	changes	in	bulk.	The	following	screenshot	shows	the
Scene	Outliner	highlighted	in	the	editor:

Modes
The	Modes	window	gives	you	the	power	to	create	and	place	objects	into	the	game	world.
You	can	select	the	type	of	activity	you	wish	to	execute.	Select	from	Place,	Paint,
Landscape,	Foliage	and	Geometry	Editing.	Place	is	to	put	objects	into	the	game	world.
Paint	allows	you	to	paint	vertices	and	textures	of	objects.	Landscape	and	Foliage	are
useful	tools	for	making	large	scale	natural	terrains	in	the	game.	Geometry	Editing	provides
the	tools	to	modify	and	edit	the	object.	The	highlighted	area	in	the	following	screenshot
shows	the	Modes	window:

Summary
In	this	chapter,	we	covered	introductory	content	about	what	a	game	engine	is,	specifically
Unreal	Engine	4	and	its	history.	We	also	talked	a	little	about	how	games	are	developed	and
various	roles	that	exist	in	a	game	company	to	help	create	different	components	of	a	game.
Then,	we	covered	the	different	components	of	Unreal	Engine	and	how	we	can	use	these
different	features	to	help	us	make	our	game.	Lastly,	we	covered	the	different	editors	that
are	available	to	us	to	help	us	customize	each	of	the	components	of	the	game.

In	the	upcoming	chapters,	we’ll	be	going	into	the	details	of	the	functionalities	and	features
of	Unreal	Engine	4.	In	the	next	chapter,	you	will	be	exposed	to	some	basic	functions	in	the
Unreal	Editor	and	start	making	your	own	game	level.

Chapter	2.	Creating	Your	First	Level
In	this	chapter,	you	will	create	and	run	a	simple	level	with	the	help	of	step-by-step
instructions.	Since	the	objective	of	this	book	is	to	equip	you	with	the	skills	to	confidently
create	your	own	game	using	Unreal	Engine	4	and	not	to	simply	follow	a	list	of	steps	to
create	a	fixed	example,	I	will	provide	as	much	additional	information	as	possible	that	you
could	use	to	create	your	own	game	level	as	we	go	about	learning	the	basic	techniques.

In	this	chapter,	we	will	cover	the	following	topics:

How	to	control	views	and	viewports
How	to	move,	scale,	and	rotate	objects	in	a	level
How	to	use	the	BSP	Box	brush	to	create	the	ground	and	a	wall	using	the	Additive
mode
How	to	carve	a	hole	in	a	wall	using	the	Subtractive	mode	of	the	BSP	Box	brush
How	to	add	a	simple	Directional	Light	to	a	level	to	mimic	sunlight
How	to	spawn	a	player	who’s	facing	the	right	direction	on	a	map	using	Player	Start
How	to	create	the	sky	in	your	map	using	atmospheric	fog
How	to	save	the	map	you’ve	created	and	set	it	as	the	default	load	up	map	for	a
project
How	to	add	a	material	to	the	geometries	you’ve	created	so	that	it	looks	realistic
How	to	duplicate	BSP	Brushes	to	help	create	things	quickly
How	to	add	props	(which	are	also	known	as	static	meshes)	to	a	room
How	to	concentrate	light	on	important	parts	of	a	map	using	Lightmass	Importance
Volume

Exploring	preconfigured	levels
Before	we	create	a	level,	it	is	good	to	have	an	idea	of	what	levels	look	like	in	Unreal
Engine	4.	Unreal	Engine	4	offers	the	possibility	to	load	up	various	types	of	game	levels
with	a	default	playable	level	that’s	straight	from	the	Project	Browser	menu	option	(this
pops	up	immediately	after	launching	the	Unreal	Editor).	Personally,	I	really	like	this
particular	new	feature	of	Unreal	Engine	4	as	it	gives	me	a	quick	feel	of	the	types	of	presets
that	are	available,	and	I	could	easily	select	something	as	a	base	for	the	game	level	I	want
to	create.

We	will	create	a	new	map	using	one	of	the	preset	project	types	as	the	base	for	our	first
level.

Tip
How	to	quickly	explore	different	project	types

I	normally	click	on	the	Play	button	on	the	toolbar	after	a	project	loads	with	the	default
level.	The	play	function	allows	you	to	be	in	a	game	and	you	can	see	what	has	been
precreated	for	you	in	the	level.

Creating	a	new	project
In	this	chapter,	we	will	use	the	Blueprint	First	Person	template	to	create	our	first	game
project.

The	steps	to	create	a	new	Blueprint	First	Person	Project	are	as	follows:

1.	 Launch	Unreal	Engine	4.
2.	 Select	the	New	Project	tab.
3.	 Select	Blueprint	and	then	First	Person.
4.	 Choose	a	name	and	path	for	the	project	(or	leave	it	as	the	default	MyProject).
5.	 Click	on	Create	Project.

Ensure	that	the	With	Starter	Content	option	is	selected.

On	creation	of	the	project,	the	default	example	level	for	Blueprint	First	Person	will	load.
The	following	screenshot	shows	how	the	default	level	looks:

Using	the	preset	project	type	with	the	example	level,	the	first	thing	you’ll	probably	want
to	do	is	run	the	level	and	see	what	the	default	game	level	contains.

Navigating	the	viewport
Using	the	loaded	example	level,	you	should	get	yourself	familiarized	with	the	mouse	and
keyboard	controls	in	order	to	navigate	in	the	viewport.	You	might	consider	bookmarking
this	section	until	you	can	navigate	the	viewport	to	zoom	in/out	or	view	any	object	from	all
angles	easily.

Views
Here	is	some	quick	information	on	the	different	views	in	3D	modeling	creation:	the
example	map	is	loaded	by	default	in	the	Perspective	view.	Other	than	having	the	map	in
the	Perspective	view,	you	can	change	what	you	see	in	the	viewport	in	the	top,	side,	or
front	views,	respectively.	The	option	to	switch	to	any	of	these	is	in	the	left-hand	corner	of
the	viewport.	The	following	screenshot	shows	the	location	of	the	button	to	press	so	that
you	can	switch	views:

If	you	wish	to	see	more	than	one	view	concurrently,	navigate	to	Windows	|	Viewports
and	then	select	any	of	the	viewports	(The	default	viewport	uses	Viewport	1.).

The	selected	viewport	number	will	pop	up.	You	can	drag	and	dock	this	Viewport	window
and	add	it	to	the	default	Viewport	1.	The	following	screenshot	shows	Viewport	1	and
Viewport	2	displayed	at	the	same	time	(one	in	the	Perspective	view	and	the	other	in	the
Top	view):

Control	keys
Here	are	some	of	the	key	presses	to	help	you	move	around	and	view	objects:

In	the	Perspective	view:

Shortcut	action Description

Left-click	+	drag This	moves	the	camera	forward	and	backward	and	rotates	from	left	to	right

Right-click	+	drag This	rotates	the	viewport	camera

Left-click	+	right-click	+	drag This	moves	objects	up	and	down

In	the	Orthographic	(Top,	Front,	and	Side)	view:

Shortcut Description

Left-click	+	drag This	creates	a	marquee	selection	box

Right-click	+	drag This	pans	the	viewport	camera

Left-click	+	right-click	+	drag This	zooms	the	viewport	camera	in	and	out

For	those	of	you	who	are	familiar	with	games,	you	can	use	WASD	to	navigate	the	camera
in	the	editor	too.

WASD	control	in	the	Perspective	view:

Shortcut	action Description

Any	mouse	click	+	W This	moves	the	camera	forward

Any	mouse	click	+	A This	moves	the	camera	to	the	left

Any	mouse	click	+	S This	moves	the	camera	backward

Any	mouse	click	+	D This	moves	the	camera	to	the	right

On	selection	of	an	object:

Shortcut	action Description

W This	displays	the	Translation	tool

E This	displays	the	Rotation	tool

R This	displays	the	Scale	tool

F This	focuses	the	camera	on	a	selected	object

Alt	+	Shift	+	Drag	along	the	x/y/z	axis This	duplicates	an	object	and	moves	it	along	the	x/y/z	axis

Creating	a	level	from	a	new	blank	map
Now	that	you	are	familiar	with	the	controls,	you	are	ready	to	create	a	map	on	your	own.	In
this	chapter,	we	will	go	through	how	to	build	a	basic	room	from	scratch.	To	create	a	new
map	for	your	first	person	game,	go	to	File	|	New	Level….	The	following	screenshot
shows	you	how	to	create	a	new	level:

There	are	two	options	when	creating	a	new	level:	Default	and	Empty	Level.	Select
Empty	Level	to	create	a	completely	blank	map.	The	following	screenshot	shows	you	the
options	that	are	available	when	creating	a	new	level:

Do	not	be	surprised	when	the	viewport	is	void.	We	will	add	objects	to	the	level	in	the	next
few	sections.	The	following	screenshot	shows	what	an	empty	level	looks	like	in	the
Perspective	view:

Creating	the	ground	using	the	BSP	Box
brush
The	BSP	Box	brush	can	be	used	to	create	rectangular	objects	in	the	map.	The	first	thing	to
do	when	creating	a	level	is	to	have	a	ground	to	stand	on.

Before	we	begin	with	this,	make	sure	the	viewport	is	in	the	Perspective	view.	We	will
mainly	use	this	view	for	most	of	the	level	creation	unless	specified	explicitly.

Go	to	the	Modes	window,	click	on	BSP	and	then	click	and	drag	Box	into	the	viewport.
This	is	where	you	can	find	the	Box	brush:

Here,	a	Box	brush	has	been	successfully	added	to	the	viewport:

You	have	now	successfully	created	your	first	object	in	the	level.	We	will	go	on	to	change
the	size	of	this	box	to	a	suitable	size	so	that	it	can	act	as	the	ground	for	the	level.

Select	the	box	that	was	just	created,	and	go	to	Details	|	Brush	Settings.	Fill	in	the
following	values	for	X,	Y,	and	Z.	The	following	screenshot	shows	the	values	that	need	to
be	set:

When	you	have	set	the	values	correctly,	the	box	should	look	like	this:

Useful	tip	–	selecting	an	object	easily
To	help	you	select	objects	in	the	level	more	easily,	you	can	go	to	World	Outliner	(its
default	location	is	in	the	top	right-hand	corner	of	the	editor),	and	you	will	see	a	full	list	of
all	the	objects	in	the	level.	Click	on	the	name	of	an	object	to	select	it	and	its	details	will
also	be	displayed.	This	is	a	very	useful	way	to	help	you	select	objects	when	you	have
many	objects	in	the	level.	The	following	screenshot	shows	how	World	Outliner	can	be
used	to	select	the	Box	brush	(which	we’ve	just	created)	in	the	level:

Useful	tip	–	changing	View	Mode	to	aid	visuals
If	you	have	difficulties	seeing	the	box,	you	can	change	View	Mode	to	Unlit	(the	button	is
in	the	viewport	that’s	next	to	the	Perspective	button).	The	following	screenshot	shows
you	how	to	change	View	Mode	to	Unlit:

Adding	light	to	a	level
To	help	us	see	the	level	better,	it	is	time	to	learn	how	to	illuminate	the	level.	To	mimic
ambient	light	from	the	sun,	we	will	use	Directional	Light	for	the	level.

In	the	same	way	as	adding	a	BSP	Box	brush,	we	will	go	to	Modes	Window	|	Lights	|
Directional	Light.	Click	and	drag	Directional	Light	into	the	Viewport	window.	The
following	screenshot	zooms	in	on	the	Modes	window,	showing	that	the	Directional	Light
item	can	be	created	by	dragging	it	into	the	viewport:

For	now,	let’s	place	the	light	just	slightly	above	the	BSP	Box	brush	as	shown	in	the
following	screenshot:

Useful	tip	–	positioning	objects	in	a	level
To	position	an	object	in	a	level,	we	use	the	Transform	tool	to	move	objects	in	the	x,	y,
and	z	directions.	Select	the	object	and	press	the	W	key	to	display	the	Transform	tool.
Three	arrows	will	appear	to	extrude	from	the	object.	Click	and	hold	the	red	arrow	to	move
the	object	along	the	x	axis,	the	green	arrow	to	move	it	along	the	y	axis,	and	the	blue	arrow
to	it	move	along	the	z	axis.

To	help	you	position	the	objects	more	accurately,	you	can	also	switch	to	the	Top	view
when	moving	objects	in	the	x	and	y	directions,	the	Side	view	for	adjustments	in	the	y	and
z	directions,	and	the	Front	view	to	adjust	the	x	and	z	directions.

For	those	of	you	who	want	precise	position	control,	you	can	use	Details.	Select	the	object
to	display	details.	Go	to	Transform	|	Location.	You	can	select	Relative	or	World
position	by	clicking	on	the	arrow	next	to	Location.	Change	the	X,	Y,	and	Z	values	to
move	the	object	with	more	precision.

Adding	the	sky	to	a	level
After	the	addition	of	light	to	the	level,	we	will	proceed	to	add	the	sky	to	the	level.	Click	on
Modes	|	Visual	|	Atmospheric	Fog.	In	a	similar	way	to	adding	light	and	adding	a	Box
BSP,	click,	hold,	and	drag	this	into	the	viewport.	We	are	almost	ready	to	take	a	first	look	at
what	we	have	just	created.	Hang	in	there.

Adding	Player	Start
For	every	game,	you	need	to	set	where	the	player	will	spawn.	Go	to	Modes	|	Basic	|
Player	Start.	Click,	hold,	and	drag	Player	Start	into	the	viewport.

This	screenshot	shows	the	Modes	window	with	Player	Start:

Place	Player	Start	in	the	center	of	the	ground	or	slightly	above	it	as	shown	in	the
following	screenshot:

Deselect	Player	Start	by	pressing	the	Esc	key.	The	light	blue	arrow	from	Player	Start
indicates	the	direction	in	which	the	player	will	spawn	the	game	starts.	To	adjust	the
direction	that	the	player	faces	upon	spawning,	rotate	Player	Start	until	the	light	blue
arrow	points	in	this	direction.	Take	a	look	at	the	following	tip	on	how	to	rotate	an	object.

Useful	tip	–	rotating	objects	in	a	level
To	rotate	an	object	in	a	level,	we	use	the	Rotate	tool	to	rotate	objects	around	the	x	(row),	y
(pitch),	and	z	(yaw)	directions.	Select	the	object	and	press	the	E	key	to	display	the	Rotate
tool.	Three	lines	with	a	box	tip	will	appear	to	extrude	from	the	object.	Click	and	hold	the
red	arrow	to	rotate	the	object	around	the	x	axis,	the	green	arrow	to	rotate	it	around	the	y
axis,	and	the	blue	arrow	to	rotate	it	around	the	z	axis.

Another	way	to	rotate	an	object	more	accurately	is	by	controlling	its	rotation	through	the
actual	rotation	values	found	under	Details.	(Select	the	object	to	be	rotated	to	display	its
details).	In	the	Transform	tab,	go	to	Rotation,	and	set	the	X,	Y,	and	Z	values	to	rotate	the
object.	There	is	an	arrow	next	to	Rotation	that	you	can	click	on	to	select	if	you	want	to
adjust	the	rotation	values	for	Relative	or	World.	When	you	select	to	rotate	an	object	using
the	Relative	setting,	the	object	will	rotate	relative	to	its	current	position.	When	the	object
is	rotated	using	the	World	setting,	it	will	be	relative	to	the	world’s	position.

If	you	want	the	player	controller	(as	shown	in	the	preceding	screenshot)	to	have	the	light
blue	arrow	facing	inwards	and	away	from	you,	you	will	need	to	rotate	the	player	controller
180	degrees	around	the	y	axis.	Enter	Y	as	180	under	the	Relative	setting.	The	player
controller	will	be	rotated	in	the	manner	shown	in	this	screenshot:

Viewing	a	level	that’s	been	created
We	are	now	ready	to	view	the	simple	level	that	we	have	just	created.

Before	viewing	the	level,	click	on	the	Build	button,	as	shown	in	the	following	screenshot,
to	build	the	light,	materials,	and	so	on,	needed	for	this	level.	This	step	ensures	that	light	is
properly	rendered	in	the	level.

After	building	the	level,	click	on	the	Play	button,	as	shown	in	this	screenshot,	to	view	the
level:

The	following	screenshot	shows	how	the	level	looks.	Move	the	mouse	up,	down,	left,	and
right	to	see	the	level.	Use	W,	A,	S,	and	D	to	move	the	character	around	the	level.	To	return
to	the	editor,	press	ESC.

Saving	a	level
Navigate	to	File	|	Save	As…	and	give	the	map	you	have	just	created	a	name.	In	our
example	here,	I	have	saved	it	as	Chapter2Level	in	the
…/UnrealProjects/MyProject/Content/Maps	path,	where	MyProject	is	the	name	of	the
project.

Configuring	a	map	as	a	start	level
After	saving	your	new	map,	you	may	want	to	also	set	this	project	to	load	this	map	as	the
default	map.	You	can	have	several	maps	linked	to	this	project	and	load	them	at	specific
points	in	the	game.	For	now,	we	want	to	replace	the	current	Example_Map	with	the	newly
created	map	that	we	have.	To	do	so,	go	to	Edit	|	Project	Settings.	This	opens	up	a	page
with	configurable	values	for	the	project.	Go	to	Game	|	Maps	&	Modes.	Refer	to	the
following	screenshot	to	take	a	look	at	how	Maps	&	Modes	is	selected.

Look	under	Default	Maps	and	change	both	Game	Default	Map	and	Editor	Default	Map
in	the	map	that	you	have	just	saved.	In	my	case,	it	will	be	Chapter2Level.	Then,	close	the
project	settings.	When	you	start	the	editor	and	run	the	game	the	next	time,	your	new	map
will	be	loaded	by	default.

Adding	material	to	the	ground
Now	that	we	have	created	the	ground,	let	us	make	the	ground	look	more	realistic	by
applying	a	material	to	it.

Go	to	Content	Browser	|	Content	|	StarterContent	|	Materials.	Type	wood	into	the
Filters	box.	The	following	screenshot	shows	the	walnut	polished	material	that	we	want	to
use	for	the	ground’s	material:

Click,	hold,	and	drag	M_Wood_Floor_Walnut_Polished	into	the	viewport	area	and	drop
it	on	the	top	surface	of	the	ground.	The	resulting	effect	should	look	like	this:

Adding	a	wall
Now	we	are	ready	to	add	walls	to	prevent	the	player	from	falling	off	the	map.	To	create
walls,	we	will	use	the	same	BSP	Box	brush	to	create	a	wall.	As	we	have	just	added	a
material	in	the	previous	step,	you	will	need	to	clear	this	material	selection	by	clicking	on
anything	in	Content	Browser.	This	will	prevent	new	geometries	from	being	created	using
the	same	material.

Similar	to	creating	the	ground,	go	to	Modes	|	BSP	|	Box.	Click,	hold,	and	drag	into	the
viewport.	Set	the	dimensions	of	the	BSP	box	as	X	=	30,	Y	=	620,	and	Z	=	280.	To	help	us
view	and	position	the	wall,	use	the	controls	to	rotate	the	viewport.	You	can	also	use	the
different	views	to	help	position	the	wall	onto	the	ground.	Here,	you	can	see	how	the	wall
should	be	positioned	(note	that	I	have	panned	the	camera	to	view	the	level	from	a	different
angle):

Duplicating	a	wall
Now	duplicate	the	wall	by	first	selecting	the	wall	created	in	the	earlier	step.	Make	sure	the
Transform	tool	is	displayed	(if	not,	press	W	once	when	object	is	selected).

Click	and	hold	one	of	the	axes	(the	x	axis,	in	the	preceding	example	case)	while	holding
down	Alt	+	Shift	as	you	drag	the	current	wall	in	the	x	direction.	You	would	notice	that
there	is	another	copy	of	the	wall	moving	in	this	direction.	Release	the	keys	when	the	wall
is	in	the	right	position.	Use	normal	translation	controls	to	position	the	wall	as	shown	here:

Creating	an	opening	for	a	door
The	room	is	now	almost	complete.	We	will	learn	how	to	carve	into	a	BSP	Box	brush	to
create	an	opening	for	a	door.

Drag	a	new	BSP	Box	brush	into	the	map:	X	=	370,	Y	=	30,	and	Z	=	280.	Position	this	wall
to	seal	one	side	of	the	room	as	shown	in	the	following	screenshot:

Till	now,	we	have	been	using	the	Additive	mode	(add	the	radio	button	that	is	selected)	to
create	a	BSP	Box	brush.	To	create	an	opening	in	the	wall,	we	will	create	another	BSP	Box
brush	using	the	Subtractive	mode.	Ensure	that	you	have	selected	it	as	shown	in	the
following	screenshot.	Drag	and	drop	the	BSP	Box	brush	in	the	same	manner	as	before	into
the	viewport.	As	for	the	dimensions	of	this	brush,	we	will	approximate	it	to	the	size	of	the
door,	where	X	=	115,	Y	=	30,	and	Z	=	212.

When	the	Subtractive	BSP	Box	brush	is	positioned	correctly,	it	will	look	something	like
this:

To	help	you	position	the	Subtractive	BSP	Box	brush,	you	can	switch	to	the	Front	view	to
place	the	door	more	or	less	in	the	center.	The	following	screenshot	shows	the	Front	view
with	the	Subtractive	BSP	Box	brush	selected:

Adding	materials	to	the	walls
To	make	the	ground	look	more	realistic,	we	will	apply	a	material	to	it.	Go	to	Content
Browser	|	Content	|	StarterContent	|	Materials.	Type	Wall	into	the	Filters	box.	Select
M_Basic_Wall	and	drag	it	onto	the	surface	of	the	wall	with	the	door.	Then,	we	will	use	a
different	material.	Type	Brick	into	the	Filters	box.	Select	M_Brick_Clay_New	to	apply
to	the	inner	surface	of	the	two	other	walls.

Here,	you	can	take	a	look	at	how	the	level	looks	in	the	Unlit	mode	after	applying	the
materials	mentioned	previously:

Build	the	light	before	running	the	level	again	to	see	how	the	level	looks	now.

Sealing	a	room
For	now,	let’s	duplicate	the	wall	with	the	door	to	seal	the	room.	Click	on	the	wall,	hold
down	Alt	+	Shift,	and	drag	it	across	to	the	other	side	of	the	room.	The	following	screenshot
shows	how	it	looks	when	the	room	is	sealed:

Adding	props	or	a	static	mesh	to	the	room
Let’s	now	add	some	objects	to	the	empty	room.	Go	to	Content	Browser	|	Content	|
StarterContent	|	Props.	Find	SM_Lamp_Ceiling	and	drag	it	into	the	room.

As	we	want	to	use	a	ceiling	lamp	prop	as	a	floor	lamp,	you	will	need	to	rotate	the	lamp	by
rotating	it	about	the	x	axis	by	180	degrees.	Set	X	=	180	degrees	using	the	Relative	mode.
The	following	screenshot	shows	the	rotated	lamp	positioned	at	one	end	of	the	room.	Note
that	I	have	built	the	light	and	changed	the	view	mode	to	the	Lit	mode.	Feel	free	to	position
the	lamp	anywhere	to	see	how	it	looks.

Adding	Lightmass	Importance	Volume
Since	our	room	only	takes	up	a	small	portion	of	the	map,	we	can	concentrate	light	on	a
small	region	by	adding	an	item	known	as	Lightmass	Importance	Volume	to	the	map.
The	bounded	box	of	the	Lightmass	Importance	Volume	tells	the	engine	where	light	is
needed	in	the	map	so	it	should	encompass	the	entire	area	of	the	map	that	has	objects.	Drag
and	drop	Lightmass	Importance	Volume	into	the	map.	Here,	you	can	see	where	to	find
the	Lightmass	Importance	Volume:

By	default,	the	wireframe	box	that’s	been	dropped	(which	is	the	Lightmass	Importance
Volume)	is	a	cube.	You	will	need	to	scale	it	to	fit	your	room.	With	the	Lightmass
Importance	Volume	selected,	press	R	to	display	the	Scale	tool.	Use	the	x,	y,	and	z	axes	to
adjust	the	size	of	the	box	till	it	fits	the	level.	The	following	screenshot	shows	the	scaling
of	the	box	using	the	Scale	tool:

After	scaling	and	translating	the	box	to	fit	the	level,	the	Lightmass	Importance	Volume
should	look	something	like	what	is	shown	in	the	following	screenshot,	where	the
wireframe	box	is	large	enough	to	fit	the	room	inside	it.	The	size	of	the	wireframe	for	the
Lightmass	Importance	Volume	can	be	larger	than	the	map.

Applying	finishing	touches	to	a	room
Our	room	is	almost	complete.	You	would	have	noticed	that	the	door	now	is	just	a	hole	in
the	wall.	To	make	it	look	like	a	door,	we	need	to	add	a	door	frame	and	a	door	as	follows:

1.	 Go	to	Content	Browser	|	Content	|	StarterContent	|	Props.
2.	 Click	and	drop	SM_DoorFrame	into	the	viewport.
3.	 Adjust	it	to	fit	in	the	wall.

When	done,	it	should	look	like	what	is	shown	in	the	following	screenshot.

I’ve	used	different	views,	such	as	top,	side,	and	front,	to	adjust	the	frame	nicely	to	fit	the
door.	You	can	adjust	Snap	Sizes	for	some	fine-tuning.

Useful	tip	–	using	the	drag	snap	grid
To	help	you	move	objects	into	position	more	accurately,	you	can	make	use	of	the	snap	grid
button	at	the	top	of	the	viewport	as	shown	in	the	following	screenshot.	Turning	the	drag
snap	grid	on	allows	you	to	translate	objects	according	to	the	grid	size	you	select.	Click	on
the	mesh-like	symbol	to	toggle	snap	grid	on/off.	The	numbers	displayed	on	the	right	are
the	minimum	grid	sizes	by	which	an	object	will	move	when	translated.

I	have	also	noticed	that	a	portion	of	the	floor	is	not	textured	yet.	Use	the	same	wood
texture	as	you	did	previously	to	make	sure	that	the	ground	is	fully	textured	using
M_Wood_Floor_Walnut_Polished.

Then,	click	and	drag	SM_Door	into	the	viewport.	Rotate	the	door	and	fit	it	into	the	door
frame	in	the	same	manner	as	shown	previously.	Here,	you	can	see	how	the	door	is	in
place:

Summary
We	have	learned	how	to	navigate	the	viewport	and	set	up/save	a	new	map	in	a	new
project.	We	also	created	our	first	room	with	a	door	using	the	BSP	Box	brush,	added
materials	to	texture	walls	and	floors,	and	learned	to	place	static	objects	to	enhance	the
look	of	the	room.	Although	it	is	still	kind	of	empty	right	now,	we	will	continue	to	work	on
it	in	the	next	few	chapters	and	expand	on	this	map.	In	the	next	chapter,	we	will	spice	up
the	level	by	adding	some	objects	that	we	can	interact	with.

Chapter	3.	Game	Objects	–	More	and
Move
We	created	our	first	room	in	the	Unreal	Editor	in	Chapter	2,	Creating	Your	First	Level.	In
this	chapter,	we	will	cover	some	information	about	the	structure	of	objects	we	have	used
to	prototype	the	level	in	Chapter	2,	Creating	Your	First	Level.	This	is	to	ensure	that	you
have	a	solid	foundation	in	some	important	core	concepts	before	moving	forward.	Then,	we
will	progressively	introduce	various	concepts	to	make	the	objects	move	upon	a	player’s
interaction.

In	this	chapter,	we	will	cover	the	following	topics:

BSP	Brush
Static	Mesh
Texture	and	Materials
Collision
Volumes
Blueprint

BSP	Brush
We	used	the	BSP	Box	Brush	in	Chapter	2,	Creating	Your	First	Level,	extensively	to	create
the	ground	and	the	walls.

BSP	Brushes	are	the	primary	building	blocks	for	level	creation	in	the	game	development.
They	are	used	for	quick	prototyping	levels	like	how	we	have	used	them	in	Chapter	2,
Creating	Your	First	Level.

In	Unreal,	BSP	Brushes	come	in	the	form	of	primitives	(box,	sphere,	and	so	on)	and	also
predefined/custom	shapes.

Background
BSP	stands	for	binary	space	partitioning.	The	structure	of	a	BSP	tree	allows	spatial
information	to	be	accessed	quickly	for	rendering,	especially	in	3D	scenes	made	up	of
polygons.	A	scene	is	recursively	divided	into	two,	until	each	node	of	the	BSP	tree	contains
only	polygons	that	can	render	in	arbitrary	order.	A	scene	is	rendered	by	traversing	down
the	BSP	tree	from	a	given	node	(viewpoint).

Since	a	scene	is	divided	using	the	BSP	principle,	placing	objects	in	the	level	could	be
viewed	as	cutting	into	the	BSP	partitions	in	the	scene.	Geometry	Brushes	use
Constructive	Solid	Geometry	(CSG)	technique	to	create	polygon	surfaces.	CSG
combines	simple	primitives/custom	shapes	using	Boolean	operators	such	as	union,
subtraction,	and	intersection	to	create	complex	shapes	in	the	level.

So,	the	CSG	technique	is	used	to	create	surfaces	of	the	object	in	the	level,	and	rendering
the	level	is	based	on	processing	these	surfaces	using	the	BSP	tree.	This	relationship	has
resulted	in	Geometry	Brushes	being	known	also	as	BSP	Brushes,	but	more	accurately,
CSG	surfaces.

Brush	type
BSP	Brushes	can	either	be	additive	or	subtractive	in	nature.	Additive	brushes	are	like
volumes	that	fill	up	the	space.	Additive	brushes	were	used	for	the	ground	and	the	walls	in
our	map	in	Chapter	2,	Creating	Your	First	Level.

Subtractive	brushes	can	be	used	to	form	hollow	spaces.	These	were	used	to	create	a	hole
in	the	wall	in	which	to	place	a	door	and	its	frame	in	Chapter	2,	Creating	Your	First	Level.

Brush	solidity
For	additive	brushes,	there	are	various	states	it	can	be	in:	solid,	semi-solid,	or	non-solid.

Since	subtractive	brushes	create	empty	spaces,	players	are	allowed	to	move	freely	within
them.	Subtractive	brushes	can	only	be	solid	brushes.

Refer	to	the	following	table	for	comparison	of	their	properties:

Brush
solidity Brush	type Degree	of	blocking BSP	cutting

Solid Additive	and
subtractive

Blocks	both	players	and
projectiles

Creates	BSP	cuts	to	the	surrounding	world
geometry

Semi-solid Additive	only Blocks	both	players	and
projectiles

Does	not	cause	BSP	cuts	to	the	surrounding	world
geometry

Non-solid Additive	only Does	not	block	players	or
projectiles

Does	not	cause	BSP	cuts	to	the	surrounding	world
geometry

Static	Mesh
Static	Mesh	is	a	geometry	made	up	of	polygons.	Looking	more	microscopically	at	what	a
mesh	is	made	of,	it	is	made	up	of	lines	connecting	vertices.

Static	Mesh	has	vertices	that	cannot	be	animated.	This	means	is	that	you	cannot	animate	a
part	of	the	mesh	and	make	that	part	move	relative	to	itself.	But	the	entire	mesh	can	be
translated,	rotated,	and	scaled.	The	lamp	and	the	door	that	we	have	added	in	Chapter	2,
Creating	Your	First	Level,	are	examples	of	Static	Meshes.

A	higher-resolution	mesh	has	more	polygons	as	compared	to	a	lower-resolution	mesh.
This	also	implies	that	a	higher	resolution	mesh	has	a	larger	number	of	vertices.	A	higher
resolution	mesh	takes	more	time	to	render	but	is	able	to	provide	more	details	in	the	object.

Static	Meshes	are	usually	first	created	in	external	software	programs,	such	as	Maya	or	3ds
Max,	and	then	imported	into	Unreal	for	placement	in	game	maps.

The	door,	its	frame,	and	the	lamp	that	we	added	in	Chapter	2,	Creating	Your	First	Level,
are	Static	Meshes.	Notice	that	these	objects	are	not	simple	geometry	looking	objects.

BSP	Brush	versus	Static	Mesh
In	game	development,	many	objects	in	the	game	are	Static	Meshes.	Why	is	that	so?	Static
Mesh	is	considered	more	efficient,	especially	for	a	complex	object	with	many	vertices,	as
they	can	be	cached	to	a	video	memory	and	are	drawn	by	the	computer’s	graphics	card.	So,
Static	Meshes	are	preferred	when	creating	objects	as	they	have	better	render	performance,
even	for	complex	objects.	However,	this	does	not	mean	that	BSP	Brushes	do	not	have	a
role	in	creating	games.

When	BSP	Brush	is	simple,	it	can	still	be	used	without	causing	too	much	serious	impact	to
the	performance.	BSP	Brush	can	be	easily	created	in	the	Unreal	Editor,	hence	it	is	very
useful	for	quick	prototyping	by	the	game/level	designers.	Simple	BSP	Brushes	can	be
created	and	used	as	temporary	placeholder	objects	while	the	actual	Static	Mesh	is	being
modeled	by	the	artists.	The	creation	of	a	Static	Mesh	takes	time,	even	more	so	for	a	highly
detailed	Static	Mesh.	We	will	cover	a	little	information	about	the	Static	Mesh	creation
pipeline	later	in	this	chapter,	so	we	have	an	idea	of	the	amount	of	work	that	needs	to	be
done	to	get	a	Static	Mesh	into	the	game.	So,	BSP	Brush	is	great	for	an	early	game	play
testing	without	having	to	wait	for	all	Static	Meshes	to	be	created.

Making	Static	Mesh	movable
Let	us	open	our	saved	map	that	we	have	created	in	Chapter	2,	Creating	Your	First	Level,
and	let	us	first	save	the	level	as	a	new	Chapter3Level.

1.	 Go	to	Content	Browser	|	Content	|	StarterContent	|	Props,	and	search	for
SM_Chair,	which	is	a	standard	Static	Mesh	prop.	Click	and	drag	it	into	our	map.

2.	 The	chair	we	have	in	the	level	now	is	unmovable.	You	can	quickly	build	and	run	the
level	to	check	it	out.	To	make	it	movable,	we	need	to	change	a	couple	of	settings
under	the	chair’s	details.

3.	 First,	ensure	SM_Chair	is	selected,	go	to	the	Details	tab.	Go	to	Transform	|
Mobility,	change	it	from	Static	to	Movable.	Take	a	look	at	the	following	screenshot,
which	describes	how	to	make	the	chair	movable:

4.	 Next,	we	want	the	chair	to	be	able	to	respond	to	us.	Scroll	a	little	down	the	Details
tab	to	change	the	Physics	setting	for	the	chair.	Go	to	Details	|	Physics.	Make	sure	the
checkbox	for	Simulate	Physics	is	checked.	When	this	checkbox	is	checked,	the	auto-
link	setting	sets	the	Collision	to	be	a	PhysicsActor.	The	following	screenshot	shows
the	Physics	settings	of	the	chair:

Let	us	now	build	and	play	the	level.	When	you	walk	into	the	chair,	you	will	be	able	to
push	it	around.	Just	to	note,	the	chair	is	still	known	as	Static	Mesh,	but	it	is	now	movable.

