
Machine
Learning Using R

A Comprehensive Guide to Machine
Learning
—
Karthik Ramasubramanian
Abhishek Singh

www.allitebooks.com

http://www.allitebooks.org

Machine Learning
Using R

Karthik Ramasubramanian

Abhishek Singh

www.allitebooks.com

http://www.allitebooks.org

Machine Learning Using R

Karthik Ramasubramanian Abhishek Singh
New Delhi, Delhi, India New Delhi, Delhi, India

ISBN-13 (pbk): 978-1-4842-2333-8 ISBN-13 (electronic): 978-1-4842-2334-5
DOI 10.1007/978-1-4842-2334-5

Library of Congress Control Number: 2016961515

Copyright © 2017 Karthik Ramasubramanian and Abhishek Singh

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Technical Reviewer: Jojo Moolayil
Editorial Board: Steve Anglin, Pramila Balen, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Sanchita Mandal
Copy Editor: Lori Jacobs
Compositor: SPi Global
Indexer: SPi Global
Cover Image: Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com. For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code/.

Printed on acid-free paper

www.allitebooks.com

orders-ny@springer-sbm.com
www.springer.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

To our parents for being the guiding light and a strong
pillar of support.

And to our decade-long friendship.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors ��� xix

About the Technical Reviewer �� xxi

Acknowledgments �� xxiii

 ■Chapter 1: Introduction to Machine Learning and R ����������������������� 1

 ■Chapter 2: Data Preparation and Exploration ������������������������������� 31

 ■Chapter 3: Sampling and Resampling Techniques ����������������������� 67

 ■Chapter 4: Data Visualization in R �� 129

 ■Chapter 5: Feature Engineering �� 181

 ■Chapter 6: Machine Learning Theory and Practices ������������������� 219

 ■Chapter 7: Machine Learning Model Evaluation ������������������������� 425

 ■Chapter 8: Model Performance Improvement ����������������������������� 465

 ■ Chapter 9: Scalable Machine Learning and Related
Technologies ��� 519

Index �� 555

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors ��� xix

About the Technical Reviewer �� xxi

Acknowledgments �� xxiii

 ■Chapter 1: Introduction to Machine Learning and R ����������������������� 1

1.1 Understanding the Evolution .. 2

1.1.1 Statistical Learning .. 2

1.1.2 Machine Learning (ML) ... 3

1.1.3 Artificial Intelligence (AI)... 3

1.1.4 Data Mining .. 4

1.1.5 Data Science .. 5

1.2 Probability and Statistics ... 6

1.2.1 Counting and Probability Definition .. 7

1.2.2 Events and Relationships ... 9

1.2.3 Randomness, Probability, and Distributions ... 12

1.2.4 Confidence Interval and Hypothesis Testing ... 13

1.3 Getting Started with R .. 18

1.3.1 Basic Building Blocks ... 18

1.3.2 Data Structures in R ... 19

1.3.3 Subsetting .. 21

1.3.4 Functions and Apply Family .. 23

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

1.4 Machine Learning Process Flow .. 26

1.4.1 Plan .. 26

1.4.2 Explore.. 26

1.4.3 Build ... 27

1.4.4 Evaluate .. 27

1.5 Other Technologies ... 28

1.6 Summary .. 28

1.7 References ... 28

 ■Chapter 2: Data Preparation and Exploration ������������������������������� 31

2.1 Planning the Gathering of Data .. 32

2.1.1 Variables Types ... 32

2.1.2 Data Formats .. 33

2.1.3 Data Sources .. 40

2.2 Initial Data Analysis (IDA) ... 41

2.2.1 Discerning a First Look ... 41

2.2.2 Organizing Multiple Sources of Data into One .. 43

2.2.3 Cleaning the Data ... 46

2.2.4 Supplementing with More Information ... 49

2.2.5 Reshaping ... 50

2.3 Exploratory Data Analysis... 51

2.3.1 Summary Statistics .. 52

2.3.2 Moment .. 55

2.4 Case Study: Credit Card Fraud ... 61

2.4.1 Data Import ... 61

2.4.2 Data Transformation ... 62

2.4.3 Data Exploration ... 63

2.5 Summary .. 65

2.6 References ... 65

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

 ■Chapter 3: Sampling and Resampling Techniques ����������������������� 67

3.1 Introduction to Sampling .. 68

3.2 Sampling Terminology .. 69

3.2.1 Sample ... 69

3.2.2 Sampling Distribution ... 70

3.2.3 Population Mean and Variance ... 70

3.2.4 Sample Mean and Variance .. 70

3.2.5 Pooled Mean and Variance ... 70

3.2.6 Sample Point .. 71

3.2.7 Sampling Error ... 71

3.2.8 Sampling Fraction .. 72

3.2.9 Sampling Bias .. 72

3.2.10 Sampling Without Replacement (SWOR) .. 72

3.2.11 Sampling with Replacement (SWR) .. 72

3.3 Credit Card Fraud: Population Statistics....................................... 73

3.3.1 Data Description ... 73

3.3.2 Population Mean ... 74

3.3.3 Population Variance .. 74

3.3.4 Pooled Mean and Variance ... 75

3.4 Business Implications of Sampling .. 78

3.4.1 Features of Sampling ... 79

3.4.2 Shortcomings of Sampling ... 79

3.5 Probability and Non-Probability Sampling 79

3.5.1 Types of Non-Probability Sampling... 80

3.6 Statistical Theory on Sampling Distributions 81

3.6.1 Law of Large Numbers: LLN .. 81

3.6.2 Central Limit Theorem .. 85

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

3.7 Probability Sampling Techniques ... 89

3.7.1 Population Statistics ... 89

3.7.2 Simple Random Sampling .. 93

3.7.3 Systematic Random Sampling ... 100

3.7.4 Stratified Random Sampling... 104

3.7.5 Cluster Sampling .. 111

3.7.6 Bootstrap Sampling .. 117

3.8 Monte Carlo Method: Acceptance-Rejection Method 124

3.9 A Qualitative Account of Computational Savings by Sampling ... 126

3.10 Summary .. 127

 ■Chapter 4: Data Visualization in R �� 129

4.1 Introduction to the ggplot2 Package .. 130

4.2 World Development Indicators ... 132

4.3 Line Chart ... 132

4.4 Stacked Column Charts .. 138

4.5 Scatterplots ... 144

4.6 Boxplots ... 145

4.7 Histograms and Density Plots .. 148

4.8 Pie Charts ... 152

4.9 Correlation Plots ... 154

4.10 HeatMaps ... 156

4.11 Bubble Charts ... 158

4.12 Waterfall Charts .. 162

4.13 Dendogram ... 165

4.14 Wordclouds... 167

4.15 Sankey Plots .. 169

4.16 Time Series Graphs .. 170

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xi

4.17 Cohort Diagrams .. 172

4.18 Spatial Maps .. 174

4.19 Summary .. 178

4.20 References ... 179

 ■Chapter 5: Feature Engineering �� 181

5.1 Introduction to Feature Engineering ... 182

5.1.1 Filter Methods .. 184

5.1.2 Wrapper Methods ... 184

5.1.3 Embedded Methods .. 184

5.2 Understanding the Working Data ... 185

5.2.1 Data Summary .. 186

5.2.2 Properties of Dependent Variable ... 186

5.2.3 Features Availability: Continuous or Categorical 189

5.2.4 Setting Up Data Assumptions ... 191

5.3 Feature Ranking ... 191

5.4 Variable Subset Selection .. 195

5.4.1 Filter Method .. 195

5.4.2 Wrapper Methods ... 199

5.4.3 Embedded Methods .. 206

5.5 Dimensionality Reduction .. 210

5.6 Feature Engineering Checklist ... 215

5.7 Summary .. 217

5.8 References ... 217

 ■Chapter 6: Machine Learning Theory and Practices ������������������� 219

 6.1 Machine Learning Types .. 222

 6.1.1 Supervised Learning .. 222

 6.1.2 Unsupervised Learning ... 223

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xii

 6.1.3 Semi-Supervised Learning ... 223

 6.1.4 Reinforcement Learning ... 223

 6.2 Groups of Machine Learning Algorithms 224

 6.3 Real-World Datasets .. 229

 6.3.1 House Sale Prices ... 229

 6.3.2 Purchase Preference .. 230

 6.3.3 Twitter Feeds and Article .. 231

 6.3.4 Breast Cancer ... 231

 6.3.5 Market Basket .. 232

 6.3.6 Amazon Food Review ... 232

 6.4 Regression Analysis ... 233

 6.5 Correlation Analysis ... 235

 6.5.1 Linear Regression ... 238

 6.5.2 Simple Linear Regression ... 241

 6.5.3 Multiple Linear Regression ... 244

6.5.4 Model Diagnostics: Linear Regression ... 247

 6.5.5 Polynomial Regression ... 261

6.5.6 Logistic Regression .. 265

6.5.7 Logit Transformation ... 266

6.5.8 Odds Ratio .. 267

6.5.9 Model Diagnostics: Logistic Regression ... 275

6.5.10 Multinomial Logistic Regression .. 285

6.5.11 Generalized Linear Models ... 289

6.5.12 Conclusion .. 290

6.6 Support Vector Machine SVM ... 290

6.6.1 Linear SVM ... 292

6.6.2 Binary SVM Classifier ... 293

6.6.3 Multi-Class SVM ... 295

6.6.4 Conclusion .. 297

■ Contents

xiii

6.7 Decision Trees .. 297

6.7.1 Types of Decision Trees .. 298

6.7.2 Decision Measures ... 300

6.7.3 Decision Tree Learning Methods .. 302

6.7.4 Ensemble Trees .. 321

6.7.5 Conclusion .. 329

6.8 The Naive Bayes Method .. 330

6.8.1 Conditional Probability.. 330

6.8.2 Bayes Theorem ... 330

6.8.3 Prior Probability .. 331

6.8.4 Posterior Probability ... 331

6.8.5 Likelihood and Marginal Likelihood .. 331

6.8.6 Naive Bayes Methods ... 332

6.8.7 Conclusion .. 337

6.9 Cluster Analysis .. 337

6.9.1 Introduction to Clustering ... 338

6.9.2 Clustering Algorithms ... 339

6.9.3 Internal Evaluation .. 351

6.9.4 External Evaluation ... 353

6.9.5 Conclusion .. 354

6.10 Association Rule Mining ... 354

6.10.1 Introduction to Association Concepts ... 355

6.10.2 Rule-Mining Algorithms .. 357

6.10.3 Recommendation Algorithms ... 364

6.10.4 Conclusion .. 372

6.11 Artificial Neural Networks .. 372

6.11.1 Human Cognitive Learning .. 372

6.11.2 Perceptron ... 374

6.11.3 Sigmoid Neuron .. 377

■ Contents

xiv

6.11.4 Neural Network Architecture .. 377

6.11.5 Supervised versus Unsupervised Neural Nets 379

6.11.6 Neural Network Learning Algorithms ... 380

6.11.7 Feed-Forward Back-Propagation ... 382

6.11.8 Deep Learning .. 389

6.11.9 Conclusion .. 396

6.12 Text-Mining Approaches ... 396

6.12.1 Introduction to Text Mining ... 397

6.12.2 Text Summarization .. 398

6.12.3 TF-IDF ... 400

6.12.4 Part-of-Speech (POS) Tagging .. 402

6.12.5 Word Cloud ... 406

6.12.6 Text Analysis: Microsoft Cognitive Services.. 407

6.12.7 Conclusion .. 417

6.13 Online Machine Learning Algorithms 417

6.13.1 Fuzzy C-Means Clustering .. 419

6.13.2 Conclusion .. 422

6.14 Model Building Checklist .. 422

6.15 Summary .. 423

6.16 References ... 423

 ■Chapter 7: Machine Learning Model Evaluation ������������������������� 425

7.1 Dataset ... 426

7.1.1 House Sale Prices ... 426

7.1.2 Purchase Preference .. 428

7.2 Introduction to Model Performance and Evaluation 430

7.3 Objectives of Model Performance Evaluation............................. 431

7.4 Population Stability Index ... 432

7.5 Model Evaluation for Continuous Output 437

■ Contents

xv

7.5.1 Mean Absolute Error ... 439

7.5.2 Root Mean Square Error ... 441

7.5.3 R-Square .. 442

7.6 Model Evaluation for Discrete Output... 445

7.6.1 Classification Matrix ... 446

7.6.2 Sensitivity and Specificity .. 451

7.6.3 Area Under ROC Curve .. 452

7.7 Probabilistic Techniques .. 455

7.7.1 K-Fold Cross Validation .. 456

7.7.2 Bootstrap Sampling .. 458

7.8 The Kappa Error Metric .. 459

7.9 Summary .. 463

7.10 References ... 464

 ■Chapter 8: Model Performance Improvement ����������������������������� 465

8.1 Machine Learning and Statistical Modeling 466

8.2 Overview of the Caret Package .. 468

8.3 Introduction to Hyper-Parameters .. 470

8.4 Hyper-Parameter Optimization ... 474

8.4.1 Manual Search ... 475

8.4.2 Manual Grid Search .. 477

8.4.3 Automatic Grid Search .. 479

8.4.4 Optimal Search ... 481

8.4.5 Random Search .. 483

8.4.6 Custom Searching .. 485

8.5 The Bias and Variance Tradeoff .. 488

8.5.1 Bagging or Bootstrap Aggregation ... 492

8.5.2 Boosting ... 493

■ Contents

xvi

8.6 Introduction to Ensemble Learning .. 493

8.6.1 Voting Ensembles ... 494

8.6.2 Advanced Methods in Ensemble Learning.. 495

8.7 Ensemble Techniques Illustration in R 498

8.7.1 Bagging Trees ... 498

8.7.2 Gradient Boosting with a Decision Tree .. 500

8.7.3 Blending KNN and Rpart ... 505

8.7.4 Stacking Using caretEnsemble ... 506

8.8 Advanced Topic: Bayesian Optimization of Machine Learning
Models .. 511

8.9 Summary .. 516

8.10 References ... 517

 ■ Chapter 9: Scalable Machine Learning and Related
Technologies ��� 519

9.1 Distributed Processing and Storage ... 520

9.1.1 Google File System (GFS) ... 520

9.1.2 MapReduce .. 522

9.1.3 Parallel Execution in R .. 523

9.2 The Hadoop Ecosystem .. 526

9.2.1 MapReduce .. 527

9.2.2 Hive .. 531

9.2.3 Apache Pig .. 535

9.2.4 HBase ... 538

9.2.5 Spark .. 540

9.3 Machine Learning in R with Spark ... 541

9.3.1 Setting the Environment Variable ... 542

9.3.2 Initializing the Spark Session ... 542

9.3.3 Loading Data and the Running Pre-Process ... 542

9.3.4 Creating SparkDataFrame .. 543

■ Contents

xvii

9.3.5 Building the ML Model .. 544

9.3.6 Predicting the Test Data ... 545

9.3.7 Stopping the SparkR Session ... 546

9.4 Machine Learning in R with H2O .. 546

9.4.1 Installation of Packages ... 547

9.4.2 Initialization of H2O Clusters .. 547

9.4.3 Deep Learning Demo in R with H2O ... 548

9.5 Summary .. 553

9.6 References ... 554

Index �� 555

xix

About the Authors

Karthik Ramasubramanian works for one of the
largest and fastest growing technology unicorns in
India, Hike Messenger. He brings the best of business
analytics and data science experience to his role at
Hike Messenger. In his seven years of research and
industry experience, he has worked on cross-industry
data science problems in retail, e-commerce, and
technology, developing and prototyping data-driven
solutions. In his previous role at Snapdeal, one of the
largest e-commerce retailers in India, he was leading
core statistical modeling initiatives for customer growth
and pricing analytics. Prior to Snapdeal, he was part of

central database team, managing the data warehouses for global business applications of
Reckitt Benckiser (RB). He has vast experience working with scalable machine learning
solutions for industry, including sophisticated graph network and self-learning neural
networks. He has a Master’s in Theoretical Computer Science from PSG College of
Technology, Anna University, and is a certified big data professional. He is passionate
about teaching and mentoring future data scientists through different online and public
forums. He enjoys writing poems in his leisure time and is an avid traveler.

Abhishek Singh is a data scientist in the advanced data
science team of Prudential Financial Inc., the second
largest life insurance provider in the United States, and
is based out of Ireland. He has five years of professional
and academic experience in data science, spanning
across consulting, teaching, and financial services. At
Deloitte Advisory, he led risk analytics initiatives for
top U.S. banks in their regulatory risk, credit risk, and
balance sheet modeling requirements. In his current
role, he is working on scalable machine learning
algorithms for individual life insurance business of
Prudential. He has working experience in time series
models and has worked with cross-functional teams

to implement data science solutions in enterprise infrastructure. He has been an active
trainer at Deloitte Professional University and led training and development initiatives
for professionals in the areas of statistics, economics, financial risk, and data science
tools (SAS and R). He has a B.Tech. in mathematics and computing from the Indian

■ About the Authors

xx

Institute of Technology, Guwahati, and an MBA from the Indian Institute of Management,
Bangalore. He speaks at public events on data science and works with leading universities
toward bringing data science skills to graduates. He has keen interest in law and holds a
Post Graduate Diploma in Cyber Law from NALSAR University. He enjoys cooking and
photography during his free hours.

xxi

About the Technical
Reviewer

Jojo Moolayil is a data scientist and the author of the
book, Smarter Decisions – The Intersection of Internet
of Things and Decision Science. With over four years of
industrial experience in data science, decision science,
and IoT, he has worked with industry leaders on high
impact and critical projects across multiple verticals.
He is currently associated with General Electric, the
pioneer and leader in data science for industrial IoT
and lives in Bengaluru—the silicon valley of India.

He was born and raised in Pune, India and
graduated from the University of Pune with a major
in information technology engineering. He started his

career with Mu Sigma Inc., the world's largest pure play analytics provider and worked
with the leaders of many Fortune 50 clients. One of the early enthusiasts to venture into
IoT analytics, he converged his knowledge of decision science to bring the problem-
solving frameworks and his knowledge of data and decision science to IoT analytics.

To cement his foundation in data science for industrial IoT and scale the impact of
the problem-solving experiments, he joined a fast-growing IoT analytics startup called
Flutura, based in Bangalore and headquartered in the valley. After a short stint with
Flutura, Jojo moved on to work with the leaders of industrial IoT—General Electric, in
Bangalore, where he focused on solving decision science problems for industrial IoT
use cases. As a part of his role at GE, Jojo also focuses on developing data science and
decision science products and platforms for industrial IoT.

Apart from authoring books on decision science and IoT, Jojo has also been technical
reviewer for books on machine learning and business analytics with Apress. He is an
active data science tutor and also maintains a blog at http://www.jojomoolayil.com/
web/blog/.

Profile: http://www.jojomoolayil.com/
https://www.linkedin.com/in/jojo62000
“I would like to thank my family, friends, and mentors for their kind support and

constant motivation throughout my life.”

—Jojo Moolayil

http://www.jojomoolayil.com/web/blog/
http://www.jojomoolayil.com/web/blog/
http://www.jojomoolayil.com/
https://www.linkedin.com/in/jojo62000

xxiii

Acknowledgments

We are grateful to our teachers, open source communities, and colleagues for
enriching us with knowledge and confidence to bring the first edition of this book. The
knowledge in this book is an accumulation of a number of years of research work and
professional experience gained at our alma mater and industry. We are grateful to Prof R.
Nadarajan and Prof R. Anitha, Department of Applied Mathematics and Computational
Sciences, PSG College of Technology, Coimbatore, for their continuous support and
encouragement for our efforts in the machine learning field.

In the rapidly changing world, the field of machine learning is evolving very fast and
most of the latest developments are driven by the open source platform. We thank all
the developers and contributors across the globe who are freely sharing their knowledge
about these platforms. We also want to thank our colleagues from Snapdeal, Deloitte,
and our current organizations—Hike and Prudential—for providing opportunities to
experiment and create cutting-edge data science solutions.

Karthik especially would like to thank his father, Mr. S Ramasubramanian, for always
being a source of inspiration in his life. He is immensely thankful to his supervisor, Mr.
Nikhil Dwarakanath, director of the data science team at Snapdeal, for creating the
opportunities to bring about the best analytics professional in him and providing the
motivation to take up challenging projects.

Abhishek would like to thank his father, Mr. Charan Singh, a senior scientist in the
India meteorological department, for introducing him to the power of data in weather
forecasting in his formative years. On a personal front, Abhishek would like to thank his
mother Jaya, sister Asweta, and brother Avilash for their continuous moral support.

We want to thank our publisher Apress, specifically Celestine, for proving us with
this opportunity, Sanchita, Prachi for managing this project, Poonam and Piyush for their
reviews, and everybody involved in the production team.

—Karthik Ramasubramanian
—Abhishek Singh

1© Karthik Ramasubramanian and Abhishek Singh 2017
K. Ramasubramanian and A. Singh, Machine Learning Using R,
DOI 10.1007/978-1-4842-2334-5_1

CHAPTER 1

Introduction to Machine
Learning and R

Beginners to machine learning are often confused with the plethora of algorithms
and techniques being taught in subjects like statistical learning, data mining, artificial
intelligence, soft computing, and data science. Naturally they end up asking, how
these subjects are different and which is best for solving real-world problems? There
is substantial overlap in these subjects and it's hard to draw a clear Venn diagram
explaining the differences. Primarily, the foundation for these subjects is derived from
probability and statistics. Machine learning played a pivotal role in transforming statistics
into a more accessible subject by showing the applications to the real-world problems.
However, many statisticians probably won't agree with machine learning giving life to
statistics, giving rise to the never-ending chicken and egg conundrum kind of discussions.
Fundamentally, without spending much effort in understanding the pros and cons of this
discussion, it’s wise to believe that the power of statistics needed a pipeline to flow across
different industries with some challenging problems to be solved and machine learning
simply established that high-speed and friction-less pipeline. The other subjects that
evolved from statistics and machine learning are simply trying to broaden the scope of
these two subjects and putting it into a bigger banner.

Except for statistical learning, which is generally offered by mathematics or statistics
departments in the majority of the universities across the globe, the rest are taught by
computer science department. In the recent years, this separation is disappearing but
the collaboration between the two departments is still not complete. Programmers are
intimidated by the complex theorems and proofs and statisticians hate talking (read as
coding) to machines all the time. But as more industries are becoming data and product
driven, the need for getting the two departments to speak a common language is strongly
emphasized. Roles in industry are suitably revamped to create openings like machine
learning engineers, data engineers, and data scientists into a broad group being called the
data science team.

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2334-5_1) contains supplementary material, which is available
to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2334-5_1

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

2

The purpose of this chapter is to take one step back and demystify the terminologies
as we travel through the history of machine learning and emphasize that putting the ideas
from statistics and machine learning into practice by broadening the scope is critical.
At the same time, we elaborate on the importance of learning the fundamentals of
machine learning with an approach inspired by the contemporary techniques from data
science. We have simplified all the mathematics to as much extent as possible without
compromising the fundamentals and core part of the subject. The right balance of
statistics and computer science is always required for understanding machine learning,
and we have made every effort for our readers to appreciate the elegance of mathematics,
which at times is perceived by many to be hard and full of convoluted definitions,
theories, and formulas.

1.1 Understanding the Evolution
The first challenge anybody finds when starting to understand how to build intelligent
machines is how to mimic human behavior in many ways or, to put it even more
appropriately, how to do things even better and more efficiently than humans. Some
examples of these things performed by machines are identifying spam e-mails, predicting
customer churn, classifying documents into respective categories, playing chess,
participating in jeopardy, cleaning house, playing football, and much more. Carefully
looking at these examples will reveal that we humans haven't perfected these tasks to date
and rely heavily on machines to help us. So, now the question remains, where do you start
learning to build such intelligent machines? Often, depending on which task you want to
take up, experts will point you to machine learning, artificial intelligence (AI), or many
such subjects, that sound different by name but are intrinsically connected.

In this chapter, we have taken up the task to knit together this evolution and finally
put forth the point that machine learning, which is the first block in this evolution, is
where you should fundamentally start to later delve deeper into other subjects.

1.1.1 Statistical Learning
The whitepaper, Discovery with Data: Leveraging Statistics with Computer Science to
Transform Science and Society by American Statistical Association (ASA) [1], published
in July 2014, pointed out rightly, “Statistics as the science of learning from data, and of
measuring, controlling, and communicating uncertainty is the most mature of the data
sciences.” They also added, over the last two centuries, and particularly the last 30 years
with the ability to do large-scale computing, this discipline has been an essential part
of the social, natural, bio-medical, and physical sciences, engineering, and business
analytics, among others. Statistical thinking not only helps make scientific discoveries,
but it quantifies the reliability, reproducibility, and general uncertainty associated with
these discoveries. This excerpt from the whitepaper is very precise and powerful in
describing the importance of statistics in data analysis.

Tom Mitchell, in his article, “The Discipline of Machine Learning [2],” appropriately
points out, “Over the past 50 years, the study of machine learning has grown from the
efforts of a handful of computer engineers exploring whether computers could learn to
play games, and a field of statistics that largely ignored computational considerations,

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

3

to a broad discipline that has produced fundamental statistical-computational theories of
learning processes.”

This learning process has found its application in a variety of tasks for commercial
and profitable systems like computer vision, robotics, speech recognition, and many
more. At large, it’s when statistics and computational theories are fused together that
machine learning emerges as a new discipline.

1.1.2 Machine Learning (ML)
The Samuel Checkers-Playing Program, which is known to be the first computer program
that could learn, was developed in 1959 by Arthur Lee Samuel, one of the fathers of
machine learning. Followed by Samuel, Ryszard S. Michalski, also deemed as a father of
machine learning, came out with a system for recognizing handwritten alphanumeric
characters, working along with Jacek Karpinski in 1962-1970. The subject from then has
evolved with many facets and led the way for various applications impacting businesses
and society for the good.

Tom Mitchell defined the fundamental question machine learning seeks to answer
as, “How can we build computer systems that automatically improve with experience,
and what are the fundamental laws that govern all learning processes?” He further
explains, the defining question of computer science is, “How can we build machines
that solve problems, and which problems are inherently tractable/intractable?” whereas
statistics focus on answering “What can be inferred from data plus a set of modeling
assumptions, with what reliability?”

This set of questions clearly show the difference between statistics and machine
learning. As mentioned earlier in the chapter, it might not even be necessary to deal with
the chicken and egg conundrum as we clearly see one simply complements the other
and is paving the path for future. As we dive deep into the concepts of statistics and
machine learning, you will see the differences clearly emerging out or at times completely
disappearing. Another line of thought, in the paper “Statistical Modeling: The Two
Cultures” by Leo Breiman in 2001 [3], argued that statisticians rely too heavily on data
modeling, and that machine learning techniques are instead focusing on the predictive
accuracy of models.

1.1.3 Artificial Intelligence (AI)
The AI world from very beginning was intrigued by games. Whether it be checkers, chess,
Jeopardy, or the recently very popular Go, the AI world strives to build machines that can
play against humans to beat them in these games and it has received much accolades
for the same. IBM’s Watson beat the two best players of Jeopardy, a quiz game show,
wherein participants compete to come out with their responses as a phrase in the form
of questions to some general knowledge clues in the form of answers. Considering the
complexity in analyzing natural language phrases in these answers, it was considered to
be very hard for machines to compete with humans. A high-level architecture of IBM's
DeepQA used in Watson looks something like in Figure 1-1.

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

4

AI also sits at the core of robotics. The 1971 Turing Award winner, John McCarthy,
a well known American computer scientist, was believed to have coined this term and
in his article titled, “What Is Artificial Intelligence?” he defined it as “the science and
engineering of making intelligent machines [4]”. So, if you relate back to what we said
about machine learning, we instantly sense a connection between the two, but AI goes
the extra mile to congregate a number of sciences and professions, including linguistics,
philosophy, psychology, neuroscience, mathematics, and computer science, as well as
other specialized fields such as artificial psychology. It should also be pointed out that
machine learning is often considered to be a subset of AI.

1.1.4 Data Mining
Knowledge Discovery and Data Mining (KDD), a premier forum for data mining, states
its goal to be advancement, education, and adoption of the “science” for knowledge
discovery and data mining. Data mining, like ML and AI, has emerged as interdisciplinary
subfield of computer science and for this reason, KDD commonly projects data mining
methods, as the intersection of AI, ML, statistics, and database systems. Data mining
techniques were integrated into many database systems and business intelligence tools,
when adoption of analytic services were starting to explode in many industries.

The research paper, “WEKA Experiences with a Java open-source project”[5] (WEKA
is one of the widely adapted tools for doing research and projects using data mining),
published in the Journal of Machine Learning Research talked about how the classic book
Data Mining: Practical machine learning tools and techniques with Java,[6] being originally
named just Practical Machine Learning, and the term data mining was only added for
marketing reasons. Eibe Frank and Mark A. Hall who wrote this research paper are the two
co-authors of the book, so we have a strong rationale to believe this reason for the name
change. Once again, we see fundamentally, ML being in the core of data mining.

Figure 1-1. Architecture of IBM's DeepQA

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

5

1.1.5 Data Science
It’s not wrong to call data science a big umbrella that brought everything with a potential
to show insight from data and build intelligent systems inside it. In the book, Data
Science for Business [7], Foster Provost and Tom Fawcett introduced the notion of viewing
data and data science capability as a strategic asset, which will help businesses think
explicitly about the extent to which one should invest in them. In a way, data science has
emphasized the importance of data more than the algorithms of learning.

It has established a well defined process flow that says, first think about doing
descriptive data analysis and then later start to think about modeling. As a result of
this, businesses have started to adopt this new methodology because they were able to
relate to it. Another incredible change data science has brought is around creating the
synergies between various departments within a company. Every department has their
own subject matter experts and data science teams have started to build their expertise
in using data as a common language to communicate. This paradigm shift has witnessed
the emergence of data driven growth and many data products. Data science has given us
a framework, which aims to create a conglomerate of skill sets, tools and technologies.
Drew Conway, the famous American data scientist who is known for his Venn diagram
definition of data science as shown in Figure 1-2, has very rightly placed machine
learning in the intersection of Hacking Skills and Math & Statistics Knowledge.

Figure 1-2. Venn diagram definition of data science

We strongly believe the fundamentals of these different field of study are all derived
from statistics and machine learning but different flavors, for reasons justifiable in its own
context, were given to it, which helped the subject to get molded into various systems and
areas of research. This book will help trim down the number of different terminologies being
used to describe the same set of algorithms and tools. It will present a simple-to-understand
and coherent approach, the algorithms in machine learning and its practical use with R.
Wherever it’s appropriate, we will emphasize the need to go outside the scope of this book

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

6

and guide our readers with the relevant materials. By doing so, we are re-emphasizing
the need for mastering traditional approaches in machine learning and, at the same time,
staying abreast with the latest development in tools and technologies in this space.

Our design of topics in this book are strongly influenced by data science framework
but instead of wandering through the vast pool of tools and techniques you would find
in the world of data science, we have kept our focus strictly on teaching practical ways of
applying machine learning algorithms with R.

The rest of this chapter is organized to help readers understand the elements
of probability and statistics and programming skills in R. Both of these will form the
foundations for understanding and putting machine learning into practical use. The
chapter ends with discussion of technologies that apply ML to a real-world problem. Also,
a generic machine learning process flow will be presented showing how to connect the
dots, starting from a given problem statement to deploying ML models to working with
real-world systems.

1.2 Probability and Statistics
Common sense and gut-instincts play a key role for policy makers, leaders, and
entrepreneurs in building nations and large enterprises. The big question is, how do
we convert these immeasurable human decision-making traits into more objective
measurable quantity to be able to take better decisions? That's where probability and
statistics come in. Much of statistics is focused on analyzing existing data and drawing
suitable conclusions using probability models. Though it's very common to use
probabilities in many statistical modeling, we feel it’s important to identify the different
questions probability and statistics help us answer. An example from the book, Learning
Statistics with R: A Tutorial for Psychology Students and Other Beginners by Daniel
Navarro [8], University of Adelaide, helps us understand it much better. Consider these
two pairs of questions:

 1. What are the chances of a fair coin coming up heads 10 times
in a row?

 2. If my friend flips a coin 10 times and gets 10 heads. Is she
playing a trick on me?

and

 1. How likely it is that five cards drawn from a perfectly shuffled
deck will all be hearts?

 2. If five cards off the top of the deck are all hearts, how likely is it
that the deck was shuffled?

In case of a coin toss, the first question could be answered if we know the coin is fair,
there's a 50% chance that any individual coin flip will come up heads, in probability
notation, P heads() = 0 5. . So, our probability P(heads 10 times in a row)

=.0009765625 (since all the 10 coin tosses are independent of each other, we can simply
compute (0.5)10 to arrive at this value). The probability value .0009765625 quantifies the
chances of a fair coin coming up heads 10 times in a row.

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

7

On the other side, such a small probability would mean the occurrence of the event
(heads 10 times in a row) is very rare, which helps to infer that my friend is playing
some trick on me when she got all heads. Think about this—does tossing a coin 10 times
give you strong evidence for doubting your friend? Maybe no; you may ask her to repeat
the process several times. More the data we generate, the better will be the inference. The
second set of question has the same thought process but is applied to a different problem.

So, fundamentally, probability could be used as a tool in statistics to help us answer
many such real-world questions using a model. We will explore some basics of both these
worlds, and it will become evident that both converge at a point where it’s hard to observe
many differences between the two.

1.2.1 Counting and Probability Definition
If we perform a random experiment like tossing three coins, there could be number of
possible outcomes. Figure 1-3 shows a basic illustration of this experiment, with three
coins, a total of eight possible outcomes (HHH, HHT, HTH, HTT, THH, THT, TTH, and
TTT) are present. This set is called the sample space.

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

8

Though it’s easy to count, the total number of possible outcomes in such a simple
example with three coins, but as the size and complexity of problem increases, manually
counting is not an option. A more formal approach is to use combinations and
permutations. If the order is of significance, we call it a permutation; otherwise, generally
the term combination is used. For instance, if we say, it doesn't matter which coin gets
heads or tails out of the three coins, we are only interested in number of heads, which is
like saying there is no significance for the order, then our total number of possible
combination will be {HHH, HHT, HTT, TTT}. This means HHT and HTH are both same,

Figure 1-3. Sample space of three-coin tossing experiment

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

9

Once the sample space is known, it’s easy to define any events for which we would
like to calculate probability. Suppose, we are interested in the event, E = tossing two heads:

P Twoheads
number of outcomes favourable toE

total number of outc
() =

oomes
= =
4

8
0 5.

This way of calculating the probability using the counts or frequency of occurrence
is also know as the frequentist probability. There is another class called the Bayesian
probability or conditional probability, which we will explore later in the chapter.

1.2.2 Events and Relationships
In the previous section, we saw an example of an event. Let’s go a step further and set a
formal notion around various events and its relationship with each other.

1.2.2.1 Independent Events
A and B are independent if occurrence of A gives no additional information about
whether B occurred. Imagine that Facebook enhances their Nearby Friends feature,
and tells you the probability of your friend visiting the same cineplex for a movie in
the weekends where you frequent. In the absence of such a feature in Facebook, the
information that you are a very frequent visitor to this cineplex doesn't really increase or
decrease the probability of you meeting your friend at the cineplex. This is because the
events, A, you visiting the cineplex for a movie and B, your friend visiting the cineplex for
a movie, are independent.

On the other hand, if such a feature exists, we can't deny you would try your best to
increase or decrease your probability of meeting your friend depending upon if he or she
is close to you or not. And this is only possible because the two events are now linked by a
feature in Facebook.

since there are two heads on these outcomes. A more formal way to obtain the number of
possible outcome is shown in Table 1-1. It’s easy to see for the value n = 2 (heads and

tails) and k = 3 (three coins), we get eight possible permutations and four combinations.

Table 1-1. Permutation and Combinations

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

10

In the commonly used set theory notations, A and B (both have a non-zero
probability) are independent iff (read as if and only if) one of the following equivalent
statements holds:

 1. Probability of event A and B occurring at the same time is equal
to the product of probability of event A and probability of event B

P A B P A P BÇ() = () ()

where, Ç represent intersection of the two events and probability of A given B.

 2. Probability of event A given B has already occurred, is equal to
probability of A

P A B P A|() = ()

 3. Similarly, probability of event B given A has already occurred,
is equal to probability of B

P B A P B|() = ()

For the event A = Tossing two heads, and event B = Tossing head on first coin, so,

P A BÇ() = =3 8 0 375/ . whereas P A P B() () = * =4 8 4 8 0 25/ / . which is not equal to

P A BÇ() . Similarly, the other two conditions can also be validated.

1.2.2.2 Conditional Independence
In the Facebook Nearby Friends example, we were able to ascertain that the probability of
you and your friend both visiting the cineplex at the same time has to do something with
your location and intentions. Though intentions are very hard to quantify, it’s not the case
with location. So, if we define the event C to be, being in a location near to cineplex, then
it's not difficult to calculate the probability. But even when you both are nearby, it’s not
necessary that you and your friend would visit the cineplex. More formally, this is where
we define conditionally, A and B are independent given C if P A B C P A C P B CÇ() = () ()| | | .

Note here that independence does not imply conditional independence, and
conditional independence does not imply independence. It’s in a way saying, A and B
together are independent of another event, C.

1.2.2.3 Bayes Theorem
On the contrary, if A and B are not independent but rather information about A reveals
some detail about B or vice versa, we would be be interested in calculating P A B|() , read

as probability of A given B. This has a profound application in modelling many real-world

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

11

Table 1-2. Facebook Nearby Example—Two-Way Contingency Table

problems. The widely used form of such conditional probability is called Bayes Theorem
(or Bayes Rule). Formally, for events A and B, the Bayes Theorem is represented as:

P A B
P B A P A

P B
|

|() = () ()
()

where, P B() ¹ 0, P(A) is then called a prior probability and P A B|() is called posterior

probability, which is the measure we get after an additional information B is known. Let's
look at the Table 1-2, a two-way contingency table for our Facebook Nearby example to
explain this better.

So, if we would like to know P Visiting Cineplex Nearby| ,() in other words, the

probability of your friend visiting the cineplex given he or she is nearby (within one mile)
the cineplex. A word of caution, we are saying the probability of your friend visiting the
cineplex not the probability of you meeting the friend. The latter would be little more
complex to model, which we would skip here to keep our focus intact on Bayes Theorem.
Now, assuming we know the historical data (let’s say, the previous month) about your
friend as shown in the Table 1-2, we know:

P Visit Cineplex Nearby| .() = æ
è
ç

ö
ø
÷ =

10

12
0 83

This means, in the previous month, your friend was ten times within one mile (nearby)
of the cineplex and visited it. Also, there have been two instances when he was nearby but
didn’t visit the cineplex. Alternatively, we could have calculated the probability as:

P Visit Cineplex Nearby
P Nearby Visit Cineplex P Visit Cine

|
|() = ()* pplex

P Nearby

()
()

=

æ
è
ç

ö
ø
÷*

æ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷

= æ
è
ç

ö
ø

10
12

12
25

12
25

10

12 ÷÷
= 0 83.

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

12

This example is based on the two-way contingency table and provides a good
intuition around conditional probability. We will deep dive into the machine learning
algorithm called Naive Bayes as applied to a real-world problem, which is based on Bayes
Theorem, later in Chapter 6.

1.2.3 Randomness, Probability, and Distributions
David S. Moore et. al.’s book, Introduction to the Practice of Statistics [9], is an easy-to-
comprehend book with simple mathematics, but conceptually rich ideas from statistics.
It very aptly points out, “Random” in statistics is not a synonym for “haphazard” but a
description of a kind of order that emerges in the long run.” They further explain, we often
deal with unpredictable events in our life on daily basis that we generally term as random,
like the example of Facebook's Nearby Friends, but we rarely see enough repetition of
the same random phenomenon to observe the long-term regularity that probability
describes.

In this excerpt from the book, they capture the essence of randomness, probability,
and distributions very concisely.

We call a phenomenon random if individual outcomes are uncertain but
there is nonetheless a regular distribution of outcomes in a large number of
repetitions. The probability of any outcome of a random phenomenon is the
proportion of times the outcome would occur in a very long series of repetitions.

This leads us to define a random variable that stores such random phenomenon
numerically. In any experiment involving random events, a random variable, say X, based
on the outcomes of the events will be assigned a numerical value. And the probability
distribution of X helps in finding the probability for a value being assigned to X.

For example, if we define, X = {number of head in three coin tosses}, then X can take
values 0, 1, 2, and 3. Here we call X a discrete random variable. However, if we define X =
{all values between 0 and 2}, there can be infinitely many possible values, so X is called a
continuous random variable.

par(mfrow=c(1,2))

X_Values <-c(0,1,2,3)
X_Props <-c(1/8,3/8,3/8,1/8)
barplot(X_Props, names.arg=X_Values, ylim=c(0,1), xlab =" Discrete RV X
Values", ylab ="Probabilities")

x <-seq(0,2,length=1000)
y <-dnorm(x,mean=1, sd=0.5)
plot(x,y, type="l", lwd=1, ylim=c(0,1),xlab ="Continuous RV X Values", ylab
="Probabilities")

The above code will plot the distribution of X, a typical probability distribution
function will look like in Figure 1-4. The second plot showing continuous distribution
is a normal distribution with mean = 1 and standard deviation = 0.5. It’s also called the

http://dx.doi.org/10.1007/978-1-4842-2334-5_6

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

13

1.2.4 Confidence Interval and Hypothesis Testing
Suppose you were running a socioeconomic survey for your state among a chosen
sample from the entire population (assuming it’s chosen totally at random). As the data
starts to pour in, you feel excited and at the same time, a little confused on how you
should analyze the data. There could be many insights that can come from data and it’s
possible that every insight may not be completely valid, as the survey is only based on a
small randomly chosen sample.

Law of Large Numbers (more detailed discussion on this topic in Chapter 3) in
statistics tells us that the sample mean must approach population mean as the sample
size increases. In other words, we are saying it’s not required that you survey each and
every individual in your state but rather choose a sample large enough to be a close
representative of the entire population. Even though measuring uncertainty gives us
power to make better decisions, in order to make our insights statistically significant, we
need to create a hypothesis and perform certain tests.

Figure 1-4. Probability distribution with discrete and continuous random variable

probability density function. Don't worry if you are not familiar with these statistical
terms; we will explore on these in much detail later in the book. For now, it is enough to
understand the random variable and what we mean by its distribution.

http://dx.doi.org/10.1007/978-1-4842-2334-5_3

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

14

1.2.4.1 Confidence Interval
Let’s start by understanding the confidence interval. Suppose that a 10-yearly census
survey questionnaire contains information on income levels. And say, in the year
2005, we find that for the sample size of 1000, repeatedly chosen from the population,
the sample mean x follows the normal distribution with population mean μ and

standard error s / n . If we know the standard deviation, σ, to be $1500, then

s x = =
1500

1000
47 4. .

Now, in order to define confidence interval, which generally takes a form like

estimate ± margin of error

A 95% confidence interval (CI) is twice the standard error (also called margin of
error) plus or minus the mean. In our example, suppose the x = 990 dollars and standard

deviation as computed is $47.4, then we would have a confidence interval (895.2,1084.8)
i.e. 990 2 47 4± * . . If we repeatedly choose many samples, each would have a different

confidence interval but statistics tells us 95% of the time, CI will contain the true
population mean μ. There are other stringent CIs like 99.7% but 95% is a golden standard
for all practical purposes. Figure 1-5 shows 25 samples and the CIs. The normal
distribution of the population helps to visualize the number of CIs where the estimate μ
wasn't contained in the CI; in this figure, there is only one such CI.

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

15

1.2.4.2 Hypothesis Testing
Hypothesis testing is sometimes also known as a test of significance. Although CI is a strong
representative of the population estimate, we need a more robust and formal procedure for
testing and comparing an assumption about population parameters of the observed data.
The application of hypothesis is wide spread, starting from assessing what’s the reliability
of a sample used in a survey for an opinion poll to finding out the efficacy of a new drug
over an existing drug for curing a disease. In general, hypothesis tests are tools for checking
the validity of a statement around certain statistics relating to an experiment design. If you
recall, the high-level architecture of IBM's DeepQA has an important step called hypothesis
generation in coming out with the most relevant answer for a given question.

The hypothesis testing consists of two statements that are framed on the population
parameter, one of which we want to reject. As we saw while discussing CI, the sampling
distribution of the sample mean x follows a normal distribution N nm s, /() . One of

Figure 1-5. Confidence interval

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

16

most important concepts is the Central Limit Theorem (a more detailed discussion on this
topic is in Chapter 3), which tells us that for large samples, the sampling distribution is
approximately normal. Since normal distribution is one of the most explored
distributions with all of its properties well known, this approximation is vital for every
hypothesis test we would like to perform.

Before we perform the hypothesis test, we need to construct a confidence level of
90%, 95%, or 99%, depending on the design of the study or experiment. For doing this, we
need a number z *, also referred to as the critical value, so that normal distribution has a
defined probability of 0.90, 0.95, or 0.99 within +-z* standard deviation of its mean. Table
1.x below shows the value of z* for different confidence interval. Note that in our example
in the section 1.2.4.1, we approximated z* = 1.960 for 95% confidence interval to 2.

Figure 1-6. The z* score and confidence level

In general, we could choose any value of z* to pick the appropriate confidence level.
With this explanation, let’s take our income example from the census data for the year
2015. We need to find out how the income has changed over the last 10 years, i.e., from
2005 to 2015. In the year 2015, we find the estimate of our mean value for income as
$2300. The question to ask here would be, since both the values $900 (in the year 2005)
and $2300 are estimates of the true population mean (in other words, we have taken a
representative sample but not the entire population to calculate this mean) but not the
actual mean, do these observed means from sample provide the evidence to conclude the
income has increased? We might be interested in calculating some probability to answer
this question. Let’s see how we can formulate this in a hypothesis testing framework. A
hypothesis test starts with designing two statements like so:

H There is nodifference in themean incomeor truemean incomeo :

H The truemean incomesare not the samea :

Abstracting the details at this point, the consequence of the two statements would
simply lead toward accepting H

o
 or rejecting it. In general, the null hypothesis is always

a statement of “no difference” and the alternative statement challenges this null. A more
numerically concise way of writing these two statements would be:

H SampleMean xo : = 0

H SampleMean xa : ¹ 0

In case we reject H
o
, we have two choices to make, whether we want to test x > 0 ,

x < 0 or simply x ¹ 0 , without bothering much about direction, which is called two-side

test. If you are clear about the direction, a one-side test is preferred.

http://dx.doi.org/10.1007/978-1-4842-2334-5_3

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

17

Now, in order to perform the significance test, we would understand the
standardized test statistics z, which is defined as follows:

z
estimate hypothesized value

standarddeviation of the estimate
=

-

Alternatively:

z
x

n
o=

-m
s /

Substituting the value 1400 for the estimate of the difference of income between the
year 2005 and 2015, and 1500 for standard deviation of the estimate (this SD is computed
with the mean of all the samples drawn from the population), we obtain

z =
-

=
1400 0

1500
0 93.

The difference in income between 2005 and 2015 based on our sample is $1400,
which corresponds to 0.93 standard deviations away from zero (z = 0.93). Because we
are using a two-sided test for this problem, the evidence against null hypothesis, H

o
, is

measured by the probability that we observe a value of Z as extreme or more extreme
than 0.93. More formally, this probability is

P Z or Z£ - ³()0 93 0 93. .

where Z has the standard normal distribution N(0, 1). This probability is called p-value.
We will use this value quite often in regression models.

From standard z-score table, the standard normal probabilities, we find:

P Z ³() = - =0 93 1 0 8238 0 1762. . .

Also, the probability for being extreme in the negative direction is the same:

P Z £ -() =0 93 0 1762. .

Then, the p-value becomes:

P P Z= ³() = () =2 0 93 2 0 1762 0 3524. * . .

Since the probability is large enough, we have no other choice but to stick with our null
hypothesis. In other words, we don't have enough evidence to reject the null hypothesis.
It could also be stated as, there is 35% chance of observing a difference as extreme as the
$1400 in our sample if the true population difference is zero. A note here, though; there
could be numerous other ways to state our result, all of it means the same thing.

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

18

Finally, in many practical situations, it’s not enough to say that the probability is
large or small, but instead it’s compared to a significance or confidence level. So, if we are
given a 95% confidence interval (in other words, the interval that includes the true value
of μ with 0.95 probability), values of μ that are not included in this interval would be
incompatible with the data. Now, using this threshold a = ()0 05 95. %confidence , we

observe the P-value is greater than 0.05 (or 5%), which mean, we still do not have enough
evidence to reject H

o
. Hence, we conclude that there is no difference in the mean income

between the year 2005 and 2015.
There are many other ways to perform hypothesis testing, which we leave for the

interested readers to refer to detailed text on the subject. Our major focus in the coming
chapters is to do hypothesis testing using R for various applications in sampling and
regression.

We introduce the field of probability and statistics, both of which form the
foundation of data exploration and our broader goal of understanding the predictive
modeling using machine learning.

1.3 Getting Started with R
R is GNU S, a freely available language and environment for statistical computing and
graphics that provides a wide variety of statistical and graphical techniques: linear and
nonlinear modeling, statistical tests, time series analysis, classification, clustering, and lot
more than what you could imagine.

Although covering the complete topics of R is beyond the scope of this book, we will
keep our focus intact by looking at the end goal of this book. The getting started material
here is just to provide the familiarity to readers who don't have any previous exposure
to programming or scripting languages. We strongly advise that the readers follow R's
official web site for instructions on installing and some standard textbook for more
technical discussion on topics.

1.3.1 Basic Building Blocks
This section provides a quick overview of the building blocks of R, which uniquely
makes R the most sought out programming language among statisticians, analysts, and
scientists. R is an easy-to-learn and an excellent tool for developing prototype models
very quickly.

1.3.1.1 Calculations
As you would expect, R provides all arithmetic operations you would find in a scientific
calculator and much more. All kind of comparisons like >, >=, <, and <=, and functions
such as acos, asin, atan, ceiling, floor, min, max, cumsum, mean, and median are readily
available for all possible computations.

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

19

1.3.1.2 Statistics with R
R is one such language that’s very friendly to academicians and people with less
programming background. The ease of computing statistical properties of data has
also given it a widespread popularity among data analyst and statisticians. Functions
are provided for computing quantile, rank, sorting data, and matrix manipulation like
crossprod, eigen, and svd. There are also some really easy-to-use functions for building
linear models quite quickly. A detailed discussion on such models will follow in later
chapters.

1.3.1.3 Packages
The strength of R lies with its community of contributors from various domains. The
developers bind everything in one single piece called a package, in R. A simple package
can contain few functions for implementing an algorithm or it can be as big as the base
package itself, which comes with the R installers. We will use many packages throughout
the book as we cover new topics.

1.3.2 Data Structures in R
Fundamentally, there are only five types of data structures in R, and they are most often
used. Almost all other data structures are built upon these five. Hadley Wickham, in his
book Advanced R [10], provided an easy-to-comprehend segregation of these five data
structures, as shown in Table 1-3.

Table 1-3. Data Structures in R

Some other data structures derived from these five and most commonly used are
listed here:

•	 Factors: This one is derived from a vector

•	 Data tables: This one is derived from a data frame

The homogeneous type allows for only a single data type to be stored in vector,
matrix, or array, whereas the Heterogeneous type allows for mixed types as well.

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

20

1.3.2.1 Vectors
Vectors are the simplest form of data structure in R and yet very useful. Each vector stores
all elements of same type. This could be thought as a one-dimensional array, similar to
those found in programming languages like C/C++

car_name <-c("Honda","BMW","Ferrari")
car_color =c("Black","Blue","Red")
car_cc =c(2000,3400,4000)

1.3.2.2 List
Lists internally in R are collection of generic vectors. For instance, a list of automobiles
with name, color, and cc could be defined as a list named cars, with a collection of
vectors named name, color, and cc inside it.

cars <-list(name =c("Honda","BMW","Ferrari"),
color =c("Black","Blue","Red"),
cc =c(2000,3400,4000))
cars
 $name
 [1] "Honda" "BMW" "Ferrari"

 $color
 [1] "Black" "Blue" "Red"

 $cc
 [1] 2000 3400 4000

1.3.2.3 Matrix
Matrixes are the data structures that store multi-dimensional arrays with many rows and
columns. For all practical purposes, its data structure helps store data in a format where
every row represents a certain collection of columns. The columns hold the information
that defines the observation (row).

mdat <-matrix(c(1,2,3, 11,12,13), nrow =2, ncol =3, byrow =TRUE,
dimnames =list(c("row1", "row2"),
c("C.1", "C.2", "C.3")))
mdat
 C.1 C.2 C.3
 row1 1 2 3
 row2 11 12 13

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

21

1.3.2.4 Data Frame
Data frames extend matrixes with the added capability of holding heterogeneous types of
data. In a data frame, you can store character, numeric, and factor variables in different
columns of the same data frame. In almost every data analysis task, with rows and
columns of data, data frame comes as a natural choice for storing the data. The following
example shows how numeric and factor columns are stored within the same data frame.

L3 <-LETTERS[1:3]
fac <-sample(L3, 10, replace =TRUE)
df <-data.frame(x =1, y =1:10, fac = fac)

class(df$x)
 [1] "numeric"
class(df$y)
 [1] "integer"
class(df$fac)
 [1] "factor"

1.3.3 Subsetting
R has one of the most advanced, powerful, and fast subsetting operators compared to
any other programming language. It’s powerful to an extent that, except for few cases
which we will discuss in the next section, there is no looping construct like for or while
required, even though R explicitly provides one if needed. Though its very powerful,
syntactically it could sometime turn out to be an nightmare or gross error could pop up
if careful attention is not paid in placing the required number of parentheses, brackets,
and commas. The operators [, [[, and $ are used for subsetting, depending on which data
structure is holding the data. It’s also possible to combine subsetting with assignment to
perform some really complicated function with very few lines of code.

1.3.3.1 Vectors
For vectors, the subsetting could be done by referring to the respective index of the
elements stored in a vector. For example, car_name[c(1,2)] will return elements stored
in index 1 and 2, and car_name[-2] returns all the elements except for second. It’s also
possible to use binary operators to instruct the vector to retrieve or not retrieve an element.

car_name <-c("Honda","BMW","Ferrari")

#Select 1st and 2nd index from the vector
car_name[c(1,2)]
 [1] "Honda" "BMW"
#Select all except 2nd index
car_name[-2]
 [1] "Honda" "Ferrari"

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

22

#Select 2nd index
car_name[c(FALSE,TRUE,FALSE)]
 [1] "BMW"

1.3.3.2 Lists
Subsetting in lists is similar to subsetting in a vector; however, since a list is a collection
of many vectors, you must use double square brackets to retrieve a element from the list.
For example, cars[2] retrieves the entire second vector of the list and cars[[c(2,1)]]
retrieves the first element of the second vector.

cars <-list(name =c("Honda","BMW","Ferrari"),
color =c("Black","Blue","Red"),
cc =c(2000,3400,4000))

#Select the second list with cars
cars[2]
 $color
 [1] "Black" "Blue" "Red"
#select the first element of second list in cars
cars[[c(2,1)]]
 [1] "Black"

1.3.3.3 Matrixes
Matrixes have a similar subsetting as vectors. However, instead of specifying one index to
retrieve the data, we need two index here—one that signifies the row and the other for the
column. For example, mdat[1:2,] retrieves all the columns of the first two rows, whereas
mdat[1:2,”C.1”] retrieves the first two rows and the C.1 column.

mdat <-matrix(c(1,2,3, 11,12,13), nrow =2, ncol =3, byrow =TRUE,
dimnames =list(c("row1", "row2"),
c("C.1", "C.2", "C.3")))

#Select first two rows and all columns
mdat[1:2,]
 C.1 C.2 C.3
 row1 1 2 3
 row2 11 12 13
#Select first columns and all rows
mdat[,1:2]
 C.1 C.2
 row1 1 2
 row2 11 12

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

23

#Select first two rows and first column
mdat[1:2,"C.1"]
 row1 row2
 1 11
#Select first row and first two columns
mdat[1,1:2]
 C.1 C.2
 1 2

1.3.3.4 Data Frames
Data frames work similarly to matrixes, but they have far more advanced subsetting
operations. For example, it’s possible to provide conditional statements like df$fac ==
“A”, which will retrieve only rows where the column fac has a value A. The operator $ is
used to refer to a column.

L3 <-LETTERS[1:3]
fac <-sample(L3, 10, replace =TRUE)
df <-data.frame(x =1, y =1:10, fac = fac)

#Select all the rows where fac column has a value "A"
df[df$fac=="A",]
 x y fac
 2 1 2 A
 5 1 5 A
 6 1 6 A
 7 1 7 A
 8 1 8 A
 10 1 10 A
#Select first two rows and all columns
df[c(1,2),]
 x y fac
 1 1 1 B
 2 1 2 A
#Select first column as a vector
df$x
 [1] 1 1 1 1 1 1 1 1 1 1

1.3.4 Functions and Apply Family
As the standard definition goes, functions are the fundamental building blocks of any
programming language and R is no different. Every single library in R has a rich set of
functions used to achieve a particular task without writing same piece of code repeatedly.
Rather, all that is required is a function call. The following simple example is a function
that returns the nth root of a number with two arguments, num and nroot, and contains a
function body for calculating the nth root of a real positive number.

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

24

nthroot <-function(num, nroot) {
return (num ^(1/nroot))
 }
nthroot(8,3)
 [1] 2

This example is a user-defined function, but there are so many such functions across
the vast collection of packages contributed by R community worldwide. We will next
discuss a very useful function family from the base package of R, which has found its
application in numerous scenarios.

The following description and examples are borrowed from The New S Language by
Becker, R. A. et al. [11]

•	 lapply returns a list of the same length as of input X, each
element of which is the result of applying a function to the
corresponding element of X.

•	 sapply is a user-friendly version and wrapper of lapply by
default returning a vector, matrix or, if you use simplify = "array",
an array if appropriate. Applying simplify2array(). sapply(x,
f, simplify = FALSE, USE.NAMES = FALSE) is the same as
lapply(x, f).

•	 vapply is similar to sapply, but has a prespecified type of return
value, so it can be safer (and sometimes faster) to use.

•	 tapply applies a function to each cell of a ragged array, that is to
each (non-empty) group of values given by a unique combination
of the levels of certain factors.

#Generate some data into a variable x

x <-list(a =1:10, beta =exp(-3:3), logic =c(TRUE,FALSE,FALSE,TRUE))

#Compute the list mean for each list element using lapply
lapply(x, mean)
 $a
 [1] 5.5

 $beta
 [1] 4.535125

 $logic
 [1] 0.5

#Compute the quantile(0%, 25%, 50%, 75% and 100%) for the three elements of x
sapply(x, quantile)
 a beta logic
 0% 1.00 0.04978707 0.0
 25% 3.25 0.25160736 0.0

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

25

 50% 5.50 1.00000000 0.5
 75% 7.75 5.05366896 1.0
 100% 10.00 20.08553692 1.0

#Generate some list of elements using sapply on sequence of integers
i39 <-sapply(3:9, seq) # list of vectors

#Compute the five number summary statistic using sapply and vapply with the
function fivenum

sapply(i39, fivenum)
 [,1] [,2] [,3] [,4] [,5] [,6] [,7]
 [1,] 1.0 1.0 1 1.0 1.0 1.0 1
 [2,] 1.5 1.5 2 2.0 2.5 2.5 3
 [3,] 2.0 2.5 3 3.5 4.0 4.5 5
 [4,] 2.5 3.5 4 5.0 5.5 6.5 7
 [5,] 3.0 4.0 5 6.0 7.0 8.0 9
vapply(i39, fivenum,c(Min. =0, "1st Qu." =0, Median =0, "3rd Qu." =0, Max. =0))
 [,1] [,2] [,3] [,4] [,5] [,6] [,7]
 Min. 1.0 1.0 1 1.0 1.0 1.0 1
 1st Qu. 1.5 1.5 2 2.0 2.5 2.5 3
 Median 2.0 2.5 3 3.5 4.0 4.5 5
 3rd Qu. 2.5 3.5 4 5.0 5.5 6.5 7
 Max. 3.0 4.0 5 6.0 7.0 8.0 9
#Generate some 5 random number from binomial distribution with repetitions
allowed
groups <-as.factor(rbinom(32, n =5, prob =0.4))

#Calculate the number of times each number repeats
tapply(groups, groups, length) #- is almost the same as
 7 11 12 13
 1 1 1 2
#The output is similar to the function table
table(groups)
 groups
 7 11 12 13
 1 1 1 2

As you can see, every operation in the list involves a certain logic which needs a
loop (for or while loop) like traversal on the data. However, by using the apply family of
functions, we can reduce writing programming codes to a minimum and instead call a
single-line function with the appropriate arguments. It’s functions like these that make R
the most preferred programming language for even less experienced programmers.

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

26

1.4 Machine Learning Process Flow
In the real world, every use case has a different modeling need, so it’s hard to present a
very generic process flow that explains how you should build machine learning model
or data product. However, it’s possible to suggest best practice guidelines around the
key milestones for any modeling projects in industry. Figure 1-7 depicts one such best
practice guideline we have built after many years of research and suits the contemporary
world of data science, where ideas are translated into data products. Throughout this
book, we will refer to this machine learning process flow, as the topics in this book are
coherently arranged based on this process flow.

Figure 1-7. Machine leaning process flow

The process flow has four main phases, which we will from here on refer to as PEBE,
Plan, Explore, Build and Evaluate, as shown in the Figure 1-7. Let’s get into the details of
each of these.

1.4.1 Plan
This phase forms the key component of the entire process flow. A lot of energy and
effort needs to be spent on understanding the requirements, identifying every data
source available at our disposal and framing an approach for solving the problems being
identified from the requirements. While gathering data is at core of the entire process
flow, considerable effort has to be spent in cleaning the data for maintaining the integrity
and veracity of the final outputs of the analysis and model building. We will discuss many
approaches for gathering various types of data and cleaning them up in Chapter 2.

1.4.2 Explore
Exploration sets the ground for analytic projects to take flight. A detailed analysis of
possibilities, insights, scope, hidden patterns, challenges, and errors in the data are first
discovered at this phase. A lot of statistical and visualization tools are employed to carry
out this phase. In order to allow for greater flexibility for modification if required in later
parts of the project, this phase is divided into two parts. The first is a quick initial analysis

http://dx.doi.org/10.1007/978-1-4842-2334-5_2

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

27

that’s carried out to assess the data structure, including checking naming conventions,
identifying duplicates, merging data, and further cleaning the data if required. Initial data
analysis will help identify any additional data requirement, which is why you see a small
leap of feedback loop built in to the process flow.

In the second part, a more rigorous analysis is done by creating hypotheses,
sampling data using various techniques, checking the statistical properties of the sample,
and performing statistical tests to reject or accept the hypotheses. Chapters 2, 3, and 4
discuss these topics in detail.

1.4.3 Build
Most of the analytic projects either die out in the first or second phase; however, the one
that reaches this phase, has a great potential to be converted into a data product. This
phase requires a careful study of whether a machine learning kind of model is required
or a simple descriptive analysis done in the first two phases is more than sufficient. In the
industry, unless you don't show a ROI on effort, time, and money required in building a
ML model, the approval from the management is hard to come by. And since, many ML
algorithms are kind of a blackbox where at times, the output is difficult to interpret, the
business rejects them outright in the very beginning.

So, if you pass all these criteria and still decide to build the ML model, then comes
time to understand the technicalities of each algorithm and how it works on a particular
set of data, which we will take up in Chapter 6. Once the model is build, it’s always good
to ask if the model satisfies your findings in the initial data analysis. If not, then it’s
advisable to take a small leap of feedback loop.

One reason you see Build Data Product in the process flow before the evaluation
phase is to have a minimal viable output directed toward building a data product (not a
full fledged product, but it could even be a small Excel sheet presenting all the analysis
done until this point). We are essentially not suggesting that you always build a ML
model, but it could even be a descriptive model that articulates the way you approached
the problem and present the analysis. This approach helps with the evaluation phase,
whether the model is good enough to be considered for building a more futuristic
predictive model (or a data product) using ML or whether there still is a scope for
refinement or whether this should be dropped completely.

1.4.4 Evaluate
This phase determines either the rise of another revolutionary disruption in the
traditional scheme of things or the disappointment of starting from scratch once again.
The big leap of feedback loop is sometimes unavoidable in many real-world projects
because of the complexity it carries or the inability of data to answer certain questions. If
you have diligently followed all the steps in the process flow, it’s likely that you may just
want to further spend some effort in tuning the model rather than taking the big leap to
start all from the scratch.

It’s highly unlikely that you can build a powerful ML model in just one iteration. We
will explore in detail all the criteria for evaluating the model’s goodness in Chapter 7 and
further fine-tune the model in Chapter 8.

http://dx.doi.org/10.1007/978-1-4842-2334-5_2
http://dx.doi.org/10.1007/978-1-4842-2334-5_3
http://dx.doi.org/10.1007/978-1-4842-2334-5_4
http://dx.doi.org/10.1007/978-1-4842-2334-5_6
http://dx.doi.org/10.1007/978-1-4842-2334-5_7
http://dx.doi.org/10.1007/978-1-4842-2334-5_8

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

28

1.5 Other Technologies
While we place a lot of emphasis on the key role played by programming languages
and technologies like R in simplifying many ML process flow tasks which otherwise
are complex and time consuming, it would not be wise to ignore the other competing
technologies in the same space. Python is another preferred programming language that
has found quite a good traction in the industry for building production-ready ML process
flows. There is an increased demand for algorithms and technologies with capabilities
of scaling ML models or analytical tasks to a much larger dataset and executing them at
real-time speed. The later part needs a much more detailed discussion on big data and
related technologies, which is beyond the scope of this book.

Chapter 9, in a nutshell, will talk about such scalable approaches and other
technologies that can helps you build the same ML process flows with robustness and
using industry standards. However, do remember that every approach/technology has
its own pros and cons, so wisely deciding the right choice before the start of any analytic
project is vital for the successful completion.

1.6 Summary
In this chapter, you learned about the evolution of machine learning from statistics to
contemporary data science. We also looked at the fundamental subjects like probability
and statistics, which form the foundations of ML. You had an introduction to the R
programming language, with some basic demonstrations in R. We concluded the chapter
with the machine learning process flow the PEBE framework.

In the coming chapters, we will go into the details of data exploration for a better
understanding and take a deep dive into some real-world datasets.

1.7 References
 [1] Discovery with Data: Leveraging Statistics with Computer

Science to Transform Science and Society by American
Statistical Association (ASA).

 [2] Tom Mitchell, The Discipline of Machine Learning.

 [3] Leo Breiman, Statistical Modeling: The Two Cultures, 2001.

 [4] John McCarthy, What Is Artificial Intelligence.

 [5] WEKA Experiences with a Java open-source project.

 [6] Data Mining: Practical Machine Learning Tools and
Techniques with Java. Eibe Frank and Mark A. Hall.

http://dx.doi.org/10.1007/978-1-4842-2334-5_9

Chapter 1 ■ IntroduCtIon to MaChIne LearnIng and r

29

 [7] Data Science for Business. Foster Provost and Tom Fawcett.

 [8] Learning Statistics with R: A Tutorial for Psychology Students
and Other Beginners. Daniel Navarro.

 [9] Introduction to the Practice of Statistics. David S. Moore et. al.

 [10] Hadley Wickham, Advanced R.

 [11] Becker, R. A. et al., The New S Language.

31© Karthik Ramasubramanian and Abhishek Singh 2017
K. Ramasubramanian and A. Singh, Machine Learning Using R,
DOI 10.1007/978-1-4842-2334-5_2

CHAPTER 2

Data Preparation and
Exploration

As we emphasized in our introductory chapter on applying machine learning (ML)
algorithms with a simplified process flow, in this chapter, we go deeper into the first block
of machine learning process flow—data exploration and preparation.

The subject of data exploration was very formally introduced by John W. Tukey
almost four decades ago with his book on Exploratory Data Analysis (EDA). The methods
discussed in the book were profound and there aren’t many software programs that
include all of it. Tukey put forth certain very effective ways for exploring data that
could prove very vital in understanding the data before building the machine learning
models. There are a wide variety of books, articles, and software codes that explain data
exploration, but we will focus our attention on techniques that help us look at the data
with more granularity and bring useful insights to aid us in model building. Tukey defined
data analysis in 1961 as:

Procedures for analyzing data, techniques for interpreting the results
of such procedures, ways of planning the gathering of data to make its
analysis easier, more precise or more accurate, and all the machinery and
results of (mathematical) statistics which apply to analyzing data.[1]

We will decode this entire definition in detail throughout this chapter but essentially,
data exploration at large involves looking at the statistical properties of data and wherever
possible, drawing some very appealing visualizations to reveal certain not so obvious
patterns. In a broad sense, calculating statistical properties of data and visualization go
hand-in-hand, but we have tried to give separate attention in order to bring out the best
of both. Moreover, this chapter will go beyond data exploration and cover the various
techniques available for preparing the data more suitable for the analysis and modeling,
which includes imputation of missing data, removing outliers, and adding derived
variables. This data preparation procedure is normally called initial data analysis (IDA).

This chapter also explores the process of data wrangling to prepare and transform
the data. Once the data is structured, we could think about various descriptive statistics
which explain the data more insightfully. In order to build the basic vocabulary for
understanding the language of data, we discuss first the basic types of variables,

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Data preparation anD exploration

32

data formats, and the degree of cleanliness. And then, the entire data wrangling process
will be explained followed by descriptive statistics. The chapter ends with demonstrations
using R. The examples help in seeing the theories taking a practical shape with real-world
examples.

Broadly speaking, the chapter will focus on IDA and EDA. Even though we have a
chapter dedicated to data visualization, which plays a pivotal role in understanding the
data, EDA will give visualization its due emphasis in this chapter. We attempt to decode
Tukey's definition of data analysis with a contemporary view.

2.1 Planning the Gathering of Data
The data in the real world can be in numerous types and formats. It could be structured
or unstructured, readable or obfuscated, and small or big; however, having a good plan
for data gathering keeping in mind the end goal, will prove to be beneficial and will save
a lot of time during data analysis and predictive modeling. Such a plan needs to include a
lot of information around variable types, data formats, and source of data. We describe
in this section many fundamentals to understanding the types, formats, and sources of
that data.

A lot of data nowadays is readily available, but a true data-driven industry will always
have a strategic plan for making sure the data is gathered the way they want. Ideas from
Business Analytics (BI) can help in designing data schemas, cubes, and many insightful
reports, but our focus is on laying a very general framework from understanding the
nuances of datatypes to identifying the sources of data.

2.1.1 Variables Types
In general, we have two basic types of variables in any given data, categorical and
continuous. Categorical variables include the qualitative attributes of the data such as
gender or country name. Continuous variables are quantitative, for example, the salary of
employees in a company.

2.1.1.1 Categorical Variables
Categorical variables can be classified into Nominal, Dichotomous, and Ordinal.
We explain each type in a little more detail.

•	 Nominal

These are variables with two or more categories without any
regard for ordering. For example, in polling data from a survey,
the variable state, or candidate names. The number of states
and candidates are definite and it doesn't matter what order we
choose to present our data. In other words, the order of state or
candidate name has no significance in its relative importance in
explaining the data.

Chapter 2 ■ Data preparation anD exploration

33

•	 Dichotomous

A special case of nominal variables with exactly two categories
such as gender, possible outcomes of a single coin toss, a survey
questionnaire with a checkbox for telephone number as mobile or
landline, or the outcome of election win or loss (assuming no tie).

•	 Ordinal

Just like nominal variables, we can have two or more categories in
ordinal variables with an added condition that the categories are
ordered. For example, a customer rating for a movie in Netflix or a
product in Amazon. The variable rating has a relative importance
on a scale of 1 to 5, 1 being the lowest rating and 5 the highest for
a movie or product by a particular customer.

2.1.1.2 Continuous Variables
Continuous variables are subdivided into Interval and Ratio:

•	 Interval

The basic distinction is that they can be measured along a
continuous range and they have a numerical value. For example,
the temperature in degrees Celsius or Fahrenheit is an interval
variable. Note here that the temperature at 0o C is not the absolute
zero, which simply means 0o C has certain degree of temperature
measure than just saying the value means none or no measure.

•	 Ratio

In contrast, ratio variables include distance, mass, and height.
Ratio reflects the fact that you can use the ratio of measurements.
So, for example, a distance of 10 meters is twice the distance of 5
meters. A value 0 for a ratio variable means a none or no measure.

2.1.2 Data Formats
Increasing digital landscapes and diversity in software systems has led to the plethora
of file formats available for encoding the information or data in a computer file. There
are many data formats that are accepted as the gold standard for storing information
and have widespread usage, independent of any software, but yet there are many other
formats in use, generally because of the popularity of a given software package. Moreover,
many data formats specific to scientific applications or devices are also available.

In this section, we discuss the commonly used data formats and show
demonstrations using R for reading, parsing, and transforming the data. The basic
datatypes in R as described in Chapter 1—like vectors, matrices, data frames, list, and
factors—will be used throughout this chapter for all demonstrations.

http://dx.doi.org/10.1007/978-1-4842-2334-5_1

Chapter 2 ■ Data preparation anD exploration

34

2.1.2.1 Comma-Separated Values
CSV or TXT is one of the most widely used data exchange formats for storing tabular
data containing many rows and columns. Depending on the data source, the rows and
columns have a particular meaning associated with them. Typical information looks
like the following example of employee data in a company. In R, the read.csv function
is widely used to read such data. The argumentssep specifies the delimiting character
and header takes TRUE or FALSE, depending on whether the dataset contains the column
names or not.

read.csv("employees.csv", header =TRUE, sep =",")
 Code First.Name Last.Name Salary.US.Dollar.
 1 15421 John Smith 10000
 2 15422 Peter Wolf 20000
 3 15423 Mark Simpson 30000
 4 15424 Peter Buffet 40000
 5 15425 Martin Luther 50000

2.1.2.2 Microsoft Excel
Microsoft Excel file format (.xls or .xlsx) has been undisputedly the most popular data
file format in the business world. The primary purpose being the same as CSV files, but
Excel files offer many rich mathematical computations and elegant data presentation
capabilities. Excel features calculation, graphing tools, pivot tables, and a macro
programming language called Visual Basic for Applications. The programming feature of
Excel has been utilized by many industries to automate their data analysis and manual
calculations. This wide traction of Excel has resulted in many data analysis software
programs that provide an interface to read the Excel data. There are many ways to read an
Excel file in R, but the most convenient and easy way is to use the package xlsx.

library(xlsx)
read.xlsx("employees.xlsx",sheetName ="Sheet1")
 Code First.Name Last.Name Salary.US.Dollar.
 1 15421 John Smith 10000
 2 15422 Peter Wolf 20000
 3 15423 Mark Simpson 30000
 4 15424 Peter Buffet 40000
 5 15425 Martin Luther 50000

2.1.2.3 Extensible Markup Language: XML
Markup languages have a very rich history of evolution by their first usage by William W.
Tunnicliffe in 1967 for presentation at a conference. Later Charles Goldfarb formalized
the IBM Generalized Markup Language between the year 1969 and 1973. Goldfarb is
more commonly regarded as the father of markup languages. Markup languages have
seen many different forms, including TeX, HTML, XML, and XHTML and are constantly

Chapter 2 ■ Data preparation anD exploration

35

being improved to suit numerous applications. The basics for all these markup language
is to provide a system for annotating a document with a specific syntactic structure.
Adhering to a markup language while creating documents ensures that the syntax is not
violated and any human or software reader knows exactly how to parse the data in a given
document. This feature of markup languages has found a wide range of usage, starting
from designing configuration files for setting up software in a machine to employing them
in communications protocols.

Our focus here is the Extensible Markup Language widely known as XML. There
are two basics constructs in any markup language, the first is markup and the second is
the content. Generally, strings that create a markup either start with the symbol < and
end with a >, or they start with the character & and end with a ;. Strings other than these
characters are generally the content. There are three important markup types—tag,
element, and attribute.

•	 Tags

A tag is a markup construct that begins with < and ends with >. It
has three types.

 – Start tags: <employee_id>
 – End tags: </employee_id>
 – Empty tags: </>

•	 Elements

Elements are the components that either begin with a start tag
and end with an end tag, both are matched while parsing, or
contain only an empty element tag. An example of element:

•	 <employee_id>John </employee_id>

•	 <employee_name type=”permanent”/>

•	 Attribute

Within start tag or empty element tag, an attribute is a markup
construct consisting of a name/value pair. In the following
example, the element designation has two attributes, emp_id and
emp_name.

•	 <designation emp_id="15421" emp_name="John">
Assistant Manager </designation>

•	 <designation emp_id="15422" emp_name="Peter">
Manager </designation>

Consider the following example XML file storing the information on athletes in a
marathon.

<marathon>
<athletes>
<name>Mike</name>
<age>25</age>

Chapter 2 ■ Data preparation anD exploration

36

<awards>
Two times world champion. Currently, worlds No. 3
</awards>
<titles>6</titles>
</athletes>
<athletes>
<name>Usain</name>
<age>29</age>
<awards>
Five time world champion. Currently, worlds No. 1
</awards>
<titles>17</titles>
</athletes>
</marathon>

Using the package XML and plyr in R, you can convert this file into a data.frame
as follows:

library(XML)
library(plyr)

xml:data <-xmlToList("marathon.xml")

#Excluding "description" from print
ldply(xml:data, function(x) { data.frame(x[!names(x)=="description"]) })
 .id name age
 1 athletes Mike 25
 2 athletes Usain 29
 awards titles
 1 \n Two times world champion. Currently, worlds No. 3\n 6
 2 \n Five times world champion. Currently, worlds No. 1\n 17

2.1.2.4 Hypertext Markup Language: HTML
Hypertext Markup Language, commonly known as HTML, is used to create web
pages. A HTML page, when combined with Cascading Style Sheets (CSS), can produce
beautiful static web pages. The web page can further be made dynamic and interactive
by embedding a script written in language such as JavaScript. Today's modern web sites
are a combination of HTML, CSS, JavaScript, and many more advanced technologies like
Flash players. Depending on the purpose, a web site could be made rich with all these
elements. Even when the modern web sites are getting more sophisticated, the core
HTML design of web pages still stands against the test of times with newer features and
advanced functionality. Although HTML is now filled with rich style and elegance, the
content still remains very central.

The ever-exploding number of web sites has made it difficult for someone to find
relevant content on a particular subject of interest and that's where companies like
Google saw a need to crawl, scrape, and rank web pages for relevant content. This process

Chapter 2 ■ Data preparation anD exploration

37

generates a lot of data, which Google uses to help users with their search queries. These
kind of process exploits the fact that HTML pages have a distinctive structure for storing
content and reference links to external web pages if any.

There are five key elements in a HTML file that are scanned by the majority of web
crawlers and scrappers:

•	 Headers

A simple header might look like

<head>
<title>Machine Learning with R </title>
</head>

•	 Headings

There are six heading tags, h1 to h6, with decreasing font sizes.
They looks like

<h1>Header </h1>
<h2>Headings </h2>
<h3>Tables </h3>
<h4>Anchors </h4>
<h5>Links </h5>
<h6>Links </h6>

•	 Paragraphs

A paragraph could contain more than few words or sentences in a
single block.

<p>Paragraph 1</p>
<p>Paragraph 2</p>

•	 Tables

A tabular data of rows and columns could be embedded into
HTML tables with following tags

<table>
<tbody>
<thead>
<tr>Define a row </tr>
</thead>
</tbody>
</table>
<table> Tag declares the main table structure.
<tbody> Tag specifies the body of the table.
<thead> Tag defines the table header.
<tr> Tag defines each row of data in the table

Chapter 2 ■ Data preparation anD exploration

38

•	 Anchor

Designers can use anchors to anchor a URL to some text on a web
page. When users view the web page in a browser, they can click
the text to activate the link and visit the page. Here’s an example

__ Welcome to Machine Learning usingR!

With all these elements, a sample HTML file will look like the following snippet.

<!DOCTYPE html>
<html>
<body>
<h1>Machine Learning usingR</h1>
<p>Hope you having fun time reading this book !!</p>
<h1>Chapter 2</h1>
<h2>Data Exploration and Preparation</h2>
Apress Website Link
</body>
</html>

Python is one of most powerful scripting languages for building web scraping tools.
Although R also provides many packages to do the same job, it’s not very robust. Like
Google, you can try to build a web-scrapping tool, which extracts all the links from a
HTML web page like the one shown previously. We will show a very basic example of
reading a local HTML file in R named html_example.html with the previous information.
It’s easy to extend this to any web page.

library(XML)
url <- "html_example.html"
doc <-htmlParse(url)
xpathSApply(doc, "//a/@href")
 href
 "https://www.apress.com/"

2.1.2.5 JSON
JSON is a widely used data interchange format in many application programming
interfaces like Facebook Graph API, Google Maps, and Twitter API.

An example of a JSON file is when you get data from the Facebook API. It might
also be used to contain profile information that can be easily shared across your system
components using the simple JSON format.

{
"data":[
 {
"id": "A1_B1",

Chapter 2 ■ Data preparation anD exploration

39

"from":{
"name": "Jerry", "id": "G1"
 },
"message": "Hey! Hope you like the book so far",
"actions":[
 {
"name": "Comment",
"link": "http://www.facebook.com/A1/posts/B1"
 },
 {
"name": "Like",
"link": "http://www.facebook.com/A1/posts/B1"
 }
],
"type": "status",
"created_time": "2016-08-02T00:24:41+0000",
"updated_time": "2016-08-02T00:24:41+0000"
 },
 {
"id": "A2_B2",
"from":{
"name": "Tom", "id": "G2"
 },
"message": "Yes. Easy to understand book",
"actions":[
 {
"name": "Comment",
"link": "http://www.facebook.com/A2/posts/B2"
 },
 {
"name": "Like",
"link": "http://www.facebook.com/A2/posts/B2"
 }
],
"type": "status",
"created_time": "2016-08-03T21:27:44+0000",
"updated_time": "2016-08-03T21:27:44+0000"
 }
]
}

Using the library rjson, you can read such JSON files into R and convert the data into
a data.frame. The following R code displays the first three columns of the data.frame.

library(rjson)
url <- "json_fb.json"
document <-fromJSON(file=url, method='C')

Chapter 2 ■ Data preparation anD exploration

40

as.data.frame(document)[,1:3]
 data.id data.from.name data.from.id
 1 A1_B1 Jerry G1

2.1.2.6 Other Formats
Apart from all these widely used data formats, there are many more formats supported
by R. It’s possible to read data directly from databases using ODBC connections. R also
supports data formats from other data analytics software like SPSS, SAS, Stata, and
MATLAB.

2.1.3 Data Sources
Depending on the source of data, the format could vary. At times, identifying the type and
format of data is not very straight forward, but broadly classifying, we might gather data
that has a clear structure. Some might be semi-structured and other might look like total
junk. Data gathering at large is not just an engineering effort but a great skill.

2.1.3.1 Structured
Structured data is everywhere and it’s always the easiest to understand, represent, store,
query, and process such data. So, if you dream of an ideal world, all data will have rows
and columns stored in a tabular manner. The widespread development around the
various business applications, database technology, business intelligent system, and
spreadsheet tools has given rise to enormous amount of clean and good looking data.
Every row and column is well defined within a connected schematic tables in a database.
The data coming from CSV and Excel files generally has this structure built into it. We will
show many examples of such data throughout the book to explain the relevant concepts.

2.1.3.2 Semi-Structured
Although structured data gives us plenty of scope to experiment and ease of usage, it’s not
always possible to represent information in rows and column. The kind of data generated
from Twitter and Facebook has significantly moved away from the traditional Relational
Database Management System (RDBMS) paradigms, where everything has a predefined
schema, to a world of NoSQL (Chapter 9 covers some of the NoSQL systems), where data
is semi-structured. Both Twitter and Facebook rely heavily on JSON or BSON (Binary
JSON). Databases like MongoDB and Cassandra store this kind of NoSQL data.

2.1.3.3 Unstructured
The biggest challenge in data engineering has been dealing with unstructured data like
images, videos, web logs, and click stream. The challenge is pretty much in handling the
volume and velocity of this data generation process on top of not finding any patterns.

http://dx.doi.org/10.1007/978-1-4842-2334-5_9

Chapter 2 ■ Data preparation anD exploration

41

Despite having many sophisticated software systems for handling such data, there are
no defined processes for using this data in modeling or insight generation. Unlike semi-
structured data, where we have many APIs and tools to process the data into a required
format, here, a huge effort is spent in processing this data to a structured form. Big data
technologies like Hadoop and Spark are often deployed for such purposes. There has
been significant work on unstructured textual data generated from human interactions.
For instance, Twitter Sentiment Analysis on tweets (covered in Chapter 6).

2.2 Initial Data Analysis (IDA)
Collection of data is the first mammoth task in any data science project, and it forms
the first building block of machine learning process flow presented in Chapter 1. Once
the data is ready, then comes what we call the primary investigation or more formally,
Initial Data Analysis (IDA). IDA makes sure our data is clean, correct, and complete for
further exploratory analysis. The process of IDA involves preparing the data with the right
naming conventions and datatypes for the variables, checking for missing and outlier
values, and merging data from multiple sources to develop one coherent data source for
further EDA. Commonly IDA is referred to as data wrangling.

It’s widely believed that data wrangling consumes a significant amount of time
(approximately 50-80% of the effort) and it’s something that can't be overlooked. More
than a painful activity, data wrangling is a crucial step in generating understanding and
insights from data. It’s not mere a process of cleaning and transforming the data but it
helps to enrich and validate the data before something serious is done with it.

There are many thought processes around data wrangling; we will explain them
broadly with demonstrations in R.

2.2.1 Discerning a First Look
The process of wrangling starts with a judicious and very shrewd look at your data from
the start. This first look builds the intuition and understanding of patterns and trends.
There are many useful functions in R that help you get a first grasp of your data in a quick
and clear way.

2.2.1.1 Function str()
The str() function in R comes in very handy when you first look at the data. Referring
back to the employee data we used earlier, the str() output will look something like
what’s shown in the following R code snippet. The output shows four useful tidbits about
the data.

•	 The number of rows and columns in the data

•	 Variable name or column header in the data

•	 Datatype of each variable

•	 Sample values for each variable

http://dx.doi.org/10.1007/978-1-4842-2334-5_6
http://dx.doi.org/10.1007/978-1-4842-2334-5_1

Chapter 2 ■ Data preparation anD exploration

42

Depending on how many variables are contained in the data, spending a few minutes
or an hour on this output will provide significant understanding of the entire dataset.

emp <-read.csv("employees.csv", header =TRUE, sep =",")
str(emp)
 'data.frame': 5 obs. of 4 variables:
 $ Code : int 15421 15422 15423 15424 15425
 $ First.Name : Factor w/ 4 levels "John","Mark",..: 1 4 2 4 3
 $ Last.Name : Factor w/ 5 levels "Buffet","Luther",..: 4 5 3 1 2
 $ Salary.US.Dollar.: int 10000 20000 30000 40000 50000

2.2.1.2 Naming Convention: make.names()
In order to be consistent with the variable names throughout the course of the analysis
and preparation phase, it’s important that the variable names in the dataset follow the
standard R naming conventions. The step is critical for two important reasons,

•	 When merging the multiple datasets, it’s convenient if the
common columns on which the merge happens have the same
variable name.

•	 It’s also a good practice with any programming language to have
clean names (no spaces or special characters) for the variables.

R has this function called make.names(). To demonstrate it, lets make our variable
names dirty and then will use make.names to clean them up. Note that read.csv functions
have a default behavior of cleaning the variable names before they loads the data into
data.frame. But when we are doing many operations on data inside our program, it’s
possible that the variable names will fall out of convention.

#Manually overriding the naming convention
names(emp) <-c('Code','First Name','Last Name', 'Salary(US Dollar)')

Look at the variable name
emp
 Code First Name Last Name Salary(US Dollar)
 1 15421 John Smith 10000
 2 15422 Peter Wolf 20000
 3 15423 Mark Simpson 30000
 4 15424 Peter Buffet 40000
 5 15425 Martin Luther 50000

Now let’s clean it up using make.names
names(emp) <-make.names(names(emp))

Look at the variable name after cleaning
emp
 Code First.Name Last.Name Salary.US.Dollar.

Chapter 2 ■ Data preparation anD exploration

43

 1 15421 John Smith 10000
 2 15422 Peter Wolf 20000
 3 15423 Mark Simpson 30000
 4 15424 Peter Buffet 40000
 5 15425 Martin Luther 50000

2.2.1.3 Table(): Pattern or Trend
Another reason it’s important to look at your data closely up-front is to look for some kind
of anomaly or pattern in the data. Suppose we wanted to see if there were any duplicates
in the employee data, or if we wanted to find a very common name among employees and
reward them for a fun HR activity. These tasks are possible using the table() function. Its
basic role is to show the frequency distribution in a one- or two-way tabular format.

#Find duplicates
table(emp$Code)

 15421 15422 15423 15424 15425
 1 1 1 1 1
#Find common names
table(emp$First.Name)

 John Mark Martin Peter
 1 1 1 2

This clearly shows no duplicates and the name Peter appearing twice. These kind of
patterns might be very useful to judge if the data has any bias for some variables, which
will tie back to the final story we would want to write from the analysis.

2.2.2 Organizing Multiple Sources of Data into One
Often the data of our problem statements doesn't come from one place. A plethora of
resources and abundance of information in the world always keep us thinking, is there
data missing from whatever collection is available so far? We call it a tradeoff between
the abundance of data and our requirements. Not all data is useful and not all our
requirements will be met. So, when you believe there is no more data collection possible,
the thought process goes around, how do you now combine all that you have into one
single source of data? This process could be iterative in the sense that something needs to
be added or deleted based on relevance.

2.2.2.1 Merge and dplyr Joins
The most useful operation while preparing the data is the ability to join or merge two
different datasets into a single entity. This idea is easy to relate to the various joins of
SQL queries. A standard text on SQL queries will explain the different forms of joins

Chapter 2 ■ Data preparation anD exploration

44

elaborately, but we will focus on the function available in R. Let’s discuss the two
functions in R, which help to join two datasets.

We will use another extended dataset of our employee example where we have the
department and educational qualification and merge it with the already existing dataset of
employees. Let’s see the four very common type of joins using merge and dplyr. Though
the output is same, there are many differences between merge and dplyr implementations.
dplyr is somewhat regarded as more efficient than merge, but the merge() function merges
two data frames by common columns or row names, or does other versions of database
join operations, whereas dplyr provides a flexible grammar of data manipulation focused
on tools for working with data frames (hence the d in the name).

2.2.2.1.1 Using merge

Inner Join: Returns rows where a matching value for the variable code is found in both the
emp and emp-equal data frames.

merge(emp, emp_qual, by ="Code")
 Code First.Name Last.Name Salary.US.Dollar. Qual
 1 15421 John Smith 10000 Masters
 2 15422 Peter Wolf 20000 PhD
 3 15423 Mark Simpson 30000 PhD

Left Join: Returns all rows from the first data frame even if a matching value for the
variable Code is not found in the second.

merge(emp, emp_qual, by ="Code", all.x =TRUE)
 Code First.Name Last.Name Salary.US.Dollar. Qual
 1 15421 John Smith 10000 Masters
 2 15422 Peter Wolf 20000 PhD
 3 15423 Mark Simpson 30000 PhD
 4 15424 Peter Buffet 40000 <NA>
 5 15425 Martin Luther 50000 <NA>

Right Join: Returns all rows from second data frame even if a matching value for the
variable Code is not found in the first.

merge(emp, emp_qual, by ="Code", all.y =TRUE)
 Code First.Name Last.Name Salary.US.Dollar. Qual
 1 15421 John Smith 10000 Masters
 2 15422 Peter Wolf 20000 PhD
 3 15423 Mark Simpson 30000 PhD
 4 15426 <NA> <NA> NA PhD
 5 15429 <NA> <NA> NA Phd

Chapter 2 ■ Data preparation anD exploration

45

Full Join: Returns all rows from the first and second data frame whether or not a
matching value for the variable Code is found.

merge(emp, emp_qual, by ="Code", all =TRUE)
 Code First.Name Last.Name Salary.US.Dollar. Qual
 1 15421 John Smith 10000 Masters
 2 15422 Peter Wolf 20000 PhD
 3 15423 Mark Simpson 30000 PhD
 4 15424 Peter Buffet 40000 <NA>
 5 15425 Martin Luther 50000 <NA>
 6 15426 <NA> <NA> NA PhD
 7 15429 <NA> <NA> NA Phd

Note in these outputs that if a match is not found, the corresponding values are filled
with NA, which is nothing but a missing value. We will discuss later in IDA how to deal
with such missing values.

2.2.2.1.2 dplyr

library(dplyr)

Inner Join: Returns rows where a matching value for the variable Code is found in
both the emp and emp-equal data frames.

inner_join(emp, emp_qual, by ="Code")
 Code First.Name Last.Name Salary.US.Dollar. Qual
 1 15421 John Smith 10000 Masters
 2 15422 Peter Wolf 20000 PhD
 3 15423 Mark Simpson 30000 PhD

Left Join: Returns all rows from the first data frame even if a matching value for the
variable Code is not found in the second.

left_join(emp, emp_qual, by ="Code")
 Code First.Name Last.Name Salary.US.Dollar. Qual
 1 15421 John Smith 10000 Masters
 2 15422 Peter Wolf 20000 PhD
 3 15423 Mark Simpson 30000 PhD
 4 15424 Peter Buffet 40000 <NA>
 5 15425 Martin Luther 50000 <NA>

Chapter 2 ■ Data preparation anD exploration

46

Right Join: Returns all rows from second data frame even if a matching value for the
variable Code is not found in the first.

right_join(emp, emp_qual, by ="Code")
 Code First.Name Last.Name Salary.US.Dollar. Qual
 1 15421 John Smith 10000 Masters
 2 15422 Peter Wolf 20000 PhD
 3 15423 Mark Simpson 30000 PhD
 4 15426 <NA> <NA> NA PhD
 5 15429 <NA> <NA> NA Phd

Full Join: Returns all rows from the first and second data frame whether or not a
matching value for the variable Code is found.

full_join(emp, emp_qual, by ="Code")
 Code First.Name Last.Name Salary.US.Dollar. Qual
 1 15421 John Smith 10000 Masters
 2 15422 Peter Wolf 20000 PhD
 3 15423 Mark Simpson 30000 PhD
 4 15424 Peter Buffet 40000 <NA>
 5 15425 Martin Luther 50000 <NA>
 6 15426 <NA> <NA> NA PhD
 7 15429 <NA> <NA> NA Phd

Note that the output of the merge and dplyr functions is exactly the same for the
respective joins. dplyr is syntactically more meaningful but instead of one merge()
function, we now have four different functions. You can also see that merge and dplyr are
similar to implicit and explicit join statements in SQL query, respectively.

2.2.3 Cleaning the Data
The critical part of data wrangling is removing inconsistencies from the data, like missing
values, and following a standard format in abbreviations. The process is a way to bring
out the best quality of information from the data.

2.2.3.1 Correcting Factor Variables
Since R is a case-sensitive language, every categorical variable with definite set of values
like the variable Qual in our employee dataset with PhD and Masters as two values needs
to be checked for any inconsistencies. In R, such variables are called factors, with PhD
and Masters as its two levels. So, a value like PhD and Phd are treated differently, even

Chapter 2 ■ Data preparation anD exploration

47

though they mean the same. A manual inspection using the table() function will reveal
such patterns. A way to correct this would be:

employees_qual <-read.csv("employees_qual.csv")

#Inconsistent
employees_qual
 Code Qual
 1 15421 Masters
 2 15422 PhD
 3 15423 PhD
 4 15426 PhD
 5 15429 Phd
employees_qual$Qual =as.character(employees_qual$Qual)
employees_qual$Qual <-ifelse(employees_qual$Qual %in%c("Phd","phd","PHd"),
"PhD", employees_qual$Qual)

#Corrected
employees_qual
 Code Qual
 1 15421 Masters
 2 15422 PhD
 3 15423 PhD
 4 15426 PhD
 5 15429 PhD

2.2.3.2 Dealing with NAs
NAs (abbreviation for “Not Available”) are missing values and will always lead to wrong
interpretation, exceptions in function output, and cause models to fail if we live with
them until the end. The best way to handle NAs is either to remove/ignore if we are sitting
in a big pool of data or if we couldn't afford to lose anything from the precious small
dataset we have got, we impute, which is a process of filling the missing values.

The technique of imputation has attracted many researchers to devise novel ideas
but nothing can beat the simplicity that comes from the complete understanding of the
data. Let’s take up an example from the merge we did previously, in particular the output
from the right join. It’s not possible to impute First and Last Name, but it might not be
relevant for any aggregate analysis we might want to do on our data. Rather, the variable
that’s important for us is Salary, where we don't want to see NA. So, here is how we
impute a value in the Salary variable.

emp <-read.csv("employees.csv")
employees_qual <-read.csv("employees_qual.csv")

#Correcting the inconsistency
employees_qual$Qual =as.character(employees_qual$Qual)
employees_qual$Qual <-ifelse(employees_qual$Qual %in%c("Phd","phd","PHd"),
"PhD", employees_qual$Qual)

Chapter 2 ■ Data preparation anD exploration

48

#Store the output from right_join in the variables impute_salary
impute_salary <-right_join(emp, employees_qual, by ="Code")

#Calculate the average salary for each Qualification
ave_age <-ave(impute_salary$Salary.US.Dollar., impute_salary$Qual,
FUN = function(x) mean(x, na.rm =TRUE))

#Fill the NAs with the average values
impute_salary$Salary.US.Dollar. <-ifelse(is.na(impute_salary$Salary.
US.Dollar.), ave_age, impute_salary$Salary.US.Dollar.)

impute_salary
 Code First.Name Last.Name Salary.US.Dollar. Qual
 1 15421 John Smith 10000 Masters
 2 15422 Peter Wolf 20000 PhD
 3 15423 Mark Simpson 30000 PhD
 4 15426 <NA> <NA> 25000 PhD
 5 15429 <NA> <NA> 25000 PhD

Here, the idea is that a particular qualification is eligible for paychecks of a similar
value, but there certainly is some level of assumption we have taken, that the industry
isn't biased on paychecks based on which institution the employee obtained the degree.
However, if there is a significant bias, then a measure like average might not be a right
method; instead something like median could be used. We will discuss these kinds of bias
in greater detail in the descriptive analysis section.

2.2.3.3 Dealing with Dates and Times
In many models, date and time variables play a pivotal role. Date and time variables
reveal a lot about the temporal behavior, for instance, sales data of a supermarket or
online store could give us details like most important time of the day with sales volume at
peak, sales trend of weekday versus weekend, and much more. Often, dealing with date
variables is a painful task, primarily because of many available date formats, time zones,
and daylight savings in few countries. These challenges makes any arithmetic calculation
like difference between days and comparing two date values even more difficult.

The lubridate package is one of the most useful packages in R, and it helps in
dealing with these challenges. The paper, “Dates and Times Made Easy with Lubridate,”
published in the Journal of Statistical Software by Grolemund, describes the capabilities
the lubridate package offers. To borrow from the paper, lubridate helps users:

•	 Identify and parse date-time data

•	 Extract and modify components of a date-time, such as years,
months, days, hours, minutes, and seconds

•	 Perform accurate calculations with date-times and timespans

•	 Handle time zones and daylight savings time

Chapter 2 ■ Data preparation anD exploration

49

The paper gives an elaborate description with many examples, so we will take up
here only two uncommon date transformations like dealing with time zone and daylight
savings.

2.2.3.3.1 Time Zone

If we wanted to convert the date and time labeled in Indian Standard Time (IST) (the
local time standard of the system where the code was run) to Universal Coordinated time
zone (UTC), we use the following code:

library("lubridate")
date <-as.POSIXct("2016-03-13 09:51:48")
date
 [1] "2016-03-13 09:51:48 IST"
with_tz(date, "UTC")
 [1] "2016-03-13 04:21:48 UTC"

2.2.3.3.2 Daylight Savings Time

As the standard says, “daylight saving time (DST) is the practice of resetting the clocks
with the onset of summer months by advancing one hour so that evening daylight stays
an hour longer, while foregoing normal sunrise times.:

For example, in the United States, the one-hour shift occurs at 02:00 local time,
so in the spring, the clock is reset to advance by an hour from the last moment of 01:59
standard time to 03:00 DST. That day has 23 hours. Whereas in autumn, the clock is reset
to go backward from the last moment of 01:59 DST to 01:00 standard time, repeating
that hour, so that day has 25 hours. A digital clock will skip 02:00, exactly at the shift to
summer time, and instead advance from 01:59:59.9 to 03:00:00.0.

dst_time <-ymd_hms("2010-03-14 01:59:59")
dst_time <-force_tz(dst_time, "America/Chicago")
dst_time
 [1] "2010-03-14 01:59:59 CST"

One second later, Chicago clock times read:

dst_time +dseconds(1)
 [1] "2010-03-14 03:00:00 CDT"

The force_tz() function forces a change of time zone based on the parameter we pass.

2.2.4 Supplementing with More Information
The best models are not built with raw data available at the beginning, but come from the
intelligence shown in deriving a new variable from an existing one. For instance, a date
variable from sales data of a supermarket could help in building variables like weekend

Chapter 2 ■ Data preparation anD exploration

50

(1/0), weekday (1/0), and bank holiday (1/0), or combing multiple variable like income
and population could lead to Per Capita Income. Such creativity on derived variables
usually comes with lot of experience and domain expertise. However, there could be
some common approaches on standard variables such as date, which will be discussed in
detail here.

2.2.4.1 Derived Variables
Deriving new variables requires lot of creativity. Sometimes it demands a purpose,
situations where a derived variable helps to explain certain behavior. For example,
while looking at the sales trend of any online store, we see a sudden surge in volume
on a particular day, so on further investigation we found the reason to be a heavy
discounting for end-of-season sales. So, if we include a new binary variable EOS_Sales
assuming a value 1, if we had end of season sales or 0 otherwise, we may aid the model in
understanding why a sudden surge is seen in the sales.

2.2.4.2 n-day Averages
Another useful technique for deriving such variables, especially in time series data from
the stock market, is to derive variables like last_7_days, last_2_weeks, and last_1_
month average stock prices. Such variables work to reduce the variability in data like stock
prices, which can sometime seem like noise and can hamper the performance of the
model to a great extent.

2.2.5 Reshaping
In many modeling exercises, it’s a common practice to reshape the data into a more
meaningful and usable format. Here, we show one example dataset from World Bank on
World Development Indicators (WDI). The data has a wide set of variables explaining the
various attributes for developments starting from the year 1950 until 2015. A very rich
data and large dataset.

A small sample of development indicators and its values for the country Zimbabwe
for the years 1995 and 1998:

library(data.table)
WDI_Data <-fread("WDI_Data.csv", header =TRUE, skip =333555, select
=c(3,40,43))
setnames(WDI_Data, c("Dev_Indicators", "1995","1998"))
WDI_Data <-WDI_Data[c(1,3),]

DevelopmentIndicators (DI):

WDI_Data[,"Dev_Indicators", with =FALSE]
 Dev_Indicators
 1: Women's share of population ages 15+ living with HIV (%)
 2: Youth literacy rate, population 15-24 years, female (%)

Chapter 2 ■ Data preparation anD exploration

51

DI Value for the years 1995 and 1998:

WDI_Data[,2:3, with =FALSE]
 1995 1998
 1: 56.02648 56.33425
 2: NA NA

This data has in each row a development indicator and columns representing its value
from the year starting 1995 to 1998. Now, using the package tidyr, we will reshape this
data to have the columns 1995 and 1998, into one column called Year. This transformation
will come pretty handy when we will see the data visualization in Chapter 4.

library(tidyr)
gather(WDI_Data,Year,Value, 2:3)
 Dev_Indicators Year Value
 1: Women's share of population ages 15+ living with HIV (%) 1995 56.02648
 2: Youth literacy rate, population 15-24 years, female (%) 1995 NA
 3: Women's share of population ages 15+ living with HIV (%) 1998 56.33425
 4: Youth literacy rate, population 15-24 years, female (%) 1998 NA

There are many such ways of reshaping our data, which we will describe as we look
at many case studies throughout the book.

2.3 Exploratory Data Analysis
EDA provides a framework to choose the appropriate descriptive methods in various data
analysis needs. Tukey’s, in his book Exploratory Data Analysis, emphasized the need to
focus more on suggesting hypothesis using data rather than getting involved in many
repetitive statistical hypothesis testing. Hypothesis testing in statistics is a tool for making
certain confirmatory assertions drawn from data or more formally, statistically proving
the significance of an insight. More on this later in the next section. EDA provides both
visual and quantitative techniques for data exploration.

Tukey's EDA gave birth to two path-breaking developments in statistical theory:
robust statistics and non-parametric statistics. Both of these ideas had a big role in
redefining the way people perceived statistics. It’s no more a complicated bunch of
theorems and axioms but rather a powerful tool for exploring data. So, with our data in
the most desirable format after cleaning up, we are ready to deep dive into the analysis.

Let’s first take a simple example and understand these statistics. Consider a
marathon of approximately 26 miles and the finishing times (in hours) of 50 marathon
runners. There are runners ranging from world-class elite marathoners to first-timers
who walk all the way.

http://dx.doi.org/10.1007/978-1-4842-2334-5_4

Chapter 2 ■ Data preparation anD exploration

52

This dataset will be used throughout to explain the various exploratory analysis.

2.3.1 Summary Statistics
In statistics, what we call “Summary Statistics” for any numerical variables in the dataset
are the genesis for data exploration. These are Minimum, First Quartile, Median, Mean,
Third Quartile, and Maximum. These numbers explain a great deal about the data. It’s
easy to calculate all these in R using the summary function.

marathon <-read.csv("marathon.csv")
summary(marathon)
 Id Type Finish_Time
 Min. : 1.00 First-Timer :17 Min. :1.700
 1st Qu.:13.25 Frequents :19 1st Qu.:2.650
 Median :25.50 Professional:14 Median :4.300
 Mean :25.50 Mean :4.651
 3rd Qu.:37.75 3rd Qu.:6.455
 Max. :50.00 Max. :9.000
quantile(marathon$Finish_Time, 0.25)
 25%
 2.65

For categorical variables, the summary function simply gives the count of each
category as seen with the variable Type. In case of the numerical variables, apart from
minimum and maximum, which are quite straight forward to understand, we have mean,
median, first quartile, and third quartile.

2.3.1.1 Quantile
If we divide our population of data into four equal groups, based on the distribution of
values of a particular numerical variable, then each of the three values creating the four
divides are called first, second, and third quartile. In other words, the more general term
is quantile; q-Quantiles are values that partition a finite set of values into q subsets of
equal sizes.

Table 2-1. A Snippet of This Data

ID Type Finishing Time

1 Professional 2.2

2 First-Timer 7.5

3 Frequents 4.3

4 Professional 2.3

5 Frequents 5.1

6 First-Timer 8.3

Chapter 2 ■ Data preparation anD exploration

53

For instance, dividing in four equal groups would mean a 3-quantile. In terms of
usage, percentile is more widely used terminology, which is a measure used in statistics
indicating the value under which a given percentage of observations in a group of
observations fall. If we divide something in 100 equal groups, we have 99-Quantiles,
which leads us to define the first quartile as the 25th percentile and the third quartile as
the 75th percentile. In simpler terms, the 25th percentile or first quartile is a value below
which 25 percent of the observations are found. Similarly, 75th percentile or third quartile
is a value below which 75 percent of the observations are found.

First Quartile:

quantile(marathon$Finish_Time, 0.25)
 25%
 2.65

Second Quartile or Median:

quantile(marathon$Finish_Time, 0.5)
 50%
 4.3
#Another function to calculate median

median(marathon$Finish_Time)
 [1] 4.3

Third Quartile:

quantile(marathon$Finish_Time, 0.75)
 75%
 6.455

The interquartile range is the difference between the 75th percentile and 25th
percentile, would be the range that contains 50% of the data of any particular variable
in the dataset. Interquartile range is a robust measure of statistical dispersion. We will
discuss this further in the later part of the section.

quantile(marathon$Finish_Time, 0.75, names =FALSE)
-quantile(marathon$Finish_Time, 0.25, names =FALSE)
 [1] 3.805

2.3.1.2 Mean
Though median is a robust measure of central tendency of any distribution of data, mean
is a more traditional statistic for explaining the statistical property of the data distribution.
The median is more robust because a single large observation can throw the mean off. We
formally define this statistic in the next section.

mean(marathon$Finish_Time)
 [1] 4.6514

Chapter 2 ■ Data preparation anD exploration

54

As you would expect, the summary (mean and median are often counted one as a
measure of centrality) listed by the summary function's output are in the increasing order
of their values. The reason for this is obvious from the way they are defined. And if these
statistical definitions were difficult for you to contemplate, don't worry, we will turn to
visualization for explanation. Though we have a dedicated chapter on it, here we discuss
some very basic plots that are inseparable from theories around any exploratory analysis.

2.3.1.3 Frequency Plot
A frequency plot is showing the number of runners in each type. Such simple plots explain
the distribution of a categorical variable. As seen in the plot, we how many first-timers,
frequents, and professional runners participated in the marathon.

plot(marathon$Type, xlab ="Marathoners Type", ylab ="Number of Marathoners")

Figure 2-1. Number of athletes in each type

2.3.1.4 Boxplot
A boxplot is the alternative to the summary statistics in visualization. Though looking
at numbers is always useful, an equivalent representation of the same in a visually
appealing plot could serve as an excellent tool for better understanding, insight
generation, and ease of explaining the data.

In the summary, we saw the values for each variable but were not able to look how
the finish time varies for each type of runner. In other words, how type and finish time are
related. Figure 2-2 clearly helps to illustrate this relationship. As expected, the boxplot clearly
shows that professionals have a much better finish time than frequents and first-timers.

boxplot(Finish_Time ~Type,data=marathon, main="Marathon Data", xlab="Type of
Marathoner", ylab="Finish Time")

Chapter 2 ■ Data preparation anD exploration

55

2.3.2 Moment
Apart from the summary statistics, we have other statistics like variance, standard
deviation, skewness, kurtosis, covariance, and correlation. These statistics naturally lead
us to look for some distribution in the data.

More formally, we are interested in the quantitative measure called the moment. Our
data point represents a probability density function that describes the relative likelihood
of a random variable to take on a given value. The random variables are the attributes
of our dataset. In the marathon example, we have the Finish_Time variable describing
the finishing time of each marathoner. So, for the probability density function, we are
interested in the first five moments.

•	 The zeroth moment is the total probability (i.e., one)

•	 The first moment is the mean

•	 The second central moment is the variance; it’s a positive square
root of the standard deviation

•	 The third moment is the skewness

•	 The fourth moment (with normalization and shift) is the kurtosis

Let’s look at the second, third, and fourth moments in detail.
The literature on exploratory data analysis is so rich with all the exemplary works of

J.W. Tukey, that it’s very hard for his admirers to not refer his work. So here is another one
from his classic, The future of Data Analysis:

We were together learning how to use the analysis of variance, and perhaps it is worth
while stating an impression that I have formed-that the analysis of variance, which may
perhaps be called a statistical method, because that term is a very ambiguous one - is not
a mathematical theorem, but rather a convenient method of arranging the arithmetic.

Figure 2-2. Boxplot showing variation of finish times for each type of runner

Chapter 2 ■ Data preparation anD exploration

56

Just as in arithmetical textbooks—if we can recall their contents—we were given rules
for arranging how to find the greatest common measure, and how to work out a sum in
practice, and were drilled in the arrangement and order in which we were to put the figures
down, so with the analysis of variance; its one claim to attention lies in its convenience.

So, fundamentally, after mean, variance will form the basis for many other statistical
methods to analyze and understand the data better.

2.3.2.1 Variance
Variance is a measure of the spread for the given set of numbers. The smaller the
variance, the closer the numbers are to the mean and the larger the variance, the
farther away the numbers are from the mean. Variance is an important measure
for understanding the distribution of the data, more formally it’s called probability
distribution. In the next chapter, where various sampling techniques are discussed, we
examine how a sample variance is considered to be an estimate of the full population
variance, which forms the basis for a good sampling method. Depending on whether our
variable is discrete or continuous, we can define the variance.

Mathematically, for a set of n equally likely numbers for a discrete random variable,
variance can be represented as follows:

s 2

1

21
= ()-

=
ån x
i

n

i m

And more generally, if every number in our distribution occurs with a probability p
i,

variance is given by:

s 2

1

21
= *()-

=

å
n

p x
i

n

i i m

As seen in the formula, for every data point, we are measuring how far the number
is from the mean, which translates into a measure of spread. Equivalently, if we take the
square root of variance, the resulting measure is called the standard deviation, generally
written as a sigma. The standard deviation has the same dimension as the data, which
makes it convenient to compare with the mean. Together, both mean and standard
deviation, can be used to describe any distribution of data. Let’s take a look at the
variance of the variable Finish_Time from our marathon data.

mean(marathon$Finish_Time)
 [1] 4.6514
var(marathon$Finish_Time)
 [1] 4.342155
sd(marathon$Finish_Time)
 [1] 2.083784

Chapter 2 ■ Data preparation anD exploration

57

Looking at the values of mean and standard deviation, we could say, on average, that
the marathoners have a finish time of 4.65 +/- 2.08 hours. Further, it’s easy to notice from
the following code snippet that each type of runner has their own speed of running and
hence a different finish time.

tapply(marathon$Finish_Time,marathon$Type, mean)
 First-Timer Frequents Professional
 7.154118 4.213158 2.207143
tapply(marathon$Finish_Time,marathon$Type, sd)
 First-Timer Frequents Professional
 0.8742358 0.5545774 0.3075068

2.3.2.2 Skewness
As variance is a measure of spread, skewness measures asymmetry about the mean of the
probability distribution of a random variable. In general, as the standard definition says,
we could observe two types of skewness:

•	 Negative skew: The left tail is longer; the mass of the distribution
is concentrated on the right. The distribution is said to be left-
skewed, left-tailed, or skewed to the left.

•	 Positive skew: The right tail is longer; the mass of the distribution
is concentrated on the left. The distribution is said to be right-
skewed, right-tailed, or skewed to the right.

