
Making
Games

With JavaScript
—
Christopher Pitt

www.allitebooks.com

http://www.allitebooks.org

Making Games
With JavaScript

Christopher Pitt

www.allitebooks.com

http://www.allitebooks.org

Making Games: With JavaScript

Christopher Pitt
Cape Town, Western Cape, South Africa

ISBN-13 (pbk): 978-1-4842-2492-2 ISBN-13 (electronic): 978-1-4842-2493-9
DOI 10.1007/978-1-4842-2493-9

Library of Congress Control Number: 2016961803

Copyright © 2016 by Christopher Pitt

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Rebecca Rider
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image: Designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com. For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

For Sam, Nicole, Eva, and Simon.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author �� xi

 ■Chapter 1: Introduction �� 1

 ■Chapter 2: The Game Loop �� 3

 ■Chapter 3: Player Input ��� 9

 ■Chapter 4: Collision Detection �� 15

 ■Chapter 5: Gravity ��� 23

 ■Chapter 6: Ladders ��� 35

 ■Chapter 7: Stairs ��� 41

 ■Chapter 8: Camera Locking �� 47

 ■Chapter 9: Projectiles ��� 53

 ■Chapter 10: Mobs ��� 61

 ■Chapter 11: Health �� 65

 ■Chapter 12: Animation �� 69

 ■Chapter 13: Sounds �� 73

 ■Chapter 14: Gamepads ��� 75

Index �� 81

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author �� xi

 ■Chapter 1: Introduction �� 1

 ■Chapter 2: The Game Loop �� 3

Setting the stage for our game ��� 3

Creating sprites ��� 4

The Game Loop ��� 6

Summary ��� 8

 ■Chapter 3: Player Input ��� 9

Detecting input �� 9

Natural player movement �� 12

Summary ��� 13

 ■Chapter 4: Collision Detection �� 15

Creating boxes �� 15

Detecting circle collisions ��� 17

Detecting rectangle collisions ��� 19

Summary ��� 21

 ■Chapter 5: Gravity ��� 23

Cleaning up our existing code ��� 23

Adding gravity to the world ��� 28

Allowing players to jump ��� 32

Summary ��� 34

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

 ■Chapter 6: Ladders ��� 35

Creating our first ladder �� 35

Allowing players to climb ladders ��� 37

Summary ��� 40

 ■Chapter 7: Stairs ��� 41

Building a slope ��� 41

Walking up slopes ��� 44

Staying above the floor ��� 46

Summary ��� 46

 ■Chapter 8: Camera Locking �� 47

Wrapping with a camera ��� 47

Growing levels ��� 49

Summary ��� 51

 ■Chapter 9: Projectiles ��� 53

Custom crosshairs ��� 53

Custom keys �� 56

Shooting �� 58

Summary ��� 60

 ■Chapter 10: Mobs ��� 61

Patrolling blobs ��� 61

Shooting mobs �� 63

Summary ��� 64

 ■Chapter 11: Health �� 65

Taking damage �� 65

Showing health ��� 66

Summary ��� 68

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

 ■Chapter 12: Animation �� 69

Animating the player ��� 69

Swapping animations �� 70

Summary ��� 72

 ■Chapter 13: Sounds �� 73

Adding background music��� 73

Adding action and event sounds ��� 74

Summary ��� 74

 ■Chapter 14: Gamepads ��� 75

Handling events ��� 75

Triggers and joysticks ��� 78

Summary ��� 78

Index �� 81

www.allitebooks.com

http://www.allitebooks.org

xixi

About the Author

Christopher Pitt is a developer and writer working at SilverStripe. He usually works on
application architecture, though sometimes you’ll find him building compilers or robots.

I’ve written this short book with Javascript developers in mind. For it to be valuable
to you, you’ll need to understand how to use JavaScript. Where possible, I’ve explained
newer syntax and difficult concepts. But this is not the best book to learn Javascript from.

If you’re new to JavaScript, I recommend reading [Learning JavaScript]
(http://a.co/1mwOUfl) first. It will help you understand some of the tricky parts,
and put you in the right mindset to learn what this book teaches.

If you have questions, don’t hesitate to [ask me questions]
(https://twitter.com/assertchris).

www.allitebooks.com

http://dx.doi.org/http://a.co/1mwOUfl
http://dx.doi.org/https://twitter.com/assertchris
http://www.allitebooks.org

1© Christopher Pitt 2016
C. Pitt, Making Games, DOI 10.1007/978-1-4842-2493-9_1

CHAPTER 1

Introduction

I'm a gamer. I've been a gamer since before I was a programmer. And yet I’ve never tried
to build a game…until now. A few weeks ago, a coworker sketched a simple, beautiful
platform game. The moment I saw it; I knew I wanted to build it.

Knowing where to begin is always hard. Many books and tutorials about making
games are often written in Java, C++, or some other language you haven’t learned yet. So
the complexity of making games increases when you also need to learn new languages.

Instead, I’m going to use modern JavaScript to make games for web browsers.
They’re effortless to use and they work everywhere. If you’ve ever wanted to make a game,
join me. We’ll start with nothing and build fun games in no time at all.

If you have questions, feel free to ask me on Twitter: https://twitter.com/assertchris.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-2493-9_1) contains supplementary material, which is
available to authorized users.

www.allitebooks.com

https://twitter.com/assertchris
http://dx.doi.org/10.1007/978-1-4842-2493-9_1
http://www.allitebooks.org

3© Christopher Pitt 2016
C. Pitt, Making Games, DOI 10.1007/978-1-4842-2493-9_2

CHAPTER 2

The Game Loop

Game loops are an essential part of every game. In this chapter, we’re going to set the
stage for our game by creating a solid workflow and environment. We’ll see a few helpful
libraries and render our first game character. This is gonna be fun!

Setting the stage for our game
We’re going to build games using the latest JavaScript standards and language features.
This is usually where I’d show you how to create a JavaScript-built chain, but we’re going
to do something different....

For this book, we’re going to do all of our coding in a hosted service called CodePen.
It looks like the code in Figure 2-1.

Figure 2-1. CodePen

There are a few benefits to this approach:

 1. We don’t need to cover JavaScript build chains. They are
subjective, brittle, and distracting.

 2. We can use SCSS (enhanced stylesheets) for free.

 3. You don’t have to set anything up to start interacting with the
source code.

Chapter 2 ■ the Game Loop

4

Figure 2-2. Adding PixiJS to CodePen

We’re going to use a JavaScript library, called PixiJS (www.pixijs.com). It’s a
rendering library that will smooth over the browser inconsistencies. It’s not a game
engine or a physics engine, so we’re still going to learn and code those aspects ourselves.
PixiJS will just allow us to get to those things sooner.

We’re using pixiJS v4. It’s entirely possible that newer versions are available by the time you
read this. the concepts should be universal, though the syntax might have changed.

We can add PixiJS to our CodePens by clicking on Settings ➤ JavaScript, and adding
the following URL to the PixiJS CDN script: https://cdnjs.cloudflare.com/ajax/libs/
pixi.js/4.0.0/pixi.min.js. This process is shown in Figure 2-2.

Creating sprites
Sprites are a common name for visual objects in a game. We can move them around
(though often they are responsible for moving themselves around) on the screen. We can
interact with them.

Mario (https://en.wikipedia.org/wiki/Mario) is a sprite, the platforms he walks
on are sprites, and the clouds in the background are sprites. Think of sprites as slices of
a design file, which we paint over abstract data structures. Those abstract data structures
have a position, and sometimes a velocity. Those abstract data structures are what we
apply game rules to. They are our power-ups and enemies.

http://www.pixijs.com/
https://cdnjs.cloudflare.com/ajax/libs/pixi.js/4.0.0/pixi.min.js
https://cdnjs.cloudflare.com/ajax/libs/pixi.js/4.0.0/pixi.min.js
https://en.wikipedia.org/wiki/Mario

Chapter 2 ■ the Game Loop

5

So how do we make them? Let’s start by creating a small PNG image. We’re using
PNG because it allows us to make parts of the sprite texture transparent. You can also use
JPEG images for your sprites if you want to.

Then we need to create a renderer, a stage, and a sprite:

const renderer = new PIXI.autoDetectRenderer(
 window.innerWidth,
 window.innerHeight,
 {
 "antialias": true,
 "autoResize": true,
 "transparent": true,
 "resolution": 2,
 },
)

document.body.appendChild(renderer.view)

const sprite = new PIXI.Sprite.fromImage(
 "path/to/sprites/player-idle.png",
)

sprite.x = window.innerWidth / 2
sprite.y = window.innerHeight / 2

const stage = new PIXI.Container()
stage.addChild(sprite)

const animate = function() {
 requestAnimationFrame(animate)
 renderer.render(stage)
}

animate()

This is from http://codepen.io/assertchris/pen/qaobAz.

Ok, there’s a lot going on here! Let’s look at this code in steps:

 1. We create a renderer. Renderers are what convert PixiJS
abstractions (sprites, textures, etc.) into canvas or WebGL
graphics. We don’t have to interact with them, but we always
have to have a renderer in order for our PixiJS stuff to show up.

We tell the renderer to take up the full width and height of
the browser window. We also tell it to anti-alias our graphics
and bump them up to retina resolution. We tell it to have a
transparent background, and to resize all graphics to fit on
the screen.

http://codepen.io/assertchris/pen/qaobAz

Chapter 2 ■ the Game Loop

6

 2. Then we create a new instance of PIXI.Sprite, using the
PNG image we created earlier. By default, it has a position of
x = 0 and y = 0. We can position it in the center of the screen
instead.

We have to create a root sprite container, often called a stage,
and append the sprite to the stage. It’s less complicated than
it sounds. Think of HTML documents. They have a root html
element, which we add all other elements to. This is the same
kind of thing.

 3. Finally, we create an animate function and make sure that the
renderer renders our stage and sprite.

We’re using the requestAnimationFrame function as a way
rendering without blocking the JavaScript thread. There’s a
long discussion we could have about that. For now, it’s only
important to know that requestAnimationFrame happens
many times a second.

The goal is for our game is to render between 30 and 60
frames per second, while doing all sorts of player and world
calculations in the background. This is the function we need
to use for that all to go smoothly.

The Game Loop
The game loop will control the flow of our game. It’s a repetitive process of reading input,
calculating changes in state, and rendering output to the screen.

So far we’ve set up a lot of scaffolding and all we’re doing is rendering a static image.
Let’s move it around a bit! To begin with, we’re going to create a Player class so we can
track the position of the player:

class Player {
 constructor(sprite, x, y) {
 this.sprite = sprite
 this.x = x
 this.y = y

 this.sprite.x = this.x
 this.sprite.y = this.y
 }

 animate(state) {
 this.x += 5

 if (this.x > window.innerWidth) {
 this.x = 0
 }

Chapter 2 ■ the Game Loop

7

 this.sprite.x = this.x
 this.sprite.y = this.y
 }
}

This is from http://codepen.io/assertchris/pen/qaobAz.

This is what JavaScript classes look like in ES2015 and beyond. The Player class
has a constructor, which we use to store a reference to the sprite, and the initial x and y
position.

It also has an animate method, which we will call many times a second. We can use
the method to figure out if the player needs to change position or do something else. In
this case, we increment the sprite x position a bit. If the player/sprite moves off the right-
hand side of the screen, we move it back to the left-hand side of the screen.

We also have to change how we create the sprite:

const player = new Player(
 sprite,
 window.innerWidth / 2,
 window.innerHeight / 2,
)

stage.addChild(sprite)

let state = {
 "renderer": renderer,
 "stage": stage,
}

const animate = function() {
 requestAnimationFrame(animate)

 player.animate(state)
 renderer.render(stage)
}

This is from http://codepen.io/assertchris/pen/qaobAz.