Materials
In	Chapter	2,	Creating	Your	First	Level,	we	selected	a	walnut	polished	material	and
applied	it	to	the	ground.	This	changed	the	simple	dull	ground	into	a	brown	polished	wood
floor.	Using	materials,	we	are	able	to	change	the	look	and	feel	of	the	objects.

The	reason	for	a	short	introduction	of	materials	here	is	because	it	is	a	concept	that	we	need
to	have	learned	about	before	we	can	construct	a	Static	Mesh.	We	already	know	that	we
need	Static	Meshes	in	the	game	and	we	cannot	only	rely	on	the	limited	selection	that	we
have	in	the	default	map	package.	We	will	need	to	know	how	to	create	our	own	Static
Meshes,	and	we	rely	heavily	on	Materials	to	give	the	Static	Meshes	their	look	and	feel.

So,	when	do	we	apply	Materials	while	creating	our	custom	Static	Mesh?	Materials	are
applied	to	the	Static	Mesh	during	its	creation	process	outside	the	editor,	which	we	will
cover	in	a	later	section	of	this	chapter.	For	now,	let	us	first	learn	how	Materials	are
constructed	in	the	editor.

Creating	a	Material	in	Unreal
To	fully	understand	the	concept	of	a	Material,	we	need	to	break	it	down	into	its
fundamental	components.	How	a	surface	looks	is	determined	by	many	factors,	including
color,	presence	of	print/pattern/designs,	reflectivity,	transparency,	and	many	more.	These
factors	combine	together	to	give	the	surface	its	unique	look.

In	Unreal	Engine,	we	are	able	to	create	our	very	own	material	by	using	the	Material
Editor.	Based	on	the	explanation	given	earlier,	a	Material	is	determined	by	many	factors
and	all	these	factors	combine	together	to	give	the	Material	its	own	look	and	feel.

Unreal	Engine	offers	a	base	Material	node	that	has	a	list	of	customizable	factors,	which	we
can	use	to	design	our	Material.	By	using	different	values	to	different	factors,	we	can	come
up	with	our	very	own	Material.	Let	us	take	a	look	at	what	is	behind	the	scene	in	a	material
that	we	have	used	in	Chapter	2,	Creating	Your	First	Level.

Go	to	Content	Browser	|	Content	|	Starter	Content	|	Materials	and	double-click	on
M_Brick_Clay_New.	This	opens	up	the	Material	Editor.	The	following	screenshot	shows
the	zoomed-in	version	of	the	base	Material	node	for	the	brick	clay	material.	You	might
notice	that	Base	Color,	Roughness,	Normal,	and	Ambient	Occlusion	have	inputs	to	the
base	M_Brick_Clay_New	material	node.	These	inputs	make	the	brick	wall	look	like	a
brick	wall.

The	inputs	to	these	nodes	can	take	on	values	from	various	sources.	Take	Base	Color	for
example,	we	can	define	the	color	using	RGB	values	or	we	can	take	the	color	from	the
texture	input.	Textures	are	images	in	formats,	such	as	.bmp,	.jpg,	.png,	and	so	on,	which
we	can	create	using	tools,	such	as	Photoshop	or	ZBrush.

We	will	talk	more	about	the	construction	of	the	materials	a	little	later	in	this	book.	For

now,	let	us	just	keep	in	mind	that	materials	are	applied	to	the	surfaces	and	textures	are
what	we	can	use	in	combination,	to	give	the	materials	its	overall	visual	look.

Materials	versus	Textures
Notice	that	I	have	used	both	Materials	and	Textures	in	the	previous	section.	It	has	often
caused	quite	a	bit	of	confusion	for	a	newbie	in	the	game	development.	Material	is	what	we
apply	to	surfaces	and	they	are	made	up	of	a	combination	of	different	textures.	Materials
take	on	the	properties	from	the	textures	depending	on	what	was	specified,	including	color,
transparency,	and	so	on.

As	explained	earlier,	Textures	are	simple	images	in	formats	such	as	.tga,	.bmp,	.jpg,
.png,	and	so	on.

Texture/UV	mapping
Now,	we	understand	that	a	custom	material	is	made	up	of	a	combination	of	textures	and
material	is	applied	onto	surfaces	to	give	the	polygon	meshes	its	identity	and	realism.	The
next	question	is	how	do	we	apply	these	numerous	textures	that	come	with	the	material
onto	the	surfaces?	Do	we	simply	slap	them	onto	the	3D	object?	There	must	be	a
predictable	manner	in	which	we	paint	these	textures	onto	the	surfaces.	The	method	used	is
called	Texture	Mapping	,	which	was	pioneered	by	Edwin	Catmull	in	1974.

Texture	mapping	assigns	pixels	from	a	texture	image	to	a	point	on	the	surface	of	the
polygon.	The	texture	image	is	called	a	UV	texture	map.	The	reason	we	are	using	UV	as
an	alternative	to	the	XY	coordinates	is	because	we	are	already	using	XY	to	describe	the
geometric	space	of	the	object.	So	the	UV	coordinates	are	the	texture’s	XY	coordinates,
and	it	is	solely	used	to	determine	how	to	paint	a	3D	surface.

How	to	create	and	use	a	Texture	Map
We	will	first	need	to	unwrap	a	mesh	at	its	seams	and	lay	it	out	flat	in	2D.	This	2D	surface
is	then	painted	upon	to	create	the	texture.	This	painted	texture	(also	known	as	Texture
Map)	will	then	be	wrapped	back	around	the	mesh	by	assigning	the	UV	coordinates	of	the
texture	on	each	face	of	the	mesh.	To	help	you	better	visualize,	take	a	look	at	the	following
illustration:

Source:	Wikipedia	(https://en.wikipedia.org/wiki/UV_mapping)

https://en.wikipedia.org/wiki/UV_mapping

As	a	result	of	this,	shared	vertices	can	have	more	than	one	set	of	UV	coordinates	assigned.

Multitexturing
To	create	a	better	appearance	in	surfaces,	we	can	use	multiple	textures	to	create	the
eventual	end	result	desired.	This	layering	technique	allows	for	many	different	textures	to
be	created	using	different	combinations	of	textures.	More	importantly,	it	gives	the	artists
better	control	of	details	and/or	lighting	on	a	surface.

A	special	form	of	texture	maps	–	Normal	Maps
Normal	Maps	are	a	type	of	texture	maps.	They	give	the	surfaces	little	bumps	and	dents.
Normal	Maps	add	the	details	to	the	surfaces	without	increasing	the	number	of	polygons.
One	very	effective	use	of	Normal	Mapping	is	to	generate	Normal	Maps	from	a	high
polygon	3D	model	and	use	it	to	texture	the	lower	polygon	model,	which	is	also	known	as
baking.	We	will	discuss	why	we	need	the	same	3D	model	with	different	number	of
polygons	in	the	next	section.

Normal	maps	are	commonly	stored	as	regular	RGB	images	where	the	RGB	components
correspond	to	the	X,	Y,	and	Z	coordinates,	respectively,	of	the	surface	normal.	The
following	image	shows	an	example	of	a	normal	map	taken	from
http://www.bricksntiles.com/textures/:

http://www.bricksntiles.com/textures/

Level	of	detail
We	create	objects	with	varying	level	of	details	(LODs)	to	increase	the	efficiency	of
rendering.	For	objects	that	are	closer	to	the	player,	high	LODs	objects	are	rendered.
Objects	with	higher	LODs	have	a	higher	number	of	polygons.	For	objects	that	are	far
away	from	the	player,	a	simpler	version	of	the	object	is	rendered	instead.

Artists	can	create	different	LOD	versions	of	the	3D	object	using	automated	LOD
algorithms,	deployed	through	software	or	manually	reducing	the	number	of	vertices,
normals,	edges	in	the	3D	Models,	to	create	a	lower	polygon	count	model.	When	creating
models	of	different	LODs,	note	that	we	always	start	by	creating	the	most	detailed	model
with	the	most	number	of	polygons	first	and	then	reduce	the	number	accordingly	to	create
the	other	LOD	versions.	It	is	much	harder	to	work	the	models	the	other	way	around.	Do
remember	to	keep	the	UV	coherent	when	working	with	objects	with	different	LODs.
Currently,	different	LODs	need	to	be	light	mapped	separately.

The	following	image	is	taken	from	http://renderman.pixar.com/view/level-of-detail	and
very	clearly	shows	the	polygon	count	based	on	the	distance	away	from	the	camera:

http://renderman.pixar.com/view/level-of-detail

Collisions
Objects	in	Unreal	Engine	have	collision	properties	that	can	be	modified	to	design	the
behavior	of	the	object	when	it	collides	with	another	object.

In	real	life,	collisions	occur	when	two	objects	move	and	meet	each	other	at	a	point	of
contact.	Their	individual	object	properties	will	determine	what	kind	of	collision	we	get,
how	they	respond	to	the	collision,	and	their	path	after	the	collision.	This	is	what	we	try	to
achieve	in	the	game	world	as	well.

The	following	screenshot	shows	the	collision	properties	available	to	an	object	in	Unreal
Engine	4:

If	you	are	still	confused	about	the	concept	of	collision,	imagine	Static	Mesh	to	give	an
object	its	shape	(how	large	it	is,	how	wide	it	is,	and	so	on),	while	the	collision	of	the	object
is	able	to	determine	the	behavior	of	this	object	when	placed	on	the	table—whether	the
object	is	able	to	fall	through	the	table	in	the	level	or	lay	stationery	on	the	table.

Collision	configuration	properties
Let	us	go	through	some	of	the	possible	configurations	in	Unreal’s	Collision	properties	that
we	should	get	acquainted	with.

Simulation	Generates	Hit	Events
When	an	object	has	the	Simulation	Generates	Hit	Events	flag	checked,	an	alert	is	raised
when	the	object	has	a	collision.	This	alert	notification	can	be	used	to	trigger	the	onset	of
other	game	actions	based	on	this	collision.

Generate	Overlap	Events
The	Generate	Overlap	Events	flag	is	similar	to	the	Simulation	Generates	Hit	Events
flag,	but	when	this	flag	is	checked,	in	order	to	generate	an	event,	all	the	object	needs	is	to
have	another	object	to	overlap	with	it.

Collision	Presets
The	Collision	Presets	property	contains	a	few	frequently	used	settings	that	have	been
preconfigured	for	you.	If	you	wish	to	create	your	own	custom	collision	properties,	set	this
to	Custom.

Collision	Enabled
The	Collision	Enabled	property	allows	three	different	settings:	No	Collision,	No	Physics
Collision,	and	Collision	Enabled.	No	Physics	Collision	is	selected	when	this	object	is
used	only	for	non-physical	types	of	collision	such	as	raycasts,	sweeps,	and	overlaps.
Collision	Enabled	is	selected	when	physics	collision	is	needed.	No	Collision	is	selected
when	absolutely	no	collision	is	wanted.

Object	Type
Objects	can	be	categorized	into	several	groups:	WorldStatic,	WorldDynamic,	Pawn,
PhysicsBody,	Vehicle,	Destructible,	and	Projectile.	The	type	selected	determines	the
interactions	it	takes	on	as	it	moves.

Collision	Responses
The	Collision	Responses	option	sets	the	property	values	for	all	Trace	and	Object
Responses	that	come	with	it.	When	Block	is	selected	for	Collision	Responses,	all	the
properties	under	Trace	and	Object	Responses	are	also	set	to	Block.

Trace	Responses

The	Trace	Responses	option	affects	how	the	object	interacts	with	traces.	Visibility	and
Camera	are	the	two	types	of	traces	that	you	can	choose	to	block,	overlap,	or	ignore.

Object	Responses

The	Object	Responses	option	affects	how	this	object	interacts	with	other	object	types.
Remember	the	Object	Type	selection	earlier?	The	Object	Type	property	determines	the
type	of	object,	and	under	this	category,	you	can	configure	the	collision	response	this	object

has	with	the	different	types	of	objects.

Collision	hulls
For	a	collision	to	occur	in	Unreal	Engine,	hulls	are	used.	To	view	an	example	of	the
collision	hull	for	a	Static	Mesh,	take	a	look	at	the	light	blue	lines	surrounding	the	cube	in
the	following	screenshot;	it’s	a	box	collision	hull:

Hulls	can	be	generated	in	Static	Mesh	Editor	for	static	meshes.	The	following	screenshot
shows	the	menu	options	available	for	creating	an	auto-generated	collision	hull	in	Static
Mesh	Editor:

Simple	geometry	objects	can	be	combined	and	overlapped	to	form	a	simple	hull.	A	simple
hull/bounding	box	reduces	the	amount	of	calculation	it	needs	during	a	collision.	So	for
complex	objects,	a	generalized	bounding	box	can	be	used	to	encompass	the	object.	When
creating	static	mesh	that	has	a	complex	shape,	not	a	simple	geometry	type	of	object,	you
will	need	to	refer	to	the	Static	Mesh	creation	pipeline	section	later	on	in	the	chapter	to
learn	how	to	create	a	suitable	collision	bounding	box	for	it.

Interactions
When	designing	collisions,	you	will	also	need	to	decide	what	kind	of	interactions	the
object	has	and	what	it	will	interact	with.

To	block	means	they	will	collide,	and	to	overlap	can	mean	that	no	collision	will	occur.
When	a	block	or	an	overlap	happens,	it	is	possible	to	flag	the	event	so	that	other	actions
resulting	from	this	interaction	can	be	taken.	This	is	to	allow	customized	events,	which	you
can	have	in	game.

Note	that	for	a	block	to	actually	occur,	both	objects	must	be	set	to	Block	and	they	must	be
set	so	that	they	block	the	right	type	of	objects	too.	If	one	is	set	to	block	and	the	other	to
overlap,	the	overlap	will	occur	but	not	the	block.	Block	and	overlap	can	happen	when
objects	are	moving	at	a	high	speed,	but	events	can	only	be	triggered	on	either	overlap	or
block,	not	both.	You	can	also	set	the	blocking	to	ignore	a	particular	type	of	object,	for
example,	Pawn,	which	is	the	player.

Static	Mesh	creation	pipeline
Static	Mesh	creation	pipeline	is	done	outside	of	the	editor	using	3D	modeling	tools	such	as
Autodesk’s	Maya	and	3D’s	Max.	Unreal	Engine	4	is	compatible	to	import	the	FBX	2013
version	of	the	files.

This	creation	pipeline	is	used	mainly	by	the	artists	to	create	game	objects	for	the	project.

The	actual	steps	and	naming	convention	when	importing	Static	Mesh	into	the	editor	are
well	documented	on	the	Unreal	4	documentation	website.	You	may	refer	to
https://docs.unrealengine.com/latest/INT/Engine/Content/FBX/StaticMeshes/index.html
for	more	details.

https://docs.unrealengine.com/latest/INT/Engine/Content/FBX/StaticMeshes/index.html

Introducing	volumes
Volumes	are	invisible	areas	that	are	created	to	help	the	game	developers	perform	a	certain
function.	They	are	used	in	conjunction	with	the	objects	in	the	level	to	perform	a	specific
purpose.	Volumes	are	commonly	used	to	set	boundaries	that	are	intended	to	prevent
players	from	gaining	access	to	trigger	events	in	the	game,	or	use	the	Lightmass
Importance	Volume	to	change	how	light	is	calculated	within	an	area	in	the	map	as	in
Chapter	2,	Creating	Your	First	Level.

Here’s	a	list	of	the	different	types	of	volumes	that	can	be	customized	and	used	in	Unreal
Engine	4.	But	feel	free	to	quickly	browse	through	each	of	the	volumes	here	for	now,	and
revisit	them	later	when	we	start	learning	how	to	use	them	later	in	the	book.	For	this
chapter,	you	may	focus	your	attention	first	on	the	Trigger	Volume,	as	we	will	be	using	that
in	the	later	examples	of	this	chapter.

Blocking	Volume
The	Blocking	Volume	can	be	used	to	prevent	players/characters/game	objects	from
entering	a	certain	area	of	the	map.	It	is	quite	similar	to	collision	hull	which	we	have
described	earlier	and	can	be	used	in	place	of	Static	Mesh	collision	hull,	as	they	are	simpler
in	shapes	(block	shapes),	hence	easier	to	calculate	the	response	of	the	collision.	These
volumes	also	have	the	ability	to	detect	which	objects	overlap	with	themselves	quickly.

An	example	of	the	usage	of	the	Blocking	Volume	is	to	prevent	the	player	from	walking
across	a	row	of	low	bushes.	In	this	case,	since	the	bushes	are	rather	irregularly	shaped	but
are	roughly	forming	a	straight	line,	like	a	hedge,	an	invisible	Blocking	Volume	would	be	a
very	good	way	of	preventing	the	player	from	crossing	the	bushes.

The	following	screenshot	shows	the	properties	for	the	Blocking	Volume.	We	can	change
the	shape	and	size	of	the	volume	under	Brush	Settings.	Collision	events	and	triggers	other
events	using	Blueprint.	This	is	pretty	much	the	basic	configuration	we	will	get	for	all	other
volumes	too.

Camera	Blocking	Volume
The	Camera	Blocking	Volume	works	in	the	same	way	as	the	Blocking	Volume	but	it	is
used	specifically	to	block	cameras.	It	is	useful	when	you	want	to	limit	the	player	from
exploring	with	the	camera	beyond	a	certain	range.

Trigger	Volume
The	Trigger	Volume	is	probably	one	of	the	most	used	volumes.	This	is	also	the	volume
which	we	would	be	using	to	create	events	for	the	game	level	that	we	have	been	working
on.	As	the	name	implies,	upon	entering	this	volume,	we	can	trigger	events,	and	via
Blueprint,	we	can	create	a	variety	of	events	for	our	game,	such	as	moving	an	elevator	or
spawning	NPCs.

Nav	Mesh	Bounds	Volume
The	Nav	Mesh	Bounds	Volume	is	used	to	indicate	the	space	in	which	NPCs	are	able	to
freely	navigate	around.	NPCs	could	be	enemies	in	the	game	who	need	some	sort	of	path
finding	method	to	get	around	the	level	on	their	own.	This	Nav	Mesh	Bounds	Volume	will
set	up	the	area	in	the	game	that	they	are	able	to	walk	through.	This	is	important	as	there
could	be	obstacles	such	as	bridges	that	they	will	need	to	use	to	in	order	get	across	to	the
other	side	(instead	of	walking	straight	into	the	river	and	possibly	drowning).

Physics	Volume
The	Physics	Volume	is	used	to	create	areas	in	which	the	physics	properties	of	the
player/objects	in	the	level	change.	An	example	of	this	would	be	altering	the	gravity	within
a	space	ship	only	when	it	reaches	the	orbit.	When	the	gravity	is	changed	in	these	areas,	the
player	starts	to	move	slower	and	float	in	the	space	ship.	We	can	then	turn	this	volume	off
when	the	ship	comes	back	to	earth.	The	following	screenshot	shows	the	additional	settings
we	get	from	the	Physics	Volume:

Pain	Causing	Volume
The	Pain	Causing	Volume	is	a	very	specialized	volume	used	to	create	damage	to	the
players	upon	entry.	It	is	a	“milder”	version	of	the	Kill	Z	Volume.	Reduction	of	health	and
the	amount	of	damage	per	second	are	customizable,	according	to	your	game	needs.	The
following	screenshot	shows	the	properties	you	can	adjust	to	control	how	much	pain	to
inflict	on	the	player:

Kill	Z	Volume
We	kill	the	player	when	it	enters	the	Kill	Z	Volume.	This	is	a	very	drastic	volume	that	kills
the	player	immediately.	An	example	of	its	usage	is	to	kill	the	player	immediately	when	the
player	falls	off	a	high	building.	The	following	screenshot	shows	the	properties	of	Kill	Z
Volume	to	determine	the	point	at	which	the	player	is	killed:

Level	Streaming	Volume
The	Level	Streaming	Volume	is	used	to	display	the	levels	when	you	are	within	the
volume.	It	generally	fills	the	entire	space	where	you	want	the	level	to	be	loaded.	The
reason	we	need	to	stream	levels	is	to	give	players	an	illusion	that	we	have	a	large	open
game	level,	when	in	fact	the	level	is	broken	up	into	chunks	for	more	efficient	rendering.
The	following	screenshot	shows	the	properties	that	can	be	configured	for	the	Level
Streaming	Volume:

Cull	Distance	Volume
The	Cull	Distance	Volume	allows	objects	to	be	culled	in	the	volume.	The	definition	of	cull
is	to	select	from	a	group.	The	Cull	Distance	Volume	is	used	to	select	objects	in	the	volume
that	need	to	disappear	(or	not	rendered)	based	on	the	distance	away	from	the	camera.	Tiny
objects	that	are	far	away	from	the	camera	cannot	be	seen	visibly.	These	objects	can	be
culled	if	the	camera	is	too	far	away	from	those	objects.	Using	the	Cull	Distance	Volume,
you	would	be	able	to	decide	upon	the	distance	and	size	of	objects,	which	you	want	to	cull
within	a	fixed	space.	This	can	greatly	improve	performance	of	your	game	when	used
effectively.

This	might	seem	very	similar	to	the	idea	of	occlusion.	Occlusion	is	implemented	by
selecting	object	by	object,	when	it	is	not	rendered	on	screen.	These	are	normally	used	for
larger	objects	in	the	scene.	Cull	Distance	Volume	can	be	used	over	a	large	area	of	space
and	using	conditions	to	specify	whether	or	not	the	objects	are	rendered.

The	following	screenshot	shows	the	configuration	settings	that	are	available	to	the	Cull
Distance	Volume:

Audio	Volume

The	Audio	Volume	is	used	to	mimic	real	ambient	sound	changes	when	one	transits	from
one	place	to	another,	especially	when	transiting	to	and	from	very	different	environments,
such	as	walking	into	a	clock	shop	from	a	busy	street,	or	walking	in	and	out	of	a	restaurant
with	a	live	band	playing	in	the	background.

The	volume	is	placed	surrounding	the	boundaries	of	one	of	the	areas	creating	an	artificial
border	dividing	the	spaces	into	interior	and	exterior.	With	this	artificially	created	boundary
and	settings	that	come	with	this	Audio	Volume,	sound	artists	are	able	to	configure	how
sounds	are	played	during	this	transition.

PostProcess	Volume
The	PostProcess	Volume	affects	the	overall	scene	using	post-processing	techniques.	Post-
processing	effects	include	Bloom	effects,	Anti-Aliasing,	and	Depth	of	Field.

Lightmass	Importance	Volume
We	have	used	Lightmass	Importance	Volume	in	Chapter	2,	Creating	Your	First	Level,	to
focus	the	light	on	the	section	of	the	map	that	has	the	objects	in.	The	size	of	the	volume
should	encompass	your	entire	level.

Introducing	Blueprint
The	Unreal	Editor	offers	the	ability	to	create	custom	events	for	game	levels	through	a
visual	scripting	system.	Before	Unreal	Engine	4,	it	was	known	as	the	Kismet	system.	In
Unreal	Engine	4,	this	system	was	revamped	with	more	features	and	capabilities.	The
improved	system	was	launched	with	the	new	name	of	Blueprint.

There	are	several	types	of	Blueprint:	Class	Blueprint,	Data-Only	Blueprint,	and	Level
Blueprint.	These	are	more	or	less	equivalent	to	what	we	used	to	know	as	Kismet,	which	is
now	known	as	Level	Blueprint.

Why	do	I	need	Blueprint?	The	simple	answer	is	that	through	Blueprint,	we	are	able	to
control	gameplay	without	having	to	dive	into	the	actual	coding.	This	makes	it	convenient
for	non-programmers	to	design	and	modify	the	gameplay.	So,	it	mainly	benefits	the	game
designers/artists	who	can	configure	the	game	through	the	Blueprint	editor.

So,	how	can	we	use	Blueprint	and	what	can	I	use	Blueprint	for?	Blueprint	is	just	like
coding	with	an	interface.	You	can	select,	drag,	and	drop	function	nodes	into	the	editor,	and
link	them	up	logically	to	evoke	the	desired	response	to	specified	scenarios	in	your	game.
For	programmers,	they	will	be	able	to	pick	it	up	pretty	quickly,	since	Blueprint	is	in	fact
coding	but	through	a	visual	interface.

For	the	benefit	of	everyone	who	is	new	to	Unreal	Engine	4	and	maybe	programming	as
well,	we	will	go	through	a	basic	example	of	how	Level	Blueprint	works	here	and	use	that
as	an	example	to	go	through	some	basic	programming	concepts	at	the	same	time.

What	will	we	be	using	Blueprint	for?	Blueprint	has	the	capabilities	to	prototype,
implement,	or	modify	virtually	any	gameplay	element.	The	gameplay	elements	affect	how
game	objects	are	spawned,	what	gets	spawned,	where	they	are	spawned,	and	under	what
conditions	they	are	spawned.	The	game	objects	can	include	lights,	camera,	player’s	input,
triggers,	meshes,	and	character	models.	Blueprint	can	control	properties	of	these	game
objects	dynamically	to	create	countless	gameplay	scenarios.	The	examples	of	usage
include	altering	the	color	of	the	lights	when	you	enter	a	room	in	the	game,	triggering	the
door	to	shut	behind	you	after	entering	the	room	and	playing	the	sound	effect	of	the	door
closing	shut,	spawning	weapons	randomly	among	three	possible	locations	in	the	map,	and
so	on.

In	this	chapter,	we	will	focus	on	Level	Blueprint	first,	since	it	is	the	most	commonly	used
form	of	Blueprint.

Level	Blueprint
Level	Blueprint	is	a	type	of	Blueprint	that	has	influence	over	what	happens	in	the	level.
Events	that	are	created	in	this	Blueprint	affect	what	happens	in	the	level,	and	are	made
specific	to	the	situation	by	specifying	the	particular	object	it	targets.

Feel	free	to	jump	to	the	next	section	first	where	we	will	go	through	a	Blueprint	example,
so	that	we	are	able	to	understand	Level	Blueprint	a	little	better.

The	following	screenshot	shows	a	blank	Level	Blueprint.	The	most	used	window	is	Event
Graph,	which	is	in	the	center.	Using	different	node	types	in	Event	Graph	and	linking	it
up	appropriately	creates	a	responsive	interaction	within	the	game.	The	nodes	come	with
variables,	values,	and	other	similar	properties	used	in	programming	to	control	the	game
events	graphically	(without	writing	a	single	line	of	script	or	code).

Using	the	Trigger	Volume	to	turn	on/off
light
We	are	now	ready	to	use	what	we	have	learned	to	construct	the	next	room	for	our	game.
We	will	duplicate	the	first	room	we	have	created	in	order	to	create	our	second	room.

1.	 Open	the	level	that	we	created	in	Chapter	2,	Creating	Your	First	Level,
(Chapter2_Level)	and	save	it	as	a	new	level	called	Chapter3_Level.

2.	 Select	all	the	walls,	the	floor,	the	door,	and	the	door	frame.
3.	 Hold	down	Alt	+	Shift	and	drag	to	duplicate	the	room.
4.	 Place	the	duplicated	room	with	the	duplicated	door	aligned	to	the	wall	of	the	first

room.	Refer	to	the	following	screenshot	to	see	how	the	walls	are	aligned	from	a	Top
view	perspective:

5.	 Delete	the	back	wall	of	the	first	room	to	link	both	the	rooms.
6.	 Delete	all	the	doors	to	allow	easy	access	to	the	second	room.
7.	 Move	the	standing	lamp	and	chair	to	the	side.	Take	a	look	the	following	screenshot	to

understand	how	the	rooms	look	at	this	point:

8.	 Rebuild	the	lights.	The	following	screenshot	shows	the	room	correctly	illuminated
after	building	the	lights:

9.	 Now,	let	us	focus	on	working	on	the	second	room.	We	will	create	a	narrower

walkway	using	the	second	room	that	we	have	just	created.
10.	 Move	the	sidewalls	closer	to	each	other—about	30	cm	from	the	previous	sidewall

towards	the	center.	Refer	to	the	next	two	screenshots	for	the	Top	and	Perspective
views	after	moving	the	sidewalls:

11.	 Note	that	LightMass	Importance	Volume	is	not	encompassing	the	entire	level	now.
Increase	the	size	of	the	volume	to	cover	the	whole	level.	Take	a	look	at	the	following
screenshot	to	see	how	to	extend	the	size	of	the	volume	correctly:

12.	 Go	to	Content	Browser	|	Props.	Click	and	drop	SM_Lamp_Wall	into	the	level.
Rotate	the	lamp	if	necessary	so	that	it	lies	nicely	on	the	side	wall.

13.	 Go	to	Modes	|	Lights.	Click	and	drop	a	Point	Light	into	the	second	room.	Place	it
just	above	the	light	source	on	the	wall	light,	which	we	added	in	the	previous	step.
Take	a	look	at	the	following	screenshot	to	see	the	placement	of	the	lamp	and	Point
Light	that	we	have	just	added:

14.	 Adjust	the	Point	Light	settings:	Intensity	=	1700.0.	This	is	approximately	the	light
intensity	coming	off	a	light	bulb.	The	following	screenshot	shows	the	settings	for	the
Point	Light:

15.	 Next,	go	to	Light	Color	and	adjust	the	color	of	the	light	to	#FF9084FF,	to	adjust	the
mood	of	the	level.

16.	 Now,	let	us	rename	the	Point	Light	to	WalkwayLight	and	the	Wall	Lamp	prop	to
WallLamp.

17.	 Select	the	Point	Light	and	right-click	to	display	the	contextual	menu.	Go	to	Attach
To	and	select	WallLamp.	This	attaches	the	light	to	the	prop	so	that	when	we	move
the	prop,	the	light	moves	together.	The	following	screenshot	shows	that
WalkwayLight	is	linked	to	WallLamp:

18.	 Now,	let	us	create	a	Trigger	Volume.	Go	to	Modes	|	Volumes.	Click	and	drag	the
Trigger	Volume	into	the	level.

19.	 Resize	the	volume	to	cover	the	entrance	of	the	door	dividing	the	two	rooms.	Refer	to
the	next	two	screenshots	on	how	to	position	the	volume	(Perspective	view	and	Top
view).	Make	sure	that	the	volume	covers	the	entire	space	of	the	door.

20.	 Rename	Trigger	Volume	to	WalkwayLightTrigger.
21.	 In	order	to	use	the	Trigger	Volume	to	turn	the	light	on	and	off,	we	need	to	figure	out

which	property	from	the	Point	Light	controls	this	feature.	Click	on	the	Point	Light
(WalkwayLight)	to	display	the	properties	of	the	light.	Scroll	down	to	Rendering	and
uncheck	the	property	box	for	Visible.	Notice	that	the	light	is	now	turned	off.	We	want
to	keep	the	light	turned	off	until	we	trigger	it.

22.	 So,	the	next	step	is	to	link	the	sequence	of	events	up.	This	is	done	via	Level
Blueprint.	We	will	need	to	trigger	this	change	in	property	using	the	Trigger	Volume,
which	we	have	created	and	turn	the	light	back	on.

23.	 With	the	Point	Light	still	selected,	go	to	the	top	ribbon	and	select	Blueprints	|	Open
Level	Blueprint.	This	opens	up	the	Level	Blueprint	window.	Make	sure	that	the
Point	Light	(WalkwayLight)	is	still	selected	as	shown	in	the	following	screenshot:

24.	 Right-click	in	the	Event	Graph	of	the	Level	Blueprint	window	to	display	what
actions	can	be	added	to	the	Level	Blueprint.

25.	 Due	to	Level	Blueprint’s	ability	to	guide	what	actions	are	possible,	we	can	simply
select	Add	Reference	to	WalkwayLight.	This	creates	the	WalkwayLight	actor	in
Level	Blueprint.	The	following	screenshot	shows	the	WalkwayLight	actor	correctly
added	in	Blueprint:

26.	 You	can	keep	the	Level	Blueprint	window	open,	and	go	to	the	Trigger	Volume	we
have	created	the	in	the	level.

27.	 Select	the	Trigger	Volume	(WalkwayLightTrigger),	right-click	and	select	Add
Event	and	then	OnActorBeginOverlap.	The	following	screenshot	shows	how	to	add
OnActorBeginOverlap	in	Level	Blueprint:

28.	 To	control	a	variable	in	the	Point	Light,	we	will	click	and	drag	on	the	tiny	blue	circle
on	the	WalkwayLight	node	added.	This	creates	a	blue	line	originating	from	the	tiny
blue	circle.	This	also	opens	up	a	menu,	where	we	can	see	what	action	can	be	done	to
the	Point	Light.	Enter	visi	into	the	search	bar	to	display	the	options.	Click	on	Set
Visibility.	The	following	screenshot	shows	how	to	add	the	Set	Visibility	function	to
the	Point	Light	(WalkwayLight):

29.	 Check	the	New	Visiblity	checkbox	in	the	Set	Visiblity	function.	The	following
screenshot	shows	the	configuration	we	want:

30.	 Now,	we	are	ready	to	link	the	OnActorBeginOverlap	event	to	the	Set	Visibility
function.	Click	and	drag	the	white	triangular	box	from	OnActorBeginOverlap	and
drop	it	on	the	white	triangular	box	at	the	Set	Visibility	function.	The	following
screenshot	shows	the	event	correctly	linked	up:

31.	 Now,	build	the	level	and	play.	Walk	through	the	door	from	the	first	room	to	the
second	room.	The	light	should	be	triggered	on.

But	what	happens	when	you	walk	back	into	the	first	room?	The	light	remained	turned	on
and	nothing	happens	when	you	walk	back	into	the	second	room.	In	the	next	example,	we
will	go	through	how	you	can	toggle	the	light	on	and	off	as	you	walk	in	and	out	the	room.
It	is	an	alternative	way	to	implement	the	control	of	the	light	and	I	shall	leave	it	as	optional

for	you	to	try	it	out.

Using	Trigger	Volume	to	toggle	light
on/off	(optional)
The	following	steps	can	be	used	to	trigger	volume	to	toggle	lights	on	or	off:

1.	 We	need	to	replace	the	Set	Visibility	node	in	Event	Graph.	Click	and	drag	the	blue
dot	from	Point	Light	(WalkwayLight)	and	drop	it	onto	any	blank	space.	This	opens
up	the	contextual	menu.	The	following	screenshot	shows	the	contextual	menu	to
place	a	new	node	from	WalkwayLight:

2.	 Select	Toggle	Visibility.	This	creates	an	additional	new	node	in	Event	Graph;	we
will	need	to	rewire	the	links	as	per	the	following	screenshot	in	order	to	link
OnActorBeginOverlap	to	Toggle	Visibility:

3.	 The	last	step	is	to	delete	the	Set	Visiblity	node	and	we	are	ready	to	toggle	the	light	on
and	off	as	we	move	in	and	out	of	the	room.	The	following	screenshot	shows	the	final
Event	Graph	we	want.	Compile	and	play	the	level	to	see	how	you	can	toggle	the
light	on	and	off.

