
f o r p r o f e s s i o n a l s b y p r o f e s s i o n a l s®

www.apress.com

US $39.99

Shelve in:
Computer Hardware/General

User level:
Beginning–Advanced

SOURCE CODE ONLINE9 781430 265924

53999
ISBN 978-1-4302-6592-4

Tickoo · Iyer 
M

aking Sense of Sensors

Making Sense
of Sensors

Implementing a Knowledge Pipeline
—
Omesh Tickoo
Ravi Iyer

Making Sense of Sensors

Making Sense of
Sensors

Implementing a Knowledge Pipeline

Omesh Tickoo

Ravi Iyer

Making Sense of Sensors

Omesh Tickoo				 Ravi Iyer
Portland, Oregon, USA 			 Portland, USA

ISBN-13 (pbk): 978-1-4302-6592-4		 ISBN-13 (electronic): 978-1-4302-6593-1
DOI 10.1007/978-1-4302-6593-1

Copyright © 2017 by Omesh Tickoo and Ravi Iyer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Natalie Pao
Technical Reviewer: Waqar Malik
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James
Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jessica Vakili
Copy Editor: Kim Burton-Weisman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com. For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/

iii

Contents at a Glance

About the Authors�� xi

About the Technical Reviewer��� xiii

■■Chapter 1: Introducing the Pipeline��� 1

■■Chapter 2: From Data to Recognition�� 17

■■Chapter 3: Multimodal Recognition��� 43

■■Chapter 4: Contextual Recognition�� 57

■■Chapter 5: Extracting and Representing Relationships����������������� 67

■■Chapter 6: Knowledge and Ontologies�� 83

■■Chapter 7: End-to-End System Architecture Implications������������� 95

Index��� 113

v

Contents

About the Authors�� xi

About the Technical Reviewer��� xiii

■■Chapter 1: Introducing the Pipeline��� 1

1.1 � Motivation��� 1

1.2 � Next Level of Data Abstractions�� 4

1.3 � Operations��� 8

1.4 � Constraints and Parameters�� 10

1.5 � Physical Platforms�� 15

1.6 � Summary��� 16

1.7 � References�� 16

■■Chapter 2: From Data to Recognition�� 17

2.1 � Sensor Types and Levels of Recognition��������������������������������������� 18

2.1.1 � Inertial measurement unit��� 19

2.1.2 � Audio Sensors�� 19

2.1.3 � Visual Sensors��� 21

2.2 � Inertial Sensor Processing�� 23

2.2.1 � Defining Motion and Degrees of Freedom��� 24

2.3 � Audio Processing and Recognition—From sound to speech�������� 29

2.3.1 � Audio Classification��� 29

2.3.2 � Voice Activity Detection��� 30

2.3.3 � Automatic Speech Recognition (ASR)�� 30

2.3.4 � Natural Language Processing (NLP)�� 32

﻿ ■ Contents

vi

2.4 � Visual Processing and Recognition��� 33

2.4.1 � Object Recognition�� 33

2.4.2 � Gesture Recognition�� 35

2.4.3 � Video Summarization��� 37

2.5 � Other Sensors��� 38

2.5.1 � Proximity Sensor��� 38

2.5.2 � Location Sensor��� 39

2.5.3 � Touch sensors�� 39

2.5.4 � Magnetic Sensors�� 39

2.5.5 � Chemical and Biosensors�� 39

2.6 � Summary��� 40

2.7 � References�� 40

■■Chapter 3: Multimodal Recognition��� 43

3.1 � Why Multi-modality��� 43

3.2 � Multimodality Flavors�� 44

3.2.1 � Coupling-based Classification��� 44

3.2.2 � Dasarathy Model��� 46

3.2.3 � Sensor Configuration Model�� 47

3.3 � Example Implementations��� 48

3.3.1 � Semantic Fusion�� 48

3.3.2 � Restricted Recognition�� 49

3.3.3 � Tight Fusion��� 50

3.4 � Mathematical Approaches for Sensor Fusion������������������������������� 51

3.4.1 � Inferencing Approaches��� 51

3.4.2 � Estimation Approaches�� 54

3.5 � Summary��� 55

3.6 � References�� 55

﻿ ■ Contents

vii

■■Chapter 4: Contextual Recognition�� 57

4.1 � Relationship between Context and Recognition���������������������������� 57

4.1.1 � Rule-based Systems��� 58

4.1.2 � Knowledge-based Systems��� 58

4.2 � Understanding Context�� 58

4.2.1 � Different Roles for Context�� 59

4.3 � Including Context in Recognition�� 59

4.4 � Motivation from Human Recognition��� 60

4.4.1 � Image-based Contextual Recognition�� 61

4.4.2 � Non-image-based Contextual Recognition�� 61

4.5 � Contextual Recognition: From Humans to Machines�������������������� 62

4.6 � Representing Context�� 64

4.7  Concluding Thoughts on Scene Understanding���������������������������� 65

4.7.1 � Saliency vs Context for Recognition�� 65

4.8 � Summary��� 66

4.9 � References�� 66

■■Chapter 5: Extracting and Representing Relationships����������������� 67

5.1  High-level View of Extracting Relationships from Text������������������ 68

5.2 � Relationship Extraction Methods�� 69

5.2.1 � Knowledge-based Relationship Extraction�� 70

5.2.2 � Supervised Relationship Extraction��� 71

5.2.3 � Semi-supervised Methods�� 74

5.3 � NEIL (Never Ending Image Learning)��� 79

5.4 � Summary��� 80

5.5 � References�� 81

﻿ ■ Contents

viii

■■Chapter 6: Knowledge and Ontologies�� 83

6.1 � Relationship Representation using RDF�� 84

6.2 � Freebase: Database of Relationships�� 85

6.3 � ConceptNet: Common Sense Knowledge�������������������������������������� 86

6.4 � Microsoft’s Satori�� 87

6.5 � Google’s Knowledge Graph��� 87

6.6 � Wolfram Alpha��� 88

6.7 � Facebook’s Entity Graph��� 89

6.8 � Apple’s Siri�� 90

6.9 � Semantic Web��� 90

6.9.1 � Ontologies��� 90

6.10 � Summary��� 92

6.11 � References�� 93

■■Chapter 7: End-to-End System Architecture Implications������������� 95

7.1 � Platform Data Processing Considerations������������������������������������� 96

7.1.1 � Compute Capability��� 96

7.1.2 � Battery Life & Power Constraints�� 97

7.1.3 � Interactivity and Latency��� 97

7.1.4 � Storage & Memory Constraints��� 97

7.1.5  Access to other data (crowd-sourced or expert data)��������������������������������� 98

7.1.6 � Throughput & Batch processing�� 98

7.1.7 � Security and Privacy�� 98

7.1.8 � Hierarchical processing��� 98

7.2  End-to-end System Partitioning and Architecture������������������������� 99

7.2.1 � Sensor Node�� 99

7.2.2 � Wearable Platform��� 100

7.2.3 � Phone Platform�� 101

﻿ ■ Contents

ix

7.2.4 � Gateway Platform�� 102

7.2.5 � Cloud Server Platform��� 103

7.3  End-to-End Processing & Mapping Examples����������������������������� 104

7.3.1 � Speech Processing Example��� 105

7.3.2 � Visual Processing Example�� 106

7.3.3 � Learning and Classification��� 108

7.4  Programmability Considerations for End-to-End Partitioning����� 109

7.5 � Summary and Future Opportunities�� 110

7.6 � Conclusion��� 111

7.7 � References�� 111

Index��� 113

xi

About the Authors

Omesh Tickoo is a research manager at Intel Labs. His team is currently active in the
area of knowledge extraction from multi-modal sensor data centered around vision and
speech. In his research career, Omesh has made contributions to computer systems
evolution in areas such as wireless networks, platform partitioning and QoS, SoC
architecture, virtualization, and machine learning. Omesh is also very active in fostering
academic research, with contributions toward organizing conferences, academic project
mentoring, and joint industry-academic research projects. He has authored more than
30 conference and journal papers and filed more than 15 patent applications. Omesh
received his PhD from Rensselaer Polytechnic Institute in 2015.

Ravi Iyer is a Senior Principal Engineer, CTO, and Director in Intel’s New Business
Initiatives (NBI). He leads technology innovation/incubation efforts and has made
significant contributions from low-power system-on-chip wearable/IOT devices to high
performance multi-core server architectures including novel cores, innovative cache/
memory hierarchies, QoS, accelerators, algorithms/workloads and performance/
power analysis. Ravi has published over 150 papers, filed over 50 patents and actively
participates in conferences and journals. Ravi is an IEEE Fellow.

xiii

About the Technical
Reviewer

Waqar Malik worked at Apple helping developers write Cocoa applications for the Mac
during the early days of Mac OS X. Now he develops applications for iOS and OS X in
Silicon Valley. He is the co-author of Learn Objective-C and Learn Swift on the Mac, both
published by Apress.

1© Omesh Tickoo and Ravi Iyer 2017
O. Tickoo and R. Iyer, Making Sense of Sensors, DOI 10.1007/978-1-4302-6593-1_1

CHAPTER 1

Introducing the Pipeline

The electronic world today is full of (a) sensors collecting data from various sources and (b)
applications using this data for various uses. Our smart phones contain cameras, motion
sensors, temperature sensors, microphones, GPS sensors, etc. Smart watches contain these
sensors and more, like heart rate sensors, body temperature monitors, etc. The devices
that we do not carry with us have sensors that monitor the environment, like the smart
thermostats that can monitor if people are home for automatic temperature control, and
cameras, including face detection for intrusion monitoring. While the world of sensors and
associated sense-making seems to be getting crowded, intelligent, and highly complex, to
understand the inner structure of this world one needs to know a few fundamental principles
and flows. This book will use a few specific examples to illustrate these concepts in detail.
In this chapter we present a high-level view and a taste of things to come later in this book.

1.1 � Motivation
Readers who are curious about how the sensors collect environmental and behavioral
information about us and how that information is processed to provide services useful for
us will find the book helping them with concepts as well as pointers to build some of the
basic solutions on their own. Understanding that all these complex services are built on
similar fundamental principles is the foundational step toward this process.

As an example, consider a complex Advanced Driver Assistance System (ADAS) for
automobiles (Figure 1-1). It uses a set of sensors like cameras, motion sensors, etc. to
provide a driver with assistance for safety and comfort. One of the uses is to automatically
track the position of a car in the traffic lanes and provide audible warnings in case the
car drifts from its lane (Lane Departure Warning). This highly complex system works on
the fundamental processing principles of Internet of Things (IoT) comprising of sensors
collecting data (cameras, motion sensors), algorithms recognizing the data (relative
position of the car in the lane, car drift), and applications acting on the recognized data
(audible warning on/off). This flow shown in Figure 1-1 is the basic foundation for all
the complex processing pipelines of sensor data as will become clear through various
chapters in the book.

Chapter 1 ■ Introducing the Pipeline

2

As another example consider the automatic voice-based personal assistance
provided by the smartphones and other devices. In such usages, a user activates the
system with a voice command and then asks a query like, “What is the weather going
to be like tomorrow?” The system “magically” understands the question and provides a
verbal answer to the query. At the heart of this complex system is the now-familiar (sense,
recognize, act) methodology. The microphone senses our speech, the recognition system
“understands” our intention and the action is taken to satisfy the request.

The following chapters in this book aim to provide the readers with a high-level
view of the steps it takes to process data collected by various sensors for it to be useful
for various applications. We will understand the logical steps needed to convert data
to knowledge and deep-dive into some specific implementations that will make it
easy for the readers to “play” with the code and data to understand the details of the
implementation.

At a very high level, the data captured from the physical world goes through the three
stages shown in Figure 1-2 in order to become actionable knowledge.

Sense Recognize Act

Warn

ResponseQuery

Lane Position
and Drift

Microphone

Camera and
Motion

Figure 1-1.  Stages in sensor data processing and applications

Data Semantics Knowledge

Figure 1-2.  Data lifecycle stages

The first stage shows the data captured by various sensing devices (video, audio,
pressure, motion, temperature, etc.). The data is raw (unprocessed) and combined with
noise of various types and needs to be cleaned, filtered, and represented in a structured
manner in order to be useful for analysis and processing. Assume, for the present discussion,
that all these processing steps are represented by the data block in the Figure 1-2.

The data by itself is a series of single measurements at specific periods in time. To
understand what the data is actually “telling,” an observer needs to extract the semantics
in the data. For example, while an ambient temperature reading of 100° F by itself
tells us the absolute temperature sampled by a thermal sensor, its semantics are not
immediately understood. Coupling this information with the fact (assumed) that the
measurement was taken near a glacier in Alaska in winter with previous measurements
gradually increasing in magnitude gives us a contextual and semantic understanding that
something unusual is happening at the location of measurement.

Chapter 1 ■ Introducing the Pipeline

3

Understanding the semantics embedded in the data allows us to grasp the
significance of data in context. In addition, the semantic relationship to other facts
understood so far can be understood. These relationships form the basis of “knowledge.”
As a very simplistic example, in the instance of the temperature reading above, a
correlation with another event like a major forest fire can provide the understanding for
the underlying cause of the anomalous temperature reading.

One of the facts embedded in the example discussion above is that “knowledge feeds
on itself,” i.e., the system can know that the high temperatures in Alaska are an anomaly
if it already “knows” that typically the weather in Alaska is cooler. So we can redraw the
Figure 1-2 as shown in Figure 1-3 with a feedback loop in the knowledge builder.

Data Semantics Knowledge

Figure 1-3.  Iterative knowledge model

Knowledge refers to an aggregate of the semantic information extracted from
the sensor data arranged in a manner that the relationships are extended over the
entire knowledge base through links that build over time as more and more semantic
information is available. There are two main structural parts to the knowledge
management task:

	 1.	 Knowledge representation: Knowledge needs to be
stored and represented in a manner such that the semantic
information and relationships between various concepts
is retained and is modifiable. The modifications to the
knowledge include addition of new information and
entities, including changes in the current relationships or
representations catalyzed by new data.

	 2.	 Knowledge operations: These include tools, APIs, and
programming languages to insert and extract data from the
knowledge database. Knowledge storage needs to provide
means to insert a new relationship at the correct place in the
existing knowledge database. This involves understanding
the incoming semantic data and providing a mechanism to
find and manipulate the correct relationships. The extraction
process involves responding to different queries targeting
relationships between different entities and concepts. The
input to the extractor is an incomplete relationship description
and the output fills in the gaps in the description. The extractor
needs to support a logical language that can mathematically
represent queries like, “What wine should I order with grilled
chicken and restaurant X?” and provide a mechanism to walk
the knowledge database to obtain the answer.

Chapter 1 ■ Introducing the Pipeline

4

1.2 � Next Level of Data Abstractions
Now that we are familiar with a high-level description of the functional blocks, we present
a brief overview of the data abstractions in an end-to-end pipe. The abstractions show
how the data collected from the physical world through sensors transitions to ultimately
generate usable and actionable information.

For the purposes of this book, we are concerned with the following sub-levels of data
abstractions.

	 1.	 Raw Sensor Data: Raw (or unprocessed) sensor data is
captured by sensors at the front end of the pipeline. The
format of the data varies with the type of the sensor. Below
are a few examples of the sensors and their associated data
formats:

a.	 Vision: Typically, camera sensors take still or video
shots of a scene. The data format is analog voltage
levels representing pixel intensities and color at various
locations on the image sensor. These levels are frequently
sampled and quantized to bits, making the signal easier
to manipulate digitally. This process is called analog-to-
digital conversion.

b.	 Audio/Speech: The microphone-like sensors typically
capture the audio and, if the goal is to transmit the
information over a network or process them through
digital tools, a process called analog-to-digital conversion
is applied to achieve the conversion, and the result is a
stream of bits representing audio frequencies over time.

c.	 Motion: Inertial sensors typically measure the
acceleration and motion (transitional and angular).
The data produced is a stream of numbers representing
the instantaneous change in the parameters described
above.

d.	 Temperature sensors generally report the instantaneous
temperature at a certain instant in time.

e.	 BMI sensors: The Brain Machine Interface sensors, like
EEG and EKG, report the brain activity measurements
as activity graphs. Figure 1-4 shows a commercial BMI
sensor that can be worn on the head like headphones.

Chapter 1 ■ Introducing the Pipeline

5

	 2.	 Features: Generally speaking, we are interested in the certain
higher-level information in the data that in its aggregate can
lead to recognition of target entities. As an example, locating
edges or corners in an image can be a first step toward
recognizing discernable objects. Similarly, identifying micro-
utterances in an audio stream enables stitching of them to
create words.

	 3.	 Recognized entities: Recognition is generally a complex
task involving spatial and temporal analysis of the extracted
features to map the aggregate to pre-known entities.
Continuing with the examples above, in case of vision,
the recognition task may involve classifying the extracted
features to recognize shapes like objects and faces. For audio,
statistical analysis and classification of features allows for
aggregated features to be recognized as words. Typically, the
tools for recognition are pre-trained with examples of entities
that they eventually “search” for in the feature pool. A face
recognition algorithm, for example, will be trained for specific
faces with multiple images of each face used for training.
Once trained, the model can identify the trained faces from
the test images.

	 4.	 Semantic relationships: Semantic relationship extraction,
along with contextual relationship extraction, has become
increasingly important, especially as machines become more
intelligent in understanding the environment around them.
Semantic relationships refer to the connection between
various recognized entities. For example, the semantic
relationship between a key and a lock refers to the operation

Figure 1-4.  BMI sensors

Chapter 1 ■ Introducing the Pipeline

6

of opening or closing the lock with the key. Similarly, the
sentence “I like coffee” connects "I" (the subject) with "coffee"
(object) using the predicate "like." Many simpler semantic
relationships can be represented by such (subject, predicate,
object) triplets. Figure 1-5 graphically shows the relationship
triplets with an example.