Mathematicians discuss skewness in terms of the second and third moments around
the mean. A more easily interpretable formula could be written using standard deviation.

g
x N

i

N

i

1
1

3

3
=

-
=
å() /m

s

This formula for skewness is referred to as the Fisher-Pearson coefficient of skewness.
Many software programs actually compute the adjusted Fisher-Pearson coefficient of
skewness, which could be thought of as a normalization to avoid too high or too low
values of skewness:

G
N N

N

x N
i

N

i

1
1

3

3

1

1
=

()() ()
=
å–

–

– /m

s

Let’s use the histogram of beta distribution to demonstrate skewness.

library("moments")
 Warning: package 'moments' was built under R version 3.2.3
par(mfrow=c(1,3), mar=c(5.1,4.1,4.1,1))

Chapter 2 ■ Data preparation anD exploration

58

Negative skew
hist(rbeta(10000,2,6), main ="Negative Skew")
skewness(rbeta(10000,2,6))
 [1] 0.7166848
Positive skew
hist(rbeta(10000,6,2), main ="Positive Skew")
skewness(rbeta(10000,6,2))
 [1] -0.6375038
Symmetrical

hist(rbeta(10000,6,6), main ="Symmetrical")

skewness(rbeta(10000,6,6))
 [1] -0.03952911

Figure 2-3. Distribution showing symmetrical versus negative and positive skewness

For our marathon data, the skewness is close to 0, indicating a symmetrical distribution.

hist(marathon$Finish_Time, main ="Marathon Finish Time")

skewness(marathon$Finish_Time)
 [1] 0.3169402

Chapter 2 ■ Data preparation anD exploration

59

2.3.2.3 Kurtosis
Kurtosis is a measure of peakedness and tailedness of the probability distribution of a
random variable. Similar to skewness, kurtosis is also used to describe the shape of the
probability distribution function. In order words, kurtosis explains the variability due to a
few data points having extreme differences from the mean, rather than lot of data points
having smaller differences from the mean. Higher values indicate a higher and sharper
peak and lower values indicate a lower and less distinct peak. Mathematically, kurtosis
is discussed in terms of the fourth moment around the mean. It’s easy to find that the
kurtosis for a standard normal distribution is 3, a distribution known for its symmetry,
and since kurtosis like skewness measures any asymmetry in data, many people use the
following definition of kurtosis:

kurtosis
x N

i

N

i

= -
-

=
å

1

4

4
3

() /m

s

Generally, there are three types of kurtosis:

•	 Mesokurtic: Distributions with a kurtosis value close to 3, which
means in the previous formula, the term before 3 becomes 0, a
standard normal distribution with mean 0 and standard deviation 1.

•	 Platykurtic: Distributions with a kurtosis value < 3. Comparatively,
a lower peak and shorter tails than normal distribution.

•	 Leptokurtic: Distributions with a kurtosis value > 3.
Comparatively, a higher peak and longer tails than normal
distribution.

Figure 2-4. Distribution of finish time of athletes in marathon data

Chapter 2 ■ Data preparation anD exploration

60

While the kurtosis statistic is often used by many to numerically describe a sample,
it is said that, “there seems to be no universal agreement about the meaning and
interpretation of kurtosis”. Tukey suggests that, like variance and skewness, kurtosis
should be viewed as a “vague concept” that can be formalized in a variety of ways.

#leptokurtic
set.seed(2)
random_numbers <-rnorm(20000,0,0.5)
plot(density(random_numbers), col ="blue", main ="Kurtosis Plots", lwd=2.5,
asp =4)
kurtosis(random_numbers)
 [1] 3.026302
#platykurtic
set.seed(900)
random_numbers <-rnorm(20000,0,0.6)
lines(density(random_numbers), col ="red", lwd=2.5)
kurtosis(random_numbers)
 [1] 2.951033
#mesokurtic
set.seed(3000)
random_numbers <-rnorm(20000,0,1)
lines(density(random_numbers), col ="green", lwd=2.5)
kurtosis(random_numbers)
 [1] 3.008717
legend(1,0.7, c("leptokurtic", "platykurtic","mesokurtic"),
lty=c(1,1),
lwd=c(2.5,2.5),col=c("blue","red","green"))

Figure 2-5. Showing kurtosis plots with simulated data

Chapter 2 ■ Data preparation anD exploration

61

Comparing these kurtosis plots to the marathon finish time, it’s platykurtic with a
very low peak and short tail.

plot(density(as.numeric(marathon$Finish_Time)), col ="blue", main ="Kurtosis
Plots", lwd=2.5, asp =4)

Figure 2-6. Showing kurtosis plot of finish time in marathon data

kurtosis(marathon$Finish_Time)
 [1] 1.927956

2.4 Case Study: Credit Card Fraud
In order to apply the concepts explained so far in this chapter, this section presents
simulated data on credit card fraud. The data is approximately 200MB, which is big
enough to explain most of the ideas discussed. Reference to this dataset will be made
quite often throughout the book. So, if you have any thoughts of skipping this section, we
strongly advise you not to do so.

2.4.1 Data Import
We will use the package data.table. It offers fast aggregation of large data (e.g., 100GB in
RAM), fast ordered joins, fast add/modify/delete of columns by group using no copies at all,
list columns, and a fast file reader (fread). Moreover, it has a natural and flexible syntax, for
faster development. Let's start by looking at how this credit card fraud data looks.

library(data.table)
data <-fread("ccFraud.csv",header=T, verbose =FALSE, showProgress =FALSE)
str(data)
 Classes 'data.table' and 'data.frame': 10000000 obs. of 9 variables:
 $ custID : int 1 2 3 4 5 6 7 8 9 10 ...

Chapter 2 ■ Data preparation anD exploration

62

 $ gender : int 1 2 2 1 1 2 1 1 2 1 ...
 $ state : int 35 2 2 15 46 44 3 10 32 23 ...
 $ cardholder : int 1 1 1 1 1 2 1 1 1 1 ...
 $ balance : int 3000 0 0 0 0 5546 2000 6016 2428 0 ...
 $ numTrans : int 4 9 27 12 11 21 41 20 4 18 ...
 $ numIntlTrans: int 14 0 9 0 16 0 0 3 10 56 ...
 $ creditLine : int 2 18 16 5 7 13 1 6 22 5 ...
 $ fraudRisk : int 0 0 0 0 0 0 0 0 0 0 ...
 - attr(*, ".internal.selfref")=<externalptr>

The str displays variables in the dataset with few sample values. Following are the
nine variables:

•	 custID: A unique identifier for each customer

•	 gender: Gender of the customer

•	 state: State in the United States where the customer lives

•	 cardholder: Number of credit cards the customer holds

•	 balance: Balance on the credit card

•	 numTrans: Number of transactions to date

•	 numIntlTrans: Number of international transactions to date

•	 creditLine: The financial services corporation, such as Visa,
MasterCard, and American Express

•	 fraudRisk: Binary variable, 1 means customer being frauded, 0
means otherwise

2.4.2 Data Transformation
Further, it’s clear that variables like gender, state, and creditLine are mapped to
numeric identifiers. In order to understand the data better, we need to remap these
numbers back to their original meaning. We can do this using the merge function in R.
The file US State Code Mapping.csv contains the mapping for every U.S. State and the
numbers in state variables in the datasets. Similarly, Gender Map.csv and credit line
map.csv contain the mapping for the variables gender and creditLine, respectively.

Mapping U.S. State

library(data.table)
US_state <-fread("US_State_Code_Mapping.csv",header=T, showProgress =FALSE)
data<-merge(data, US_state, by ='state')

Mapping Gender

library(data.table)
Gender_map<-fread("Gender Map.csv",header=T)
data<-merge(data, Gender_map, by ='gender')

Chapter 2 ■ Data preparation anD exploration

63

Mapping Credit Line

library(data.table)
Credit_line<-fread("credit line map.csv",header=T)
data<-merge(data, Credit_line, by ='creditLine')

Setting Variable Names and Displaying New Data

setnames(data,"custID","CustomerID")
setnames(data,"code","Gender")
setnames(data,"numTrans","DomesTransc")
setnames(data,"numIntlTrans","IntTransc")
setnames(data,"fraudRisk","FraudFlag")
setnames(data,"cardholder","NumOfCards")
setnames(data,"balance","OutsBal")
setnames(data,"StateName","State")

str(data)
 Classes 'data.table' and 'data.frame': 10000000 obs. of 11 variables:
 $ creditLine : int 1 1 1 1 1 1 1 1 1 1 ...
 $ CustomerID : int 4446 59161 136032 223734 240467 248899 262655 324670
390138 482698 ...
 $ NumOfCards : int 1 1 1 1 1 1 1 1 1 1 ...
 $ OutsBal : int 2000 0 2000 2000 2000 0 0 689 2000 0 ...
 $ DomesTransc: int 31 25 78 11 40 47 15 17 48 25 ...
 $ IntTransc : int 9 0 3 0 0 0 0 9 0 35 ...
 $ FraudFlag : int 0 0 0 0 0 0 0 0 0 0 ...
 $ State : chr "Alabama" "Alabama" "Alabama" "Alabama" ...
 $ Gender : chr "Male" "Male" "Male" "Male" ...
 $ CardType : chr "American Express" "American Express" "American
Express" "American Express" ...
 $ CardName : chr "SimplyCash® Business Card from American Express"
"SimplyCash® Business Card from American Express" "SimplyCash® Business Card
from American Express" "SimplyCash® Business Card from American Express" ...
 - attr(*, ".internal.selfref")=<externalptr>
 - attr(*, "sorted")= chr "creditLine"

2.4.3 Data Exploration
Since, the data wasn't too dirty, we managed to skip most of the data-wrangling
approaches steps described earlier in the chapter. However, in real-world problems,
the data transformation task is not so easy; it requires painstaking effort and data
engineering. We will use such approaches in later case studies in the book. In this case,
our data is ready to be explored in more detail. Let’s start the exploration.

Chapter 2 ■ Data preparation anD exploration

64

summary(data[,c("NumOfCards","OutsBal","DomesTransc",
"IntTransc"),with =FALSE])
 NumOfCards OutsBal DomesTransc IntTransc
 Min. :1.00 Min. : 0 Min. : 0.00 Min. : 0.000
 1st Qu.:1.00 1st Qu.: 0 1st Qu.: 10.00 1st Qu.: 0.000
 Median :1.00 Median : 3706 Median : 19.00 Median : 0.000
 Mean :1.03 Mean : 4110 Mean : 28.94 Mean : 4.047
 3rd Qu.:1.00 3rd Qu.: 6000 3rd Qu.: 39.00 3rd Qu.: 4.000
 Max. :2.00 Max. :41485 Max. :100.00 Max. :60.000

So, if we want to understand the behavior of the number of transactions between
men and women, it looks like there is no difference. Men and women shop equally, as
shown in Figure 2-7.

boxplot(I(DomesTransc +IntTransc) ~Gender, data = data)
title("Number of Domestic Transaction")

Figure 2-7. The number of domestic transactions sorted by male and female

tapply(I(data$DomesTransc +data$IntTransc),data$Gender, median)
 Female Male
 24 24
tapply(I(data$DomesTransc +data$IntTransc),data$Gender, mean)
 Female Male
 32.97612 32.98624

Now, let’s look at the frequencies of the categorical variables.
Distribution of frauds across the card type are shown here. This type of frequency

table tell us which categorical variable is prominent for the fraud cases.

Chapter 2 ■ Data preparation anD exploration

65

table(data$CardType,data$FraudFlag)

 0 1
 American Express 2325707 149141
 Discover 598246 44285
 MasterCard 3843172 199532
 Visa 2636861 203056

You can see from the frequency table that highest frauds have happened to Visa
cards, followed by MasterCard and American Express. The lowest frauds are reported
from Discover. The number of frauds defines the event rate for modeling purposes.
Event rate is the proportion of events (i.e., fraud) versus the number of records for each
category.

Similarly, you can see frequency plots for fraud and gender and fraud and state.

table(data$Gender,data$FraudFlag)

 0 1
 Female 3550933 270836
 Male 5853053 325178

Frauds are reported more from males; the event rate of fraud in the male category
is 325178/(325178+5853053) = 5.2%. Similarly, the event rate in the female category is
270836/(270836+3550933) = 7.1%. Hence, while males have more frauds, the event rate
is higher for female customers. In both cases, the event rate is low, so we need to look for
sampling so that we get a high event rate in the modeling dataset.

2.5 Summary
In upcoming chapters, we explain how to enrich this data to be able to model it and
quantify these relationships for a predictive model. The next chapter will help you
understand how you can reduce your dataset and at the same time enhance its properties
to be able to apply machine learning algorithms.

While it’s always good to say that more data implies a better model, there might be
occasions where the luxury of sufficient amount of data is not there or computational
power is limited to only allow a certain size of dataset. In such situations, statistics could
help sample a precise and informative subset of data without compromising much on the
quality of the model. Chapter 3 focuses on many such sampling techniques that will help
in achieving this objective.

2.6 References
 [1] The Future of Data Analysis. John Tukey. July, 1961.

 [2] Dates and Times Made Easy with Lubridate. Garrett
Grolemund et. al.

http://dx.doi.org/10.1007/978-1-4842-2334-5_3

67© Karthik Ramasubramanian and Abhishek Singh 2017
K. Ramasubramanian and A. Singh, Machine Learning Using R,
DOI 10.1007/978-1-4842-2334-5_3

CHAPTER 3

Sampling and Resampling
Techniques

In Chapter 2, we introduced the concept of data import and exploration techniques.
Now you are equipped with loading data from different sources and storing them
in an appropriate format. In this chapter we will discuss important data sampling
methodologies and their importance in machine learning algorithms. Sampling
is an important block in our machine learning process flow and it serves the dual
purpose of cost savings in data collection and reduction in computational cost without
compromising the power of the machine learning model.

“An approximate answer to the right problem is worth a good deal more
than an exact answer to an approximate problem.”

—John Tukey

John Tukey statement fits well into the spirit of sampling. As the technological
advancement brought large data storage capabilities, the incremental cost of applying
machine learning techniques is huge. Sampling helps us balance between the cost of
processing high volumes of data with marginal improvement in the results. Contrary
to the general belief that sampling is useful only for reducing a high volume of data to a
manageable volume, sampling is also important to improve statistics garnered from small
samples. In general, machine learning deals with huge volumes of data, but concepts like
bootstrap sampling can help you get insight from small sample situations as well.

The learning objectives of this chapter are as follows:

•	 Introduction to sampling

•	 Sampling terminology

•	 Non-probability sampling and probability sampling

•	 Business implication of sampling

•	 Statistical theory on sample statistics

•	 Introduction to resampling

http://dx.doi.org/10.1007/978-1-4842-2334-5_2

Chapter 3 ■ Sampling and reSampling teChniqueS

68

•	 Monte Carlo method: Acceptance-Rejection sampling

•	 Computational time saving illustration

Different sampling techniques will be illustrated using the credit card fraud data
introduced in Chapter 2.

3.1 Introduction to Sampling
Sampling is a process that selects units from a population of interest, in such a way that
the sample can be generalized for the population with statistical confidence. For instance,
if an online retailer wanted to know the average ticket size of an online purchase over the
last 12 months, we might not want to average the ticket size over the population (which
may run into millions of data points for big retailers), but we can pick up a representative
sample of purchases over last 12 months and estimate the average for the sample.
The sample average then can be generalized for the population with some statistical
confidence. The statistical confidence will vary based on the sampling technique used
and the size.

In general, sampling techniques are applied to two scenarios, for creating
manageable dataset for modeling and for summarizing population statistics. This broad
categorization can be presented as objectives of sampling:

•	 Model sampling

•	 Survey sampling

Model sampling is done when the population data is already collected and you want
to reduce time and the computational cost of analysis, along with improve the inference
of your models. Another approach is to create a sample design and then survey the
population only to collect sample to save data collection costs. Figure 3-1 shows the two
business objectives of sampling. The sample survey design and evaluation are out of
scope of this book, so will keep our focus on model sampling alone.

http://dx.doi.org/10.1007/978-1-4842-2334-5_2

Chapter 3 ■ Sampling and reSampling teChniqueS

69

This classification is also helpful in identifying the end objectives of sampling.
This helps in choosing the right methodology for sampling and the right exploratory
technique. In the context of the machine learning model building flow, our focus will be
around model sampling. The assumption is that the data has already been collected and
our end objective is to garner insight from that data, rather than develop a systematic
survey to collect it.

3.2 Sampling Terminology
Before we get into details of sampling, let’s define some basic terminology of sampling
that we will be using throughout the book. The statistics and probability concepts
discussed in Chapter 1 will come handy in understanding the sampling terminology. This
section lists the definition and mathematical formulation in sampling.

3.2.1 Sample
A sample is a set of units or individuals selected from a parent population to provide
some useful information about the population. This information can be general
shape of distribution, basic statistics, properties of population distribution parameters,

Figure 3-1. Objectives of sampling

http://dx.doi.org/10.1007/978-1-4842-2334-5_1

Chapter 3 ■ Sampling and reSampling teChniqueS

70

or information of some higher moments. Additionally, the sample can be used to
estimate test statistics for hypothesis testing. A representative sample can be used to
estimate properties of population or to model population parameters.

For instance, the National Sample Survey Organization (NNSO) collects sample data
on unemployment by reaching out to limited households, and then this sample is used to
provide data for national unemployment.

3.2.2 Sampling Distribution
The distribution of the means of a particular size of samples is called the sampling
distribution of means; similarly the distribution of the corresponding sample variances is
called the sampling distribution of the variances. These distributions are the fundamental
requirements for performing any kind of hypothesis testing.

3.2.3 Population Mean and Variance
Population mean is the arithmetic average of the population data. All the data points
contribute toward the population mean with equal weight. Similarly, population variance
is the variance calculated using all the data points in the data.

Population mean:
m = =

å
i

n

iX

n
1

Population Variance: s 2

1

21
= -()

=
ån x
i

n

i m

3.2.4 Sample Mean and Variance
Any subset you draw from the population is a sample. The mean and variance obtained
from that sample are called sample statistics. The concept of degrees of freedom is used
when a sample is used to estimate distribution parameters; hence, you will see for sample
variance that the denominator is different than the population variance.

Sample mean: x
n

x
i

n

i=
=
å1

1

Sample variance: s
n

x x
i

n

i
2

1

21

1
=

-
-()

=
å

3.2.5 Pooled Mean and Variance
For k sample of size n

1
, n

2
, n

3
, …, n

k
 taken from the same population, the estimated

population mean and variance are defined as follows.

Chapter 3 ■ Sampling and reSampling teChniqueS

71

Estimated population mean:

x
x

n

n x n x n x

n n np
i

k

i

i

k

i

k k

k

=
()

=
() + () + +()

+ + +
=

=

å

å
1

1

1 1 2 2

1 2





Estimated population variance:

s
n s

n

n s n s n
p

i

k

i i

i

k

i

k2 1

2

1

1 1
2

2 2
21

1

1 1 1
=

-()

-()
=

-() + -() + + -()=

=

å

å
 ss

n n n k
k

k

2

1 2+ + + -

In real-life situations, we usually can have multiple samples drawn from the same
population at different points in space/location and time. For example, assume we have
to estimate average income of bookshop owner in a city. We will get samples of bookshop
owners’ income from different parts of city at different points in time. At a later point of
time, we can combine the individual mean and variance from different samples to get an
estimate for population using pooled mean and variance.

3.2.6 Sample Point
A possible outcome in a sampling experiment is called a sample point. In many types of
sampling, all the data points in the population are not sample points.

Sample points are important when the sampling design becomes complex. The
researcher may want to leave some observations out of sampling, alternatively the
sampling process by design itself can give less probability of selection to the undesired
data point. For example, suppose you have gender data with three possible values—Male,
Female, and Unknown. You may want to discard all Unknowns as an error, this is keeping
the observation out of sampling. Otherwise, if the data is large and the Unknowns are a
very small proportion then the probability to sample them is negligible. In both cases,
Unknown is not a sample point.

3.2.7 Sampling Error
The difference between the true value of a population statistic and the sample statistic is
the sampling error. This error is attributed to the fact that the estimate has been obtained
from the sample.

For example, suppose you know by census data that monthly average income of
residents in Boston is $3,000 (the population mean). So, we can say that true mean
of income is $3,000. Let’s say that a market research firm performed a small survey of
residents in Boston. We find that the sample average income from this small survey
is $3,500. The sampling error is then $3,500 - $3,000, which equals $500. Our sample
estimates are over-estimating the average income, which also points to the fact that the
sample is not a true representation of the population.

Chapter 3 ■ Sampling and reSampling teChniqueS

72

3.2.8 Sampling Fraction
The sampling fraction is the ratio of sample size to population size, f

n

N
= .

For example, if your total population size is 500,000 and you want to draw a sample
of 2,000 from the population, the sampling fraction would be f = 2,000/50,000 = 0.04. In
other words, 4% of population is sampled.

3.2.9 Sampling Bias
Sampling bias occurs when the sample units from the population are not characteristic of
(i.e., do not reflect) the population. Sampling bias causes a sample to be unrepresentative
of the population.

Connecting back to example from sampling error, we found out that the sample
average income is way higher than the census average income (true average). This means
our sampling design has been biased toward higher income residents of Boston. In that
case, our sample is not a true representation of Boston residents.

3.2.10 Sampling Without Replacement (SWOR)
Sampling without replacement requires two conditions to be satisfied;

•	 Each unit/sample point has a finite non-zero probability of
selection

•	 Once a unit is selected, it is removed from the population

In other words, all the units have some finite probability of being sampled strictly
only once.

For instance, if we have a bag of 10 balls, marked with numbers 1 to 10, then each ball
has selection probability of 1/10 in a random sample done without replacement. Suppose
we have to choose three balls from the bag, then after each selection the probability
of selection increases as number of balls left in bag decreases. So, for the first ball the
probability of getting selected is 1/10, for the second it’s 1/9, and for the third it’s 1/8.

3.2.11 Sampling with Replacement (SWR)
Sampling with replacement differs from SWOR by the fact that a unit can be sampled
more than once in the same sample. Sampling with replacement requires two conditions
to be satisfied;

•	 Each unit/sample point has a finite non-zero probability of selection

•	 A unit can be selected multiple times, as the sampling population
is always the same

In sampling without replacement, the unit can be sampled more than once and each
time has the same probability of getting sampled. This type of sampling virtually expands
the size of population to infinity as you can create as many samples of any size from this

Chapter 3 ■ Sampling and reSampling teChniqueS

73

method Connecting back to our previous example in SWOR, if we have to choose three
balls with SWR, each ball will have the exact same finite probability of 1/10 for sampling.

The important thing to note here is sampling with replacement technically makes
the population size infinite. Be careful while choosing SWR as in most cases each
observation is unique and counting it multiple times creates bias in your data. Essentially
it will mean you are allowing a repetition of observation. For example, 100 people having
the same name, income, age, and gender in the sample will create bias in the dataset.

3.3 Credit Card Fraud: Population Statistics
The credit card fraud dataset is a good example of how to build a sampling plan for machine
learning algorithms. The dataset is huge, with 10 million rows and multiple features. This
section will show you how the key sampling measure of population can be calculated and
interpreted for this dataset. The following statistical measures will be shown:

•	 Population mean

•	 Population variance

•	 Pooled mean and variance

To explain these measures, we chose the outstanding balance feature as the quantity
of interest.

3.3.1 Data Description
A quick recap from Chapter 2 to describe the following variables in the credit card
fraud data,

•	 custID: A unique identifier for each customer

•	 gender: Gender of the customer

•	 state: State in the United States where the customer lives

•	 cardholder: Number of credit cards the customer holds

•	 balance: Balance on the credit card

•	 numTrans: Number of transactions to date

•	 numIntlTrans: Number of international transactions to date

•	 creditLine: The financial services corporation, such as Visa,
MasterCard, or American Express

•	 fraudRisk: Binary variable, 1 means customer being frauded, 0
means otherwise

str(data)
 Classes 'data.table' and 'data.frame': 10000000 obs. of 14 variables:
 $ creditLine : int 1 1 1 1 1 1 1 1 1 1 ...
 $ gender : int 1 1 1 1 1 1 1 1 1 1 ...

http://dx.doi.org/10.1007/978-1-4842-2334-5_2

Chapter 3 ■ Sampling and reSampling teChniqueS

74

 $ state : int 1 1 1 1 1 1 1 1 1 1 ...
 $ CustomerID : int 4446 59161 136032 223734 240467 248899 262655 324670
390138 482698 ...
 $ NumOfCards : int 1 1 1 1 1 1 1 1 1 1 ...
 $ OutsBal : int 2000 0 2000 2000 2000 0 0 689 2000 0 ...
 $ DomesTransc: int 31 25 78 11 40 47 15 17 48 25 ...
 $ IntTransc : int 9 0 3 0 0 0 0 9 0 35 ...
 $ FraudFlag : int 0 0 0 0 0 0 0 0 0 0 ...
 $ State : chr "Alabama" "Alabama" "Alabama" "Alabama" ...
 $ PostalCode : chr "AL" "AL" "AL" "AL" ...
 $ Gender : chr "Male" "Male" "Male" "Male" ...
 $ CardType : chr "American Express" "American Express" "American
Express" "American Express" ...
 $ CardName : chr "SimplyCash® Business Card from American Express"
"SimplyCash® Business Card from American Express" "SimplyCash® Business Card
from American Express" "SimplyCash® Business Card from American Express" ...
 - attr(*, ".internal.selfref")=<externalptr>
 - attr(*, "sorted")= chr "creditLine"

As stated earlier, we chose outstanding balance as the variable/feature of interest.
In the str() output for data descriptive, we can see the outstanding balance is stored in
a variable named OutsBal, which is of type integer. Being a continuous variable, mean
and variance can be defined for this variable.

3.3.2 Population Mean
Mean is a more traditional statistic for measuring the central tendency of any distribution
of data. The mean outstanding balance of our customers in the credit card fraud dataset
turns out to be $4109.92. This is our first understanding about the population. Population
mean tells us that on average, the customers have an outstanding balance of $4109.92 on
their cards.

Population_Mean_P <-mean(data$OutsBal)
cat("The average outstanding balance on cards is ",Population_Mean_P)
 The average outstanding balance on cards is 4109.92

3.3.3 Population Variance
Variance is a measure of spread for the given set of numbers. The smaller the variance,
the closer the numbers are to the mean and the larger the variance, the farther away
the numbers are from the mean. For the outstanding balance, the variance is 15974788
and standard deviation is 3996.8. The variance by itself is not comparable across
different populations or samples. Variance is required to be seen along with mean of the
distribution. Standard deviation is another measure and it equals the square root of the
variance.

Chapter 3 ■ Sampling and reSampling teChniqueS

75

Population_Variance_P <-var(data$OutsBal)
cat("The variance in the average outstanding balance is ",Population_Variance_P)
 The variance in the average outstanding balance is 15974788
cat("Standard deviation of outstanding balance is", sqrt(Population_Variance_P))
 Standard deviation of outstanding balance is 3996.847

3.3.4 Pooled Mean and Variance
Pooled mean and variance estimate population mean and variance when multiple
samples are drawn independently of each other. To illustrate the pooled mean and
variance compared to true population mean and variance, we will first create five random
samples of size 10K, 20K, 40K, 80K, and 100K and calculate their mean and variance.

Using these samples, we will estimate the population mean and variance by using
pooled mean and variance formula. Pooled values are useful because estimates from a
single sample might produce a large sampling error, whereas if we draw many samples
from the same population, the sampling error is reduced. The estimate in a collective
manner will be closer to the true population statistics.

 ■ Note as the sampling fraction is low for the various sample sizes, (for 100K sample size
f = 100000/10000000 = 1/100) is too large. the variance will not be impacted by the degrees
of freedom correction by 1, so we can safely use the var() function in r for sample variance.

In the following R snippet, we are creating five random samples using the sample()
function. sample() is an built-in function that’s been used multiple times in the book.
Another thing to note is that the sample() function works with some random seed values,
so if you want to create reproducible code, use the set.seed(937) function in R. This will
make sure that each time you run the code, you get the same random sample.

set.seed(937)
i<-1
n<-rbind(10000,20000,40000,80000,100000)
Sampling_Fraction<-n/nrow(data)
sample_mean<-numeric()
sample_variance<-numeric()
for(i in 1:5)
{
 sample_100K <-data[sample(nrow(data),size=n[i], replace =FALSE, prob
=NULL),]
 sample_mean[i]<-round(mean(sample_100K$OutsBal),2)
 sample_variance[i] <-round(var(sample_100K$OutsBal),2)
}

Chapter 3 ■ Sampling and reSampling teChniqueS

76

Sample_statistics <-cbind (1:5,c('10K','20K','40K','80K','100K'),sample_
mean,sample_variance,round(sqrt(sample_variance),2),Sampling_Fraction)

knitr::kable(Sample_statistics, col.names =c("S.No.", "Size","Sample_
Mean","Sample_Variance","Sample SD","Sample_Fraction"))

In Table 3-1, basic properties of the five samples are presented. The highest sample
fraction is for the biggest sample size. A good thing to notice is that, as the sample size
increases, the sample variance gets smaller.

Table 3-1. Sample Statistics

S.No. Size Sample_Mean Sample_Variance Sample SD Sample_Fraction

1 10K 4092.48 15921586.32 3990.19 0.001

2 20K 4144.26 16005696.09 4000.71 0.002

3 40K 4092.28 15765897.18 3970.63 0.004

4 80K 4127.18 15897698.44 3987.19 0.008

5 100K 4095.28 15841598.06 3980.15 0.01

Now let’s use the pooled mean and variance formula to calculate the population
mean from the five samples we drew from the population and then compare them with
population mean and variance.

i<-1
Population_mean_Num<-0
Population_mean_Den<-0
for(i in 1:5)
{
 Population_mean_Num =Population_mean_Num +sample_mean[i]*n[i]
 Population_mean_Den =Population_mean_Den +n[i]
}

Population_Mean_S<-Population_mean_Num/Population_mean_Den

cat("The pooled mean (estimate of population mean) is",Population_Mean_S)
 The pooled mean (estimate of population mean) is 4108.814

The pooled mean is $4,108.814. Now we apply this same process to calculate the
pooled variance from the samples. Additionally, we will show the standard deviation as
an extra column to make dispersion comparable to the mean measure.

i<-1
Population_variance_Num<-0
Population_variance_Den<-0

Chapter 3 ■ Sampling and reSampling teChniqueS

77

for(i in 1:5)
{
 Population_variance_Num =Population_variance_Num +(sample_
variance[i])*(n[i] -1)
 Population_variance_Den =Population_variance_Den +n[i] -1
}

Population_Variance_S<-Population_variance_Num/Population_variance_Den

Population_SD_S<-sqrt(Population_Variance_S)

cat("The pooled variance (estimate of population variance) is", Population_
Variance_S)
 The pooled variance (estimate of population variance) is 15863765
cat("The pooled standard deviation (estimate of population standard
deviation) is", sqrt(Population_Variance_S))
 The pooled standard deviation (estimate of population standard deviation)
is 3982.934

The pooled standard deviation is $3,982.934. Now we have both pooled statistics and
population statistics. Here, we create a comparison between the two and see how well the
pooled statistics estimated the population statistics:

SamplingError_percent_mean<-round((Population_Mean_P -sample_mean)/
Population_Mean_P,3)
SamplingError_percent_variance<-round((Population_Variance_P -sample_
variance)/Population_Variance_P,3)

Com_Table_1<-cbind(1:5,c('10K','20K','40K','80K','100K'),Sampling_
Fraction,SamplingError_percent_mean,SamplingError_percent_variance)

knitr::kable(Com_Table_1, col.names =c("S.No.","Size","Sampling_
Frac","Sampling_Error_Mean(%)","Sampling_Error_Variance(%)"))

Table 3-2 shows the comparison of the population mean and the variance against
each individual sample. The bigger the sample, the closer the mean estimate to the true
population estimate.

Table 3-2. Sample Versus Population Statistics

S.No. Size Sampling_Frac Sampling_Error
_Mean(%)

Sampling_Error
_Variance(%)

1 10K 1000 0.004 0.003

2 20K 500 -0.008 -0.002

3 40K 250 0.004 0.013

4 80K 125 -0.004 0.005

5 100K 100 0.004 0.008

Chapter 3 ■ Sampling and reSampling teChniqueS

78

Create a same view for pooled statistics against the population statistics. The
difference is expressed as a percentage of differences among pooled/sample to the true
population statistics.

SamplingError_percent_mean<-(Population_Mean_P -Population_Mean_S)/
Population_Mean_P
SamplingError_percent_variance<-(Population_Variance_P -Population_
Variance_S)/Population_Variance_P

Com_Table_2 <-cbind(Population_Mean_P,Population_Mean_S,SamplingError_
percent_mean)
Com_Table_3 <-cbind(Population_Variance_P,Population_
Variance_S,SamplingError_percent_variance)

knitr::kable(Com_Table_2)

knitr::kable(Com_Table_3)

Table 3-3. Population Mean and Sample Mean Difference

Population_Mean_P Population_Mean_S SamplingError_percent_mean

4109.92 4108.814 0.000269

Table 3-4. Population Variance and Sample Variance

Population_Variance_P Population_Variance_S SamplingError_percent_variance

15974788 15863765 0.0069499

Pooled mean is close to the true mean of the population. This shows that given
multiple sample the pooled statistics are more likely to capture true statistics values. You
have now seen how a sample so small in size when compared to population gives you
estimates so close to the population estimate.

Does this example give you a tool of dealing with big data by using small samples
from them? By now you might have started thinking about the cost-benefit analysis of
using sampling. This is very relevant to machine learning algorithms churning millions of
data points. More data points does not necessarily mean all of them contain meaningful
patterns/trends/information. Sampling will try to save you from weeds and help you
focus on meaningful datasets for machine learning.

3.4 Business Implications of Sampling
Sampling is applied at multiple stages of model development and decision making.
Sampling methods and interpretation are driven by business constraints and statistical
methods chosen for inference testing. There is a delicate balance set by data scientists

Chapter 3 ■ Sampling and reSampling teChniqueS

79

between the business implications and how statistical results stay valid and relevant.
Most of the time, the problem is given by business and data scientists have to work in a
targeted manner to solve the problem.

For instance, suppose the business wants to know why customers are not returning
to their web site. This problem will dictate the terms of sampling. To know why customers
are not coming back, do you really need a representative sample of whole population of
your customers? Or you will just take a sample of customers who didn’t return? Or rather
you would like to only study a sample of customers who return and negate the results?
Why not create a custom mixed bag of all returning and not returning customers? As
you can observe, lot of these questions, along with practical limitations on time, cost,
computational capacity, etc. will be deciding factors on how to go about gathering data
for this problem.

In general, the scenarios listed next are salient features of sampling and some
shortcomings that need to be kept in mind while using sampling in your machine
learning model building flow

3.4.1 Features of Sampling
•	 Scientific in nature

•	 Optimizes time and space constraints

•	 Reliable method of hypothesis testing

•	 Allows in-depth analysis by reducing cost

•	 In cases where population is very large and infrastructure is a
constraint, sampling is the only way forward

3.4.2 Shortcomings of Sampling
•	 Sampling bias can cause wrong inference

•	 Representative sampling is always not possible due to size,
type, requirements, etc.

•	 It is not exact science but an approximation within certain
confidence limits

•	 In sample survey, we have issues of manual errors, inadequate
response, absence of informants, etc.

3.5 Probability and Non-Probability Sampling
The sampling methodology largely depends on what we want to do with the sample.
Whether we want to generate a hypothesis about population parameters or want to test a
hypothesis We classify sampling method into two major buckets—probability sampling
and non-probability sampling. The comparison in Figure 3-2 provides the high-level
differences between them.

Chapter 3 ■ Sampling and reSampling teChniqueS

80

In probability sampling, the sampling methods draws each unit with some finite
probability. The sampling frame that maps the population unit to sample unit is created
based on the probability distribution of the random variable utilized for sampling. These
types of methods are commonly used for model sampling, and have high reliability
to draw population inference. They eliminate bias in parameter estimation and can
be generalized to the population. Contrary to non-probability sampling, we need to
know the population beforehand to sample from. This makes this method costly and
sometimes difficult to implement.

Non-probability sampling is sampling based on subjective judgment of experts
and business requirements. This is a popular method where the business needs
don’t need to align with statistical requirements or it is difficult to create a probability
sampling frame. The non-probability sampling method does not assign probability to
population units and hence it becomes highly unreliable to draw inferences from the
sample. Non-probability sampling have bias toward the selected classes as the sample
is not representative of population. Non-probability methods are more popular with
exploratory research for new traits of population that can be tested later with more
statistical rigor. In contrast to probability techniques, it is not possible to estimate
population parameters with accuracy using non-probability techniques.

3.5.1 Types of Non-Probability Sampling
In this section, we briefly touch upon the three major types of non-probability sampling
methods. As these techniques are more suited for survey samples, we will not discuss
them in detail.

3.5.1.1 Convenience Sampling
In convenience sampling, the expert will choose the data that is easily available. This
technique is the cheapest and consumes less time. For our case, suppose that the data
from New York is accessible but for other states, the data is not readily accessible so
we choose data from one sate to study whole United States. The sample would not
be a representative sample of population and will be biased. The insights also cannot

Figure 3-2. Probability versus non-probability sampling

Chapter 3 ■ Sampling and reSampling teChniqueS

81

generalized to the entire population. However, the sample might allow us to create some
hypothesis that can later be tested using random samples from all the states.

3.5.1.2 Purposive Sampling
When the sampling is driven by the subjective judgment of the expert, it’s called purposive
sampling. In this method the expert will sample those units which help him establish the
hypothesis he is trying to test. For our case, if the researcher is only interested in looking
at American Express cards, he will simply choose some units from the pool of records
from that card type. Further, there are many types of purposive sampling methods, e.g.,
maximum variance sampling, extreme case sampling, homogeneous sampling etc. but
these are not discussed in this book, as they lack representativeness of population which is
required for unbiased machine learning methods.

3.5.1.3 Quota Sampling
As the name goes, quota sampling is based on a prefixed quota for each type of cases,
usually the quota decided by an expert. Fixing a quota grid for sampling ensures equal
or proportionate representation of subjects being sampled. This technique is popular in
marketing campaign design, A/B testing, and new feature testing.

In this chapter we cover sampling methods with examples drawn from our credit
card fraud data. We encourage you to explore more non-probability sampling in context
of the business problem at your disposal. There are times when experience can beat
statistics, so non-probability sampling is equally important in many use cases.

3.6 Statistical Theory on Sampling Distributions
Sampling techniques draw their validity from well-established theorems and time-tested
methods from statistics. For studying sampling distribution, we need to understand two
important theorems from statistics:

•	 Law of Large Numbers

•	 Central Limit Theorem

This section explains these two theorems with some simulations.

3.6.1 Law of Large Numbers: LLN
In general, as the sample size increases in a test, we expect the results to be more
accurate, having smaller deviations in the expected outcomes. The law of large numbers
formalizes this with help of the probability theory. The first notable reference to this
concept was given by Italian mathematician Gerolamo Cardano in the 16th century,
when he observed and stated that empirical statistics get closer to their true value as the
number of trials increases.

Chapter 3 ■ Sampling and reSampling teChniqueS

82

In later years, a lot of work was done to get different form of the Law of Large
Numbers. The example we are going to discuss for a coin toss was first proved by
Bernoulli and later he provided proof of his observations. Aleksander Khinchin provided
the most popular statement for the Law of Large Numbers, also called the weak law of
large numbers. The weak law of large number is alternatively called the law of averages.

3.6.1.1 Weak Law of Large Numbers
In probability space, the sample average converges to an expected value as the sample
size trends to infinity. In other words, as the number of trials or sample size grows, the
probability of getting close to the true average increases. The weak law is also called
Khinchin’s Law to recognize his contribution.

The weak law of large numbers states that the sample averages converge in
probability toward the expected value, X when nn

P

® ®¥m .

Alternatively, for any positive number ∈

lim Pr
n

nX®¥
- >() =m e 0.

3.6.1.2 Strong Law of Large Numbers
It is important to understand the subtle difference between the weak and strong law
of large numbers. The strong law of large numbers states that the sample average will
converge to true average by probability 1, while the weak law only states that they will
converge. Hence, the strong law is more powerful to state while estimating population
mean by sample means.

The strong law of large numbers states that the sample average converges almost

surely to the expected value X when nn® ® ¥
a s

.
. .

m

Equivalent to

Pr lim
n

nX®¥
=() =m 1.

 ■ Note there are multiple representations and proofs for the law of large numbers. You
are encouraged to refer to any graduate level text of probability to learn more.

Without getting into the statistical details of this theorem, we will set up an example
to understand. Consider a coin toss example whereby a coin toss outcome follows a
binomial distribution.

www.allitebooks.com

https://en.wikipedia.org/wiki/Almost_sure_convergence#Almost sure convergence
https://en.wikipedia.org/wiki/Almost_sure_convergence#Almost sure convergence
http://www.allitebooks.org

Chapter 3 ■ Sampling and reSampling teChniqueS

83

Suppose you have a biased coin and you have to determine what the probability is
of getting “heads” in any toss of the coin. According to LLN, if you perform the coin toss
experiment multiple times, you will be able to find the actual probability of getting heads.

Please note that for a unbiased coin you can use the classical probability theory
and get the probability, P(head)= Total no. of favorable outcomes/Total number
of outcomes = 1/2. But for an unbiased coin, you have unequal probability associated
with each event and hence cannot use the classical approach. We will set up a coin toss
experiment to determine the probability of getting heads in a coin toss.

3.6.1.3 Steps in Simulation with R Code
Step 1: Assume some value of binomial distribution parameter, p=0.60(say), which we
will be be estimating using the Law of Large Numbers

Set parameters for a binomial distribution Binomial(n, p)
n -> no. of toss
p -> probability of getting a head
library(data.table)
n <-100
p <-0.6

In the previous code snippet, we set the true mean for our experiment. Which is to
say we know that our population is coming from a binomial distribution with p=0.6. The
experiment will now help us estimate this value as the number of experiments increases.

Step 2: Sample a point from binomial distribution (p).

#Create a data frame with 100 values selected samples from Binomial(1,p)
set.seed(917);
dt <-data.table(binomial =rbinom(n, 1, p) ,count_of_heads =0, mean =0)

Setting the first observation in the data frame

ifelse(dt$binomial[1] ==1, dt[1, 2:3] <-1, 0)
 [1] 1

We are using a built-in function rbinom() to sample binomial distributed random
variable with parameter, p=0.6. This probability value is chosen such that the coin is
biased. If the coin is not biased, then we know the probability of heads is 0.5.

Step 3: Calculate the probability of heads as the number of heads/total no. of coin toss.

Let's run a experiment large number of times (till n) and see how the
average of heads -> probability of heads converge to a value

Chapter 3 ■ Sampling and reSampling teChniqueS

84

for (i in 2 :n)
 {
 dt$count_of_heads[i] <-ifelse(dt$binomial[i] ==1, dt$count_of_heads[i]<-
dt$count_of_heads[i -1]+1, dt$count_of_heads[i -1])
 dt$mean[i] <-dt$count_of_heads[i] /i
}

At each step, we determine if the outcome is heads or tails. Then, we count the
number of heads and divide by the number of trials to get an estimated proportion of
heads. When you run the same experiment a large number of times, LLN states that you
will converge to the probability (expectation or mean) of getting heads in a experiment.
For example, at trial 30, we will be counting how many heads so far and divide by 30 to get
the average number of heads.

Step 4: Plot and see how the average over the sample is converging to p=0.60.

Plot the average no. of heads -> probability of heads at each experiment stage
plot(dt$mean, type='l', main ="Simulation of average no. of heads",
xlab="Size of Sample", ylab="Sample mean of no. of Heads")
abline(h = p, col="red")

Figure 3-3 shows that as the number of experiments increases, the probability
is converging to the true probability of heads (0.6). You are encouraged to run the
experiment a large number of times to see the exact convergence. This theorem helps us
estimate unknown probabilities by method of experiments and create the distribution for
inference testing.

Figure 3-3. Simulation of the coin toss experiment

Chapter 3 ■ Sampling and reSampling teChniqueS

85

3.6.2 Central Limit Theorem
The Central Limit Theorem is another very important theorem in probability theory
which allows hypothesis testing using the the sampling distribution. In simpler words,
the Central Limit Theorem states that sample averages of large number of iterations
of independent random variables, each with well-defined means and variances, are
approximately normally distributed.

The first written explanation of this concept was provided by de Moivre in his
work back in the early 18th century when he used normal distribution to approximate
the number of heads from the tossing experiment of a fair coin. Pierre-Simon Laplace
published Théorie analytique des probability in 1812, where he expanded the idea of de
Moivre by approximating binomial distribution with normal distribution. The precise
proof of CLT was provided by Aleksandr Lyapunov in 1901 when he defined it in general
terms and proved precisely how it worked mathematically. In probability, this is one the
most popular theorems along with the Law of Large Numbers.

In context of this book, we will mathematically state by far the most popular version
of the Central Limit Theorem (Lindeberg-Levy CLT).

For a sequence of i.i.d random variables {X1, X2, …} with a well defined expectation

and variance (E[Xi] = μ and Var[Xi] = σ2< ¥), as n trends to infinity n Sn -()m converge

in distribution to a normal N(0, sigma2),

n
n

X N
i

n

i

1
0

1

2

=
åæ

è
ç

ö

ø
÷ -

æ

è
ç

ö

ø
÷ ()®m

d

, s

There are other versions of this theorem, such as Lyapunov CLT, Lindeberg CLT,
Martingale difference CLT, and many more. It is important to understand how the Law
of Large Numbers and the Central Limit Theorem tie together in our sampling context.
The Law of Large Numbers states that the sample mean converges to the population
mean as the sample size grows, but it does not talk about distribution of sample means.
The Central Limit Theorem provides us with the insight into the distribution around
mean and states that it converges to a normal distribution for large number of trials.
Knowing the distribution then allows us to do inferential testing, as we are able to create
confidence bounds for a normal distribution.

We will again set up a simple example to explain the theorem. As a simple example,
we will start sampling from a exponential distribution and will show the distribution of
sample mean.

3.6.2.1 Steps in Simulation with R Code
Step 1: Set a number of samples (say r=5000) to draw from a mixed population.

#Number of samples
r<-5000
#Size of each sample
n<-10000

Chapter 3 ■ Sampling and reSampling teChniqueS

86

In the previous code, r represented the number of samples to draw, and n
represented the number of units in each sample. As per CLT, the larger the number of
samples, the better the convergence to a normal distribution.

Step 2: Start sampling by drawing a sample of sizes n (say n=10000 each). Draw
samples from normal, uniform, Cauchy, gamma, and other distributions to test the
theorem for different distributions. Here, we take an exponential distribution with
parameter (l = 0 6.)

#Produce a matrix of observations with n columns and r rows. Each row is
one sample
lambda<-0.6
Exponential_Samples =matrix(rexp(n*r,lambda),r)

Now, the Exponential_Samples data frame contain the series of i.i.d samples drawn
from exponential distribution with the parameter, l = 0 6.

Step 3: Calculate the sum, means, and variance of all the samples for each sample.

 all.sample.sums <-apply(Exponential_Samples,1,sum)
 all.sample.means <-apply(Exponential_Samples,1,mean)
 all.sample.vars <-apply(Exponential_Samples,1,var)

The previous step calculated the sum, mean, and variance of all the i.i.d samples.
Now in next step, we will observe the distribution of the sums, means, and variances. As
per CLT, we will observe that the mean is following a normal distribution.

Step 4: Plot the combined sum, means, and variances.

par(mfrow=c(2,2))
hist(Exponential_Samples[1,],col="gray",main="Distribution of One Sample")
hist(all.sample.sums,col="gray",main="Sampling Distribution of
 the Sum")
hist(all.sample.means,col="gray",main="Sampling Distribution of the Mean")
hist(all.sample.vars,col="gray",main="Sampling Distribution of
 the Variance")

Figure 3-4 shows the plots of a exponential sample and sum, mean, and standard
deviation of the all r samples.

Chapter 3 ■ Sampling and reSampling teChniqueS

87

Figure 3-4 shows the distribution of statistics of the samples, i.e., the sum, mean,
and variance. The first plot shows the histogram of the first sample from the exponential
distribution. You can see the distribution of units in sample is exponential. The
visual inspection shows that the statistics estimated from i.i.d samples are following a
distribution close to a normal distribution.

Step 5: Repeat this experiment with other distributions and see that the results are
consistent with the CLT for all the distributions.

There are some other standard distributions that can be used to validate the results
of Central Limit Theorem. Our example just discussed the exponential distribution; you
are encouraged to use the following distribution to validate the Central Limit Theorem.

Normal_Samples =matrix(rnorm(n*r,param1,param2),r),

Uniform_Samples =matrix(runif(n*r,param1,param2),r),

Poisson_Samples =matrix(rpois(n*r,param1),r),

Cauchy_Samples =matrix(rcauchy(n*r,param1,param2),r),

Bionomial_Samples =matrix(rbinom(n*r,param1,param2),r),

Gamma_Samples =matrix(rgamma(n*r,param1,param2),r),

ChiSqr_Samples =matrix(rchisq(n*r,param1),r),

StudentT_Samples =matrix(rt(n*r,param1),r))

Figure 3-4. Sampling distribution plots

Chapter 3 ■ Sampling and reSampling teChniqueS

88

It is a good practice to not rely on visual inspection and perform formal tests to infer
any properties of distribution. Histogram and a formal test of normality is a good way to
establish both visually and by parametric testing that the distribution of means is actually
normally distributed (as claimed by CLT).

Next, we perform a Shapiro-Wilk test to test for normality of distribution of means.
Other normality tests are discussed in briefly in Chapter 6. One of the most popular non-
parametric normality tests is the KS one sample test, which is discussed in Chapter 7.

#Do a formal test of normality on the distribution of sample means

 Mean_of_sample_means <-mean (all.sample.means)
 Variance_of_sample_means <-var(all.sample.means)

testing normality by Shapiro wilk test
shapiro.test(all.sample.means)

 Shapiro-Wilk normality test

 data: all.sample.means
 W = 0.99979, p-value = 0.9263

You can see that the p-value is significant (>0.05) from the Shapiro-Wilk test, which
means that we can’t reject the Null hypothesis that distribution is normally distributed.
The distribution is indeed normally distributed with a mean = 1.66 and variance = 0.00027.

Visual inspection can be done by plotting histograms. Additionally, for clarity, let’s
superimpose the normal density function on the histogram to confirm if the distribution
is normally distributed.

x <-all.sample.means
h<-hist(x, breaks=20, col="red", xlab="Sample Means",
main="Histogram with Normal Curve")
xfit<-seq(min(x),max(x),length=40)
yfit<-dnorm(xfit,mean=Mean_of_sample_means,sd=sqrt(Variance_of_sample_means))
yfit <-yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)

http://dx.doi.org/10.1007/978-1-4842-2334-5_6
http://dx.doi.org/10.1007/978-1-4842-2334-5_7

Chapter 3 ■ Sampling and reSampling teChniqueS

89

The most important points to remember about the Law of Large Numbers and CLT are:

•	 As the sample size grows large, you can expect a better estimate of
the population/model parameters. This being said, a large sample
size will provide you with unbiased and more accurate estimates
for hypothesis testing.

•	 The Central Limit Theorem helps you get a distribution and hence
allows you to get a confidence interval around parameters and
apply inference testing. The important thing is that CLT doesn’t
assume any distribution of population from which samples are
drawn, which frees you from distribution assumptions.

3.7 Probability Sampling Techniques
In this section, we introduce some of the popular probability sampling techniques and
show how to perform them using R. All the sampling techniques are explained using our
credit card fraud data. As a first step of explaining the individual techniques, we create the
population statistics and distribution and then compare the same sample properties with
the population properties to ascertain the sampling outputs.

3.7.1 Population Statistics
We will look at some basic features of data. These features will be called as population
statistics/parameters. We will then show different sampling methods and compare the
result with population statistics.

Figure 3-5. Distribution of sample means with normal density lines

Chapter 3 ■ Sampling and reSampling teChniqueS

90

 1. Population data dimensions

str() shows us the column names, type, and few values in the
column. You can see the dataset is a mix of integers and characters.

str(data)
 Classes 'data.table' and 'data.frame': 10000000 obs. of 14 variables:
 $ creditLine : int 1 1 1 1 1 1 1 1 1 1 ...
 $ gender : int 1 1 1 1 1 1 1 1 1 1 ...
 $ state : int 1 1 1 1 1 1 1 1 1 1 ...
 $ CustomerID : int 4446 59161 136032 223734 240467 248899 262655 324670
390138 482698 ...
 $ NumOfCards : int 1 1 1 1 1 1 1 1 1 1 ...
 $ OutsBal : int 2000 0 2000 2000 2000 0 0 689 2000 0 ...
 $ DomesTransc: int 31 25 78 11 40 47 15 17 48 25 ...
 $ IntTransc : int 9 0 3 0 0 0 0 9 0 35 ...
 $ FraudFlag : int 0 0 0 0 0 0 0 0 0 0 ...
 $ State : chr "Alabama" "Alabama" "Alabama" "Alabama" ...
 $ PostalCode : chr "AL" "AL" "AL" "AL" ...
 $ Gender : chr "Male" "Male" "Male" "Male" ...
 $ CardType : chr "American Express" "American Express" "American
Express" "American Express" ...
 $ CardName : chr "SimplyCash® Business Card from American Express"
"SimplyCash® Business Card from American Express" "SimplyCash® Business Card
from American Express" "SimplyCash® Business Card from American Express" ...
 - attr(*, ".internal.selfref")=<externalptr>
 - attr(*, "sorted")= chr "creditLine"

 2. Population mean for measures

a. Outstanding balance: On average each card carries an
outstanding amount of $4109.92.

mean_outstanding_balance <- mean(data$OutsBal)
mean_outstanding_balance

[1] 4109.92

b. Number of international transactions: Average number of
international transactions is 4.04.

mean_international_trans <- mean(data$IntTransc)
mean_international_trans

[1] 4.04719

c. Number of domestic transactions: Average number
of domestic transactions is very high compared to
international transactions; the number is 28.9 ~ 29
transactions.

Chapter 3 ■ Sampling and reSampling teChniqueS

91

mean_domestic_trans <- mean(data$DomesTransc)
mean_domestic_trans

[1] 28.93519

 3. Population variance for measures

a. Outstanding balance:

Var_outstanding_balance <- var(data$OutsBal)
Var_outstanding_balance
[1] 15974788

b. Number of international transactions:

Var_international_trans <- var(data$IntTransc)
Var_international_trans
[1] 74.01109

c. Number of domestic transactions:

Var_domestic_trans <- var(data$DomesTransc)
Var_domestic_trans
[1] 705.1033

 4. Histogram

a. Outstanding balance:

hist(data$OutsBal, breaks=20, col="red", xlab="Outstanding Balance",
main="Distribution of Outstanding Balance")

Figure 3-6. Histogram of outstanding balance

Chapter 3 ■ Sampling and reSampling teChniqueS

92

b. Number of international transactions:

hist(data$IntTransc, breaks=20, col="blue", xlab="Number of International
Transactions",
main="Distribution of International Transactions")

Figure 3-7. Histogram of number of international transactions

c. Number of domestic transactions:

hist(data$DomesTransc, breaks=20, col="green", xlab="Number of Domestic
Transactions",
main="Distribution of Domestic Transactions")

Chapter 3 ■ Sampling and reSampling teChniqueS

93

Figure 3-8 shows the mean, variance, and distribution of few important variables
from our credit card fraud dataset. These population statistics will be compared to sample
statistics to see which sampling techniques provide a representative sample.

3.7.2 Simple Random Sampling
Simple random sampling is a process of selecting a sample from the population where
each unit of population is selected at random Each unit has the same individual
probability of being chosen at any stage during the sampling process, and the subset of k
individuals has the same probability of being chosen for the sample as any other subset of
k individuals.

Simple random is a basic type of sampling, hence it can be a component of more
complex sampling methodologies. In coming topics, you will see simple random
sampling form an important component of other probability sampling methods, like
stratified sampling and cluster sampling.

Simple random sampling is typically without replacement, i.e., by the design of
sampling process, we make sure that no unit can be selected more than once. However,
simple random sampling can be done with replacement, but in that case the sampling
units will not be independent. If you draw a small size sample from a large population,
sampling without replacement and sampling with replacement will give approximately
the same results, as the probability of each unit to be chosen is very small. Table 3-5
compares the statistics from simple random sampling with and without replacement. The
values are comparable, as the population size is very big (~10 million). We will see this
fact in our example.

Figure 3-8. Histogram of number of domestic transactions

Chapter 3 ■ Sampling and reSampling teChniqueS

94

Advantages:

•	 It is free from classification error

•	 Not much advanced knowledge is required of the population

•	 Easy interpretation of sample data

Disadvantages:

•	 Complete sampling frame (population) is required to get
representative sample

•	 Data retrieval and storage increases cost and time

•	 Simple random sample carries the bias and errors present in the
population, and additional interventions are required to get rid of those

Function: Summarise
Summarise is a function in the dplyr library. This function helps aggregate the data

by dimensions. This works similar to a pivot table in Excel.

•	 group_by: This argument takes the categorical variable by which
you want to aggregate the measures.

•	 mean(OutsBal): This argument gives the aggregating function and
the field name on which aggregation is to be done.

#Population Data :Distribution of Outstanding Balance across Card Type

library(dplyr)

summarise(group_by(data,CardType),Population_OutstandingBalance=mean(OutsBal))
 Source: local data table [4 x 2]

 CardType Population_OutstandingBalance
 1 American Express 3820.896
 2 MasterCard 3818.300
 3 Visa 4584.042
 4 Discover 4962.420

Table 3-5. Comparison Table with Population Sampling with and Without Replacement

CardType OutstandingBalance_
Population

OutstandingBalance_
Random_WOR

OutstandingBalance_
Random_WR

American Express 3820.896 3835.064 3796.138

Discover 4962.420 4942.690 4889.926

MasterCard 3818.300 3822.632 3780.691

Visa 4584.042 4611.649 4553.196

Chapter 3 ■ Sampling and reSampling teChniqueS

95

The call of the summarise function by CardType shows the average outstanding
balance by card type. Discover cards have the highest average outstanding balance.

Next, we draw a random sample of 100,000 records by using a built-in function
sample() from the base library. This function creates a sampling frame by randomly
selecting indexes of data. Once we get the sampling frame, we extract the corresponding
records from the population data.

Function: Sample
Note some important arguments of the sample() function:

•	 nrow(data): This tells the size of data. Here it is 10,000,000 and
hence it will create an index of 1 to 10,000,000 and then randomly
select index for sampling.

•	 size: Allows users to provide how many data points to sample
from the population. In our case, we have set n to 100,000.

•	 replace: This argument allows users to state if the sampling
should be done without replacement (FALSE) or with
replacement (TRUE).

•	 prob: This is vector of probabilities for obtaining the sampling
frame. We have set this to NULL, so that they all have the same
weight/probability.

set.seed(937)
Simple Random Sampling Without Replacement
library("base")

sample_SOR_100K <-data[sample(nrow(data),size=100000, replace =FALSE, prob
=NULL),]

Now, let’s again see how the average balance looks for the simple, random sample.
As you can see the order of average balances has been maintained. Note that the average
is very close to the population average as calculated in the previous step for population.

#Sample Data : Distribution of Outstanding Balance across Card Type

library(dplyr)

summarise(group_by(sample_SOR_100K,CardType),Sample_OutstandingBalance=mean
(OutsBal))
 Source: local data table [4 x 2]

 CardType Sample_OutstandingBalance
 1 MasterCard 3822.632
 2 American Express 3835.064
 3 Visa 4611.649
 4 Discover 4942.690

Chapter 3 ■ Sampling and reSampling teChniqueS

96

Function: KS.test()

This is one of the non-parametric tests for comparing the empirical distribution
functions of data. This function helps determine if the data points are coming from
the same distribution or not. It can be done as one sample test, i.e., the data Empirical
Distribution Function (EDF) compared to some preset PDF of distribution (normal,
cauchy, etc.), two sample test, i.e., when we want to see if the distribution of two samples
is the same or not.

As one of the important features of sampling is to make sure the distribution of data
does not change after sampling (except when it is done intentionally), we will use two
sample tests to see if the sample is a true representation of the population by checking if
the population and sample are drawn from the same distribution.

The important arguments are the two data series and hypothesis to test, two tail, one
tail. We are choosing the more conservative two tail test for this example. Two tail test
means that we want to make sure the equality is used in the null hypothesis.

#Testing if the sampled data comes from population or not. This makes sure
that sampling does not change the original distribution
ks.test(data$OutsBal,sample_SOR_100K$OutsBal,alternative="two.sided")
 Two-sample Kolmogorov-Smirnov test

 data: data$OutsBal and sample_SOR_100K$OutsBal
 D = 0.003042, p-value = 0.3188
 alternative hypothesis: two-sided

The KS test results clearly states that the sample and population have the same
distribution. Hence, we can say that the sampling has not changed the distribution. By
the nature of sampling, the simple random sampling without replacement retains the
distribution of data.

For visual inspection, Figure 3-9 shows the histograms for the population and the
sample. As you can see, the distribution is the same for both.

par(mfrow =c(1,2))
hist(data$OutsBal, breaks=20, col="red", xlab="Outstanding Balance",
main="Histogram for Population Data")

hist(sample_SOR_100K$OutsBal, breaks=20, col="green", xlab="Outstanding
Balance",
main="Histogram for Sample Data (without replacement)")

Chapter 3 ■ Sampling and reSampling teChniqueS

97

Now we will do a formal test on the mean of the outstanding balance from the
population and our random sample. Theoretically, we will expect the t-test on means of
two to be TRUE and hence we can say that the mean of the sample and population are the
same with 95% confidence.

Lets also do t.test for the mean of population and sample.

t.test(data$OutsBal,sample_SOR_100K$OutsBal)

 Welch Two Sample t-test

 data: data$OutsBal and sample_SOR_100K$OutsBal
 t = -0.85292, df = 102020, p-value = 0.3937
 alternative hypothesis: true difference in means is not equal to 0
 95 percent confidence interval:
 -35.67498 14.04050
 sample estimates:
 mean of x mean of y
 4109.920 4120.737

These results show that the means of population and sample are the same as the
p-value of t.test is insignificant. We cannot reject the null hypothesis that the means
are equal.

Figure 3-9. Population versus sample (without replacement) distribution

Chapter 3 ■ Sampling and reSampling teChniqueS

98

Here we will show you similar testing performed for simple random sample with
replacement. As you will see, we don’t see any significant change in the results as
compared to simple random sample, as the population size is very big and replacement
essentially doesn’t alter the sampling probability of record in any material way.

set.seed(937)
Simple Random Sampling With Replacement
library("base")

sample_SR_100K <-data[sample(nrow(data),size=100000, replace =TRUE, prob =NULL),]

In this code, for simple random sampling with replacement, we set replace to TRUE in
the sample function call.

The following code shows how we performed the KS test, on distribution of the
population and the sample drawn with replacement. The test shows that the distributions
are the same and the p-value is insignificant, which fails to reject the null of equal
distribution.

ks.test(data$OutsBal,sample_SR_100K$OutsBal,alternative="two.sided")
 Warning in ks.test(data$OutsBal, sample_SR_100K$OutsBal, alternative =
 "two.sided"): p-value will be approximate in the presence of ties

 Two-sample Kolmogorov-Smirnov test

 data: data$OutsBal and sample_SR_100K$OutsBal
 D = 0.0037522, p-value = 0.1231
 alternative hypothesis: two-sided

We create the histogram of population and sample with replacement. The plots
look the same, coupled with a formal KS test, we see both sample with replacement and
populations have the same distribution. Be cautious about this when the population size
is small.

par(mfrow =c(1,2))
hist(data$OutsBal, breaks=20, col="red", xlab="Outstanding Balance",
main="Population ")

hist(sample_SR_100K$OutsBal, breaks=20, col="green", xlab="Outstanding Balance",
main=" Random Sample Data (WR)")

Chapter 3 ■ Sampling and reSampling teChniqueS

99

The distribution is similar for population and random sample drawn with
replacement. We summarize the simple random sampling by comparing the summary
results from population, simple random sample without replacement, and simple
random sample with replacement.

population_summary <-summarise(group_by(data,CardType),OutstandingBalan
ce_Population=mean(OutsBal))
random_WOR_summary<-summarise(group_by(sample_SOR_100K,CardType),Outstanding
Balance_Random_WOR=mean(OutsBal))
random_WR_summary<-summarise(group_by(sample_SR_100K,CardType),OutstandingBa
lance_Random_WR=mean(OutsBal))
compare_population_WOR<-merge(population_summary,random_WOR_summary,
by="CardType")
compare_population_WR <-merge(population_summary,random_WR_summary,
by="CardType")

summary_compare<-cbind(compare_population_WOR,compare_population_
WR[,OutstandingBalance_Random_WR])
colnames(summary_compare)[which(names(summary_compare) == "V2")] <-
"OutstandingBalance_Random_WR"

knitr::kable(summary_compare)

Figure 3-10. Population versus sample (with replacement) distribution

Chapter 3 ■ Sampling and reSampling teChniqueS

100

Table 3-5 shows that both with and without replacement, simple random sampling
gave similar values of mean across card types, which were very close to the true mean of
the population.

Key points:

•	 Simple random sampling gives representative samples from the
population.

•	 Sampling with and without replacement can give different results
with different samples sizes, so extra care should be paid to
choosing the method when population size is small.

•	 The appropriate sample size for each problem differ based on
the confidence we want with our testing, business purposes,
cost benefit analysis, and other reasons. You will get a good
understanding of what is happening in each sampling techniques
and can choose the best one that suits the problem at hand.

3.7.3 Systematic Random Sampling
Systematic sampling is a statistical method in which the units are selected with a
systematically ordered sampling frame. The most popular form of systematic sampling is
based on a circular sampling frame, where we transverse the population from start to end
and then again continue from start in a circular manner. In this approach the probability
of each unit to be selected is the same and hence this approach is sometimes called the
equal-probability method. But you can create other systematic frames according to your
need to perform systematic sampling.

In this section, we discuss the most popular circular approach to systematic random
sampling. In this method, sampling starts by selecting a unit from the population at
random and then every Kth element is selected. When the list ends, the sampling starts
from the beginning. Here, the k is known as the skip factor, and it’s calculated as follows

k
N

n
=

where N is population size and n is sample size.
This approach to systematic sampling makes this functionally similar to simple

random sampling, but it is not the same because not every possible sample of a certain
size has an equal probability of being chosen (e.g., the seed value will make sure that the
adjacent elements are never selected in the sampling frame). However, this method is
efficient if variance within the systematic sample is more than the population variance.

Advantages:

•	 Easy to implement

•	 Can be more efficient

Chapter 3 ■ Sampling and reSampling teChniqueS

101

Disadvantages:

•	 Can be applied when the population is logically homogeneous

•	 There can be a hidden pattern in the sampling frame, causing
unwanted bias

Let’s create an example of systematic sampling from our credit card fraud data.
Step 1: Identify a subset of population that can be assumed to be homogeneous. A

possible option is to subset the population by state. In this example, we use Rhode Island,
the smallest state in the United States, to assume homogeneity.

 ■ Note Creating homogeneous sets from the population by some attribute is discussed
in Chapter 6.

For illustration purposes, let’s create a homogeneous set by subsetting the
population with the following business logic. Subset the data and pull the records whose
international transactions equal 0 and domestic transactions are less than or equal to 3.

Assuming the previous subset forms a set of homogeneous population, the
assumption in subsetting is also partially true as the customers who do not use card
domestically are likely not to use them internationally at all.

Data_Subset <-subset(data, IntTransc==0&DomesTransc<=3)
summarise(group_by(Data_Subset,CardType),OutstandingBalance=mean(OutsBal))
 Source: local data table [4 x 2]

 CardType OutstandingBalance
 1 American Express 3827.894
 2 MasterCard 3806.849
 3 Visa 4578.604
 4 Discover 4924.235

Assuming the subset has homogeneous sets of cardholders by card type, we can
go ahead with systematic sampling. If the set is not homogeneous, then it’s highly
likely that systematic sampling will give a biased sample and hence not provide a true
representation of the population. Further, we know that the data is stored in R data frame
by an internal index (which will be the same as our customer ID), so we can rely on
internally ordered index for systematic sampling.

Step 2: Set a sample size to sample from the population.

#Size of population (here the size of card holders from Data Subset)
Population_Size_N<-length(Data_Subset$OutsBal)

Set a the size of sample to pull (should be less than N), n. We will
assume n=5000

Sample_Size_n<-5000

http://dx.doi.org/10.1007/978-1-4842-2334-5_6

Chapter 3 ■ Sampling and reSampling teChniqueS

102

Step 3: Calculate the skip factor using this formula:

k
N

n
=

The skip factor will give the jump factor while creating the systematic sampling
frame. Essentially, with a seed (or starting index) of c, items will be selected after skipping
k items in order.

#Calculate the skip factor

k =ceiling(Population_Size_N/Sample_Size_n)

#ceiling(x) rounds to the nearest integer thatâ<U+0080><U+0099>s larger than x.
#This means ceiling (2.3) = 3

cat("The skip factor for systematic sampling is ",k)
 The skip factor for systematic sampling is 62

Step 4: Set a random seed value of index and then create a sequence vector with seed
and skip (sample frame). This will take a seed value of index, say i, then create a sampling
frame as i,i+k,i+2k …so one until it has a total of n (sample size) indexes in the sampling frame.

r =sample(1:k, 1)
systematic_sample_index =seq(r, r +k*(Sample_Size_n-1), k)

Step 5: Sample the records from the population by sample frame. Once we have
our sampling frame ready, it is nothing but list of indices, so we pull those data records
corresponding to the sampling frame.

systematic_sample_5K<-Data_Subset[systematic_sample_index,]

Let’s now compare the systematic sample with a simple random sample of the same
size of 5000. As from the previous discussion, we know that the simple random sampling
is a true representation of the population, so we can use that as a proxy for population
properties.

set.seed(937)
Simple Random Sampling Without Replacement
library("base")

sample_Random_5K <-Data_Subset[sample(nrow(Data_Subset),size=5000, replace
=FALSE, prob =NULL),]

Here is the result of summary comparison by card type for outstanding balances. The
comparison is important to show what differences in mean will appear if we would have
chosen a simple random sample instead of a systematic sample.

Chapter 3 ■ Sampling and reSampling teChniqueS

103

sys_summary <-summarise(group_by(systematic_sample_5K,CardType),OutstandingB
alance_Sys=mean(OutsBal))
random_summary<-summarise(group_by(sample_Random_5K,CardType),OutstandingBal
ance_Random=mean(OutsBal))

summary_mean_compare<-merge(sys_summary,random_summary, by="CardType")

print(summary_mean_compare)
 Source: local data table [4 x 3]

 CardType OutstandingBalance_Sys OutstandingBalance_Random
 1 American Express 3745.873 3733.818
 2 Discover 5258.751 4698.375
 3 MasterCard 3766.037 3842.121
 4 Visa 4552.099 4645.664

Again, we will emphasize on testing the sample EDF with population EDF to make
sure that the sampling has not distorted the distribution of data. This steps will be
repeated for all the sampling techniques, as this ensures that the sampling is stable for
modeling purposes.

ks.test(Data_Subset$OutsBal,systematic_sample_5K$OutsBal,alternative="two.
sided")
 Warning in ks.test(Data_Subset$OutsBal, systematic_sample_5K$OutsBal,
 alternative = "two.sided"): p-value will be approximate in the presence of
 ties

 Two-sample Kolmogorov-Smirnov test

 data: Data_Subset$OutsBal and systematic_sample_5K$OutsBal
 D = 0.010816, p-value = 0.6176
 alternative hypothesis: two-sided

The KS test results show that the distribution is the same and hence the sample is
a representation of the population by distribution. Figure 3-11 shows the histograms to
show how the distribution is for a homogeneous data subset and a systematic sample. We
can see that the distribution has not changed drastically.

par(mfrow =c(1,2))
hist(Data_Subset$OutsBal, breaks=50, col="red", xlab="Outstanding Balance",
main="Homogenous Subset Data")

hist(systematic_sample_5K$OutsBal, breaks=50, col="green", xlab="Outstanding
Balance",
main="Systematic Sample ")

Chapter 3 ■ Sampling and reSampling teChniqueS

104

Key points:

•	 Systematic sampling is equivalent to simple random sampling
if done on a homogeneous set of data points. Also, a large
population size suppresses the bias associated with systematic
sampling for smaller sampling fractions.

•	 Business and computational capacity are important criteria to
choose a sampling technique when the population size is large.
In our example, the systematic sampling gives a representative
sample with a lower computational cost. (There is no call to
random number generator, and hence no need to transverse the
complete list of records.)

3.7.4 Stratified Random Sampling
When the population has sub-populations that vary, it is important for the sampling
technique to consider the variations at the subpopulation (stratum) level and sample
them independently at the stratum level. Stratification is the process of identifying
homogeneous groups by featuring that group by some intrinsic property. For instance,
customers living in the same city can be thought of as belonging to that city stratum.
The strata should be mutually exclusive and collectively exhaustive, i.e., all units of the
population should be assigned to some strata and one unit can only belong to one strata.

Once we form the stratum then a simple random sampling or systematic sampling
is performed at the stratum level independently. This improves the representativeness
of sample and generally reduces the sampling error. Dividing the population in stratum

Figure 3-11. Homogeneous population and systematic sample distribution

Chapter 3 ■ Sampling and reSampling teChniqueS

105

also helps you calculate the weighted average of the population, which has less variability
than the total population combined.

There are two generally accepted methods of identifying stratified sample size:

•	 Proportional allocation, which samples equal proportions of the
data from each stratum. In this case, the same sampling fraction
is applied for all the stratum in the population. For instance, your
population has four types of credit cards and you assume that
each credit card type forms a homogeneous group of customers.
Assume the number of each type of customers in each stratum is
N1+N2+N3+N4=total, then in proportional allocation you will get
a sample having the same proportion from each stratus
(n1/N1=n2/N2=n3/N3=n4/N4=sampling fraction).

•	 Optimal allocation, which samples proportions of data
proportionate to the standard deviation of the distribution of
stratum variable. This results in large samples from strata with the
highest variability, which means the sample variance is reduced.

Another important feature of stratified sampling is that it makes sure that at least one
unit is sampled from each strata, even if the probability of it getting selected is zero. It is
recommended to limit the number of strata and make sure enough units are present in
each stratum to do sampling.

Advantages:

•	 Greater precision than simple random sampling of the same
sample size

•	 Due to higher precision, it is possible to work with small samples
and hence reduce cost

•	 Avoid unrepresentative samples, as this method samples at least
one unit from each stratum

Disadvantages:

•	 Not always possible to partition the population in disjointed groups

•	 Overhead of identifying homogeneous stratum before sampling,
adding to administrative cost

•	 Thin stratum can limit the representative sample size

To construct an example of stratified sampling with credit card fraud data, we first
have to check the stratums and then go ahead with sampling from stratum. For our
example, we will create a stratum based on the CardType and State variables.

Here, we explain step by step how to go about performing stratified sampling.
Step 1: Check the stratum variables and their frequency in population.
Lets assume CardType and State are stratum variables. In other words, we believe

the type of card and the state can be used as a criteria to stratify the customers in logical
buckets. Here are the frequencies by our stratum variables. We expect stratified sampling
to maintain the same proportion of records in the stratified sample.

Chapter 3 ■ Sampling and reSampling teChniqueS

106

#Frequency table for CardType in Population
table(data$CardType)

 American Express Discover MasterCard Visa
 2474848 642531 4042704 2839917
#Frequency table for State in Population
table(data$State)

 Alabama American Samoa Arizona Arkansas California
 20137 162574 101740 202776 1216069
 Colorado Connecticut Delaware Florida Georgia
 171774 121802 20603 30333 608630
 Guam Hawaii Idaho Illinois Indiana
 303984 50438 111775 60992 404720
 Iowa Kansas Kentucky Louisiana Maine
 203143 91127 142170 151715 201918
 Maryland Massachusetts Michigan Minnesota Mississippi
 202444 40819 304553 182201 203045
 Missouri Montana Nebraska Nevada New Hampshire
 101829 30131 60617 303833 20215
 New Jersey New Mexico New York North Carolina North Dakota
 40563 284428 81332 91326 608575
 Ohio Oklahoma Oregon Pennsylvania Rhode Island
 364531 122191 121846 405892 30233
 South Carolina South Dakota Tennessee Texas Utah
 152253 20449 203827 812638 91375
 Vermont Virginia Washington West Virginia Wisconsin
 252812 20017 202972 182557 61385
 Wyoming
 20691

The cross table breaks the whole population by the stratum variables, CardType and
State. Each stratum represents a set of customers having similar behaviors as they come
from the same stratum. The following output is trimmed for easy readability.

#Cross table frequency for population data
table(data$State,data$CardType)

 American Express Discover MasterCard Visa
 Alabama 4983 1353 8072 5729
 American Samoa 40144 10602 65740 46088
 Arizona 25010 6471 41111 29148
 Arkansas 50158 12977 82042 57599
 California 301183 78154 491187 345545
 Colorado 42333 11194 69312 48935
 Connecticut 30262 7942 49258 34340
 Delaware 4990 1322 8427 5864

Chapter 3 ■ Sampling and reSampling teChniqueS

107

Step 2: Random sample without replacement from each stratum, consider sampling
10% of the size of the stratum.

We are choosing the most popular way of stratified sampling, proportional sampling.
We will be sampling 10% of the records from each stratum.

Function : stratified()
The stratified function samples from a data.frame or a data.table in which one

or more columns can be used as a “stratification” or “grouping” variable. The result is a
new data.table with the specified number of samples from each group. The standard
function syntax is shown here:

stratified(indt, group, size, select = NULL, replace = FALSE, keep.rownames
= FALSE, bothSets = FALSE, ...)

•	 group: This argument allows users to define the stratum variables.
Here we have chosen CardType and State as the stratum variables.
So in Total, we will have 4 (card types) X 52 (states) stratum to
sample from.

•	 size: In general, size can be passed as a number (equal numbers
sample from each strata) or a sampling fraction. We will use the
sampling fraction of 0.1. For other options type ?stratified in the
console.

•	 replace: This allows you to choose sampling with or without
replacement. We have set it as false, which means sampling
without replacement.

We will be using this function to perform stratified random sampling.
We can also do the stratified sampling using our standard sample() function as well

with following steps:

 1. Create subsets of the data by stratum variables.

 2. Calculate the sample size for sampling fraction of 0.1, for each
stratum.

 3. Do a simple random sampling from each stratum for the
sample size as calculated.

The previous results and the stratified() results will be the same. But the
stratified() function will be faster to execute. You are encouraged to implement this
algorithm and try out the other functions.

set.seed(937)
#We want to make sure that our sampling retain the same proportion of the
cardtype in the sample
#Do choose a random sample without replacement from each startum consisting
of 10% of total size of stratum
library(splitstackshape)
stratified_sample_10_percent<-stratified(data, group=c("CardType","State"),s
ize=0.1,replace=FALSE)

Chapter 3 ■ Sampling and reSampling teChniqueS

108

Step 3: Check if the proportions of data points in the sample are the same as the
population.

Here is the output of stratified sample by CardType, State, and by cross tabulation.
The values show that the sampling has been done across the stratum with the same
proportion. For example, number of records Alabama and American Express is 4980, in
stratified sample the number of Alabama and American Express cardholders is 1/10 of
the population, i.e., 498. For all other stratum, the proportion is the same.

#Frequency table for CardType in sample
table(stratified_sample_10_percent$CardType)

 American Express Discover MasterCard Visa
 247483 64250 404268 283988
#Frequency table for State in sample
table(stratified_sample_10_percent$State)

 Alabama American Samoa Arizona Arkansas California
 2013 16257 10174 20278 121606
 Colorado Connecticut Delaware Florida Georgia
 17177 12180 2060 3032 60862
 Guam Hawaii Idaho Illinois Indiana
 30399 5044 11177 6099 40471
 Iowa Kansas Kentucky Louisiana Maine
 20315 9113 14218 15172 20191
 Maryland Massachusetts Michigan Minnesota Mississippi
 20245 4081 30455 18220 20305
 Missouri Montana Nebraska Nevada New Hampshire
 10183 3013 6061 30383 2022
 New Jersey New Mexico New York North Carolina North Dakota
 4056 28442 8133 9132 60856
 Ohio Oklahoma Oregon Pennsylvania Rhode Island
 36453 12219 12184 40589 3023
 South Carolina South Dakota Tennessee Texas Utah
 15225 2046 20382 81264 9137
 Vermont Virginia Washington West Virginia Wisconsin
 25281 2002 20297 18255 6138
 Wyoming
 2069
#Cross table frequency for sample data
table(stratified_sample_10_percent$State,stratified_sample_10_percent$CardType)

 American Express Discover MasterCard Visa
 Alabama 498 135 807 573
 American Samoa 4014 1060 6574 4609
 Arizona 2501 647 4111 2915
 Arkansas 5016 1298 8204 5760
 California 30118 7815 49119 34554

Chapter 3 ■ Sampling and reSampling teChniqueS

109

 Colorado 4233 1119 6931 4894
 Connecticut 3026 794 4926 3434
 Delaware 499 132 843 586

You can see that the proportion has remained the same. Here, we compare the
properties of sample and population. The summarise() function shows the average
of outstanding balance by strata. You can perform a pairwise t.test to see that the
sampling has not altered the means of outstanding balance belonging to each strata. You
are encouraged to do testing on the means by t.test(), as shown in the simple random
sampling section.

Average outstanding balance by stratum variables
summary_population<-summarise(group_by(data,CardType,State),OutstandingBalan
ce_Stratum=mean(OutsBal))

#We can see below the want to make sure that our sampling retain the same
proportion of the cardtype in the sample
summary_sample<-summarise(group_by(stratified_sample_10_percent,CardType,Sta
te),OutstandingBalance_Sample=mean(OutsBal))

#Mean Comparison by stratum
summary_mean_compare<-merge(summary_population,summary_sample,
by=c("CardType","State"))

Again, we will do a KS test to compare the distribution of the stratified sample. We
can see that the KS test shows that both have the same distribution.

ks.test(data$OutsBal,stratified_sample_10_percent$OutsBal,alternative="two.
sided")
 Two-sample Kolmogorov-Smirnov test

 data: data$OutsBal and stratified_sample_10_percent$OutsBal
 D = 0.00073844, p-value = 0.7045
 alternative hypothesis: two-sided

Figure 3-12 shows the histograms to show how the distribution of outstanding
balance looks for the sample and population. The visual comparison clearly shows that
the sample is representative of the population.

par(mfrow =c(1,2))
hist(data$OutsBal, breaks=50, col="red", xlab="Outstanding Balance",
main="Population ")

Chapter 3 ■ Sampling and reSampling teChniqueS

110

hist(stratified_sample_10_percent$OutsBal, breaks=50, col="green",
xlab="Outstanding Balance",
main="Stratified Sample")

Figure 3-12. Population and stratified sample distribution

The distribution plot in Figure 3-12 reemphasizes the test results, both population
and stratifies random sample have the same distribution. The stratified random sample is
representative of the population.

Key points:

•	 Stratified sampling should be used when you want to make sure
the proportion of data points remains the same in the sample.
This not only ensures representativeness but also ensures that all
the stratum gets a representation in the sample.

•	 Stratified sampling can also help you systematically design the
proportion of records from each stratum, so you can design a
stratified sampling plan to change the representation as per
business need. For instance, you are modeling a binomial
response function, and the even rate or the proportion of 1 is
very small in the dataset. Then you can do a stratified random
sampling from stratum (0 or 1 response) and try to sample so that
proportion of 1 increases to facilitate modeling.

Chapter 3 ■ Sampling and reSampling teChniqueS

111

3.7.5 Cluster Sampling
Many times, populations contain heterogeneous groups that are statistically evident in
the population. In those cases, it is important to first identify the heterogeneous groups
and then plan the sampling strategy. This technique is popular among marketing and
campaign designers, as they deal with characteristics of heterogeneous groups within a
population.

Cluster sampling can be done in two ways:

•	 Single-stage sampling: All of the elements within selected clusters
are included in the sample. For example, you want to study a
particular population feature that’s dominant in a cluster, so you
might want to first identify the cluster and its element and just
take all the units of that cluster.

•	 Two-stage sampling: A subset of elements within selected clusters
is randomly selected for inclusion in the sample. This method is
similar to stratified sampling but differs in the sense that here the
clusters are parent units while in former case it was strata. Strata
variables may themselves be divided into multiple clusters on the
measure scale.

For a fixed sample size, the cluster sampling gives better results when most of the
variation in the population is within the groups, not between them. It is not always
straightforward to choose sampling methods. Many times the cost per sample point
is less for cluster sampling than for other sampling methods. In these kinds of cost
constraints, cluster sampling might be a good choice.

It is important to point out the difference between strata and cluster. Although both
are overlapping subsets of the population, they are different in many respects.

•	 While all strata are represented in the sample; in clustering only a
subset of clusters are in the sample.

•	 Stratified sampling gives best result when units within strata are
internally homogeneous. However, with cluster sampling, the
best results occur when elements within clusters are internally
heterogeneous.

Advantages:

•	 Cheaper than other methods for data collection, as the cluster of
interest requires less cost to collect and store, and requires less
administrative cost.

•	 Clustering takes a large population into account in terms of
cluster chunks. Since these groups/clusters are so large, deploying
any other technique would be very difficult. Clustering is feasible
only when we are dealing with large populations with statistically
significant clusters present in them.

•	 Reduction in variability of estimates is observed with other methods
of sampling, but this may not be an ideal situation every time.

Chapter 3 ■ Sampling and reSampling teChniqueS

112

Disadvantages:

•	 Sampling error is high due to the design of the sampling process.
The ratio between the number of subjects in the cluster study and
the number of subjects in an equally reliable, randomly sampled
un-clustered study is called design effect, which causes the high
sampling error.

•	 Sampling bias: The chosen sample in cluster sampling will be
taken as representative of the entire population and if that cluster
has a biased opinion then the entire population is inferred to have
the same opinion. This may not be the actual case.

Before we show you cluster sampling, let’s artificially create clusters in our data
by subsetting the data by international transaction. We will subset the data with a
conditional statement on international transaction. Here you can see we are artificially
creating five clusters.

Before i explain cluster sampling, lets try to subset the data such that
we have clear samples to explain the importance of cluster sampling
#Subset the data into 5 subgroups
Data_Subset_Clusters_1 <-subset(data, IntTransc >2&IntTransc <5)
Data_Subset_Clusters_2 <-subset(data, IntTransc >10&IntTransc <13)
Data_Subset_Clusters_3 <-subset(data, IntTransc >18&IntTransc <21)
Data_Subset_Clusters_4 <-subset(data, IntTransc >26&IntTransc <29)
Data_Subset_Clusters_5 <-subset(data, IntTransc >34)

Data_Subset_Clusters<-rbind(Data_Subset_Clusters_1,Data_Subset_Clusters_2,Data_
Subset_Clusters_3,Data_Subset_Clusters_4,Data_Subset_Clusters_5)

str(Data_Subset_Clusters)
 Classes 'data.table' and 'data.frame': 1291631 obs. of 14 variables:
 $ creditLine : int 1 1 1 1 1 1 1 1 1 1 ...
 $ gender : int 1 1 1 1 1 1 1 1 1 1 ...
 $ state : int 1 1 1 1 1 1 1 1 1 1 ...
 $ CustomerID : int 136032 726293 1916600 2180307 3186929 3349887 3726743
5121051 7595816 8058527 ...
 $ NumOfCards : int 1 1 1 1 1 1 1 1 2 1 ...
 $ OutsBal : int 2000 2000 2000 2000 2000 2000 0 0 2000 2000 ...
 $ DomesTransc: int 78 5 5 44 43 51 57 23 5 15 ...
 $ IntTransc : int 3 4 3 3 4 4 3 3 4 3 ...
 $ FraudFlag : int 0 0 0 0 0 0 0 0 0 0 ...
 $ State : chr "Alabama" "Alabama" "Alabama" "Alabama" ...
 $ PostalCode : chr "AL" "AL" "AL" "AL" ...
 $ Gender : chr "Male" "Male" "Male" "Male" ...
 $ CardType : chr "American Express" "American Express" "American
Express" "American Express" ...

Chapter 3 ■ Sampling and reSampling teChniqueS

113

 $ CardName : chr "SimplyCash® Business Card from American Express"
"SimplyCash® Business Card from American Express" "SimplyCash® Business Card
from American Express" "SimplyCash® Business Card from American Express" ...
 - attr(*, ".internal.selfref")=<externalptr>

We explicitly created clusters based on the International transactions. The clusters
are created to show clustering sampling.

One-stage cluster sampling will mean randomly choosing clusters out of five clusters
for analysis. While two-stage sampling will mean randomly choosing few clusters and
then doing stratified random sampling from them. In Figure 3-13, we will first create
clusters using k-means (discussed in detail in Chapter 6) and then apply stratified
sampling, assuming the cluster is the stratum variable.

The k-means function creates clusters based on the centroid-based k-means
clustering method. Since we have explicitly created five clusters, we will call k-means to
form five clusters based on the international transaction values. We already know that the
function will give us exactly five clusters as we created in the previous step. This has been
done only for illustration purposes’ in real situations, you have to find out the clusters
present in the population data.

Now we will treat the Data_Subset_Clusters as our population
library(stats)

kmeans_clusters <-kmeans(Data_Subset_Clusters$IntTransc, 5, nstart =25)

cat("The cluster center are ",kmeans_clusters$centers)
 The cluster center are 59.11837 22.02696 38.53069 47.98671 5.288112

Next, we take a random sample of records just to plot them neatly, as plotting with a
large number of records will not be clear.

set.seed(937)
For plotting lets use only 100000 records randomly chosen from total data.
library(splitstackshape)
PlotSample<-Data_Subset_Clusters[sample(nrow(Data_Subset_
Clusters),size=100000, replace =TRUE, prob =NULL),]

plot(PlotSample$IntTransc, col = kmeans_clusters$cluster)
points(kmeans_clusters$centers, col =1:5, pch =8)

http://dx.doi.org/10.1007/978-1-4842-2334-5_6

Chapter 3 ■ Sampling and reSampling teChniqueS

114

cluster_sample_combined<-cbind(Data_Subset_Clusters,kmeans_clusters$cluster)

setnames(cluster_sample_combined,"V2","ClusterIdentifier")

Now, we show you the number of records summarized by each cluster. Take note of
these numbers, as we will show you the two-stage cluster sampling. The sample will have
the same proportion across the clusters.

print("Summary of no. of records per clusters")
 [1] "Summary of no. of records per clusters"
table(cluster_sample_combined$ClusterIdentifier)

 1 2 3 4 5
 67871 128219 75877 44771 974893

Assuming the cluster identifier as the stratum variable and using the stratified()
function to draw a sample having 10% of the stratum population respectively.

set.seed(937)
library(splitstackshape)
cluster_sample_10_percent<-stratified(cluster_sample_combined,group=c("Clust
erIdentifier"),size=0.1,replace=FALSE)

This step has created the two-stage cluster sample, i.e., randomly selected 10% of the
records from each cluster. Let’s plot the clusters with the cluster centers.

print("Plotting the clusters for random sample from clusters")
 [1] "Plotting the clusters for random sample from clusters"
plot(cluster_sample_10_percent$IntTransc, col = kmeans_clusters$cluster)
points(kmeans_clusters$centers, col =1:5, pch =8)

Figure 3-13. Input data segmented by the set of five classes by number of international
transactions

Chapter 3 ■ Sampling and reSampling teChniqueS

115

Next is the frequency distribution of cluster sample. Please go back and see the same
proportions as on population used for clustering. The stratified sampling at stage two of
clustering sampling has ensured that the proportions of data points remain the same, i.e.,
10% of the stratum size.

print("Summary of no. of records per clusters")
 [1] "Summary of no. of records per clusters"
table(cluster_sample_10_percent$ClusterIdentifier)

 1 2 3 4 5
 6787 12822 7588 4477 97489

Let’s now show how cluster sampling has impacted the distribution of outstanding
balance compared with population and cluster samples.

population_summary <-summarise(group_by(data,CardType),OutstandingBalan
ce_Population=mean(OutsBal))
 Warning in gmean(OutsBal): Group 1 summed to more than type 'integer'
 can hold so the result has been coerced to 'numeric' automatically, for
 convenience.
cluster_summary<-summarise(group_by(cluster_sample_10_percent,CardType),Outs
tandingBalance_Cluster=mean(OutsBal))

summary_mean_compare<-merge(population_summary,cluster_summary, by="CardType")

print(summary_mean_compare)
 Source: local data table [4 x 3]

Figure 3-14. Clusters formed by K-means (star sign represents centroid of cluster)

Chapter 3 ■ Sampling and reSampling teChniqueS

116

 CardType OutstandingBalance_Population
 1 American Express 3820.896
 2 Discover 4962.420
 3 MasterCard 3818.300
 4 Visa 4584.042
 Variables not shown: OutstandingBalance_Cluster (dbl)

This summary shows how the mean of the outstanding balance impacted by cluster
sampling based on the international transactions. For visual inspection, we will create
histograms in Figure 3-15. You will see that the distribution is impacted marginally. This
could be because the clusters we created assuming international transactions buckets
were homogeneous and hence did not have a great impact on the outstanding balance.
To be sure, you are encouraged to do a t.test() to see if the means are significantly the
same or not.

par(mfrow =c(1,2))
hist(data$OutsBal, breaks=50, col="red", xlab="Outstanding Balance",
main="Histogram for Population Data")

hist(cluster_sample_10_percent$OutsBal, breaks=50, col="green",
xlab="Outstanding Balance",
main="Histogram for Cluster Sample Data ")

Figure 3-15. Cluster population and cluster random sample distribution

Chapter 3 ■ Sampling and reSampling teChniqueS

117

In other words, clustering sampling is the same as the stratified sampling; the only
difference is that the startum variable exists in data and is an intrinsic property of data, while
in clustering first we identify clusters and then do random sampling from those clusters.

Key points:

•	 Cluster sampling should be done only when there is strong evidence
of clusters in population and you have strong business reason to
justify the clusters and their impact on the modeling outcome.

•	 Cluster sampling should not be confused with stratified sampling.
In stratified sampling, the stratum are formed on the attributes
in the dataset while clusters are created based on similarity
of subject in population by some relation, e.g., distance from
centroid, the same multivariate features, etc. Pay close attention
while implementing clustering sampling and clusters need to
exist and should make a business case of homogeneity.

3.7.6 Bootstrap Sampling
In statistics, bootstrapping is any sampling method or test or measure that relies on a
sampling random sampling with replacement. Theoretically, you can create infinite size
population to sample in bootstrapping. It is an advanced topic in statistics and widely
used in cases where you have to calculate sampling measure of statistics, e.g., mean,
variance, bias, etc., from a sample estimate of the same.

Bootstrapping allows estimation of the sampling distribution of almost any statistic
using random sampling methods. Jackknife predates the modern bootstrapping
technique. Jackknife estimator of a parameter is found by repeatedly leaving out an
observation and calculating the estimate. Once all the observation points are exhausted
the average of the estimates is taken as the estimator. For a sample size of N, Jackknife
estimate can also be found by aggregating the estimates of each N-1 estimate in the
sample. It is important to understand the Jackknife approach, as it provides the basic idea
behind the bootstrapping method of a sample metric estimation.

The jackknife estimate of a parameter can be found by estimating the parameter for
each subsample and omitting the ith observation to estimate the previously unknown
value of a parameter (say xi).

x xi j

n

=
- ¹
å1

1n j i

The jackknife technique can used to estimate variance of an estimator.

Var jackknife()
=

=
-

-()ån

n
x xi

i

n1 2

1
(.)

where xi is the parameter estimate based on leaving out the ith observation, and x .() is

the estimator based on all of the sub samples.

Chapter 3 ■ Sampling and reSampling teChniqueS

118

In 1977, B. Efron of Stanford University published his noted paper, “Bootstrap
Methods: Another Look at the Jackknife.” This paper provides the first detailed account
of bootstrapping for a variety of sample metric estimation problems. Statistically, the
paper tried to address the following problem: Given a random sample, X= (x1,x2,…Xn)
from an unknown probability distribution F, estimate the sampling distribution of some
prespecified random variable R(X,F), on the basis of the observed data x. We leave it to
you to explore the statistical detail of the method.

When you don’t know the distribution of the population (or you don’t even have a
population), bootstrapping comes handy to create hypothesis testing for the sampling
estimates. The bootstrapping technique will sample data from the empirical distribution
obtained from the sample. In the case where a set of observations can be assumed to be
from an independent and identically distributed population, this can be implemented by
constructing a number of resamples with replacement of the observed dataset (and of equal
size to the observed dataset). This comes in very handy when we have a small dataset and
we are unsure about the distribution of the estimator to perform hypothesis testing

Advantages:

•	 Simple to implement; it provides an easy way to calculate
standard errors and confidence intervals for complex unknown
sampling distributions.

•	 With increasing computing power, the bootstrap results get better.

•	 One popular application of bootstrapping is to check for stability
of estimates.

Disadvantages:

•	 Bootstrapping is asymptotically consistent, but does not provide
finite sample consistency.

•	 This is an advanced technique, so you need to be fully aware of
the assumptions and properties of estimates derived from the
bootstrap methods.

In our R example, we will show how bootstrapping can be used to estimate a
population parameter to create a confidence interval around that estimate. This helps in
checking the stability of the parameter estimate and perform a hypothesis test. We will be
creating the example on a business relevant linear regression methodology.

 ■ Note Bootstrapping techniques are more relevant to estimation problems when you
have a very small sample size and it is difficult to find the distribution of actual population.

First, we fit a linear regression model on population data (without intercept). The
model will be fit with response variable as an outstanding variable and predictor being
number of domestic transactions. Business intuition says that the outstanding balance
should be positively correlated with the number of domestic transactions. A positive
correlation between dependent and independent variables implies the sign of the linear
regression coefficient should be positive.

Chapter 3 ■ Sampling and reSampling teChniqueS

119

The coefficient that we get is the true value of the estimate coming from the
population. This is the population parameter estimate, as it is calculating the full
population.

set.seed(937)
library(boot)
Now we need the function we would like to estimate

#First fit a linear model and know the true estimates, from population data
summary(lm(OutsBal ~0 +DomesTransc, data = data))

 Call:
 lm(formula = OutsBal ~ 0 + DomesTransc, data = data)

 Residuals:
 Min 1Q Median 3Q Max
 -7713 -1080 1449 4430 39091

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 DomesTransc 77.13469 0.03919 1968 <2e-16 ***

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error: 4867 on 9999999 degrees of freedom
 Multiple R-squared: 0.2792, Adjusted R-squared: 0.2792
 F-statistic: 3.874e+06 on 1 and 9999999 DF, p-value: < 2.2e-16

You can see the summary of the linear regression model fit on the population
data. Now we will take a small sample of population (sampling fraction =
10000/10,000,000=1/1000). Hence, our challenge is to estimate the coefficient of domestic
transactions from a very small dataset.

In this context, sampling can be seen as a process to create a larger set of samples
from a small set of values to get an estimate of the true distribution of the estimate.

set.seed(937)
#Assume that we are only having 10000 data points and have to do the
hypothesis test around significance of coefficient domestic transactions. As
the dataset is small we will use the bootstarting to create the distribution
of coefficient and then create a confidence interval to test the hypothesis.

sample_10000 <-data[sample(nrow(data),size=10000, replace =FALSE, prob =NULL),]

Now we have a small sample to work with. Let’s define a function named Coeff,
which will return the coefficient of the domestic transaction variable.

Chapter 3 ■ Sampling and reSampling teChniqueS

120

It has a three arguments:

•	 data: This will be the small dataset that you want to bootstrap. In
our case, this is the sample dataset of 10000 records.

•	 b: A random frame of indexes to choose each time the function is
called. This will make sure each time a dataset is selected from a
model that’s randomly chosen from the input data.

•	 formula: This is an optional field. But this will be the functional
form of the model which will be estimated by the linear
regression.

Here we have just incorporated the formula in the return statement.

Function to return Coefficient of DomesTransc
Coeff =function(data,b,formula){
b is the random indexes for the bootstrap sample
 d =data[b,]
return(lm(OutsBal ~0 +DomesTransc, data = d)$coefficients[1])
thats for the beta coefficient
}

Now we can start bootstrap, so we will be using the function boot() from the
boot library. It is very powerful function for both parametric and non-parametric boot
strapping. We consider this an advanced topic and will not be covering details of this
function. Interested readers are advised to read the function documents from CRAN.

The inputs we are using for our example are:

•	 data: This is the small sample data we created in the previous step.

•	 statistics: This is a a function that will return the estimated
value of the interested parameter. Here our function Coeff will
return the value of coefficient of the domestic transactions.

•	 R: This the number of bootstrap samples you want to create. A
general rule of thumb is the more bootstrap samples you have, the
narrower the confidence band.

 ■ Note For this example, we are considering a smaller number of samples to be sure the
confidence band is broad and with what confidence we can see the original estimate from
the population.

Here we call the function with R=50.

set.seed(937)
R is how many bootstrap samples
bootbet =boot(data=sample_10000, statistic=Coeff, R=50)

Chapter 3 ■ Sampling and reSampling teChniqueS

121

names(bootbet)
 [1] "t0" "t" "R" "data" "seed"
 [6] "statistic" "sim" "call" "stype" "strata"
 [11] "weights"

Now plot the histograms and qq plots for the estimated values of the coefficient.

plot(bootbet)

Figure 3-16. Histogram and QQ plot of estimated coefficient

Now, we plot the histogram of parameter estimate. We can see that the bootstrap
sample uncovered the distribution of the parameter. We can form a confidence interval
around this and do hypothesis testing.

hist(bootbet$t, breaks =5)

Chapter 3 ■ Sampling and reSampling teChniqueS

122

Here we calculate the mean and variance of the estimated values from
bootstrapping. Considering the distribution of coefficient is normally distributed, you can
create a confidence band around the mean for the true value.

mean(bootbet$t)
 [1] 76.77636
var(bootbet$t)
 [,1]
 [1,] 2.308969

Additionally, to show how the distribution looks superimposed on a normal
distribution from the previous parameters, do this:

x <-bootbet$t
h<-hist(x, breaks=5, col="red", xlab="Boot Strap Estimates",
main="Histogram with Normal Curve")
xfit<-seq(min(x),max(x),length=40)
yfit<-dnorm(xfit,mean=mean(bootbet$t),sd=sqrt(var(bootbet$t)))
yfit <-yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)

In Figure 3-18 you can see that we have been able to find the distribution of the
coefficient and hence can do hypothesis testing on it. This also provided us a close
estimate of the true coefficient. If you look closely, this idea is very close to what jackknife
originally proposed. With more computing power, we have just expanded the scope of
that method from the mean and standard deviation to any parameter estimation.

Figure 3-17. Histogram of parameter estimate from bootstrap

Chapter 3 ■ Sampling and reSampling teChniqueS

123

The following code does a t.test() on the bootstrap values on coefficients with the
true estimate of the coefficient from the population data. This will tell us how close we
got to the estimate from a smaller sample and with what confidence we would be able to
accept or reject the bootstrapped coefficient.

t.test(bootbet$t, mu=77.13)

 One Sample t-test

 data: bootbet$t
 t = -1.6456, df = 49, p-value = 0.1062
 alternative hypothesis: true mean is not equal to 77.13
 95 percent confidence interval:
 76.34452 77.20821
 sample estimates:
 mean of x
 76.77636

Key points:

•	 Bootstrapping is a powerful technique that comes handy when we
have little knowledge of the distribution of parameter and only a
small dataset is available.

•	 This technique is advanced in nature and involves a lot of
assumptions, so proper statistical knowledge is required to use
bootstrapping techniques.

Figure 3-18. Histogram with normal density function

Chapter 3 ■ Sampling and reSampling teChniqueS

124

3.8 Monte Carlo Method: Acceptance-Rejection
Method

In modern times, Monte Carlo methods have become a separate field of study in
statistics. Monte Carlo methods leverage the computationally heavy random sampling
techniques to estimate the underlying parameters. This techniques is important in
stochastic equations where a exact solution is not possible. The Monte Carlo techniques
are very popular in the financial world, specifically in financial instrument valuation and
forecasting.

In statistics, acceptance-rejection methods are very basic techniques to sample
observations from a distribution. In this method, random sampling is done from a
distribution and based on preset conditions the observation is accepted or rejected, and
hence it lies in broad bucket of a Monte Carlo method.

In this method, we first estimate the empirical distribution of the dataset (r empirical
density function: EDF) by looking at cumulative probability distribution. After we get the
EDF, we set the parameters for another known distribution. The known distribution will
be covering the EDF.

Now we start sampling from the known distribution and accept the observations if
it lies within the EDF; otherwise, we reject it. In other words, rejection sampling can be
performed by following these steps:

 1. Sample a point from the proposed distribution (say x).

 2. Draw a vertical line at this sample point x up to the curve of
proposed distribution (Figure 3-19).

 3. Sample uniformly along this line from 0 to max (PDF), PDF
stands for probability density function. If a sample’s value is
greater than maximum value, reject it; otherwise accept it.

This method helps us draw a sample of any distribution from the known distribution.
These methods are very popular in stochastic calculus for financial product valuation and
other stochastic processes.

To illustrate this method, we will draw a sample from a beta distribution with
parameters of (3,10). The beta distribution looks Figure 3-19.

curve(dbeta(x, 3,10),0,1)

Chapter 3 ■ Sampling and reSampling teChniqueS

125

Figure 3-19. Beta distribution plot

We first create a sample, of 5000 with random values between 0 and 1. Now we
calculate the beta density corresponding to the 5000 random values sample.

set.seed(937)
sampled <-data.frame(proposal =runif(5000,0,1))

sampled$targetDensity <-dbeta(sampled$proposal, 3,10)

Now, we calculate the maximum probability density for our proposed distribution
(beta PDF). Once we have maximum density and sample density for 5000 cases, we start
our sampling by rejection as follows. Create a random number between 0 and 1:

Reject the value as coming from beta distribution if the value is more than
the sample density we calculated for pre-known beta distribution maxDens
=max(sampled$targetDensity, na.rm = T)
sampled$accepted =ifelse(runif(5000,0,1) <sampled$targetDensity /maxDens,
TRUE, FALSE)

Figure 3-20 shows you a plot of EDF of beta (3,10) and the histogram of the sample
dataset. We can see we have been able to create the desired sample by accepting values
from a random numbers that lie below the red line, i.e., PDF of beta distribution.

hist(sampled$proposal[sampled$accepted], freq = F, col ="grey", breaks =100)
curve(dbeta(x, 3,10),0,1, add =T, col ="red")

Chapter 3 ■ Sampling and reSampling teChniqueS

126

3.9 A Qualitative Account of Computational
Savings by Sampling

This section shows a small example to help you understand how sampling is also helpful
in reducing computational costs. To show this, we will first fit a linear regression model
using the population dataset and then will again fit the same model on a smaller sample.

We know from our discussion of sampling that if sampling is done properly, we can
estimate the population parameters with very high confidence. For illustration purposes,
we will show linear regression fitting on a population that has 10 million records and a
sample of size 10000.

Next, we call a function sys.time(), which returns the current time of the system.
Using this function, we will calculate the calculation time of the function for population
and sample.

First, we fit a linear regression model with the total population data.

estimate parameters
library(MASS)
start.time <-Sys.time()

population_lm<-lm(OutsBal ~DomesTransc +Gender, data = data)

end.time <-Sys.time()
time.taken_1 <-end.time -start.time

Figure 3-20. Sampling by rejection

Chapter 3 ■ Sampling and reSampling teChniqueS

127

cat("Time taken to fit linear model on Population",time.taken_1)
 Time taken to fit linear model on Population 18.74036

Now, let’s fit the same model on a random sample of 10000 values.

start.time <-Sys.time()

sample_lm<-lm(OutsBal ~DomesTransc +Gender, data = sample_10000)

end.time <-Sys.time()
time.taken_2 <-end.time -start.time

cat("Time taken to fit linear model on Sample ",time.taken_2)
 Time taken to fit linear model on Sample 0.01551104

We can see how different the times have been in both the computations. (Note: The
time shown are based on the computation power of the author; you may get different
times based on your system configuration.)

Essentially, the operation of population took a very long time. Estimation with
population data took 1000+ times longer than the same estimation on the sample.

3.10 Summary
In this chapter we covered different sampling techniques and showed how these
sampling techniques reduce the volume of data to process and the same time retain
properties of the data. The best sampling method to apply on any population is simple
random sampling without replacement.

We also discussed bootstrap sampling, which is an important concept as you
can estimate distribution of any parameter by this method. At the end, we showed an
illustration of sampling by rejection, which allows us to create any distribution from
known distributions. This techniques is based on the Monte Carlo simulation and is very
popular in financial services.

This chapter plays an important role in reducing the volume of data to apply in our
machine learning algorithms, thereby keeping the population variance intact.

In next chapter, we will look at the properties of data with visualization. If we use the
appropriate sampling, the same visualization and trends will appear from populations as
they do from the sample.

129© Karthik Ramasubramanian and Abhishek Singh 2017
K. Ramasubramanian and A. Singh, Machine Learning Using R,
DOI 10.1007/978-1-4842-2334-5_4

CHAPTER 4

Data Visualization in R

Data visualization is the process of creating and studying the visual representation of
data to bring some meaningful insights. Michael Friendly’s 2009 paper titled “Milestones
in the history of thematic cartography, statistical graphics, and data visualization,”
provides the following overarching definition of information visualization:

Information visualization is the broadest term that could be taken
to subsume all the developments described here. At this level, almost
anything, if sufficiently organized, is information of a sort. Tables,
graphs, maps, and even text, whether static or dynamic, provide some
means to see what lies within, determine the answer to a question, find
relations, and perhaps apprehend things which could not be seen so
readily in other forms.

This comprehensive definition should make you aware what a large scope
visualization covers. The broader fields of Information visualization is also called
infographics, where information might be stored in other formats than data. Our focus
in this chapter is only one specific type of visualization, which is commonly called data
visualization. Data visualization specifically deals with visualizing the information in a
given data. This can include multiple types of charts, graphs, colors, line plots, etc. Data
visualization is an effective way to present data because it shifts the balance between
perception and cognition to take fuller advantage of the brain's abilities. The ways
we encode the information is very important to make direct pathways into the brain
cognition. The core tools used to encode information in a visualization are color, size,
shape, numbers, and other properties.

Data visualization has brought about a lot of benefits for industry and academia.
Data visualization led the wave of the analytics world for quite some years and is expected
to lead the curve for the next decade. This phenomenal growth has been possible because
visualization is very useful for understanding massive data that we are gathering in our
industry and academic research. The first step for data science is to understand the data,
only then do start thinking about model and algorithm use. There are many benefits to

Chapter 4 ■ Data Visualization in r

130

embrace data visualization as an integral part of data science process. Some of the direct
benefits of the data visualization are:

•	 Identifying red spots in data, starting diagnostics

•	 Tracking and identifying relations among different attributes

•	 Seeing the trend and fallouts to understand the reasons

•	 Summarizing complicated long spreadsheets and databases into
visual art

•	 Easy to use and very impactful way to store and present
information and others

The market has many paid visualization software suites and on-demand cloud
applications that can create meaningful visuals by the click of a button. However, we will
explore the power of open source packages and tools for creating visualization in R.

Any kind of data visualization fundamentally depends on four key elements of
data presentation, namely Comparison, Relationship, Distribution, and Composition.
Comparison is used to see the differences between multiple items at given point in time
or to see the relative change in a variable over a time period. A relationship element
helps in finding correlation between two or more variables with an increase or decrease
in values. Scatter and bubble chart are some examples in this category. Distribution
charts like column and line histograms show the spread of data. For instance, data with
skewness toward left or right could be easily spotted. Composition refers to a stacked
chart with multiple components like a pie chart or stacked column/area chart. In our
PEBE ML process flow, visualization plays a key role in the exploration phase.

Visualization serves as an aid in story telling by harnessing the power of data. There
are plenty of examples to show patterns emerging from some simple plots, which otherwise
is difficult to find even after using sophisticated statistics. Throughout this chapter, we will
explore the four elements of data presentation with suitable examples and highlight how
important role does visualization plays in better understanding the data to its finest of
detail. Although we put this dedicated chapter for data visualization, the adaption of the
approaches taught here is stretching across every other chapter of this book.

4.1 Introduction to the ggplot2 Package
R developers have created a good collection of visualization tool library. Being open
source, these packages get updated very rapidly with new features. Another remarkable
development in R tools for visualization is that the developers have been able to create
functions that can replicate some of the high computational 3D plots and model outputs.
The most important of all packages available in R for visualizations is ggplot2().

ggplot2 is a data visualization package created by Hadley Wickham in 2005. It’s an
implementation of Leland Wilkinson's Grammar of Graphics—a general scheme for data
visualization that breaks up graphs into semantic components such as scales and layers.
It is also important to state here that the other powerful plotting function that we have
used multiple time is plot(). Plot() and ggplot2() are extensively used in the book.

Chapter 4 ■ Data Visualization in r

131

Before we go deeper into this chapter, this section includes a quick guide with some basic
understanding of ggplot and its various layers, which you will see being used throughout
this chapter (for a detailed study of ggplot, we recommend “ggplot2: Elegant Graphics for
Data Analysis,” by Hadley Wickham [1]). The following descriptions are taken from the R
documentation:

•	 ggplot(): Initializes a ggplot object. It can be used to declare
the input data frame for a graphic and to specify the set of plot
aesthetics intended to be common throughout all subsequent
layers unless specifically overridden.

•	 aes(): Generates aesthetic mappings that describe how variables
in the data are mapped to visual properties (aesthetics) of geoms.
This function also standardizes aesthetic names by performing
partial name matching, converting color to color, and old style R
names to ggplot names (for example, pch to shape, cex to size).

•	 geom_point(): The point geom is used to create scatterplots.

•	 geom_line: Connects the observation in order of the variable on
the x-axis.

•	 scale_x_log10(): Transformation functions that prove very
useful while setting the scale of the plots and charts.

•	 scale_size_continuous(): Scales the area. The size aesthetic is
most commonly used for points and text, and humans perceive
the area of points, so this provides for optimal perception.

•	 facet_wrap(): Most displays are roughly rectangular, so if you
have a categorical variable with many levels, it doesn't make
sense to try to display them all in one row (or one column). To
solve this dilemma, facet_wrap wraps a 1D sequence of panels
into 2D, making best use of screen real estate.

•	 scale_fill_manual(): Create your own discrete scale, which
includes, color, size, shape, etc.

•	 xlab(): Changes x-axis labels.

•	 ylab(): Changes y-axis labels.

•	 ggtitle(): Changes the plot and legend title.

•	 theme(): Use this function to modify theme settings. This function
comes with a very rich set of parameters that provides for creating
elegant looking graphics. Detailed ggplot2() documentation
can be accessed from at https://cran.r-project.org/web/
packages/ggplot2/ggplot2.pdf.

There are some other packages that we use in this chapter and would like readers to
explore more of them. Some of them are googleVis(), ggmap(), ggrepel(), waterfall(),
and rCharts(). These are all highly recommended.

https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf
https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf

Chapter 4 ■ Data Visualization in r

132

4.2 World Development Indicators
A good data visualization tells a story with numbers. Economics is one of the fields that
has integrated well into the visualization world. The visualization in economics has been
very old. Playfair’s 1801 pie-circle-line chart, comparing population and taxes in several
nations, is a proof of how old the relationship between economics and visualization
is. Michael Friendly provided a comprehensive history and early examples of data
visualization in his paper, also mentioned in previous section.