Summary
We	have	covered	a	number	of	very	important	concepts	about	the	objects	that	we	use	to
populate	our	game	world	in	Unreal	Engine	4.	We	have	broken	one	of	the	most	common
types	of	game	object,	Static	Mesh,	into	its	most	fundamental	components	in	order	to
understand	its	construction.	We	have	also	compared	two	types	of	game	objects	(Static
Meshes	and	BSP),	how	they	are	different,	and	why	they	have	their	spot	in	the	game.	This
will	help	you	decide	what	kind	of	objects	need	to	be	created	and	how	they	will	be	created
for	your	game	level.

The	chapter	also	briefly	introduced	textures	and	materials,	how	they	are	created,	and
applied	onto	the	meshes.	We	will	go	into	more	details	about	Materials	in	the	next	chapter.
So	you	might	want	to	read	Chapter	4,	Material	and	Light,	first	before	creating/applying
materials	to	your	newly	created	game	objects.	To	help	you	optimize	your	game,	this
chapter	also	covered	the	mesh	creation	pipeline	and	the	concept	of	LOD.	For	interactions
to	take	place,	we	also	needed	to	learn	how	objects	interact	and	collide	with	one	another	in
Unreal,	what	object	properties	are	configurable	to	allow	different	physics	interaction.

This	chapter	also	covered	our	first	introduction	to	Blueprint,	the	graphical	scripting	of
Unreal	Engine4.	Through	a	simple	Blueprint	example,	we	learned	how	to	turn	on	and	off
lights	for	our	level	using	one	of	the	many	useful	volumes	that	are	in	Unreal,	Trigger
Volume.	In	the	next	chapter,	we	will	continue	to	build	on	the	level	we	have	created	with
more	exciting	materials	and	lights.

Chapter	4.	Material	and	Light
In	this	chapter,	we	will	learn	in	detail	about	the	materials	and	the	lights	in	Unreal	Engine
4.	We	have	grouped	both	Material	and	Light	together	in	this	chapter	because	how	an
object	looks	is	largely	determined	by	both—material	and	lighting.

Material	is	what	we	apply	to	the	surface	of	an	object	and	it	affects	how	the	object	looks	in
the	game.	Material/Shader	programming	is	a	hot	ongoing	research	topic	as	we	always
strive	to	improve	the	texture	performance—seeking	higher	graphic	details/realism/quality
with	limited	CPU/GPU	rendering	power.	Researchers	in	this	area	need	to	find	ways	to
make	the	models	we	have	in	a	game	look	as	real	as	possible,	with	as	little	calculations/data
size	as	possible.

Lighting	is	also	a	very	powerful	tool	in	world	creation.	There	are	many	uses	of	light.
Lights	can	create	a	mood	for	the	level.	When	effectively	used,	it	can	be	used	to	focus
attention	on	objects	in	the	level	and	guide	players	through	your	level.	Light	also	creates
shadow.	In	a	game	level,	shadow	needs	to	be	created	artificially.	Hence,	we	will	also	learn
how	we	get	shadows	rendered	appropriately	for	our	game.

Materials
In	the	previous	chapter,	we	briefly	touched	on	what	a	material	is	and	what	a	texture	is.	A
texture	is	like	a	simple	image	file	in	the	format	of	.png/.tga.	A	material	is	a	combination
of	different	elements,	including	textures	to	create	a	surface	property	that	we	apply	to	our
objects	in	the	game.	We	have	also	briefly	covered	what	UV	coordinates	are	and	how	we
use	them	to	apply	a	2D	texture	to	the	surface	of	a	3D	object.

So	far,	we	have	only	learned	how	to	apply	materials	that	are	available	in	the	default	Unreal
Engine.	In	this	chapter,	we	will	dive	deeper	into	how	we	can	actually	create	our	own
custom	material	in	Unreal	Engine	4.	Fundamentally,	the	material	creation	for	the	objects
falls	into	the	scope	of	an	artist.	For	special	customized	textures,	they	are	sometimes	hand
painted	by	2D	artists	using	tools	such	as	Photoshop	or	taken	from	photographs	of	textures
from	the	exact	objects	we	want,	or	similar	objects.	Textures	can	also	be	tweaked	from
existing	texture	collection	to	create	the	customized	material	that	is	needed	for	the	3D
models.	Due	to	the	vast	number	of	realistic	textures	needed,	textures	are	sometimes	also
generated	algorithmically	by	the	programmers	to	allow	more	control	over	its	final	look.
This	is	also	an	important	research	area	for	the	advancing	materials	for	computer	graphics.

Material	manipulation	here	falls	under	the	scope	of	a	specialized	group	of	programmers
known	as	graphic	programmers.	They	are	sometimes	also	researchers	that	look	into
ways	to	better	compress	texture,	improve	rendering	performance,	and	create	special
dynamic	material	manipulation.

The	Material	Editor
In	Unreal	Engine	4,	material	manipulation	can	be	achieved	using	the	Material	Editor.
What	this	editor	offers	is	the	ability	to	create	material	expressions.	Material	expressions
work	together	to	create	an	overall	surface	property	for	the	material.	You	can	think	of	them
as	mathematical	formulas	that	add/multiply	together	to	affect	the	properties	of	a	material.
The	Material	Editor	makes	it	easy	to	edit/formulate	material	expressions	to	create
customized	material	and	provides	the	capability	to	quickly	preview	the	changes	in	the
game.	Through	Unreal’s	Blueprint	capabilities	and	programming,	we	can	also	achieve
dynamic	manipulation	of	materials	as	needed	by	the	game.

The	rendering	system
The	rendering	system	in	Unreal	Engine	4	uses	the	DirectX	11	pipeline,	which	includes
deferred	shading,	global	illumination,	lit	translucency,	and	post	processing.	Unreal	Engine
4	has	also	started	branching	to	work	with	the	newest	DirectX	12	pipeline	for	Windows	10,
and	DirectX	12	capabilities	will	be	available	to	all.

Physical	Based	Shading	Model
Unreal	Engine	4	uses	the	Physical	Based	Shading	Model	(PBSP).	This	is	a	concept	used
in	many	modern	day	game	engines.	It	uses	an	approximation	of	what	light	does	in	order	to
give	an	object	its	properties.	Using	this	concept,	we	give	values	(0	to	1)	to	these	four
properties:	Base	Color,	Roughness,	Metallic,	and	Specular	to	approximate	the	visual
properties.

For	example,	the	bark	of	a	tree	trunk	is	normally	brown,	rough,	and	not	very	reflective.
Based	on	what	we	know	about	how	the	bark	should	look	like,	we	would	probably	set	the
metallic	value	to	low	value,	roughness	to	a	high	value,	and	the	base	color	to	display	brown
with	a	low	specular	value.

This	improves	the	process	of	creating	materials	as	it	is	more	intuitive	as	visual	properties
are	governed	by	how	light	reacts,	instead	of	the	old	method	where	we	approximate	the
visual	properties	based	on	how	light	should	behave.

For	those	who	are	familiar	with	the	old	terms	used	to	describe	material	properties,	you	can
think	of	it	as	having	Diffuse	Color	and	Specular	Power	replaced	by	Base	Color,
Metallic,	and	Roughness.

The	advantage	of	using	PBSP	is	that	we	can	better	approximate	material	properties	with
more	accuracy.

High	Level	Shading	Language
The	Material	Editor	enables	visual	scripting	of	the	High	Level	Shading	Language
(HLSL),	using	a	network	of	nodes	and	connection.	Those	who	are	completely	new	to	the
concept	of	shaders	or	HLSL	should	go	on	to	read	the	next	section	about	shaders,	DirectX
and	HLSL	first,	so	that	you	have	the	basic	foundation	on	how	the	computer	renders
material	information	on	the	screen.	HLSL	is	aproprietary	shading	language	developed	by
Microsoft.	OpenGL	has	its	own	version,	known	as	GLSL.	HLSL	is	the	programming
language	used	to	program	the	stages	in	the	graphics	pipeline.	It	uses	variables	that	are
similar	to	C	programming	and	has	many	intrinsic	functions	that	are	already	written	and
available	for	use	by	simply	calling	the	function.HLSL	shaders	can	be	compiled	at	author-
time	or	at	runtime,	and	set	at	runtime	into	the	appropriate	pipeline	stage.

Getting	started
To	open	the	Material	Editor	in	Unreal	Engine	4,	go	to	Content	Browser	|	Material	and
double-click	on	any	material	asset.	Alternatively,	you	can	select	a	material	asset,	right-
click	to	open	the	context	menu	and	select	Edit	to	view	that	asset	in	the	Material	Editor.

If	you	want	to	learn	how	to	create	a	new	material,	you	can	try	out	the	example,	which	is
covered	in	the	upcoming	section.

Creating	a	simple	custom	material
We	will	continue	to	use	the	levels	we	have	created.	Open	Chapter3Level.umap	and
rename	it	Chapter4Level.umap	to	prevent	overwriting	what	we	have	completed	at	the	end
of	the	previous	chapter.

To	create	a	new	Material	asset	in	our	game	package,	go	to	Content	Browser	|	Material.
With	Material	selected,	right-click	to	open	the	contextual	menu,	navigate	to	New	Asset	|
Material.	This	creates	the	new	material	in	the	Material	folder	(we	want	to	place	assets	in
logical	folders	so	that	we	can	find	game	assets	easily).	Alternatively,	you	can	go	to
Content	Browser	|	New	|	Material.

Rename	the	new	material	to	MyMaterial.	The	following	screenshot	shows	the	new
MyMaterial	correctly	created:

Note	that	the	thumbnail	display	for	the	new	MyMaterial	shows	a	grayed-out	checkered
material.	This	is	the	default	material	when	no	material	has	been	applied.

To	open	the	Material	Editor	to	start	designing	our	material,	double-click	on	MyMaterial.
The	following	screenshot	shows	the	Material	Editor	with	a	blank	new	material.	The
spherical	preview	of	the	material	shows	up	as	black	since	no	properties	have	been	defined
yet.

Let’s	start	to	define	some	properties	for	the	MyMaterial	node	to	create	our	very	own
unique	material.	Base	Color,	Metallic,	and	Roughness	are	the	three	values	we	will	learn
to	configure	first.

Base	Color	is	defined	by	the	red,	green,	and	blue	values	in	the	form	of	a	vector.	To	do	so,
we	will	drag	and	drop	Constant3Vector	from	MyPalette	on	the	right-hand	side	into	the
main	window	where	the	MyMaterial	node	is	in.	Alternatively,	you	can	right-click	to	open
the	context	menu	and	type	vector	into	the	search	box	to	filter	the	list.	Click	and	select
Constant3Vector	to	create	the	node.	Double-click	on	the	Constant3Vector	to	display	the
Color	Picker	window.	The	following	screenshot	shows	the	setting	of	Constant3Vector
we	want	to	use	to	create	a	material	for	a	red	wall.	(R	=	0.4,	G	=	0.0,	B	=	0.0,	H	=	0.0,	S	=
1.0,	V	=	0.4):

Connect	the	Constant3Vector	to	the	MyMaterial	node	as	shown	in	the	following
screenshot	by	clicking	and	dragging	from	the	small	circle	from	the	Constant3Vector	node
to	the	small	circle	next	to	the	Base	Color	property	in	the	MyMaterial	node.	This
Constant3Vector	node	now	provides	the	base	color	to	the	material.	Notice	how	the
spherical	preview	on	the	left	updates	to	show	the	new	color.	If	the	color	is	not	updated
automatically,	make	sure	that	the	Live	Preview	setting	on	the	top	ribbon	is	selected.

Now,	let	us	set	the	Metallic	value	for	the	material.	This	property	takes	a	numerical	value
from	0	to	1,	where	1	is	for	a	100%	metal.	To	create	an	input	for	a	value,	click	and	drag
Constant	from	MyPalette	or	right-click	in	the	Material	Editor	to	open	the	menu;	type	in
Constant	into	the	search	box	to	filter	and	select	Constant	from	the	filtered	list.	To	edit	the
value	in	the	constant,	click	on	the	Constant	node	to	display	the	Details	window	and	fill	in
the	value.	The	following	screenshot	shows	how	the	material	would	look	if	Metallic	is	set
to	1:

After	seeing	how	the	Metallic	value	affects	the	material,	let	us	see	what	Roughness	does.
Roughness	also	takes	a	Constant	value	from	0	to	1,	where	0	is	completely	smooth	and
makes	the	surface	very	reflective.	The	left-hand	screenshot	shows	how	the	material	looks
when	Roughness	is	set	to	0,	whereas	the	right-hand	screenshot	shows	how	the	material
will	look	when	Roughness	is	set	to	1:

We	want	to	use	this	new	material	to	texture	the	walls.	So,	we	have	set	Metallic	as	0.3	and
Roughness	as	0.7.	The	following	screenshot	shows	the	final	settings	we	have	for	our	first
custom	material:

Go	to	MyMaterial	in	Content	Browser	and	duplicate	MyMaterial.	Rename	it
MyWall_Grey.	Change	the	base	color	to	gray	using	the	following	values	as	shown	in	the
picker	node	for	the	Constant3Vector	value	for	Base	Color.	(R	=	0.185,	G	=	0.185,	B	=
0.185,	H	=	0.0,	S	=	0.0,	V	=	0.185):

The	following	screenshot	shows	the	links	for	the	MyWall_Grey	node.	(Metallic	=	0.3,
Roughness	=	0.7):

Creating	custom	material	using	simple	textures
To	create	a	material	using	textures,	we	must	first	select	a	texture	that	is	suitable.	Textures
can	be	created	by	artists	or	taken	from	photos	of	materials.	For	learning	purposes,	you	can
find	suitable	free	source	images	from	the	Web,	such	as	www.textures.com,	and	use	them.
Remember	to	check	for	conditions	of	usage	and	other	license-related	clauses,	if	you	plan
to	publish	it	in	a	game.

There	are	two	types	of	textures	we	need	for	a	custom	material	using	a	simple	texture.
First,	the	actual	texture	that	we	want	to	use.	For	now,	let	us	keep	this	selection	simple	and
straightforward.	Select	this	texture	based	on	the	color	and	it	should	have	the	overall
properties	of	what	you	want	the	material	to	look	like.	Next,	we	need	a	normal	texture.	If
you	still	remember	what	a	normal	map	is,	it	controls	the	bumps	on	a	surface.	The	normal
map	gives	the	grooves	in	a	material.	Both	of	these	textures	will	work	together	to	give	you
a	realistic-looking	material	that	you	can	use	in	your	game.

In	this	example,	we	will	create	another	wood	texture	that	we	will	use	to	replace	the	wood
texture	from	the	default	package	that	we	have	already	applied	in	the	room.

Here,	we	will	start	first	by	importing	the	textures	that	we	need	in	Unreal	Engine.	Go	to
Content	Browser	|	Textures.	Then	click	on	the	Import	button	at	the	top.	This	opens	up	a
window	to	browse	to	the	location	of	your	texture.	Navigate	to	the	folder	location	where
your	texture	is	saved,	select	the	texture	and	click	on	Open.	Note	that	if	you	are	importing
textures	that	are	not	in	the	power	of	two	(256	x	256,	1024	x	1024,	and	so	on),	you	would
have	a	warning	message.	Textures	that	are	not	in	the	power	of	two	should	be	avoided	due
to	poor	memory	usage.	If	you	are	importing	the	example	images	that	I	am	using,	they	are
already	converted	to	the	power	of	two	so	you	would	not	get	this	warning	message	on
screen.

Import	both	T_Wood_Light	and	T_Wood_Light_N.	T_Wood_Light	will	be	used	as	the
main	texture,	we	want	to	have,	and	T_Wood_Light_N	is	the	normal	map	texture,	which
we	will	use	for	this	wood.

Next,	we	follow	the	same	steps	to	create	a	new	material,	as	in	the	previous	example.	Go	to
Content	Browser	|	Material.	With	the	Material	folder	selected,	to	open	the	contextual
menu,	navigate	to	New	Asset	|	Material.	Rename	the	new	material	MyWood.

Now,	instead	of	selecting	Constant3Vector	to	provide	values	to	the	base	color,	we	will
use	TextureSample.	Go	to	MyPalette	and	type	in	Texture	to	filter	the	list.	Select
TextureSample,	drag	and	drop	it	into	the	Material	Editor.	Click	on	the	TextureSample
node	to	display	the	Details	panel,	as	shown	in	the	following	screenshot.	On	the	Details
panel,	go	to	Material	Expression	Texture	Base	and	click	on	the	small	arrow	next	to	it.
This	opens	up	a	popup	with	all	the	suitable	assets	that	you	can	use.	Scroll	down	to	select
T_Wood_Light.

http://www.textures.com

Now,	we	have	configured	TextureSample	with	the	wood	texture	that	we	have	imported
into	the	editor	earlier.	Connect	TextureSample	by	clicking	on	the	white	hollow	circle
connector,	dragging	it	and	dropping	it	on	the	Base	Color	connector	on	the	MyWood	node.

Repeat	the	same	steps	to	create	a	TextureSample	node	for	the	T_Wood_Light_N	normal
map	texture	and	connect	it	to	the	Normal	input	for	MyWood.

The	following	screenshot	shows	the	settings	that	we	want	to	have	for	MyWood.	To	have	a
little	glossy	feel	for	our	wood	texture,	set	Roughness	to	0.2	by	using	a	Constant	node.
(Recap:	drag	and	drop	a	Constant	node	from	MyPalette	and	set	the	value	to	0.2,	connect
it	to	the	Roughness	input	of	MyWood.)

Using	custom	materials	to	transform	the	level
Using	the	custom	materials	that	we	have	created	in	the	previous	two	examples,	we	will
replace	the	current	materials	that	we	have	used.

The	following	screenshot	shows	the	before	and	after	look	of	the	first	room.	Notice	how
the	new	custom	materials	have	transformed	the	room	into	a	modern	looking	room.

From	the	preceding	screenshot,	we	also	have	added	a	Point	Light	and	placed	it	onto	the
lamp	prop,	making	it	seem	to	be	emitting	light.	The	following	screenshot	shows	the	Point
Light	setting	we	have	used	(Light	Intensity	=	1000.0,	Attenuation	Radius	=	1000.0):

Next,	we	added	a	ceiling	to	cover	up	the	room.	The	ceiling	of	the	wall	uses	the	same	box
geometry	as	the	rest	of	the	walls.	We	have	applied	the	M_Basic_Wall	material	onto	it.

Then,	we	use	the	red	wall	material	(MyMaterial)	to	replace	the	material	on	wall	with	the
door	frame.	The	gray	wall	material	(MyWall_Grey)	is	used	to	replace	the	brick	material
for	the	walls	at	the	side.	The	glossy	wood	material	(MyWood)	is	used	to	replace	the
wooden	floor	material.

Rendering	pipeline
For	an	image	to	appear	on	the	screen,	the	computer	must	draw	the	images	on	the	screen	to
display	it.	The	sequence	of	steps	to	create	a	2D	representation	of	a	scene	by	using	both	2D
and	3D	data	information	is	known	as	the	graphics	or	rendering	pipeline.	Computer
hardware	such	as	central	processing	unit	(CPU)	and	graphics	processing	unit	(GPU)
are	used	to	calculate	and	manipulate	the	input	data	needed	for	drawing	the	3D	scene.

As	games	are	interactive	and	rely	heavily	on	real-time	rendering,	the	amount	of	data
necessary	for	rendering	moving	scenes	is	huge.	Coordinate	position,	color,	and	all	display
information	needs	to	be	calculated	for	each	vertex	of	the	triangle	polygon	and	at	the	same
time,	taking	into	account	the	effect	of	overlapping	polygons	before	they	can	be	displayed
on	screen	correctly.	Hence,	it	is	very	crucial	to	optimize	both	the	CPU	and	GPU
capabilities	to	process	this	data	and	deliver	them	timely	on	the	screen.	Continuous
improvement	in	this	area	has	been	made	over	the	years	to	allow	better	quality	images	to	be
rendered	at	higher	frame	rates	for	a	better	visual	effect.	At	this	point,	games	should	run	at
a	minimum	frame	rate	of	30fps	in	order	for	players	to	have	a	reasonable	gaming
experience.

The	rendering	pipeline	today	uses	a	series	of	programmable	shaders	to	manipulate
information	about	an	image	before	displaying	the	image	on	the	screen.	We’ll	cover
shaders	and	Direct3D	11	graphics	pipeline	in	more	detail	in	the	upcoming	section.

Shaders
Shaders	can	be	thought	of	as	a	sequence	of	programming	codes	that	tells	a	computer	how
an	image	should	be	drawn.	Different	shaders	govern	different	properties	of	an	image.	For
example,	Vertex	Shaders	give	properties	such	as	position,	color,	and	UV	coordinates	for
individual	vertices.	Another	important	purpose	of	vertex	shaders	is	to	transform	vertices
with	3D	coordinates	into	the	2D	screen	space	for	display.	Pixel	shaders	processes	pixels	to
provide	color,	z-depth,	and	alpha	value	information.	Geometry	shader	is	responsible	for
processing	data	at	the	level	of	a	primitive	(triangle,	line,	and	vertex).

Data	information	from	an	image	is	passed	from	one	shader	to	the	next	for	processing
before	they	are	finally	output	through	a	frame	buffer.

Shaders	are	also	used	to	incorporate	post-processing	effects	such	as	Volumetric	Lighting,
HDR,	and	Bloom	effects	to	accentuate	images	in	a	game.

The	language	which	shaders	are	programmed	in	depends	on	the	target	environment.	For
Direct3D,	the	official	language	is	HLSL.	For	OpenGL,	the	official	shading	language	is
OpenGL	Shading	Language	(GLSL).

Since	most	shaders	are	coded	for	a	GPU,	major	GPU	makers	Nvidia	and	AMD	have	also
tried	developing	their	own	languages	that	can	output	for	both	OpenGL	and	Direct3D
shaders.	Nvidia	developed	Cg	(deprecated	now	after	version	3.1	in	2012)	and	AMD
developed	Mantle	(used	in	some	games,	such	as	Battlefield	4,	that	were	released	in	2014
and	seems	to	be	gaining	popularity	among	developers).	Apple	has	also	recently	released
its	own	shading	language	known	as	Metal	Shading	Language	for	iOS	8	in	September
2014	to	increase	the	performance	benefits	for	iOS.	Kronos	has	also	announced	a	next
generation	graphics	API	based	on	OpenGL	known	as	Vulkan	in	early	2015,	which
appears	to	be	strongly	supported	by	member	companies	such	as	Valve	Corporation.

The	following	image	is	taken	from	a	Direct3D	11	graphics	pipeline	on	MSDN
(http://msdn.microsoft.com/en-us/library/windows/desktop/ff476882(v=vs.85).aspx).	It
shows	the	programmable	stages,	which	data	can	flow	through	to	generate	real-time
graphics	for	our	game,	known	as	the	rendering	pipeline	state	representation.

http://msdn.microsoft.com/en-us/library/windows/desktop/ff476882(v=vs.85).aspx

The	information	here	is	taken	from	Microsoft	MSDN	page.	You	can	use	the	Direct3D
11API	to	configure	all	of	the	stages.	Stages	such	as	vertex,	hull,	domain,	geometry,	and
pixel-shader	(those	with	the	rounded	rectangular	blocks),	are	programmable	using	HLSL.
The	ability	to	configure	this	pipeline	programmatically	makes	it	flexible	for	the	game
graphics	rendering.

What	each	stage	does	is	explained	as	follows:

Stage Function

Input-assembler This	stage	supplies	data	(in	the	form	of	triangles,	lines,	and	points)	to	the	pipeline.

Vertex-shader This	stage	processes	vertices	such	as	undergoing	transformations,	skinning,	and	lighting.	The
number	of	vertices	does	not	change	after	undergoing	this	stage.

Geometry-shader This	stage	processes	entire	geometry	primitives	such	as	triangles,	lines,	and	a	single	vertex	for	a
point.

Stream-output This	stage	serves	to	stream	primitive	data	from	the	pipeline	to	memory	while	on	its	way	to	the
rasterizer.

Rasterizer This	clips	primitives	and	prepare	the	primitives	for	the	pixel-shader.

Pixel-shader Pixel	manipulation	is	done	here.	Each	pixel	in	the	primitive	is	processed	here,	for	example,	pixel
color.

Output-merger
This	stage	combines	the	various	output	data	(pixel-shader	values,	depth,	and	stencil	information)
with	the	contents	of	the	render	target	and	depth/stencil	buffers	to	generate	the	final	pipeline
result.

Hull-shader,
tessellator,	and
domain-shader

These	tessellation	stages	convert	higher-order	surfaces	to	triangles	to	prepare	for	rendering.

To	help	you	better	visualize	what	happens	in	each	of	the	stages,	the	following	image
shows	a	very	good	illustration	of	a	simplified	rendering	pipeline	for	vertices	only.	The
image	is	taken	from	an	old	Cg	tutorial.	Note	that	different	APIs	have	different	pipelines
but	rely	on	similar	basic	concepts	in	rendering	(source:
http://goanna.cs.rmit.edu.au/~gl/teaching/rtr&3dgp/notes/pipeline.html).

Example	flow	of	how	graphics	is	displayed:

The	CPU	sends	instructions	(compiled	shading	language	programs)	and	geometry
data	to	the	graphics	processing	unit,	located	on	the	graphics	card.
The	data	is	passed	through	into	the	vertex	shader	where	vertices	are	transformed.
If	the	geometry	shader	is	active	in	the	GPU,	the	geometry	changes	are	performed	in
the	scene.
If	a	tessellation	shader	is	active	in	the	GPU,	the	geometries	in	the	scene	can	be
subdivided.	The	calculated	geometry	is	triangulated	(subdivided	into	triangles).
Triangles	are	broken	down	into	fragments.	Fragment	quads	are	modified	according	to

http://goanna.cs.rmit.edu.au/~gl/teaching/rtr&3dgp/notes/pipeline.html

the	fragment	shader.
To	create	the	feel	of	depth,	the	z	buffer	value	is	set	for	the	fragments	and	then	sent	to
the	frame	buffer	for	displaying.

APIs	–	DirectX	and	OpenGL
Both	DirectX	and	OpenGL	are	collections	of	application	programming	interfaces
(APIs)	used	for	handling	multimedia	information	in	a	computer.	They	are	the	two	most
common	APIs	used	today	for	video	cards.

DirectX	is	created	by	Microsoft	to	allow	multimedia	related	hardware,	such	as	GPU,	to
communicate	with	the	Windows	system.	OpenGL	is	the	open	source	version	that	can	be
used	on	many	operating	system	including	Mac	OS.

The	decision	to	use	DirectX	or	OpenGL	APIs	to	program	is	dependent	on	operating
system	of	the	target	machine.

DirectX
Unreal	Engine	4	was	first	launched	using	DirectX11.	Following	the	announcement	that
DirectX	12	ships	with	Windows	10,	Unreal	has	created	a	DirectX	12	branch	from	the	4.4
version	to	allow	developers	to	start	creating	games	using	this	new	DirectX	12.

An	easy	way	to	identify	APIs	that	are	a	part	of	DirectX	is	that	the	names	all	begin	with
Direct.	For	computer	games,	the	APIs	that	we	are	most	concerned	about	are	Direct3D,
which	is	the	graphical	API	for	drawing	high	performance	3D	graphics	in	games,	and
DirectSound3D,	which	is	for	the	sound	playback.

DirectX	APIs	are	integral	in	creating	high-performance	2D	and	3D	graphics	for	the
Windows	operating	system.	For	example,	DirectX11	is	supported	in	Windows	Vista,
Windows	7	and	Windows	8.1.	The	latest	version	of	DirectX	can	be	updated	through
service	pack	updates.	DirectX	12	is	known	to	be	shipped	with	Windows	10.

DirectX12
Direct3D	12	was	announced	in	2014	and	has	been	vastly	revamped	from	Direct3D	11	to
provide	significant	performance	improvement.	This	is	a	very	good	link	to	a	video	posted
on	the	MSDN	blog	that	shows	the	tech	demo	for	DirectX	12:
http://channel9.msdn.com/Blogs/DirectX-Developer-Blog/DirectX-Techdemo.

(If	you	are	unfamiliar	with	Direct3D	11	and	have	not	read	the	Shaders	section	earlier,	read
that	section	before	proceeding	with	the	rest	of	the	DirectX	section.)

Pipeline	state	representation

If	you	can	recall	from	the	Shaders	section,	we	have	looked	at	the	programmable	pipeline
for	Direct3D	11.	The	following	image	is	the	same	from	the	Shaders	section	(taken	from
MSDN)	and	it	shows	a	series	of	programmable	shaders:

http://channel9.msdn.com/Blogs/DirectX-Developer-Blog/DirectX-Techdemo

In	Direct3D	11,	each	of	the	stages	is	configurable	independently	and	each	stage	is	setting
states	on	the	hardware	independently.	Since	many	stages	have	the	capability	to	set	the
same	hardware	state	due	to	interdependency,	this	results	in	hardware	mismatch	overhead.
The	following	image	is	an	excellent	illustration	of	how	hardware	mismatch	overhead
happens:

The	driver	will	normally	record	these	states	from	the	application	(game)	first	and	wait
until	the	draw	time,	when	it	is	ready	to	send	it	to	the	display	monitor.	At	draw	time,	these
states	are	then	queried	in	a	control	loop	before	they	are	is	translated	into	a	GPU	code	for
the	hardware	in	order	to	render	the	correct	scene	for	the	game.	This	creates	an	additional
overhead	to	record	and	query	for	all	the	states	at	draw	time.

In	Direct3D	12,	some	programmable	stages	are	grouped	to	form	a	single	object	known	as
pipeline	state	object	(PSO)	so	that	the	each	hardware	state	is	set	only	once	by	the	entire
group,	preventing	hardware	mismatch	overhead.	These	states	can	now	be	used	directly,
instead	of	having	to	spend	resources	computing	the	resulting	hardware	states	before	the
draw	call.	This	reduces	the	draw	call	overhead,	allowing	more	draw	calls	per	frame.	The
PSO	that	is	in	use	can	still	be	changed	dynamically	based	on	whatever	hardware	native
instructions	and	states	that	are	required.

Work	submission

In	Direct3D	11,	work	submission	to	the	GPU	is	immediate.	What	is	new	in	Direct3D	12	is
that	it	uses	command	lists	and	bundles	that	contain	the	entire	information	needed	to
execute	a	particular	workload.

Immediate	work	submission	in	Direct3D	11	means	that	information	is	passed	as	a	single
stream	of	command	to	the	GPU	and	due	to	the	lack	of	the	entire	information,	these
commands	are	often	deferred	until	the	actual	work	can	be	done.

When	work	submission	is	grouped	in	the	self-contained	command	list,	the	drivers	can
precompute	all	the	necessary	GPU	commands	and	then	send	that	list	to	the	GPU,	making
Direct3D	12	work	submission	a	more	efficient	process.	Additionally,	the	use	of	bundles
can	be	thought	of	as	a	small	list	of	commands	that	are	grouped	to	create	a	particular
object.	When	this	object	needs	to	be	duplicated	on	screen,	this	bundle	of	commands	can	be
“played	back”	to	create	the	duplicated	object.	This	further	reduces	computational	time
needed	in	Direct3D	12.

Resource	access

In	Direct3D	11,	the	game	creates	resource	views	that	bind	these	views	to	slots	at	the
shaders.	These	shaders	then	read	the	data	from	these	explicit	bound	slots	during	a	draw
call.	If	the	game	wants	to	draw	using	different	resources,	it	will	be	done	in	the	next	draw
call	with	a	different	view.

In	Direct3D	12,	you	can	create	various	resource	views	by	using	descriptor	heaps.	Each
descriptor	heap	can	be	customized	to	be	linked	to	a	specific	shader	using	specific
resources.	This	flexibility	to	design	the	descriptor	heap	allows	you	to	have	full	control
over	the	resource	usage	pattern,	fully	utilizing	modern	hardware	capabilities.	You	are	also
able	to	describe	more	than	one	descriptor	heap	that	is	indexed	to	allow	easy	flexibility	to
swap	heaps,	to	complete	a	single	draw	call.

Lights
We	have	briefly	gone	through	the	types	of	light	in	Chapter	1,	An	Overview	of	Unreal
Engine.	Let	us	do	a	quick	recap	first.	Directional	Light	emits	beams	of	parallel	lights.
Point	Light	emits	light	like	a	light	bulb	(from	a	single	point	radially	outward	in	all
directions).	Spot	Light	emits	light	in	a	conical	shape	outwards	and	Sky	Light	mimics	light
from	the	sky	downwards	on	the	objects	in	the	level.

In	this	chapter,	we	will	learn	how	to	use	these	basic	lights	to	illuminate	an	interior	area.
We	have	already	placed	a	Point	Light	in	Chapter	2,	Creating	Your	First	Level,	and	learned
how	to	adjust	its	intensity	to	1700.	Here	in	this	chapter,	we	will	learn	more	about	the
parameters	that	we	can	adjust	with	each	type	of	light	to	create	the	lighting	that	we	want.

Let	us	first	view	a	level	that	has	been	illuminated	using	these	Unreal	lights.	Load
Chapter4Level_Prebuilt.umap,	build	and	play	the	level	to	look	around.	Click	on	the
lights	that	are	placed	in	the	level	and	you	will	notice	that	most	of	lights	used	are	Point	or
Spot	Light.	These	two	forms	of	lights	are	quite	commonly	found	in	interior	lighting.

The	next	section	will	guide	you	to	extend	the	level	on	your	own.	Alternatively,	you	can
use	the	Chapter4Level_Prebuilt	level	to	help	you	along	in	the	creation	of	your	own	level
since	it	does	take	a	fair	amount	of	time	to	create	the	entire	level.	If	you	wish	to	skip	to	the
next	section,	feel	free	to	simply	use	the	prebuilt	version	of	the	map	provided,	and	go
through	the	other	examples	in	this	chapter	using	the	prebuilt	map	as	a	reference.	However,
it	will	be	a	great	opportunity	to	revise	what	you	have	learned	in	the	previous	chapters	and
extend	the	level	on	your	own.

Before	we	embark	on	the	optional	exercise	to	extend	the	level,	let	us	go	through	a	few
tutorial	examples	on	how	we	can	place	and	configure	the	different	types	of	light.

Configuring	a	Point	Light	with	more	settings
Open	Chapter4Level.umap	and	rename	it	Chapter4Level_PointLight.umap.

Go	to	Modes	|	Lights,	drag	and	drop	a	Point	Light	into	the	level.	As	Point	Light	emits
light	equally	in	all	directions	from	a	single	point,	Attenuation	Radius,	Intensity,	and
Color	are	the	three	most	common	values	that	are	configured	for	a	Point	Light.

Attenuation	Radius
The	following	screenshot	shows	when	the	Point	Light	has	its	default	Attenuation	Radius
of	1000.	The	radius	of	the	three	blue	circles	is	based	on	the	attenuation	radius	of	the	Point
Light	and	is	used	to	show	its	area	of	effect	on	the	environment.