Now we’re beginning to see the loop in our game. As you can see in Figure 2-3, many
times a second, we’re telling our player to animate. The player takes into account some
internal logic and adjusts its sprite. The renderer renders the output, and what we see is a
smooth animation.

http://codepen.io/assertchris/pen/qaobAz
http://codepen.io/assertchris/pen/qaobAz

Chapter 2 ■ the Game Loop

8

The only thing we’re lacking here is input, but we’ll get to that soon…

Summary
In this chapter, we managed to set up a game environment (using CodePen). We were
briefly introduced to PixiJS and saw how to render our player’s sprite on the screen.

We also animated the player’s sprite and learned how to use the
requestAnimationFrame function.

Take a moment to look for sprite graphics for your game. Fork the CodePen, and
customize it a little. It’s important that you get a feel for creating sprites and manipulating
them. This is the start of your game!

Figure 2-3. Moving sprites

9© Christopher Pitt 2016
C. Pitt, Making Games, DOI 10.1007/978-1-4842-2493-9_3

CHAPTER 3

Player Input

What’s the difference between a movie and a game? Player input! In fact, it’s such a
critical piece of game design that games are often defined by how they take player input.

Racing games rely on constant, subtle input. If you lift your fingers from the
keyboard, or lift your foot off the pedal, you lose momentum. If you don’t enter the right
combination of keys, your flight simulation will crash.

Platform games, like the one we’re building, need input from both hands. Often the
right-hand side of the keyboard is for movement. Often the left-hand side of the keyboard
is for player actions, like shooting or opening doors.

Perhaps you want to design a platform game like Terraria (https://terraria.org),
which uses the mouse for player actions and projective aim. Perhaps you want to use
WASD to move your player around the screen. Let’s get to work!

Detecting input
When I first tried detecting input, I tried to add event listeners to everything. I tried
adding event listeners to the player and event listeners to the stage. Aaaand things got out
of hand.

The trick is to detect events at the highest level and save details of them to a game
state object. Last time we created this kind of state object and passed it to the player's
animate method. Let’s expand on that state:

let state = {
 "renderer": renderer,
 "stage": stage,
 "keys": {},
 "clicks": {},
 "mouse": {},
}

window.addEventListener("keydown", function(event) {
 state.keys[event.keyCode] = true
})

https://terraria.org/

Chapter 3 ■ player Input

10

window.addEventListener("keyup", function(event) {
 state.keys[event.keyCode] = false
})

window.addEventListener("mousedown", function(event) {
 state.clicks[event.which] = {
 "clientX": event.clientX,
 "clientY": event.clientY,
 }
})

window.addEventListener("mouseup", function(event) {
 state.clicks[event.which] = false
})

window.addEventListener("mousemove", function(event) {
 state.mouse.clientX = event.clientX
 state.mouse.clientY = event.clientY
})

This is from http://codepen.io/assertchris/pen/rrdZYB.

We began by adding the renderer and state to the game state object. Now we’ve
added keys, clicks, and mouse properties, which track buttons and movement.

 ■ Note For this next part, I had to adjust the CSS of index.html so that the canvas is
absolutely positioned. this made it possible to track the mouse movement more accurately.
Check out the source code to see the change.

As we add more objects to the game, we’ll pass the game state object to each of them.
They can use it to work out what they should do when the player interacts with the game.
Let’s remove the current player movement and add input-driven movement:

animate(state) {
 if (state.keys[37]) { // left
 this.x = Math.max(
 0, this.x - 5
)
 }

 if (state.keys[39]) { // right
 this.x = Math.min(
 window.innerWidth - 64, this.x + 5
)
 }

http://codepen.io/assertchris/pen/rrdZYB

Chapter 3 ■ player Input

11

 if (state.clicks[1]) { // left click
 this.x = state.clicks[1].clientX
 }

 this.sprite.x = this.x
 this.sprite.y = this.y
}

This is from http://codepen.io/assertchris/pen/rrdZYB.

Little actually changes in the animate method. We check for two arrow keys and
move if the player pressed one of them. We also check if the player has clicked and
immediately move if so.

 ■ Tip pay no attention to the Math functions and magic number 64. these are just there
to prevent the player sprite from going offscreen. We’ll remove these things when we start
building walls….

Figure 3-1. Player input

http://codepen.io/assertchris/pen/rrdZYB

Chapter 3 ■ player Input

12

Natural player movement
The player can now move a bit. It doesn’t feel great, though. The moment we let go of an
arrow key, the action just grinds to a halt. The game has only one speed: slow.

What we need is some acceleration to allow the player to speed up in a given
direction. We could also use some friction to slow the player down when they are no
longer accelerating. Let’s add these:

class Player {
 constructor(sprite, x, y) {
 this.sprite = sprite
 this.x = x
 this.y = y

 this.velocityX = 0
 this.maximumVelocityX = 8
 this.accelerationX = 2
 this.frictionX = 0.9

 this.sprite.x = this.x
 this.sprite.y = this.y
 }

 animate(state) {
 if (state.keys[37]) { // left
 this.velocityX = Math.max(
 this.velocityX - this.accelerationX,
 this.maximumVelocityX * -1
)
 }

 if (state.keys[39]) { // right
 this.velocityX = Math.min(
 this.velocityX + this.accelerationX,
 this.maximumVelocityX
)
 }

 this.velocityX *= this.frictionX

 this.x += this.velocityX

 // if (state.clicks[1]) { // left click
 // this.x = state.clicks[1].clientX
 // }

Chapter 3 ■ player Input

13

 this.sprite.x = this.x
 this.sprite.y = this.y
 }
}

This is from http://codepen.io/assertchris/pen/rrdZYB.

Whoa there, tiger! Let’s review this in steps:

 1. We’ve created a handful of properties: velocity, maximum
velocity, acceleration, and friction. We’ve set them to
reasonable defaults. Feel free to experiment with their values
until you appreciate what each one does.

 2. We can begin to track the acceleration of our player in either
direction. If we’re pressing the left key, we start to accelerate
the player in that direction. There’s a maximum acceleration
that the player can have so they don’t continue to gain speed.

 3. Without some kind of counterforce, the player will continue
to move in the same direction. This is like what happens in
space where there is no air resistance or gravity to counteract
momentum.

We define this counterforce as friction and multiply
the velocity by it. Without acceleration, this means the
momentum tends toward zero. This gives the appearance that
the player has stopped.

Summary
We’ve started to make our game interactive. We can now press the arrow keys and see our
player’s sprite move smoothly around the scene.

We’ve also made things a little less jarring by adding acceleration and deceleration
to the sprite’s movement. This logic will inform how we create other mechanics (like
gravity).

Take a moment to adjust your acceleration properties so your player’s sprite moves
just right for your game. You can also try mapping other keys to the left and right actions.

http://codepen.io/assertchris/pen/rrdZYB

15© Christopher Pitt 2016
C. Pitt, Making Games, DOI 10.1007/978-1-4842-2493-9_4

CHAPTER 4

Collision Detection

It’s time for us to talk about collision detection. It affects obvious parts of our game, like
walls we can’t walk through. Like floors we can’t fall through. It also affects obscure parts
of our game like weapon projectiles and checkpoints.

We’re not going to get to gravity yet. Nor are we going to look at player health or
respawning. Floors, projectiles, and checkpoints are interesting, but they deserve sections
of their own. In this chapter, we’re going to create impassable objects. We’re going to
learn ways of knowing whether two objects occupy the same space.

I’ve spent a bit of time researching this topic. It seems there are many ways of
working out whether two things occupy the same space. Some of them are easy to explain
and implement. We’ll look at those. Other ways are not easy. They’re still cool, though.

Creating boxes
The player is only one of many objects that will exist on the screen at one time. Our game
is a platform game, so we can expect at least one platform on screen at any given time.

Platforms have some interesting characteristics. Sometimes they allow players to fall
down through them. Like when you’re standing on a platform and you hold down and
press jump (at the same time). Some games take that sequence to mean that you want to
fall through the platform.

Similarly, some games allow players to jump through the bottom of platforms. This
enables vertical movement without having gaps in overhead platforms.

Sometimes platforms even move!
Platforms are so special that we’ll spend a few sections just implementing their

different behaviors. But right now we’re going to focus on another common object. The
generic box.

Think of this box as an ancestor of the platform. It may share some platform
functionality, but the main reason it exists is for things to collide with it. Especially things
like the player.

The boxes we’re going to make might not even look like boxes. When we get to
implementing gravity, we’ll need a wide, thin box to keep the player from falling out of
the world. Well also need tall, thin boxes to stop the player from running off the side of
the floor. We’ll make walls out of them. We may even make boxes out of the boxes. Big,
wooden, “jump on me to get to higher things” boxes.

Chapter 4 ■ Collision DeteCtion

16

Ok, enough talking.

class Box {
 constructor(sprite, x, y, w, h) {
 this.sprite = sprite
 this.x = x
 this.y = y
 this.w = w
 this.h = h

 this.sprite.x = this.x
 this.sprite.y = this.y
 }

 animate(state) {
 this.sprite.x = this.x
 this.sprite.y = this.y
 }
}

This is from http://codepen.io/assertchris/pen/qaokJj.

To make this class, I copied and pasted the Player class and deleted a bunch of stuff.
I did have to add a width and height property to it. We'll get to that in a bit.

Next, we need to add two of these boxes to the stage:

const playerSprite = new PIXI.Sprite.fromImage(
 "path/to/sprites/player-idle.png",
)

const player = new Player(
 playerSprite,
 window.innerWidth / 2,
 window.innerHeight / 2,
 44,
 56,
)

const blob1Sprite = new PIXI.Sprite.fromImage(
 "path/to/sprites/blob-idle-1.png",
)

const blob1 = new Player(
 blob1Sprite,
 (window.innerWidth / 2) - 150,
 (window.innerHeight / 2) - 35,
 48,
 48,
)

http://codepen.io/assertchris/pen/qaokJj

Chapter 4 ■ Collision DeteCtion

17

const blob2Sprite = new PIXI.Sprite.fromImage(
 "path/to/sprites/blob-idle-2.png",
)

const blob2 = new Player(
 blob2Sprite,
 (window.innerWidth / 2) + 150,
 (window.innerHeight / 2) + 35,
 48,
 48,
)

const stage = new PIXI.Container()
stage.addChild(playerSprite)
stage.addChild(blob1Sprite)
stage.addChild(blob2Sprite)

let state = {
 "renderer": renderer,
 "stage": stage,
 "keys": {},
 "clicks": {},
 "mouse": {},
 "objects": [
 player,
 blob1,
 blob2,
],
}

This is from http://codepen.io/assertchris/pen/qaokJj.

That’s strange! I’ve created two new Box instances and called them blobs. That’s
because we’re about to look at…

Detecting circle collisions
I want you to create circles for these first few boxes. The type of collision detection we’re
going to do first, is with circles. It’s okay that the box has a width and height instead of a
radius. You won’t use this kind of collision detection often, unless your platform game has
a lot of circles in it.

http://codepen.io/assertchris/pen/qaokJj

Chapter 4 ■ Collision DeteCtion

18

Let’s see how this kind of detection works:

class Player {
 constructor(sprite, x, y, w, h) {
 this.sprite = sprite
 this.x = x
 this.y = y
 this.w = w
 this.h = h

 this.velocityX = 0
 this.maximumVelocityX = 8
 this.accelerationX = 2
 this.frictionX = 0.9

 this.sprite.x = this.x
 this.sprite.y = this.y
 }

 animate(state) {
 if (state.keys[37]) { // left
 this.velocityX = Math.max(
 this.velocityX - this.accelerationX,
 this.maximumVelocityX * -1,
)
 }

 if (state.keys[39]) { // right
 this.velocityX = Math.min(
 this.velocityX + this.accelerationX,
 this.maximumVelocityX,
);
 }

 this.velocityX *= this.frictionX

 let move = true

 state.objects.forEach((object) => {
 if (object === this) {
 return
 }

 var deltaX = this.x - object.x
 var deltaY = this.y - object.y

 var distance = Math.sqrt(
 deltaX * deltaX + deltaY * deltaY,
);

Chapter 4 ■ Collision DeteCtion

19

 if (distance < this.w / 2 + object.w / 2) {
 if (this.velocityX < 0 && object.x <= this.x) {
 move = false
 }

 if (this.velocityX > 0 && object.x >= this.x) {
 move = false
 }
 }
 });

 if (move) {
 this.x += this.velocityX
 }

 this.sprite.x = this.x
 this.sprite.y = this.y
 }
}

This is from http://codepen.io/assertchris/pen/qaokJj.