In this chapter we will be discussing chart types with some examples. Half of the
chapter discusses economic indicators to build visualizations. The specific plots and
graphs will be discussed with specific examples. The World Bank collects data to monitor
economic indicators across the world. For details of the data and economic principles,
visit http://www.worldbank.org/.

The following section is a quick introduction of core indicators. A suitable
visualization used for understanding its meaning and impact will be presented in
following sections. There has been lot of good research using many of the World Bank’s
data by social scientists in various sectors. We have cherry picked a few really impactful
parts of that research and brought the real essence of the data into view. As we move from
one example to the other, there will be emphasis given to the right type of visualization
and extracting meaning out of the data without looking at the hundreds of rows and
columns of a CSV or Excel file. Many of these visualizations are also provided on the
World Bank web site; however, here in this book, you will learn how to use the ggplot
package available in R to produce different graphs, charts, and plots. Instead of following
a traditional approach of learning the grammar of graphics and then discussing a lot of
theory on visualization, in this book, we have chosen a theme (World Bank’s development
indicators) and will take you through a journey by means of storytelling. On the way,
various types of visualization will be introduced.

4.3 Line Chart
A line chart is a basic visualization chart type in which information is displayed in a
series of data points called markers connected by line segments. Line charts are used for
showing trends in multiple categories of a variable. For instance, Figure 4-1 shows the
growth of the Gross Domestic Product (GDP) over the years for the top 10 countries based
on their most recent reported GDP figures. It helps in visualizing the trend in GDP growth
for all these countries in a single plot.

library(reshape)
library(ggplot2)

GDP <-read.csv("Dataset/Total GDP 2015 Top 10.csv")
names(GDP) <-c("Country", "2010","2011","2012","2013","2014","2015")

The following code uses a very important function that will be repeated in later
sections as well, called melt().

http://www.worldbank.org/

Chapter 4 ■ Data Visualization in r

133

The melt function takes data in wide formats and stacks a set of columns into a
single column of data. You can think of it as melting the current dimensions and getting
simpler dimensions. Melt() is available in the reshape2() package. In the following code,
you will, after reshaping the dataset, reduce it to three columns. The columns are stacked
versions of the same information along multiple columns. The melt() function can only
melt the categorical attributes; the numeric ones are aggregated .

GDP_Long_Format <-melt(GDP, id="Country")
names(GDP_Long_Format) <-c("Country", "Year","GDP_USD_Trillion")

This function is very important to understand in terms of how it is creating the plot
using ggplot. Let’s break down this once, the same concept follows for these plots:

•	 Aes(): The aesthetics of the plot, it tells the ggplot() object the
input data, the x and y values, and other options.

•	 Geom_line: This adds a layer to the plot with a line type as defined
in aes().

•	 Geom_point: This adds points to another layer of plot, the features
of the type of points and their properties is provided in aes(), for
instance, in the following code, we want points on each line with
the color of the points being the same for each country and the
size of point to be 5.

•	 Theme: This command has options to design the theme of the plot
canvas.

•	 Xlab: Labeling the x-axis.

•	 Ylab: Labeling the y-axis.

•	 Ggtittle: Title of the plot.

In this this book, you might find new ways, so always make sure to visit the
ggplot2() manual for any specific need. The chances are good that you will be able to
have the kind of visualization you want.

ggplot(GDP_Long_Format, aes(x=Year, y=GDP_USD_Trillion, group=Country)) +
geom_line(aes(colour=Country)) +
geom_point(aes(colour=Country),size =5) +
theme(legend.title=element_text(family="Times",size=20),
legend.text=element_text(family="Times",face ="italic",size=15),
plot.title=element_text(family="Times", face="bold", size=20),
axis.title.x=element_text(family="Times", face="bold", size=12),
axis.title.y=element_text(family="Times", face="bold", size=12)) +
xlab("Year") +
ylab("GDP (in trillion USD)") +
ggtitle("Gross Domestic Product - Top 10 Countries")

Chapter 4 ■ Data Visualization in r

134

Clearly, among the top 10, the United States is leading the race, followed by China
and Japan. So, without looking at the data, we are seeing rich information being shown in
this visualization. Now, the obvious next question that comes to your mind is, what really
makes any country's GDP go up or down? Let’s try to understand for these countries,
how much percentage of their GDP is contributed by agriculture, the service sector, and
industry.

Agriculture

Agri_GDP <-read.csv("Dataset/Agriculture - Top 10 Country.csv")

Again, we melt the data into smaller numbers of columns to allow plotting.

Agri_GDP_Long_Format <-melt(Agri_GDP, id ="Country")
names(Agri_GDP_Long_Format) <-c("Country", "Year", "Agri_Perc")
Agri_GDP_Long_Format$Year <-substr(Agri_GDP_Long_Format$Year, 2,length(Agri_
GDP_Long_Format$Year))

Figure 4-1. A line chart showing the top 10 countries based on their GDP

Chapter 4 ■ Data Visualization in r

135

Apply the ggplot2() options to create plots as follows:

ggplot(Agri_GDP_Long_Format, aes(x=Year, y=Agri_Perc, group=Country)) +
geom_line(aes(colour=Country)) +
geom_point(aes(colour=Country),size =5) +
theme(legend.title=element_text(family="Times",size=20),
legend.text=element_text(family="Times",face ="italic",size=15),
plot.title=element_text(family="Times", face="bold", size=20),
axis.title.x=element_text(family="Times", face="bold", size=12),
axis.title.y=element_text(family="Times", face="bold", size=12)) +
xlab("Year") +
ylab("Agriculture % Contribution to GDP") +
ggtitle("Agriculture % Contribution to GDP - Top 10 Countries")

Figure 4-2. A line chart showing the top 10 countries based on percent contribution to
GDP from agriculture

While countries like India and Brazil, which didn't get the top three spots when we
looked at the GDP, top the charts in agriculture (along with China, which comes in top
three here as well). This shows the importance these countries give to agriculture.

Service

Service_GDP <-read.csv("Services - Top 10 Country.csv")

Service_GDP_Long_Format <-melt(Service_GDP, id ="Country")
names(Service_GDP_Long_Format) <-c("Country", "Year", "Service_Perc")

Chapter 4 ■ Data Visualization in r

136

Service_GDP_Long_Format$Year <-substr(Service_GDP_Long_Format$Year,
2,length(Service_GDP_Long_Format$Year))

ggplot(Service_GDP_Long_Format, aes(x=Year, y=Service_Perc, group=Country)) +
geom_line(aes(colour=Country)) +
geom_point(aes(colour=Country),size =5) +
theme(legend.title=element_text(family="Times",size=20),
legend.text=element_text(family="Times",face ="italic",size=15),
plot.title=element_text(family="Times", face="bold", size=20),
axis.title.x=element_text(family="Times", face="bold", size=12),
axis.title.y=element_text(family="Times", face="bold", size=12)) +
xlab("Year") +
ylab("Service sector % Contribution to GDP") +
ggtitle("Service sector % Contribution to GDP - Top 10 Countries")

Figure 4-3. A line chart showing the top 10 countries based on percent contribution to
GDP from the service sector

Now, contrary to agriculture, looking at the service sector, you will understand
the reason behind the large GDP of the United States, China, and the United Kingdom.
These countries have typically built their strong economies with service sectors. So, when
you hear about Silicon Valley in the United States and London being the world's largest
financial center, it’s actually their economies’ biggest growth drivers.

Chapter 4 ■ Data Visualization in r

137

Industry

Industry_GDP <-read.csv("Industry - Top 10 Country.csv")

Industry_GDP_Long_Format <-melt(Industry_GDP, id ="Country")
names(Industry_GDP_Long_Format) <-c("Country", "Year", "Industry_Perc")
Industry_GDP_Long_Format$Year <-substr(Industry_GDP_Long_Format$Year,
2,length(Industry_GDP_Long_Format$Year))

ggplot(Industry_GDP_Long_Format, aes(x=Year, y=Industry_Perc,
group=Country)) +
geom_line(aes(colour=Country)) +
geom_point(aes(colour=Country),size =5) +
theme(legend.title=element_text(family="Times",size=20),
legend.text=element_text(family="Times",face ="italic",size=15),
plot.title=element_text(family="Times", face="bold", size=20),
axis.title.x=element_text(family="Times", face="bold", size=12),
axis.title.y=element_text(family="Times", face="bold", size=12)) +
xlab("Year") +
ylab("Industry % Contribution to GDP") +
ggtitle("Industry % Contribution to GDP - Top 10 Countries")

Figure 4-4. A line chart showing the top 10 countries based on percent contribution to
GDP from industry

Chapter 4 ■ Data Visualization in r

138

After looking at agriculture and service sector, industry is the third biggest
component in the GDP pie. And this particular component is by far led by China and
their manufacturing industry. This is why you see many big brands like Apple embedding
a label in their products that says, "Designed by Apple in California. Assembled in China".
It’s not just mobile phones or companies like Apple, China is a manufacturing hub for
many product segments like apparel and accessories, automobile parts, motorcycle parts,
furniture, and the list goes on.

So, the overall trend shows while the industry and the service sector keep increasing
in their contributions to GDP, agriculture has seen a steady decrease. Is this a signal
of growth or a compromise of our food sources in the name of more lucrative sectors?
Perhaps we will leave that question for the economic experts to answer. However, we
definitely see how this visualization can show us insights that would have been difficult
otherwise to interpret from the raw data.

In concluding remarks, among these big economies, many countries are witnessing a
drastic drop in their industry output, like China, France, Australia, and Japan. India is the
only country among these 10, where there has been a steady increase of industrial output
over the years, which is a sign of development. Having said that, it still remains to see how
agriculture and the service sector are balanced for the unprecedented growth in Industry.
Even in this situation of unbalanced economies of developed and developing countries,
what really helps to keep the balance is that the world is lot more free when it comes to
trade. If you have strong agricultural output, you are free to export your production to
other countries where it’s deficient and the same goes with the other sectors as well.

Before we embark on another story through visualization, the following section
shows a stacked column chart showing percentage contributions from each of the sectors
to the world’s total GDP.

4.4 Stacked Column Charts
Stacked column charts are an elegant way of showing the composition of various categories
that make up a particular variable. Here in the example in Figure 4-5, it’s easy to see how
much percentage contribution each of these sectors has in the world's total GDP.

library(plyr)

World_Comp_GDP <-read.csv("World GDP and Sector.csv")

World_Comp_GDP_Long_Format <-melt(World_Comp_GDP, id ="Sector")
names(World_Comp_GDP_Long_Format) <-c("Sector", "Year", "USD")

World_Comp_GDP_Long_Format$Year <-substr(World_Comp_GDP_Long_Format$Year,
2,length(World_Comp_GDP_Long_Format$Year))

calculate midpoints of bars

World_Comp_GDP_Long_Format_Label <-ddply(World_Comp_GDP_Long_Format, .(Year),
 transform, pos =cumsum(USD) -(0.5 *USD))

Chapter 4 ■ Data Visualization in r

139

ggplot(World_Comp_GDP_Long_Format_Label, aes(x = Year, y = USD, fill =
Sector)) +
geom_bar(stat ="identity") +
geom_text(aes(label = USD, y = pos), size =3) +
theme(legend.title=element_text(family="Times",size=20),
legend.text=element_text(family="Times",face ="italic",size=15),
plot.title=element_text(family="Times", face="bold", size=20),
axis.title.x=element_text(family="Times", face="bold", size=12),
axis.title.y=element_text(family="Times", face="bold", size=12)) +
xlab("Year") +
ylab("% of GDP") +
ggtitle("Contribution of various sector in the World GDP")

Figure 4-5. A stacked column chart showing the contribution of various sectors to the
world’s GDP

It’s clear from the stacked column chart in Figure 4-5 that the service sector has a
major contribution all the years, followed by industry, and then agriculture. As the size of
each block does not change meaning, the GDP has grown with similar ratios among these
sectors.

The age dependency ratio is a good measure to show how this line plots and the
stacked column chart can help investigate the measure. As defined by the World Bank,
the age dependency ratio is the ratio of dependents—people younger than 15 or older
than 64—to the working-age population—those aged between 15-64.

If the age dependency ratio is very high for a country, the government’s expenditure
goes up on health, social security, and education, which are mostly spent on people
younger than 14 or older than 64 (the numerator) because the number of people

Chapter 4 ■ Data Visualization in r

140

supporting these expenditures (people aged between 15-64) is less (the denominator).
This also means individuals in the workforce have to take more of the burden to support
their dependents than what is recommended. And at times, this leads to social issues like
child labor (people aged less than 14 years ending up in the adult workforce). So, many
developing economies where age dependency is high have to deal with these issues. The
stacked line chart in Figure 4-6 shows how the working age ratio has been decreasing over
the years for the top 10 countries.

library(reshape2)
library(ggplot2)

Population_Working_Age <-read.csv("Age dependency ratio - Top 10 Country.csv")

Population_Working_Age_Long_Format <-melt(Population_Working_Age, id ="Country")
names(Population_Working_Age_Long_Format) <-c("Country", "Year", "Wrk_Age_Ratio")
Population_Working_Age_Long_Format$Year <-substr(Population_Working_Age_
Long_Format$Year, 2,length(Population_Working_Age_Long_Format$Year))

ggplot(Population_Working_Age_Long_Format, aes(x=Year, y=Wrk_Age_Ratio,
group=Country)) +
geom_line(aes(colour=Country)) +
geom_point(aes(colour=Country),size =5) +
theme(legend.title=element_text(family="Times",size=20),
legend.text=element_text(family="Times",face ="italic",size=15),
plot.title=element_text(family="Times", face="bold", size=20),
axis.title.x=element_text(family="Times", face="bold", size=12),
axis.title.y=element_text(family="Times", face="bold", size=12)) +
xlab("Year") +
ylab("Working age Ratio") +
ggtitle("Working age Ratio - Top 10 Countries")

Chapter 4 ■ Data Visualization in r

141

If you look at the line charts in Figures 4-6 and 4-7, you will notice, in recent years,
countries like Japan and France have the largest ageing population, hence a higher
age dependency ratio, whereas, countries like India and China have a strong and large
population of young people and thus show a steady decrease in this ratio over the years.
For instance, in the year 2015, India and China reported 65.6% and 73.22% of their
population aged between 15 and 64, respectively (34.41% and 26.78% with people aged
below 14 and above 65, respectively). The same percentage for Japan and France is 60.8
and 62.4, respectively (33.19% and 37.57%, with people aged below 14 and above 65,
respectively).

library(reshape2)
library(ggplot2)
library(plyr)

Population_Age <-read.csv("Population Ages - All Age - Top 10 Country.csv")

Population_Age_Long_Format <-melt(Population_Age, id ="Country")
names(Population_Age_Long_Format) <-c("Country", "Age_Group", "Age_Perc")
Population_Age_Long_Format$Age_Group <-substr(Population_Age_Long_
Format$Age_Group, 2,length(Population_Age_Long_Format$Age_Group))

calculate midpoints of bars

Figure 4-6. A stacked line chart showing the top 10 countries based on their working
age ratio

Chapter 4 ■ Data Visualization in r

142

Population_Age_Long_Format_Label <-ddply(Population_Age_Long_Format, .(Country),
 transform, pos =cumsum(Age_Perc) -(0.5 *Age_Perc))

ggplot(Population_Age_Long_Format_Label, aes(x = Country, y = Age_Perc, fill
= Age_Group)) +
geom_bar(stat ="identity") +
geom_text(aes(label = Age_Perc, y = pos), size =3) +
theme(legend.title=element_text(family="Times",size=20),
legend.text=element_text(family="Times",face ="italic",size=15),
plot.title=element_text(family="Times", face="bold", size=20),
axis.title.x=element_text(family="Times", face="bold", size=12),
axis.title.y=element_text(family="Times", face="bold", size=12)) +
xlab("Country") +
ylab("% of Total Population") +
ggtitle("Age Group - % of Total Population - Top 10 Country")

In a way, if you look at it, many economic factors—like income parity, inflation,
imports and exports, GDP, and many more—have a direct or indirect effect on population
growth and ageing. With population growth slowing down, as shown in Figure 4-8, for most
of countries, there is a need for good public polices and awareness campaigns from the
government in order to balance the ageing and younger population over the coming years.

library(reshape2)
library(ggplot2)

Figure 4-7. A stacked bar chart showing the constituents of different age groups as a
percentage of the total population

Chapter 4 ■ Data Visualization in r

143

Population_Growth <-read.csv("Population growth (annual %) - Top 10 Country.csv")

Population_Growth_Long_Format <-melt(Population_Growth, id ="Country")
names(Population_Growth_Long_Format) <-c("Country", "Year", "Annual_Pop_Growth")
Population_Growth_Long_Format$Year <-substr(Population_Growth_Long_
Format$Year, 2,length(Population_Growth_Long_Format$Year))

ggplot(Population_Growth_Long_Format, aes(x=Year, y=Annual_Pop_Growth,
group=Country)) +
geom_line(aes(colour=Country)) +
geom_point(aes(colour=Country),size =5) +
theme(legend.title=element_text(family="Times",size=20),
legend.text=element_text(family="Times",face ="italic",size=15),
plot.title=element_text(family="Times", face="bold", size=20),
axis.title.x=element_text(family="Times", face="bold", size=12),
axis.title.y=element_text(family="Times", face="bold", size=12)) +
xlab("Year") +
ylab("Annual % Population Growth") +
ggtitle("Annual % Population Growth - Top 10 Countries")

Figure 4-8. A line chart showing the top 10 countries and their annual percentage of
population growth

Chapter 4 ■ Data Visualization in r

144

These plot are very interesting to peruse. The population growth for a few countries
is very erratic while for others, it’s stable and decreasing. For instance, see the population
growth of India, which has been steadily decreasing, while for the United States it
stabilized and then increased.

4.5 Scatterplots
A scatterplot is a graph that helps identify if there is a relationship between two variables.
Scatterplots use Cartesian coordinates to show two variables on an x- and y-axis. Higher
dimensional scatterplots are also possible but they are difficult to visualize, hence
two-dimensional scattercharts are very popular. If we add dimensions of color or shape
or size, so we can present more than two variables on a two-dimensional scatterplot as
well. In this case, we will look at a population growth indicator from the World Bank’s
development indicators.

Any economy's strength is its people, and it is most important to measure if the
citizens are doing well in terms of their financials, health, education, and all the basic
necessities. A robust and strong economy is only built if it’s designed and planned to keep
the citizens at the center of everything. So, while GDP as an indicator signifies the growth
of the country, there are many indicators that measure how well people are growing with
the GDP. So, before we look at such indicators, let’s try to explore the basic characteristics
of the data using some of the widely used visualization tools, like scatterplots, boxplots,
and histograms. Let’s see if there are some patterns emerging from the population growth
data and the GDP of the top 10 countries.

library(reshape2)
library(ggplot2)

GDP_Pop <-read.csv("GDP and Population 2015.csv")

ggplot(GDP_Pop, aes(x=Population_Billion, y=GDP_Trilion_USD))+
geom_point(aes(color=Country),size =5) +
theme(legend.title=element_text(family="Times",size=20),
legend.text=element_text(family="Times",face ="italic",size=15),
plot.title=element_text(family="Times", face="bold", size=20),
axis.title.x=element_text(family="Times", face="bold", size=12),
axis.title.y=element_text(family="Times", face="bold", size=12)) +
xlab("Population (in Billion)") +
ylab("GDP (in Trillion US $)") +
ggtitle("Population Vs GDP - Top 10 Countries")

Chapter 4 ■ Data Visualization in r

145

The scatterplot in Figure 4-9 shows that for countries like United States (US) since
2009, the population has been relatively low compared to other countries in the top 10;
however, the United States, being the worlds’ largest economy, has a very large GDP,
taking the point high in the y-axis of the scatterplot. Similarly, if you look at China, with
the worlds’ largest population of 1.37 billion and 10.8 trillion of US dollars of GDP, it’s
represented by a point on the extreme right of the x-axis.

4.6 Boxplots
Boxplots are a compact way of representing the five-number summary described in
Chapter 1, namely median, first and third quartiles (25th and 75th percentile) and min
and max. The upper side of the vertical rectangular box represents the third quartile
and the lower, the first quartile. The difference between the two points is known as
the interquartile range, which consist of 50% of the data. A line dividing the rectangle
represents the median. It also contains a line extending on both sides (known as
whiskers) of the rectangle, which indicate the variability outside the first and third
quartile. And finally the points plotted, which are shown as extensions of the lines, are
called outliers. Numerically, these points have a value more than twice the standard
deviation of the variable.

Figure 4-9. A scatterplot showing the relationship between population and GDP for the
top 10 countries

http://dx.doi.org/10.1007/978-1-4842-2334-5_1

Chapter 4 ■ Data Visualization in r

146

GDP

GDP_all <-read.csv("Dataset/WDi/GDP All Year.csv")
GDP_all_Long_Format <-melt(GDP_all, id ="Country")
names(GDP_all_Long_Format) <-c("Country", "Year", "GDP_USD_Trillion")
GDP_all_Long_Format$Year <-substr(GDP_all_Long_Format$Year, 2,length(GDP_
all_Long_Format$Year))

ggplot(GDP_all_Long_Format, aes(factor(Country), GDP_USD_Trillion)) +
geom_boxplot(aes(fill =factor(Country)))+
theme(legend.title=element_text(family="Times",size=20),
legend.text=element_text(family="Times",face ="italic",size=15),
plot.title=element_text(family="Times", face="bold", size=20),
axis.title.x=element_text(family="Times", face="bold", size=12),
axis.title.y=element_text(family="Times", face="bold", size=12)) +
xlab("Country") +
ylab("GDP (in Trillion US $)") +
ggtitle("GDP (in Trillion US $): Boxplot - Top 10 Countries")

A boxplot is a wonderful representation of the degree of dispersion (spread),
skewness, and outliers in a single plot. Using ggplot, it’s possible to stack the different
categories of the variables together side-by-side to see a comparison. For instance,
looking at Figure 4-10, you see a boxplot of GDP by country. This contains the GDP
data from 1962 to 2015. You see that the United States has shown the highest level of
growth (degree of dispersion) with no outliers, indicating a sustained growth with no

Figure 4-10. A boxplot showing the GDP (in trillion US$) for the top 10 countries

Chapter 4 ■ Data Visualization in r

147

extreme highs or lows, whereas in China shows a high number of outliers, which roughly
indicates the country has seen many unpredicted growths between 1962 and 2015. This
interpretation is prone to error as we haven't looked at the reasons for these outliers in
the data. An economist might intuitively generate some insights by just glancing at this
plot; however, a naive analyst might end up producing some erroneous conclusions if
they didn’t give attention to the details. So, always hold onto the excitement of seeing a
beautiful visualization and carefully analyze the other statistical properties of the data
before making conclusions.

Population

Population_all <-read.csv("Population All Year.csv")
Population_all_Long_Format <-melt(Population_all, id ="Country")
names(Population_all_Long_Format) <-c("Country", "Year", "Pop_Billion")
Population_all_Long_Format$Year <-substr(Population_all_Long_Format$Year,
2,length(Population_all_Long_Format$Year))

ggplot(Population_all_Long_Format, aes(factor(Country), Pop_Billion)) +
geom_boxplot(aes(fill =factor(Country))) +
theme(legend.title=element_text(family="Times",size=20),
legend.text=element_text(family="Times",face ="italic",size=15),
plot.title=element_text(family="Times", face="bold", size=20),
axis.title.x=element_text(family="Times", face="bold", size=12),
axis.title.y=element_text(family="Times", face="bold", size=12)) +
xlab("Country") +
ylab("Population (in Billion)") +
ggtitle("Population (in Billion): Boxplot - Top 10 Countries")

The boxplot for population of these 10 countries (in Figure 4-11) shows a similar
trend but with no outliers. India and China are clearly emerging as the largest countries in
terms of population.

Chapter 4 ■ Data Visualization in r

148

4.7 Histograms and Density Plots
A histogram is one of the most basic and easy to understand graphical representations of
numerical data. It consists of rectangular boxes. The width of each rectangle has a certain
range and the height signifies the number of data points within that range. Constructing
a histogram begins with dividing the entire range of values into non-overlapping and
equal sized smaller bins (the rectangles). Histograms show an estimate of the probability
distribution of a continuous variable.

Now imagine if you increase the number of bins to a large number in the histogram.
What happens as a result is that you get a smooth surface and the rectangles appear to
diminish into an area with some density. Alternatively, you could also use a density plot.
Here we will show a histogram and then a density plot separately.

Population

Population_all <-read.csv("Population All Year.csv")
Population_all_Long_Format <-melt(Population_all, id ="Country")
names(Population_all_Long_Format) <-c("Country", "Year", "Pop_Billion")
Population_all_Long_Format$Year <-substr(Population_all_Long_Format$Year,
2,length(Population_all_Long_Format$Year))

#Developed Country

Population_Developed <-Population_all_Long_Format[!(Population_all_Long_
Format$Country %in%c('India','China','Australia','Brazil','Canada','France',
'United States')),]

ggplot(Population_Developed, aes(Pop_Billion, fill = Country)) +

Figure 4-11. A boxplot showing the population (in billions) for the top 10 countries

Chapter 4 ■ Data Visualization in r

149

geom_histogram(alpha =0.5, aes(y = ..density..),col="black") +
theme(legend.title=element_text(family="Times",size=20),
legend.text=element_text(family="Times",face ="italic",size=15),
plot.title=element_text(family="Times", face="bold", size=20),
axis.title.x=element_text(family="Times", face="bold", size=12),
axis.title.y=element_text(family="Times", face="bold", size=12)) +
xlab("Population (in Billion)") +
ylab("Frequency") +
ggtitle("Population (in Billion): Histogram")

Figures 4-12 shows the distribution of population for three countries—Germany,
Japan, and the United Kingdom.

Figure 4-12. A histogram showing GDP and population for three developed countries

This distribution can be shown in density scales as well; here is the plot showing
density scales.

ggplot(Population_Developed, aes(Pop_Billion, fill = Country)) +
geom_density(alpha =0.2, col="black") +
theme(legend.title=element_text(family="Times",size=20),
legend.text=element_text(family="Times",face ="italic",size=15),
plot.title=element_text(family="Times", face="bold", size=20),
axis.title.x=element_text(family="Times", face="bold", size=12),
axis.title.y=element_text(family="Times", face="bold", size=12)) +
xlab("Population (in Billion)") +
ylab("Frequency") +
ggtitle("Population (in Billion): Density")

#Developing Country

Chapter 4 ■ Data Visualization in r

150

Population_Developing <-Population_all_Long_Format[Population_all_Long_
Format$Country %in%c('India','China'),]

#Histogram

ggplot(Population_Developing, aes(Pop_Billion, fill = Country)) +
geom_histogram(alpha =0.5, aes(y = ..density..),col="black") +
theme(legend.title=element_text(family="Times",size=20),
legend.text=element_text(family="Times",face ="italic",size=15),
plot.title=element_text(family="Times", face="bold", size=20),
axis.title.x=element_text(family="Times", face="bold", size=12),
axis.title.y=element_text(family="Times", face="bold", size=12)) +
xlab("Population (in Billion)") +
ylab("Frequency") +
ggtitle("Population (in Billion): Histogram")

Figure 4-13. A density plot showing GDP and population for three developed countries

Chapter 4 ■ Data Visualization in r

151

#Density

ggplot(Population_Developing, aes(Pop_Billion, fill = Country)) +
geom_density(alpha =0.2, col="black") +
theme(legend.title=element_text(family="Times",size=20),
legend.text=element_text(family="Times",face ="italic",size=15),
plot.title=element_text(family="Times", face="bold", size=20),
axis.title.x=element_text(family="Times", face="bold", size=12),
axis.title.y=element_text(family="Times", face="bold", size=12)) +
xlab("Population (in Billion)") +
ylab("Frequency") +
ggtitle("Population (in Billion): Density Plot")

Figure 4-14. A histogram showing GDP and population for two developing countries

Chapter 4 ■ Data Visualization in r

152

Looking at these histograms and density plots, you can see over the years, how the
population data for these developed and developing nations is distributed. Now, since we
have explored the data in detail, let’s get a little more specific about the indicators based
on population but split by different cohorts, like country and age.

4.8 Pie Charts
In India, the lowest consumption group spends almost close to 53% of their money on
food and beverages as compared to the higher consumption group with by far the lowest
among other groups at 12%. On the other hand, their spending on housing stands at
39%. This has one clear indication—the lowest consumption group with less disposable
income spends a lot on basic survival needs like food, whereas the higher income group
is looking for nice places to buy homes. The middle income group has something very
similar to the higher group, but they have a larger pie allocated for food as well, which
stands at 21%.

So, in India, businesses around real estates and food industry have flourished to an
all time high in recent years. With a 1.31 billion population base, and a majority of them
in the lowest, low, or middle income group, India has become a land of opportunity for
the food industry.

Another interesting sector is transport, which finds its highest share of contribution
from the higher income group, which often is making travel plans throughout the year.
The transport here includes the usual mode of commuting to home and the office as well
as holiday travels. With the presence of global businesses like Uber, which has solved the
world’s commuting problems, and with technology being present in more than 28 cities
of India, this tells us the potential of this sector.

Figure 4-15. A density plot showing GDP and population for two developing countries

Chapter 4 ■ Data Visualization in r

153

India

library(reshape2)
library(ggplot2)

GCD_India <-read.csv("India - USD - Percentage.csv")

GCD_India_Long_Format <-melt(GCD_India, id ="Sector")
names(GCD_India_Long_Format) <-c("Sector", "Income_Group","Perc_Cont")

ggplot(data=GCD_India_Long_Format, aes(x=factor(1), fill =factor(Sector))) +
geom_bar(aes(weight = Perc_Cont), width=1) +
coord_polar(theta="y", start =0) +
facet_grid(facets=. ~Income_Group) +
scale_fill_brewer(palette="Set3") +
xlab('') +
ylab('') +
labs(fill='Sector') +
ggtitle("India - Percentage share of each sector by Consumption Segment")

Figure 4-16. A pie chart showing the percentage share of each sector by consumption
segment in India

In contrast to India, if you look at China, the need for food and housing is more
evenly distributed among different income groups, whereas what emerges very
distinctively in China is the spending on information and communication technologies
(ICT) by the higher income group, which stands at 14% of the total spend. This puts China
more into the league of developed nations, where such high adaptability and spend on
ICT could be seen.

China

library(reshape2)
library(ggplot2)

GCD_China <-read.csv("China - USD - Percentage.csv")

GCD_China_Long_Format <-melt(GCD_China, id ="Sector")
names(GCD_China_Long_Format) <-c("Sector", "Income_Group","Perc_Cont")

Chapter 4 ■ Data Visualization in r

154

ggplot(data=GCD_China_Long_Format, aes(x=factor(1), fill =factor(Sector))) +
geom_bar(aes(weight = Perc_Cont), width=1) +
coord_polar(theta="y", start =0) +
facet_grid(facets=. ~Income_Group) +
scale_fill_brewer(palette="Set3") +
xlab('') +
ylab('') +
labs(fill='Sector') +
ggtitle("China - Percentage share of each sector by Consumption Segment")

The pie chart in Figure 4-17 is very intuitive. Look at the lowest segment, the pie
chart on extreme left. Almost half of the consumption is for food and beverages, as for the
poor, the first priority is food. As you move to the higher segment, the priories shift and
things like education and ICT (computing devices) go up substantially.

4.9 Correlation Plots
The best way to show how much one indicator relates to another is by computing the
correlation. Though we won't go into the details of the mathematics behind correlation,
those of you who thought that correlations are only seen through a nxn matrix are in
for a surprise. Here comes the visual representation of it using the corrplot library in
R.Correlational as a statistical measure is discussed in Chapter 6.

Corrplot() is a R package that can be used for graphical display of a correlation
matrix, confidence interval. It also contains some algorithms to do matrix reordering. In
addition, corrplot is good at details, including choosing color, text labels, color labels,
layout, etc.

In this last section of the chapter, we want to tie few development indicators discussed
in previous sections like GDP and population with some indicators that contribute to
its growth. The World Bank data used from 1961 to 2014 at an overall world level. For
instance, fertility rate (births per women) highly correlates to population growth rate.

library(corrplot)
library(reshape2)
library(ggplot2)

Figure 4-17. A pie chart showing the percentage share of each sector by consumption
segment in China

http://dx.doi.org/10.1007/978-1-4842-2334-5_6

Chapter 4 ■ Data Visualization in r

155

correlation_world <-read.csv("Correlation Data.csv")

corrplot(cor(correlation_world[,2:6],method ="pearson"),diag =FALSE,
title ="Correlation Plot", method ="ellipse",
tl.cex =0.7, tl.col ="black", cl.ratio =0.2
)

There are many methods with the corrplot function (the method used in
the cor function defines which correlation measure to use; here we use a Pearson
correlation) with which you can experiment to see different shapes in this plot.
We prefer the “ellipse,” for two reasons. The ellipse can give us size and directional
elements to capture more information. The combination of color, size, and position
encapsulates a numeric value into a visual representation. For example, a correlation
between fertility rate and population growth has a value greater than 0 (reflected in
the shades of blue), and the direction of the ellipse represents a positive or negative
correlation. The size represents the value; a thin ellipse would mean either a low or
negative correlation and vice versa.

Figure 4-18. A plot showing correlation between various world development indicators

Chapter 4 ■ Data Visualization in r

156

This way of leveraging the color, shape, and position gives us more dimensions to
present a visualization in 2D, which otherwise would have been difficult to visualize.
Some of the insights we get from this plot without even looking at the correlation matrix
are as follows:

•	 As the fertility rates go down, we can see an increased life
expectancy.

•	 With increase in the life expectancy, people start to live longer
and there is greater burden on the economy to meet their
healthcare needs. As a result, we see its negative correlation with
GDP growth rate. Although it would be a gross mistake to say
it’s only the increase in life expectancy causing the GDP growth
rate to go down, it is fair to point out the negative correlation that
exists between the two variables.

•	 An increase in females also shows a positive (although not too
high) correlation with GDP growth rate. This might mean that
female contribution in household income growth and hence the
spending increase has some effect on the countries GDP.

4.10 HeatMaps
Carrying on with the indicators and their correlations in the last section, Heatmaps are
visualization of data where values are represented as different shades of colors, darker the
shade, higher is the value. For example, it would help us visualize how different regions of
the world are responding to the development indicators.

The heatmap in Figure 4-19 shows six development indicators and how its scaled
values (between 0 to 1) compare for different regions. Some insights we could derive from
this heatmap are:

•	 The East Asia and Pacific region has the world’s highest
population (mostly contributed by China), followed by South Asia
(contribution from India).

•	 North America, with its very low population, has the highest GDP
per capita value (GDP/Population). It also has the lowest fertility
rate and highest life expectancy, which comes from the fact that
both of these indicators are highly correlated. Sub-Saharan Africa
has the lowest GDP and GDP per capita.

•	 Interestingly, life expectancy throughout the world is now looks
healthy in terms of its scaled value. This perhaps is because of
the improved healthcare services and reduced fertility rates.
So, it seems most of the countries in the world are able to use
contraceptives and enjoy the economic benefits of a smaller
family.

Chapter 4 ■ Data Visualization in r

157

library(corrplot)
library(reshape2)
library(ggplot2)

library("scales")
#Heat Maps

bc <-read.csv("Region Wise Data.csv")

bc_long_form <-melt(bc, id =c("Region","Indicator"))
names(bc_long_form) <-c("Region","Indicator","Year", "Inc_Value")
bc_long_form$Year <-substr(bc_long_form$Year, 2,length(bc_long_form$Year))

bc_long_form_rs <-ddply(bc_long_form, .(Indicator), transform ,rescale
=rescale(Inc_Value))

ggplot(bc_long_form_rs, aes(Indicator, Region)) +geom_tile(aes(fill
= rescale),colour ="white") +scale_fill_gradient(low ="white",high
="steelblue") +
theme_grey(base_size =11) +scale_x_discrete(expand =c(0, 0)) +
scale_y_discrete(expand =c(0, 0)) +
theme(
axis.text.x =element_text(size =15 *0.8, angle =330, hjust =0, colour
="black",face="bold"),
axis.text.y =element_text(size =15 *0.8, colour ="black",face="bold"))+
ggtitle("Heatmap - Region Vs World Development Indicators") +
theme(text=element_text(size=12),
title=element_text(size=14,face="bold"))

Chapter 4 ■ Data Visualization in r

158

4.11 Bubble Charts
In order to appreciate bubble charts, you need to first watch the TED talk by Hans
Rosling, called “The best stats you've ever seen”. He is a Swedish medical doctor,
academic, statistician, and public speaker. Hans co-founded Gapminder Foundations, a
non-profit organization promoting the use of data to explore development issues. They
came out with software named Trendalyzer, which was later acquired by Google and
rebranded as googleViz or otherwise known as Google Motion Charts. Google didn't
commercialize this product, but rather made it available free publicly.

In this section, we use a dataset made available by Gapminder, which has the data
around continent, country, life expectancy, and GDP per capita from 1995 to 2007.
Though it looks good in 2D and in static charts, it’s a visual delight to see these bubbles
move in a motion chart.

library(corrplot)
library(reshape2)
library(ggplot2)
library("scales")

#Bubble chart

bc <-read.delim("BubbleChart_GapMInderData.txt")
bc_clean <-droplevels(subset(bc, continent != "Oceania"))
str(bc_clean)
 'data.frame': 1680 obs. of 6 variables:

Figure 4-19. A heatmap between regions and their various world development indicators

Chapter 4 ■ Data Visualization in r

159

 $ country : Factor w/ 140 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1
...
 $ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
 $ pop : num 8425333 9240934 10267083 11537966 13079460 ...
 $ continent: Factor w/ 4 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3
3 ...
 $ lifeExp : num 28.8 30.3 32 34 36.1 ...
 $ gdpPercap: num 779 821 853 836 740 ...
bc_clean_subset <-subset(bc_clean, year ==2007)
bc_clean_subset$year =as.factor(bc_clean_subset$year)

ggplot(bc_clean_subset, aes(x = gdpPercap, y = lifeExp)) +scale_x_log10() +
geom_point(aes(size =sqrt(pop/pi)), pch =21, show.legend =FALSE) +
scale_size_continuous(range=c(1,40)) +
facet_wrap(~continent) +
aes(fill = continent) +
scale_fill_manual(values =c("#FAB25B", "#276419", "#529624", "#C6E79C")) +
xlab("GDP Per Capita(in US $)")+
ylab("Life Expectancy(in years)")+
ggtitle("Bubble Chart - GDP Per Capita Vs Life Expectancy") +
theme(text=element_text(size=12),
title=element_text(size=14,face="bold"))

Figure 4-20. A bubble chart showing GDP per capita vs life expectancy

Chapter 4 ■ Data Visualization in r

160

The book, Lattice: Multivariate Data Visualization with R available via SpringerLink,
by Deepayan Sarkar, Springer (2008) has a comprehensive analysis on bubble charts.
Readers who want a deeper understanding of this visualization may refer to this book.

The bubble chart in Figure 4-20 shows the plot between life expectancy and GDP
per capita for the year 2007. The size of the bubble indicates the population of countries
in that continent. The bigger the bubble size, the larger the population. You can see that
Asia contains multiple large bubbles because of the India and China presence, whereas
Europe consists of mostly less populated countries and a high GDP per capita and life
expectancy. America has some densely populated areas at the same time as a high value
for both the indicators.

library(corrplot)
library(reshape2)
library(ggplot2)
library("scales")

bc <-read.csv("Bubble Chart.csv")

ggplot(bc, aes(x = GDPPerCapita, y = LifeExpectancy)) +scale_x_log10() +
geom_point(aes(size =sqrt(Population/pi)), pch =21, show.legend =FALSE) +
scale_size_continuous(range=c(1,40)) +
facet_wrap(~Country) +
aes(fill = Country) +
xlab("GDP Per Capita(in US $)")+
ylab("Life Expectancy(in years)")+
ggtitle("Bubble Chart - GDP Per Capita Vs Life Expectancy - Four Countries")
+
theme(text=element_text(size=12),
title=element_text(size=14,face="bold"))

Chapter 4 ■ Data Visualization in r

161

The bubble chart in Figure 4-21 is for the two most developed and two fastest
developing countries. Note that the developing nations, China and India, are quickly
catching up in GDP and life expectancy to the developed nations over the years, despite
their large population.

library(corrplot)
library(reshape2)
library(ggplot2)
library("scales")

bc <-read.csv("Bubble Chart.csv")

ggplot(bc, aes(y = FertilityRate, x = LifeExpectancy)) +scale_x_log10() +
geom_point(aes(size =sqrt(Population/pi)), pch =21, show.legend =FALSE) +
scale_size_continuous(range=c(1,40)) +
facet_wrap(~Country) +
aes(fill = Country) +
ylab("Fertility rate, total (births per woman)")+
xlab("Life Expectancy(in years)")+
ggtitle("Bubble Chart - Fertility rate Vs Life Expectancy") +
theme(text=element_text(size=12),
title=element_text(size=14,face="bold"))

Figure 4-21. A bubble chart showing GDP per capita vs life expectancy for four countries

Chapter 4 ■ Data Visualization in r

162

It’s evident from the chart in Figure 4-22 that, with decreasing fertility rates, the life
expectancy is getting longer for all these four nations. India steadily reduced the gap
between itself and China in terms of life expectancy. There were 14 years between them
to begin with and it fell to 6 or 7 years.

4.12 Waterfall Charts
A waterfall chart helps visualize the cumulative effect of sequential changes (addition
and deletion) in the values. Just like waterflow, it shows the flow of values in and out of
the main values. Waterfall charts are also known as flying bricks charts or Mario charts
due to the apparent suspension of columns (bricks) in midair. They are very popular in
accounting and stock management visualizations, as the quantities keep on changing in
a sequential manner. We will be using the package waterfall to create an example on
hypothetical data of border control.

Waterfall() is an R package that provides support for creating waterfall charts in
R using both traditional base and lattice graphics. The package details can be found at
https://cran.r-project.org/web/packages/waterfall/waterfall.pdf.

The data we have is of border control, where each month the footfall of people is
counted. More people going out than coming in means the net migration is negative, and
when more people come in than out, the migration is positive. If we record this exchange
over the border for 12 months, we can see the net migration. The waterfall chart will show
us how it changed over these months.

Figure 4-22. A bubble chart showing fertility rate vs life expectancy

https://cran.r-project.org/web/packages/waterfall/waterfall.pdf

Chapter 4 ■ Data Visualization in r

163

#Read the Footfall Data
footfall <-read.csv("Dataset/Waterfall Shop Footfall Data.csv",header = T)

#Display the data for easy read
footfall
#Convert the Months into factors to retain the order in chart
footfall$Month <-factor(footfall$Month)
footfall$Time_Period <-factor(footfall$Time_Period)

#Load waterfall library
library(waterfall)
library(lattice)

#Plot using waterfall
waterfallplot(footfall$Net,names.arg=footfall$Month, xlab ="Time Period(Mont
h)",ylab="Footfall",col = footfall$Type,main="Footfall by Month")

Figure 4-23. Waterfall plot of footfall at the border

The green blocks are starting or ending blocks, corresponding to January and
December, respectively. The red blocks are people coming in while black blocks are
people going out. When you follow this over a year, you can see that positive migration
happened most of the year, except in three months where more people went out (the
black blocks).

The following plot is alternative view of the same waterfall charts (see Figure 4-24).

waterfallchart(Net~Time_Period, data=footfall,col = footfall$Type,xlab
="Time Period(Month)",ylab="Footfall",main="Footfall by Month")

Chapter 4 ■ Data Visualization in r

164

The plot in Figure 4-24 is similar to the previous one, with the only difference of the
total column at the end. The total column presents the final net value in our counter of
footfall after the year ended.

The same plot can be created to show the percentage of footfall contribution by month.
This will show how the ending footfall count each month is proportional to the total end
footfall. The sum of such percentage should be 100 and is divided into 12 months.

waterfallchart(Month~Footfall_End_Percent, data=footfall)

Figure 4-24. Waterfall chart with net effect

Figure 4-25. Footfall end count as percentage of total end count

Chapter 4 ■ Data Visualization in r

165

Note that the end count fluctuated during the month of April, followed by March and
November. The interpretation will vary based on what you are more interested in from the
plots in Figures 4-24 and 4-25.

4.13 Dendogram
Dendograms are visual representations specifically useful in clustering analysis. They
are tree diagrams frequently used to illustrate the formation of clusters as is done in
hierarchical clusters. Chapter 6 explains how hierarchical clustering works. Dendograms
are popular in computational biology where similarities among species can be presented
using histograms to classify them.

Dendograms are native to the basic plot() command. There are some other
packages as well for more detailed dendograms like ggdendro() and dendextend().

The y-axis in dendograms measures the closeness (or similarity) of an individual
data point of clusters.

The x-axis lists the elements in the dataset (and hence they look messy on the leaf nodes).
The dendogram helps in choosing the right numbers of clusters by showing how

the tree grows with distance matrix (or height) on the y-axis. Cut the tree where you feel
substantially separated clusters can be seen on dendogram. A cut means a like y=c, where
c is 1, 2, or 3..n and c is the number of clusters.

Here, we create a example with iris data, and in the end show how good the clusters
fit to the actual data.

library(ggplot2)
data(iris)
prepare hierarchical cluster on iris data
hc <-hclust(dist(iris[,1:2]))

using dendogram objects
hcd <-as.dendrogram(hc)

#Zoom Into it at level 1
plot(cut(hcd, h =1)$upper, main ="Upper tree of cut at h=1")

http://dx.doi.org/10.1007/978-1-4842-2334-5_6

Chapter 4 ■ Data Visualization in r

166

Looking at the dendogram in Figure 4-26, the best cut seems like it will be
somewhere between 2 and 3, as the clusters have to be complete. We will go ahead with
three clusters and see how they fit into our prior knowledge of clusters.

#lets show how cluster looks looks like if we have cut the tree at y=3
clusterCut <-cutree(hc, 3)

iris$clusterCut <-as.factor(clusterCut)

ggplot(iris, aes(Petal.Length, Petal.Width, color = iris$Species)) +
geom_point(alpha =0.4, size =3.5) +geom_point(col = clusterCut) +
scale_color_manual(values =c('black', 'red', 'green'))

Figure 4-26. Dendogram with distance/height up to h=1

Chapter 4 ■ Data Visualization in r

167

We can see in the plots in Figure 4-27 that most of the clusters we predicted and the
already existing classification of species match. This also means the variables we use for
clustering petal width and petal length are important features for the type of species they
belong to.

4.14 Wordclouds
Wordclouds are word plots with frequency weighted to the size of the words. The more
frequently a word appears, the bigger the word. You can look at text data and quickly
identify the most prominent themes discussed. The earliest example of weighted lists of
English keywords were the "subconscious files" in Douglas Coupland's Microserfs (1995).
After that, this has become a prominent way of quickly perceiving the most frequent
terms and for locating a word alphabetically to determine its relative importance.

In R, we have package wordcloud(), which is used in this section to create a
wordcloud. The details of this package are available at https://cran.r-project.org/
web/packages/wordcloud/wordcloud.pdf.

In this section, we show a good example of how wordclouds can be useful. We have
just copied multiple job descriptions from the Internet for a data science position. Now
the wordcloud on this document will tell us which words occur most frequency in the job
descriptions and hence give us an idea about what the hot skills in market are and the
demand of other qualities.

#Load the text file

job_desc <-readLines("Dataset/wordcloud.txt")

Figure 4-27. Clusters by actual classification of species in iris data

https://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf
https://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf

Chapter 4 ■ Data Visualization in r

168

library(tm)
library(SnowballC)
library(wordcloud)
 Loading required package: RColorBrewer
jeopCorpus <-Corpus(VectorSource(job_desc))

jeopCorpus <-tm_map(jeopCorpus, PlainTextDocument)
#jeopCorpus <- tm_map(jeopCorpus, content_transformer(tolower))
#Remove punctuation marks
jeopCorpus <-tm_map(jeopCorpus, removePunctuation)
#remove English stopwords and some more custom words
jeopCorpus <-tm_map(jeopCorpus, removeWords,(c("Data","data","Experi","work"
,"develop","use","will","can","you","busi", stopwords('english'))))
#Create the document matrix
jeopCorpus <-tm_map(jeopCorpus, stemDocument)

#Creating the color pellet for the word images

pal <-brewer.pal(9,"YlGnBu")
pal <-pal[-(1:4)]
set.seed(146)
#creating the wordcloud
wordcloud(words = jeopCorpus, scale=c(3,0.5), max.words=100, random.
order=FALSE,
rot.per=0.10, use.r.layout=FALSE, colors=pal)

Figure 4-28. Wordcloud of job descriptions

Chapter 4 ■ Data Visualization in r

169

The wordcloud shows that the key trends in data science positions are experienced
people, analyst positions, Hadoop, statistics, Python, and others. This way, without even
going through all the data, we have been able to extract the prominent requirements for a
data science position.

4.15 Sankey Plots
Sankey plots are also called river plots. They are used to show how the different elements
of data are connected, with the density of connecting lines presenting the strength of
connection. They help show the flow of connected items from one factor to another.

It is highly recommended that users explore a powerful visualization package for
making lot of beautiful charts in R: Rcharts(). The source of this package, with lots of
examples, can be found at https://github.com/ramnathv/rCharts.

In the following example, we will use another powerful visualization tool,
googleVis(). GoogleVis is an R interface to the Google Charts API, allowing users
to create interactive charts based on data frames. Charts are displayed locally via the
R HTTP help server. A modern browser with an Internet connection is required and
for some charts a Flash player. The data remains local and is not uploaded to Google.
(Source: https://cran.r-project.org/web/packages/googleVis/googleVis.pdf)

In our example, we will show how the HousePrice flows among different attributes;
we have chosen three layers of plot with Type of House, Estate type, and Type of Sale.

#Load the data from sankey.csv
sankey_data <-read.csv("Dataset/sankey2.csv",header=T)

library(googleVis)
plot(
gvisSankey(sankey_data, from="Start",
to="End", weight="Weight",
options=list(
height=250,
sankey="{link:{color:{fill:'lightblue'}}}"
))
)

 ■ Note the visualization is loaded on a web browser, so you don’t need a working
internet connection to load this example.

 starting httpd help server ...
 done

https://github.com/ramnathv/rCharts
https://cran.r-project.org/web/packages/googleVis/googleVis.pdf

Chapter 4 ■ Data Visualization in r

170

The Sankey chart provides us with some important information, like the most
popular house type is the individual house. They then are available in all the type of
states. Further the societies only have individual house and they have gone through new
house sale, second resale, and third resale only. You can use these plots to explain a lot of
other insights as well.

4.16 Time Series Graphs
We have already shown time series plots in earlier sections in this chapter. Essentially,
when the data is time indexed, like GDP data, we take time on the x-axis and plot the
data to see how it has been changing over time. We can use time series plots to evaluate
patterns and behavior in data over time.

R has powerful libraries to plot multiple types of time series plots. A good read
for you can be found at https://cran.r-project.org/web/packages/timeSeries/
vignettes/timeSeriesPlot.pdf.

For our example, we will try to show two time plots to understand some stark
behavior:

•	 GDP of eight countries overlayed on a single plot to show how the
GDP growth varied for these countries over the last 25 years.

•	 Tracing the GDP growth of three countries during the recession
of 2008.

The first example plots GDP growth over 25 years for eight countries/areas (the Arab
world, UAE, Australia, Bangladesh, Spain, United Kingdom, India, and the United States).

Figure 4-29. The Sankey chart for house sale data

https://cran.r-project.org/web/packages/timeSeries/vignettes/timeSeriesPlot.pdf
https://cran.r-project.org/web/packages/timeSeries/vignettes/timeSeriesPlot.pdf

Chapter 4 ■ Data Visualization in r

171

library(reshape2)
library(ggplot2)
library(ggrepel)

time_series <-read.csv("Dataset/timeseries.csv",header=TRUE);

mdf <-melt(time_series,id.vars="Year");

mdf$Date <-as.Date(mdf$Year,format="%d/%m/%Y");

names(mdf)=c("Year","Country","GDP_Growth","Date");

ggplot(data=mdf,aes(x=Date,y=GDP_Growth)) +geom_line(aes(color=Country),size=1.5)

Figure 4-30. GDP growth for eight countries

The plot in Figure 4-30 shows that the most volatile economy among the eight
countries is UAE. They showed phenomenal growth after the 1990s. You can also see
during 2007-2009 that all the economies showed lower GDP growth, due to a worldwide
recession.

In the following plots, we will see how the recessions impacted three major
economies and to what extent (United States, the UK, and India).

#Now lets just see the growth rates for India, US and UK during recession
years (2006,2007,2008,2009,2010)

Chapter 4 ■ Data Visualization in r

172

mdf_2 <-mdf[mdf$Country %in%c("India","United.States","United.Kingdom")
&(mdf$Date >as.Date("2005-01-01") &mdf$Date <as.Date("2011-01-01")),]

mdf_2$GDP_Growth <-round(mdf_2$GDP_Growth,2)

tp <-ggplot(data=mdf_2,aes(x=Date,y=GDP_Growth)) +geom_line(aes(color=Count
ry),size=1.5)
tp +geom_text_repel(aes(label=GDP_Growth))

Figure 4-31. GDP growth during recession

You can see in 2008, that the United States and the UK showed negative growth,
while India’s growth slowed but was not negative. The United States and the UK were
in a deep recession in 2009 as well, while India started picking up. After 2009, all the
economies were on the recovery path.

4.17 Cohort Diagrams
Cohort diagrams are two-dimensional diagrams used to present events that occur to a
set of observations (individuals) belonging to different cohorts. They are very popular in
credit analysis, marketing analysis, and other demographic studies. Cohort diagrams are
also sometimes called Lexis diagrams.

A cohort is a group of people that form a group that’s assumed to behave differently
than others based on demographics. In our credit example, we assume the cohorts as
the year in which credit was issued. This means each year applicants will be treated as a

Chapter 4 ■ Data Visualization in r

173

Figure 4-32. The cohort plot for credit card active by year of issue

cohort and then we track how many of them still remain unpaid in the following years. In
cohort plots time is usually represented on the horizontal axis, while the value of interest
is represented on the vertical axis.

Let’s create the cohort diagram for our credit example.

library(ggplot2)
require(plyr)

cohort <-read.csv("Dataset/cohort.csv",header=TRUE)

#we need to melt data
cohort.chart <-melt(cohort, id.vars ="Credit_Issued")
colnames(cohort.chart) <-c('Credit_Issued', 'Year_Active', 'Active_Num')

cohort.chart$Credit_Issued <-factor(cohort.chart$Credit_Issued)

#define palette
blues <-colorRampPalette(c('lightblue', 'darkblue'))

#plot data
p <-ggplot(cohort.chart, aes(x=Year_Active, y=Active_Num, group=Credit_Issued))
p +geom_area(aes(fill = Credit_Issued)) +
scale_fill_manual(values =blues(nrow(cohort))) +
ggtitle('Active Credit Cards Volume')

Chapter 4 ■ Data Visualization in r

174

The plot in Figure 4-32 shows how each cohort volume changes with the number of
active years. You can see how the active number of cards decreases over the years. The
decline rate can be estimated by the slope of each cohort and can be tested against others
to see if some particular cohort behaved differently.

4.18 Spatial Maps
Spatial maps have become very popular in recent days. They are powerful presentations
of data that’s tagged with locations on a map. If the information is geotagged, we can
create powerful visual presentations of the data. You can see lots of applications of
them—weather reporting, demographics, crime monitoring, trails monitoring, and
some very interesting crowd behavior tracking using Twitter data, Flikr data, and other
geotagged personal data.

We recommend a good read, available at https://journal.r-project.org/
archive/2013-1/kahle-wickham.pdf.

To show an example, we have selected the crime records data from the National
Crime Records Bureau, India. We show how the robbery cases across the states can be
shown on an Indian map. This will help us compare data relatively without getting into
the data itself.

Data source: https://data.gov.in/catalog/cases-reported-and-value-
property-stolen-place-occurrence

The Ggmap() package is used for spatial visualization along with ggplot2. It is a
collection of functions to visualize spatial data and models on top of static maps from
various online sources (e.g., Google Maps and Stamen Maps). It includes tools common
to those tasks, including functions for geolocation and routing. (Source: https://cran.r-
project.org/web/packages/ggmap/ggmap.pdf)

Let’s walk through each step in detail:

 1. Load the crime data into crime_data:

crime_data <-read.csv("Dataset/Case_reported_and_value_of_property_taken_
away.csv",header=T)

#install.packages("ggmap")
library(ggmap)

 2. Pull an example map to check if the ggplot() function is
working or not:

#Example map to test if ggmap is able to pull graphs or not
qmap(location ="New Delhi, India")
 Map from URL : http://maps.googleapis.com/maps/api/staticmap?center=New
+Delhi,+India&zoom=10&size=640x640&scale=2&maptype=terrain&language=en-
EN&sensor=false
 Information from URL : http://maps.googleapis.com/maps/api/geocode/
json?address=New%20Delhi,%20India&sensor=false

https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
https://data.gov.in/catalog/cases-reported-and-value-property-stolen-place-occurrence
https://data.gov.in/catalog/cases-reported-and-value-property-stolen-place-occurrence
https://cran.r-project.org/web/packages/ggmap/ggmap.pdf
https://cran.r-project.org/web/packages/ggmap/ggmap.pdf

Chapter 4 ■ Data Visualization in r

175

The plot in Figure 4-33 confirms that the ggmap() can pull the maps by passing the
location into the function.

 3. Get the geolocation of all the states of India present in the
crime data:

crime_data$geo_location <-as.character(crime_data$geo_location)
crime_data$robbery =as.numeric(crime_data$robbery)

#lets just see the stats fpr 2010
mydata <-crime_data[crime_data$year == '2010',]

#Summarise the data by state
library(dplyr)
mydata <-summarise(group_by(mydata, geo_location),robbery_
count=sum(robbery))

Figure 4-33. An example map pulled using ggplot()—New Delhi India

Chapter 4 ■ Data Visualization in r

176

#get Geop code for all the cities

for (i in 1:nrow(mydata)) {
 latlon =geocode(mydata$geo_location[i])
 mydata$lon[i] =as.numeric(latlon[1])
 mydata$lat[i] =as.numeric(latlon[2])
}
 Information from URL : http://maps.googleapis.com/maps/api/geocode/
json?address=A&N%20Islands,%20India&sensor=false
.....
 Information from URL : http://maps.googleapis.com/maps/api/geocode/
json?address=West%20Bengal,%20India&sensor=false

 4. Here you can see that each state has been geotagged with the
central coordinates in longitude and latitude duplets.

head(mydata)
 # A tibble: 6 × 4
 geo_location robbery_count lon lat
 <chr><dbl><dbl><dbl>
 1 A&N Islands, India 14 10.89779 48.37054
 2 Andhra Pradesh, India 1120 79.73999 15.91290
 3 Arunachal Pradesh, India 138 94.72775 28.21800
 4 Assam, India 1330 92.93757 26.20060
 5 Bihar, India 3106 85.31312 25.09607
 6 Chandigarh, India 134 76.77942 30.73331
#write the data with geocode for future reference
mydata <-mydata[-8,]
row.names(mydata) <-NULL

write.csv(mydata,"Dataset/Crime Data for 2010 from NCRB with geocodes.
csv",row.names =FALSE)

 5. Creating a data frame, with an aggregated number of
robberies in the state, its longitude, and its latitude.

Robbery_By_State =data.frame(mydata$robbery_count, mydata$lon, mydata$lat)

colnames(Robbery_By_State) <-c('robbery','lon','lat')

 6. Find the center of India on the map and then pull the map of
India to store in IndiaMap.

india_center =as.numeric(geocode("India"))
 Information from URL : http://maps.googleapis.com/maps/api/geocode/json?add
ress=India&sensor=false
IndiaMap <-ggmap(get_googlemap(center=india_center, scale=2, zoom=5,maptype
='terrain'));
 Map from URL : http://maps.googleapis.com/maps/api/staticmap?center=20.5936
84,78.96288&zoom=5&size=640x640&scale=2&maptype=terrain&sensor=false

Chapter 4 ■ Data Visualization in r

177

 7. Plot the India map overlayed by orange circles showing the
robbery count for each state. The bigger the circle, the higher
the robbery rate:

circle_scale_amt <-0.005

IndiaMap +geom_point(data=Robbery_By_State,aes(x=lon,y=lat), col="orange",
alpha=0.4, size=Robbery_By_State$robbery*circle_scale_amt) +scale_size_
continuous(range=range(mv_num_collisions$robbery))

Figure 4-34. India map with robbery counts in 2010

Looking at the spatial visualizations, it’s easy to see the distribution of robbery cases in
India. We can quickly do the comparative analysis also by state. In the plots in Figure 4-34,
Maharashtra, then UP, and then Bihar top the list of robberies registered in 2010.

Chapter 4 ■ Data Visualization in r

178

4.19 Summary
Data visualization is an art and science at the same time. What information to show
comes from scientific reasoning while how to show it comes from the cognitive
capabilities of brain. It is proved that the brain processes images faster than numbers, so
it becomes very important for a professional to compress the information in meaningful
visuals rather than long data feeds.

In this chapter, we discussed many types of visualization plots and charts that can be
used to build a story around what the data is telling us. We started with World Bank data
and showed how to track the changes in key indicators using line charts and columns
charts. We also saw how histograms and density plots save us from generalization our
inferences by looking at overall levels, as histograms show the distribution within. Pie
charts are a good way to show the contribution of individual components. Boxplots were
used to show the extreme values in our dataset. Overall, the correlation plot, heatmaps,
and finally bubble charts have many commonalities in terms of the rich information
they show in a relatively small real estate of a chart. While similarities exist, you need to
carefully choose the right graphs and plots to represent your data.

Waterfall charts were used to show how a sequential flow of information can be
captured in more intuitive ways. Similar to waterfall charts are the Sankey plots, drawn
for different purposes. Sankey plots show properties of connection among different
components in a flow visualization. Dendograms have specific uses in clustering and
analysis of similarities among subjects. Time series plots are very important for time-
indexed data; using time series plots enables you to see how in recession years the GDP
growth went negative among three countries.

Another popular chart is the cohort chart. These charts are very popular in analyzing
groups of people over time for some key characteristic changes. We used a credit card
example where different cohorts were shown on different time periods from issuance of
credit. The last and one of most powerful charts are spatial maps. They are presentations
of information on maps. Any data that’s geotagged can be presented using spatial maps.
Overall, R has scalable libraries to create powerful visualizations.

It’s of foremost importance that you understand the audience of your presentation
before choosing an appropriate visualization technique. As stated, data visualization
has a vast scope and we will continuously use many such plots, charts, and graphs
throughout the book.

In the next chapter, we will explore another aspect of data exploration, which is
feature engineering. If we have hundreds and thousands of variables or features, how do
we decide which particular feature is useful in building a ML model? Such questions will
be answered to set the stage to start building our ML model in Chapter 6.

http://dx.doi.org/10.1007/978-1-4842-2334-5_6

Chapter 4 ■ Data Visualization in r

179

4.20 References
 [1] “ggplot2: Elegant Graphics for Data Analysis,” by Hadley

Wickham

 [2] http://www.math.yorku.ca/SCS/Gallery/milestone/
milestone.pdf

 [3] https://cran.r-project.org/web/packages/waterfall/
waterfall.pdf

 [4] https://cran.r-project.org/web/packages/wordcloud/
wordcloud.pdf

 [5] https://github.com/ramnathv/rCharts

 [6] https://cran.r-project.org/web/packages/googleVis/
googleVis.pdf

 [7] https://cran.r-project.org/web/packages/timeSeries/
vignettes/timeSeriesPlot.pdf

 [8] https://journal.r-project.org/archive/2013-1/kahle-
wickham.pdf

 [9] https://data.gov.in/catalog/cases-reported-and-
value-property-stolen-place-occurrence

http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf
http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf
https://cran.r-project.org/web/packages/waterfall/waterfall.pdf
https://cran.r-project.org/web/packages/waterfall/waterfall.pdf
https://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf
https://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf
https://github.com/ramnathv/rCharts
https://cran.r-project.org/web/packages/googleVis/googleVis.pdf
https://cran.r-project.org/web/packages/googleVis/googleVis.pdf
https://cran.r-project.org/web/packages/timeSeries/vignettes/timeSeriesPlot.pdf
https://cran.r-project.org/web/packages/timeSeries/vignettes/timeSeriesPlot.pdf
https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
https://data.gov.in/catalog/cases-reported-and-value-property-stolen-place-occurrence
https://data.gov.in/catalog/cases-reported-and-value-property-stolen-place-occurrence

181© Karthik Ramasubramanian and Abhishek Singh 2017
K. Ramasubramanian and A. Singh, Machine Learning Using R,
DOI 10.1007/978-1-4842-2334-5_5

CHAPTER 5

Feature Engineering

In machine learning, feature engineering is a blanket term covering both statistical and
business judgment aspects of modeling real-world problems. Feature engineering is a
new term coined recently to give due importance to the domain knowledge required to
select sets of features for machine learning algorithms. It is one of the reasons that most
of the machine learning professionals call it an informal process. In this chapter, we will
provide an easy-to-use guide of key terms and methodology used in feature engineering.
The chapter will give due weight to the domain knowledge and some common business
limitations while using machine learning algorithms to solve business problems.

The discussions will throw light on both aspects of feature engineering:

•	 Domain knowledge and business limitations

•	 Statistical principles

Before we set the layout for learning objectives of this chapter, let’s spend some
time understanding how feature engineering is different from what we learned so far in
previous chapters. We will explain it with two questions:

•	 What are my features and their properties?

•	 How do my features interact with each other to fit a model?

In order to quantify meaningful relationships between the response variable and
predictor variables, we need to know the individual properties of the features and how
they interact with each other. Descriptive statistics and distribution of features provide us
with insight into what they are and how they behave in our dataset. Our previous chapters
have addressed this first question.

The next step in machine learning involves asking questions and choosing the right
set of features (or variables) and the criteria to choose them. These questions cannot
be answered by just studying the individual properties of the features, but we need to
understand their interactions with each other and with response variable. That is what we
have to search the answer for the second question and quantify the relations to get a set of
features that are best for the machine learning algorithm.

Learning objectives:

•	 Introduction to feature engineering

•	 Feature ranking

Chapter 5 ■ Feature engineering

182

•	 Variable subset selection

•	 Dimensionality reduction

The chapter discusses some hands-on examples to apply the general statistical method
to these concepts within the feature engineering space. The later part of the chapter will
discuss some examples to show how business-critical thinking helps feature selection.

The illustrations in this chapter are based on loan default data. The data contain the
loss on a given loan. The loss on each loan is graded between 1 and 100. For the cases
where the full loan was recovered, the value of loan loss is set to 0, which means there was
no default on that loan. A loss of 60 means that only 40% of the loan was recovered. The
data is set up to create a default prediction model.

The data feature names are annonymized to bring focus on the statistical
quantification of relationship among features. There are some key terms associated with
the loan default in financial services industry, Probability of Default (PD), Exposure at
Default (EAD), and Loss Given Default (LGD). While the focus of this chapter is to show
how statistical methods work, you are encouraged to draw parallel analogies to your
business problems, in which case a good reference point could be loan default.

5.1 Introduction to Feature Engineering
Feature engineering has become a core process in developing any data solution. The
emergence of feature engineering as an integral part of the machine learning solution
development is mainly driven by two factors:

•	 Increase in a set of features/variables

•	 Time and complexity of machine learning algorithms

With technological advances, it’s now possible to collect a lot of data at just a fraction
of the cost. In many cases, to improve modeling output, we are merging lots of data from
third-party sources, external open sources into internal data. This create huge sets of
features for machine learning algorithms. All the features in our consideration set might
not be important from a machine learning perspective and, even if they are, all of them
might not be needed to attain a level of confidence in model predictions.

The other aspect is time and complexity; the machine learning algorithms are
resource intensive and time increases exponentially for each feature added to the model.
A data scientist has to bring in a balance between this complexity and benefit in the final
model accuracy.

To completely understand the feature engineering concepts, we have to decouple
this terminology into two separate but supporting processes:

•	 Feature selection (or variable selection)

•	 Business/domain knowledge

The former is statistics-intensive and provides empirical evidence as to why a certain
feature or set of features is important for the machine learning algorithm. This is based on
quantifiable and comparable metrics created either independent of the response variable
or otherwise. The later is more to put the business logic to make sure the features make
sense and provide the right insights the business is looking for.

Chapter 5 ■ Feature engineering

183

In many cases, business logic takes precedence over statistical results. This
precedence is not a hard and fast rule but business insights are not always driven
by sound statistical results. When there is a conflict, business requirements take
precedence over statistical inferences. For instance, suppose the unemployment rate
is used for identifying loan defaults in a region. For the set of data, it might be possible
that unemployment rate might not be significant at the 95% confidence level, but is
significant at the 90% confidence level. If a business believes that unemployment rate is
an important variable, then we might want to create an exception in the variable selection
where the unemployment rate is captured with relaxed statistical constraints.

Business/domain knowledge varies with industry and application. Business needs
are evolving and are very difficult to capture in a time-bound manner. We will discuss
an example from the financial services domain to explain how variable selection and
domain knowledge come together in deciding which features to use in the model. The
main focus of the chapter is on statistical aspects of feature engineering, which we discuss
under the sections of variable selection and feature creation.

The main benefits that come out of a robust and structured variable selection are:

•	 Improved predictive performance of the model

•	 Faster and less complex machine learning process

•	 Better understanding of underlying data relationships

•	 Explainable and implementable machine learning
models/solutions

The first three benefits are intuitive and can be relayed back to our prior discussion.
Let's invest some time to give due importance to the fourth point here. Business insights
are generally driven from simple and explainable models. The more complicated a
machine is, the more difficult it is to explain. Try to think about features as business
action points. If the machine being built has features that cannot be explained in clear
terms back to the business, the business loses the value as the model output doesn’t back
to actionable points. That means the whole purpose of machine learning is lost.

Any model that you develop has to be deployed in the live environment for use by
the end users. For a live environment, each added feature in the model means an added
data feed into the live system, which in turn may mean accessing a whole new database.
This creates a lot of IT system changes and dependencies within the system. The
implementation and maintenance costs then have to be weighted upon the inalienability
of the model and the essence of keeping so many variables. If the same underlying
behavior can be explained with fewer features, implementation should be done with
fewer features. Agility to compute and provide quick results often outweighs a better
model with more features.

The feature selection methods are broadly divided into three groups—filter, wrapper,
and embedded.

Chapter 5 ■ Feature engineering

184

5.1.1 Filter Methods
Filter methods select variables regardless of the model. They put the features in an
ordinal list by general features like correlation with the variable to predict or the variance
in them. The ranked features then provide a list to make a decision of keeping or
removing features based on ranks. Filter methods are often univariate and consider the
features independently of other features. The scoring can be done by univariate or with
regard to the dependent variable.

Some of the best known filter techniques include chi square test, correlation
coefficients, and information gain metrics. For example, we know that high variance
in the data normally reflects more information in it. In filter methods, we can filter out
the features that have low variance and keep the ones with high variance for further
analysis.

5.1.2 Wrapper Methods
Wrapper methods consider a set of features to find the best subset of features for a
modeling problem. This method treats the features selection process as a search problem,
where different combinations of features are tested against performance criteria and
compared with other combinations. A predictive model is used to evaluate the different
sets of features and an accuracy metric is used to score the set of features. The set of
features with the highest accuracy measure is chosen for modeling.

The search process may use heuristics like forward selection, backward selection,
and so on, or be probabilistic such as random hill-climbing algorithm. Or it may also
methodological, like best-fit search or full brute force search. Another advanced example
of a wrapper method is the recursive feature elimination algorithm. A simple example can
be constructed around forward selection of variable subset; the model starts with a single
variable and then starts adding more variables by measuring how much improvement
the new variable brings into the model. When addition of a variable doesn’t bring any
improvement in the model, we stop. This way, we can search model subset space to find
the best subset.

5.1.3 Embedded Methods
Embedded methods are improved versions of wrapper algorithms. They introduce a
penalty factor to the evaluation criteria of the model to bias the model toward lower
complexity. The algorithms try to balance between the complexity and accuracy of the
model. Regularization is the most common embedded method for variable
subset selection, e.g., L1 and L2 regularizations, ridge regression, etc. LASSO stands
for least absolute shrinkage and selection operator; it will be discussed later
in this chapter.

Chapter 5 ■ Feature engineering

185

5.2 Understanding the Working Data
The data used in this chapter is credit risk data from a public competition. Credit risk
modeling is one of the most involved modeling problems in the banking industry. The
process of building a credit risk model is not only complicated in terms of data but also
requires in-depth knowledge of business and market dynamics.

A credit risk is the risk of default on a debt that may arise from a borrower
failing to make required payments.

A little more background on key terms from credit risk modeling will be helpful for
you to relate these data problems to other similar domain problems. We briefly introduce
few key concepts in credit risk modeling.

•	 Willingness to pay and ability to pay: The credit risk model tries
to quantify these two aspects of any borrower. Ability to pay
can be quantified by studying the financial conditions of the
borrower (variable like income, wealth, etc.), while the tough part
is measuring willingness to pay, where we use a variable which
captures behavioral properties (variables like default history,
fraudulent activities, etc.).

•	 Probability of default (PD): PD is a measure that indicates how
likely the borrower is going to default in the next period. The
higher the value, the higher the chances of default. It is a measure
having value between 0 and 1 (boundary inclusive). Banks want
to lend money to borrowers having a low PD.

•	 Loss Given Default (LGD): LGD is a measure of how much the
lender is likely to lose if the borrower defaults in the next period.
Generally, lenders have some kind of collateral with them to
limit downside risk of default. In simplistic term, this measure is
the amount lent minus the value of the collateral. This is usually
measured as a percentage. Borrowers having high LGDs are a risk.

•	 Exposure at Default (EAD): EAD is the amount that the bank/
lender is exposed at the current point in time. This is the amount
that the lender is likely to lose if the borrower defaults right now.
This is one of the closely watched metrics in any bank credit risk
division.

These terms will help you think through how we can influence the information
from same data with a tweaked way to do feature engineering. All these metrics can be
predicted from the same loan default data, but the way we go about selecting features
will differ.

Chapter 5 ■ Feature engineering

186

5.2.1 Data Summary
Data summary of the input data will provide vital information about the data. For this
chapter, we need to understand some of the features of the data before we apply different
techniques. To show how to apply statistical methods, select the feature set for modeling.
The important features that we will be looking are as follows:

•	 Properties of dependent variable

•	 Feature availability: continuous or categorical

•	 Setting up data assumptions

5.2.2 Properties of Dependent Variable
In our dataset, loss is the variable used as the dependent variable in the figures in this
chapter. The modeling is to be done for credit loss. Loan is a type of credit and we will use
credit loss and loan loss interchangeably. The loss variable has values between 0 and
100. We will see the loss variable’s distribution in this chapter.

The following code loads the data and shows the dimension of the dataset created.
Dimension means the number of records multiplied by number of features.

Input the data and store in data table

library(data.table)

data <-fread ("Dataset/Loan Default Prediction.csv",header=T, verbose
=FALSE, showProgress =TRUE)

Read 105471 rows and 771 (of 771) columns from 0.476 GB file in 00:01:02
dim(data)
 [1] 105471 771

There are 105,471 records with 771 attributes. Out of 771, there is one dependent series
and one primary key. We have 769 features to create a feature set for this credit loss model.

We know that the dependent variable is loss on a scale of 0 to 100. For analysis
purposes, we will analyze the dependent variable as continuous and discrete. As a
continuous variable, we will look at descriptive statistics and, as a discrete variable, we
will look at the distribution.

#Summary of the data
summary(data$loss)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.0000 0.0000 0.0000 0.7996 0.0000 100.0000

Chapter 5 ■ Feature engineering

187

The highest loss that is recorded is 100, which is equivalent to saying that all the
outstanding credit on the loan was lost. The mean is close to 0 and the first and third
quartiles are 0. Certainly the loss cannot be dealt with as a continuous variable, as most of the
values are concentrated toward 0. In other words, the number of cases with default is low.

hist(data$loss,
main="Histogram for Loss Distribution ",
xlab="Loss",
border="blue",
col="red",
las=0,
breaks=100,
prob =TRUE)

Figure 5-1. Distribution of loss (including no default)

The distribution of loss in Figure 5-1 shows that loss is equal to zero for most part
of the distribution. We can see that using loss as a continuous variable is not possible
in this setting. So we will convert our dependent variable into a dichotomous variable,
with 0 representing a non-default and 1 a default. The problem is to reduce to the default
prediction, and we now know what kind of machine learning algorithm we intend to
use down the line. This prior information will help us choose the appropriate feature
selection methods and metrics to use in feature selection.

Let's now see for the cases where there is default (i.e., loss not equal to zero), how the
loss is distributed (recall the LGD measure).

Chapter 5 ■ Feature engineering

188

Figure 5-2. Distribution of loss (excluding no default)

#Sub-set the data into NON Loss and Loss (e.g., loss > 0)

subset_loss <-subset(data,loss !=0)

#Distribution of cases where there is some loss registered

hist(subset_loss$loss,
main="Histogram for Loss Distribution (Only Default cases) ",
xlab="Loss",
border="blue",
col="red",
las=0,
breaks=100,
prob =TRUE)

Below distribution plot exclude non-default cases, in other words for only
use cases where Loss >0.

In more than 90% of the cases, we have a loss below 25%, hence the Loss Given
Default (LGD) is low (see Figure 5-2). The company can recover a high amount of due.
For further discussion around feature selection, we will create a dichotomous variable
called default, which will be 0 if the loss is equal to 0 and 1 otherwise.

default = 0 , there is no default and hence no lossdefault = 1, there is a
default
#Create the default variable

data[,default :=ifelse(data$loss ==0, 0,1)]

Chapter 5 ■ Feature engineering

189

#Distribution of defaults
table(data$default)

 0 1
 95688 9783
#Event rate is defined as ratio of default cases in total population

print(table(data$default)*100/nrow(data))

 0 1
 90.724465 9.275535

So we have converted our dependent variable into a dichotomous variable and
our features selection problem will be geared toward finding the best set of features to
model this default behavior for our data. The distribution table states that we have 9.3%
of the cases of default in our dataset. This is sometime called an event rate in the model
development data.

5.2.3 Features Availability: Continuous or Categorical
The data has 769 features to create a model for the credit loss. We have to identify how
many of these features are continuous and categorical. This will allow us to design the
feature selection process appropriately, as many metrics are not directly comparable
for ordering, e.g., correlation of the continuous variable is different than the correlation
measure for categorical variables.

 ■ Tip if you don't have any prior knowledge of a feature’s valid values, you can treat
variables with more than 30 levels as continuous and ones with fewer than 30 levels as
categorical variables.

The following code snippet does three things to identify the type of treatment a
variable needs to be given, i.e., continuous or categorical:

•	 Remove the id,loss, and default indicators from this analysis, as
these variables are identifier or dependent variable.

•	 Find the unique values in each feature; if the number of
unique values is less than or equal to 30, assign that feature to
categorical set.

•	 If the number of unique values is greater than 30, assign it to be
continuous.

Chapter 5 ■ Feature engineering

190

This idea is working for us; however, you have be cautious about variables like ZIP
code (it is a nominal variable), states (number of states can be more than 30 and they are
characters), and other features having character values.

continuous <-character()
categorical <-character()
#Write a loop to go over all features and find unique values
p<-1
q<-1
for (i in names(data))
{
 unique_levels =length(unique(data[,get(i)]))

 if(i %in%c("id","loss","default"))
 {
 next;
 }

 else
 {
 if (unique_levels <=30 |is.character(data[,get(i)]))
 {
cat("The feature ", i, " is a categorical variable")
 categorical[p] <-i
 p=p+1
Making the
 data[[i]] <-factor(data[[i]])
 }
 else
 {
cat("The feature ", i, " is a continuous variable")
 continuous[q] <-i
 q=q+1

 }
 }
}

subtract 1 as one is dependent variable = default
cat("\nTotal number of continuous variables in feature set ",
length(continuous) -1)

 Total number of continuous variables in feature set 717
subtract 2 as one is loss and one is id
cat("\nTotal number of categorical variable in feature set ",
length(categorical) -2)

 Total number of categorical variable in feature set 49

Chapter 5 ■ Feature engineering

191

These iterations have divided the data into categorical and continuous variables with
each having 49 and 717 features in them, respectively. We will ignore the domain specific
meaning of these features, as our focus is on statistical aspects of feature selection.

5.2.4 Setting Up Data Assumptions
To explain the different aspects of feature selection, we will be using some assumptions:

•	 We do not have any prior knowledge of feature importance or
domain-specific restrictions.

•	 The machine/model we want to create will predict the
dichotomous variable default.

•	 The order of steps is just for illustration; multiple variations
do exist.

5.3 Feature Ranking
Feature ranking is one of the most popular methods of identifying the explanatory power
of a feature against the set purpose of the model. In our case the purpose is to predict a 0
or 1. The explanatory power has to be captured in a predefined metric, so we can put the
features in an ordinal manner.

In our problem setup, we can use following steps to get feature rankings:

•	 For each feature fit, use a logistic model (a more elaborate
treatment of this topic is covered in Chapter 6) with dependent
variable being default.

•	 Calculate the Gini coefficient. Here, the Gini coefficient is the
metric we defined to measure the explanatory power of the
feature.

•	 Rank order features using the Gini coefficient, where the higher
Gini coefficient means greater explanatory power of the feature.

Package "MLmetrics"

This is a collection of evaluation metrics, including loss, score, and utility functions,
that measure regression, classification, and ranking performance. This is a useful package
for calculating classifiers performance metrics. We will be using the function Gini() in
this package to get the Gini coefficient.

The following code snippet implement the following steps:

 1. For each feature in data, fit a logistic regression using the
logit link function.

 2. Calculate the Gini coefficient on all the data (you can also
train on taraining data and calculate Gini on testing data).

 3. Order all the features by the Gini coefficient (higher to lower).

http://dx.doi.org/10.1007/978-1-4842-2334-5_6

Chapter 5 ■ Feature engineering

192

library(MLmetrics)
performance_metric_gini <-data.frame(feature =character(), Gini_value =numeric())

#Write a loop to go over all features and find unique values
for (feature in names(data))
{
 if(feature %in%c("id","loss","default"))
 {
 next;
 }
 else
 {
tryCatch({glm_model <-glm(default ~get(feature),data=data,family=binomial(l
ink="logit"));

 predicted_values <-predict.glm(glm_model,newdata=data,type="response");

 Gini_value <-Gini(predicted_values,data$default);

 performance_metric_gini <-rbind(performance_metric_
gini,cbind(feature,Gini_value));},error=function(e){})

 }
}

performance_metric_gini$Gini_value <-as.numeric(as.character(performance_
metric_gini$Gini_value))
#Rank the features by value of Gini Coefficient

Ranked_Features <-performance_metric_gini[order(-performance_metric_
gini$Gini_value),]

print("Top 5 Features by Gini Coefficients\n")
 [1] "Top 5 Features by Gini Coefficients\n"
head(Ranked_Features)
 feature Gini_value
 710 f766 0.2689079
 389 f404 0.2688113
 584 f629 0.2521622
 585 f630 0.2506394
 269 f281 0.2503371
 310 f322 0.2447725

 ■ Tip When you are running loops over large datasets, it is possible that the loop might
stop due to some errors. to escape that, consider using the trycatch() function in r.

Chapter 5 ■ Feature engineering

193

The ranking methods tells us that the top six features by their individual predicted
power are f766, f404, f629, f630, f281, and f322. The top feature in the Gini coefficient is
0.268 (or 26.8%). Now using the set of top five features, let’s create a logistical model and
see the same performance metric.

The following code uses the top six features to fit a logistical model on our data. After
fitting the model, it them print out the Gini coefficient of the model.

#Create a logistic model with top 6 features (f766,f404,f629,f630,f281 and f322)

glm_model <-glm(default ~f766 +f404 +f629 +f630 +f281 +f322,data=data,family
=binomial(link="logit"));

predicted_values <-predict.glm(glm_model,newdata=data,type="response");

Gini_value <-Gini(predicted_values,data$default);

summary(glm_model)

 Call:
 glm(formula = default ~ f766 + f404 + f629 + f630 + f281 + f322,
 family = binomial(link = "logit"), data = data)

 Deviance Residuals:
 Min 1Q Median 3Q Max
 -0.7056 -0.4932 -0.4065 -0.3242 3.3407

 Coefficients:
 Estimate Std. Error z value Pr(>|z|)
 (Intercept) -3.071639 2.160885 -1.421 0.155
 f766 -1.609598 2.150991 -0.748 0.454
 f404 0.351095 2.147072 0.164 0.870
 f629 -0.505835 0.077767 -6.505 7.79e-11 ***
 f630 -0.090988 0.057619 -1.579 0.114
 f281 -0.004073 0.008245 -0.494 0.621
 f322 0.262128 0.055992 4.682 2.85e-06 ***

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 (Dispersion parameter for binomial family taken to be 1)

 Null deviance: 65044 on 105147 degrees of freedom
 Residual deviance: 62855 on 105141 degrees of freedom
 (323 observations deleted due to missingness)
 AIC: 62869

Chapter 5 ■ Feature engineering

194

 Number of Fisher Scoring iterations: 6
Gini_value
 [1] 0.2824955

The model result shows that four features (f766, f404, f630, and f281) are not
significant. The standard errors are very high for these features. This gives us an
indication that the features themselves are highly correlated and hence are not adding
value by being in the model. As you can see, the Gini coefficient has not improved, even
after adding more variables. The reason for the top features being insignificant could be
that all of them are highly correlated. To investigate this multi-correlated issue, we will
create the correlation matrix for the six features.

#Create the correlation matrix for 6 features (f766,f404,f629,f630,f281 and f322)

top_6_feature <-data.frame(data$f766,data$f404,data$f629,data$f630,data$f28
1,data$f322)

cor(top_6_feature, use="complete")
 data.f766 data.f404 data.f629 data.f630 data.f281
 data.f766 1.0000000 0.9996710 0.6830923 0.64202380.8067094
 data.f404 0.9996710 1.0000000 0.6827368 0.6416069 0.8065005
 data.f629 0.6830923 0.6827368 1.0000000 0.9114775 0.6515478
 data.f630 0.6420238 0.6416069 0.9114775 1.0000000 0.6102867
 data.f281 0.8067094 0.8065005 0.6515478 0.6102867 1.0000000
 data.f322 -0.7675846 -0.7675819 -0.5536863 -0.5127184 -0.7280321
 data.f322
 data.f766 -0.7675846
 data.f404 -0.7675819
 data.f629 -0.5536863
 data.f630 -0.5127184
 data.f281 -0.7280321
 data.f322 1.0000000

It’s clear from the correlation structure that the features f766, f404, f630, and f281
are highly correlated and hence the model results shows them to be insignificant.
This exercise shows that while feature ranking helps in measuring and quantifying
the individual power of variables, it might not be directly used as a method of variable
selection for model development.

Guyon and Elisseeff provide the following criticism for this variable ranking method:

[The] variable ranking method leads to the selection of a redundant
subset. The same performance could possibly be achieved with a smaller
subset of complementary variable.

You can verify this fact by looking at the correlation matrix and the significant
variables in the model. The two significant variables are complementary and provide the
similar Gini coefficient.

Chapter 5 ■ Feature engineering

195

5.4 Variable Subset Selection
Variable subset selection is the process of selecting a subset of features (or variables)
to use in the machine learning model. In previous section, we tried to create a subset
of variables using the individual ranking of variables but observed the limitations of
feature ranking as a variable selection method. Now we formally introduce the process
of variable subset selection. We will be discussing one method from each broad category
and will show an example using the credit loss data. You are encouraged to compare the
results and assess what method suits your machine learning problem best.

Isabelle Guyon and Andre Elisseeff provided comprehensive introduction to various
methods of variable (or feature) selection. They call the criteria for different methods as
measuring "usefulness" or "relevance" of features to qualify them to be part of the variable
subset. The three broad methods—filter, wrapper, and embedded—are illustrated with
our credit loss data.

5.4.1 Filter Method
The filter method uses the intrinsic properties of variables, ignoring the machine learning
method itself. This method is useful for classification problems where each variable adds
incremental classification power.

Criterion: Measure feature/feature subset "relevance"

Search: Order features by individual feature ranking or nested subset of features

Assessment: Using statistical tests

Statistical Approaches

 1. Information gain

 2. Chi-square test

 3. Fisher score

 4. Correlation coefficient

 5. Variance threshold

Results

 1. Relatively more robust against overfitting

 2. Might not select the most "useful" set of features

For this method we will be showing the variance threshold approach, which
is based on the basic concept that the variables that have high variability also have
higher information in them. Variance threshold is a simple baseline approach. In this
method, we remove all the variables having variance less than a threshold. This method
automatically removes the variables having zero variance.

Chapter 5 ■ Feature engineering

196

 ■ Note the features in our dataset are not standardized and hence we cannot do direct
comparison of variances. We will be using the coefficient of variation (CV) to choose the top
five features for model building. also the following exercise is shown only for continuous
features; for categorical variables, use a chi.square test.

Coefficient of Variance (CoV), also known as relative standard deviation, provides
a standardized measure of dispersion of a variable. It is defined as the ratio of standard
deviation to the mean of the variable:

cv =
s
m

Here, we calculate the mean and variance of each continuous variable, then we
take a ratio of them to calculate the Coefficient of Variance (CoV). The features are then
ordered by decreasing coefficient of variance.

#Calculate the variance of each individual variable and standardize the
variance by dividing with mean()

coefficient_of_variance <-data.frame(feature =character(), cov =numeric())

#Write a loop to go over all features and calculate variance
for (feature in names(data))
{
 if(feature %in%c("id","loss","default"))
 {
 next;
 }
 else if(feature %in%continuous)
 {
tryCatch(
 {cov <-abs(sd(data[[feature]], na.rm =TRUE)/mean(data[[feature]],na.
rm =TRUE));
 if(cov !=Inf){
 coefficient_of_variance <-rbind(coefficient_of_variance,cbind(feature,
cov));} else {next;}},error=function(e){})

 }
 else
 {
 next;
 }
}

Chapter 5 ■ Feature engineering

197

coefficient_of_variance$cov <-as.numeric(as.character(coefficient_of_
variance$cov))

#Order the list by highest to lowest coefficient of variation

Ranked_Features_cov <-coefficient_of_variance[order(-coefficient_of_
variance$cov),]

print("Top 5 Features by Coefficient of Variance\n")
 [1] "Top 5 Features by Coefficient of Variance\n"
head(Ranked_Features_cov)
 feature cov
 295 f338 164.46714
 378 f422 140.48973
 667 f724 87.22657
 584 f636 78.06823
 715 f775 70.24765
 666 f723 46.31984

The coefficient of variance provided the top six features by order of their CoV values.
The features that show up in the top six (f338, f422, f724, f636, f775, and f723) are then
used to fit a binomial logistic model. We calculate the Gini coefficient of the model to
assess if these variables improve the Gini over individual features, as discussed earlier.

#Create a logistic model with top 6 features (f338,f422,f724,f636,f775 and f723)

glm_model <-glm(default ~f338 +f422 +f724 +f636 +f775 +f723,data=data,family
=binomial(link="logit"));

predicted_values <-predict.glm(glm_model,newdata=data,type="response");

Gini_value <-Gini(predicted_values,data$default);

summary(glm_model)

 Call:
 glm(formula = default ~ f338 + f422 + f724 + f636 + f775 + f723,
 family = binomial(link = "logit"), data = data)

 Deviance Residuals:
 Min 1Q Median 3Q Max
 -1.0958 -0.4839 -0.4477 -0.4254 2.6363

 Coefficients:
 Estimate Std. Error z value Pr(>|z|)
 (Intercept) -2.206e+00 1.123e-02 -196.426 < 2e-16 ***
 f338 -1.236e-25 2.591e-25 -0.477 0.633

Chapter 5 ■ Feature engineering

198

 f422 1.535e-01 1.373e-02 11.183 < 2e-16 ***
 f724 1.392e+01 9.763e+00 1.426 0.154
 f636 -1.198e-06 2.198e-06 -0.545 0.586
 f775 6.412e-02 1.234e-02 5.197 2.03e-07 ***
 f723 -5.181e+00 4.623e+00 -1.121 0.262

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 (Dispersion parameter for binomial family taken to be 1)

 Null deviance: 59064 on 90687 degrees of freedom
 Residual deviance: 58898 on 90681 degrees of freedom
 (14783 observations deleted due to missingness)
 AIC: 58912

 Number of Fisher Scoring iterations: 6
cat("The Gini Coefficient for the fitted model is ",Gini_value);
 The Gini Coefficient for the fitted model is 0.1445109

This method does not show any improvement on the number of significant
variables among the top six, i.e., only two features are significant—f422 and f775. Also,
the model’s overall performance is worse, i.e., the Gini coefficient is 0.144 (14.4% only).
For completeness of analysis purposes, let’s create the correlation matrix for these six
features. We want to see if the variables are correlated and hence are insignificant.

#Create the correlation matrix for 6 features (f338,f422,f724,f636,f775 and
f723)

top_6_feature <-data.frame(as.double(data$f338),as.double(data$f422),as.
double(data$f724),as.double(data$f636),as.double(data$f775),as.
double(data$f723))

cor(top_6_feature, use="complete")
 as.double.data.f338. as.double.data.f422.
 as.double.data.f338. 1.000000e+00 0.009542857
 as.double.data.f422. 9.542857e-03 1.000000000
 as.double.data.f724. 4.335480e-02 0.006249059
 as.double.data.f636. -6.708839e-05 0.011116608
 as.double.data.f775. 5.537591e-03 0.050666549
 as.double.data.f723. 5.048078e-02 0.005556227
 as.double.data.f724. as.double.data.f636.
 as.double.data.f338. 0.0433548003 -6.708839e-05
 as.double.data.f422. 0.0062490589 1.111661e-02
 as.double.data.f724. 1.0000000000 -1.227539e-04
 as.double.data.f636. -0.0001227539 1.000000e+00
 as.double.data.f775. 0.0121451180 -7.070228e-03
 as.double.data.f723. 0.9738147134 -2.157437e-04

Chapter 5 ■ Feature engineering

199

 as.double.data.f775. as.double.data.f723.
 as.double.data.f338. 0.005537591 0.0504807821
 as.double.data.f422. 0.050666549 0.0055562270
 as.double.data.f724. 0.012145118 0.9738147134
 as.double.data.f636. -0.007070228 -0.0002157437
 as.double.data.f775. 1.000000000 0.0190753853
 as.double.data.f723. 0.019075385 1.0000000000

You can clearly see that the correlation structure is not dominating the feature set,
but the individual feature relevance is driving their selection into the modeling subset.
This is expected as well as we selected the variables based on CoV, which is independent
of any other variable.

5.4.2 Wrapper Methods
Wrapper methods use a search algorithm to search the space of possible feature
subsets and evaluate each subset by running a model on the subset. Wrappers can be
computationally expensive and have a risk of overfitting to the model.

Criterion: Measure feature subset "usefulness"

Search: Search the space of all feature subsets and select the set with the highest score

Assessment: Cross validation

Statistical Approaches

 1. Recursive feature elimination

 2. Sequential feature selection algorithms

 1. Sequential Forward Selection

 2. Sequential Backward Selection

 3. Plus-l Minus-r Selection

 4. Bidirectional Search

 5. Sequential Floating Selection

 3. Genetic algorithm

Results

 1. Give the most useful features for model building

 2. Can cause overfitting

We will be discussing sequential methods for illustration purposes. The most
popular sequential methods are forward and backward selection. A similar variation of
both combined is called a stepwise method.

Chapter 5 ■ Feature engineering

200

Steps in a forward variable selection algorithm are as follows:

 1. Choose a model with only one variable, which gives the
maximum value in your evaluation function.

 2. Add the next variable that improves the evaluation function
by a maximum value.

 3. Keep repeating Step 2 until there is no more improvement by
adding a new variable.

As you can see. this method is computationally intensive and iterative. It’s important
to start with a set of variables carefully chosen for the problem. Using all the features
available might not be cost effective. Filter methods can help shorten your list of variables
to a manageable set for wrapper methods.

To set up the illustrative example, let’s take a subset of 10 features from the total set
of features. Let's have the top five continuous variables from our filter method output and
randomly choose five from the categorical variables.

#Pull 5 variables we had from highest coefficient of variation (from filter
method)(f338,f422,f724,f636 and f775)

predictor_set <-c("f338","f422","f724","f636","f775")

#Randomly Pull 5 variables from categorical variable set (Reader can apply
filter method to categorical variable and can choose these 5 variables
systematically as well)
set.seed(101);
ind <-sample(1:length(categorical), 5, replace=FALSE)
p<-1
for (i in ind)
{
 predictor_set [5+p] <-categorical[i]
 p=p+1
}

#Print the set of 10 variables we will be working with

print(predictor_set)
 [1] "f338" "f422" "f724" "f636" "f775" "f222" "f33" "f309" "f303" "f113"
#Replaced f33 by f93 as f33 does not have levels

predictor_set[7] <- "f93"

#Print final list of variables

print(predictor_set)
 [1] "f338" "f422" "f724" "f636" "f775" "f222" "f93" "f309" "f303" "f113"

Chapter 5 ■ Feature engineering

201

We are preparing to predict the probability of someone defaulting in the next one-
year time period. Our objective is to select the model based on following characteristics:

•	 A fewer number of predictors is preferable

•	 Penalize a model having a lot of predictors

•	 Penalize a model for a bad fit

To measure these effects, we will be using the Akaike Information Criterion (AIC)
measure as the evaluation metric. AIC is founded on the information theory; it measures
the quality of a model relative to other models. While comparing it to other models, it
deals with the tradeoff between the goodness of the fit of the model and the complexity
of the model. Complexity of the model is represented by the number of variables in the
model, where more variables mean greater complexity.

In statistics, AIC is defined as:

AIC k L k Deviance= () = +2 2 2– ln

where k is the number of parameters (or features).

 ■ Note aiC is a relative measure; hence, it does not tell you anything about the quality of
the model in the absolute sense.

To illustrate the feature selection by forward selection, we need to first develop two
models, one with all features and one with no features:

•	 Full model: A model with all the variables included in it. This
model provides an upper limit on the complexity of model

•	 Null model: A model with no variables in it, just an intercept term.
This model provides a lower limit on the complexity of model.

Once we have these two models, we can start the feature selection based on the AIC
measure. These models are important for AIC to use as a measure of model fit, as AIC will
be measured relative to these extreme cases in the model. Let's first create a full model
with all the predictors and see its summary (the output is truncated):

Create a small modeling dataset with only predictors and dependent variable
library(data.table)
data_model <-data[,.(id,f338,f422,f724,f636,f775,f222,f93,f309,f303,f113,de
fault),]
#make sure to remove the missing cases to resolve errors regarding null values

data_model<-na.omit(data_model)

#Full model uses all the 10 variables
full_model <-glm(default ~f338 +f422 +f724 +f636 +f775 +f222 +f93 +f309
+f303 +f113,data=data_model,family=binomial(link="logit"))

Chapter 5 ■ Feature engineering

202

#Summary of the full model
summary(full_model)

 Call:
 glm(formula = default ~ f338 + f422 + f724 + f636 + f775 + f222 +
 f93 + f309 + f303 + f113, family = binomial(link = "logit"),
 data = data_model)

 Deviance Residuals:
 Min 1Q Median 3Q Max
 -0.9844 -0.4803 -0.4380 -0.4001 2.7606

 Coefficients:
 Estimate Std. Error z value Pr(>|z|)
 (Intercept) -2.423e+00 3.146e-02 -77.023 < 2e-16 ***
 f338 -1.379e-25 2.876e-25 -0.480 0.631429
 f422 1.369e-01 1.387e-02 9.876 < 2e-16 ***
 f724 3.197e+00 1.485e+00 2.152 0.031405 *
 f636 -9.976e-07 1.851e-06 -0.539 0.589891
 f775 5.965e-02 1.287e-02 4.636 3.55e-06 ***
......Output truncated

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 (Dispersion parameter for binomial family taken to be 1)

 Null deviance: 58874 on 90287 degrees of freedom
 Residual deviance: 58189 on 90214 degrees of freedom
 AIC: 58337

 Number of Fisher Scoring iterations: 12

This output shows the summary of the full model build using all 10 variables. Now, let’s
similarly create the null model:

#Null model uses no variables
null_model <-glm(default ~1 ,data=data_model,family=binomial(link="logit"))

#Summary of the full model
summary(null_model)

 Call:
 glm(formula = default ~ 1, family = binomial(link = "logit"),
 data = data_model)

Chapter 5 ■ Feature engineering

203

 Deviance Residuals:
 Min 1Q Median 3Q Max
 -0.4601 -0.4601 -0.4601 -0.4601 2.1439

 Coefficients:
 Estimate Std. Error z value Pr(>|z|)
 (Intercept) -2.19241 0.01107 -198 <2e-16 ***

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 (Dispersion parameter for binomial family taken to be 1)

 Null deviance: 58874 on 90287 degrees of freedom
 Residual deviance: 58874 on 90287 degrees of freedom
 AIC: 58876

 Number of Fisher Scoring iterations: 4

At this stage, we have seen the extreme model performance, having all the variables
in the model and a model without any variables (basically the historical average of
dependent variable). With these extreme models, we will perform forward selection with
the null model and start adding variables to it.

Forward selection will be done in iterations over the variable subset. Observe that
the base model for the first iteration is the null model with AIC of 58876. Below that is the
list of variables to choose from to add to the model.

#summary of forward selection method
forwards <-step(null_model,scope=list(lower=formula(null_
model),upper=formula(full_model)), direction="forward")
 Start: AIC=58876.26
 default ~ 1

 Df Deviance AIC
 + f222 7 58522 58538
 + f422 1 58743 58747
 + f113 7 58769 58785
 + f303 24 58780 58830
 + f775 1 58841 58845
 + f93 7 58837 58853
 + f309 23 58806 58854
 + f724 1 58870 58874
 <none> 58874 58876
 + f636 1 58873 58877
 + f338 1 58874 58878

Chapter 5 ■ Feature engineering

204

Iteration 1: The model added f222 in the model.

 Step: AIC=58538.39
 default ~ f222

 Df Deviance AIC
 + f422 1 58405 58423
 + f113 7 58461 58491
 + f303 24 58434 58498
 + f775 1 58495 58513
 + f93 7 58486 58516
 + f309 23 58462 58524
 + f724 1 58518 58536
 <none> 58522 58538
 + f636 1 58522 58540
 + f338 1 58522 58540

Iteration 2: The model added f422 in the model.

 Step: AIC=58422.87
 default ~ f222 + f422

 Df Deviance AIC
 + f113 7 58346 58378
 + f303 24 58323 58389
 + f93 7 58370 58402
 + f775 1 58383 58403
 + f309 23 58353 58417
 + f724 1 58401 58421
 <none> 58405 58423
 + f636 1 58404 58424
 + f338 1 58404 58424

Iteration 3: The model added f113 in the model.

 Step: AIC=58377.8
 default ~ f222 + f422 + f113

 Df Deviance AIC
 + f303 24 58265 58345
 + f775 1 58325 58359
 + f309 23 58295 58373
 + f724 1 58342 58376
 <none> 58346 58378
 + f636 1 58345 58379
 + f338 1 58345 58379
 + f93 7 58338 58384

Chapter 5 ■ Feature engineering

205

Iteration 4: The model added f303 in the model.

 Step: AIC=58345.04
 default ~ f222 + f422 + f113 + f303

 Df Deviance AIC
 + f775 1 58245 58327
 + f724 1 58261 58343
 <none> 58265 58345
 + f636 1 58264 58346
 + f338 1 58265 58347
 + f309 23 58225 58351
 + f93 7 58257 58351

Iteration 5: The model added f775 in the model.

 Step: AIC=58326.96
 default ~ f222 + f422 + f113 + f303 + f775

 Df Deviance AIC
 + f724 1 58241 58325
 <none> 58245 58327
 + f636 1 58244 58328
 + f338 1 58244 58328
 + f309 23 58202 58330
 + f93 7 58237 58333

Iteration 6: The model added f724 in the model.

 Step: AIC=58325.08
 default ~ f222 + f422 + f113 + f303 + f775 + f724

 Df Deviance AIC
 <none> 58241 58325
 + f636 1 58240 58326
 + f338 1 58240 58326
 + f309 23 58199 58329
 + f93 7 58233 58331

In last iteration, i.e., iteration six, you can see that our model has reached the
minimal set of variables. The next suggestion is <none>, which means we are better off
not adding any variables to the model. Now let’s see how our final forward selection
model looks:

#Summary of final model with forward selection process
formula(forwards)
 default ~ f222 + f422 + f113 + f303 + f775 + f724

Chapter 5 ■ Feature engineering

206

The forward selection method says that the best model with AIC criteria can be
created with these six features: f222, f422, f113, f303, f775, and f724. Other features
selection methods, like backward selection, stepwise selection, etc. can be done in a
similar manner. In the next section, we will be introducing embedded methods that are
computationally better than wrapper methods.

5.4.3 Embedded Methods
Embedded methods are similar to wrapper methods because they also optimize the
objective function, usually a model of performance evaluation functions. The difference
with the wrapper method is that an intrinsic model building metric is used during the
learning of the model. Essentially, this is a search problem but a guided search, and
hence is computationally less expensive.

Criterion: Measure feature subset "usefulness"

Search: Search the space of all feature subsets guided by the learning process

Assessment: Cross validation

Statistical Approaches

 1. L1 (LASSO) regularization

 2. Decision tree

 3. Forward selection with Gram-Schimdth orthogonalization

 4. Gradient descent methods

Results

 1. Similar to wrapper but with guided search

 2. Less computationally expensive

 3. Less prone to overfitting

For this method, we will be showing a regularization technique. In machine learning
space, regularization is a process of introducing additional information to prevent
overfitting while searching through the variable subset space. In this section, we will show
an illustration of L1 regularization for variable selection.

L1 regularization for variable selection is also called LASSO (Least Absolute
Shrinkage and Selection Operator). This method was introduced by Robert Tibshirani
in his famous 1996 paper titled “Regression Shrinkage and Selection via the Lasso,”
published in the Journal of the Royal Statistical Society.

In L1 or LASSO regression, we add a penalty term against the complexity to reduce
the degree of overfitting or the variance of the model by adding additional bias. So the
objective function to minimize looks like this:

regularization cost cost regularization penalty= +

Chapter 5 ■ Feature engineering

207

In LASSO regularization, the general form is given for the objective function,

1

1N
f x y

i

N

i i
=
å (), , ,a b

The lasso regularized version of the estimator will be the solution to:

min
,a b

a b b
1

1
1N

f x y subject to t
i

N

i i
=
å () £, , ,

where only β is penalized while α is free to take any allowed value. Adding the
regularization cost makes our objective function minimize the regularization cost.

The objective function for the penalized logistic regression uses the negative
binomial log-likelihood, and is as follows:

min log
b b

b b
b b

0
1

01
1

1
0

,()Î =

+()
+
- × +()- +()é

ë
ê

ù

û
úåp

i
T

N
y x e

i

N

i i
T x

++ -() +é
ë

ù
ûl a b a b1 2

2

2

1
/ .

Logistic regression is often plagued with degeneracy when p>Np>N and exhibits
wild behavior even when N is close to p; the elastic-net penalty alleviates these issues and
regularizes and selects variables as well. Source: https://web.stanford.edu/~hastie/
glmnet/glmnet_beta.html.

We will run this example on a set of 10 continuous variables in the dataset.

#Create data frame with dependent and independent variables (Remove NA)

data_model <-na.omit(data)

y <-as.matrix(data_model$default)

x <-as.matrix(subset(data_model, select=continuous[250:260]))

library("glmnet")
We will be using package glmnet() to show the
#Fit a model with dependent variable of binomial family
fit =glmnet(x,y, family="binomial")

#Summary of fit model
summary(fit)
 Length Class Mode
a0 44 -none- numeric
beta 440 dgCMatrix S4
df 44 -none- numeric
dim 2 -none- numeric
lambda 44 -none- numeric

https://web.stanford.edu/~hastie/glmnet/glmnet_beta.html
https://web.stanford.edu/~hastie/glmnet/glmnet_beta.html

Chapter 5 ■ Feature engineering

208

dev.ratio 44 -none- numeric
nulldev 1 -none- numeric
npasses 1 -none- numeric
jerr 1 -none- numeric
offset 1 -none- logical
classnames 2 -none- character
call 4 -none- call
nobs 1 -none- numeric

Figure 5-3 shows the plot between the fraction of deviance explained by each of
these 10 variables.

#Plot the output of glmnet fit model
plot (fit, xvar="dev", label=TRUE)

Figure 5-3. Coefficient and fraction of deviance explained by each feature/variable

In the plot with 10 variables shown in Figure 5-3, you can see the coefficient of all
the variables except that #7 and #5 are 0. As the next step, we will cross-validate our fit.
For logistic regression, we will use cv.glmnet, which has similar arguments and usage in
Gaussian. For instance, let's use a misclassification error as the criteria for 10-fold cross-
validation.

Chapter 5 ■ Feature engineering

209

Figure 5-4. Misclassification error and log of penalization factor (lambda)

#Fit a cross validated binomial model
fit_logistic =cv.glmnet(x,y, family="binomial", type.measure ="class")

#Summary of fitted Cross Validated Linear Model

summary(fit_logistic)
Length Class Mode
lambda 43 -none- numeric
cvm 43 -none- numeric
cvsd 43 -none- numeric
cvup 43 -none- numeric
cvlo 43 -none- numeric
nzero 43 -none- numeric
name 1 -none- character
glmnet.fit 13 lognet list
lambda.min 1 -none- numeric
lambda.1se 1 -none- numeric

The plot in Figure 5-4 is explaining how the missclassification rate changes over our
set of features brought into the model. The plot shows that the model is pretty bad, as the
variables we provided perform badly on the data.

#Plot the results
plot (fit_logistic)

Chapter 5 ■ Feature engineering

210

For a good model, Figure 5-4 will show an upward trend in the red dots. This is when
you know what variability you are measuring in your dataset.

We can now pull the regularization factor from the glmnet() fit model. We pulled out
the variable coefficient and variable names action.

#Print the minimum lambda - regularization factor
print(fit_logistic$lambda.min)
 [1] 0.003140939
print(fit_logistic$lambda.1se)
 [1] 0.03214848
#Against the lambda minimum value we can get the coefficients
param <-coef(fit_logistic, s="lambda.min")

param <-as.data.frame(as.matrix(param))

param$feature<-rownames(param)

#The list of variables suggested by the embedded method

param_embeded <-param[param$`1`>0,]

print(param_embeded)
 1 feature
 f279 8.990477e-03 f279
 f298 2.275977e-02 f298
 f322 1.856906e-01 f322
 f377 1.654554e-04 f377
 f452 1.326603e-04 f452
 f453 1.137532e-05 f453
 f471 1.548517e+00 f471
 f489 1.741923e-02 f489

The final features suggested by the LASSO method are f279, f298, f322, f377,
f452, f453, f471, and f489. Feature selection is a very statistically intense topic. You are
encouraged to read more about the methods and make sure their chosen methodology
fits the business problem you are trying to solve. In most of the real scenarios, data
scientists have to design a mixture of techniques to get the desired set of variables for
machine learning.

5.5 Dimensionality Reduction
In recent years, there has been explosion in the amount as well as type of data available
at the data scientist's disposal. The traditional machine learning algorithms partly break
down because of the volume of data and mostly because of the number of variables

Chapter 5 ■ Feature engineering

211

associated with each observation. The dimension of the data is the number of variables
we have for each observation in our data.

Higher dimensions mean both opportunity and challenge for machine learning
algorithms. Higher dimensions can allow you to capture events that can't be observed
at low dimensions and, at the same time, they make the machine learning problem
hard to converge. Within the same framework, Richard E. Bellman coined the term
Curse of Dimensionality, which refers to various phenomena that arise when analyzing
and organizing data in high-dimensional spaces (often with hundreds or thousands of
dimensions) that do not occur in low-dimensional settings such as the three-dimensional
physical space of everyday experiences.

In machine learning problems, the addition of each feature into the dataset
exponentially increases the requirement of data points to train the model. The learning
algorithm needs an enormous amount of data to search the right model in the higher
dimensional space. With a fixed number of training samples, the predictive power
reduces as the dimensionality increases, and this is known as the Hughes phenomenon
(named after Gordon F. Hughes).

Dimensionality reduction is a process of deriving a set of degrees of freedom that
can be used to reproduce most of the variability of a dataset. Essentially, you are creating
new orthogonal features from raw data, which can essentially explain the large part of
variance in actual features.

In mathematical terms, the problem we investigate can be stated as follows: given
the p-dimensional random variable x = (x1, . . . , xp)T, find a lower dimensional
representation of it, s = (s1, . . . , sk) T with k ≤ p, that captures the content in
the original data, according to some criterion.

Dimensionality reduction is a process of features extraction rather than a feature
selection process. Feature extraction is a process of transforming the data in the high-
dimensional space to a space of fewer dimensions. The data transformation may be linear,
as in Principal Component Analysis (PCA), but many nonlinear dimensionality reduction
techniques also exist. For multidimensional data, tensor representation can be used in
dimensionality reduction through multilinear subspace learning. For example, by use of
PCA, you can reduce a set of variables into a smaller set of variables (principal components)
to model with, e.g., rather than using all 100 features in raw form, you can use the top 10
PCA factors to build the model with similar performance to the actual full model.

Within scope of this chapter, we will discuss the most popular technique, Principal
Component Analysis (PCA). PCA is based on the covariance matrix; it is a second
order method. A covariance matrix is a matrix whose element in the i, j position is the
covariance between the ith and jth elements of a random vector. The covariance matrix
plays a key role in financial economics, especially in portfolio theory and its mutual fund
separation theorem and in the capital asset pricing model. It creates linear mapping for
data from low dimension to space such that the variance of the data in low-dimensional
space is maximized. The method is also known by other names, e.g., Singular Value
Decomposition (SVD), Hoteling transformation, etc.

For illustration of PCA, we will work with 10 randomly chosen continuous variables
from our data and create the principal components and check their significance in
explaining the data.

Chapter 5 ■ Feature engineering

212

Here are the steps for principal component analysis:

 1. Load the data as a data.frame.

 2. Normalize/scale the data.

 3. Apply the prcomp() function to get the principal components.

This performs a principal components analysis on the given data matrix and returns
the results as an object of class prcomp.