The	following	screenshot	shows	when	the	attenuation	radius	is	reduced	to	500.	In	this
situation,	you	probably	cannot	see	any	difference	in	the	lighting	since	the	radius	is	still
larger	than	the	room	itself:

Now,	let	us	take	a	look	at	what	happens	when	we	adjust	the	radius	much	smaller.	The
following	screenshot	shows	the	difference	in	light	brightness	when	the	radius	changes.
The	image	on	the	left	is	when	the	attenuation	radius	is	set	as	500	and	the	right	when
attenuation	radius	is	set	as	10.

Intensity
Another	setting	for	Point	Light	is	Intensity.	Intensity	affects	the	brightness	of	the	light.
You	can	play	around	the	Intensity	value	to	adjust	the	brightness	of	the	light.	Before	we
determine	what	value	to	use	for	this	field	and	how	bright	we	want	our	light	to	be,	you
should	be	aware	of	another	setting,	Use	Inverse	Squared	Falloff.

Use	Inverse	Squared	Falloff

Point	Lights	and	Spot	Lights	have	physically	based	inverse	squared	falloff	set	on,	as
default.	This	setting	is	configurable	as	a	checkbox	found	in	the	Light	details	under

Advanced.	The	following	screenshot	shows	where	this	property	is	found	in	the	Details
panel:

Inverse	squared	falloff	is	a	physics	law	that	describes	how	light	intensity	naturally	fades
over	distance.	When	we	have	this	setting,	the	units	for	intensity	use	the	same	units	as	the
lights	we	have	in	the	real	world,	in	lumens.	When	inverse	squared	distance	falloff	is	not
used,	intensity	becomes	just	a	value.

In	the	previous	chapter	where	we	have	added	our	first	Point	Light,	we	have	set	intensity	as
1700.	This	is	equivalent	to	the	brightness	of	a	light	bulb	that	has	1700	lumens	because
inverse	squared	distance	falloff	is	used.

Color
To	adjust	the	color	of	Point	Light,	go	to	Light	|	Color.	The	following	screenshot	shows
how	the	color	of	the	light	can	be	adjusted	by	specifying	the	RGB	values	or	using	the	color
picker	to	select	the	desired	color:

Adding	and	configuring	a	Spot	Light
Open	Chapter4Level.umap	and	rename	it	Chapter4Level_SpotLight.umap.	Go	to	Modes
|	Lights,	drag	and	drop	a	Spot	Light	into	the	level.

The	brightness,	visible	influence	radius,	and	color	of	a	Spot	Light	can	be	configured	in	the
same	way	as	the	Point	Light	through	the	value	of	Intensity,	Attenuation	Radius,	and
Color.

Since	Point	Light	has	light	emitting	in	all	directions	and	a	Spot	Light	emits	light	from	a
single	point	outwards	in	a	conical	shape	with	a	direction,	the	Spot	Light	has	additional
properties	such	as	inner	cone	and	outer	cone	angle,	which	are	configurable.

Inner	cone	and	outer	cone	angle
The	unit	for	the	outer	cone	angle	and	inner	cone	angle	is	in	degrees.	The	following
screenshot	shows	the	light	radius	that	the	spotlight	has	when	the	outer	cone	angle	=	20	(on
the	left)	and	outer	cone	angle	=	15	(on	the	right).	The	inner	cone	angle	value	did	not
produce	much	visible	results	in	the	screenshot,	so	very	often	the	value	is	0.	However,	the
inner	cone	angle	can	be	used	to	provide	light	in	the	center	of	the	cone.	This	would	be	more
visible	for	lights	with	a	wider	spread	and	certain	IES	Profiles.

Using	the	IES	Profile
Open	Chapter4Level_PointLight.umap	and	rename	it
Chapter4Level_IESProfile.umap.

IES	Light	Profile	is	a	file	that	contains	information	that	describes	how	a	light	will	look.
This	is	created	by	light	manufacturers	and	can	be	downloaded	from	the	manufacturers’
websites.	These	profiles	could	be	used	in	architectural	models	to	render	scenes	with
realistic	lighting.	In	the	same	way,	the	IES	Profile	information	can	be	used	in	Unreal
Engine	4	to	render	more	realistic	lights.	IES	Light	Profiles	can	be	applied	to	a	Point	Light
or	a	Spot	Light.

Downloading	IES	Light	Profiles
IES	Light	Profiles	can	be	downloaded	from	light	manufacturers’	websites.	Here’s	a	few
that	you	can	use:

Cooper	Industries:
http://www.cooperindustries.com/content/public/en/lighting/resources/design_center_tools/photometric_tool_box.html
Philips:
http://www.usa.lighting.philips.com/connect/tools_literature/photometric_data_1.wpd
Lithonia:	http://www.lithonia.com/photometrics.aspx

Importing	IES	Profiles	into	the	Unreal	Engine	Editor
From	Content	Browser,	click	on	Import,	as	shown	in	the	following	screenshot:

http://www.cooperindustries.com/content/public/en/lighting/resources/design_center_tools/photometric_tool_box.html
http://www.usa.lighting.philips.com/connect/tools_literature/photometric_data_1.wpd
http://www.lithonia.com/photometrics.aspx

I	prefer	to	have	my	files	in	a	certain	order,	hence	I	have	created	a	new	folder	called
IESProfile	and	created	subfolders	with	the	names	of	the	manufacturers	to	better
categorize	all	the	light	profiles	that	were	imported.

Using	IES	Profiles
Continuing	from	the	previous	example,	select	the	right	Spot	Light	which	we	have	in	the
scene	and	make	sure	it	is	selected.	Go	to	the	Details	panel	and	scroll	down	to	show	the
Light	Profile	of	the	light.

Then	go	to	Content	Browser	and	go	to	the	IESProfile	folder	where	we	have	imported
the	light	profiles	into.	Click	on	one	of	the	profiles	that	you	want,	drag	and	drop	it	on	the
IES	Texture	of	the	Spot	Light.	Alternatively,	you	can	select	the	profile	and	go	back	to	the
Details	panel	of	the	Light	and	click	on	the	arrow	next	to	IES	Texture	to	apply	the	profile
on	the	Spot	Light.	In	the	following	screenshot,	I	applied	one	of	the	profiles	downloaded
from	the	Panasonic	website	labeled	144907.

I	reconfigured	the	Spot	Light	with	Intensity	=	1000,	Attenuation	Radius	=	1000,	Outer
Cone	Angle	=	40,	and	Inner	Cone	Angle	=	0.

Next,	I	deleted	the	other	Spot	Light	and	replaced	it	with	a	Point	Light	where	I	set
Intensity	=	1000	and	Attenuation	Radius	=	1000.	I	also	set	the	Rotation-Y	=	-90	and
then	applied	the	same	IES	Profile	to	it.	The	following	screenshot	shows	the	difference
when	the	same	light	profile	is	applied	to	a	Spot	Light	and	a	Point	Light.	Note	that	the
spread	of	the	light	in	the	Spot	Light	is	reduced.	This	reinforces	the	concept	that	a	Spot
Light	provides	a	conical	shaped	light	with	a	direction	spreading	from	the	point	source
outwards.	The	outer	cone	angle	determines	this	spread.	The	point	light	emits	light	in	all
directions	and	equally	out,	so	it	did	not	attenuate	the	light	profile	settings	allowing	the	full
design	of	this	light	profile	to	be	displayed	on	the	screen.	This	is	one	thing	to	keep	in	mind
while	using	the	IES	Light	Profile	and	which	types	of	light	to	use	them	on.

Adding	and	configuring	a	Directional	Light
Open	Chapter4Level.umap	and	rename	it	Chapter4Level_DirectionalLight.umap.

We	have	already	added	a	Directional	Light	into	our	level	in	Chapter	2,	Creating	Your	First
Level,	and	it	provides	parallel	beams	of	light	into	the	level.

Directional	Light	can	also	be	used	to	light	the	level	by	controlling	the	direction	of	the	sun.
The	screenshot	on	the	left	shows	the	Directional	Light	when	the	Atmosphere	Sun	Light
checkbox	is	unchecked.	The	screenshot	on	the	right	shows	the	Directional	Light	when	the
Atmosphere	Sun	Light	checkbox	is	checked.	When	the	Atmosphere	Sun	Light
checkbox	is	checked,	you	can	control	the	direction	of	the	sunlight	by	adjusting	the	rotation
of	Directional	Light.

The	following	screenshot	shows	how	this	looks	when	Rotation-Y	=	0.	This	looks	like	an
early	sunset	scene:

Example	–	adding	and	configuring	a	Sky	light
Open	Chapter4Level_DirectionalLight.umap	and	rename	it
Chapter4Level_Skylight.umap.

In	the	previous	example,	we	have	added	sunlight	control	in	the	Directional	Light.	Build
and	compile	to	see	how	the	level	now	looks.

Now,	let	us	add	a	Sky	Light	into	the	level	by	going	to	Modes	|	Lights	and	then	clicking
and	dragging	Sky	Light	into	the	level.	When	adding	a	Sky	Light	to	the	level,	always
remember	to	build	and	compile	first	in	order	to	see	the	effect	of	the	Sky	Light.

What	does	a	Sky	Light	do?	Sky	Light	models	the	color/light	from	the	sky	and	is	used	to
light	up	the	external	areas	of	the	level.	So	the	external	areas	of	the	level	look	more
realistic	as	the	color/light	is	reflecting	off	the	surfaces	(instead	of	using	simple
white/colored	light).

The	following	screenshot	shows	the	effect	of	a	Sky	Light.	The	left	image	shows	the	Sky
Light	not	in	the	level.	The	right	one	shows	the	Sky	Light.	Note	that	the	walls	now	have	a
tinge	of	the	color	of	the	sky.

Static,	stationary,	or	movable	lights
After	learning	how	to	place	and	configure	the	different	lights,	we	need	to	consider	what
kind	of	lights	we	need	in	the	level.	If	you	are	new	to	the	concept	of	light,	you	might	want
to	briefly	go	through	the	useful	light	terms	section	to	help	in	your	understanding.

The	following	screenshot	shows	the	Details	panel	where	you	can	change	a	light	to	be
static,	stationary,	or	movable.

Static	and	Stationary	light	sounds	pretty	much	similar.	What	is	the	difference?	When	do
you	want	to	use	a	Static	light	and	when	do	you	want	to	use	a	Stationary	light?

Common	light/shadow	definitions
The	common	light/shadow	definitions	are	as	follows:

Direct	Light:	This	is	the	light	that	is	present	in	the	scene	directly	due	to	a	light
source.
Indirect	Light:	This	is	the	light	in	the	scene	that	is	not	directly	from	a	light	source.	It
is	reflected	light	bouncing	around	and	it	comes	from	all	sides.
Light	Map:	This	is	a	data	structure	that	stores	the	light/brightness	information	about
an	object.	This	makes	the	rendering	of	the	object	much	quicker	because	we	already
know	its	color/brightness	information	in	advance	and	it	is	not	necessary	to	compute
this	during	runtime.
Shadow	Map:	This	is	a	process	created	to	make	dynamic	shadows.	It	is
fundamentally	made	up	of	two	passes	to	create	shadows.	More	passes	can	be	added
to	render	nicer	shadows.

Static	Light
In	a	game,	we	always	want	to	have	the	best	performance,	and	Static	Light	will	be	an
excellent	option	because	a	Static	Light	needs	only	to	be	precomputed	once	into	a	Light
Map.	So	for	a	Static	Light,	we	have	the	lowest	performance	cost	but	in	exchange,	we	are
unable	to	change	how	the	light	looks,	move	the	light,	and	integrate	the	effect	of	this	light

with	moving	objects	(which	means	it	is	unable	to	create	a	shadow	for	the	moving	object	as
it	moves	within	the	influence	of	the	light)	into	the	environment	during	gameplay.
However,	a	Static	Light	can	cast	shadow	on	the	existing	stationary	objects	that	are	in	the
level	within	its	influence	of	radius.	The	radius	of	influence	is	based	on	the	source	radius	of
the	light.	In	return	for	low	performance	cost,	a	Static	Light	has	quite	a	bit	of	limitation.
Hence,	Static	Lights	are	commonly	used	in	the	creation	of	scenes	targeted	for	devices	with
low	computational	power.

Stationary	Light
Stationary	Light	can	be	used	in	situations	when	we	do	not	need	to	move,	rotate,	or	change
the	influence	radius	of	the	light	during	gameplay,	but	allow	the	light	the	capacity	to
change	color	and	brightness.	Indirect	Light	and	shadows	are	prebaked	in	Light	Map	in	the
same	way	as	Static	Light.	Direct	Light	shadows	are	stored	within	Shadow	Maps.

Stationary	Light	is	medium	in	performance	cost	as	it	is	able	to	create	static	shadow	on
static	objects	through	the	use	of	distance	field	shadow	maps.	Completely	dynamic	light
and	shadows	is	often	more	than	20	times	more	intensive.

Movable	Light
Movable	Light	is	used	to	cast	dynamic	light	and	shadows	for	the	scene.	This	should	be
used	sparingly	in	the	level,	unless	absolutely	necessary.

Exercise	–	extending	your	game	level	(optional)
Here	are	the	steps	that	I	have	taken	to	extend	the	current	Level4	to	the	prebuilt	version	of
what	we	have	right	now.	They	are	by	no	means	the	only	way	to	do	it.	I	have	simply	used	a
Geometry	Brush	to	extend	the	level	here	for	simplicity.	The	following	screenshot	shows
one	part	of	the	extended	level:

Useful	tips
Group	items	in	the	same	area	together	when	possible	and	rename	the	entity	to	help	you
identify	parts	of	the	level	more	quickly.	These	simple	extra	steps	can	save	time	when
using	the	editor	to	create	a	mock-up	of	a	game	level.

Guidelines
If	you	plan	to	extend	the	game	level	on	your	own,	open	and	load	Level4.umap.	Then	save
map	as	Level4_MyPreBuilt.umap.	You	can	also	open	a	copy	of	the	extended	level	to	copy
assets	or	use	it	as	a	quick	reference.

Area	expansion

We	will	start	by	extending	the	floor	area	of	the	level.
Part	1	–	lengthening	the	current	walkway

The	short	walkway	was	extended	to	form	an	L-shaped	walkway.	The	dimensions	of	the
extended	portion	are	X1200	x	Y340	x	Z40.

BSPs	needed X Y Z

Ceiling 1200 400 40

Floor 1200 400 40

Left	wall 1570 30 280

Right	wall 1260 30 280

Part	2	–	creating	a	big	room	(living	and	kitchen	area)

The	walkway	leads	to	a	big	room	at	the	end,	which	is	the	main	living	and	kitchen	area.

BSPs	needed X Y Z

Ceiling 2000 1600 40

Floor 2000 1600 40

The	left	wall	dividing	the	big	room	and	walkway	(the	wall	closest	to	you	as	you	enter	the	big	room
from	the	walkway) 30 600 340

The	light	wall	dividing	the	big	room	and	walkway	(the	wall	closest	to	you	as	you	enter	the	big	room
from	the	walkway) 30 600 340

The	left	wall	of	the	big	room	(where	the	kitchen	area	is) 1200 30 340

The	right	wall	of	the	big	room	(where	the	dining	area	is) 2000 30 340

The	left	wall	to	the	door	(the	wall	across	the	room	as	you	enter	from	the	walkway,	where	the	window
seats	are) 30 350 340

The	right	wall	to	the	door	(the	wall	across	the	room	as	you	enter	from	the	walkway,	where	the	long
benches	are) 30 590 340

Door	area	(consists	of	brick	walls,	door	frames,	and	door)

Wall	filler	left 30 130 340

Wall	filler	right 30 126 340

Door	x	2 20 116 250

Side	door	frame	x	2 25 4 250

Horizontal	door	frame 25 242 5

Side	brick	wall	x	2 30 52 340

Horizontal	brick	wall 30 242 74

Part	3	–	creating	a	small	room	along	the	walkway

To	create	the	walkway	to	the	small	room,	duplicate	the	same	doorframe	that	we	have

created	in	the	first	room.

BSPs	needed X Y Z

Ceiling 800 600 40

Floor 800 600 40

Side	wall	x	2 30 570 340

Opposite	wall	(wall	with	the	windows) 740 30 340

Part	4	–	Creating	a	den	area	in	the	big	room

BSPs	needed X Y Z

Sidewall	x	2 30 620 340

Wall	with	shelves 740 30 340

Creating	windows	and	doors

Now	that	we	are	done	with	rooms,	we	can	work	on	the	doors	and	windows.
Part	1	–	creating	large	glass	windows	for	the	dining	area

To	create	the	windows,	we	use	a	subtractive	Geometry	Brush	to	create	holes	in	the	wall.
First,	create	one	of	size	X144	x	Y30	x	Z300	and	place	it	right	in	the	middle	between	the
ceiling	and	ground.	Duplicate	this	and	convert	it	to	an	additive	brush;	adjust	the	size	to
X142	x	Y4	x	Z298.

Apply	M_Metal_Copper	for	the	frame	and	M_Glass	to	the	addition	brush,	which	was
just	created.	Now,	group	them	and	duplicate	both	the	brushes	four	times	to	create	five
windows.	The	screenshot	of	the	dining	area	windows	is	shown	as	follows:

Part	2	–	creating	an	open	window	for	the	window	seat

To	create	the	window	for	the	window	seat	area,	create	a	subtractive	geometry	brush	of	size
X50	x	Y280	x	Z220.	For	this	window,	we	have	a	protruding	ledge	of	X50	x	Y280	x	Z5	at
the	bottom	of	the	window.	Then	for	the	glass,	we	duplicate	the	subtractive	brush	of	size
X4	x	Y278	x	Z216,	convert	it	to	additive	brush	and	adjust	it	to	fit.

Apply	M_Metal_Brushed	for	the	frame	and	M_Glass	to	the	addition	brush	that	was	just
created.

Part	3	–	creating	windows	for	the	room

For	the	room	windows,	create	a	subtractive	brush	of	size	X144	x	Y40	x	Z94.	This	is	to
create	a	hollow	in	the	wall	for	the	prop	frame:	SM_WindowFrame.	Duplicate	the
subtractive	brush	and	prop	to	create	two	windows	for	the	room.
Part	4	–	creating	the	main	door	area

For	the	main	door	area,	we	start	by	creating	the	doors	and	its	frame,	then	the	brick	walls
around	the	door	and	lastly,	the	remaining	concrete	plain	wall.

We	have	two	doors	with	frames	then	some	brick	wall	to	augment	before	going	back	to	the
usual	smooth	walls.	Here	are	the	dimensions	for	creating	this	door	area:

BSPs	needed X Y Z

Actual	door	x	2 20 116 250

Side	frame	x	2 25 4 250

Top	frame 25 242 5

Here	are	the	dimensions	for	creating	the	area	around	the	door:

BSPs	needed X Y Z

Brick	wall	side	x	2 30 52 340

Brick	wall	top 30 242 74

Smooth	wall	left 30 126 340

Smooth	wall	right 30 130 360

Creating	basic	furniture

Let	us	begin	it	part	by	part	as	follows.
Part	1	–	creating	a	dining	table	and	placing	chairs

For	the	dining	table,	we	will	be	customizing	a	wooden	table	with	a	table	top	of	size	X480
x	Y160	x	Z12	and	two	legs	each	of	size	X20	x	Y120	x	Z70	placed	40	from	the	edge	of	the
table.	Material	used	to	texture	is	M_Wood_Walnut.

Then	arrange	eight	chairs	around	the	table	using	SM_Chair	from	the	Props	folder.
Part	2	–	decorating	the	sitting	area

There	are	two	low	tables	in	the	middle	and	one	low	long	table	at	the	wall.	Place	three
SM_Couch	from	the	Props	folder	around	the	low	tables.	Here	are	the	dimensions	for	the
larger	table:

BSPs	needed X Y Z

Square	top 140 140 8

Leg	x	2 120 12 36

Here	are	the	dimensions	for	the	smaller	table:

BSPs	needed X Y Z

Leg	x	2 120 12 36

Here	are	the	dimensions	for	a	low	long	table	at	the	wall:

BSPs	needed X Y Z

Block 100 550 100

Part	3	–	creating	the	window	seat	area

Next	to	the	open	window,	place	a	geometry	box	of	size	X120	x	Y310	x	Z100.	This	is	to
create	a	simplified	seat	by	the	window.
Part	4	–	creating	the	Japanese	seating	area

The	Japanese	square	table	with	surface	size	X200	x	Y200	x	Z8	and	4	short	legs,	each	of
size	X20	x	Y20	x	Z36)	is	placed	close	to	the	corner	of	the	table.

To	create	a	leg	space	under	the	table,	I	used	a	subtractive	brush	(X140	x	Y140	x	Z40)	and
placed	it	on	the	ground	under	the	table.	I	used	the	corner	of	this	subtractive	brush	as	a
guide	as	to	where	to	place	the	short	legs	for	the	table.
Part	5	–	creating	the	kitchen	cabinet	area

This	is	a	simplified	block	prototype	for	the	kitchen	cabinet	area.	The	following	are	the

dimensions	for	L-shaped	area:

BSPs	needed Material X Y Z

Shorter	L:	cabinet	under	tabletop M_Wood_Walnut 140 450 100

Longer	L:	cabinet	under	tabletop M_Wood_Walnut 890 140 100

Shorter	L:	tabletop M_Metal_Brushed_Nickel 150 450 10

Longer	L:	tabletop M_Metal_Brushed_Nickel 900 150 10

Shorter	L:	hanging	cabinet M_Wood_Walnut 100 500 100

Longer	L:	hanging	cabinet M_Wood_Walnut 900 100 100

The	following	are	the	dimensions	for	the	island	area	(hood):

BSPs	needed Material X Y Z

Hood	(wooden	area) M_Wood_Walnut 400 75 60

Hood	(metallic	area) M_Metal_Chrome 500 150 30

The	following	are	the	dimensions	for	the	island	area	(table):

BSPs	needed Material X Y Z

Cabinet	under	the	table M_Wood_Walnut 500 150 100

Tabletop M_Metal_Chrome 550 180 10

Sink	(use	a	subtractive	brush) M_Metal_Chrome 100 80 40

Stovetop M_Metal_Burnished_Steel 140 100 5

Summary
In	this	chapter,	we	covered	in-depth	information	about	materials	and	lights.	We	learned
how	the	rendering	system	works	and	the	underlying	graphics	pipeline/technology	such	as
Directx	11,	DirectX	12,	and	OpenGL/Vulkan.	We	also	learned	how	to	use	the	Unreal	4
Material	Editor	to	create	custom	materials	and	apply	it	into	your	level.

We	also	explored	the	different	types	of	lights	and	adjusting	Intensity,	Attenuation
Radius,	and	other	settings	to	customize	lights	for	the	level.	We	also	learned	how	to	import
IES	light	profiles	from	light	manufacturer’s	website	to	create	realistic	lights	for	the	level.
We	learned	about	the	differences	between	Static,	Stationary,	and	Movable	lights	and
how	the	different	lights	cast	shadows	for	the	level.

In	the	next	chapter,	we	will	learn	about	animation	and	artificial	intelligence	in	games.	Stay
tuned	for	more!

Chapter	5.	Animation	and	AI
This	chapter	is	about	animation	and	artificial	intelligence	(AI).

Animation	is	what	we	need	in	order	to	see	things	move	in	a	game.	AI	is	what	is	required
for	characters	(other	than	the	player)	to	know	how	to	behave	and	react	while	you	are	in	the
game.

We	will	cover	the	following	topics	in	this	chapter:

Definition	of	animation
3D	animation
Tools	required	for	animation	in	Unreal	Engine	4
Learning	to	add	animation	to	your	game
Using	an	Animation	Blueprint
Learning	about	Blend	Animation
AI	in	games
Designing	a	Behavior	Tree	(BT)
Using	a	Blueprint	to	implement	AI	in	your	game

What	is	animation?
Animation	is	the	simulation	of	movement	through	a	series	of	images	or	frames.

Before	computers	came	into	the	picture,	animation	was	created	using	traditional
techniques	such	as	hand-drawn	animation	and	stop-motion	animation	(or	model
animation).	Hand-drawn	animation,	as	the	name	suggests,	involves	hand-drawn	scenes	on
paper.	Each	scene	is	repeated	on	the	next	sheet	of	paper	with	a	slight	change	in	the	scene.
All	the	papers	are	put	together	in	sequence	and	the	pages	are	turned	very	quickly,	like	a
flipbook.	The	slight	changes	on	the	sheets	of	paper	create	2D	animation,	and	this	can	be
filmed	into	a	motion	film.	This	technique	is	used	very	often	in	Disney	cartoons	and
movies.	As	you	can	imagine,	this	is	a	very	time-consuming	way	to	produce	animation,	as
you	would	need	thousands	of	drawings	to	create	seconds	of	the	film.

Stop-motion	animation	involves	creating	models,	moving	them	a	little	in	each	frame	to
mimic	movement,	and	filming	this	sequence	to	construct	an	entire	scene.	The	tedious
process	of	capturing	countless	snippets	has	limited	the	use	of	this	method	in	favor	of	more
mainstream	animation	techniques	today.

Computer	animation	is	quite	similar	to	stop-motion	animation	as	computer	graphics	is
moved	a	little	in	each	frame;	these	frames	are	then	rendered	on	screen.	For	computer
games,	we	use	computer	animation	by	creating	3D	models	using	tools,	such	as	Maya	and
3ds	Max.	Then,	we	animate	these	models	to	simulate	life-like	behavior	and	actions	for	the
game.	Animation	is	needed	for	all	things	in	order	to	make	them	move.	Characters	need	to
be	animated	so	that	they	can	look	real—they	can	be	in	an	idle	position,	walk,	run,	or
execute	any	other	action	that	needs	to	be	performed	in	the	course	of	the	game.

Motion	capture	is	also	another	very	popular	way	to	animate	characters	these	days.	This
technology	basically	uses	recorded	human	actions	to	create	the	computer	graphic
character’s	behavior.	If	you	have	watched	the	movie	Avatar,	the	blue	avatar	characters
were,	in	fact,	played	by	human	actors	and	then	enhanced	to	look	the	way	they	did	using
computer	graphics.	For	the	filming	of	the	movie,	they	advanced	the	motion	capture
technology	into	what	is	now	called	performance	capture.	This	advancement	in
technology	has	empowered	film	and	game	makers	to	capture	the	details	in	animation	in
such	a	way	that	can	make	a	CG	character	stand	out.

Understanding	how	to	animate	a	3D
model
Although	the	objective	of	this	book	is	not	to	teach	you	how	to	animate	a	model,	it	is
important	to	understand	how	animation	is	done	so	that	you	can	understand	better	how	to
get	game	characters	in	a	game	to	move	and	behave	according	to	design.

As	mentioned	earlier,	we	can	animate	3D	models	using	tools,	such	as	Maya	or	3ds	Max.
We	can	then	record	their	changes	and	then	render	these	animations	on	screen	when
needed.

Preparing	before	animation
In	game	development,	the	creation	of	animation	falls	under	the	responsibility	of	an
animator.	Before	an	animation	can	be	first	created,	we	need	to	first	have	a	3D	model	that’s
been	created	by	a	3D	modeler.	The	3D	modeler	is	responsible	for	giving	the	object	its
shape	and	texturing	it.	Depending	on	the	type	of	object	we’re	dealing	with,	the	exact
process	to	get	an	object	properly	rigged	can	be	slightly	different.	Rigging	needs	to	be	done
before	handing	over	the	object	to	the	animator	to	create	specific	animations.	Sometimes,
animators	also	need	to	fine-tune	the	rigs	for	better	control	of	the	animation.

Rigging	is	a	process	where	a	skeleton	is	placed	in	the	mesh	and	joints	that	are	created	for
the	skeleton.	The	collection	of	bones/joints	is	known	as	the	rig.	The	rig	provides	control
points,	which	the	animator	can	use	to	move	the	object	in	order	to	create	the	desired
animation.	I	will	use	a	human	character	model	in	my	explanation	here	so	that	you	can
understand	this	concept	easily.

The	3D	or	character	modeler	first	shows	how	the	face	and	body	of	a	model	are	shaped.	It
then	determines	how	tall	the	model	is,	creates	all	the	required	features	by	adding
primitives	to	the	model,	and	then	textures	it	to	give	color	to	its	eyes,	hair,	and	so	on.	The
model	is	now	ready	but	still	jelly	on	the	inside	because	we	have	not	given	it	any	internal
structure.	Rigging	is	the	process	where	we	add	bones	to	the	body	to	hold	it	up.	The	arm
can	be	rotated	because	we	have	given	it	a	shoulder	bone	(scapula),	arm	bone	(humerus),
and	a	joint	that	can	mimic	the	ball	and	socket	joint.	The	joint	we	have	in	place	for	rigging
is	made	up	of	a	group	of	constraints	that	limit	movement	in	various	planes	and	angles.
Hierarchies	are	also	applied	to	the	bone	structure	to	help	the	bones	link	each	other.	The
fingers	are	linked	to	the	hand,	which	is	linked	to	the	arm.	Such	a	relationship	can	be	put	in
place	so	that	movement	looks	real	when	one	of	parts	moves	and	the	rest	of	the	parts
naturally	move	together	as	well.

Tools,	such	as	Maya	and	3ds	Max,	provide	some	simplification	to	the	rigging	process,	as
you	can	use	standard	rigs	as	the	base,	and	tweak	this	base	according	to	the	needs	of	the
model.	Some	models	are	taller	and	require	longer	bones.	A	3D	model	must	have	a	simple
skeletal	structure	that	adheres	closely	to	the	shape	and	size	of	a	3D	model.	Similar	sized
3D	models	can	share	the	same	skeletal	structure.

To	better	understand	how	we	can	add	animation	to	our	game	levels,	let’s	learn	how
computer	animation	is	created	and	how	we	can	make	these	models	move.

How	is	animation	created?
Animation	basically	mimics	how	life	moves	in	the	real	world.	Many	companies	go	to
great	lengths	to	make	computer	animation	as	accurate	as	possible	through	the	use	of
motion	capture.	They	film	actual	movements	in	real	life	and	then	recreate	these
movements	using	computer	3D	models.

When	creating	animations,	the	animator	makes	use	of	the	bones	and	joints	created	during
the	rigging	process	and	adjusts	them	in	place	using	as	much	detail	as	possible	to	mimic
their	natural	movement.	The	joints	and	bones	work	together	to	affect	the	body	posture.
These	movements	are	then	recorded	as	short	animation	clips	known	as	an	animation
sequence.	Animation	sequences	form	the	most	basic	blocks	of	animation,	and	they	can	be
played	once	or	repeatedly	to	create	an	action.	For	example,	a	walking	animation	is	only
1.8	seconds	long	but	can	be	replayed	over	and	over	to	simulate	walking.	When	this
sequence	is	repeated	again,	it	is	commonly	known	as	an	animation	loop.

Animation	sequences	can	also	be	linked	to	form	a	chain	of	actions.	While	transitioning
from	one	sequence	to	another,	some	blending	might	be	needed	in	order	for	the	movement
to	look	natural.

What	Unreal	Engine	4	offers	for
animation	in	games
Animation	in	Unreal	Engine	4	is	mostly	done	in	the	Persona	editor.	This	editor	offers	four
different	modes:	Skeleton,	Mesh,	Animation,	and	Graph.	These	modes	mainly	exist	so
that	you	can	jump	straight	into	one	of	them	to	edit/create	the	animations	more	effectively.
So,	they	are	simply	a	loose	group	of	functions	that	can	be	used	to	control	the	different
aspects	of	animation.	We	will	learn	how	to	make	use	of	the	functions	in	Persona	to	add
animation	to	our	level.

To	help	improve	team	collaboration,	Unreal	Engine	4	also	released	a	previously	in-house-
only	toolset,	which	is	a	plugin	for	Maya	(compatible	for	Maya	2013	and	higher	versions),
known	as	Animation	and	Rigging	Toolset	(ART).	This	toolset	provides	a	user	interface
to	allow	the	creation	of	a	skeleton,	placement	of	the	skeleton,	and	rig	creation	within
Maya	itself.	We	will	not	go	into	the	details	of	this	toolset,	but	you	can	find	more
information	on	this	in	Unreal’s	online	documentation	at
https://docs.unrealengine.com/latest/INT/Engine/Content/Tools/MayaRiggingTool/index.html

https://docs.unrealengine.com/latest/INT/Engine/Content/Tools/MayaRiggingTool/index.html

Importing	animation	from	Maya/3ds	Max
As	many	artists	use	Maya	and	3ds	Max	to	create	3D	models	and	animation,	Unreal	Engine
4	has	a	great	FBX	Import	pipeline	that	allows	you	to	successfully	import	skeletal	models,
animation	sequences,	and	morph	targets.	This	makes	it	easy	to	transfer	assets	to	the	Unreal
Editor	and	put	them	into	the	game.	Unreal	also	tries	to	stabilize	the	import	of	art	assets
from	other	software,	such	as	Blender	and	MODO.

Tutorial	–	importing	the	animation	pack	from	Marketplace
Since	3D	models	and	animation	are	first	created	outside	Unreal	Engine,	for	the	purpose	of
learning	about	how	animation	works,	we	will	import	an	animation	pack	that	contains	a	3D
model	with	a	number	of	animation	sequences	first,	and	we’ll	then	learn	how	to	make	use
of	the	different	tools	in	the	Unreal	Editor	for	animation.

Unreal	Engine	offers	a	number	of	downloadable	packs	in	Marketplace.	Marketplace	is	in
the	start	menu	screen,	which	is	under	the	Launch	button.	The	following	screenshot	shows
the	startup	screen	that	has	the	Marketplace	tab	selected	for	the	downloadable	packs.
Search	for	Animation	Starter	Pack	in	Marketplace	under	Characters	and	Animations.
This	particular	pack	is	free	to	download.	Click	on	Animation	Started	Pack	to	download
it.

After	the	pack	is	downloaded,	you	will	find	the	pack	added	to	the	Library.	The	following
screenshot	shows	where	Animator	Starter	Pack	is	found	in	Library	under	Vault:

Now	that	we	have	the	Animation	Starter	Pack	in	our	Library,	we	can	add	it	to	our
current	project	and	start	playing	with	the	animations.

Click	on	Add	To	Project	and	a	pop-up	screen	with	all	the	current	projects	that	are	present
in	Unreal	Engine	will	appear.	Select	the	name	of	the	project	that	you	have	been	creating
for	all	the	various	levels	and	all	the	tutorial	examples.	If	you	have	followed	the	same
project	and	level	naming	convention	as	me,	it	will	be	MyProject.	I	have	also	opened
Chapter4Level	from	the	previous	chapter	and	renamed	it	Chapter5Level.	The	following
screenshot	shows	AnimStarterPack	loaded	in	the	project:

What	can	you	do	with	Persona?
Persona	gives	game	developers	the	ability	to	playback	and	preview	animation	sequences,
combine	animation	sequences	into	a	single	animation	by	blending,	creating	montages,
editing	skeletons/sockets,	and	controlling	animation	with	Blueprints.	I	hope	you	still
remember	what	you	have	learned	about	Blueprints	in	Chapter	3,	Game	Object	–	More	and
Move.