Subject

Author

Predicate

Likes

Grown InCoffee

Coffee

Brazil

Object

Figure 1-5.  Semantic relationships

	 5.	 Contextual relationships: Contextual relationships help
understand the recognized data in context. The context can be
obtained in multiple ways. These include using other sensors
as well as using the history of recognized data for context
recognition. A face recognition operation that was performed
by a surveillance system can identify a potential invasion or
normal operation depending on when the recognition took
place (day vs. night) or depending on the person that was
recognized.

	 6.	 Knowledge: One way to look at the concept of knowledge is
to visualize it as a bigger aggregate of relationships connected
together through predicates. Addition of more and more
relationships results in a graphical knowledge structure that
has a directed relationship between nodes representing the
predicates. For example, the semantic relationships “I like
coffee” and “coffee is grown in Brazil” results in a compound
knowledge entity as shown in Figure 1-6.

Chapter 1 ■ Introducing the Pipeline

7

Extending this concept leads to a rich knowledge base, examples of which can be
found as part of a semantic web. One such database is shown in Figure 1-7, representing
relationships between food types. The representation could, for example, be used to
interpret that fruits can be sweet or non-sweet and in either type are edible.

Brazil

Grown In

Coffee

Author

Likes

Figure 1-6.  Basic knowledge building block

Lion

Animal

Sheep

Plants

is a is a

eats

eats

Figure 1-7.  Extended relationship graphs

	 7.	 Query and Response: The knowledge base is ultimately
intended for providing information in order to implement
services for various usages. Various forms for data analysis
algorithms operate on the knowledge nodes and relationships
to extract information useful to provide the services desired.
The query process focuses on constructing a semantic search
input to the system that results in the analytical algorithms
parsing the knowledge base for an appropriate response.
For example, using Figure 1-8, the query "What is the flavor
of shellfish?" can be resolved and an answer (moderate or
strong) can be provided as the response.

Chapter 1 ■ Introducing the Pipeline

8

Figure 1-8 summarizes the discussion so far in an example
knowledge pipeline showing an image recognition pipeline in
various stages.

1.3 � Operations
As we move in the knowledge and analytics pipeline from the raw sensor data acquisition to
usage implementations, each data transformation is brought about by specific operations
performed on the data generated by the previous stages. While the nature of transformation
operations varies by the nature of the data, the goal of analysis, and available resources, we
can broadly categorize the operations under abstractions given below:

	 1.	 Feature Extractors: Raw sensor data to Features

	 2.	 Recognition Algorithms

	 3.	 Multimodal context extractors

	 4.	 Knowledge Extractors

	 5.	 Knowledge Representation Frameworks

	 6.	 First order logic operations

	 7.	 Analytics

Keeping these operations in mind, Figure 1-8 can now be shown with the
transformation operations as shown in Figure 1-9.

IMAGE FEATURES FEATURES

Baseball
Bat

1

1 1 1

1

1

11

11 1

1 0

0

0

0

00

0 0

0 00

0

Stadium

Man Baseball
Game

RECOGNITION
SEMANTIC
RECOGNITION

Figure 1-8.  Sample knowledge pipeline for semantic knowledge extraction

Chapter 1 ■ Introducing the Pipeline

9

We now present a brief description of each of these transformation operations.

	 1.	 Feature extractors: The primary job of feature extractors is
to obtain the first level of "interesting" information from the
raw data collected by the sensors. The goal of the feature
extraction operation is to reduce the data size to be processed.
Sensors produce a lot of data, much of which contains
redundant and "uninteresting" information for an application
under consideration. Processing this unneeded data through
the whole pipe will amount to wasted compute resources,
higher processing latencies, wastage of power, and bandwidth
overload. Extracting features early in the pipeline ensures we
separate the needed information from the rest of the data and
reduce waste.

Also, having features compatible with the processing goals
of the rest of the pipe enables the subsequent stages to be
designed easily with optimal functionality for operating on
the data that is known to have relevant information. In the
absence of feature extractors, the subsequent stages would
have to implement complex operations to "search" through
the entire data for relevant information to use.

Depending on the type of data and the goal of analysis, the
feature extractor implementations vary. For example, in
a visual understanding system that is trying to recognize
faces, a feature extractor could implement skin-based
segmentation schemes that allow it to only send data with
skin color information to the other stages. Similarly, another

Baseball
Bat

1

1 1 1

1

1

11

11 1

1 0

0

0

0

00

0 0

0 00

0

Stadium

Man
Baseball

Game

Feature Extraction Feature Representation Recognition

Multimodal Context Recognition

Figure 1-9.  Figure 1-8 with data transformations

Chapter 1 ■ Introducing the Pipeline

10

vision system implementing object recognition could have a
feature extractor implementing edge extractors that provide
object edge information to the recognition module. In audio
analysis, instead of sending the raw audio to the analytical
engines, a feature extractor implementing frequency
extraction can be used.

	 2.	 Recognition: A recognition module implements algorithms
to detect and label entities from the features provided to it.
Typically a recognition algorithm is trained to identify certain
entities by feeding it examples of true and false results. This
phase, commonly known as "training the model," leads
to parameters of the algorithm being configured in such
a manner that it acts as a filter to output a certain result
when one of the trained entities is recognized. A trained
model usually needs to be retrained for recognizing new
entities. Exceptions exist in some limited cases where the
model can be self-learning or self-training. Examples of
recognition algorithms include the now immensely popular
Convolutional Neural Networks, Bayesian and non-Bayesian
classifiers, and temporal filters for recognizing events in time.
Implementations of these algorithms can determine if a visual
feature set embeds a face or an object, what word was spoken,
and what action one is performing based on sensors used and
the features extracted.

	 3.	 Multimodal Context Extractors: Recognized information
from one or more sensors can be combined to understand
the operational "context" of the knowledge pipe. The context
extraction process uses the available recognized outputs to
provide an understanding of the environment in which the
events are occurring. Having access to such information can
be crucial to the proper usage implementation.

1.4 � Constraints and Parameters
The discussion so far focused on the logical partitioning of the data types and data
understanding algorithms through various steps in the knowledge generation pipeline. In
addition, there is another level of operations partitioning that a designer or an architect
will need to consider while designing such a pipeline. The partitioning is the direct result
of mapping the abstract pipeline above to the real physical pipe. Depending on the
usage, the implementation of the components described above will be constrained by
the parameters shown in Figure 1-10. These parameters also serve as a design input for
the implementation to determine how to partition the functional blocks discussed so far
between different hardware platforms available end-to-end.

Chapter 1 ■ Introducing the Pipeline

11

	 1.	 Application performance requirements: Each application
operates under certain performance requirements. Some
applications need to run real-time, which means that the
results need to be provided by the application with an
acceptable time constraint so that a user feels the interaction
with the application is happening in a natural fashion. This is
similar to how one would get responses from a human who
we are interacting with face-to-face. Other applications need
a predefined level of results accuracy. Some applications can
live with approximate results while others need a precision
that can, in turn, mean higher computation requirements.

a.	 Accuracy: Assume an application (AppA) is interested in
determining how many people enter a building during
a given day. Contrast this with another application
(AppB) that wants to know exactly “who” was entering
the building. AppA implementation needs us to
distinguish a human from anything that is not human
(pets, machines, etc.) while monitoring the building
entry points. A human classifier at the recognition
stage in the pipeline does not have to be a very complex
algorithm and can be implemented by approximating
many of the computations. As long as we can reliably
distinguish humans from others, we need not implement
algorithm blocks that calculate the exact height, posture,
and gender of the people. Contrasting this with AppB,
we can imagine that the relevant recognition algorithm

Figure 1-10.  Execution Pipeline Constraints

Chapter 1 ■ Introducing the Pipeline

12

is very complex, since it is trying to analyze various
facial features and then comparing these to an existing
database of known faces to accurately determine
a person entering the building. Thus, application
requirements can greatly influence the complexity of the
solution implementation.

b.	 Latency: The latency requirements vary with the
application. For example, a navigation application that is
predicting your current position in a building and using
that information to help you navigate to a destination
needs to analyze the data fast enough so that it is useful.
It does not make sense to provide you with the next turn
information if you have already moved past the turn.
Such real-time constraints necessitate a system design
that considers compute, memory, and network resource
allocations such that the responses are generated under
tight latency constraints. On the other hand, applications
like AppA and AppB above provide the total number of
people or the actual faces that entered a building as a
list at the end of the day and may not have tight latency
constraints (although, if used for security purposes, the
applications may have tight latency constraints as well).
They can collect the data from the relevant cameras
and work on the data offline to generate the results.
Knowing the latency constraints of the applications
under consideration allows the system designer to make
necessary implementation trade-offs.

	 2.	 Power Constraints: Each platform on the end-to-end pipe
operates under some form of power constraint. The available
power for the sensors and sensor nodes collecting raw data
is usually limited and they are battery-operated. In contrast,
the nodes in the last stage of the pipe tend to be wall-powered
servers with large power budgets. Ideally, one would like
to execute all the “heavy” work portions of the pipeline on
the platforms that are rich in computation resources and
power. This would mean executing on servers (or the "cloud,"
as the server "back end" is commonly called) for most
implementations. But combining the power constraints with
the other constraints, especially the application constraints
as discussed above, underlines the need for running at least
some functionality at the front end and other intermediate
stages of the pipeline.

	 3.	 Network constraints: Generally, the network infrastructure
will be shared among various different applications and
available network resources change dynamically over time.
Network constraints mainly consist of the following:

Chapter 1 ■ Introducing the Pipeline

13

a.	 Bandwidth: The total amount of bandwidth available
directly affects the throughput of the applications. Based
on the available capacity and the other applications
competing for the network bandwidth, the time it takes
to transfer content over the network for the application
will vary. A pipeline designer typically tries to reduce
the amount of total bandwidth requirement to keep the
application performance optimal and predictable. This
might entail trying to run more parts of the application
close to the data source (a goal opposite to that dictated
by the power constraints) and transmitting smaller size
processed information instead of unprocessed data (e.g.,
transmit features instead of raw data).

b.	 Reliability: Different network protocols provide
applications with different levels of service. A reliable
transport, for example, will provide guaranteed delivery
of all the data but the latency might be higher in case
some data is lost over the network and retransmissions
become necessary. On the other hand, an unreliable
protocol can trade off fast transmissions with an
occasional loss of data packets. The designer needs to
carefully choose the best possible network protocol
based on application needs.

	 4.	 Memory Constraints: Each platform on the pipeline has
limited memory. For an operation to execute on a platform,
the processor needs the data it operates on to be resident
in the memory. In case of the memory size being too small
when compared to the amount of data/code needed by the
processor to effectively process the application, the platform
runtime infrastructure will need to manage the movement
of resources (code/data) to and from the memory. This
operation introduces latency in processing in addition to
introducing power overheads. The memory constraints
usually tend to push the parts of the pipe that need more
memory toward the back end of the pipe where the execution
can take advantage of servers.

	 5.	 Resource sharing constraints: At each stage in the pipe, the
physical resources like processing, power, memory, network,
etc. are generally shared between different applications.
Having shared resources makes it very complicated for the
designers to build architectures for predefined performance.
There exist schemes to guarantee a minimum level of
performance and share of resources (Quality of Service) to
help out in these situations, but these schemes generally
come with a cost. We will discuss more about these in the

Chapter 1 ■ Introducing the Pipeline

14

coming chapters. Figure 1-11 shows the transition of resource
availability as we move from front-end sensors to back-end
servers. In the figure, LOW and HIGH refer to the resource
availability (Bandwidth, Power, and Memory) or computation
characteristics (Accuracy expected).

Resource Management

Physical PlatformsFunctional Modules

Raw Data

Feature
Extraction

Sensor Node

Application
Requirements

Network
Parameters

Platform
Constraints

Gateways

Servers

Classification &
Recognition

Application

Figure 1-12.  Designing the system under constraints

Figure 1-11.  Balancing the constraints

In summary, a system designer has to efficiently map the end-to-end capability
blocks to available hardware under the performance constraints as described above. The
resource manager in Figure 1-12 needs to find the "sweet spot" of execution based on all
the constraints mentioned above.

Chapter 1 ■ Introducing the Pipeline

15

1.5 � Physical Platforms
Our final section in this chapter presents a quick summary of the physical platforms used
to execute the functions of the pipe.

Sensors/Smart Sensors: At the front end of the pipe are the sensors that collect the
data. These include cameras, microphones, gyroscopes, accelerometers, thermometers,
altimeters, air quality sensors, and many more. Some sensors can be smart in the sense
that they are able to process some of the data on the node itself. The processing could
result in smarter transmission policies to save battery or some initial processing; or
trigger some action on the sensor nodes based on the nature of the data captured.

Gateway/Router: The gateways and routers comprise the intermediate platforms in
the pipeline. They serve two very important roles in the end-to-end pipeline.

	 a.	 Routers and gateways serve as intermediate platforms with
more compute resources than the sensor nodes but are much
closer in terms of network distances than high-powered
servers. This property makes it possible for many applications
to take advantage of the compute proximity of these
intermediate platforms for low-latency and low-overhead
functions executions.

	 b.	 These intermediate notes act as aggregation points for data
being transmitted from various sensors. In addition to being
the relaying point for the collected data to the cloud-based
servers, these platforms are the first in the pipeline to have
the ability to cross-correlate data from multiple sources. If
resources permit, the intermediate platforms can work with
data from multiple sources to determine context and reduce
data redundancies before transmission to the servers. The
routers and gateways also keep track of the nodes connected
to them and transmit, configuration, and node management
commands needed.

Cloud/Server: The servers comprise what is known as the back end of the pipe.
The back end is also referred to as the “cloud.” The cloud is generally well-equipped
with high-capacity wall-powered servers capable of high-compute cycles, as well
as large memory banks. The cloud is the appropriate place for heavy computation.
The disadvantage of executing workloads at the cloud have to do with network-
introduced latency. Real-time applications may not be able to tolerate the delays in
getting responses over the network from servers. So servers are generally suited for
offline batch processing like analytics. Knowledge representation and query/response
processing on knowledge databases are some of the typical functions carried out on
the servers.

Chapter 1 ■ Introducing the Pipeline

16

1.6 � Summary
In this chapter we introduced a high-level overview of the process to convert data
collected by the sensors into actionable information through recognition. We touched
upon how data transforms through the recognition pipeline and different operations
performed on the data. We also talked about practical considerations to implement
such processing pipelines on real physical systems. Chapter 2 will dig deeper into these
operations with specific examples.

1.7 � References
•	 World Wide Web (W3C) Consortium, Semantic Web Standards

(https://www.w3.org/standards/semanticweb/)

•	 Institute for Human and Machine Coordination
(https://www.ihmc.us/)

http://dx.doi.org/10.1007/978-1-4302-6593-1_2
https://www.w3.org/standards/semanticweb/
https://www.ihmc.us/

17© Omesh Tickoo and Ravi Iyer 2017
O. Tickoo and R. Iyer, Making Sense of Sensors, DOI 10.1007/978-1-4302-6593-1_2

CHAPTER 2

From Data to Recognition

The process of recognition in the digital world begins with sensors that capture raw data
about the physical world. In this section, we will focus on three types of sensors (inertial,
audio, and visual) to understand how these are used and how data from these types of
sensors can be recognized for different purposes. Let’s start by considering a few different
usage scenarios in mobile, wearable, and IoT deployments. Mobile Devices: Today’s
mobile devices have many sensors to understand user context and behavior, and enable
personalized interaction. Figure 2-1 shows a few example sensors in mobile devices and
the type of data they provide. Inertial sensors enable understanding the movement of the
phone along different axes including acceleration, rotation, etc. Audio sensors enable the
phone to hear sounds such as a question from the user. Visual sensors enable the phone
to capture pictures and videos that may provide a better understand of location or objects
in the vicinity.

It should also be noted that the combination of these sensors can provide multi-
modal recognition, providing even richer contextual data. For example, combining audio
and visual sensors can provide a better understand of the activity in the scene. Using a
visual sensor, one can see a kid and adult in a scene that may indicate an adult teaching a
child. Adding audio sensing to the context gives additional information that the activity is
singing as opposed to talking for example.

Wearable Devices: Much like mobile devices, wearable devices also employ similar
sensors but now have the ability to determine the user’s movement and audio/visual
focus and interaction, potentially from a first-person perspective (e.g., head-worn
devices). Figure 2-2 shows types of usages that such wearable sensors can be used for.

Inertial Sensors

Audio Sensors

Visual Sensors

How is the phone moving?
What is it currently being used for?

Can I answer a question from the user?
What are the sounds in the background?

What does the scene represent?
Where am I within an indoor location?

Figure 2-1.  Example sensor usage from mobile phones

Chapter 2 ■ From Data to Recognition

18

IoT devices: While similar sensors may be used in IoT devices, a key difference
with IoT devices is that they are typically looking at a scene and a collective rather than
focused on personalized scenarios from a user point of view. As an example, IP cameras
are used for monitoring residences (homes) as well as road intersections and traffic.
Here, the cameras are generally static or move in limited range, so the use of audio/visual
sensors is the focus instead of the inertial sensors. The visual sensors provide the ability
to understand scene changes, as well as identify the number of cars or people in the
vicinity. The audio sensors add additional information by providing information such as
significant anomalies in sound (like an accident on the road or a window break-in in the
home). Figure 2-3 illustrates this usage.

Again, the use of multi-modal (audio + visual) recognition also helps significantly in
these cases, since we can correlate accidents and home break-ins using both sounds and
visual clues simultaneously.

The rest of this chapter is organized as follows. We will start by looking at the sensor
types in more detail and then go into depth on the recognition techniques for each of
these sensor modalities and associated usages.