#Take a subset of 10 features
pca_data <-data[,.(f381,f408,f495,f529,f549,f539,f579,f634,f706,f743)]

pca_data <-na.omit(pca_data)

head(pca_data)
 f381 f408 f495 f529 f549 f539 f579 f634 f706
 1: 1598409 5 238.58 1921993.90 501.0 552 462.61 0.261 4.1296
 2: 659959 6 5.98 224932.72 110.0 76 93.77 11.219 4.1224
 3: 2036578 13 33.61 192046.42 112.0 137 108.60 16.775 9.2215
 4: 536256 4 258.23 232373.41 161.0 116 127.84 1.120 3.2036
 5: 2264524 26 1.16 52265.58 21.0 29 20.80 17.739 21.0674
 6: 5527421 22 38.91 612209.01 375.9 347 317.27 11.522 17.8663
 f743
 1: -21.82
 2: -72.44
 3: -79.48
 4: 18.15
 5: -10559.05
 6: 8674.08

#Normalise the data before applying PCA
 analysis mean=0, and sd=1
scaled_pca_data <-scale(pca_data)

head(scaled_pca_data)
 f381 f408 f495 f529 f549 f539
 [1,] -0.5692025 -0.6724669 1.7551841 0.4825810 0.9085923 0.9507127
 [2,] -0.6549414 -0.6186983 -0.9505976 -0.4712597 -0.5448800 -0.6449880
 [3,] -0.5291705 -0.2423176 -0.6291842 -0.4897436 -0.5374454 -0.4404970
 [4,] -0.6662432 -0.7262356 1.9837680 -0.4670777 -0.3552967 -0.5108955
 [5,] -0.5083448 0.4566750 -1.0066675 -0.5683081 -0.8757215 -0.8025467
 [6,] -0.2102394 0.2416004 -0.5675306 -0.2535894 0.4435555 0.2634886
 f579 f634 f706 f743
 [1,] 1.0324757 -0.30383519 -0.5885608 -0.1716417
 [2,] -0.5546476 0.06876713 -0.5890247 -0.1751343
 [3,] -0.4908339 0.25768651 -0.2604470 -0.1756200
 [4,] -0.4080440 -0.27462681 -0.6482307 -0.1688839
 [5,] -0.8686385 0.29046517 0.5028836 -0.8986722
 [6,] 0.4070758 0.07906997 0.2966099 0.4283437

Chapter 5 ■ Feature engineering

213

Do the decomposition on the scaled series:

pca_results <-prcomp(scaled_pca_data)

print(pca_results)
 Standard deviations:
 [1] 1.96507747 1.63138621 0.98482612 0.96399979 0.92767640 0.61171578
 [7] 0.55618915 0.13051700 0.12485945 0.03347933

 Rotation:
 PC1 PC2 PC3 PC4 PC5
 f381 0.05378102 0.467799305 0.12132602 -0.42802089 0.126159741
 f408 0.15295858 0.564941709 -0.01768741 -0.07653169 0.024978144
 f495 -0.20675453 -0.006500783 -0.16011133 -0.40648723 -0.872112347
 f529 -0.43704261 0.071515698 0.03229563 0.02515962 0.023404863
 f549 -0.48355364 0.131867970 0.03001595 0.07933850 0.098468782
 f539 -0.49110704 0.119977024 0.03264945 0.06070189 0.084331260
 f579 -0.48599970 0.130907456 0.03066637 0.07796726 0.098436970
 f634 0.08047589 0.148642810 0.80498132 0.42520275 -0.369686177
 f706 0.13666005 0.563301330 -0.06671534 -0.04782415 0.003828164
 f743 0.05999412 0.261771729 -0.55039555 0.66778245 -0.243211544
 PC6 PC7 PC8 PC9 PC10
 f381 -0.73377400 -0.14656999 0.020865868 0.06391263 2.449224e-03
 f408 0.33818854 0.09731467 0.100148531 -0.71887123 1.864559e-03
 f495 0.05113531 -0.05328517 0.010515158 -0.01387541 2.371417e-03
 f529 -0.16222155 0.87477550 0.099118491 0.01647113 3.417335e-03
 f549 0.10180105 -0.29558279 0.504078886 0.07149433 -6.123361e-01
 f539 0.02135767 -0.16116039 -0.811700032 -0.13982619 -1.664926e-01
 f579 0.09037093 -0.27164477 0.222859021 0.03262620 7.728324e-01
 f634 -0.07273691 -0.01754913 -0.002658235 0.01905427 -2.230924e-05
 f706 0.42035273 0.10600450 -0.130052945 0.67259788 -5.277646e-03
 f743 -0.34249087 -0.04793683 0.007771732 -0.01404485 3.873828e-04

Here is the summary of 10 principal components we get after applying the prcomp()
function.

summary(pca_results)
 Importance of components:
 PC1 PC2 PC3 PC4 PC5 PC6
 Standard deviation 1.9651 1.6314 0.98483 0.96400 0.92768 0.61172
 Proportion of Variance 0.3861 0.2661 0.09699 0.09293 0.08606 0.03742
 Cumulative Proportion 0.3861 0.6523 0.74928 0.84221 0.92827 0.96569
 PC7 PC8 PC9 PC10
 Standard deviation 0.55619 0.1305 0.12486 0.03348
 Proportion of Variance 0.03093 0.0017 0.00156 0.00011
 Cumulative Proportion 0.99663 0.9983 0.99989 1.00000

Chapter 5 ■ Feature engineering

214

The plot in Figure 5-5 shows the variance explained by each principal component.
You can see that the first five principal components will be able to present ~90% of the
information stored in 10 variables.

plot(pca_results)

Figure 5-5. Variance explained by principal components

The plot in Figure 5-6 is a relationship between principal component 1 and principal
component 2. As we know, the decomposition is orthogonal, and we can see the
orthogonality in the plot by looking at the 90 degrees between PC1 and PC2.

#Create the biplot with principle components
biplot(pca_results, col =c("red", "blue"))

Chapter 5 ■ Feature engineering

215

Figure 5-6. Orthogonality of principal components 1 and 2

So instead of using 10 variables for machine learning, you can use these top five
principal components to train the model and still preserve 90% of the information.

Advantages of principal component analysis include:

•	 Reduces the time and storage space required.

•	 Remove multi-collinearity and improves the performance of the
machine learning model.

•	 Makes it easier to visualize the data when reduced to very low
dimensions such as 2D or 3D.

5.6 Feature Engineering Checklist
The feature selection checklist is a great source for decision-making steps in the
variable selection process. The list is sourced from the “An Introduction to Variable and
Feature Selection” paper by Isabelle Guyon and Andre Elisseeff. For a more in-depth
understanding, reference the paper.

Selection problem Checklist:

 1. Do you have domain knowledge? If yes, construct a better set
of features.

 2. Are your features commensurate? If no, consider normalizing
them.

Chapter 5 ■ Feature engineering

216

 3. Do you suspect interdependence of features? If yes, expand
your feature set by constructing conjunctive features or
products of features, as much as your computer resources
allow.

 4. Do you need to prune the input variables (e.g., for cost, speed,
or data understanding reasons)? If no, construct disjunctive
features or weighted sums of features (e.g., by clustering or
matrix factorization).

 5. Do you need to assess features individually (e.g., to
understand their influence on the system or because their
number is so large that you need to do a first filtering)? If yes,
use a variable ranking method; otherwise, do it anyway to get
baseline results.

 6. Do you need a predictor? If no, stop.

 7. Do you suspect your data is dirty (has a few meaningless
input patterns and/or noisy outputs or wrong class labels)?
If yes, detect the outlier examples using the top ranking
variables obtained in step 5 as representation; check and/or
discard them.

 8. Do you know what to try first? If no, use a linear predictor
and forward selection method with the method as a
stopping criterion or use the 0-norm Embedded method.
For comparison, following the ranking of step 5, construct a
sequence of predictors of the same nature using increasing
subsets of features. Can you match or improve the
performance with a smaller subset? If yes, try a non-linear
predictor with that subset.

 9. Do you have new ideas, time, computational resources, and
enough examples? If yes, compare several feature selection
methods, including your new idea, correlation coefficients,
backward selection, and embedded methods. Use linear and
non-linear predictors. Select the best approach with model
selection.

 10. Do you want a stable solution (to improve performance and/
or understanding)? If yes, subsample your data and redo your
analysis for several bootstraps.

Chapter 5 ■ Feature engineering

217

5.7 Summary
Feature engineering is an integral part of machine learning model development. The
volume of data can be reduced by applying sampling techniques. Feature selection
helps reduce the width of the data by selecting the most powerful features. We
developed understanding of three core methods of variable selection—filter, wrapper,
and embedded. Toward the end of this chapter, we showed examples of the Principal
Component Analysis and learned how PCA can reduce dimensionality without losing the
taste and value.

The next chapter is core of this book, chapter 6. The chapter will show you how to
bring your business problems to your IT system and then try solving the problem using
the R tool.

5.8 References
 [1] “An Introduction to Variable and Feature Selection,” by

Isabelle Guyon and Andre Elisseeff, published in Journal of
Machine Learning Research 3, 2003.

 [2] Pearson, K. (1901). "On Lines and Planes of Closest Fit to
Systems of Points in Space" (PDF). Philosophical Magazine.

 [3] Jolliffe I.T. “Principal Component Analysis,” Series: Springer
Series in Statistics.

http://dx.doi.org/10.1007/978-1-4842-2334-5_6

219© Karthik Ramasubramanian and Abhishek Singh 2017
K. Ramasubramanian and A. Singh, Machine Learning Using R,
DOI 10.1007/978-1-4842-2334-5_6

CHAPTER 6

Machine Learning Theory
and Practices

The world is quickly adapting the use of Machine Learning (ML). Whether its driverless
cars, the intelligent personal assistant, or machines playing the games like Go and
Jeopardy against humans, ML is pervasive. The availability and ease of collecting
data coupled with high computing power has made this field even more conducive
to researchers and businesses to explore data-driven solutions for some of the most
challenging problems. This has led to a revolution and outbreak in the number of new
startups and tools leveraging ML to solve problems in sectors such as healthcare, IT, HR,
automobiles, manufacturing, and the list is ever expanding.

The abstraction layer between the complicated machine learning algorithms and
its implementation has reached an all-time high with the efforts from ML researchers,
ML engineers, and developers. Today, you don't have to understand the statistics behind
the ML algorithms to be able to apply them to a real-world dataset, rather just knowing
how to use a tool is sufficient (which has its pros and cons), which need you to explore
and clean the data and put it into an appropriate format. Many large enterprises have
come out with certain APIs that provide analytics-as-a-service with capabilities to build
predictive models using ML. This does not stop here—companies like Google, Facebook,
and IBM have already taken the lead to make some of their systems completely open
source, which means the way Android revolutionized the mobile industry, these ML
systems are going to do the same for the next generation of fully automated machines.

So now it remains to see from where the next path-breaking, billion-dollar, disruptive
idea is going to come. Though all these might sound like a distant dream, it’s fast
approaching. The past two decades gave us Google, Twitter, WhatsApp, Facebook, and so
many others in the technology fields. All these billion-dollar enterprises have data and
use it to make possibilities that we didn't know about few years back. Computer Vision
to online location maps have changed the way we work in this century. Who would have
thought that sitting in one place, you could find best route from one place to another, or a
drone could perform a search and help rescue operation. These possibilities did not exist
a few decades ago but now they are reality. All these are driven by data and what we have
been able to learn from that data. The future belongs to enterprises and individuals who
embrace the power of data.

Chapter 6 ■ MaChine Learning theory and praCtiCes

220

In this chapter, we are going to deep dive into the fascinating and exciting world
of machine learning, where we have tried to maintain a fine balance between theory
and tool-centric practical aspects of the subject. As this chapter is the crux of this entire
book, we will take up some real industry data to illustrate the algorithm and at the same
time, make you understand how the concepts you learned in previous chapters are
connected to this chapter. This means, you will now start to see how the ML process
flow, PEBE, which we proposed in Chapter 1, is going to play a key role. Chapters 2 to 5
were foundation and prerequisite for effectively and efficiently running a ML algorithm.
We learned about properties of data, data types, hidden patterns through visualization,
sampling, and creating best set of features to apply ML algorithm. The chapters after this
one are more about how to measure the performance of models, improve them, and what
technology can help you take ML to an actual scalable environment.

Roughly, statistical learning techniques when used for prediction and forecasting,
become machine learning techniques. In this chapter, we will briefly touch on the
statistical background of each algorithm and then show you how to run that in the R
environment and interpret results. We have devised the following listed, which is a 3D
approach to empower readers to quickly get started with ML and learn on the fly with a
right blend of theory and practice:

•	 1st-D: The statistical background—We will introduce the
core formulation/statistical concept behind the ML concept/
algorithm. Since the statistical concepts make the discussion
intense and fairly complicated for beginners and intermediate
readers, we have designed a much lighter version of these
concepts and expect the interested readers to refer a more
detailed literature for the same (we have provided sufficient
references wherever possible).

•	 2nd-D: Demo in R—Set up the R environment and write R script
to work with the datasets provided for a real-world problem. This
approach of quickly getting started with R programming after the
theoretical foundation on the problem and ML algorithm, has
been adopted keeping in mind industry professionals who are
looking for a quick prototyping and researchers who wants to get
started with practical implementations of ML algorithm. Industry
professionals might tend to identify the problem statement in
their domain of work and apply a brute force approach to try all
possible ML algorithms, whereas researchers tend to master the
foundational elements and then proceed to the implementation
side of things. This chapter is suitable for both.

•	 3rd-D: Real-world use case—The dataset we have chosen to
explain. The ML algorithms are from real scenarios curated for
the purpose of explaining the concepts. This means our examples
are built on real data, making sure we emulate a real-world
scenario, where the model results are not always good. Sometime
you get good results, sometimes very poor. A few algorithms work
best, some don't work on the same data. This approach will help
readers see all algorithms of same type with same denominator

http://dx.doi.org/10.1007/978-1-4842-2334-5_1
http://dx.doi.org/10.1007/978-1-4842-2334-5_2
http://dx.doi.org/10.1007/978-1-4842-2334-5_5

Chapter 6 ■ MaChine Learning theory and praCtiCes

221

to compare and make judicious decisions based on the actual
problem at hand. We have discouraged the use of examples that
explain the concepts in an ideal situation, and create a falsehood
about performance, e.g., rather than choosing a linear regression-
based example with R-Square (a performance metric) of 90%, we
presented a real-world case, where it could be even as poor as
30%, and discuss further how to improve it. This builds a strong
case on how to approach a ML model-building process in the
real world. However, wherever required, we have taken up a few
standard datasets as well from a few popular repositories for easy
explanation of certain concepts.

Additionally, we encourage you to consider three sources of additional information
starting from this chapter (and book). These sources are readily available from the
Internet and books that exist in hard bound.

•	 Statistical concepts: We encourage you to read the first instance
of the approach/algorithm as it’s illustrated in this chapter and if
interested, learn the concepts in much detail from the references
provided to the original literature.

•	 R-Package: R is evolving really fast with its global network of
contributors. In this chapter, we tried to cover the latest packages
and functions. We encourage you to follow CRAN and other
reliable resources like vignettes of R Packages, lecture notes,
use cases, research papers, etc. to keep up-to-date with R
implementation and its latest development.

•	 Case study: There will be some concepts that are specific to your
problem/industry. Try to connect the discussions provided in
the chapter (mostly generic) with your own industry or field of
expertise. For example, when we predict the “choice” for what
product a customer will choose from a basket of products, this
fits in retail setup, but you can think about the same case as
predicting the “default/non-default” in banking or predicting the
“Infected/not-Infected” in medical diagnosis, and so on. Keep
reading the latest reports and industry use cases, as they will
provide new ideas for how to use the techniques discussed in the
chapter.

In the rest of the chapter, we will discuss machine learning processes, discuss the
real-world use case and then demonstrate the application of ML on this use case. We
have very broadly divided the ML algorithms into thirteen groups in section 6.2 and
discuss some selective algorithms from each module in this and coming chapters. Some
of these modules are touched on in previous chapters as well, where we felt it was more
relevant. Normally, other books on the subject would have dedicated the entire book to
such groups; however, based on our PEBE framework for machine learning process flow,
we have consolidated all the ML algorithms into one chapter, providing you, a much
needed comprehensive guide for ML.

Chapter 6 ■ MaChine Learning theory and praCtiCes

222

 6.1 Machine Learning Types
In the machine learning literature, there are multiple ways in which we bucket the algorithms
to study them in a collective manner. The most popular division is based on two factors:

•	 Learning types: This is to do with what type of response variable
(or labels) we have in the training data. In this section, we discuss
supervised, unsupervised, semi-supervised, and reinforcement
learning.

•	 Subjective grouping: This grouping is driven by “what” the model
is trying to achieve. Each group has a similar set of algorithmic
approach and principles. We will show this grouping and few
popular techniques within them. These similarities help create
the 12 groups mentioned earlier in the chapter.

There are lots of overlaps in which ML algorithms are applied to a particular
problem. As a result, for the same problem, there could be many different ML models
possible. Chapters 7 and 8 discuss a few ways to choose the best among them and
combine a few to create a new ensemble. So, coming out with the best ML model is an art
that requires a lot of patience and trial and error. Figure 6-1 provides a brief of all these
learning types with sample use cases.

Figure 6-1. Machine learning types

 6.1.1 Supervised Learning
A class of ML algorithm where the data contains a response variable (also called a label)
or it is possible to generate one, is termed supervised learning. In other words, a dataset
where each instance has correctly identified responses. Further, the response variable
could be either continuous or categorical. The algorithm learns the response variable
against the provided set of predictor variables. For example, if the dataset belongs to a set
of patients, each instance will have a response variable identifying whether a patient has
cancer or not (categorical). Or in a dataset of house prices in a given state or country, the
response variable could be the price of the house.

http://dx.doi.org/10.1007/978-1-4842-2334-5_7
http://dx.doi.org/10.1007/978-1-4842-2334-5_8

Chapter 6 ■ MaChine Learning theory and praCtiCes

223

Keep in mind that defining the problem (defining a problem will be more clear when
we discuss the real-world use cases later in the chapter) clearly is important for us to start
in the right direction. Further, the problem is a classification task if the response variable
is categorical, and a regression task, if it’s continuous. Though this rule is largely true in
all cases, there are certain problems that are a mix of both classification and regression.
Some application of supervised learning are speech recognition, credit scoring, medical
imaging, and search engines.

 6.1.2 Unsupervised Learning
On the other hand, when the labels are not available, the class of ML algorithm is called
unsupervised. The learning happens based on some measure of similarity or distance
between each row in the dataset. The most commonly used technique in unsupervised
learning is clustering. Other methods like Association Rule Mining (ARM) are based on
the frequency of an event like a purchase in market basket, server crashes in log mining,
and so on. (A lot of literature will argue that ARM is a data mining technique rather than
machine learning. Refer to Chapter 1 where we presented a detailed argument on the
differences between statistics, ML, and Data Mining). Some applications of unsupervised
learning are customer segmentation in marketing, social network analysis, image
segmentation, climatology, and many more.

 6.1.3 Semi-Supervised Learning
In the previous two types, either there are no labels for all the observation in the dataset or
labels are present for all the observations. Semi-supervised learning falls in between these
two. In many practical situations, the cost to label is quite high, since it requires skilled
human experts to do that. So, in the absence of labels in the majority of the observations
but present in few, semi-supervised algorithms are the best candidates for the model
building. These methods exploit the idea that even though the group memberships of the
unlabeled data are unknown, this data carries important information about the group
parameters. The most extensive literature on this topic is provided in the book, Semi-
Supervised Learning. MIT Press, Cambridge, MA, by Chapelle, O. et. al. [1] Also, there are
packages like upclass in R, which help build a semi-supervised learning model.

 6.1.4 Reinforcement Learning
Both supervised and unsupervised learning algorithms need clean and accurate data
to produce the best results. Also, the data needs to be comprehensive in order to work
on the unseen instances. For example, if the problem of predicting cancer based on
patients’ medical history didn’t have data for a particular type of cancer, the algorithm
will produce many false alarms when deployed in real-time. So, in cases where currently
the data for learning is not available or it will update rapidly with time, reinforcement
learning is an ideal choice. The world of robotics and innovation in driverless cars is all
coming from this class of ML algorithm. Reinforcement learning algorithm (called the
agent) continuously learns from the environment in an iterative fashion. In the process,
the agent learns from its experiences of the environment until it explores the full range of

http://dx.doi.org/10.1007/978-1-4842-2334-5_1

Chapter 6 ■ MaChine Learning theory and praCtiCes

224

possible states. Some applications of the RL algorithm are computer played board games
(Chess, Go), robotic hands, and self-driving cars.

A detailed discussion of semi-supervised and RL algorithms is beyond the scope of
this book; however, we will reference them wherever necessary.

 6.2 Groups of Machine Learning Algorithms
The ML algorithms are grouped into thirteen modules based on the similarity of
approach and algorithm output. This will help you create use cases within the same
module for a more diverse set of problems.

Another benefit of organizing algorithms in this manner is ease of working with R
libraries, which are designed to contain all relevant/similar functions in a single library.
This helps the users explore all options/diagnostics for a problem using a single library.
The list is ever-expanding with new use cases emerging from academia and industries.
We will mention which of these algorithms are covered in this book, and let you explore
more from other sources.

•	 Regression-based methods. Regression-based methods are
the most popular and widely used in academia and research.
They are easy to explain and easy to put into a live production
environment. In this class of methods, the relationship between
dependent variable and set of independent variables is estimated
by the probabilistic method or by error function minimization.
We covered regression techniques, linear regression, polynomial
regression, and logistic regression in this chapter and have
touched on them in other chapters as well.

Figure 6-2. Regression algorithms

•	 Distance-based algorithms. Distance-based or event-based
algorithms are used for learning representations of data and
creating a metric to identify whether an object belongs to the
class of interest or not. They are sometimes called memory-based
learning, as they learn from set of instances/events captured in
the data. We will use K-Nearest Neighbor and Learning Vector
Quantization in creating ensembles in Chapter 8.

http://dx.doi.org/10.1007/978-1-4842-2334-5_8

Chapter 6 ■ MaChine Learning theory and praCtiCes

225

Figure 6-3. Distance-based algorithms

Figure 6-4. Regularization algorithms

•	 Regularization methods. Regularization methods are essentially
an extension of regression methods. Regularization algorithms
introduce a penalization term to the loss function (as discussed
in Chapter 5) for balancing between complexity of model and
improvement in results. They are very powerful and useful
techniques when dealing with data with a high number
of features and large data volume. We had introduced L1
regularization in Chapter 5 as an embedded method of variable
subset selection.

•	 Tree-based algorithms. These algorithms are based on sequential
conditional rules applied on the actual data. The rules are
generally applied serially and a classification decision is made
when all the conditions are met. These methods are very popular
in decision-making engines and classification problems. They are
fast and distributed algorithms. We discuss algorithms like CART,
Iterative Dichotomizer, CHAID, and C5.0 in this chapter and use
them to train our ensemble model in Chapter 8.

Figure 6-5. Decision tree algorithms

http://dx.doi.org/10.1007/978-1-4842-2334-5_5
http://dx.doi.org/10.1007/978-1-4842-2334-5_5
http://dx.doi.org/10.1007/978-1-4842-2334-5_8

Chapter 6 ■ MaChine Learning theory and praCtiCes

226

•	 Clustering Algorithms. These algorithms generally work on
simple principle of maximization of intracluster similarities
and minimization of intercluster similarities. The measure of
similarity determines how the clusters need to be formed. These
are very useful in marketing and demographic studies. Mostly
these are unsupervised algorithms, which group the data for
maximum commonality. We discuss k-means, expectation-
minimization, and hierarchical clustering. We also discuss the
distributed clustering.

•	 Bayesian Algorithms. These algorithms might not be called
learning algorithms as they work on the Bayes Theorem based
on prior and post distributions. The machine essentially does
not learn from an iterative process but uses inference from
distributions of variable. These methods are very popular and
easy to explain, used mostly in classification and inference
testing. We cover the Naive Bayes model in this chapter, and
introduce basic ideas from probability to explain them.

Figure 6-6. Bayesian algorithms

Figure 6-7. Clustering algorithms

•	 Association Rule Mining. In these algorithms, the relationship
among the variables is observed and used to quantify the
relationship for predictive and exploratory objectives. These
methods have been proved to be very useful to build and
mine relationships among large multi-dimensional datasets.
Popular recommendation systems are based on some variation
of association rule mining algorithms. We discuss Apriori and
Eclet algorithms in this chapter for association rule mining and
user and item-based collaborative filtering of recommendation
algorithm.

Chapter 6 ■ MaChine Learning theory and praCtiCes

227

Figure 6-8. Association rule mining

•	 Artificial Neural Networks (ANN). Inspired by the biological
neural networks, these are powerful enough to learn non-linear
relationships and recognize higher order relationships among
variables. They can implement both supervised and unsupervised
learning process. There is a stark difference between the
complexity of traditional neural networks and deep learning
neural networks (discussed later in this chapter). We discuss
Perceptron and back-propagation in this chapter.

Figure 6-9. Artificial neural networks

•	 Deep Learning. These algorithms work on complex neural
structures that can abstract higher level of information from a
huge dataset. They are computationally heavy and hard to train.
In simple terms, you can think of them as very large, multiple
hidden layer neural nets. We provide a deep architecture network
and image recognition (convolutional nets) example in this
chapter.

Figure 6-10. Deep learning algorithms

Chapter 6 ■ MaChine Learning theory and praCtiCes

228

Figure 6-11. Dimensionality reduction algorithms

•	 Ensemble learning. This is a set of algorithms that is built by
combining results from multiple machine learning algorithms.
These methods have become very popular due to their ability
to provide superior results and the possibility of breaking into
independent models to train on a distributed network. We discuss
bagging, boosting, stacking, and blending ensembles in Chapter 8.

Figure 6-12. Ensemble learning

•	 Text Mining. It also known as text analytics and is a subfield of
Natural Language Processing, which provides certain algorithms
and approached to deal with unstructured textual data,
commonly obtained from call center logs, customer reviews,
and so on. The algorithms in this group can deal with highly
unstructured text data to bring insights and/or create features
for applying machine learning algorithms. We discuss text
summarization, sentimental analysis, and word cloud, and topic
identification.

•	 Dimensionality Reduction. These are essentially methods
for amplifying the signal in data by various transformations
and supervised learning approaches. These methods are
usually applied prior to modeling. We had discussed Principal
Component Analysis (PCA) in Chapter 5.

http://dx.doi.org/10.1007/978-1-4842-2334-5_8
http://dx.doi.org/10.1007/978-1-4842-2334-5_5

Chapter 6 ■ MaChine Learning theory and praCtiCes

229

Figure 6-13. Text mining algorithms

The list of algorithms discussed has multiple implementations in R, Python, and
other statistics packages. All the methods don't have readily available R packages for
implementation. Some algorithms are not fully supported in the R environment and
have to be used by calling APIs, e.g., text mining and deep neural nets. The research
community is working toward bringing all the latest algorithms into R either via a package
or APIs.

Torsten Hothorn maintains an exhaustive list of packages available in R for
implementing machine learning algorithms. (Reference: CRAN Task View: Machine
Learning & Statistical Learning at https://cran.r-project.org/web/views/
MachineLearning.html.)

We recommend you keep an eye on this list and keep following up with the latest
package releases. In the next section we present a brief taxonomy of all the real-world
datasets that are going to be used in this chapter and in the coming chapters for demos
using R.

 6.3 Real-World Datasets
Throughout this chapter, we are going to use the following set of real-world datasets and
build many use cases around them in order to demonstrate the various ML algorithms.
In this section, a brief taxonomy of datasets associated with each use case is presented
before we start with the demos using R. Apart from these broader datasets, there are
many smaller datasets being used wherever it was necessary to explain certain concepts.

 6.3.1 House Sale Prices
The selling price of a house depends on many variables; this dataset presents a
combination of factors to predict the selling price. Table 6-1 presents the metadata of this
House Sale Price dataset.

https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/views/MachineLearning.html

Chapter 6 ■ MaChine Learning theory and praCtiCes

230

Table 6-1. House Sale Price Dataset

 6.3.2 Purchase Preference
This data contains transaction history for customers who have bought a particular
product. For each customer_ID, multiple data points are simulated to capture the
purchase behavior. The data is originally set for solving multi-class models with four
possible products from the insurance industry. The features are generic enough so that
they could be adapted for another industry like automobile, and retail where you could
have data about the car purchases, consumer goods, and so on.

Chapter 6 ■ MaChine Learning theory and praCtiCes

231

Table 6-2. Purchase Preferences

 6.3.3 Twitter Feeds and Article
We collected some Twitter feeds to generate results for applying text mining algorithms.
The feeds are taken from National News Channel Twitter accounts as of September 30,
2016. The handles used are @TimesNow and @CNN. One article available on the Internet
has been used for summarization. The original article can be found at http://www.
yourarticlelibrary.com/essay/essay-on-india-after-independence/41354/.

 6.3.4 Breast Cancer
We will be using the Breast Cancer Wisconsin (Diagnostic) dataset from the UCI machine
learning repository. The features in the dataset are computed from a digitized image of a
fine needle aspirate (FNA) of a breast mass. Each variable, except for the first and last, was
converted into 11 primitive numerical attributes with values ranging from 0 to 10. They
describe characteristics of the cell nuclei present in the image. Table 6-3 lists the features
available.

http://www.yourarticlelibrary.com/essay/essay-on-india-after-independence/41354/
http://www.yourarticlelibrary.com/essay/essay-on-india-after-independence/41354/

Chapter 6 ■ MaChine Learning theory and praCtiCes

232

Table 6-3. Breast Cancer Wisconsin

Table 6-4. Market Basket Data

 6.3.5 Market Basket
We will use a real-world data from a small supermarket. Each row of this data contains
a customer transaction with a list of products (from now on, we will use the term items)
they purchased. Since the items were too many in a typical supermarket, we have
aggregated them to the category level. For example, “baking needs” covers a number of
different products like dough, baking soda, butter, and so on. For illustration, let’s take
a small subset of the data consisting of five transactions and nine items, as shown in
Table 6-4.

 6.3.6 Amazon Food Review
The Amazon Fine Food Reviews dataset consists of 568,454 food reviews that Amazon
users left up to October 2012. A subset of this data is being used for text mining
approaches in this chapter to show text summarization, categorization, and part-of-
speech extraction. Table 6-5 contains the metadata of Amazon Fine Food Reviews dataset.

Chapter 6 ■ MaChine Learning theory and praCtiCes

233

Table 6-5. Amazon Food Review

The rest of the chapter will discuss every machine learning algorithm based on
the grouping discussed earlier and consistently explain every algorithm with our 3D
approach, discussing statistical background, demonstration in R, and using a real-world
use case.

 6.4 Regression Analysis
In previous chapters, we were trying to set the stage for modeling techniques to work
for our desired objective. This chapter touches on some of the out-of-box techniques in
statistical learning and machine learning space. At this stage you might want to focus on
the algorithmic approaches and not worry much about how statistical assumptions play
a role in machine learning algorithms. For completeness, we discuss in Chapter 8 how
statistical learning differs from machine learning.

The section of regression analysis will focus on building a thought process around
how the modeling techniques establish and quantify a relation among response variables
and predictors. We will start by identifying how strong and what type of relationship they
share and try to see if the relationship can be modeled with an assumption around a
distribution or not like normal distribution. We will also address some of the important
diagnostic features of popular techniques and explain what significance they have in
model selection.

The focus of these techniques is to find relationships that are statistically significant
and do not bear any distributional assumptions. The techniques do not establish
causation (best understood with the notion which says “a strong association is not a proof
of causation”), but give the data scientist indication of how the data series is related given
some assumptions around parameters. Causation establishment lies with the prudence
and business understanding of the process.

http://dx.doi.org/10.1007/978-1-4842-2334-5_8

Chapter 6 ■ MaChine Learning theory and praCtiCes

234

The concept of causation is important to keep in mind, as most of the time our
thought process deviates from how relationships quantified by a model have to be
interpreted. For example, a statistical model will be able to quantify relationships
between completely irrelevant measures, say electricity generation and beer
consumption. The linear model will be able to quantify a relationship among them.
But does beer consumption relate to electricity generation? Or does more electricity
generation mean more beer consumption? Unless you try very hard, it's difficult to prove.
Hence, a clear understanding of the process in discussion and domain knowledge is
important. You have to challenge the assumptions to get the real value out of the data.
This curse of causation needs to be kept in mind while we discuss correlation and other
concepts in regression.

Any regression analysis involves three key sets of variables:

•	 Dependent or response variables (Y): Input series

•	 Independent or predictor variables (X): Input series

•	 Model parameters: Unknown parameters to be estimated by the
regression model

For more than one independent variable and single dependent variable these
quantities can be thought of as a matrix.

The regression relationship can be shown as a function that maps from set of
independent variable space to dependent variable space. This relationship is the
foundation of prediction/forecasting:

Y f» ()X,b

This notation looks more like a mathematical modeling, and the Statistical Modeling
scholars use a little different notation for the same relationship:

E Y X f X|() = (),b

In statistical modeling, regression analysis estimates the conditional expectation of
dependent variable for known values of independent variables, which is nothing but the
average value of dependent for given values of independent variables. Other important
concept to understand before we expand the idea of regression is around parametric
and non-parametric methods. The discussion in this section will be based on parametric
methods, while there exist other set of techniques that are non-parametric.

•	 Parametric methods assume that the sample data is drawn
from a known probability distribution based on fixed set of
parameters. For instance, linear regression assumes normal
distribution, whereas logistic assumes binomial distribution,
etc. This assumption allows the methods to be applied to small
datasets as well.

Chapter 6 ■ MaChine Learning theory and praCtiCes

235

•	 Non-parametric methods do not assume any probability
distribution in prior, rather they construct empirical distributions
from the underlying data. These methods require high volume
of data to model estimation. There exists a separate branch on
non-parametric regressions, which is out of scope of this book,
e.g., kernel regression, Nonparametric Multiplicative Regression
(NPMR) etc. A good resource to read more on this topic is
“Artificial Intelligence: A Modern Approach” by Stuart Russell and
Peter Norvig. [2]

Further, using a parametric method allows you to easily create confidence intervals
around the estimated parameters; we will use this in our model diagnostic measures.
In this book we will be working with two types of input data—continuous input with
normality assumption and logistic regression with binomial assumption. Also, a small
primer on generalized framework will be provided for further reading.

 6.5 Correlation Analysis

The object of statistical science is to discover methods of condensing
information concerning large groups of allied facts into brief and
compendious expressions suitable for discussion

—Sir Francis Galton (1822-1911)

Correlation can be seen as a broader term used to represent the statistical relationship
between two variables. Correlation, in principle, provides a single measure of relationship
among the variables. There are multiple ways in which a relationship can be quantified,
due to this same reason we have so many types of correlation coefficients in statistics.

For measuring linear relationships, Pearson correlation is the best measure. Pearson
correlation, also called the Pearson Product-Moment Correlation Coefficient, is sensitive
to linear relationships. It also exists for non-linear relationships but doesn’t provide any
useful information in those cases.

Let’s assume two random variables, X and Y with their mean as μ
X
 and μ

Y
 and

standard deviations σ
X
 and σ

Y
. The population correlation coefficient is defined as

r
m m
s s

X Y
X YX Y

X Y

, =
-() -()éë ùûE

Chapter 6 ■ MaChine Learning theory and praCtiCes

236

We can infer from this, two important features of this measure:

•	 It ranges from -1 (negative correlated) and +1 (positively
correlated), which can be derived from Cauchy-Schwarz
inequality.

•	 This is defined only when the standard deviation is finite and
non-zero.

Similarly, for a sample from the population, the measure is defined as follows:

r
x x y y

ns s

x x y y

x x
xy

i

n

i i

x y

i

n

i i

i

n

i
i

=
-() -()

=
-() -()

-()

= =

= =

å å

å
1 1

1

2

11

2
n

iy yå -()
,

Let's create some scatter plots with our house price data and see what kind of
relationship we can quantify using the Pearson correlation.

Dependent variable: HousePrice
Independent variable: StoreArea

Data_HousePrice <-read.csv("Dataset/House Sale Price Dataset.
csv",header=TRUE);

#Create a vectors with Y-Dependent, X-Independent
y <-Data_HousePrice$HousePrice;
x<-Data_HousePrice$StoreArea;

#Scatter Plot
plot(x,y, main="Scatterplot HousePrice vs StoreArea",
xlab="StoreArea(sqft)", ylab="HousePrice($)", pch=19,cex=0.3,col="red")

#Add a fit line to show the relationship direction
abline(lm(y~x)) # regression line (y~x)
lines(lowess(x,y), col="green") # lowess line (x,y)

The plot in Figure 6-14 shows the scatter plot between HousePrice and Store Area.
The curved line is a locally smoothed fitted line. It can be seen that there is a linear
relationship among the variables.

Chapter 6 ■ MaChine Learning theory and praCtiCes

237

Figure 6-14. Scatter plot between HousePrice and StoreArea

#Report the correlation coefficient of this relation
cat("The correlation among HousePrice and StoreArea is ",cor(x,y));
 The correlation among HousePrice and StoreArea is 0.6212766

From these plots, we can make the following observations:

•	 The relationship is in a positive direction, on average the house
price increases with the size of the store. This is an intuitive
relationship, hence we can draw causality. The bigger store space
means a better house and hence is costly.

•	 The correlation is 0.62. This is a moderately strong relationship on
a linear scale.

•	 The curved line is a LOWESS plot (Locally Weighted Scatterplot
Smoothing), which shows that it is not very different from the
linear regression line. Hence, the linear relationship is worth
exploring for a model.

•	 If you see closely, there is a vertical line at StoreArea = 0. This
vertical line is saying that the prices vary for the house where
there is no store area. We need to look at other factors that are
driving the house prices.

We have discussed in detail how to find the set of variables that fit the data best. So in
coming sections we will not focus on how we got to that model, but show more about how
to run and interpret them in R.

Chapter 6 ■ MaChine Learning theory and praCtiCes

238

 6.5.1 Linear Regression
Linear regression is a process of fitting a linear predictor function to estimate unknown
parameters from the underlying data. In general, the model predicts the conditional
mean of Y given X, which is assumed to be an affine function of X.

Affine function: as linear regression estimated model does have an
intercept term and hence it is not just a linear function of X but an affine
function.

Essentially, the linear regression model will help you with:

•	 Prediction or forecasting

•	 Quantifying the relationship among variables

While the former has to do with if there are some unknown Xs then what is the
expected value for Y, the later deals with on the historical data of how these variables
were related in quantifiable terms (e.g., parameters and p-values).

Mathematically, the simple linear relationship looks like this:
For a set of n duplets xi yi i n,() = ¼, , ,1 , the relationship function is described as:

y xi i i= + +a b e . ,

and the objective of linear regression is to estimate this line:

y x= +a b

where y is the predicted response (or fitted value) α is the intercept, i.e., average
response value if the independent variable is zero, β is the parameter for x, i.e., change in
y by per unit change in x.

There are many ways to fit this line with the given dataset. This differs with the type
of loss function we want to minimize, e.g., ordinary least square, least absolute deviation,
ridge etc. Let’s look at the most popular method of Ordinary Least Square (OLS).

In OLS, the algorithm minimizes the squares error. The minimization problem can
be defined as follows:

Find , for ,min ,,a b a b a b e a bQ Q y x
i

n

i
i

n

i i() () = = - -()
= =
å å

1

2

1

2

Chapter 6 ■ MaChine Learning theory and praCtiCes

239

Being a parametric method, we can have a closed form solution for this
optimization. The closed form solution for estimating coefficients (or parameters) is by
using the following equations:

b
s

a b=
-

- ()
=

[]
= -

å å å

å å

x y
n

x y

x
n

x

x y
y x

i i i i

i i
x

1

12 2 2

Cov ,
, .



Where, σ2
x
 is the variance of x. The derivation of this solution can be found at

https://onlinecourses.science.psu.edu/stat414/node/278.

OLS has special properties for a linear regression model under certain assumptions
on the residual. Carl Friedrich Gauss and Andrey Markov jointly developed Gauss-
Markov Theorem that states that if the following conditions are satisfied:

•	 Expectation (mean) of residuals is zero (normality of residuals)

•	 Residuals are un-correlated and (no auto-correlation)

•	 Residuals have equal variance (homoscedasticity)

then Ordinary Lease Square estimation gives Best Linear Unbiased Estimator of
coefficients (or parameter estimates). We now explain the key terms that comprise the
best estimator, i.e., bias, consistent, and efficient.

 6.5.1.2 Best Linear Predictors
The estimation methodology used in the previous section is Ordinary Least Square (OLS).
We want to give a statistical definition of three important terms. This is important to make
sure that even when we use these words loosely, we are aware what these terms mean.

•	 Bias of estimator: Bias of an estimator is the difference between
estimator's expected value and the true value of the parameter
being estimated. The estimator that has zero bias is desired for
any model with unbiased estimators.

Bias E Eq q qq q q q qˆ ˆ ˆ ,é
ë

ù
û =

é
ë

ù
û

é
ë

ù
û- = -

•	 This equation tells us that bias is the difference between the
estimated value of a parameter and the true value. if the true
value of parameter is 5 and the linear model estimated it to be
4.5, our estimator is biased by -0.5. This will cause consistent
underprediction (biased prediction). The theorem says if the
estimator is unbiased then its bias is equal to 0 for all values of
parameter θ.

https://onlinecourses.science.psu.edu/stat414/node/278

Chapter 6 ■ MaChine Learning theory and praCtiCes

240

•	 The bias-variance tradeoff is discussed in Chapter 8.

•	 Consistent estimator: An estimator Tn of parameter θ is said to
be consistent if it converges in probability to the true value of the
parameter:

plim
n

nT
®¥

=q .

Recall our discussion around CLT and LLN; we can rephrase
this relationship:

Pr Pr /T
n T

n
n

n
n- ³éë ùû =
-

³
é

ë
ê
ê

ù

û
ú
ú
= -

æ

è
çç

ö

ø
÷÷

æ

è
çç

ö

ø
÷÷m e

m
s

e s f
e

s
2 1 ®®0

As n tends to infinity, the probability of the parameter
estimate being different from the true value goes to zero. This
means as we increase the training dataset, we expect that the
parameter estimator value converges to the true value of the
parameter.

•	 Efficient Estimator: An efficient estimator is an estimator that
estimates its value in the best manner defined with respect to
some loss/cost function. Generally, for the OLS framework, we
say a estimator is efficient if it has bounded variance, i.e., variance
with an upper limit:

Var T I[] ³ -
q
1

where ℐθ is the Fisher information matrix of the model at point θ.
In regression, we want to minimize the variance (standard error) in our estimations

of coefficients (parameters), so OLS provides us with an efficient estimator is it satisfies
the Gauss-Markov theorem.

These three concepts can be extended to other modeling forms. These are important
properties to be followed by our estimators to give a statistically significant model. We will
now show the results for some of the important assumptions/properties we test for linear
regression models.

http://dx.doi.org/10.1007/978-1-4842-2334-5_8

Chapter 6 ■ MaChine Learning theory and praCtiCes

241

 6.5.2 Simple Linear Regression
Now we can move on to estimating the linear models using the OLS technique. The lm()
package in R provides us with the capability to run OLS for linear regressions. The lm()
function can be used to carry out regression, single stratum analysis of variance, and
analysis of covariance. It is part of the base stats() package in R.

Now, we will create a simple linear regression and understand how to interpret the
lm() output for this simple case. Here we are fitting linear regression model with OLS
technique on the following.

Dependent variable: HousePrice
Independent variable: StoreArea
Further our correlation analysis showed that these two variables have a positive

linear relation and hence we will expect a positive sign to the parameter estimates of
StoreArea. Let’s run and interpret the results.

fit the model
fitted_Model <-lm(y~x)
Display the summary of the model
summary(fitted_Model)

 Call:
 lm(formula = y ~ x)

 Residuals:
 Min 1Q Median 3Q Max
 -280115 -33717 -4689 24611 490698

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 70677.227 4261.027 16.59 <2e-16 ***
 x 232.723 8.147 28.57 <2e-16 ***

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error: 63490 on 1298 degrees of freedom
 Multiple R-squared: 0.386, Adjusted R-squared: 0.3855
 F-statistic: 816 on 1 and 1298 DF, p-value: < 2.2e-16

The estimated equation for our example is

y x= + ()70677 227 232 723. .

where y is HousePrice and x is StoreArea. This implies for a unit increase in x
(StoreArea), the y (HousePrice) will be increased by $232.72. Intercept, being constant,
tells us the HousePrice when there is no StoreArea, and can be thought of as a
registration fee.

Chapter 6 ■ MaChine Learning theory and praCtiCes

242

Let's discuss the lm() summary output to understand the model better. The same
explanation can be extended to multiple linear regression in the next section.

•	 Call: Output the model equation that was fitted in the lm()
function.

•	 Residuals: This gives interquartile range of residuals and Min,
Max, and Median on residuals. A negative median means that
at least half of the residuals are negative, i.e., the predicted
values are more than the actual values in more than 50% of the
prediction.

•	 Coefficients: This is a table giving model parameter estimates (or
coefficient), standard error, t-value, and p-value of the student
t-test.

•	 Diagnostics: Residual standard error, and multiple and adjusted
R-Square and F-statistics for variance testing.

It is important to expand the coefficient’s component of the lm() summary output.
This output provide vital information about the model predictors and their coefficients:

•	 Estimate: The fitted value for that parameter. This value
directly uses the model equation to do prediction and to
understand the relationship with the dependent variable. For
example, in our model, the predictor variable x (store area) has
a coefficient of 232.7.

•	 Standard Error (std. Error): The standard deviation of the
distribution of the parameter estimate. In other words, the
estimate is the mean value of coefficients and the standard
deviation of that is the standard error. The standard error can be
calculated as:

S
s

n
x =

Where s is the sample standard deviation and n is the size of
the sample.

The lower the standard error with respect to the estimate, the better the model
estimate.

•	 t-value and p-value: Student t-test is a hypothesis test that checks
if the test statistics follow a t-distribution. Statistically the p-value
reported against each parameter is the p-value of one sample
t-test.

Chapter 6 ■ MaChine Learning theory and praCtiCes

243

We test that the value of parameter is statistically different from zero. If we fail to
reject the null hypothesis then we can say the respective parameter is not significant in
our model.

•	 The t-statistics for one sample t-test is as follows:

t
x

s n
=

- m0

/

where x is the sample mean, s is the sample standard deviation of the sample, and n

is the sample size. For our linear model, the t-value of x is 28.57 and the p-value is ~0. This
means the estimate of x is not 0 and hence it is significant in the model.

Once we understand how the model looks and what the significance of each
predictor is, we move on to see how the model fits the actual value. This is done by
plotting actual values against predicted values:

res <-stack(data.frame(Observed = y, Predicted =fitted(fitted_Model)))
res <-cbind(res, x =rep(x, 2))

#Plot using lattice xyplot(function)
library("lattice")
xyplot(values ~x, data = res, group = ind, auto.key =TRUE)

The plot shows the fitted values with the actual values. You can see that the plot
shows the linear relationship predicted by our model, stacked with the scatter plot of the
original.

Figure 6-15. Scatter plot of actual versus predicted

Chapter 6 ■ MaChine Learning theory and praCtiCes

244

Now, this was a model with only one explanatory variable (StoreArea), but there are
other variables available that show significant relationships with HousePrices. The regression
framework allow us to add multiple explanatory variables or independent variables to the
regression analysis. We introduce multiple linear regression in the next section.

 6.5.3 Multiple Linear Regression
The ideas of simple linear regression can be extended to multiple independent variables.
The linear relationship in multiple linear regression then becomes

y x x x i ni i p ip i i
T

i= + + + = + = ¼b b e b e1 1 1 , , , ,

For multiple regression, the matrix representation is very popular as it makes the
concepts of matrix computation explanation easy.

y = Xb e+ ,

In our previous example we just used one variable to explain the dependent variable,
StoreArea. In multiple linear regression we will use StoreArea, StreetHouseFront,
BasementArea, LawnArea, Rating, and SaleType as independent variables to estimate a
linear relationship with HousePrice.

The least square estimation function remains the same except there will be new
variables as predictors. To run the analysis on multiple variables we introduce one more
data cleaning step, missing value identification. We either want to impute the missing
value or leave it out of our analysis. We choose leaving it out by using the na.omit()
function R. The following code first finds the missing cases and then removes them.

Use lm to create a multiple linear regression
Data_lm_Model <-Data_HousePrice[,c("HOUSE_ID","HousePrice","StoreArea","Stre
etHouseFront","BasementArea","LawnArea","Rating","SaleType")];

below function we display number of missing values in each of the
variables in data
sapply(Data_lm_Model, function(x) sum(is.na(x)))
 HOUSE_ID HousePrice StoreArea StreetHouseFront
 0 0 0 231
 BasementArea LawnArea Rating SaleType
 0 0 0 0
#We have preferred removing the 231 cases which correspond to missing values
in StreetHouseFront. Na.omit function will remove the missing cases.
Data_lm_Model <-na.omit(Data_lm_Model)
rownames(Data_lm_Model) <-NULL
#categorical variables has to be set as factors

Chapter 6 ■ MaChine Learning theory and praCtiCes

245

Data_lm_Model$Rating <-factor(Data_lm_Model$Rating)
Data_lm_Model$SaleType <-factor(Data_lm_Model$SaleType)

Now we have cleaned up the data from the missing values and can run the lm()
function to fit our multiple linear regression model.

fitted_Model_multiple <-lm(HousePrice ~StoreArea +StreetHouseFront
+BasementArea +LawnArea +Rating +SaleType,data=Data_lm_Model)

summary(fitted_Model_multiple)

 Call:
 lm(formula = HousePrice ~ StoreArea + StreetHouseFront + BasementArea +
 LawnArea + Rating + SaleType, data = Data_lm_Model)

 Residuals:
 Min 1Q Median 3Q Max
 -485976 -19682 -2244 15690 321737

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 2.507e+04 4.827e+04 0.519 0.60352
 StoreArea 5.462e+01 7.550e+00 7.234 9.06e-13 ***
 StreetHouseFront 1.353e+02 6.042e+01 2.240 0.02529 *
 BasementArea 2.145e+01 3.004e+00 7.140 1.74e-12 ***
 LawnArea 1.026e+00 1.721e-01 5.963 3.39e-09 ***
 Rating2 -8.385e+02 4.816e+04 -0.017 0.98611
 Rating3 2.495e+04 4.302e+04 0.580 0.56198
 Rating4 3.948e+04 4.197e+04 0.940 0.34718
 Rating5 5.576e+04 4.183e+04 1.333 0.18286
 Rating6 7.911e+04 4.186e+04 1.890 0.05905 .
 Rating7 1.187e+05 4.193e+04 2.830 0.00474 **
 Rating8 1.750e+05 4.214e+04 4.153 3.54e-05 ***
 Rating9 2.482e+05 4.261e+04 5.825 7.61e-09 ***
 Rating10 2.930e+05 4.369e+04 6.708 3.23e-11 ***
 SaleTypeFirstResale 2.146e+04 2.470e+04 0.869 0.38512
 SaleTypeFourthResale 6.725e+03 2.791e+04 0.241 0.80964
 SaleTypeNewHouse 2.329e+03 2.424e+04 0.096 0.92347
 SaleTypeSecondResale -5.524e+03 2.465e+04 -0.224 0.82273
 SaleTypeThirdResale -1.479e+04 2.613e+04 -0.566 0.57160

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error: 41660 on 1050 degrees of freedom
 Multiple R-squared: 0.7644, Adjusted R-squared: 0.7604
 F-statistic: 189.3 on 18 and 1050 DF, p-value: < 2.2e-16

Chapter 6 ■ MaChine Learning theory and praCtiCes

246

The estimated model has six independent variables, with four continuous variables
(StoreArea, StreetHouseFront, BasementArea, and LawnArea) and two categorical
variables (Rating and SaleType). From the results of lm() function, we can see that
StoreArea, StreetHouseFront, BasementArea, and Lawn Area are significant at 95%
confidence level, i.e., statistically different from zero. While all levels of SaleType are
insignificant, hence statistically they are equal to zero. The higher ratings are significant
but not the lower ones. The model should drop the SaleType and be re-estimated to keep
only significant variables.

Now we will see how the actual versus predicted values look for this model by
plotting them after ordering the series by house prices.

#Get the fitted values and create a data frame of actual and predicted get
predicted values

actual_predicted <-as.data.frame(cbind(as.numeric(Data_lm_Model$HOUSE_
ID),as.numeric(Data_lm_Model$HousePrice),as.numeric(fitted(fitted_Model_
multiple))))

names(actual_predicted) <-c("HOUSE_ID","Actual","Predicted")

#Ordered the house by increasing Actual house price
actual_predicted <-actual_predicted[order(actual_predicted$Actual),]

#Find the absolute residual and then take mean of that
library(ggplot2)

#Plot Actual vs Predicted values for Test Cases
ggplot(actual_predicted,aes(x =1:nrow(Data_lm_Model),color=Series)) +
geom_line(data = actual_predicted, aes(x =1:nrow(Data_lm_Model), y = Actual,
color ="Actual")) +
geom_line(data = actual_predicted, aes(x =1:nrow(Data_lm_Model), y =
Predicted, color ="Predicted")) +xlab('House Number') +ylab('House Sale
Price')

Chapter 6 ■ MaChine Learning theory and praCtiCes

247

Figure 6-16. The actual versus predicted plot

The plot in Figure 6-16 shows the actual and predicted values on a value ordered
HousePrice.

We have arranged the HousePrices in increasing order to see less cluttered actual
versus predicted plot. The plot shows that our model closely follows the actual prices.
There are few cases of outlier/high values on actual which the model is not able to
predict, and that is fine as our model is not influenced by outliers.

6.5.4 Model Diagnostics: Linear Regression
Model diagnostics is an important step in the model-selection process. There is a
difference between model performance evaluation, discussed in Chapter 7, and the
model selection process. In model evaluation, we check how the model performs on
unseen data (testing data), but in model diagnostic/selection, we see how the model
fitting itself looks on our data. This includes checking the p-value significance of the
parameter estimates, normality, auto-correlation, homoscedasticity, influential/outlier
points, and multicollinearity. There are other test as well to see how well the model
follows the statistical assumptions, strict exogeneity, anova tables, and others but we will
focus on only few in the following sections.

http://dx.doi.org/10.1007/978-1-4842-2334-5_7

Chapter 6 ■ MaChine Learning theory and praCtiCes

248

 6.5.4.1 Influential Point Analysis
In linear regression, extreme values can create issues in the estimation process. Few
high leverage values introduce bias in the estimators and create other aberrations in the
residuals. So it is important to identify influential points in data. If the influential points
seem too extreme, we have to discard them from our analysis as outliers.

A specific statistical measure that we will show, among others, is Cook’s distance.
This method is used to find an estimate of the influence data point when doing an OLS
estimation.

Cook’s distance is defined as follows:

D
e

s p

h

h
i

i i

i

=
-()

é

ë
ê
ê

ù

û
ú
ú

2

2 2
1

,

where s n p2 1º -()- e e is the mean squared error of the regression model and

hi º x X X xi
T

i
T ()-1 and e= y y = I H- -()ˆ y eiis denoted by

In simple terms, Cook's distance measures the effect of deleting a given observation.
In this way, if removal of some observation causes significant changes, that means those
points are influencing the regression model. These points are assigned a large value to
Cook's distance and are considered for further investigation.

The cutoff value for this statistics can be taken as D ni > 4/ , where n is the number of

observations. If you adjust for the number of parameters in the model, then the cutoff can
be taken as D n ki > - -()4 1/ , where k is the number of variables in the model.

library(car);
 Influential Observations
Cook's D plot
identify D values > 4/(n-k-1)
cutoff <-4/((nrow(Data_lm_Model)-length(fitted_Model_
multiple$coefficients)-2))
plot(fitted_Model_multiple, which=4, cook.levels=cutoff)

Chapter 6 ■ MaChine Learning theory and praCtiCes

249

Figure 6-17. Cook’s distance for each observation

The plot in Figure 6-17 shows the Cook’s distance for each observation in our
dataset.

You can see the observation numbers with a high Cook’s distance are highlighted in
the plot in Figure 6-17. These observations require further investigation.

Influence Plot
influencePlot(fitted_Model_multiple, id.method="identify",
main="Influence Plot", sub="Circle size is proportional to Cook's
Distance",id.location =FALSE)

Chapter 6 ■ MaChine Learning theory and praCtiCes

250

The plot in Figure 6-18 shows a different view of Cook’s distance. The circle size is
proportional to the Cook’s distance.

Figure 6-18. ℐnfluence plot

Also, the outlier test results are shown here:

#Outlier Plot
outlier.test(fitted_Model_multiple)
 rstudent unadjusted p-value Bonferonni p
 621 -14.285067 1.9651e-42 2.0987e-39
 229 8.259067 4.3857e-16 4.6839e-13
 564 -7.985171 3.6674e-15 3.9168e-12
 1023 7.902970 6.8545e-15 7.3206e-12
 718 5.040489 5.4665e-07 5.8382e-04
 799 4.925227 9.7837e-07 1.0449e-03
 235 4.916172 1.0236e-06 1.0932e-03
 487 4.673321 3.3491e-06 3.5768e-03
 530 4.479709 8.2943e-06 8.8583e-03

The observation numbers—342,621 and 102—as shown in Figure 6-18
(corresponding to HOUSE_ID 412, 759, and 1242) are the three main influence points.
Let's pull out these records to see what values they have.

Chapter 6 ■ MaChine Learning theory and praCtiCes

251

#Pull the records with highest leverage
Debug <-Data_lm_Model[c(342,621,1023),]

print(" The observed values for three high leverage points");
 [1] " The observed values for three high leverage points"
Debug
 HOUSE_ID HousePrice StoreArea StreetHouseFront BasementArea LawnArea
 342 412 375000 513 150 1236 215245
 621 759 160000 1418 313 5644 63887
 1023 1242 745000 813 160 2096 15623
 Rating SaleType
 342 7 NewHouse
 621 10 FirstResale
 1023 10 SecondResale

print("Model fitted values for these high leverage points");
 [1] "Model fitted values for these high leverage points"

fitted_Model_multiple$fitted.values[c(342,621,1023)]
 342 621 1023
 441743.2 645975.9 439634.3

print("Summary of Observed values");
 [1] "Summary of Observed values"

summary(Debug)
 HOUSE_ID HousePrice StoreArea StreetHouseFront
 Min. : 412.0 Min. :160000 Min. : 513.0 Min. :150.0
 1st Qu.: 585.5 1st Qu.:267500 1st Qu.: 663.0 1st Qu.:155.0
 Median : 759.0 Median :375000 Median : 813.0 Median :160.0
 Mean : 804.3 Mean :426667 Mean : 914.7 Mean :207.7
 3rd Qu.:1000.5 3rd Qu.:560000 3rd Qu.:1115.5 3rd Qu.:236.5
 Max. :1242.0 Max. :745000 Max. :1418.0 Max. :313.0

 BasementArea LawnArea Rating SaleType
 Min. :1236 Min. : 15623 10 :2 FifthResale :0
 1st Qu.:1666 1st Qu.: 39755 7 :1 FirstResale :1
 Median :2096 Median : 63887 1 :0 FourthResale:0
 Mean :2992 Mean : 98252 2 :0 NewHouse :1
 3rd Qu.:3870 3rd Qu.:139566 3 :0 SecondResale:1
 Max. :5644 Max. :215245 4 :0 ThirdResale :0
 (Other):0

Note that the house price for these three leverage points are far away from the
mean or high density terms. The house price for two observations corresponds to the
highest and lowest in the dataset. Also another interesting thing is the third observation

Chapter 6 ■ MaChine Learning theory and praCtiCes

252

corresponding to median house price is having a very high lawn area, certainly an
influence point. Based on this analysis, we can either go back to check if these are data
errors or choose to ignore them in our analysis.

 6.5.4.2 Normality of Residuals
Residuals are core to the diagnostic of regression models. Normality of residual is an
important condition for the model to be a valid linear regression model. In simple words,
normality implies that the errors/residuals are random noise and our model has captured
all the signals in data.

The linear regression model gives us the conditional expectation of function Y for
given values of X. However, the fitted equation has some residual to it. We need the
expectation of residual to be normally distributed with a mean of 0 or reducible to 0. A
normal residual means that the model inference (confidence interval, model predictors’
significance) is valid.

Distribution of studentized residuals (could be thought of as a normalized value) is
a good way to see if the normality assumption is holding or not. But we may still want to
formally test the residuals by normality tests like KS tests, Shapiro-Wilk tests, Anderson
Darling tests, etc.

Here, we show the plot of studentized residual for a normal distribution, which
should follow a bell curve.

library(stats)
library(IDPmisc)
 Loading required package: grid
library(MASS)
sresid <-studres(fitted_Model_multiple)
#Remove irregular values (NAN/Inf/NAs)
sresid <-NaRV.omit(sresid)
hist(sresid, freq=FALSE,
main="Distribution of Studentized Residuals",breaks=25)

xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)

Chapter 6 ■ MaChine Learning theory and praCtiCes

253

The plot in Figure 6-19 is created using the studentized residuals. In the previous
code, the residuals are studentized using the studres() function in R.

Figure 6-19. Distribution of studentized residuals

The residual plot is close to a normal plot as the distribution forms a bell curve.
However, we still want to do formal testing of the normality. We will show result of all
three normality test but formally will introduce the test statistics for the most popular test
of normality—one sample Kolmogorov-Smirnov Test or KS test. For rest of the tests, we
encourage you to go through the R vignettes for the functions used here. It points to the
most appropriate reference on the topic.

Formally, let's introduce the KS test here
The Kolmogorov–Smirnov statistic for a given cumulative distribution function F(x) is

D F x F xn
x

n= () - ()sup

where sup x is the maximum of the set of distances.

Chapter 6 ■ MaChine Learning theory and praCtiCes

254

The KS statistics give back the largest difference between the empirical distribution
of residual and normal distribution. If the largest (supremum) is more than a critical value
then we say the distribution is not normal (using the p-value of the test statistic). Here we
have three tests for conformity of results:

test on normality
#K-S one sample test
ks.test(fitted_Model_multiple$residuals,pnorm,alternative="two.sided")

 One-sample Kolmogorov-Smirnov test

 data: fitted_Model_multiple$residuals
 D = 0.54443, p-value < 2.2e-16
 alternative hypothesis: two-sided
#Shapiro Wilk Test
shapiro.test(fitted_Model_multiple$residuals)

 Shapiro-Wilk normality test

 data: fitted_Model_multiple$residuals
 W = 0.80444, p-value < 2.2e-16
#Anderson Darling Test
library(nortest)
ad.test(fitted_Model_multiple$residuals)

 Anderson-Darling normality test

 data: fitted_Model_multiple$residuals
 A = 29.325, p-value < 2.2e-16

None of these three test thinks that the residuals are distributed normally. The
p-values are less than 0.05, and hence we can reject the null hypothesis that the
distribution is normal. This means we have to go back into our model and see what might
be driving the non-normal behavior, dropping some variable or adding some variable,
influential points, and other issues.

 6.5.4.3 Multicollinearity
Multicollinearity is basically a problem of too much information in a pair of independent
variables. This is a phenomenon when two or more variables are highly correlated, and
hence causes inflated standard errors in the model fit. For testing this phenomenon, we
can use the correlation matrix and see if they have a relationship with decent accuracy.
If yes, the addition of one variable is enough for supplying the information required to
explain the dependent variable.

For this section, we will use the variance inflation factor to determine the degree
of multidisciplinary in the independent variables. Another popular method is the Colin
index (Condition Index) number to detect multicollinearity.

Chapter 6 ■ MaChine Learning theory and praCtiCes

255

The variance inflation factor (VIF) for multicollinearity is defined as follows:

tolerance VIF
tolerance

= - =1
12Rj ,

where R
j
2 is the coefficient of determination of a regression of explanator j on all the

other explanators.
Generally, cutoffs for detecting the presence of multicollinearity based on the

metrics are:

•	 Tolerance less than 0.20

•	 VIF of 5 and greater indicating a multicollinearity problem

The simple solution to this problem is to drop the variable from these thresholds
from the model building process.

library(car)
calculate the vif factor
Evaluate Collinearity
print(" Variance inflation factors are ");
 [1] " Variance inflation factors are "
vif(fitted_Model_multiple);
variance inflation factors
 GVIF Df GVIF^(1/(2*Df))
 StoreArea 1.767064 1 1.329309
 StreetHouseFront 1.359812 1 1.166110
 BasementArea 1.245537 1 1.116036
 LawnArea 1.254520 1 1.120054
 Rating 1.931826 9 1.037259
 SaleType 1.259122 5 1.023309
print("Tolerance factors are ");
 [1] "Tolerance factors are "
1/vif(fitted_Model_multiple)
 GVIF Df GVIF^(1/(2*Df))
 StoreArea 0.5659106 1.0000000 0.7522703
 StreetHouseFront 0.7353955 1.0000000 0.8575521
 BasementArea 0.8028664 1.0000000 0.8960281
 LawnArea 0.7971175 1.0000000 0.8928143
 Rating 0.5176450 0.1111111 0.9640796
 SaleType 0.7942043 0.2000000 0.9772220

Chapter 6 ■ MaChine Learning theory and praCtiCes

256

Now we have the VIF values and tolerance value in the previous tables. We will
simply apply the cutoffs for VIF and tolerance as discussed.

Apply the cut-off to Vif
print("Apply the cut-off of 4 for vif")
 [1] "Apply the cut-off of 4 for vif"
vif(fitted_Model_multiple) >4
 GVIF Df GVIF^(1/(2*Df))
 StoreArea FALSE FALSE FALSE
 StreetHouseFront FALSE FALSE FALSE
 BasementArea FALSE FALSE FALSE
 LawnArea FALSE FALSE FALSE
 Rating FALSE TRUE FALSE
 SaleType FALSE TRUE FALSE
Apply the cut-off to Tolerance
print("Apply the cut-off of 0.2 for vif")
 [1] "Apply the cut-off of 0.2 for vif"
(1/vif(fitted_Model_multiple)) <0.2
 GVIF Df GVIF^(1/(2*Df))
 StoreArea FALSE FALSE FALSE
 StreetHouseFront FALSE FALSE FALSE
 BasementArea FALSE FALSE FALSE
 LawnArea FALSE FALSE FALSE
 Rating FALSE TRUE FALSE
 SaleType FALSE FALSE FALSE

You can observe that GVIF column is false for the cutoffs we set for multicollinearity.
Hence, we can safely say that our model is not having multicollinearity problem. And
hence the standard errors are not inflated, so we can do hypothesis testing.

 6.5.4.4 Residual Autocorrelation
Correlation is defined among two different variables, while autocorrelation, also known
as serial correlation, is the correlation of a variable with itself at different points in time
or in a series. This type of relationship is very important and quite frequently used in
time series modeling. Auto-correlation makes more sense when we have an inherent
order in the observations, e.g., index by time, key, etc. If the residual shows that it has a
definite relationship with prior residuals, i.e. auto-correlated, the noise is not purely by
chance, which means we still have some more information that we can extract and put
in the model.

To test for auto-correlation we will use the most popular method, the Durbin
Watson test.

Chapter 6 ■ MaChine Learning theory and praCtiCes

257

Given the process has defined the mean and variance, the auto-correlation statistics
of Durbin Watson test can be defined as follows:

R s t
X Xt t s s

t s

,
E

() =
-() -()éë ùûm m

s s

This can be rewritten for our residual auto-correlation as d-Durbin Watson test
statistics:

d
e e

e

t

T

t t

t

T

t

=
-()

=
-

=

å

å
2

1

2

1

2

,

where, et is the residual associated with the observation at time t.
To interpret the statistics, you can follow these rules:

Figure 6-20. Durbin Watson statistics bounds

Positive auto-correlations mean a positive error for one observation increases the
chances of a positive error for another observation. While negative auto-correlation is the
opposite. Both positive and negative auto-correlation are not desired in linear regression
models. In Figure 6-21, it is clear that if the d-statistics value is close to 2, we can infer
there if no auto-correlation in residual terms.

Another way to detect auto-correlation is by plotting the ACF plots and searching for
spikes.

Test for Autocorrelated Errors
durbinWatsonTest(fitted_Model_multiple)
 lag Autocorrelation D-W Statistic p-value
 1 -0.03814535 2.076011 0.192
 Alternative hypothesis: rho != 0
#ACF Plots
plot(acf(fitted_Model_multiple$residuals))

Chapter 6 ■ MaChine Learning theory and praCtiCes

258

The plot in Figure 6-21 is called an Auto-Correlation Function (ACF) plot against
different lags. This plot is popular in time series analysis as the data is time index, so we
are using this plot here as a proxy for an auto-correlation explanation.

Figure 6-21. Auto-correlation function (ACF) plot

The Durbin Watson statistics show no auto-correlation among residuals, with d
equal to 2.07. Also the ACF plots does not show spikes. Hence, we can say the residuals
are free from auto-correlation.

 6.5.4.5 Homoscedasticity
Homoscedasticity means all the random variables in the sequence or vector have
finite and constant variance. This is also called homogeneity of variance. In the linear
regression framework, homoscedastic errors/residuals will mean that the variance of
errors is independent of the values of x. This means the probability distribution of y has
the same standard deviation regardless of x.

There are multiple statistical tests for checking the homoscedasticity assumption,
e.g., the Breush-Pagan test, the arch test, Bartlett's test, and so on. In this section our
focus is on Bartlett's test, developed in 1989 by Snedecor and Cochran.

To perform Bartlett’s test, first we create subgroups within our population data.
For illustration we have created three groups of population data with 400, 400, and 269
observations in each group.

Chapter 6 ■ MaChine Learning theory and praCtiCes

259

 We can create three groups in data to see if the variance varies across
these three groups
gp<-numeric()

for(i in 1:1069)
{
 if(i<=400){
 gp[i] <-1;
 }else if(i<=800){
 gp[i] <-2;
 }else{
 gp[i] <-3;
 }
}

Now we define the hypothesis we will be testing in Bartlett’s test:

Ho: All three population variances are the same.
Ha: At least two are different.

Here, we perform Bartlett’s test with the function Bartlett.test():

Data_lm_Model$gp <-factor(gp)
bartlett.test(fitted_Model_multiple$fitted.values,Data_lm_Model$gp)

 Bartlett test of homogeneity of variances

 data: fitted_Model_multiple$fitted.values and Data_lm_Model$gp
 Bartlett's K-squared = 1.3052, df = 2, p-value = 0.5207

The Bartlett test has a p-value of greater than 0.05, which means we fail to reject
the null hypothesis. The subgroups have the same variance, and hence variance is
homoscedastic.

Here, we show some more test for checking variances. This is done for reference
purpose so that you can replicate other tests if required.

 1. Breush Pagan Test

non-constant error variance test - breush pagan test
ncvTest(fitted_Model_multiple)
 Non-constant Variance Score Test
 Variance formula: ~ fitted.values
 Chisquare = 2322.866 Df = 1 p = 0

These results are for a popular test for heteroscedasticity
called the Breush-Pagan test. The p-value is 0, hence you can
reject the null that the variance in heteroscedastic.

Chapter 6 ■ MaChine Learning theory and praCtiCes

260

 2. ARCH Test

#also show ARCH test - More relevant for a time series model
library(FinTS)
ArchTest(fitted_Model_multiple$residuals)

 ARCH LM-test; Null hypothesis: no ARCH effects

 data: fitted_Model_multiple$residuals
 Chi-squared = 4.2168, df = 12, p-value = 0.9792

The test result for Bartlett test and the Arch test clearly shows
that the residuals are homoscedastic. The plot in Figure 6-22
is a residual versus fitted values plot. It is a scatter plot of
residuals on the x axis and fitted values (estimated responses)
on the y axis. The plot is used to detect non-linearity, unequal
error variances, and outliers.

plot residuals vs. fitted values
plot(fitted_Model_multiple$residuals,fitted_Model_multiple$fitted.values)

Figure 6-22. Residuals versus fitted plot

A plot of fitted values and residuals also does not show any behavior of increase or
decrease. This means the residuals are homoscedastic as they don’t vary with values of x.

Chapter 6 ■ MaChine Learning theory and praCtiCes

261

In this section on model diagnostics, we explored the important test and process
to identify problems with regression. Influential points can bring bias into the model
estimates and reduce the performance of a model. We can explore few options to reduce
the problem by capping the values, creating bins and/or may be just remove them for
analysis. Normality of residuals is important as we will expect a good model to capture
all signals in the data and reduce the residual to just a white noise. Auto-correlation is a
feature of indexed data, in this case if the residuals are not independent of each other and
have auto-correlation then the model performance will be reduced. Homoscedasticity
is another important diagnostic that tells us if the variance of dependent variable is
independent of predictor/independent variable. All these diagnostics need to be done
after fitting a regression model to make sure the model is reliable and statistically valid to
be used in real settings.

Now we have tested major tests for linear regression and can now move onto
polynomial regression. So far we have assumed that the relationship between dependent
and independent variable was linear, but this may not be the case in real life. Linear
relations show the same proportional change behavior at all levels. For example, the
HousePrice increase when the store size changes from 10 sq. ft. to 20 sq. ft. is not the same
as change of the same 10 sq. ft. from 2000 sq. ft. to 2010 sq. ft. But linear regression ignores
this fact and assumes the same change at all levels.

The next section will extend the idea of linear regression to relationships with higher
degree polynomials.

 6.5.5 Polynomial Regression
The linear regression framework can be extended to polynomial relationship between
variables. In polynomial regression, the relationship between independent variable x and
dependent variable y is modeled as nth degree polynomial.

The polynomial regression model can be presented as follows:

y a a x a x a x i ni i i m i
m

i= + + + + + = ¼()0 1 2
2 1 2 e , , ,

There are multiple examples where the data does not follow linear dependent but
higher degrees of relationship. In general, real life relations are not linear in true terms.
Linear regression assume that the dependent variable can move only one direction with
the same marginal change per unit independent variable.

For instance, HousePrice has a positive correlation with StoreArea. This means that if
the StoreArea increases, the HousePrice will increase. So if StoreArea keeps on increasing
the HousePrice prices will increase with the same rate (coefficient). But do you believe
that a HousePrice can go to 1 million if the StoreArea is too big? No, StoreArea has a utility
that keeps on decreasing as it increases and finally you will not see the same increase in
HousePrice.

Chapter 6 ■ MaChine Learning theory and praCtiCes

262

Economics provide lot of good examples of such quadratic behavior, e.g., price
elasticity, diminishing returns, etc. Also in normal planning we make use of quadratic and
other high level polynomial relationship like discount generation, pricing products, etc.
We will show an example of how polynomial regression can help model some polynomial
relationship.

Dependent variable: Price of a commodity
Independent variable: Quantity Sold
The general principle is if the price is too cheap, people will not buy the commodity

thinking it’s not of good quality, but if the price is too high, people will not buy due to cost
consideration. Let's try to quantify this relationship using linear and quadratic regression.

#Dependent variable : Price of a commodity

y <-as.numeric(c("3.3","2.8","2.9","2.3","2.6","2.1","2.5","2.9","2.4",
"3.0","3.1","2.8","3.3","3.5","3"));

#Independent variable : Quantity Sold

x<-as.numeric(c("50","55","49","68","73","71","80","84","79","92","91","90",
"110","103","99"));

#Plot Linear relationship

linear_reg <-lm(y~x)

summary(linear_reg)

 Call:
 lm(formula = y ~ x)

 Residuals:
 Min 1Q Median 3Q Max
 -0.66844 -0.25994 0.03346 0.20895 0.69004

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 2.232652 0.445995 5.006 0.00024 ***
 x 0.007546 0.005463 1.381 0.19046

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error: 0.3836 on 13 degrees of freedom
 Multiple R-squared: 0.128, Adjusted R-squared: 0.06091
 F-statistic: 1.908 on 1 and 13 DF, p-value: 0.1905

The model summary shows that the multiple R-Square is merely 12% and the
variable x is insignificant in the model. Also the coefficient of x is insignificant as the
p-value is 0.19. Figure 6-24 shows the actual versus predicted scatter plot to see whether
the values are getting fitted well or not.

Chapter 6 ■ MaChine Learning theory and praCtiCes

263

res <-stack(data.frame(Observed =as.numeric(y), Predicted =fitted(linear_
reg)))
res <-cbind(res, x =rep(x, 2))

#Plot using lattice xyplot(function)
library("lattice")
xyplot(values ~x, data = res, group = ind, auto.key =TRUE)

Figure 6-23. Actual versus predicted plot linear model

The plot provides additional proof that the linear relation is not evident from the
plot. The values are not a right fit in the linear line predicted by the model.

Now, we move onto fitting a quadratic curve onto our data, to see if that helps us
capture the curvilinear behavior of quantity by price.
#Plot Quadratic relationship
linear_reg <-lm(y~x +I(x^2))

summary(linear_reg)

 Call:
 lm(formula = y ~ x + I(x^2))

 Residuals:
 Min 1Q Median 3Q Max
 -0.43380 -0.13005 0.00493 0.20701 0.33776

Chapter 6 ■ MaChine Learning theory and praCtiCes

264

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 6.8737010 1.1648621 5.901 7.24e-05 ***
 x -0.1189525 0.0309061 -3.849 0.00232 **
 I(x^2) 0.0008145 0.0001976 4.122 0.00142 **

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error: 0.2569 on 12 degrees of freedom
 Multiple R-squared: 0.6391, Adjusted R-squared: 0.5789
 F-statistic: 10.62 on 2 and 12 DF, p-value: 0.002211

The model summary shows that the multiple R-Square has improved to 63% after we
introduce a quadratic term for x, and both variable x and x-square are statistically significant
in the model. Let’s plot the scatter plot and see if the values fit the data well or not.

res <-stack(data.frame(Observed =as.numeric(y), Predicted =
fitted(linear_reg)))
res <-cbind(res, x =rep(x, 2))

#Plot using lattice xyplot(function)
library("lattice")
xyplot(values ~x, data = res, group = ind, auto.key =TRUE)

Figure 6-24. Actual versus predicted plot quadratic polynomial model

Chapter 6 ■ MaChine Learning theory and praCtiCes

265

The model shows improvement in R-Square and quadratic term is significant in
model. The plot also shows a better fit in quadratic case than the linear case. The idea
can be extended to higher degree polynomials, but that will cause overfitting. Also, many
processes are normally not well represented by very high degree polynomial. If you are
planning to use polynomial of degree more than four, try to be very careful during the
interpretation.

6.5.6 Logistic Regression
In linear regression we have seen that the dependent variable is a continuous variable
having real values. Also, we have determined that the error requires to be normal for
the regression equation to be valid. Now let’s assume what will happen if the dependent
variable is a having only two possible values (0 and 1), in other words binomially
distributed. Then the error terms can not be normally distributed as:

ei Binomial Yi Gausssian xi= () - +()b b0 1

Hence, we need to move onto different framework to accommodate the cases where
the dependent variable is not Gaussian but from an exponential family of distributions.
After logistic regression we will touch on exponential distributions and show how they
can be reduced to a linear form by a link function. The logistic regression models a
relationship between predictor variables and a categorical response/dependent variable.
For instance, the credit risk problem we were looking at in Chapter 5. The predictor
variables were used to model the binomial outcome of default/No Default.

Logistic regression can be of three types based on the type of categorical (response)
variable:

•	 Binomial Logistic Regression: Only two possible values for
response variable(0/1). Typically we estimate the probability of it
being 1 and based on some cutoff we predict the state of response
variable.

Binomial distribution probability mass function is given by

f k n p X k
n

k
p pk n k

; ,() = =() = æ
è
ç

ö

ø
÷ -() -

Pr 1

where k is number of successes, n is total number of trials, and p is the unit
probability of success.

•	 Multinomial Logistic Regression: There are three or more
values/levels for the categorical response variable. Typically,
we calculate probability for each level and then, based on some
classification (e.g., maximum probability), we assign the state of
response variable.

http://dx.doi.org/10.1007/978-1-4842-2334-5_5

Chapter 6 ■ MaChine Learning theory and praCtiCes

266

Multinomial Distribution probability mass function is given by

f x x n p p X x and and X x

n

x x
p
x

p

k k k k

k

1 1 1 1

1

1

1

, , ; , , ,¼ ¼() = = ¼ =()

=

Pr

!

! !


xx

k
x n

for non negative egers x

k

i

k

i,

,

int

when

otherwise
=
å =

ì

í
ï

î
ï

-

1

0

11 , ,¼ xk

where xi is set of predictor variables, pk is probability of each class (proportion), and
n is number of trials (sample size).

•	 Ordered Logistic Regression: The response variable is a
categorical variable with some built-in order in them. This
method is the same as multinomial, with key difference of having
an inherent order in them. For example, a rating variable between
1 and 5.

Let’s look at two important terms we will use in explaining the logistic regression.

6.5.7 Logit Transformation
For logistic regression, we use a transformation function, also called the link function,
which creates a linear function from binomial distribution in independent variable. The
link function used for binomial distribution is called the logit function.

The logit function σ(t)σ(t) is defined as follows:

s t
e

e e

t

t t() =
+

=
+ -1

1

1

The logit function curve looks like this:

curve((1/(1+exp(-x))),-10,10,col =“violet”)

Chapter 6 ■ MaChine Learning theory and praCtiCes

267

You can observe that the logit function is capped from top by 1 and from bottom
by 0. Extremely high values of x have very little effect on function value, the same for very
small values. This way we can see the bounds are between 0 and 1 probability scale to fit
a model.

In logistic regression, we use maximum likelihood estimation (MLE), while for
multinomial we use iterative method to optimize on the logLoss function.

The logit function then convert the relationship into logit of odds ratio as a linear
combination of independent variables. The inverse of the logistic function g, the logit
(log odds), maps the relationship into a linear one:

g F x
F x

F x
x()() = ()

- ()
æ

è
çç

ö

ø
÷÷ = +ln

1 0 1b b

In this section we discuss logistic regression with binomial categorical variables,
and in later part we will touch at a high level how to extend this method into a
multinomial class.

6.5.8 Odds Ratio
In Chapter 1, we discussed probability measure, which signifies the chance of having that
event. The value of probability is always between 0 and 1, where 0 means definitely no
occurrence of event and 1 being that event definitely happened.

Figure 6-25. Logit function

http://dx.doi.org/10.1007/978-1-4842-2334-5_1

Chapter 6 ■ MaChine Learning theory and praCtiCes

268

We define probability odds, or simply odds, as the ratio of chance of the event
happening and nothing happening

Odds in favor of event A = P(A)/1-P(A)
Odds against event A = (1-P(A))/P(A) = 1/Odds in favor

So now, an odds of 2 for event A will mean that event A is 2 times more likely of
happening than not happening. The ratio can be generalized to any number of classes,
where the interpretation changes to likelihood of an event happening against all possible
events.

Odds ratio is a way to represent the relationship between presence/absence of an
event “A” with the presence or absence of event “B”. For a binary case, we can create an
example as shown:

Oddsratio OddsofA OddsofB= () ()/

For example, let’s assume there are two types of event outcome, A and B. Probability
of event A happening is 0.4 (P(A)) and event B of 0.6(P(B)). Then odds in favor of A is 0.66
(P(A)/1-P(A)), similarly, odds for B is 1.5 (P(B)/1-P(B)). i.e., chances of event B happening
is 1.5 time that of not happening.

Now the odds ratio is defined as a ratio of these odds, odds B by Odds A = 1.5/0.66 =
2.27 ~ 2. This is saying that chances of B happening are twice that of event A happening.
We can observe that this quantity is a relative measure, and hence we use concept of base
levels in logistic regressions. The odds ratio from the model is relative to base level/class.

Now, we can introduce the relationship between logit and odds ratios. The logistic
regression essentially model the following equation, which is logit transform on odds of
event and covert our problem to its linear form as shown:

logit logitE Y x x p
p

p
xi i m i i

i

i
1 0 1 11, ,, , ln¼éë ùû() = () =

-
æ

è
ç

ö

ø
÷ = +b b ,, ,i m m ix+ + b

Hence in logistic regression, odds ratio is the exponentiated coefficient of variables,
signifying the relative chance of event from reference class/event. Here, you can see how
the odds ratio translates to exponentiated coefficients of logistic regression.

OR
odds

odds
=

+()
()

=

+()
- +()

()
- ()

=
+ +()x

x

F x

F x

F x

F x

e

e

x1

1

1 1

1

0 1 1b b

b00 1

1

+ =b
b

x
e

Chapter 6 ■ MaChine Learning theory and praCtiCes

269

6.5.8.1 Binomial Logistic Model
Let’s use our Purchase Prediction data to build a logistic regression model and see its
diagnostics. We will be subsetting the data to only have ProductChoice 1 and 3 as 1 and 0
respectively, in our analysis.

#Load the data and prepare a dataset for logistic regression
Data_Purchase_Prediction <-read.csv("~/Dropbox/Book Writing - Drafts/Chapter
Drafts/Final Artwork and Code/Chapter 6/Dataset/Purchase Prediction Dataset.
csv",header=TRUE);

Data_Purchase_Prediction$choice <-ifelse(Data_Purchase_
Prediction$ProductChoice ==1,1,
ifelse(Data_Purchase_Prediction$ProductChoice ==3,0,999));

Data_Logistic <-Data_Purchase_Prediction[Data_Purchase_Prediction$choice
%in%c("0","1"),c("CUSTOMER_ID","choice","MembershipPoints","IncomeClass","Cu
stomerPropensity","LastPurchaseDuration")]

table(Data_Logistic$choice,useNA="always")

 0 1 <NA>
 143893 106603 0
Data_Logistic$MembershipPoints <-factor(Data_Logistic$MembershipPoints)
Data_Logistic$IncomeClass <-factor(Data_Logistic$IncomeClass)
Data_Logistic$CustomerPropensity <-factor(Data_Logistic$CustomerPropensity)
Data_Logistic$LastPurchaseDuration <-as.numeric(Data_Logistic$LastPurchaseD
uration)

Before we start the model, let's see the distribution of categorical variables over
dependent categorical variables.

table(Data_Logistic$MembershipPoints,Data_Logistic$choice)

 0 1
 1 15516 13649
 2 19486 15424
 3 20919 15661
 4 20198 14944
 5 18868 13728
 6 16710 11883
 7 13635 9381
 8 9632 6432
 9 5566 3512
 10 2427 1446
 11 754 441
 12 165 95
 13 17 7

Chapter 6 ■ MaChine Learning theory and praCtiCes

270

This distribution says, as the MemberShipPoints increase, both choice 0 and 1
decrease.

table(Data_Logistic$IncomeClass,Data_Logistic$choice)

 0 1
 1 145 156
 2 203 209
 3 3996 3535
 4 23894 18952
 5 47025 36781
 6 38905 27804
 7 21784 14715
 8 6922 3958
 9 1019 493

This distribution says, most of the customers are in income classes 4, 5, and 6. The
choice distribution is equitable in both 0 and 1 across the income class bands.

table(Data_Logistic$CustomerPropensity,Data_Logistic$choice)

 0 1
 High 26604 10047
 Low 20291 19962
 Medium 27659 17185
 Unknown 36633 52926
 VeryHigh 32706 6483

The distribution is interesting as it tells that customers with very high propensity are
very unlikely to buy the product represented by class 1. The distributions are good way to
get a first-hand idea of your data. This exploratory task also helps in feature selections for
models.

Now, we have all the relevant libraries and function loaded, we will show step by step
how to develop the logistic regression and choose one of the model for evaluation in the
next chapter. We will be developing model on full data, and the next chapter will discuss
performance evaluation metrics in detail.

library(dplyr)
#Get the average purchase rate by Rating and plot that

summarise(group_by(Data_Logistic,IncomeClass),Average_Rate=mean(choice))

print("Summary of Average Purchase Rate by IncomeClass")
 [1] "Summary of Average Purchase Rate by IncomeClass"
summary_Rating
 # A tibble: 9 × 2
 IncomeClass Average_Rate
 <fctr><dbl>

Chapter 6 ■ MaChine Learning theory and praCtiCes

271

 1 1 0.5182724
 2 2 0.5072816
 3 3 0.4693932
 4 4 0.4423283
 5 5 0.4388827
 6 6 0.4167953
 7 7 0.4031617
 8 8 0.3637868
 9 9 0.3260582
plot(summary_Rating$IncomeClass,summary_Rating$Average_Rate,type="b",
xlab="Income Class", ylab="Average Purchase Rate observed", main="Purchase
Rate and Income Class")

Now we want to see how average purchase rate of product 1 varies over the Income
class. We plot the average purchase rate (proportion of 1) by each income class, as shown
in Figure 6-27.

Figure 6-26. Purchase rate and income class

The plot in Figure 6-26 shows that, as the income class increases the propensity to
buy the product 1, goes down. Similar plots can be created for other variables to see how
the expected behavior of model probabilities should be after fitting a model.

Now we will clean up the data from NA’s (missing values 0) and fit a binary logistic
regression using the function glm(). GLM stands for generalized linear regression, which
can handle exponential family of distributions. The function requires users to mention

Chapter 6 ■ MaChine Learning theory and praCtiCes

272

the family of distribution the dependent variable belong to and the link function you want
to use. We have used the binomial family with logit as a link function.

#Remove the Missing values - NAs

Data_Logistic <-na.omit(Data_Logistic)
rownames(Data_Logistic) <-NULL

#Divide the data into Train and Test
set.seed(917);
index <-sample(1:nrow(Data_Logistic),round(0.7*nrow(Data_Logistic)))
train <-Data_Logistic[index,]
test <-Data_Logistic[-index,]

Fitting a logistic model
Model_logistic <-glm(choice ~MembershipPoints +IncomeClass
+CustomerPropensity +LastPurchaseDuration, data = train, family
=binomial(link ='logit'));

summary(Model_logistic)

 Call:
 glm(formula = choice ~ MembershipPoints + IncomeClass + Customer
Propensity +
 LastPurchaseDuration, family = binomial(link = "logit"),
 data = train)

 Deviance Residuals:
 Min 1Q Median 3Q Max
 -1.631 -1.017 -0.614 1.069 2.223

 Coefficients:
 Estimate Std. Error z value Pr(>|z|)
 (Intercept) 0.066989 0.145543 0.460 0.645323
 MembershipPoints2 -0.123408 0.020577 -5.997 2.01e-09 ***
 MembershipPoints3 -0.185540 0.020359 -9.113 < 2e-16 ***
 MembershipPoints4 -0.204938 0.020542 -9.977 < 2e-16 ***
 MembershipPoints5 -0.237311 0.020942 -11.332 < 2e-16 ***
 MembershipPoints6 -0.258884 0.021597 -11.987 < 2e-16 ***
 MembershipPoints7 -0.291123 0.022894 -12.716 < 2e-16 ***
 MembershipPoints8 -0.326029 0.025526 -12.773 < 2e-16 ***
 MembershipPoints9 -0.387113 0.031572 -12.261 < 2e-16 ***
 MembershipPoints10 -0.439228 0.044839 -9.796 < 2e-16 ***
 MembershipPoints11 -0.357339 0.078493 -4.553 5.30e-06 ***
 MembershipPoints12 -0.447326 0.164172 -2.725 0.006435 **
 MembershipPoints13 -1.349163 0.583320 -2.313 0.020728 *
 IncomeClass2 -0.412020 0.190461 -2.163 0.030520 *
 IncomeClass3 -0.342854 0.146938 -2.333 0.019631 *

Chapter 6 ■ MaChine Learning theory and praCtiCes

273

 IncomeClass4 -0.389236 0.144433 -2.695 0.007040 **
 IncomeClass5 -0.373493 0.144169 -2.591 0.009579 **
 IncomeClass6 -0.442134 0.144244 -3.065 0.002175 **
 IncomeClass7 -0.455158 0.144548 -3.149 0.001639 **
 IncomeClass8 -0.509290 0.146126 -3.485 0.000492 ***
 IncomeClass9 -0.569825 0.160174 -3.558 0.000374 ***
 CustomerPropensityLow 0.877850 0.018709 46.921 < 2e-16 ***
 CustomerPropensityMedium 0.427725 0.018491 23.131 < 2e-16 ***
 CustomerPropensityUnknown 1.208693 0.016616 72.744 < 2e-16 ***
 CustomerPropensityVeryHigh -0.601513 0.021652 -27.781 < 2e-16 ***
 LastPurchaseDuration -0.063463 0.001211 -52.393 < 2e-16 ***

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 (Dispersion parameter for binomial family taken to be 1)

 Null deviance: 235658 on 172985 degrees of freedom
 Residual deviance: 213864 on 172960 degrees of freedom
 AIC: 213916

 Number of Fisher Scoring iterations: 4

The p-value of all the variables and levels is significant. This implies we have fit a
model with variables having significant relationship with dependent variable. Now let’s
work out to get classification matrix for this model. This is done by method of balancing
specificity and sensitivity measure. Details of these metrics are given in Chapter 6, and
we will give a brief explanation here and make use of that to create a good cutoff for
classification from probabilities into classes.

#install and load package
library(pROC)
#apply roc function
cut_off <-roc(response=train$choice, predictor=Model_logistic$fitted.values)

#Find threshold that minimizes error
e <-cbind(cut_off$thresholds,cut_off$sensitivities+cut_off$specificities)
best_t <-subset(e,e[,2]==max(e[,2]))[,1]

#Plot ROC Curve
plot(1-cut_off$specificities,cut_off$sensitivities,type="l",
ylab="Sensitivity",xlab="1-Specificity",col="green",lwd=2,
main ="ROC Curve for Train")
abline(a=0,b=1)

abline(v = best_t) #add optimal t to ROC curve
The plot in Figure 6-27 is between specificity and sensitivity. The plot is also called

ROC plot. The best cutoff is the value on the curve that maximizes sensitivity and
minimizes (1-specificity).

http://dx.doi.org/10.1007/978-1-4842-2334-5_6

Chapter 6 ■ MaChine Learning theory and praCtiCes

274

cat(" The best value of cut-off for classifier is ", best_t)
 The best value of cut-off for classifier is 0.4202652

Figure 6-27. ROC curve for train data

Looking at the plot, we can see our choice of cutoff will provide best classification
on the train data. We need to test this assumption on the test data and record the
classification rate by using this cutoff of 0.42.

Predict the probabilities for test and apply the cut-off
predict_prob <-predict(Model_logistic, newdata=test, type="response")

#Apply the cutoff to get the class
class_pred <-ifelse(predict_prob >0.41,1,0)

#Classification table
table(test$choice,class_pred)
 class_pred
 0 1
 0 24605 18034
 1 8364 23134
#Classification rate
sum(diag(table(test$choice,class_pred))/nrow(test))
 [1] 0.6439295

The model shows 64% good classification on the test data. This shows the model can
capture the signals in the data well to distinguish between 0 and 1.

Chapter 6 ■ MaChine Learning theory and praCtiCes

275

The logistic model diagnostic is different from linear regression models. In following
sections, we explore some common diagnostic metrics for logistic regression.

6.5.9 Model Diagnostics: Logistic Regression
Once we have fit the model, we have a two-step analysis to do on the logistic output:

 1. If we are interested in final assignment of class, we focus on
classifier and compare the exact classes assigned by using
classifier on the predicted probabilities.

 2. If we are interested in the probabilities, we will look at if the
cases where the chances of event are high are getting high
probabilities.

Other than this, we want to look at the coefficients, R-Square equivalents, and other
tests to verify that our model has been fit with statistical validity. Another important
thing to keep in mind while looking coefficients is that the logistic regression coefficients
represent the change in the logit for each unit change in the predictor, which is not the
same as linear regression.

We will show how to perform three diagnostic test, Wald test, likelihood ratio test
and deviance/pseudo R-Square, and three measure of separation bivariate plots, gains/
lift chart, and concordance ratio.

6.5.9.1 Wald Test
The Wald test is analogous to the t-test test in linear regression. This is used to assess the
contribution of individual predictors in a given model.

In logistic regression, the Wald statistic is

W
SEj

j

j

=
b

b

2

2

Add, β is coefficient and SE is standard error of coefficient β.
The Wald statistic is the ratio of the square of the regression coefficient to the square

of the standard error of the coefficient, and it follows a chi-square distribution. The
significant Wald statistics implies the predictor/independent variable is significant in the
model.

Chapter 6 ■ MaChine Learning theory and praCtiCes

276

Let's perform a Wald test on MembershipPoints and see if that is significant in model
or not.

#Wald test
library(survey)
regTermTest(Model_logistic,"MembershipPoints", method ="Wald")
 Wald test for MembershipPoints
 in glm(formula = choice ~ MembershipPoints + IncomeClass +
CustomerPropensity +
 LastPurchaseDuration, family = binomial(link = "logit"),
 data = train)
 F = 31.64653 on 12 and 172960 df: p= < 2.22e-16

The p-value is less than 0.05, so at 95% confidence we can reject the null hypothesis
that the coefficient’s value is zero. Hence, the MembershipPoints is statistically significant
variable of model.

6.5.9.2 Deviance
Deviance is calculated by comparing a null model and a saturated model. A null model
is a model without any predictor in it, just the intercept term and a saturated model is the
fitted model with some predictors in it. In logistic regression, deviance is used in lieu of
sum of squares calculations. The test statistic (often denoted by D) is twice the log of the
likelihoods ratio, i.e., it is twice the difference in the log likelihoods:

Deviance

D = -2ln
likelihoodof the fittedmodel

likelihoodof the saturatedmoddel

Deviance statistic (D) follows a chi-square distribution. Smaller values indicate
better fit as the fitted model deviates less from the saturated model.

Here is the analysis of the deviance table.

#Anova table of significance
anova(Model_logistic, test="Chisq")
 Analysis of Deviance Table

 Model: binomial, link: logit

 Response: choice

 Terms added sequentially (first to last)

Chapter 6 ■ MaChine Learning theory and praCtiCes

277

 Df Deviance Resid. Df Resid. Dev Pr(>Chi)
 NULL 172985 235658
 MembershipPoints 12 330.6 172973 235328 < 2.2e-16 ***
 IncomeClass 8 339.1 172965 234989 < 2.2e-16 ***
 CustomerPropensity 4 18297.4 172961 216691 < 2.2e-16 ***
 LastPurchaseDuration 1 2826.9 172960 213864 < 2.2e-16 ***

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The chi-square test on all the variables is significant as the p-value is less than 0.05.
All the predictors’ contributions to the model are significant.

6.5.9.3 Pseudo R-Square
In linear regression, we have R-Square measure (discussed in detail in Chapter 7), which
measures the proportion of variance independently explained by the model. A similar
measure in logistics regression is called pseudo R-Square. The most popular of such
measure used the likelihood ratio, which is presented as:

R
D D

DL
null fitted

null

.2 =
-

The ratio of difference in deviance of null and fitted model by null model. The higher
the value of this measure, the better the explaining power of model. There are other
similar measures not discussed in this chapter, like Cox and Snell R-Square, Nagelkerke
R-Square, McFadden R-Square, and Tjur R-Square. Here we compute the pseudo
R-Square for our model.

R square equivalent for logistic regression
library(pscl)
pR2(Model_logistic)
 llh llhNull G2 McFadden r2ML
 -1.069321e+05 -1.178291e+05 2.179399e+04 9.248135e-02 1.183737e-01
 r2CU
 1.591199e-01

The last three outputs from this function are McFadden's pseudo R-Square,
Maximum likelihood pseudo R-Square (Cox & Snell) and Cragg and Uhler's or
Nagelkerke's pseudo R-Square. The R-Square values are very low, signifying that the
model might not be performing better than a null model.

http://dx.doi.org/10.1007/978-1-4842-2334-5_7

Chapter 6 ■ MaChine Learning theory and praCtiCes

278

6.5.9.4 Bivariate Plots
The most important diagnostic of logistic regression is to see how the actual probabilities
and predicted probabilities behave by each level of single independent variables. These
plots are called bivariate as there are two variables actual and predicted plotted against
single independent variable levels. The plot have three important inputs:

•	 Actual Probability: The prior proportion of target level in each
category of independent variable.

•	 Predicted Probability: The probability given by the model.

•	 Frequency : The frequency of a categorical variable (number of
observations).

The plot essentially tells us how the model is behaving for different levels in our
categorical variables. You can extend this idea to continuous variables as well by binning
the continuous variable.

Another good thing about these plots is that you are able to determine for which
cohort in your dataset the model performs better and where it need investigation. This
cohort level diagnostic is not possible by looking at aggregated plots.

#The function code is provided separately in the appendix
source("actual_pred_plot.R")
MODEL_PREDICTION <-predict(Model_logistic, Data_Logistic, type ='response');
Data_Logistic$MODEL_PREDICTION <-MODEL_PREDICTION
#Print the plots MembershipPoints
actual_pred_plot (var.by=as.character("MembershipPoints"),
var.response='choice',
data=Data_Logistic,
var.predict.current='MODEL_PREDICTION',
var.predict.reference=NULL,
var.split=NULL,
var.by.buckets=NULL,
sort.factor=FALSE,
errorbars=FALSE,
subset.to=FALSE,
barline.ratio=1,
title="Actual vs. Predicted Purchase Rates",
make.plot=TRUE
)

The plot in Figure 6-28 shows actual versus predicted against the frequency plot of
MembershipPoints.

Chapter 6 ■ MaChine Learning theory and praCtiCes

279

Figure 6-28. Actual versus predicted plot against MembershipPoints

For MembershipPoints, the actual and predicted probabilities follow each other. This
means the model predicts the probabilities close to actual. Also, you can see in both cases
customer having higher MembershipPoints are less likely to have product choice = 1, that
is the same as seen in the actual and predicted.

#Print the plots IncomeClass
actual_pred_plot (var.by=as.character("IncomeClass"),
var.response='choice',
data=Data_Logistic,
var.predict.current='MODEL_PREDICTION',
var.predict.reference=NULL,
var.split=NULL,
var.by.buckets=NULL,
sort.factor=FALSE,
errorbars=FALSE,
subset.to=FALSE,
barline.ratio=1,
title="Actual vs. Predicted Purchase Rates",
make.plot=TRUE
)

Chapter 6 ■ MaChine Learning theory and praCtiCes

280

The plot in Figure 6-29 shows actual versus predicted against the frequency plot of
IncomeClass.

Again the model behavior for IncomeClass is as expected. The model is able to
predict the probabilities across different income classes as an actual observed rate.

#Print the plots CustomerPropensity
actual_pred_plot (var.by=as.character("CustomerPropensity"),
var.response='choice',
data=Data_Logistic,
var.predict.current='MODEL_PREDICTION',
var.predict.reference=NULL,
var.split=NULL,
var.by.buckets=NULL,
sort.factor=FALSE,
errorbars=FALSE,
subset.to=FALSE,
barline.ratio=1,
title="Actual vs. Predicted Purchase Rates",
make.plot=TRUE
)

Figure 6-29. Actual versus predicted plot against ℐncomeClass

Chapter 6 ■ MaChine Learning theory and praCtiCes

281

The plot in Figure 6-30 shows actual versus predicted against the frequency plot of
CustomerPropensity.

Figure 6-30. Actual versus predicted plot against CustomerPropensity

The model shows good agreement with observed probabilities for
CustomerPropensity as well. Similar plots can be plotted for continuous variable in our
model after binning them appropriately. At least on categorical variables, the model
performs well.

The model shows a good prediction against actual values across different categorical
variable levels. It's a good model at the probability scale!

6.5.9.5 Cumulative Gains and Lift Charts
Cumulative gains and lift charts are visual ways to measure the effectiveness of predictive
models. They consist of a baseline and the lift curve due to the predictive model. The more
there is separation between baseline and predicted (lift) curve, the better the model.

In a Gains curve:
X-axis: % of customers
Y-axis: Percentage of positive predictions
Baseline: Random line (x% of customers giving x% of positive predictions)
Gains: The percentage of positive responses for the % of customers
In a Lift curve:
X-axis: % of customers

Chapter 6 ■ MaChine Learning theory and praCtiCes

282

Y-axis: Actual lift (the ratio between the result predicted by our model and the result
using no model)

library(gains)
library(ROCR)
library(calibrate)
MODEL_PREDICTION <-predict(Model_logistic, Data_Logistic, type ='response');

Data_Logistic$MODEL_PREDICTION <-MODEL_PREDICTION;
lift =with(Data_Logistic, gains(actual = Data_Logistic$choice, predicted =
Data_Logistic$MODEL_PREDICTION , optimal =TRUE));
pred =prediction(MODEL_PREDICTION,as.numeric(Data_Logistic$choice));

Function to create performance objects. All kinds of predictor evaluations
are performed using this function.
gains =performance(pred, 'tpr', 'rpp');
tpr: True positive rate
rpp: Rate of positive predictions
auc =performance(pred, 'auc');
auc =unlist(slot(auc, 'y.values')); # The same as: auc@y.values[[1]]
auct =paste(c('AUC = '), round(auc, 2), sep ='')

#par(mfrow=c(1,2), mar=c(6,5,4,2));

plot(gains, col='red', lwd=2, xaxs='i', yaxs='i', main =paste('Gains
Chart ', sep =''),ylab='% of Positive Response', xlab='% of customers/
population');
axis(side =1, pos =0, at =seq(0, 1, by =0.10));
axis(side =2, pos =0, at =seq(0, 1, by =0.10));

lines(x=c(0,1), y=c(0,1), type='l', col='black', lwd=2,
ylab='% of Positive Response', xlab='% of customers/population');

legend(0.6, 0.4, auct, cex =1.1, box.col ='white')

gains =lift$cume.pct.of.total
deciles =length(gains);

for (j in 1:deciles)
{
 x =0.1;
 y =as.numeric(as.character(gains[[j]]));
lines(x =c(x*j, x*j),
y =c(0, y),
type ='l', col ='blue', lwd =1);
lines(x =c(0, 0.1*j),
y =c(y, y),

Chapter 6 ■ MaChine Learning theory and praCtiCes

283

type ='l', col ='blue', lwd =1);
Annotating the chart by adding the True Positive Rate exact numbers at the
specified deciles.
textxy(0, y, paste(round(y,2)*100, '%',sep=''), cex=0.9);
}

The chart in Figure 6-31 is the Gains chart for our model. This is plotted with % of
positive responses on the y axis and % of population on the x axis.

Figure 6-31. Gains charts with AUC

plot(lift,
xlab ='% of customers/population',
ylab ='Actual Lift',
main =paste('Lift Chart \n', sep =' '),
xaxt ='n');
axis(side =1, at =seq(0, 100, by =10), las =1, hadj =0.4);

The chart in Figure 6-32 is the Lift chart for our model. This is plotted with actual lift
on the y axis and % of population on the x axis.

Chapter 6 ■ MaChine Learning theory and praCtiCes

284

Figure 6-32. Lift chart

The Gains shows a good separation between model line and baseline. This shows
that the model has good separation power. Also the AUC value of 0.7 means that the
model will be able to roughly separate 70% of cases.

The Lift curve shows a lift of close to 70% for the first 10% of the population. This
value need to be the same as what we have observed in Gains chart, only the presentation
has changed.

6.5.9.6 Concordance and Discordant Ratios
In any classification model based on raw probabilities, we need a classification
methodology to separate these probability cases. In binary logistic, this is most of the
time done by choosing a cutoff value and then creating an inequality to classify objects
into 0 or 1.

To make sure such a cutoff exists and has good separation power, we have to see if
the actual objects with state 1 in data are having higher probability than the actual state 0.
For example, a pair of (Yi,Yj) be (0,1), then the predicted values (Pi,Pj) should have Pj>Pi,
then we can choose a number between Pj and Pi, which will correctly classify a 1 as 1 and
0 as 0. Based on this understanding, we can divide all the possible pairs in data into three
types:

•	 Concordant pairs: For (0,1) or (1,0) corresponding probabilities
with 1 are greater than probabilities with 0

•	 Discordant pairs: For (0,1) or (1,0) corresponding probabilities
with 0 are greater than probabilities with 1

•	 Tied: (0,0) and (1,0) pairs

Chapter 6 ■ MaChine Learning theory and praCtiCes

285

The concordance ratio is then defined as the ratio of the number of concordant pairs
by the total number of pairs.

If our model produces a high concordance ratio then it will be able to classify the
objects in classes more accurately.

#The function code is provided separately in R-code for chapter 6
source("concordance.R")

#Call the concordance function to get these ratios
concordance(Model_logistic)
 $Concordance
 [1] 0.7002884

 $Discordance
 [1] 0.2991384

 $Tied
 [1] 0.0005731122

 $Pairs
 [1] 7302228665

The concordance is 69.9%, signifying that the model probabilities have good
separation on ~70% cases. This is a good model to create a classifier for 0 and 1.

In this section of model diagnostics for logistic regression we discussed the
diagnostics in broadly two bucket, model fit statistics and model classification power.
The model fit statistics discussed Wald test, which is significance test for the parameter
estimates, Deviance is similar measure to residual in linear regression and pseudo
R-Square, which is equivalent to R-Square of liner regression. The other set of diagnostics
were to identify if the model can be used to create a powerful classifier. The test included
were bivariate plots, this is a plot of actual probability by predicted probabilities,
cumulative gains and lift chart to show hoe well our model differentiate between two
classes, and the concordance ratio tells us if we can have a good cutoff value for our
classifier. These diagnostics provide us vital properties of the model and help the modeler
to either improve or re-estimate the models.

In the next section, we will more onto multi-class classification problems. Multi-
class problems are one of the hardest problems to solve, as more number of classes bring
ambiguity. It is difficult to create a good classifier in many cases. We will discuss multiple
ways you can do multi-class classification using machine learning. Multinomial logistic
regression is one the popular ways to to multi-class classification.

6.5.10 Multinomial Logistic Regression
Multinomial Logistic Regression is used when we have more than one category for
classification. The dependent variable in that case follows a multinomial distribution. In
the background we create a logistic model for each class and then combine those into one

Chapter 6 ■ MaChine Learning theory and praCtiCes

286

single equation by making the probability constraint of the sum of all probabilities be 1.
The equation setup for the multinomial logistic is shown here:

Pr

Pr

Y
e

e

Y
e

e

i

k

K

i

k

K

i

k i

i

k

=() =
+

=() =
+

×

=

-
×

×

=

-
×

å

å

1
1

2
1

1

2

1

1

1

1

b

b

b

b

X

X

X

XX

X

X

i

K i

k i

Y K
e

e
i

k

K

 

Pr = -() =
+

- ×

=

-
×å

1
1

1

1

1

b

b

The estimation process has a additional constraints on individual logit
transformation, the sum of probabilities from all logit functions needs to be 1. As the
estimation has to take care of this constraint, the estimation method is iterative one. The
best coefficients for the model are found by iterative optimization of the logLoss function.

For our purchase prediction problem first we will fit a logistic model on our data. The
multinom() function from the nnet package will be used to estimate the logistic equation
for our multi-class problem (ProductChoice has four possible options). Once we get the
probabilities for each class, we will create a classifier to assign classes to individual cases.

There will be two methods illustrated for the classifier:

•	 Pick the highest probability: Pick the class having the highest
probability among all the possible classes. However, this
technique suffers form class imbalance problem. Class imbalance
problem occurs when prior distribution of high proportion class
drive the predicted probability and hence the low proportion
classes never got assign the class using predicted probabilities
maximum value.

•	 Ratio of probabilities: We can take a ratio of predicted
probabilities by prior distribution and then choose a class based
on the the highest ratio. Highest ratio will signify that the model
picked the highest signal as the probabilities got normalized by
prior proportion.

Let's fit a model and apply the two classifiers.

#Remove the data having NA. NA is ignored in modeling algorithms
Data_Purchase<-na.omit(Data_Purchase_Prediction)

rownames(Data_Purchase)<-NULL

#Random Sample for easy computation
Data_Purchase_Model <-Data_Purchase[sample(nrow(Data_Purchase),10000),]

Chapter 6 ■ MaChine Learning theory and praCtiCes

287

print("The Distribution of product is as below")
 [1] "The Distribution of product is as below"
table(Data_Purchase_Model$ProductChoice)

 1 2 3 4
 2192 3883 2860 1065
#fit a multinomial logistic model
library(nnet)
mnl_model <-multinom (ProductChoice ~MembershipPoints +IncomeClass
+CustomerPropensity +LastPurchaseDuration +CustomerAge +MartialStatus, data
= Data_Purchase)
 # weights: 44 (30 variable)
 initial value 672765.880864
 iter 10 value 615285.850873
 iter 20 value 607471.781374
 iter 30 value 607231.472034
 final value 604217.503433
 converged
#Display the summary of model statistics
mnl_model
 Call:
 multinom(formula = ProductChoice ~ MembershipPoints + IncomeClass +
 CustomerPropensity + LastPurchaseDuration + CustomerAge +
 MartialStatus, data = Data_Purchase)

 Coefficients:
 (Intercept) MembershipPoints IncomeClass CustomerPropensityLow
 2 0.77137077 -0.02940732 0.00127305 -0.3960318
 3 0.01775506 0.03340207 0.03540194 -0.8573716
 4 -1.15109893 -0.12366367 0.09016678 -0.6427954
 CustomerPropensityMedium CustomerPropensityUnknown
 2 -0.2745419 -0.5715016
 3 -0.4038433 -1.1824810
 4 -0.4035627 -0.9769569
 CustomerPropensityVeryHigh LastPurchaseDuration CustomerAge
 2 0.2553831 0.04117902 0.001638976
 3 0.5645137 0.05539173 0.005042405
 4 0.5897717 0.07047770 0.009664668
 MartialStatus
 2 -0.033879645
 3 -0.007461956
 4 0.122011042

 Residual Deviance: 1208435
 AIC: 1208495

Chapter 6 ■ MaChine Learning theory and praCtiCes

288

The model result shows that it converged after 30 iterations. Now let’s see a sample
set of probabilities assigned by the model and then apply the first classifier that has
picked the highest probability.

Here, we apply the highest probability classifier and see how it classifies the cases.

#Predict the probabilities
predicted_test <-as.data.frame(predict(mnl_model, newdata = Data_Purchase,
type="probs"))

head(predicted_test)
 1 2 3 4
 1 0.21331014 0.3811085 0.3361570 0.06942438
 2 0.05060546 0.2818905 0.4157159 0.25178812
 3 0.21017415 0.4503171 0.2437507 0.09575798
 4 0.24667443 0.4545797 0.2085789 0.09016690
 5 0.09921814 0.3085913 0.4660605 0.12613007
 6 0.11730147 0.3624635 0.4184053 0.10182971
#Do the prediction based in highest probability
test_result <-apply(predicted_test,1,which.max)

result <-as.data.frame(cbind(Data_Purchase$ProductChoice,test_result))

colnames(result) <-c("Actual Class", "Predicted Class")

table(result$`Actual Class`,result$`Predicted Class`)

 1 2 3
 1 302 91952 12365
 2 248 150429 38028
 3 170 90944 51390
 4 27 32645 16798

The model shows good result for classifying classes 1, 2, and 3, but for class 4 the
model does not classify even a single case. This is happening because the classifier
(picking the highest probability) is very sensitive to absolute probabilities. This is called
class imbalance and is discussed in start of the section.