Tutorial	–	assigning	existing	animation	to	a	Pawn
After	adding	the	free	animation	pack	into	your	project	in	the	previous	exercise,	it	is	time
to	add	some	animation	to	the	level.	First	of	all,	open	Chapter4Level,	rename	it
Chapter5Level,	and	then	navigate	to	the	AnimStarterPack	folder	using	Content
Browser.	Go	to	the	Character	subfolder	and	click	and	drag	HeroTPP	into	the	level.

This	screenshot	shows	how	HeroTPP	is	added	to	the	level:

The	HeroTPP	looks	fake	and	frozen,	right?	Now,	let’s	give	him	a	better	pose.	Click	on
HeroTPP	to	display	the	details.	Go	to	the	Animation	tab	under	Details	and	input	the
Animation	Mode	settings.	Use	Animation	Asset,	navigate	and	click	on	Jog_Fwd_Rifle
in	AnimStarterPack	(in	Content	Browser),	and	then	click	on	the	arrow	next	to	Anim	to
Play.

Here	is	a	zoomed-in	view	of	the	Animation	settings:

Now,	build	and	play	the	level.	You	will	see	the	character	that	you	have	just	added	to	the
level,	is	jogging.

This	is	the	straightforward	way	to	animate	a	character.	However,	the	character	continues	to
loop	through	this	animation	no	matter	what	is	happening	around.	We	probably	want	the
character	to	be	able	to	react	to	the	environment	and	conditions	of	the	game.	So,	how	can
we	do	this?

Why	do	we	need	to	blend	animations?
In	the	previous	exercise,	we	learned	how	to	make	a	skeletal	mesh	take	on	a	single
animation.	But	can	we	make	the	skeletal	mesh	start	running	in	a	straight	line?	The	next
few	sections	of	animation	exercises	will	explain	how	we	can	do	this	and,	subsequently,
add	more	to	this	basic	animation.

First	of	all,	you	need	to	remember	that	animation	sequences/poses	are	played	when	you
tell	them	to.	While	animating	character,	you	need	to	look	into	the	details	so	that	the
character	looks	normal.

Now,	let’s	quickly	recap	what	we	did	in	the	previous	exercise:	the	skeletal	mesh	character
was	a	zombie	with	no	animation	attached.	When	we	linked	the	run	animation	and	set	it	to
play,	the	character	immediately	seemed	like	it	was	running.	So,	if	we	want	the	character	to
stop	running,	we	can	remove	the	run	animation.	The	character	goes	back	to	looking	like	a
zombie	that	hasn’t	been	animated.	If	we	did	this	in	a	game,	you	would	probably	think	that
there	is	something	very	wrong	with	the	animation.	Zombie->Running->Zombie.	Nothing
realistic	about	it.

How	can	we	improve	this?	We	start	with	an	idle	pose	for	the	character;	an	idle	pose	is	one
where	the	character	stands	at	a	fixed	spot	and	breathes.	Breathing	is	part	of	animation	too.
It	makes	the	character	look	like	it’s	alive.	Next,	we	set	it	to	play	the	run	animation.	To	stop
this	animation,	we	allow	the	character	to	take	the	idle	position	again.	Not	a	bad	attempt	for
this	iteration.	The	character	doesn’t	look	like	a	zombie	now,	but	it	looks	and	feels	real.

What	else	can	we	do	to	make	this	even	better?	Let’s	use	an	analogy	of	someone	driving	a
car	normally	(not	a	race	car	driver).	When	moving	from	the	start	position,	you	accelerate
from	a	speed	of	0	up	to	a	comfortable	cruising	speed.	When	you	want	to	stop,	you	reduce
the	cruising	speed	by	stepping	on	the	brakes	and	then	gradually	go	back	to	0	(to	avoid	a
stopping	suddenly	and	giving	your	passengers	the	unpleasant	experience	of	being	thrown
forward).	Similarly,	we	can	use	this	to	help	us	design	our	character’s	transition	from	a
stationary	position.	We	will	use	a	tool	called	Blend	Animation	to	create	this	transition	so
that	we	can	make	the	movement	of	the	character	a	little	more	realistic.

Blend	Animation,	as	the	name	suggests,	blends	various	types	of	animation	using	variables.
It	can	be	a	simple	one-dimensional	relationship	where	we	use	speed	as	an	axis	to	blend	the
animations	or	a	two-dimensional	relationship	where	we	use	both	speed	and	direction	to
blend	animations.	Unreal	Engine’s	Blend	Animation	tool	is	capable	of	setting	up	the
blending	of	animations	in	different	ways.

Tutorial	–	creating	a	Blend	Animation
In	this	example,	we	will	use	speed	as	the	parameter	to	blend	the	animation.	Let’s	quickly
cover	the	thought	process	here	first	before	listing	the	steps	to	follow	in	the	Unreal	Editor
to	achieve	this.	This	would	help	in	your	understanding	of	how	this	process	works	instead
of	simply	following	the	process	to	make	something	happen.

At	speed	=	0,	we	assign	the	idle	pose.	As	the	speed	increases,	we	should	switch	the
animation	from	an	idle	to	a	walking	animation.	As	the	speed	increases	even	more,	the

animation	switches	from	walking	to	jogging,	and	then	running.	Here’s	an	illustration	of
how	the	blend	would	look:

Next,	let’s	identify	which	animation	sequences	we	have	in	the	animation	pack	and	would
be	suitable	for	each	of	the	stages:

Idle_Rifle_Hip
Walk_Fwd_Rifle_Ironsights
Jog_Fwd_Rifle
Sprint_Fwd_Rifle

To	create	a	simple	1D	Blend	Space,	we	can	right-click	on	the	Character	folder,	and	go	to
Create	Asset	|	Animation	|	Blend	Space	1D.	Alternatively,	you	can	select	the	Character
folder	in	Content	Browser,	click	on	the	Create	button	at	the	top,	go	to	Animation,	and
then	Blend	Space	1D.

Select	HeroTPP_Skeleton;	clicking	on	this	creates	a	new	Blend	Space	1D.	Rename

newblendspace1d	to	WalkJogRun.	Double-click	on	the	newly	created	WalkJogRun	to
open	the	editor.	This	will	propel	you	straight	to	the	Animation	tab	of	the	editor.	Notice
that	this	part	is	highlighted	in	the	following	screenshot.	In	the	SkeletonMesh	field,	we
have	HeroTPP_Skeleton,	which	was	what	we	selected	when	creating	the	blend	space
earlier.

In	the	Animation	editor,	you	have	access	to	Asset	Browser	(which	is,	by	default,	in	the
bottom	right-hand	side	of	the	screen).	Clicking	on	the	animation	assets	will	allow	you	to
preview	how	the	animation	looks.

Let’s	first	set	the	X	Axis	Label	to	Speed.	X	Axis	Range	is	from	0	to	375.	Leave	X	Axis
Divisions	as	4.

The	number	of	divisions	creates	segments	in	the	speed	graph	that	we	have.	Based	on	what
we	selected	earlier	for	the	Idle,	Walk,	Jog,	and	Run	states,	find	the	animation	using	Asset
Browser,	click	and	drop	the	animation	into	the	WalkJogRun	tab	into	the	appropriate
sections,	as	shown	in	the	following	screenshot:

Idle_Rifle_Hip	is	at	speed	=	0.	Set	Walk_Fwd_Rifle_Ironsights	in	the	first	division	line.
When	you	drag	an	animation	into	the	graph,	it	creates	a	node	and	snaps	at	one	of	the
division	lines.	Set	Jog_Fwd_Rifle	in	the	second	division	line	and	set	Sprint_Fwd_Rifle
at	speed	=	375.	To	preview	how	the	animation	blends,	move	the	mouse	over	the	graph
along	the	vertical	axis.

Tutorial	–	setting	up	the	Animation	Blueprint	to	use	a	Blend	Animation
Now	we	have	created	a	Blend	Animation	that	uses	speed	as	a	parameter.	How	do	we	make
an	NPC	change	speed	and	then	link	this	animation	to	it	so	that	as	the	speed	changes	and
the	animation	that	is	played	also	changes?

For	a	simple	implementation	of	getting	the	speed	and	animation	to	change,	we	will	set	up
the	Animation	Blueprint.	Go	to	Content	Browser.	Navigate	to	Animation	|	Character;
then,	navigate	and	click	on	Create	Asset	|	Animation	|	Animation	Blueprint:

Upon	selecting	Animation	Blueprint,	the	editor	will	prompt	you	about	the	base	class	that
you	want	the	Animation	Blueprint	to	be	created	in.	This	screenshot	shows	the	options	that
are	available	for	selection:

In	this	example,	we	will	pick	the	most	basic	generic	class,	AnimInstance,	to	build	our
Animation	Blueprint	in.	Select	HeroTPP_Skeleton	as	the	target	skeletal	mesh	for	this
blueprint.	Name	this	Animation	Blueprint	MyNPC_Blueprint.

To	check	whether	you	have	selected	the	correct	target	skeletal	mesh,	look	in	the	Skeleton
tab	in	the	Blueprint	window,	as	shown	in	the	following	screenshot.	You	should	see
HeroTPP_Skeleton	in	the	box.	The	screenshot	also	shows	the	Graph	tab	that’s	been
selected	with	the	empty	default	AnimGraph	showing.	We	will	proceed	through	this
exercise	with	the	Graph	tab	selected,	unless	specified	otherwise.

AnimGraph

This	screenshot	shows	the	default	blank	AnimGraph.	Final	Animation	Pose	will	receive

the	output	of	the	skeletal	mesh	that’s	been	specified:

First,	we	want	to	add	a	state	machine	by	right-clicking	within	the	AnimGraph	and
navigating	to	State	Machines	|	Add	New	State	Machine…,	as	shown	in	the	following
screenshot:

Rename	the	newly	created	state	machine	Movement:

Double-click	on	Movement.	Create	a	new	state	named	WalkJogRun:

Double-click	on	the	newly	created	WalkJogRun	state	to	modify	the	state	in	a	new	tab.	Go
to	the	Asset	Browser	tab,	look	for	WalkJogRun	blendspace,	which	we	created	in	the
previous	exercise,	and	click	and	drag	it	into	the	editor.	Link	WalkJogRun	blendspace	to
the	final	animation,	as	shown	in	the	following	screenshot.	Notice	that	speed	=	0.00	is
specified	in	the	blendspace	node;	this	was	the	variable	that	we	defined	to	control	the
change	of	the	animation	when	we	created	blendspace	in	the	earlier	exercise.

Next,	we	need	to	create	a	variable	so	that	we	can	pass	in	a	value	to	the	WalkJogRun
blendspace	speed	variable.	To	do	so,	we	need	to	click	and	drag	the	green	dot	next	to	the
Speed	on	the	blendspace	node	to	open	up	a	contextual	menu,	look	for	Promote	to
Variable,	and	then	click	on	it.	This	promotes	speed	in	the	blendspace	node	to	a	float
variable,	which	we	would	set	to	control	the	speed	and	type	of	animation	that	will	be
played.	Rename	this	new	variable	Speed.	The	following	screenshot	shows	how	we	have

created	and	connected	a	Speed	variable	to	WalkJogRun	blendspace,	which	is	linked	to
Final	Animation	Pose:

Now,	go	back	to	link	Movement	to	Final	Animation	Pose:

Now,	the	entire	AnimGraph	is	linked	up.	Click	on	Compile,	and	you	would	see	the
preview	of	the	character	model	updated,	as	shown	in	the	following	screenshot.	The	white
moving	dots	show	how	data	flows	through	the	system.	The	speed	is	0	here.

We	can	also	use	this	tab	to	see	live	preview	as	we	change	the	value	to	Speed.	The
following	screenshot	shows	you	when	speed	is	50.	The	character	model	assumes	a
walking	pose.

Through	AnimGraph,	we	were	able	to	set	up	Speed	as	a	variable	and	link	this	variable	to
WalkJogRun	blendspace,	which,	in	turn,	controls	what	animation	to	play	at	which	speed.

We	need	to	now	think	about	how	to	provide	some	logic	to	determine	how	the	speed	of	the
NPC	changes.

EventGraph

EventGraph	is	used	to	program	logic	into	the	Blueprint.

In	this	example,	we	will	use	EventGraph	to	create	logic	to	change	the	speed	values	that
will,	in	turn,	affect	the	NPC’s	animation	control.

To	create	a	more	complex	intelligent	decision-making	process,	which	is	termed	as	AI,	we
will	need	to	use	a	set	of	AI-related	nodes	in	EventGraph.	We	will	learn	more	about
creating	AI	in	the	next	section.

The	following	screenshot	shows	the	default	new	EventGraph	tab	in	the	Animation
Blueprint.

The	Event	Blueprint	Update	Animation	node	can	be	thought	of	as	the	source	that	sends
a	pulse	through	the	EventGraph	network.	As	this	pulse	travels	through	the	network,	it	goes
through	a	series	of	questions	that	you	design	to	determine	which	animation	is	played.

Try	Get	Pawn	Owner	is	to	get	the	owner	that	Animation	Blueprint	is	assigned	to.	This	is
simply	used	in	combination	with	another	node,	IsValid,	to	ensure	that	we	have	a	valid
owner	before	setting	values	to	change	the	animation.

To	make	MyNPC_Blueprint	work	for	the	Hero_TPP	mesh	that	we	have	in	the	level,	we
will	need	to	first	delete	the	Try	Get	Pawn	Owner	node	and	replace	it	with	Get	Owning
Component.	Right-click	on	the	EventGraph	and	type	Get.	In	the	contextual	menu	that	is
opened,	scroll	down	to	find	Get	Owning	Component.	This	screenshot	shows	where	the
Get	Owning	Component	node	is:

In	the	same	way,	right-click	in	the	editor	and	type	IsValid	to	look	for	the	node.	This
screenshot	shows	where	to	get	the	IsValid	node:

Now,	link	the	triangular	output	from	Event	Blueprint	Update	Animation	to	the	Exec
input	of	the	IsValid	node	(which	is	also	a	triangular	input).	Link	Return	Value	(this	has	a
blue	circle	next	to	it)	output	from	Get	Owning	Component	to	Input	Object	(this	has	a
blue	circle	next	to	it)	of	the	IsValid	node.	The	following	screenshot	shows	the	linkage	of
the	three	nodes.

The	explanation	for	this	is	that	at	every	tick,	we	need	to	check	whether	the	target	skeleton
mesh	is	valid.

For	now,	let’s	simply	set	the	speed	of	the	NPC	to	100	if	the	target	skeleton	mesh	is	valid.
So,	right-click	on	the	EventGraph	area,	and	type	SetSpeed	to	filter	the	options.	Click	and
select	Set	Speed,	as	shown	in	this	screenshot:

Link	the	Is	Valid	output	of	the	IsValid	node	to	the	input	(this	has	a	triangular	symbol)	of
the	SET	Speed	node.	Then,	click	on	the	box	next	to	Speed	and	type	100	to	set	the	speed:

Save	and	recompile	now	to	see	how	the	preview	model	changes.	The	following	screenshot
shows	the	model	playing	the	walk	animation	when	speed	is	set	to	100:

Now,	Animation	Blueprint	is	ready	for	use	in	the	game	level.	We	need	to	assign	this
Animation	Blueprint	to	a	character	in	the	game.	Save	and	close	the	Animation	Blueprint
editor	to	go	back	to	the	main	editor.

To	assign	the	Blueprint	to	the	skeleton	mesh,	we	will	click	on	the	existing	HeroTPP	to
display	the	details	panel.	Focus	on	the	animation	part	of	the	panel;	the	following
screenshot	shows	the	original	setting	that	I	have	when	there	is	no	animation	sequence
linked	to	the	skeleton	mesh	and	it	does	not	use	an	Animation	Blueprint.	Set	Animation
Mode	to	Use	Animation	Asset	and	Anim	to	Play	to	None:

To	use	MyNPC_Blueprint	for	this	skeleton	mesh,	set	Animation	Mode	to	Use
Animation	Blueprint.	Select	MyNPC_Blueprint	for	Anim	Blueprint	Generated	Class:

Now,	compile	and	run	the	game;	you	would	see	the	NPC	walking	on	the	same	spot	with
the	speed	set	as	100.

Artificial	intelligence
AI	is	a	decision-making	process	that	adds	NPCs	in	a	game.	AI	is	a	programmable
decision-making	process	for	NPCs	to	govern	their	responses	and	behaviors	in	a	game.	A
game	character	that	is	not	controlled	by	a	human	player	has	no	form	of	intelligence,	and
when	these	characters	need	to	have	a	higher	form	of	decision-making	process,	we	apply
AI	to	them.

AI	in	games	has	progressed	tremendously	over	the	years	and	NPCs	can	be	programmed	to
behave	in	a	certain	way,	sometimes,	with	some	form	of	randomness,	making	it	almost
unpredictable	so	that	players	do	not	have	a	simple,	straightforward	strategy	to	win	the
level.

The	decision-making	process,	which	is	also	the	logic	of	the	NPCs,	is	stored	in	a	data
structure	known	as	a	Behavior	Tree.	We	will	first	learn	how	to	design	a	simple	Behavior
Tree	then	learn	how	to	implement	this	in	Unreal	Engine	4.

Understanding	a	Behavior	Tree
Learning	how	to	design	a	good	decision-making	tree	is	very	important.	This	is	the
foundation	on	which	programmers	or	scripters	rely	to	create	the	behavior	of	a	character	in
a	game.	The	Behavior	Tree	is	the	equivalent	of	a	construction	blueprint	for	architects	who
design	your	house.

A	Behavior	Tree	has	roots	that	branch	out	into	layers	of	child	nodes,	which	are	ordered
from	left	to	right	(this	means	that	you	always	start	from	the	left-most	node	when
traversing	the	child	nodes)	that	describe	the	decision-making	process.	The	nodes	that
make	up	the	Behavior	Tree	mainly	fall	into	three	categories:	Composite,	Decorator,	or
Leaf.	Once	you	are	familiar	with	a	couple	of	the	common	types	of	nodes	in	each	of	the
three	categories,	you	would	be	ready	to	create	your	own	complex	behaviors:

	 Composite Decorator Leaf

Children
nodes Having	one	or	more	children	are	possible. This	can	only	have	a	single

child	node.
This	cannot	have	any
children	at	all.

Function Children	nodes	are	processed,	depending	on	the
particular	type	of	composite	node.

This	either	transforms
results	from	a	child	node’s
status,	terminates	the	child,
or	repeats	the	processing	of
the	child,	depending	on	the
particular	type	of	Decorator.

This	executes
specific	game
actions/tasks	or	tests.

Node
examples

The	Sequence	node	processes	the	children	nodes	from
the	left-most	child	in	sequence,	collects	results	from
each	child,	and	passes	the	overall	success	or	failure
result	over	to	the	parent	(note	that	even	when	only	one
child	fails	and	the	rest	succeed,	the	overall	result	is
failure).	This	can	be	thought	of	as	an	AND	node.

The	Inverter	node	converts
a	success	to	a	failure	and
pass	this	inverted	result
back	to	the	parent.	It	works
vice	versa	as	well.

The	Shoot	Once	leaf
node	shows	that	the
NPC	would	shoot
once	and	return	a
success	or	failure,
depending	on	the
result.

Exercise	–	designing	the	logic	of	a	Behavior	Tree
This	is	a	simple	walkthrough	of	how	a	Behavior	Tree	can	be	constructed.	The	following
legend	will	help	you	identify	the	different	components	of	a	Behavior	Tree:

Example	–	creating	a	simple	Behavior	Tree
The	following	figure	shows	a	simple	response	for	an	enemy	NPC.	The	enemy	will	only
start	attacking	when	the	war	starts.

The	following	figure	has	been	expanded	on	the	earlier	Behavior	Tree.	It	gives	a	more
detailed	description	of	how	the	enemy	NPC	should	approach	the	target.	The	NPC	will	run
towards	the	target	(the	player	character	in	this	case),	and	if	it	is	close	enough,	it	starts
shooting	the	player.

Next,	we	set	more	behaviors	that	show	how	the	NPC	will	shoot	the	player.	We	give	the
enemy	NPC	a	little	intelligence:	hide	if	someone	is	shooting	at	it	and	start	shooting	if	no
one	is	shooting	at	it;	if	the	player	starts	moving	in	toward	it,	the	NPC	starts	moving
backward	to	a	better	spot	or	goes	for	a	death	match	(it	shoots	the	player	at	close	range).

How	to	implement	a	Behavior	Tree	in	Unreal
Engine	4
The	Unreal	Editor	allows	complex	Behavior	Trees	to	be	designed	using	the	visual
scripting	Blueprints	together	with	several	AI	components.

There	is	also	an	option	in	Unreal	Engine	4	where	very	complex	AI	behaviors	can	be
programmed	in	the	conventional	way	or	in	combination	with	Blueprint	visual	scripting.

The	nodes	for	BT	in	UE4	are	broadly	divided	into	five	categories.	Just	to	recap,	we	have
already	learned	a	little	about	the	first	four	in	the	previous	section;	Service	is	the	only	new
category	here:

Root:	The	starting	node	for	a	Behavior	Tree	and	every	Behavior	Tree	has	only	one
root.
Composite:	These	are	the	nodes	that	define	the	root	of	a	branch	and	the	base	rules
for	how	this	branch	is	executed.
Decorator:	This	is	also	known	as	a	conditional.	These	attach	themselves	to	another
node	and	make	decisions	on	whether	or	not	a	branch	in	the	tree,	or	even	a	single
node,	can	be	executed.
Task:	This	is	also	known	as	a	Leaf	in	a	typical	BT.	These	are	the	leaves	of	the	tree,
that	is,	the	nodes	that	“do”	things.
Service:	These	are	attachments	to	composite	nodes.	They	are	executed	at	a	defined
frequency,	as	long	as	their	branch	is	being	executed.	These	are	often	used	to	make
checks	and	update	the	Blackboard.	These	take	the	place	of	traditional	parallel	nodes
in	other	Behavior	Tree	systems.

Navigation	Mesh
For	AI	characters	to	move	around	in	the	game	level,	we	need	to	specifically	tell	the	AI
character	which	areas	in	the	map	are	accessible.

Unreal	Engine	has	implemented	a	mesh-like	component	known	as	Navigation	Mesh.	The
Navigation	Mesh	is	pretty	much	like	a	block	volume;	you	could	scale	the	size	of	the	mesh
to	cover	a	specific	area	in	the	game	level	that	an	AI	character	can	move	around	in.	This
limits	the	area	in	which	an	AI	can	go	and	makes	the	movement	of	the	character	more
predictable.

Tutorial	–	creating	a	Navigation	Mesh
Go	to	Modes	|	Volumes.	Click	and	drop	Nav	Mesh	Bounds	Volume	into	your	game
level.	The	following	screenshot	shows	where	you	can	find	Nav	Mesh	Bounds	Volume	in
the	editor:

If	you	are	unable	to	see	Nav	Mesh	Bounds	Volume	in	your	map,	go	to	the	Show	settings
within	the	editor,	as	shown	in	the	following	screenshot.	Make	sure	the	checkbox	next	to
Navigation	is	checked:

Scale	and	move	the	Navigation	Mesh	to	cover	the	area	of	the	floor	you	want	the	AI
character	to	be	able	to	access.	What	I	have	done	in	the	following	screenshot	is	to	scale	the
mesh	to	fit	the	floor	area	which	I	want	my	AI	character	to	walk	in.	Translate	the	mesh
upward	and	downward	to	allow	it	to	be	slightly	above	the	actual	ground	mesh.	The
Navigation	Mesh	should	sort	of	enclose	the	ground	mesh.	This	screenshot	shows	how	the
mesh	looks	when	it	is	visible:

Tutorial	–	setting	up	AI	logic
Here’s	an	overview	of	the	components	that	we	will	create	for	this	tutorial:

Blueprint	AIController	(MyNPC_AIController)
Blueprint	Character	(MyNPC_Character)
BlackBoard	(MyNPC_Brain)
Behavior	Tree	(MyNPC_BT)
Blueprint	Behavior	Tree	Task	(Task_PickTargetLocation)

The	important	takeaway	from	this	tutorial	is	to	learn	how	the	components	are	linked	up	to
work	together	to	create	logic;	we	make	use	of	this	logic	to	control	the	behavior	of	the
NPC.

In	terms	of	file	structure	in	Content	Browser	for	these	different	file	types,	you	can	group
the	different	components	into	different	folders.	For	this	example,	since	we	are	only
creating	one	NPC	character	with	logic,	I	will	put	all	these	components	into	a	single	folder
for	simplicity.	I	created	MyFolder	under	the	main	directory	for	this	purpose.

We	start	creating	the	AI	logic	of	our	NPC	starting	with	AIController	and	Character.	The
Character	Blueprint	is	the	object	that	contains	the	link	to	the	mesh,	and	we	will	drag	and
drop	this	Character	Blueprint	into	the	level	map	after	we	make	some	initial	configurations.
The	AIController	is	the	component	that	gives	the	NPC	character	its	logic.

We	will	discuss	the	rest	of	the	other	three	components	as	we	go	along.

Creating	the	Blueprint	AIController
Go	to	Create	|	Blueprint.	Type	in	AIController	into	the	textbox	to	filter	by	class,	as
shown	in	the	following	screenshot.	Select	AIController	as	the	parent	class.

Rename	this	AIController	Blueprint	as	MyNPC_AIController:

We	will	come	back	to	configure	this	later.

Creating	the	Blueprint	character
Go	to	Create	|	Blueprint,	and	type	in	Character	in	the	textbox	to	filter	by	class.	Select
Character	as	the	parent	class	for	the	Blueprint,	as	shown	in	the	following	screenshot.
Rename	this	Blueprint	as	MyNPC_Character.

Adding	and	configuring	Mesh	to	a	Character	Blueprint
Double-click	on	MyNPC_Character	in	Content	Browser	to	open	the	Character
Blueprint	editor.	Go	to	the	Components	tab.

In	the	Perspective	space	view,	you	will	see	an	empty	wireframe-capsule-shaped	object,	as
shown	in	the	following	screenshot.	In	the	Details	panel	in	the	Blueprint	editor,	scroll	to
the	Mesh	section,	and	we	will	add	a	mesh	to	this	Blueprint	by	selecting	an	existing	mesh
we	have.	You	can	go	to	Content	Browser,	select	HeroTPP,	and	click	on	the	arrow	next
to	it.	Alternatively,	you	can	click	on	the	search	button	next	to	the	box	and	find	HeroTPP:

After	selecting	HeroTPP	as	the	skeletal	mesh,	you	will	see	the	mesh	appearing	in	the
wireframe	capsule.	Notice	that	the	HeroTPP	skeletal	mesh	is	much	larger	than	the	capsule
wireframe,	as	shown	in	the	following	screenshot.	We	want	to	be	able	to	adjust	the	size	of
the	wireframe	to	surround	the	height	and	width	of	the	skeletal	mesh	as	closely	as	possible.
This	will	define	the	collision	volume	of	the	character.

This	figure	shows	when	the	wireframe	for	the	skeletal	mesh	is	the	correct	height:

Linking	AIController	to	the	Character	Blueprint
Go	to	the	Default	tab	of	MyNPC_Character,	scroll	to	the	AI	section,	and	click	on	the
scroll	box	to	display	the	options	available	for	AIControllers.	Select
MyNPC_AIController	to	assign	the	character	to	use	this	AIController,	as	shown	in	this
screenshot.	Compile,	save,	and	close	MyNPC_Character	for	now.

Go	to	Content	Browser,	and	click	and	drop	MyNPC_Character	into	the	level	map.
Compile	and	play	the	level.	You	will	see	that	the	character	appears	in	the	level	but	it	is
static.

Adding	basic	animation
Similar	to	the	early	implementation	of	assigning	an	animation	to	the	mesh,	we	will	add
animation	to	MyNPC_Character.	Double-click	on	MyNPC_Character	to	open	the
editor.	Go	the	Default	tab,	scroll	to	the	Animation	section,	and	assign	the	Animation
Blueprint	(MyNPC_Blueprint),	which	we	created	earlier	for	this	Character	Blueprint.
The	following	screenshot	shows	how	we	can	assign	animation	to	the	character.	Compile
and	save	MyNPC_Character:

Now,	play	the	level	again,	and	you	will	see	that	the	character	is	now	walking	on	the	spot
(as	we	have	set	the	speed	to	100	in	the	Animation	Blueprint,	MyNPC_Blueprint).

Configuring	AIController
Go	to	Content	Browser.	Then,	go	to	MyFolder	and	double-click	on
MyNPC_AIController	to	open	the	editor.	We	will	now	add	nodes	in	EventGraph	to
design	the	logic.

Our	first	mission	is	to	get	the	character	to	move	forward	(instead	of	just	walking	on	the
same	spot).

Nodes	to	add	in	EventGraph

The	following	are	the	nodes	to	be	added	in	EventGraph:

Event	Tick:	This	is	used	to	trigger	the	loop	to	run	at	every	tick
Get	Controlled	Pawn:	This	returns	the	pawn	of	AIController	(which	will	be	the
pawn	of	HeroTPP)
Get	Actor	Forward	Vector:	This	gets	the	forward	vector
Add	Movement	Input:	This	links	the	target	to	Get	Controlled	Pawn	and	Link
World	Direction	to	the	output	of	Get	Actor	Forward	Vector
IsValid:	This	is	to	ensure	that	the	pawn	exists	first	before	actually	changing	the	pawn
values

The	following	screenshot	shows	the	final	EventGraph	that	we	want	to	create:

Now,	play	the	level	again,	and	you	will	see	that	the	character	is	now	walking	forward.	But
it’s	doing	this	a	little	too	quickly.	We	want	to	adjust	the	maximum	speed	at	which	the
character	moves.

Adjusting	movement	speed
Double-click	on	MyNPC_Character	to	open	the	editor.	Go	to	the	Default	tab,	scroll	to
the	Character	Movement	section,	and	set	Max	Walk	Speed	to	100,	as	shown	in	this
screenshot:

Creating	the	BlackBoardData
BlackBoardData	functions	as	the	memory	unit	of	the	brain	of	the	NPC.	This	is	where	you
store	and	retrieve	data	that	would	be	used	to	control	the	behavior	of	the	NPC.	Go	to
Content	Browser,	and	navigate	to	Create	|	Miscellaneous	|	Blackboard.	Rename	it
MyNPC_Brain.

Adding	a	variable	into	BlackBoardData

Double-click	on	MyNPC_Brain	to	open	the	BlackBoardData	editor.	Click	on	New	Key,
select	Key	Type	as	Vector,	and	name	it	TargetLocation.	This	screenshot	shows	that
TargetLocation	is	created	correctly.	Save	and	close	the	editor.

Creating	a	Behavior	Tree
Behavior	Tree	is	the	logic	path	that	NPC	goes	through	to	determine	what	course	of	action
to	take.

To	create	a	Behavior	Tree	in	Unreal	Engine,	go	to	Content	Browser	|	Create	|
Miscellaneous,	and	then	click	on	Behavior	Tree.	Rename	it	MyNPC_BT.

Double-click	on	MyNPC_BT	to	open	the	Behavior	Tree	editor.	The	following	screenshot
shows	the	setting	that	we	want	for	MyNPC_BT.	It	should	have	MyNPC_Brain	set	as	the
BlackBoard	asset.	If	it	doesn’t,	search	for	MyNPC_Brain	and	assign	it	as	the	BlackBoard
asset.

If	you	have	already	gone	through	the	earlier	exercise	and	are	familiar	with	a	Behavior
Tree,	you	will	notice	that	in	this	editor	that	there	is	a	Root	node,	which	you	could	use	to
start	building	out	your	NPC’s	behavior.

Creating	a	simple	BT	using	a	Wait	task
The	next	step	here	is	to	add	on	a	composite	node	(either	Sequence,	Selector,	or	Simple
Parallel).	In	this	example,	we	will	select	and	use	a	Sequence	node	to	extend	our	Behavior
Tree	here.	You	can	click	and	drag	from	the	Root	node	to	open	up	the	contextual	menu,	as
shown	in	the	following	screenshot.	Alternatively,	just	right-click	to	open	up	the	menu	and
select	the	node	that	you	want	to	create.

We	will	add	a	Wait	task	from	the	Sequence	node.	Click	and	drag	to	create	a	new
connection	from	the	Sequence	node.	From	the	contextual	menu,	select	Wait.	Set	Wait	to
be	15.0s,	as	shown	in	this	screenshot.	Save	and	compile	MyNPC_BT.

After	compiling,	click	on	Play	in	the	Behavior	Tree	editor.	You	would	see	the	light
moving	through	the	links	and	especially	from	the	Sequence	node	to	the	Wait	task	for	15s.

Using	the	Behavior	Tree
Now	that	we	have	a	simple	implementation	of	the	Behavior	Tree,	we	want	our	NPC
character	to	start	using	it.	How	do	we	do	this?	Go	to	Content	Browser	|	MyFolder,	and
double-click	on	MyNPC_AIController	to	open	up	the	editor.	Go	to	the	EventGraph	tab
where	we	initially	created	a	simple	move	forward	implementation.	Break	the	initial	links
between	the	IsValid	node	and	Add	Movement	Input.	Rewire	them	based	on	the
following	screenshot	by	linking	the	IsValid	node	to	a	new	Run	Behavior	Tree	node.	In	the
Run	Behavior	Tree	node,	assign	BTAsset	to	MyNPC_BT.	Next,	replace	Event	Tick	with
Event	Begin	Play	(since	the	BT	will	now	replace	the	thinking	function	here).	Save	and
compile.

Creating	a	custom	task	for	the	Behavior	Tree
We	want	to	now	make	the	NPC	select	a	location	on	the	map	and	walk	toward	it.

This	requires	the	creation	of	a	custom	task	where	the	NPC	has	to	select	a	target	location.
We	have	already	created	an	entry	in	the	BlackBoardData	to	store	a	vector	value.	However,
we	have	not	made	a	way	to	assign	values	to	the	data	yet.	This	would	be	done	by	creating	a
custom	Behavior	Tree	task.

Go	to	Content	Browser	|	Create	|	Blueprint.	For	the	parent	class,	search	for	BTNode
and	select	BTTask_BlueprintBase,	as	shown	in	the	following	screenshot.	Rename	this
task	as	Task_PickTargetLocation.

Double-click	on	the	newly	created	Task_PickTargetLocation.	Go	to	EventGraph,	create
the	following	nodes,	and	link	these	nodes:

Event	Receive	Execute:	Link	Owner	Actor	to	the	target	of	Get	Actor	Location.
When	PickTargetLocation	is	executed,	Event	Receive	Execute	starts.
Get	Actor	Location:	Link	Return	Value	to	Origin	of	Get	Random	Point	in	the
Radius	node.
Set	Blackboard	Value	as	Vector:	Link	Event	Receive	Execute	to	the	execution
arrow	of	Set	Blackboard	Value	as	Vector.
Get	Random	Point	in	Radius:	Link	Return	Value	to	the	Value	input	for	Set
Blackboard	Value	as	Vector.
Finish	Execute:	Link	Set	Blackboard	Value	as	Vector	to	the	input	execution	of
Finish	Execute.