2.1 � Sensor Types and Levels of Recognition
As mentioned above, there are multiple types of sensors, ranging from inertial to
proximity/location to audio/visual. In this section, we will introduce three such sensors
(inertial, audio and visual) and describe how they generally work.

Inertial Sensors

Audio Sensors

Visual Sensors

What is the user doing?
Running, walking?

What place is the user in? Home? bar?
Can I answer his question?

What is the user looking at?
Can I recognize the activity & guide it?

Wearables

Figure 2-2.  Example sensor usage from wearables

Audio Sensors

Visual Sensors

Can we determine activity & presence?
Are there any anomalies (large sound, etc)?

Surveillance of residence or road traffic
Any anomalies (break-in, accidents, etc)?

IOT
Monitoring

Figure 2-3.  Example sensor usage for IoT

Chapter 2 ■ From Data to Recognition

19

2.1.1 � Inertial measurement unit
The accelerometer is the best place to start understanding inertial measurements. An
accelerometer essentially measures the force (proper acceleration) along each axis. Typically,
such devices are referred to as 3-axis accelerometer since they provide force along x, y and
z-axes. A gyroscope helps determine orientation by measuring rotation across a given axis.
Figure 2-4 provides an illustration of the accelerometer and gyroscope data capture. The two
together can provide acceleration and orientation and may be referred to as a 6-axis sensor.
Depending on the usage model, data from these sensors are typically captured at rates
ranging from few Hz to KHz. Raw data from an accelerometer/gyroscope is typically noisy
and the use of filters is common to ensure that these are smoothened based on multiple data
points. Such sensors can be applied for a wide variety of use cases, examples below:

•	 Understanding of position/orientation helps mobile phones
today re-orient the screen in portrait or landscape mode and
reverse direction as required.

•	 These sensors also enable simple gestures to be recognized based
on buffering continuous data and looking at the change in force
and orientation. These gestures could be as simple as “shake” vs.
“roll” vs. a “circle” motion along a certain axis.

•	 Sensors are also used for navigation purposes but are relational
since they provide force in a given direction but do not provide
absolute location in any field. Typically, this approach is known as
dead reckoning and requires other sensor information to ensure
that there is not a significant drift caused over time in the relative
positioning due to the noisy sensor data.

2.1.2 � Audio Sensors
The typical audio sensor used in most devices is a standard microphone. Microphones
convert sound to electrical signals and are prevalent in many applications ranging from
the typical public addressing systems to movies to laptops to mobile, wearable, and IoT
devices. In this section, we primarily focus on the microphones used in lower-end devices
for IoT and wearable applications. Most of the microphones used in these devices are

x

y

z

x

y

z
Figure 2-4.  Intro to accelerometer, gyroscope and IMU

Chapter 2 ■ From Data to Recognition

20

MEMS (microelectromechanical systems) sensors and are likely to be analog or digital.
The output of the microphone is typically pulse-density modulated (PDM) or pulse code
modulated (PCM) and data is captured from 4-bit to 64-bit and can be tuned for signal-
to-noise ratio and quality of the capture. The typical frequency response of microphones
range from 20Hz to 20KHz. To improve the quality of the recording and recognition,
sometimes two or three microphones are used in mobile phones, for example. This
allows for processing the data from each of these microphones and reducing the noise to
deliver higher quality output (e.g. voice clarity when making a phone call).

Audio sensors are used for not only capturing and recording content, but also
for audio classification and speech recognition (see Figure 2-5). Here are some of the
predominant usage scenarios for single or multiple microphones in mobile, wearable,
and IoT systems:

•	 Audio classification: A common IoT use case for microphones
is to classify the environment that the sound was captured in.
For example, capturing audio every so often from a microphone
in a kitchen can provide information on what type of activity is
currently going on—idle, dishwashing, water running in the sink,
cooking, etc. Researchers are using machine listening techniques
such as this to go as far as to disambiguate the different noises in
the background. For example, audio captured from a phone could
provide information about not only the foreground human voice
but also what is happening in the background.

•	 Voice Activity detection: Another common use case is voice
activity detection. Here the focus is on attempting to determine
whether there is voice in the captured audio. This is helpful
when a phone or other device is completely off except for the
microphone that is capturing audio at low rates. Once there is
voice activity in the audio, then the audio subsystem is powered
on and more processing (as described below) is done.

•	 Speaker recognition: Speaker recognition, sometimes also
referred to as voice recognition, attempts to determine who is
speaking. This can be useful to identify the speaker in an audio
transcript or identify the speaker as part of an authentication
approach. When used as part of an authentication approach,
it is important to differentiate between speaker identification
(identifying one amongst multiple speakers) and speaker
verification (determining that a specific speaker whose signature
has been captured before was the one who spoke).

•	 Keyword recognition: Keyword recognition is probably the
simplest form of speech recognition where the focus is to ensure
whether a particular word was uttered. Keyword recognition
can be speaker-dependent (trained for a particular speaker) or
speaker-independent (generally applicable for all). Keyword
recognition can also be generalized to keyphrase recognition and
both are typically used as triggers for additional activity such as
starting a session of commands or bringing up an application.

Chapter 2 ■ From Data to Recognition

21

•	 Command and Control: Command and control refers to using a
small set of phrases in speech recognition. For illustration, this
could include a set of commands to control a toy car such as
“move forward,” “move backward,” “go faster,” “go slower,” “turn
right/left,” etc.

•	 Large vocabulary continuous speech recognition (LVCSR): LVCSR
and CSR in general refer to the continuous recognition of speech
as it is fed into the speech recognition system. This typically
involves a moderate to large vocabulary that is recognized. Of all
of the above, this is the most challenging and computationally
complex speech recognition problem and there have been a
number of advances in this area recently enabling reduced error
rates and better general usage.

Building on the above techniques, applications that are more interesting and
capabilities that may be of potential interest to the reader are natural language processing
and language translation capabilities. These capabilities are now emerging in different
market solutions.

2.1.3 � Visual Sensors
The most common visual sensor is the camera. Cameras are well understood since
they have been around for ages for photographic purposes. In this book, we focus on their
use as a visual sensor to recognize what a device can automatically see, understand and
act upon.

Raw output
PCM
PDM

Voice Activity Detection
(human vs non-human)

Sound Classification
(human? Music? Bar/office?)

Keyword Detection
(trigger word or phrase)

Command and Control
(Short phrases that cause activity)

Continuous Speech Recognition
(Dictation, Translation, etc)

Natural Language Processing
(Words, Grammar & Meaning)

Frequency

Data Width

(Quality & Human Perception)

(Quality & FG/BG Spectrum)

Figure 2-5.  Audio sensors and recognition capability examples

Chapter 2 ■ From Data to Recognition

22

Unlike inertial and audio data, visual data introduces a spatial dimension to the data,
since it can be 2D or 3D in nature. A camera can be used for instantaneous 2D capture (still
image) without any temporal information, or as part of a video capture with rich temporal
data capturing multiple frames over time. Generally, data can be captured at extremely
low fidelity (e.g., QVGA that is 320x240 as a still image or at few frames per second) to high
fidelity (e.g. HD and 4K at 30 or more frames per second). The capture rate depends on the
usage model that needs to consider whether human consumption (as in replay) is the key
requirement or whether only machine recognition of some visual aspect is sufficient.

Visual recognition can be used for many different purposes ranging from object
recognition, face recognition and scene recognition to similarity/anomaly detection,
understanding motion or scale, and video summarization. Some examples of these are
provided in Figure 2-6 and are listed below for illustration:

•	 Object Recognition: Object recognition refers to the basic idea of
identifying objects in an image and potentially matching them to
a pre-existing database of objects that have been captured before.
For example, an augmented reality application can identify a
monument or tourist attraction in an image and provide additional
information about this object to the viewer. Similarly, an object in
a retail store can be recognized and additional information about
health, price, and content can be provided to the user.

•	 Face recognition: Face recognition includes detection of a face
in an image as well as matching that face against a database
to label the face accordingly. Face detection is useful by itself
for digital photography to help the user take a better picture.
Face recognition is useful for many purposes ranging from
authentication (logging into a platform) to social networking
applications (such as Facebook).

•	 Gesture recognition: Gesture recognition refers to the recognition
of static poses or moving gestures either specific to the hand/
arm or the human body. Recent game consoles commonly use
examples of these where a player uses his hands and entire body
to interact with the game. Static poses are easier than dynamic
gestures since it generally involves processing a still image and
matching it against a pre-existing set of captured still gestures.
Gesture recognition can also be user-dependent or user-
independent, where the former requires the system to be trained
for a specific user whereas the later builds in enough modeling to
accommodate for any arbitrary user.

•	 Scene recognition: Scene recognition is extremely complex and an
ongoing research problem. The simplest form of scene recognition
is to take an entire scene and match it against known ones. A
moderate form of scene recognition involves identifying multiple
objects, faces, and people in an image and using that information
to determine the likely activity or context. The more complex form
of scene recognition requires the system to differentiate two scenes
accurately despite similar objects being in the same two scenes.

Chapter 2 ■ From Data to Recognition

23

•	 Similarity/Anomaly Detection: Anomaly detection is a common
challenge in visual recognition especially in scenarios where
cameras are used for surveillance, including home monitoring
as well as traffic monitoring. Here, the key is to identify if any
anomaly occurred which should trigger additional analysis. Such
solutions focus on identifying a set of known signatures statically
or dynamically and thereby determining if any significant changes
in the frame have occurred since.

•	 Video Summarization: Video summarization is a meta application
that can use many of the above techniques in order to summarize
the salient aspects of a long video stream. This includes scene
changes, key scenarios and objects/characters that are the focus
of the video. Video summarization enables the user to jump to
specific parts of a video or quickly identify which video is being
looked for amongst a set of existing videos.

It should also be noted that the inertial, audio, and video sensors and recognition
techniques can be used in conjunction for multi-modal recognition. In the descriptions
below, we will start by studying the recognition techniques for each independently and
then show examples of combining them together.

2.2 � Inertial Sensor Processing
This section presents a brief overview of how sensors are used to measure device motion
and inclination. As mentioned earlier, the inertial sensors can also be used to recognize
certain gestures. We focus on inertial sensors. Specifically, the goal is to provide a high-level

< QVGA
to > HD

Face Recognition
(Detect/recognize human faces)

Object Recognition
(Detect/recognition objects)

Gesture Recognition
(Detect/recognize human gestures)

Scene Recognition
(Recognize overall activity/scenario)

Anomaly Detection
(Recognize significant changes)

Video Summarization
(Ability to summarize salient events)

2D, 3D

Frame Rate

(Need for Depth Perception)

(Quality & Motion)

Figure 2-6.  Visual sensors and usages

Chapter 2 ■ From Data to Recognition

24

functional overview of MEMS (Micro-Electro-Mechanical Systems). We will not be diving
into the details of the construction of these sensing systems but will focus on the data
understanding part.

Device motion can be measured through two fundamental ways:
Measuring motion through external device observation: Cameras outside a device

can observe and map the device behavior.

•	 Pros: Very useful in controlled environments to measure
movements of somewhat generic objects

•	 Cons: Can only work in defined areas, dependent on lightening, etc.

Measuring motion through internal device instrumentation: This involves
instrumenting the device with onboard sensors that measure the motion from the device
itself.

•	 Pros: Can measure fine motion and tilts almost universally

•	 Cons: Need to instrument every device

We will use the second case above as an example for this section. This choice was
made for two main reasons. First, the onboard sensor-based method is prevalent in
devices ranging from wearables to toys, smartphones, and airplanes. Second, we are
covering the visual recognition and processing in detail in this chapter already. Therefore,
we will dedicate this session to introduce a new type of sensor and its processing pipeline.

2.2.1 � Defining Motion and Degrees of Freedom
Before we understand the processing pipe for inertial sensors, we define the Degrees-
Of-Freedom (DOF) available to a device. We define 6 such degrees as enumerated in
following two categories:

•	 Translational Degrees of Freedom: 3 such degrees of freedom
exist, namely a device can move front-back, left-right or up-down.

•	 Rotational Degrees of Freedom: 3 such degrees of freedom exist,
namely pitch, roll, and yaw.

Figure 2-4 shows the degrees of freedom in a pictorial fashion.
An Inertial Measurement Unit (IMU) consists of the following two common devices

to measure the motion:
Accelerometer: An accelerometer is a device that is “supposed” to measure

acceleration. In practice, the device reacts to inertial force. Main uses for the inertial
sensor are to measure translational acceleration and inclination with respect to the earth
“plane.”

Gyroscope: A gyroscope is mainly used to measure the motion along an axis. This
includes the pitch, roll, and yaw motions in Figure 2-4. The motion is measured as a “rate
of change” of the angle along an axis.

Chapter 2 ■ From Data to Recognition

25

Typically, to interface the IMUs with the rest of the device system, an Analog-to-
Digital Converter (ADC) is used that converts the generated voltage to a bit pattern
(number). This number gives a measure of motion or inclination (along one or more
axes). Figure 2-7 shows a simplistic view of the IMU processing pipe.

2.2.1.1 � Accelerometer
An accelerometer detects the force in the opposite direction from the actual acceleration
vector. This force is also described as the fictitious force or inertial force. The only place
where an accelerometer will not experience any measured force is in space of while going
through a free fall. Thus, it is important to have a measure of “resting force” or the “resting
measurement” from the accelerometer. This force equals the force of gravity that is being
experience by the device at all times. Typically, each measure of the force will need to
adjust for gravity in order to extract the actual acceleration of the device relative to its
position on earth.

We will demonstrate the working of an accelerometer by concentrating on a single
axis accelerometer device. Assume that the accelerometer measures force along the
z-axis. An analog accelerometer measures the inertial force as a shift in the voltage output
by the device. Typically, to interface the accelerometers with the rest of the device system,
an Analog-to-Digital Converter (ADC) is used that converts the generated voltage to a
bit pattern (number). This number gives a measure of inertial force in a given direction
(along an axis). The following definitions come in handy to understand the accelerometer
behavior:

Reference Voltage/ADC reading: This is the measure of resting force as described
above. The constant gravitational force can result in measurements on a different axis
based on the IMU and device orientation, as we will find out shortly. Material and design
defects can also contribute a non-zero value to the resting reading of such devices. We
need to compensate for this measurement when we use the accelerometer for any real
world usages.

Sensitivity: The sensitivity of the accelerometer refers to the change in voltage
(or ADC output) per unit of acceleration measured. Many systems use the acceleration
due to gravitational force (g) as the unit of acceleration. Thus, the sensitivity can be
measured in volts/g.

Figure 2-7.  Recognizing IMU data

Chapter 2 ■ From Data to Recognition

26

Given the definitions above, the Figure 2-9 shows the process of calculating
acceleration along a single axis. For simplicity, we assume the vertical axis as the axis of
measurement so that the gravitational force acts on the same axis and can be accounted
for by a simple subtraction. We shall soon see how to deal with a more general case.

Multi-axis Accelerometers: In case of accelerometers with multiple axis
measurement capability, the device can measure acceleration along each of the defined
axes. For example, a 3-axis accelerometer can measure inertial force/acceleration along
the x, y, and z axes. It is important to note that any acceleration measured by the device
is reported in the form of its x, y, and z components as shown in the Figure 2-10. In
Figure 2-10 the direction and magnitude of force (acceleration) is denoted by the vector
D. Accelerometer outputs will report the magnitudes components in x, y, and z direction
denoted by the projections Dx, Dy, and Dz, respectively. To get an accurate measure of
the magnitude and direction of the acceleration, one needs to know the orientation of
the axis as defined by the manufacturer. Fortunately, one other property of multi-axis
accelerometers comes to our rescue in such situations.

Figure 2-9.  Single axis accelerometer operation

Figure 2-8.  Accelerometer linear acceleration measurement axis

Chapter 2 ■ From Data to Recognition

27

Measuring inclination: The fact that multi-axis accelerometers measure gravitational
force at rest can be used to calibrate the accelerometer. At rest, the accelerometer
measures the inclination of the device with respect to the ground. With an axis perfectly
aligned in the vertical direction, the other two components of the measured voltage
(or ADC values) will be zero. Thus, aligning the device in multiple positions and
taking the ADC readings from these positions can pinpoint the exact orientation of the
accelerometer axes.

2.2.1.2 � Gyroscope
Accelerometers measure the translational acceleration (up-down, right-left, front-back).
There are 3 more degrees of freedom a device can have in its movement. These relate to
angular motion. Specifically, these are termed as pitch, yaw, and roll. These are shown in
the Figure 2-4. A gyroscope measures the angular motion in terms of degrees-per-second
about the x, y, and z axes. In gyroscope speak, we refer to the measure of each degree of
freedom as a channel. Thus, a 3-channel gyroscope can measure all of the 3 components
of angular motion (pitch, roll, and yaw).

Similar to the accelerometer discussion above, the Gyroscope outputs are analog
voltages converted to ADC digital outputs. The voltage changes are linearly related to
the rate of change of angle around a given axis. After processing the ADC output, the
gyroscope readings are generally reported in degrees/second around specific axis. Similar
to the accelerometer discussion we define the following:

Reference Voltage: The gyroscope reference voltage refers to the ADC “step size.” In
simplest terms, it defines the amount of voltage it takes to increase the ADC output by
one unit.

Figure 2-10.  3-Axis accelerometer operation

Chapter 2 ■ From Data to Recognition

28

Zero Rate Voltage: In the case of a gyroscope, this voltage is measure of inherent bias
in the device. Ideally, a device at rest should report a reading of zero on all the gyroscope
channels. However, the material and design defects lead to a non-zero resting reading on
almost all such devices. This reading should be subtracted from the measurements to get
the right angular motion measurements.