Let's apply the second method we discussed in start of the section, probability ratios,
to classify. We will select the class based on the ratio of predicted probability to the prior
probability/proportion. This way we will be ensuring the classifier assign the class which
is providing the highest jump in probabilities. In other words, the ratio will normalize the
probabilities by prior odds, therefore reducing the bias due to prior distributions.

prior <-table(Data_Purchase_Model$ProductChoice)/nrow(Data_Purchase_Model)

prior_mat <-rep(prior,nrow(Data_Purchase_Model))

pred_ratio <-predicted_test/prior_mat
#Do the prediction based in highest ratio
test_result <-apply(pred_ratio,1,which.max)

Chapter 6 ■ MaChine Learning theory and praCtiCes

289

result <-as.data.frame(cbind(Data_Purchase$ProductChoice,test_result))

colnames(result) <-c("Actual Class", "Predicted Class")

table(result$`Actual Class`,result$`Predicted Class`)

 1 2 3 4
 1 21251 64410 18935 23
 2 28087 112480 48078 60
 3 13887 77090 51476 51
 4 4620 27848 16958 44

Now you can see the class imbalance problem is reduced to some extent. You are
encouraged to try other methods of sampling to reduce this problem further. Multinomial
models are very popular in multi-class classification problems, other alternatives
algorithms for multi-class classification tend to be more complex than multinomial.
Multinomial logistic classifiers more commonly used in natural language processing and
multi-class problems than Naive Bayer classifiers.

6.5.11 Generalized Linear Models
Generalized linear models extend the idea of ordinary linear regression to other
distributions of response variables in an exponential family.

In the GLM framework, we assume that the dependent variable is generated from a
exponential family distribution, exponential family include normal, binomial, Poisson,
and gamma distributions, among others. The expectation in that case is defined as:

E Y X() = = ()-m bg 1

where E(Y) is the expected value of Y; Xβ is the linear predictor, a linear combination
of unknown parameters β; g is the link function.

The model parameters, β, are typically estimated with maximum likelihood,
maximum quasi-likelihood, or Bayesian techniques.

The glm function is very generic function that can accommodate many types of
distributions in a response variable:

glm(formula, family=familytype(link=linkfunction), data=)

•	 binomial, (link = "logit")

Binomial distribution is very common in the real world. Any
problem that has two possible outcomes can be thought of as
a binomial distribution. A simple example could be whether it
will rain today (=1) or not (=0).

•	 gaussian, (link= "identity")

Gaussian distribution is a continuous distribution, i.e., a normal
distribution. All the problems in linear regression are modeled
assuming Gaussian distribution on the dependent variable.

Chapter 6 ■ MaChine Learning theory and praCtiCes

290

•	 Gamma, (link= "inverse")

An example could be, “N people are waiting at a take-away.
How long will it take to serve them”? OR time to failure of a
machine in the industry.

•	 poisson, (link = "log")

This is a common distribution in queuing examples. One
example could be “How many calls will the call center receive
today?”.

The following exponential family is also supported by the glm() function in R.
However, these distributions are not observed normally in day-to-day activities.

inverse.gaussian, (link = "1/mu^2")
quasi, (link = "identity", variance = "constant")
quasibinomial, (link = "logit")
quasipoisson, (link = "log")

6.5.12 Conclusion
Regression is one of the very first learning algorithm with a heavy influence from statistics
but an elegantly simple design. Over the years, the complexity and diversity in regression
technique has increased many folds as new applications started emerging. In this book
we gave a heavy share of pages to regression in order to bring the best out of the widely
used regression techniques. We discussed from the most fundamental simple regression
to the advanced polynomial regression with a heavy emphasis on demonstration in R.
The interested readers are advised to refer further to some advanced text of the topic if
they want to go deeper into regression theory.

We have also presented a detailed discussion of model diagnostics for regression,
which is the most overlooked topic when developing real-world models but could bring
monumental damage to the industry where it’s applied, especially if it’s not done properly.

In the next section, we will cover a technique from the distance-based algorithm
called Support Vector Machine, which could be a really good binary classification model
on higher dimensional datasets.

6.6 Support Vector Machine SVM
In the R function libsvm documentation titled Support Vector Machine by David Meyer
gave a crisp brief of SVM describing the class separation, handling overlapping classes,
dealing with Nonlinearity, and modeling of problem solution. The following are the
excerpts from the documentation:

 a. Class separation

SVM looks for the optimal hyperplane (In two dimensions, a hyperplane is a line and
in a p-dimensional space, a hyperplane is a flat affine subspace of hyperplane dimension
p - 1) separating the two classes by maximizing the margin between the closest points

Chapter 6 ■ MaChine Learning theory and praCtiCes

291

of the two classes (see Figure 6-58). In two-dimensional space, as shown in Figure 6-4,
the points lying on the margins are called support vectors and line passing through the
midpoint of margins is the optimal hyperplane.

Simple two-dimensional hyperplane for a linearly separable data are represented by
the following two equations:

w x
uru r
× + =b 1

and

w x
uru r
× + = -b 1

subject to the following constraint so that each observation lies on the correct side of
the margin

y b for all i n.i w xi

uru uru
× +() ³ £ £1 1,

 b. Overlapping classes

If the data points reside on the wrong side of the discriminant margin, it could be
weighted down to reduce its influence (in this setting, the margin is called a soft margin).

The following function, called the Hinge loss, function can be introduced to handle
this situation

max ,0 1- × +()()y b .i w xi

uru uru

which becomes 0 if xi

uru
 lies on the correct side of the margin and the function value is

proportional to the distance from the margin.

 c. Nonlinearity

If a linear separator couldn't be found, observations are usually projected into a
higher-dimensional space using a kernel function where the observations effectively
become linearly separable.

One popular Gaussian family kernel is the radial basis function. A radial basis
function (RBF) is a real-valued function whose value depends only on the distance from
the origin. The function can be defined here:

K x,y =exp
x-y

2s

2

2() -
æ

è

ç
ç

ö

ø

÷
÷

where x-y
2

 is known as squared Euclidean distance between the observation x and
y. There are other linear, polynomial, and sigmoidal kernels that could be used based on
the data.

A program that can perform all these tasks is called a support vector machine.

Chapter 6 ■ MaChine Learning theory and praCtiCes

292

6.6.1 Linear SVM
The problem could be formulated as a quadratic optimization problem which can be
solved by many known techniques. The following expressions could be converted to a
quadratic function (the discussion of this topic is beyond the scope of this book).

6.6.1.1 Hard Margins
For the hard margins

Minimize

w , subject to y w x bi i

ur uru
K× -() ³ =1 1, for ,i n

6.6.1.2 Soft Margins
For the soft margins

 Minimize
1

0 1
1

2

n
max , - × +()()é

ë
ê

ù

û
ú +

=
å y w x b wi i
i

n ur uru r
l ,

where

Parameter λ determines the tradeoff between increasing the margin and ensuring

xi

lies on the correct side of the margin.

Figure 6-33. Classification using support vector machine

Chapter 6 ■ MaChine Learning theory and praCtiCes

293

6.6.2 Binary SVM Classifier
Let’s look at the classification of benign and malignant cells in our breast cancer dataset.
We want to create a binary classifier to classify cells into benign and malignant.

 a. Data summary

library(e1071)
library(rpart)

breast_cancer_data <-read.table("Dataset/breast-cancer-wisconsin.data.
txt",sep=",")
breast_cancer_data$V11 =as.factor(breast_cancer_data$V11)

summary(breast_cancer_data)
 V1 V2 V3 V4
 Min. : 61634 Min. : 1.000 Min. : 1.000 Min. : 1.000
 1st Qu.: 870688 1st Qu.: 2.000 1st Qu.: 1.000 1st Qu.: 1.000
 Median : 1171710 Median : 4.000 Median : 1.000 Median : 1.000
 Mean : 1071704 Mean : 4.418 Mean : 3.134 Mean : 3.207
 3rd Qu.: 1238298 3rd Qu.: 6.000 3rd Qu.: 5.000 3rd Qu.: 5.000
 Max. :13454352 Max. :10.000 Max. :10.000 Max. :10.000

 V5 V6 V7 V8
 Min. : 1.000 Min. : 1.000 1 :402 Min. : 1.000
 1st Qu.: 1.000 1st Qu.: 2.000 10 :132 1st Qu.: 2.000
 Median : 1.000 Median : 2.000 2 : 30 Median : 3.000
 Mean : 2.807 Mean : 3.216 5 : 30 Mean : 3.438
 3rd Qu.: 4.000 3rd Qu.: 4.000 3 : 28 3rd Qu.: 5.000
 Max. :10.000 Max. :10.000 8 : 21 Max. :10.000
 (Other): 56
 V9 V10 V11
 Min. : 1.000 Min. : 1.000 2:458
 1st Qu.: 1.000 1st Qu.: 1.000 4:241
 Median : 1.000 Median : 1.000
 Mean : 2.867 Mean : 1.589
 3rd Qu.: 4.000 3rd Qu.: 1.000
 Max. :10.000 Max. :10.000

 b. Data preparation

 split data into a train and test set
index <-1:nrow(breast_cancer_data)
test_data_index <-sample(index, trunc(length(index)/3))
test_data <-breast_cancer_data[test_data_index,]
train_data <-breast_cancer_data[-test_data_index,]

Chapter 6 ■ MaChine Learning theory and praCtiCes

294

 c. Model building

svm.model <-svm(V11 ~., data = train_data, cost =100, gamma =1)

 d. Model evaluation

Normally, such a high level of accuracy is only possible
if feature being used and the data matches the real world
very closely. Such a dataset in practical scenarios is difficult
to built, however, in the world of medical diagnostics,
expectation is always very high in terms of accuracy, as error
involves a significant risk to somebody’s life.

Training set accuracy = 100%

library(gmodels)

svm_pred_train <-predict(svm.model, train_data[,-11])
CrossTable(train_data$V11, svm_pred_train,
prop.chisq =FALSE, prop.c =FALSE, prop.r =FALSE,
dnn =c('actual default', 'predicted default'))

 Cell Contents
 |-------------------------|
 | N |
N / Table Total

 Total Observations in Table: 466

 | predicted default
actual default	2	4	Row Total
 2 | 303 | 0 | 303 |
 | 0.650 | 0.000 | |
 ---------------|-----------|-----------|-----------|
 4 | 0 | 163 | 163 |
 | 0.000 | 0.350 | |
 ---------------|-----------|-----------|-----------|
Column Total	303	163	466

Chapter 6 ■ MaChine Learning theory and praCtiCes

295

Testing set accuracy = 95%

svm_pred_test <-predict(svm.model, test_data[,-11])
CrossTable(test_data$V11, svm_pred_test,
prop.chisq =FALSE, prop.c =FALSE, prop.r =FALSE,
dnn =c('actual default', 'predicted default'))

 Cell Contents
 |-------------------------|
 | N |
N / Table Total

 Total Observations in Table: 233

 | predicted default
actual default	2	4	Row Total
 2 | 142 | 13 | 155 |
 | 0.609 | 0.056 | |
 ---------------|-----------|-----------|-----------|
 4 | 0 | 78 | 78 |
 | 0.000 | 0.335 | |
 ---------------|-----------|-----------|-----------|
Column Total	142	91	233

The binary SVM has done exceptionally well on the breast cancer dataset, which is
the golden mark for the dataset as described in the UCI Machine Learning Repository.
The classification matrix shows that the correct classification of 95% (58.4% of malignant
and 36.9% of benign cells correctly identified).

6.6.3 Multi-Class SVM
We introduced SVM as a binary classifier. However the idea of SVM can be extended to
multi-class classification problem as well. Multi-class SVM can be used as a multi-class
classifier by creating multiple binary classifiers. This method works similarly to the idea
of multinomial logistic regression, where we build a logistic model for each pair of class
with base function.

Chapter 6 ■ MaChine Learning theory and praCtiCes

296

Along the same lines, we can create a set of binary SVMs to do multi-class
classification. The steps in implementing that will be as follows:

 1. Create binary classifiers:

•	 Between one class and the rest of the classes

•	 Between every pair of classes (all possible pairs)

 2. For any new cases, the SVM classifier adopts a winner-takes-
all strategy, in which the class with highest output is assigned.

To implement this methodology, it is important that the output functions are
calibrated to generate comparable scores, otherwise the classification will become
biased.

There are other methods also for multi-class SVMs. One such is proposed by
Crammer and Singer. They proposed a multi-class SVM method which casts the multi-
class classification problem into a single optimization problem, rather than decomposing
it into multiple binary classification problems.

We will show quick example with our house worth data. The house net worth is
divided into three classes—high, medium, and low. The multi-class SVM has to classify
house into these categories. Here is the R implementation of the SVM multi-class
classifier:

Read the house Worth Data
Data_House_Worth <-read.csv("Dataset/House Worth Data.csv",header=TRUE);

library('e1071')
#Fit a multiclass SVM
svm_multi_model <-svm(HouseNetWorth ~StoreArea +LawnArea, Data_House_Worth)

#Display the model
svm_multi_model

 Call:
 svm(formula = HouseNetWorth ~ StoreArea + LawnArea, data = Data_House_
Worth)

 Parameters:
 SVM-Type: C-classification
 SVM-Kernel: radial
 cost: 1
 gamma: 0.5

 Number of Support Vectors: 120
#get the predicted value for all the set
res <-predict(svm_multi_model, newdata=Data_House_Worth)

Chapter 6 ■ MaChine Learning theory and praCtiCes

297

#Classification Matrix
table(Data_House_Worth$HouseNetWorth,res)
 res
 High Low Medium
 High 122 1 7
 Low 6 122 7
 Medium 1 7 43
#Classification Rate

sum(diag(table(Data_House_Worth$HouseNetWorth,res)))/nrow(Data_House_Worth)
 [1] 0.9082278

Multi-class SVM gives us 90% good classification rate on house worth data. The
prediction is good across all the classes.

6.6.4 Conclusion
Support vector machine, which initially was a non-probabilistic binary classifier with
later variations to solve for multi-class problems as well has proved to be one of the
most successful algorithms in machine learning. A number of applications of SVM
emerged over the years, and a few noteworthy ones are hypertext categorization, image
classification, character recognition, and many more applications in biological sciences
as well.

This section discussed a brief introduction to SVM with both binary and multi-class
versions on Breast Cancer and House Worth Data. In the next section, we discuss the
decision tree algorithm, which is an another classification and as well as regression type
model and a very popular approach in many fields of study.

6.7 Decision Trees
Unlike other ML algorithms based on statistical techniques, decision tree is a non-
parametric model, having no underlying assumptions for the model. However, we should
be careful in identifying the problems where a decision tree is appropriate and where
not. Decision tree’s ease of interpretation and understanding has found its usage in
many applications ranging from agriculture, where you could predict the chances of rain
given the various environmental variables, to software development, where it’s possible
to estimate the development effort given the details about the modules. Over the years,
tree-based approaches have evolved into a much broader scope in applicability as well
as sophistication. They are available both in case of discrete and continuous response
variables, which makes it a suitable solution in for both classification and regression
problems.

Chapter 6 ■ MaChine Learning theory and praCtiCes

298

More formally, a decision tree D consists of two types of nodes:

•	 A leaf node, which indicates the class/region defined by the
response variable.

•	 A decision node, which specifies some test on a single attributes
(predictor variable) with one branch and subtree for each
possible outcome of the test.

A decision tree once constructed can be used to classify a observation by starting at
the top decision node (called the root node) and moving down through the other decision
nodes until a leaf is encountered using a recursive divide and conquer approach. Before
we get into the details of how the algorithm works, let’s get some familiarity with certain
measures and its importance for the decision tree building process.

Figure 6-34. Decision tree with two attributes and a class

6.7.1 Types of Decision Trees
Decision tree offers two types of implementations, one for regression and the other for
classification problems. This means you could use decision tree for categorical as well
as continuous response variables, which makes it a widely popular approach in the
ML world. Next, we briefly describe how the two problems could be modeled using a
decision tree.

Chapter 6 ■ MaChine Learning theory and praCtiCes

299

6.7.1.1 Regression Trees
In problems where the response variable is continuous, regression trees are useful.
They provide the same level of interpretability as Linear Regression and on top of that,
they are a very intuitive understanding of final output, which ties back to the domain
of the problem. In the previous example in the Figure 6-34, the regression tree is built
to recursively split the two feature vector space into different regions based on various
thresholds. Our objective in splitting the regions in every iteration is to minimize the
Residual Sum of Squares (RSS) defined by the following equation:

i x R j s
R

i x R j s
R

i i

yi y yi y
: :Î () Î ()
å å-() + -()

1 2

1

2

2

2

, ,

,
 

Overall, the following are the two steps involved in regression tree building and
prediction on new test data:

•	 Recursively split the feature vector space (X
1
, X

2
, …, X

p
) into

distinct and non-overlapping regions

•	 For new observations falling into the same region, the prediction
is equal to the mean of all the training observations in that region.

In n-dimensional feature vector, Gini-index or Entropy, measures of classification
power of node could be used to choose the right feature to split the space into different
regions. Variance reduction (not covered in this book) is another popular approach which
appropriately discretizes the range of continuous response variable in order to choose the
right thresholds for splitting.

Figure 6-35. Recursive binary split and its corresponding tree for two-dimensional feature
space

Chapter 6 ■ MaChine Learning theory and praCtiCes

300

We will take up demonstration using a regression tree algorithm called Classification
and Regression Tree (CART) later in this chapter, on the housing dataset described earlier
in this chapter.

6.7.1.2 Classification Tree
Classification tree is more suitable for categorical or discrete response variables. The
following are the key differences between classification trees and regression trees:

•	 We use classification error rate for making the splits in
classification trees.

•	 Instead of taking the mean of response variable in a particular
region for prediction, here we use the most commonly occurring
class of training observation as a prediction methodology.

Again, we could use Gini-Index or Entropy as a measure for selecting the best feature
or attribute of splitting the observations into different classes.

In the coming sections, we will discuss some popular classification decision tree
algorithms like ID3 and C5.0

6.7.2 Decision Measures
There are certain measures which are key to building a decision tree. In this section,
we will discuss few measures associated with node purity (measure of randomness or
heterogeneity). In the context of decision tree, a small value signifies the node contains
majority of the observation from a single class. There are two widely used measure for
node purity and another measure called information gain which uses either Gini-index or
Entropy to take decision on node split.

6.7.2.1 Gini Index
A Gini-Index is calculated using

G = -()
=
å
k

K

p p
1

1mk mk*

where, pmk is the proportion of training observations in the mth region that are from
the kth class.

For demonstration purposes, look at Figure 6-36. Suppose you have two classes
where P1 proportion of all training observation belongs to class C

1
 (triangle) and then P2

= 1-P1 belongs to C
2
 (circle), the Gini-Index assumes a curve as shown here:

curve(x *(1-x) +(1 -x) *x, xlab ="P", ylab ="Gini-Index", lwd =5)

Chapter 6 ■ MaChine Learning theory and praCtiCes

301

6.7.2.2 Entropy
Entropy is calculated using

E
k

K

= - -()
=
å

1

2 1p pmk mklog

The curve for entropy looks something like this:

curve(-x *log2(x) -(1 -x) *log2(1 -x), xlab ="x", ylab ="Entropy", lwd =5)

Figure 6-36. Gini-ℐndex function

Figure 6-37. Entropy function

Chapter 6 ■ MaChine Learning theory and praCtiCes

302

Observe that both measures are very similar, however, there are some differences:

•	 Gini-index is more suitable to continuous attributes and entropy
in case of discrete data.

•	 Gini-index works well for minimizing misclassifications.

•	 Entropy is slightly slower than Gini-index, as it involves
logarithms (although this doesn't really matter much given
today's fast computing machines).

6.7.2.3 Information Gain
Information Gain is a measure that quantifies the change in the entropy before and
after the split. It’s an elegantly simple measure to decide the relevance of an attribute. In
general, we could write information gain as:

IG G Parent Average G Children= () - ()()éë ùû ,

where G(Parent) is the Gini-Index (we could use Entropy as well) of parent node
represented by an attribute before the split and G(Children) is the Gini-index of children
nodes that will be generated after the split. For example, in Figure 6-34, all observations
satisfying the parent node condition x<0.43 are its left child nodes and remaining its right.

6.7.3 Decision Tree Learning Methods
In this section, we discuss four widely used decision tree algorithms applied to our real-
world datasets.

 a. Data Summary

library(C50)
library(splitstackshape)
library(rattle)
library(rpart.plot)
library(data.table)

Data_Purchase <-fread("/Dataset/Purchase Prediction Dataset.csv",header=T,
verbose =FALSE, showProgress =FALSE)
str(Data_Purchase)
 Classes 'data.table' and 'data.frame': 500000 obs. of 12 variables:
 $ CUSTOMER_ID : chr "000001" "000002" "000003" "000004" ...
 $ ProductChoice : int 2 3 2 3 2 3 2 2 2 3 ...
 $ MembershipPoints : int 6 2 4 2 6 6 5 9 5 3 ...
 $ ModeOfPayment : chr "MoneyWallet" "CreditCard"

"MoneyWallet" "MoneyWallet" ...

Chapter 6 ■ MaChine Learning theory and praCtiCes

303

 $ ResidentCity : chr "Madurai" "Kolkata" "Vijayawada"
"Meerut" ...

 $ PurchaseTenure : int 4 4 10 6 3 3 13 1 9 8 ...
 $ Channel : chr "Online" "Online" "Online" "Online" ...
 $ IncomeClass : chr "4" "7" "5" "4" ...
 $ CustomerPropensity : chr "Medium" "VeryHigh" "Unknown" "Low" ...
 $ CustomerAge : int 55 75 34 26 38 71 72 27 33 29 ...
 $ MartialStatus : int 0 0 0 0 1 0 0 0 0 1 ...
 $ LastPurchaseDuration: int 4 15 15 6 6 10 5 4 15 6 ...
 - attr(*, ".internal.selfref")=<externalptr>
#Check the distribution of data before grouping
table(Data_Purchase$ProductChoice)

 1 2 3 4
 106603 199286 143893 50218

 b. Data Preparation

#Pulling out only the relevant data to this chapter
Data_Purchase <-Data_Purchase[,.(CUSTOMER_ID,ProductChoice,MembershipPoints,
IncomeClass,CustomerPropensity,LastPurchaseDuration)]

#Delete NA from subset
Data_Purchase <-na.omit(Data_Purchase)
Data_Purchase$CUSTOMER_ID <-as.character(Data_Purchase$CUSTOMER_ID)

#Stratified Sampling
Data_Purchase_Model<-stratified(Data_Purchase, group=c("ProductChoice"),size
=10000,replace=FALSE)

print("The Distribution of equal classes is as below")
 [1] "The Distribution of equal classes is as below"
table(Data_Purchase_Model$ProductChoice)

 1 2 3 4
 10000 10000 10000 10000
Data_Purchase_Model$ProductChoice <-as.factor(Data_Purchase_
Model$ProductChoice)
Data_Purchase_Model$IncomeClass <-as.factor(Data_Purchase_Model$IncomeClass)
Data_Purchase_Model$CustomerPropensity <-as.factor(Data_Purchase_
Model$CustomerPropensity)

#Build the decision tree on Train Data (Set_1) and then test data (Set_2)
will be used for performance testing

Chapter 6 ■ MaChine Learning theory and praCtiCes

304

set.seed(917);
train <-Data_Purchase_Model[sample(nrow(Data_Purchase_Model),size=nrow(Data_
Purchase_Model)*(0.7), replace =TRUE, prob =NULL),]
train <-as.data.frame(train)

test <-Data_Purchase_Model[!(Data_Purchase_Model$CUSTOMER_ID
%in%train$CUSTOMER_ID),]

6.7.3.1 Iterative Dichotomizer 3
J.Ross Quinlan, a computer science researcher in data mining and decision theory,
invented the most popular decision tree algorithms, C4.5 and ID3. Here is a brief of how
the ID3 algorithm works:

 1. Calculates entropy for each attribute using the training
observations.

 2. Split the observations into subsets using the attribute with
minimum entropy or maximum information gain.

 3. The selected attribute becomes the decision node.

 4. Repeat the process with the remaining attribute on the subset.

For demonstration, we will use a R Package called RWeka, which is a wrapper built
on the tool Weka, which is a collection of machine learning algorithms for data mining
tasks written in Java, containing tools for data pre-processing, classification, regression,
clustering, association rules, and visualization. The package RWeka contains the interface
code, and the Weka jar is in a separate package called RWekajars. For more information
on Weka, see http://www.cs.waikato.ac.nz/ml/weka/.

 ■ Note Before using the id3 function from the rWeka package, follow these instructions.

 1. Install the package RWeka.

 2. Set the environment variable WEKA_HOME to a folder location
on your drive (e.g., D:\home) where you have sufficient access
rights.

 3. In the R console, run these two commands:

WPM("refresh-cache")
#looks for a package providing id3

WPM("install-package", "simpleEducationalLearningSchemes")
#load the package

http://www.cs.waikato.ac.nz/ml/weka/

Chapter 6 ■ MaChine Learning theory and praCtiCes

305

 a. Model Building

library(RWeka)

WPM("refresh-cache")
WPM("install-package", "simpleEducationalLearningSchemes")

 make classifier
ID3 <-make_Weka_classifier("weka/classifiers/trees/Id3")

ID3Model <-ID3(ProductChoice ~CustomerPropensity +IncomeClass ,
data = train)

summary(ID3Model)

 === Summary ===

 Correctly Classified Instances 9423 33.6536 %
 Incorrectly Classified Instances 18577 66.3464 %
 Kappa statistic 0.1148
 Mean absolute error 0.3634
 Root mean squared error 0.4263
 Relative absolute error 96.9041 %
 Root relative squared error 98.4399 %
 Total Number of Instances 28000

 === Confusion Matrix ===

 a b c d <-- classified as
 4061 987 929 1078 | a = 1
 3142 1054 1217 1603 | b = 2
 2127 727 1761 2290 | c = 3
 2206 859 1412 2547 | d = 4

 b. Model Evaluation

Training set accuracy are present as part of the ID3 model output (33% correctly
classified instances), so we needn't present that here. Let’s look at the testing set
accuracy.

Testing set Accuracy = 32%
As you can observe, the accuracy is not exceptionally good. Moreover, given there

are four classes of data, the accuracy is prone to be even less. The fact that training and
testing accuracy are almost equal tells us that there is as such no overfitting kind of
scenario.

Chapter 6 ■ MaChine Learning theory and praCtiCes

306

library(gmodels)
purchase_pred_test <-predict(ID3Model, test)
CrossTable(test$ProductChoice, purchase_pred_test,
prop.chisq =FALSE, prop.c =FALSE, prop.r =FALSE,
dnn =c('actual default', 'predicted default'))

 Cell Contents
 |-------------------------|
 | N |
N / Table Total

 Total Observations in Table: 20002

 | predicted default
actual default	1	2	3	4	Row Total
 1 | 2849 | 758 | 625 | 766 | 4998 |
 | 0.142 | 0.038 | 0.031 | 0.038 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 2 | 2291 | 681 | 872 | 1151 | 4995 |
 | 0.115 | 0.034 | 0.044 | 0.058 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 3 | 1580 | 545 | 1151 | 1759 | 5035 |
 | 0.079 | 0.027 | 0.058 | 0.088 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 4 | 1594 | 590 | 1066 | 1724 | 4974 |
 | 0.080 | 0.029 | 0.053 | 0.086 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
Column Total	8314	2574	3714	5400	20002

The accuracy isn’t very impressive with ID3 algorithm. One possible reason could
be the multiple classes in our response variables. Generally, the ID3 is not known for
performing exceptionally well on multi-class problems.

Chapter 6 ■ MaChine Learning theory and praCtiCes

307

6.7.3.2 C5.0 algorithm
In his book, C4.5: Programs for Machine Learning, J. Ross Quinlan[3], laid down a set of
key requirements for using these algorithms for classification task, which are as follows:

•	 Attribute-value description: All information about one case should
be expressible in terms of fixed collection of attributes (features)
and it should not vary from one case to another.

•	 Predefined classes: As it happens in any supervised learning
approach, the categories to which cases are to be assigned must
be predefined.

•	 Discrete classes: The classes must be sharply delineated; a case
either does or does not belong to a particular class and there
must be far more cases than classes. So, clearly, problems
with continuous response variable are not the right fit for this
algorithm.

•	 Sufficient Data: The amount of data required is affected by factors
such as number of attributes and classes. As these increases, more
data will be needed to construct a reliable model.

•	 Logical classification models: The description of the class should
be logical expressions whose primitives are statements about the
values of particular attributes. For example, IF Outlook = "sunny"
AND Windy = "false" THEN class = "Play".

Here we will use the C5.0 algorithm, on our purchase prediction dataset which is an
extension of C4.5 for building the decision tree. C4.5 was a collective name given to a set
of computer programs that constructs a classification models. The following are some
new features in C5.0 are illustrated in Ross Quinlan's web page (http://www.rulequest.
com/see5-comparison.html).

In the classic book, Experiments in ℐnduction, Hunt et. al.[4] has described many
implementations of concept learning systems. Here is how Hunt's approach works.

Given a set of T training observations having C
1
, C

2
, …, C

k
 classes, at a broad level,

following are the three possibilities involved in building the tree:

 1. All the observations of T belongs to a single class C
i
, the

decision tree D for T is a leaf identifying class C
i
.

 2. T contains no class. C5.0 uses the most frequent class at the
parent of this node.

 3. T contains observation which mixture of classes. A node
condition (test) is chosen based on single attribute (the
attribute is chosen based on information gain) which
generates a partitioned set of T

1
, T

2
, …, T

n
.

The split in third possibility is recursive in the algorithm, which is repeated until
either all the observations are correctly classified or the algorithm runs out of attribute to
split. Since this divide and conquer is a greedy approach that looks only at the immediate

http://www.rulequest.com/see5-comparison.html
http://www.rulequest.com/see5-comparison.html

Chapter 6 ■ MaChine Learning theory and praCtiCes

308

step to take a decision for split, its possible to end up in situation like overfitting. In
order to avoid this, a technique called pruning is used, which reduces the overfit and
generalizes better to unseen data. Fortunately, you don't have to worry about pruning
since C5.0 algorithm after building the decision tree, iterates back and replace the
branches that do not increase the information gain.

Here, we will use our Purchase Preference dataset to build a C5.0 decision tree model
on for product choice prediction based on the ProductChoice response variable.

 a. Model Building

model_c50 <-C5.0(train[,c("CustomerPropensity","LastPurchaseDuration",
"MembershipPoints")],
 train[,"ProductChoice"],
control =C5.0Control(CF =0.001, minCases =2))

 b. Model Summarysummary(model_c50)

 Call:
 C5.0.default(x = train[, c("CustomerPropensity",
 "LastPurchaseDuration", "MembershipPoints")], y =
 train[, "ProductChoice"], control = C5.0Control(CF = 0.001,
minCases = 2))

 C5.0 [Release 2.07 GPL Edition] Sun Oct 02 16:09:05 2016

 Class specified by attribute `outcome'

 Read 28000 cases (4 attributes) from undefined.data

 Decision tree:

 CustomerPropensity in {High,VeryHigh}:
 :...MembershipPoints <= 1: 4 (1264/681)
 : MembershipPoints > 1:
 : :...LastPurchaseDuration <= 6: 3 (3593/2266)
 : LastPurchaseDuration > 6:
 : :...CustomerPropensity = High: 3 (1665/1083)
 : CustomerPropensity = VeryHigh: 4 (2140/1259)
 CustomerPropensity in {Low,Medium,Unknown}:
 :...MembershipPoints <= 1: 4 (3180/1792)
 MembershipPoints > 1:
 :...CustomerPropensity = Unknown: 1 (8004/4891)

Chapter 6 ■ MaChine Learning theory and praCtiCes

309

 CustomerPropensity in {Low,Medium}:
 :...LastPurchaseDuration <= 2: 1 (2157/1417)
 LastPurchaseDuration > 2:
 :...LastPurchaseDuration > 13: 2 (1083/773)
 LastPurchaseDuration <= 13:
 :...CustomerPropensity = Medium: 3 (2489/1707)
 CustomerPropensity = Low:
 :...MembershipPoints <= 3: 2 (850/583)
 MembershipPoints > 3: 1 (1575/1124)

 Evaluation on training data (28000 cases):

 Decision Tree

 Size Errors

 11 17576(62.8%) <<

 (a) (b) (c) (d) <-classified as
 ---- ---- ---- ----
 4304 374 1345 1032 (a): class 1
 3374 577 1759 1306 (b): class 2
 2336 484 2691 1394 (c): class 3
 1722 498 1952 2852 (d): class 4

 Attribute usage:

 100.00% CustomerPropensity
 100.00% MembershipPoints
 55.54% LastPurchaseDuration

 Time: 0.1 secs
plot(model_c50)

Chapter 6 ■ MaChine Learning theory and praCtiCes

310

You can experiment with the parameters of C5.0 to see how the decision tree
changes. As shown in Figure 6-38, if you traverse through any path, it forms one decision
rule. For example, Rule: CustomerPropensity in {High,VeryHigh}ANDMembershipPoints
<= 1 is one path ending in a decision node as shown in Figure 6-38.

 c. Evaluation

Training set Accuracy = 37%

library(gmodels)

purchase_pred_train <-predict(model_c50, train,type ="class")
CrossTable(train$ProductChoice, purchase_pred_train,
prop.chisq =FALSE, prop.c =FALSE, prop.r =FALSE,
dnn =c('actual default', 'predicted default'))

 Cell Contents
 |-------------------------|
 | N |
N / Table Total

 Total Observations in Table: 28000

Figure 6-38. C5.0 decision tree on the purchase prediction dataset

Chapter 6 ■ MaChine Learning theory and praCtiCes

311

 | predicted default
actual default	1	2	3	4	Row Total
 1 | 4304 | 374 | 1345 | 1032 | 7055 |
 | 0.154 | 0.013 | 0.048 | 0.037 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 2 | 3374 | 577 | 1759 | 1306 | 7016 |
 | 0.120 | 0.021 | 0.063 | 0.047 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 3 | 2336 | 484 | 2691 | 1394 | 6905 |
 | 0.083 | 0.017 | 0.096 | 0.050 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 4 | 1722 | 498 | 1952 | 2852 | 7024 |
 | 0.061 | 0.018 | 0.070 | 0.102 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
Column Total	11736	1933	7747	6584	28000

Testing set accuracy = 36%

purchase_pred_test <-predict(model_c50, test)
CrossTable(test$ProductChoice, purchase_pred_test,
prop.chisq =FALSE, prop.c =FALSE, prop.r =FALSE,
dnn =c('actual default', 'predicted default'))
purchase_pred_test <-predict(model_c50, test)
CrossTable(test$ProductChoice, purchase_pred_test,
prop.chisq =FALSE, prop.c =FALSE, prop.r =FALSE,
dnn =c('actual default', 'predicted default'))

 Cell Contents
 |-------------------------|
 | N |
N / Table Total

 Total Observations in Table: 20002

Chapter 6 ■ MaChine Learning theory and praCtiCes

312

 | predicted default
actual default	1	2	3	4	Row Total
 1 | 3081 | 279 | 895 | 743 | 4998 |
 | 0.154 | 0.014 | 0.045 | 0.037 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 2 | 2454 | 321 | 1317 | 903 | 4995 |
 | 0.123 | 0.016 | 0.066 | 0.045 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 3 | 1730 | 344 | 1843 | 1118 | 5035 |
 | 0.086 | 0.017 | 0.092 | 0.056 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 4 | 1176 | 349 | 1382 | 2067 | 4974 |
 | 0.059 | 0.017 | 0.069 | 0.103 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
Column Total	8441	1293	5437	4831	20002

As you can observe, the accuracy is not exceptionally good. Moreover, given there
are four classes of data, the accuracy is prone to be even less. The fact that training and
testing accuracy are almost equal tells us that there is as such no overfitting kind of
scenario.

6.7.3.3 Classification and Regression Tree: CART
CART is a regression tree-based approach and as explained in the section 6.8.1.1and its
uses the sum of squared deviation about the mean (residual sum of square) as the node
impurity measure. Keep in mind, CART could also be used for classification problems, in
which case, Gini-Index is a more appropriate choice for impurity measure. Roughly, here
is a short pseudo code for the algorithm:

 1. Start the algorithm at the root node.

 2. For each attribute X, find the subset S that minimizes the
residual sum of square (RSS) of the two children and chooses
the split that gives the maximum information gain.

 3. Check if relative decrease in impurity is below a prescribed
threshold.

 4. If Yes, splitting stops, otherwise repeat Step 2.

Let’s see a demonstration of CART using the rpart function, which is available in the
most commonly used package with rpart. It also provides methods to build decision tree
like Random Forest, which we will cover later in this chapter.

Chapter 6 ■ MaChine Learning theory and praCtiCes

313

We will also use an additional parameter cp (complexity parameter) in the function
call, which signifies that any split that does not decrease the overall lack of fit by a factor
of cp would not be attempted by the model.

 a. Building the model

CARTModel <-rpart(ProductChoice ~IncomeClass +CustomerPropensity
+LastPurchaseDuration +MembershipPoints, data=train)

summary(CARTModel)
 Call:
 rpart(formula = ProductChoice ~ IncomeClass + CustomerPropensity +
 LastPurchaseDuration + MembershipPoints, data = train)
 n= 28000

 CP nsplit rel error xerror xstd
 1 0.09649081 0 1.0000000 1.0034376 0.003456583
 2 0.02582955 1 0.9035092 0.9035092 0.003739335
 3 0.02143710 2 0.8776796 0.8776796 0.003793749
 4 0.01000000 3 0.8562425 0.8562425 0.003833608

 Variable importance
 CustomerPropensity MembershipPoints LastPurchaseDuration
 53 37 8
 IncomeClass
 2

 Node number 1: 28000 observations, complexity param=0.09649081
 predicted class=1 expected loss=0.7480357 P(node) =1
 class counts: 7055 7016 6905 7024
 probabilities: 0.252 0.251 0.247 0.251
 left son=2 (14368 obs) right son=3 (13632 obs)
 Primary splits:
 CustomerPropensity splits as RLRLR, improve=408.0354, (0 missing)
 MembershipPoints < 1.5 to the right, improve=269.2781, (0 missing)
 LastPurchaseDuration < 5.5 to the left, improve=194.7965, (0 missing)
 IncomeClass splits as LRLLLLRRRL, improve= 24.2665, (0 missing)
 Surrogate splits:
 LastPurchaseDuration < 5.5 to the left, agree=0.590, adj=0.159, (0 split)
 IncomeClass splits as LLLLLLLRRR, agree=0.529, adj=0.032, (0 split)
 MembershipPoints < 9.5 to the left, agree=0.514, adj=0.002, (0 split)

....

Chapter 6 ■ MaChine Learning theory and praCtiCes

314

 Node number 7: 2066 observations
 predicted class=4 expected loss=0.5382381 P(node) =0.07378571
 class counts: 291 408 413 954
 probabilities: 0.141 0.197 0.200 0.462
library(rpart.plot)
library(rattle)

fancyRpartPlot(CARTModel)

Figure 6-39. CART model

 b. Model Evaluation

Training set Accuracy = 27%
library(gmodels)

purchase_pred_train <-predict(CARTModel, train,type ="class")
CrossTable(train$ProductChoice, purchase_pred_train,
prop.chisq =FALSE, prop.c =FALSE, prop.r =FALSE,
dnn =c('actual default', 'predicted default'))

 Cell Contents
 |-------------------------|
 | N |
N / Table Total

 Total Observations in Table: 28000

Chapter 6 ■ MaChine Learning theory and praCtiCes

315

 | predicted default
actual default	1	3	4	Row Total
 1 | 4253 | 1943 | 859 | 7055 |
 | 0.152 | 0.069 | 0.031 | |
 ---------------|-----------|-----------|-----------|-----------|
 2 | 3452 | 2629 | 935 | 7016 |
 | 0.123 | 0.094 | 0.033 | |
 ---------------|-----------|-----------|-----------|-----------|
 3 | 2384 | 3842 | 679 | 6905 |
 | 0.085 | 0.137 | 0.024 | |
 ---------------|-----------|-----------|-----------|-----------|
 4 | 1901 | 3152 | 1971 | 7024 |
 | 0.068 | 0.113 | 0.070 | |
 ---------------|-----------|-----------|-----------|-----------|
Column Total	11990	11566	4444	28000

It looks like a poor model for this dataset. If you observe, the training model doesn't
even predict any instance of class 3. We will skip the testing set evaluation. You are
encouraged to try the housing dataset used in linear regression to appreciate CART
algorithm much better.

6.7.3.4 Chi-Square Automated Interaction Detection: CHAID
In this method, the R code being used for demonstration accepts only nominal or ordinal
categorical predictors. For each predictor variable, the algorithm works by merging non-
significant categories, wherein each final category of X will result in one child node, if the
algorithm chooses X (based on adjusted p-value) to split the node.

The following algorithm is borrowed from the documentation of the CHAID package
in R and the classic paper by G. V. Kass (1980), called “An Exploratory Technique for
Investigating Large Quantities of Categorical Data.”

 1. If X has one category only, stop and set the adjusted p-value to be 1.

 2. If X has two categories, go to Step 8.

 3. Else, find the allowable pair of categories of X (an allowable
pair of categories for ordinal predictor is two adjacent
categories, and for nominal predictor is any two categories)
that is least significantly different (i.e., the most similar).
The most similar pair is the pair whose test statistic gives the
largest p-value with respect to the dependent variable Y. How
to calculate p-value under various situations will be described
in later sections.

Chapter 6 ■ MaChine Learning theory and praCtiCes

316

 4. For the pair having the largest p-value, check if its p-value is
larger than a user-specified alpha-level alpha2. If it does, this
pair is merged into a single compound category. Then a new
set of categories of X is formed. If it does not, then go to Step 7.

 5. (Optional) If the newly formed compound category consists
of three or more original categories, then find the best binary
split within the compound category which p-value is the
smallest. Perform this binary split if its p-value is not larger
than an alpha-level alpha3.

 6. Go to Step 2.

 7. (Optional) Any category having too few observations (as
compared with a user-specified minimum segment size) is
merged with the most similar other category as measured by
the largest of the p-values.

 8. The adjusted p-value is computed for the merged categories
by applying Bonferroni adjustments that are to be discussed
later.

Splitting: The best split for each predictor is found in the merging step. The splitting
step selects which predictor to be used to best split the node. Selection is accomplished
by comparing the adjusted p-value associated with each predictor. The adjusted p-value
is obtained in the merging step.

 1. Select the predictor that has the smallest adjusted p-value
(i.e., most significant).

 2. If this adjusted p-value is less than or equal to a user-specified
alpha-level alpha4, split the node using this predictor.
Otherwise, do not split and the node is considered as a
terminal node.

Stopping: The stopping step checks if the tree growing process should be stopped
according to the following stopping rules.

 1. If a node becomes pure; that is, all cases in a node have
identical values of the dependent variable, the node will not
be split.

 2. If all cases in a node have identical values for each predictor,
the node will not be split.

 3. If the current tree depth reaches the user specified maximum
tree depth limit value, the tree growing process will stop.

 4. If the size of a node is less than the user-specified minimum
node size value, the node will not be split.

Chapter 6 ■ MaChine Learning theory and praCtiCes

317

 5. If the split of a node results in a child node whose node size
is less than the user-specified minimum child node size
value, child nodes that have too few cases (as compared with
this minimum) will merge with the most similar child node
as measured by the largest of the p-values. However, if the
resulting number of child nodes is 1, the node will not be split.

 6. If the trees height is a positive value and equals the max
height.

Let’s now see a demonstration on our purchase prediction dataset.

 ■ Note For using the code in this section, use the following steps:

 1. Download the zip or .tar.gz file according to your machine
from https://r-forge.r-project.org/R/?group_id=343.

 2. Extract the contents of the compressed file into a folder
named CHAID and place it in the installation folder of R. The
installation folder might look something like C:\Program
Files\R-3.2.2\library.

 3. That's it. You are ready to call the library (CHAID) inside your
R script.

 a. Building the model

Since CHAID takes all categorical inputs, we are using the attributes
CustomerPropensity and IncomeClass as predictor variables.

library("CHAID")
 Loading required package: partykit
 Loading required package: grid
ctrl <-chaid:control(minsplit =200, minprob =0.1)
CHAIDModel <-chaid(ProductChoice ~CustomerPropensity +IncomeClass,
data = train, control = ctrl)
print(CHAIDModel)

 Model formula:
 ProductChoice ~ CustomerPropensity + IncomeClass

 Fitted party:
 [1] root
 | [2] CustomerPropensity in High
 | | [3] IncomeClass in , 1, 2, 3, 9: 2 (n = 169, err = 68.6%)
 | | [4] IncomeClass in 4: 3 (n = 628, err = 65.0%)
 | | [5] IncomeClass in 5: 4 (n = 1286, err = 70.2%)
 | | [6] IncomeClass in 6: 3 (n = 1192, err = 67.0%)

https://r-forge.r-project.org/R/?group_id=343

Chapter 6 ■ MaChine Learning theory and praCtiCes

318

 | | [7] IncomeClass in 7: 3 (n = 662, err = 63.4%)
 | | [8] IncomeClass in 8: 4 (n = 222, err = 59.9%)
 | [9] CustomerPropensity in Low: 2 (n = 4778, err = 72.0%)
 | [10] CustomerPropensity in Medium
 | | [11] IncomeClass in , 1, 2, 3, 4, 5, 7: 3 (n = 3349, err = 73.5%)
 | | [12] IncomeClass in 6, 8: 4 (n = 1585, err = 71.0%)
 | | [13] IncomeClass in 9: 3 (n = 36, err = 44.4%)
 | [14] CustomerPropensity in Unknown
 | | [15] IncomeClass in : 2 (n = 18, err = 0.0%)
 | | [16] IncomeClass in 1: 4 (n = 15, err = 53.3%)
 | | [17] IncomeClass in 2, 3, 4, 5, 6, 7, 8: 1 (n = 9524, err = 63.6%)
 | | [18] IncomeClass in 9: 1 (n = 33, err = 39.4%)
 | [19] CustomerPropensity in VeryHigh
 | | [20] IncomeClass in , 1, 3, 4, 5, 6, 9: 3 (n = 3484, err = 64.5%)
 | | [21] IncomeClass in 2, 8: 4 (n = 268, err = 48.5%)
 | | [22] IncomeClass in 7: 4 (n = 751, err = 58.2%)

 Number of inner nodes: 5
 Number of terminal nodes: 17
#plot(CHAIDModel)

 b. Model Evaluation

The accuracy has no major improvement compared to C5.0 or ID3. However, it’s
interesting to see the accuracy is close to what C5.0 algorithm in spite of using only two
attributes.

Training set accuracy: 32%

library(gmodels)

purchase_pred_train <-predict(CHAIDModel, train)
CrossTable(train$ProductChoice, purchase_pred_train,
prop.chisq =FALSE, prop.c =FALSE, prop.r =FALSE,
dnn =c('actual default', 'predicted default'))

 Cell Contents
 |-------------------------|
 | N |
N / Table Total

Chapter 6 ■ MaChine Learning theory and praCtiCes

319

 Total Observations in Table: 28000

 | predicted default
actual default	1	2	3	4	Row Total
 1 | 3487 | 1367 | 1610 | 591 | 7055 |
 | 0.125 | 0.049 | 0.058 | 0.021 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 2 | 2617 | 1410 | 2047 | 942 | 7016 |
 | 0.093 | 0.050 | 0.073 | 0.034 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 3 | 1669 | 1031 | 3001 | 1204 | 6905 |
 | 0.060 | 0.037 | 0.107 | 0.043 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 4 | 1784 | 1157 | 2693 | 1390 | 7024 |
 | 0.064 | 0.041 | 0.096 | 0.050 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
Column Total	9557	4965	9351	4127	28000

Testing set accuracy: 32%

purchase_pred_test <-predict(CHAIDModel, test)
CrossTable(test$ProductChoice, purchase_pred_test,
prop.chisq =FALSE, prop.c =FALSE, prop.r =FALSE,
dnn =c('actual default', 'predicted default'))

 Cell Contents
 |-------------------------|
 | N |
N / Table Total

 Total Observations in Table: 20002

Chapter 6 ■ MaChine Learning theory and praCtiCes

320

 | predicted default
actual default	1	2	3	4	Row Total
 1 | 2493 | 1003 | 1048 | 454 | 4998 |
 | 0.125 | 0.050 | 0.052 | 0.023 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 2 | 1929 | 901 | 1502 | 663 | 4995 |
 | 0.096 | 0.045 | 0.075 | 0.033 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 3 | 1263 | 747 | 2034 | 991 | 5035 |
 | 0.063 | 0.037 | 0.102 | 0.050 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 4 | 1318 | 776 | 2008 | 872 | 4974 |
 | 0.066 | 0.039 | 0.100 | 0.044 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
Column Total	7003	3427	6592	2980	20002

Figure 6-40. CHAℐD decision tree

The accuracy has no major improvement compared to C5.0 or ID3. However, it’s
interesting to see the accuracy is close to what C5.0 algorithm in spite of using only two
attributes.

With 37% and 36% training and test set accuracy respectively, the C5.0 algorithm
seems to have done the best among all the others. Although this accuracy might
not be sufficient for using in any practical application, this example gives sufficient
understanding of how the decision tree algorithms work. We encourage you to create
a subset of the given dataset with only two classes and then see how each of these
algorithms performs.

Chapter 6 ■ MaChine Learning theory and praCtiCes

321

6.7.4 Ensemble Trees
Ensemble models in machine learning are great way to improve your model accuracy
by many folds. The best Kaggle competition-winning ML algorithms are predominately
using the ensemble approach. The idea is simple, instead of training one model on a set
of observations, we use the power of multiple models (or multiple iteration of the same
model on different subset of training data) combined together to train on the same set
of observations. Chapter 8 takes a detailed approach on improving model performance
using ensembles; however, we will keep our focus on ensemble models based on decision
tree in this section.

6.7.4.1 Boosting
Boosting is an ensemble meta-algorithm in ML that helps in reducing bias and variance
and fits a sequence of weak learners on different weighted training observations (more on
this in Chapter 8).

We will demonstrate this technique using C5.0 Ensemble model, which is an
extension of what we discussed earlier in this chapter by adding a parameter trials = 10 in
the C50 function call which means, perform 10 boosting iterations in the model building
process.
library(gmodels)

purchase_pred_train <-predict(ModelC50_boostcv10, train)
CrossTable(train$ProductChoice, purchase_pred_train,
prop.chisq =FALSE, prop.c =FALSE, prop.r =FALSE,
dnn =c('actual default', 'predicted default'))

 Cell Contents
 |-------------------------|
 | N |
N / Table Total

 Total Observations in Table: 28000

http://dx.doi.org/10.1007/978-1-4842-2334-5_8
http://dx.doi.org/10.1007/978-1-4842-2334-5_8

Chapter 6 ■ MaChine Learning theory and praCtiCes

322

 | predicted default
actual default	1	2	3	4	Row Total
 1 | 3835 | 903 | 1117 | 1200 | 7055 |
 | 0.137 | 0.032 | 0.040 | 0.043 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 2 | 2622 | 1438 | 1409 | 1547 | 7016 |
 | 0.094 | 0.051 | 0.050 | 0.055 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 3 | 1819 | 812 | 2677 | 1597 | 6905 |
 | 0.065 | 0.029 | 0.096 | 0.057 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 4 | 1387 | 686 | 1577 | 3374 | 7024 |
 | 0.050 | 0.024 | 0.056 | 0.120 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
Column Total	9663	3839	6780	7718	28000

Testing set accuracy:

purchase_pred_test <-predict(ModelC50_boostcv10, test)
CrossTable(test$ProductChoice, purchase_pred_test,
prop.chisq =FALSE, prop.c =FALSE, prop.r =FALSE,
dnn =c('actual default', 'predicted default'))

 Cell Contents
 |-------------------------|
 | N |
N / Table Total

 Total Observations in Table: 20002

Chapter 6 ■ MaChine Learning theory and praCtiCes

323

 | predicted default
actual default	1	2	3	4	Row Total
 1 | 2556 | 769 | 770 | 903 | 4998 |
 | 0.128 | 0.038 | 0.038 | 0.045 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 2 | 2022 | 748 | 1108 | 1117 | 4995 |
 | 0.101 | 0.037 | 0.055 | 0.056 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 3 | 1406 | 701 | 1540 | 1388 | 5035 |
 | 0.070 | 0.035 | 0.077 | 0.069 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 4 | 970 | 548 | 1201 | 2255 | 4974 |
 | 0.048 | 0.027 | 0.060 | 0.113 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
Column Total	6954	2766	4619	5663	20002

Though the training set accuracy increase to 40%, the testing set accuracy has come
down, indicating a slight overfitting in this model.

6.7.4.2 Bagging
This is another class of ML meta-algorithm, also known as bootstrap aggregating. It again
helps in reducing the variance and overfitting on training observation. Explained next is
the process of bagging:

 1. Given a set of N training observations, generate m new
training sets D

i
 each of size n where (n <<N) by uniform

sampling with replacement. This sampling is called bootstrap
sampling. (Refer to Chapter 3 for more details.)

 2. Using these m training set, m models are fitted and the
outputs are combined either by averaging the output
(regression) or majority voting (for classification).

Certain version of algorithm could have even a sample set of smaller number of
attributes than the original dataset like Random Forest. Let’s use the Bagging CART and
Random Forest algorithms here to demonstrate.

http://dx.doi.org/10.1007/978-1-4842-2334-5_3

Chapter 6 ■ MaChine Learning theory and praCtiCes

324

 ■ Note the following code might take a significant amount of time and raM memory. if
you want, you can reduce the size of training set for quicker execution.

6.7.4.2.1 Bagging CART

control <-trainControl(method="repeatedcv", number=5, repeats=2)

Bagged CART
set.seed(100)
CARTBagModel <-train(ProductChoice ~CustomerPropensity +LastPurchaseDuration
+MembershipPoints, data=train, method="treebag", trControl=control)
 Loading required package: ipred
 Loading required package: plyr
 Warning: package 'plyr' was built under R version 3.2.5
 Loading required package: e1071
 Warning: package 'e1071' was built under R version 3.2.5

Training set accuracy = 42%
Testing set accuracy = 34%
Though the training set accuracy increase to 42%, the testing set accuracy has come

down, indicating a slight overfitting in this model.
Training set accuracy:

library(gmodels)

purchase_pred_train <-predict(CARTBagModel, train)
CrossTable(train$ProductChoice, purchase_pred_train,
prop.chisq =FALSE, prop.c =FALSE, prop.r =FALSE,
dnn =c('actual default', 'predicted default'))

 Cell Contents
 |-------------------------|
 | N |
N / Table Total

 Total Observations in Table: 28000

Chapter 6 ■ MaChine Learning theory and praCtiCes

325

 | predicted default
actual default	1	2	3	4	Row Total
 1 | 3761 | 1208 | 885 | 1201 | 7055 |
 | 0.134 | 0.043 | 0.032 | 0.043 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 2 | 2358 | 1970 | 1096 | 1592 | 7016 |
 | 0.084 | 0.070 | 0.039 | 0.057 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 3 | 1685 | 1054 | 2547 | 1619 | 6905 |
 | 0.060 | 0.038 | 0.091 | 0.058 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 4 | 1342 | 885 | 1291 | 3506 | 7024 |
 | 0.048 | 0.032 | 0.046 | 0.125 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
Column Total	9146	5117	5819	7918	28000

Testing set accuracy:

purchase_pred_test <-predict(CARTBagModel, test)
CrossTable(test$ProductChoice, purchase_pred_test,
prop.chisq =FALSE, prop.c =FALSE, prop.r =FALSE,
dnn =c('actual default', 'predicted default'))

 Cell Contents
 |-------------------------|
 | N |
N / Table Total

 Total Observations in Table: 20002

Chapter 6 ■ MaChine Learning theory and praCtiCes

326

 | predicted default
actual default	1	2	3	4	Row Total
 1 | 2331 | 1071 | 657 | 939 | 4998 |
 | 0.117 | 0.054 | 0.033 | 0.047 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 2 | 1844 | 1012 | 928 | 1211 | 4995 |
 | 0.092 | 0.051 | 0.046 | 0.061 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 3 | 1348 | 875 | 1320 | 1492 | 5035 |
 | 0.067 | 0.044 | 0.066 | 0.075 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 4 | 979 | 759 | 1066 | 2170 | 4974 |
 | 0.049 | 0.038 | 0.053 | 0.108 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
Column Total	6502	3717	3971	5812	20002

Testing set Accuracy = 34%

Though the training set accuracy increases to 42%, the testing set accuracy has come
down, indicating a slight overfitting in this model once again.

6.7.4.2.2 Random Forest

Random Forest is one of the most popular decision tree-based ensemble models. The
accuracy of these models tends to be higher than most of the other decision trees. Here is
a broad summary of how the Random Forest algorithm works:

 1. Let N = Number of observations, n = number of decision trees
(user input), and M = Number of variables in the dataset.

 2. Choose a subset of m variables from M, where m << M, and
build n decision trees using a random set of m variable.

 3. Grow each tree as large as possible.

 4. Use majority voting to decide the class of the observation.

A randomly chosen subset of N observations without replacement (normally 2/3) is
used to build each decision tree. Now let’s use our purchase preferences dataset again for
demonstration using R.

Chapter 6 ■ MaChine Learning theory and praCtiCes

327

Random Forest
set.seed(100)

rfModel <-train(ProductChoice ~CustomerPropensity +LastPurchaseDuration
+MembershipPoints, data=train, method="rf", trControl=control)
 Loading required package: randomForest
 randomForest 4.6-10
 Type rfNews() to see new features/changes/bug fixes.

 Attaching package: 'randomForest'
 The following object is masked from 'package:ggplot2':

 margin

Training set Accuracy = 41%
Testing set Accuracy = 36%
This model seems to have the best training and testing accuracy so far in all our trials

of other models. Observe that Random Forest has done slightly well in tackling the overfit
problem compared to CART.

Training set accuracy:
library(gmodels)

purchase_pred_train <-predict(rfModel, train)
CrossTable(train$ProductChoice, purchase_pred_train,
prop.chisq =FALSE, prop.c =FALSE, prop.r =FALSE,
dnn =c('actual default', 'predicted default'))

 Cell Contents
 |-------------------------|
 | N |
N / Table Total

 Total Observations in Table: 28000

Chapter 6 ■ MaChine Learning theory and praCtiCes

328

 | predicted default
actual default	1	2	3	4	Row Total
 1 | 4174 | 710 | 1162 | 1009 | 7055 |
 | 0.149 | 0.025 | 0.042 | 0.036 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 2 | 2900 | 1271 | 1507 | 1338 | 7016 |
 | 0.104 | 0.045 | 0.054 | 0.048 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 3 | 1970 | 701 | 2987 | 1247 | 6905 |
 | 0.070 | 0.025 | 0.107 | 0.045 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 4 | 1564 | 608 | 1835 | 3017 | 7024 |
 | 0.056 | 0.022 | 0.066 | 0.108 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
Column Total	10608	3290	7491	6611	28000

Testing set accuracy:

purchase_pred_test <-predict(rfModel, test)
CrossTable(test$ProductChoice, purchase_pred_test,
prop.chisq =FALSE, prop.c =FALSE, prop.r =FALSE,
dnn =c('actual default', 'predicted default'))

 Cell Contents
 |-------------------------|
 | N |
N / Table Total

 Total Observations in Table: 20002

Chapter 6 ■ MaChine Learning theory and praCtiCes

329

 | predicted default
actual default	1	2	3	4	Row Total
 1 | 2774 | 611 | 845 | 768 | 4998 |
 | 0.139 | 0.031 | 0.042 | 0.038 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 2 | 2210 | 639 | 1194 | 952 | 4995 |
 | 0.110 | 0.032 | 0.060 | 0.048 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 3 | 1531 | 602 | 1774 | 1128 | 5035 |
 | 0.077 | 0.030 | 0.089 | 0.056 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
 4 | 1100 | 462 | 1389 | 2023 | 4974 |
 | 0.055 | 0.023 | 0.069 | 0.101 | |
 ---------------|--------|-----------|-----------|-----------|-----------|
Column Total	7615	2314	5202	4871	20002

There is another approach called stacking, which we cover in much greater detail in
Chapter 8.

This model seems to have the best training and testing accuracy so far in all our trials
of other models. Observe that Random Forest has done slightly well in tackling the overfit
problem compared to CART.

In overall, under decision tree, the ensemble approach seems to do the best in the
predicting the product preferences.

6.7.5 Conclusion
These supervised learning algorithms have a wide-spread adaptability in industry and
many research work. The underlying design of decision tree makes it easy to interpret and
the model is very intuitive to connect with the real-world problem. The approaches like
Boosting and Bagging have given rise to high accuracy models based on decision tree. In
particular, Random Forest is now one of the widely used model for many classification
problems.

We presented a detailed discussion of decision tree where we started with the very
first decision tree models like ID3 and then went on to present the contemporary Bagging
CART and Random Forest algorithms as well.

In the next section, we will discuss our first probabilistic model in this book.
The Bayesian models are easy to implement and powerful enough to capture a lot of
information from a given set of observations and its class labels.

http://dx.doi.org/10.1007/978-1-4842-2334-5_8

Chapter 6 ■ MaChine Learning theory and praCtiCes

330

6.8 The Naive Bayes Method
Naive Bayes is a probabilistic model-based machine learning algorithm that was used
in text categorization in its earlier use case. These methods fall in broad category of
Bayesian algorithms in machine learning. Applications like document categorization
and spam filters for e-mails were the first few areas where Naive Bayes proved to be really
effective as a classifier algorithm. The name of the algorithm is derived from the fact that
it relies on one of the most powerful concepts in probability theory, the Bayes Theorem,
Bayes rule, or Bayes formula. In the coming sections, we will formally introduce the
background necessary for understanding Naive Bayes and demonstrate its application to
our Purchase Prediction dataset.

6.8.1 Conditional Probability
Conditional probability plays a significant role in ascertaining the impact of one event on
another. It could increase or decrease the probability of an event if it’s known that another
event has an influence on the event under study. Recall our Facebook nearby feature
discussion in Chapter 1, where we computed this probability:

P Visit Cineplex Nearby|()

In other words, how does the information, “your friend is nearby the cineplex” affect
the probability that you will visit the cineplex.

6.8.2 Bayes Theorem
The Bayes theorem (or Bayes rule or Bayes formula) defines the conditional probability
between two events as

P A B
P B A P A

P B
() = ()× ()

()

where
P(A) is prior probability,
P A B() is posterior probability and its read as rthe probability of the event A happening

given the event B
P(B) is marginal likelihood
P B A() is likelihood

P B A P A()× () could also be thought as joint probability, which denotes the probability of

A intersection B; in other words, the probability of both event A and B happening
together.

http://dx.doi.org/10.1007/978-1-4842-2334-5_1

Chapter 6 ■ MaChine Learning theory and praCtiCes

331

Rearranging the Bayes theorem, we could write it as

P A B
P B A

P B
P A() = ()

()
× ()

where the term

P B A

P B

()
() signifies the impact event B has on the probability of A

happening.
This will form the core of our Naive Bayes algorithm. So, before we get there, let’s

understand briefly the three terms discussed in the Bayes Theorem.

6.8.3 Prior Probability
Prior probability or priors signifies the certainty of an event occurring before some
evidence is considered. Taking the same Facebook Nearby feature, what’s the probability
of your friend visiting the cineplex if you don’t know anything about his current location.

6.8.4 Posterior Probability
The probability of the event A happening conditioned on another event gives us the
posterior probability. So, in the Facebook Nearby feature, how his probability of visiting
cineplex changes if we knew your friend is within 1 miles of the cineplex (defined as
nearby). Such additional evidences are useful in increasing the certainty of a particular
event. We will exploit this very fundamental in designing the Naive Bayes algorithm.

6.8.5 Likelihood and Marginal Likelihood
If we slightly modify the Table 1-2 in Chapter 1, where you see a two-way contingency
table (also called frequency table) for the Facebook Nearby example and transform
it into a Likelihood table as shown in Table 6-6, where each entry in the cells are now
conditional probability

Table 6-6. A Likelihood Table

http://dx.doi.org/10.1007/978-1-4842-2334-5_1

Chapter 6 ■ MaChine Learning theory and praCtiCes

332

Looking at the Table 6-6, it’s now easy to compute the marginal likelihood P(Nearby)
as 12/25 = 0.48. And the likelihood P (Nearby | Visit Cineplex) as 10/12 = 0.83. Marginal
likelihood as you can observe, doesn't depend on the other event.

6.8.6 Naive Bayes Methods
So, putting all these together, we get the final form of Naive Bayes

P Visit Cineplex Nearby
P Nearby Visit Cineplex P Visit Cine

|
| *() = () pplex

P Nearby

()
()

Further generalizing this, let’s suppose we have a dataset, represented by vector
x= x ,...,x1 n() with n features, independent of each other (This is a strong assumption in

Naive Bayes, and any dataset violating this property will perform poorly with Naive
Bayes), then a given observation could be classified with a probability

p C x xk n| , ,1 ¼() into any of the K classes C
k
.

So, now using the Bayes Theorem, we could write the conditional probability as

p C |x =
p C p x|C

p xk
k k() () ()
()

The numerator, p C p x Ck k() ()| , which represents the joint probability could be
expanded using chain rule. However, we will leave that discussion to some advanced text
on this topic.

At this point, we have discussed how the Bayes theorem server as a powerful way
to model a real-world problem. Further, it’s possible to show Naive Bayes could be very
effective if the likelihood tables are precomputed and a real-time implementation will just
have to do a table lookup to do some quick computation. Naive Bayes is elegantly simple
yet powerful when assumptions are seriously considered while modeling the problem.

Now, let’s apply this technique in our Purchase Preference dataset and see what
we get.

 a. Data Preparation

library(data.table)
library(splitstackshape)
library(e1071)
str(Data_Purchase)
 Classes 'data.table' and 'data.frame': 500000 obs. of 12 variables:
 $ CUSTOMER_ID : chr "000001" "000002" "000003" "000004" ...
 $ ProductChoice : int 2 3 2 3 2 3 2 2 2 3 ...
 $ MembershipPoints : int 6 2 4 2 6 6 5 9 5 3 ...
 $ ModeOfPayment : chr "MoneyWallet" "CreditCard" "MoneyWallet"
"MoneyWallet" ...

Chapter 6 ■ MaChine Learning theory and praCtiCes

333

 $ ResidentCity : chr "Madurai" "Kolkata" "Vijayawada" "Meerut" ...
 $ PurchaseTenure : int 4 4 10 6 3 3 13 1 9 8 ...
 $ Channel : chr "Online" "Online" "Online" "Online" ...
 $ IncomeClass : chr "4" "7" "5" "4" ...
 $ CustomerPropensity : chr "Medium" "VeryHigh" "Unknown" "Low" ...
 $ CustomerAge : int 55 75 34 26 38 71 72 27 33 29 ...
 $ MartialStatus : int 0 0 0 0 1 0 0 0 0 1 ...
 $ LastPurchaseDuration: int 4 15 15 6 6 10 5 4 15 6 ...
 - attr(*, ".internal.selfref")=<externalptr>
#Check the distribution of data before grouping
table(Data_Purchase$ProductChoice)

 1 2 3 4
 106603 199286 143893 50218
#Pulling out only the relevant data to this chapter
Data_Purchase <-Data_Purchase[,.(CUSTOMER_ID,ProductChoice,MembershipPoints,
IncomeClass,CustomerPropensity,LastPurchaseDuration)]

#Delete NA from subset
Data_Purchase <-na.omit(Data_Purchase)
Data_Purchase$CUSTOMER_ID <-as.character(Data_Purchase$CUSTOMER_ID)

#Stratified Sampling
Data_Purchase_Model<-stratified(Data_Purchase, group=c("ProductChoice"),size
=10000,replace=FALSE)

print("The Distribution of equal classes is as below")
 [1] "The Distribution of equal classes is as below"
table(Data_Purchase_Model$ProductChoice)

 1 2 3 4
 10000 10000 10000 10000
Data_Purchase_Model$ProductChoice <-as.factor(Data_Purchase_
Model$ProductChoice)
Data_Purchase_Model$IncomeClass <-as.factor(Data_Purchase_Model$IncomeClass)
Data_Purchase_Model$CustomerPropensity <-as.factor(Data_Purchase_
Model$CustomerPropensity)

set.seed(917);
train <-Data_Purchase_Model[sample(nrow(Data_Purchase_Model),size=nrow(Data_
Purchase_Model)*(0.7), replace =TRUE, prob =NULL),]
train <-as.data.frame(train)

test <-as.data.frame(Data_Purchase_Model[!(Data_Purchase_Model$CUSTOMER_ID
%in%train$CUSTOMER_ID),])

Chapter 6 ■ MaChine Learning theory and praCtiCes

334

 b. Naive Bayes Model

model_naiveBayes <-naiveBayes(train[,c(3,4,5)], train[,2])
model_naiveBayes

 Naive Bayes Classifier for Discrete Predictors

 Call:
 naiveBayes.default(x = train[, c(3, 4, 5)], y = train[, 2])

 A-priori probabilities:
 train[, 2]
 1 2 3 4
 0.2519643 0.2505714 0.2466071 0.2508571

 Conditional probabilities:
 MembershipPoints
 train[, 2] [,1] [,2]
 1 4.366832 2.385888
 2 4.212087 2.354063
 3 4.518320 2.391260
 4 3.659596 2.520176

 IncomeClass
 train[, 2] 1 2 3 4
 1 0.000000000 0.001417434 0.001842665 0.033451453 0.171651311
 2 0.002993158 0.001710376 0.002423033 0.032354618 0.173175599
 3 0.000000000 0.001158581 0.001737871 0.029543809 0.166980449
 4 0.000000000 0.001566059 0.001850797 0.019219818 0.151480638
 IncomeClass
 train[, 2] 5 6 7 8 9
 1 0.337774628 0.265910702 0.142735648 0.040113395 0.005102764
 2 0.328962372 0.265250855 0.143529076 0.046465222 0.003135690
 3 0.325416365 0.275452571 0.148153512 0.046777697 0.004779146
 4 0.318479499 0.280466970 0.161161731 0.060791572 0.004982916

 CustomerPropensity
 train[, 2] High Low Medium Unknown VeryHigh
 1 0.09992913 0.17987243 0.16328845 0.49666903 0.06024096
 2 0.14438426 0.18258267 0.17901938 0.36944128 0.12457241
 3 0.18580739 0.13714699 0.19608979 0.25561188 0.22534395
 4 0.17283599 0.14635535 0.18180524 0.26153189 0.23747153

Chapter 6 ■ MaChine Learning theory and praCtiCes

335

 c. Model Evaluation

Training Set Accuracy : 41%

model_naiveBayes_pred <-predict(model_naiveBayes, train)
library(gmodels)

CrossTable(model_naiveBayes_pred, train[,2],
prop.chisq =FALSE, prop.t =FALSE,
dnn =c('predicted', 'actual'))

 Cell Contents
 |-------------------------|
 | N |
 | N / Row Total |
N / Col Total

 Total Observations in Table: 28000

 | actual
 predicted | 1 | 2 | 3 | 4 | Row Total |
 -------------|---------|-----------|-----------|-----------|-----------|
 1 | 4016 | 3077 | 2187 | 2098 | 11378 |
 | 0.353 | 0.270 | 0.192 | 0.184 | 0.406 |
 | 0.569 | 0.439 | 0.317 | 0.299 | |
 -------------|---------|-----------|-----------|-----------|-----------|
 2 | 622 | 702 | 500 | 489 | 2313 |
 | 0.269 | 0.304 | 0.216 | 0.211 | 0.083 |
 | 0.088 | 0.100 | 0.072 | 0.070 | |
 -------------|---------|-----------|-----------|-----------|-----------|
 3 | 1263 | 1635 | 2336 | 1890 | 7124 |
 | 0.177 | 0.230 | 0.328 | 0.265 | 0.254 |
 | 0.179 | 0.233 | 0.338 | 0.269 | |
 -------------|---------|-----------|-----------|-----------|-----------|
 4 | 1154 | 1602 | 1882 | 2547 | 7185 |
 | 0.161 | 0.223 | 0.262 | 0.354 | 0.257 |
 | 0.164 | 0.228 | 0.273 | 0.363 | |
 -------------|---------|-----------|-----------|-----------|-----------|
 Column Total | 7055 | 7016 | 6905 | 7024 | 28000 |
 | 0.252 | 0.251 | 0.247 | 0.251 | |
 -------------|---------|-----------|-----------|-----------|-----------|

Chapter 6 ■ MaChine Learning theory and praCtiCes

336

Testing Set Accuracy: 34%

model_naiveBayes_pred <-predict(model_naiveBayes, test)
library(gmodels)

CrossTable(model_naiveBayes_pred, test[,2],
prop.chisq =FALSE, prop.t =FALSE,
dnn =c('predicted', 'actual'))

 Cell Contents
 |-------------------------|
 | N |
 | N / Row Total |
N / Col Total

 Total Observations in Table: 20002

 | actual
 predicted | 1 | 2 | 3 | 4 | Row Total |
 -------------|---------|-----------|-----------|-----------|-----------|
 1 | 2823 | 2155 | 1537 | 1493 | 8008 |
 | 0.353 | 0.269 | 0.192 | 0.186 | 0.400 |
 | 0.565 | 0.431 | 0.305 | 0.300 | |
 -------------|---------|-----------|-----------|-----------|-----------|
 2 | 496 | 548 | 388 | 407 | 1839 |
 | 0.270 | 0.298 | 0.211 | 0.221 | 0.092 |
 | 0.099 | 0.110 | 0.077 | 0.082 | |
 -------------|---------|-----------|-----------|-----------|-----------|
 3 | 885 | 1164 | 1746 | 1358 | 5153 |
 | 0.172 | 0.226 | 0.339 | 0.264 | 0.258 |
 | 0.177 | 0.233 | 0.347 | 0.273 | |
 -------------|---------|-----------|-----------|-----------|-----------|
 4 | 794 | 1128 | 1364 | 1716 | 5002 |
 | 0.159 | 0.226 | 0.273 | 0.343 | 0.250 |
 | 0.159 | 0.226 | 0.271 | 0.345 | |
 -------------|---------|-----------|-----------|-----------|-----------|
 Column Total | 4998 | 4995 | 5035 | 4974 | 20002 |
 | 0.250 | 0.250 | 0.252 | 0.249 | |
 -------------|---------|-----------|-----------|-----------|-----------|

There is a significant difference in the training and testing set accuracy, indicating a
possibility of overfitting.

Chapter 6 ■ MaChine Learning theory and praCtiCes

337

6.8.7 Conclusion
The techniques discussed in this section are based on probabilistic models, commonly
known as Bayesian models. These models are easy to interpret and have been quite
popular in applications like Spam filtering and text classifications. Bayesian models
offer the flexibility to add data incrementally to allow easy model updating as and when
a new set of observation arrives. For this reason, probabilistic approaches like Bayesian
have found their application in many real-world use cases. The model’s adaptability to
changing data is far easier than the other models.

In the next section, we will take up the discussion of the unsupervised class of
learning algorithms that are useful in many practical applications where availability of
labeled data is less or not present at all. These algorithms are most famously regarded as
pattern recognition algorithms and work based on certain similarity or distance-based
methods.

6.9 Cluster Analysis
Clustering analysis involves grouping a set of objects into meaningful and useful clusters
such that the objects within the cluster are homogeneous and the same objects are
heterogeneous to objects of other clusters. The guiding principle of clustering analysis
remains similar across different algorithms as minimizing intragroup variability and
maximizing intergroup variability by some metric, e.g., distance connectivity, mean-
variance, etc.

Clustering does not refer to specific algorithms but it’s a process to create groups
based on similarity measure. Clustering analysis use unsupervised learning algorithm
to create clusters. Cluster analysis is sometimes presented as part of broader features
analysis of data. Some researchers break the feature discovery exercise into cluster
analysis of data:

•	 Factor analysis: Where we first reduce the dimensionality of data

•	 Clustering: Where we create clusters within data

•	 Discriminant analysis: Measure how well the data properties are
captured

Clustering analysis will involve all or some of the three steps as standalone
processes. This will give the insights into data distribution, which can be used to create
better data decisions or the results can be used to feed into some further algorithm.

In machine learning, we are not always solving for some predefined target variable,
exploratory data mining provide us lot of information about the data itself. There are lot
of applications of clustering in industry; here are some of them.

Chapter 6 ■ MaChine Learning theory and praCtiCes

338

 1. Marketing: The clustering algorithm can provide useful
insights into how distinct groups exist in their customers. It
can help answer questions like does this group share some
common demographics? What features to look for while
creating targeted marketing campaigns?

•	 ℐnsurance: Identify the features of group having highest
average claim cost. Is the cluster made up of specific set of
people? Is some specific feature driving this high claim cost?

•	 Seismology: Earthquake epicenters show a cluster around
continental faults. Clustering can help identify cluster of
faults with a higher magnitude of probability than others.

•	 Government planning: Clustering can help identify clusters
of specific household for social schemes, and you can group
households based on multiple attributes size, income, type, etc.

•	 Taxonomy: It’s very popular among biologists to use
clustering to create taxonomy trees of groups and subgroups
of similar species.

There are other methods as well to identify and creates similar groups like
Q-analysis, multi-dimensional scaling, and latent class analysis. You are encouraged to
read more about them in any marketing research methods textbook.

6.9.1 Introduction to Clustering
In this chapter we will be discussing and illustrating some of the common clustering
algorithms. The definition of a cluster is loosely defined around the notion of what
measure we use to find goodness of a cluster. The clustering algorithms largely depend on
the the type of “clustering model” we assume for our underlying data.

Clustering model is a notion used to signify what kind of clusters we are trying to
identify. Here are some common cluster models and the popular algorithms built on
them.

•	 Connectivity models : Distance connectivity between observations
is the measure, e.g., hierarchical clustering.

•	 Centroid models : Distance from mean value of each observation/
cluster is the measure, e.g., k-means.

•	 Distribution models : Significance of statistical distribution
of variables in the dataset is the measure, e.g., expectation-
maximization algorithms.

•	 Density models: Density in data space is the measure, e.g.,
DBSCAN models.

Chapter 6 ■ MaChine Learning theory and praCtiCes

339

Further clustering can be of two types:

•	 Hard Clustering: Each object belongs to exactly one cluster

•	 Soft Clustering : Each object has some likelihood of belonging to a
different cluster

In next section we will be showing R demonstrations of these algorithms to
understand their output.

6.9.2 Clustering Algorithms
Clustering algorithms cannot differentiate between relevant and irrelevant variables. It is
important for the researcher to carefully choose the variables based on which algorithm
will start identifying patterns/groups in data. This is very important because the clusters
formed can be very dependent on the variables included.

A good clustering algorithm can be evaluated based on two primary objectives:

•	 High intra-class similarity

•	 Low inter-class similarity

The other common notion among the clustering algorithm is the measure of quality
of clustering. The similarity measure used and the implementation becomes important
determinants of clustering quality measures. Another important factor in measuring
quality of clustering in its ability to discover hidden patterns.

Let's first load the House Pricing dataset and see its data description. For posterior
analysis (after building the model), we have appended the data with HouseNetWorth. This
house net worth is a function of StoreArea(sq.mt) and LawnArea(sq.mt).

From market research we will get data in raw format without any target variables.
The clustering algorithm will show us if we can divide the data in the worth scales if
possible by different clustering algorithms.

Read the house Worth Data
Data_House_Worth <-read.csv("Dataset/House Worth Data.csv",header=TRUE);

str(Data_House_Worth)
 'data.frame': 316 obs. of 5 variables:
 $ HousePrice : int 138800 155000 152000 160000 226000 275000 215000
392000 325000 151000 ...
 $ StoreArea : num 29.9 44 46.2 46.2 48.7 56.4 47.1 56.7 84 49.2 ...
 $ BasementArea : int 75 504 493 510 445 1148 380 945 1572 506 ...
 $ LawnArea : num 11.22 9.69 10.19 6.82 10.92 ...
 $ HouseNetWorth: Factor w/ 3 levels "High","Low","Medium": 2 3 3 3 3 1 3 1
1 3 ...
#remove the extra column as well not be using this
Data_House_Worth$BasementArea <-NULL

Chapter 6 ■ MaChine Learning theory and praCtiCes

340

A quick analysis of scatter plot in Figure 6-41 shows us that there is some relationship
between the LawnArea and StoreArea. As this is a small dataset and well calibrated we
can see and interpret the clusters (manual process if also clustering). However, we will
assume that we didn't have this information prior and let the clustering algorithms tell us
about these clusters.

library(ggplot2)
ggplot(Data_House_Worth, aes(StoreArea, LawnArea, color = HouseNetWorth))
+geom_point()

Figure 6-41. Scatterplot between StoreArea and LawnArea for each HouseNetWorth group

Let's use this data to illustrate different clustering algorithms.

Chapter 6 ■ MaChine Learning theory and praCtiCes

341

6.9.2.1 Hierarchal Clustering
Hierarchical clustering is based on the connectivity model of clusters. The steps involved
in the clustering process are:

 1. Start with N clusters, N is number of elements (i.e., assign
each element to its own cluster). In other words distances
(similarities) between the clusters are equal to the distances
(similarities) between the items they contain.

 2. Now merge pairs of clusters with the closest to other (most
similar clusters) (e.g., the first iteration will reduce the
number of clusters to N - 1).

 3. Again compute the distance (similarities) and merge with
closest one.

 4. Repeat Steps 2 and 3 to exhaust the items until you get all data
points in one cluster.

Now you will get a dendogram of clustering for all levels. Choose a cutoff at how
many clusters you want to have by stopping the iteration at the right point.

In R, we use the hclust() function. Hierarchical cluster analysis on a set of
dissimilarities and methods for analyzing it. This is part of the stats package.

Another important function used here is dist(); this function computes and returns
the distance matrix computed by using the specified distance measure to compute the
distances between the rows of a data matrix. By default, it is Euclidean distance.

Mathematically, Euclidean distance is given as
In Cartesian coordinates, Euclidean distance between two vectors p = (p1, p2,…, pn)

and q = (q1, q2,…, qn) are two points in Euclidean. n-space is given by

d p,q d q,p q p q p q p

q p .

n n

i

n

i i

() = () = -() + -() + + -()

= -()
=
å

1 1

2

2 2

2 2

1

2



Let’s apply the hclust function and create our clusters.

apply the hierarchal clustering algorithm
clusters <-hclust(dist(Data_House_Worth[,2:3]))

#Plot the dendogram
plot(clusters)

Chapter 6 ■ MaChine Learning theory and praCtiCes

342

Now we can see there are number of possible places where we can choose clusters.
We will show cross-plot with 2, 3, and 4 clusters.

Create different number of clusters
clusterCut_2 <-cutree(clusters, 2)
#table the clustering distribution with actual networth
table(clusterCut_2,Data_House_Worth$HouseNetWorth)

 clusterCut_2 High Low Medium
 1 104 135 51
 2 26 0 0
clusterCut_3 <-cutree(clusters, 3)
#table the clustering distribution with actual networth
table(clusterCut_3,Data_House_Worth$HouseNetWorth)

 clusterCut_3 High Low Medium
 1 0 122 1
 2 104 13 50
 3 26 0 0
clusterCut_4 <-cutree(clusters, 4)
#table the clustering distribution with actual networth
table(clusterCut_4,Data_House_Worth$HouseNetWorth)

Figure 6-42. Cluster dendogram

Chapter 6 ■ MaChine Learning theory and praCtiCes

343

 clusterCut_4 High Low Medium
 1 0 122 1
 2 34 9 50
 3 70 4 0
 4 26 0 0

These three separate tables show how much the clusters able to capture the feature
of net worth. Let's limit ourselves to three clusters as we know from additional knowledge
that there are three groups of house by net worth. In statistical terms, the best number
of clusters can be chosen by using elbow method and/or semi-partial R-Square, validity
index Pseudo F. More details can be learned from Timm, Neil H., Applied Multivariate
Analysis, Springer, 2002.

ggplot(Data_House_Worth, aes(StoreArea, LawnArea, color = HouseNetWorth)) +
geom_point(alpha =0.4, size =3.5) +geom_point(col = clusterCut_3) +
scale_color_manual(values =c('black', 'red', 'green'))

Figure 6-43. Cluster plot with LawnArea and StoreArea

You can see most of our “high”, “medium” and “low” NetHouseworth points are
overlapping with the three cluster created by hclust. In hindsight, if we didn't know
the actual networth scales, we could have retrieved this information from this cluster
analysis.

Chapter 6 ■ MaChine Learning theory and praCtiCes

344

In next section, we apply another clustering algorithm to the same data and see how
the results look.

6.9.2.2 Centroid-Based Clustering
The following text borrowed from the original paper, A K-Means Clustering Algorithm
by Hartigan et. al [6] gives the most crisp and precise description of the way k-means
algorithm works, it says:

The aim of the K-means algorithm is to divide M points in N
dimensions into K clusters so that the within-cluster sum of
squares is minimized. ℐt is not practical to require that the
solution has minimal sum of squares against all partitions,
except when M, N are small and K = 2. We seek instead "local"
optima, solution such that no movement of a point from one
cluster to another will reduce the within-cluster sum of squares.

where, within cluster sum of squares (WCSS) is sum of distance of each observation
in a cluster to its centroid. More technically, for a set of observations (x

1
, x

2
, …, x

n
) and set

of k clusters C = {C
1
, C

2
, …, C

k
}

WCSS = -
= Î
åå
i

k

i
1

2

x Ci

x m

μ
i
 is the mean of points in C

i

Algorithm

In the simplest form of the algorithm, it has two steps:

•	 Assignment: Assign each observation to the cluster that gives the
minimum within cluster sum of squares (WCSS).

•	 Update: Update the centroid by taking the mean of all the
observation in the cluster.

These two steps are iteratively executed until the assignments in any two consecutive
iteration don’t change, meaning either a point of local or global optima (not always
guaranteed) is reached.

 ■ Note For interested readers, hartigan et. al, in their original paper, describes a seven-
step procedure.

Chapter 6 ■ MaChine Learning theory and praCtiCes

345

Let's use our HouseNetWorth data to show k-means clustering. Unlike the
hierarchical cluster, to find the optimal value for k (number of cluster) here, we will use
an Elbow curve. The curve shows the percentage of variance explained as a function of
the number of clusters.

Elbow Curve

wss <-(nrow(Data_House_Worth)-1)*sum(apply(Data_House_Worth[,2:3],2,var))
for (i in 2:15) {
 wss[i] <-sum(kmeans(Data_House_Worth[,2:3],centers=i)$withinss)
}
plot(1:15, wss, type="b", xlab="Number of Clusters",ylab="Within groups sum
of squares")

The elbow curve suggests that with three clusters, we were able to explain most
of the variance in data. Beyond four clusters adding more clusters is not helping with
explaining the groups (as the plot in Figure 6-44, shows, WCSS is saturating after three).
Hence, we will once again choose k=3 clusters.

set.seed(917)
#Run k-means cluster of the dataset
Cluster_kmean <-kmeans(Data_House_Worth[,2:3], 3, nstart =20)

Figure 6-44. Elbow curve for varying values of k (number of clusters) on the x axis

Chapter 6 ■ MaChine Learning theory and praCtiCes

346

#Tabulate the cross distribution
table(Cluster_kmean$cluster,Data_House_Worth$HouseNetWorth)

 High Low Medium
 1 84 0 0
 2 46 13 50
 3 0 122 1

The table shows cluster 1 has only of “High” worth, while clusters 2 and 3 have all of
it. While cluster 3 only represents the low worth except for one point. Here is the plot of
clusters against the actual networth.

Cluster_kmean$cluster <-factor(Cluster_kmean$cluster)
ggplot(Data_House_Worth, aes(StoreArea, LawnArea, color = HouseNetWorth)) +
geom_point(alpha =0.4, size =3.5) +geom_point(col = Cluster_kmean$cluster) +
scale_color_manual(values =c('black', 'red', 'green'))

Figure 6-45. Cluster plot using k-means

In the Figure 6-45, we can see in k-means have captured the clusters very well.

Chapter 6 ■ MaChine Learning theory and praCtiCes

347

6.9.2.3 Distribution-Based Clustering
Distribution methods are iterative methods to fit a set of dataset into clusters by
optimizing distributions of datasets in clusters. Gaussian distribution is nothing but
normal distribution. This method works in three steps:

 1. First randomly choose Gaussian parameters and fit it to set of
data points.

 2. Iteratively optimize the distribution parameters to fit as many
points it can.

 3. Once it converges to a local minima, you can assign data
points closer to that distribution of that cluster.

Although this algorithm create complex models, it does capture correlation and
dependence among the attributes. The downside is that these methods usually suffer
from an overfitting problem. Here, we show example of algorithm on our house worth
data.

library(EMCluster, quietly =TRUE)

ret <-init.EM(Data_House_Worth[,2:3], nclass =3)
ret
 Method: em.EMRnd.EM
 n = 316, p = 2, nclass = 3, flag = 0, logL = -1871.0336.
 nc:
 [1] 48 100 168
 pi:
 [1] 0.2001 0.2508 0.5492
ret.new <-assign.class(Data_House_Worth[,2:3], ret, return.all =FALSE)

#This has assigned a class to each case
str(ret.new)
 List of 2
 $ nc : int [1:3] 48 100 168
 $ class: num [1:316] 1 3 3 1 3 3 3 3 3 3 ...
Plot results
plotem(ret,Data_House_Worth[,2:3])

Chapter 6 ■ MaChine Learning theory and praCtiCes

348

Figure 6-46. Clustering plot-based on the EM algorithm

The low worth and high worth is captured well in the algorithm, while the medium
ones are far more scattered, which is not well represented in the cluster. Now let’s see how
the scatter plot looks by clustering with this method.

ggplot(Data_House_Worth, aes(StoreArea, LawnArea, color = HouseNetWorth)) +
geom_point(alpha =0.4, size =3.5) +geom_point(col = ret.new$class) +
scale_color_manual(values =c('black', 'red', 'green'))

Chapter 6 ■ MaChine Learning theory and praCtiCes

349

Again, the plot is good for high and low classes, but isn’t doing very well for the
medium class. There are some cases scattered in high LawnArea values as well, but
comparatively it’s still captured better in the high cluster. If you observe, this method isn’t
as good as what we saw in the case of hclust or k-means as there are many more overlaps
of points between two clusters.

6.9.2.4 Density-Based Clustering
Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering
algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu in
1996.

This algorithm works on a parametric approach. The two parameters involved in this
algorithm are:

•	 e: The radius of our neighborhoods around a data point p.

•	 minPts: The minimum number of data points we want in a
neighborhood to define a cluster.

Figure 6-47. Cluster plot for the EM algorithm

Chapter 6 ■ MaChine Learning theory and praCtiCes

350

Once these parameters are defined, the algorithm divides the data points into three
points:

•	 Core points: A point p is a core point if at least minPts points are
within distance ε (ε is the maximum radius of the neighborhood
from p) of it (including p).

•	 Border points: A point q is border from p if there is a path p1, …,
pn with p1 = p and pn = q, where each pi+1 is directly reachable
from pi (all the points on the path must be core points, with the
possible exception of q).

•	 Outliers: All points not reachable from any other point are
outliers.

The steps in DBSCAN are simple after defining the previous steps:

 1. Pick at random a point which is not assigned to a cluster and
calculate its neighborhood. If, in the neighborhood, this point
has minPts then make a cluster around that; otherwise, mark
it as outlier.

 2. Once you find all the core points, start expanding that to
include border points.

 3. Repeat these steps until all the points are either assigned to a
cluster or to an outlier.

library(dbscan)
 Warning: package 'dbscan' was built under R version 3.2.5
cluster_dbscan <-dbscan(Data_House_Worth[,2:3],eps=0.8,minPts =10)
cluster_dbscan
 DBSCAN clustering for 316 objects.
 Parameters: eps = 0.8, minPts = 10
 The clustering contains 5 cluster(s) and 226 noise points.

 0 1 2 3 4 5
 226 10 25 24 15 16

 Available fields: cluster, eps, minPts
#Display the hull plot
hullplot(Data_House_Worth[,2:3],cluster_dbscan$cluster)

Chapter 6 ■ MaChine Learning theory and praCtiCes

351

The result shows DBSCAN has found five clusters and assigned 226 cases as noise/
outliers. The hull plot shows the separation is good, so we can play around with the
parameters to get more generalized or specialized clusters.

6.9.3 Internal Evaluation
When a clustering result is evaluated based on the data that was clustered, it is called
internal evaluation. These methods usually assign the best score to the algorithm that
produces clusters with high similarity within a cluster and low similarity between
clusters.

6.9.3.1 Dunn Index
J Dunn proposed this index in 1974 through his published work titled, “Well Separated
Clusters and Optimal Fuzzy Partitions,” Journal of Cybernetics.[7]

The Dunn index aims to identify dense and well-separated clusters. It is defined as
the ratio between the minimal intercluster distances to the maximal intracluster distance.
For each cluster partition, the Dunn index can be calculated using the following formula.

D
d i,j

d k
i

k n

=
()
()¢

£ < £

£ £

min

max
1

1

j n

Figure 6-48. Plot for convex cluster hulls for the EM algorithm

Chapter 6 ■ MaChine Learning theory and praCtiCes

352

where d(i,j) represents the distance between cluster i and j, and d'(k) measures the
intra-cluster distance of cluster k.

library(clValid)
#Showing for hierarchical cluster with clusters = 3
dunn(dist(Data_House_Worth[,2:3]), clusterCut_3)
 [1] 0.009965404

The Dunn Index has a value between zero and infinity and should be maximized.
The Dunn score with high value are more desirable; here the value is too low suggesting
it’s not a good cluster.

6.9.3.2 Silhouette Coefficient
The silhouette coefficient contrasts the average distance to elements in the same cluster
with the average distance to elements in other clusters. Objects with a high silhouette
value are considered well clustered; objects with a low value may be outliers.
library(cluster)

#Showing for k-means cluster with clusters = 3
sk <-silhouette(clusterCut_3,dist(Data_House_Worth[,2:3]))

plot(sk)

Figure 6-49. Silhouette plot

Chapter 6 ■ MaChine Learning theory and praCtiCes

353

The silhouette plot shows how the three clusters behave on silhouette width.

6.9.4 External Evaluation
External evaluation is similar to evaluation done on test data. The data used for testing
is not used for training the model. The test data is then evaluated and labels assigned by
experts or some third party benchmarks. Then clustering results on these already labeled
items provide us the metric for how good the clusters grouped our data. As the metric
depends on external inputs, it is called external evaluation.

The method is simple if we know what the actual clusters will look like. Then we can
have these evaluations. In our case we already know the house worth indicator, hence
we can calculate these evaluation metrics. In reality, our data is already labeled before
clustering and hence we can do external evaluation on the same data as we used for
clustering.

6.9.4.1 Rand Measure
The Rand index is similar to classification rate in multi-class classification problems.
This measures how many items that are returned by the cluster and expert (labeled)
are common and how many differ. If we assume expert labels (or external labels) to be
correct than this measure the correct classification rate. It can be computed using the
following formula [8]:

RI
TP TN

TP FP FN TN
=

+
+ + +

where TP is the number of true positives, TN is the number of true negatives, FP is
the number of false positives, and FN is the number of false negatives.

#Unsign result from EM Algo
library(EMCluster)
clust <-ret.new$class
orig <-ifelse(Data_House_Worth$HouseNetWorth == "High",2,
ifelse(Data_House_Worth$HouseNetWorth == "Low",1,2))
RRand(orig, clust)
 Rand adjRand Eindex
 0.7653 0.5321 0.4099

The Rand index value is high, 0.76, indicating a good clustering fit by our EM
method.

Chapter 6 ■ MaChine Learning theory and praCtiCes

354

6.9.4.2 Jaccard Index
The Jaccard index is similar to Rand index. The Jaccard index measures the overlap of
external labels and labels generated by the cluster algorithms. The Jaccard index value
varies between 0 and 1, 0 implying no overlap while 1 means identical datasets. The
Jaccard index is defined by the following formula:

J A,B
A B

A B

TP

TP FP FN
() = Ç

È
=

+ +

where TP is the number of true positives, FP is the number of false positives, and
FN is the number of false negatives.

#Unsign result from EM Algo
#Unsign result from EM Algo
library(EMCluster)
clust <-ret.new$class
orig <-ifelse(Data_House_Worth$HouseNetWorth == "High",2,
ifelse(Data_House_Worth$HouseNetWorth == "Low",1,2))
Jaccard.Index(orig, clust)
 [1] 0.1024096

The index value is low, suggesting only 10% values are common. This implies the
overlap on the original and cluster is low. Not a good cluster formation.

6.9.5 Conclusion
These supervised learning algorithms have a wide-spread adaptability in industry and
research. The underlying design of decision tree makes it easy to interpret and the model
is very intuitive to connect with the real-world problem. The approaches like boosting
and bagging have given rise to high accuracy models based on decision tree. In particular,
Random Forest is now one of the widely used model for many classification problems.

We presented a detailed discussion of decision tree where we started with the very
first decision tree models like ID3 and went on to present the contemporary bagging
CART and Random Forest algorithms as well.

In the next section, we will see association rule mining, which works on transactional
data and has found application in market basket analysis and led to many powerful
recommendation algorithms.

6.10 Association Rule Mining
Association rule learning is a method for discovering interesting relations between
variables in large databases. It is intended to identify strong rules discovered in databases
using some measures of interestingness. Based on the concept of strong rules, Rakesh
Agrawal et al. introduced association rules for discovering regularities between products
in large-scale transaction data recorded by point-of-sale (POS) systems in supermarkets.

Chapter 6 ■ MaChine Learning theory and praCtiCes

355

For example, the rule onions,potatoes burger{ }Þ{ } found in the sales data of a

supermarket would indicate that if a customer buys onions and potatoes together, they
are likely to also buy hamburger meat. Library is another good example where rule
mining plays an important role to keep books and stock up. The Hossain and Rashedur
paper entitled “Library Material Acquisition Based on Association Rule Mining” is a good
read to expand the idea of association rule mining that can be applied in real situations.

6.10.1 Introduction to Association Concepts
Transactional data is generally a rich source of information for a business. In the
traditional scheme of things, businesses were looking at such data from the perspective of
reporting and producing dashboards for the executives to understand the health of their
business. In the pioneer research paper, “Mining Association Rules between Sets of Items
in Large Databases,” by Agrawal et.al. proposed an alternative to use this data:

•	 Boosting the sale of a product (item) in a store

•	 Impact of discontinuing a product

•	 Bundling multiple products together for promotions

•	 Better shelf planning in a physical supermarket

•	 Customer segmentation based on buying patterns

Consider the Market Basket data, where
Item set, I = {bread and cake, baking needs, biscuits, canned fruit, canned

vegetables, frozen foods, laundry needs, deodorants soap, and jam spreads}

Database, D T T T T T= 1 2 3 4 5, , , ,

And {bread and cake, baking needs, Jams spreads} is a subset of the item set I and
bread and cake baking needs Jams spreads,{ }Þ{ } is a typical rule.

The following sections describe some useful measures that can help us iterate
through the algorithm.

6.10.1.1 Support
Support is the proportion of transactions in which an item set appears. We will denote it

by supp(X), where X is an item set. For example,

supp bread and cake baking needs, / .{ }() = =2 5 0 4 and

supp bread and cake{ }() = =3 5 0 6/ . .

Chapter 6 ■ MaChine Learning theory and praCtiCes

356

6.10.1.2 Confidence
While support helps in understanding the strength of an item set, confidence indicates
the strength of a rule. For example, in the rule
bread and cake baking needs Jams spreads,{ }Þ{ } , confidence is the conditional

probability of finding the item set {Jams spreads} (RHS) in transactions under the
condition that these transactions also contain the {bread and cake, baking needs } (LHS).

More technically, confidence is defined as

conf X Y
supp X Y

supp X
Þ() = È()

() ,

The rule bread and cake baking needs Jams spreads,{ }Þ{ } has a confidence of

0 2 0 4 0 5. / . .= , which means 50% of the time when the customer buys

{bread and cake, baking needs }, they buy {Jams spreads} as well.

6.10.1.3 Lift
If the LHS and RHS of a rule is independent of each other, i.e., the purchase of one doesn’t
depend on the other, then lift is a ratio between the observed support to the expected
support. So, if lift = 1, LHS and RHS are independent of each other and it doesn’t make
any sense to have such a rule, whereas if the lift is > 1, it tells the degree to which the two
occurrences are dependent on one another.

More technically

lift X Y
supp X Y

supp X supp Y
Þ() = È()

()´ ()

The rule bread and cake baking needs Jams spreads,{ }Þ{ } has a lift of
0 2

0 4 0 4
1 25

.

. .
.

´
= , which means people who buy {bread and cake, baking needs } are nearly

1.25 times more likely to buy {Jams spreads} than the typical customer.
There are some other measures like conviction, leverage, and collective strength;

however, these three are found to be widely used in all the literature and sufficient for the
understanding of the Apriori algorithm.

Things might work well for small examples like these, however, in practicality, a
typical database of transactions is very large. Agrawal et. al. proposed a simple yet fast
algorithm to work on large databases.

 1. In the first step, all possible candidate item sets are generated.

 2. Then the rules are formed using these candidate item sets.

 3. The rule with the highest lift is generally the preferred choice.

Chapter 6 ■ MaChine Learning theory and praCtiCes

357

Later, many variations of the Apriori algorithm have been devised but in its original
form. Here are the steps involved in the Apriori algorithm for generating candidate item
sets:

 1. Determine the support of the one element item sets (a.k.a.
singletons) and discard the infrequent items/item sets.

 2. Form candidate item sets with two items (both items must be
frequent), determine their support, and discard the infrequent
item sets.

 3. Form candidate item sets with three items (all contained pairs
must be frequent), determine their support, and discard the
infrequent item sets.

 4. Continue by forming candidate item sets with four, five, and
so on, items until no candidate item set is frequent.

6.10.2 Rule-Mining Algorithms
We will use the Market Basket data to demonstrate this algorithm in R

library(arules)
MarketBasket <-read.transactions("Dataset/MarketBasketProcessed.csv", sep
=",")
summary(MarketBasket)
 transactions as itemMatrix in sparse format with
 4601 rows (elements/itemsets/transactions) and
 100 columns (items) and a density of 0.1728711

 most frequent items:
 bread and cake fruit vegetables milk cream baking needs
 3330 2962 2961 2939 2795
 (Other)
 64551

 element (itemset/transaction) length distribution:
 sizes
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 30 15 14 36 44 75 72 111 144 177 227 227 290 277 286 302 239 247
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 193 191 170 199 160 153 108 125 90 94 59 43 45 35 36 27 16 11
 37 38 39 40 41 42 43 47
 11 6 4 5 4 1 1 1

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.00 12.00 16.00 17.29 22.00 47.00

Chapter 6 ■ MaChine Learning theory and praCtiCes

358

 includes extended item information - examples:
 labels
 1 canned vegetables
 2 750ml red imp
 3 750ml red nz
#Transactions - First two
inspect(MarketBasket[1:2])
 items
 1 {baking needs,
 beef,
 biscuits,
 bread and cake,
 canned fruit,
 dairy foods,
 fruit,
 health food other,
 juice sat cord ms,
 lamb,
 puddings deserts,
 sauces gravy pkle,
 small goods,
 stationary,
 vegetables,
 wrapping}
 2 {750ml white nz,
 baby needs,
 baking needs,
 biscuits,
 bread and cake,
 canned vegetables,
 cheese,
 cleaners polishers,
 coffee,
 confectionary,
 dishcloths scour,
 frozen foods,
 fruit,
 juice sat cord ms,
 margarine,
 mens toiletries,
 milk cream,
 party snack foods,
 razor blades,
 sauces gravy pkle,
 small goods,
 tissues paper prd,
 vegetables,
 wrapping}

Chapter 6 ■ MaChine Learning theory and praCtiCes

359

Top 20 frequently bought product
itemFrequencyPlot(MarketBasket, topN =20)

Scarcity in the data - More white space means, more scarcity
image(sample(MarketBasket, 100))

Figure 6-50. ℐtem frequency plot in the market basket data

Figure 6-51. Scarcity visualization in transactions of market basket data

Chapter 6 ■ MaChine Learning theory and praCtiCes

360

6.10.2.1 Apriori
The support and confidence could be modified to allow for flexibility in this model.

 a. Model Building

We are using the Apriori function from the package arules to demonstrate the
market basket analysis with the constant values for support and confidence:

library(arules)

MarketBasketRules<-apriori(MarketBasket, parameter =list(support =0.2,
confidence =0.8, minlen =2))
MarketBasketRules

 Parameter specification:
 confidence minval smax arem aval originalSupport support minlen maxlen
 0.8 0.1 1 none FALSE TRUE 0.2 2 10
 target ext
 rules FALSE

 Algorithmic control:
 filter tree heap memopt load sort verbose
 0.1 TRUE TRUE FALSE TRUE 2 TRUE

 writing ... [190 rule(s)] done [0.00s].
 creating S4 object ... done [0.00s].

 b. Model Summary

The top five rules and lift:

{beef,fruit} => {vegetables} - 1.291832
{biscuits,bread and cake,frozen foods,vegetables} => {fruit} - 1.288442
{biscuits,milk cream,vegetables} => {fruit} - 1.275601
{bread and cake,fruit,sauces gravy pkle} =>{vegetables} - 1.273765
{biscuits, bread and cake,vegetables} => {fruit} - 1.270252

summary(MarketBasketRules)
 set of 190 rules

 rule length distribution (lhs + rhs):sizes
 2 3 4 5
 4 93 84 9

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 2.000 3.000 3.000 3.516 4.000 5.000

Chapter 6 ■ MaChine Learning theory and praCtiCes

361

 summary of quality measures:
 support confidence lift
 Min. :0.2002 Min. :0.8003 Min. :1.106
 1st Qu.:0.2082 1st Qu.:0.8164 1st Qu.:1.138
 Median :0.2260 Median :0.8299 Median :1.160
 Mean :0.2394 Mean :0.8327 Mean :1.169
 3rd Qu.:0.2642 3rd Qu.:0.8479 3rd Qu.:1.187
 Max. :0.3980 Max. :0.8941 Max. :1.292

 mining info:
 data ntransactions support confidence
 MarketBasket 4601 0.2 0.8

Sorting grocery rules by lift:

inspect(sort(MarketBasketRules, by ="lift")[1:5])
 lhs rhs support confidence lift
 1 {beef,
 fruit} => {vegetables} 0.2143012 0.8313659 1.291832
 2 {biscuits,
 bread and cake,
 frozen foods,
 vegetables} => {fruit} 0.2019126 0.8294643 1.288442
 3 {biscuits,
 milk cream,
 vegetables} => {fruit} 0.2206042 0.8211974 1.275601
 4 {bread and cake,
 fruit,
 sauces gravy pkle} => {vegetables} 0.2184308 0.8197390 1.273765
 5 {biscuits,
 bread and cake,
 vegetables} => {fruit} 0.2642904 0.8177539 1.270252
store as data frame
MarketBasketRules_df <-as(MarketBasketRules, "data.frame")
str(MarketBasketRules_df)
 'data.frame': 190 obs. of 4 variables:
 $ rules : Factor w/ 190 levels "{baking needs,beef} => {bread and
cake}",..: 189 106 163 174 60 116 115 118 16 120 ...
 $ support : num 0.203 0.226 0.223 0.398 0.201 ...
 $ confidence: num 0.835 0.811 0.804 0.8 0.815 ...
 $ lift : num 1.15 1.12 1.11 1.11 1.13 ...

Chapter 6 ■ MaChine Learning theory and praCtiCes

362

6.10.2.2 Eclat
Eclat is another algorithm for association rule mining. This algorithm uses simple
intersection operations for equivalence class clustering along with bottom-up lattice
traversal. The following two references talks about the algorithm in detail:

•	 Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori
Ogihara, and Wei Li. (1997, “New Algorithms for Fast Discovery
of Association Rules,” Technical Report 651, Computer Science
Department, University of Rochester, Rochester, NY 14627.

•	 Christian Borgelt (2003), “Efficient Implementations of
Apriori and Eclat,” Workshop of Frequent Item Set Mining
Implementations (FIMI), Melbourne, FL, USA.

 a. Model Building

library(arules)
With support = 0.2

MarketBasketRules_Eclat<-eclat(MarketBasket, parameter =list(support =0.2,
minlen =2))

 parameter specification:
 tidLists support minlen maxlen target ext
 FALSE 0.2 2 10 frequent itemsets FALSE

 algorithmic control:
 sparse sort verbose
 7 -2 TRUE

 writing ... [531 set(s)] done [0.00s].
 Creating S4 object ... done [0.00s].
With support = 0.1
MarketBasketRules_Eclat<-eclat(MarketBasket, parameter =list(supp =0.1,
maxlen =15))

 parameter specification:
 tidLists support minlen maxlen target ext
 FALSE 0.1 1 15 frequent itemsets FALSE

 algorithmic control:
 sparse sort verbose
 7 -2 TRUE

Chapter 6 ■ MaChine Learning theory and praCtiCes

363

 writing ... [7503 set(s)] done [0.00s].
 Creating S4 object ... done [0.00s].
Observe the increase in the number of rules by decreasing the support.
Experiment with the support value to see how the rules are changing.

 b. Model Summary

The top five rules and support:

{bread and cake,milk cream} 0.5079331
{bread and cake,fruit} 0.5053249
{bread and cake,vegetables} 0.4994566
{fruit,vegetables} 0.4796783
{baking needs,bread and cake} 0.4762008

summary(MarketBasketRules_Eclat) # the model with support = 0.1
 set of 531 itemsets

 most frequent items:
 bread and cake vegetables fruit baking needs frozen foods
 196 137 136 130 122
 (Other)
 772

 element (itemset/transaction) length distribution:sizes
 2 3 4 5
 187 260 81 3

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 2.000 2.000 3.000 2.812 3.000 5.000

 summary of quality measures:
 support
 Min. :0.2002
 1st Qu.:0.2118
 Median :0.2378
 Mean :0.2539
 3rd Qu.:0.2768
 Max. :0.5079

 includes transaction ID lists: FALSE

 mining info:
 data ntransactions support
 MarketBasket 4601 0.2

Chapter 6 ■ MaChine Learning theory and praCtiCes

364

Sorting grocery rules by support:

inspect(sort(MarketBasketRules_Eclat, by ="support")[1:5])
 items support
 1 {bread and cake,
 milk cream} 0.5079331
 2 {bread and cake,
 fruit} 0.5053249
 3 {bread and cake,
 vegetables} 0.4994566
 4 {fruit,
 vegetables} 0.4796783
 5 {baking needs,
 bread and cake} 0.4762008
store as data frame
groceryrules_df <-as(groceryrules, "data.frame")
str(groceryrules_df)
 'data.frame': 531 obs. of 2 variables:
 $ items : Factor w/ 531 levels "{baking needs,beef,bread and cake}",..:
338 250 239 358 357 302 96 334 426 341 ...
 $ support: num 0.203 0.213 0.226 0.203 0.2 ...

The results are shown based on the support of the item sets rather than the lift. This
is because Eclat only mines frequent item sets. There are no output of the lift measure, for
which Apriori is a more suitable approach. Nevertheless, this output shows the top five
item sets with highest support, which could be further used to generate rules.

6.10.3 Recommendation Algorithms
In the preceding section, we saw association rule mining, which could have been used
to generate product recommendations for customer based on their purchase history.
For n-products, each customer will be represented by n-dimensional 0-1 vector, where 1
means the customer has brought the corresponding product, 0 otherwise. Based on the
rules with highest lift, we could recommend the product on the RHS of the rule to all the
customers who bought products in the LHS.

This might work if the scarcity in the data isn't too high; however, there are more
robust and efficient algorithms, collectively known as the Recommendation Algorithm.
Originally, the use case of these algorithms got its popularity from Amazon's Product
and Netflix's Movie recommendation system. A significant amount of research has
been done in this area in last couple of years. One of the most elegant implementations
of a recommender algorithm can be found in the recommenderlab package in R,
developed by Michael Hahsler. It has been well documented in the CRAN articles by the
title, “recommenderlab: A Framework for Developing and Testing Recommendation
Algorithms,” (https://cran.r-project.org/web/packages/recommenderlab/
vignettes/recommenderlab.pdf). This article not only elaborates on the usage of the
package but also gives a good introduction of the various recommendation algorithms.

https://cran.r-project.org/web/packages/recommenderlab/vignettes/recommenderlab.pdf
https://cran.r-project.org/web/packages/recommenderlab/vignettes/recommenderlab.pdf

Chapter 6 ■ MaChine Learning theory and praCtiCes

365

In this book, we discuss the collaborative filtering-based approach for food
recommendations using the Amazon Fine Foods Review dataset. The data has one row
for each user and their ratings between 1 to 5 (lowest to highest), as described earlier in
the text mining section. Two of the most popular recommendation algorithms, user-
based and item-based collaborative filtering, are presented in this book. We encourage
you to refer to the recommenderlab article from CRAN for a more elaborate discussion.

6.10.3.1 User-Based Collaborative Filtering (UBCF)
The UBCF algorithm works on the assumption that users with similar preferences will
rate similarly. For example, if a user A likes spaghetti noodles with a rating of 4 and if user
B has similar taste as user A, he will rate the spaghetti close enough to 4. This approach
might not work if you consider only two users; however if instead of two, we find three
users closest to user A and consider their rating for spaghetti noodles in a collaborative
manner (could be as simple as taking an average), we could produce a much accurate
rating of user B to spaghetti noodles. For a given user-product (item) rating matrix, as
shown in Figure 6-52, the algorithm works as follows:

 1. We compute the similarity between two users using either
cosine similarity or Pearson correlation, two of the most
widely used approaches for comparing two vectors.

sim ,
sd sd

and

si

Pearson

 

   

 x y
x x y y

I x y
i I

i i

() =
()()

-() () ()
Î
å
1

mm , ,Cosine

 
 

 x y
x y

x y
() = ×

×

 2. Based on the similarity measure, choose the k-nearest
neighbor to the user to whom recommendation has to be
given.

 3. Take an average of the ratings of the k-nearest neighbors.

 4. Recommend the top N products based on the rating vector.

Some additional notes about the previous algorithm:

•	 We could normalize the rating matrix to remove any user bias.

•	 In this approach we treat each user equally in terms of similarity;
however, it’s possible that some users in the neighborhood are
more similar to U

a
 than others. In this case, we could assign

certain weights to allow for some flexibility.

Chapter 6 ■ MaChine Learning theory and praCtiCes

366

 ■ Note na ratings are treated as 0.

Figure 6-52. ℐllustration of UBCF

As shown in Figure 6-54, for a new user, U
a
, with a rating vector <2.0,NA,2.0,NA

,5.0,NA,NA,3.0,3.0>, we would like to find the missing ratings. Based on the Pearson
correlation, for k = 3, the users, U

4
, U

8
, and U

5
 are the nearest neighbors to U

a
. Take an

average of ratings by these users and you will get <2.7,3.3,3.0,1.0,5.0,1.3,2.0,2.7,2.0>. We
might recommend product P5 and P2 to U

a
 based on these rating vectors.