Notice	that	there	is	a	New	Target	Loc	variable	linked	to	Key	of	Set	Blackboard	Value	as
Vector.	We	need	to	create	a	new	variable	for	this.	Click	on	+Variable,	as	shown	in	the
following	screenshot,	to	create	a	new	variable.	Name	the	new	variable	New	Target	Loc.

Click	on	the	newly	created	New	Target	Loc	to	display	the	details	of	the	variable.	Select
BlackBoardKeySelector	as	the	variable	type,	as	shown	in	this	screenshot:

Save	and	compile	the	custom	task.

Using	the	PickTargetLocation	custom	task	in	BT
Add	a	new	link	from	the	current	Sequence	composite	node.	Place	the
Task_PickTargetLocation	node	to	the	left	of	the	Sequence	node	so	that	it	would	be
executed	first,	as	shown	in	the	following	screenshot.	Make	sure	that	New	Target	Loc	is
set	as	TargetLocation:

Replacing	the	Wait	task	with	Move	To
Delete	the	Wait	node,	and	add	the	Move	To	node	in	its	place.	Make	sure	that	Blackboard
Key	for	Move	To	is	set	as	TargetLocation,	as	show	in	this	screenshot:

After	compiling,	click	on	Play	to	run	the	game.	Double-click	on	MyNPC_BT	to	open	the
Behavior	Tree	editor.	You	would	see	the	light	moving	through	the	links	and	the
TargetLocation	value	changing	in	the	Blackboard,	as	shown	in	this	screenshot:

Remember	to	go	back	to	the	map	level	and	see	how	the	NPC	is	behaving	now.	The	NPC
now	selects	a	target	location	and	then	move	to	the	target	location.	Then,	it	selects	a	new
target	location	and	moves	to	another	spot.

With	this	example,	you	have	gained	a	detailed	understanding	of	how	to	set	up	AI	behavior
and	getting	AI	to	work	in	your	level.	Challenge	yourself	to	create	more	complex	behaviors
using	the	knowledge	gained	in	this	section.

Implementing	AI	in	games
I	am	sure	you	have	noticed	that	we	definitely	need	to	create	more	complex	behaviors	to
make	a	game	interesting.	In	terms	of	implementation,	it	is	often	easier	to	implement	more
complex	AI	through	a	combination	of	programming	and	use	the	editor	functions	to	take
this	a	step	further.	So,	it	is	important	to	know	how	AI	can	be	triggered	via	the	editor	and
how	you	can	customize	AI	for	your	game.

Summary
This	chapter	covers	both	animation	and	artificial	intelligence.	These	are	huge	topics	in
game	development	and	there	is	definitely	more	to	learn	about	them.	I	hope	that	through
this	chapter,	you	now	have	a	strong	understanding	of	these	two	topics	and	will	use	your
skills	to	further	explore	more	functions	in	the	Unreal	Editor	to	create	cooler	stuff.

We	learned	a	little	about	the	history	of	animation,	how	animation	is	created	today	in	3D
computer	games	through	various	3D	modeling	software,	and	finally,	how	to	import	this
animation	into	Unreal	Engine	to	be	used	in	games.	An	animation	sequence	is	the	format	in
which	animation	is	stored/played	in	Unreal,	and	you’ve	learned	about	a	simple	blend
technique	to	combine	different	animation	sequences.

Personally,	I	love	how	AI	contributes	to	a	game.	In	this	chapter,	you	learned	about	the
different	components	that	make	up	AI	logic.	The	main	AI	logic	is	executed	through	the
Behavior	Tree,	and	we	learned	how	to	construct	a	Behavior	Tree	in	terms	of	logic	as	well
as	how	to	replicate	this	into	the	Unreal	Editor	itself	through	the	use	of	BlackBoardData,
Task,	Composite,	and	other	nodes.

Ending	this	chapter,	we	have	covered	a	huge	portion	of	what	we	need	to	create	a	game.	In
the	next	chapter,	you	will	learn	how	to	add	sounds	and	particle	effects	into	a	game.

Chapter	6.	A	Particle	System	and	Sound
In	this	chapter,	we	will	touch	on	the	components	of	a	game	that	are	extremely	important
but	often	go	unnoticed	unless	they	are	badly	designed	and	out	of	place.	Yes,	we	will	cover
particle	system	and	sound	in	this	chapter.	In	most	games,	they	blend	in	so	naturally	that
they	are	easily	forgotten.	They	can	also	be	used	to	create	the	most	memorable	moments	in
a	game.

Just	to	recap,	particle	systems	are	used	very	often	to	create	sparks,	explosions,	smoke,
rain,	snow,	and	other	similar	effects	in	a	game	that	are	dynamic,	kind	of	fuzzy,	and	random
in	nature.	Sound	can	be	in	the	form	of	ambient	sounds,	such	as	the	sound	of	rustling	leaves
and	wind,	one-off	sounds,	such	as	a	pan	dropping	in	the	kitchen,	or	repetitive	sounds,	such
as	the	running	steps	of	a	character	or	even	music	playing	on	the	radio.	Sound	can	be	used
to	set	the	mood	of	a	game,	alert	the	player	to	something	that	needs	attention,	and	provide
realism	to	a	level	to	make	a	place	come	alive.	Let’s	get	started.

What	is	a	particle	system?
A	particle	system	is	a	way	to	model	fuzzy	objects,	such	as	rain,	fire,	clouds,	smoke,	and
water,	which	do	not	have	smooth,	well-defined	surfaces	and	are	nonrigid.	The	system	is	an
optimized	method	to	achieve	such	fluid-looking	and	dynamic	visual	representations	by
controlling	the	movement,	behavior,	interaction,	and	look	of	many	tiny	geometry	objects
or	sprites.

Using	a	combination	of	different	particles	made	of	different	shapes,	sizes,	materials,	and
textures,	with	different	movement	speeds,	rotation	direction/speeds,	spawn	rates,
concentration,	visibility	duration,	and	many	more	factors,	we	are	able	to	create	a	huge
variety	of	dynamic	complex	systems.

In	this	chapter,	we	will	learn	about	the	components	of	the	particle	system	using	Unreal’s
Particle	System	editor	and	Cascade	editor	and	use	these	editors	to	create	a	few	additions
for	your	level.

Exploring	an	existing	particle	system
We	will	start	by	first	seeing	what	kind	of	particle	systems	we	get	in	the	default	package	of
Unreal	Engine	4.	Go	to	Content	Browser	|	Game	|	Particles.	There	are	a	couple	of
particle	systems	that	we	can	already	drag	and	place	in	the	level	and	check	out	how	they
look.

To	open	a	particle	system,	simply	double-click	on	any	of	the	systems.	Let’s	take	a	look	at
P_Fire	together.	Feel	free	to	check	out	the	rest	of	the	systems	as	well.	However,	I	will	use
this	as	an	example	to	understand	what	we	need	in	order	to	create	a	new	particle	system	for
our	level.	This	screenshot	shows	P_Fire	in	the	editor:

On	the	left-hand	side	is	Viewport	where	we	can	preview	the	particle	system.	On	the	right-
hand	side,	in	the	Emitters	tab,	you	can	see	several	columns	of	boxes	with	Flames	(twice),
Smoke,	Embers,	and	Sparks	mentioned	on	top	of	each	of	the	columns.

Emitters	can	be	thought	of	as	separate	components	that	make	up	the	particle	system,	and
you	can	give	each	emitter	different	properties	depending	on	what	you	want	to	create.
When	you	put	a	bunch	of	emitters	together,	you	will	see	them	combining	to	give	you	a
whole	visual	effect.	In	this	P_Fire	particle	system,	you	can	see	flames	moving	in	an
unpredictable	manner	with	some	sparks	and	embers	floating	around	and	smoke	simulating
a	fire	bursting	into	flames.	In	the	next	section,	let’s	go	through	more	concrete	terminology
that	describes	the	particle	system	in	Unreal	Engine	4.

The	main	components	of	a	particle	system
Very	briefly,	the	following	paragraph	(taken	from	the	official	Unreal	4	documentation
that’s	available	online)	very	aptly	describes	the	relationship	between	the	different
components	that	are	used	in	particle	systems:

“Modules,	which	define	particle	behavior	and	are	placed	within…Emitters,	which
are	used	to	emit	a	specific	type	of	particle	for	an	effect,	and	any	number	of	which	can
be	placed	within	a…Particle	System,	which	is	an	asset	available	in	the	Content
Browser,	and	which	can	then	in	turn	be	referenced	by	an…Emitter	Actor,	which	is	a
placeable	object	that	exists	within	your	level,	controlling	where	and	how	the	particles
are	used	in	your	scene.”,

Read	this	several	times	to	make	sure	that	you	are	clear	on	the	relationship	between	the
different	components.

So,	as	described	in	the	earlier	section	where	we	looked	at	P_Fire,	we	know	that	the
emitters	are	labelled	as	Flames,	Embers,	Sparks,	Smoke,	and	so	on.	The	different
properties	of	each	of	the	emitters	are	defined	by	adding	modules,	such	as	Lifetime,	Initial
Velocity,	and	so	on,	into	them.	Together,	all	the	emitters	make	up	a	particle	system.	Lastly,
when	you	place	the	emitters	in	your	game	level,	you	are,	in	fact,	dragging	the	emitter
actor,	which	references	a	particular	particle	system.

Modules
The	Default	Required	and	Spawn	modules	are	the	modules	that	every	emitter	needs	to
have.	There	is	also	a	long	list	of	other	optional	modules	that	the	Cascade	Particle	editor
offers	to	customize	your	particle	system.	In	the	current	version	of	the	editor	that	I	am
using,	I	have	the	Acceleration,	Attractor,	Beam,	Camera,	Collision,	Color,	Event,	Kill,
Lifetime,	Location,	Orbit,	Orientation,	Parameter,	Rotation,	Rotation	Rate,	Size,
Spawn,	SubUV,	Vector	Field,	and	Velocity	modules.

We	will	cover	a	few	of	the	frequently	used	modules	from	this	long	list	of	modules	through
a	simple	exercise	that’s	based	on	P_Fire.	I	understand	that	it	would	be	very	boring	and	not
very	useful	when	grasping	the	basics	here	if	I	simply	gave	you	all	those	definitions	that
you	can	find	easily	online.	Instead,	we	will	go	through	this	section	by	customizing	P_Fire
to	create	a	fireplace	for	our	level.	At	the	same	time,	we	will	go	through	the	key	values
within	the	different	modules	that	you	can	adjust.	Thus,	you	can	take	a	look	at	how	these
values	impact	the	look	of	the	particle	system.

For	more	detailed	documentation	on	the	definition	of	each	module	and	parameter,	you	can
refer	to	the	Unreal	4	online	documentation
(https://docs.unrealengine.com/latest/INT/Engine/Rendering/ParticleSystems/Reference/index.html

The	commonly	used	modules	are	listed	as	follows:

Module Key	parameters	it	can	control

Required Material	used	for	the	particles

Spawn Rate	and	distribution	of	the	spawn

Initial	Size Size	of	the	initial	particle

Lifetime Time	duration	for	which	the	particle	stays	visible

Color	Over	Life Color	of	the	particles	over	their	lifetimes

https://docs.unrealengine.com/latest/INT/Engine/Rendering/ParticleSystems/Reference/index.html

The	design	principles	of	a	particle	system
The	design	principles	of	a	particle	system	can	be	configured	through	a	research	and
iterative	creative	process.	Let’s	take	a	look	at	each	one	of	them	in	the	following	section.

Research
Details	are	probably	key	to	designing	a	realistic	particle	system.	Very	often,	creating	a
particle	system	lies	in	the	realm	of	an	artist	as	we	need	an	artistic	touch	to	create	a	visually
appealing	and	somewhat	realistic	replica	of	the	effect	that	we	want	to	create.

For	starters,	it	is	good	to	research	a	little	on	what	the	actual	effect	looks	like.	Here	are
some	steps	to	help	you	get	started:

Identify	the	different	components	that	are	needed	(break	the	particle	effects	down
into	the	different	components).
Determine	the	relationship	among	the	different	components	(the	size	of	the	particles
that	are	relative	to	one	another,	spawn	rate,	lifetimes,	and	so	on).
Next,	look	at	other	similar	effects	that	are	created	in	the	Computer	Graphics	(CG)
space.	The	reason	for	doing	this	is	that	sometimes,	actual	effects	can	be	a	little	too
monotonous,	and	there	are	many	amazing	visual	effect	people	out	there	who	you	can
learn	from	to	spice	things	up	a	little.	So,	it	is	a	great	idea	to	spend	a	little	time
checking	out	what	others	have	done	already,	rather	than	spending	a	whole	lot	of	time
experimenting	and	not	getting	what	you	want	to	achieve.

The	iterative	creative	process
Creating	the	perfect	looking	particle	system	that	you	want	usually	involves	quite	a	bit	of
tweaking	and	playing	around	with	the	parameters	that	you	have.	The	key	to	doing	this	is
knowing	what	parameters	there	are	and	what	they	affect.	During	the	initial	phase	of
design,	you	should	also	try	adding	or	removing	certain	modules	to	see	how	they	actually
impact	the	overall	look	of	the	system.	This	does	not	mean	that	more	is	always	better.
Additionally,	it	is	also	wise	to	save	backup	copies	of	your	iterations	so	that	you	can	always
go	back	to	the	previous	versions	easily.

Being	extremely	proficient	in	creating	the	particle	system,	I	think,	involves	a	combination
of	good	design	planning,	having	the	patience	to	iterate,	and	making	small	adjustments	to
get	the	look	that	you	eventually	want.

Example	–	creating	a	fireplace	particle
system
In	this	example,	we	will	duplicate	P_Fire	and	edit	it	to	create	a	fire	for	a	fireplace	in	the
level.	We	will	also	change	a	part	of	the	current	level	in	which	we	have	to	place	this	new
fireplace	particle	system.

Go	to	Content	Browser	|	Particles,	select	P_Fire,	and	duplicate	it.	Rename	it
P_Fireplace.	This	screenshot	shows	how	P_Fireplace	is	created	in	the	Particles	folder:

Let’s	open	Chapter5Level	and	rename	it	Chapter6Level	first.	We	will	first	add	a
fireplace	structure	to	the	level	to	set	the	context	for	this	fireplace	effect.	This	will	help	you
follow	the	creation	process	better.	This	screenshot	shows	the	original	living	room	space:

The	following	screenshot	shows	the	modified	living	room	space	with	a	fireplace:

This	screenshot	shows	a	zoomed	in	version	of	the	fireplace	structure	if	you	intend	to
construct	it:

Zooming	in	on	the	metal	vents	will	look	like	this:

What	we	did	here	was	delete	the	lights	and	low	cabinet	structure	and	replaced	it	with	this:

TopWoodPanel	(material:	M_Wood_Walnut):	X	=	120,	Y	=	550,	Z	=	60
Concrete	pillars	around	the	glass	(material:	M_Brick_Cut_Stone)
ConcretePillar_L	and	ConcretePillar_R:	X	=	100,	Y	=	150,	Z	=	220
ConcretePillar_Top:	X	=	100,	Y	=	250,	Z	=	100
Fireplace	glass	and	inside	(material:	M_Glass)
Fireglass:	X	=	5,	Y	=	250,	Z	=	120
MetalPanel	and	MetalPanel_Subtractive:	X	=	40,	Y	=	160,	Z	=	10

FireVent1	to	FireVent5

Use	the	BSP	subtractive	cylinder	with	the	following	setting,	as	shown	in	the	following
screenshot.	Here,	Z	is	10,	Outer	Radius	is	3,	and	Sides	is	8:

The	lower	extended	structure	(made	up	of	two	BSPs)	consists	of	the	following:

Thinner	extension	platform:	X	=	140,	Y	=	550,	Z	=	10
Thicker	base:	X	=	120,	Y	=	550,	Z	=	30

Crafting	P_Fireplace
Now,	double-click	on	P_Fireplace	to	open	up	the	Cascade	Particle	System	editor.	Since
we	duplicated	it	from	P_Fire,	it	has	the	same	emitters	as	P_Fire:	the	two	Flame,	one
Smoke,	one	Sparks,	one	Embers,	and	one	Distortion	module.

Observe	the	current	viewport.	What	do	you	see?	The	original	P_Fire	effect	is	more	like	a
sequence	of	random	bursts	of	flames	that	disappear	pretty	quickly	after	the	initial	burst.
What	kind	of	fire	do	we	need	for	the	fireplace	that	we	have	created?	We	need	more	or	less
continuous	and	slower	moving	flames	that	hover	in	a	fixed	position.

With	this	difference	and	objective	in	mind,	we	will	next	determine	which	of	the
components	of	P_Fire	we	want	to	keep	as	our	fire	effect	for	the	fireplace.

Observing	the	solo	emitters	of	the	system
Using	the	solo	button	and	checkbox	in	each	of	the	modules,	toggle	S	on	or	off,	and
alternatively	mark/unmark	the	checkbox	to	observe	the	individual	components.	This
screenshot	shows	you	the	location	of	the	solo	button	and	checkbox:

Deleting	non-essential	emitters
The	first	step	was	to	delete	the	second	Flame	emitter	(the	first	being	the	left-most)	and	the
Smoke	emitter.	The	reason	for	this	was,	I	think,	so	that	I	could	work	with	a	single	flame	to
create	a	fire	for	the	fireplace.	The	Smoke	emitter	was	removed	mainly	because	of	it	is	a
gas/electric	fire;	thus,	I	would	expect	less	smoke.	You	could	alternatively	unmark	the
checkbox	at	the	top	of	the	window	to	hide	the	entire	emitter	first	before	deleting	it
permanently.

Focusing	on	editing	the	Flame	emitter
Keeping	the	only	Flame	emitter,	the	flame	was	still	appearing	at	random	spots	within	a
certain	radius	and	then	disappearing	quickly	after	that.	We	will	address	each	of	the	issues
here	one	by	one:

Configure	Lifetime:	So,	since	we	need	to	have	the	fire	burning	continuously	instead
of	in	short	bursts,	I	will	first	adjust	the	Lifetime	property	so	that	the	fire	burns	for	a

longer	period	of	time	before	disappearing.	Change	Distribution	Float	Uniform,	with
Min	kept	as	0.7,	Max	as	1.0,	and	Distribution	Constant	as	1.2.
Remove	Const	Accleration+:	Now,	the	flame	lingers	longer	on	screen	before
disappearing.	However,	the	flames	seem	to	be	drifting	away	from	the	spawn	location
after	they	are	spawned.	For	a	fireplace,	flames	more	or	less	remain	in	the	same
location.	So,	I	turn	off	Const	Acceleration+	in	the	Flames	module	by	unmarking	the
checkbox.	The	flames	now	seem	to	be	moving	away	from	the	spawn	location	a	lot
less.
Remove	Initial	Velocity:	After	removing	the	acceleration	module,	it	still	seems	like
the	flames	are	moving	away;	my	guess	for	this	is	that	the	particles	had	some	initial
velocity,	and	so	I	turned	off	this	module	to	confirm	my	suspicion	and	it	seemed	to
work.
Configure	Spawn:	The	flames	looked	quite	sparse	as	they	are	small,	and	this	creates
some	blank	space	within	the	spawn	area	during	short	intervals.	I	could	adjust	the	size
of	the	flame	to	make	it	bigger,	but	when	I	did	this,	the	flame	looked	too	distorted.	So,
I	decided	to	increase	the	spawn	rate	instead	so	that	more	flames	could	occur	per
minute.	Change	the	spawn	rate	for	Rate	Scale	Distribution	from	5.0	to	20.0.
Increase	Distribution	Float	Constant	from	1.0	to	3.0.

Looking	at	the	complete	particle	system
Now,	I’ve	turned	the	other	emitters	back	on	again	to	look	at	the	whole	particle	system
effect	and	also	see	if	it	requires	more	editing.	It	looks	pretty	okay	for	a	fireplace	fire	now
so	I’ve	stopped	here.	Feel	free	to	go	ahead	and	adjust	the	other	properties	to	improve	the
design.	These	are	the	very	basics	of	modifying	an	existing	particle	system,	and	I	hope	you
have	familiarized	yourself	with	the	particle	system	editor	through	this	exercise.

Sound	and	music
Sound	and	music	are	an	essential	part	of	the	game	experience.	Ever	watched	television
with	the	volume	switched	off?	Just	watching	subtitles	and	lip	movements	is	not	enough.
You	want	to	hear	what	the	character	on	the	screen	is	saying	and	how	they	are	saying	it.	For
games,	it	is	pretty	much	similar,	and	on	top	of	this,	pretty	often,	you	get	cues	through	the
sound	and	music.	If	you	have	played	Alien:	Isolation,	you	need	to	listen	to	the	sounds	in
the	game	to	know	whether	you	have	an	alien	coming	in	your	direction.	This	can	be	a
matter	of	life	and	death	in	the	game.	It	pretty	much	determines	whether	you	end	up	as	a
winner	or	simply	a	delicious	meal	for	the	alien.	So,	are	we	ready	now	to	learn	how	sound
and	music	are	created	for	games,	and	how	we	use	the	Unreal	Editor	to	incorporate	them
into	our	game	level?

How	do	we	produce	sound	and	music	for
games?
Many	game	productions	have	original	music	written	for	in-game	scenarios;	some	also	use
actual	songs	sung	by	professional	singers	as	theme	songs.	Music	in	games	is	a	big	thing
and	it’s	dearly	remembered	by	fans	of	the	game.	Sometimes,	the	music	itself	is	enough	to
trigger	memories	of	the	gaming	experience.	Thus,	game	studios	need	to	spend	time
creating	suitable	music	to	complement	their	games.

If	you	are	a	huge	fan	of	video	game	music,	there	are	also	concerts	that	you	can	go	to
where	the	orchestra	plays	music	from	popular	games	(check	out	Video	Games	Live	at
http://www.videogameslive.com/index.php?s=home).

Creating	music	for	a	game	is	very	similar	to	composing	music	for	a	piece;	it	should	trigger
appropriate	emotions	when	it’s	played.	The	choice	of	music	needs	to	match	the	pace	and
situations	of	the	game.	Using	a	JRPG	game	as	an	example,	you	should	be	able	to
differentiate	between	in-battle	music	versus	the	music	that’s	played	when	you	are	in	a
menu,	loading	the	game,	or	when	you’ve	just	won	a	battle.	Very	often,	music	is	created	on
the	basis	of	the	needs	of	the	game,	and	the	music	composer	has	to	probably	come	up	with
a	few	different	versions	and	let	the	team	and/or	management	review	it	before	the	best
piece	is	selected.

If	you	do	not	intend	to	create	original	music	or	sound	for	your	game,	you	can	find	many
free	downloadable	sounds	and	music	online	these	days.	When	using	free	online	music	and
sounds,	do	ensure	that	you	do	not	violate	any	digital	rights	or	copyrights	when
incorporating	them	in	your	game.

http://www.videogameslive.com/index.php?s=home

Audio	quality
The	reason	why	we	are	discussing	audio	quality	is	because	sound	quality,	like	image
quality,	is	of	huge	importance	these	days.	We	already	use	the	4K	resolution	image	quality
today,	and	there	will	be	more	devices	and	games	that	would	support	this	in	the	future.
How	about	sounds?	The	listening	experience	needs	to	match	the	quality	of	the	image	and
provide	more	than	just	mono	or	stereo	sounds.	Sound	experience	has	also	progressed	to
multichannel	surround	sound,	starting	at	5.1,	7.1,	and	beyond	these	days,	to	obtain	a	life-
like	immersive	audio	experience.	This	is	definitely	something	to	think	about	when
creating,	storing,	and	playing	audio	files.

How	are	sounds	recorded?
Sounds	are	generated	in	the	form	of	analog	waves,	which	are	continuous	waves,	which
you’ll	see	shortly	in	the	upcoming	figure.	We	can	record	surround	sound	through	a
recording	device.	For	multichannel	sound	recording,	you	need	to	have	certain	methods	to
record	music	that	can	use	a	simple	recording	setup	known	as	Deca	Tree.	Here,
microphones	are	placed	in	a	particular	fashion	to	capture	sounds	from	the	left,	right,	front,
and	back	of	the	source.	There	are	also	many	processing	techniques	that	can	filter	and
convert	sounds	that	are	recorded	to	mimic	the	various	components	needed	for	each	of	the
channels.

We	take	samples	of	the	analog	sound	waves	that	are	produced	by	a	piano	at	close	intervals
(the	rate	at	which	the	samples	are	taken	between	intervals	is	known	as	sampling
frequency).	The	process	of	taking	samples	from	analog	waves	to	store	them	digitally	is
known	as	Pulse	Code	Modulation	(PCM).	These	samples	can	be	stored	in	uncompressed
PCM-like	formats	or	be	compressed	into	a	smaller	and	more	manageable	file	size	using
audio	compression	techniques.	Wav,	MP3,	Ogg	Vorbis,	Dolby	TrueHD,	and	DTS-HD	are
some	of	the	formats	that	audio	is	commonly	saved	as.	Ideally,	we	want	to	save	audio	into	a
lossless	compressed	format	so	that	we	get	a	small	manageable	file	that	contains	amazing
sounds.

When	the	digital	format	of	the	sound	is	played	back,	the	analog	sound	wave	is
reconstructed	using	the	stored	information.	Close	resemblance	to	the	original	analog
sound	waves	is	one	way	to	ensure	sounds	of	good	quality.	By	increasing	the	number	of
channels	to	create	a	3D	sound	effect	using	the	basic	5.1	surround,	which	requires	five
speakers,	one	for	front	left,	one	front	right,	one	center,	one	back	left	(as	surround),	one
back	right	(as	surround)	and	a	subwoofer,	also	greatly	improves	the	listening	experience.

The	Unreal	audio	system
We	now	have	a	general	understanding	of	why	we	need	audio	in	games	and	how	it’s
created	and	recorded.	Let’s	learn	about	the	Unreal	audio	system	and	the	editor	that	can	be
used	to	import	these	audio	files	into	the	game,	and	we’ll	also	learn	about	the	tools	that	can
be	used	to	edit	and	control	playbacks.

Getting	audio	into	Unreal
How	do	we	get	the	audio	files	into	Unreal?	What	do	you	need	to	take	note	of?

The	audio	format
Unreal	supports	the	importing	of	sounds	only	in	the	.wav	format.	The	.wav	format	is	a
widely	used	format	that	can	store	raw	uncompressed	sound	data.

The	sampling	rate
The	sampling	rate	is	recommended	at	44100	Hz	or	22050	Hz.	As	mentioned	earlier,	the
sampling	rate	determines	how	often	the	analog	wave	is	recorded.	The	higher	the	frequency
(measured	in	Hertz	or	Hz),	the	more	data	points	of	the	analog	wave	that	are	collected,
which	aids	in	a	better	reconstruction	of	the	wave.

Bit	depth
The	bit	depth	is	set	as	16.	It	determines	the	granularity	at	which	the	amplitude	of	the	audio
wave	can	be	recorded,	which	is	also	known	as	the	resolution	of	the	sound.	For	a	bit	depth
of	16,	you	can	get	up	to	65,536	integer	values	(216).	The	reason	why	we	are	concerned
with	the	bit	depth	is	because	during	the	sampling	process	of	the	analog	waves,	the	actual
value	of	the	amplitude	of	the	wave	is	approximated	to	one	of	the	integer	values	that	can	be
stored	based	on	the	bit	depth.	The	following	figure	shows	two	different	bit	depths.	The
figure	on	the	left-hand	side	illustrates	when	the	bit	depth	is	low,	and	the	signal	is	more
inaccurately	sampled	because	it	is	sampled	in	larger	increments.	The	figure	on	the	right-
hand	side	illustrates	when	the	bit	depth	is	higher,	and	it	can	be	sampled	at	smaller
increments,	resulting	in	a	more	accurate	representation	of	the	wave:

The	loss	in	accuracy	of	the	representation	of	the	wave	can	be	termed	as	a	quantization
error.	When	the	bit	depth	is	too	low,	the	quantization	error	is	high.

The	Signal	to	Quantization	Noise	Ratio	(SQNR)	is	the	measurement	used	to	determine
the	quality	of	this	conversion.	It	is	calculated	using	the	ratio	between	the	maximum
nominal	signal	strength	and	the	quantization	error.	The	better	the	ratio,	the	better	the
conversion.

Supported	sound	channels
Unreal	currently	supports	channels	such	as	mono,	stereo,	2.1,	4.1,	5.1	6.1,	and	7.1.

When	importing	files	into	Unreal,	take	note	of	the	file	naming	convention	that	is	in	place
so	that	the	right	sound	is	played	from	the	right	channel.

The	following	table	shows	the	7.1	surround	sound	configuration	with	all	the	file	naming
conventions	that	are	necessary	for	the	correct	playback:

Speakers Front-left 	 Front-center 	 Front-right

Extension _fl 	 _fc 	 _fr

	 	 	 	 	 	

Speakers Side-left 	 Low	frequency	(commonly	known	as	subwoofer) 	 Side-right

Extension _sl 	 _lf 	 _sr

	 	 	 	 	 	

Speakers Back-left 	 	 	 Back-right

Extension _bl 	 	 	 _br

This	table	shows	you	the	files	that	are	used	for	the	5.1	surround	system:

Speakers Front-left 	 Front-center 	 Front-right

Extension _fl 	 _fc 	 _fr

	 	 	 	 	 	

Speakers Side-left 	 Low	frequency	(commonly	known	as	subwoofer) 	 Side-right

Extension _sl 	 _lf 	 _sr

This	table	shows	you	the	files	that	are	used	for	the	4.0	system:

Speakers Front-left 	 	 	 Front-right

Extension _fl 	 	 	 _fr

	 	 	 	 	 	

Speakers Side-left 	 	 	 Side-right

Extension _sl 	 	 	 _sr

Unreal	sound	formats	and	terminologies
There	are	a	couple	of	terms	in	the	Unreal	Sound	system	that	we	need	to	get	acquainted
with:

Sound	waves:	These	are	the	actual	audio	files	that	are	in	the	.wav	format.
Sound	cues:	This	is	the	control	system	for	a	sound	wave	file.	Sound	cues	are	what
we	use	to	manipulate	the	volume,	start,	and	end	of	the	sound	waves.	So,	in	order	to
control	how	an	audio	file	is	played	in	the	game,	you	can	edit	the	properties	on	the
Sound	Cue,	which,	in	turn,	affects	the	wave	file	or	files	that	it	is	associated	with.
Ambient	Sound	Actor:	This	is	the	class	actor	that	you	add	to	the	game	level.	This
actor	is	associated	with	the	Sound	Cue	to	play	the	audio	files	that	you	need	for	the
game.

Now,	we	are	ready	to	use	the	Sound	Editor	in	Unreal.

The	Sound	Cue	Editor
Since	we	are	not	editing	the	actual	audio	file	per	se,	the	sound	editor	in	Unreal	is	known	as
the	Sound	Cue	Editor.	We	are,	in	fact,	editing	the	way	the	sound	can	be	played	through	a
control	device	known	as	a	Sound	Cue.

Let’s	learn	more	about	the	functionalities	of	the	Sound	Cue	Editor.

How	to	open	the	Sound	Cue	Editor
Go	to	Content	Browser	|	Audio.	Go	to	any	Sound	Cue	file,	and	double-click	to	open	the
Sound	Cue	Editor.	This	screenshot	shows	where	I	could	find	a	Sound	Cue	in	Content
Browser:

When	you	double-click	on	a	Sound	Cue,	the	Sound	Cue	Editor	opens	up,	and	it	looks
quite	a	lot	like	the	Blueprint	Editor	with	modules	and	lines.	This	screenshot	shows	you
what	the	Sound	Cue	Editor	for	Collapse_Cue	looks	like:

Notice	that	in	the	preceding	screenshot	Collapse_Cue	it	has	two	inputs	called	Wave
Player:	Collapse	01	and	Wave	Player:	Collapse	02.	These	are	joined	to	a	Random	node,
and	the	output	goes	to	the	final	node	known	as	Output.	What	this	does	is	that	when	this
Sound	Cue	is	played,	one	of	the	two	collapse	sounds	gets	randomly	selected	and	is	played.
This	creates	a	variety	when	sounds	are	played	in	the	same	circumstance;	they	are	both
collapse	sound	effects	but	slightly	different.

We	will	learn	more	about	the	components	that	we	could	use	to	design	the	Sound	Cues
later.	We’ll	also	go	through	an	exercise	later	to	create	our	own	Sound	Cue	in	the	editor.

Exercise	–	importing	a	sound	into	the
Unreal	Editor
You	may	come	across	a	situation	where	you	have	created	your	own	audio	effect	file	and
want	to	use	it	in	the	game.	We	will	first	start	by	importing	this	file.

For	this	exercise,	I	have	used	an	audio	clip	downloaded	from	a	Wikipedia	site
(https://en.wikipedia.org/wiki/The_Four_Seasons_(Vivaldi))	with	a	Vivaldi	piece	from
The	Four	Seasons.	This	is	shared	by	John	Harrison.

This	file	is	in	the	Oggs	format,	and	yes,	Unreal	only	supports	.wav	files.	First,	I	converted
the	file	type	from	.ogg	to	.wav	using	software	that’s	listed	on	the	Vorbis	website	at
http://vorbis.com/software/.	Be	careful	about	the	WAV	file	settings	that	Unreal	is
expecting	it	to	be	in.

After	getting	the	right	wav	file,	we	are	ready	to	import	it	into	the	Sound	Editor.	Go	to
Content	Browser	|	Content	|	Audio,	right-click	on	it	to	display	the	contextual	menu,
navigate	to	New	Asset	|	Import	to	/Game/Audio,	and	browse	to	the	folder	where	you
saved	the	.wav	file	and	select	it.	This	screenshot	shows	where	you	can	find	the	function	in
the	editor	to	import	the	.wav	file:

This	screenshot	shows	you	how	the	Vivaldi	WAV	file	is	successfully	imported	as	a	sound
wave	in	the	Audio	folder	with	the	WAV	file	settings:

https://en.wikipedia.org/wiki/The_Four_Seasons_(Vivaldi)
http://vorbis.com/software/

Next,	create	a	Sound	Cue	for	the	Vivaldi	sound	wave	that	we	have	just	imported.	To	recap,
a	Sound	Cue	is	used	to	control	the	playback	of	the	sound	wave	file.	A	sound	wave	file
merely	has	the	contents	of	the	audio	file.	Right-click	on	the	sound	wave	asset,	as	shown	in
this	screenshot,	and	select	Create	Cue	in	the	contextual	menu:

Double-click	on	the	newly	created	Sound	Cue	(which	has	a	default	name	with	the	same
name	as	the	sound	wave	file	with	a	Cue	suffix).	In	the	example	here,	it	will	be
Vivaldi_Spring_Allegro_ByJohnHarrison_Cue.	Double-click	on	this	Cue	to	view	the
contents.	The	following	screenshot	shows	the	contents	of
Vivaldi_Spring_Allegro_ByJohnHarrison_Cue.	The	wave	player	output	is	connected
directly	to	Output.	This	is	the	simplest	connection	for	a	Sound	Cue	where	we	input	the
wave	to	the	Output.