Sensitivity: The sensitivity of the gyroscope refers to the change in voltage (or ADC
output) per unit of angle changes measured. The gyroscope sensitivity can be measured
in millivolts per degree per second.

In line with the accelerometer processing, the gyroscope sensor-processing pipeline
is shown in the Figure 2-11.

2.2.1.3 � Combining the accelerometer and gyroscope readings
To get the accurate measurement of device inclination and motion for all 6 DOF, we
combine the readings from the accelerometer and the gyroscope. The main complication
in getting to the motion and inclination estimate from various ADC readings is to confirm
the orientation of the IMU axis. Usually the manufacturer provides this information as
part of IMU datasheets. However, the placement of IMUs in various devices can differ,
and a user needs to calibrate the device before making sense of the ADC measurements
for accelerometer and gyroscope. Usually the calibration step involves moving the device
about various orientations (vertical, horizontal) and using the resulting readings in linear
projection equations to solve for axis orientations.

2.2.1.4 � Gesture Recognition Using IMU
Combined accelerometer and gyroscope readings from a device can be used to recognize
specific device gestures. For example, a phone equipped with an IMU can recognize a
circular gesture through the IMU. This gesture can then be linked to different actions,
like making specific sounds turning the camera ON, etc. Many modern smartphones use
the IMU to allow a user to flip a phone face down for declining a call or stopping music
playback. Modern toy manufacturers are building robotic toys that use inertial sensors
to plan motion and in conjunction with other sensors like cameras, to react to human
interactions. There will be more on multi-sensor integration in the next chapter.

Figure 2-11.  Gyroscope processing

Chapter 2 ■ From Data to Recognition

29

2.3 � Audio Processing and Recognition—From
sound to speech

As described in the previous section, recognition using audio sensors (i.e., microphones)
is growing in popularity as more phone/wearable/IoT devices start to implement these
to capture good quality audio data. In this section, we will go into a bit of depth in
audio recognition is accomplished from audio classification to large vocabulary speech
recognition. To start with, a simple pipeline of audio and speech processing stages is
illustrated in Figure 2-12.

Let’s walk through each of these stages and examine the audio recognition
techniques used. Before we do that, it should be noted that the first step in processing
audio for recognition is to process the audio signals and extract key features. The most
common features extracted from audio are known as MFCCs (Mel frequency cepstral
coefficient). There are many different ways in which MFCCs or variants thereof can be
computed. The Mel frequency cepstrum (MFC) represents the power spectrum of the
sound and the coefficients (MFCCs) are calculated by first taking windows of the audio
sample, taking the Fourier transform, computing the power spectrum, mapping on to the
mel bin, computing the log of the energy, and performing a discrete cosine transform to
determine the amplitudes. More details on MFCCs can be found in the literature (such as
one by K. Prahlad et. al. in references).

2.3.1 � Audio Classification
We start with audio classification (see Figure 2-13) which is typically focused on non-
human sound and attempts to understand and label the sounds captured. The traditional
approach for audio classification is to identify key features such as MFCCs that may help
separate the sounds into different classes and then use machine learning techniques to
train/classify them. More recent techniques have attempted to add additional features
specific to audio classification that help improve the accuracy. Some of these techniques
may be content-specific, but there are others that are more generic, such as the addition
of temporal fluctuations and roughness/loudness/sharpness as described in the
“Features for audio classification” by Breebart et al. in references. Once the feature set is
determined, standard machine learning classification techniques can be used. Standard
classification techniques include nearest neighbor algorithms, Bayesian algorithms,
Gaussian mixture model (GMM) and others. More recently, neural networks are used to
enable supervised and unsupervised approaches to audio classification.

Audio
Capture

Audio
Classification

Noise
Reduce/Cancel

Voice Activity
Detection Keyword

Recognition

Speaker
recognition

LVCSR

Command &
Control

NLP

Speech to Text

Figure 2-12.  Stages of audio/speech recognition

Chapter 2 ■ From Data to Recognition

30

2.3.2 � Voice Activity Detection
Voice activity detection (VAD) refers to the detection of human sound in the audio
capture. Figure 2-14 illustrates the general VAD processing flow. VAD is typically used as a
trigger to move into the next phase of speech recognition such as keyword or command/
control. There are several different types of VAD implementations in the literature and
commercial solutions. Examples include the use of simple filters, such as recognizing
pitch, to more sophisticated approaches that use GMM (Gaussian mixture model),
statistical models and energy-based VADs. One of the key challenges in VAD is the level
of noise in the audio capture. As a result, noise reduction and cancellation techniques
typically go hand-in-hand with VAD solutions. In Man-Wai Mak et al. from references,
the authors show that noise reduction and elimination of background signals are key
to improving accuracy of VAD solutions. Ultimately, the voice activity detector can be
used for reducing the amount of processing that needs to be done for speech recognition
since it acts like a filter. As a result, it is important to optimize the solution to reduce
false negatives (indication of lack of human voice when it is present) as opposed to false
positives (indication of human voice where is there is none).

2.3.3 � Automatic Speech Recognition (ASR)
Automatic speech recognition or ASR refers to the ability for a computer system
to recognize human speech and convert it into text. ASR comprises of capabilities
ranging from keyword recognition (KR), command and control (CC), and large

Feature 1

Feature 2

Feature N

Machine
Learning

Classification

Type of
Sound

Figure 2-13.  Audio classification example

Noise Elimination
“Backgrounds” Voice Activity

Detection
(pitch, GMM, etc)

Voice / Non-voice

Training on
“silent” samples,

non-voice & voice

Figure 2-14.  Voice activity detection example

Chapter 2 ■ From Data to Recognition

31

vocabulary continuous speech recognition (LVCSR). KR is typically used as a trigger
to wake up a system whereas CC as well as LVCSR is used as part of a session to either
control an activity or do dictation of a text passage for email or other purposes. While
keyword recognition can be implemented in a more custom manner, the general
techniques for KR, CC, and LVCSR can be similar with the differences largely in the
size of the vocabulary and grammar comprehension. Figure 2-15 shows the general
speech recognition processing flow. Speech recognition can be implemented to be
speaker-independent, where any speaker can interact with the system, or speaker-
dependent where the system trains based on a specific user or set of users. Common
speech recognizers or toolkits that are used for learning and exploration include CMU
Sphinx (http://cmusphinx.sourceforge.net/) and Kaldi (http://kaldi-asr.org/).
Customized versions for specific targets such as mobile devices include PocketSphinx
(http://www.speech.cs.cmu.edu/pocketsphinx/).

Traditional approaches to speech recognition are based on the use of GMMs
(Gaussian Mixture Models) and HMMs (Hidden Markov Models). The key problem being
solved is to figure out the most likely sequence of words based on the incoming sequence
of acoustic observations. For example, the initial implementations of speech recognition
employed the following key processing phases:

•	 Feature Extraction: The incoming speech signal is broken into
frames of 10ms each. Each 10ms sample is represented by a
feature vector that comprises of 39 components.

•	 GMM scoring: To determine the senones in the speech and
identify the best match, GMM scoring is performed on the feature
vectors provided.

•	 HMM processing: The model of the speech requires HMM
processing to determine the most likely sequence of sounds and
words based on the provided vocabulary (lexical models and
language models).

Feature
Representation

Acoustic
Model

Lexical
M odel

Language
Model

Speech
Processing

Keywords Command
and Control

Continuous
Text

Figure 2-15.  Automatic speech recognition

http://cmusphinx.sourceforge.net/
http://kaldi-asr.org/
http://www.speech.cs.cmu.edu/pocketsphinx/

Chapter 2 ■ From Data to Recognition

32

Until recently, most (LVCSR) speech recognizers were based on the GMM+HMM
approach. However, the performance of speech recognizers was not adequate to achieve
mass adoption at high quality. Performance metrics for speech recognizer include
word error rate, speed and overall accuracy. In order to address these, recent speech
recognizers started exploring the use of weighted finite state transducers (WFST) and
deep learning (neural network) for speech recognition.

Neural networks are growing in importance for both speech and vision processing.
Deep neural networks are essentially artificial neural networks with many hidden layers
between the input and the output layer. DNNs replace the use of GMMs in speech
recognition flow (see Figure 2-16), moving it from GMM+HMM to DNN+HMM solutions.
Most commercial offerings in speech recognition these days are based on deep neural
networks because it improves the word error rate and overall accuracy of the system.

Weighted Finite State Transducers are used to represent HMMs but provide additional
information that could speed up the processing, since each edge in the directed graph
is labeled with inputs, outputs, and weights. As a result, WFST is a rich mathematical
framework that has uses beyond HMMs in natural language processing as well.

2.3.4 � Natural Language Processing (NLP)
NLP involves taking text from speech-to-text solutions or written text and trying to
extract information or gain deeper understanding of the text in an automated fashion.
The first step in NLP is to understand tokenize the text by understanding sentence
construction and identifying word boundaries. Another important step is to use named
entity recognition (NER) to categorize specific words into more general classes where
appropriate. Figure 2-17 shows an example basic flow of NLP. During this process,
individual words can also be assigned weights in relation to the type of NLP analysis
being accomplished.

Extracted
Features
(MFCC)

NN for Scoring & Classification

Words

In
pu

t L
ay

er

Ou
tp

ut
 L

ay
er

Hidden Layer

Figure 2-16.  Using deep neural networks in ASR

Chapter 2 ■ From Data to Recognition

33

Once these initial processing phases are completed, machine learning techniques
are applied to analyze the key aspects of text. For example, the emotion of the text
(positive, negative, etc.) can be determined by analyzing the words in the text. The topic
of the text can be identified by classifying the words in the text with the most likely topic
association. The nature of the question asked in the text can also be determined for usage
models such as what Siri and Cortana are targeted at.

In the above section, we introduce the key aspects of audio/speech recognition,
ranging from audio classification to voice activity detection to automatic speech
recognition to natural language processing. We hope the overview of each of these areas
provides an understanding of the key usages, the key components or algorithms used,
and the considerations when developing such techniques. While we did not go into depth
into the algorithms themselves, the reader should be able to identify which algorithms
need further examination depending on the usage model of interest and the focus of the
exercise.

2.4 � Visual Processing and Recognition
The visual recognition starts with a basic camera sensor that can capture both still images
as well as video. Visual recognition, as described earlier, can include object recognition,
gesture recognition, face recognition, scene recognition, anomaly detection and video
summarization. In general, visual recognition follows the following basic process: feature
extraction, descriptor generation and matching. Features are extracted from the image,
and then they are summarized as a descriptor vector, following which they are compared
against a pre-existing database of vectors for the recognition of interest. We will describe
this process with some examples for each of the recognition categories stated above.

2.4.1 � Object Recognition
Object recognition refers to the ability to detect and recognize objects in an image or
video. Examples of object recognition range from identifying a cereal box or bottle of
wine in an image to identifying a historic monument in a tourist spot. The overall usage
may be counting the number of items on a retail shelf (cereal boxes or wine) or providing
more information (augmenting the reality) to the tourist pointing the phone camera at
a monument. While we will describe the typical flow of object recognition below from

Speech
to Text

Segmentation
Parts of Speech

Named Entity
Recognition

Syntactic
Analysis

Semantic
Emotion

Language
Understanding

Figure 2-17.  Natural Language Processing example

Chapter 2 ■ From Data to Recognition

34

a single object point of view, note that the same applies for identifying multiple objects
with clustering and bounding techniques included for this purpose.

Figure 2-18 (from S. Lee et al. in references) shows a typical object recognition flow
for identifying an object in the query image and recognizing it by matching against a
database image. The basic flow includes (a) feature detection (also referred to as interest
point detection), (b) descriptor generation and (c) matching.

Many algorithms have been developed and optimized over the years for object
recognition. These include SURF (speed up robust features) (reference by H. Bay et al.),
SIFT (scale invariant feature transform, reference by D. G. Lowe et al.), ORB (reference
by E. Rublee et al.), FAST (reference by E. Rosten et al.), BRIEF (reference by M. Calonder
et al.), and BRISK (reference by S. Leutenegger et al.), to name a few. These algorithms
provide the ability to identify feature points in the image that uniquely describe the
object(s) and then descriptor generation approaches to describe the region surrounding
the feature point as part of a descriptor vector. Initially, algorithms were designed
for basic functionality and accuracy. However, with the ubiquity of mobile devices
integrating cameras, these algorithms optimized for reduced computation complexity,
increased speed, scale invariance, rotation invariance and noise resistance. The reader
is referred to each of the papers for the algorithms to understand the specifics of the
algorithms better. For illustrative purposes, an example flow is shown in Figure 2-19.

Figure 2-18.  Object recognition flow example (S. Lee et al.)

Chapter 2 ■ From Data to Recognition

35

Once the features/descriptors are determined, the next step is to match it to
recognize the object. A matching database holds previously captured descriptor vectors,
and matching the query descriptor vectors to the database provides the ability to get
the nearest match or set of matches as the output. Typically, this match is done by
either brute force (l1, L2 distance calculations) as shown in Figure 2-20. In addition to
brute-force, ANN (approximate nearest neighbor) approaches are also very common,
especially as the size of the database increases significantly. There are fast libraries for
ANN computations, such as FLANN (http://www.cs.ubc.ca/research/flann/), that are
commonly used for performing these computations at maximum speed and efficiency.

2.4.2 � Gesture Recognition
Gesture recognition refers to the ability to identify and recognize hand poses, dynamic
hand gestures or similarly body poses or dynamic body actions. Gestures have recently
become more popularized by the Kinect (http://www.xbox.com/en-US/xbox-one/
accessories/kinect) as it is used commonly in game consoles like the Microsoft® Xbox
(http://www.xbox.com/en-US/). Figure 2-21 shows the steps in identifying hand pose
and facial features using skin color-based segmentation. In this section, we will start with
the basic hand pose recognition for describing the process. The simplest form of hand

Frames
Integral
Image

Hessian
Matrix

Haar-
Wavelet

Multiple
octave
layers

Descriptor
Generation
for interest
point

Figure 2-19.  Object recognition flow (e.g., SURF components [references by S. lee et al., H.
Bay et al.])

Figure 2-20.  Brute-force match using L1/L2 distance calculations (S. Lee et. al.)

http://www.cs.ubc.ca/research/flann/
http://www.xbox.com/en-US/xbox-one/accessories/kinect
http://www.xbox.com/en-US/xbox-one/accessories/kinect
http://www.xbox.com/en-US/

Chapter 2 ■ From Data to Recognition

36

pose recognition is to identify whether there is a hand in the image (detection) and then
identify the specific hand pose (recognition).

Hand detection is typically accomplished using two different types of mechanisms:
(a) skin color of the hand and (b) model describing the typical hand shape. There are
many algorithms that look at the different colors in the image and try to identify whether
there is a hand in the image and thereby segment that part of the image to do more
processing for recognition. Color spaces that are usually employed when doing skin color
analysis includes RGB, HSV, YUV and YCrCv. Sometimes hybrid approaches are also used
considering multiple color spaces. The key challenge in doing color-based analysis for
hand identification is the nature of the image background. Sometimes the background
color may be similar to skin color. Another key challenge when using skin color is that
human skin color varies from person to person. So making the approach agnostic to the
user is also somewhat challenging. A possible solution to this problem is to make the
solution user-dependent, but that imposes the requirement that the user has to train
the system through an enrollment process. Most solutions prefer the least amount of
enrollment/user training required.

Figure 2-22 shows an example of the hand segmentation scheme using skin color
analysis. As shown in the figure, the final answer is based on both segmentation of
the skin and then comparison to a known model of hand gestures, also known as the
vocabulary. The vocabulary in this case is relatively easy to create since it only involves 2D
static gestures. The complexity of the solution increases as dynamic gestures are involved
and tracking is required for both detecting movement as well as depth. The Kinect, for
example, uses two cameras and an IR sensor (in its implementation) to identify hand and
body poses in 3D environments.

Figure 2-21.  Gesture recognition examples

Chapter 2 ■ From Data to Recognition

37

2.4.3 � Video Summarization
Video summarization refers to the ability to analyze a full video and summarizing it by
either (a) extracting the salient segments of the video with a small number of frames
or video snippets or (b) creating a short transcript of the video by identifying the series
of activities in the video. The usage could range from video surveillance, where the
anomalies are the salient scenes in the video, OR event summaries such as identifying
the key parts of soccer game (like the goals or the major attempts). In this section, we will
focus on the former and describe the approaches used to identifying salient portions of a
video and to potentially classify the activity.

There are multiple approaches in the literature on how to identify salient frames.
A simple way to think of it is to figure out which frames in the video best represent the
scenarios in the video while at the same time identifying just enough number of frames
unique from each other. Many approaches rely on color, motion, or other low-level
feature detectors. Some also focus on boundary detection, where a significant change
between frames indicates a potential salient event. Using these techniques, one can
identify salient frames in the video, but these may represent too many frames or too few
frames depending on how different or similar the frames are to each other.

Recent efforts have been focusing on using a combination of diversity and coverage
metrics to determine how to end with a finite number of frames in the video that
represents both sufficient coverage as well as sufficient diversity amongst each other.
One approach by S. Chakraborty et al. tries to do better by adaptively determining the
summary length as well as the frames to pick within that summary. In this paper, the
authors propose an adaptive summarization technique that poses this problem as an
optimization problem for selecting a set of sufficiently unique frames representing
the video. The optimization problem considers representativeness and uniqueness
as the two key metrics and tries to maximize both metrics to identify keyframes in an
adaptive manner. Figure 2-23 illustrates the basic idea. They compare it to a traditional
mechanisms, such as random sampling, clustering, and the use of curvature points, and
show that it is more effective.