The first thing we need to do is define a width and height. Although we’re pretending
that our players and boxes are circles, we only need half a width as a radius.

Next we check each object in the state. We can ignore the player object because we
don’t need to know when something collides with itself. We do need to check everything
else, though.

Circles collide when the distance between their origins is less than their combined
radii. Their middle points are so close that their lines have to be overlapping.

We do a quick check to see whether the direction the player is moving in is where the
box is. If that’s the case, then we prevent the player from moving in that direction.

Give it a go. It’s pretty fun to see how non-squares block each other. Of course they all
have to be perfect circles for this simple algorithm to work.

Detecting rectangle collisions
Detecting collisions of rectangles is almost as easy as circles. Go ahead and swap the blob
image for a box image. You can even adjust the sprite names to reflect the squareness of
your boxes.

This time around, we’ll treat the player like a rectangle. Instead of radii, we need to
check if there are gaps between the player rectangle and either box. We call this axis-
aligned bounding box collision detection (or AABB for short).

http://codepen.io/assertchris/pen/qaokJj

Chapter 4 ■ Collision DeteCtion

20

If there is no gap, and the player wants to move in the direction of the box, then we
prevent that from happening:

let move = true

state.objects.forEach((object) => {
 if (object === this) {
 return
 }

 if (this.x < object.x + object.w &&
 this.x + this.w > object.x &&
 this.y < object.y + object.h &&
 this.y + this.h > object.y) {

 if (this.velocityX < 0 && object.x <= this.x) {
 move = false
 }

 if (this.velocityX > 0 && object.x >= this.x) {
 move = false
 }
 }
})

if (move) {
 this.x += this.velocityX
}

This is from http://codepen.io/assertchris/pen/qaokJj

These are simple methods for detecting collisions, but there are others. There’s one
that uses projection-based vector mathematics (www.sevenson.com.au/actionscript/
sat) to determine overlap. There’s another that checks each line, in a couple of polygons,
to see if any lines intersect (http://stackoverflow.com/questions/9043805/test-if-
two-lines-intersect-javascript-function). It’s crazy.

You can even experiment with groups of circles colliding together. That might be fun.
In Figure 4-1, I’m going to run this little character into these little boxes for a bit…

http://codepen.io/assertchris/pen/qaokJj
www.sevenson.com.au/actionscript/sat
www.sevenson.com.au/actionscript/sat
http://stackoverflow.com/questions/9043805/test-if-two-lines-intersect-javascript-function
http://stackoverflow.com/questions/9043805/test-if-two-lines-intersect-javascript-function

Chapter 4 ■ Collision DeteCtion

21

Summary
In this chapter, we looked at a couple methods we can use to detect collisions between
player spites and various other objects in the game.

Take some time to rearrange the boxes and blobs so you can get a feel for how your
first game level might look.

Figure 4-1. Players and boxes

23© Christopher Pitt 2016
C. Pitt, Making Games, DOI 10.1007/978-1-4842-2493-9_5

CHAPTER 5

Gravity

In this chapter, we’re going to work on our code structure and add gravity to our game.
We’ve already done most of the work for gravity, so it should be relatively straightforward
to finish it up.

Cleaning up our existing code
We need to clean up a few things! First, let’s swap out x, y, w, and h (both in Box and Player)
with PIXI.Rectangle. They have these properties, but they also interact with the rest of
PIXI in interesting ways.

class Player {
 constructor(sprite, rectangle) {
 this.sprite = sprite
 this.rectangle = rectangle

 this.velocityX = 0
 this.maximumVelocityX = 8
 this.accelerationX = 2
 this.frictionX = 0.9
 }

 animate(state) {
 if (state.keys[37]) { // left
 this.velocityX = Math.max(
 this.velocityX - this.accelerationX,
 this.maximumVelocityX * -1,
)
 }

 if (state.keys[39]) { // right
 this.velocityX = Math.min(
 this.velocityX + this.accelerationX,
 this.maximumVelocityX,
);
 }

Chapter 5 ■ Gravity

24

 this.velocityX *= this.frictionX

 let move = true

 state.objects.forEach((object) => {
 if (object === this) {
 return
 }

 const me = this.rectangle
 const you = object.rectangle

 if (me.x < you.x + you.width &&
 me.x + me.width > you.x &&
 me.y < you.y + you.height &&
 me.y + me.height > you.y) {

 if (this.velocityX < 0 && you.x <= me.x) {
 move = false
 }

 if (this.velocityX > 0 && you.x >= me.x) {
 move = false
 }
 }
 })

 if (move) {
 this.rectangle.x += this.velocityX
 }

 this.sprite.x = this.rectangle.x
 this.sprite.y = this.rectangle.y
 }
}

class Box {
 constructor(sprite, rectangle) {
 this.sprite = sprite
 this.rectangle = rectangle
 }

 animate(state) {
 this.sprite.x = this.rectangle.x
 this.sprite.y = this.rectangle.y
 }
}

This is from http://codepen.io/assertchris/pen/ALyXKq.

www.allitebooks.com

http://codepen.io/assertchris/pen/ALyXKq
http://www.allitebooks.org

Chapter 5 ■ Gravity

25

Notice how much code we can delete? The comparisons get a little verbose, but
they’re nothing a local variable or two can’t fix. I also realized that we can move the initial
x and y set operations to animate.

Next, I want to encapsulate the event, renderer, and stage logic into a Game class:

class Game {
 constructor() {
 this.state = {
 "keys": {},
 "clicks": {},
 "mouse": {},
 "objects": [],
 }

 this.animate = this.animate.bind(this)
 }

 get stage() {
 if (!this._stage) {
 this._stage = this.newStage()
 }

 return this._stage
 }

 set stage(stage) {
 this._stage = stage
 }

 newStage() {
 return new PIXI.Container()
 }

 get renderer() {
 if (!this._renderer) {
 this._renderer = this.newRenderer()
 }

 return this._renderer
 }

 set renderer(renderer) {
 this._renderer = renderer
 }

Chapter 5 ■ Gravity

26

 newRenderer() {
 return new PIXI.autoDetectRenderer(
 window.innerWidth,
 window.innerHeight,
 this.newRendererOptions(),
)
 }

 newRendererOptions() {
 return {
 "antialias": true,
 "autoResize": true,
 "transparent": true,
 "resolution": 2,
 }
 }

 animate() {
 requestAnimationFrame(this.animate)

 this.state.renderer = this.renderer
 this.state.stage = this.stage

 this.state.objects.forEach((object) => {
 console.log(object)
 object.animate(this.state)
 })

 this.renderer.render(this.stage)
 }

 addEventListenerTo(element) {
 element.addEventListener("keydown", (event) => {
 this.state.keys[event.keyCode] = true
 })

 element.addEventListener("keyup", (event) => {
 this.state.keys[event.keyCode] = false
 })

 element.addEventListener("mousedown", (event) => {
 this.state.clicks[event.which] = {
 "clientX": event.clientX,
 "clientY": event.clientY,
 }
 })

Chapter 5 ■ Gravity

27

 element.addEventListener("mouseup", (event) => {
 this.state.clicks[event.which] = false
 })

 element.addEventListener("mousemove", (event) => {
 this.state.mouse.clientX = event.clientX
 this.state.mouse.clientY = event.clientY
 })
 }

 addRendererTo(element) {
 element.appendChild(this.renderer.view)
 }

 addObject(object) {
 this.state.objects.push(object)
 this.stage.addChild(object.sprite)
 }
}

This is from http://codepen.io/assertchris/pen/ALyXKq.

Notice the class getters and setters. They’re useful for filling optional dependencies
as needed. We can override renderer and stage if we need to, but they have sensible
defaults too.

The only notable difference here is that we no longer require sprites to be added to
the stage separately from adding objects to the state.

I'm in two minds about this. On the one hand, what’s going on is much clearer if we
add the sprites to the stage by hand. On the other, will we be adding sprites (joined to
objects) without adding the objects? I don’t think so.

Perhaps we’ll come back and change that later. For now, it makes things a little
cleaner. Let’s add the sprites we had before:

const game = new Game()

game.addObject(
 new Box(
 new PIXI.Sprite.fromImage(
 "path/to/sprites/box.png",
),
 new PIXI.Rectangle(
 (window.innerWidth / 2) - 150,
 (window.innerHeight / 2) - 35,
 44,
 44,
),
),
)

http://codepen.io/assertchris/pen/ALyXKq

Chapter 5 ■ Gravity

28

game.addObject(
 new Box(
 new PIXI.Sprite.fromImage(
 "path/to/sprites/box.png",
),
 new PIXI.Rectangle(
 (window.innerWidth / 2) + 150,
 (window.innerHeight / 2) + 35,
 44,
 44,
),
),
)

game.addObject(
 new Player(
 new PIXI.Sprite.fromImage(
 "path/to/sprites/player-idle.png",
),
 new PIXI.Rectangle(
 window.innerWidth / 2,
 window.innerHeight / 2,
 44,
 56,
),
),
)

game.addEventListenerTo(window)
game.addRendererTo(document.body)
game.animate()

This is from http://codepen.io/assertchris/pen/ALyXKq.

That looks much better! We now have enough control to set starting points for each
game object. But you’ll see that after the first frame, the animate methods take over.
Things like gravity and collisions will start to control how the game progresses. It was
always going to be like that, however, so this file now feels like it too.

At this point, we could confine the events and renderer to a smaller set of elements.
We could also add any number of objects to the game from here. Everything else game-
related is inside the Game class. Everything else player- or box-related is inside those
classes. It’s neat!

Adding gravity to the world
One of the things that make platform games fun is that a moderate amount of physics is at
play. First, let’s add walls and a floor:

const game = new Game()

http://codepen.io/assertchris/pen/ALyXKq

Chapter 5 ■ Gravity

29

game.addObject(
 new Box(
 new PIXI.extras.TilingSprite.fromImage(
 "path/to/sprites/floor-tile.png",
 window.innerWidth,
 64,
),
 new PIXI.Rectangle(
 0,
 window.innerHeight - 64,
 window.innerWidth,
 64,
),
),
)

game.addObject(
 new Box(
 new PIXI.Sprite.fromImage(
 "path/to/sprites/box.png",
),
 new PIXI.Rectangle(
 0 + 32,
 window.innerHeight - 44 - 64,
 44,
 44,
),
),
)

game.addObject(
 new Box(
 new PIXI.Sprite.fromImage(
 "path/to/sprites/box.png",
),
 new PIXI.Rectangle(
 window.innerWidth - 32 - 44,
 window.innerHeight - 44 - 64,
 44,
 44,
),
),
)

Chapter 5 ■ Gravity

30

game.addObject(
 new Player(
 new PIXI.Sprite.fromImage(
 "path/to/sprites/player-idle.png",
),
 new PIXI.Rectangle(
 window.innerWidth / 2,
 window.innerHeight / 2,
 44,
 56,
),
),
)

This is from http://codepen.io/assertchris/pen/ALyXKq.