6.10.3.2 Item-Based Collaborative Filtering (IBCF)
IBCF is similar to UBCF, but here items are compared with items based on the
relationship between items inferred from the rating matrix. A similarity matrix is thus
obtained using again either cosine or Pearson correlation.

Since IBCF removes any user bias and could be precomputed, it’s generally
considered more efficient but is known to produce slightly inferior results to UBCF.

Let’s now use Amazon Fine Food Review and apply the UBCF and IBCF algorithms
from the recommender lab package in R.

Chapter 6 ■ MaChine Learning theory and praCtiCes

367

 a. Loading Data

library(data.table)

fine_food_data <-read.csv("Food_Reviews.csv",stringsAsFactors =FALSE)
fine_food_data$Score <-as.factor(fine_food_data$Score)

str(fine_food_data[-10])
 'data.frame': 35173 obs. of 9 variables:
 $ Id : int 1 2 3 4 5 6 7 8 9 10 ...
 $ ProductId : chr "B001E4KFG0" "B00813GRG4" "B000LQOCH0"
"B000UA0QIQ" ...
 $ UserId : chr "A3SGXH7AUHU8GW" "A1D87F6ZCVE5NK"
"ABXLMWJIXXAIN" "A395BORC6FGVXV" ...
 $ ProfileName : chr "delmartian" "dll pa" "Natalia Corres
\"Natalia Corres\"" "Karl" ...
 $ HelpfulnessNumerator : int 1 0 1 3 0 0 0 0 1 0 ...
 $ HelpfulnessDenominator: int 1 0 1 3 0 0 0 0 1 0 ...
 $ Score : Factor w/ 5 levels "1","2","3","4",..: 5 1 4 2 5
4 5 5 5 5 ...
 $ Time : int 1303862400 1346976000 1219017600 1307923200
1350777600 1342051200 1340150400 1336003200 1322006400 1351209600 ...
 $ Summary : chr "Good Quality Dog Food" "Not as Advertised"
"\"Delight\" says it all" "Cough Medicine" ...

 b. Data Preparation

library(caTools)

Randomly split data and use only 10% of the dataset
set.seed(90)
split =sample.split(fine_food_data$Score, SplitRatio =0.05)

fine_food_data =subset(fine_food_data, split ==TRUE)
select_col <-c("UserId","ProductId","Score")

fine_food_data_selected <-fine_food_data[,select_col]
rownames(fine_food_data_selected) <-NULL
fine_food_data_selected$Score =as.numeric(fine_food_data_selected$Score)

#Remove Duplicates
fine_food_data_selected <-unique(fine_food_data_selected)

Chapter 6 ■ MaChine Learning theory and praCtiCes

368

 c. Creation Rating Matrix

We will use a function called dcast to create the rating matrix from the review ratings
from the Amazon Fine Food Review dataset:

library(recommenderlab)
#RatingsMatrix

RatingMat <-dcast(fine_food_data_selected,UserId ~ProductId, value.var
="Score")
User=RatingMat[,1]
Product=colnames(RatingMat)[2:ncol(RatingMat)]
RatingMat[,1] <-NULL
RatingMat <-as.matrix(RatingMat)
dimnames(RatingMat) =list(user = User , product = Product)

realM <-as(RatingMat, "realRatingMatrix")

 d. Exploring the Rating Matrix

#distribution of ratings
hist(getRatings(realM), breaks=15, main ="Distribution of Ratings", xlab
="Ratings", col ="grey")

Figure 6-53. Distribution of ratings

Chapter 6 ■ MaChine Learning theory and praCtiCes

369

#Sparse Matrix Representation
head(as(realM, "data.frame"))
 user item rating
 467 A10012K7DF3SBQ B000SATIG4 3
 1381 A10080F3BO83XV B004BKP68Q 5
 428 A1031BS8KG7I02 B000PDY3P0 5
 1396 A1074ZS6AOHJCU B004JQTAKW 1
 951 A107MO1RZUQ8V B001RVFDOO 5
 1520 A108GQ9A91JIP4 B005K4Q1VI 1
#The realRatingMatrix can be coerced back into a matrix which is identical
to the original matrix
identical(as(realM, "matrix"),RatingMat)
 [1] TRUE
#Scarcity in Rating Matrix
image(realM, main ="Raw Ratings")

Figure 6-54. Raw ratings by users

Chapter 6 ■ MaChine Learning theory and praCtiCes

370

 e. UBCF Recommendation Model

#UBCF Model
r_UBCF <-Recommender(realM[1:1700], method ="UBCF")
r_UBCF
 Recommender of type 'UBCF' for 'realRatingMatrix'
 learned using 1700 users.
#List of objects in the model output
names(getModel(r_UBCF))
 [1] "description" "data" "method" "nn" "sample"
 [6] "normalize" "verbose"
#Recommend product for the rest of 29 left out observations
recom_UBCF <-predict(r_UBCF, realM[1700:1729], n=5)
recom_UBCF
 Recommendations as 'topNList' with n = 5 for 30 users.
#Display the recommendation
reco <-as(recom_UBCF, "list")
reco[lapply(reco,length)>0]
 $AY6MB5S44GMH4
 [1] "B000084EK5" "B000084EKL" "B000084ETV" "B00008DF91" "B00008JOL0"

 $AYOMAHLWRQHUG
 [1] "B000084EK5" "B000084EKL" "B000084ETV" "B00008DF91" "B00008JOL0"

 $AYX86RC7QV2UT
 [1] "B000084EK5" "B000084EKL" "B000084ETV" "B00008DF91" "B00008JOL0"

 $AZ4IFJ01WKBTB
 [1] "B000084EK5" "B000084EKL" "B000084ETV" "B00008DF91" "B00008JOL0"

Similarly, you can extract such recommendations for IBCF as well.

 f. Evaluation

set.seed(2016)
scheme <-evaluationScheme(realM[1:1700], method="split", train = .9,
k=1, given=1, goodRating=3)

scheme
 Evaluation scheme with 1 items given
 Method: 'split' with 1 run(s).
 Training set proportion: 0.900
 Good ratings: >=3.000000
 Data set: 1700 x 867 rating matrix of class 'realRatingMatrix' with 1729
ratings.

Chapter 6 ■ MaChine Learning theory and praCtiCes

371

algorithms <-list(
"random items" =list(name="RANDOM", param=NULL),
"popular items" =list(name="POPULAR", param=NULL),
"user-based CF" =list(name="UBCF", param=list(nn=50)),
"item-based CF" =list(name="IBCF", param=list(k=50))
)

results <-evaluate(scheme, algorithms, type ="topNList",
n=c(1, 3, 5, 10, 15, 20))
 RANDOM run fold/sample [model time/prediction time]
 1 [0sec/0.91sec]
 POPULAR run fold/sample [model time/prediction time]
 1 [0.03sec/2.14sec]
 UBCF run fold/sample [model time/prediction time]
 1 [0sec/71.13sec]
 IBCF run fold/sample [model time/prediction time]
 1 [292.13sec/0.46sec]
plot(results, annotate=c(1,3), legend="bottomright")

Figure 6-55. True positive ratio versus false positive ratio

You can see that the ROC curve shows the poor accuracy of these recommendations
on this data. It could be because of sparsity and high bias in ratings.

Chapter 6 ■ MaChine Learning theory and praCtiCes

372

6.10.4 Conclusion
Association rule mining could also be thought of as a frequent version of the probabilistic
model like Naïve Bayes. Although we don’t call the terms directly as probabilities, it’s has
the same roots. These algorithms are particularly well known for their ability to work with
transaction data in a supermarket or e-commerce platforms where customers usually buy
more than one product in a single transaction.

Finding some interesting patterns in such transactions could help reveal a whole
new direction to the business or increase customer experience through product
recommendation. In this section we started out with association rule mining algorithms
like Apriori and went on to discuss the recommendation algorithms, which are
closely related but take a different approach. Though much of the literature classifies
the recommendation algorithm as a separate topic of its own, we have kept it under
association rule mining, to show how the evolution happened.

In the next chapter, we will discuss one of the widely used models in the world of
artificial intelligence which derives its root from the biological neural network structures
in human beings.

6.11 Artificial Neural Networks
We will start building our section on neural networks and then introduce deep learning
toward the end, which is an extension of the neural network. In recent times, deep
learning has been getting quite a lot of attention from the research community and
industry for its high accuracies. Neural network-based algorithms have become very
popular in recent years and take center stage in machine learning algorithms. From a
statistical leaning point of view, they have become very popular in machine learning for
two main reasons:

•	 We no longer need to make any assumptions about our data;
any type of data works in neural networks (categorical and
numerical).

•	 They are scalable techniques, can take in billions of data points,
and can capture a very high level of abstraction.

It is important to mention here that neural networks are inspired from the way the
human brain learns. The recent development in these fields have led to training of far
dense neural networks, hence making possible to capture signals that other machine
learning techniques can’t.

6.11.1 Human Cognitive Learning
Artificial neural networks are inspired from biological neural networks. The human
brain is one such large neural network, with neurons being the unit processing in this big
network. To understand how signals are processed in brain, we need to understand the
structure of a building block of brain neural network, neurons.

Chapter 6 ■ MaChine Learning theory and praCtiCes

373

In Figure 6-56, you can see anatomy of a neuron. The structure of neuron and its
function will help us build our artificial neural networks in computer systems.

A neuron is a smallest unit of neural network, and can be excited by electronic signals.
It can process and transmit information through electrical and chemical signals. The excited
state of neuron can be thought as the 1 state in a transistor and a 0 state if not excited. The
neuron takes input from the dendrites and transmits the signals generated (processed) in the
cell body through axons. Each axon then connects to other neurons in the network. The next
neuron then again processes the information and passes it to another neuron.

Other important issues include the process by which the transfer of signals take
place. The process takes place through synapses. There is a concept of chemical and
electrical synapses, while electrical synapse works very fast and transfer continuous
signals, chemical synapse works on an activation energy concept. The neuron will only
transmit a signal if the strength of signal is more than a threshold. These important
features allow neurons to differentiate between signal and noise.

A big network of such tiny neurons builds up in our nervous system, run by a dense
neural network in our brain. Our brain learns and stores all the information in that
densely packed neural network in our head. Scientists started investigating how our brain
works and started experimenting with the learning process using an artificial equivalent
of neurons.

Now when you have a structure of brain architecture, let's try to understand how we
human learn something. I will take a simple example of golf, and how a golfer learns what
the best force is to hit a ball.

Learning steps:

 1. You hit the ball with some force (seed value of force, F1).

 2. The ball falls short of the hole, say by 3m (error is 3m).

 3. You know the ball fell short, so in next shot, you apply more
force by delta (i.e. F2 = F1 + delta).

 4. The ball again falls short by 50 cm (error is 50 cm).

Figure 6-56. Neuron anatomy

Chapter 6 ■ MaChine Learning theory and praCtiCes

374

 5. Again you found that the ball fell short, so you increase the
force by delta (i.e., F3 = F2 + delta).

 6. Now you will observe the ball went went beyond on hole by
2m (error -2 m).

 7. Now you know that too much force was applied, so you
change the rate of force increase (learning rate), say delta2.

 8. Again you hit the ball with a new force with delta2 as
improvement over the second shot (F4 = F2 + delta2).

 9. Now the ball falls very close to hole, say 25cm.

 10. Now you know the previous delta2 worked for you, so you try
again with the same delta, and this time it goes into the hole.

This process is simply based on learning and updating yourself for better results.
There might be many ways to learn how to correct and by what magnitude to improve.
This biological idea of learning from a large number of events is successfully translated
by researchers into artificial neural network learning, the most powerful tool the data
scientist has.

Warren McCulloch and Walter Pitts (1943) paper entitled, “A Logical Calculus
of Ideas Immanent in Nervous Activity”[12], laid the foundation of a computational
framework for neural networks. After their path-breaking work, the further development
of neural networks split into biological processes and machine learning (applied neural
networks).

It will help to look back at the biological architecture and learning method while
reading through the rest of neural networks.

6.11.2 Perceptron
Perceptron is basic unit of artificial neural network that takes multiple inputs and
produces binary outputs. In machine learning terminology, it is a supervised learning
algorithm that can classify an input into binary 0 or 1 class. In simpler terms, it is a
classification algorithm than can do classification based on a linear predictor function
combining weights (parameters) of the feature vector.

Figure 6-57. Working of a perceptron (mathematically)

Chapter 6 ■ MaChine Learning theory and praCtiCes

375

In machine learning, the perceptron is defined as a binary classifier function that
maps its input x (a real-valued vector) to an output value f(x) (a single binary value):

f x
if w x b

otherwise
() =

× + >ì
í
î

1 0

0

where w is a vector of real-valued weights, w x× is the dot product i

m

i iw x
=
å

0 , where m

is the number of inputs to the perceptron and b is the bias. Bias is independent of input
values and helps fix the decision boundary.

The learning algorithm for a single perceptron can be stated as follows:

 1. Initialize the weights to some feasible values.

 2. For each data point in a training set, do Steps 3 and 4.

 3. Calculate the output with previous step weights.

y t f w t x

f w t x w t x w t x w t x

j j

j j j n

() = () ×éë ùû

= () + () + () + + ()0 0 1 1 2 2, , ,  jj n,éë ùû

This is the output you will get with the current weights in the perceptron.

 4. Update the weights:

w t w t d y t x for all features i n.i i j j j i+() = ()+ - ()() £ £1 0, ,

Did you observe any similarity with our golf example?

 5. In general, there can be three stopping criteria:

•	 All the points in training set are exhausted

•	 A preset number of iterations

•	 Iteration error is less than a user-specified error threshold, γ

Iteration error is defined as follows:

1

1s
d y t

j

s

j j
=
å - ()

Now let's explain a simple example using a sample perceptron to make it clear how
powerful a classifier it can be.

NAND gate is a Boolean operator that gives the value zero if and only if all the
operands have a value of 1, and otherwise has a value of 1 (equivalent to NOT AND).

Chapter 6 ■ MaChine Learning theory and praCtiCes

376

Now we will try to recreate this NAND gate with the perceptron in Figure 6-59 and
see if it gives us the same output as the previous output, by applying the weights logic.

Figure 6-59. NAND gate perceptron

Figure 6-58. NAND gate operator

There are two inputs to the perceptron x1 and x2 with possible values of 0 and 1.
Hence, there can be four types of input and we know the output as well for NAND, as per
Figure 6-61.

The perceptron is a function of weights, and if the dot product of weights is greater
than 1 then it gives output one. For our example, we chose the weights as w1=w2= -2 and
bias = 3. Now let’s compute the perceptron for inputs and see the output.

 1. 00 (-2)0 + (-2)0 + 3 = 3 >0, output is 1

 2. 01 (-2)0 + (-2)1 + 3 = 1 >0, output is 1

 3. 10 (-2)1 + (-2)1 + 3 = 1 >0, output is 1

 4. 11 (-2)1 + (-2)1 + 3 = -1 <0, output is 0

Our perceptron just implemented a NAND gate!
Now that the basic concepts of neural networks are set, we can jump to increasing

the complexity and bring more power to these basic concepts.

Chapter 6 ■ MaChine Learning theory and praCtiCes

377

6.11.3 Sigmoid Neuron
Neural networks have a special kind of neurons, called sigmoid neurons. They allow a
continuous output, which a perceptron does not provide. The output of sigmoid neuron
is on a continuous scale.

A sigmoid function is a mathematical function having an S-shaped curve (a sigmoid
curve). The function is defined as follows:

S t
e

.
t() =

+ -

1

1

Other examples/variations of the sigmoid function are the ogee curve, gompertz
curve, and logistic curve. Sigmoids are used as activation functions (recall chemical
synapse) in neural networks.

Figure 6-60. Sigmoid function

In neural networks, a sigmoid neuron has multiple inputs x1, x2,.. , xn. But the output
is on a scale of 0 to 1. Similar to perceptron, the sigmoid neuron has weights for each input,
i.e., w1,w2,… and an overall bias. To draw similarity with perceptron, observe for very large
input (input dot product with weights plus bias) the sigmoid perceptron tends to 1, the
same as perceptron but asymptotically. This holds true for highly negative value as well.

Now that we have covered the basic parts of the neural network, let’s discuss the
architecture of neural networks in the next section.

6.11.4 Neural Network Architecture
The simple perceptron cannot do a good job of classification beyond linear ones, so see
the following example to understand what we mean by linear separability.

Chapter 6 ■ MaChine Learning theory and praCtiCes

378

Figure 6-61. Linear seperability

In Figure 6-61(a) on the left, you can draw a line (linear function of weights and bias)
to separate + from -, but take a look at the image at right. In Figure 6-61(b), the + and - are
not linearly separable. We need to expand our neural network architecture to include
more perceptrons to do non-linear separation.

Similar to what happens in biological systems to learn complicated things, we take
the idea of network of neurons as network of perceptrons for our artificial neural network.
Figure 6-62 shows a simple expansion of perceptrons to a network of perceptrons.

Figure 6-62. Artificial network architecture

Chapter 6 ■ MaChine Learning theory and praCtiCes

379

This network is sometimes called Multi-Layer Perceptron (MLP). The leftmost layer
is called the input layer, the rightmost layer is called the output layer, and the layer in
between input and output is called the hidden layer.

The hidden layer is different from the input layer as it does not have any direct
input. While the number of input and output layer design and number is determined by
the inputs and outputs respectively, finding the hidden layer design and number is not
straightforward. The researchers have developed many design heuristics for the hidden
layers; these different heuristics help the network behave the way they want it to. In this
section it's good to talk about two more features of neural nets:

•	 Feedforward Neural Networks (FFNN): As you can see from the
simple architecture, if the input to each layer is in one direction
we call that network a feed-forward neural network. This network
makes sure that there are no loops within the neural network.
There are many other types of neural networks, especially deep
learning has expanded the list, but this is the most generic
framework.

•	 Specialization versus Generalization: This is a general concept
that relates to the complexity of architecture (size and number of
hidden layers). If you have too many hidden layers/complicated
architecture, the neural network tend to be very specialized; in
machine learning terms, it overfits. This is called a specialized
neural network. The other extreme is if you use simple
architecture that the model will be very generalized and would
not fit the data properly. A data scientist has to keep this balance
in mind while designing the neural net.

Artificial neural networks have three main components to set up the training
exercise:

•	 Architecture: Number of layers, weights matrix, bias, connections,
etc.

•	 Rules: Refer to the mechanism of how the neurons behave in
response to signals from each other.

•	 Learning rule: The way in which the neural network's weights
change with time.

In next section, we will touch upon supervised and unsupervised learning, which
will relate to the concepts we have been learning in the book for dependent variables and
no dependent variable (like clustering).

6.11.5 Supervised versus Unsupervised Neural Nets
We present a quick recap of this subject with an illustration by Andrew NG in his Coursera
course. We show a simple and intuitive example to differentiate between supervised and
unsupervised learning (see Figure 6-63).

Chapter 6 ■ MaChine Learning theory and praCtiCes

380

The image on the left has labeled the data as two different types, so the algorithm
knows that the objects are different, while on the right we have the same objects but
didn't tell the algorithm which is which.

So in very simple terms, supervised learning is when we provide the machine
learning algorithm the output against each input. While learninL is unsupervised when
we don't supply the output and the algorithms themselves have to figure out the different
set of outputs.

Examples:

•	 Supervised learning: HousePrice is given in our data against
each input variable. Our learning algorithm will try to learn after
multiple iterations on how to determine the house price based on
underlying features (e.g., linear regression).

•	 Unsupervised learning: We just provide the house feature data
without a target variable. In that case, the algorithm will do
categorization based on similar set of features (e.g., clustering).

In next section, we will introduce a supervised learning algorithm for neural
networks, and show an example of neural net in R. R is not one of the preferred platforms
for neural network and deep leaning. We will limit ourselves to simple examples.

6.11.6 Neural Network Learning Algorithms
Learning algorithm determine how our machine learning process will choose a model
for our underlying data. The general principle is to select the model that minimizes our
cost function. A learning algorithm finds the best solution for problem by controlling the
training of the neural networks. Most of the learning algorithms work on the principle of
non-linear optimization and statistical estimation.

Next, we touch upon the broader classed of learning algorithms for neural nets.

Figure 6-63. Supervised versus unsupervised learning

Chapter 6 ■ MaChine Learning theory and praCtiCes

381

6.11.6.1 Evolutionary Methods
Evolutionary methods are derived from the evolutionary process in biology, and
evolution can be in terms of reproduction, mutation, selection, and recombination.
A fitness function is used to determine the performance of model, and based on this
function we select our final model.

The steps involved in this learning method are as follows:

 1. Create a population of solutions (i.e., weights on all the inputs).

 2. Apply the fitness function to see how this initial population
performed with initial population.

 3. Select the best solution set from Step 2, and then breed with
other solutions (e.g., change weight on one variable with other
solution).

 4. Evaluate again on the fitness function, and continue with
Steps 3 and 4 until you get a solution.

Genetic algorithms are inspired by this evolutionary process.

6.11.6.2 Gene Expression Programming
Gene expression programming is also a type of evolutionary learning algorithm. The
learning method is inspired by home gene expression happens in biological body. The
gene expression learning program are implemented as complex tree structures adapting
to change in sizes, shape, and composition.

Though this deemed to be an improvement over genetic algorithm, the general
sentiment is that this has not been able to improve the learning results drastically.
In computer programming, gene expression programming (GEP) is an evolutionary
algorithm.

6.11.6.3 Simulated Annealing
Simulated annealing is a very different approach from the evolutionary approach. This
method works on a probabilistic approach to approximate the global optimum for cost
function. The method searches for a solution in large space with simulation.

The steps are involved in this method are:

 1. Start the iteration with some random value/solution weights

 2. At each iteration, the algorithm gets probabilities to decide
whether to stay in the same state or move to some neighbor
state.

 3. If moved to the next state, check the value of cost function. If
it’s lower than the previous it was a successful move.

 4. Repeat Steps 2 and 3 until either you get the desired results or
you want to stop the iterations.

Chapter 6 ■ MaChine Learning theory and praCtiCes

382

This method uses heavy computation power. However, it is a good improvement over
the issue of model convergence to local optimum due to lack of a probabilistic jump.

6.11.6.4 Expectation Maximization
Expectation minimization is a statistical learning method that uses an iterative method
to find maximum likelihood or maximum posterior estimate. The algorithm typically
process in two steps:

 1. Generating the Expectation function for log-likelihood using
the current estimate for the parameters (take some random
seed value for starting iterations).

 2. Maximize the Expectation function by tuning the parameters,
and then use these parameters in the next iteration.

These two steps, when done iteratively, cause the algorithm to converge to the
parameters, maximizing the log-likelihood of the function.

6.11.6.5 Non-Parametric Methods
Non-parametric efforts are exactly the opposite of the expectation-maximization method.
In non-parametric, we don’t make any assumptions on the underlying data distribution.
This allows complex representation of the function as no constraints come from the
distribution.

In neural networks, the model is represented by an unknown function of weighted
sum of several sigmoids, each of which is a function of explanatory variables. The
algorithm then does a non-linear least square optimization to get the final weights of the
underlying objective function.

6.11.6.6 Particle Swarm Optimization
The particle swarm optimization algorithm is developed by observing how birds flock or a
fish school finds the best shape to move at the least resistance and highest velocity. In this
algorithm, we have notion of position and velocity for particles. Particles are a population
of candidate solutions.

The algorithm tries to search the solution set in a large space, and each particle's
movement is controlled by mathematical formula around velocity (how fast the flock can
move?) and position (how the position of particle in the flock influences the velocity). Though
it’s a very powerful learning methodology, it does not guarantee a global optimal solution.

6.11.7 Feed-Forward Back-Propagation
Back-propagation learning is one of the most popular learning methodologies in neural
networks. This is also called the “back-propagation of errors” method. In conjunction
with some optimization methods like the gradient descent method, this can be used to
train artificial neural networks.

Chapter 6 ■ MaChine Learning theory and praCtiCes

383

This is a supervised learning method, as the name suggests a propagation of errors.
Recall the golf example. Though this method can be used for unsupervised learning, it
largely remains the best method to train a feed-forward neural network.

Another important point to consider here is generally this method works on the
gradient descent principle, so the neuron function (activation function) should be
differential. Otherwise the gradient descent cannot be calculated and the method fails.

Figure 6-64. Workings of the back-propagation method

The algorithm can be simply executed using the following steps. We will give a
mathematical representation of error correction when the sigmoid function is used as the
activation function:

 1. Feed-forward the network with input and get the output.

 2. Backward propagation of output, to calculate delta at each
neuron (error).

 3. Multiply the delta and input activation function to get the
gradient of weight.

 4. Update the weight by subtracting a ratio from the gradient of
the weight.

This algorithm will be correcting for error in each iteration and coverage to a point
where it has no more reducible error.

Chapter 6 ■ MaChine Learning theory and praCtiCes

384

Mathematically, for each neuron j, its output o
j
 is defined as

o net w oj j

k

kj k
n

= () =
æ

è
ç
ç

ö

ø
÷
÷å

=

j j
1

To update the weight w
ij
 using gradient descent, you must choose a learning rate,

α. The change in weight, which is added to the old weight, is equal to the product of the
learning rate and the gradient, multiplied by -1:

D = -
¶
¶

=
- -() -()

w
o o o if is an output neuron

ij
ij

i j j j jE

w

o t j
a

a 1 ,

-- () -()
ì
í
ï

îï Îåa do w ji l L jl j jl
o o if is an inner neuron.1

The -1 is required in order to update in the direction of a minimum, not a maximum,
of the error function.

6.11.7.1 Purchase Prediction: Neural Network-Based
Classification
Let’s run our purchase prediction data with the nnet package in R and see how neural
networks perform compared to our logistic regression example discussed in the
regression section.

#Load the data and prepare a dataset for logistic regression
Data_Purchase_Prediction <-read.csv("Dataset/Purchase Prediction Dataset.
csv",header=TRUE);

Data_Purchase_Prediction$choice <-ifelse(Data_Purchase_
Prediction$ProductChoice ==1,1,
ifelse(Data_Purchase_Prediction$ProductChoice ==3,0,999));
Data_Neural_Net <-Data_Purchase_Prediction[Data_Purchase_Prediction$choice
%in%c("0","1"),]

#Remove Missing Values
Data_Neural_Net <-na.omit(Data_Neural_Net)
rownames(Data_Neural_Net) <-NULL

Chapter 6 ■ MaChine Learning theory and praCtiCes

385

Usually scaling the continuous variables in the intervals [0,1] or [-1,1] tends to give
better results. Convert the categorical variables into binary variables.

#Transforming the continuous variables
cont <-Data_Neural_
Net[,c("PurchaseTenure","CustomerAge","MembershipPoints","IncomeClass")]

maxs <-apply(cont, 2, max)
mins <-apply(cont, 2, min)

scaled_cont <-as.data.frame(scale(cont, center = mins, scale = maxs -mins))

#The dependent variable
dep <-factor(Data_Neural_Net$choice)

Data_Neural_Net$ModeOfPayment <-factor(Data_Neural_Net$ModeOfPayment);

flags_ModeOfPayment =data.frame(Reduce(cbind,
lapply(levels(Data_Neural_Net$ModeOfPayment), function(x){(Data_Neural_
Net$ModeOfPayment ==x)*1})
))

names(flags_ModeOfPayment) =levels(Data_Neural_Net$ModeOfPayment)
Data_Neural_Net$CustomerPropensity <-factor(Data_Neural_
Net$CustomerPropensity);

flags_CustomerPropensity =data.frame(Reduce(cbind,
lapply(levels(Data_Neural_Net$CustomerPropensity), function(x){(Data_Neural_
Net$CustomerPropensity ==x)*1})
))
names(flags_CustomerPropensity) =levels(Data_Neural_Net$CustomerPropensity)

cate <-cbind(flags_ModeOfPayment,flags_CustomerPropensity)

#Combine all data into single modeling data
Dataset <-cbind(dep,scaled_cont,cate);

#Divide the data into train and test
set.seed(917);
index <-sample(1:nrow(Dataset),round(0.7*nrow(Dataset)))
train <-Dataset[index,]
test <-Dataset[-index,]

Chapter 6 ■ MaChine Learning theory and praCtiCes

386

Now we will use the built-in back propagation algorithm from the nnet() package in R.

library(nnet)
i <-names(train)
form <-as.formula(paste("dep ~", paste(i[!i %in% "dep"], collapse =" + ")))
nn <-nnet.formula(form,size=10,data=train)
 # weights: 181
 initial value 151866.965727
 iter 10 value 108709.305804
 iter 20 value 107666.702615
 iter 30 value 107382.819447
 iter 40 value 107267.937386
 iter 50 value 107203.589847
 iter 60 value 107138.952084
 iter 70 value 107084.361878
 iter 80 value 107037.998279
 iter 90 value 107003.328743
 iter 100 value 106970.152142
 final value 106970.152142
 stopped after 100 iterations
predict_class <-predict(nn, newdata=test, type="class")

#Classification table
table(test$dep,predict_class)
 predict_class
 0 1
 0 28776 13863
 1 11964 19534
#Classification rate
sum(diag(table(test$dep,predict_class))/nrow(test))
 [1] 0.6516314

In the previous architecture, we used 10 neurons in one hidden layer. The accuracy
comes out to be 65% which is 1% more than what we saw in logistic regression. Neural net
has improved prediction on 0 while deteriorated on 1 (Do you want to try a ensemble? We
will discuss this in Chapter 8.)

Look at the neural net with 10 hidden neurons; it is able to improve prediction for 0s.
If you extend this training to deep learning, even a minuscule signal can be captured. In
deep learning, we will run the same example with multi-layer deep architecture.

library(NeuralNetTools)
 Warning: replacing previous import by 'scales::alpha' when loading
 'NeuralNetTools'
Plot the neural network
plotnet(nn)

http://dx.doi.org/10.1007/978-1-4842-2334-5_8

Chapter 6 ■ MaChine Learning theory and praCtiCes

387

#get the neural weights
neuralweights(nn)
 $struct
 [1] 16 10 1

 $wts
 wts`hidden 1 1`
 [1] -1.7688041 -20.6924206 2.3683340 0.3254776 0.3755354
 [6] -0.4381737 -0.9342264 -0.4396708 0.2488121 -0.8040053
 [11] -0.2513980 1.1595037 -0.5800809 0.9427963 -0.5210107
 [16] -0.5680854 0.9942396

 wts`hidden 1 2`
 [1] 0.3785581 2.7997630 0.0419642 -1.8159788 -2.0329127 0.2695198
 [7] 0.3923006 -2.1276359 0.3242286 0.4522314 0.5254541 1.2197842
 [13] -0.1996586 2.2651791 0.4066352 3.6192206 -5.2330743

 wts`hidden 1 3`
 [1] -1.4357242 -12.9881898 -12.3360008 1.1062240 3.6054822
 [6] 1.5317392 0.6969328 -6.2048082 0.9177840 -0.1734451
 [11] 0.1648537 2.1053240 0.6816542 -2.9358718 -1.0474676
 [16] -0.4098642 1.5974077

 wts`hidden 1 4`
 [1] -5.30486658 2.93556841 -9.97245085 0.30268208 6.59471280
 [6] 1.95089306 0.69071825 0.31481250 -0.06330620 -1.00934374
 [11] 0.93998141 -9.14052075 -6.52385269 -1.32746226 -1.07514308
 [16] 0.06271666 3.52729817

 wts`hidden 1 5`
 [1] 2.24357572 -7.90629807 -2.19299184 0.78657421 -13.42029541
 [6] 1.35697587 0.76688140 -4.08706478 2.90349734 -0.59422438
 [11] 2.21698054 -0.08467332 1.68745126 -0.43716182 -0.34025868
 [16] -2.29645501 2.73500554

Figure 6-65. One hidden layer neural network

Chapter 6 ■ MaChine Learning theory and praCtiCes

388

 wts`hidden 1 6`
 [1] -3.7195678 1.5885211 0.9809355 -0.8999143 -3.3623349 -1.6354780
 [7] -1.0924695 0.3577909 -0.4331445 -0.9332748 -0.6803754 1.4831636
 [13] 0.1024139 -5.6953417 0.8179687 -3.9350386 4.9241476

 wts`hidden 1 7`
 [1] -0.8225491 -4.8242434 -2.9266563 2.5035607 0.1378938 -0.3450762
 [7] -0.6713392 1.0763017 -0.2546451 -0.8533341 -0.5570266 -0.2484610
 [13] 1.3856182 -1.1600616 1.2339496 -1.2949715 -0.7762755

 wts`hidden 1 8`
 [1] -3.86805085 2.35232847 -2.48545877 -0.14794972 0.07481260
 [6] 0.70845847 0.38961887 -2.34134097 -2.32810205 -0.80392872
 [11] -0.08502893 -1.81432815 0.05929793 -0.19809056 -0.27217330
 [16] 0.47082670 -4.67137272

 wts`hidden 1 9`
 [1] 0.80066147 2.72835254 -6.01889627 -10.63057306 7.63526853
 [6] -1.85188181 -0.59883189 0.86011432 2.28279639 -0.80140313
 [11] -3.41439405 4.47209147 3.98812529 0.05217016 1.42120448
 [16] -2.87977768 -1.80152670

 wts`hidden 1 10`
 [1] -1.41326881 -16.86494495 -0.25563167 0.02405375 -5.82554392
 [6] 0.20502350 0.68081754 -4.30017547 0.24592770 0.94533019
 [11] 0.51276882 -0.10970560 1.52611041 1.41750276 2.40763017
 [16] -1.56584208 -5.13504576

 wts`out 1`
 [1] -2.0906131 -0.8660608 2.5900163 -0.9717815 1.1467203 -0.8147543
 [7] 2.3220405 1.7924673 -3.5013152 0.2313364 -2.3259027
Plot the importance
olden(nn)

Figure 6-66. Attribute importance by olden method

Chapter 6 ■ MaChine Learning theory and praCtiCes

389

Figure 6-67. Attribute importance by Garson method

#variable importance by garson algorithm
garson(nn)

We showed how to create a neural network and test for its weight and prediction. R
libraries have been expanding very fast in neural networks. It will be good for you to keep
updated with the new tools being created by research community. Artificial ℐntelligence:
A Modern Approach by Stuart Russell and Peter Norvig is a great book to dig deeper into
artificial neural networks.

6.11.8 Deep Learning
We take a jump here from our generally used neural networks to very complex and large
deep graphs, which can model high level abstraction in data. Deep learning consists of
advanced algorithms having multiple layers, composed of multiple linear and non-linear
transformations. Some scholars keep the deep learning algorithms in the bucket of machine
learning methods based on learning representation of data, e.g., image, handwriting etc.

There are multiple deep learning architectures used in the field of computer vision,
automatic speech recognition, NLP, audio recognition, and other complicated areas. This
is true to taking machine learning close to artificial intelligence. Some of the well known
deep learning architecture includes deep neural nets, convolution deep neural networks,
deep belief, recurrent neural networks, and others. Lots of advancement in deep learning
is coming from neuroscience, and researchers are bringing more advanced ways to
represent data and create deep learning models to understand these representations.

Rina Dechter introduced first order deep learning and second order deep learning
in her work titled, “Learning While Searching in Constraint-Satisfaction Problems,” 1986.
University of California, Computer Science Department, Cognitive Systems Laboratory.
Recently the definition of deep learning algorithms has been expanded to include
algorithms that generally follow these guidelines:

•	 Use many layers of nonlinear processing units for feature
extraction and transformation

•	 Are based on the (unsupervised) learning of multiple levels of
features or representations of the data

Chapter 6 ■ MaChine Learning theory and praCtiCes

390

•	 Belong to the field of learning representations of data

•	 Hierarchy of concepts; earning from multiple levels of
representation corresponding to higher levels of abstraction

The architecture of deep neural networks is very complex. There can be multiple
hidden layers and advanced methods of learning. In previous discussions of neural
networks, we were focused on basic types of networks with only one hidden layer. In deep
neural networks, the layers become many-fold and the network can process at a very high
level of data abstraction.

Figure 6-68. A multi-layer deep neural network

In Figure 6-68, you can see the network has become very complicated and has
multiple hidden layers. In general, adding more layers and neurons per layer increases
the specialization of neural network to train data and decreases the performance on test
data. This points out two issues with deep neural networks:

•	 Specialization (overfitting): Too many layers of abstraction make
the model learn the training data as if there were no or very little
variation can happen to that. In these cases, the model does not
return good results on testing data.

•	 Computational cost: Adding layers and neurons costs a lot on
computational resources, both time and memory. Because of this,
deep neural networks are developed on clusters and large servers.

There are many popular architectures of neural network used in different
applications; here are some of them:

•	 Convolutional neural networks: Used in pictures and other two
dimensional data

•	 Recurrent Neural Networks: Used for time series data as they can
retain history (memory compressor)

Chapter 6 ■ MaChine Learning theory and praCtiCes

391

•	 Recursive Neural Networks: Used in natural language processing

•	 Deep Belief Networks: Probabilistic and generative models, used
for image and signal processing

There are lot of other architecture and learning algorithms. We will show a basic
example a simple multi-layer neural network using darch package in R and will also show
an example of image classification with the mxNet package.

Deep learning has been the focus of many researchers and machine learning
professionals; however R is not yet developed enough tools to run various deep learning
algorithms. Another reason for that is deep learning is so resource intensive that models
can be trained only on large clusters and not on workstations.

There are few packages out there in R that can do deep learning (by the way a neural
net with multiple hidden layers is also a deep learning framework):

•	 H2O implements feed forward neural nets and auto encoders

•	 DeepNet implements deep neural networks, deep belief
networks, and restricted Boltzmann machines

•	 mxNet implements complex deep nets for image classification
using convolutional networks

•	 darch implements deep neural nets and restricted Boltzmann
machines

Here, we discuss two examples of deep learning using R.

 1. darch for classification

Our first example is using a deep architecture to logistic model we discussed in
our regression section. The dependent variable being choice and the independent
variables being PurchaseTenure, CustomerAge, MemebershipPoints, IncomeClass,
ModeOfPayment, and CustomerPropensity.

All the continuous variables are scaled and categorical variables converted into
binary variables. For example, see the following pre- and post-transformation data
matrix.

#Pre-transformation
head(Data_Purchase_
Prediction[,c("choice","PurchaseTenure","CustomerAge","MembershipPoints",
"IncomeClass","ModeOfPayment","CustomerPropensity")])
 choice PurchaseTenure CustomerAge MembershipPoints IncomeClass
 1 999 4 55 6 4
 2 0 4 75 2 7
 3 999 10 34 4 5
 4 0 6 26 2 4
 5 999 3 38 6 7
 6 0 3 71 6 4

Chapter 6 ■ MaChine Learning theory and praCtiCes

392

 ModeOfPayment CustomerPropensity
 1 MoneyWallet Medium
 2 CreditCard VeryHigh
 3 MoneyWallet Unknown
 4 MoneyWallet Low
 5 MoneyWallet VeryHigh
 6 DebitCard High
#Post-transformation
head(train)
 dep PurchaseTenure CustomerAge MembershipPoints IncomeClass
 210877 1 0.01176471 0.7017544 0.08333333 0.625
 233397 0 0.02352941 0.1578947 0.25000000 0.500
 53282 0 0.08235294 0.7192982 0.16666667 0.750
 176631 0 0.22352941 0.6315789 0.41666667 0.500
 219592 0 0.02352941 0.2807018 0.16666667 0.500
 40929 1 0.08235294 0.1929825 0.58333333 0.625
 BankTransfer Cash CashPoints CreditCard DebitCard MoneyWallet
 210877 0 0 0 0 1 0
 233397 0 0 0 0 1 0
 53282 0 0 0 1 0 0
 176631 1 0 0 0 0 0
 219592 0 0 0 0 0 1
 40929 0 0 0 0 0 1
 Voucher High Low Medium Unknown VeryHigh
 210877 0 0 0 0 1 0
 233397 0 0 0 1 0 0
 53282 0 1 0 0 0 0
 176631 0 0 0 0 0 1
 219592 0 0 1 0 0 0
 40929 0 0 0 0 0 1
#We will us the same data as of previous example in neural network
devtools::install_github("maddin79/darch")
library(darch)
library(mlbench)
library(RANN)

#Print the model formula
form

#Apply the model using deep neural net with
deep_net <- darch(form, train,
preProc.params = list("method" = c("knnImpute")),
layers = c(0,10,30,10,0),
darch.batchSize = 1,
darch.returnBestModel.validationErrorFactor = 1,
darch.fineTuneFunction = "rpropagation",
darch.unitFunction = c("tanhUnit", "tanhUnit","tanhUnit","s

oftmaxUnit"),

Chapter 6 ■ MaChine Learning theory and praCtiCes

393

darch.numEpochs = 15,
bootstrap = T,
bootstrap.num = 500)

deep_net <-darch(form,train,
preProc.params =list(method =c("center", "scale")),
layers =c(0,10,30,10,0),
darch.unitFunction =c("sigmoidUnit", "tanhUnit","tanhUnit","softmaxUnit"),
darch.fineTuneFunction ="minimizeClassifier",
darch.numEpochs =15,
cg.length =3, cg.switchLayers =5)

#Plot the deep net
library(NeuralNetTools)
plot(deep_net,"net")

result <-darchTest(deep_net, newdata = test)
result

A good reference for darch can be found in CRAN and can be read in this short
article at http://static.saviola.de/publications/rueckert_2016.pdf.

 2. mxNet image classification

We will show a popular example for already trained image classification model. The
mxNet package comes with already trained Inception-Batch Norm Network model, which
can predict the class of real-world image.

The pre-trained model is provided separately for you. Also, the mxNet is not
available on CRAN, so install it using the following command. The following example has
been recreated from the Git repository data from the mxnet project at https://github.
com/dmlc/mxnet/tree/master/R-package and https://github.com/dahtah/imager.

install.packages("drat", repos="https://cran.rstudio.com")
drat:::addRepo("dmlc")
install.packages("mxnet")

#Please refer https://github.com/dahtah/imager
install.packages("devtools")
devtools::install_github("dahtah/imager")
library(mxnet)

#install imager for loading images

library(imager)
#load the pre-trained model
model <-mx.model.load("Inception/Inception_BN", iteration=39)

http://static.saviola.de/publications/rueckert_2016.pdf
https://github.com/dmlc/mxnet/tree/master/R-package
https://github.com/dmlc/mxnet/tree/master/R-package
https://github.com/dahtah/imager

Chapter 6 ■ MaChine Learning theory and praCtiCes

394

#We also need to load in the mean image, which is used for preprocessing
using mx.nd.load.
mean.img =as.array(mx.nd.load("Inception/mean_224.nd")[["mean_img"]])
#Load and plot the image: (Default parrot image)

#im <- load.image(system.file("extdata/parrots.png", package="imager"))
im <-load.image("Images/russia-volcano.jpg")
plot(im)

Figure 6-69. A sample volcano picture for the image recognition exercise

Now we will change this image to be able to pass it into the model.

preproc.image <-function(im, mean.image) {
crop the image
 shape <-dim(im)
 short.edge <-min(shape[1:2])
 xx <-floor((shape[1] -short.edge) /2)
 yy <-floor((shape[2] -short.edge) /2)
 cropped <-crop.borders(im, xx, yy)
resize to 224 x 224, needed by input of the model.
 resized <-resize(cropped, 224, 224)
convert to array (x, y, channel)
 arr <-as.array(resized) *255
dim(arr) <-c(224, 224, 3)
subtract the mean
 normed <-arr -mean.img

Chapter 6 ■ MaChine Learning theory and praCtiCes

395

Reshape to format needed by mxnet (width, height, channel, num)
dim(normed) <-c(224, 224, 3, 1)
return(normed)
}

#Now pass our image to pre-process
normed <-preproc.image(im, mean.img)
plot(normed)

Figure 6-70. Normalized image

The next step is to classify the image.
prob <- predict(model, X=normed)
#We can extract the top-5 class index.

max.idx <- order(prob[,1], decreasing = TRUE)[1:5]
max.idx
 [1] "981" "980" "971" "673" "985"
synsets <-readLines("Inception/synset.txt")

#And let us print the corresponding lines:

print(paste0("Predicted Top-classes: ", synsets[as.numeric(max.idx)]))
 [1] "Predicted Top-classes: n09472597 volcano"
 [2] "Predicted Top-classes: n09468604 valley, vale"
 [3] "Predicted Top-classes: n09193705 alp"
 [4] "Predicted Top-classes: n03792972 mountain tent"
 [5] "Predicted Top-classes: n11879895 rapeseed"

Chapter 6 ■ MaChine Learning theory and praCtiCes

396

You can see the deep learning algorithm has detected the volcano in the image. You
can repeat this experiment with other images and see what images classification you get.
Also note that you need to be updated with latest version on Git.

6.11.9 Conclusion
Neural networks are very powerful tools that can learn from any dataset without any
assumptions on input data. Further, the new research in their architecture and learning
methods has given rise to deep neural networks. This has enabled the whole field of deep
learning in various fields, specifically the fields having high volume and high abstraction
in data. Deep neural nets are making possible computer vision, speech recognition, gene
matching, and other complex problems.

In the next section, we will delve into the world of unstructured data. You will see
how some of the simple techniques could transform a completely unstructured textual
data to matrix of numerical observations, which then could be used with many other
algorithms for classification, clustering, and so on.

6.12 Text-Mining Approaches
In recent years, the text data has been increased to manifold. Particularly, the digitally
generated or digitally stored text data has increased a lot. A big part of big data world is
this text data is generated and stored in large volumes. Another important aspect of text
data is that now the data can be generated by anybody and have implications on business.

For example, a bad product review can damage the market image of the product or
a social media post about a social cause can create a campaign. In all these cases, text
data plays a pivotal role of influencing behavior. In the 21st century, it becomes important
for organizations to invest in text data and understand what insights it has on consumer
behavior or product performance.

Brandwatch (https://www.brandwatch.com/2016/05/44-twitter-stats-2016/)
published data around Twitter statics; let’s look at some of it.

•	 Twitter has 310 million active users (each user is a source of text data)

•	 83% of world leaders are on Twitter (leaders tweets are text data
that influences markets, people, policies, and so on)

•	 500 million tweets are sent daily (isn’t this big data?)

•	 65.8% of U.S. companies with 100+ employees use Twitter for
marketing (how can we use this data to manage and outshine in
the marketing programs?)

•	 80% of Twitter users have mentioned a brand in a tweet (doesn’t
this compel us to look at the treasure of information hidden in
text data?)

These statistics tell us that text data is important to analyze in today's world. Being
massive in nature, we need advanced machine learning methods and enhanced natural
language processing to harness the power of text data. Some statistics suggest 80% of the
information we store today is in text format, signifying the commercial value of text mining.

https://www.brandwatch.com/2016/05/44-twitter-stats-2016/

Chapter 6 ■ MaChine Learning theory and praCtiCes

397

Formally, text analysis involves information retrieval, lexical analysis to study
word frequency distributions, tagging/annotation, information extraction, data mining
techniques including link and association analysis, visualization, pattern recognition and
predictive analytics. The end goal is to use unstructured data in text, and convert that into
data for analysis by using powerful techniques of Natural Language Processing and other
mathematical methods (e.g., frequency plots, Singular Value Decomposition, etc.).

In this section, we will introduce basic of text analytics using R. Toward the end of
chapter, we will show an example of how to use Microsoft API to unlock powerful text
mining tools that are currently not available in R.

6.12.1 Introduction to Text Mining
The explosion in amount of unstructured data has led to numerous use cases on text
mining. The ability to process textual data really fast and convert it into a numeric feature
matrix has opened up a plethora of machine learning algorithms to be used on such data.
The field of Natural Language Processing (NLP), though a vast field, could be thought of
as a subfield of ML. In an alternative view, the text mining approaches help in turning text
into data for analysis, via the application of NLP and analytical methods.

In the following section, we will go a little deeper into text mining concepts like
text categorization, summarization, TF-IDF, Part of Speech (POS) tagging, and simple
visualization using WordCloud.

We will use the Amazon Fine food reviews dataset for couple of text mining
approaches.

Let’s start by looking at the data briefly and then choose a smaller subset for all the
demonstrations

 a. Data Summary

library(data.table)

fine_food_data <-read.csv("Dataset/Food_Reviews.csv",
stringsAsFactors =FALSE)
fine_food_data$Score <-as.factor(fine_food_data$Score)

str(fine_food_data[-10])
 'data.frame': 35173 obs. of 9 variables:
 $ Id : int 1 2 3 4 5 6 7 8 9 10 ...
 $ ProductId : chr "B001E4KFG0" "B00813GRG4" "B000LQOCH0"
"B000UA0QIQ" ...
 $ UserId : chr "A3SGXH7AUHU8GW" "A1D87F6ZCVE5NK"
"ABXLMWJIXXAIN" "A395BORC6FGVXV" ...
 $ ProfileName : chr "delmartian" "dll pa" "Natalia Corres
\"Natalia Corres\"" "Karl" ...
 $ HelpfulnessNumerator : int 1 0 1 3 0 0 0 0 1 0 ...
 $ HelpfulnessDenominator: int 1 0 1 3 0 0 0 0 1 0 ...
 $ Score : Factor w/ 5 levels "1","2","3","4",..: 5 1 4 2 5
4 5 5 5 5 ...

Chapter 6 ■ MaChine Learning theory and praCtiCes

398

 $ Time : int 1303862400 1346976000 1219017600 1307923200
1350777600 1342051200 1340150400 1336003200 1322006400 1351209600 ...
 $ Summary : chr "Good Quality Dog Food" "Not as Advertised"
"\"Delight\" says it all" "Cough Medicine" ...
Last column - Customer review in free text

head(fine_food_data[,10],2)
 [1] "I have bought several of the Vitality canned dog food products and
have found them all to be of good quality. The product looks more like a
stew than processed meat and it smells better. My Labrador is finicky and
she appreciates this product better than most."
 [2] "Product arrived labeled as Jumbo Salted Peanuts...the peanuts were
actually small sized unsalted. Not sure if this was an error or if the
vendor intended to represent the product as \"Jumbo\"."

 b. Data Preparation

library(caTools)

Randomly split data and use only 10% of the dataset
set.seed(90)
split =sample.split(fine_food_data$Score, SplitRatio =0.10)

fine_food_data =subset(fine_food_data, split ==TRUE)
select_col <-c("Id","HelpfulnessNumerator","HelpfulnessDenominator","Score"
,"Summary","Text")
fine_food_data_selected <-fine_food_data[,select_col]

6.12.2 Text Summarization
This applies the method of Gong & Liu (2001) for generic text summarization of text
document D via latent semantic analysis:

 1. Decompose the document D into individual sentences and
use these sentences to form the candidate sentence set S and
set k = 1.

 2. Construct the terms by sentences matrix A for the
document D.

 3. Perform the SVD on A to obtain the singular value matrix,
and the right singular vector matrix V^t. In the singular vector
space, each sentence i is represented by the column vector.

 4. Select the k'th right singular vector from matrix V^t.

 5. Select the sentence that has the largest index value with the
k'th right singular vector and include it in the summary.

Chapter 6 ■ MaChine Learning theory and praCtiCes

399

 6. If k reaches the predefined number, terminate the operation;
otherwise, increment k by 1 and go back to Step 4.

(Cited directly from Gong & Liu, 2001, p. 21)[9]
Let’s see how good the summarization works here in our Amazon fine food review

dataset. In order to compare our results, we will use the summary attribute in the dataset
and do a qualitative assessment of the output.

 a. Original Text
fine_food_data_selected[2,6]

[1] "McCann's Instant Oatmeal is great if you must have your
oatmeal but can only scrape together two or three minutes to
prepare it. There is no escaping the fact, however, that even
the best instant oatmeal is nowhere near as good as even a
store brand of oatmeal requiring stovetop preparation. Still,
the McCann's is as good as it gets for instant oatmeal. It's even
better than the organic, all-natural brands I have tried. All the
varieties in the McCann's variety pack taste good. It can be
prepared in the microwave or by adding boiling water so it is
convenient in the extreme when time is an issue.

McCann's use of actual cane sugar instead of high fructose
corn syrup helped me decide to buy this product. Real sugar
tastes better and is not as harmful as the other stuff. One thing
I do not like, though, is McCann's use of thickeners. Oats plus
water plus heat should make a creamy, tasty oatmeal without
the need for guar gum. But this is a convenience product.
Maybe the guar gum is why, after sitting in the bowl a while,
the instant McCann's becomes too thick and gluey."

 b. Summary generated by genericSummary

library(LSAfun)
genericSummary(fine_food_data_selected[2,6],k=1)

[1] " There is no escaping the fact, however, that even the best
instant oatmeal is nowhere near as good as even a store brand
of oatmeal requiring stovetop preparation."

 c. Multiple summaries generated by genericSummary

library(LSAfun)
genericSummary(fine_food_data_selected[2,6],k=2)

[1] " There is no escaping the fact, however, that even the best
instant oatmeal is nowhere near as good as even a store brand
of oatmeal requiring stovetop preparation."

Chapter 6 ■ MaChine Learning theory and praCtiCes

400

 [2] " It can be prepared in the microwave or by adding boiling
water so it is convenient in the extreme when time is an issue."

 d. Summary from the dataset

fine_food_data_selected[2,5]

 [1] "Best of the Instant Oatmeals"

Observe the striking similarity of context of the text and the
summary generated by the function. Text summarization has
many wide ranging application. Google uses it to display the
most relevant piece of information while returning the query
results from a given web page, a lot of NLP approaches deal
with text summary rather than processing the large chuck of
textual data, Facebook could build use cases to automatically
summarize the user post(ensuring the anonymity) to target
the right ads and many more such applications.

6.12.3 TF-IDF
Term Frequency/Inverse Term frequency (TF_IDF) is the frequency of words, which
is key in terms of transforming the bag of words into numeric matrix, thus allowing for
many ML algorithms to be applied to them.

 a. Term frequency tf
i,j

 counts the number of occurrences n
i,j

 of
a term t

i
 in a document d

j
. In the case of normalization, the

term frequency tf
i,j

 is divided by ∑kn
k,j

.

 b. Inverse document frequency idf
i
, for a term t_i is defined as

idfi
i

D

d t d
=

Î{ }
log2

where |D| denotes the total number of documents and
d t diÎ{ } is the number of documents where the term t

i

appears.

Intuitively, if you see, ℐ has two properties:

•	 Certain terms that occur too frequently have little power in
determining the reliance of a document. idf

i
 weigh down the too

frequently occurring word.

•	 The terms that occurs just few times in a document has more
relevance. idf

i
 weigh up the less frequently occurring word.

Chapter 6 ■ MaChine Learning theory and praCtiCes

401

For example, in a collection of document related to sport, the
word “game” might be too frequent word, however any article
with word “cricket” might show a high relevance to classify the
article into a particular game.

 c. Term frequency/inverse document frequency(TF-IDF) is
the product of tf idfi j i, ×

Let’s create a tf-idf matrix from the bag-of-word approach in text mining. A tf-idf
matrix is a numerical representation of a collection of documents (represented by row)
and words contained in it (represented by columns).

library(tm)
 Warning: package 'tm' was built under R version 3.2.3
 Loading required package: NLP
fine_food_data_corpus <-VCorpus(VectorSource(fine_food_data_selected$Text))

#Standardize the text - Pre-Processing

fine_food_data_text_dtm <-DocumentTermMatrix(fine_food_data_corpus, control
=list(
tolower =TRUE,
removeNumbers =TRUE,
stopwords =TRUE,
removePunctuation =TRUE,
stemming =TRUE
))

save frequently-appearing terms(more than 500 times) to a character
vector
fine_food_data_text_freq <-findFreqTerms(fine_food_data_text_dtm, 500)

create DTMs with only the frequent terms
fine_food_data_text_dtm <-fine_food_data_text_dtm[, fine_food_data_text_
freq]

tm::inspect(fine_food_data_text_dtm[1:5,1:10])
 <<DocumentTermMatrix (documents: 5, terms: 10)>>
 Non-/sparse entries: 8/42
 Sparsity : 84%
 Maximal term length: 6
 Weighting : term frequency (tf)

 Terms

Chapter 6 ■ MaChine Learning theory and praCtiCes

402

 Docs also bag buy can coffee dog eat find flavor food
 1 1 0 0 0 0 0 0 0 0 0
 2 0 0 1 2 0 0 0 0 0 0
 3 0 0 0 0 2 0 0 0 0 0
 4 0 0 0 0 0 0 1 1 0 0
 5 0 0 0 0 0 0 0 1 2 0
#Create a tf-idf matrix
fine_food_data_tfidf <-weightTfIdf(fine_food_data_text_dtm, normalize
=FALSE)

tm::inspect(fine_food_data_tfidf[1:5,1:10])
 <<DocumentTermMatrix (documents: 5, terms: 10)>>
 Non-/sparse entries: 8/42
 Sparsity : 84%
 Maximal term length: 6
 Weighting : term frequency - inverse document frequency (tf-idf)

 Terms
 Docs also bag buy can coffee dog eat find flavor
 1 3.04583 0 0.000000 0.000000 0.00000 0 0.000000 0.000000 0.000000
 2 0.00000 0 2.635882 4.525741 0.00000 0 0.000000 0.000000 0.000000
 3 0.00000 0 0.000000 0.000000 5.82035 0 0.000000 0.000000 0.000000
 4 0.00000 0 0.000000 0.000000 0.00000 0 2.960361 2.992637 0.000000
 5 0.00000 0 0.000000 0.000000 0.00000 0 0.000000 2.992637 4.024711
 Terms
 Docs food
 1 0
 2 0
 3 0
 4 0
 5 0

6.12.4 Part-of-Speech (POS) Tagging
Parts of speech are useful features for finding named entities like people or organizations
in a text and other information extraction tasks. This could help in classifying named
entities in text into categories like persons, company, locations, expression of time, and so
on. This is found in many applications in molecular biology, bioinformatics, and medical
communities.

Chapter 6 ■ MaChine Learning theory and praCtiCes

403

We will use the Amazon food review dataset to extract POS tags using R. Figure 6-71
shows the mappings of the abbreviations of the PoS produced by the R script to the part-
of-speech (POS) in the English language.

Figure 6-71. Part-of-speech mapping

 a. Pre-processing

library("NLP")
library(tm)

fine_food_data_corpus <-Corpus(VectorSource(fine_food_data_
selected$Text[1:3]))
fine_food_data_cleaned <-tm_map(fine_food_data_corpus, PlainTextDocument)

#tolwer
fine_food_data_cleaned <-tm_map(fine_food_data_cleaned, tolower)
fine_food_data_cleaned[[1]]
 [1] "twizzlers, strawberry my childhood favorite candy, made in lancaster
pennsylvania by y & s candies, inc. one of the oldest confectionery firms
in the united states, now a subsidiary of the hershey company, the company
was established in 1845 as young and smylie, they also make apple licorice
twists, green color and blue raspberry licorice twists, i like them all

i keep it in a dry cool place because is not recommended it to put
it in the fridge. according to the guinness book of records, the longest
licorice twist ever made measured 1.200 feet (370 m) and weighted 100 pounds

Chapter 6 ■ MaChine Learning theory and praCtiCes

404

(45 kg) and was made by y & s candies, inc. this record-breaking twist
became a guinness world record on july 19, 1998. this product is kosher!
thank you"
fine_food_data_cleaned <-tm_map(fine_food_data_cleaned, removeWords,
stopwords("english"))
fine_food_data_cleaned[[1]]
 [1] "twizzlers, strawberry childhood favorite candy, made lancaster
pennsylvania y & s candies, inc. one oldest confectionery firms united
states, now subsidiary hershey company, company established 1845
young smylie, also make apple licorice twists, green color blue raspberry
licorice twists, like

 keep dry cool place recommended
put fridge. according guinness book records, longest licorice twist
ever made measured 1.200 feet (370 m) weighted 100 pounds (45 kg) made y
& s candies, inc. record-breaking twist became guinness world record july
19, 1998. product kosher! thank "
fine_food_data_cleaned <-tm_map(fine_food_data_cleaned, removePunctuation)
fine_food_data_cleaned[[1]]
 [1] "twizzlers strawberry childhood favorite candy made lancaster
pennsylvania y s candies inc one oldest confectionery firms united
states now subsidiary hershey company company established 1845 young
smylie also make apple licorice twists green color blue raspberry licorice
twists like br br keep dry cool place recommended put fridge
according guinness book records longest licorice twist ever made
measured 1200 feet 370 m weighted 100 pounds 45 kg made y s candies inc
recordbreaking twist became guinness world record july 19 1998 product
kosher thank "
fine_food_data_cleaned <-tm_map(fine_food_data_cleaned, removeNumbers)
fine_food_data_cleaned[[1]]
 [1] "twizzlers strawberry childhood favorite candy made lancaster
pennsylvania y s candies inc one oldest confectionery firms united
states now subsidiary hershey company company established young
smylie also make apple licorice twists green color blue raspberry
licorice twists like br br keep dry cool place recommended put
fridge according guinness book records longest licorice twist ever
made measured feet m weighted pounds kg made y s candies inc
recordbreaking twist became guinness world record july product kosher
thank "
fine_food_data_cleaned <-tm_map(fine_food_data_cleaned, stripWhitespace)
fine_food_data_cleaned[[1]]
 [1] "twizzlers strawberry childhood favorite candy made lancaster
pennsylvania y s candies inc one oldest confectionery firms united states
now subsidiary hershey company company established young smylie also make
apple licorice twists green color blue raspberry licorice twists like br br
keep dry cool place recommended put fridge according guinness book records
longest licorice twist ever made measured feet m weighted pounds kg made y s
candies inc recordbreaking twist became guinness world record july product
kosher thank "

Chapter 6 ■ MaChine Learning theory and praCtiCes

405

 b. PoS extraction

library(openNLP)
 Warning: package 'openNLP' was built under R version 3.2.3
library(NLP)

fine_food_data_string <-NLP::as.String(fine_food_data_cleaned[[1]])

sent_token_annotator <-Maxent_Sent_Token_Annotator()
word_token_annotator <-Maxent_Word_Token_Annotator()
fine_food_data_string_an <-annotate(fine_food_data_string, list(sent_token_
annotator, word_token_annotator))

pos_tag_annotator <-Maxent_POS_Tag_Annotator()
fine_food_data_string_an2 <-annotate(fine_food_data_string, pos_tag_
annotator, fine_food_data_string_an)

 Variant with POS tag probabilities as (additional) features.
head(annotate(fine_food_data_string, Maxent_POS_Tag_Annotator(probs =TRUE),
fine_food_data_string_an2))
 id type start end features
 1 sentence 1 524 constituents=<<integer,77>>
 2 word 1 9 POS=NNS, POS=NNS, POS_prob=0.7822268
 3 word 11 20 POS=VBP, POS=VBP, POS_prob=0.3488425
 4 word 22 30 POS=NN, POS=NN, POS_prob=0.8055908
 5 word 32 39 POS=JJ, POS=JJ, POS_prob=0.6114238
 6 word 41 45 POS=NN, POS=NN, POS_prob=0.9833723
 Determine the distribution of POS tags for word tokens.
fine_food_data_string_an2w <-subset(fine_food_data_string_an2, type ==
"word")
tags <-sapply(fine_food_data_string_an2w$features, `[[`, "POS")
table(tags)
 tags
 , CC CD IN JJ JJS NN NNS RB VB VBD VBG VBN VBP VBZ
 1 2 1 1 10 2 28 9 5 1 6 2 4 2 3
plot(table(tags), type ="h", xlab="Part-Of_Speech", ylab ="Frequency")

Chapter 6 ■ MaChine Learning theory and praCtiCes

406

 Extract token/POS pairs (all of them)
head(sprintf("%s/%s", fine_food_data_string[fine_food_data_string_an2w],
tags),15)
 [1] "twizzlers/NNS" "strawberry/VBP" "childhood/NN"
 [4] "favorite/JJ" "candy/NN" "made/VBD"
 [7] "lancaster/NN" "pennsylvania/NN" "y/RB"
 [10] "s/VBZ" "candies/NNS" "inc/CC"
 [13] "one/CD" "oldest/JJS" "confectionery/NN"

Noun (NN) seems to be the frequently used part-of-speech, followed by Adjectives
(JJ) in this data. It makes a lot of intuitive sense, since in review related data, people talk
about restaurants and food and their characteristics like “good,” “bad,” “awesome,” and so
on. Such POS identification could help in better understanding the reviews than reading
the entire textual information.

6.12.5 Word Cloud
The word cloud helps in visualizing the words most frequently being used in the reviews:

library(SnowballC)
library(wordcloud)

fine_food_data_corpus <-VCorpus(VectorSource(fine_food_data_selected$Text))

fine_food_data_text_tdm <-TermDocumentMatrix(fine_food_data_corpus, control
=list(
tolower =TRUE,

Figure 6-72. Part of speech frequency

Chapter 6 ■ MaChine Learning theory and praCtiCes

407

removeNumbers =TRUE,
stopwords =TRUE,
removePunctuation =TRUE,
stemming =TRUE
))
wc_tdm <- rollup(fine_food_data_text_tdm,2,na.rm=TRUE,FUN=sum)
matrix_c <-as.matrix(wc_tdm)
wc_freq <-sort(rowSums(matrix_c))
wc_tmdata <-data.frame(words=names(wc_freq), wc_freq)

wc_tmdata <-na.omit(wc_tmdata)
wordcloud (tail(wc_tmdata$words,100), tail(wc_tmdata$wc_freq,100), random.
order=FALSE, colors=brewer.pal(8, "Dark2"))

Figure 6-73. Word cloud using Amazon Food Review dataset

WordCloud is a simple exploratory tool to understand the general trend in the word
usage, which could further help in building intuitions and insights.

6.12.6 Text Analysis: Microsoft Cognitive Services
In this section, we will introduce you to the powerful world of text analytics by using a
third-party API called from within R. We will be using Microsoft Cognitive Services API to
show some real-time analysis of text from the Twitter feed of a news agency.

Chapter 6 ■ MaChine Learning theory and praCtiCes

408

 ■ Note Microsoft Cognitive services are chosen to show some real-world examples of
text analytics. We do not endorse any third-party tool or services.

Microsoft Cognitive Services is a machine intelligence service from Microsoft. It
was previously known as Project Oxford. This service provide a cloud-based APIs for
developers to do lot of high-end functions like face recognition, speech recognition,
text mining, video feed analysis, and many others. We will be using their free developer
service to show some text analytics features, which will include the following;

•	 Sentiment analysis: What is the sentiment of tweet? Is it positive
or negative or neutral?

•	 Topic detection: What the topic of discussion is a document?

•	 Language detection: Can you just provide something written and
it shows you which language it is?

•	 Summarization: Can we automatically summarize a big
document to make it manageable to read?

We will be using Twitter feeds for sentiment analysis and topic detection, some
random text from a language for language detection, and an article to summarize it.

To start with this example, we need to set up an account with Microsoft cognitive
service, and get an API key to work with their REST API. The key can be obtained by
registering at https://www.microsoft.com/cognitive-services/.

You will also need a Twitter developer account to set up application in R to extract
tweets. You can get a Twitter API key from registering at https://apps.twitter.com/.

First we will set up the TwitterR package by using API Key we got from the Twitter
apps. The twitterR() package provides an interface to the Twitter web API.

library("stringr")
library("dplyr")

library("twitteR")
#getTwitterOAuth(consumer_key, consumer_secret)
consumerKey <- "INSERT KEY"
consumerSecret <- "INSERT SECRET CODE"

#Below two tokens need to be used when you want to pull tweets from your own
account
accessToken <- "INSERT ACCESS TOKEN”
accessTokenSecret <- "INSERT SECRET CODE"

https://www.microsoft.com/cognitive-services/
https://apps.twitter.com/

Chapter 6 ■ MaChine Learning theory and praCtiCes

409

setup_twitter_oauth(consumerKey, consumerSecret,accessToken,accessTokenSecr
et)
 [1] "Using direct authentication"
kIgnoreTweet <- "update:|nobot:"

GetTweets <-function(handle, n =1000) {

 timeline <-userTimeline(handle, n = n)
 tweets <-sapply(timeline, function(x) {
c(x$getText(), x$getCreated())
 })
 tweets <-data.frame(t(tweets))
names(tweets) <-c("text.orig", "created.orig")

 tweets$text <-tolower(tweets$text.orig)
 tweets$created <-as.POSIXct(as.numeric(as.vector(tweets$created.orig)),
origin="1970-01-01")

arrange(tweets, created)
}

handle <- "@TimesNow"
tweets <-GetTweets(handle, 100)

#Store the tweets as used in the book for future reproducibility
write.csv(tweets,"Dataset/Twitter Feed From TimesNow.csv",row.names =FALSE)
tweets[1:5,]

text.orig
 1 Procedures for this are at DGMO level which have been activated:
Def Min Parrikar on soldier who inadvertently cros<U+0085> https://t.co/
dUx77VDXGj
 4 IN PICS: Union Minister Venkaiah Naidu
pays tribute to Mahatma Gandhi #GandhiJayanti https://t.co/7gbSV4hHTN
 5 IN PICS: Union Minister Venkaiah Naidu flags
off the 'Swachhta Rally' from India Gate, Delhi https://t.co/X0w0xJRoSG
 created.orig
 1 1475379487
 2 1475380198
 3 1475380803
 4 1475380922
 5 1475381398

Now we have set up our Twitter account to pull feeds to our system. Now similarly
let's set up a Microsoft cognitive services account. The package used for calling Microsoft
services is mscstexta4r. The R Client for the Microsoft Cognitive Services Text Analytics
REST API, including Sentiment Analysis, Topic Detection, Language Detection, and Key
Phrase Extraction. An account must be registered at the Microsoft Cognitive Services web

Chapter 6 ■ MaChine Learning theory and praCtiCes

410

site https://www.microsoft.com/cognitive-services/ in order to obtain a (free) API
key. Without an API key, this package will not work properly.

#install.packages("mscstexta4r")
library(mscstexta4r)
 Warning: package 'mscstexta4r' was built under R version 3.2.5
#Put the authentication APi keys you got from Microsoft

Sys.setenv(MSCS_TEXTANALYTICS_URL ="https://westus.api.cognitive.microsoft.
com/text/analytics/v2.0/")
Sys.setenv(MSCS_TEXTANALYTICS_KEY ="YOUR KEY")

#Initialize the service
textaInit()

Now one more input we need is a news article to show summarization. We are using
this article: http://www.yourarticlelibrary.com/essay/essay-on-india-after-
independence/41354/.

Load Packages
require(tm)
require(NLP)
require(openNLP)

#Read the Forbes article into R environment
y <-paste(scan("Dataset/india_after_independence.txt", what="character",
sep=" "),collapse=" ")

convert_text_to_sentences <-function(text, lang ="en") {
Function to compute sentence annotations using the Apache OpenNLP Maxent
sentence detector employing the default model for language 'en'.
 sentence_token_annotator <-Maxent_Sent_Token_Annotator(language = lang)

Convert text to class String from package NLP
 text <-as.String(text)

Sentence boundaries in text
 sentence.boundaries <-annotate(text, sentence_token_annotator)

Extract sentences
 sentences <-text[sentence.boundaries]

return sentences
return(sentences)
}

Convert the text into sentences
article_text =convert_text_to_sentences(y, lang ="en")

https://www.microsoft.com/cognitive-services/
http://www.yourarticlelibrary.com/essay/essay-on-india-after-independence/41354/
http://www.yourarticlelibrary.com/essay/essay-on-india-after-independence/41354/

Chapter 6 ■ MaChine Learning theory and praCtiCes

411

Now that we have all the inputs ready, we will show the four major analytics items as
listed previously in our sample data.

 1. Sentiment Analysis

Sentiment analysis will tell us what kind of emotions the
tweets are carrying. The Microsoft API returns a value
between 0 and 1, where 1 means highly positive sentiment
while 0 means highly negative sentiment.

document_lang <-rep("en", length(tweets$text))
tryCatch({

Perform sentiment analysis
output_1 <-textaSentiment(
documents = tweets$text, # Input sentences or documents
languages = document_lang
"en"(English, default)|"es"(Spanish)|"fr"(French)|"pt"(Portuguese)
)

}, error = function(err) {

Print error
geterrmessage()

})
merged <-output_1$results

#Order the tweets with sentiment score
ordered_tweets <-merged[order(merged$score),]

#Top 5 negative tweets
ordered_tweets[1:5,]

text
 7
pakistan has been completely cornered: shrikant sharma https://t.co/
ujdux8z3er
 99 hillary clinton says wave of
shootings show need to protect children (pti) https://t.co/hptj0v8eja
 6 southern california on heightened alert until tuesday following
increased possibility of major earthquake:guv's office of emergency services
 10 china yet again blocks india's bid at the un to ban jaish-e-mohammad
chief masood azhar by putting a technical hold https://t.co/yzomd77htr
 100 #update
#baramulla terror attack- 1 bsf jawan martyred, 1 jawan injured: reports
 score
 7 0.1440058
 99 0.1752440

Chapter 6 ■ MaChine Learning theory and praCtiCes

412

 6 0.1770731
 10 0.1947241
 100 0.2508526
#Top 5 Positive
ordered_tweets[95:100,]

text
 73 the artists<U+0092> practice,the curator<U+0092>s vision,the
commerce of the auction house,the best of the indian art world on<U+0085>
https://t.co/gbxzgzydzt
 37 the artists<U+0092> practice,the curator<U+0092>s vision,the
commerce of the auction house,the best of the indian art world on<U+0085>
https://t.co/tqx07ytmku
 43 prime minister narendra modi extends new year
greetings to jewish community around the world https://t.co/xzpoqq4npd
 54 china provides pak terror shield, stalls masood azhar<U+0092>s entry
to terror list. #chinatopakrescue\n\ntune in,join special broadcast on @
timesnow
 90 founder of sulabh international bindeshwar pathak presents a
book 'mahatma gandhi's life in colour' to pm modi https://t.co/r1zsqwt93r
 9 2nd test, day 3: new
zealand all out for 204 in 1st innings, india lead by 112 runs #indvsnz
 score
 73 0.9468260
 37 0.9484612
 43 0.9579207
 54 0.9739059
 90 0.9759967
 9 0.9879231

The sentiment analyzer has worked really well on the latest
100 tweets from the @TimesNow handle. You can do multiple
things with this same application, for instance measure
how many positive news and negative news ran on the
leading news channel. This can give you a glimpse of general
sentiment in the country.

 2. Topic detection

For topic detection, let’s try to see what @CNN official Twitter
handle talked about in their last 100 tweets. The topic
detection algorithm will try to read last 100 tweets as if it were
a conversation and will bring the topic discussed in those
transcripts (or tweets).

Chapter 6 ■ MaChine Learning theory and praCtiCes

413

handle <- "@CNN"
topic_text <-GetTweets(handle, 150)
write.csv(topic_text,"Dataset/Twitter Feed from CNN.csv",row.names=FALSE)

tryCatch({

Detect top topics in group of documents
output_2 <-textaDetectTopics(
 topic_text$text, # At least 100 documents (English only)
stopWords =NULL, # Stop word list (optional)
topicsToExclude =NULL, # Topics to exclude (optional)
minDocumentsPerWord =NULL, # Threshold to exclude rare topics (optional)
maxDocumentsPerWord =NULL, # Threshold to exclude ubiquitous topics
(optional)
resultsPollInterval = 30L, # Poll interval (in s, default: 30s, use 0L for
async)
resultsTimeout = 1200L, # Give up timeout (in s, default: 1200s = 20mn)
verbose =FALSE# If set to TRUE, print every poll status to stdout
)

}, error = function(err) {

Print error
geterrmessage()

})
output_2
 textatopics [https://westus.api.cognitive.microsoft.com/text/analytics/
v2.0/topics?]
 status: Succeeded
 operationId: 726edfccabdd4acb87a90716d7165343
 operationType: topics
 topics (first 20):

 keyPhrase score
 --------------------- -------
 clinton 17

 trump 15

 donald trump 10

 water 8

 rudy giuliani 8

Chapter 6 ■ MaChine Learning theory and praCtiCes

414

 hillary clinton 7

 president 5

 trump tax 4

 reporter 4

 water monitor lizards 4

 famous parks 4

 beer corpse 4

 iconic talking bear 4

 teddy ruxpin 4

 daymond john 3

 police officer 3

 president obama 3

 bernie sanders 3

 defend trump 3

 tax 3

The topic detection in tweets list tells us that the CNN news
channel was stalking about U.S. presidential candidates
Donald Trump and Hillary Clinton. It also talks about school
and students.

 3. Language detection

Digital content nowadays is getting created in multiple
languages. To broaden the scope of text mining, we need to
automatically identify written languages and create collective
senses out of them. Language detection methods helps
us with identifying and translating languages. Here, I am
creating five messages in five different language using Google
translator. You can create your own examples.

Chapter 6 ■ MaChine Learning theory and praCtiCes

415

Figure 6-74. Language detection input

#1-ARABIC, 2-POTUGESE, 3- ENGLISH , 4- CHINESE AND 5 - HINDI

lang_detect<-c("Ø£Ù†Ø§ Ø1Ø§Ù„Ù... Ø§Ù„Ø¨ÙŠØ§Ù†Ø§Øª","Eu sou um cientista de
dados","I am a data scientist","æˆ‘æ˜¯ä¸•ä¸ªç§‘å ¦å®¶çš„æ•°æ®","
à¤®à¥ˆà¤‚ à¤•à¤• à¤¡à¥‡à¤Ÿà¤¾ à¤μà¥ˆà¤œà¥•à¤•à¤¾à¤¨à¤¿à¤• à¤1à¥‚à¤•")

tryCatch({

Detect top topics in group of documents
Detect languages used in documents
output_3 <-textaDetectLanguages(
 lang_detect, # Input sentences or documents
numberOfLanguagesToDetect = 1L # Default: 1L
)

}, error = function(err) {

Print error
geterrmessage()

})
output_3
 texta [https://westus.api.cognitive.microsoft.com/text/analytics/v2.0/langu
ages?numberOfLanguagesToDetect=1]

Figure 6-75. Language detection output

Chapter 6 ■ MaChine Learning theory and praCtiCes

416

Microsoft has been able to detect all the language correctly. This service is very
powerful when we know content about the same topic gets created in different languages
and how to bring them into the same platform.

 4. Summarization

For summarization we will use the article we loaded from the web site. The
algorithm will try to contextually mine the document sentence by sentence and then will
create an ordered list of sentences from the document that summarizes them.

article_lang <-rep("en", length(article_text))
tryCatch({

Get key talking points in documents
 output_4 <-textaKeyPhrases(
documents = article_text, # Input sentences or documents
languages = article_lang
"en"(English, default)|"de"(German)|"es"(Spanish)|"fr"(French)|"ja"(Japan
ese)
)

}, error = function(err) {

Print error
geterrmessage()

})

#Print the top 5 summary
output_4$results[1:5,1]
 [1] "While some have a high opinion of Indiaâ<U+0080><U+0099>s growth story
since its independence, some others think the countryâ<U+0080><U+0099>s
performance in the six decades has been abysmal."
 [2] "Itâ<U+0080><U+0099>s arguably true that the Five-Year Plans did target
specific sectors in order to quicken the pace of development, yet the
outcome hasnâ<U+0080><U+0099>t been on expected lines."
 [3] "And, the country is taking its own sweet time to catch up with the
developed world."
 [4] "All efforts are frustrated by lopsided strategies and inept
implementation of policies."
 [5] "India is the worldâ<U+0080><U+0099>s largest democracy."

The summarization states that the article talks about India and its way toward
development. It also emphasizes the democracy in India.

In this chapter, we say how powerful the text analytics is for monitoring human
behavior. We learned the basics in R and learned to use powerful APIs. You can explore
more in the field of NLP.

Chapter 6 ■ MaChine Learning theory and praCtiCes

417

6.12.7 Conclusion
We saw an opportunity to convert poorly structured set of character streams and batches
of data into a meaningful set of information using text mining based preprocessing
and NLP algorithm-based model building. Though text mining is most appropriately
placed under Natural Language Processing (NLP), which itself is considered a subfield of
machine learning. The algorithms used for text summarization, part-of-speech tagging,
uses statistical techniques heavily.

We now move into the final topic of the chapter, where we will discuss the most
contemporary ideas of making machine learning algorithms more suitable to work on
streams of data, other words, algorithms that could learn from the continuous streams of
data as they comes into the system instead of using a batch of training data.

6.13 Online Machine Learning Algorithms
In many practical machine learning models, adapting to the changing data in the real world
is a critical requirement. There are two possibilities for tackling such changing needs:

•	 Manually update the model frequently in a periodic manner
(maybe once in a week, month or year) depending on how fast
and how many changes take place in the business where the
model is deployed once. Such as with medical diagnostics for
cancer prediction. As you would expect, the type of cancer is not
evolving very quickly with time. So, such a model could remain
for a long time, even if there are no updates. However, when some
new data from a cancer patient comes in, it’s possible to manually
update the model and deploy it back into the system.

•	 Update the model in real-time as the data is flowing in the system.
For example, if Google completely moves to a machine learning
model-based search engine, then the currently used heuristic
algorithm, it might adapt on the go with search queries coming
from the users. Figure 6-76 shows the process of online updates as
the new data stream arrives into the system.

Chapter 6 ■ MaChine Learning theory and praCtiCes

418

Figure 6-76 shows how the predictor takes the continuous input data stream and
learns from it and the feedback update happens to the learning model.

There are many benefits and challenges that come with such online real-time-based
learning methods, notably:

•	 Efficient and space optimized: Since there is no need to pass a large
amount of data as a batch to the learning model, we could train the
model with one observation as a time and update the model. This
brings speed of model training and optimized storage. Discard the
data if it doesn't improve the model performance.

•	 Difficult to create a pipeline: Creating such an online learning
data pipeline is a challenging task. In one hand, if the volume
and velocity of data is high, training the model could become a
bottleneck. However, if the model pipeline is controlled, a lot of
storage would be required.

•	 Model evaluation is hard: Unlike the batch processing where we
had a controlled training and testing dataset, wherein testing data
could be used to evaluate the model, here with the online data,
it’s not possible. At any given instance we don't know if the model
has seen enough different types of observations to be able to truly
perform as per the expectation.

Even with many such challenges, online machine Learning is an emerging research
as more and more systems are becoming real-time consumers of data and speed of
adaptability is a top priority. We will use the House Worth dataset and apply the online
update method of Unsupervised Fuzzy Competitive Learning. Although a detailed
discussion of this topic is beyond the scope of this book, we will demonstrate with the help
of an example of how well this method works for clustering problems. This method works
by performing an update directly after each input signal (i.e., for each single observation).

Figure 6-76. Online machine learning algorithms (Source: http://www.doyensahoo.com/
introduction.html)

http://www.doyensahoo.com/introduction.html
http://www.doyensahoo.com/introduction.html

Chapter 6 ■ MaChine Learning theory and praCtiCes

419

6.13.1 Fuzzy C-Means Clustering
This is the fuzzy version of the known k-means clustering algorithm as well as an online
variant (Unsupervised Fuzzy Competitive learning). We will use the package e1071 in R,
which has an implementation of the algorithm in a function named cmeans.

As the R documentation on the topic describes, the data given by x is clustered by
generalized versions of the fuzzy c-means algorithm, which use either a fixed-point or an
online heuristic for minimizing the objective function.

i

n

j

c

i ij
m

ijw u d
= =
åå

1 1

where

w
i
 is weight of the observation i

u
ij
 is the membership of observation i in cluster j

d
ij
 is the distance between observation i and center of cluster j

 a. Data preparation

library(ggplot2)
 Warning: package 'ggplot2' was built under R version 3.2.5
library(e1071)
 Warning: package 'e1071' was built under R version 3.2.5
Data_House_Worth <-read.csv("Dataset/House Worth Data.csv",header=TRUE);

str(Data_House_Worth)
 'data.frame': 316 obs. of 5 variables:
 $ HousePrice : int 138800 155000 152000 160000 226000 275000 215000
392000 325000 151000 ...
 $ StoreArea : num 29.9 44 46.2 46.2 48.7 56.4 47.1 56.7 84 49.2 ...
 $ BasementArea : int 75 504 493 510 445 1148 380 945 1572 506 ...
 $ LawnArea : num 11.22 9.69 10.19 6.82 10.92 ...
 $ HouseNetWorth: Factor w/ 3 levels "High","Low","Medium": 2 3 3 3 3 1 3 1
1 3 ...
#remove the extra column that are not required for the model
Data_House_Worth$BasementArea <-NULL

 b. Fuzzy c-mean clustering

Observe that we are passing the value ucfl to the parameter
method, which does an online update of model using
Unsupervised Fuzzy Competitive Learning (UCFL).

online_cmean <-cmeans(Data_House_Worth[,2:3],3,20,verbose=TRUE,method="ufcl"
,m=2)
 Iteration: 1, Error: 465.1579393478
 Iteration: 2, Error: 444.0414997086

Chapter 6 ■ MaChine Learning theory and praCtiCes

420

 Iteration: 3, Error: 424.6549206588
 Iteration: 4, Error: 406.6721061449
 Iteration: 5, Error: 389.8788008700
 Iteration: 6, Error: 374.1842570779
 Iteration: 7, Error: 359.5913592120
 Iteration: 8, Error: 346.1483860876
 Iteration: 9, Error: 333.9078002276
 Iteration: 10, Error: 322.9024279730
 Iteration: 11, Error: 313.1374056984
 Iteration: 12, Error: 304.5921263137
 Iteration: 13, Error: 297.2268898905
 Iteration: 14, Error: 290.9907447391
 Iteration: 15, Error: 285.8286344099
 Iteration: 16, Error: 281.6870892396
 Iteration: 17, Error: 278.5183573747
 Iteration: 18, Error: 276.2831875877
 Iteration: 19, Error: 274.9525794936
 Iteration: 20, Error: 274.5088021136
print(online_cmean)
 Fuzzy c-means clustering with 3 clusters

 Cluster centers:
 StoreArea LawnArea
 1 21.44992 9.584415
 2 43.59627 9.916090
 3 11.04677 11.214669

 Memberships:
 1 2 3
 [1,] 0.6250584893 2.446492e-01 1.302923e-01
 [2,] 0.0004209086 9.993824e-01 1.966837e-04
 [3,] 0.0110012372 9.835467e-01 5.452043e-03
 [4,] 0.0254099375 9.620333e-01 1.255677e-02
 [5,] 0.0344305970 9.474942e-01 1.807525e-02

 Closest hard clustering:
 [1] 1 2 2 2 2 2 2 2 2 2 1 2 3 1 2 3 3 2 2 1 1 2 2 2 1 2 2 1 2 1 3 2 2 2 2
 [36] 2 2 2 1 1 2 1 2 1 2 1 3 2 2 2 1 1 1 2 1 2 2 2 2 2 3 2 2 1 2 2 2 1 2 1
 [71] 2 1 1 2 1 3 2 2 2 1 2 2 2 2 2 2 2 2 2 1 3 2 1 2 2 1 1 2 2 2 1 2 2 2 2
 [106] 1 2 2 2 2 2 1 2 2 1 1 2 1 3 2 2 1 2 2 1 2 1 1 2 2 1 2 2 2 1 2 2 1 2 2
 [141] 2 2 2 2 2 1 1 1 2 2 1 1 1 2 2 2 3 2 2 1 2 2 1 1 2 2 1 1 1 2 1 1 2 3 1
 [176] 2 2 2 2 2 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 2 1 1 2 2 2 2 2 2 2 2 2 2 1
 [211] 2 2 3 1 3 2 1 1 2 1 2 1 3 2 1 2 1 2 1 1 2 1 1 2 2 2 2 2 1 2 2 1 1 1 1
 [246] 2 2 2 2 2 2 2 3 2 2 3 3 2 1 2 1 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 1 2 1
 [281] 1 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 2 1 3 2 2 2 2 2 2 2 1 2 2 2 2 2
 [316] 3

Chapter 6 ■ MaChine Learning theory and praCtiCes

421

 Available components:
 [1] "centers" "size" "cluster" "membership" "iter"
 [6] "withinerror" "call"

 c. Visual evaluation of cluster accuracy

The plot shows the overlap of cluster formed by online fuzzy
c-means algorithm and the classification variable we created
manually. The plot has a near perfect overlap, which indicates
a good cluster.

ggplot(Data_House_Worth, aes(StoreArea, LawnArea, color = HouseNetWorth)) +
geom_point(alpha =0.4, size =3.5) +geom_point(col = online_cmean$cluster) +
scale_color_manual(values =c('black', 'red', 'green'))

The plot in Figure 6-77 shows that the clusters substantially overlap on our prior
classification. This is fair evidence of the power of online machine learning.

Figure 6-77. Cluster plot with fuzzy C-means clustering

Chapter 6 ■ MaChine Learning theory and praCtiCes

422

6.13.2 Conclusion
In today’s fast world the time to decision is more important than the quality of decision.
Partly it’s driven by the competitive landscape and partly due to cost of delay. Online
machine learning tools and techniques are bound to rise in the machine learning world
in the coming days. Our industry and researchers have to work together to create elegant
algorithms as well as hardware/software that can implement those algorithms with high
volume and high velocity of data flow.

6.14 Model Building Checklist
Before the chapter ends, we have complied a checklist of questions that you need to
address before taking up any project in machine learning. Whenever it comes to choosing
a ML algorithm or deciding to use ML on a new problem, an assessment of the available
data is the most important part in the entire process. Ask this broad checklist of questions
before proceeding any further:

•	 What is that you want to achieve in this problem? Is the goal to
predict, estimate a value, find patterns, or just explore ?

•	 What are the types of each variable in the dataset? Is it all
numeric, categorical, or mixed?

•	 Have you identified the response (output) and predictor (input)
variables?

•	 Are there many missing values and outliers in the data?

•	 How would you solve the problem if let’s say, ML algorithms
are not to be used. Is it possible to explore the data using simple
statistics and visualization to arrive at the answers to the problem
without ML?

•	 Does the boxplot, histogram, or scatter plot show any interesting
insights in the data?

•	 Did you find the standard deviation, quartile, mean, and
correlation measures for all numerical variables? Does it show
anything interesting?

•	 How large is your dataset? Does your problem require the
complete data to be used or is a small sample good enough?

•	 Are there enough computational resources (RAM, storage, and
CPU) to run any ML algorithm?

•	 Do you think that the current data might soon become old and
the ML model might require an update soon after it’s built?

•	 Are there any plans to build a data product out of the final ML
model?

Chapter 6 ■ MaChine Learning theory and praCtiCes

423

This checklist might sound a little too big and random; however, if you figure out
the answers to these questions before you jump into building a ML model, you will
potentially have a savings of 40%-60% of your time.

6.15 Summary
A field like machine learning is vast because of the application it has found over the year
in many academic disciplines and industries. The years of advancement in tools and
technology has taken machine leaning a step closer to even the naïve user without much
statistical background. This has given rise to the practical applicability of the methods
found in machine learning and development of many ML-centric products and design.
We are living in exciting times to be in the field of machine learning, which offers endless
opportunities. Experts who are machine learning literates are high in demand in many
industries. The time is not far away when machine learning will form the core of every
industry and product, where it’s not just coding the software with some set of logical
statements but infusing a learning algorithm within which it adapts to the changing needs.

6.16 References
 [1] Semi - Supervised Learning. MIT Press, Cambridge, MA, by

Chapelle, O. et. al.

 [2] Artificial Intelligence: A Modern Approach by Stuart Russell
and Peter Norvig.

 [3] C4.5: Programs for Machine Learning, J. Ross Quinlan.

 [4] Experiments in Induction, Hunt et. al.

 [5] G. V. Kass (1980). “An Exploratory Technique for Investigating
Large Quantities of Categorical Data,” Applied Statistics, 29(2),
119-127.

 [6] K-Means Clustering Algorithm, by Hartigan et. al

 [7] J. Dunn, “Well Separated Clusters and Optimal Fuzzy
Partitions,” Journal of Cybernetics.

 [8] Rand, W. M. (1971). “Objective criteria for the evaluation
of clustering methods”. Journal of the American Statistical
Association. American Statistical Association. 66 (336):
846–850. doi:10.2307/2284239. JSTOR 2284239.

 [9] Gong & Liu (2001), “Generic Text Summarization Using
Relevance Measure and Latent Semantic Analysis.”

Chapter 6 ■ MaChine Learning theory and praCtiCes

424

 [10] Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori
Ogihara, and Wei Li. (1997), “New Algorithms for Fast
Discovery of Association Rules.” Technical Report 651,
Computer Science Department, University of Rochester,
Rochester, NY 14627.

 [11] Christian Borgelt (2003), “Efficient Implementations of
Apriori and Eclat,” Workshop of Frequent Item Set Mining
Implementations, (FIMI 2003, Melbourne, FL, USA).

 [12] Warren McCulloch and Walter Pitts’ (1943) paper on “A
Logical Calculus of Ideas Immanent in Nervous Activity”.

425© Karthik Ramasubramanian and Abhishek Singh 2017
K. Ramasubramanian and A. Singh, Machine Learning Using R,
DOI 10.1007/978-1-4842-2334-5_7

CHAPTER 7

Machine Learning Model
Evaluation

Model evaluation is the most important step in developing any machine learning
solution. At this stage in model development we measure the model performance and
decide whether to go ahead with the model or revisit all our previous steps as described
in the PEBE, our machine learning process flow, in Chapter 1. In many cases, we may
even discard the complete model based on the performance metrics. This phase of the
PEBE plays a very critical role in the success of any ML based projects.

The central idea of model evaluation is minimizing the error on test data, where
error can be defined in many ways. In most intuitive sense, error is the difference between
the actual value of the predictor variable in data and the value the ML model predicts.
The error metrics are not always universal, and some specific problems require creative
error metrics that suit the problem and the domain knowledge.

It is important to emphasize here that the error metric used to train the model might
be different from evaluation error metric. For instance, for a classification model you
might have used the LogLoss error metric, but for evaluation the model, you might want
to see a classification rate using a confusion matrix.

In this chapter, we will enumerate the basic idea behind evaluating a model and
discuss some of the methods in detail.

Learning objectives

•	 Introduction to model performance and evaluation

•	 Population stability index

•	 Model evaluation for continuous output

•	 Model evaluation for discrete output

•	 Probabilistic techniques

•	 Illustration of advanced metrics like the Kappa Error Metric

http://dx.doi.org/10.1007/978-1-4842-2334-5_1

Chapter 7 ■ MaChine Learning ModeL evaLuation

426

7.1 Dataset
The dataset for this chapter is same as what we introduced in the Chapter 6 to explain the
machine learning techniques for regression-based methods and classification problems.
Let’s do a quick recap of them once and then we can jump into the concepts.

7.1.1 House Sale Prices
We will be using the house sale prices dataset detailed in Chapter 6. Let’s have a quick
look at the dataset.

library(data.table)

Data_House_Price <-fread("Dataset/House Sale Price Dataset.csv",header=T,
verbose =FALSE, showProgress =FALSE)

str(Data_House_Price)
 Classes 'data.table' and 'data.frame': 1300 obs. of 14 variables:
 $ HOUSE_ID : chr "0001" "0002" "0003" "0004" ...
 $ HousePrice : int 163000 102000 265979 181900 252000 180000 115000
176000 192000 132500 ...
 $ StoreArea : int 433 396 864 572 1043 440 336 486 430 264 ...
 $ BasementArea : int 662 836 0 594 0 570 0 552 24 588 ...
 $ LawnArea : int 9120 8877 11700 14585 10574 10335 21750 9900 3182
7758 ...
 $ StreetHouseFront: int 76 67 65 NA 85 78 100 NA 43 NA ...
 $ Location : chr "RK Puram" "Jama Masjid" "Burari" "RK Puram" ...
 $ ConnectivityType: chr "Byway" "Byway" "Byway" "Byway" ...
 $ BuildingType : chr "IndividualHouse" "IndividualHouse"
"IndividualHouse" "IndividualHouse" ...
 $ ConstructionYear: int 1958 1951 1880 1960 2005 1968 1960 1968 2004 1962
...
 $ EstateType : chr "Other" "Other" "Other" "Other" ...
 $ SellingYear : int 2008 2006 2009 2007 2009 2006 2009 2008 2010 2007
...
 $ Rating : int 6 4 7 6 8 5 5 7 8 5 ...
 $ SaleType : chr "NewHouse" "NewHouse" "NewHouse" "NewHouse" ...
 - attr(*, ".internal.selfref")=<externalptr>

These are the variables and their types. It can be seen that the data is a mix of
character and numeric data.

The following code and Figure 7-1 present a summary of House Sale Price. This is
our dependent variable in all the modeling examples we have built in this book.

dim(Data_House_Price)
 [1] 1300 14

http://dx.doi.org/10.1007/978-1-4842-2334-5_6
http://dx.doi.org/10.1007/978-1-4842-2334-5_6

Chapter 7 ■ MaChine Learning ModeL evaLuation

427

Check the distribution of dependent variable (House Price). We plot a
histogram to see how the House Price are spread in our dataset.

hist(Data_House_Price$HousePrice/1000000, breaks=20, col="blue", xlab="House
Sale Price(Million)",
main="Distribution of House Sale Price")

Figure 7-1. Distribution of house sale price

Here, we call the summary() function to see basic properties of the HousePrice data. The
output gives us a minimum, first quantile, median, mean, third quantile, and maximum.

#Also look at the summary of the Dependent Variable
summary(Data_House_Price$HousePrice)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 34900 129800 163000 181500 214000 755000
#Pulling out relevant columns and assigning required fields in the dataset
Data_House_Price <-Data_House_Price[,.(HOUSE_ID,HousePrice,StoreArea,StreetH
ouseFront,BasementArea,LawnArea,Rating,SaleType)]

The following code snippet removes the missing values from the dataset. This is
important to make sure the data is consistent throughout.

#Omit Any missing value
Data_House_Price <-na.omit(Data_House_Price)

Data_House_Price$HOUSE_ID <-as.character(Data_House_Price$HOUSE_ID)

Chapter 7 ■ MaChine Learning ModeL evaLuation

428

These statistics give us some idea of how the house price is distributed in the dataset.
The average sale price is $181,500 and the highest sale price is $755,000.

7.1.2 Purchase Preference
This data contains transaction history for customers who bought a particular product. For
each customer_ID, multiple data points are simulated to capture the purchase behavior.
The data is originally set for solving multiple classes with four possible products of
insurance industry. Here, we show summary of the purchase prediction data.

Data_Purchase <-fread("Dataset/Purchase Prediction Dataset.csv",header=T,
verbose =FALSE, showProgress =FALSE)
str(Data_Purchase)
 Classes 'data.table' and 'data.frame': 500000 obs. of 12 variables:
 $ CUSTOMER_ID : chr "000001" "000002" "000003" "000004" ...
 $ ProductChoice : int 2 3 2 3 2 3 2 2 2 3 ...
 $ MembershipPoints : int 6 2 4 2 6 6 5 9 5 3 ...
 $ ModeOfPayment : chr "MoneyWallet" "CreditCard" "MoneyWallet"
"MoneyWallet" ...
 $ ResidentCity : chr "Madurai" "Kolkata" "Vijayawada" "Meerut" ...
 $ PurchaseTenure : int 4 4 10 6 3 3 13 1 9 8 ...
 $ Channel : chr "Online" "Online" "Online" "Online" ...
 $ IncomeClass : chr "4" "7" "5" "4" ...
 $ CustomerPropensity : chr "Medium" "VeryHigh" "Unknown" "Low" ...
 $ CustomerAge : int 55 75 34 26 38 71 72 27 33 29 ...
 $ MartialStatus : int 0 0 0 0 1 0 0 0 0 1 ...
 $ LastPurchaseDuration: int 4 15 15 6 6 10 5 4 15 6 ...
 - attr(*, ".internal.selfref")=<externalptr>

This data output shows a mixed bag of variables in the purchase prediction data.
Carefully look at the dependent variable in this dataset, PurchaseChoice, which was
loaded as an integer. We have to make sure before we use that for modeling that it’s
converted into factor.

Similar to the continuous dependent variable, we will create the dependent variable
for discrete case from the purchase prediction data. For simplicity and easy explanation,
we will only be working with product preference ProductChoice as a dependent variable
with four levels (i.e., 1, 2, 3, and 4).

dim(Data_Purchase);
 [1] 500000 12
#Check the distribution of data before grouping
table(Data_Purchase$ProductChoice)

 1 2 3 4
 106603 199286 143893 50218

Chapter 7 ■ MaChine Learning ModeL evaLuation

429

The barplot below shows the distribution of ProductChoice. The highest
volume is in for ProductChoice = 2, then 3 followed by 1 and 4.

barplot(table(Data_Purchase$ProductChoice),main="Distribution of
ProductChoice", xlab="ProductChoice Options", col="Blue")

Figure 7-2. Distribution of product choice options

In the following code, we subset the data to select only the columns we will be using
in this chapter. Also we remove all missing values (NA) to keep the data consistent across
different options.

#Pulling out only the relevant data to this chapter

Data_Purchase <-Data_Purchase[,.(CUSTOMER_ID,ProductChoice,MembershipPoints,
IncomeClass,CustomerPropensity,LastPurchaseDuration)]

#Delete NA from subset

Data_Purchase <-na.omit(Data_Purchase)

Data_Purchase$CUSTOMER_ID <-as.character(Data_Purchase$CUSTOMER_ID)

This subset of data will be used throughout this chapter to explain the various
concepts.

Chapter 7 ■ MaChine Learning ModeL evaLuation

430

7.2 Introduction to Model Performance and
Evaluation

Model performance and evaluation is carried out once you have developed the model
and want to understand how the model performs on the test data/validation data. Before
the start of model development, you usually divide the data into three categories:

•	 Training data: This dataset is used to train the model/machine.
At this stage, the focus of the machine learning algorithm is to
optimize some well-defined metric reflecting the model fit. For
instance, in Ordinary Least Square, we will be using the training
data to train a linear regression model by minimizing squared
errors.

•	 Testing data: Test dataset contain data points that the ML
algorithm has not seen before. We apply this dataset to see
how the model performs on the new data. Most of the model
performance and evaluation are calculated and evaluated against
thresholds in this step. Here, the modeler can decide if the model
needs any improvement and can make the changes and tweaks
accordingly.

•	 Validation data: In many cases, the modeler doesn’t keep this
dataset due to multiple reasons (e.g., limited data, short time
period, larger test set etc.). In essence, this dataset’s purpose is
to check for overfitting of the model and provide insights into
calibration needs. Once the modeler believes the ML model has
done well on testing data and starts to use validation data, they
can’t go back and change the model. They rather have to try to
calibrate the model and check for overfitting. If the model fails
to set standards, we are forced to drop the model and start the
process again.

Depending on the problem and other statistical constraints, the proportion of
these datasets will be decided. In general, for sufficiently large data we may use the
60%:20%:20% ratio for our training, testing, and validation datasets.

Model performance is measured using test data and the modeler decides what
thresholds are acceptable to validate the model. Performance metrics are in general
generated using the basic criteria of model fit, i.e., how different the model output is
from the actual. This error between actual and predicted will be the error that should be
minimized for a good performance.

Within the scope of this book, we will be discussing how to use some commonly
used performance and evaluation metrics on two types of model output (predictor)
variables:

•	 Continuous output: The model or series of models that give
continuous predicted value against a continuous dependent
variable in model. For instance, house prices are continuous and,
when used to predict using a model, will be giving continuous
predicted values.

Chapter 7 ■ MaChine Learning ModeL evaLuation

431

•	 Discrete output: The model or series of models that gives discrete
predicted value against a discrete dependent variable in model.
For instance, for a credit card application, the risk class of the
borrower when used in predictive model for classification will
give a discrete predicted value (i.e., predicted risk class).

We can expand this list based on other complicated modeling techniques and how
we want to evaluate them. For instance, think about a logistic model; the dependent
is a binomial distributed variable but the output is on the probability scale (0 to 1).
Depending on what is the final purpose of the business, we have to decide what to
evaluate and at what step of the process. For completeness purposes, you can use
concordant-discordant ratios to evaluate the model separation power among 0s and
1s. Concordant-discordant ratios are discussed in Chapter 6 . Reader is encouraged to
pursue statistical underpinning of model performance measurement concepts.

7.3 Objectives of Model Performance
Evaluation

Business stakeholders play an important role in defining the performance metrics. The
models have direct implications on costs for business. Simply minimizing a complicated
statistical measure might not always be the best model for a business. For illustration
purposes, assume a credit risk model for credit scoring new applicants. A few of the input
variables is internal and some are purchased from external sources. The model performs
really well by having external data from multiple parties, which comes with a cost. In that
case simply having a model with minimum classification error is not enough; the model
output should also make economic sense to the business.

In general, we can classify the purpose of model performance and evaluation focus
into three buckets. These three are part of general framework for using statistical methods
and their interpretation.

•	 Accuracy: The accuracy of a model reflects the proportion of right
predictions—in a continuous case, its minimum residual, and
in discrete, the correct class prediction. A minimum residual in
continuous cases or few incorrect classifications in discrete case
implies higher accuracy and a better model.

•	 Gains: The gains statistic gives us an idea about the performance
of the model itself. The method is generalized to different
modeling techniques and is very intuitive. This compares the
model output with the result that we get without using a model
(or a random model). So in essence, this will tell you how good
the model is compared to a random model that has an random
outcome. When comparing two models, the model having the
higher gains statistics at a specified percentile is preferred.

http://dx.doi.org/10.1007/978-1-4842-2334-5_6

Chapter 7 ■ MaChine Learning ModeL evaLuation

432

•	 Accreditation: The model accreditation reflects the credibility of
a model for actual use. This approach ensures that the data on
which model is applied is similar to the training data. Population
stability index is one of the measures to ensure accreditation
before using the model. Population stability index is a measure
to ascertain if the model training dataset is similar to the data
where the model is used, or the population is stable with respect
to the features used in the model. The index value varies from 0
to 1, with high values indicating greater similarity between the
predictors in the two datasets. A stable population confirms the
use of model for prediction.

These kind of scenarios are abundant in actual practice. In this book, we will discuss
the basic statistical methods used to evaluate the model performance. We will also look
at the intuitive way of thinking about model performance. Intuitive ways of thinking help
create new error metrics and add business context while measuring model performance.

7.4 Population Stability Index
Population stability is seldom ignored by modelers while testing the model performance
on various datasets. The idea here is to ensure that the testing dataset is same as the
train dataset. If this is the case, the model performance tested on this data will give you
insights into how well the model performed; otherwise, your model performance results
are of no use.

Consider an example. You developed a model for predicting mean income of U.S.
consumers using a dataset from 2000 to 2009. You developed the model by training it on
dataset from 2000 to 2007 and then kept the last two years for testing the model. What
is going to happen with the test results? The trained model might be the best model
but the model performance in the test results is still bad. Why? Because the population
characteristics between train and test have changed. The U.S. economy went through
a severe recession between Q4 2007 and Q4 2008. In statistical terms, the underlying
population is not stable between two periods.

Population Stability is very important in time series data to keep following the
underlying changes in the population to make sure that the model stays relevant. The
financial service industry has been using this metric for a long time to make sure the
financial models are relevant to the market.

Let’s illustrate the concept of population stability for a continuous distribution. We
will divide the population data into two portions, say set 1 and set 2. In machine learning
performance testing, think about set 1 as the train data and set 2 as the test data.

 ■ Note the concept of population stability is very important when the underlying
relationship structure of dependent and independent variable is effected by external
unseen factors.

Chapter 7 ■ MaChine Learning ModeL evaLuation

433

#Create set 1 and set 2 : First 2/3 as set 1 and remaining 1/3 as set 2
summary(Data_House_Price$HousePrice)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 34900 127500 159000 181300 213200 755000
set_1 <-Data_House_Price[1:floor(nrow(Data_House_Price)*(2/3)),]$HousePrice
summary(set_1)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 34900 128800 160000 180800 208900 755000
set_2 <-Data_House_Price[floor(nrow(Data_House_Price)*(2/3) +1):nrow(Data_
House_Price),]$HousePrice
summary(set_2)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 52500 127000 155000 182200 221000 745000

For the continuous case, we can check for stability using two sample Kolmogorov-
Smirnov tests (KS test). KS testing is a non-parametric test for comparing the cumulative
distribution of two samples.

The empirical distribution function Fn for n iid observations Xi is defined as:

F x
n

I Xn
i

n

x i() = ()
=

-¥[]å1
1

,

where I Xx i-¥[] (), is the indicator function, equal to 1 if X xi £ and equal to 0 otherwise.

The Kolmogorov-Smirnov statistic for a given cumulative distribution function F(x) is

D F x F xn
x

n= ()- ()sup

where sup x is the maximum of the set of distances.
Essentially, the KS statistic will get the highest point of difference between the

empirical distribution comparison of two samples and, if that is too high, we say the two
samples are different. In terms of population stability, it says your model performance
can’t be measured on new samples and the underlying sample is not from the same
distribution on which the model was trained.

In following code first defines a function ks_test() that plots the Empirical
Cumulative Distribution Function (ECDF) and display the KS test result.

#Defining a function to give ks test result and ECDF plots on log scale
library(rgr)
ks_test <-function (xx1, xx2, xlab ="House Price", x1lab
=deparse(substitute(xx1)),x2lab =deparse(substitute(xx2)), ylab ="Empirical
Cumulative Distribution Function",log =TRUE, main ="Empirical EDF Plots -
K-S Test", pch1 =3, col1 =2, pch2 =4, col2 =4, cex =0.8, cexp =0.9, ...)
{
 temp.x <-remove.na(xx1)
 x1 <-sort(temp.x$x[1:temp.x$n])

Chapter 7 ■ MaChine Learning ModeL evaLuation

434

 nx1 <-temp.x$n
 y1 <-((1:nx1) -0.5)/nx1
 temp.x <-remove.na(xx2)
 x2 <-sort(temp.x$x[1:temp.x$n])
 nx2 <-temp.x$n
 y2 <-((1:nx2) -0.5)/nx2
 xlim <-range(c(x1, x2))
 if (log) {
 logx <- "x"
 if (xlim[1] <=0)
stop("\n Values cannot be .le. zero for a log plot\n")
 }
 else logx <- ""
plot(x1, y1, log = logx, xlim = xlim, xlab = xlab, ylab = ylab,
main = main, type ="n", ...)
points(x1, y1, pch = pch1, col = col1, cex = cexp)
points(x2, y2, pch = pch2, col = col2, cex = cexp)
 temp <-ks.test(x1, x2)
print(temp)
}

Here, we call the custom function, which perform this KS test on set_1 and set_2
and display the Empirical Cumulative Distribution Plots (ECDF):

#Perform K-S test on set_1 and set_2 and also display Empirical Cummulative
Distribution Plots
ks_test(set_1,set_2)

Figure 7-3. ECDF plots for Set_1 and Set_2

Chapter 7 ■ MaChine Learning ModeL evaLuation

435

Here, we show the hypothesis test results for the KS test. This is the Kolmogorov-
Smirnov test for the hypothesis that both distributions were drawn from the same
underlying distribution.

 Two-sample Kolmogorov-Smirnov test

 data: x1 and x2
 D = 0.050684, p-value = 0.5744
 alternative hypothesis: two-sided

As you can see, the p-value is more than 0.05 and we fail to reject the null hypothesis.
So we are good to go ahead and test model performance on test data. Also, looking at the
Empirical Cumulative Distribution Function (ECDF) plot, we can see the ECDF for both
the samples look the same, and hence they come from the same population distribution.

How do the results look when the population becomes unstable? Let’s manipulate
our set_2 to show that scenario.

Consider that set_2 got exposed to a new law, where the houses in set_2 were
subjected to additional tax by a local body and hence the prices went up. The question we
will have is, can the existing model still perform well on this new set?

#Manipulate the set 2
set_2_new <-set_2*exp(set_2/100000)

Now do the k-s test again
ks_test(set_1,set_2_new)

Now let’s again plot the ECDF for set_1 and set_2 and see how they look in
comparison (see Figure 7-4).

Figure 7-4. ECDF Plots for Set_1 and Set_2 (Manipulated)

Chapter 7 ■ MaChine Learning ModeL evaLuation

436

We again perform the KS test to check the hypothesis results.

 Two-sample Kolmogorov-Smirnov test

 data: x1 and x2
 D = 0.79957, p-value < 2.2e-16
 alternative hypothesis: two-sided

The KS test’s p-value is less than 0.05 and hence the test rejects the null hypothesis
that both samples are from the same population. Visually the ECDF plots look way off
to each other. Hence, the model can’t be used on new dataset, although the dataset is of
same schema and business feed.

We can quickly show how to do population stability tests for discrete cases of
purchase prediction for ProductChoice. The test is performed by calculating the statistic,
Population Stability Index (PSI), defined as here:

PSI=∑((n1i/N1)−(n2i/N2))*ln((n1i/N1)/(n2i/N2))

where: n1i,n2i is the number of observations in bin i for populations 1 and 2, and
N1,N2 is the total number of observations for populations 1 and 2.

As the Population Stability Index for the discrete case does not follow a distribution,
we have threshold values. As a rule, values below thresholds can be used to interpret the
population stability index:

•	 A PSI < 0.1 indicates a minimal change in the population.

•	 A PSI 0.1 to 0.2 indicates changes that require further investigation.

•	 A PSI > 0.2 indicates a significant change in the population.

This code snippet calculates the Population Stability Index using this formula.

#Let's create set 1 and set 2 from our Purchase Prediction Data
print("Distribution of ProductChoice values before partition")
 [1] "Distribution of ProductChoice values before partition"
table(Data_Purchase$ProductChoice)

 1 2 3 4
 104619 189351 142504 49470
set_1 <-Data_Purchase[1:floor(nrow(Data_Purchase)*(2/3)),]$ProductChoice
table(set_1)
 set_1
 1 2 3 4
 69402 126391 95157 33012
set_2 <-Data_Purchase[floor(nrow(Data_Purchase)*(2/3) +1):nrow(Data_
Purchase),]$ProductChoice
table(set_2)

Chapter 7 ■ MaChine Learning ModeL evaLuation

437

 set_2
 1 2 3 4
 35217 62960 47347 16458

Now we will treat set_1 as population 1 and set_2 as population 2 and calculate the
PSI. A similar exercise can be repeated with different parameters to see if the population
remains stable with respect to other discrete distributions.

#PSI=Summation((n1i/N1)(n2i/N2))ln((n1i/N1)/(n2i/N2))

temp1 <-(table(set_1)/length(set_1) -table(set_2)/length(set_2))

temp2 <-log((table(set_1)/length(set_1))*(table(set_2)/length(set_2)))

psi <-abs(sum(temp1*temp2))

if(psi <0.1){
cat("The population is stable with a PSI of " ,psi)
} else if (psi >=0.1&psi <=0.2) {
cat("The population need further investigation with a PSI of " ,psi)
} else {
cat("The population has gone through significant changes with a PSi of " ,psi)
}
 The population is stable with a PSI of 0.002147654

As you must have observed from these examples, essentially we are comparing two
distributions and making sure the distributions are similar. This test helps us ascertain
how credible the model would be on the new data.