Figure 2-22.  Hand pose detection and recognition flow

Chapter 2 ■ From Data to Recognition

38

Recent efforts attempt to consider semantic context of the video by employing
convolutional neural networks (CNNs) to identify entities (multiple objects, locations,
people, and activities) and scoring these entities with respect to their co-occurrence as
well as relation to the type of classification scenario of importance. They show that this
approach has significant potential since it is semantically more meaningful and effective.
An example flow of this video summarization technique is shown in Figure 2-24.

Overall, video summarization based on visual information is quite a challenging and
important problem and the existing literature is just getting started in providing a suitable
set of summarization schemes. We refer the reader to the papers in the reference section
of this chapter to get a better understanding of techniques in this area along with applied
usage scenarios.

2.5 � Other Sensors
There are a large number of sensors beyond the ones covered in more detail above. Below
is a summary of these sensors and their potential usages.

2.5.1 � Proximity Sensor
A proximity sensor detects the presence of an object in the vicinity without having to
touch the object. Typically, a proximity sensor is IR (infrared)-based and it works by
sensing the change in the IR field. An example of proximity sensor usage is in phones to

Figure 2-23.  Example video summarization (from S. Chakraborty et al.)

Figure 2-24.  Example video summarization using deep networks

Chapter 2 ■ From Data to Recognition

39

determine whether the phone is up against your ear due to a call in order to avoid any
accidental touches during that time. Another example is the use of a proximity sensor
in robots to determine whether it is coming close to an obstacle and therefore needs to
move around it or turn around. In addition to IR proximity sensors, wireless solutions
such as BLE and Wi-Fi devices may also be used to determine whether a device is within
the proximity of a beacon or an access point. Since this is also location related, it covered
in more detail in the next section.

2.5.2 � Location Sensor
A location sensor helps determine the geographical location of a device. The most
common location sensor is the GPS (global positioning system) sensor that is used
very frequently in navigation systems within cars as well as phones. The GPS system
communicates with the satellites orbiting around the earth and uses trilateration to
determine the location of the device that consists of the GPS receiver. This is very useful
for outdoor location, but does not work well for indoor location. For indoor location,
similar radio-based approaches can be used but with Wi-Fi access points as the
triangulation point or BLE beacons that are becoming increasingly popular.

2.5.3 � Touch sensors
Touch sensors are common these days in all wearable watches, phones and tablets, and
are even available on laptop screens these days. Touch screens serve the purpose of
allowing users to interact with screens with their finger rather than the mouse. The use
of fingers makes the experience much easier and intuitive. Touch screens can be resistive
or capacitive—the former (resistive) uses resistance between multiple layers and your
finger as the way of identifying the touch, whereas the latter (capacitive) uses the flow of
electricity between your fingers and the screen as the way of determining touch. Recent
efforts are further improving touch screen resolution by incorporating force (how far do
you press the finger) as another key input into the experience.

2.5.4 � Magnetic Sensors
Magnetic field sensors or magnetometers detect and measure the magnetic field
with different levels of sensitivity depending on the type of sensor used. A common
magnetometer is the Hall Effect sensor that changes its output voltage depending on the
intensity of the magnetic field. The Hall sensor can be used in industrial applications to
sense the presence of magnetic objects as well as measure the timing of their arrival/
departure.

2.5.5 � Chemical and Biosensors
A growing field of sensing is the use of chemical and biosensors. Chemical sensors
are used for sensing the composition of gas or liquids. These are immensely useful for
analyzing air quality and gas presence in industrial environments. Biosensing targets the

Chapter 2 ■ From Data to Recognition

40

presence of cells, protein, nucleic acid, etc. This can be used to analyze skin conditions,
for example. Use of both chemical and biosensing is becoming extremely attractive for
usages in environmental, industrial, health, and wellness applications.

2.6 � Summary
In this chapter, we reviewed three types of sensors (IMU, audio and visual) and walked
through the processing phases to process the raw sensor data and convert it into
recognized information. Through the process, we discussed the key components involved
in the processing and the many algorithms used to trade-off accuracy and computing
complexity. For example, we showed that visual processing and recognition ranges
from object recognition from a simple 2D image to video summarization across many
frames. In the coming chapter, we will discuss how these sensors can be used together for
multi-modal processing as well as how to convert recognized information into actionable
knowledge.

2.7 � References
•	 Mak, Man-Wai and Hon-Bill Yu. “A study of voice activity

detection techniques for NIST speaker recognition evaluations.”
Journal Computer Speech and Language 28 no. 1 (2014).

•	 Lee, S. , Zhang, Y. et al. “Accelerating Mobile Augmented Reality
on a Handheld Platform.” ICCD 2009.

•	 Bay, H., Tuytelaars, T. and L. Van Gool. “Surf: Speeded Up Robust
Features.” ECCV06, (2006): 427–434.

•	 Lowe, D. G. “Distinctive Image Features from Scale-Invariant
Keypoints.”Int. J. Comput. Vision, 60, no. 2 (2004): 91–110.

•	 Rublee, E., Rabaud, V., Konolige, K. and G. R. Bradski. “ORB: an
efficient alternative to SIFT or SURF.” ICCV (2011).

•	 Rosten, E. and T. Drummond. “Machine learning for high-speed
corner detection.” ECCV (2006).

•	 Calonder, M., Lepetit, V., Strecha, C. and P. Fua. “BRIEF: Binary
Robust Independent Elementary Features.” ECCV (2010).

•	 Leutenegger, S., Chli, M. and R. Siegwart. “Brisk: Binary Robust
Invariant Scalable Keypoints.” ICCV (2011).

•	 Chakraborty, S., Tickoo, O., and Ravi Iyer. “Adaptive Keyframe
Selection for Video Summarization.” IEEE Winter Conference on
Applications of Computer Vision (WACV 2015), Oct. 2015.

Chapter 2 ■ From Data to Recognition

41

•	 Prahlad, K. “Speech Technology: A Practical Introduction.”
http://www.speech.cs.cmu.edu/15-492/slides/03_mfcc.pdf

•	 Breebaart, J. and M. McKinney. “Features for audio classification.
Proc. SOIA2002, Philips Symposium on Intelligent Algorithms.”
Eindhoven, 2002.

•	 Hwangbo, M., Alan, T., Tickoo, O. and R. Iyer. “Low-complexity
HOG for efficient video saliency.” International Conference on
Image Processing (ICIP 2015).

http://www.speech.cs.cmu.edu/15-492/slides/03_mfcc.pdf

43© Omesh Tickoo and Ravi Iyer 2017
O. Tickoo and R. Iyer, Making Sense of Sensors, DOI 10.1007/978-1-4302-6593-1_3

CHAPTER 3

Multimodal Recognition

In the last chapter, we introduced processing of each type of raw sensor data independently
to realize different levels of recognition capabilities. We found that inertial sensors provide
information about movement across different axes. Audio streams can be processed not
only for sound types but also words and natural language. We also showed how to recognize
different objects, faces, activities, and more. Now we imagine what is possible if we were
able to correlate the understanding across multiple sensor types simultaneously. This is
referred to as “multi-modal recognition” and we will walk through different methods for
multi-modal recognition in this chapter.

3.1 � Why Multi-modality
Figure 3-1 introduces the benefits of multi-modal recognition using the same three
sensor types (inertial, audio, and visual) as an example.

Figure 3-1.  Introduction to multi-modal recognition

The benefits of multi-modal recognition starts with the ability to improve the
recognition in one type of modality (e.g., sound) and by using other modalities to assist
(visual). This is particularly effective when the recognition capability is either impaired,
needs clarification, or needs efficiency. For example, when you hear “turn that off,” in
order to understand what “that” implies, it is important to use the visual recognition to

Chapter 3 ■ Multimodal Recognition

44

determine what the user is pointing towards. In this case, the visual recognition provided
clarification for disambiguating the indirection “that” to a particular thing like a fan or a
light. In addition to this, it is also possible to use one modality to improve the processing
efficiency of the other. Let's consider a retail example where the user needs help with a
particular type of product. If he or she is already in the aisle and just needs to check the
price of an item, it is easy to reduce the speech processing efficiency if we are able to
reduce the lookup vocabulary to only commands that pertain to that type of usage. This is
possible by using visual cues regarding the location of the user by determining the type of
products he or she is glancing at. This type of example will be used later in this chapter to
understand the type of multi-modal recognition needed to be able to accomplish this.

Another benefit of multi-modal recognition is to use multiple modalities
dynamically depending on which one is more effective. For example, when processing a
(soccer game) video for summarization, there are parts that are visually appealing
(a powerful kick by a favorite player) and parts that are rich in sound (e.g., commentator
announcing a goal along with applause from the audience). Both modalities can be used
to better understand each video segment of interest. By considering the audio and video
recognition modalities independently first and correlating events of interest, this can be
achieved quite easily. Alternatively, the recognition can be done at a finer granularity if
there is interest in correlating the player (visually recognized) with their name (speech
recognition based on commentator audio).

It should be noted that, as humans, we handle these modalities quite naturally and
cross-correlate between them to determine context. We tend to achieve this at different
levels of granularity depending on the usage and context. For example, we can handle
sounds, movement, and visual input while driving a bike through a park, for instance.
The challenge is to achieve the same level of recognition and efficiency with computing
machines by dynamically switching between different granularities of recognition and
different levels of coupling between the different modalities as required. This is a hard
problem, but as described below, can be solved if we classify each of the types of multi-
modal recognition individually and understand their benefits and usage contexts.

3.2 � Multimodality Flavors
In this section we present different approaches and frameworks used to design the sensor
fusion solutions. We mainly cover the following three widely used approaches: coupling-
based classification, Dasarathy model, and sensor configuration model.

3.2.1 � Coupling-based Classification
Information from multiple sensor sources can be combined at various stages in the
recognition chain. For the sake of simplicity, let us consider two sensors processing
pipelines as shown in Figure 3-2. In Figure 3-2, both the processing pipes operate
independently of each other. The exact locations on each pipeline where the sensor
fusion can occur depend on various factors including the implementation complexity
and the desired accuracy for the recognition task. We define three main levels of sensor
data fusion.

Chapter 3 ■ Multimodal Recognition

45

•	 Uncoupled sensor data fusion/Semantic Fusion: The definition
refers to the case where the data fusion occurs at the last possible
stage in the respective pipelines. This usually means integration
after the recognition is done, as shown in Figure 3-3. The
advantage of this method is that the sensor fusion is simple and
can be accomplished using existing technology pipelines for
recognition. Domain experts like this approach because cross-
domain technical knowledge requirements are minimal. It is
generally very hard to find technology experts that can master
more than one sensor domain. For semantic fusion approaches,
the domain experts can work independently and the application
developers can integrate the modalities at the higher level.

Figure 3-2.  Two sensor processing pipelines

Figure 3-3.  Uncoupled fusion

•	 Loosely coupled sensor data fusion/Restricted recognition: To get
performance advantage over uncoupled sensor fusion, experts
rely on a mode that restricts the recognition search space of mode
modality based on the results from the other. In this approach,
one recognition pipe helps to set the context for the other. Once
that is accomplished, the second recognition pipe need only
perform recognition within the established context boundaries,
leading to potential savings in compute and higher performance.
Figure 3-4 illustrates this. The inter-domain expertise requirement
is minimal, as in the case of semantic sensor fusion, but the
developer does need to understand the semantic dependence of
recognition between modes.

Chapter 3 ■ Multimodal Recognition

46

•	 Tightly coupled sensor data fusion/data-feature level fusion: This
most performance-friendly model of sensor fusion allows for
virtual combination of multiple sensors in such a manner that
the combined sensors appear as a single complex sensor for most
of the application stack. As shown in Figure 3-5, the methods of
sensor integration include combining the raw data from sensors
and using a single data stream for processing. More practical
methods combine features from the sensors to produce a single
feature set for recognition and filtering. While the tight integration
provides the most performance boost for sensor fusion usages,
this method is not very popular due to the requirement for multi-
domain experts to work on data integration. Data representation
at the lower levels of stack is very sensor-specific, so experts
are needed to make sensible decisions for merging data from
multiple sources. Each sensor model has a different data
representation format at the lowest level, making it very hard to
come up with a homogenous representation that preserves the
information content.

Figure 3-4.  Loosely coupled fusion

Figure 3-5.  Tightly coupled fusion

3.2.2 � Dasarathy Model
An elegant model to represent different levels of data fusion was proposed by Dasarathy
(see references at the end of the chapter for the original proposal information). It
represents different approaches to data fusion as a function of input and output data
types, resulting in the following different types of fusion.

•	 Data In-Data Out (DAI-DAO): The DAI-DAO model represents the
low-level fusion, where the sensor data from multiple sensors is
fused together to produce a fused data representation for the rest
of the recognition pipeline. The format of the resulting data can
be the same as the input (in the case of fusing similar sensors), or
an entirely new format (heterogeneous sensor fusion).

Chapter 3 ■ Multimodal Recognition

47

•	 Data In-Feature Out (DAI-FEO): In this model, the fusion engine
takes as input the data from sources to be fused and produces as
output a feature set that represents the combined information
from the sensors. This hybrid approach sits between the low- and
mid-level fusion approaches.

•	 Feature In-Feature Out (FEI-FEO): In the FEI-FEO model, the
fusion engine combines pre-extracted features from different
sensors. The output is a feature set combining the multiple
feature inputs. This method represents mid-level sensor fusion.

•	 Feature In-Decision Out (FEI-DEO): In this context, “decision”
refers to recognition of the sensor data. This method is a hybrid
between the mid-level and high-level data fusion techniques.
The fusion engine in this case takes features from different
sensor pipelines as an input and combines these to provide the
recognition (decision) output.

•	 Decision In-Decision Out (DEI-DEO): This model is the high-
level sensor fusion model also referred to as semantic fusion by us
in the discussion above. Typically, this kind of sensor fusion is the
easiest type of fusion since we are not actually “fusing” anything.
The fusion engine in most cases will “combine” the recognized
information from the pipelines to come to a recognition decision.

3.2.3 � Sensor Configuration Model
Based on the sensor configuration model, multimodal sensor fusion can improve the
functional accuracy of recognition through one of the following modes. Figure 3-6
illustrates the interaction between different sensor pipes for these modes.

•	 Complimentary Fusion: In complementary sensor fusion, two
or more sensors are used to recognize information that is not
possible to be extracted from individual sensors alone. The sensor
fusion has an additive effect in this case.

•	 Redundant Fusion: In this mode, sensor fusion uses two or
more sensors to provide information about the same underlying
process to introduce redundancy in the recognition.

•	 Cooperative Fusion: In cooperative sensor fusion, different
information about the same underlying process is gathered using
different sensors before being combined to get better recognition
of the underlying process, as opposed to single sensor-based
solutions.

Chapter 3 ■ Multimodal Recognition

48

3.3 � Example Implementations
In this section we present examples of the different flavors of multimodal sensor integration
as described in the section above. We will use the audio and visual sensors as examples,
but the approaches are extensible to other types of heterogeneous sensors as well.

3.3.1 � Semantic Fusion
Consider a usage involving human-machine interaction with a user trying to employ
gestures and speech for interacting with a computer or a robot. For example, a user might
be pointing to an object in the camera field of view and asking about the properties of the
object using voice.

This scenario involves merging the recognition results from the visual and audio
streams to realize the usage. Figure 3-7 shows the data flow.

Figure 3-6.  Fusion based on sensor collaboration model

Chapter 3 ■ Multimodal Recognition

49

As shown in Figure 3-7, two recognition pipes are independent and complete, as
described separately in Chapter 2. The fusion occurs at the semantic level, i.e., at a level
after the basic recognition is over, and we are dealing with semantics/meaning of the
data.

3.3.2 � Restricted Recognition
Restricted recognition improves recognition performance for multiple modes by
“restricting” the domain of search for one of the recognition modes. Consider a
connected audio-visual query system that can provide details in real time about the
objects that a user points her camera at. The usage involves pointing a smart camera at
an unknown object and asking a verbal query about the object. Queries like “What is that
object?”, “What is the cheapest price of that book?”, “How are the reviews of this book?”,
etc., can be supported. After the query is “understood” using the speech recognition
technology and the target object of the query is identified, the system performs an online
search to retrieve the response. Another step may be involved to format the result and
present it to the user in a predefined manner.

Such a usage can benefit from restricted recognition through performance and
response time improvements. The high level concept is shown in Figure 3-8. Basically,
having the context from one mode can improve the performance of the second mode
considerably. For example, if the speech recognition engine has difficulty in confidently
recognizing the uttered speech, using the context from recognized visual objects can
improve speech recognition. If the speech recognition engine returns the query string
as “How are the reviews for this hook?” and the recognition confidence score is below a
predetermined threshold, the fact that a visual recognition module reports a “book” in
the current recognized objects can be used to correct the query to “How are the reviews
for this book?”

Figure 3-7.  Semantic fusion for hand gesture-based voice commands

http://dx.doi.org/10.1007/978-1-4302-6593-1_2

Chapter 3 ■ Multimodal Recognition

50

3.3.3 � Tight Fusion
Multiple sensors use a unified recognition flow in this case. The data from different
modes is combined very early in the process. Raw data, filtered data, or features may
be fused. A single recognition classifier acts on the fused data for recognition. As an
example, let us revisit the audio-visual sensor fusion example from above. Instead of
improving the speech recognition performance after the visual recognition is done, if
we modify the pipeline as shown in Figure 3-9, the recognition module will take the
combined inputs from the audio and visual modes and provide recognition based on
the combined data.

Figure 3-9.  Tight coupled fusion for hand gesture-based voice commands

Figure 3-8.  Restricted recognition for hand gesture-based voice commands

Chapter 3 ■ Multimodal Recognition

51

This form of recognition has the potential to provide the most performance
improvement by eliminating duplication of recognition between modes. However, this is
also the hardest to implement method due to multiple reasons, including:

•	 Lack of cross-domain experts: In the example above we would need
experts from speech recognition and visual computing technologies
to work closely together. It is relatively rare to find individual experts
having deep technical knowledge of both domains.