Here, we’ve added a floor as wide as the whole scene. I’ve used a tiling texture and
new PIXI.extras.TilingSprite.fromImage to render it on in the scene. I’ve also moved
the two crates to block the player from running off the edge of the floor. They collide in
the same way as before. Now, let’s see about adding that gravity:

class Player {
 constructor(sprite, rectangle) {
 this.sprite = sprite
 this.rectangle = rectangle

 this.velocityX = 0
 this.maximumVelocityX = 8
 this.accelerationX = 2
 this.frictionX = 0.9

 this.velocityY = 0
 this.maximumVelocityY = 30
 this.accelerationY = 3
 this.jumpVelocity = -30

 this.isOnGround = false
 }

 animate(state) {
 if (state.keys[37]) { // left
 this.velocityX = Math.max(
 this.velocityX - this.accelerationX,
 this.maximumVelocityX * -1,
)
 }

http://codepen.io/assertchris/pen/ALyXKq

Chapter 5 ■ Gravity

31

 if (state.keys[39]) { // right
 this.velocityX = Math.min(
 this.velocityX + this.accelerationX,
 this.maximumVelocityX,
)
 }

 this.velocityX *= this.frictionX

 this.velocityY = Math.min(
 this.velocityY + this.accelerationY,
 this.maximumVelocityY,
)

 state.objects.forEach((object) => {
 if (object === this) {
 return
 }

 var me = this.rectangle
 var you = object.rectangle

 if (me.x < you.x + you.width &&
 me.x + me.width > you.x &&
 me.y < you.y + you.height &&
 me.y + me.height > you.y) {

 if (this.velocityY > 0 && you.y >= me.y) {
 this.velocityY = 0
 return
 }

 if (this.velocityY < 0 && you.y <= me.y) {
 this.velocityY = this.accelerationY
 return
 }

 if (this.velocityX < 0 && you.x <= me.x) {
 this.velocityX = 0
 return
 }

 if (this.velocityX > 0 && you.x >= me.x) {
 this.velocityX = 0
 return
 }
 }
 })

Chapter 5 ■ Gravity

32

 this.rectangle.x += this.velocityX
 this.rectangle.y += this.velocityY

 this.sprite.x = this.rectangle.x
 this.sprite.y = this.rectangle.y
 }
}

This is from http://codepen.io/assertchris/pen/ALyXKq.

We begin by creating a set of properties to match the ones we made to track
horizontal movement. We don’t need vertical friction since that level of detail is often
omitted from platform games.

We also have to track vertical and horizontal collisions. When the collision is with
the player and a platform/floor, then we stop the downward velocity. When it’s against a
ceiling, we replace upward velocity with the force of gravity.

Allowing players to jump
Jumping is simply reversing gravity for a short time:

animate(state) {
 if (state.keys[37]) { // left
 this.velocityX = Math.max(
 this.velocityX - this.accelerationX,
 this.maximumVelocityX * -1,
)
 }

 if (state.keys[39]) { // right
 this.velocityX = Math.min(
 this.velocityX + this.accelerationX,
 this.maximumVelocityX,
)
 }

 this.velocityX *= this.frictionX

 this.velocityY = Math.min(
 this.velocityY + this.accelerationY,
 this.maximumVelocityY,
)

 state.objects.forEach((object) => {
 if (object === this) {
 return
 }

http://codepen.io/assertchris/pen/ALyXKq

Chapter 5 ■ Gravity

33

 var me = this.rectangle
 var you = object.rectangle

 // ...snip

 if (state.keys[32] && this.isOnGround) {
 this.velocityY = this.jumpVelocity
 this.isOnGround = false
 }

 this.rectangle.x += this.velocityX
 this.rectangle.y += this.velocityY

 this.sprite.x = this.rectangle.x
 this.sprite.y = this.rectangle.y
}

This is from http://codepen.io/assertchris/pen/ALyXKq.

With this code, we’ve mapped the space key to jump. We add the keyboard check
after the collision check because we only want our player to jump if they are standing on a
platform or floor.

Now it' possible to create levels out of boxes, to give some of them visible textures,
and to jump around them. Spend some time making a level and jumping around in it!

Figure 5-1. Adding gravity

http://codepen.io/assertchris/pen/ALyXKq

Chapter 5 ■ Gravity

34

Summary
In this chapter, we cleaned up the game code. Each part is now self-contained—from
the box to the player to the game itself. That will make it easier for the individual game
objects to manage themselves.

We also created a floor and basic walls (out of crates) so that the player won’t fall
out of the world. Finally, we added the ability for the player to jump. It’s now possible to
construct a traversable level!

35© Christopher Pitt 2016
C. Pitt, Making Games, DOI 10.1007/978-1-4842-2493-9_6

CHAPTER 6

Ladders

It would be pretty limiting if players could only move upward by jumping through gaps, or
by jumping on boxes. Those aren’t the only options, though. We still have to learn about
elevators, stairs, and ladders. Let’s start by building a ladder!

Creating our first ladder
Let’s begin our ladder by copying the Box class:

class Ladder {
 constructor(sprite, rectangle) {
 this.sprite = sprite
 this.rectangle = rectangle
 }

 animate(state) {
 this.sprite.x = this.rectangle.x
 this.sprite.y = this.rectangle.y
 }
}

// ...later

game.addObject(
 new Box(
 new PIXI.Sprite.fromImage(
 "path/to/sprites/platform.png",
),
 new PIXI.Rectangle(
 window.innerWidth - 400,
 window.innerHeight - 64 - 200,
 256,
 64,
),
),
)

Chapter 6 ■ Ladders

36

game.addObject(
 new Ladder(
 new PIXI.extras.TilingSprite.fromImage(
 "path/to/sprites/ladder.png",
 44,
 200,
),
 new PIXI.Rectangle(
 window.innerWidth - 250,
 window.innerHeight - 64 - 200,
 44,
 200,
),
),
)

This is from http://codepen.io/assertchris/pen/jrzrPw.

You’ll need to make ladder.png and platform.png images. Be sure to add these to
the game before adding the player, or the ladder sprites will be in front of the player sprite.

You’ll notice that the player bumps into the ladder as if it were a box. We’ll need
to add a few getters to our boxes and ladders so that the collision detection can decide
whether they still collide with each other:

state.objects.forEach((object) => {
 if (object === this) {
 return
 }

 const me = this.rectangle
 const you = object.rectangle
 const collides = object.collides

 if (me.x < you.x + you.width &&
 me.x + me.width > you.x &&
 me.y < you.y + you.height &&
 me.y + me.height > you.y) {

 if (collides && this.velocityY > 0 && you.y >= me.y) {
 this.isOnGround = true
 this.velocityY = 0
 return
 }

 if (collides && this.velocityY < 0 && you.y <= me.y) {
 this.velocityY = this.accelerationY
 return
 }

http://codepen.io/assertchris/pen/jrzrPw

Chapter 6 ■ Ladders

37

 if (collides && this.velocityX < 0 && you.x <= me.x) {
 this.velocityX = 0
 return
 }

 if (collides && this.velocityX > 0 && you.x >= me.x) {
 this.velocityX = 0
 return
 }
 }
})

This is from http://codepen.io/assertchris/pen/jrzrPw.

We give Box and Ladder a collides property so that Player.animate can ignore
collisions with objects that players shouldn’t collide with. If we were going to allow
multiple players in the same game/level, then we would also add a collides property to
Player. That is, unless we wanted multiple players to collide with each other.

Figure 6-1. Platforms and ladders

Allowing players to climb ladders
In order for players to be able to climb ladders, we have to be able to tell if they're trying to
climb one. We also then have to suspend gravity and side motion so they don’t fall off or
slide off:

class Player {
 constructor(sprite, rectangle) {

http://codepen.io/assertchris/pen/jrzrPw

Chapter 6 ■ Ladders

38

 this.sprite = sprite
 this.rectangle = rectangle

 this.velocityX = 0
 this.maximumVelocityX = 8
 this.accelerationX = 2
 this.frictionX = 0.9

 this.velocityY = 0
 this.maximumVelocityY = 30
 this.accelerationY = 3
 this.jumpVelocity = -30

 this.climbingSpeed = 10

 this.isOnGround = false
 this.isOnLadder = false
 }

 animate(state) {
 if (state.keys[37]) { // left
 this.velocityX = Math.max(
 this.velocityX - this.accelerationX,
 this.maximumVelocityX * -1,
)
 }

 if (state.keys[39]) { // right
 this.velocityX = Math.min(
 this.velocityX + this.accelerationX,
 this.maximumVelocityX,
)
 }

 this.velocityX *= this.frictionX

 this.velocityY = Math.min(
 this.velocityY + this.accelerationY,
 this.maximumVelocityY,
)

 state.objects.forEach((object) => {
 if (object === this) {
 return
 }

 const me = this.rectangle
 const you = object.rectangle

Chapter 6 ■ Ladders

39

 const collides = object.collides

 if (me.x < you.x + you.width &&
 me.x + me.width > you.x &&
 me.y < you.y + you.height &&
 me.y + me.height > you.y) {

 if (object.constructor.name === "Ladder") {
 if (state.keys[38] || state.keys[40]) {
 this.isOnLadder = true
 this.isOnGround = false
 this.velocityY = 0
 this.velocityX = 0
 }

 if (state.keys[38]) {
 this.rectangle.y -= this.climbingSpeed
 }

 if (state.keys[40] &&
 me.y + me.height < you.y + you.height) {
 this.rectangle.y += this.climbingSpeed
 }
 }

 // ...snip

 }
 })

 if (state.keys[32] && this.isOnGround) {
 this.velocityY = this.jumpVelocity
 this.isOnGround = false
 }

 this.rectangle.x += this.velocityX

 if (!this.isOnLadder) {
 this.rectangle.y += this.velocityY
 }

 this.sprite.x = this.rectangle.x
 this.sprite.y = this.rectangle.y
 }
}

This is from http://codepen.io/assertchris/pen/jrzrPw.

http://codepen.io/assertchris/pen/jrzrPw

Chapter 6 ■ Ladders

40

In this code, we create an isOnLadder variable so we can tell if the player is standing
still on a ladder. During the usual collision detection, we note whether the object the
player is colliding with is a ladder or not. If so, and they are pressing the up arrow, we start
them climbing. isOnLadder is only set if they are pressing the up arrow, which is why we
need that variable to begin with.

We then reset player velocity and the properties related to jumping. We also directly
alter the player rectangle. If the up arrow is being pressed, we move the player up.

Summary
In this chapter, we added ladders and stationary platforms. Our players can now jump
and climb ladders to navigate levels. These are two essential elements of 2D platform
games.

You should know what you’d like your game to look like at this point. I’ve invested in
a great sprite pack. You can find others at Graphic River (https://graphicriver.net).

https://graphicriver.net/

41© Christopher Pitt 2016
C. Pitt, Making Games, DOI 10.1007/978-1-4842-2493-9_7

CHAPTER 7

Stairs

We’ve implemented jumping and climbing as the main ways to traverse a level vertically.
These actions are great, but they limit level design to consist of platforms and ladders.
Let’s expand our design options by implementing stairs (or the similar action of walking
up slopes).

We’ll need to create even more sprite artwork for this part and build more complex
boxes composed of multiple sprite types. Let me show you what I mean....

Building a slope
I’ve gone ahead and created new slope sprites. We also need to add a couple of new
object types: decals and slopes. Decals are going to be a noncolliding type, whereas
slopes are going to be identifiable by the player’s collision detection algorithm:

class LeftSlope {
 get collides() {
 return false
 }

 constructor(sprite, rectangle) {
 this.sprite = sprite
 this.rectangle = rectangle
 }

 animate(state) {
 this.sprite.x = this.rectangle.x
 this.sprite.y = this.rectangle.y
 }
}

class RightSlope {
 get collides() {
 return false
 }

Chapter 7 ■ StairS

42

 constructor(sprite, rectangle) {
 this.sprite = sprite
 this.rectangle = rectangle
 }

 animate(state) {
 this.sprite.x = this.rectangle.x
 this.sprite.y = this.rectangle.y
 }
}

class Decal {
 get collides() {
 return false
 }

 constructor(sprite, rectangle) {
 this.sprite = sprite
 this.rectangle = rectangle
 }

 animate(state) {
 this.sprite.x = this.rectangle.x
 this.sprite.y = this.rectangle.y
 }
}

// ...later

game.addObject(
 new LeftSlope(
 new PIXI.Sprite.fromImage(
 "path/to/sprites/slope-left.png",
),
 new PIXI.Rectangle(
 0 + 250,
 window.innerHeight - 64 - 64 + 1,
 64,
 64,
),
),
)

game.addObject(
 new RightSlope(
 new PIXI.Sprite.fromImage(
 "path/to/sprites/slope-right.png",
),

Chapter 7 ■ StairS

43

 new PIXI.Rectangle(
 0 + 250 + 64 + 128,
 window.innerHeight - 64 - 64 + 1,
 64,
 64,
),
),
)

game.addObject(
 new Decal(
 new PIXI.Sprite.fromImage(
 "path/to/sprites/hill-base.png",
),
 new PIXI.Rectangle(
 0 + 250,
 window.innerHeight - 64 + 1,
 128,
 64,
),
),
)

game.addObject(
 new Box(
 new PIXI.Sprite.fromImage(
 "path/to/sprites/hill-top.png",
),
 new PIXI.Rectangle(
 0 + 250 + 64,
 window.innerHeight - 64 - 64 + 1,
 128,
 64,
),
),
)

This is from http://codepen.io/assertchris/pen/dpmOEJ.