7.5 Model Evaluation for Continuous Output
The distribution of dependent variables is an important consideration in choosing
the methods for evaluating the models. Intuitively, we end up comparing the residual
distribution (actual versus predicted value) with either normal distribution (i.e., random
noise) or some other distribution based on the metrics we choose.

This section is dedicated to the cases where the residual error is on a continuous
scale. Within the scope of this chapter, we will focus on the linear regression model and
calculate some basic metrics. The metrics come with their own merits and demerits, and
we will try to focus on some of them from a business interpretation perspective.

Let’s fit a linear regression model with the variables subsetted to a forward
selection on the house price data. Then, with this model, we will show different model
performance metrics.

Create a model on Set 1 = Train data

linear_reg_model <-lm(HousePrice ~StoreArea +StreetHouseFront +BasementArea
+LawnArea +Rating +SaleType ,data=Data_House_Price[1:floor(nrow(Data_
House_Price)*(2/3)),])

Chapter 7 ■ MaChine Learning ModeL evaLuation

438

summary(linear_reg_model)

 Call:
 lm(formula = HousePrice ~ StoreArea + StreetHouseFront + BasementArea +
 LawnArea + Rating + SaleType, data = Data_House_
Price[1:floor(nrow(Data_House_Price) *
 (2/3)),])

 Residuals:
 Min 1Q Median 3Q Max
 -432276 -22901 -3239 17285 380300

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) -8.003e+04 3.262e+04 -2.454 0.014387 *
 StoreArea 5.817e+01 9.851e+00 5.905 5.48e-09 ***
 StreetHouseFront 1.370e+02 8.083e+01 1.695 0.090578 .
 BasementArea 2.362e+01 3.722e+00 6.346 3.96e-10 ***
 LawnArea 7.746e-01 1.987e-01 3.897 0.000107 ***
 Rating 3.540e+04 1.519e+03 23.300 < 2e-16 ***
 SaleTypeFirstResale 1.012e+04 3.250e+04 0.311 0.755651
 SaleTypeFourthResale -3.221e+04 3.678e+04 -0.876 0.381511
 SaleTypeNewHouse -1.298e+04 3.190e+04 -0.407 0.684268
 SaleTypeSecondResale -2.456e+04 3.248e+04 -0.756 0.449750
 SaleTypeThirdResale -2.256e+04 3.485e+04 -0.647 0.517536

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error: 44860 on 701 degrees of freedom
 Multiple R-squared: 0.7155, Adjusted R-squared: 0.7115
 F-statistic: 176.3 on 10 and 701 DF, p-value: < 2.2e-16

The model summary shows a few things:

•	 The Multiple R Square of the fitted model is 71.5%, which is a
good fit model.

•	 The SaleType variable is insignificant at all levels (but we have
kept that in model as we believe that it’s an important element of
HousePrice).

•	 The p-value for the F-test of the overall significance test is less
than 0.05, so we can reject the null hypothesis and conclude that
the model provides a better fit than the intercept-only model.

Now we will move on to the performance measures for a continuous dependent
variable.

Chapter 7 ■ MaChine Learning ModeL evaLuation

439

7.5.1 Mean Absolute Error
Mean absolute error or MAD is one of the most basic error metrics used to evaluate a
model. MAD is directly derived from the residual error first norm. This is the average/
mean of the absolute errors.

In statistics, the mean absolute error is an average of the absolute errors

MAE .= - =
= =
å å1 1

1 1n
f y

n
e

i

n

i i
i

n

i

where fi is the prediction and yi the true value.
There are other similar measures like Mean Absolute Scaled Error (MASE) and

Mean Absolute Percentage Error (MAPE). In all these measures, the performance is
summarized in a way that it treats both underprediction and overprediction the same,
and mean signed difference is ignored. This is a specific demerit because of ignorance to
over-prediction or under-prediction. In business problems we are usually fine with error
in one direction but not the other. For instance, calculating credit loss on credit cards.
The business should be fine if it is overpredicting the loss and hence keeping a little more
reserve. However, the other side is highly costly and may trigger bankruptcy in extreme
cases.

#Create the test data which is set 2
test <-Data_House_Price[floor(nrow(Data_House_Price)*(2/3) +1):nrow(Data_
House_Price),]

#Fit the linear regression model on this and get predicted values

predicted_lm <-predict(linear_reg_model,test, type="response")

actual_predicted <-as.data.frame(cbind(as.numeric(test$HOUSE_ID),as.
numeric(test$HousePrice),as.numeric(predicted_lm)))

names(actual_predicted) <-c("HOUSE_ID","Actual","Predicted")

#Find the absolute residual and then take mean of that
library(ggplot2)

#Plot Actual vs Predicted values for Test Cases
ggplot(actual_predicted,aes(x = actual_predicted$HOUSE_ID,color=Series)) +
geom_line(data = actual_predicted, aes(x = actual_predicted$HOUSE_ID,
y =Actual, color ="Actual")) +
geom_line(data = actual_predicted, aes(x = actual_predicted$HOUSE_ID, y =
Predicted, color ="Predicted")) +xlab('HOUSE_ID') +ylab('House Sale Price')

Chapter 7 ■ MaChine Learning ModeL evaLuation

440

It’s clear from the plot in Figure 7-5 that the actual is very close to the predicted. Now
let’s find out how our model is performing on a Mean Square Error metric.

Figure 7-5. Actual versus predicted plot

#Remove NA from test, as we have not done any treatment for NA
actual_predicted <-na.omit(actual_predicted)

#First take Actual - Predicted, then take mean of absolute errors(residual)

mae <-sum(abs(actual_predicted$Actual -actual_predicted$Predicted))/nrow(ac
tual_predicted)

cat("Mean Absolute Error for the test case is ", mae)
 Mean Absolute Error for the test case is 29570.3

The MAE says on average the error is $29,570. This is equivalent to saying on dollar
scale 17% error is expected for a mean of $180,921.

This metric can also be used to fit linear model. Just as least square method is related
to mean squared errors, mean absolute error is related to least absolute deviations.

Chapter 7 ■ MaChine Learning ModeL evaLuation

441

7.5.2 Root Mean Square Error
Root mean square error or RMSE is one of the most popular metrics used to evaluate
continuous error models. As the name suggests, it is the square root of mean of squared
errors. The most important feature of this metric is that the errors are weighted by means
of squaring them.

For example, suppose the predicted value is 5.5 while the actual value is 4.1. Then
the error is 1.4 (5.5 - 4.1). The square of this error is 1.4 x 1.4 = 1.96. Assume another
scenario, where the predicted value is 6.5, then the error is 2.4 (6.5 - 4.1), and the square
of error is 2.4 x 2.4 = 5.76. As you can see, while the error only changed 2.4/1.4 = 1.7 times,
the squared error changed 5.76/1.96 = 2.93 times. Hence, RMSE penalizes the far off error
more strictly than any close by errors.

The RMSE of predicted values ŷ
t
 for times t of a regression’s dependent variable y

t
 is

computed for n different predictions as the square root of the mean of the squares of the
deviations:

RMSE =
-()

=
å
t

n

t ty y

n
1

2ˆ

It is important to understand how the operations in the metric change the
interpretation of the metric. Suppose our dependent variable is house price, which is
captured in dollar numbers. Let’s see how the metric dimensions evolve to interpret the
measure.

The predicted and actual value is in dollars, so their difference is error, again in
dollars. Then you square the error, so the dimension becomes dollar squared. You can’t
compare a dollar square value to a dollar value. So, we square root that to bring back the
dimension to dollars and can now interpret RMSE is dollar terms. It’s important to note
that, generally the metrics for model comparison are dimensionless, but for model itself
we prefer metrics having some dimension to provide a business context to the metric.

#As we have already have actual and predicted value we can directly
calculate the RMSE value

rmse <-sqrt(sum((actual_predicted$Actual-

actual_predicted$Predicted)^2)/nrow(actual_predicted))

cat("Root Mean Square Error for the test case is ", rmse)
 Root Mean Square Error for the test case is 44459.42

Now you can see that the error has scaled up to $44,459. This is due to the fact now
we are penalizing the model for far away predictions by means of squaring the errors.

Chapter 7 ■ MaChine Learning ModeL evaLuation

442

As mentioned earlier as well, if you want to use a metric to compare datasets or
models with different scales, you need to bring the metric into a dimensionless form. We
can do the same with RMSE by normalizing it. The most common way is by dividing the
RMSE by range or mean:

NRMSD
RMSD

NRMSD
RMSD

max min

=
-

=
y y

or
y

This value is referred to as the normalized root-mean-square deviation or error
(NRMSD or NRMSE), and usually expressed as a percentage. A low value indicates less
residual variance and hence is a good model.

7.5.3 R-Square
R-square is a popular measure used for linear regression based techniques.
The appropriate terminology used by statisticians for R-square is Coefficient of
Determination. The Coefficient of Determination gives an indication of the relationship
between the dependent variable (y) and a set of independent variables (x). In
mathematical form, it is a ratio of residual sum of squares and total sum of squares.
Again, note that this measure is also originating from residual (error metric) using actual
and predicted values. Here, we explain how the R2 metric gets calculated for a model, and
then how we interpret the metric.

 ■ Note Capital R 2 and r 2 are loosely used interchangeably but they are not same. R 2 is
the multiple R 2 in a multiple regression model. in bivariate linear regression, there is no
multiple R, and R r2 2= . So the key difference is applicability of the term (or notation):
"multiple r" implies multiple regressors, whereas “R 2” doesn’t.

A dataset has n values marked y1…yn (collectively known as yi or as a vector
y = [y1…yn]), each associated with a predicted (or modeled) value f1…fn (known as fi, or
sometimes ŷi, as a vector f).

The residual (error in prediction) is defined as ei = yi - fi (forming a vector e).

If y is the mean of the observed data y
n

y
i

n

i=
=
å1

1

 then the variability of the dataset

can be measured using three sums of squares formulas:

•	 The total sum of squares (proportional to the variance of the data):

SS y ytot
i

i= -()å 2
,

Chapter 7 ■ MaChine Learning ModeL evaLuation

443

•	 The regression sum of squares, also called the explained sum of
squares:

SS f y
i

ireg = -()å 2

•	 The sum of squares of residuals, also called the residual sum of
squares:

SS y f e
i

i i
i

ires = -() =å å2 2

•	 The general definition of the coefficient of determination or r2is

R
SS

SStot

2 1= - res

In Figure 7-6, we can see the the interpetation of the sum of squares and how they
come together to form the definition of the coefficient of determination.

Figure 7-6. Image Explaining Squared errors (taken from https://en.wikipedia.org/
wiki/Coefficient_of_determination)

R2 = 1- Blue Color/Red Color
These small squares represent the squared residuals with respect to the linear

regression. The areas of the larger squares represent the squared residuals with respect to
the average value.

On left the linear regression fits the data in comparison to the simple average, while on
the right it fits the actual value of data. R2 is then a ratio between them, indicating if rather

https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Coefficient_of_determination

Chapter 7 ■ MaChine Learning ModeL evaLuation

444

than taking simple average you use this model how much more you will be able to capture.
Needless to say, a perfect value of 1 means all the variation is explained by the model.

Since R2 is a proportion, it is always a number between 0 and 1.

•	 If R2 = 1, all of the data points fall perfectly on the regression line
(or the predictor x accounts for all the variation in y)

•	 If R2 = 0, the estimated regression line is perfectly horizontal (or
the predictor x accounts for none of the variation in y)

•	 If R2 is between 0 and 1, it explains variance in y (using the model
is better than not using the model)

Though R-square is the default output of all the standard linear regression packages,
we will show you the calculations as well. Another term that you need to be aware is
adjusted R-squared. It makes the correction for the number of predictors in the model.
In other words it takes into account the overfitting of the model due to a high number of
predictors, and it increases only if the new term improves the model more than would be
expected by chance.

#Model training data (we will show our analysis on this dataset)

train <-Data_House_Price[1:floor(nrow(Data_House_Price)*(2/3)),.(HousePrice
,StoreArea,StreetHouseFront,BasementArea,LawnArea,StreetHouseFront,LawnArea
,Rating,SaleType)];

#Omitting the NA from dataset

train <-na.omit(train)

Get a linear regression model
linear_reg_model <-lm(HousePrice ~StoreArea +StreetHouseFront +BasementArea
+LawnArea +StreetHouseFront +LawnArea +Rating +SaleType ,data=train)

Show the function call to identify what model we will be working on

print(linear_reg_model$call)
 lm(formula = HousePrice ~ StoreArea + StreetHouseFront + BasementArea +
 LawnArea + StreetHouseFront + LawnArea + Rating + SaleType,
 data = train)
#System generated Square value
cat("The system generated R square value is " , summary(linear_reg_model)$r.
squared)
 The system generated R square value is 0.7155461

You can see that the default model output calculated R-square for us. The current
linear model has an R-square of 0.72. it can be interpreted as 72% percent of the variation
in house price is “explained by” the variation in predictors StoreArea, StreetHouseFront,
BasementArea, LawnArea, StreetHouseFront, LawnArea, Rating, and SaleType.

Chapter 7 ■ MaChine Learning ModeL evaLuation

445

Here, we calculate the measure step by step to get the same R-square value.

#calculate Total Sum of Squares

SST <-sum((train$HousePrice -mean(train$HousePrice))^2);

#Calculate Regression Sum of Squares

SSR <-sum((linear_reg_model$fitted.values -mean(train$HousePrice))^2);

#Calculate residual(Error) Sum of Squares

SSE <-sum((train$HousePrice -linear_reg_model$fitted.values)^2);

One of the important relationships that these three sum of squares share is

 SST = SSR + SSE

You can test that on your own. Now we will use these values and get the R-square for
our model:

#calculate R-squared

R_Sqr <-1-(SSE/SST)

#Display the calculated R-Sqr

cat("The calculated R Square is ", R_Sqr)
 The calculated R Square is 0.7155461

You can see the calculated R-square is same as the lm() function output. You can
now see the calculations behind R-square.

In this section, you saw some of the basic metrics that we can create around the
errors (residuals) and interpreted them as a measure of how well our model will do on the
actual data. In the next section, we will introduce techniques for discrete cases.

7.6 Model Evaluation for Discrete Output
In previous section, we introduced metrics for models where the dependent variable and
predicted values were of continuous types. In this section, we will introduce some metrics
for cases where the distribution is discrete.

For this section, we will go back to our purchase prediction data and generate
the metrics and discuss their interpretation. We will leverage the setup we created for
population stability.

Chapter 7 ■ MaChine Learning ModeL evaLuation

446

7.6.1 Classification Matrix
A classification matrix is the most intuitive ways of looking at the performance of a
classifier. This is sometimes also called a confusion matrix. Visually, this is a two way
matrix with one axis showing the distribution of the actual class and the another axis
showing a predicted class (see Figure 7-7).

Figure 7-7. Two class classification matrix

The accuracy of the model is calculated by the diagonal elements of the classification
matrix, as they represent the correct classification by the classifier, i.e., the actual and
predicted values are the same.

 Classification Rate = (True Positive + True Negative) / Total Cases

Now we will show you the classification matrix and calculate the classification rate
for our purchase prediction data. The method we will use for modeling probabilities is a
multinomial logistic and the classifier will pick the highest probability.

 ■ Note to avoid class imbalance problem, we will be using stratified sampling to create
equal size classes for illustration of model performance concepts. a class imbalance
problem causes the probabilities to bias toward the high frequency classes, and hence the
classifier fails to allocate classes to low frequency classes.

#Remove the data having NA. NA is ignored in modeling algorithms
Data_Purchase<-na.omit(Data_Purchase)

#Sample equal sizes from Data_Purchase to reduce class imbalance issue
library(splitstackshape)
Data_Purchase_Model<-stratified(Data_Purchase, group=c("ProductChoice"),size
=10000,replace=FALSE)

print("The Distribution of equal classes is as below")
 [1] "The Distribution of equal classes is as below"
table(Data_Purchase_Model$ProductChoice)

Chapter 7 ■ MaChine Learning ModeL evaLuation

447

 1 2 3 4
 10000 10000 10000 10000

Build the multinomial model on Train Data (Set_1) and then test data (Set_2)
will be used for performance testing

set.seed(917);
train <-Data_Purchase_Model[sample(nrow(Data_Purchase_Model),size=nrow(Data_
Purchase_Model)*(0.7), replace =TRUE, prob =NULL),]
dim(train)
 [1] 28000 6
test <-Data_Purchase_Model[!(Data_Purchase_Model$CUSTOMER_ID
%in%train$CUSTOMER_ID),]
dim(test)
 [1] 20002 6

Fit a multinomial logistic model

library(nnet)
mnl_model <-multinom (ProductChoice ~MembershipPoints +IncomeClass
+CustomerPropensity +LastPurchaseDuration, data = train)
 # weights: 68 (48 variable)
 initial value 38816.242111
 iter 10 value 37672.163254
 iter 20 value 37574.198380
 iter 30 value 37413.360061
 iter 40 value 37327.695046
 iter 50 value 37263.280870
 iter 60 value 37261.603993
 final value 37261.599306
 converged

Display the summary of model statistics

mnl_model
 Call:
 multinom(formula = ProductChoice ~ MembershipPoints + IncomeClass +
 CustomerPropensity + LastPurchaseDuration, data = train)

 Coefficients:
 (Intercept) MembershipPoints IncomeClass1 IncomeClass2 IncomeClass3
 2 11.682714 -0.03332131 -11.4405637 -11.314417 -11.307691
 3 -1.967090 0.02730530 0.9855891 1.644233 2.224430
 4 -1.618001 -0.12008110 1.5710959 1.692566 2.062924
 IncomeClass4 IncomeClass5 IncomeClass6 IncomeClass7 IncomeClass8
 2 -11.547647 -11.465621 -11.447368 -11.388917 -11.367926
 3 2.023594 2.119750 2.201136 2.169300 2.241395
 4 1.911509 2.062195 2.296741 2.249285 2.509872

Chapter 7 ■ MaChine Learning ModeL evaLuation

448

 IncomeClass9 CustomerPropensityLow CustomerPropensityMedium
 2 -12.047828 -0.4106025 -0.2580652
 3 1.997350 -0.8727976 -0.5184574
 4 2.027252 -0.6549446 -0.5105506
 CustomerPropensityUnknown CustomerPropensityVeryHigh
 2 -0.5689626 0.1774420
 3 -1.1769285 0.4646328
 4 -1.1494067 0.5660523
 LastPurchaseDuration
 2 0.04809274
 3 0.05624992
 4 0.08436483

 Residual Deviance: 74523.2
 AIC: 74619.2

Predict the probabilities

predicted_test <-as.data.frame(predict(mnl_model, newdata = test,
type="probs"))

Display the predicted probabilities

head(predicted_test)
 1 2 3 4
 1 0.3423453 0.2468372 0.2252361 0.18558132
 2 0.2599605 0.2755778 0.2546863 0.20977542
 3 0.4096704 0.2429370 0.2482094 0.09918326
 4 0.2220821 0.2485851 0.3188838 0.21044894
 5 0.4163053 0.2689046 0.1763766 0.13841355
 6 0.4284514 0.2626000 0.1948703 0.11407836

Do the prediction based in highest probability

test_result <-apply(predicted_test,1,which.max)

table(test_result)
 test_result
 1 2 3 4
 8928 1265 3879 5930

Combine to get predicted and actuals at one place

result <-as.data.frame(cbind(test$ProductChoice,test_result))

colnames(result) <-c("Actual Class", "Predicted Class")

Chapter 7 ■ MaChine Learning ModeL evaLuation

449

head(result)
 Actual Class Predicted Class
 1 1 1
 2 1 2
 3 1 1
 4 1 3
 5 1 1
 6 1 1

Now when we have the matrix of actual versus predicted, we will create the
classification matrix. Now we will calculate some key features of the classification matrix:

•	 Number of cases: Total number of cases or number of rows in test
(n)

•	 Number of classes: Total number of classes for which prediction is
done (nc)

•	 Number of correct classification: This is the sum over the diagonal
of classification matrix (diag)

•	 Number of instances per class: This is the sum of all the cases in
actual (rowsums)

•	 Number of instances per predicted class: This is the sum of all the
cases in predicted (colsum)

•	 Distribution of actuals: The total of rowsums divided by the total

•	 Distribution of predicted: Total of colsums divided by the total

Create the classification matrix

cmat <-as.matrix(table(Actual = result$`Actual Class`, Predicted =
result$`Predicted Class`))

Calculated above mentioned measures in order

n <-sum(cmat) ;
cat("Number of Cases ", n);
 Number of Cases 20002
nclass <-nrow(cmat);
cat("Number of classes ", nclass);
 Number of classes 4
correct_class <-diag(cmat);
cat("Number of Correct Classification ", correct_class);
 Number of Correct Classification 3175 395 1320 2020
rowsums <-apply(cmat, 1, sum);

Chapter 7 ■ MaChine Learning ModeL evaLuation

450

cat("Number of Instances per class ", rowsums);
 Number of Instances per class 4998 4995 5035 4974
colsums <-apply(cmat, 2, sum);
cat("Number of Instances per predicted class ", colsums);
 Number of Instances per predicted class 8928 1265 3879 5930
actual_dist <-rowsums /n;
cat("Distribution of actuals ", actual_dist);
 Distribution of actuals 0.249875 0.249725 0.2517248 0.2486751
predict_dist <-colsums /n;
cat("Distribution of predicted ", predict_dist);
 Distribution of predicted 0.4463554 0.06324368 0.1939306 0.2964704

These quantities are calculated from the classification matrix. You are encouraged
to verify these numbers and get good understanding of these quantities. Here is the
classification matrix and classification rate for our classifier:

Print the classification matrix - on test data

print(cmat)
 Predicted
 Actual 1 2 3 4
 1 3175 312 609 902
 2 2407 395 825 1368
 3 1791 284 1320 1640
 4 1555 274 1125 2020

Print Classification Rate

classification_rate <-sum(correct_class)/n;
print(classification_rate)
 [1] 0.3454655

The classification rate is low for this classifier. A classification rate of 35% means that
the model is classifying the cases incorrectly more than 50% of the time. The modeler
has to dig into the reasons for the low performance of the classifier. The reasons can
be the predicted probabilities, underlying variables explanatory power, a sampling of
imbalanced classes, or may be method of picking the highest probability itself.

The model performance here is helping us find out if the model is actually
performing up to our standards? Can we really use this in an actual environment? What
might be causing the low performance? This step becomes important for any machine
learning exercise.

Chapter 7 ■ MaChine Learning ModeL evaLuation

451

7.6.2 Sensitivity and Specificity
Sensitivity and specificity are used to measure the model performance on positive and
negative classes separately. These measures allow you to determine how the model
is performing on the positive and negative populations separately. The mathematical
notation helps clarify these measures in conjunction with the classification matrix:

•	 Sensitivity: The probability that the test will indicate the True class
as True among actual true. Also called True Positive Rate (TPR)
and in pattern recognition called the precision. Sensitivity can be
calculated from classification matrix (see Figure 7-7).

Sensitivity, True Positive Rate = Correctly Identified Positive/
Total Positives = TP/(TP+FN)

•	 Specificity: Probability that the test will indicate that the False
class and False are among an actual False. Also called the True
Negative Rate (TNR) and in pattern recognition, called recall.
Specificity can be calculated from classification matrix (see
Figure 7-7).

Specificity, True Positive Rate = Correctly Rejected/Total
Negatives = TN/(TN+FP)

Sensitivity and specificity are characteristics of the test. The underlying population
does not affect the results. For a good model, we try to maximize both TPR and TNR, and
the Receiver Operating Characteristic (ROC) helps in this process. Receiver Operating
Curve is a plot between sensitivity and (1- specificity), and the highest point on this curve
provide the cutoff which maximizes our classification rate. We will discuss the ROC curve
in the next section and connect it back to optimizing sensitivity and specificity.

 ■ Note Sensitivity and specificity are calculated per class. For a multinimial class, we
tend to average out the quantity over the classes to get a single number for the whole
model. For illustration purposes, we will show the analysis by combining the classes into a
two-class problem. You are encouraged to extend the concept to a full model.

The analysis is shown for ProductChoice == 1

Actual_Class <-ifelse(result$`Actual Class` ==1,"One","Rest");
Predicted_Class <-ifelse(result$`Predicted Class` ==1, "One", "Rest");

ss_analysis <-as.data.frame(cbind(Actual_Class,Predicted_Class));

Create classification matrix for ProductChoice == 1

Chapter 7 ■ MaChine Learning ModeL evaLuation

452

cmat_ProductChoice1 <-as.matrix(table(Actual = ss_analysis$Actual_Class,
Predicted = ss_analysis$Predicted_Class));

print(cmat_ProductChoice1)
 Predicted
 Actual One Rest
 One 3175 1823
 Rest 5753 9251
classification_rate_ProductChoice1 <-sum(diag(cmat_ProductChoice1))/n;

cat("Classification rate for ProductChoice 1 is ", classification_rate_
ProductChoice1)
 Classification rate for ProductChoice 1 is 0.6212379

Calculate TPR and TNR

TPR <-cmat_ProductChoice1[1,1]/(cmat_ProductChoice1[1,1] +cmat_
ProductChoice1[1,2]);

cat(" Sensitivity or True Positive Rate is ", TPR);
 Sensitivity or True Positive Rate is 0.6352541
TNR <-cmat_ProductChoice1[2,2]/(cmat_ProductChoice1[2,1] +cmat_
ProductChoice1[2,2])

cat(" Specificity or True Negative Rate is ", TNR);
 Specificity or True Negative Rate is 0.6165689

The result shows that for ProductChoice == 1 our model is able to correctly classify
in total 63% of cases, among which it is able to identify 61% as “one” from a population of
“one” and 62% as “rest” from a population of “rest”. The model performance is better in
predicting “rest” from the population.

7.6.3 Area Under ROC Curve
A receiver operating characteristic (ROC), or ROC curve, is graphical representation
of the performance of a binary classifier as the threshold or cutoff to classify changes.
As you saw in the previous section that for a good model we want to maximize two
interdependent measures TPR and TNR, the ROC curve will show that relationship. The
curve is created by plotting the true positive rate (TPR) against the false positive rate
(FPR) at various cutoffs or threshold settings.

However, as we are using a multiclass classifier, we are not using a cutoff to classify.
You are encouraged to rebuild the multi-class model as a binary model (one and rest) for
other ProductChoices/classes, and then use the built-in functions of the ROCR package.

Here we show ROC curve and Area Under the Curve (AUC) value, assuming the
model only had two classes: ProductChoice “One” and “Rest”. This will give us a scale of
cutoffs if we were to use only probability for class “One”/1. Observe in the following code
we are recreating the model to change the multi-class problem into a binary classification

Chapter 7 ■ MaChine Learning ModeL evaLuation

453

problem. Essentially, the probability scale multinomial distributes the probabilities
among classes in such a way that the sum is 1, while for ROC we need full range of
probabilities for a class to play with the threshold/cutoff values of classification.

For illustration purposes, we will use our purchase prediction data with only two
classes of choices—0 or 1—defined here:

•	 1 if the customer chooses product 1 from a catalog of four
products; this forms our positives

•	 0 if the customer chooses any other product than 1; this forms our
negatives

Here we create binary logistic model with this definition.

create a the variable Choice_binom as above definition
train$ProductChoice_binom <-ifelse(train$ProductChoice ==1,1,0);
test$ProductChoice_binom <-ifelse(test$ProductChoice ==1,1,0);

Fit a binary logistic model on the modified dependent variable,
ProductChoice_binom.

glm_ProductChoice_binom <-glm(ProductChoice_binom ~MembershipPoints
+IncomeClass +CustomerPropensity +LastPurchaseDuration, data=train, family
=binomial(link="logit"))

Print the summary of binomial logistic model

summary(glm_ProductChoice_binom)

 Call:
 glm(formula = ProductChoice_binom ~ MembershipPoints + IncomeClass +
 CustomerPropensity + LastPurchaseDuration, family = binomial(link =
"logit"),
 data = train)

 Deviance Residuals:
 Min 1Q Median 3Q Max
 -1.2213 -0.8317 -0.6088 1.2159 2.3976

 Coefficients:
 Estimate Std. Error z value Pr(>|z|)
 (Intercept) -13.360676 71.621773 -0.187 0.852
 MembershipPoints 0.038574 0.005830 6.616 3.68e-11 ***
 IncomeClass1 12.379912 71.622606 0.173 0.863
 IncomeClass2 12.142239 71.622424 0.170 0.865
 IncomeClass3 11.881615 71.621801 0.166 0.868
 IncomeClass4 12.086976 71.621763 0.169 0.866
 IncomeClass5 11.981304 71.621759 0.167 0.867
 IncomeClass6 11.874714 71.621761 0.166 0.868

Chapter 7 ■ MaChine Learning ModeL evaLuation

454

 IncomeClass7 11.879708 71.621765 0.166 0.868
 IncomeClass8 11.759389 71.621792 0.164 0.870
 IncomeClass9 12.214044 71.622000 0.171 0.865
 CustomerPropensityLow 0.650186 0.054060 12.027 < 2e-16 ***
 CustomerPropensityMedium 0.435307 0.054828 7.939 2.03e-15 ***
 CustomerPropensityUnknown 0.952099 0.048078 19.803 < 2e-16 ***
 CustomerPropensityVeryHigh -0.430576 0.065156 -6.608 3.89e-11 ***
 LastPurchaseDuration -0.062538 0.003409 -18.347 < 2e-16 ***

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 (Dispersion parameter for binomial family taken to be 1)

 Null deviance: 31611 on 27999 degrees of freedom
 Residual deviance: 29759 on 27984 degrees of freedom
 AIC: 29791

 Number of Fisher Scoring iterations: 11

We will be using RORC library in R to calculate the Area Under the Curve (AUC) and
to create the Receiver Operating Curve (ROC). The ROCR package helps to visualize the
performance of scoring classifiers.

Now create the performance dataset to create AUC curve

library(ROCR)
test_binom <-predict(glm_ProductChoice_binom,newdata=test, type ="response")
pred <-prediction(test_binom, test$ProductChoice_binom)
perf <-performance(pred,"tpr","fpr")

Calculating AUC

auc <-unlist(slot(performance(pred,"auc"),"y.values"));

cat("The Area Under ROC curve for this model is ",auc);
 The Area Under ROC curve for this model is 0.6699122

Plotting the ROCcurve

library(ggplot2)
library(plotROC)
debug <-as.data.frame(cbind(test_binom,test$ProductChoice_binom))
ggplot(debug, aes(d = V2, m = test_binom)) +geom_roc()

Chapter 7 ■ MaChine Learning ModeL evaLuation

455

We used a ggplot() object and plotROC library to plot the ROC curve with cutoff
values highlighted in the plot for easy reading (see Figure 7-8).

In the plot, we want to balance between true positive and false positive, and
maximize the true positive while minimizing the false positive. This point will be the best
cutoff/threshold value that you should use to create the classifier. Here, you can see that
the value is close to 0.2—true positive is ~74% while false positive is ~48%.

Chapter 6 discussed the use of this optimal value, i.e., 0.2 to use as a cutoff for a binary
classifier. Refer to that chapter’s logistics regression discussion. The ROCR R package
details are available at https://cran.r-project.org/web/packages/ROCR/ROCR.pdf.

7.7 Probabilistic Techniques
Generally, there is no such specific classification of model performance techniques
into probabilistic and otherwise. However, it is helpful for you to understand how
more complicated methods are emerging for model performance testing. Probabilistic
techniques are those which are based on sampling and simulations. These techniques
differ from what we discussed in previous sections; in previous sections we had residuals
with us to create metrics. In probabilistic techniques, we will be simulating and sampling
subsets to get a robust and stable model.

In this section, we will touch at a very high level the two techniques corresponding
to two major buckets of probabilistic tools that data scientists have at their disposal,
although both are resampling based techniques:

•	 Simulation based: K-fold cross validation

Figure 7-8. ROC curve

http://dx.doi.org/10.1007/978-1-4842-2334-5_6
https://cran.r-project.org/web/packages/ROCR/ROCR.pdf

Chapter 7 ■ MaChine Learning ModeL evaLuation

456

•	 Sampling based: Bootstrap sampling

A very good understanding of these concepts is provided by Ron Kohavi, Stanford
in a much celebrated paper “A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection,” International Joint Conference on Artificial Intelligence
(IJCAI), 1995. The readers interested in this topic should read this paper. In this section,
we will touch on these ideas from the perspective of using them in R.

7.7.1 K-Fold Cross Validation
Cross validation is one of the most used techniques for model evaluation and lately
has been accepted as a better technique than residual-based metrics. The issue with
residual-based methods is that you need to keep a test set, and just with one test set they
don’t exactly tell you how the model will behave on unseen data. So while train, test, and
validate methods are good, probabilistic simulation and sampling provide us more ways
to test that.

K-fold cross validation is very popular in the machine learning community. The
greater the number of folds, the better the interpretation (recall the Law of Large
Numbers). Steps to execute k-fold cross validation include:

Step 1: Divide the dataset into k subsets.

Step 2: Train a model on k-1 subsets.

Step 3: Test the model on remaining one subset and calculate the error.

Step 4: Repeat Steps 1-3 until all subsets are used exactly once for testing.

Step 5: Average out the errors by this scenario simulation exercise to get the cross-
validation error.

The advantage of this method is that the method by which you create the k-subsets
is not that important compared to same situation in the train/test (or holdout cross
validation) method. Also, this method ensures that every data point gets to be in a test
set exactly once, and gets to be in a training set k-1 times. The variance of the resulting
estimate is reduced as k is increased.

The disadvantage of this method is that the model has be to estimated k-times and
then testing done for k-times, which means a higher computation cost (computation cost
is proportional to number of folds). A variant randomly splits the data and controls each
fold size. The advantage of doing this is that you can independently choose how large
each test set is and how many trials you average over.

 ■ Note in cross-validation techniques we don't keep train and test subsets. usually, data
scientists keep a validation set outside the cross-validation to test the model final model fit.
in our example, we will treat our train as train set and test as validation dataset.

Chapter 7 ■ MaChine Learning ModeL evaLuation

457

Let’s show an example with our house sales price problem. You are encouraged to
apply the same techniques on the classification problems as well.

library(caret)
library(randomForest)
set.seed(917);

Model training data (we will show our analysis on this dataset)

train <-Data_House_Price[1:floor(nrow(Data_House_Price)*(2/3)),.(HousePrice
,StoreArea,StreetHouseFront,BasementArea,LawnArea,StreetHouseFront,LawnArea
,Rating,SaleType)];

Create the test data which is set 2

test <-Data_House_Price[floor(nrow(Data_House_Price)*(2/3) +1):nrow(Data_
House_Price),.(HousePrice,StoreArea,StreetHouseFront,BasementArea,LawnArea,S
treetHouseFront,LawnArea,Rating,SaleType)]

Omitting the NA from dataset

train <-na.omit(train)
test <-na.omit(test)

Create the k subsets, let's take k as 10 (i.e., 10-fold cross validation)

k_10_fold <-trainControl(method ="repeatedcv", number =10, savePredictions
=TRUE)

Fit the model on folds and use rmse as metric to fit the model

model_fitted <-train(HousePrice ~StoreArea +StreetHouseFront +BasementArea
+LawnArea +StreetHouseFront +LawnArea +Rating +SaleType, data=train, family
= identity,trControl = k_10_fold, tuneLength =5)

Display the summary of the cross validation

model_fitted
 Random Forest

 712 samples
 6 predictor

 No pre-processing
 Resampling: Cross-Validated (10 fold, repeated 1 times)
 Summary of sample sizes: 642, 640, 640, 641, 640, 641, ...
 Resampling results across tuning parameters:

Chapter 7 ■ MaChine Learning ModeL evaLuation

458

 mtry RMSE Rsquared
 2 40235.04 0.7891003
 4 37938.62 0.7961153
 6 38049.31 0.7927441
 8 38132.67 0.7914360
 10 38697.45 0.7858166

 RMSE was used to select the optimal model using the smallest value.
 The final value used for the model was mtry = 4.

You can see from the summary that the model selected by cross-validation has a
higher R2 than the one we created previously. The new R-square is 80% and the old was
72%. Also, notice that the default metric to choose the best model is RMSE. You can
change the metric and function type based on the need and the optimization function.

7.7.2 Bootstrap Sampling
We have already discussed the bootstrap sampling concepts in Chapter 3. We are just
extending the idea to our problem here. Based on random samples from our data we will
try to estimate the model and see if we can reduce the error and get the high-performance
model. When we use these techniques as a performance evaluation technique, you can
see we already have fixed the model, i.e., the predictors, and trying to see probabilistically
what gives the best performance and how much.

For showing the bootstrap example we will extend what we showed for cross
validation.

Create the the boot experiment, let's take samples as as 10 (i.e., 10-sample
bootstrapped)

boot_10s <-trainControl(method ="boot", number =10, savePredictions =TRUE)

Fit the model on bootstraps and use rmse as metric to fit the model

model_fitted <-train(HousePrice ~StoreArea +StreetHouseFront +BasementArea
+LawnArea +StreetHouseFront +LawnArea +Rating +SaleType, data=train, family
= identity,trControl = boot_10s, tuneLength =5)

Display the summary of the boost raped model

model_fitted
 Random Forest

 712 samples
 6 predictor

 No pre-processing
 Resampling: Bootstrapped (10 reps)

http://dx.doi.org/10.1007/978-1-4842-2334-5_3

Chapter 7 ■ MaChine Learning ModeL evaLuation

459

 Summary of sample sizes: 712, 712, 712, 712, 712, 712, ...
 Resampling results across tuning parameters:

 mtry RMSE Rsquared
 2 40865.52 0.7778754
 4 38474.68 0.7871019
 6 38818.70 0.7819608
 8 39540.90 0.7742633
 10 40130.45 0.7681462

 RMSE was used to select the optimal model using the smallest value.
 The final value used for the model was mtry = 4.

In the bootstrapped case, you can see that the best model is having a R2 of 79%,
which is still higher than the 72% in previous case but less than the 10-fold cross
validation one. One important thing to note is that the bootstrap samples run again and
again for model estimation, but cross validation main exclusivity of subsets in each run.

The probabilistic methods are complex and difficult to understand. It is
recommended that only experienced data scientist use them, as an in-depth
understanding on the machine learning algorithm is required to set these experiments
and interpret them properly. The next chapter on parameter tuning is an extension of the
probabilistic techniques that we discussed here.

7.8 The Kappa Error Metric
In recent days, machine learning practitioners are trying a lot of new and complicated
error metrics for evaluation as well as model creation. These new error metrics are
important, as they solve for some specific business problems/objectives. With high
computing power, we can frame our own optimization function and apply the iterative
algorithm with data.

Kappa or cohen’s kappa coefficient is a statistic that measures the relationship
between observed accuracy and expected accuracy. Jacob Cohen introduced Kappa in
a paper published in the Journal Educational and Psychological Measurement in 1960.
A similar statistic, called Pi, was proposed by Scott (1955). Cohen’s Kappa and Scott’s Pi
differ in terms of how the expected probability is calculated. This method found the first
use case in inter-rater agreements, with different raters rating the same cases in different
buckets.

In the machine learning world, the Kappa is adopted to compare a pure random
chance with a model. This type of metric is very effective in cases of imbalanced
classification. For example, suppose your training data has 80% “Yes” and 20% “No”.
Without a model, you can still achieve up to 80% accuracy in classification (diagonal) if
you simply assign everyone a “Yes”.

A more formal definition of Kappa is given here.
Cohen’s Kappa measures the agreement between random approach and modeled

approach, where each classify N items into C mutually exclusive categories.

Chapter 7 ■ MaChine Learning ModeL evaLuation

460

The equation for κ is:

k =
-
-

= -
-
-

p p

p

p

p
o e

e

o

e1
1

1

1

where po is the relative observed agreement among two approaches, and pe is the
hypothetical probability of a chance overlap, using the observed data to calculate the
probabilities of each approach randomly selecting each category. If the approaches are
in complete agreement then κ = 1. If there is no agreement among the approaches other
than what would be expected by chance (as given by pe), κ.

For more detailed reading, refer to Fleiss, J. L. (1981) Statistical Methods for Rates
and Proportions, 2nd ed. (New York: John Wiley) and Banerjee, M.; Capozzoli, Michelle;
McSweeney, Laura; Sinha, Debajyoti (1999), “Beyond Kappa: A Review of Interrater
Agreement Measures” from The Canadian Journal of Statistics.

We will use the purchase prediction data with a very simple model to illustrate the
Kappa and accuracy measure. The caret() package is used to show this example. This
package provides a unified way of training and evaluation of almost 270 different kinds of
models. The details of this package are provided in Chapter 8.

library(caret)
library(mlbench)

Below we randomly sample 5000 cases to make the computation faster.
set.seed(917);
train_kappa <-Data_Purchase_Model[sample(nrow(Data_Purchase_
Model),size=5000, replace =TRUE, prob =NULL),]

train() function confuses between numeric levels, hence convert the
dependent into text i.e., 1->A, 2->B, 3-> C and 4->D

train_kappa$ProductChoice_multi <-ifelse(train_kappa$ProductChoice ==1,"A",
ifelse(train_kappa$ProductChoice ==2, "B",
ifelse(train_kappa$ProductChoice ==3,"C","D")));

train_kappa <-na.omit(train_kappa)

Set the experiment

cntrl <-trainControl(method="cv", number=5, classProbs =TRUE)

Below the distribution shows that number of cases with each purchase history

Distribution of ProductChoices

table(train_kappa$ProductChoice_multi)

 A B C D
 1271 1244 1260 1225

http://dx.doi.org/10.1007/978-1-4842-2334-5_8

Chapter 7 ■ MaChine Learning ModeL evaLuation

461

Making the column names as legitimate names

colnames(train_kappa) <-make.names(names(train_kappa), unique =TRUE, allow_ =TRUE)

Convert all the factors into factors in R

train_kappa$ProductChoice_multi <-as.factor(train_kappa$ProductChoice_multi)
train_kappa$CustomerPropensity <-as.factor(train_kappa$CustomerPropensity)
train_kappa$LastPurchaseDuration <-as.factor(train_
kappa$LastPurchaseDuration)

Now, the following code will create a random forest model for our sample
data. Fit the model with method as RandomForest.

model_fitted <-train(ProductChoice_multi ~CustomerPropensity
+LastPurchaseDuration, data=train_kappa, method="rf", metric="Accuracy",trC
ontrol=cntrl)

The result displayed the kappa metrics

print(model_fitted)
 Random Forest

 5000 samples
 2 predictor
 4 classes: 'A', 'B', 'C', 'D'

 No pre-processing
 Resampling: Cross-Validated (5 fold)
 Summary of sample sizes: 4000, 3999, 4000, 4001, 4000
 Resampling results across tuning parameters:

 mtry Accuracy Kappa
 2 0.3288009 0.1036580
 10 0.3274019 0.1024999
 19 0.3268065 0.1017419

Accuracy was used to select the optimal model using the largest value.

The final value used for the model was mtry = 2.

Create the predicted values and show that in classification matrix

pred <-predict(model_fitted, newdata=train_kappa)
confusionMatrix(data=pred, train_kappa$ProductChoice_multi)
 Confusion Matrix and Statistics

Chapter 7 ■ MaChine Learning ModeL evaLuation

462

 Reference
 Prediction A B C D
 A 830 653 475 427
 B 97 133 108 85
 C 134 179 304 210
 D 210 279 373 503

 Overall Statistics

 Accuracy : 0.354
 95% CI : (0.3407, 0.3674)
 No Information Rate : 0.2542
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.1377
 Mcnemar's Test P-Value : < 2.2e-16

 Statistics by Class:

 Class: A Class: B Class: C Class: D
 Sensitivity 0.6530 0.1069 0.2413 0.4106
 Specificity 0.5830 0.9228 0.8602 0.7717
 Pos Pred Value 0.3480 0.3144 0.3676 0.3685
 Neg Pred Value 0.8314 0.7573 0.7709 0.8014
 Prevalence 0.2542 0.2488 0.2520 0.2450
 Detection Rate 0.1660 0.0266 0.0608 0.1006
 Detection Prevalence 0.4770 0.0846 0.1654 0.2730
 Balanced Accuracy 0.6180 0.5149 0.5507 0.5911

From an interpretation point of view, the following guidelines can be used:

•	 Poor agreement when kappa is 0.20 or less

•	 Fair agreement when kappa is 0.20 to 0.40

•	 Moderate agreement when kappa is 0.40 to 0.60

•	 Good agreement when kappa is 0.60 to 0.80

•	 Very good agreement when kappa is 0.80 to 1.00

In this model output, the Kappa value is 0.1377, which implies that there is poor
agreement between a random model and our model. Our model results differ from the
random model. Now, there can be two possibilities, the our model performing worse than
the random model or it performing exceptionally well. Looking at the accuracy measure,
35.4% looks like our model did not do a good job in classification. We need more data and
features to get a good model.

Chapter 7 ■ MaChine Learning ModeL evaLuation

463

7.9 Summary
Model evaluation is a very intricate subject. This chapter just scratched the surface to get
the reader started on the idea of model evaluation. The model evaluation subject brings
a lot of depth to the measures we use to evaluate the performance. In this ever-changing
analytics landscape, business are using models for different purposes, sometimes in
custom ways to model a problem to help make business decisions. This trend in industry
has given rise to the competitive nature of evaluation measures.

To solve a business problem in a real setting, you have to optimize two different
objective functions:

•	 Statistical measure, the one we discussed in this chapter

•	 Business constraints, a problem/business specific measures

Let’s try to understand these constraints on the model performance by a example.
Suppose you have to build a model to classify customers into eight buckets. However, the
cost of dealing with each bucket of customer is different. Serving a customer in bucket 8
is 10 times more costly than serving someone from bucket 1. Similar to this is the cost of
each bucket varies with the bucket number and with some other factors.

Now if the business decides to use a model to classify the objects into these
classes, how will you evaluate the performance of the mode? A pure statistical measure
of performance might not fit the situations. How we can think about creating hybrid
performance metrics, or a serial dependent matrix. The concept of evaluation is a
very deep and fairly involved one. Data scientists have to come up with creative and
statistically valid metrics to suit business problems.

This chapter introduced the concept of population stability index, which confirms
if we can use use the model for prediction. Then we classified our evaluation metrics
into continuous and discrete cases. The continuous metrics discussed were different
functions of residuals, i.e., mean absolute error, root mean square error, and R-square.
The discrete set of measures included classification rate, sensitivity and specificity, and
area under the ROC curve. We used our house price data and purchase prediction data to
show evaluation metrics examples.

These evaluation techniques are more suited to statistical learning models,
the advanced machine learning models do not have any distribution constraints
and cannot be evaluated and interpreted on conventional metrics. We introduced
probability methods to evaluate machine learning models, i.e., cross validation and
bootstrap sampling. These two methods form the backbone of machine learning model
performance evaluation.

In the end we discussed an important metric for multi-class problems, the
Kappa metric. This metric is gaining in popularity as, in classification problems, each
misclassification has a different cost associated with it. Hence, we need to measure
performance in a relative manner.

The model performance and evaluation techniques are evolving quickly. The
performance metrics are becoming multigoal optimization problems and hence are also
helping the algorithms adopt to new ways to fit data. We will continue with some more
advanced topics in the next chapter, where we will introduce the difference between
statistical learning and machine learning, including how this difference allow us to
do more with the data and then how to go about improving the model performance

Chapter 7 ■ MaChine Learning ModeL evaLuation

464

using ensemble techniques. The next chapter introduces the tradeoff between bias and
variance, to help us understand the limits of what can be achieved in performance with
given constraints.

7.10 References
 [1] Jim Frost (2015-09-03). “The Danger of Overfitting Regression

Models”.

 [2] The Applied Use of Population Stability Index (PSI) in SAS®
Enterprise Miner™, Rex Pruitt, PREMIER Bankcard, LLC, Sioux
Falls, SD.

 [3] Marsaglia G, Tsang WW, Wang J (2003). “Evaluating
Kolmogorov’s Distribution”. Journal of Statistical Software.

 [4] https://onlinecourses.science.psu.edu/stat501/node/258

 [5] Mason, Simon J.; Graham, Nicholas E. (2002). “Areas beneath
the relative operating characteristics (ROC) and relative
operating levels (ROL) curves: Statistical significance
and interpretation” (PDF). Quarterly Journal of the Royal
Meteorological Society.

 [6] Grossman,, Robert; Seni, Giovanni; Elder, John; Agarwal,
Nitin; Liu, Huan (2010). Ensemble Methods in Data Mining:
Improving Accuracy Through Combining Predictions. Morgan
& Claypool.

 [7] Efron, B.; Tibshirani, R. (1993). An Introduction to the
Bootstrap. Boca Raton, FL: Chapman & Hall/CRC.

 [8] Smeeton, N.C. (1985). “Early History of the Kappa Statistic”.
Biometrics.

https://onlinecourses.science.psu.edu/stat501/node/258#_blank

465© Karthik Ramasubramanian and Abhishek Singh 2017
K. Ramasubramanian and A. Singh, Machine Learning Using R,
DOI 10.1007/978-1-4842-2334-5_8

CHAPTER 8

Model Performance
Improvement

Model performance is a broad term generally used to measure how the model performs
on a new dataset, usually a test dataset. The performance metrics also play the role of
thresholds to decide whether the model can be put into actual decision making systems
or needs improvements. In the previous chapter, we discussed some performance metrics
for our continuous and discrete cases. In this chapter, we will discuss how changing the
modeling process can help us improve model performance on the metrics.

Feature selection plays an important role in modeling development process. It is the
features that have information to explain the dependent variable. Data scientists spend
a lot of time selecting and creating features for fitting predictive models. The feature
engineering process involves selection of a best set of features and their transformations.
These sets of features are then fed into a algorithm to quantify the relationships. The
algorithm learns from the data and creates a predictive model. The performance of such
a model is then evaluated based on some kind of error measure. Model performance
improvement methods are then applied to boost the performance on the error metrics of
interest. The higher levels properties of a model, e.g., complexity and speed of learning,
also impact the model performance. These high-level parameters are known as hyper-
parameters. We will discuss hyper-parameters more in the following sections. Broadly
there are two ways to improve the model performance, specifically in machine learning
algorithms:

•	 Add more features and improve the quality of data

•	 Optimize the hyper-parameters

This first point is what we have been discussing so far in the book. However, we
also discussed some algorithms where the learning process is influenced by hyper-
parameters, e.g., in decision trees, the depth of the tree, the number of folds in cross
validation, etc. Now these parameters are independent of the features and influence the
model performance. For instance, you can have two different decision tree models using
the same set of predictors but different hyper-parameters to train them. To understand
the performance optimization process, we need to understand the trade of between bias
and variance. Bias refers to the difference between the true and predicted values, while
variance refers to the spread around the mean of predicted values. Bias and variance

Chapter 8 ■ Model perforManCe IMproveMent

466

are the two vital components of imprecision/performance in predictive models, and
in general there is a tradeoff between them. The tradeoff is nonlinear, which means
normally reducing one leads to increasing the other.

This chapter will look at these issues and provide illustrations in R to equip you on
how to implement some of the popular performance improvement techniques using R.

The content of this chapter is oriented toward broader awareness of the latest
developments in the computational world due to increased computational power and
business acceptance of concepts. The dataset for this chapter is the same as the previous
chapter (purchase prediction and house sale price), as we show you how the concepts
from this chapter influence the results from previous metrics.

 ■ Note the r illustrations in this chapter are computationally heavy, so you are advised to
check the machine configuration before running these examples.

While we try to balance out simplicity and completeness in this chapter, we expect
the user of these techniques to have good understanding of numerical computing and
the machine learning algorithm. References to research papers will be shared for detailed
reading on statistical underpinnings.

Learning objectives for this chapter:

•	 Machine learning and statistical modeling

•	 Overview of Caret package

•	 Introduction to hyper-parameters

•	 Hyper-parameter tuning illustrations

•	 Bias versus variance tradeoffs

•	 Introduction to ensemble learning

•	 Advanced methods in ensemble learning

•	 Advanced topic: Bayesian optimization

8.1 Machine Learning and Statistical Modeling
The comparison of machine learning and statistical modeling has been a key debate topic
in recent times. Machine learning has become a very popular term, and this is getting
stronger as the computational power is increasing. In this section of chapter, we try to
express the opinion based on some of the learning arguments in this debate. The core of
this debate does not divide machine learning and statistics into two exclusive groups but
it will make you more aware about how you can solve a problem with data.

Chapter 8 ■ Model perforManCe IMproveMent

467

At core of machine learning/statistical modeling is quantifying the relationship
between the response variable and predictors. Mathematically, the relationship can be
written as a function:

Y = f(X) + e

Where

f(): Function of X

X: An input vector with X1, X1.Xn.

Y: Output

E: The random error

The way we treat the estimation problem is what differentiates machine learning
from statistical modeling. Machine learning is an algorithm that can learn this
relationship without relying on any rule-bases programming. Statistical modeling will
estimate the relationship based on formal quantification from statistical inferences
(confidence interval, hypothesis testing, distributions, etc.). The process of statistical
inference quantifies the process by which data is generated, while machine learning will
emphasize how the final predictions will look if similar data is supplied in the future.

Statistical learning terminology also differs from machine learning, for instance we
say estimation in statistics but learning in machine learning. There are other numerous
cases where the terminology is different due to the fact that the origin of achieving same
objective has been different. Here are a few more examples:

•	 Classifier -> Hypothesis

•	 Regression/Classification -> Supervised Learning

•	 Clustering -> Unsupervised Learning

Robert Tibshirani, a statistician and machine learning expert at Stanford, says
machine learning is a glamorous version of statistics. Although statistical analysis and
methodology is the predominant approach in modern machine learning, not all machine
learning methods are based on probabilistic models, e.g., SVMs and non-negative matrix
factorization.

Machine learning is also computationally costly and needs more computing power,
which helps in solving many complex problems. One more difference is the size of
data normally in these two fields—statistics usually deals with low dimensional spaces
while machine learning is used in higher dimensional space. When we have hundreds
of features and millions of data points, so upholding statistical principles becomes
impossible. In such situations, we employ techniques that are based on salable and less
assumption learning methods.

The machine learning tools and techniques are capable of learning from trillions of
observations one by one. They make predictions and learn simultaneously. Algorithms
like random forest and gradient boosting are exceptionally robust and fast, with a wide
variety (high dimension/features) and depth of features (a high number of observations).
However, statistical modeling is generally applied for smaller datasets with fewer attributes
or they end up overfitting. Also, these methods are spared from the assumptions that are
required in statistical learning. Machine learning algorithms in general can be used with
any distribution and/or with any boundary conditions to train a model.

Chapter 8 ■ Model perforManCe IMproveMent

468

The best analogy so far comes from nature and the way humans learn. We don't
learn things around us based on assumptions but learn from trials. Similarly, machine
learning is an adaption of learning from multiple iterations, in which for each iteration
we try to get close to the actual values. As the guiding principle for machine learning is
to replicate a system, its predictive power is generally very strong. This helps in putting
all the variables before knowing their relation to the response variable, so the algorithm
takes care of any misfit variable. However, statistical models are mathematics-intensive
and based on coefficient estimation. They require the modeler to understand the
relationship between variables before putting it in.

In a nutshell, machine learning is not as deterministic as a statistical modeling. With
the scope of learning, it becomes very important how we ask our machine algorithm to
learn from data. We can actually influence the model performance by managing the rules
of how the machine should learn. While for statistical models the options are limited to
inputs and preset assumptions for the statistical method.

8.2 Overview of the Caret Package
The Caret package is one of the most powerful packages in R. This package allows
users to explore the machine learning algorithms to their fullest potential. The Caret
package (short for classification and regression training) contains functions for complex
regression and classification problems. The package has a dedicated Git page and is one
of the actively updated and documented packages of R. The Caret package is created and
maintained by Max Kuhn from Pfizer.

The Caret package has a lot of dependencies on other R packages. The required
packages are only loaded when required and hence save a lot of overhead time and
computational power. For instance, randomForest library is loaded only if you use rf as
one of the model methods. You can install this package with or without the dependencies.
You can install it including all dependent 27 packages using the suggests field; otherwise
Caret loads packages as needed and assumes that they are installed.

install.packages("caret", dependencies =c("Depends", "Suggests"))

You are encouraged to visit the Caret project page and keep the updated information
from there. The home page of the project is at http://caret.r-forge.r-project.org/
and the Git page can be accessed at http://topepo.github.io/caret/index.html.

The Caret package has numerous functions for model development and evaluation
metrics for performance measurement. Being a comprehensive package it can be used
for other techniques in sampling and also for sophisticated feature selection processes.
There are two of the most important function/tools in the Caret package:

•	 trainControl()

•	 train()

http://caret.r-forge.r-project.org/
http://topepo.github.io/caret/index.html

Chapter 8 ■ Model perforManCe IMproveMent

469

The trainControl() function is like a wrapper that defines the rule for model
training and the conditions around how sampling and grid search is to be done. The
train() function is very powerful function that can support 230 types of models available
in the Caret package. The primary function/tool, train(), can be used for:

•	 Model evaluation, using cross validation, resampling, and other
conventional metrics. It also can be used to measure the effect of
tuning parameters in performance.

•	 Model selection by choosing the best model based on optimal
parameters, so multiple metrics can be calculated to choose the
final model.

•	 Model estimation using any of the 230 types of models listed in
the train model list with default parameters or tuned ones.

By default, the function automatically chooses the tuning parameters associated
with the best value, although different algorithms can be used to tune the parameters
(Source: http://topepo.github.io/caret/model-training-and-tuning.html).

Figure 8-1. The train() function algorithm in the Caret package

In general, the basic use of the Caret package includes first defining trainControl()
and then calling the train() function. Here we show the generic syntax of calling these
two functions in order to use the Caret functionality.

Others are available, such as repeated K-fold cross validation, leave-one-out, etc. The
function train control can be used to specify the type of resampling. By default, a simple
bootstrap resampling is used:

rfControl <-trainControl(# Example, 10-fold Cross Validation
method ="repeatedcv", # Others are available, such as repeated K-fold
cross-validation, leave-one-out etc
number =10, # Number of folds
repeats =10# repeated ten times
)

http://topepo.github.io/caret/model-training-and-tuning.html

Chapter 8 ■ Model perforManCe IMproveMent

470

The first two arguments to train are the predictor and outcome data objects,
respectively. The third argument, method, specifies the type of model (see train model
list or train models by tag). Here is an example that fits a randomForest model via the
randomForest package, which was tested with 10-fold cross validation:

set.seed(917)
randomForectFit1 <-train(Class ~., # Define the model equation
data = training, # Define the modeling data
method ="rf", # List the model you want to use, caret

provide list of options in train
Model list

trControl = rfControl, # This defines the conditions on how to
control the training
 ...) # Other options specific to the

modeling technique
randomForectFit1

More information about trainControl is given in a later section. Details can be
found at http://topepo.github.io/caret/model-training-and-tuning.html.

As this is the core package in R, it deals with almost all of the machine learning
techniques. Therefore, it’s important to keep in mind its functionality.

 ■ Note In this chapter we will not be using the full dataset. the illustrations will be on
smaller set of data to make sure you can replicate the results on less powerful machines.

8.3 Introduction to Hyper-Parameters
In machine learning, we deal with two kind of parameters, ones that are the standard
model parameters and ones that are the hyper-parameters. The core difference between
these two types of parameters is that model parameters can be directly learned from the
underlying data and hyper-parameters cannot. The machine learning model training
process is used to learn the data and then fit the model parameters.

However, the hyper-parameters are not directly learned from the data and are
actually very influential in model performance. Hyper-parameters explain the "higher-
level" properties of the model such as its complexity, how fast it should learn, and how
much depth it should go into. Another important thing is that hyper-parameters are
fixed before training starts, hence, the model standard parameters are learned. We can
say that hyper-parameters decide the rules of model training by which model standard
parameters are estimated.

Now, how are the hyper-parameter decided? What influences the hyper-parameter
selection process? This area is summed up as hyper-parameter optimization and will be
touched upon at a high level in an upcoming section.

http://topepo.github.io/caret/model-training-and-tuning.html

Chapter 8 ■ Model perforManCe IMproveMent

471

The hyper-parameters differ from the standard model parameters (or coefficients).
Some of the properties of hyper-parameter are listed here:

•	 Explain higher level properties: Define the complexity of model,
capacity to learn, optimization criteria, etc.

•	 Not directly learned: They cannot be learned from underlying
data, like the standard model parameters can. They are the
property of machine learning algorithm and the learning space
and need to be predefined.

•	 Iterative optimization: They can be set at different values and then
evaluated on model performance, so in the most primitive sense,
they can be optimized by iteratively finding the value that tests
better.

Another way to look at hyper-parameters is as a prerequisite for a Bayesian approach
to statistical learning, which involves finding the probability distribution of the model
parameters given a training dataset. For instance, an artificial network training will
require four preset hyper-parameters for learning from the data: selection of the model
type with algorithm, selection of the architecture of the network, assignment of training
parameters, and learning the model parameters. Generally, we can divide the hyper-
parameters into four decision points before we train the model with data:

•	 Model type: Decide what type of model you choose in machine
learning, like feed-forward or recurrent neural network, support
vector machine, linear regression, etc.

•	 Architecture: Once you decide the model type, you give inputs
on what the boundaries of the model learning process are, i.e.,
number of hidden layers, number of nodes per hidden layer,
batch normalization and pooling layer, etc.

•	 Training-parameter: Once you decide on the model type and
architecture, you decide how the model should learn, i.e.,
learning and momentum rate, batch size, etc. These parameters
are sometimes called training parameter.

•	 Model parameter: Once you provide these inputs, the model
training process starts and the model parameters are estimated,
such as weights and biases in a neural network.

Some examples of hyper-parameters are:

•	 Depth of trees or number of leaves

•	 Latent factors in a matrix factorization

•	 Learning rate (in neural network based methods)

•	 Hidden layers in a deep neural network

•	 Number of clusters in a k-means clustering

Chapter 8 ■ Model perforManCe IMproveMent

472

To illustrate the effect of hyper-parameters on the model performance, we will create
a example with different hyper-parameters and check the performance of the model. For
this example, we will use a subset of the purchase prediction data.

In the following example, we are creating two random forest models with the same
underlying data and the same predictor variables, but with two different values for the
hyper-parameter (the number of trees):

•	 ntree = 20

•	 ntree = 50

Here are the accuracy results for both cases:

setwd("C:/Personal/Machine Learning/Run Chap 8");
library(caret)
library(randomForest)
set.seed(917);
Load Dataset
Purchase_Data <-read.csv("Purchase Prediction Dataset.csv",header=TRUE)

#Remove the missing values
data <-na.omit(Purchase_Data)

#Pick a sample of records
Data <-data[sample(nrow(data),size=10000),]

•	 Model 1: with tree size = 20

Here are the results for the algorithm using 20 trees in the random forest algorithm.

fit_20 <-randomForest(factor(ProductChoice) ~MembershipPoints +CustomerAge
+PurchaseTenure +CustomerPropensity +LastPurchaseDuration,
data=Data,
importance=TRUE,
ntree=20)
#Print the result for ntree=20
print(fit_20)

Here are the results for the algorithm using 20 trees in the random forest algorithm.

 Call:
 randomForest(formula = factor(ProductChoice) ~ MembershipPoints
+ CustomerAge + PurchaseTenure + CustomerPropensity
+ LastPurchaseDuration, data = Data, importance = TRUE, ntree = 20)

 Type of random forest: classification
 Number of trees: 20
 No. of variables tried at each split: 2

Chapter 8 ■ Model perforManCe IMproveMent

473

 OOB estimate of error rate: 64.27%
 Confusion matrix:
 1 2 3 4 class.error
 1 550 1035 495 104 0.7481685
 2 730 1927 1051 199 0.5067827
 3 449 1300 1005 165 0.6557040
 4 149 450 300 91 0.9080808

•	 Model 1 with tree size = 50

Here are the results for the algorithm using 50 trees in the random forest algorithm.

fit_50 <-randomForest(factor(ProductChoice) ~MembershipPoints +CustomerAge
+PurchaseTenure +CustomerPropensity +LastPurchaseDuration,
data=Data,
importance=TRUE,
ntree=50)
#Print the result for ntree=50
print(fit_50)

 Call:
 randomForest(formula = factor(ProductChoice) ~ MembershipPoints
+ CustomerAge + PurchaseTenure + CustomerPropensity
+ LastPurchaseDuration, data = Data, importance = TRUE, ntree = 50)

 Type of random forest: classification
 Number of trees: 50
 No. of variables tried at each split: 2

 OOB estimate of error rate: 63.35%
 Confusion matrix:
 1 2 3 4 class.error
 1 502 1153 472 57 0.7701465
 2 712 2065 994 136 0.4714615
 3 427 1329 1029 134 0.6474820
 4 147 467 307 69 0.9303030

We can see by just changing the hyper-parameters that the results are different.
The overall error rate in ntree=50 has come down to 63.35% from 64.27%. Among the
classification in each class, the classification rate of classes 1 and 4 improved by approx.
3% while from classes 2 and 3, it decreased. Now the next important question to answer
is what is the most cost- and time-effective way to find an optimal value of the hyper-
parameters.

Chapter 8 ■ Model perforManCe IMproveMent

474

8.4 Hyper-Parameter Optimization
In machine learning, hyper-parameter optimization or model selection is the process of
choosing a set of hyper-parameters for a machine learning algorithm. The set of hyper-
parameters that maximize the model performance are then chosen for actual model
training and testing. Cross validation is generally used for measuring the performance of
the model in terms of cross validation error rate or some other user-defined method, e.g.,
bootstrap error, leave-one-out, etc.

In short, learning algorithms learn model parameters that model/fit the input
data well, while hyper-parameter optimization is to ensure the model does not overfit
its data by tuning, e.g., regularization. There are multiple algorithms suggested to
optimize the hyper-parameters of any algorithm. There are multiple popular packages
and paid services also available to optimize the parameters. Most of them are based on
some or another variation of the Bayesian approach. We will illustrate the parameter
tuning by different methods on the same model. This will help you get a comparative
understanding of how the results change and what can be influencing them.

The most popular methods are listed here, with some context. We are not providing
any direct comparison of these methods as the selection of method is influenced by
many factors, including but not limited to type of model, computation power, time-space
complexity, etc.

•	 Manual search: Create a set of parameters using best judgment/
experience and test them on the model. Choose the one that
works best for the model performance.

•	 Manual grid search: Create an equally spaced grid or custom grid
of a combination of hyper-parameters. Evaluate the mode on each
grid point and choose the ones with the best model performance.

•	 Automatic grid search: Let the program decide a grid for you and
do the search in that space for the best hyper-parameters,

•	 Optimal search: In this method we generally don't freeze the grid
beforehand, but allow the machine to expand the grid as and
when needed.

•	 Random search: In general, choosing some random points in the
hyper-parameter search space works faster and better. Although
this saves lot of spatial and time cost, it might not always give you
the best/optimal set of hyper-parameters.

•	 Custom search: Users can define their own functions and guide
the algorithm on how to find the best set of hyper-parameters.

 ■ Note Most of these parameter tuning/optimization techniques are search problems
in high dimensional space. the searching is done on a iterative and guided basis, mostly
numerical only. the following sections illustrate the popular optimization methods.

Chapter 8 ■ Model perforManCe IMproveMent

475

8.4.1 Manual Search
The details of the model for manual search optimization are discussed in this section.

Response Variable: ProductChoice

Predictors: MembershipPoints, CustomerAge,
PurchaseTenure, CustomerPropensity, and
LastPurchaseDuration

Error Calculation: Cross Validation

Model Type: Random Forest

Manually search parameters
library(data.table)
load the packages
library(randomForest)
library(mlbench)
library(caret)
Load Dataset

dataset <-Data
metric <- "Accuracy"

Here, we set the trainControl function with the method=”repeatedCV”, meaning
use repeated cross validation, and search method = “grid”, meaning search in the grid
defined by tunegrid.

Manual Search
trainControl <-trainControl(method="repeatedcv", number=10, repeats=3,
search="grid")
tunegrid <-expand.grid(.mtry=c(sqrt(ncol(dataset)-2)))
modellist <-list()

Here, we set the train function with method=”rf”, meaning use the random forest
algorithm to fit the model and number of trees as ntree from the loop variables.

for (ntree in c(100, 150, 200, 250)) {
set.seed(917);
 fit <-train(factor(ProductChoice) ~MembershipPoints +CustomerAge
+PurchaseTenure +CustomerPropensity +LastPurchaseDuration, data=dataset,
method="rf", metric=metric, tuneGrid=tunegrid, trControl=trainControl,
ntree=ntree)
 key <-toString(ntree)
 modellist[[key]] <-fit
}
compare results by resampling
results <-resamples(modellist)
#Summary of Results
summary(results)

Chapter 8 ■ Model perforManCe IMproveMent

476

 Call:
 summary.resamples(object = results)

 Models: 100, 150, 200, 250
 Number of resamples: 30

 Accuracy
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 100 0.3880 0.3990 0.4107 0.4081 0.4134 0.4364 0
 150 0.3890 0.3996 0.4117 0.4094 0.4147 0.4390 0
 200 0.3864 0.3974 0.4095 0.4081 0.4139 0.4360 0
 250 0.3884 0.4013 0.4097 0.4090 0.4167 0.4390 0

 Kappa
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 100 0.04385 0.06549 0.08044 0.07803 0.08661 0.1209 0
 150 0.05301 0.06481 0.08014 0.07977 0.08831 0.1235 0
 200 0.04243 0.06214 0.07847 0.07757 0.08953 0.1196 0
 250 0.04427 0.06311 0.08145 0.07873 0.08884 0.1244 0

#Dot Plot of results
dotplot(results)

Figure 8-2. Performance plot accuracy metrics

You can see the accuracy doesn’t vary much between the different parameter values.
This can mean that our search is not comprehensive or the model is able to learn most of

Chapter 8 ■ Model perforManCe IMproveMent

477

the features of data in less than the 100-tree random forest model. Also, the independent
variables list should be increased.

8.4.2 Manual Grid Search
The details of the model for manual grid search optimization are discussed in this section.

Response Variable: ProductChoice

Predictors: MembershipPoints, CustomerAge,
PurchaseTenure, CustomerPropensity, and
LastPurchaseDuration

Error Calculation: Cross Validation

Model Type: Learning Vector Quantization (LVQ)

Tune algorithm parameters using a manual grid search.
seed <-917;
dataset <-Data

Here, we set the trainControl function with method=”repeatedCV”, meaning use
repeated cross validation, and the search method = “grid”, meaning search in the grid
defined by grid.

prepare training scheme
control <-trainControl(method="repeatedcv", number=10, repeats=3)
design the parameter tuning grid
grid <-expand.grid(size=c(5,10,20,50), k=c(1,2,3,4,5))
train the model
model <-train(factor(ProductChoice) ~MembershipPoints +CustomerAge
+PurchaseTenure +CustomerPropensity +LastPurchaseDuration, data=dataset,
method="lvq", trControl=control, tuneGrid=grid)

summarize the model

print(model)
 Learning Vector Quantization

 10000 samples
 5 predictor
 4 classes: '1', '2', '3', '4'

 No pre-processing
 Resampling: Cross-Validated (10 fold, repeated 3 times)
 Summary of sample sizes: 9001, 9000, 9000, 9001, 8999, 9000, ...
 Resampling results across tuning parameters:

 size k Accuracy Kappa
 5 1 0.3403649 0.01508857

Chapter 8 ■ Model perforManCe IMproveMent

478

 5 2 0.3443983 0.02464750
 5 3 0.3582986 0.03118553
 5 4 0.3556306 0.02933887
 5 5 0.3510002 0.03342766
 10 1 0.3375292 0.02790863
 10 2 0.3387723 0.03024152
 10 3 0.3398577 0.03016096
 10 4 0.3484939 0.04030847
 10 5 0.3457038 0.04743415
 20 1 0.3403710 0.04013057
 20 2 0.3321322 0.02956459
 20 3 0.3380415 0.03934963
 20 4 0.3422641 0.04213952
 20 5 0.3449026 0.04611466
 50 1 0.3353654 0.03588394
 50 2 0.3358704 0.03255331
 50 3 0.3428662 0.04369310
 50 4 0.3421693 0.04713980
 50 5 0.3437377 0.04756819

 Accuracy was used to select the optimal model using the largest value.
 The final values used for the model were size = 5 and k = 3.

plot the effect of parameters on accuracy
plot(model)

Figure 8-3. Accuracy across cross-validated samples

Chapter 8 ■ Model perforManCe IMproveMent

479

The tuning algorithm shows the best tuning parameters Figure 8-3 also shows the
top line peaking on the accuracy plot, which correspond to the best model.

8.4.3 Automatic Grid Search
The details of the model for automatic grid search optimization are discussed in this
section.

Response Variable: ProductChoice

Predictors: MembershipPoints, CustomerAge,
PurchaseTenure, CustomerPropensity, and
LastPurchaseDuration

Error Calculation: Cross Validation

Model Type: Learning Vector Quantization (LVQ)

Tune algorithm parameters using an automatic grid search.
set.seed(917);
dataset <-Data

Here, we set the trainControl function with method=”repeatedCV”, meaning use
repeated cross validation and the search method being default, i.e., an automatic grid
search.

prepare training scheme
control <-trainControl(method="repeatedcv", number=10, repeats=3)
train the model
model <-train(factor(ProductChoice) ~MembershipPoints +CustomerAge
+PurchaseTenure +CustomerPropensity +LastPurchaseDuration, data=dataset,
method="lvq", trControl=control, tuneLength=5)
summarize the model

print(model)
 Learning Vector Quantization

 10000 samples
 5 predictor
 4 classes: '1', '2', '3', '4'

 No pre-processing
 Resampling: Cross-Validated (10 fold, repeated 3 times)
 Summary of sample sizes: 9000, 8999, 9001, 9001, 9000, 9000, ...
 Resampling results across tuning parameters:

Chapter 8 ■ Model perforManCe IMproveMent

480

 size k Accuracy Kappa
 11 1 0.3402322 0.03666635
 11 6 0.3402335 0.03518447
 11 11 0.3394009 0.04093310
 11 16 0.3499678 0.04415707
 11 21 0.3444298 0.04208990
 13 1 0.3379881 0.03523337
 13 6 0.3459702 0.04826571
 13 11 0.3464008 0.05010497
 13 16 0.3467346 0.05055072
 13 21 0.3497683 0.05600358
 16 1 0.3313684 0.03813657
 16 6 0.3460655 0.05013518
 16 11 0.3417672 0.04646887
 16 16 0.3502685 0.04977277
 16 21 0.3456003 0.04755585
 19 1 0.3299696 0.03229510
 19 6 0.3392352 0.04576555
 19 11 0.3361026 0.03859754
 19 16 0.3479016 0.05067015
 19 21 0.3451598 0.04997000
 22 1 0.3365661 0.03454596
 22 6 0.3459982 0.04399154
 22 11 0.3441293 0.04592163
 22 16 0.3506335 0.05187679
 22 21 0.3512329 0.05437707

 Accuracy was used to select the optimal model using the largest value.
 The final values used for the model were size = 22 and k = 21.

plot the effect of parameters on accuracy
plot(model)

Chapter 8 ■ Model perforManCe IMproveMent

481

The automatic grid search optimization shows the best model would be with
parameters of size=22 and k= 21, which corresponds to an accuracy of 0.3512. This differs
from our manual grid search, where the optimal parameters were size= 5 and k=3, with an
accuracy of 0.3581.

8.4.4 Optimal Search
The details of the model for optimal search optimization are discussed in this section.

Response Variable: ProductChoice

Predictors: MembershipPoints, CustomerAge,
PurchaseTenure, CustomerPropensity, and
LastPurchaseDuration

Error Calculation: Cross Validation

Model Type: Recursive Partitioning and Regression Trees

Observe the following three expand.grids we used for the tuneGrid parameter in
the train function.

•	 Manual search: expand.grid(.mtry=c(sqrt(ncol(dataset)-2)))

•	 Manual grid search: expand.grid(size=c(5,10,20,50), k=c(1,2,3,4,5))

•	 Optimal search: expand.grid(.cp=seq(0,0.1,by=0.01))

Figure 8-4. Accuracy across cross validated samples for an automatic grid search

Chapter 8 ■ Model perforManCe IMproveMent

482

In the optimal search, the parameters to expand.grid are more granular, which
means the algorithm will be able to converge to a global optimum much better than
the others. For example, by modifying the by = 0.01 in the seq function to have more
decimal places, you can further increase the granularity. However, keep in mind that
increasing the granularity will take computational effort.

Select the best tuning configuration
dataset <-Data

Here, we set the trainControl function with the method=”repeatedCV”, meaning
use repeated cross validation, and parameter tuning is done on tunegrid.

prepare training scheme
control <-trainControl(method="repeatedcv", number=10, repeats=3)
CART
set.seed(917);
tunegrid <-expand.grid(.cp=seq(0,0.1,by=0.01))
fit.cart <-train(factor(ProductChoice) ~MembershipPoints +CustomerAge
+PurchaseTenure +CustomerPropensity +LastPurchaseDuration, data=dataset,
method="rpart", metric="Accuracy", tuneGrid=tunegrid, trControl=control)
 Loading required package: rpart

fit.cart

 CART

 10000 samples
 5 predictor
 4 classes: '1', '2', '3', '4'

 No pre-processing
 Resampling: Cross-Validated (10 fold, repeated 3 times)
 Summary of sample sizes: 9000, 8999, 9001, 9001, 9000, 9000, ...
 Resampling results across tuning parameters:

 cp Accuracy Kappa
 0.00 0.3557312 0.05943192
 0.01 0.4014336 0.04179296
 0.02 0.3966989 0.02481739
 0.03 0.3907000 0.00000000
 0.04 0.3907000 0.00000000
 0.05 0.3907000 0.00000000
 0.06 0.3907000 0.00000000
 0.07 0.3907000 0.00000000
 0.08 0.3907000 0.00000000
 0.09 0.3907000 0.00000000
 0.10 0.3907000 0.00000000

Chapter 8 ■ Model perforManCe IMproveMent

483

 Accuracy was used to select the optimal model using the largest value.
 The final value used for the model was cp = 0.01.
display the best configuration
print(fit.cart$bestTune)

 cp
 2 0.01

plot(fit.cart)

Figure 8-5. Accuracy across cross validated samples and complexity parameters

The plot in Figure 8-5 clearly shows the peak of accuracy is at a cp value equal to 0.1,
which corresponds to an accuracy of 0.41, which is higher than our previous optimized
models. Also observe our model in this case is Recursive Partitioning and Regression Trees.

8.4.5 Random Search
The details of the model for random search optimization are discussed in this section.

Response Variable: ProductChoice

Predictors: MembershipPoints, CustomerAge,
PurchaseTenure, CustomerPropensity, and
LastPurchaseDuration

Error Calculation: Cross Validation

Model Type: Random Forest

Chapter 8 ■ Model perforManCe IMproveMent

484

Randomly search algorithm parameters

Select the best tuning configuration
dataset <-Data

Here, we set the trainControl function with method=”repeatedCV”, meaning use
repeated cross validation, and the predictor search set to random.

prepare training scheme
control <-trainControl(method="repeatedcv", number=10, repeats=3,
search="random")
train the model
model <-train(factor(ProductChoice) ~MembershipPoints +CustomerAge
+PurchaseTenure +CustomerPropensity +LastPurchaseDuration, data=dataset,
method="rf", trControl=control)
summarize the model
print(model)

 Random Forest

 10000 samples
 5 predictor
 4 classes: '1', '2', '3', '4'

 No pre-processing
 Resampling: Cross-Validated (10 fold, repeated 3 times)
 Summary of sample sizes: 9000, 9000, 9002, 9000, 9000, 8999, ...
 Resampling results across tuning parameters:

 mtry Accuracy Kappa
 3 0.4091006 0.07772332
 4 0.3863345 0.08039752
 6 0.3640687 0.06873901

 Accuracy was used to select the optimal model using the largest value.
 The final value used for the model was mtry = 3.

plot the effect of parameters on accuracy
plot(model)

Chapter 8 ■ Model perforManCe IMproveMent

485

Figure 8-6. Accuracy across cross validated sets and randomly selected predictors

Random search algorithms are usually faster and more efficient in tuning. In
this case, the plot shows that the algorithm was able to optimize the problem with
fewer iterations. The random forest model is used in this example. Random forests are
optimized quickly with random search. This saves lot of time in tuning random forest
models.

8.4.6 Custom Searching
Custom search algorithms provide advanced ways of guiding the algorithm to optimize
tuning parameters. Advanced users of machine learning can create their own search
algorithms to optimize hyper-parameters. In this example, we show one such search
optimization.

Response Variable: ProductChoice Predictors: MembershipPoints, CustomerAge,
PurchaseTenure, CustomerPropensity and LastPurchaseDuration Error Calculation:
Cross Validation Model Type: custom Random Forest

setwd("C:/Personal/Machine Learning/Chapter 8/");
library(caret)
library(randomForest)
library(class)
Load Dataset
Purchase_Data <-read.csv("Purchase Prediction Dataset.csv",header=TRUE)

data <-na.omit(Purchase_Data)

Chapter 8 ■ Model perforManCe IMproveMent

486

#Create a sample of 10K records
set.seed(917);
Data <-data[sample(nrow(data),size=10000),]
Select the best tuning configuration
dataset <-Data

Customer Parameter Search

load the packages
library(randomForest)
library(mlbench)
library(caret)

In this example, we have come up with a custom function for evaluation. The
algorithm of randomForest is inherited for a classification problem. This is an advanced
way of creating your own search functions.

define the custom caret algorithm (wrapper for Random Forest)
customRF <-list(type="Classification", library="randomForest", loop=NULL)
customRF$parameters <-data.frame(parameter=c("mtry", "ntree"),
class=rep("numeric", 2), label=c("mtry", "ntree"))
customRF$grid <-function(x, y, len=NULL, search="grid") {}
customRF$fit <-function(x, y, wts, param, lev, last, weights, classProbs, ...) {
randomForest(x, y, mtry=param$mtry, ntree=param$ntree, ...)
}
customRF$predict <-function(modelFit, newdata, preProc=NULL, submodels=NULL)
{ predict(modelFit, newdata)}
customRF$prob <-function(modelFit, newdata, preProc=NULL, submodels=NULL) {
predict(modelFit, newdata, type ="prob")}
customRF$sort <-function(x){ x[order(x[,1]),]}
customRF$levels <-function(x) {x$classes}

Load Dataset

dataset <-Data

metric <- "Accuracy"

train model
trainControl <-trainControl(method="repeatedcv", number=10, repeats=3)
tunegrid <-expand.grid(.mtry=c(1:4), .ntree=c(100, 150, 200, 250))
set.seed(917)
custom <-train(factor(ProductChoice) ~MembershipPoints +CustomerAge
+PurchaseTenure +CustomerPropensity +LastPurchaseDuration, data=dataset,
method=customRF, metric=metric, tuneGrid=tunegrid, trControl=trainControl)
print(custom)

 10000 samples
 5 predictor
 4 classes: '1', '2', '3', '4'

Chapter 8 ■ Model perforManCe IMproveMent

487

 No pre-processing
 Resampling: Cross-Validated (10 fold, repeated 3 times)
 Summary of sample sizes: 9000, 8999, 9001, 9001, 9000, 9000, ...
 Resampling results across tuning parameters:

 mtry ntree Accuracy Kappa
 1 100 0.4091336 0.05088226
 1 150 0.4078343 0.04944209
 1 200 0.4082998 0.04973571
 1 250 0.4076663 0.04861050
 2 100 0.4141003 0.07256969
 2 150 0.4145340 0.07306897
 2 200 0.4142334 0.07232983
 2 250 0.4144336 0.07289516
 3 100 0.4090333 0.07980804
 3 150 0.4081328 0.07744357
 3 200 0.4079661 0.07782225
 3 250 0.4086323 0.07818017
 4 100 0.3797990 0.07244785
 4 150 0.3804304 0.07231228
 4 200 0.3826303 0.07566550
 4 250 0.3838646 0.07796204

 Accuracy was used to select the optimal model using the largest value.
 The final values used for the model were mtry = 2 and ntree = 150.

plot(custom)

Figure 8-7. Accuracy across cross validated samples and parameter mtry

Chapter 8 ■ Model perforManCe IMproveMent

488

Custom search optimization gives us the highest accuracy of 0.415 so far. For this
problem this seems to be the best accuracy. Again, to emphasize, we were using the same
data and the same variable and saw how performance kept on varying. The next section
will discuss a very important concept in model performance, bias, and variance.

8.5 The Bias and Variance Tradeoff
The errors in any machine learning algorithm can be attributed to bias, variance, and
a irreducible error. The tradeoff or dilemma of bias and variance is the problem of
minimizing bias and variance simultaneously in any machine learning algorithm. In
general, reducing one tends to increase the other.

In performance measurement, we say bias causes underfitting, while variance
causes overfitting. Figure 8-8 shows a very good graphical representation, provided by
Scott Fortmann-Roe, in his blog using a bulls eye diagram.

Figure 8-8. Bias and variance Illustration using the bulls eye plot

Chapter 8 ■ Model perforManCe IMproveMent

489

Fortmann further provides a conceptual definition of errors due to bias and variance.
Looking at the image in Figure 8-8, it becomes easy to visualize how errors due to bias
and variance impact results. The simple definition is provided by Fortmann-Roe:

•	 Error due to bias: The error due to bias is taken as the difference
between the expected (or average) prediction of our model and the
correct value that we are trying to predict.

•	 Error due to variance: The error due to variance is taken as the
variability of a model prediction for a given data point. Again,
imagine that you can repeat the entire model building process
multiple times. The variance is how much the predictions for a
given point vary between different realizations of the model (Source:
http://scott.fortmann-roe.com/docs/BiasVariance.html).

The breaking of generalization errors in machine learning algorithms is called bias-
variance decomposition, and it reduces the errors into three components:

•	 Square of bias

•	 Variance

•	 Irreducible error

Mathematically, the decomposed equation looks like this:

E Bias Vary f x f x f x- ()()é
ëê

ù
ûú

= ()é
ë

ù
û + ()é

ë
ù
û +

ˆ ˆ ˆ
2 2

2s

where

Bias Eˆ ˆf x f x f x() =] [()- ()é
ë

ù
û

and

Var E Eˆ ˆ ˆf x f x f x() =] [() -] [()é
ë

ù
û

2 2

The derivation of this equation is also easy and can be done for generalized cases, as
follows.

For any random variable, variance is defined as

Var E EX X X[]= -] [éë ùû
2 2

Equivalently

E Var EX X X2 2
= []+ùû éëéë ùû

http://scott.fortmann-roe.com/docs/BiasVariance.html

Chapter 8 ■ Model perforManCe IMproveMent

490

assume, f f x= () and ˆ ˆf f x= () , as f is deterministic.

E f f[]=
Hence,

y f= + and E [] = 0

imply

 E E E .y f f f[] = +[] = [] =

Also,

 Var []=s 2

Hence,

Var E E E E E Var Ey y y y f f f[] = - []() =] [-() =] [+ -() =] [= []+ùû éë
2 2 2 2   é

ë
ù
û =
2

2s

Since, ϵ and f̂ are independent, we have

E E

E E E

y f y f yf

y f yf

-()é
ëê

ù
ûú

= + -é
ë

ù
û

= éë ùû + é
ë

ù
û -

é
ë

ù
û

ˆ ˆ ˆ

ˆ ˆ

2 2 2

2 2

2

2

== []+ [] + é
ë

ù
û +

é
ë

ù
û - é

ë
ù
û

= []+ é
ë

Var E Var E E

Var Var

y y f f f f

y f

2 2

2ˆ ˆ ˆ

ˆ ùù
û + - é

ë
ù
û()

= []+ é
ë

ù
û + -é

ë
ù
û

= + é
ë

ù
û +

f f

y f f f

f

E

Var Var E

Var

ˆ

ˆ ˆ

ˆ

2

2

2s BBias f̂éë
ù
û
2

The irreducible error is the noise term in the true relationship that cannot
fundamentally be reduced by any model. This derivation in the linear regression setup is
explained in "Notes on Derivation of Bias-Variance Decomposition in Linear Regression,"
by Shakhnarovich, Greg (2011). A similar decomposition is possible in other machine
learning algorithms.

Further, the tradeoff is shown here. The graphical representation of this tradeoff also
gives us an idea as to how to tweak our machine learning algorithms to reach that sweet
spot where the variance and bias are minimum given this tradeoff constraint.

The following code snippet shows this tradeoff on a real model prototype. In the
following example, we calculate mean square error, bias, and variance for hypothetical data,
and then plot how varying the value of shrink, a number vector, changes these quantities.

Chapter 8 ■ Model perforManCe IMproveMent

491

mu <-2
Z <-rnorm(20000, mu)

MSE <-function(estimate, mu) {
return(sum((estimate -mu)^2) /length(estimate))
 }

n <-100
shrink <-seq(0,0.5, length=n)
mse <-numeric(n)
bias <-numeric(n)
variance <-numeric(n)

for (i in 1:n) {
 mse[i] <-MSE((1 -shrink[i]) *Z, mu)
 bias[i] <-mu *shrink[i]
 variance[i] <-(1 -shrink[i])^2
}

Now let’s the plot the Bias-Variance tradeoff using the plot function; we can use the
ggplot function as well.

Bias-Variance tradeoff plot

plot(shrink, mse, xlab='Shrinkage', ylab='MSE', type='l', col='pink', lwd=3,
lty=1, ylim=c(0,1.2))
lines(shrink, bias^2, col='green', lwd=3, lty=2)
lines(shrink, variance, col='red', lwd=3, lty=2)
legend(0.02,0.6, c('Bias^2', 'Variance', 'MSE'), col=c('green', 'red',
'pink'), lwd=rep(3,3), lty=c(2,2,1))

Figure 8-9. Bias versus variance tradeoff plot

Chapter 8 ■ Model perforManCe IMproveMent

492

You can see in the plot in Figure 8-9 that the variance and bias have the opposite
behavior. The best optimal point for a model exists where the bias and variance meet.
And this is the point that we try to use for the final model. The early indications of the
model performance suffering from bias or variance can be seen by fitting the model
on the test data. Test data is not seen by the model and hence we can measure its true
performance or error on test data/hold out data.

•	 Model suffering from variance: When the model fits well on the train
data but poorly fits on the test data. This shows that the variability of
prediction is high and high variance error is dominating.

•	 Model suffering from bias: When the model fits poorly on both
train and test data. The error due to bias is driving the bad
performance of the model.

Having a good understanding of the bias-variance tradeoff helps you decide which
methods can be applied to correct for bias or variance issues in the model. But before
we jump to the main methods of performance improvements by dealing with bias and
variance, we list a few common steps that might be taken to improvement the model
performance:

•	 Bring more data into the model

•	 Bring in more features

•	 Revisit feature selection and create stronger features

•	 Regularization methods of feature selection can help

•	 Sampling can also be explored (upsample/downsample/resample)

•	 Try other learning algorithms

Once you are satisfied with these steps, you can think of applying them to improve
model performance.

8.5.1 Bagging or Bootstrap Aggregation
This can be used to train the same model on multiple samples, which reduces variance.

If the modeling is repeated n number of times, i.e., you create your model on n
samples with each sample independent of the others, you get the variance by a factor of
n. In other words, if you perform n replications of each configuration and let

Z X X for j nj j j= - = ¼1 2 1 2, , , ,

And since the Z
j
 are independent of identically distributed random variables:

Var
Var

.Z n
Z

n
j()éë ùû =

()

This shows that developing models on multiple samples will reduce the bias. Monte
Carlo methods have a detailed theory around this behavior of large sample statistics.

Chapter 8 ■ Model perforManCe IMproveMent

493

8.5.2 Boosting
Boosting successively models from errors, which reduces bias. Boosting repeatedly
develops models on the residuals to get better accuracy. For example, the first model
is developed and it gives 70% accuracy, then the 30% inaccurately predicted cases are
used to develop another model to bring additional accuracy. This process is repeated
until there is no improvement in accuracy. After infinite iterations, you are left with an
irreducible error that contains no additional information.

We will discuss these methods in more detail after introducing the idea of ensemble
learning. Ensemble learning is a method of using multiple models to solve a modeling
problem. Ensemble learning is very effective in reducing the bias and variance of models.
Another important aspect to keep in mind before we do a deep dive is the complexity
of the model and production environment. As the model becomes more complex, it
becomes difficult to interpret and implement in actual business applications. A data
scientist has to be very careful in choosing the methods to reduce errors, as there is a cost-
benefit analysis of the degree of improvement.

In general, we might not get into the decomposition of error, but mostly focus on the
total error only. A set of data scientists believe that the incremental benefits are not that
great compared to computational and complexity cost. Instead, we should focus on using
an accurate measure of prediction error and explore different levels of model complexity
and then choose the complexity level that minimizes the overall error.

8.6 Introduction to Ensemble Learning
The general idea of ensemble learning is better decision making with collective
intelligence. The ensemble techniques are certainly a game changer in machine learning.
In statistics and machine learning, ensemble learning means learning from multiple
algorithms to improve the model performance.

Generally, the supervised algorithms perform the task of searching for a solution
in hypothesis/parameter space and finding a suitable hypothesis/parameter that fits
the problem at hand. As with any search problem, we can’t always find the best solution
in limited iterations. In such situations, ensembles can be used to combine multiple
hypotheses to form a (generally) better hypothesis.

As more than one model is involved in the process of ensemble, they are obviously
computationally heavy as well as difficult to evaluate on a single parameter. In general,
fast algorithms are recommended to be used in ensemble methods, e.g., decision tree
ensembles (randomForest); however, slower algorithm benefit from ensemble methods
equally. Similarly, you can apply ensemble learning to unsupervised learning algorithms.
An ensemble learns from underlying models, hence it is itself a supervised learning
algorithm.

We will use an example to understand the benefits of ensemble learning by "voting
ensembles".

Chapter 8 ■ Model perforManCe IMproveMent

494

8.6.1 Voting Ensembles
Voting ensembles are the most popular ensemble method in classification problems.
This ensemble combines the final class results from multiple models and chooses the
one with the majority vote. It need not be only majority votes; you can weight them
based on multiple other factors, e.g., individual model performance, complexity, etc. For
explaining an example of an ensemble, Figure 8-10 is a illustration of majority votes.

(Source: Ensemble learning prediction of proteinâ€“protein interactions using
proteins functional annotations by Saha,Zubek et.al.)

Now to help internalize the idea of voting ensembles, let’s understand from a
hypothetical example, as illustrated here.

Problem: Finding defective bulbs (=1) in a manufactured lot
of bulbs

Ensemble models: We have three inspection experts (read
models) A, B, and C, to identify defective pieces. You can use
any one of them or all of them.

Additional information: Accuracy of A is 0.7, accuracy of B is
0.6, and accuracy of C is 0.65. Their decision is independent of
any other decision.

Figure 8-10. Voting ensemble learning for a classification problem

Chapter 8 ■ Model perforManCe IMproveMent

495

We have three binary classifiers models (A, B, and C) with 0.7, 0.6, and 0.65 accuracy,
respectively. We will now show what happens if all of these models are used together in
an ensemble model with the majority vote.

For a majority vote with three models, we can expect four outcomes:

•	 All three are correct

a. 0.7 * 0.68 * 0.65 = 0.3094

•	 Two are correct

a. 0.7 * 0.68 * 0.35

b. 0.7 * 0.32 * 0.65

c. 0.3 * 0.68 * 0.65 = 0.4448

•	 Two are wrong

a. 0.3 * 0.32 * 0.65

b. 0.3 * 0.68 * 0.35

c. 0.7 * 0.32 * 0.35 = 0.2122

•	 All three are wrong

a. 0.3 * 0.32 * 0.35 = 0.0336

In scenario 2, we can see that on average, the majority vote ensemble corrects
for ~44% of the cases. This ensemble of three models will give us an average accuracy
of ~75.4% (0.4448 + 0.3094), which is more than any individual model. However, the
important consideration to see this kind of increase is the assumption that the models
were independent of each other and their prediction was independent of each other. This
independence condition generally doesn’t hold and hence sometimes you might struggle
to see improvements in model performance, even with high dimensional ensemble.

8.6.2 Advanced Methods in Ensemble Learning
Broadly, there are two types of ensemble helping in variance and bias reduction. There
are some variants around the same idea like blending, stacking, and custom ensembles,
but the core idea can be explained by the two methods of bagging and boosting.

8.6.2.1 Bagging
Bootstrap aggregation, also called bagging, is a ensemble meta-algorithm. This algorithm
improves the stability and accuracy of the model and reduces the overfitting issue. This
method can be used with any method; in cases of continuous functions, it take weighed
average the output of models, in classification, it weighs output to ensemble into one
single output.

Chapter 8 ■ Model perforManCe IMproveMent

496

Bagging was proposed by Leo Breiman in 1994 for improving results of a
classification problem. Details of his original work can be found in his technical paper,
"Bagging Predictors" Technical Report No. 421, 1994, Department of Statistics.

Figure 8-11 shows a bagging ensemble flow. The steps in bagging are broadly divided
into four parts:

 1. Creating samples from training data; number of samples
should be of appropriate numbers (not too many or too few).

 2. Train the model on individual samples.

 3. Create classifiers from each model and store the results.

 4. Based on the type of ensemble, weighted or majority vote or
some custom way. Combine the results to predict the test data.

The image in Figure 8-11 illustrates the four steps in bagging mentioned earlier
(Source: http://cse-w`iki.unl.edu/).

Figure 8-11. Bagging ensemble flow

Consider these important features of bagging:

•	 Each model is developed in parallel and independent of each
other

•	 Helps decrease the variance but ineffective in reducing bias

•	 Best suited for high variance, low bias models (complex models)

•	 RandomForest is a good example (the randomForest algorithm
prunes the tree to reduce correlation)

http://cse-wiki.unl.edu/

Chapter 8 ■ Model perforManCe IMproveMent

497

8.6.2.2 Boosting
Similar to bagging, boosting is also a ensemble meta-algorithm meant to reduce bias in
supervised learning models. Historically, boosting tries to answer the question, suppose
we have a classifier that always gives a classification less than 50% (weak classifier).
Can we build a sequence of models to reach zero error (minimal error)? Theoretically,
this is possible by successively passing the residual to successive models. In general,
the successive models create so many convoluted relationships in final models that it
becomes difficult to explain the models; hence, boosting sometimes is known to create a
black box, something very hard to explain and understand.

For instance, if you design three-pass boosting, and suppose the classifier is always
40% correct, then for a set of 100 objects in first pass we will have 60 misclassified. In
the second pass, it only pass the misclassified objects, so 36% will be misclassified (60%
of 60). Again in the third pass, you pass the misclassified and get 22% misclassified. So
essentially, by using a classifier with only 40% accuracy, you can create a ensemble with
an error equal to 22% (22/100) only, or a model with 78% accuracy.

However, in reality the theoretical underpinnings remain the same, but the
improvements are not that dramatic, as many other factors come in to play, e.g., with
each pass the model becomes weak, reweighing, correlation etc.

Figure 8-12 shows a boosting ensemble flow. The steps in boosting are described here:

 1. First fit a model on a full training dataset, in Figure 8-12, you
get 42% accuracy in the first model.

 2. Fit another classifier and get 65% accuracy.

 3. Fit the third model to get 92% accuracy.

 4. Now you combine these different classifiers, to form a strong
classifier.

Figure 8-12. Boosting ensemble flow

Chapter 8 ■ Model perforManCe IMproveMent

498

(Source: https://alliance.seas.upenn.edu). You can see here that the boosted
machine. i.e., the combined classifier, is performing far better than individual classifiers.

A few important features of boosting are listed here:

•	 Each model is developed sequentially, so each successive model
is built on the previous model-lacking area.

•	 Helps decrease the bias, but is ineffective in reducing variance.

•	 Best suited for low variance, high bias models.

•	 Gradient boosting machine is a powerful algorithm using
boosting ensemble.

In the following sections, we will show one example of each bagging, boosting,
blending, and stacking on our purchase prediction data. The output tables are easy to
read and the plot will make the process of model improvement clear.

Note that the parameters are not tuned for the examples.

8.7 Ensemble Techniques Illustration in R
Ensemble training is broadly of two types—bagging and boosting. However, there are
many other variants researchers have proposed. In this section, we show some examples
in R using our purchase prediction data.

This section shows a chunk of R codes, which are reproducible for any dataset
you want to use. The specific function calls and their options can be accessed in the
documentation of the Caret package and other dependencies.

For all of the following examples, there are three important functions to calibrate for
each of the techniques:

•	 trainControl(): Sets the sampling method, summary, and other
training parameters.

•	 train(): Trains the models with the trainControl() parameters;
the modeling method is also defined in this function.

•	 Ensemble method: Combines the results from different models
using custom functions, resample, or caretEnsemble functions.

Let’s now start building ensemble models using the R environment.

8.7.1 Bagging Trees
The two most popular bagging algorithms are used here:

•	 Bagged CART (regression tree)

•	 Random forest

The following code creates two models based on these techniques and shows the
comparison between these two tree methods.

https://alliance.seas.upenn.edu/

Chapter 8 ■ Model perforManCe IMproveMent

499

library(caret)
library(randomForest)
library(class)
library(ipred)
Load Dataset
Purchase_Data <-read.csv("Purchase Prediction Dataset.csv",header=TRUE)

data <-na.omit(Purchase_Data)

Create a sample of 10K records
set.seed(917);
Data <-data[sample(nrow(data),size=10000),]
Select the best tuning configuration
dataset <-Data
Example of Bagging algorithms
control <-trainControl(method="repeatedcv", number=10, repeats=3)
metric <- "Accuracy"

The following code snippet fits a bagged tree model.

Bagged CART
set.seed(917)
fit.treebag <-train(factor(ProductChoice) ~MembershipPoints +CustomerAge
+PurchaseTenure +CustomerPropensity +LastPurchaseDuration, data=dataset,
method="treebag", metric=metric, trControl=control)

 Loading required package: plyr

 Loading required package: e1071

The following code snippet fits a Random Forest model.

Random Forest
set.seed(917)
fit.rf <-train(factor(ProductChoice) ~MembershipPoints +CustomerAge
+PurchaseTenure +CustomerPropensity +LastPurchaseDuration, data=dataset,
method="rf", metric=metric, trControl=control)

This summarizes the bagged results from the two methods using the resamples()
function in the Caret package.

summarize results
bagging_results <-resamples(list(treebag=fit.treebag, rf=fit.rf))
summary(bagging_results)

 Call:
 summary.resamples(object = bagging_results)

 Models: treebag, rf

Chapter 8 ■ Model perforManCe IMproveMent

500

 Number of resamples: 30

 Accuracy
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 treebag 0.327 0.3444 0.3505 0.3518 0.3583 0.384 0
 rf 0.395 0.4095 0.4167 0.4151 0.4216 0.435 0

 Kappa
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 treebag 0.02242 0.04812 0.05498 0.05786 0.06759 0.1044 0
 rf 0.04252 0.06536 0.07513 0.07387 0.08290 0.1032 0

dotplot(bagging_results)

The accuracy for the random forest is better than the bagged CART. The plot in
Figure 8-13 shows the comparison of both algorithms on Kappa and accuracy.

Figure 8-13. Accuracy and Kappa of bagged tree

8.7.2 Gradient Boosting with a Decision Tree
For boosting, we will see the two most popular algorithms:

•	 C5.0: Decision tree developed by Ross Quinlan

•	 Gradient Boosting Machine

Chapter 8 ■ Model perforManCe IMproveMent

501

The following code first creates a C5.0 decision tree model and then a GBM model. Once
we have both models ready, we create a boosting ensemble with these two models combined.

library(C50)
library(gbm)

dataset <-Data;
Example of Boosting Algorithms
control <-trainControl(method="repeatedcv", number=10, repeats=3)
metric <- "Accuracy"

Here, we are fitting a C5.0 decision tree model.

C5.0
set.seed(917)
fit.c50 <-train(factor(ProductChoice) ~MembershipPoints +CustomerAge
+PurchaseTenure +CustomerPropensity +LastPurchaseDuration, data=dataset,
method="C5.0", metric=metric, trControl=control)
fit.c50

 C5.0

 10000 samples
 5 predictor
 4 classes: '1', '2', '3', '4'

 No pre-processing
 Resampling: Cross-Validated (10 fold, repeated 3 times)
 Summary of sample sizes: 9000, 8999, 9001, 9001, 9000, 9000, ...
 Resampling results across tuning parameters:

 model winnow trials Accuracy Kappa
 rules FALSE 1 0.3924345 0.07807159
 rules FALSE 10 0.3924345 0.07807159
 rules FALSE 20 0.3924345 0.07807159
 rules TRUE 1 0.4003660 0.03854515
 rules TRUE 10 0.4003660 0.03854515
 rules TRUE 20 0.4003660 0.03854515
 tree FALSE 1 0.3786998 0.06855999
 tree FALSE 10 0.3786998 0.06855999
 tree FALSE 20 0.3786998 0.06855999
 tree TRUE 1 0.3999658 0.03799627
 tree TRUE 10 0.3999658 0.03799627
 tree TRUE 20 0.3999658 0.03799627

 Accuracy was used to select the optimal model using the largest value.
 The final values used for the model were trials = 1, model = rules
 and winnow = TRUE.

plot(fit.c50)

Chapter 8 ■ Model perforManCe IMproveMent

502

The model selects the optimal model using the largest value of accuracy.
Here, we create a Gradient Boosting Machine (GBM) with the same dataset.

Stochastic Gradient Boosting
set.seed(917)
fit.gbm <-train(factor(ProductChoice) ~MembershipPoints +CustomerAge
+PurchaseTenure +CustomerPropensity +LastPurchaseDuration, data=dataset,
method="gbm", metric=metric, trControl=control, verbose=FALSE)
fit.gbm

 Stochastic Gradient Boosting

 10000 samples
 5 predictor
 4 classes: '1', '2', '3', '4'

 No pre-processing
 Resampling: Cross-Validated (10 fold, repeated 3 times)
 Summary of sample sizes: 9000, 8999, 9001, 9001, 9000, 9000, ...
 Resampling results across tuning parameters:

 interaction.depth n.trees Accuracy Kappa
 1 50 0.4133000 0.07395657
 1 100 0.4112656 0.07721806
 1 150 0.4104981 0.07825744

Figure 8-14. Accuracy across boosting iterations: C5.0

Chapter 8 ■ Model perforManCe IMproveMent

503

 2 50 0.4157985 0.08170535
 2 100 0.4138310 0.08341336
 2 150 0.4136634 0.08690728
 3 50 0.4133309 0.08146098
 3 100 0.4117326 0.08628274
 3 150 0.4108320 0.08948114

Tuning parameter 'shrinkage' was held constant at a value of 0.1

 Tuning parameter 'n.minobsinnode' was held constant at a value of 10
 Accuracy was used to select the optimal model using the largest value.
 The final values used for the model were n.trees = 50, interaction.depth
 = 2, shrinkage = 0.1 and n.minobsinnode = 10.

plot(fit.gbm)

Figure 8-15. Accuracy across boosting iterations: GBM

Now we summarize the results by combining the GBM and C5.0 models using the
resamples() function in the Caret package.

summarize results
boosting_results <-resamples(list(c5.0=fit.c50, gbm=fit.gbm))
summary(boosting_results)

 Call:
 summary.resamples(object = boosting_results)

Chapter 8 ■ Model perforManCe IMproveMent

504

 Models: c5.0, gbm
 Number of resamples: 30

 Accuracy
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 c5.0 0.376 0.3917 0.4008 0.4004 0.4088 0.4226 0
 gbm 0.398 0.4112 0.4153 0.4158 0.4209 0.4286 0

 Kappa
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 c5.0 0.00000 0.02886 0.04001 0.03855 0.05701 0.07496 0
 gbm 0.05248 0.07366 0.08241 0.08171 0.08875 0.10530 0

dotplot(boosting_results)

Figure 8-16. Accuracy across the boosting ensemble

We can see that the C5.0 algorithm produces an accuracy of 40.5% for the best
model, while GBM gives a model with 41.5% accuracy. Gradient boosting seems to be
fitting the data better with the boosting algorithm.

Chapter 8 ■ Model perforManCe IMproveMent

505

8.7.3 Blending KNN and Rpart
Blending is an ensemble where the output of different models is combined with some
weights, and all the model output is not treated equally. The following example uses two
techniques to blend:

•	 knn

•	 rpart

In this example, we will be blending the knn and rpart methods as a linear combination
of models. The models will be ensembled by using the caretEmseble() function.

caretEnsemble is a package for making ensembles of Caret models. The details
of this package can be accessed at https://cran.r-project.org/web/packages/
caretEnsemble/vignettes/caretEnsemble-intro.html.

Blending (linear combination of models)

load libraries
library(caret)
library(caretEnsemble)

library(MASS)

set.seed(917);
Data <-data[sample(nrow(data),size=10000),];

dataset <-Data;

dataset$choice <-ifelse(dataset$ProductChoice ==1 |dataset$ProductChoice ==2
,"A","B")

dataset$choice <-as.factor(dataset$choice)
define training control
train_control <-trainControl(method="cv", number=4, savePredictions=TRUE,
classProbs=TRUE)
train a list of models
methodList <-c('knn','rpart')
models <-caretList(choice ~MembershipPoints +CustomerAge +PurchaseTenure
+CustomerPropensity +LastPurchaseDuration, data=dataset, trControl=train_
control, methodList=methodList)
create ensemble of trained models
ensemble <-caretEnsemble(models)
summarize ensemble
summary(ensemble)

 The following models were ensembled: knn, rpart
 They were weighted:
 -1.9876 0.4849 3.4433

https://cran.r-project.org/web/packages/caretEnsemble/vignettes/caretEnsemble-intro.html
https://cran.r-project.org/web/packages/caretEnsemble/vignettes/caretEnsemble-intro.html

Chapter 8 ■ Model perforManCe IMproveMent

506

 The resulting Accuracy is: 0.6416
 The fit for each individual model on the Accuracy is:
 method Accuracy AccuracySD
 knn 0.5924004 0.007451753
 rpart 0.6397990 0.005863011

This output shows that knn and rpart are individually accurate with 59% and 63%
accuracy, while the blending model is 64% accurate. This shows that blending allows us
to marginally improve the classification results. In general, the improvements can be even
in the order of 10%.

The next methods of stacking are very similar to blending, the only difference is
that in stacking we will stack models one after another and then weigh output from each
model to create an ensemble.

8.7.4 Stacking Using caretEnsemble
Stacking is similar to blending, the only difference is the way the data is extracted for
successive models. The general principle is to not use the training data itself for boosting.

Therefore, we apply rules like using cross-fold validation (the out-of-fold is used to
train the next layer)—stacking—and/or use a holdout validation (part of the train is used
in the first layer, part in the second)—blending.

For example, let’s take the previous example of the knn and rpart models fit for
ensemble. Assume that the training set had 100 cases to classify. Then in blending:

 1. knn built on 100 cases.

 2. rpart built on 100 cases.

 3. Ensemble model = c1*Knn + c2*Rpart, where c1 and c2 are
some weights given to each model before combining. This was
how we blended these two methods.

The example for stacking will look something like this:

 1. knn built on 100 case, it classifies 60 correctly.

 2. Build rpart on the 40 misclassified cases from previous model,
which allows you to classify 20 more correctly. (This is an ideal
situation. In reality the training 100 cases will be weighted in
a way that the misclassified cases get more weight in training
than the correctly classified case in the previous mode of the
stack.)

 3. Now combine the results of the two model runs in ensemble. In
other words, you stack results from one model to other.

This example is a simplistic view of how the process of blending and stacking differ
in principle. In general, both the methods give multiple models which we weigh to
combine them into a single ensemble model.

Chapter 8 ■ Model perforManCe IMproveMent

507

We can combine (or stack) the predictions of multiple Caret models using the
caretEnsemble package. In this example, we will stack five different algorithms on our
purchase prediction data:

•	 Linear Discriminate Analysis (LDA)

•	 Classification and Regression Trees (CART)

•	 Logistic regression (via Generalized Linear Model or GLM)

•	 k-Nearest Neighbors (kNN)

•	 Support Vector Machine with a Radial Basis Kernel Function (SVM)

Example of Stacking algorithms
library(kernlab);

create submodels
control <-trainControl(method="repeatedcv", number=10, repeats=3,
savePredictions=TRUE, classProbs=TRUE)

Here are the settings the algorithm lists for stacking. The five algorithms are stored in
the algorithmList variable which will be used as a parameter in the training function.

algorithmList <-c('lda', 'rpart', 'glm', 'knn', 'svmRadial')
set.seed(917)
models <-caretList(choice ~MembershipPoints +CustomerAge +PurchaseTenure
+CustomerPropensity +LastPurchaseDuration, data=dataset, trControl=control,
methodList=algorithmList)
results <-resamples(models)
summary(results)

 Call:
 summary.resamples(object = results)

 Models: lda, rpart, glm, knn, svmRadial
 Number of resamples: 30

 Accuracy
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 lda 0.6240 0.6330 0.6443 0.6424 0.6510 0.6600 0
 rpart 0.6260 0.6315 0.6383 0.6403 0.6470 0.6640 0
 glm 0.6270 0.6336 0.6447 0.6432 0.6518 0.6580 0
 knn 0.5710 0.5825 0.5940 0.5908 0.5990 0.6070 0
 svmRadial 0.6226 0.6381 0.6470 0.6462 0.6558 0.6683 0

 Kappa
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 lda 0.14170 0.16630 0.18680 0.18430 0.2038 0.2357 0
 rpart 0.12510 0.15430 0.16750 0.17140 0.1859 0.2319 0

Chapter 8 ■ Model perforManCe IMproveMent

508

 glm 0.14290 0.16440 0.18650 0.18430 0.2010 0.2282 0
 knn 0.03609 0.06526 0.09152 0.08519 0.1047 0.1255 0
 svmRadial 0.13230 0.16290 0.18680 0.18370 0.2019 0.2319 0

dotplot(results)

Figure 8-17. Accuracy and Kappa of individual models

We can see from the dot plot in Figure 8-17 that the performance has gone up to
60% by stacking multiple algorithms together. Also note that the model training was very
resource intensive and model complexity is not suitable for a production environment.

Now let’s see following the correlation between the results for each of the stacking
models. The correlation will show how many results were the same across the models.
If the number of predictions overlapping is high, we might not see any improvement in
results due to stacking.

correlation between results
modelCor(results)

 lda rpart glm knn svmRadial
 lda 1.00000000 0.65576463 0.974747749 -0.0145770069 0.7366291336
 rpart 0.65576463 1.00000000 0.675976986 -0.0350947255 0.6936118174
 glm 0.97474775 0.67597699 1.000000000 0.0039610564 0.7336378830
 knn -0.01457701 -0.03509473 0.003961056 1.0000000000 -0.0008377878
 svmRadial 0.73662913 0.69361182 0.733637883 -0.0008377878 1.0000000000

splom(results)

Chapter 8 ■ Model perforManCe IMproveMent

509

Model correlations seem to be high for a few of the models—for instance lda and
glm, lda and svmradial, etc. This impacts the ensemble power as discussed in the
previous sections.