Now,	let’s	hear	the	sound	we	have	imported.	Within	the	Sound	Cue	Editor,	look	for	the
Play	Cue	button	in	the	top-left	corner	of	the	editor.	Take	a	look	at	the	following
screenshot	for	location	of	the	button.	After	clicking	the	button,	you	would	hear	the	music
we	have	just	imported.	You	have	just	successfully	imported	a	custom	wave	file	into
Unreal.	Now,	let’s	transfer	it	to	the	game	level.

Exercise	–	adding	custom	sounds	to	a	level
In	order	to	place	sound	in	the	level,	you	need	to	use	the	Ambient	Sound	node	to	associate
it	with	a	sound	cue,	which	would,	in	turn,	play	the	audio	files.

To	create	an	Ambient	Sound	node,	go	to	Modes	|	All	Classes,	drag	and	drop	Ambient
Sound	into	the	game	level:

Click	on	the	Ambient	Sound	Actor	that	you	have	just	placed	into	the	level,	and	rename	it
AmbientSound_Vivaldi.	In	the	Details	panel,	scroll	to	the	Sound	section,	click	on	the
arrow	next	to	Sound	to	display	the	sound	assets	that	you	have	in	the	game	level	packages,
as	shown	in	the	following	screenshot.	Select
Vivaldi_Spring_Allegro_ByJohnHarrison_Cue.

Check	whether	you	can	still	hear	the	music	by	clicking	on	the	Play	button	in	the	Details
panel	of	AmbientSound_Vivaldi.	Now,	let’s	build	the	level	and	run	it.	Notice	that	the
music	plays	when	you	start	the	level.

Configuring	the	Sound	Cue	Editor
Double-click	on	Vivaldi_Spring_Allegro_ByJohnHarrison_Cue	to	open	the	Sound	Cue
Editor.	Notice	that	on	the	right-hand	side,	there	is	Palette	with	a	list	of	nodes,	as	shown	in
the	following	screenshot.	These	nodes	can	be	used	to	control	how	the	sounds	are	played	or
heard.

If	you	find	that	your	sound	design	cannot	be	achieved	using	the	nodes	in	the	list,	you	can
alternatively	request	for	new	nodes	to	be	created	via	the	UE4	source	code.

Summary
Both	particles	and	sound	are	very	interesting	components	of	a	game	and	require	very
specialized	skills	that	are	very	apt	for	their	design	and	creation.	Particle	system	creators
often	have	strong	artistic	and	technical	backgrounds;	an	artistic	touch	is	needed	to	create
suitable	textures,	and	a	technical	ability	helps	to	adjust	distributions/values	that	create	an
appropriate	overall	effect.	Audio	engineers	often	have	a	strong	music	background.	They
are	probably	composers	and	musicians	themselves	with	a	passion	for	games.

In	the	first	half	of	the	chapter,	we	learned	about	what	a	particle	system	is.	We	learned	how
particle	systems	are	used	to	create	in-game	effects,	such	as	falling	snow,	rainfall,	flames,
fireworks,	explosion	effects,	and	much	more.	A	particle	system	can	efficiently	render
small	moving	fuzzy	particles	using	textures	through	a	combination	of	emitters.	Each
emitter	has	many	configurable	modules	that	can	control	properties,	such	as	a	spawn	rate,
lifetime,	velocity,	and	the	acceleration	needed	to	create	the	required	effect.	In	this	chapter,
we	covered	how	to	edit	an	existing	fire	explosion	particle	system,	turn	it	into	a	fireplace
effect,	and	place	it	in	a	living	room.	Through	this	example,	we	also	went	through	some
basic	principles	that	could	be	applied	to	the	particle	system	design	process,	and	how	to
make	minor	adjustments	to	a	few	popular	basic	modules	to	create	the	effect	we	wanted.

The	second	half	of	the	chapter	covered	how	to	include	sounds	in	a	level.	We	learned	how
sounds/music	are	conceptualized,	created,	recorded,	and	eventually,	imported	into	the
Unreal	Editor.	We	also	covered	the	audio	format	that	the	Unreal	Editor	currently	supports,
and	a	little	explanation	of	each	of	the	components	is	given	to	give	you	a	better	insight	into
sounds.	Next,	we	went	through	a	simple	exercise	to	import	an	online	audio	file	and	get	the
music	we	have	downloaded	playing	in	the	game	level.

I	hope	you	have	gained	a	little	more	understanding	about	the	creation	process	of	the
particle	system	and	the	audio	effects	that	are	needed	for	the	games	in	this	chapter.	We	will
continue	to	improve	our	game	level	with	a	little	terrain	editing	and	also	create	cinematic
effects	in	the	next	chapter.

Chapter	7.	Terrain	and	Cinematics
In	this	chapter,	we	will	cover	a	few	level-enhancing	features.	We	will	create	some	outdoor
terrain	for	our	level	as	well	as	add	a	short	cinematic	sequence	at	the	start	of	the	game
level.

In	this	chapter,	we	will	look	at	the	following	topics:

Creating	an	outdoor	terrain
Adding	a	shortcut	for	a	cinematic	sequence	at	the	beginning	of	the	same	level

Introducing	terrain	manipulation
Terrain	manipulation	is	needed	when	you	want	to	create	large	natural	landscape	areas,
such	as	mountainous	or	valley	areas	that	are	covered	with	foliage.	This	can	be	in	the	form
of	trees/grass,	lakes,	and	rivers	that	are	covered	with	rocks	or	snow,	and	so	on.	The
Landscape	tool	in	Unreal	Engine	4	allows	you	to	creatively	design	a	variety	of	terrains	for
your	game	maps	easily,	while	allowing	the	game	to	run	at	a	reasonable	frame	rate.

When	playing	in	a	map	that	has	large	outdoor	terrains,	for	example,	maps	with	a	large
number	of	trees	or	many	elevations,	such	as	mountains,	the	effective	frame	rate	is
expected	to	be	reduced	due	to	an	increase	in	the	number	of	polygons	that	need	to	be
rendered	on	the	screen.	Hence,	being	well-versed	in	landscaping	so	that	polygon	counts
are	kept	under	control	is	important	to	ensure	that	the	map	is	actually	playable.	It	is	also
good	to	bear	in	mind	to	make	use	of	optimization	techniques,	such	as	LOD	and	fog	to
mask	the	distant	places,	which	can	give	you	a	sense	of	unending	open	land.	If	you	are
planning	to	create	an	open	world,	you	can	also	use	the	Procedural	Foliage	tool	(available
in	Unreal	4.8	and	higher	versions)	to	spawn	these	features	for	you.

Let’s	get	ourselves	familiarized	with	the	Unreal	Landscaping	tool	and	start	creating	some
outdoor	environments	for	our	game	level.	We	will	learn	how	to	perform	simple	contouring
of	the	outdoor	space	with	low	hills,	grass,	and	trees.	Then,	we	will	create	a	small	pond	in
the	area.	For	more	accurate	landscaping,	we	can	import	a	height	map	to	help	us	with	the
creation	of	the	landscape.

Exercise	–	creating	hills	using	the	Landscape	tool
Let’s	perform	the	following	steps	to	create	hills	using	the	Landscape	tool:

1.	 Open	Chapter6.umap	and	save	it	under	Chapter7_Terrain.umap.
2.	 Go	to	Modes,	click	on	the	Landscape	tool	(the	icon	looks	like	a	mountain)	and	then

click	on	Manage.
3.	 Select	Create	New	(the	other	option	here	is	to	make	use	of	a	height	map,	which	we

will	cover	later	in	the	chapter).
4.	 To	select	a	Material,	you	can	click	on	the	search	icon	and	type	M_Ground_Grass,	or

go	to	Content	Browser	|	Content	|	Materials,	select	M_Ground_Grass,	and	click
on	the	arrow	next	to	Landscape	Material	to	assign	the	material.

5.	 For	this	example,	we	are	going	to	leave	all	of	the	landscape	settings	at	their	default
values	that	are	listed,	as	follows.	The	next	section	will	explain	the	options	for	the	rest
of	the	values	in	further	detail:

Scale:	X	=	100	Y	=	100	Z	=	100
Section	Size:	63	x	63	quads
Section	Per	Component:	1	x	1	section
Number	of	Components:	8	x	8
Overall	Resolution:	505	x	505

The	following	screenshot	shows	the	top	view	of	the	grass	landscape	that	we	have	created.
Notice	the	64	green	squares.	You	will	need	to	switch	to	the	Top	view	to	view	it.

Now,	we’ll	switch	over	to	the	Perspective	view.	The	grass	landscape	seems	like	it’s
covering	half	the	house.	Take	a	look	at	the	following	screenshot:

Note	that	if	we	had	created	the	landscape	on	an	empty	map,	we	would	not	have	this	issue,
as	we	would	have	built	the	house	on	the	landscape	grass	instead.	So,	we	have	to	perform
an	additional	step	here	to	move	the	landscape	grass	under	the	house	so	that	we	do	not	have
a	house	that’s	submerged	under	the	grass.	You	need	to	select	Landscape	and
LandscapeGizmoActiveActor	from	World	Outliner,	as	shown	on	the	right-hand	side	of
the	following	screenshot.	Remember	to	switch	Mode	back	to	Place,	instead	of	the
Landscape	we	were	in	to	create	the	grass.	The	Place	mode	allows	the	translation/rotation
of	the	selected	object.	Move	the	grass	to	just	below	the	house,	as	shown	in	the	following
screenshot:

Note
Note	that	this	step	is	performed	because	we	add	the	landscape	grass	after	we’ve	built	the
house.

Now,	we	are	ready	to	sculpt	this	flat	land	into	some	terrain.	Go	to	Modes	|	Landscape	|
Sculpt	again.	Use	the	Sculpt	tool,	Circle	Brush,	and	the	Smooth	Falloff	combination,	as
shown	in	the	upcoming	screenshot.	The	default	settings	should	be	as	follows:

Brush	Size:	2048
Brush	Falloff:	0.5
Tool	Strength:	0.3

To	illustrate	the	size	of	the	2048	brush,	I	have	switched	to	the	Top	view:

When	Brush	Size	is	set	to	1000,	the	brush	radius	is	reduced,	as	shown	in	the	following
screenshot:

Now	that	we	have	an	idea	about	the	difference	in	radii,	we	will	switch	back	to	the
Perspective	view.	Position	your	working	screen	to	a	slightly	angled	top	perspective	view,
as	shown	in	the	following	screenshot.	Set	Brush	size	to	1000	and	Tool	Strength	to	0.4:

Start	by	creating	low	hills	around	the	house	by	clicking	on	the	area	around	the	house.	I
used	a	mix	between	a	brush	size	of	1000	and	2048.

The	following	screenshot	shows	how	the	area	looked	after	I	worked	on	it	for	a	bit.	Note
that	the	area	in	front	of	the	wide	windows	where	I	created	a	depression.	This	is	achieved
by	holding	Ctrl	and	then	clicking	on	the	area.	This	depression	will	take	the	form	of	a	lake
in	front	of	the	dining	area.

Create	two	box	BSPs	to	fill	up	the	depressed	area.	Apply	the	Lake	Water	material	to	the
box	BSPs.	The	following	screenshot	shows	the	same	area	with	the	box	BSPs	put	in	place.
Use	the	Translation	tool	to	keep	both	BSP	areas	on	the	same	ground	level	at	the	location
of	the	depression.

Next,	I	touched	up	the	external	area	of	the	house.	Use	the	Unlit	mode	to	help	you	see	the
house	better.	This	screenshot	shows	you	how	the	house	and	area	around	it	look	after
touching	them	up	with	the	MyGreyWall	material:

Go	back	to	the	Lit	mode,	build	the	level,	and	then	take	a	look	at	it.	Adjust	any	lighting	in
the	map	so	that	it’s	lit	up	appropriately.	Rebuild	until	you	are	satisfied	with	what	you	get.

Add	trees	and	plants	to	make	the	area	a	little	more	realistic.	I	have	downloaded	a	package
from	Marketplace	that	has	some	foliage	to	help	me	with	this.

Go	to	Marketplace	on	the	Unreal	Start	Page.	Under	Environments,	look	for	free

downloadable	content	called	Open	World	Demo	Collection.	The	following	screenshot
shows	free	Open	World	Demo	Collection	in	Marketplace.	After	downloading	the
package,	add	it	to	the	project	that	you	are	working	on.

We	now	have	a	basic	outdoor	terrain	for	our	map.

Landscape	creation	options
After	going	through	the	preceding	exercise,	you	now	have	a	good	idea	about	how
landscaping	in	Unreal	Engine	4	fundamentally	functions.	In	this	section,	we	will	add	to
the	skills	we	have	acquired	so	far	and	learn	how	to	adjust	or	utilize	features/functions	of
the	Landscaping	tool	that	is	available	to	us.

Multiple	landscapes
It	is	possible	to	have	multiple	landscapes	in	the	same	map.	This	allows	you	to	split	the
creation	process	into	different	layers.	If	you	have	more	than	one	landscape	in	the	map,	you
will	need	to	select	a	layer	before	modifying	it.

Using	custom	material
You	can	import	any	material	you	want	to	use	for	the	landscape;	you	can	make	your	own
grass,	crops,	sand	texture,	and	so	on.	Since	the	custom	material	is	mostly	used	for	large
areas	of	the	map,	it	is	good	to	bear	in	mind	that	you	need	to	keep	the	material	repeatable
and	optimized.

Importing	height	maps	and	layers
Why	do	we	use	height	maps	in	landscaping?	These	allow	a	quicker	and	more	precise	way
to	create	elevations/troughs	in	the	Unreal	Editor.	For	example,	we	can	use	a	height	map	to
store	elevation	information	for	a	mountain	that	is	3000m	in	height	and	of	a	certain
diameter.	When	we	import	the	height	map,	the	terrain	is	automatically	shaped	according	to
it.	It	is	definitely	a	time-saving	method	that	helps	us	create	more	precise	landscape
features	without	having	to	click,	click,	click	to	sculpt.

Height	maps	and	layers	can	first	be	created	externally	using	common	tools,	such	as
Photoshop,	World	Machine,	ZBrush,	and	Mudbox	by	artists.	Detailed	instructions	need	to
be	followed	to	ensure	the	successful	importation	of	the	height	map.	This	can	be	found	in
the	Unreal	Engine	4	documentation	at
https://docs.unrealengine.com/latest/INT/Engine/Landscape/Custom/index.html.

Scale
The	Scale	settings	determine	the	scaling	of	the	landscape.	We	have	used	X:	100	and	Y:
100	to	give	us	the	area	of	the	land	that	this	landscape	will	cover.	The	Z	value	is	kept	as
100	to	provide	some	height	to	create	elevation.

The	number	of	components
A	component	is	the	basic	unit	for	rendering	and	culling.	There	is	a	fixed	cost	that’s
associated	with	the	overall	number	of	components;	hence,	it	is	capped	at	32	x	32.	Going
beyond	this	value	would	affect	the	performance	of	your	game	level.

Section	Size
Section	Size	determines	how	large	each	section	is.	It	determines	how	the	landscape	is
divided	up.	Large	sections	mean	fewer	overall	components	because	the	pie	is	divided	into

https://docs.unrealengine.com/latest/INT/Engine/Landscape/Custom/index.html

larger	chunks.	Fewer	chunks	to	manage	indicate	a	lower	overall	CPU	cost.

However,	a	large	section	is	not	as	effective	when	managing	the	LOD	as	compared	to	a
smaller	section.	When	there	are	smaller	sections,	we	also	get	smaller	component	sizes
(when	the	pie	is	of	the	same	size,	cutting	it	into	smaller	chunks	indicates	that	you	have
less	on	your	plate	if	you	take	one	chunk).	Since	components	are	the	basic	unit	used	for
culling	and	rendering,	this	means	quicker	responses	to	LOD	changes	due	to	the	reduced
area.	LOD	determines	the	number	of	vertices	that	need	to	be	calculated.	If	LOD	is	more
effective,	we	have	fewer	calculations	to	do,	and	the	CPU	cost	is	more	optimized	with
smaller	sections.

The	catch	here	is	balancing	the	size	of	the	sections	to	avoid	having	too	many	components
to	go	through	and	too	few	components	might	result	in	poor	LOD	management.

Note
Sections	Per	Component

You	have	options	ranging	from	1	x	1	or	2	x	2	sections	per	component.	What	this	means	is
that	you	have	the	option	of	having	either	one	or	four	sections	in	each	component.	Since	a
component	is	the	most	basic	unit	in	rendering	and	culling,	for	the	1	x	1	section,	you	can
have	one	section	rendered	at	the	same	time.	For	2	x	2	sections	per	component,	you	can
have	four	sections	rendered	at	the	same	time.	To	limit	the	number	of	calculations	needed
to	render	a	component,	the	size	of	each	section	should	not	be	too	large.

Introducing	cinematics
Cinematics	were	developed	largely	for	motion	pictures,	films,	and	movies.	Today,	we
apply	cinematic	techniques	to	non-interactive	game	sequences,	known	as	cut	scenes,	to
enhance	the	gaming	experience.	The	overall	gaming	experience	has	to	be	designed	with
cut	scenes	in	mind	as	they	usually	fulfil	certain	game	design	objectives.	These	objectives
are	often	slotted	in	between	gameplay	to	enrich	the	storytelling	experience	in	games.

Very	much	like	shooting	a	movie,	we	would	need	to	decide	what	kind	of	shots	need	to	be
taken,	which	angles	to	shoot	from,	how	much	zooming	is	needed,	how	many	cameras	to
use,	and	what	path	the	camera	needs	to	take	in	order	to	develop	a	motion	picture	sequence
of	our	object/objects	of	focus.	The	techniques	employed	to	create	this	clip	are	known	as
cinematic	techniques.

So,	in	this	chapter,	we	will	first	go	through	a	few	key	objectives	that	explain	why
cinematics	are	needed	in	games,	and	you	learn	a	couple	of	simple	cinematic	techniques
that	we	could	use.	You	will	also	learn	about	the	tools	that	Unreal	Engine	4	offers	to	apply
the	techniques	we	have	learned	in	order	to	create	appropriate	cinematic	sequences	for	your
game.

Cinematic	techniques	are	created	by	cinematic	experts	who	focus	on	creating	cut	scenes
for	your	games.	Alternatively,	you	could	also	engage	a	cinematic	creation	contracting
company	to	get	this	done	for	you	professionally.

Why	do	we	need	cut	scenes?
When	a	game	is	designed,	a	fair	amount	of	the	game	designing	time	is	put	into	designing
how	players	interact	with	the	objects	in	the	game	and	how	this	interaction	can	be	made
fun.	The	interactive	portion	of	the	game	needs	to	be	supplemented	and	cut	scenes	can	help
fill	the	gaps.

Cut	scenes	can	be	employed	in	games	to	help	designers	tell	a	story	when	you	are	playing
the	game.	This	technique	can	be	employed	before	the	game	begins	to	draw	the	players	into
the	mission	itself	and	justifies	why	a	mission	has	to	be	accomplished	for	the	player.	This
helps	the	player	to	understand	the	storyline,	create	meaning	for	their	actions,	and	draw	the
player	into	the	game.

Another	objective	of	cut	scenes	can	be	to	highlight	key	areas	in	the	game	in	order	to	give
the	players	a	glimpse	of	what	to	expect	and	provide	subtle	hints	to	successfully	win	the
game.	This	information	would	be	useful,	especially	in	difficult	to	beat	game	levels	or
when	the	player	is	meeting	the	chief	monster	in	the	game.

Game	designers	also	sometimes	use	cut	scenes	to	reward	players	after	a	difficult	battle.
They	amplify	the	effect	of	their	success	and	play	out	the	happy	ending	of	their	win	in
order	to	create	positive	emotions	in	the	players.	I	am	sure	that	there	are	endless	creative
ways	to	utilize	cut	scenes	in	games	and	how	we	could	positively	include	them	to	enhance
the	gaming	experience.

However,	it	is	necessary	to	ensure	that	the	use	of	cut	scenes	is	justified	well	because	cut
scenes	actually	take	the	control	of	the	game	away	from	the	player.	Games	are	expected	to
be	interactive,	and	we	do	not	want	to	convert	this	into	a	passive	multimedia	experience
when	there	are	too	many	cut	scenes.

Keeping	these	basic	game	design	objectives	in	mind,	let’s	now	explore	some	technical
cinematic	fundamentals	that	will	provide	you	the	groundwork	to	design	your	own
cinematics	in	games.

Cinematic	techniques
The	camera	is	the	main	tool	that’s	used	to	create	effects	for	cinematics.	You	can	achieve
various	cinematic	effects	by	adjusting	the	camera	functions	and	finding/moving	the
camera	to	a	good	spot	to	capture	a	significant	key	object(s)	of	interest.	This	section	will
provide	some	technical	terms	that	you	can	use	to	describe	to	your	coworker/contractor
how	a	particular	cinematic	sequence	should	be	recorded.

Adjusted	camera	functions
Here	are	some	commonly	used	functions	that	you	can	adjust	on	a	camera	to	capture	a
scene.

Zoom
Zooming	in	on	an	object	gives	you	a	closer	view	on	the	object;	providing	more	details
about	it.	Zooming	out	takes	your	view	further	away	from	the	object;	it	provides	a
perspective	for	the	object	with	regard	to	its	surroundings.

Zooming	is	achieved	by	adjusting	the	focal	length	of	the	camera	lens;	the	camera	itself
stays	in	the	same	position.

Field	of	view
Field	of	view	(FOV)	is	the	area	that	is	visible	from	a	particular	position	and	orientation	in
space.	FOV	for	a	camera	is	dependent	on	the	lens	and	can	be	expressed	as	FOV	=	2
arctan(SensorSize/2f),	where	f	is	the	focal	length.

For	humans,	FOV	is	the	area	that	we	can	see	without	moving	our	head.	The	horizontal
FOV	kind	of	ends	at	the	outer	corner	of	the	eye,	as	shown	in	the	following	image,	which	is
about	62	degrees	to	the	left-hand	side	and	right-hand	side	(source:
http://buildmedia.com/what-are-survey-accurate-visual-simulations/):

What	this	means	is	that	whatever	is	outside	this	FOV	is	not	visible	to	the	entity.

http://buildmedia.com/what-are-survey-accurate-visual-simulations/

Depth	of	field
Depth	of	field	(DOF)	is	best	expressed	as	a	photo,	such	as	the	following	one,	where	only
the	object	of	interest	is	very	sharp	and	anything	behind	is	it	blurred.	In	the	following
image	(source:	http://vegnews.com/articles/page.do?catId=2&pageId=2125),	the
gyoza/dumplings	appear	sharp	and	beyond	these,	the	bowl/bottle	is	blurred.	The	small
DOF	in	the	photo	allows	the	foreground	(gyoza)	to	be	emphasized	and	the	background	to
be	de-emphasized.	This	is	a	very	good	technique	to	bring	visual	attention	to	objects	of
interest	in	photography	as	well	as	in	cinematics.

DOF	is	also	known	to	provide	an	effective	focus	range.	The	method	to	determine	this
range	is	to	measure	the	distance	between	the	closest	object	and	farthest	object	in	a	scene
that	appears	to	be	sharp	in	an	image.	Although	a	lens	is	made	to	focus	on	one	distance	at	a
time,	the	gradual	decrease	in	sharpness	is	difficult	to	perceive	under	normal	viewing
conditions.

http://vegnews.com/articles/page.do?catId=2&pageId=2125

Camera	movement
In	filming,	the	camera	is	positioned	at	different	angles	and	locations,	and	the	camera
moves	with	the	actor/vehicle	and	so	on.	This	camera	movement	can	be	described	using
some	of	the	terms	here.

Tilt
The	camera	is	moved	in	a	similar	way	to	how	you	nod	your	head.	The	camera	is	pivoted	at
a	fixed	spot,	and	turning	it	up/down	is	known	as	tilting.	The	following	figure	shows	the
side	view	of	the	camera	with	arrows	illustrating	the	tilting:

Pan
The	camera	is	moved	in	a	similar	way	to	how	you	turn	your	head	to	look	to	the	left-hand
side	and	the	right-hand	side.	The	camera	is	pivoted	at	a	fixed	spot	and	turning	it	to	the	left-
hand	side/right-hand	side	is	known	as	panning.	This	figure	shows	the	top	view	of	the
camera	with	arrows	demonstrating	how	panning	works:

Dolly/track/truck
A	dolly	moves	the	entire	camera	toward	or	away	from	the	object.	It	is	quite	similar	to
zooming	in/out	since	you	also	going	closer/further	to	the	object,	except	that	dollying

moves	the	camera	along	a	path	toward/away	from	the	object.

Trucking	moves	the	camera	sideways,	that	is,	to	the	left-hand	side	or	right-hand,	along	a
track.	Trucking	is	often	confused	with	panning.	The	entire	camera	moves	in	trucking,	but
in	panning,	the	camera	stays	in	a	fixed	location	and	only	the	lens	is	swept	to	the	left-hand
side/right-hand	side.	Tracking	is	a	specific	form	of	trucking	as	it	follows	an	object	of
interest	in	parallel.	The	following	figure	shows	the	back	view	of	a	camera	dollying	along	a
path:

Pedestal
Pedestal	is	the	moving	of	the	camera	up	and	down	a	vertical	track.	The	following	figure
illustrates	the	camera	moving	up	and	down	a	vertical	track:

Capturing	a	scene
When	capturing	a	scene,	the	overall	scene	is	what	matters	most.	You	need	to	keep	certain
things	in	mind,	such	as	what	comprises	the	scene	and	its	lighting;	what	you	select
determines	how	impactful	the	cut	scene	is.	Here	are	a	few	factors	that	need	to	be
addressed	when	composing	a	good	cut	scene.

Lighting
Light	affects	how	a	scene	shows	up	in	photo/cut	scene.	We	need	to	have	the	right	lighting
in	place	to	capture	the	mood	of	the	scene.

Framing
Framing	decides	how	the	shot	needs	to	be	taken.	Everything	in	the	frame	is	important	and
you	should	pay	attention	to	everything	that	is	within	the	frame.	How	each	shot	transitions
to	the	next	also	needs	to	be	considered	when	creating	a	cut	scene.

Some	framing	rules

The	framing	rules	are	as	follows:

Make	sure	the	horizontals	are	level	in	the	frame	and	the	verticals	are	straight	up	along
the	frame.
The	Rule	of	Thirds.	This	rule	divides	the	frame	into	nine	sections.	The	points	of
interest	should	occur	at	one-third	or	two-thirds	of	the	way	up	(or	across)	the	frame
rather	than	in	the	center.	For	example,	the	sky	takes	up	approx.	Two-thirds	of	this
frame.
Strategic	empty	spaces	are	provided	in	front,	above,	or	behind	the	subject	to	allow
space	for	the	subject	to	move	into/look	into.
Avoid	having	half	an	object	captured	in	the	frame.

Shot	types

Here	are	some	terms	used	to	describe	shots	that	can	be	taken	for	the	frame:

Extreme	Wide	Shot	(EWS)	/	Extreme	Long	Shot	(ELS):	This	shot	puts	the	subject
into	the	environment.	The	shot	is	taken	from	a	distance	so	that	the	environment
around	the	subject	can	be	seen.	This	type	of	a	shot	is	very	often	used	to	establish	a
scene.
Wide	Shot	(WS)	/	Long	Shot	(LS):	In	a	wide	or	long	shot,	the	subject	takes	up	the
full	frame.	The	subject	is	in	the	frame	entirely	with	little	space	around	it.
Medium	Shot	(MS):	The	medium	shot	has	more	of	the	subject	in	the	frame	and	less
of	the	environment.
Close	Up	Shot	(CU):	The	subject	covers	approximately	half	the	frame.	This
increases	the	focus	on	the	subject.
Extreme	Close	Up	Shot	(ECU):	The	camera	focuses	on	an	important	part	of	the
subject.

Shot	plan

This	is	a	plan	that	describes	how	the	scene	will	be	captured.	It	also	describes	how	many
cameras	to	use,	the	sequence	in	which	the	cameras	come	on,	and	the	kind	of	shots	that
need	to	be	taken	in	order	to	play	out	the	required	effect	for	the	scene.

Getting	familiar	with	the	Unreal	Matinee
Editor
The	Unreal	Matinee	Editor	is	similar	to	nonlinear	video	editors,	so	it	is	quite	easy	to	pick
up	if	you	already	have	experience	using	software	such	as	Adobe	Flash.	Creating
keyframes	for	cameras	and	moving	them	along	paths	combined	with	modifying	camera
properties	creates	the	matinee/cut	scene	for	games.	Additionally,	you	can	also	make	or
convert	static	objects	to	become	dynamic	and	then	animate	them	using	this	Matinee
Editor.

Exercise	–	creating	a	simple	matinee
sequence
Now,	let’s	get	hands-on	and	create	a	simple	matinee	sequence	for	your	game.	The	plan	is
to	showcase	the	area	that	we	created	at	the	beginning	of	the	game.	We	will	start	with	an
extreme	wide	shot	taken	from	the	front	of	the	house.	We	will	use	the	dolly	to	take	the
camera	toward	the	large	windows	in	the	dining	area,	into	the	kitchen	area,	and	then	the
fireplace.	Then,	using	the	second	camera,	from	the	corner	of	the	room,	we	will	move
toward	a	running	guy	and	focus	on	his	face.

Create	a	new	matinee	sequence	from	the	ribbon,	as	shown	in	the	following	screenshot.
Click	on	Matinee	and	select	Add	Matinee:

This	opens	up	the	Matinee	Editor,	as	shown	in	the	following	screenshot:

To	create	the	first	camera,	we	will	right-click	on	the	Tracks	area	and	select	Add	New

Camera	Group:

Going	back	to	the	map,	you	can	see	a	small	window	in	the	corner	of	the	map	that	shows
what	the	camera	is	looking	at.	This	screenshot	shows	where	our	first	shot	starts:

To	create	the	next	key	where	the	next	shot	has	to	be	taken,	go	back	to	the	Camera1	track,
click	on	the	small	red	arrow	at	0.0	in	the	Movement	row,	and	hit	Enter.	This	duplicates
the	key.	Press	Ctrl	and	click	and	drag	the	red	arrow	to	2.00.	This	screenshot	shows	how	to
do	it	correctly:

Now,	click	on	the	red	arrow	at	2.00	and	go	back	to	Camera1	in	the	map.	Right-click	on	it
and	select	Pilot	‘Camera	Actor1’,	as	shown	in	this	screenshot:

Move	the	viewport	to	the	position	you	want	to	have	the	second	keyframe	in.	This
screenshot	shows	the	position	of	the	second	keyframe	camera:

When	the	viewport	is	positioned,	as	shown	in	the	preceding	screenshot,	click	on	the	icon
in	the	top-left	corner	of	the	viewport	to	stop	the	pilot	mode	in	order	to	fix	the	keyframe
here.	The	location	of	the	icon	is	shown	here:

Following	the	shot	plan	we	decided	on,	I	have	moved	Camera1	along	the	path	up	to	the
fireplace.	To	add	the	second	camera,	repeat	the	steps	to	create	a	new	camera	group	and
name	the	new	camera	as	Camera2.

Now,	move	the	first	keyframe	to	the	end	of	Camera1’s	final	keyframe	timeline.	For	me,
this	is	set	at	8.50s;	I	moved	the	camera	to	the	corner	of	the	room,	as	shown	in	the
following	screenshot:

Repeat	the	steps	to	create	keyframes	for	Camera2,	move	it	along	the	path	toward	the
running	man,	and	then	focus	on	the	running	man’s	face.

Now,	we	have	two	cameras	that	need	to	be	told	which	one	is	playing	at	which	part	along
the	timeline.	To	do	so,	we	need	to	create	a	new	director	group.	The	director	group	will

dictate	which	camera	is	on	air	and	what	will	be	showing	on	screen.	Go	back	to	Tracks	in
the	Matinee	Editor.	Right-click	and	select	Add	New	Director	Group,	as	shown	in	this
screenshot:

This	creates	a	Director	track	above	the	camera	tracks.	Select	the	newly	added	Director
track	at	0.00,	go	to	the	ribbon	at	the	top,	and	select	Add	Key,	as	shown	in	this	screenshot:

The	contextual	menu	will	request	that	you	select	Camera1	or	Camera2.	In	this	case,
select	Camera1.	This	fills	up	the	entire	duration	of	the	cinematics.	To	create	a	key	at
8.50s	where	Camera1	and	Camera2	overlap,	click	on	the	Director	track	again	and	select
Add	Key.	This	time	round,	select	Camera2.	Move	this	key	to	8.50.	This	screenshot
shows	where	the	cameras	are	set	up	so	that	they	can	play	correctly:

Finally,	we	are	ready	to	play	the	cut	scene.	To	tell	the	game	to	play	the	cut	scene	when
starting	the	game,	we	need	to	use	Blueprint.	I	hope	you	still	remember	how	to	use	the
Blueprint	Editor.	Click	and	open	the	Level	Blueprint.	Add	the	Event	BeginPlay	node	and
right-click	and	search	for	Play.	Select	the	Play	Matineee	Actor	option	and	link	the	nodes,
as	shown	in	the	following	screenshot.	Now,	save	and	play	the	level.	You	will	see	the	entire
matinee	play	before	you	control	the	player	in	the	level.

Summary
We	covered	terrain	creation	and	matinee	creation	in	this	chapter.	I	hope	you	were	able	to
enhance	the	game	level	with	the	new	skills	we	explored.

Terrain	manipulation	covers	large	areas	of	a	map;	hence,	we	also	went	through	the	factors
that	affect	the	playability	of	the	map.	We	also	went	through	a	simple	exercise	to	create	the
outdoor	terrain	of	our	map	with	some	hills	and	a	lake.

Matinee	creation	involves	a	lot	more	technical	planning	before	we	start	playing	around
with	the	editor	itself.	The	use	of	the	editor	is	pretty	simple	as	it	is	similar	to	current	video
editors	in	the	market.	The	techniques	to	create	good	cinematics	were	covered	to	help	you
understand	their	backgrounds	a	little	better.

This	is	the	last	chapter	of	the	book	and	the	final	summary.	I	sincerely	hope	that	you
enjoyed	reading	this	book	and	had	fun	playing	around	with	Unreal	Engine	4.	Lastly,	I
would	like	to	wish	you	all	the	best	in	creating	your	own	games.	Do	keep	at	it;	there	is
always	more	to	learn	and	other	new	tools	out	there	to	help	you	create	what	you	want.	I	am
sure	that	you	love	creating	games;	if	not,	you	would	not	have	survived	this	boring	book
right	to	the	end.	This	book	only	serves	to	introduce	you	to	the	world	of	game	development
and	shows	you	the	basic	tools	to	create	a	game	using	Unreal	Engine.	The	rest	of	this
journey	is	now	left	to	you	to	create	a	game	that	is	fun.	Good	luck!	Don’t	forget	to	drop	me
a	note	to	let	me	know	about	the	games	you	create	in	the	future.	I	am	waiting	to	hear	from
you.