We need to add these objects after the floor, or the floor will obscure them. Together,
they create a pleasing little hill. We can jump on top of it, but things start to get hairy
when we try to climb up or down these objects. Still, it looks good, as you can see in
Figure 7-1:

http://codepen.io/assertchris/pen/dpmOEJ

Chapter 7 ■ StairS

44

Walking up slopes
To get our player moving up slopes, we need to once again adjust the collision detection
algorithm:

if (me.x < you.x + you.width &&
 me.x + me.width > you.x &&
 me.y < you.y + you.height &&
 me.y + me.height > you.y) {

 if (object.constructor.name === "LeftSlope") {
 const meCenter = Math.round(me.x + (me.width / 2))
 const youRight = you.x + you.width
 const youBottom = you.y + you.height
 const highest = you.y - me.height
 const lowest = youBottom - me.height

 this.isOnGround = true
 this.isOnSlope = true

 me.y = lowest - (meCenter - you.x)
 me.y = Math.max(me.y, highest)
 me.y = Math.min(me.y, lowest)

 if (me.y >= lowest || me.y <= highest) {

Figure 7-1. A Little hill

www.allitebooks.com

http://www.allitebooks.org

Chapter 7 ■ StairS

45

 this.isOnSlope = false
 }

 return
 }

 if (object.constructor.name === "RightSlope") {
 const meCenter = Math.round(me.x + (me.width / 2))
 const youBottom = you.y + you.height
 const highest = you.y - me.height
 const lowest = youBottom - me.height

 this.isOnGround = true
 this.isOnSlope = true

 me.y = highest + (meCenter - you.x)
 me.y = Math.max(me.y, highest)
 me.y = Math.min(me.y, lowest)

 if (me.y >= lowest || me.y <= highest) {
 this.isOnSlope = false
 }

 return
 }

 if (collides && this.velocityY > 0 && you.y >= me.y) {
 this.isOnGround = true
 this.velocityY = 0
 return
 }

 // ...remaining collision detection code
}

if (state.keys[32] && this.isOnGround) {
 this.velocityY = this.jumpVelocity
 this.isOnGround = false
 this.isOnSlope = false
}

This is from http://codepen.io/assertchris/pen/dpmOEJ.

If the player collides with the LeftSlope, we don’t collide as we did with boxes.
Instead, we decrease the player’s y coordinate (which moves the player sprite upward)
by however far to the right of the slope the player is. In other words, as the player’s x
increases, their top decreases.

http://codepen.io/assertchris/pen/dpmOEJ

Chapter 7 ■ StairS

46

For the RightSlope, we just swap the x and y relationship, moving the player down
as their x increases. We also want the player to be able to jump up the slope, so we need to
set isOnGround to true.

Finally, if the player’s bottom edge is the same (or less) than the slope’s top edge, we
set isOnSlope to false, so that the player will move correctly on the horizontal axis.

Staying above the floor
If you’ve been following along with the code, you’ve probably noticed a strange visual
bug. It seems the player can fall partway through the floor before the collision detection
stops them.

We can get around this bug by resetting the y player coordinates for the appropriate
collision:

if (collides && this.velocityY > 0 && you.y >= me.y) {
 me.y = you.y - me.height + 1
 this.isOnGround = true
 this.velocityY = 0
 return
}

if (collides && this.velocityY < 0 && you.y <= me.y) {
 this.velocityY = this.accelerationY
 return
}

if (collides && this.velocityX < 0 && you.x <= me.x) {
 this.velocityX = 0
 return
}

if (collides && this.velocityX > 0 && you.x >= me.x) {
 this.velocityX = 0
 return
}

This is from http://codepen.io/assertchris/pen/dpmOEJ.

Now, when the player bumps up against something, it’ll be pushed just outside
again. This will stop the player from sinking into the floor.

Summary
In this chapter, we learned how to make slopes the player can walk up (without needing
to jump). These concepts translate to the implementation of stairs in an old castle.

Try creating stairs of your own. Perhaps your stairs will be steeper or shallower than
mine, and you’ll need to adjust the rate at which your player ascends or descends.

47© Christopher Pitt 2016
C. Pitt, Making Games, DOI 10.1007/978-1-4842-2493-9_8

CHAPTER 8

Camera Locking

So far, we’ve limited the levels to the size of our browser window. That’s okay for a proof of
concept, but real levels require more space than we’re currently able to give.

I’ve got a couple things planned to overcome this limitation. First we’re going to
lock the camera to the player so that it moves as the player moves. Then we’re going to
increase the size of the level so that it can be any size we need.

Wrapping with a camera
PixiJS doesn’t support any kind of free-moving camera through which to render the
scene, but we don’t need one. Instead of moving the renderer or scene, we can wrap it in
an HTML element and move that. We’ll need to change how we embed the game:

<div class="camera"></div>
<div class="focus-target">click to focus</div>

.camera, .focus-target {
 width: 100%;
 height: 100%;
 position: absolute;
 top: 0;
 left: 0;
}

.focus-target {
 padding: 25px;
 text-align: center;
}

game.addEventListenerTo(window)
game.addRendererTo(document.querySelector(".camera"))
game.animate()

These are from http://codepen.io/assertchris/pen/WGzkym.

http://codepen.io/assertchris/pen/WGzkym

Chapter 8 ■ Camera LoCking

48

We begin by creating a camera that takes up the entire screen space. Then, instead
of appending the scene to document.body, we append it to .camera instead. This gives us
the ability to transform .camera in interesting ways:

animate() {
 requestAnimationFrame(this.animate)

 this.state.renderer = this.renderer
 this.state.stage = this.stage

 this.state.objects.forEach((object) => {
 object.animate(this.state)
 })

 if (this.player) {
 const offsetLeft = Math.round(
 this.player.rectangle.x - (window.innerWidth / 2)
) * -1

 const offsetTop = Math.round(
 this.player.rectangle.y - (window.innerHeight / 2)
) * -1

 this.element.style = `
 transform:
 scale(1.2)
 translate(${offsetLeft}px)
 translateY(${offsetTop}px)
 `
 }

 this.renderer.render(this.stage)
}

// ...later

const player = new Player(
 new PIXI.Sprite.fromImage(
 "path/to/sprites/player-idle.png",
),
 new PIXI.Rectangle(
 Math.round(window.innerWidth / 2),
 Math.round(window.innerHeight / 2),
 44,
 56,
),
)

Chapter 8 ■ Camera LoCking

49

game.addObject(player)
game.player = player

This is from http://codepen.io/assertchris/pen/WGzkym.

We need to create the player object slightly differently. Instead of adding it directly to
game, we declare it as a constant. We still add it to game, but we also assign it as a property.

This means we can reference it inside Game.animate. We get the x and y coordinates
of the player, and then subtract half the screen innerWidth and innerHeight so that the
player will be roughly in the center of the screen.

Then we use CSS transformations to move .camera left and up by the amounts we
just calculated. We can also scale the camera up a little, so things look slightly zoomed
in (see Figure 8-1). As this code is in Game.animate, it will update every time the player is
rendered, which means it will move as the player moves.

Growing levels
This leads to an interesting discovery. When the player is standing on top of my platform
and then jumps, they go through the top of the rendered scene (and disappear). This is
due to the fixed height of the scene (which is the same as the window height).

To fix this, we need to change how we define the game’s dimensions and how we
place objects inside it:

constructor(w, h) {
 this.w = w
 this.h = h

Figure 8-1. Zoomed and locked

http://codepen.io/assertchris/pen/WGzkym

Chapter 8 ■ Camera LoCking

50

 this.state = {
 "keys": {},
 "clicks": {},
 "mouse": {},
 "objects": [],
 }

 this.animate = this.animate.bind(this)
}

newRenderer() {
 return new PIXI.autoDetectRenderer(
 this.w, this.h, this.newRendererOptions(),
)
}

// ...later

const width = window.innerWidth
const height = window.innerHeight + 200

const game = new Game(
 width,
 height,
)

game.addObject(
 new Box(
 new PIXI.extras.TilingSprite.fromImage(
 "path/to/sprites/floor-tile.png",
 width,
 64,
),
 new PIXI.Rectangle(
 0,
 height - 64,
 width,
 64,
),
),
)
// ...remaining object definitions

This is from http://codepen.io/assertchris/pen/WGzkym.

We change the Game to accept width and height constructor parameters. Then,
instead of using window.innerWidth and window.innerHeight everywhere, we use the
same width and height we provide to game.

http://codepen.io/assertchris/pen/WGzkym

Chapter 8 ■ Camera LoCking

51

Until now, we’ve added our game objects relative to the screen edges. This allows
us to change the width and height quite easily, without have to reposition all our game
objects. Now we need to replace all instances of the previous (global) widths and heights
with the width and height constants.

The only place we don’t remove the global references is in the camera locking code
we just added. These need to be relative to the window (not the entire level size), so they
can stay as they are.

Summary
In this chapter, we learned how to expand our levels beyond the confines of the window.
Now that we can lock the camera to the player, we can create sprawling labyrinths and
awe-inspiring castles.

Take some time to consider how you’d improve the background and borders of each
level so they’re not as empty as mine are. Perhaps you might want to create animated
backgrounds that express the tone and location of each level.

53© Christopher Pitt 2016
C. Pitt, Making Games, DOI 10.1007/978-1-4842-2493-9_9

CHAPTER 9

Projectiles

Our game is full of keyboard control, but what about the mouse? This chapter is all about
projectiles; how to fire them and how they move.

In this chapter, we’re going to add a few new, popular keyboard controls (WASD),
and mouse aiming and shooting. Along the way we’ll add a custom crosshair. This is
going to be fun....

Custom crosshairs
Before we can display custom crosshairs, we need a way to disable the default mouse
cursor. Fortunately for us, CSS already includes this mechanism:

body {
 background: url("path/to/sprites/background.png");
 color: grey;
 font-family: helvetica, arial;
 font-size: 20px;
 cursor: none;
}

This is from http://codepen.io/assertchris/pen/YGaYvy.

Just by adding cursor: none to body, we can hide the default cursor from the game
screen. Then, let’s add the crosshair as a new decal:

const crosshair = new Decal(
 new PIXI.Sprite.fromImage(
 "path/to/sprites/crosshair.png",
),
 new PIXI.Rectangle(
 0, 0, 18, 18,
),
)

http://codepen.io/assertchris/pen/YGaYvy

Chapter 9 ■ projeCtiles

54

game.addObject(crosshair)
game.crosshair = crosshair

This is from http://codepen.io/assertchris/pen/YGaYvy.

The crosshair can now be seen at the top left (zoom out in your browser window) of
the game screen. That’s not where we want it, though. What we really want is for it to be in
proximity to the player, but at an angle directly between the center of the player and the
mouse cursor.

Let’s capture the cursor position and calculate the angle between the mouse cursor
and the player:

element.addEventListener("mousemove", (event) => {
 this.state.mouse.clientX = event.clientX
 this.state.mouse.clientY = event.clientY

 const rect = this.player.rectangle

 const centerX = (window.innerWidth / 2) + (rect.width / 2)
 const centerY = (window.innerHeight / 2) + (rect.height / 2)

 const deltaX = event.clientX - centerX
 const deltaY = centerY - event.clientY

 this.state.angle = Math.atan2(deltaY, deltaX)
})

This code is from http://codepen.io/assertchris/pen/YGaYvy.