•	 Different data formats: Different modes use different types of data
and feature representations, making it a challenge to effectively
combine these without loss of relevant information.

•	 Lack of training data: To effectively train the models for multi-
modal recognition, we need multi-modal training data. Such
data is hard to get from traditional data sources and one needs to
generate data by artificially constructing scenarios. This type of
training data generation poses significant scalability challenges.

3.4 � Mathematical Approaches for Sensor Fusion
Sensor fusion enables better recognition through multiple approaches. The two main
approaches are through inference and estimation. Inference assumes that the nature of
the process generating the input signals is known in advance, so the obtained data can
be used to infer the entity being recognized. Inferencing can also be interpreted as a form
of decision fusion, since a decision is taken based on the knowledge of the perceived
situation. Estimation, on the other hand, deals with trying to deduce (or recognize) the
nature of the process producing the data given the observed nature of the data. In the
following pages we will present a very brief overview of some of the common methods
used for inference and estimation. The discussion here is neither exhaustive nor
descriptive enough, and interested readers are encouraged to follow the references for
deeper understanding of the topics.

3.4.1 � Inferencing Approaches
•	 Bayesian Inference. Bayesian inference uses the famous Bayes

rule to recognize the target entity based on observed data. The
Bayes rule describes the probability of an event based on the
prior knowledge of conditions that may be related to the event
in varying degrees. For multi-modal sensor fusion, this method
uses the prior knowledge about co-occurrences of input values to
determine occurrence of the event being recognized. The method
is very popular in situations where accurate recognition is
needed under relatively controlled conditions. The availability of
controlled conditions makes it possible to obtain a lot of training
data, making it possible to make accurate decisions.

Chapter 3 ■ Multimodal Recognition

52

•	 Dampster-Shaefer Inference. The Dampseter-Shaefer inference
method is based on the Theory of Evidence and does away with
the need for a priori probabilities of unknown propositions. This
makes it possible to use the method for inference in conditions
where all the possible combinations of the input signals along
with their relationship to the fused output are not known in
advance. The Dampseter-Shaefer inference method provides
flexibility of implementation in various conditions. This method,
however, sacrifices accuracy for flexibility when compared to the
Bayesian methods.

•	 Fuzzy Logic-based Inference: In many instances of sensor
fusion one may have to deal with data that does not fit well into
traditional quantification models. For example, given two sensors,
Sensor A and Sensor B, one may want to define inference models
based on conditions like “Sensor A reports a HIGH value and
Sensor B is NOISY.” In such cases, Fuzzy Logic-based sensor
fusion systems try to find the best outcome using the varying or
dependent parameters as input variables.

The Fuzzy Logic systems work in three different steps as shown in Figure 3-10. The
steps are:

Figure 3-10.  Fuzzy Logic-based inference

	 1.	 Fuzzification: The fuzzification process involves assigning the
input various pre-defined input classes. For each input, the
step determines a “degree of membership” to each class based
on defined boundaries. The degree of membership is a value
between 0 and 1 and defines the state of input at any time.

	 2.	 Inference: The rule-based inference step uses the input
state to arrive at an inferred result. For example, the applied
inference rule could state that “if Sensor A is HIGH and
Sensor B is NOISY then use Sensor A output to update the
results from Sensor B.”

	 3.	 Defuzzification: This last step in the process takes the inferred
output and applied inference rules to generate a measurable
output of the sensor fusion system. For the example above,
the defuzzification step could apply predefined mathematical
models to update Sensor B data based on Sensor A output.

Chapter 3 ■ Multimodal Recognition

53

Neural Network-based inference: In various places
you will find neural networks described as “computing
systems made up of simple, highly connected processing
elements which process information by their dynamic state
response to external inputs.” The neural networks (NNs)
or Artificial Neural Networks (ANNs), as they are referred
to frequently, are modeled after the neuronal structure of
the human cerebral cortex. However, the scale of ANNs is
much smaller compared to a human brain (thousands of
neurons for a large ANN vs. billions of neurons in a human
brain). Architecturally, the ANNs are composed of layers of
neurons. The “input layer” consists of neurons that accept
the data from various sensors. The data then is processed
by one or more “hidden layers” before being presented to
the user through the “output layer.” Each layer consists of a
number of interconnected nodes with activation functions for
processing. The connections between the nodes are weighted
functions (Figure 3-11). The ANNs have to go through a
“training” or “learning” phase before they can be used for
inferencing (or classification). The learning rule modifies the
weights of the connections according to the input patterns
presented. The learning is achieved through examples where
the correct desired outputs are known in advance. The ANNs
are presented with an input set from all the sensors. ANN
will try to “guess” the correct output. The training procedure
then calculates the error between the ANN output and the
ideal desired output and uses this error to update the ANN
connection weights. A new input is then presented and the
procedure repeated until the weights converge to values
for satisfactory results. Of course, the actual procedure is
far more involved, but this high-level procedural overview
will suffice for our discussion on sensor fusion methods.
ANN-based inferencing approaches have the advantage
that example-based learning does not depend on knowing
the actual relationships between the inputs and outputs.
Hence, the approach is very useful in conditions where we
seek robustness in the face of noise; discover relationships
between sets of patterns; input volume, number, or diversity
is great; or input relationships are vague and poorly described
with conventional approaches.

Chapter 3 ■ Multimodal Recognition

54

3.4.2 � Estimation Approaches
Given a set of observations, the estimation techniques tend to derive the parameters of
the underlying process producing the observations. In the case of multi-modal sensor
fusion applications, the observations consist of combined information from multiple
sensor processes. The popular estimation methods assume that the underlying process
is an unknown linear process. The observations are a combination of the process outputs
in time along with white noise. Least squares estimation is the most popular estimation
method and is described below.

•	 Least Squares: Given a number of observations, least squares
method aims to find the “best fit” line representing these
observations. The line is taken to be the representation of the
underlying process (and additive noise). This method is the most
flexible of a family of such methods in that it assumes no prior
information about the process probability density of the noise.
This method gets its name from the fact that the estimation aims
to minimize the least squares error between the measurements
and the estimated process.

Input layer

X1

Out1

Out2

Outm

X2

X3

X4

X5

Xn

Hidden layer Output layer

Figure 3-11.  Artificial Neural Network

Chapter 3 ■ Multimodal Recognition

55

3.5 � Summary
In this chapter we introduced the concept of multi-modality and how it can be used to
improve recognition performance over single mode recognition. We discussed different
uses of multi-modality and how it can spur new recognition-based usages in addition
to improving the existing ones. We briefly touched upon a few techniques to achieve
multi-modal recognition under various conditions and architecture goals. The reader is
encouraged to follow the references in the next section for more in-depth information
about these techniques. The next chapter will focus on yet another way to improve
recognition performance, i.e., through the use of context.

3.6 � References
•	 Nakamura, Eduardo F. and Antonio A. F. Loureiro. “Information

Fusion for Wireless Sensor Networks: Methods, Models, and
Classifications” ACM Computing Surveys. 39, no. 3 (2007).

•	 Koneru, Ujwal; Redkar, Sangram, and Anshuman Razdan. “Fuzzy
Logic Based Sensor Fusion for Accurate Tracking.” In Proceedings
of the 7th International Conference on Advances in Visual
Computing - Volume Part II.

•	 Shafer, G. A Mathematical Theory of Evidence. Princeton, NJ:
Princeton University Press, 1976.

•	 Bass, T. “Intrusion Detection Systems and Multisensor
Data Fusion: Creating Cyberspace Situational Awareness.”
Communications of the ACM 43, no. 4 (2000): 99–105.

•	 Bayes, T. “An Essay towards Solving a Problem in the Doctrine of
Chances.” Philosophical Transactions of the Royal Society of London
53 (1763): 370–418. Reprinted in Biometrika, 45, (1958): 293–315.

•	 Bedworth, M. D. and J. O’Brien. “The Omnibus Model: A
New Architecture for Data Fusion?” Proceedings of the 2nd
International Conference on Information Fusion (FUSION’99),
Helsinki, Finland, July 1999.

•	 Blackman, S. S. “Multiple Sensor Tracking and Data Fusion.” In
Introduction to Sensor Systems. Norwood, MA: Artech House, 1988.

•	 Brooks, R. R. and S. S. Iyengar. Multi-Sensor Fusion: Fundamentals
and Applications. NJ: Prentice Hall, 1998.

•	 Buede, D. M. “Shafer-Dempster and Bayesian reasoning: a
response to ‘Shafer-Dempster reasoning with applications to
multisensor target identification systems.’” IEEE Transactions on
Systems, Man, and Cybernetics 18, no. 6 (1988): 1009–1011.

•	 Dasarathy, B. V. “Information fusion - what, where, why, when,
and how?” Information Fusion 2, no. 2 (2001): 75–76.

57© Omesh Tickoo and Ravi Iyer 2017
O. Tickoo and R. Iyer, Making Sense of Sensors, DOI 10.1007/978-1-4302-6593-1_4

CHAPTER 4

Contextual Recognition

In this chapter we move beyond the primary theme of recognition and begin to
understand what the next level of understanding looks like. Specifically, we will discuss
the concept of “context” and contextual understanding. In simple terms, context refers to
the environment under which we are trying to understand something. Having contextual
information allows for better recognition, as we discussed in the case of multi-modal
sensor fusion in Chapter 3. Conversely, having a recognition of specific environmental
attributes can help us define context that can aid in understanding of the scene being
observed. Some examples of contextual recognition are outlined below:

•	 Having an understanding of the environment allows for
recognition of objects that are occluded and hard for traditional
algorithms to recognize. For example, recognizing a table and a
monitor makes it easy to recognize a keyboard on the table even
if the keyboard is occluded and not easy to be recognized in
isolation.

•	 A recognition system can benefit from knowing the relationships
between different objects. For example, in many pictures an office
chair always faces a table. This semantic positional relationship
between the chair and the table can allow for optimized
recognition of one object after we have recognized the other.

•	 Contextual recognition can help predict occluded objects in a
scene. For example, detecting a feline tail occluded behind a tree
can be predicted as a tiger cub or a large cat depending on the
context based on location (forest vs. park)

4.1 � Relationship between Context and Recognition
In this section we try to bridge the gap between recognition and context in the “forward”
direction, i.e., we will understand how one can deduce context from recognition.

There are two main types of systems that deal with contextual recognition, namely
rule-based systems and knowledge-based systems. Contextual information forms the
basis of the difference between rule-based and knowledge-based systems. Before we
understand the importance of context, we present a very high-level overview of these two

http://dx.doi.org/10.1007/978-1-4302-6593-1_3

Chapter 4 ■ Contextual Recognition

58

types of systems. The actual in-depth discussion is deferred to the later chapters. Also,
we will only concentrate on the object recognition from images as the goal and leave the
more complicated usage goals for later chapters.

Goal: Given a picture, identify the objects in the image.

4.1.1 � Rule-based Systems
Rule-based systems work as explained in the previous chapters, where the systems
works in an “if XX then YY” manner. The image is broken down into features, and the
features are analyzed by algorithms looking for a pretrained pattern between them. If
the pattern matches a training example or generally falls “close” to some trained rule of
representation, the recognition is deemed to be a success, otherwise the target object is
declared to be not present in the scene.

4.1.2 � Knowledge-based Systems
In case of knowledge-based systems, the system uses prior information to determine the
recognition result. The probability of something being recognized increases as the system
finds more and more related information in a given input. Such systems use the prior
observed correlations between observations to determine the possibility of a recognition
match. Many times such knowledge-based systems will use the correlation information to
determine if and what parts of a given input are worth searching for, a recognition match
using the rule-based methods. Such hybrid approaches have been shown to be highly
effective in optimizing the performance of recognition systems both in terms of speed of
execution as well as accuracy.

4.2 � Understanding Context
Context is composed of the aggregate of information within which the recognition occurs.
For example, if an algorithm is looking to identify an instance of a keyboard in an image,
the context could comprise of the scene in the image (forest, city, office, etc.). In case
of a picture of the forest, the context gives a clue that finding the keyboard is unlikely.
Alternately, if the context of the scene in the image points to it being a computer desk, the
chances are that the keyboard can be found with higher probability. Further contextual
clues can then be employed to localize the region of search (below the monitor, on the
table, etc.).

Context also helps humans to perform recognition or react to different scenarios.
As an example, observing an animal part (a tail) with the actual animal hiding from
the view behind a tree can elicit responses from a human observer that vary based on
the context. A person observing the occluded animal above in a park will most likely
behave differently than a person observing the same in a forest. The scene around the
observation in this case provides the context for recognition (harmless pet vs. a wild
animal).

Chapter 4 ■ Contextual Recognition

59

4.2.1 � Different Roles for Context
Context as a concept can take multiple roles in recognition. Briefly, any form that
provides information about the environment of a target entity can contribute to context.
Some examples are given below:

•	 Semantic Context: Several entities can be contextually related by
virtue of them being part of the same environment. Similarly, if
the entities are not generally part of the same environment, they
do not share a semantic context among themselves. It is highly
likely to find a computer keyboard in an image that contains a
computer monitor as well vs. an image of a sunny beach. In this
example, monitor and keyboard are semantically related while
the beach and keyboard are semantically unrelated.

•	 Spatial Context: Spatial context refers to the spatial arrangement
of objects or items of interest to recognition with respect to each
other. As an example, spatially a tree or a fire hydrant will always
be above the ground. A keyboard will mostly be placed under the
monitor and a sidewalk will be situated on the side of a street.
Spatial context makes it possible to reduce the search space for
target object recognition if we happen to identify other spatially
related objects in a scene.

•	 Pose-based Context: Many objects are not just related in spatial
context but also depict pose-based consistency toward each
other. A dining chair usually faces the table, cars on the same side
of the road usually face in the same direction as each other, etc.
Adding the pose-based context information to spatial context can
further reduce the recognition system complexity by introducing
semantic clues for inter-object recognition.

4.3 � Including Context in Recognition
The benefits of using context for recognition purposes can be explained by the following
metrics:

•	 Accuracy: Having contextual information from a scene can assist
in more accurate recognition. Knowing that the scene depicts a
beach can help recognize an object as a beach ball vs. some kind
of a fruit (melon).

Chapter 4 ■ Contextual Recognition

60

The three remaining benefits are a direct result of the reduction of search space both
spatially as well as in the target set of entities considered based on context.

•	 Power: The amount of power spent by a compute device to
recognize an object can be reduced drastically by using the scene
context to restrict the search space for target objects. The objects
that do not contextually belong to the scene can be eliminated
from the target search space.

•	 Speed: Having a smaller search space also leads to faster
recognition times.

•	 Compute: The compute resources needed to recognize scale
down with the search space as well.

A modified form of a recognition pipeline from Chapter 1 with contextual block is
presented in Figure 4-1 below.

Figure 4-1.  Incorporating context in recognition

The flow shows a few new processing modules between the scene data and the
recognition. Context block uses predefined and trained methods to determine the context
of the scene. Based on the scene context, the spatial bounding module restricts the search
space in the input to the regions that are most probable to contain the target entities
(using pose, spatial, and semantic contexts as described earlier). The target bound
processing reduces the sample space to match the image features based on the context
information. The result of this contextual bound processing is a highly optimized and fast
recognition block.

4.4 � Motivation from Human Recognition
The concept of contextual recognition borrows heavily from human recognition. Various
studies have shown that humans are very fast in recognizing different entities and
situations because of a very fast and optimized contextual search capability. As described
for the computer-based recognition above, humans depict recognition based on both
environmental scene context and spatial context.

http://dx.doi.org/10.1007/978-1-4302-6593-1_1

Chapter 4 ■ Contextual Recognition

61

4.4.1 � Image-based Contextual Recognition
In a recent study, the human subjects were asked to describe the scene in a blurred street
image. A majority of the people responded with observing a street scene with a car and
a pedestrian <Reference>. In reality, the image was created with the same car image in
two positions tilted 90 degrees. The common majority response of the test observers
recognizing the car as a pedestrian is an effect of human contextual observation where a
person expects a pedestrian in such a scene. The above example also shows that in some
cases context can be a distraction making the problem hard to solve. Thankfully such
cases are much smaller in number compared to the scenes where context is helpful in
recognition. In the example above contextual recognition fails in a scene that is synthetic
and very improbable at best.

Similarly, asking a group of observers to perform a people search in a presented
image and tracking their attention through gaze trackers produced an average heat
map that can be seen as a modulated saliency map. The saliency map shows that the
human attention quickly focuses on a few areas in the picture to look for objects of
interest. Contextually, that is the location in the picture where the chances of finding the
target objects are the highest, making it the right place to focus the search. The search
methodology for humans is not uniform across the image but, once the parts of the scene
are identified coarsely, the search quickly focuses on the areas most likely to contain the
target entity. Comparing with machines, when looking for an object in a scene, studies
have shown that the observers casually scan the scene and fixate the search on regions
that contextually have the highest probability of containing the object in question. The
majority of the objects are recognized in a glance before eye fixation.

Consistency-inconsistency effect: Accuracy of object detection (as measured by
speed of detection) is improved if the object is presented after a contextual scene, for
example, bread followed by kitchen or wild animals in a forest.

4.4.2 � Non-image-based Contextual Recognition
As an example of a non-visual recognition task, consider the following sentence:

“Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr
the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the
rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is
bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.”

Clearly, the words in the sentence above are misspelled, but the readers do not find
it difficult to read the intent of the sentence. In many cases the readers are able to “read”
the later words faster than the earlier ones. This is due to the contextual nature of the
human understanding, where we expect the words to fit the context and the expectation
from the next word in the sentence. The noise in the input above is effectively countered
by the contextual human inference.