Index
A

adjusted	camera	functions
about	/	Adjusted	camera	functions
Zoom	/	Zoom
Field	of	view	(FOV)	/	Field	of	view
Depth	of	field	(DOF)	/	Depth	of	field

AI
implementing,	in	games	/	Implementing	AI	in	games

AIController
linking,	to	Character	Blueprint	/	Linking	AIController	to	the	Character	Blueprint
configuring	/	Configuring	AIController
movement	speed,	adjusting	/	Adjusting	movement	speed

AI	logic
setting	up	/	Tutorial	–	setting	up	AI	logic
basic	animation,	adding	/	Adding	basic	animation

Ambient	Sound	Actor
about	/	Unreal	sound	formats	and	terminologies

animation
about	/	What	is	animation?
stop-motion	animation	/	What	is	animation?
computer	animation	/	What	is	animation?
3D	model,	preparing	for	/	Preparing	before	animation
creating	/	How	is	animation	created?
importing,	from	Maya	/	Importing	animation	from	Maya/3ds	Max
importing,	from	3ds	Max	/	Importing	animation	from	Maya/3ds	Max

animation,	in	Unreal	Engine	4	/	What	Unreal	Engine	4	offers	for	animation	in	games
Animation	and	Rigging	Toolset	(ART)

about	/	What	Unreal	Engine	4	offers	for	animation	in	games
Animation	Blueprint

setting	up,	for	Blend	Animation	usage	/	Tutorial	–	setting	up	the	Animation
Blueprint	to	use	a	Blend	Animation

animation	pack
importing,	from	Marketplace	/	Tutorial	–	importing	the	animation	pack	from
Marketplace

animations
blending	/	Why	do	we	need	to	blend	animations?

AnimGraph
about	/	AnimGraph

application	programming	interfaces	(APIs)	/	APIs	–	DirectX	and	OpenGL
artificial	intelligence

about	/	Artificial	intelligence

audio,	obtaining	into	Unreal
about	/	Getting	audio	into	Unreal
audio	format	/	The	audio	format
sampling	rate	/	The	sampling	rate
bit	depth	/	Bit	depth
supported	sound	channels	/	Supported	sound	channels

audio	quality
about	/	Audio	quality

Audio	Volume
about	/	Audio	Volume

B
baking

about	/	A	special	form	of	texture	maps	–	Normal	Maps
beginners	guide,	Unreal	Editor

start	menu	/	The	start	menu
Project	Browser	/	Project	Browser
Content	Browser	/	Content	Browser
Toolbar	/	Toolbar
Viewport	/	Viewport
Scene	Outliner	/	Scene	Outliner
Modes	window	/	Modes

Behavior	Tree
about	/	Understanding	a	Behavior	Tree
logic,	designing	of	/	Exercise	–	designing	the	logic	of	a	Behavior	Tree
implementing,	in	Unreal	Engine	4	/	How	to	implement	a	Behavior	Tree	in
Unreal	Engine	4
creating	/	Creating	a	Behavior	Tree
using	/	Using	the	Behavior	Tree
custom	task,	creating	for	/	Creating	a	custom	task	for	the	Behavior	Tree
PickTargetLocation	custom	task,	using	in	/	Using	the	PickTargetLocation
custom	task	in	BT

Blackboard
about	/	How	to	implement	a	Behavior	Tree	in	Unreal	Engine	4

BlackBoardData
creating	/	Creating	the	BlackBoardData
variable,	adding	into	/	Adding	a	variable	into	BlackBoardData

blank	map
level,	creating	from	/	Creating	a	level	from	a	new	blank	map

Blend	Animation
about	/	Why	do	we	need	to	blend	animations?
creating	/	Tutorial	–	creating	a	Blend	Animation
Animation	Blueprint,	setting	up	for	usage	of	/	Tutorial	–	setting	up	the
Animation	Blueprint	to	use	a	Blend	Animation

Blocking	Volume
about	/	Blocking	Volume

Blueprint	/	The	history	of	Unreal	Engine
about	/	Introducing	Blueprint
Level	Blueprint	/	Level	Blueprint

Blueprint	AIController
creating	/	Creating	the	Blueprint	AIController

Blueprint	character
creating	/	Creating	the	Blueprint	character

Blueprint	First	Person	Project

creating	/	Creating	a	new	project
Blueprint	visual	scripting	system

about	/	The	Blueprint	visual	scripting	system
bots	/	The	history	of	Unreal	Engine
BSP

about	/	Background
BSP	Box	brush

used,	for	creaitng	ground	/	Creating	the	ground	using	the	BSP	Box	brush
BSP	Brush

about	/	BSP	Brush
background	/	Background
type	/	Brush	type
solidity	/	Brush	solidity
versus	Static	Mesh	/	BSP	Brush	versus	Static	Mesh

C
Camera	Blocking	Volume

about	/	Camera	Blocking	Volume
camera	movement

about	/	Camera	movement
tilt	/	Tilt
pan	/	Pan
dolly/track/truck	/	Dolly/track/truck
pedestal	/	Pedestal

central	processing	unit	(CPU)	/	Rendering	pipeline
Character	Blueprint

Mesh,	adding	to	/	Adding	and	configuring	Mesh	to	a	Character	Blueprint
Mesh,	configuring	to	/	Adding	and	configuring	Mesh	to	a	Character	Blueprint
AIController,	linking	to	/	Linking	AIController	to	the	Character	Blueprint

cinematics
about	/	Introducing	cinematics

cinematic	techniques
about	/	Introducing	cinematics,	Cinematic	techniques
adjusted	camera	functions	/	Adjusted	camera	functions
camera	movement	/	Camera	movement
scene,	capturing	/	Capturing	a	scene

Close	Up	Shot	(CU)	/	Shot	types
collision	configuration	properties

about	/	Collision	configuration	properties
Simulation	Generates	Hit	Events	/	Simulation	Generates	Hit	Events
Generate	Overlap	Events	/	Generate	Overlap	Events
Collision	Presets	/	Collision	Presets
Collision	Enabled	/	Collision	Enabled
Object	Type	/	Object	Type
Collision	Responses	/	Collision	Responses
collision	hulls	/	Collision	hulls

Collision	Responses	option
about	/	Collision	Responses
Trace	Responses	/	Trace	Responses
Object	Responses	/	Object	Responses

collisions
about	/	Collisions

computer	animation
about	/	What	is	animation?

conditional	/	How	to	implement	a	Behavior	Tree	in	Unreal	Engine	4
Constructive	Solid	Geometry	(CSG)

about	/	Background
control	keys

about	/	Control	keys
Cooper	Industries

reference	link,	for	downloading	IES	Light	Profiles	/	Downloading	IES	Light
Profiles

Cull	Distance	Volume
about	/	Cull	Distance	Volume

custom	materials
creating,	simple	texture	used	/	Creating	custom	material	using	simple	textures
used,	for	transforming	level	/	Using	custom	materials	to	transform	the	level

custom	sounds
adding,	to	level	/	Exercise	–	adding	custom	sounds	to	a	level

custom	task
creating,	for	Behavior	Tree	/	Creating	a	custom	task	for	the	Behavior	Tree

cut	scenes
about	/	Introducing	cinematics
need	for	/	Why	do	we	need	cut	scenes?

D
3D	model

animating	/	Understanding	how	to	animate	a	3D	model
preparing,	for	animation	/	Preparing	before	animation

3ds	Max
animation,	importing	from	/	Importing	animation	from	Maya/3ds	Max

Deca	Tree
about	/	How	are	sounds	recorded?

Depth	of	field	(DOF)
about	/	Depth	of	field

design	principles,	particle	system
about	/	The	design	principles	of	a	particle	system
research	/	Research
iterative	creative	process	/	The	iterative	creative	process

Direct3D	11	graphics	pipeline
reference	link	/	Shaders

Directional	Light
adding	/	Adding	and	configuring	a	Directional	Light
configuring	/	Adding	and	configuring	a	Directional	Light

Direct	Light
about	/	Common	light/shadow	definitions

DirectX
about	/	APIs	–	DirectX	and	OpenGL,	DirectX

DirectX12
about	/	DirectX12
pipeline	state	transformation	/	Pipeline	state	representation
work	submission	/	Work	submission
resource	access	/	Resource	access

DirectX	12
reference	link	/	DirectX12

domain-shader	stage	/	Shaders
door

opening,	creating	for	/	Creating	an	opening	for	a	door

E
EventGraph

about	/	EventGraph
nodes,	adding	in	/	Nodes	to	add	in	EventGraph

existing	animation
assigning,	to	Persona	/	Tutorial	–	assigning	existing	animation	to	a	Pawn

Extreme	Close	Up	Shot	(ECU)	/	Shot	types
Extreme	Long	Shot	(ELS)	/	Shot	types
Extreme	Wide	Shot	(EWS)	/	Shot	types

F
Field	of	view	(FOV)

about	/	Field	of	view
finishing	touches

applying,	to	room	/	Applying	finishing	touches	to	a	room
fireplace	particle	system

creating	/	Example	–	creating	a	fireplace	particle	system
P_Fireplace,	crafting	/	Crafting	P_Fireplace
solo	emitters,	observing	of	/	Observing	the	solo	emitters	of	the	system
nonessential	emitters,	deleting	/	Deleting	non-essential	emitters
Flame	emitter,	editing	/	Focusing	on	editing	the	Flame	emitter
viewing	/	Looking	at	the	complete	particle	system

Flame	emitter
editing	/	Focusing	on	editing	the	Flame	emitter

framing
about	/	Framing
rules	/	Some	framing	rules

G
game

requisites	/	What	goes	into	a	game?
game	development

about	/	Game	development
artists	/	Artists
cinematic	creators	/	Cinematic	creators
sound	designers	/	Sound	designers
game	designers	/	Game	designers
programmers	/	Programmers

game	engine
about	/	What	is	a	game	engine?

game	level
extending	/	Exercise	–	extending	your	game	level	(optional)
useful	tips	/	Useful	tips
guidelines	/	Guidelines

games
AI,	implementing	in	/	Implementing	AI	in	games
music,	producing	for	/	How	do	we	produce	sound	and	music	for	games?
sound,	producing	for	/	How	do	we	produce	sound	and	music	for	games?

geometry-shader	stage	/	Shaders
graphic	programmers

about	/	Materials
graphics

example	flow	/	Shaders
graphics	processing	unit	(GPU)	/	Rendering	pipeline
ground

creating,	BSP	Box	brush	used	/	Creating	the	ground	using	the	BSP	Box	brush
material,	adding	to	/	Adding	material	to	the	ground

guidelines,	game	level	extension
area	expansion	/	Area	expansion,	Part	2	–	creating	a	big	room	(living	and
kitchen	area),	Part	3	–	creating	a	small	room	along	the	walkway
windows,	creating	/	Creating	windows	and	doors,	Part	2	–	creating	an	open
window	for	the	window	seat,	Part	3	–	creating	windows	for	the	room,	Part	4	–
creating	the	main	door	area
doors,	creating	/	Creating	windows	and	doors,	Part	2	–	creating	an	open	window
for	the	window	seat,	Part	3	–	creating	windows	for	the	room,	Part	4	–	creating
the	main	door	area
basic	furniture	creation,	placing	/	Creating	basic	furniture,	Part	3	–	creating	the
window	seat	area,	Part	5	–	creating	the	kitchen	cabinet	area

H
height	map

reference	link	/	Importing	height	maps	and	layers
High	Level	Shading	Language	(HLSL)

about	/	High	Level	Shading	Language
hills

creating,	Landscape	tool	used	/	Exercise	–	creating	hills	using	the	Landscape
tool

Hot	Reload	function
about	/	Unreal	programming

hull-shader	stage	/	Shaders

I
IES	Light	Profiles

downloading	/	Downloading	IES	Light	Profiles
IES	Profile

using	/	Using	the	IES	Profile
IES	Profiles

importing,	into	Unreal	Engine	Editor	/	Importing	IES	Profiles	into	the	Unreal
Engine	Editor
using	/	Using	IES	Profiles

Indirect	Light
about	/	Common	light/shadow	definitions

input-assembler	stage	/	Shaders
interactions

about	/	Interactions

K
Kill	Z	Volume

about	/	Kill	Z	Volume
Kismet	/	The	history	of	Unreal	Engine
Kismet	system

about	/	Introducing	Blueprint

L
landscape	creation	options

about	/	Landscape	creation	options
multiple	landscapes	/	Multiple	landscapes
custom	material,	using	/	Using	custom	material
height	maps,	importing	/	Importing	height	maps	and	layers
layers,	importing	/	Importing	height	maps	and	layers
Scale	settings	/	Scale
number	of	components	/	The	number	of	components
Section	Size	/	Section	Size

Landscape	tool
about	/	Introducing	terrain	manipulation
used,	for	creating	hills	/	Exercise	–	creating	hills	using	the	Landscape	tool

level
creating,	from	blank	map	/	Creating	a	level	from	a	new	blank	map
light,	adding	to	/	Adding	light	to	a	level
objects,	positioning	in	/	Useful	tip	–	positioning	objects	in	a	level
sky,	adding	to	/	Adding	the	sky	to	a	level
objects,	rotating	in	/	Useful	tip	–	rotating	objects	in	a	level
viewing	/	Viewing	a	level	that’s	been	created
saving	/	Saving	a	level
transforming,	custom	materials	used	/	Using	custom	materials	to	transform	the
level
custom	sounds,	adding	to	/	Exercise	–	adding	custom	sounds	to	a	level

Level	Blueprint
about	/	Level	Blueprint

level	of	detail	(LOD)	system	/	Landscape	–	building	large	outdoor	worlds	and	foliage
Level	Streaming	Volume

about	/	Level	Streaming	Volume,	Cull	Distance	Volume
light

adding,	to	level	/	Adding	light	to	a	level
lighting

about	/	Lighting
Light	Map

about	/	Common	light/shadow	definitions
Lightmass	Importance	Volume

adding	/	Adding	Lightmass	Importance	Volume
about	/	Lightmass	Importance	Volume

lights
about	/	Lights
Point	Light	/	Configuring	a	Point	Light	with	more	settings
Spot	Light	/	Adding	and	configuring	a	Spot	Light
Directional	Light	/	Adding	and	configuring	a	Directional	Light

Sky	Light	/	Example	–	adding	and	configuring	a	Sky	light
Lithonia

reference	link,	for	downloading	IES	Light	Profiles	/	Downloading	IES	Light
Profiles

LOD
about	/	Level	of	detail

logic
designing,	of	Behavior	Tree	/	Exercise	–	designing	the	logic	of	a	Behavior	Tree

Long	Shot	(LS)	/	Shot	types

M
map

configuring,	as	start	level	/	Configuring	a	map	as	a	start	level
Marketplace

animation	pack,	importing	from	/	Tutorial	–	importing	the	animation	pack	from
Marketplace

massively	online	games	(MMOG)	/	The	history	of	Unreal	Engine
material

adding,	to	ground	/	Adding	material	to	the	ground
adding,	to	walls	/	Adding	materials	to	the	walls

Material
creating,	in	Unreal	/	Creating	a	Material	in	Unreal
versus	Texture	/	Materials	versus	Textures

Material	Editor
about	/	Material	Editor,	The	Material	Editor
Cascade	particle	system	/	The	Cascade	particle	system
Persona	skeletal	mesh	animation	/	The	Persona	skeletal	mesh	animation
landscape	/	Landscape	–	building	large	outdoor	worlds	and	foliage

material	manipulation
about	/	Materials

materials
about	/	Materials

Matinee	Editor
about	/	Matinee	Editor

Maya
animation,	importing	from	/	Importing	animation	from	Maya/3ds	Max

Medium	Shot	(MS)	/	Shot	types
Mesh

adding,	to	Character	Blueprint	/	Adding	and	configuring	Mesh	to	a	Character
Blueprint
configuring,	to	Character	Blueprint	/	Adding	and	configuring	Mesh	to	a
Character	Blueprint

Metal	Shading	Language	/	Shaders
modules

about	/	Modules
reference	link,	for	documentation	/	Modules

motion	capture
about	/	What	is	animation?

Movable	Light
about	/	Static,	stationary,	or	movable	lights,	Movable	Light

Move	To	node
Wait	task,	replacing	with	/	Replacing	the	Wait	task	with	Move	To

multitexturing

about	/	Multitexturing
music

about	/	Sound	and	music
producing,	for	games	/	How	do	we	produce	sound	and	music	for	games?

N
Navigation	Mesh

about	/	Navigation	Mesh
creating	/	Tutorial	–	creating	a	Navigation	Mesh

Nav	Mesh	Bounds	Volume
about	/	Nav	Mesh	Bounds	Volume

nodes
adding,	in	EventGraph	/	Nodes	to	add	in	EventGraph

non-player	characters	(NPCs)	/	The	history	of	Unreal	Engine
Normal	Maps

about	/	A	special	form	of	texture	maps	–	Normal	Maps
reference	link	/	A	special	form	of	texture	maps	–	Normal	Maps

O
objects

selecting	/	Useful	tip	–	selecting	an	object	easily
positioning,	in	level	/	Useful	tip	–	positioning	objects	in	a	level
rotating,	in	level	/	Useful	tip	–	rotating	objects	in	a	level

OpenGL
about	/	APIs	–	DirectX	and	OpenGL

OpenGL	Shading	Language	(GLSL)	/	Shaders
opening

creating,	for	door	/	Creating	an	opening	for	a	door
output-merger	stage	/	Shaders

P
Pain	Causing	Volume

about	/	Pain	Causing	Volume
panning

about	/	Pan
particle	effect	/	What	goes	into	a	game?
particle	system

about	/	What	is	a	particle	system?
exploring	/	Exploring	an	existing	particle	system
components	/	The	main	components	of	a	particle	system
design	principles	/	The	design	principles	of	a	particle	system

performance	capture
about	/	What	is	animation?

Persona
about	/	What	can	you	do	with	Persona?
existing	animation,	assigning	to	/	Tutorial	–	assigning	existing	animation	to	a
Pawn

Philips
reference	link,	for	downloading	IES	Light	Profiles	/	Downloading	IES	Light
Profiles

Physical	Based	Shading	Model	(PBSP)
about	/	Physical	Based	Shading	Model

Physics	Asset	Tool	(PhAT)	/	The	Persona	skeletal	mesh	animation
Physics	Volume

about	/	Physics	Volume
Pain	Causing	Volume	/	Pain	Causing	Volume
Kill	Z	Volume	/	Kill	Z	Volume
Level	Streaming	Volume	/	Level	Streaming	Volume,	Cull	Distance	Volume
Cull	Distance	Volume	/	Cull	Distance	Volume
Audio	Volume	/	Audio	Volume
PostProcess	Volume	/	PostProcess	Volume
Lightmass	Importance	Volume	/	Lightmass	Importance	Volume

PickTargetLocation	custom	task
using,	in	Behavior	Tree	/	Using	the	PickTargetLocation	custom	task	in	BT

pipeline	state	object	(PSO)	/	Pipeline	state	representation
pixel-shader	stage	/	Shaders
Player	Start

adding	/	Adding	Player	Start
Point	Light

configuring	/	Configuring	a	Point	Light	with	more	settings
Attenuation	Radius	setting	/	Attenuation	Radius
Intensity	setting	/	Intensity
Use	Inverse	Squared	Falloff	setting	/	Use	Inverse	Squared	Falloff

Color	setting	/	Color
PostProcess	Volume

about	/	PostProcess	Volume
preconfigured	levels

exploring	/	Exploring	preconfigured	levels
project

creating	/	Creating	a	new	project
props

adding,	to	room	/	Adding	props	or	a	static	mesh	to	the	room
Pulse	Code	Modulation	(PCM)

about	/	How	are	sounds	recorded?

R
rasterizer	stage	/	Shaders
rendering

reference	link	/	Shaders
rendering	pipeline

about	/	Rendering	pipeline
rendering	system

about	/	The	rendering	system
rig	/	Preparing	before	animation
rigging	/	Preparing	before	animation
room

sealing	/	Sealing	a	room
static	mesh,	adding	to	/	Adding	props	or	a	static	mesh	to	the	room
props,	adding	to	/	Adding	props	or	a	static	mesh	to	the	room
finishing	touches,	applying	to	/	Applying	finishing	touches	to	a	room

S
shaders

about	/	Shaders
Shadow	Map

about	/	Common	light/shadow	definitions
shot	plan

about	/	Shot	plan
shots

about	/	Shot	types
Extreme	Wide	Shot	(EWS)	/	Shot	types
Extreme	Long	Shot	(ELS)	/	Shot	types
Wide	Shot	(WS)	/	Shot	types
Long	Shot	(LS)	/	Shot	types
Medium	Shot	(MS)	/	Shot	types
Close	Up	Shot	(CU)	/	Shot	types
Extreme	Close	Up	Shot	(ECU)	/	Shot	types

Signal	to	Quantization	Noise	Ratio	(SQNR)
about	/	Bit	depth

simple	Behavior	Tree
creating	/	Example	–	creating	a	simple	Behavior	Tree
creating,	Wait	task	used	/	Creating	a	simple	BT	using	a	Wait	task

simple	custom	material
creating	/	Creating	a	simple	custom	material

simple	matinee	sequence
creating	/	Exercise	–	creating	a	simple	matinee	sequence

simple	texture
used,	for	creating	custom	materials	/	Creating	custom	material	using	simple
textures

sky
adding,	to	level	/	Adding	the	sky	to	a	level

Sky	Light
adding	/	Example	–	adding	and	configuring	a	Sky	light
configuring	/	Example	–	adding	and	configuring	a	Sky	light

snap	grids
using	/	Useful	tip	–	using	the	drag	snap	grid

solo	emitters
observing,	of	fireplace	particle	system	/	Observing	the	solo	emitters	of	the
system

sound
about	/	Sound	and	music
producing,	for	games	/	How	do	we	produce	sound	and	music	for	games?
recording	/	How	are	sounds	recorded?
importing,	into	Unreal	Editor	/	Exercise	–	importing	a	sound	into	the	Unreal

Editor
Sound	Cue	Editor

about	/	Sound	Cue	Editor,	The	Sound	Cue	Editor
opening	/	How	to	open	the	Sound	Cue	Editor
configuring	/	Configuring	the	Sound	Cue	Editor

Sound	Cues
about	/	Sound	Cue	Editor

sound	cues
about	/	Unreal	sound	formats	and	terminologies

sound	waves
about	/	Unreal	sound	formats	and	terminologies

Spot	Light
adding	/	Adding	and	configuring	a	Spot	Light
configuring	/	Adding	and	configuring	a	Spot	Light
inner	cone	angle	/	Inner	cone	and	outer	cone	angle
outer	cone	angle	/	Inner	cone	and	outer	cone	angle

start	level
map,	configuring	as	/	Configuring	a	map	as	a	start	level

Static	Light
about	/	Static,	stationary,	or	movable	lights,	Static	Light

Static	Mesh
about	/	Static	Mesh
versus	BSP	Brush	/	BSP	Brush	versus	Static	Mesh
movable,	making	/	Making	Static	Mesh	movable,	Materials
reference	link	/	Static	Mesh	creation	pipeline

static	mesh
adding,	to	room	/	Adding	props	or	a	static	mesh	to	the	room

Static	Mesh	creation	pipeline
about	/	Static	Mesh	creation	pipeline

Stationary	Light
about	/	Static,	stationary,	or	movable	lights,	Stationary	Light

stop-motion	animation
about	/	What	is	animation?

stream-output	stage	/	Shaders
survey-accurate	visual	simulations

reference	link	/	Field	of	view

T
terrain	manipulation

about	/	Introducing	terrain	manipulation
tessellator	stage	/	Shaders
Texture

versus	Material	/	Materials	versus	Textures
texture

about	/	Materials
Texture	Map

creating	/	How	to	create	and	use	a	Texture	Map
using	/	How	to	create	and	use	a	Texture	Map

Texture	Mapping
about	/	Texture/UV	mapping

Trigger	Volume
about	/	Trigger	Volume
used,	for	turning	on	light	/	Using	the	Trigger	Volume	to	turn	on/off	light
used,	for	turning	off	light	/	Using	the	Trigger	Volume	to	turn	on/off	light
used,	for	toggling	light	on/off	/	Using	Trigger	Volume	to	toggle	light	on/off
(optional)

U
Unreal

Material,	creating	in	/	Creating	a	Material	in	Unreal
Unreal	audio	system

about	/	The	Unreal	audio	system
Unreal	Editor

about	/	Unreal	Editor
beginners	guide	/	A	beginner’s	guide	to	the	Unreal	Editor
sound,	importing	into	/	Exercise	–	importing	a	sound	into	the	Unreal	Editor

Unreal	Engine
history	/	The	history	of	Unreal	Engine
editors	/	Unreal	Engine	and	its	powerful	editors
Unreal	Editor	/	Unreal	Editor
Material	Editor	/	Material	Editor
Sound	Cue	Editor	/	Sound	Cue	Editor
Matinee	Editor	/	Matinee	Editor
Blueprint	visual	scripting	system	/	The	Blueprint	visual	scripting	system

Unreal	Engine	4
components	/	The	components	of	Unreal	Engine	4
sound	engine	/	The	sound	engine
physics	engine	/	The	physics	engine
graphics	engine	/	The	graphics	engine
Gameplay	framework	/	Input	and	the	Gameplay	framework
input	system	/	Input	and	the	Gameplay	framework
light	/	Light	and	shadow
shadow	/	Light	and	shadow
post-process	effects	/	Post-process	effects
artificial	intelligence	(AI)	/	Artificial	intelligence
online	and	multiplatform	capabilities	/	Online	and	multiplatform	capabilities
Behavior	Tree,	implementing	in	/	How	to	implement	a	Behavior	Tree	in	Unreal
Engine	4

Unreal	Engine	Editor
IES	Profiles,	importing	into	/	Importing	IES	Profiles	into	the	Unreal	Engine
Editor

Unreal	Landscaping	tool
about	/	Introducing	terrain	manipulation

Unreal	Matinee	Editor
about	/	Getting	familiar	with	the	Unreal	Matinee	Editor

Unreal	objects
about	/	Unreal	objects

Unreal	programming
about	/	Unreal	programming

UV	texture	map

about	/	Texture/UV	mapping

V
variable

adding,	into	BlackBoardData	/	Adding	a	variable	into	BlackBoardData
vertex-shader	stage	/	Shaders
Video	Games	Live

reference	link	/	How	do	we	produce	sound	and	music	for	games?
View	Mode

changing	/	Useful	tip	–	changing	View	Mode	to	aid	visuals
viewport

navigating	/	Navigating	the	viewport
views

about	/	Views
Vivaldi

URL	/	Exercise	–	importing	a	sound	into	the	Unreal	Editor
volumes

about	/	Introducing	volumes
Blocking	Volume	/	Blocking	Volume
Camera	Blocking	Volume	/	Camera	Blocking	Volume
Trigger	Volume	/	Trigger	Volume
Nav	Mesh	Bounds	Volume	/	Nav	Mesh	Bounds	Volume
Physics	Volume	/	Physics	Volume

Vorbis
URL	/	Exercise	–	importing	a	sound	into	the	Unreal	Editor

Vulkan	/	Shaders

W
Wait	task

used,	for	creating	simple	Behavior	Tree	/	Creating	a	simple	BT	using	a	Wait	task
replacing,	with	Move	To	node	/	Replacing	the	Wait	task	with	Move	To

wall
adding	/	Adding	a	wall
duplicating	/	Duplicating	a	wall
materials,	adding	to	/	Adding	materials	to	the	walls

Wide	Shot	(WS)	/	Shot	types

	Learning Unreal Engine Game Development
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. An Overview of Unreal Engine
	What goes into a game?
	What is a game engine?
	The history of Unreal Engine
	Game development
	Artists
	Cinematic creators
	Sound designers
	Game designers
	Programmers
	The components of Unreal Engine 4
	The sound engine
	The physics engine
	The graphics engine
	Input and the Gameplay framework
	Light and shadow
	Post-process effects
	Artificial intelligence
	Online and multiplatform capabilities
	Unreal Engine and its powerful editors
	Unreal Editor
	Material Editor
	The Cascade particle system
	The Persona skeletal mesh animation
	Landscape – building large outdoor worlds and foliage
	Sound Cue Editor
	Matinee Editor
	The Blueprint visual scripting system
	Unreal programming
	Unreal objects
	A beginner's guide to the Unreal Editor
	The start menu
	Project Browser
	Content Browser
	Toolbar
	Viewport
	Scene Outliner
	Modes
	Summary
	2. Creating Your First Level
	Exploring preconfigured levels
	Creating a new project
	Navigating the viewport
	Views
	Control keys
	Creating a level from a new blank map
	Creating the ground using the BSP Box brush
	Useful tip – selecting an object easily
	Useful tip – changing View Mode to aid visuals
	Adding light to a level
	Useful tip – positioning objects in a level
	Adding the sky to a level
	Adding Player Start
	Useful tip – rotating objects in a level
	Viewing a level that's been created
	Saving a level
	Configuring a map as a start level
	Adding material to the ground
	Adding a wall
	Duplicating a wall
	Creating an opening for a door
	Adding materials to the walls
	Sealing a room
	Adding props or a static mesh to the room
	Adding Lightmass Importance Volume
	Applying finishing touches to a room
	Useful tip – using the drag snap grid
	Summary
	3. Game Objects – More and Move
	BSP Brush
	Background
	Brush type
	Brush solidity
	Static Mesh
	BSP Brush versus Static Mesh
	Making Static Mesh movable
	Materials
	Creating a Material in Unreal
	Materials versus Textures
	Texture/UV mapping
	How to create and use a Texture Map
	Multitexturing
	A special form of texture maps – Normal Maps
	Level of detail
	Collisions
	Collision configuration properties
	Simulation Generates Hit Events
	Generate Overlap Events
	Collision Presets
	Collision Enabled
	Object Type
	Collision Responses
	Trace Responses
	Object Responses
	Collision hulls
	Interactions
	Static Mesh creation pipeline
	Introducing volumes
	Blocking Volume
	Camera Blocking Volume
	Trigger Volume
	Nav Mesh Bounds Volume
	Physics Volume
	Pain Causing Volume
	Kill Z Volume
	Level Streaming Volume
	Cull Distance Volume
	Audio Volume
	PostProcess Volume
	Lightmass Importance Volume
	Introducing Blueprint
	Level Blueprint
	Using the Trigger Volume to turn on/off light
	Using Trigger Volume to toggle light on/off (optional)
	Summary
	4. Material and Light
	Materials
	The Material Editor
	The rendering system
	Physical Based Shading Model
	High Level Shading Language
	Getting started
	Creating a simple custom material
	Creating custom material using simple textures
	Using custom materials to transform the level
	Rendering pipeline
	Shaders
	APIs – DirectX and OpenGL
	DirectX
	DirectX12
	Pipeline state representation
	Work submission
	Resource access
	Lights
	Configuring a Point Light with more settings
	Attenuation Radius
	Intensity
	Use Inverse Squared Falloff
	Color
	Adding and configuring a Spot Light
	Inner cone and outer cone angle
	Using the IES Profile
	Downloading IES Light Profiles
	Importing IES Profiles into the Unreal Engine Editor
	Using IES Profiles
	Adding and configuring a Directional Light
	Example – adding and configuring a Sky light
	Static, stationary, or movable lights
	Common light/shadow definitions
	Static Light
	Stationary Light
	Movable Light
	Exercise – extending your game level (optional)
	Useful tips
	Guidelines
	Area expansion
	Part 1 – lengthening the current walkway
	Part 2 – creating a big room (living and kitchen area)
	Part 3 – creating a small room along the walkway
	Part 4 – Creating a den area in the big room
	Creating windows and doors
	Part 1 – creating large glass windows for the dining area
	Part 2 – creating an open window for the window seat
	Part 3 – creating windows for the room
	Part 4 – creating the main door area
	Creating basic furniture
	Part 1 – creating a dining table and placing chairs
	Part 2 – decorating the sitting area
	Part 3 – creating the window seat area
	Part 4 – creating the Japanese seating area
	Part 5 – creating the kitchen cabinet area
	Summary
	5. Animation and AI
	What is animation?
	Understanding how to animate a 3D model
	Preparing before animation
	How is animation created?
	What Unreal Engine 4 offers for animation in games
	Importing animation from Maya/3ds Max
	Tutorial – importing the animation pack from Marketplace
	What can you do with Persona?
	Tutorial – assigning existing animation to a Pawn
	Why do we need to blend animations?
	Tutorial – creating a Blend Animation
	Tutorial – setting up the Animation Blueprint to use a Blend Animation
	AnimGraph
	EventGraph
	Artificial intelligence
	Understanding a Behavior Tree
	Exercise – designing the logic of a Behavior Tree
	Example – creating a simple Behavior Tree
	How to implement a Behavior Tree in Unreal Engine 4
	Navigation Mesh
	Tutorial – creating a Navigation Mesh
	Tutorial – setting up AI logic
	Creating the Blueprint AIController
	Creating the Blueprint character
	Adding and configuring Mesh to a Character Blueprint
	Linking AIController to the Character Blueprint
	Adding basic animation
	Configuring AIController
	Nodes to add in EventGraph
	Adjusting movement speed
	Creating the BlackBoardData
	Adding a variable into BlackBoardData
	Creating a Behavior Tree
	Creating a simple BT using a Wait task
	Using the Behavior Tree
	Creating a custom task for the Behavior Tree
	Using the PickTargetLocation custom task in BT
	Replacing the Wait task with Move To
	Implementing AI in games
	Summary
	6. A Particle System and Sound
	What is a particle system?
	Exploring an existing particle system
	The main components of a particle system
	Modules
	The design principles of a particle system
	Research
	The iterative creative process
	Example – creating a fireplace particle system
	Crafting P_Fireplace
	Observing the solo emitters of the system
	Deleting non-essential emitters
	Focusing on editing the Flame emitter
	Looking at the complete particle system
	Sound and music
	How do we produce sound and music for games?
	Audio quality
	How are sounds recorded?
	The Unreal audio system
	Getting audio into Unreal
	The audio format
	The sampling rate
	Bit depth
	Supported sound channels
	Unreal sound formats and terminologies
	The Sound Cue Editor
	How to open the Sound Cue Editor
	Exercise – importing a sound into the Unreal Editor
	Exercise – adding custom sounds to a level
	Configuring the Sound Cue Editor
	Summary
	7. Terrain and Cinematics
	Introducing terrain manipulation
	Exercise – creating hills using the Landscape tool
	Landscape creation options
	Multiple landscapes
	Using custom material
	Importing height maps and layers
	Scale
	The number of components
	Section Size
	Introducing cinematics
	Why do we need cut scenes?
	Cinematic techniques
	Adjusted camera functions
	Zoom
	Field of view
	Depth of field
	Camera movement
	Tilt
	Pan
	Dolly/track/truck
	Pedestal
	Capturing a scene
	Lighting
	Framing
	Some framing rules
	Shot types
	Shot plan
	Getting familiar with the Unreal Matinee Editor
	Exercise – creating a simple matinee sequence
	Summary
	Index