This code is a little tricky to read, but all it’s doing is getting the width and height of a
triangle between the mouse cursor and the player. We get the angle from that triangle and
store it in the game state. The cursor is going to use this (once we replace cursor = new
Decal with cursor = new Cursor):

class Ladder extends Box {
 get collides() {
 return false
 }
}

class LeftSlope extends Box {
 get collides() {
 return false
 }
}

http://codepen.io/assertchris/pen/YGaYvy
http://codepen.io/assertchris/pen/YGaYvy

Chapter 9 ■ projeCtiles

55

class RightSlope extends Box {
 get collides() {
 return false
 }
}

class Decal extends Box {
 get collides() {
 return false
 }
}

class Crosshair extends Decal {
 animate(state) {
 const rect = state.player.rectangle

 const centerX = rect.x + (rect.width / 2)
 const centerY = rect.y + (rect.height / 2)
 const radius = 70

 const targetX = centerX + Math.cos(state.angle) * radius
 const targetY = centerY - Math.sin(state.angle) * radius

 this.sprite.x = targetX
 this.sprite.y = targetY
 }
}

This code is from http://codepen.io/assertchris/pen/YGaYvy.

Before we dive into the Crosshair.animate method, notice how I’ve shortened
the definitions of Ladder, LeftSlope, RightSlope, and Decal? We can use the extends
keyword to inherit the behavior of Box.

 ■ Note inheritance doesn’t always lead to good code architecture, but in this simple
case, it works well for us.

Using the angle we calculated (in the mousemove event listener), we calculate the
point where the crosshair needs to be rendered (see Figure 9-1).

http://codepen.io/assertchris/pen/YGaYvy

Chapter 9 ■ projeCtiles

56

Custom keys
Until now, we’ve been moving the player with the arrow keys. That’s okay if we only
need to use the keyboard, but we’ve just added mouse aim. Let’s add the popular WASD
movement keys to Player.animate:

animate(state) {
 if (state.keys[37] || state.keys[65]) { // left
 this.velocityX = Math.max(
 this.velocityX - this.accelerationX,
 this.maximumVelocityX * -1,
)
 }

 if (state.keys[39] || state.keys[68]) { // right
 this.velocityX = Math.min(
 this.velocityX + this.accelerationX,
 this.maximumVelocityX,
)
 }

 // ...velocity calculations

Figure 9-1. Fixed crosshair

Chapter 9 ■ projeCtiles

57

 state.objects.forEach((object) => {
 if (object === this) {
 return
 }

 const me = this.rectangle
 const you = object.rectangle
 const collides = object.collides

 if (me.x < you.x + you.width &&
 me.x + me.width > you.x &&
 me.y < you.y + you.height &&
 me.y + me.height > you.y) {

 if (object.constructor.name === "Ladder") {
 if (state.keys[38] || state.keys[40] ||
 state.keys[87] || state.keys[83]) {
 this.isOnLadder = true
 this.isOnGround = false
 this.velocityY = 0
 this.velocityX = 0
 }

 if (state.keys[38] || state.keys[87]) {
 this.rectangle.y -= this.climbingSpeed
 }

 if (state.keys[40] || state.keys[83] &&
 me.y + me.height < you.y + you.height) {
 this.rectangle.y += this.climbingSpeed
 }

 if (me.y <= you.x - me.height) {
 this.isOnLadder = false
 }

 return
 }

 // ...remaining collision detection
 }
 })

 // ...remaining calculations
}

This is from http://codepen.io/assertchris/pen/YGaYvy.

Chapter 9 ■ projeCtiles

58

We’ve added state.keys[65] and state.keys[68] as alternative left and right keys.
Then, for moving up and down ladders, we’ve also added state.keys[87] and state.
keys[83].

Shooting
Let’s finish up by adding the ability to shoot in the direction of the crosshair. To do so, we
need to create another type of object:

class Bullet extends Decal {
 animate(state) {
 const rect = state.player.rectangle

 this.x = this.x || rect.x + rect.width
 this.y = this.y || rect.y + (rect.height / 2)

 this.angle = this.angle || state.angle
 this.rotation = this.rotation || state.rotation

 this.radius = this.radius || 0
 this.radius += 15

 const targetX = this.x + Math.cos(this.angle) * this.radius
 const targetY = this.y - Math.sin(this.angle) * this.radius

 this.sprite.x = targetX
 this.sprite.y = targetY
 this.sprite.rotation = this.rotation
 }
}

This is from http://codepen.io/assertchris/pen/YGaYvy.

Bullet animates differently to most of the other object types in that it modifies
its state with each tick. The pattern of this.x = this.x || something is useful for
initializing values once. It’s important that we store things like x, y, angle, and rotation
only when the bullet is fired, or they will continue to change as we move the player or
crosshair.

The radius starts at the front of the player and increases in the direction the
crosshair was when the bullet was fired. We also rotate the bullet sprite to match the same
angle. This requires us to store rotation alongside angle in the mouse event listener. We
also have to create new bullets when the mouse is clicked:

element.addEventListener("mousedown", (event) => {
 this.state.clicks[event.which] = {
 "clientX": event.clientX,
 "clientY": event.clientY,
 }

http://codepen.io/assertchris/pen/YGaYvy

Chapter 9 ■ projeCtiles

59

 if (event.button === 0) { // left click
 const rect = this.player.rectangle

 const bullet = new Bullet(
 new PIXI.Sprite.fromImage(
 "path/to/sprites/bullet.png",
),
 new PIXI.Rectangle(
 rect.x + rect.width, rect.y, 8, 8,
),
)

 this.addObject(bullet)

 setTimeout(() => {
 this.removeObject(bullet)
 }, 250)
 }
})

element.addEventListener("mousemove", (event) => {
 this.state.mouse.clientX = event.clientX
 this.state.mouse.clientY = event.clientY

 const rect = this.player.rectangle

 const centerX = (window.innerWidth / 2) + (rect.width / 2)
 const centerY = (window.innerHeight / 2) + (rect.height / 2)

 const deltaX = event.clientX - centerX
 const deltaY = centerY - event.clientY

 const rotationX = event.clientX - centerX
 const rotationY = event.clientY - centerY

 this.state.angle = Math.atan2(deltaY, deltaX)
 this.state.rotation = Math.atan2(rotationY, rotationX)
})

// ...remaining event listeners

This is from http://codepen.io/assertchris/pen/YGaYvy.

We calculate the rotation similarly to how we calculate the angle, but we flip the
vertical axis. When the player clicks, we create a new bullet (positioned in front of the
player) and add it to the game.

After 250 milliseconds, we want to remove the bullet. This is so that bullets don’t
slow down the animation cycle when they’re no longer required. We need to add the
removeObject method to the Game class:

http://codepen.io/assertchris/pen/YGaYvy

Chapter 9 ■ projeCtiles

60

removeObject(object) {
 this.state.objects = this.state.objects.filter(
 function(next) {
 return next !== object
 }
)

 this.stage.removeChild(object.sprite)
}

This is from http://codepen.io/assertchris/pen/YGaYvy.

We’ll explore more projectile behavior when we create mobs to shoot in the next
chapter.

Summary
In this chapter, we looked at ways to create custom cursors and shoot projectiles. We
discovered a bit of helpful trigonometry to constrain a crosshair to a certain radius
around the player and then to push bullets beyond that.

Experiment with the speed and appearance of your projectiles. Perhaps you’re
building a medieval game, and your projectiles are magical bolts. Think about adding
vertical acceleration so your bullets drop to the ground after some distance.

http://codepen.io/assertchris/pen/YGaYvy

61© Christopher Pitt 2016
C. Pitt, Making Games, DOI 10.1007/978-1-4842-2493-9_10

CHAPTER 10

Mobs

What fun would this game be if the player were to go through it all alone? What we need
now are mindless mobs (or blobs if you prefer) to patrol and/or otherwise complicate the
hero’s path.

Patrolling blobs
In this chapter, we’re going to add patrolling blobs, which means we need another class to
encapsulate their logic:

class Blob extends Box {
 constructor(sprite, rectangle) {
 super(sprite, rectangle)

 this.limit = 200
 this.left = true
 }

 animate(state) {
 if (this.left) {
 this.rectangle.x -= 2
 }

 if (!this.left) {
 this.rectangle.x += 2
 }

 this.limit -= 2

Chapter 10 ■ Mobs

62

 if (this.limit <= 0) {
 this.left = !this.left
 this.limit = 200
 }

 this.sprite.x = this.rectangle.x
 this.sprite.y = this.rectangle.y
 }
}

This is from http://codepen.io/assertchris/pen/XjEExz.

This time we’re setting a couple of properties in the constructor. We still want
the parent constructor applied, so we call super, providing the expected sprite and
rectangle parameters.

Then, in the animate method, we move the blob 2 pixels to the left or right
(depending on whether the blob is moving left or not). Once the blob moves 200 pixels
in the same direction, we turn it around (and reset the 200 pixels for the other direction).

We should dot a few of these around our level:

game.addObject(
 new Blob(
 new PIXI.Sprite.fromImage(
 "path/to/sprites/blob-idle-1.png",
),
 new PIXI.Rectangle(
 width - 450,
 height - 64 - 48,
 48,
 48,
),
),
)

This is from http://codepen.io/assertchris/pen/XjEExz.

This code will place the blob next to the starting position of the player as shown in
Figure 10-1 (at least in my level). It’s fun to watch it move back and forth and even have
the player jump on its head.

http://codepen.io/assertchris/pen/XjEExz
http://codepen.io/assertchris/pen/XjEExz

Chapter 10 ■ Mobs

63

Shooting mobs
In the last chapter, we added the ability for our player to shoot projectiles. Let’s put those
to use by adding some collision detection to the bullets themselves:

class Bullet extends Decal {
 animate(state) {
 const rect = state.player.rectangle

 this.x = this.x || rect.x + rect.width
 this.y = this.y || rect.y + (rect.height / 2)
 this.angle = this.angle || state.angle
 this.rotation = this.rotation || state.rotation
 this.radius = this.radius || 0

 this.radius += 10

 const targetX = this.x + Math.cos(this.angle) * this.radius
 const targetY = this.y - Math.sin(this.angle) * this.radius

 this.rectangle.x = targetX
 this.rectangle.y = targetY

Figure 10-1. Patrolling blob

Chapter 10 ■ Mobs

64

 this.sprite.x = targetX
 this.sprite.y = targetY
 this.sprite.rotation = this.rotation

 state.objects.forEach((object) => {
 if (object === this) {
 return
 }

 const me = this.rectangle
 const you = object.rectangle

 if (me.x < you.x + you.width &&
 me.x + me.width > you.x &&
 me.y < you.y + you.height &&
 me.y + me.height > you.y) {

 if (object.constructor.name === "Blob") {
 state.game.removeObject(object)
 state.game.removeObject(this)
 }
 }
 })
 }
}

This is from http://codepen.io/assertchris/pen/XjEExz.

This collision detection logic is similar to the first pass we did in the Player class. We
don’t need to check for things like slopes or ladders. All we’re interested in is whether the
bullet collides with a blob. If so, we remove both from the game.

 ■ Note I've also slightly decreased the bullet speed. It’s not very realistic to think that a
player can almost catch up to a speeding bullet, but it does feel a bit better this way.

It’s not as elegant as if the blob had steadily decreasing health, but we’ll revisit them
topic in a bit.

Summary
In this chapter, we added a simple kind of mob to the game. We also empowered our
bullets to dispatch these mobs. They’re not the most intelligent (or even durable) mobs,
but they are a start.