In the previous example, knn was the base model and other models were stacked
on that. We can actually change the stacking order by using the caretStack() function.
Here we show the same example by rearranging the stack. In first case we start with the
glm model and in second we start with a random forest and then will compare results if
stacking improved the results.

Stacking using GLM:

stack using glm
stackControl <-trainControl(method="repeatedcv", number=10, repeats=3,
savePredictions=TRUE, classProbs=TRUE)
set.seed(917)
stack.glm <-caretStack(models, method="glm", metric="Accuracy",
trControl=stackControl)
print(stack.glm)

 A glm ensemble of 2 base models: lda, rpart, glm, knn, svmRadial

Figure 8-18. Scatter plot to list correlations among results from stacked models

Chapter 8 ■ Model perforManCe IMproveMent

510

 Ensemble results:
 Generalized Linear Model

 30000 samples
 5 predictor
 2 classes: 'A', 'B'

 No pre-processing
 Resampling: Cross-Validated (10 fold, repeated 3 times)
 Summary of sample sizes: 27000, 26999, 27000, 27000, 27000, 27001, ...
 Resampling results:

 Accuracy Kappa
 0.6441887 0.1845648

Using glm to stack has given an accuracy of 64%. In the next section, we did the same
stacking with randomForest.

stack using random forest
set.seed(917)
stack.rf <-caretStack(models, method="rf", metric="Accuracy",
trControl=stackControl)
print(stack.rf)

 A rf ensemble of 2 base models: lda, rpart, glm, knn, svmRadial

 Ensemble results:
 Random Forest

 30000 samples
 5 predictor
 2 classes: 'A', 'B'

 No pre-processing
 Resampling: Cross-Validated (10 fold, repeated 3 times)
 Summary of sample sizes: 27000, 26999, 27000, 27000, 27000, 27001, ...
 Resampling results across tuning parameters:

 mtry Accuracy Kappa
 2 0.6372440 0.1944063
 3 0.6356217 0.1927612
 5 0.6335549 0.1885745

 Accuracy was used to select the optimal model using the largest value.
 The final value used for the model was mtry = 2.

Chapter 8 ■ Model perforManCe IMproveMent

511

Using randomForest, we get an accuracy close to 63.7% which is close to the glm
accuracy but a little lower. Hence for this experiment, stacking using glm works the best.
Again, we can re-emphasize that the correlation among some methods is high, so adding
them to the stack will not benefit the model’s accuracy.

8.8 Advanced Topic: Bayesian Optimization of
Machine Learning Models

In machine learning, hyper-parameter tuning plays a important role. Data scientists
are now paying attention to tuning the parameters before putting the final model
in production. Hence it is important to touch briefly on one of the most important
optimization techniques, called Bayesian optimization. Yachen Yan released a new
package for Bayesian optimization in R very recently. We will show you how to use this
package on the house price data.

Bayesian optimization is a way to find global optimal point for a black box function
(model evaluation metric as a function of hyper-parameters) without requiring
derivatives. The work done by Jonas Mockus was well received in the academic
community; a comprehensive introduction to this topic can be found in "Bayesian
Approach to Global Optimization: Theory and Applications," Jonas Mockus, Kluwer
Academic (2013).

For this example, we will first get an initial set of hyper-parameters by using random
tuning. This will give us multiple values generated across a wide range. Here we are
creating 20 random parameters. The example has been inspired by the article by Max
Kuhn, director at Pfizer on revolutions. The article can be accessed at http://blog.
revolutionanalytics.com/2016/06/bayesian-optimization-of-machine-learning-
models.html.

setwd("C:/Personal/Machine Learning/Chapter 8/");
library(caret)
library(randomForest)
library(class)
library(ipred)
library(GPfit)
Load Dataset
House_price <-read.csv("House Sale Price Dataset.csv",header=TRUE)

dataset <-na.omit(House_price)

#Create a sample of 10K records
set.seed(917);

rand_ctrl <-trainControl(method ="repeatedcv", repeats =5, search ="random")

rand_search <-train(HousePrice ~StoreArea +BasementArea +SellingYear
+SaleType +ConstructionYear +Rating, data = dataset, method ="svmRadial",
 Create 20 random parameter values

http://blog.revolutionanalytics.com/2016/06/bayesian-optimization-of-machine-learning-models.html
http://blog.revolutionanalytics.com/2016/06/bayesian-optimization-of-machine-learning-models.html
http://blog.revolutionanalytics.com/2016/06/bayesian-optimization-of-machine-learning-models.html

Chapter 8 ■ Model perforManCe IMproveMent

512

tuneLength =20,
metric ="RMSE",
preProc =c("center", "scale"),
trControl = rand_ctrl)
rand_search

 Support Vector Machines with Radial Basis Function Kernel

 1069 samples
 6 predictor

 Pre-processing: centered (10), scaled (10)
 Resampling: Cross-Validated (10 fold, repeated 5 times)
 Summary of sample sizes: 961, 962, 963, 962, 963, 962, ...
 Resampling results across tuning parameters:

 sigma C RMSE Rsquared
 0.005245534 22.6530619 43909.17 0.7456410
 0.013918538 0.9927528 42284.81 0.7655819
... 0.730177279 90.8484676 57009.90 0.5687722
 1.858138939 0.5329669 63431.60 0.4909382

RMSE was used to select the optimal model using the smallest value. The final values
used for the model were sigma = 0.04674319 and C = 3.112494.

ggplot(rand_search) +scale_x_log10() +scale_y_log10()

Figure 8-19. RMSE in cost and Sigma space

Chapter 8 ■ Model perforManCe IMproveMent

513

getTrainPerf(rand_search)

 TrainRMSE TrainRsquared method
 1 41480.77 0.7706348 svmRadial

This example is an optimization that assumes the Bayesian model is based on
Gaussian processes to predict good tuning parameters. Hence, a linear regression type of
framework is used for this Bayesian analysis.

For a combination of cost and sigma, we can calculate the bounds of the predicted
RMSE. Due to the uncertainty of prediction, it is possible to find a better direction for
optimization.

Define the resampling method
ctrl <-trainControl(method ="repeatedcv", repeats =5)

Use this function to optimize the model. The two parameters are evaluated on the
log scale given their range and scope.

svm_fit_bayes <-function(logC, logSigma) {
 Use the same model code but for a single (C, sigma) pair.
 txt <-capture.output(
 mod <-train(HousePrice ~StoreArea +BasementArea +SellingYear +SaleType
+ConstructionYear +Rating , data = dataset,
method ="svmRadial",
preProc =c("center", "scale"),
metric ="RMSE",
trControl = ctrl,
tuneGrid =data.frame(C =exp(logC), sigma =exp(logSigma)))
)
 The function wants to _maximize_ the outcome so we return
 the negative of the resampled RMSE value. `Pred` can be used
 to return predicted values but we'll avoid that and use zero
list(Score = -getTrainPerf(mod)[, "TrainRMSE"], Pred =0)
 }

Define the bounds of the search.

 lower_bounds <-c(logC = -5, logSigma = -9)
 upper_bounds <-c(logC =20, logSigma = -0.75)
 bounds <-list(logC =c(lower_bounds[1], upper_bounds[1]),
logSigma =c(lower_bounds[2], upper_bounds[2]))

 Create a grid of values as the input into the BO code
 initial_grid <-rand_search$results[, c("C", "sigma", "RMSE")]
 initial_grid$C <-log(initial_grid$C)
 initial_grid$sigma <-log(initial_grid$sigma)
 initial_grid$RMSE <--initial_grid$RMSE
names(initial_grid) <-c("logC", "logSigma", "Value")

Chapter 8 ■ Model perforManCe IMproveMent

514

Run the optimization with the initial grid and with 30.

library(rBayesianOptimization)

set.seed(917)
 ba_search <-BayesianOptimization(svm_fit_bayes,
bounds = bounds,
init_grid_dt = initial_grid,
init_points =0,
n_iter =30,
acq ="ucb",
kappa =1,
eps =0.0,
verbose =TRUE)

 20 points in hyperparameter space were pre-sampled
 elapsed = 7.02 Round = 21 logC = -0.6296 logSigma = -3.2325 Value = -
4.260364e+04

 Best Parameters Found:
 Round = 43 logC = 3.5271 logSigma = -3.3272 Value = -4.106852e+04

ba_search

 $Best_Par
 logC logSigma
 3.527062 -3.327152

 $Best_Value
 [1] -41068.52

 $History
 Round logC logSigma Value
 1: 1 3.120295026 -5.2503783 -43909.17
 2: 2 -0.007273577 -4.2745337 -42284.81
 49: 49 1.765610990 -2.6130250 -41510.91
 50: 50 3.286583098 -3.4811229 -41876.16
 Round logC logSigma Value

 $Pred
 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 V21 V22 V23 V24 V25 V26 V27 V28 V29 V30
 1: 0 0 0 0 0 0 0 0 0 0

The best values are found as follows:

Round = 43
logC = 3.5271
logSigma = -3.3272
Value = -4.106852e+04

Chapter 8 ■ Model perforManCe IMproveMent

515

Let's now develop a model with these parameters to see if the optimization did
actually work.

final_search <-train(HousePrice ~StoreArea +BasementArea +SellingYear
+SaleType +ConstructionYear +Rating, data = dataset,
method ="svmRadial",
tuneGrid =data.frame(C =exp(ba_search$Best_Par["logC"]),
sigma =exp(ba_search$Best_Par["logSigma"])),
metric ="RMSE",
preProc =c("center", "scale"),
trControl = ctrl)

final_search

 Support Vector Machines with Radial Basis Function Kernel

 1069 samples
 6 predictor

 Pre-processing: centered (10), scaled (10)
 Resampling: Cross-Validated (10 fold, repeated 5 times)
 Summary of sample sizes: 962, 961, 964, 961, 964, 963, ...
 Resampling results:

 RMSE Rsquared
 41595.45 0.7671211

 Tuning parameter 'sigma' was held constant at a value of 0.0358952

 Tuning parameter 'C' was held constant at a value of 34.02386

The following command will provide the comparison across the models. The
comparison is done using one sample t-test.

compare_models(final_search, rand_search)

 One Sample t-test

 data: x
 t = 0.061836, df = 49, p-value = 0.9509
 alternative hypothesis: true mean is not equal to 0
 95 percent confidence interval:
 -3612.507 3841.883
 sample estimates:
 mean of x
 114.6878

Chapter 8 ■ Model perforManCe IMproveMent

516

The model fit on the new configuration is comparable to random searches in terms of the
resampled RMSE and the RMSE on the test set. This shows that the optimization did work well.

8.9 Summary
Machine learning models are very complicated when compared to statistical models.
The machine learning models along with ensemble have increased the complexity of
models. The models have become difficult to explain and far more difficult to segregate a
component-wise contribution of features. Ensemble model further adds to complexity in
relationships of dependent variables and predictor variables quantified by the machine
learning model. On the other hand, the machine learning algorithm makes it possible to
use any data in any volume without any assumptions. This makes machine learning stand
apart from statistical learning and open up bag of opportunities to model virtually any
data problem.

One of the major contrasts between statistical learning and machine learning is
the way both models extract/learn from the given dataset. Machine learning algorithms
are iterative in nature and depend on some “high-level parameters,” which define the
complexity of model, learning rate, etc. These parameters are commonly known as hyper-
parameters. Hyper-parameters impact the model performance to a large extent as they
define the higher dimension parameters of how the model should learn from the data. We
learned some methods to optimize these hyper-parameters. All the optimization model
fitting in this chapter is done using a very power package in R, named Caret, which stands
for classification and regression training. It can accommodate close to 230+ models in a
single function call.

In this chapter, after introducing various types of hyper-parameter optimizations
methods, we introduced the very important topic of bias and variance tradeoff. This
tradeoff is a limitation applicable to all statistical models and lies at the heart of
any model performance optimization problem. The tradeoff states that you cannot
decrease bias and variance simultaneously. Ensemble methods were then introduced
to create models that can reduce bias, boosting ensemble, and reduce variance bagging
ensembles. Bagging and boosting are both powerful techniques, and they have become
very popular in recent years.

This chapter also illustrated four very popular ensembles examples using R code,
bagging, boosting, blending, and stacking. The results are compared and issues like
correlation in results was also discussed. In the end, we introduced a very advanced
technique in hyper-parameter optimization, called Bayesian optimization. This is a hot
topic of research, as the machine learning models have become so huge that a grid search
is a not feasible solution for hyper-parameter optimization.

In recent times, the machine learning methods have become computationally
demanding as well. You can sense the enormity of computational power we require by
noting the fact that for this chapter we just used a sample of data. Adding more data and
expanding the search grids can enhance the results. To be able to cater to the demand
of machine learning algorithms, both with respect to volume of data and computational
power, we need to explore scalable machine learning infrastructure and algorithms.

The next chapter introduces the scalable solutions available to practitioners. We
will introduce concepts of distributed file systems, cluster model training, using Spark,
parallelization of algorithms, and other issues in scaling up machine learning algorithms.

Chapter 8 ■ Model perforManCe IMproveMent

517

8.10 References
 [1] https://cran.r-project.org/web/packages/caret/

vignettes/caret.pdf

 [2] https://cran.r-project.org/web/packages/caret/caret.
pdf

 [3] Geman, Stuart; E. Bienenstock; R. Doursat (1992).
"Neural networks and the bias/variance dilemma," Neural
Computation.

 [4] Gareth James; Daniela Witten; Trevor Hastie; Robert
Tibshirani (2013). “An Introduction to Statistical Learning.”

 [5] https://www.coursera.org/learn/real-life-data-
science/lecture/nR3sM/machine-learning-vs-
traditional-statistics-part-1

 [6] Snoek, Jasper; Larochelle, Hugo; Adams, Ryan (2012),
"Practical Bayesian Optimization of Machine Learning
Algorithms," Advances in Neural Information Processing
Systems.

 [7] Bergstra, James; Bardenet, Remi; Bengio, Yoshua; Kegl, Balazs
(2011), "Algorithms for hyper-parameter optimization,"
Advances in Neural Information Processing Systems.

 [8] https://cran.r-project.org/web/packages/
rBayesianOptimization/rBayesianOptimization.pdf

 [9] https://papers.nips.cc/paper/4522-practical-
bayesian-optimization-of-machine-learning-
algorithms.pdf

 [10] “The Boosting Approach to Machine Learning: An Overview,”
Robert E. Schapire, (2003).

 [11] "Bias, Variance, and Arcing Classifiers" (PDF),” Technical
Report. Leo Breiman (1996).

 [12] Hesterberg, T. C., D. S. Moore, S. Monaghan, A. Clipson, and
R. Epstein (2005). "Bootstrap Methods and Permutation Tests"
in David S. Moore and George McCabe’s Introduction to the
Practice of Statistics.

https://cran.r-project.org/web/packages/caret/vignettes/caret.pdf
https://cran.r-project.org/web/packages/caret/vignettes/caret.pdf
https://cran.r-project.org/web/packages/caret/caret.pdf
https://cran.r-project.org/web/packages/caret/caret.pdf
https://www.coursera.org/learn/real-life-data-science/lecture/nR3sM/machine-learning-vs-traditional-statistics-part-1
https://www.coursera.org/learn/real-life-data-science/lecture/nR3sM/machine-learning-vs-traditional-statistics-part-1
https://www.coursera.org/learn/real-life-data-science/lecture/nR3sM/machine-learning-vs-traditional-statistics-part-1
https://cran.r-project.org/web/packages/rBayesianOptimization/rBayesianOptimization.pdf
https://cran.r-project.org/web/packages/rBayesianOptimization/rBayesianOptimization.pdf
https://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
https://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
https://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf

519© Karthik Ramasubramanian and Abhishek Singh 2017
K. Ramasubramanian and A. Singh, Machine Learning Using R,
DOI 10.1007/978-1-4842-2334-5_9

CHAPTER 9

Scalable Machine Learning
and Related Technologies

A few years back, you would have not heard the word "scalable" in machine learning
parlance. The reason was mainly attributed to the lack of infrastructure, data, and
real-world application. Machine learning was being much talked about in the research
community of academia or in well-funded industry research labs. A prototype of any real-
world application using machine learning was considered a big feat and a demonstration
of breakthrough research. However, time has changed ever since the availability of
powerful commodity hardware at a reduced cost and big data technology's widespread
adaption. As a result, the data has become easily accessible and software developments
are becoming more and more data savvy. Every single byte of data is being captured even
if its use is not clear in the near future.

As you witnessed in Chapter 6, the machine learning algorithm has a lot of statistical
and mathematical depth, but that's not sufficient for it to become scalable. The veracity of
such statistical techniques is only enough to work on a small dataset that wholly resides
in one machine. However, when the data size grows big enough to challenge the storage
capabilities of a single machine, the world of distributed computing and algorithmic
complexities starts to take over. And in this world, questions like the following start to
emerge:

•	 Does the algorithm run in linear or quadratic time?

•	 Do we have a distributed (parallel) version of the algorithm?

•	 Do we have enough machines with required storage and
computing power?

If the answers to these questions are yes, you are ready to think big. A very recent
notion of building data products, which we emphasized in our PEBE machine learning
process flow, originates from our ability to scale things that can cater to the demand of
ever-changing technology, data, and increasing number of users of the product. We are
continuously learning from the incremental addition of new data.

In this concluding chapter of the book, we will take you through the exciting journey
of big data technologies like Apache Hadoop, Hive, Pig, and Spark, with special focus
on scalable machine learning using real-world examples. We will be presenting an
introduction to these technologies.

http://dx.doi.org/10.1007/978-1-4842-2334-5_6

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

520

9.1 Distributed Processing and Storage
Imagine a program that uses the most optimized algorithm with the best running time
(time complexity) and it’s designed for efficient storage as well. However, the notion of
best running time for a company like Google is few microseconds or even lesser (for its
search program)and a company involved in DNA sequencing might be willing to spend
even few days or weeks for the program to complete. Parallel and distributed computing
before big data revolution started was solving the problem of execution time. The same
programs were ported to run on multiple machines (servers) at the same time. In other
words, the program is divided into many subtasks and assigned to multiple machines
executing it at the same time. The paradigm shift big data brought this way of distributed
computing was to design a mechanism that efficiently divides the data as well as with the
program that processes it. The type of problems people thought about in the distributed
computing era and the big data generation have also seen a quite big makeover. For
example, problems like the vertex graph coloring problem (finding a way to color the
vertices of a graph so that no two adjacent vertices share the same color) is considered a
computationally challenging task even for a small graph with a few vertices. There is lot of
literature available to designing such distributed programs like the one described in the
references at the end of the chapter.

On the other hand, when enormous volumes of data are involved, for example,
sorting an array of a billion numbers, the big data technologies have found their way
through the solution. Our focus in this chapter is to highlight some of the technologies in
this domain using a real-world example.

Although the evolution of distributed and parallel computing began many decades
ago, its widespread use has been made possible by two breakthrough works, which led
to an entire application development and further state-of-the-art technologies. The first
such breakthrough came from Google in 2003, with their "Google File System" followed by
"MapReduce: Simplified Data Processing on Large Clusters" in 2004. The former provided
a scalable distributed file system for large distributed data-intensive applications and the
latter designed a programming model and an associated implementation for processing
and generating large datasets. They provide an architecture for dividing and storing a lot
of data in smaller chunks across thousands of machines (nodes) and taking computations
locally to the machines with smaller chunks of data than running on the entire data.

The second breakthrough, which took this technology to the masses, was in 2006,
with Apache Hadoop, a complete open source framework for distributed storage and
processing. Hadoop successfully demonstrated that, by using large computer clusters
built from commodity hardware, it’s possible to achieve reduced computation time and
automatically handle hardware failures.

9.1.1 Google File System (GFS)
The design principle behind GFS was done keeping in mind the demand of data-intensive
applications. GFS provided the scalable distributed file system (for storage) for large data.

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

521

In order to precisely emphasize the need of such file system, the following is the
excerpt from the paper, The Google File System:

While sharing many of the same goals as previous distributed file systems,
our design has been driven by observations of our application workloads
and technological environment, both current and anticipated that reflect
a marked departure from some earlier file system assumptions. This has
led us to reexamine traditional choices and explore radically different
design points.

The file system has successfully met our storage needs. It is widely deployed
within Google as the storage platform for the generation and processing
of data used by our service as well as research and development efforts
that require large datasets. The largest cluster to date provides hundreds
of terabytes of storage across thousands of disks on over a thousand
machines, and it is concurrently accessed by hundreds of clients.

Handling terabytes of data using thousands of disk over thousands of machines
speaks for the humongous task such systems are designed to process.

As shown in Figure 9-1, which was originally published in the paper "Google File
System," a GFS master stores the metadata about every data chunk stored in GFS chunk
server.

Figure 9-1. A Google file system

The metadata contains the file and chunk namespace (an abstract container holding
unique name or identifier), file to chunk mappings, and the location of each chunk’s
replica for fault tolerance. In the initial design, there was only a single master; however,
the most contemporary distributed architectures have much more complex settings even
around the master. The GFS client interacts with the master for metadata requests and all
data requests go to the chunk servers.

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

522

9.1.2 MapReduce
The distributed processing using MapReduce is at the core of how a task on a big
dataset is divided according to the distributed storage. MapReduce was designed as a
programming model applying a certain logic, which could range from a sorting operation
to running a machine leaning algorithm on a large volume of data.

In a nutshell, as the paper, “MapReduce: Simplified Data Processing on Large Clusters,”
explains, users specify a map function that processes a key-value pair to generate a set of
intermediate key-value pairs, and a reduce function that merges all intermediate values
associated with the same intermediate key. In simpler terms, you break the data into smaller
chunks and write a map function to process a <key, value> pair from each of the smaller
chunks simultaneously in the different nodes. This in turn generates an intermediate <key,
value> pair, which travels over the network to a central node to get merged by certain logic
defined by reduce function. The combination of these two is called the MapReduce program.
We will see a simple example of this in the Hadoop ecosystem section.

Figure 9-2 from the classic paper, "MapReduce: Simplified Data Processing on Large
Clusters," shows how the input file that’s split into smaller chunks is placed on workers
(chunk server) where the map program executes.

Figure 9-2. MapReduce execution flow

Once the map phase has completed its assigned task, it writes the data back into the
local disk on the chunk servers, which is then picked up by the Reduce program to finally
output the results. This entire process executes seamlessly even if there are hardware
failures. We will explain MapReduce in greater detail later in the next section.

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

523

9.1.3 Parallel Execution in R
In the CRAN documentation titled, “Getting Started with doParallel and foreach,” by
Steve Weston and Rich Callaway, the creators of the package doParallel, they explain,
The doParallel package is a “parallel backend” for the foreach package. It provides a
mechanism needed to execute foreach loops in parallel. The foreach package must be used
in conjunction with a package such as doParallel in order to execute code in parallel.
Foreach is an idiom that allows for iterating over elements in a collection, without the use
of an explicit loop counter.

Before we go into some examples of MapReduce and discuss the Hadoop ecosystem,
let’s see some ways to simulate the random forest algorithm (explained in Chapter 6)
using parallel execution in multi-core CPUs of a single machine. We will use the credit
score dataset.

9.1.3.1 Setting the Cores
Using the doParallel library in R, we can set the number of cores of the CPU, which
you want your machine to use in while running the model. There are algorithmic
ways to decide (beyond the scope of this book) how many cores you should be using
if a dedicated machine for such processing is available. However, if it’s your personal
machine, don’t overkill the system by using many cores. Keep in mind that assigning all
the cores to this process could crash your other processes due to insufficient resources. To
be safer, we used the c-2 cores, where c is the number of cores available in your machine.

library(doParallel)

Find out how many cores are available (if you don't already know)
c =detectCores()
c
 [1] 4
Find out how many cores are currently being used
getDoParWorkers()
 [1] 1
Create cluster with c-2 cores
cl <-makeCluster(c-2)

Register cluster
registerDoParallel(cl)

Find out how many cores are being used
getDoParWorkers()
 [1] 2

http://dx.doi.org/10.1007/978-1-4842-2334-5_6

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

524

9.1.3.2 Problem Statement
The data being used here builds a model, which can predict whether a customer would
default in repaying the bank loan or not (a binary classifier) using random forest. For
this demonstration, we are simply looking for the time it takes to build the model when
executed in serial versus parallel manners.

 Problem : Identifying Risky Bank Loans

setwd("C:\\Users\\Karthik\\Dropbox\\Book Writing - Drafts\\Chapter Drafts\\
Chapter 9 - Scalable Machine Learning and related technology\\Datasets")
credit <-read.csv("credit.csv")
str(credit)
 'data.frame': 1000 obs. of 17 variables:
 $ checking_balance : Factor w/ 4 levels "< 0 DM","> 200 DM",..: 1 3 4 1

1 4 4 3 4 3 ...
 $ months_loan_duration: int 6 48 12 42 24 36 24 36 12 30 ...
 $ credit_history : Factor w/ 5 levels "critical","good",..: 1 2 1 2 4

2 2 2 2 1 ...
 $ purpose : Factor w/ 6 levels "business","car",..: 5 5 4 5 2

4 5 2 5 2 ...
 $ amount : int 1169 5951 2096 7882 4870 9055 2835 6948 3059

5234 ...
 $ savings_balance : Factor w/ 5 levels "< 100 DM","> 1000 DM",..: 5 1

1 1 1 5 4 1 2 1 ...
 $ employment_duration : Factor w/ 5 levels "< 1 year","> 7 years",..: 2 3

4 4 3 3 2 3 4 5 ...
 $ percent_of_income : int 4 2 2 2 3 2 3 2 2 4 ...
 $ years_at_residence : int 4 2 3 4 4 4 4 2 4 2 ...
 $ age : int 67 22 49 45 53 35 53 35 61 28 ...
 $ other_credit : Factor w/ 3 levels "bank","none",..: 2 2 2 2 2 2

2 2 2 2 ...
 $ housing : Factor w/ 3 levels "other","own",..: 2 2 2 1 1 1

2 3 2 2 ...
 $ existing_loans_count: int 2 1 1 1 2 1 1 1 1 2 ...
 $ job : Factor w/ 4 levels "management","skilled",..: 2 2

4 2 2 4 2 1 4 1 ...
 $ dependents : int 1 1 2 2 2 2 1 1 1 1 ...
 $ phone : Factor w/ 2 levels "no","yes": 2 1 1 1 1 2 1 2 1

1 ...
 $ default : Factor w/ 2 levels "no","yes": 1 2 1 1 2 1 1 1 1

2 ...
create a random sample for training and test data
use set.seed to use the same random number sequence as the tutorial
set.seed(123)
train_sample <-sample(1000, 900)

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

525

str(train_sample)
 int [1:900] 288 788 409 881 937 46 525 887 548 453 ...
split the data frames
credit_train <-credit[train_sample,]
credit_test <-credit[-train_sample,]

9.1.3.3 Building the model: Serial
Note the time it takes to execute the random forest model in a serial fashion on the
training data created.

 Training a model on the data

library(randomForest)

#Sequential Execution
system.time(rf_credit_model <-randomForest(credit_train[-17],
 credit_train$default,
ntree =1000))
 user system elapsed
 1.8 0.0 1.8

9.1.3.4 Building the Model: Parallel
In the parallel version of the code, instead of directly using the random forest model with
ntree = 1000 parameters (which means build 1000 decision trees), we are going to use the
foreach function with %dopar%, so we can split the 1000-decision tree building process
into four processes. Each part builds 250 decision trees using the randomForest function.

#Parallel Execution
system.time(
 rf_credit_model_parallel <-foreach(nt =rep(250,4),
.combine = combine ,
.packages ='randomForest')
 %dopar%
randomForest(
 credit_train[-17],
 credit_train$default,
ntree = nt))
 user system elapsed
 0.33 0.09 1.73

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

526

9.1.3.5 Stopping the Clusters
Stop all the clusters and resume the execution in a serial fashion.

#Shutting down cluster - when you're done, be sure to close #the parallel
backend using
stopCluster(cl)

Observe here, approximately, that the parallel execution is 80% faster (it might differ
based on your system) than the sequential one. If a single machine using multi-cores
could bring such a huge improvement, imagine the time and resources you’d save when
using a large computing cluster.

Notes:

•	 The “user time” is the CPU time charged for the execution of user
instructions of the calling process.

•	 The “system time” is the CPU time charged for execution by the
system on behalf of the calling process.

In the next section, we go a little deeper into the Hadoop ecosystem and demonstrate
the first “hello world” example using Hadoop and R.

9.2 The Hadoop Ecosystem
There are plenty of resources on Hadoop due to is popularity. Taking a broad view, the
Hadoop framework consists of the following three modules (the technical details of the
framework are beyond the scope of this book):

•	 Hadoop Distributed File System: This is the storage part of
Hadoop; the core where the data chunks really reside. Dividing
data into smaller segments means you need a meticulous way of
storing the references in the form of metadata and making them
available to all the processes requiring it.

•	 Hadoop YARN: Yet Another Resource Negotiator, this is also
known as the data operating system. Starting with Hadoop
2.0, YARN has become the core engine driving the processes
efficiently by a prudent resource management framework.

•	 Hadoop MapReduce: MapReduce decides the execution logic
of what needs to be done with the data. The logic should be
designed in such a way that it can execute in parallel with smaller
chunks of data residing in a distributed cluster of machines.

On top of this, there are many additional software packages specially designed
to work on the Hadoop framework, namely Apache Pig, Hive, HBase, Mahout, Spark,
Sqoop, Flume, Oozie, Storm, Solr, and more. All this software is necessary because of the
paradigm shift Hadoop brought in the traditional scheme of relational and small scale

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

527

data. We will take a brief look of Apache Pig, Hive, HBase, and Spark in this chapter, as
they are the three main pillars of the Hadoop ecosystem. Figure 9-3 shows these tools
organized in the Hadoop ecosystem.

Figure 9-3. Hadoop components and tools

We first discuss the MapReduce, which sits in the YARN layer of Hadoop, the
processing super-head.

9.2.1 MapReduce
MapReduce is a programming model for designing parallel and distributed algorithms
on a cluster of machines. At a broad level, it consists of two procedures. Map, which
performs operations like filtering and sorting; it processes the key-value pair and
generates a intermediate key-value pair. Reduce merges all the intermediate values
with the same key. If a problem could be expressed this way, then it’s possible to use a
MapReduce to break the problem into smaller parts. Over the years, this model has been
successfully used in many real-world problems. In order to understand this model, let’s
look at a simple example of word count.

9.2.1.1 MapReduce Example: Word Count
Imagine there is a news aggregator application trying to build an automatic topic
generator for all their articles in the web. The first step in the topic generator algorithm
is to build a bag-of-word with their frequencies or, in other words, count the number of
occurrences of each word in an article. Since there are an enormous number of articles
on the web, it definitely requires huge computational power to be able to build this topic
generator.

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

528

Figure 9-4 shows the MapReduce execution flow as the article is split into many key-
value pairs, processed by the Map function, which generates the intermediate key-value
pair of word and a value of 1. Another process called shuffle moves the output of map to
the Reducer, where finally the values are added for each keyword.

Figure 9-4. Word count example using MapReduce

Notes:

•	 The example needs a Linux/UNIX machine to run.

•	 Appropriate system paths need to be defined by the administrators.

•	 Here is the system information in which the code was executed.

a. platform: i686-redhat-linux-gnu

b. arch: i686

c. os: Linux-gnu

d. system: i686, Linux-gnu

e. major: 3

f. minor: 1.2

g. year: 2014

h. month: 10

i. day: 31

j. svn rev: 66913

k. language: R

l. version.string: R version 3.1.2 (2014-10-31)

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

529

•	 The appropriate Hadoop version is required to run the code. This
code runs on Hadoop version 2.2.0, build 1529768. Comparability
of this code with the latest version of Hadoop is not checked.

You must set the environment variable with the location of the Hadoop bin folder
and the Hadoop streaming JAR.

Sys.setenv(HADOOP_CMD="/usr/lib/hadoop-2.2.0/bin/hadoop")
Sys.setenv(HADOOP_STREAMING="/usr/lib/hadoop-2.2.0/share/hadoop/tools/lib/
hadoop-streaming-2.2.0.jar")

Then you install and call the libraries rmr2 and rhdfs. Once they are successful, you
initialize the HDFS to read or write data from HDFS.

library(rmr2)
library(rhdfs)

Hadoop File Operations

#initialize File HDFS
hdfs.init()

Then you put some sample data into the HDFS using the put() function in the rhdfs
library.

#Put File into HDFS
hdfs.put("/home/sample.txt","/hadoop_practice")
 [1] TRUE

The you define the Map and Reduce function. This code snippet defines the way the
Map and Reduce function are going to scan the text file and tokenize (a term generally
given to splitting a given sentence or doc by a separator like space) into key-value pairs
for counting.

Reads a bunch of lines at a time
#Map Phase
map <-function(k,lines) {
 words.list <-strsplit(lines, '\\s+')
 words <-unlist(words.list)
return(keyval(words, 1))
}

#Reduce Phase
reduce <-function(word, counts) {
keyval(word, sum(counts))
}

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

530

#MapReduce Function
wordcount <-function (input, output=NULL) {
mapreduce(input=input, output=output, input.format="text", map=map, reduce=reduce)
}

The you run the wordcount. The wordcount function we defined is now ready to
be executed on Hadoop. Before calling the function, ensure that you have set the base
directory where the input file exists and where you want to put the output generated by
the wordcount function:

 read text files from folder input on HDFS
 save result in folder output on HDFS
 Submit job

basedir <- '/hadoop_practice'
infile <-file.path(basedir, 'sample.txt')
outfile <-file.path(basedir, 'output')
ret <-wordcount(infile, outfile)

Fetch the results. Once the execution of the wordcount function is complete, you
can fetch the results back into R and convert that into a data frame and sort the results, as
shown in this code snippet.

 Fetch results from HDFS
result <-from.dfs(outfile)
results.df <-as.data.frame(result, stringsAsFactors=F)
colnames(results.df) <-c('word', 'count')
tail(results.df,100)

 word count
 1 R 1
 2 Hi 1
 3 to 1
 4 All 1
 5 with 1
 6 class 1
 7 hadoop 3
 8 Welcome 1
 9 integrating 1

head(results.df[order(results.df$count, decreasing =TRUE),])

 word count
 7 hadoop 3
 1 R 1
 2 Hi 1
 3 to 1
 4 All 1
 5 with 1

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

531

Since the entire book is written in R, we have presented this example of word count
where R integrates with Hadoop using its Hadoop streaming library which is built in the
packages rhdfc and rmr2. For demonstration sake, such an integration might be fine
but in a real production system, it might not be a robust solution. Other programming
languages like Java, Scala, and Python have a robust production level code integrity and a
tight coupling with the Hadoop framework. In the coming sections, we will introduce the
basics of Hive, Pig, and Hbase, and conclude with a real-world example using Spark.

9.2.2 Hive
The most critical paradigm shift required in terms of adapting to a big data technology
like Hadoop was the ability to read, write, and transform data as one is familiar doing in
the Relational Database Management Systems (RDBMS) using SQL (Structured Query
Language). RDBMS has a well-structured design of tables grouped into databases which
follow a predefined schema. Querying any table is easy if you follow the SQL syntax, logic,
and schema properly. The databases are well managed in a data warehouse.

Now, in order to facilitate such ease of querying the data stored in HDFS, there was
a need for a data warehouse tool that’s strongly coupled with the HDFS and, at the same
time, provide the same capabilities of querying like the traditional RDBMS. Apache Hive
was developed keeping this thought at the center of its design principles. Although the
underlying storage is HDFS, the data could be structured in a well-defined schema. Among
all the other tools in the Hadoop ecosystem, Hive is the most used component across
the industry. The advanced technical discussion on the Hive architecture and design is
beyond the scope of this book; however, we will present introductory material here in
order for you to connect with the larger scheme of things when it comes to big data.

There are many tools in the market that help with large-scale data processing from
various sources in a company and put it into a common data platform (Hive is a must
data processing engine in such data platforms), which is then made available across
companies to analysts, product managers, developers, operations analysts, and so on.
Qubole Data Service is one such platform offering such a processing service. It also
provides a GUI for writing SQL queries which runs on Hive.

Notes:

•	 In the following demonstrations, we used a Linux virtual
machine from Cloudera. However, if you have an instance of
Linux OS installed in your personal systems, you can follow the
link https://cwiki.apache.org/confluence/display/Hive/
GettingStarted to set up Hive.

•	 Alternatively, you could download a virtual machine (also
called Sandbox) from Cloudera, Hortonworks, or MapR. These
virtual machines are prebuilt with all the necessary tools
and components of Hadoop to get you started quickly. Here
are couple of options. Horton VM: http://hortonworks.
com/products/sandbox/ and Cloudera VM: http://www.
cloudera.com/downloads/quickstart_vms/5-8.html. For the
demonstrations in this chapter on Pig, Hive, HBase, we used a VM
from Cloudera.

https://cwiki.apache.org/confluence/display/Hive/GettingStarted
https://cwiki.apache.org/confluence/display/Hive/GettingStarted
http://hortonworks.com/products/sandbox/
http://hortonworks.com/products/sandbox/
http://www.cloudera.com/downloads/quickstart_vms/5-8.html
http://www.cloudera.com/downloads/quickstart_vms/5-8.html

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

532

•	 We will use the native command-line interface to show some
basics of Hive.

9.2.2.1 Creating Tables
The query looks very similar to the traditional SQL query; however, what happens in the
background is a lot different in Hive. Upon successful execution of this query, a new file is
created in the HDFS in the default database of Hive warehouse (see Figure 9-5).

Figure 9-6. Hive table in HDFS

Figure 9-5. The Hive create table command

Figure 9-6 shows the emp_info table in the folder structure /user/hive/warehouse/
of HDFS.

9.2.2.2 Describing Tables
Once the table is created, you can use the describe formatted emp_info; command
to see the structure of the table matching the one we used during creation. Along with
column name, it also shows the data type of the column (see Figure 9-7).

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

533

Figure 9-7. The describe table command

9.2.2.3 Generating Data and Storing it in a Local File
The table is now ready to be loaded with some data. We have shown in Figure 9-8 the
generation of some dummy data and storing it in the local directory in a file named
emp_info.

Figure 9-8. Generate data and store in local file

9.2.2.4 Loading the Data into the Hive Table
Once we have the data in a local file, using the command load data local inpath '/
home/training/emp_info' into table emp_info; we will load the data into the Hive
table emp_info in HDFS.

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

534

Figure 9-10 shows the data in the HDFS file that we loaded from the local file system.

Figure 9-10. Data in the HDFS file

Figure 9-9. Load the data into a Hive table

9.2.2.5 Selecting a Query
Figure 9-11 shows two varieties of the select query. The first one is without a where clause
and the second one uses where dep = 'A'. Notice how the MapReduce framework built
into Hadoop comes into play in the Hive query. This is the exact reason why we associate
tools like Hive with the Hadoop ecosystem. The only difference here, unlike with the
Word count example, is that we don't have to explicitly define any Map or Reduce
methods; instead Hive automatically does that for us.

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

535

Figure 9-11. Select query with and without a where clause

Apart from these basic commands, Hive supports data partitioning, table joins,
multi-inserts, user-defined functions, and data export. These functionality are
comprehensive enough for analytical databases to be migrated into Hive.

9.2.3 Apache Pig
Apache Pig is an analytical platform for large datasets. Pig programs, which are written in
Pig Latin, are compiled by Pig's infrastructure layer to produce a sequence of MapReduce
programs, thus achieving parallelism. Its strong coupling with Hadoop provides the
storage structure of HDFS and process handling by YARN.

Let’s revisit our wordcount example from the MapReduce section and see how we
write the same example in a series of Pig Latin commands. For the detailed documentation
on Pig set and usage, refer to http://pig.apache.org/docs/r0.16.0/start.html.

9.2.3.1 Connecting to Pig
The command pig -x local connects to a local file system. Simply using the command
pig in the terminal will connect to the HDFS. For our word count example, we will stick
with the local file system

http://pig.apache.org/docs/r0.16.0/start.html

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

536

9.2.3.2 Loading the Data
The command A1 = load '/home/training/wc.txt' as (line:chararray); will scan
the file and store each line and a character array. The dump A1 command will output the
following:

(Hi All Welcome to Hadoop)
(Hadoop class integrating with R Hadoop)

Figure 9-13. Load data into A1

Figure 9-14. Tokenize each line

9.2.3.3 Tokenizing Each Line
Tokenize each line into a word and store it as a list. The dump A2 command will output the
following:

({(Hi),(All),(Welcome),(to),(Hadoop)})
({(Hadoop),(class),(integrating),(with),(R),(Hadoop)})

Figure 9-12. Connecting to Pig using local file system

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

537

9.2.3.4 Flattening the Tokens
The A3 = foreach A2 generate flatten(tokens) as words; command will further
break each tokenized line into token of words. The dump A3 command will output the
following:

(Hi)
(All)
(Welcome)
(to)
(Hadoop)
(Hadoop)
(class)
(integrating)
(with)
(R)
(Hadoop)

Figure 9-15. Flattening the tokens

Figure 9-16. Group words

9.2.3.5 Grouping the Words
Using the command A4 = group A3 by words; will create a key-value pair of words and
the list of the word repeated as many times as it is contained in the tokenized list. The
dump A4 command will output the following:

(R,{(R)})
(Hi,{(Hi)})
(to,{(to)})
(All,{(All)})
(with,{(with)})
(class,{(class)})
(Hadoop,{(Hadoop),(Hadoop),(Hadoop)})
(Welcome,{(Welcome)})
(integrating,{(integrating)})

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

538

9.2.3.6 Counting and Sorting
The following two commands will generate the key-value pair of a word and the number
of its occurrence in the document and subsequently sort by count.

•	 A5 = foreach A4 generate group,COUNT(A3);

•	 A6 = order A5 by $1 desc;

The dump A6 command will output the following:

(Hadoop,3)
(R,1)
(Hi,1)
(to,1)
(All,1)
(with,1)
(class,1)
(Welcome,1)
(integrating,1)

Using Pig, many such analytical workflows involving selection, filter, join, union,
sorting, grouping, and transformation could be created with ease on large datasets.

9.2.4 HBase
So far we have been discussing representing data in a structured format of rows and
columns with predefined schema, which once it’s made, is difficult to tweak for changing
requirements. In other words, though Hive offered a distributed version of RDBMS on
large datasets, it still requires you to follow a fixed database schema and store the data in
warehouse based on it. However, with rapidly changing data we need random, real-time
read/writes on large distributed data. In such a scenario, the database can't be relational
anymore; it has to be what people in the big data world call NoSQL. HBase was modeled
after Google's big table: a distributed storage system for structured data on Google file
system (GFS).

Contrary to a traditional RDBMS system, which stores every row of data with all
its columns even if there are many null values and redundant data across tables due to
normalization, HBase is a columnar store. This means that each row of data is stored by
column family. For example, if you have an employee table with column family called
details, you could store columns like name, age, and qualification under the column
family details. So if there is a new column address, which could be added under
details in real-time.

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

539

9.2.4.1 Starting HBase
Start the HBase using the shell script start-hbase.sh. Run the following three
commands:

 1. cd /usr/lib/hbase/

 2. sudo bin/start-hbase.sh

 3. hbase shell

9.2.4.2 Creating the Table and Put Data
The following commands will create a table named employee with two columns called
details and salary. And in the details column family, it will put the data under the
name and gender column.

Figure 9-17. Starting HBase

 1. create 'employee','details','salary'

 2. put 'employee','e1','details:name','karthik'

 3. put 'employee','e1','details:gender','m'

 4. put 'employee','e1','salary:sal','20000'

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

540

9.2.4.3 Scanning the Data
Using the command scan 'employee, you can see how the data is stored in HBase. Each
row corresponds to the column values under a column family.

Figure 9-19. Scan the data

A comprehensive reference guide on HBase could be found at http://hbase.
apache.org/book.html#arch.overview.

9.2.5 Spark
Spark provides lightning-fast cluster computing (similar to distributed computing with
multiple nodes working together). Spark has an advanced Directed Acyclic Graph (DAG)
based execution engine which makes it 100 times faster than Hadoop MapReduce in
RAM or memory and 10 times faster on disk. Contrary to Hadoop, which supports only
Java, in Spark, you can write applications using Java, Scala, Python, and R. If this was not
sufficient, Spark also offers SQL, streaming, machine learning, and graph libraries that
could be combined in any fashion to create an application pipeline. Apart from accessing
data from HDFS, in Spark, you can connect to HBase, Cassandra, S3, and many more.

In this chapter, we use SparkR, which is a lightweight front-end offering to use
Apache Spark from R. It’s light but very rich in functionality. In a nutshell, SparkR
provides the following functionality:

•	 You could create SparkDataFrames from the local data frames or
hive tables.

Figure 9-18. Create and put data

http://hbase.apache.org/book.html#arch.overview
http://hbase.apache.org/book.html#arch.overview

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

541

•	 On SparkDataFrame operations like selecting, grouping, and
aggregation as offered by dplyr package in R are possible.

•	 You can run SQL queries directly on the hive from R.

•	 It provides some set of machine learning algorithms from the
MLlib library of Spark.

This powerful offering is definitely taking the industry by storm. However, we will
keep our focus on machine learning library of Spark, MLlib.

For interested readers, more details on Spark can be found at http://spark.apache.
org/docs/latest/index.html.

9.3 Machine Learning in R with Spark
MLlib is Spark's machine learning (ML) library. Its goal is to make practical machine
learning scalable and easy. At a high level, it provides tools such as:

•	 ML algorithms: Common learning algorithms such as
classification, regression, clustering, and collaborative filtering

•	 Featurization: Feature extraction, transformation, dimensionality
reduction, and selection

•	 Pipelines: Tools for constructing, evaluating, and tuning ML pipelines

•	 Persistence: Saving and loading algorithms, models, and pipelines

•	 Utilities: Linear algebra, statistics, data handling, etc.

Currently, SparkR supports the following machine learning algorithms:

•	 Generalized Linear Model

•	 Accelerated Failure Time (AFT) Survival Regression Model

•	 Naive Bayes Model and KMeans Model

Under the hood, SparkR uses MLlib to train the model. The following code in R is
taken from our earlier example of housing price predictions, but this is a scalable version
of the model using SparkR.

Note (for Windows users) before running the code, follow these steps:

 1. Download pre-built for Hadoop 2.7 and later Spark release
from http://spark.apache.org/downloads.html.

 2. Extract the files into the C:-2.0.0-bin-hadoop2.7 folder (you
can choose your own location).

 3. Create a symbolic link for the SparkR library using the
following command in the cmd prompt: mklink /D
"C:Files-3.2.2" "C:-2.0.0-bin-hadoop2.7".

 4. Using RStudio or the R command line, test using library (SparkR).

http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/downloads.html

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

542

Let’s go into the R code that follows and understand how SparkR helps build a
scalable machine learning model with a Spark engine. Keep in mind that the code is
executed in a standalone Spark cluster with only one node. The true potential of Spark
could only be seen if the same code runs on a large enterprise cluster of computing nodes
with Spark.

9.3.1 Setting the Environment Variable
The following command will let R know the location where Spark and Hadoop binaries
are installed in your machine. Remember, both of these are the same environment
variable as you would have set in your system properties (for Windows machines).

#Set environment variable
Sys.setenv(SPARK_HOME='C:/Spark/spark-2.0.0-bin-hadoop2.7',HADOOP_HOME='C:/
Hadoop-2.3.0')
.libPaths(c(file.path(Sys.getenv('SPARK_HOME'), 'R', 'lib'),.libPaths()))
Sys.setenv('SPARKR_SUBMIT_ARGS'='"sparkr-shell"')

9.3.2 Initializing the Spark Session
Once the environment variables are set, initialize the SparkR session with parameters like
spark.driver.memory, spark.sql.warehouse.dir, and so on, as shown in the following
code snippet. This initialization is required in order for the R environment to connect
with Spark running in the local machine.

library(SparkR)
library(rJava)

#The entry point into SparkR is the SparkSession which connects your R
program to a Spark cluster
sparkR.session(enableHiveSupport =FALSE, appName ="SparkR-ML",master
="local[*]", sparkConfig =list(spark.driver.memory ="1g",spark.sql.
warehouse.dir="C:/Hadoop-2.3.0"))
 Launching java with spark-submit command C:/Spark/spark-2.0.0-bin-
hadoop2.7/bin/spark-submit2.cmd --driver-memory "1g" "sparkr-shell" C:\
Users\Karthik\AppData\Local\Temp\Rtmpuoqh3M\backend_port1030727b704d
 Java ref type org.apache.spark.sql.SparkSession id 1

9.3.3 Loading Data and the Running Pre-Process
Load the housing data introduced in Chapter 6 and perform the same set of
preprocessing steps as shown in the following code snippet:

library(data.table)

#Read the housing data

http://dx.doi.org/10.1007/978-1-4842-2334-5_6

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

543

Data_House_Price <-fread("/Users/karthik/Dropbox/Book Writing - Drafts/
Chapter Drafts/Chapter 7 - Machine Learning Model Evaluation/tosend/House
Sale Price Dataset.csv",header=T, verbose =FALSE, showProgress =FALSE)

str(Data_House_Price)
 Classes 'data.table' and 'data.frame': 1300 obs. of 14 variables:
 $ HOUSE_ID : chr "0001" "0002" "0003" "0004" ...
 $ HousePrice : int 163000 102000 265979 181900 252000 180000 115000

176000 192000 132500 ...
 $ StoreArea : int 433 396 864 572 1043 440 336 486 430 264 ...
 $ BasementArea : int 662 836 0 594 0 570 0 552 24 588 ...
 $ LawnArea : int 9120 8877 11700 14585 10574 10335 21750 9900 3182

7758 ...
 $ StreetHouseFront: int 76 67 65 NA 85 78 100 NA 43 NA ...
 $ Location : chr "RK Puram" "Jama Masjid" "Burari" "RK Puram" ...
 $ ConnectivityType: chr "Byway" "Byway" "Byway" "Byway" ...
 $ BuildingType : chr "IndividualHouse" "IndividualHouse"

"IndividualHouse" "IndividualHouse" ...
 $ ConstructionYear: int 1958 1951 1880 1960 2005 1968 1960 1968 2004 1962

...
 $ EstateType : chr "Other" "Other" "Other" "Other" ...
 $ SellingYear : int 2008 2006 2009 2007 2009 2006 2009 2008 2010 2007 ...
 $ Rating : int 6 4 7 6 8 5 5 7 8 5 ...
 $ SaleType : chr "NewHouse" "NewHouse" "NewHouse" "NewHouse" ...
 - attr(*, ".internal.selfref")=<externalptr>
#Pulling out relevant columns and assigning required fields in the dataset
Data_House_Price <-Data_House_Price[,.(HOUSE_ID,HousePrice,StoreArea,StreetH
ouseFront,BasementArea,LawnArea,Rating,SaleType)]

#Omit any missing value
Data_House_Price <-na.omit(Data_House_Price)

Data_House_Price$HOUSE_ID <-as.character(Data_House_Price$HOUSE_ID)

9.3.4 Creating SparkDataFrame
Now, create the training and testing SparkDataFrame by splitting the original dataset
Data_House_Price into the first two-third. and the rest (the final third).for training and
testing, respectively. It’s similar to the data frame in R, which helps store any tabular data
of rows and column, but in Spark its implementation is much more efficient to handle
network transfers and process thousands of computing nodes.

#Spark Data Frame - Train
gaussianDF_train <-createDataFrame(Data_House_Price[1:floor(nrow(Data_House_
Price)*(2/3)),])

#Spark Data Frame - Test
gaussianDF_test <-createDataFrame(Data_House_Price[floor(nrow(Data_House_
Price)*(2/3) +1):nrow(Data_House_Price),])

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

544

class(gaussianDF_train)
 [1] "SparkDataFrame"
 attr(,"package")
 [1] "SparkR"
class(gaussianDF_test)
 [1] "SparkDataFrame"
 attr(,"package")
 [1] "SparkR"

9.3.5 Building the ML Model
Essentially this is the core of this chapter. The first machine learning model built to scale
to work with large datasets. spark.glm is a function in the MLlib library of Spark with a
scalable implementation of Generalized Linear Model (GLM). Ideally, nothing changes
as far as the syntax goes (except for the function name), but under the hood, there could
be large army of nodes working together, automatically running the MapReduce program
and many other operations supported by Spark to achieve the final outcome.

Fit a generalized linear model of family "gaussian" with spark.glm
gaussianGLM <-spark.glm(gaussianDF_train, HousePrice ~StoreArea
+StreetHouseFront +BasementArea +LawnArea +Rating +SaleType, family
="gaussian")

Model summary
summary(gaussianGLM)

 Deviance Residuals:
 (Note: These are approximate quantiles with relative error <= 0.01)
 Min 1Q Median 3Q Max
 -432276 -23923 -4236 16522 380300

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) -80034 32619 -2.4536 0.014387
 StoreArea 58.172 9.8507 5.9054 5.4833e-09
 StreetHouseFront 136.98 80.828 1.6947 0.090578
 BasementArea 23.623 3.7224 6.3461 3.9629e-10
 LawnArea 0.77459 0.19875 3.8973 0.0001066
 Rating 35402 1519.4 23.3 0
 SaleType_NewHouse -12979 31904 -0.40681 0.68427
 SaleType_FirstResale 10117 32497 0.31132 0.75565
 SaleType_SecondResale -24563 32480 -0.75626 0.44975
 SaleType_ThirdResale -22562 34847 -0.64748 0.51754
 SaleType_FourthResale -32205 36778 -0.87567 0.38151

 (Dispersion parameter for gaussian family taken to be 2012650630)

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

545

 Null deviance: 4.9599e+12 on 711 degrees of freedom
 Residual deviance: 1.4109e+12 on 701 degrees of freedom
 AIC: 17286

 Number of Fisher Scoring iterations: 1

9.3.6 Predicting the Test Data
In the final step, you can now predict the house prices on the test dataset using the ML
model built in the previous step. Refer to Chapter 6 to understand the evaluation criteria
for this model.

#Prediction on the gaussianModel
gaussianPredictions <-predict(gaussianGLM, gaussianDF_test)
names(gaussianPredictions) <-c('HOUSE_ID','HousePrice','StoreArea','StreetH
ouseFront','BasementArea','LawnArea','Rating','SaleType','ActualPrice','Pre
dictedPrice')
gaussianPredictions$PredictedPrice <-round(gaussianPredictions$PredictedPri
ce,2.0)
showDF(gaussianPredictions[,9:10])
 +-----------+--------------+
 |ActualPrice|PredictedPrice|
 +-----------+--------------+
139400.0	128582.0
157000.0	202101.0
178000.0	164765.0
120000.0	50425.0
130000.0	155841.0
582933.0	333450.0
309000.0	255584.0
176000.0	192695.0
125000.0	132784.0
130000.0	140085.0
169990.0	183082.0
213000.0	222965.0
144000.0	122123.0
118500.0	158940.0
138000.0	116004.0
437154.0	346572.0
230000.0	261396.0
82000.0	61949.0
85000.0	119914.0
214900.0	218930.0
 +-----------+--------------+
 only showing top 20 rows

http://dx.doi.org/10.1007/978-1-4842-2334-5_6

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

546

9.3.7 Stopping the SparkR Session
In the end, when the job is done, execute the following code to free all the resources being
held for this process, like CPU and memory.

sparkR.stop()

While this code is running, you can fire up http://localhost:4040/jobs/ in
your browser and see the progress of your Spark jobs. For every job that is generated
automatically upon the execution of this code, you could look at the DAG visualization
and see how the Spark engine actually carries out the job.

In order to understand how visualization is built to understand what your
application is actually doing on the Spark cluster, follow these blog post from databricks:

https://databricks.com/blog/2015/06/22/understanding-your-spark-
application-through-visualization.html

9.4 Machine Learning in R with H2O
As we are ending this journey of machine learning in this book, we want to introduce one
more powerful platform for R users, called H2O. We have been discussing some powerful
techniques in machine learning like deep learning, text analysis, ensembles, etc.. These
techniques are not feasible to be executed on individual machines and need high-power
computing.

R is a popular language and remarkably adaptable to different platforms and it
has provided options for integrating itself to powerful high-performance computing
environments. In previous chapters and sections, we showed some examples, like
Microsoft Cognitive Serves, Spark, and other Apache products. In this last section, we
introduce H2O, which is an open source high performance cluster for big data analysis.

H2O was developed and maintained by H2O.ai, formerly Oxdata, a startup founded
in 2011. H2O is marketed as "The Open Source In-Memory, Prediction Engine for Big Data
Science.” It offers an impressive array of machine learning algorithms. The H2O R package
provides functions for building GLM, GBM, K-means, Naive Bayes, Principal Components
Analysis, random forests, and deep learning (multi-layer neural net models).

H2O is a Java Virtual Machine that is optimized for doing “in-memory” processing
of distributed, parallel machine learning algorithms on clusters. A “cluster” is a software
construct that can be fired up on your laptop, on a server, or across the multiple nodes of
a cluster of real machines, including computers that form a Hadoop cluster. According
to the latest documentation, the H2O software can be run on conventional operating
systems like Microsoft Windows (7 or later), Mac OS X (10.9 or later), and Linux (Ubuntu
12.04; RHEL/CentOS 6 or later). It also runs on big data systems, particularly Apache
Hadoop Distributed File System (HDFS), and is available on several popular virtual
machines like Cloudera (5.1 or later), MapR (3.0 or later), and Hortonworks (HDP 2.1
or later). It also operates on cloud computing environments, for example using Amazon
EC2, Google Compute Engine, and Microsoft Azure. The H2O Sparkling Water software is
databricks-certified on Apache Spark.

http://localhost:4040/jobs/
https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html
https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

547

For R, the H20 package is available on CRAN. Before you proceed to the demo of H20,
we recommend you follow these URLs, which have some well documented materials:

•	 Complete documentation on H20 package: https://cran.r-
project.org/web/packages/h2o/h2o.pdf).

•	 Another documentation on H2O is available at the h2o.ai as well
(http://docs.h2o.ai/h2o/latest-stable/h2o-docs/index.html).

•	 More implementation of ML algorithms for H2O: (https://
github.com/h2oai/h2o-3/tree/master/h2o-r/demos)

•	 Installation of h2o: A user-friendly and easy to follow description
of installation is provided here: http://h2o-release.
s3.amazonaws.com/h2o/master/1735/docs-website/Ruser/
Rinstall.html

•	 A presentation onHigh Performance Machine Learning in R
with H2O at http://www.stat.berkeley.edu/~ledell/docs/
h2o_hpccon_oct2015.pdf.

9.4.1 Installation of Packages
Once you are done with installing the prerequisites, the following code will fetch the
latest release of the H20 package for r and install that in the local system.

Notes:

•	 A good Internet connection is recommended before you try this
code. All computations are performed (in highly optimized Java
code) in the H2O cluster and initiated by REST calls from R.

•	 It’s advisable not to experiment with these codes in your local
machines with large volume of data (it’s safe to run the demos
shown in the following code on your local machines).

The following two commands remove any previously installed H2O packages for R.
if ("package:h2o" %in%search()) { detach("package:h2o", unload=TRUE) }
if ("h2o" %in%rownames(installed.packages())) { remove.packages("h2o") }

Next, we download, install and initialize the H2O package for R.
install.packages("h2o", repos=(c("http://s3.amazonaws.com/h2o-release/h2o/
rel-kahan/5/R", getOption("repos"))))

#Alternatively you can install the package h2o from CRAN as below
install.packages("h2o")

9.4.2 Initialization of H2O Clusters
Once the installation is done, you can fire a instance of clusters for the computation by
calling the init() function.

https://cran.r-project.org/web/packages/h2o/h2o.pdf
https://cran.r-project.org/web/packages/h2o/h2o.pdf
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/index.html
https://github.com/h2oai/h2o-3/tree/master/h2o-r/demos
https://github.com/h2oai/h2o-3/tree/master/h2o-r/demos
http://h2o-release.s3.amazonaws.com/h2o/master/1735/docs-website/Ruser/Rinstall.html
http://h2o-release.s3.amazonaws.com/h2o/master/1735/docs-website/Ruser/Rinstall.html
http://h2o-release.s3.amazonaws.com/h2o/master/1735/docs-website/Ruser/Rinstall.html
http://www.stat.berkeley.edu/~ledell/docs/h2o_hpccon_oct2015.pdf
http://www.stat.berkeley.edu/~ledell/docs/h2o_hpccon_oct2015.pdf

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

548

Load the h2o library in R
library(h2o);
#Initiate a cluster in your machine
localH2O =h2o.init()
The above function will return an output saying Connection successful as
shown below:
 Starting H2O JVM and connecting: Connection successful!

 R is connected to the H2O cluster:
 H2O cluster uptime: 4 seconds 188 milliseconds
 H2O cluster version: 3.10.0.6
 H2O cluster version age: 1 month and 9 days
 H2O cluster name: H2O_started_from_R_abhisheksingh_zve484
 H2O cluster total nodes: 1
 H2O cluster total memory: 0.89 GB
 H2O cluster total cores: 4
 H2O cluster allowed cores: 2
 H2O cluster healthy: TRUE
 H2O Connection ip: localhost
 H2O Connection port: 54321
 H2O Connection proxy: NA
 R Version: R version 3.2.3 (2015-12-10)

 Note: As started, H2O is limited to the CRAN default of 2 CPUs.
 Shut down and restart H2O as shown below to use all your CPUs.
 > h2o.shutdown()
 > h2o.init(nthreads = -1)

Once you have initiated a cluster into your local machine, you are ready to run your
computations on high-power clusters of H2O. There are lot of other examples to get you
started with Gradient Boosting Machine (GBM), Generalized Linear Models (GLM),
ensemble tress, and many more.

9.4.3 Deep Learning Demo in R with H2O
The following code runs a built-in demo of deep learning using the demo function with
the parameter, h20.deeplearning, which internally makes the REST API calls to the local
H2O cluster. In brief, the code:

 1. Imports a built-in dataset named prostate.csv, parses it,
and prints a summary. The data was collected by Dr. Donn
Young at the Ohio State University Comprehensive Cancer
Center for a study of patients with varying degrees of prostate
cancer. The goal of this demo was to predict whether a tumor
has penetrated the prostate capsule based on the variables
measured at a baseline exam. The metadata is shown in
Figure 9-20.

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

549

 2. Then, it runs deep learning on the dataset to predict the
tumor penetration of the prostate cancer.

This demo runs H2O on localhost:54321.

9.4.3.1 Running the Demo
The function demo runs all at once and outputs the entire output at one go. However, for
better understanding of what the function does, we have split the output and explained
each part in detail.

Run Deep learning demo
demo(h2o.deeplearning)

The demo runs.

9.4.3.2 Loading the Testing Data
Load the data from the local file system directory of R, where the H2O package is
installed. It might look like C:\Users\Karthik\Documents\R\win-library\3.2\h2o\
extdata.

 > prostate.hex = h2o.uploadFile(path = system.file("extdata", "prostate.
csv", package="h2o"), destination_frame = "prostate.hex")

Figure 9-20. Feature definition of prostate cancer dataset

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

550

Summary output. The summary output should match the feature definition as per
Figure 9-20.

 > summary(prostate.hex)
 ID CAPSULE AGE RACE
 Min. : 1.00 Min. :0.0000 Min. :43.00 Min. :0.000
 1st Qu.: 95.75 1st Qu.:0.0000 1st Qu.:62.00 1st Qu.:1.000
 Median :190.50 Median :0.0000 Median :67.00 Median :1.000
 Mean :190.50 Mean :0.4026 Mean :66.04 Mean :1.087
 3rd Qu.:285.25 3rd Qu.:1.0000 3rd Qu.:71.00 3rd Qu.:1.000
 Max. :380.00 Max. :1.0000 Max. :79.00 Max. :2.000
 DPROS DCAPS PSA VOL
 Min. :1.000 Min. :1.000 Min. : 0.300 Min. : 0.00
 1st Qu.:1.000 1st Qu.:1.000 1st Qu.: 4.900 1st Qu.: 0.00
 Median :2.000 Median :1.000 Median : 8.664 Median :14.20
 Mean :2.271 Mean :1.108 Mean : 15.409 Mean :15.81
 3rd Qu.:3.000 3rd Qu.:1.000 3rd Qu.: 17.063 3rd Qu.:26.40
 Max. :4.000 Max. :2.000 Max. :139.700 Max. :97.60
 GLEASON
 Min. :0.000
 1st Qu.:6.000
 Median :6.000
 Mean :6.384
 3rd Qu.:7.000
 Max. :9.000

Model building. The function h2o.deeplearning builds a deep learning model
using the response variable CAPSULE and the rest of the variable as a predictor. Additional
parameters are:

•	 Hidden, which specifies the hidden layer sizes,

•	 Activation, which specifies the type of activation function; the
demo uses a Tanh function

•	 epochs, which directs the neural network with “How many times
the dataset should be iterated (streamed)”

 > # Set the CAPSULE column to be a factor column then build model.
 > prostate.hex$CAPSULE = as.factor(prostate.hex$CAPSULE)

 > model = h2o.deeplearning(x = setdiff(colnames(prostate.hex),
c("ID","CAPSULE")), y = "CAPSULE", training_frame = prostate.hex, activation
= "Tanh", hidden = c(10, 10, 10), epochs = 10000)

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

551

Print the output. The output of the five layer deep neural network is printed by
accessing the model summary field from the model object created in the previous step.

 > print(model@model$model_summary)
 Status of Neuron Layers: predicting CAPSULE, 2-class classification,
bernoulli distribution, CrossEntropy loss, 322 weights/biases, 8.4 KB,
3,800,000 training samples, mini-batch size 1

 layer units type dropout l1 l2 mean_rate rate_rms
 1 1 7 Input 0.00 %
 2 2 10 Tanh 0.00 % 0.000000 0.000000 0.004538 0.009754
 3 3 10 Tanh 0.00 % 0.000000 0.000000 0.007007 0.011632
 4 4 10 Tanh 0.00 % 0.000000 0.000000 0.003262 0.005256
 5 5 2 Softmax 0.000000 0.000000 0.002906 0.000392

 momentum mean_weight weight_rms mean_bias bias_rms
 1
 2 0.000000 -0.118311 1.642809 -0.152061 1.519672
 3 0.000000 0.018304 1.594797 -0.470666 0.681625
 4 0.000000 -0.063209 1.924838 -0.545838 0.903191
 5 0.000000 0.495293 4.894484 0.012870 2.835105

Make the prediction. Since the dataset was small, we haven’t split the data into
training or testing datasets, but rather show the predictions on the same dataset used in
training. However, in cases where sufficient data is available, you are encouraged to run
the prediction on the testing dataset to better understand the efficacy of the model.

 > # Make predictions with the trained model with training data.
 > predictions = predict(object = model, newdata = prostate.hex)

 > # Export predictions from H2O Cluster as R dataframe.
 > predictions.R = as.data.frame(predictions)

 > head(predictions.R)
 predict p0 p1
 1 0 9.984036e-01 1.596373e-03
 2 0 9.999973e-01 2.683004e-06
 3 0 9.731078e-01 2.689217e-02
 4 0 9.496504e-01 5.034956e-02
 5 0 9.996701e-01 3.298716e-04
 6 1 4.167409e-07 9.999996e-01

 > tail(predictions.R)
 predict p0 p1
 375 0 0.999999999 7.078566e-10
 376 0 0.986077940 1.392206e-02
 377 0 0.998982044 1.017956e-03
 378 1 0.008513801 9.914862e-01

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

552

 379 0 1.000000000 5.989944e-11
 380 0 1.000000000 2.681686e-14

Model evaluation. The accuracy of the model is 99.5%, which is exceptionally good.
The other measures in the output were discussed in detail throughout Chapter 6. For
example, MSE, Mean Square Error (MSE), Gini index, and so on.

 > # Check performance of classification model.
 > performance = h2o.performance(model = model)

 > print(performance)
 H2OBinomialMetrics: deeplearning
 ** Reported on training data. **
 ** Metrics reported on full training frame **

 MSE: 0.01764182
 RMSE: 0.1328225
 LogLoss: 0.0741766
 Mean Per-Class Error: 0.01861449
 AUC: 0.9958826
 Gini: 0.9917653

 Confusion Matrix for F1-optimal threshold:
 0 1 Error Rate
 0 223 4 0.017621 =4/227
 1 3 150 0.019608 =3/153
 Totals 226 154 0.018421 =7/380

 Maximum Metrics: Maximum metrics at their respective thresholds
 metric threshold value idx
 1 max f1 0.347034 0.977199 114
 2 max f2 0.347034 0.979112 114
 3 max f0point5 0.730649 0.983718 106
 4 max accuracy 0.551164 0.981579 110
 5 max precision 1.000000 1.000000 0
 6 max recall 0.007983 1.000000 152
 7 max specificity 1.000000 1.000000 0
 8 max absolute_mcc 0.347034 0.961761 114
 9 max min_per_class_accuracy 0.347034 0.980392 114
 10 max mean_per_class_accuracy 0.347034 0.981386 114

More demos in the H2O package. Running the following command will list all the
available demos in H2O, which you can run once and then observe how the model
building process is being followed for the specific ML algorithm.

demo(package = “h2o)
Demos in package ‘h2o’:

http://dx.doi.org/10.1007/978-1-4842-2334-5_6

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

553

h2o.anomaly H2O anomaly using prostate cancer data
h2o.deeplearning H2O deeplearning using prostate cancer data
h2o.gbm H2O generalized boosting machines using
prostate cancer data
h2o.glm H2O GLM using prostate cancer data
h2o.glrm H2O GLRM using walking gait data
h2o.kmeans H2O K-means using prostate cancer data
h2o.naiveBayes H2O naive Bayes using iris and Congressional
voting data
h2o.prcomp H2O PCA using Australia coast data
h2o.randomForest H2O random forest classification using iris data

9.5 Summary
In the days to come, as the cost of infrastructure goes down and data volume increases,
the need for scaling up will become the first priority in the machine learning process
flow. Every single application built on machine learning first has to start with the thinking
of scalable implementation. Most of the traditional RDBMS systems will soon become
obsolete as the data starts to explode in its size. The giants in the industry have already
started to take the first step toward migrating to systems that support large scales and
the agility to change as per business needs. In the not so far in future, a greater emphasis
on efficient algorithmic designs and focus on subjects like quantum computing will
start to appear when answers to growing data volume are addressed by another wave of
disruptive technology.

We have taken up a comprehensive journey into the world of machine learning by
drawing the inspiration from the fast growing data science methodology and techniques.
Though a vast majority of the ML model building process flow exists and is explained
with much elegance in the classic literature, we felt a need to stich the ML model building
process flow with the modern world thinking emerging from data science.

We have also simplified the statistics and mathematics wherever possible to make
the study of ML more practical and give plenty of additional resources for further
reading. The depth of topics like sampling, regression models, and deep learning is so
deep and diverse that each of these topic could produce a book of equal size. However,
practical applicability of such algorithms were made possible because of the plethora of R
packages available in CRAN.

Since R is the preferred programming language for beginners as well as advanced
users for building quick ML prototypes around a real-world problem, we chose R to
demonstrate all the examples in the book. If you want to pursue machine learning for
you career or research work, a fine balance of skillsets in computer science, statistics, and
domain knowledge will prove to be useful.

Chapter 9 ■ SCalable MaChine learning and related teChnologieS

554

9.6 References
 [1] Hadoop: The Definitive Guide, by Tom White.

 [2] Big Data, Data Mining, and Machine Learning by Jared Dean.

 [3] Cole, Richard; Vishkin, Uzi (1986), "Deterministic coin tossing
with applications to optimal parallel list ranking," Information
and Control, 70 (1): 32–53, doi:10.1016/S0019-9958(86)80023-7.

 [4] Introduction to Algorithms (1st ed.), Cormen, Thomas H.;
Leiserson, Charles E.; Rivest, Ronald L. (1990), MIT Press,
ISBN 0-262-03141-8.

 [5] The Google File System, Sanjay Ghemawat, Howard Gobioff,
and Shun-Tak Leung, Google.

 [6] “MapReduce: Simplified Data Processing on Large Clusters,:
Jeffrey Dean and Sanjay Ghemawat, Google.

http://dx.doi.org/10.1016/S0019-9958(86)80023-7

555© Karthik Ramasubramanian, Abhishek Singh 2017
K. Ramasubramanian and A. Singh, Machine Learning Using R,
DOI 10.1007/978-1-4842-2334-5

��������� A
Actual vs. predicted plot linear

model, 263
Actual vs. predicted plot quadratic

polynomial model, 264
Amazon Food Review, 232–233, 403, 407
American Statistical Association (ASA), 2
An Exploratory Technique for

Investigating Large Quantities
of Categorical Data, 315–316

Apache Pig, 526, 527, 535–538
Apriori, 226, 356, 357, 360–361, 364, 372
Area Under the Curve (AUC), 283, 284,

452, 454
Artificial intelligence (AI), 3–4
Artificial neural networks (ANN), 227

architecture
components, 379
linear seperability, 378
MLP, 379

attribute importance
by Garson method, 389
by Olden method, 388

deep learning
applications, 390
architecture, 390
darch for classification, 391, 393
guidelines, 389
hidden layers, 391
multi-layer, 390
multiple linear and non-linear

transformations, 389
mxNet image classification,

393–395
mxNet package, 391
normalized image, 395

volcano picture, image
recognition exercise, 394

evolutionary methods, 381
expectation maximization, 382
feed-forward back-propagation,

382–383
GEP, 381
hidden layer, 387
human cognitive learning, 372–374
learning algorithms, 380
machine learning, 372
non-parametric methods, 382
particle swarm optimization, 382
perceptron, 374–376
purchase prediction, 384–389
sigmoid neuron, 377
simulated annealing, 381
supervised vs. unsupervised neural

nets, 379, 380
Association rule mining (ARM), 223, 226

algorithms, 357–359
apriori, 360–361
confidence, 356
Eclat, 362, 364
IBCF, 366–371
item frequency plot, 359
lift, 356–357
Market Basket data, 355
POS, 354
scarcity visualization, 359
support, 355
transactional data, 355
UBCF, 365–366

Autocorrelation, 256–258
Auto-correlation function (ACF), 257, 258
Automatic grid search optimization,

479–481

Index

■ INDEX

556

��������� B
Back-propagation learning, 382
Back-propagation method, 383
Back-propagation of errors, 382
Bagging, 495

bootstrap aggregating, 323
CART, 324–326
random forest, 326–329

Bayes formula, 330
Bayesian algorithms, 226
Bayesian optimization, machine learning

models
black box function, 511
Gaussian processes, 513
parameters, 513, 515
random tuning, 511
RMSE, cost and Sigma space, 512
sample t-test, 515–516

Bayes rule, 330
Bayes theorem, 10, 12, 330
Bias and variance tradeoff

boosting, 493
bootstrap aggregation, 492
bulls eye plot, 488
components, 489
definition, 489
graphical representation, 490
model performance improvements, 492
plot function, 491
random variable, 489–490
real model prototype, 490

Bias-variance decomposition, 490
Bivariate plots

actual probability, 278
actual vs. predicted plot

CustomerPropensity, 281
IncomeClass, 280
MembershipPoints, 279

frequency, 278
predicted probability, 278

Boosting, 321–323, 497
Bootstrap aggregation, 323, 492
Bootstrap sampling, 458–459

advantages, 118
arguments, 120
coefficient, 119
confidence band, 120
density function, 123
disadvantages, 118
histogram, 121

hypothesis testing, 118
jackknife, 122
jackknife estimate, 117
linear regression model, 118
mean and variance, 122
metric estimation, 118
normal distribution, 122
QQ plot, 121
sampling distribution, 117
t.test(), 123

Boxplots, 54–55
interquartile range, 145
outliers, 145
population, 147–148

Breush-Pagan test, 258
Bubble charts

fertility rate vs. life expectancy, 162
GDP per capita vs. life expectancy,

159–161
Business implications of sampling

deciding factors, 79
features, 79
machine learning, 79
methods and interpretation, 78
shortcomings, 79

��������� C
C5.0 algorithm

attribute-value description, 307
discrete classes, 307
evaluation, 310
Hunt’s approach, 307
logical classification models, 307
model building, 308
model summary, 308
predefined classes, 307
pruning, 308
purchase prediction dataset, 310
Ross Quinlan’s web page, 307
sufficient data, 307

caretEmseble() function, 505
Caret package

complex regression and classification
problems, 468

function/tools, 468
trainControl() function, 469
train() function algorithm, 469

CART. See Classification and Regression
Tree (CART)

Central Limit Theorem, 16, 81, 85–89

■ INDEX

557

Centroid-based clustering, 344–346
Chi-Square Automated Interaction

Detection (CHAID)
algorithm, 315
building the model, 317
decision tree, 320
model evaluation, 318–319
R code, 315
splitting, 316
stopping, 316

Classification and Regression Tree
(CART), 300

building the model, 313
cp (complexity parameter), 313
Gini-Index, 312
model evaluation, 314
pseudo code, 312
regression tree-based approach, 312
rpart function, 312

Classification matrix, 273, 295, 446–451
Classification tree, 300
Class imbalance, 288
Cluster dendogram, 342
Cluster sampling

advantages, 111
conditional statement, 112
disadvantages, 112
international transactions, 114
International transactions, 113
k-means function, 113, 115
outstanding balance, 115
population data, 113
single-stage sampling, 111
startum variable, 117
stratified() function, 114
subsets, 111
two-stage sampling, 111
t.test(), 116
two-stage, 114

Clustering algorithms, 226, 338–351, 419
Clustering analysis

algorithms, 339–340
applications, 337–338
centroid-based clustering, 344–346
centroid models, 338
connectivity models, 338
definition, 338
density-based clustering, 349–351
density models, 338
distribution-based clustering, 347–349
distribution models, 338

Dunn index, 351–352
external evaluation, 353
hierarchal, 341–343
internal evaluation, 351
Jaccard index, 354
k-means, 346
machine learning, 337
principle, 337
rand measure, 353
silhouette coefficient, 352–353
types, 339
unsupervised learning algorithm, 337

Cohort diagrams
active credit cards volume, 173
credit example, 172
definition, 172

Collaborative filtering-based
approach, 365

Comma-separated values (CSV), 34
Computational savings

linear regression model, 126
population dataset, 126
sys.time(), 126

Conditional independence, 10
Confidence interval, 13, 15
Continuous variables, 33
Convenience sampling, 80
Cook’s distance, 248, 249
Correlation, definition, 256
Correlation analysis

features, 236
observations, 237
Pearson correlation, 235–236
population correlation coefficient, 235
scatter plot, HousePrice vs.

StoreArea, 237
statistical relationship, 235

Correlation plots
description, 154
positive or negative correlation, 155
world development indicators, 155

Credit card fraud
data description, 73–74
data exploration, 63–65
data import, 61–62
data transformation, 62–63
pooled mean and variance, 75–76, 78
population mean, 74
population variance, 74
sampling plan, 73
statistical measures, 73

■ INDEX

558

Credit risk modeling, 185
Custom search algorithms, 485, 487

��������� D
Data formats, 33
Data frames, 21
Data mining, 1, 4, 223, 304, 337, 397
Data preparation and exploration

categorical variables, 32
data and visualization, 31
date variable, 49
derived variables, 50
markup language, 34–36
model building, 31
n-day averages, 50
reshaping, 50–51
semi-Structured, 40
structured, 40
unstructured, 40
variables types, 32

Data science, 5–6
Dataset

house sale prices prediction, 426–427
purchase preference prediction,

428–429
Data visualization, R
Data visualization, R

benefits, 129–130
boxplots, 145–146, 148
bubble charts, 158–162
cohort diagrams, 172, 174
correlation plots, 154–156
definition, 129
dendograms, 165–167
elements, data presentation, 130
ggplot2 package, 130–131
heatmaps, 156, 158
histograms and density plots, 148–152
line chart, 132–138
pie charts, 152–154
Sankey plots, 169–170
scatterplot, 144–145
spatial maps, 174–177
stacked column charts, 138–144
time series graphs, 170–172
waterfall chart, 162–165
wordclouds, 167, 169
world development indicators, 132

Dates and times, 48–49
Daylight saving time (DST), 49

Decision trees, 298
algorithms, 225
bagging, 323–326
boosting, 321–323
classification, 300
decision nodes, 298
ensemble models, 321
ID3, 304–306
leaf nodes, 298
learning methods, 302–303
measures

entropy, 301–302
Gini Index, 300
information gain, 302

non-parametric model, 297
regression, 299

Deep learning algorithms, 227
Dendograms

clusters, species classification, 167
definition, 165
distance/height, 166
ggdendro() and dendextend(), 165
x-axis, 165
y-axis, 165

Density-based clustering
border points, 350
core points, 350
DBSCAN, 349–350
EM algorithm, 351
outliers, 350
parameters, 349

Density-based spatial clustering of
applications with noise
(DBSCAN), 349

Density plot, 150, 152
Dimensionality reduction

algorithms, 228
description, 211
orthogonality, principal components,

215
PCA, 211–214
principal component analysis, 215

Directed Acyclic Graph (DAG), 540
Distance-based/event-based algorithms,

224
Distributed processing and storage

GFS, 520–521
MapReduce, 522
parallel execution in R

cores setting, 523
problem statement, 524–525

■ INDEX

559

random forest model, 525
stopping clusters, 526

Distribution-based clustering, 347–349
Distribution of studentized residuals,

252, 253
dplyr, 43–46, 94, 541
Dunn Index, 351
Durbin Watson statistics bounds, 257
Durbin Watson test, 256–257

��������� E
Eclat, 362–364
EM algorithm, 348–349, 351
Empirical Distribution Function (EDF),

96, 103, 124, 125
Ensemble learning, 228

methods
bagging, 495–496
boosting, 497–498

model performance improvement,
493

supervised learning algorithm, 493
voting ensembles, 494–495

Ensemble models, 321
Ensemble techniques illustration, R

algorithms, purchase prediction
data, 507

bagging trees, 498–500
blending KNN and Rpart, 505–506
C5.0 decision tree model, 501–502
Caret package, 498
caretStack() function, 509
GBM model, 501, 503
resamples() function, 503
stacking, caretEnsemble, 506–510

Entropy, 299–302, 304
Exploratory Data Analysis (EDA), 31, 32,

41, 51–61
Exposure at Default (EAD), 182, 185
Extensible Markup languages (XML),

34–36, 38

��������� F
Factor variables, 46–47
False positive rate (FPR), 452
Feature engineering

checklist, 215–216
dimensionality reduction (see

Dimensionality reduction)

embedded methods, 184
feature ranking, 191–194
filter methods, 184
selection problem checklist, 215–216
variable subset selection (see Variable

subset selection)
working data

continuous/categorical features,
189–191

EAD, 185
LGD, 185
PD, 185
willingness to pay and ability to

pay, 185
wrapper methods, 184

Feature ranking, 191–194
Feedforward Neural Networks

(FFNN), 379
Fine needle aspirate (FNA), 231
Fuzzy C-means clustering, 419, 421

��������� G
Gains charts, AUC, 283
Gauss-Markov theorem, 239
Gene expression programming (GEP), 381
Generalized Linear Model (GLM),

289–290, 544, 548
GFS. See Google File System (GFS)
ggplot2 Package

description, 130
R documentation, 131

Gini-Index, 300, 301
Google file system (GFS), 520–521, 538
Gradient Boosting Machine (GBM),

502, 548

��������� H
H2O, machine learning in R

clusters initialization, 547–548
deep learning demo, 548–549
documented materials, 547
java virtual machine, 546
package installation, 547
running demo, 549
testing data, 549–550, 552

Hadoop ecosystem
Apache Pig

command pig-x local connects, 535
count and sort, 539

■ INDEX

560

flattening tokens, 537
group words, 537
load data into A1, 536
tokenize each line, 536

components and tools, 527
hadoop distributed

file system, 526
Hadoop YARN, 526
HBase

create and put data, 539–540
data scanning, 540
starting HBase, 540

Hive
Apache, 531
creating tables, 532
data loading, Hive

table, 533–534
describing tables, 532
generating data and storing, 533
HDFS, 531
large-scale data processing, 531
query selection, 534–535
SQL queries, 531

MapReduce
code snippet, 529
libraries rmr2 and rhdfs, 529
procedures, 527
shuffle, 528
Word Count, 527–528
wordcount function, 530

spark, 540
Heat maps, 156

description, 156
regions vs. world development

indicators, 156, 158
Hierarchal clustering, 341–343
Hinge loss, 291
Histogram, 91–93

construction, 148
description, 148
GDP and population, 149, 151

Homoscedasticity, 239, 247, 258–261
House sale price dataset, 229–230
Human cognitive learning, 372–374
Hyper-parameters

Bayesian approach, 471
decision points, 471
“higher-level” properties, 470
optimization

automatic grid search, 479–481
custom search algorithms, 485, 487

manual grid search, 477–478
manual search, 475–476
optimal search, 481, 483
random search, 483, 485

properties, 471
random forest

algorithm, 472–473
random forest models, 472

Hypertext Markup Language (HTML),
36–38

Hypothesis testing, 15–17

��������� I
Independent events, 9–10
Influence plot, 250
Infographics, 129
Information gain, 302
Initial data analysis (IDA), 31

description, 41
dplyr, 43–46
multiple sources, 43
naming convention, 42
str() function, 41
table(): pattern, 43

Item-Based Collaborative
Filtering (IBCF)

cosine/Pearson correlation, 366
creation rating matrix, 368
data preparation, 367
distribution of ratings, 368
evaluation, 370
exploring, rating matrix, 368
loading data, 367
raw ratings by users, 369
true positive ratio vs.

false positive ratio, 371
UBCF recommendation

model, 370
Iteration error, 375
Iterative Dichotomizer 3 (ID3)

algorithm, 304
commands, 304
model building, 305
model evaluation, 305
RWeka, 304
RWekajars, 304

��������� J
Jaccard index, 354
JSON file, 38–40

Hadoop ecosystem (cont.)

■ INDEX

561

��������� K
Kappa error metric, 459–462
K-fold cross validation, 456–457
K-Means Clustering Algorithm, 344
Knowledge Discovery and Data Mining

(KDD), 4
Kolmogorov-Smirnov tests (KS test), 253,

433
Kurtosis, 59–61

��������� L
Law of Large Numbers (LLN), 81

strong law, 82
weak law, 82

Learning Vector Quantization (LVQ), 477,
479

Least Absolute Shrinkage and Selection
Operator (LASSO), 206–207

LGD. See Loss Given Default (LGD)
Lift chart, 284
Linear predictors

bias of estimator, 239
consistent estimator, 240
efficient estimator, 240
OLS, 239

Linear regression, 118, 119, 126, 238, 437
actual vs. predicted, 243, 247
affine function, 238
definition, 238
dependent and independent

variable, 241
diagnostics, 242
estimated equation, 241
estimation, 242
Gauss-Markov theorem, 239
lm() package, 241
minimization problem, 238
model diagnostics

homoscedasticity, 258–261
influential point analysis, 248–251
multicollinearity, 254–256
normality of residuals, 252–254
outliers, 248
residual autocorrelation, 256–258

OLS, 238
parametric method, 239
predicted values, 243
residuals, 242
standard error, 242
t-value and p-value, 242–243

Line chart
description, 132
GDP growth,

countries, 132, 134
melt() function, 132–133

Link function, 266
List, 20
Logistic regression

analysis, 275
binomial, 265, 269–275
binomially distributed, 265
logit transformation, 266–267
model diagnostics

bivariate plots, 279–281
concordance and discordant

ratios, 284–285
cumulative gains and lift charts,

281–284
deviance, 276
log likelihoods, 276
pseudo R-Square, 277
wald test, 275–276

multinomial, 265, 285–286, 288–289
odds ratio, 267–268
ordered, 266
predictor variables, 265

Logit function, 266, 267
Logit transformation, 266–267
Loss Given Default (LGD), 185, 187
LOWESS plot (Locally Weighted

Scatterplot Smoothing), 237

��������� M
Machine learning (ML), 3

abstraction layer, 219
algorithms

ANN, 227
association rule mining, 226
Bayesian algorithms, 226
clustering algorithms, 226
deep learning, 227
dimensionality reduction, 228
distance-based/event-based

algorithms, 224
ensemble learning, 228
regression-based methods, 224
regularization methods, 225
text mining, 228
tree-based algorithms, 225

case study, 221
computer vision, 219

■ INDEX

562

3D approach
demo in R, 220
real-world use case, 220
statistical background, 220

distributions, 12
evaluation, 27
exploration, 26–27
feature engineering (see Feature

engineering)
friction-less pipeline, 1
intelligent personal assistant/

machines, 219
PEBE framework, 221
phase forms, 26
plethora of algorithms, 1
predictive models, 219
process flow, 26
probability, 12

conditional independence, 10
counting, 7–9
independent events, 9–10
notation, 6
statistics, 7

randomness, 12
R-package, 221
statistical concepts, 221
statistical learning, 1, 220
statistical modeling, 466–467
statistics and computer science, 2
types

factors, 222
reinforcement learning, 223
semi-supervised learning, 223
supervised learning, 222
unsupervised learning, 223

Manual grid search optimization, 477–478
MapReduce, 520, 522, 523, 526–531, 534,

535, 540
Market Basket Data, 232
Matrix, 20
Maximum likelihood estimation (MLE),

267
Mean, 53, 70
Mean absolute error, 439–440
Mean Absolute Percentage Error (MAPE),

439
Mean Absolute Scaled Error (MASE), 439
Microsoft Excel, 34
Model building checklist, 422–423
Model evaluation

continuous output

mean absolute error, 439–440
model performance metrics,

437–438
RMSE, 441
R-square, 442–445

discrete output
classification matrix, 446–450
ROC curve, 452–454
sensitivity and specificity, 451–452

kappa error metric, 459–462
population stability index (see

Population stability index)
probabilistic techniques (see

Probabilistic techniques)
statistical methods, 431–432

Model performance
Bayesian optimization, 511–515
bias and variance tradeoff (see Bias

and variance tradeoff)
Caret package, 468–470
continuous output, 430
discrete output, 431
ensemble learning (see Ensemble

learning)
evaluation, 431–432
hyper-parameters (see

Hyper-parameters)
machine learning and statistical

modeling, 466–467
testing data, 430
training data, 430
validation data, 430

Model performance. See Model evaluation
Model sampling, 68
Model-selection process, 247
Model suffering

from bias, 492
from variance, 492

Moment, 55–56
Monte Carlo method

acceptance-rejection methods, 124
beta density, 125
EDF, 124–125
random sampling techniques, 124
stochastic calculus, 124

Multicollinearity, 254–256
Multi-Layer Perceptron (MLP), 379
Multinomial logistic regression

classifier, 286, 288
class imbalance, 288
estimation process, 286

■ INDEX

563

multinom() function, 286
probability/proportion, 288

��������� N
Naive Bayes method

Bayes theorem, 330–331
chain rule, 332
conditional probability, 330, 332
data preparation, 332–333
likelihood and marginal likelihood, 331
model, 334
model evaluation, 335–336
posterior probability, 331
prior probability, 331
purchase prediction dataset, 330

National Sample Survey Organization
(NNSO), 70

Natural Language Processing (NLP), 397,
417

Neuron anatomy, 373
Nonparametric Multiplicative Regression

(NPMR), 235
Non-probability sampling, 80
Not Available (NAs), 47–48

��������� O
Online machine learning algorithms

benefits and challenges, 418
fuzzy C-means clustering, 419, 421
tackling, 417

Optimal search optimization, 481, 483
Ordinary Least Square (OLS), 238–239

��������� P
Particle swarm optimization, 382
Part-of-speech (POS)

categorization, 402
extraction, 405
frequency, 406
mapping, 403
pre-processing, 403–404

Pearson Product-Moment Correlation
Coefficient, 235

Perceptron, 374–376
Performance evaluation metrics, 270
Permutation, 9
Pie charts, 152–154
Point-of-sale (POS), 354

Polynomial regression, 261–265
Pooled mean, 70
Pooled variance, 70
Population stability index

continuous distribution, 432–433
discrete cases, 436
discrete distributions, 437
ECDF plots, Set_1 and Set_2, 435
Empirical Cumulative Distribution

Function (ECDF), 433–434
KS test, 433, 436
threshold values, 436

Principal component analysis (PCA), 228
advantages, 215
orthogonality, 215
steps, 212

Probabilistic techniques
bootstrap sampling, 458–459
K-fold cross validation, 456–457

Probability
vs. non-probability sampling, 80
sampling technique, 79

data dimensions, 90
histogram, 91–93
population mean, 90
population variance, 91
sampling methods, 89

Probability of default (PD), 185
Pseudo R-Square, 277
Purposive sampling, 81

��������� Q
Quantile, 52–53
Quota sampling, 81

��������� R
R

building blocks, 18
calculations, 18
data frames, 23
data structures, 19
functions, 23–25
GNU S, 18
lists, 22
matrixes, 22
packages, 19
statistics, 19
subsetting, 21
vectors, 21

■ INDEX

564

Radial basis function (RBF), 291
Rand index, 353
Random Forest, 326–327, 329, 511
Random search algorithms, 485
Random search optimization, 483, 485
rbinom(), 83
R code, 83–86, 88–89
Receiver operating characteristic (ROC)

curve, 274, 452, 451, 455
Recommendation algorithm, 364
Recursive binary split, 299
Recursive partitioning, 481
Regression analysis

causation, 234
distributional assumptions, 233
linear model, 234
non-parametric methods, 235
notation, 234
parametric methods, 234
prediction/forecasting, 234
statistical learning and machine

learning space, 233
statistical model, 234
variables, 234

Regression-based methods, 224
Regression trees, 299, 481
Regularization algorithms, 225
Reinforcement learning, 223
Relational Database Management

Systems (RDBMS), 40, 531
Residual Sum of Squares (RSS), 299
Residuals vs. fitted plot, 260
River plots. See Sankey plots
RMSE. See Root mean square error

(RMSE)
ROC curve. See Receiver operating

characteristic (ROC) curve
Root mean square error (RMSE), 441
Root node, 298

��������� S
Sample point, 71
Sampling

bias, 72
classification, 69
description, 68
distribution, 70
error, 71
fraction, 72
objectives, 69

population mean, 70
population statistics, 68
sources and storing, 67
technological advancement, 67
test statistics, 70
variance, 70

Sampling without replacement (SWOR),
72

Sampling with replacement (SWR), 72
Sankey plots, 169–170
Scatterplots

description, 144
higher dimensional, 144
population vs.

GDP relationship, 145
Semi-supervised learning, 223
Serial correlation, 256
Shapiro-Wilk test, 88
Sigmoid function, 377
Sigmoid neurons, 377
Silhouette coefficient, 352–353
Simple random sampling

distribution of data, 96
function, 94
histograms, 96
hypothesis, 96
KS test, 96, 98
population, 93
population average, 95
population sampling, 94
population size, 98
p-value of t.test, 97
replacement, 98–99
sample and population, 97
sample() function, 95
summarise function, 95
without replacement, 93

Simulated annealing, 381
Simulation, 83–86, 88–89
Skewness, 57–58
Spark’s machine learning

algorithms, 541
build, ML model, 544
MLlib, 541
preprocessing, 542
SparkDataFrame creation, 543
SparkR session, initializing, 542
sparkR.stop(), 546
system properties, setting, 542
test dataset, 545
tools, 541

■ INDEX

565

Spatial maps
data frame creation, 176
ggmap(), 174, 175
ggplot() function, 174
India map, robbery counts, 177

Specialization vs. generalization, 379
Squared Euclidean distance, 291
Stacked column charts

age dependency ratio, 139
contribution, sectors, 139
description, 138
working age ratio, 141

Stacking, 228, 329, 495, 498, 506–511, 516
Statistical learning, 2–3, 220, 229, 233, 382,

463, 467, 471, 516
Stratified random sampling

disadvantages, 105
histograms, 109
KS test, 109
population, 110
proportion, 108
sample() function, 107
stratified function, 107
stratified sampling, 105, 107
stratum variables, 106
sub-populations, 104
summarise() function, 109
t.test(), 109

Summary statistics, 52
Supervised learning, 222–223, 228, 307,

329, 354, 374, 380, 383, 467, 497
Supervised vs. unsupervised learning, 380
Support vector machine (SVM)

binary classifier
data preparation, 293
data summary, 293
model building, 294
model evaluation, 294–295

classification, 292
class separation, 290–291
hard margins, 292
linear, 292
multi-class, 295–297
nonlinearity, 291
overlapping classes, 291
soft margins, 292

Systematic random sampling
business and computational capacity,

104
circular sampling frame, 100
EDF, 103

formula, 102
homogeneous sets, 101
KS test, 103
population variance, 100
sample distribution, 104
sample frame, 102
skip factor, 100, 102
subsetting, 101

��������� T
Term Frequency/Inverse Term frequency

(TF_IDF), 400
Text mining algorithms, 229, 231
Text-mining approaches

consumer behavior/product
performance, 396

data preparation, 398
data summary, 397
Microsoft Cognitive Services

analytics features, 408
language detection, 414–416
mscstexta4r, 409
Project Oxford, 408
sentiment analysis, 411–412
summarization, 416
third-party API, 407
topic detection, 412, 414
twitterR() package, 408

NLP, 396, 397
POS tagging, 402–406
summarization, 398–400
text analysis, 397
text data, 396
TF-IDF, 400, 402
Twitter statics, 396
word cloud, 397, 406–407

Time series graphs, 170
GDP growth, countries, 170
GDP growth, recession, 171–172

Torsten Hothorn, 229
True Negative Rate (TNR), 451, 452
True positive rate (TPR), 451, 452
Twitter feeds and article, 231

��������� U
UCI Machine Learning Repository,

231, 295
Unsupervised Fuzzy Competitive

Learning, 418

■ INDEX

566

Unsupervised learning, 223, 227, 337, 379,
380, 383, 389, 467, 493

User-Based Collaborative Filtering
(UBCF), 365–366

��������� V
Variable subset selection

definition, 195
embedded method

fit model, 207–208
fitted Cross Validated Linear

Model, 209
glmnet fit model, 208
logistic regression, 207
misclassification error and log of

penalization factor (lambda), 209
regularization, 206
statistical approaches, 206

filter method
CoV, 196–197
Gini coefficient, 198

statistical approaches, 195
variance threshold, 195

wrapper method, 199–205
Variance, 56–57, 70
Variance inflation factor

(VIF), 255, 256
Vectors, 20–22, 25, 33, 291, 341, 365

��������� W
Wald test, 275–276
Waterfall charts, 162–164
Within cluster sum of squares (WCSS),

344, 345
Wordclouds, 167–168
World development indicators (WDI),

50, 132

��������� X, Y, Z
XML. See Extensible Markup languages

(XML)

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to Machine Learning and R
	1.1 Understanding the Evolution
	1.1.1 Statistical Learning
	1.1.2 Machine Learning (ML)
	1.1.3 Artificial Intelligence (AI)
	1.1.4 Data Mining
	1.1.5 Data Science

	1.2 Probability and Statistics
	1.2.1 Counting and Probability Definition
	1.2.2 Events and Relationships
	1.2.2.1 Independent Events
	1.2.2.2 Conditional Independence
	1.2.2.3 Bayes Theorem

	1.2.3 Randomness, Probability, and Distributions
	1.2.4 Confidence Interval and Hypothesis Testing
	1.2.4.1 Confidence Interval
	1.2.4.2 Hypothesis Testing

	1.3 Getting Started with R
	1.3.1 Basic Building Blocks
	1.3.1.1 Calculations
	1.3.1.2 Statistics with R
	1.3.1.3 Packages

	1.3.2 Data Structures in R
	1.3.2.1 Vectors
	1.3.2.2 List
	1.3.2.3 Matrix
	1.3.2.4 Data Frame

	1.3.3 Subsetting
	1.3.3.1 Vectors
	1.3.3.2 Lists
	1.3.3.3 Matrixes
	1.3.3.4 Data Frames

	1.3.4 Functions and Apply Family

	1.4 Machine Learning Process Flow
	1.4.1 Plan
	1.4.2 Explore
	1.4.3 Build
	1.4.4 Evaluate

	1.5 Other Technologies
	1.6 Summary
	1.7 References

	Chapter 2: Data Preparation and Exploration
	2.1 Planning the Gathering of Data
	2.1.1 Variables Types
	2.1.1.1 Categorical Variables
	2.1.1.2 Continuous Variables

	2.1.2 Data Formats
	2.1.2.1 Comma-Separated Values
	2.1.2.2 Microsoft Excel
	2.1.2.3 Extensible Markup Language: XML
	2.1.2.4 Hypertext Markup Language: HTML
	2.1.2.5 JSON
	2.1.2.6 Other Formats

	2.1.3 Data Sources
	2.1.3.1 Structured
	2.1.3.2 Semi-Structured
	2.1.3.3 Unstructured

	2.2 Initial Data Analysis (IDA)
	2.2.1 Discerning a First Look
	2.2.1.1 Function str()
	2.2.1.2 Naming Convention: make.names()
	2.2.1.3 Table(): Pattern or Trend

	2.2.2 Organizing Multiple Sources of Data into One
	2.2.2.1 Merge and dplyr Joins
	2.2.2.1.1 Using merge
	2.2.2.1.2 dplyr

	2.2.3 Cleaning the Data
	2.2.3.1 Correcting Factor Variables
	2.2.3.2 Dealing with NAs
	2.2.3.3 Dealing with Dates and Times
	2.2.3.3.1 Time Zone
	2.2.3.3.2 Daylight Savings Time

	2.2.4 Supplementing with More Information
	2.2.4.1 Derived Variables
	2.2.4.2 n-day Averages

	2.2.5 Reshaping

	2.3 Exploratory Data Analysis
	2.3.1 Summary Statistics
	2.3.1.1 Quantile
	2.3.1.2 Mean
	2.3.1.3 Frequency Plot
	2.3.1.4 Boxplot

	2.3.2 Moment
	2.3.2.1 Variance
	2.3.2.2 Skewness
	2.3.2.3 Kurtosis

	2.4 Case Study: Credit Card Fraud
	2.4.1 Data Import
	2.4.2 Data Transformation
	2.4.3 Data Exploration

	2.5 Summary
	2.6 References

	Chapter 3: Sampling and Resampling Techniques
	3.1 Introduction to Sampling
	3.2 Sampling Terminology
	3.2.1 Sample
	3.2.2 Sampling Distribution
	3.2.3 Population Mean and Variance
	3.2.4 Sample Mean and Variance
	3.2.5 Pooled Mean and Variance
	3.2.6 Sample Point
	3.2.7 Sampling Error
	3.2.8 Sampling Fraction
	3.2.9 Sampling Bias
	3.2.10 Sampling Without Replacement (SWOR)
	3.2.11 Sampling with Replacement (SWR)

	3.3 Credit Card Fraud: Population Statistics
	3.3.1 Data Description
	3.3.2 Population Mean
	3.3.3 Population Variance
	3.3.4 Pooled Mean and Variance

	3.4 Business Implications of Sampling
	3.4.1 Features of Sampling
	3.4.2 Shortcomings of Sampling

	3.5 Probability and Non-Probability Sampling
	3.5.1 Types of Non-Probability Sampling
	3.5.1.1 Convenience Sampling
	3.5.1.2 Purposive Sampling
	3.5.1.3 Quota Sampling

	3.6 Statistical Theory on Sampling Distributions
	3.6.1 Law of Large Numbers: LLN
	3.6.1.1 Weak Law of Large Numbers
	3.6.1.2 Strong Law of Large Numbers
	3.6.1.3 Steps in Simulation with R Code

	3.6.2 Central Limit Theorem
	3.6.2.1 Steps in Simulation with R Code

	3.7 Probability Sampling Techniques
	3.7.1 Population Statistics
	3.7.2 Simple Random Sampling
	3.7.3 Systematic Random Sampling
	3.7.4 Stratified Random Sampling
	3.7.5 Cluster Sampling
	3.7.6 Bootstrap Sampling

	3.8 Monte Carlo Method: Acceptance-Rejection Method
	3.9 A Qualitative Account of Computational Savings by Sampling
	3.10 Summary

	Chapter 4: Data Visualization in R
	4.1 Introduction to the ggplot2 Package
	4.2 World Development Indicators
	4.3 Line Chart
	4.4 Stacked Column Charts
	4.5 Scatterplots
	4.6 Boxplots
	4.7 Histograms and Density Plots
	4.8 Pie Charts
	4.9 Correlation Plots
	4.10 HeatMaps
	4.11 Bubble Charts
	4.12 Waterfall Charts
	4.13 Dendogram
	4.14 Wordclouds
	4.15 Sankey Plots
	4.16 Time Series Graphs
	4.17 Cohort Diagrams
	4.18 Spatial Maps
	4.19 Summary
	4.20 References

	Chapter 5: Feature Engineering
	5.1 Introduction to Feature Engineering
	5.1.1 Filter Methods
	5.1.2 Wrapper Methods
	5.1.3 Embedded Methods

	5.2 Understanding the Working Data
	5.2.1 Data Summary
	5.2.2 Properties of Dependent Variable
	5.2.3 Features Availability: Continuous or Categorical
	5.2.4 Setting Up Data Assumptions

	5.3 Feature Ranking
	5.4 Variable Subset Selection
	5.4.1 Filter Method
	5.4.2 Wrapper Methods
	5.4.3 Embedded Methods

	5.5 Dimensionality Reduction
	5.6 Feature Engineering Checklist
	5.7 Summary
	5.8 References

	Chapter 6: Machine Learning Theory and Practices
	 6.1 Machine Learning Types
	 6.1.1 Supervised Learning
	 6.1.2 Unsupervised Learning
	 6.1.3 Semi-Supervised Learning
	 6.1.4 Reinforcement Learning

	 6.2 Groups of Machine Learning Algorithms
	 6.3 Real-World Datasets
	 6.3.1 House Sale Prices
	 6.3.2 Purchase Preference
	 6.3.3 Twitter Feeds and Article
	 6.3.4 Breast Cancer
	 6.3.5 Market Basket
	 6.3.6 Amazon Food Review

	 6.4 Regression Analysis
	 6.5 Correlation Analysis
	 6.5.1 Linear Regression
	 6.5.1.2 Best Linear Predictors

	 6.5.2 Simple Linear Regression
	 6.5.3 Multiple Linear Regression
	6.5.4 Model Diagnostics: Linear Regression
	 6.5.4.1 Influential Point Analysis
	 6.5.4.2 Normality of Residuals
	 6.5.4.3 Multicollinearity
	 6.5.4.4 Residual Autocorrelation
	 6.5.4.5 Homoscedasticity

	 6.5.5 Polynomial Regression
	6.5.6 Logistic Regression
	6.5.7 Logit Transformation
	6.5.8 Odds Ratio
	6.5.8.1 Binomial Logistic Model

	6.5.9 Model Diagnostics: Logistic Regression
	6.5.9.1 Wald Test
	6.5.9.2 Deviance
	6.5.9.3 Pseudo R-Square
	6.5.9.4 Bivariate Plots
	6.5.9.5 Cumulative Gains and Lift Charts
	6.5.9.6 Concordance and Discordant Ratios

	6.5.10 Multinomial Logistic Regression
	6.5.11 Generalized Linear Models
	6.5.12 Conclusion

	6.6 Support Vector Machine SVM
	6.6.1 Linear SVM
	6.6.1.1 Hard Margins
	6.6.1.2 Soft Margins

	6.6.2 Binary SVM Classifier
	6.6.3 Multi-Class SVM
	6.6.4 Conclusion

	6.7 Decision Trees
	6.7.1 Types of Decision Trees
	6.7.1.1 Regression Trees
	6.7.1.2 Classification Tree

	6.7.2 Decision Measures
	6.7.2.1 Gini Index
	6.7.2.2 Entropy
	6.7.2.3 Information Gain

	6.7.3 Decision Tree Learning Methods
	6.7.3.1 Iterative Dichotomizer 3
	6.7.3.2 C5.0 algorithm
	6.7.3.3 Classification and Regression Tree: CART
	6.7.3.4 Chi-Square Automated Interaction Detection: CHAID

	6.7.4 Ensemble Trees
	6.7.4.1 Boosting
	6.7.4.2 Bagging
	6.7.4.2.1 Bagging CART
	6.7.4.2.2 Random Forest

	6.7.5 Conclusion

	6.8 The Naive Bayes Method
	6.8.1 Conditional Probability
	6.8.2 Bayes Theorem
	6.8.3 Prior Probability
	6.8.4 Posterior Probability
	6.8.5 Likelihood and Marginal Likelihood
	6.8.6 Naive Bayes Methods
	6.8.7 Conclusion

	6.9 Cluster Analysis
	6.9.1 Introduction to Clustering
	6.9.2 Clustering Algorithms
	6.9.2.1 Hierarchal Clustering
	6.9.2.2 Centroid-Based Clustering
	6.9.2.3 Distribution-Based Clustering
	6.9.2.4 Density-Based Clustering

	6.9.3 Internal Evaluation
	6.9.3.1 Dunn Index
	6.9.3.2 Silhouette Coefficient

	6.9.4 External Evaluation
	6.9.4.1 Rand Measure
	6.9.4.2 Jaccard Index

	6.9.5 Conclusion

	6.10 Association Rule Mining
	6.10.1 Introduction to Association Concepts
	6.10.1.1 Support
	6.10.1.2 Confidence
	6.10.1.3 Lift

	6.10.2 Rule-Mining Algorithms
	6.10.2.1 Apriori
	6.10.2.2 Eclat

	6.10.3 Recommendation Algorithms
	6.10.3.1 User-Based Collaborative Filtering (UBCF)
	6.10.3.2 Item-Based Collaborative Filtering (IBCF)

	6.10.4 Conclusion

	6.11 Artificial Neural Networks
	6.11.1 Human Cognitive Learning
	6.11.2 Perceptron
	6.11.3 Sigmoid Neuron
	6.11.4 Neural Network Architecture
	6.11.5 Supervised versus Unsupervised Neural Nets
	6.11.6 Neural Network Learning Algorithms
	6.11.6.1 Evolutionary Methods
	6.11.6.2 Gene Expression Programming
	6.11.6.3 Simulated Annealing
	6.11.6.4 Expectation Maximization
	6.11.6.5 Non-Parametric Methods
	6.11.6.6 Particle Swarm Optimization

	6.11.7 Feed-Forward Back-Propagation
	6.11.7.1 Purchase Prediction: Neural Network-Based Classification

	6.11.8 Deep Learning
	6.11.9 Conclusion

	6.12 Text-Mining Approaches
	6.12.1 Introduction to Text Mining
	6.12.2 Text Summarization
	6.12.3 TF-IDF
	6.12.4 Part-of-Speech (POS) Tagging
	6.12.5 Word Cloud
	6.12.6 Text Analysis: Microsoft Cognitive Services
	6.12.7 Conclusion

	6.13 Online Machine Learning Algorithms
	6.13.1 Fuzzy C-Means Clustering
	6.13.2 Conclusion

	6.14 Model Building Checklist
	6.15 Summary
	6.16 References

	Chapter 7: Machine Learning Model Evaluation
	7.1 Dataset
	7.1.1 House Sale Prices
	7.1.2 Purchase Preference

	7.2 Introduction to Model Performance and Evaluation
	7.3 Objectives of Model Performance Evaluation
	7.4 Population Stability Index
	7.5 Model Evaluation for Continuous Output
	7.5.1 Mean Absolute Error
	7.5.2 Root Mean Square Error
	7.5.3 R-Square

	7.6 Model Evaluation for Discrete Output
	7.6.1 Classification Matrix
	7.6.2 Sensitivity and Specificity
	7.6.3 Area Under ROC Curve

	7.7 Probabilistic Techniques
	7.7.1 K-Fold Cross Validation
	7.7.2 Bootstrap Sampling

	7.8 The Kappa Error Metric
	7.9 Summary
	7.10 References

	Chapter 8: Model Performance Improvement
	8.1 Machine Learning and Statistical Modeling
	8.2 Overview of the Caret Package
	8.3 Introduction to Hyper-Parameters
	8.4 Hyper-Parameter Optimization
	8.4.1 Manual Search
	8.4.2 Manual Grid Search
	8.4.3 Automatic Grid Search
	8.4.4 Optimal Search
	8.4.5 Random Search
	8.4.6 Custom Searching

	8.5 The Bias and Variance Tradeoff
	8.5.1 Bagging or Bootstrap Aggregation
	8.5.2 Boosting

	8.6 Introduction to Ensemble Learning
	8.6.1 Voting Ensembles
	8.6.2 Advanced Methods in Ensemble Learning
	8.6.2.1 Bagging
	8.6.2.2 Boosting

	8.7 Ensemble Techniques Illustration in R
	8.7.1 Bagging Trees
	8.7.2 Gradient Boosting with a Decision Tree
	8.7.3 Blending KNN and Rpart
	8.7.4 Stacking Using caretEnsemble

	8.8 Advanced Topic: Bayesian Optimization of Machine Learning Models
	8.9 Summary
	8.10 References

	Chapter 9: Scalable Machine Learning and Related Technologies
	9.1 Distributed Processing and Storage
	9.1.1 Google File System (GFS)
	9.1.2 MapReduce
	9.1.3 Parallel Execution in R
	9.1.3.1 Setting the Cores
	9.1.3.2 Problem Statement
	9.1.3.3 Building the model: Serial
	9.1.3.4 Building the Model: Parallel
	9.1.3.5 Stopping the Clusters

	9.2 The Hadoop Ecosystem
	9.2.1 MapReduce
	9.2.1.1 MapReduce Example: Word Count

	9.2.2 Hive
	9.2.2.1 Creating Tables
	9.2.2.2 Describing Tables
	9.2.2.3 Generating Data and Storing it in a Local File
	9.2.2.4 Loading the Data into the Hive Table
	9.2.2.5 Selecting a Query

	9.2.3 Apache Pig
	9.2.3.1 Connecting to Pig
	9.2.3.2 Loading the Data
	9.2.3.3 Tokenizing Each Line
	9.2.3.4 Flattening the Tokens
	9.2.3.5 Grouping the Words
	9.2.3.6 Counting and Sorting

	9.2.4 HBase
	9.2.4.1 Starting HBase
	9.2.4.2 Creating the Table and Put Data
	9.2.4.3 Scanning the Data

	9.2.5 Spark

	9.3 Machine Learning in R with Spark
	9.3.1 Setting the Environment Variable
	9.3.2 Initializing the Spark Session
	9.3.3 Loading Data and the Running Pre-Process
	9.3.4 Creating SparkDataFrame
	9.3.5 Building the ML Model
	9.3.6 Predicting the Test Data
	9.3.7 Stopping the SparkR Session

	9.4 Machine Learning in R with H2O
	9.4.1 Installation of Packages
	9.4.2 Initialization of H2O Clusters
	9.4.3 Deep Learning Demo in R with H2O
	9.4.3.1 Running the Demo
	9.4.3.2 Loading the Testing Data

	9.5 Summary
	9.6 References

	Index