The sentences are understood even if some words are misspelled. In fact, if the
number of alphabets and the first and last alphabets are preserved, all the words can be
misspelled.

Chapter 4 ■ Contextual Recognition

62

4.5 � Contextual Recognition: From Humans to
Machines

Extending the analogy to computer systems, a contextual recognition system exploits the
fact that objects never occur in isolation and are usually part of particular environments.
It is generally easier do a quick evaluation of input data that use different sensors to get an
understanding of the operating environment than to identify occurrence of some target
objects with varying granularities in the image. Statistical summary of the scene provides
a complimentary and an effective source of information for contextual inference. In
particular, knowing the context helps to improve recognition in presence of the following
data imperfections as well (Figure 4-2, 4-3):

•	 Noisy Data: The input data can be contaminated by noise due to
imperfect sensor or non-conducive environmental conditions.
Noisy data can make the feature generation process very difficult.
Traditionally, various filtering methods are used to smoothen the
noisy data before processing. While the filter-based smoothening
methods usually achieve good results for human observations
(e.g., visually pleasing images), they usually present significant
challenges for automated computer-based recognition. Having
context information handy makes it easier for the computer
recognition methods to ignore the noise and look for features that
may actually depict the real world information.

•	 Occluded Data: As described earlier, non-contextual recognition
methods fail to process information that is occluded by other
information from the sensors. However, having the contextual
information makes it possible to make speculative recognition
work based on incomplete recognition information from
occluded data.

•	 Poor Resolution: Sometimes the sensors are not able to capture
a target image with enough high fidelity for the recognition
algorithms to work properly. The reasons for this vary from
the object being too far from the sensor range to poor sensor
parameters. Having the context information helps to compensate
for the poor data resolution by augmenting incomplete
information with the probabilistic model of the target object
being present.

•	 Cluttered scenes: In cluttered scenes, the segmentation of objects
becomes a problem for recognition algorithms. However, having
the context for the scene can reduce the problem to a smaller
target region that can be analyzed more efficiently.

Chapter 4 ■ Contextual Recognition

63

•	 Object pose variability: The recognition algorithms are only as
good as the diversity of the data they have been trained with. It
is practically impossible to train an algorithm will all types of
possible poses, angles, and environments that the target object
might present itself in. Having contextual recognition capability
helps recognize object configurations that may vary to some
degree from the trained models.

•	 Illumination changes: Similar to the pose changes, the training
data cannot account for different illumination conditions
under which an object maybe observed. For non-visual tasks,
this amounts to observing target phenomenon under varying
environments. Having context information can help reduce the
effects of such environmental variations.

Figure 4-2.  Bad sensor data can cause problems in recognition

Figure 4-3.  Context can help reduce effects of bad sensor data

Chapter 4 ■ Contextual Recognition

64

4.6 � Representing Context
By now we understand the need and importance of context in recognition. This section
addresses the problems in effectively using context for recognition in real and practical
systems. Two such main issues are:

	 1.	 simple representations for context

	 2.	 algorithms that can extract and use such context

While the detailed discussion of the methods is left for later chapters, we briefly
touch upon how the representation for context can be carried out. In short, the context
representation is distilled down to the problem of relationships between different objects
and scenes. Analogous to the triplet-based relationship reorientation discussed in the
first chapter, the context can be represented in the form of relationships between different
entities in the scene or the relationships between objects and scene description itself.
Figure 4-4 shows two distinct relationships between entities and a beach scene and the
scene and the objects themselves.

Figure 4-4.  Representing contextual relationships

Chapter 4 ■ Contextual Recognition

65

Of course, this is just one form of context representation and many other possible
variations exist in research and implementations. Readers are referred to the references
for more details on these.

Different contextual relationships have different strengths. For example, spatial
relationships are not always strict (keyboard, monitor) vs. (firepost, ground). Generally,
stronger relationship makes contextual recognition easier.

4.7  Concluding Thoughts on Scene
Understanding
For scene understanding from images, the identity of underlying scenes can be gauged
from the low-level aggregated feature statistics. State of the art methods in scene
recognition are comprised of methods that represent the scene as a whole rather than
splitting it into constituent scenes. These also form the basis for many contextual object
recognition systems. Global representations have proven surprisingly effective for scene
recognition.

4.7.1 � Saliency vs Context for Recognition
When it comes to object detection, scene context has a bigger effect than the scene
saliency. Context will direct the attention to relevant regions only while saliency will bring
out the outliers. A scene composed of contextually related objects is more than just the
sum of objects.

Figure 4-5.  Deducing complex contextual relationship

These relationships can also be combined to present a combined view of scene-
specific context as shown in Figure 4-5.

Chapter 4 ■ Contextual Recognition

66

4.8 � Summary
In this chapter we explored the role of context for effective recognition and
understanding. Context is vital for effective recognition because it improves the
application and platform performance and is one big step toward bridging the gap
between human perception and machine understanding. Using context can make a
difference between false recognition (or no recognition) and positive recognition. We
discussed the ways to represent context and outlined how relationship representation is a
building block toward efficient context representation and usage. In the next chapter we
will focus on how to extract contextual relationships from scenes as well as techniques to
represent relationships.

4.9 � References
•	 Oliva, A. et al. “The role of context in object recognition.”

Trends in Cognitive Sciences, 11, no. 12 (2007): 520–527.

•	 Auckland, M.E. et al. “Non-target objects can influence perceptual
processes during object recognition.” Psychon. Bull. Rev. 14, no. 2
(2007): 332–337.

•	 Davenport, J.L. and M.C. Potter. “Scene consistency in object and
background perception.” Psychol. Sci. 15, no. 8 (2004): 559–564.

•	 Gordon, R.D. “Attentional allocation during the perception of
scenes.” J. Exp. Psychol. Hum. Percept. Perform. 30, no. 4 (2004):
760–777.

•	 Palmer, S.E. “The effects of contextual scenes on the identification
of objects.” Mem. Cognit. 3, no. 5 (1975): 519–526.

•	 Kunar, M.A. et al. “Does Contextual Cuing Guide the Deployment
of Attention?” J. Exp. Psychol. Hum. Percept. Perform. 33, no. 4
(2007): 816–828.

67© Omesh Tickoo and Ravi Iyer 2017
O. Tickoo and R. Iyer, Making Sense of Sensors, DOI 10.1007/978-1-4302-6593-1_5

CHAPTER 5

Extracting and Representing
Relationships

The relationship extraction between different recognized entities defines the second
level of operations in a knowledge pipeline after the recognition. While the recognition
concentrates on identifying and labeling individual entities from the sensor data,
relationships explicitly demonstrate the connections between the entities.

Chapter 4 showed some examples of how contextual relatinships manifest
themselves in entities. Figure 5-1 below resembles Figure 4-4 and shows the subject-
predicate-object relationship between the entities. The figure shows that the author and
coffee are related by the fact that one entity (author) likes the other (coffee).

Figure 5-1.  How context determines relationships

To understand relationship extraction methods at a high level we will focus on
text-based relationship extraction methods. The best way to understand relationship
extraction is from text example, since many other modalities convert to text after
recognition.

Further, many methods for direct relationship extraction from modes like video
and speech are derived from text relationship extraction. We will show an example of
extracting relationships from video.

http://dx.doi.org/10.1007/978-1-4302-6593-1_4

Chapter 5 ■ Extracting and Representing Relationships

68

5.1  High-level View of Extracting Relationships
from Text
As discussed before, at its very basic level a relationship is what connects two
(recognized) entities together. A first order relationship connects two entities through one
predicate. Higher order relationships connect one or more entities by multiple predicates.

Figure 5-2 shows an example of a first order relationship. For an example of a higher
order relationship, consider the problem of ordering food and wine at a restaurant. The
relationship that can be used in this scenario would ideally connect a person’s food
preferences with the available choices along with the most suitable wine pairings.

Figure 5-2.  An example of a relationship

For this chapter, we will mainly concentrate on extracting first order relationships.
To understand the methods for text-based relationship extraction, we assume that the
relationship is embedded in a sentence containing the entities and the description of the
relationship is available (implicitly or explicitly) through the sentence. The methods to
extract relationship rely on either using pretrained relationship structure information or
learning the structure on the fly to unearth the relationships.

The structure of a textual sentence is a very important factor for the performance
of the relation extraction algorithms. Most of the algorithms either depend on the
syntactical meaning of the sentences or the structure of the words in the sentence. This
makes it very important for the recognition methods to output well-structured text if the
text-based relationship extractors will be used in subsequent stages. We will discuss an
example of how video-based scene understanding methods can output such information
later in this chapter.

More formally, given a sentence a relationship is defined as the tuple t = (e_1, e_2,
…, e_n) where e_i is an entity participating in a predefined relationship “r.” The task of a
relationship extractor can be broken down into the following parts:

•	 Identify the relevant entities in the relationship.

•	 Identify the role of each entity participating in the relationship.

As shown in Figure 5-3, for a textual relationship extraction task, this breaks down
into an unstructured and a structured text analysis phase. During the unstructured
text analysis phase the algorithm works on the sentence semantics to identify different
grammatical and syntactical parts of the sentence. The structured phase usually starts
with the identification of the participating entities in a relationship. This is followed by
the relationship detection and result expression.

Chapter 5 ■ Extracting and Representing Relationships

69

5.2 � Relationship Extraction Methods
The text-based relationship extraction methods can be broken down into different
categories as shown in Figure 5-4.

•	 knowledge-based relationship extraction

•	 supervised relationship extraction

•	 semi-supervised relationship extraction

•	 distant supervision

Figure 5-3.  Unstructured and structured portions of relationship extraction

Figure 5-4.  Types of relation extraction methods

Chapter 5 ■ Extracting and Representing Relationships

70

5.2.1 � Knowledge-based Relationship Extraction
Knowledge-based relationship extraction methods rely on prior information of either the
domain or the lexical and syntactic properties of the text.

5.2.1.1 � Domain Dependent Relationship Extraction Methods
The domain dependent knowledge-based relationship extraction methods are tailored
to extract relationships for a particular domain of operation. For example, the methods
are tailored to find relationships in sentences pertaining to cancer diagnosis, fruit tree
diseases, migration pattern of birds, etc. Having the prior information about the domain
of operation allows these methods to be highly customized for relationship extraction.
Using pre-existing information from the sentences for the given domain, the methods can
achieve high accuracy, since the patterns for relationship expression in a given domain
are usually quite regular and well known. In a specific application domain, usually there
is a finite number of ways entities and their relationships can be expressed in text. This
makes training the methods to extract them very accurate.

5.2.1.2 � Domain Independent Relationship Extraction Methods
Also called lexico-syntactic pattern-based relationship extraction, these methods assume a
set of patterns in the sentences that describe the relationships present in equivalent forms.
The models extracting the relationships through this method are trained to recognize
various sentence structures that represent the same relationship between entities in
different but equivalent forms. The methods completely rely on the natural language and
the syntactical structure of the sentences. Based on the grammatical sentence structures,
the methods identify the entities and the relationship connecting them.

5.2.1.3  Performance of Knowledge-based Relationship
methods
Since the knowledge-based methods rely on prior knowledge of domain and/or the
language lexicon and syntax, the performance of the methods is highly dependent on the
size of the training set representing the rules based on the domain knowledge and the
language structure. The performance of such algorithms as represented by precision and
recall metrics exhibit the following properties:

Precision measures the amount of relations that are correctly identified among the
given set of sentences. Generally, the knowledge-based relation extraction methods
exhibit a high degree of precision. This follows from the fact that the knowledge-based
relation extraction methods are trained with examples that depict the relationships
through unambiguous sentence structures.

Recall measures the amount of relationships that were correctly identified out
of the total available relationships in a test set. Knowledge-based relation extraction
methods usually score low on the recall metric. This follows from the fact that the training

Chapter 5 ■ Extracting and Representing Relationships

71

methods cannot cover all possible variations of the sentence structures for relationship
expression. More often, the rules do not consider a majority of the structures expressing a
relationship leading to misidentification of many relationships as false.

5.2.2 � Supervised Relationship Extraction
Supervised relationship extraction methods rely on pretrained models to identify the
named entities in a sentence and the task of relationship extraction is converted to one
of classification. The supervised methods typically involve a preprocessing step that
identifies the entities of interest and any connections between them. The connections are
then processed through the classification methods to confirm predefined relationships as
shown in Figure 5-5.

Figure 5-5.  Relationship extraction pipe

At a high level the pipeline can be divided into the following parts based on the
functionality.

•	 The preprocessing stage is responsible for detecting the entities
that may be part of a relationship. All such possible entities
are identified using the knowledge of sentence structures
(syntax) and natural language properties (semantics). Using this
information helps to isolate the entities that may be candidates for
relationship subject or predicate and also parts of the sentences
that may be key to discovering the presence of the relationship.
For example, given a sentence “John said Andy Grove was one of
the founders of Intel Corporation,” the preprocessing step might
identify the entities “John, Andy Grove, and Intel” as the entities
that may be participating in a relationship described by the part
or the whole of the subsentence “was one of the founders of.”
Given these identifications, the next block formats the entities
and the sentence in a format based on the type of classification
stage used.

•	 Classifiers are trained with both a positive and a negative set of
training examples. The next subsections pages describe some of
the popular methods for classification to extract relationships.

5.2.2.1 � Feature-based Methods
Feature-based methods express the entities and the sentences describing relationships
as set of features. These features are usually a combination of the semantic and syntactic
features extracted from the text.

Chapter 5 ■ Extracting and Representing Relationships

72

The syntactic features extracted include:

•	 entities

•	 types of entities

•	 subsentences that may describe the relationships between the
entities

•	 number of entities and the number of words in the sentence

•	 number and the sequence of words potentially describing the
relationship

Semantic features usually include the word paths between the entities.
For the training of the feature-based classifiers, multiple positive and negative

example feature sets are generated from sentences representing known relationship
structures. These feature sets are then used to train the classifiers for determining the
presence or absence of a pretrained relationship. This consideration also makes it very
hard to choose the right features, since some features may represent parts of the sentence
that are good indicators of the underlying relationship expression while others may be
representing bad indicators.

Feature-based methods completely rely on the human perception and labor at the
training phase to identify as many positive and negative examples from text as possible.
It is easy to notice, however, that such cases can lead to missing relationships in text that
was not available at the training time. Since the language can represent a relationship in
formats that span a large set, it is virtually impossible for feature-based training to cover
all the possible cases.

5.2.2.2 � Kernel-based Methods
Kernel-based methods aim to solve the issue of training seen with feature-based methods
by using kernels that compare the similarity of the test sentences with the previously
known examples. Instead of exactly matching the word sequences through features like
the feature-based methods, the kernel-based methods try to extract the similarity to
known representations instead of looking for more exact matches.

There are two main types of kernel-based relationship extraction methods: bag of
features kernels and tree kernels

Bag of Features Kernels: The bag of features-based kernel method works by creating
the representations of different parts of the sentence containing the entities.

Such methods are based on string properties and the actual functional kernels
compute the similarity in the subsequences of learned and test images. The
subsequences are divided and compared based on their position in the sentence
relative to the entities being investigated. If the similar parts of the sentence are long and
contiguous, the kernel-based methods will return a better match as compared to short,
noncontiguous similar parts in sentences.

Chapter 5 ■ Extracting and Representing Relationships

73

As an example, if e_1 and e_2 are the two entities of interest, the sentence containing
them could be subdivided into a sequence s_1, e_1, s_2, e_2, and s_3 where

•	 s_1 is the part of the sentence before the first entity e_1;

•	 s_2 is the part of the sentence between entities e_1 and e_2;

•	 s_3 is the part of the sentence after the second entity e_2.

Given the sentence “The author of this book likes coffee as a breakfast drink,”
if the preprocessing step identifies “author” and “coffee” as the entities e_1 and e_2
respectively, the values of the other parameters would be

•	 s_1 is “The”;

•	 s_2 is “of this book likes”;

•	 s_3 is “as a breakfast drink.”

The similarity score is calculated at the word level, i.e., the words themselves are
converted into feature representations before applying a classifier.

Tree Kernels: As opposed to the bag of features-based methods, the tree kernels
use the structure information from the sentence to determine the presence or absence
of relationship between two entities identified in the preprocessing step. The structure
includes the words and the order of the words in the sentences.

The methods construct a shallow parse tree for representing the sequence of words
as well as the entities in a given sentence. The sentence “John said Andy Grove was one
of the founders of Intel Corporation” can be represented in the tree form as shown in
Figure 5-6.

Figure 5-6.  Representing a sentence as a tree

Assuming the preprocessing step identified the entities “John,” “Andy Grove,”
and “Intel Corporation,” the following parse trees are identified. Two sentences
(subsentences) S1 and S2 containing the entities are represented as parse trees as shown
in Figure 5-7. Of course, for this example S1 represents the complete input sentence.

Chapter 5 ■ Extracting and Representing Relationships

74

The tree S1 is not shallow since it is not the smallest tree containing the relationship
(“founder”) while S2 represents such a shallow tree. For the purpose of training, the
sentence S1 is used as a negative example while S2 serves as the positive example.

While the structural information helps kernel-based methods to achieve much better
performance as measured by the precision and recall metrics, the method does assume
that the predicate (relationship expressing word) is placed between the entities in the
sentences. While not universally true, this structural information has been shown to be
right for the majority of the cases.

5.2.2.3 � Limitations of Supervised Methods
While the kernel-based methods improve over their feature-based counterparts, the
supervised methods still suffer from some issues, mainly

•	 they demonstrate scalability problems; the methods are hard to
extend to cover new relationships;

•	 extensions to recognize more than one relationship from a
sentence are hard to implement;

•	 the methods need preprocessing to identify entities or create
parse trees. These methods can be computationally and
algorithmically hard to implement.