This is where you can be really creative. What if you added gravity to the movement
of the mobs? Or made them stationary until the player moved closer? What if they could
shoot back?

http://codepen.io/assertchris/pen/XjEExz

65© Christopher Pitt 2016
C. Pitt, Making Games, DOI 10.1007/978-1-4842-2493-9_11

CHAPTER 11

Health

I've played very few games where the first mistake leads to instant failure. Usually, there’s
quite a lead-up to the final moment of failure. Sonic (https://en.wikipedia.org/wiki/
Sonic_the_Hedgehog) loses his rings, Mario loses his powers.

The goal of this chapter is for us to implement a health system so that the player has
a chance to make mistakes and learn from them.

Taking damage
There is only one way the player can fail (in our game, so far): jumping off the edge of the
level. That’s not a realistic failure condition, however, because well-constructed levels will
be built up in such a way that the player can never reach outside the bounds of the level.

Before we can work out the details of loss of health, we need to introduce another
mechanism to cause the health loss. Here, we’re going to introduce a mechanic that
causes us to lose health (and momentarily lose control) when we come into contact with
a slime.

To start with, we’re going to have to introduce more collision detection logic in
Player.animate:

if (object.constructor.name === "Blob" && !this.invulnerable) {
 if (this.velocityX >= 0) {
 this.velocityX = -10
 } else {
 this.velocityX = 10
 }

 this.velocityY *= -1

 this.invulnerable = true
 this.sprite.alpha = 0.5

 setTimeout(() => {
 this.invulnerable = false
 this.sprite.alpha = 1
 }, 2000)

https://en.wikipedia.org/wiki/Sonic_the_Hedgehog
https://en.wikipedia.org/wiki/Sonic_the_Hedgehog

Chapter 11 ■ health

66

 if (typeof this.onHurt === "function") {
 this.onHurt.apply(this)
 }
}

This is from http://codepen.io/assertchris/pen/qaoyPo.

We previously added collision detection, specific to the Blob, to Bullet.animate.
Now, we’re adding it to Player.animate so that the player will “take damage” when they
come into contact with a Blob.

 ■ Note I've hard-coded a lot of things here and previously. You are free to abstract the
hard-coded values out, but I’ve opted not to do that in every instance to save time and to
keep things simple. For instance, you could remove the alpha logic entirely and provide the
constructor with the invulnerable duration.

Now when the player and the blob connect, the player is thrown up and backward
from the blob. The player also enters an invulnerable state, which means they won’t lose
all health within 2000 milliseconds. Now that we have a way to hurt the player, let’s do
something about it.

Showing health
Notice that bit about onHurt? I didn’t want to hard-code the interface changes that
will display the player’s current health. By invoking a user-provided function, we can
outsource that behavior to the code that creates the player.

It’s tempting to try and fit everything into the PixiJS model, but we’re coding in a web
environment. Instead of rendering the player’s health through our PixiJS renderer and
scene, we’re going to display the health bar using HTML and CSS. And, since we have a
way to tie the internal damage behavior to the external environment (through onHurt),
this shouldn’t be too difficult.

Let’s create the HTML elements required:

<div class="camera"></div>
<div class="hud">
 <div class="heart heart-1"></div>
 <div class="heart heart-2"></div>
 <div class="heart heart-3"></div>
</div>
<div class="focus-target">click to focus</div>

.camera, .hud, .focus-target {
 width: 100%;
 height: 100%;
 position: absolute;
 top: 0;

http://codepen.io/assertchris/pen/qaoyPo

Chapter 11 ■ health

67

 left: 0;
}

.hud {
 .heart {
 width: 32px;
 height: 28px;
 background-image: url("path/to/sprites/heart-red.png");
 position: absolute;
 top: 15px;
 }

 .heart-1 {
 left: 15px;
 }

 .heart-2 {
 left: 57px;
 }

 .heart-3 {
 left: 99px;
 }

 .heart-grey {
 background-image: url("path/to/sprites/heart-grey.png");
 }
}

This is from http://codepen.io/assertchris/pen/qaoyPo.

This mark-up adds three red hearts to the top left of the screen. We’re going to turn
each gray as the player gets hurt:

let hearts = 3

player.onHurt = function() {
 document.querySelector(".heart-" + hearts)
 .className += " heart-grey"

 hearts--

 if (hearts < 1) {
 alert("game over!")
 game.removeObject(player)
 game.removeObject(crosshair)
 }
}

This is from http://codepen.io/assertchris/pen/qaoyPo.

http://codepen.io/assertchris/pen/qaoyPo
http://codepen.io/assertchris/pen/qaoyPo

Chapter 11 ■ health

68

This is a lot simpler than I expected at first. Each time the onHurt function is invoked,
we fetch the element related to the number of hearts we have left, and turn it gray as
shown in Figure 11-1 (thanks to that .heart-grey class we added earlier).

If the player has used up their last heart, we pop up an alert (though this would
probably be better as a stylized “game over” message), and remove the player and
crosshair from the game.

Summary
In this chapter, we added the first legitimate way for players to fail. Now that there’s some
danger, the experience should be more enjoyable.

We also create a way to tie internal events (like the player getting hurt) with external
behavior. You don’t have to kill the player off when they get hurt. You could try teleporting
them back to the start of the level or reducing their abilities. The choice is yours.

Figure 11-1. Taking damage

69© Christopher Pitt 2016
C. Pitt, Making Games, DOI 10.1007/978-1-4842-2493-9_12

CHAPTER 12

Animation

We’re nearing the end of our brief but enjoyable journey. It’s time to start adding some
finishing touches. For instance, our sprites are too stoic. Let’s animate them!

Animating the player
The player sprite is one of the first and most important parts of the entire game. We could
spend ages staring at the little critter, and it would be very boring if we didn’t add a bit of
animation.

Fortunately, PixiJS provides a few tools, to make this process easier. Let’s start using
one of them:

const playerIdleLeftImages = [
 "path/to/sprites/player-idle-1.png",
 "path/to/sprites/player-idle-2.png",
 "path/to/sprites/player-idle-3.png",
 "path/to/sprites/player-idle-4.png",
]

const playerIdleLeftTextures =
 playerIdleLeftImages.map(function(image) {
 return PIXI.Texture.fromImage(image)
 })

const playerIdleLeftSprite =
 new PIXI.MovieClip(playerIdleLeftTextures)

playerIdleLeftSprite.play()
playerIdleLeftSprite.animationSpeed = 0.12

const player = new Player(
 playerIdleLeftSprite,
 new PIXI.Rectangle(
 Math.round(width / 2),
 Math.round(height / 2),

Chapter 12 ■ animation

70

 48,
 56,
),
)

player.idleLeftSprite = playerIdleLeftSprite

This is from http://codepen.io/assertchris/pen/ALyPGw.

We’ve replaced the new PIXI.Sprite.fromImage with new PIXI.MovieClip. We
started by creating an array of images (which any good sprite pack should have) and
creating new PIXI.Texture objects for each.

We need to call play for the animation to start, and adjusting the animation speed
can’t hurt. We’ll see why it’s a good idea to store a reference to the animation, shortly.

 ■ Tip no static image can do this animation justice. Check out the Codepen to see it move!

Swapping animations
We can animate more than just how the player looks standing still. For instance, we can
add animation for walking, jumping, and even for getting hurt. Let’s begin by adding the
running animation. Together, the animation initialization code looks like this:

const playerIdleLeftImages = [
 "path/to/sprites/player-idle-1.png",
 "path/to/sprites/player-idle-2.png",
 "path/to/sprites/player-idle-3.png",
 "path/to/sprites/player-idle-4.png",
]

const playerIdleLeftTextures =
 playerIdleLeftImages.map(function(image) {
 return PIXI.Texture.fromImage(image)
 })

const playerIdleLeftSprite = new PIXI.MovieClip(playerIdleLeftTextures)

playerIdleLeftSprite.play()
playerIdleLeftSprite.animationSpeed = 0.12

const playerRunLeftImages = [
 "path/to/sprites/player-run-1.png",
 "path/to/sprites/player-run-2.png",
 "path/to/sprites/player-run-3.png",
 "path/to/sprites/player-run-4.png",

http://codepen.io/assertchris/pen/ALyPGw

Chapter 12 ■ animation

71

 "path/to/sprites/player-run-5.png",
 "path/to/sprites/player-run-6.png",
 "path/to/sprites/player-run-7.png",
 "path/to/sprites/player-run-8.png",
 "path/to/sprites/player-run-9.png",
 "path/to/sprites/player-run-10.png",
]

const playerRunLeftTextures =
 playerRunLeftImages.map(function(image) {
 return PIXI.Texture.fromImage(image)
 })

const playerRunLeftSprite = new PIXI.MovieClip(playerRunLeftTextures)

playerRunLeftSprite.play()
playerRunLeftSprite.animationSpeed = 0.2

const player = new Player(
 playerIdleLeftSprite,
 new PIXI.Rectangle(
 Math.round(width / 2),
 Math.round(height / 2),
 48,
 56,
),
)

player.idleLeftSprite = playerIdleLeftSprite
player.runLeftSprite = playerRunLeftSprite

game.addObject(player)
game.player = player

This is from http://codepen.io/assertchris/pen/ALyPGw.

Adding animation is really fun, but it can also be pretty tedious. We need to crop and
export each frame of each action. Then we need to stitch them all together in many image
arrays and animated sprites.

It’s good to assign a reference to each animated sprite to player. That way, we can
swap them inside Player.animate:

this.rectangle.x += this.velocityX

if (!this.isOnLadder && !this.isOnSlope) {
 this.rectangle.y += this.velocityY
}

http://codepen.io/assertchris/pen/ALyPGw

Chapter 12 ■ animation

72

if (this.isOnGround && Math.abs(this.velocityX) < 0.5) {
 state.game.stage.removeChild(this.sprite)
 state.game.stage.addChild(this.idleLeftSprite)
 this.sprite = this.idleLeftSprite
}

if (this.isOnGround && Math.abs(this.velocityX) > 0.5) {
 state.game.stage.removeChild(this.sprite)
 state.game.stage.addChild(this.runLeftSprite)
 this.sprite = this.runLeftSprite
}

this.sprite.x = this.rectangle.x
this.sprite.y = this.rectangle.y

This is from http://codepen.io/assertchris/pen/ALyPGw.

At the end of the animate method, we can check if the player is still moving (much).
If not, we swap whatever sprite is presently visible with the idle animation.

If the player is still moving, we swap the visible sprite for the run animation. This
logic only works in a single direction, but we can extrapolate the behavior to encompass a
broad range of animations and directions.

Summary
In this chapter, we added a bit of animation (not the patrolling mob kind) to the game. We
could spend hours watching the player’s hair bob up and down.

There are many different kinds of animation we could add:

•	 Jumping and/or falling

•	 Getting hurt

•	 Landing (with a puff of dust)

•	 Climbing ladders

•	 Shooting a projectile (holding a weapon)

We’ve added just two, but there are tons more you could add. The key to these is
finding (or designing) a good sprite pack; and stitching everything together nicely. If you
can do that, you can make a beautifully animated game!

http://codepen.io/assertchris/pen/ALyPGw

73© Christopher Pitt 2016
C. Pitt, Making Games, DOI 10.1007/978-1-4842-2493-9_13

CHAPTER 13

Sounds

Some of my fondest gaming memories are of the music and sounds I listened to as I
played my favorite games. Whether it is the music of Bastion and Fez or the sounds of
Stardew, our ears help us fully appreciate the game.

Adding background music
There’s nothing like a good soundtrack to immerse you in a game. The best games swap
background music based on the player’s mood and location. We’re going to start with
something simpler than that:

game.addEventListenerTo(window)
game.addRendererTo(document.querySelector(".camera"))
game.animate()

const music = new Audio("path/to/sounds/background.mp3")
music.loop = true
music.play()

Before you click this link, turn your volume down – it plays music.
This is from http://codepen.io/assertchris/pen/wzmQWb.

It’s actually pretty easy to play sounds in modern browsers. A quick search for a
looping MP3 and this new Audio object are just about all we need. We do, however, need
to set the loop property to true if we want the background music track to loop.

 ■ Note There’s no easy way to make Audio objects loop without the possibility of having
a gap in between. You may want to consider an alternative solution, like SoundManager2
(https://github.com/scottschiller/SoundManager2).

http://codepen.io/assertchris/pen/wzmQWb
https://github.com/scottschiller/SoundManager2

ChapTer 13 ■ SoundS

74

Adding action and event sounds
Adding game sound effects (for events and action initiated by the player), requires that
we jump into where the actions and events happen:

element.addEventListener("keydown", (event) => {
 this.state.keys[event.keyCode] = true

 if (event.keyCode === 32) {
 new Audio("path/to/sounds/jump.wav").play()
 }
})

This is from http://codepen.io/assertchris/pen/wzmQWb.

The first time we try to jump, the sound effect seems to take a moment to load before
playing. We could solve this by preloading all sounds before the player can start to move.

In fact, it’s generally good practice to preload all game assets (like fonts, images, and
sounds) before the game begins. In the case of sounds, we only need to add the following
code, before the game starts to preload it:

new Audio("path/to/sounds/jump.wav").load()

This will start the loading process, and the sound file should be loaded by the time it
is used (as long as the Internet connection is fast enough). There are other ways to ensure
all sound files are loaded, but they complicate the process quite a bit. It’s a topic for
another time, I think…

Summary
In this chapter, we took a brief look at how to embed background music and action/event
sounds into our game. Modern browsers provide good tools for this, but we can always
fall back to libraries like SoundManager2 if we need to support older browsers or if we
need greater control over playback.

Buying many sounds, music files, and sprites (or sprite packs) can be expensive. You
may want to involve graphic and sound artists in the process of making a game instead.

http://codepen.io/assertchris/pen/wzmQWb

75© Christopher Pitt 2016
C. Pitt, Making Games, DOI 10.1007/978-1-4842-2493-9_14

CHAPTER 14

Gamepads

We’re almost done now. Before we part ways, I thought it would be fun to experiment
with gamepads. They’re only supported via JavaScript in a few browsers, but they sure are
fun to use!

Handling events
Gamepad events work slightly differently than the keyboard and mouse events we’ve
seen so far. Due to their experimental support, we need to capture them in a certain way,
inside Game.animate:

constructor(w, h) {
 this.w = w
 this.h = h

 this.state = {
 "game": this,
 "keys": {},
 "clicks": {},
 "mouse": {},
 "buttons": {},
 "objects": [],
 "player": null,
 "crosshair": null,
 }

 this.animate = this.animate.bind(this)
}

// ...later

animate() {
 requestAnimationFrame(this.animate)

 this.state.renderer = this.renderer

Chapter 14 ■ Gamepads

76

 this.state.stage = this.stage
 this.state.player = this.player
 this.state.crosshair = this.crosshair

 let gamepads = []

 if (navigator.getGamepads) {
 gamepads = navigator.getGamepads()
 }
 if (navigator.webkitGetGamepads) {
 gamepads = navigator.webkitGetGamepads
 }

 if (gamepads) {
 const gamepad = gamepads[0]

 gamepad.buttons.forEach((button, i) => {
 this.state.buttons[i] = button.pressed
 })
 }

 // ...remaining animation code
}

This is from http://codepen.io/assertchris/pen/WGzYgA.

We need to try a few different approaches before we find the gamepad list supported
by the browser we’re using. I’m using a modern version of Chrome, which supports the
JavaScript Gamepad API.

We capture the pressed state of each button and store it in the state.buttons object
(that we initialized in the constructor). Considering how much complexity we’ve added
to Player.animate, I think it’s time we refactored a bit of it:

animate(state) {
 const leftKey = state.keys[37] || state.keys[65]
 const leftButton = state.buttons && state.buttons[13]
 const rightKey = state.keys[39] || state.keys[68]
 const rightButton = state.buttons && state.buttons[14]
 const upKey = state.keys[38] || state.keys[87]
 const upButton = state.buttons && state.buttons[11]
 const jumpKey = state.keys[32]
 const jumpButton = state.buttons && state.buttons[0]

 if (leftKey || leftButton) {
 this.velocityX = Math.max(
 this.velocityX - this.accelerationX,
 this.maximumVelocityX * -1,
)
 }

http://codepen.io/assertchris/pen/WGzYgA

Chapter 14 ■ Gamepads

77

 if (rightKey || rightButton) {
 this.velocityX = Math.min(
 this.velocityX + this.accelerationX,
 this.maximumVelocityX,
)
 }

 this.velocityX *= this.frictionX

 this.velocityY = Math.min(
 this.velocityY + this.accelerationY,
 this.maximumVelocityY,
)

 state.objects.forEach((object) => {
 if (object === this) {
 return
 }

 const me = this.rectangle
 const you = object.rectangle
 const collides = object.collides

 if (me.x < you.x + you.width &&
 me.x + me.width > you.x &&
 me.y < you.y + you.height &&
 me.y + me.height > you.y) {

 if (object.constructor.name === "Ladder") {
 if (upKey || upButton) {
 this.rectangle.y -= this.climbingSpeed
 this.isOnLadder = true
 this.isOnGround = false
 this.velocityY = 0
 this.velocityX = 0
 }

 if (me.y <= you.x - me.height) {
 this.isOnLadder = false
 }

 return
 }

 // ...remaining collision detection code
 }
 })

Chapter 14 ■ Gamepads

78

 if ((jumpKey || jumpButton) && this.isOnGround) {
 this.velocityY = this.jumpVelocity
 this.isOnGround = false
 this.isOnSlope = false
 }

 // ...remaining movement code
}

This is from http://codepen.io/assertchris/pen/WGzYgA.

Here we’ve defined a number of constants (to represent pressed keyboard keys and
gamepad buttons). It’s easy to assume a keyboard is present, but gamepads are less of a
certainty.

That’s why we combine a couple different keyboard keys into a single check, but
each gamepad button check requires that we first make sure any gamepad buttons have
been defined.

With this code, we’ve mapped the direction buttons (D-Pad) and the jump button (A
on PS-compatible controller) to the corresponding player actions.

Triggers and joysticks
Triggers and joysticks are significantly more difficult (and prone to differences in
gamepad design) than buttons. I’m using a PS-compatible Logitech gamepad, and the
triggers are mapped to the gamepad.axes object, as are the joysticks.

The captured values range from -1 through to 1, on all 6 axes. At rest, the joysticks are
not exactly 0, which means we need to use some Epsilon value (https://en.wikipedia.
org/wiki/Epsilon), or rounding, to determine whether the axis is at rest.

We’d also need to revise our trigonometric equations to account for the difference
in input values/scale. I guess what I’m saying is we need to consider which gamepads we
care to support, and the browsers our players will need in order to use them.

Summary
In this chapter, we dipped our toes into the ocean of gamepads. We’re lucky enough to
live in a time where browsers are gaining support for using gamepads with JavaScript, but
there’s still a lot of work to be done before it becomes easy or common.

If you’re feeling brave, perhaps you would like to try your hand at mapping your
gamepad’s triggers and joysticks to game actions (like targeting and shooting projectiles).

I’d like to take a moment to thank you for reading this book. It’s been a brief but
thrilling project for me, and I hope you have learned and enjoyed it as much as I have (if
not more).

http://codepen.io/assertchris/pen/WGzYgA
https://en.wikipedia.org/wiki/Epsilon
https://en.wikipedia.org/wiki/Epsilon

Chapter 14 ■ Gamepads

79

As I said in the beginning: feel free to contact me with questions or suggestions for
improvement. Given the dynamic nature of the examples, I will be able to fix bugs and
add comments about how they can be improved.

My Twitter profile is https://twitter.com/assertchris.
On occasion, I’ll also stream as I code. You can join in, ask questions (in real-time)

and learn along with me.
My Twitch channel ishttps://www.twitch.tv/assertchris.

https://twitter.com/assertchris
https://www.twitch.tv/assertchris

81© Christopher Pitt 2016
C. Pitt, Making Games, DOI 10.1007/978-1-4842-2493-9

��������� A
Action and event sounds, 74
Angle calculation, 54–55
Animate method, 7, 9, 11, 28, 55, 62, 72
Animation

animate method, 72
image arrays and animated sprites, 71
initialization code, 70–71
PixiJS, 69
PIXI.Texture objects, 70

��������� B
Background music, games, 73

��������� C
Camera locking

game’s dimensions, 49–50
innerWidth and innerHeight

screen, 49
width and height constants, 51
wrapping, 47–49
zoomed and locked, 49

Collision detection, 46
algorithm, 41–45
boxes creation, 15–17
circles, 17–19
logic, 64
rectangle, 19–21

Complexity, making games, 1
Crosshair.animate method, 55
Crosshair shooting, 58
Custom crosshairs, 53–56
Custom keys, 56–58

��������� D
Decals, 41
D-Pad, 78

��������� E
Extends keyword, 55

��������� F
Fixed crosshair, 56
Fun games, 1

��������� G
Game loop

animate method, 7
benefits, 3
CodePen, 3
PixiJS, 4
Player class, 6–7
sprites, 4–8

Graphic and sound artists, 74
Gravity

addition, 34
animate methods, 28
Game class, 25–27
game.addObject, 29
jumping, 32–34
optional dependencies, 27
PIXI.Rectangle, 23, 24
sprites, 27–28
TilingSprite.fromImage, 30–32
upward and downward

velocity, 32

Index

■ INDEX

82

��������� H, I
Handling events, 75–78
Health system

HTML elements, 66–67
PixiJS model, 66
Player.animate, 65–66
player.onHurt = function(), 67
user-provided function, 66

��������� J, K
JavaScript Gamepad API, 76

��������� L
Ladders

Box class, 35–36
climb ladders, 37–40
collision detection, 36–37
creation, 35–37
isOnLadder variable, 40
ladder.png and platform.png

images, 36
and platforms, 37
Player.animate, 37

LeftSlope, 41–42, 44–45, 54–55

��������� M
mousemove event

listener, 55

��������� N, O
Natural player movement, 12–13

��������� P, Q
Patrolling blobs, 61–63
Player.animate method, 76–78
Player input

detection, 9–11
natural player movement, 12–13
platform games, 9
racing games, 9

PS-compatible controller, 78

��������� R
removeObject method, 59
RightSlope, 41–42, 45–46, 55

��������� S
Shooting, 58–60
Shooting mobs, 63–64
Slopes

building, 41–44
walking up, 44–45

Sounds, 73–74
Sprites, 4–6
Sprite and rectangle parameters, 62
Stairs. See Slopes
state.buttons object, 76

��������� T, U, V
Triggers and joysticks, 78

��������� W, X, Y, Z
WASD movement keys, 9, 53, 56

www.allitebooks.com

http://www.allitebooks.org

	Contents at a Glance
	Contents
	About the Author
	Chapter 1: Introduction
	Chapter 2: The Game Loop
	Setting the stage for our game
	Creating sprites
	The Game Loop
	Summary

	Chapter 3: Player Input
	Detecting input
	Natural player movement
	Summary

	Chapter 4: Collision Detection
	Creating boxes
	Detecting circle collisions
	Detecting rectangle collisions
	Summary

	Chapter 5: Gravity
	Cleaning up our existing code
	Adding gravity to the world
	Allowing players to jump
	Summary

	Chapter 6: Ladders
	Creating our first ladder
	Allowing players to climb ladders
	Summary

	Chapter 7: Stairs
	Building a slope
	Walking up slopes
	Staying above the floor
	Summary

	Chapter 8: Camera Locking
	Wrapping with a camera
	Growing levels
	Summary

	Chapter 9: Projectiles
	Custom crosshairs
	Custom keys
	Shooting
	Summary

	Chapter 10: Mobs
	Patrolling blobs
	Shooting mobs
	Summary

	Chapter 11: Health
	Taking damage
	Showing health
	Summary

	Chapter 12: Animation
	Animating the player
	Swapping animations
	Summary

	Chapter 13: Sounds
	Adding background music
	Adding action and event sounds
	Summary

	Chapter 14: Gamepads
	Handling events
	Triggers and joysticks
	Summary

	Index