5.2.3 � Semi-supervised Methods
The supervised methods discussed so far rely on the labeled data to train the models
needed for relationship extraction. In many cases, obtaining this training data proves to
be the most time-consuming task and usually the models suffer in performance because
of inadequate training. The labeling task is not just a problem of scale, it also involves
cumbersome human effort.

Semi-supervised relationship extraction methods tend to overcome the limitations
of effective labeling by automating the labeling portion of the classifier training. Since
obtaining the labeled data is expensive, the semi-supervised methods bootstrap the
creation of training data by setting up a tight loop between the data labeling and

Figure 5-7.  Possible parse trees for the sentence

Chapter 5 ■ Extracting and Representing Relationships

75

relationship extraction modules. Generally, a weak learner outputs relationship
information that can be used as training data for the next stage.

Figure 5-8 and the following steps broadly outline a semi-supervised relationship
extraction system.

•	 Seeding: The algorithms generally start with some example tuples
expressing the relationship. These examples are referred to as
“seeds.”

•	 Pattern Induction: The seed examples are used to learn (induce)
patterns between the entities that depict the relationship.

•	 Relationship Extraction: The patterns are used to extract the
sentences that embed the given relationship.

•	 New Pattern Addition and Seed Extension: Based on the extracted
sentences, new patterns are recognized and added to the seed set.

•	 Iteration: The process repeats with a new pattern induction step.

Figure 5-8.  Semi-supervised relationship extraction flow

We now show some examples of the process described above using popular
semi-supervised relationship extraction methods.

5.2.3.1 � Dual Iterative Pattern Relation Expansion (DIPRE)
Assume the relationship of interest is “book authors.” In other words, we are interested in
obtaining the relationship (author, publication) and extract as many such relationships
as possible from a given set of documents. For the most popular text-based relation
extraction tasks, the domain of search is the entire web. We will use the same for our
example here.

•	 Seed Phase: Assuming that we seed the algorithm with a small
sample of <author, book> relationships. The authors of the main
paper used 5 relationship seeds.

Chapter 5 ■ Extracting and Representing Relationships

76

•	 Entity Search Phase: The second phase involves searching for the
tagged entities in the domain of interest. For the chosen seeds
above, this would involve searching all the sentences that have
the authors and the books appearing together. For our example,
the search may return sentences containing the <author, book>
pair connected through different sentence structures like “Isaac
Asimov wrote The Robots of Dawn,” “The author of The Robots
of Dawn is Isaac Asimov,” etc. Typically, large numbers of such
sentences will be extracted by the search algorithms. In case of
the authors of DIPRE the search resulted in close to 200 patterns
being discovered using the 5 seeds used.

•	 New Pattern Generation Phase: Using the search results from
the entity search phase, this phase examines each sentence to
generate patterns that connect the entities together. For our
example, the sentences returned above can lead to patterns of the
form:“323076_1_En wrote <Book>” and “The author of <Book> is
323076_1_En” respectively.

•	 New Entity Search Phase: Based on the patterns extracted in
the previous phase, this phase searches for new entities that are
connected through the same patterns as discovered earlier. New
entities replace the previous seed and the flow is handed back to
the entity search phase for next iteration. Using our example, the
patterns can yield new entities in the following manner. Using the
first pattern, “323076_1_En wrote <Book>” could return sentences
like “Stephen Hawking wrote A Brief History of Time” and the
second pattern “The author of <Book> is 323076_1_En” can return
sentences of the type “The author of The World as I See It is Albert
Einstein.” We observe that this step is able to expand the specific
entities with the same relationship as the seed entities. One can
now add <Stephen Hawking, A Brief History of Time> and <Albert
Einstein, The World as I See It> to the seed list and repeat the
process again to get more formats for relationship description and
more entities sharing similar relationships.

•	 Termination Criteria: A termination criteria based on the number
of extracted entities and relationship types is generally used to
stop the execution. In our example, a specific number of <Author,
Book> pair discoveries could be used as termination criteria.

Chapter 5 ■ Extracting and Representing Relationships

77

Figure 5-9 shows the complete flow for the algorithm.

5.2.3.2 � Snowball
DIPRE forms the foundation of many popular semi-supervised relationship extraction
methods. A major drawback of the method employed by DIPRE concerns the use of exact
phrases and word order in sentences to extract the entities in the New Entity Search
Phase. Basically, the algorithm searches for exact matches of the word and order of these
words in a sentence to extract the entities. As an example, the pattern “The author of
<Book> is 323076_1_En” will return the sentence “The author of The World as I See It is
Albert Einstein” but will fail to return the sentence “The author of the book The World as I
See It is Albert Einstein” because the word “book” is not part of the original template.

To avoid such strict template matching, Snowball uses functionality similar to the
kernel-based supervised relationship extraction methods. The patterns are broken down
into multiple parts like the supervised methods. As in the supervised method, if e_1
and e_2 are the two entities of interest, the sentence (pattern) containing them could be
subdivided into a sequence s_1 e_1 s_2 e_2 s_3 where

•	 s_1 is the part of the pattern before the first entity e_1;

•	 s_2 is the part of the pattern between entities e_1 and e_2;

•	 s_3 is the part of the pattern after the second entity e_2.

Snowball uses the same procedure flow as DIPRE except for one change. The New
Entity Search Phase uses kernel-based similarity methods for the s_1, s_2, and s_3 parts
of the pattern instead of an exact match. The similarity metric makes it possible to tag
the sentences that are lexically and semantically similar to the target pattern without
requiring an exact match.

The original Snowball algorithm was used to extract the <Organization, Location>
relationship from the web data but the algorithm is generic enough to be used for any
single order entity extraction task.

Figure 5-9.  DIPRE flow

Chapter 5 ■ Extracting and Representing Relationships

78

5.2.3.3 � KnowItAll
Thus far all the methods discussed have used some form of user-provided domain-
specific patterns as a seed for relationship extraction. KnowItAll systems attempt to relax
this restriction by providing a method to label the training examples using a relatively
small set of domain-independent patterns. Since the generic patterns are applicable
across different domains, the method identifies relation-specific rules and then uses
specific instantiations for extracting domain-specific extraction rules.

The KnowItAll system consists of multiple stages. The main blocks of operation are
a bootstrapping unit, search engine, relationship extractor, an assessor, and a knowledge
base. At the heart of the system is a search engine that uses the information from the web
to return web pages based on queries from the bootstrapping unit and the extractor. In
addition, the search engine provides the hit count from the search to aid in probability
calculation for the importance of the search result. In general, a higher number of similar
relationship expressions returned by the search engine points to a valid relationship
extracted. The bootstrapping unit uses generic rule templates to form rules and information
about the domain to focus the search. For example, “X such as Y” is a rule that implies a
generic similarity between the entities X and Y and can be used to find domain-specific
entities. Applying the constraint of searching for “cities” can combine with the rule above to
search for relationships containing cities in statements like “cities such as New York.”

The extractor unit applies the rules from the bootstrapping unit to the search results
to extract the pages with statements that conform to the search. The extractions are then
sent to the assessor, which thresholds the results based on the probability of occurrence
(using hit count) before storing the final relationships results in a knowledge base. The
assessor uses domain-specific discriminators provided by the bootstrapping unit by
applying the information focus constraint (domain-specific) to the extracted results.
Readers are referred to the references at the end of the chapter for a more thorough
description of the KnowItAll system.

5.2.3.4 � TextRunner
As compared with DIPRE, Snowball, and KnowItAll systems, the TextRunner system is
designed to discover the relationships without any human input and train classifiers based
on self-discovered positive and negative training examples. The purpose of the text runner
system is to go through a given textual repository, search for relationship patterns, and train
classifiers that can then be used to extract different relationships from new text sentences.

The method employs extractors and assessors like KnowItAll but replaces the
bootstrapping methods with a domain-independent classifier training method.

The learning method takes a pool of documents as an input. The documents
could be scrapped off the web or provided to the algorithm by other methods. The first
step divides the sentence into chunks and identifies the entities (nouns) and possible
predicates. Step 2 attempts to find possible relationships between the entities. Steps 3,
4, and 5 use different parsing techniques (syntactic, dependency, and pre-constrained)
to filter out the identified relationships as positive or negative examples of relationships.
Step 6 trains a classifier using the positive and negative examples generated. Many types
of classifiers have been employed by the authors. Readers are referred to the reference
section of this chapter for a detailed description of the system.

Chapter 5 ■ Extracting and Representing Relationships

79

5.3 � NEIL (Never Ending Image Learning)
So far we concentrated on relationship extraction from text-based input. The methods
discussed form the foundation of relationship extraction from data generated through
various sensing modalities. NEIL attempts to use the methods outlined above to detect
and extract relationships from images. The algorithm operates as outlined below.

•	 -Candidate entity detector training: The algorithm uses different
ways to seed the process of visual relationship extraction from
text. The first step is to perform the entity detection. Entities in
this case are defined as objects, object attributes, and scenes.
The image seeds can be provided manually along with the
annotations for training. A more efficient way, however, is to
use the text-based image search (inventors used Google image
search) to retrieve large amount of images for each entity
search. Multiple detectors are trained on each entity over the
retrieved images. For example, we could train tens or hundreds of
classifiers to detect a bicycle. Having multiple detectors solves the
problems of overfitting (having the model detect only one kind/
shape of bicycle) and coverage for high dimensionality of objects,
scenes, and attributes (e.g., “cars” come in many shapes, sizes,
and colors and a “car” detector must be able to detect a majority
of these). Consensus on multiple detectors for an entity is then
used to decide on the detection result.

•	 Relationship Discovery: After the entity detector detects the
entities (objects, attributes, and scenes), the relationship
discovery step attempts to find the following type of relationships:

•	 Object-object relationships: The object-object relationship
discovery comprises of finding out the partonomic, taxonomic,
and similarity relationship between the objects. Partonomic
relationships describe if one object is a part of another (nose is a
part of the face), taxonomic relationships connect the instances
to broader classes (iPhone is a mobile phone), and the similarity
relationships discover objects that are similar to each other (bees
look similar to wasps). The object-object relationship discovery is
performed through the use of object bounding boxes. The detectors
identify the objects in an image and “draw” bounding boxes around
them. Depending on the relative position of these bounding
boxes, the relationship discovery stage can identify the inter-object
relationships. For example, one bounding box nested in another
indicates a partonomic relationship. Two different detectors
bounding the same object in multiple images indicates taxonomic
and similarity relationships. Object bounding boxes that occur
close to each other consistently can indicate a spatial relationship
(monitor is consistently close to a keyboard in images).

Chapter 5 ■ Extracting and Representing Relationships

80

•	 Object-attribute relationships: Object detectors and attribute
detectors firing consistently together can indicate a strong object-
attribute relationship. “Sun is bright” and “ball is spherical” are
some examples of object-attribute relationships.

•	 Scene-object relationship: In a manner similar to object-attribute
relationship, the scene-object relationship attempts to find the
objects that occur consistently in certain scenes. For example,
“ships are found in the ocean.”

•	 Scene-attribute relationship: The scene-attribute relationships
discovered include relationships of the type “park is green,” “night
is dark,” etc.

•	 New Instance Discovery: Using the relationships found in the
previous step, the algorithm tries to find new instances of entities.
For example, sometime the detectors may fail to detect a certain
instance of an entity (a non-trained instance or type of a car)
but using the discovered relationships can make it easy to detect
these new instances (shapes, color, scene, etc. that cars are most
associated with can point to an object likely being a car).

•	 Retraining of detectors: Using the newly discovered instances, the
detectors are retrained and the process of entity discovery starts
afresh.

As the name suggests, Never Ending Image Learning is a continuous iterative process
that works to increase the relationships discovered in an infinite loop through the steps
described above.

5.4 � Summary
This concludes the chapter on relationship discovery. In this chapter we discussed how
major relationship extraction methods are based on textual relationship discovery. We
discussed the knowledge-based relationship extraction methods including domain-
dependent and domain-independent methods. Supervised textual relationship extraction
methods include feature- and kernel-based methods. To reduce human labeling costs for
training, semi-supervised methods attempt to automatically label the seed relationships
and entities through iterative methods starting with manual or auto-generated seeds.
With NEIL as an example, we discussed how text-based relationship extraction concepts
directly extend to relationship extraction in other sensing domains. The next chapter
outlines the methods to use the relationship information to build knowledge bases and
operate on discovered relationships for different usages.

Chapter 5 ■ Extracting and Representing Relationships

81

5.5 � References
•	 Agichtein, E., & Gravano, L. (2000). Snowball: Extracting relations

from large plain-text collections. Proceedings of the Fifth ACM
International Conference on Digital Libraries.

•	 Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., &
Etzioni, O. (2007). Open information extraction from the web.
IJCAI ’07: Proceedings of the 20th International Joint Conference
on Artificial Intelligence. Hyderabad, India.

•	 Brin, S. (1998). Extracting patterns and relations from the world
wide web. WebDB Workshop at 6th International Conference on
Extending Database Technology, EDBT ’98.

•	 Bunescu, R. C., & Mooney, R. J. (2005a). A shortest path
dependency kernel for relation extraction. HLT ’05: Proceedings
of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing (pp.
724–731). Vancouver, British Columbia, Canada: Association for
Computational Linguistics.

•	 Bunescu, R. C., & Mooney, R. J. (2005b). Subsequence kernels for
relation extraction. Neural Information Processing Systems, NIPS
2005, Vancouver, British Columbia, Canada.

•	 Culotta, A., McCallum, A., & Betz, J. (2006). Integrating
probabilistic extraction models and data mining to discover
relations and patterns in text. Proceedings of the main
conference on Human Language Technology Conference of the
North American Chapter of the Association of Computational
Linguistics (pp. 296–303). New York, New York: Association for
Computational Linguistics.

•	 Culotta, A., & Sorensen, J. (2004). Dependency tree kernels for
relation extraction. ACL ’04: Proceedings of the 42nd Annual
Meeting on Association for Computational Linguistics (p. 423).
Morristown, NJ, USA: Association for Computational Linguistics.

•	 Etzioni, O., Cafarella, M., Downey, D., Popescu, A. M., Shaked,
T., Soderland, S., Weld, D. S., & Yates, A. (2005). Unsupervised
Named-Entity Extraction from the Web: An Experimental Study.
Artificial Intelligence (pp. 191–134).

•	 GuoDong, Z., Jian, S., Jie, Z.,&Min, Z. (2002). Exploring various
knowledge in relation extraction. Proceedings of the 43rd Annual
Meeting on Association for Computational Linguistics (pp. 419– 444).

•	 Kambhatla, N. (2004). Combining lexical, syntactic, and semantic
features with maximum entropy models for extracting relations.
Proceedings of the ACL 2004.

Chapter 5 ■ Extracting and Representing Relationships

82

•	 Liu,Y., Shi, Z.,&Sarkar, A. (2007). Exploiting rich syntactic
information for relationship extraction from biomedical articles.
Human Language Technologies 2007: The Conference of the
North American Chapter of the Association for Computational
Linguistics; Companion Volume, Short Papers (pp. 97–100).
Rochester, New York: Association for Computational Linguistics.

•	 Lodhi, H., Saunders, C., Shawe-Taylor, J., & Cristianini, N. (2002).
Text classification using string kernels. Journal of Machine
Learning Research (pp. 419–444).

•	 McDonald, R. (2004). Extracting relations from unstructured text.
UPenn CIS Technical Report.

•	 Zelenko, D., Aone, C., & Richardella, A. (2003). Kernel methods
for relation extraction. Journal of Machine Learning Research.

•	 Zhao, S., & Grishman, R. (2005). Extracting relations with
integrated information using kernel methods. Proceedings of
the 43rd Annual Meeting on Association for Computational
Linguistics (pp. 419–426).

83© Omesh Tickoo and Ravi Iyer 2017
O. Tickoo and R. Iyer, Making Sense of Sensors, DOI 10.1007/978-1-4302-6593-1_6

CHAPTER 6

Knowledge and Ontologies

So far the chapters in the book have focused on the primary task of data acquisition and
relationship extraction. For the more sophisticated applications, specifically the ones
that exhibit some form of intelligence, the relationship information forms the basis of
reasoning and interpretation. The recent surge in Artificial Intelligence (AI) applications
and other data analytics-based services is in part because of technologies taking
advantage of the various knowledge representation mechanisms. In this chapter we focus
on introducing some of the popular methods for knowledge representation and their
usages.

As we discussed in the previous chapter, a relationship between entities in its
simplest forms can be expressed as a triplet with the relationship connecting an object
with a subject. We reproduce here in Figure 6-1, a figure we used to illustrate this concept
earlier in the book.

Figure 6-1.  Relationship triples

A few methods to extract these types of relationships were discussed in the previous
chapter. We also briefly discussed how multiple triplets with common elements (object
or subject) can be combined to form extensions of relationships, commonly termed as
knowledge as depicted in Figure 6-2.

Chapter 6 ■ Knowledge and Ontologies

84

These methods form the foundation of knowledge building. Repeating this basic step
results in a graph of knowledge that embeds the relationships already discovered through
relationship extraction and provides the too to identify the new relationships emerging
from the graph structure itself.

This graph is generally supplemented with tools that can perform logical operations
on the graph to reason and interpret the current relationship structure and infer new
relationships based on this knowledge from the graph.

6.1 � Relationship Representation using RDF
Relationship Description Format (RDF) is the format for describing semantic
relationships between entities. The format has been adopted as a recommendation by the
World Wide Web consortium (W3C). The technologies discussed in this chapter describe
some of the most popular approaches to knowledge building. Many of these use RDF as
the semantic description language. RDF uses XML-based description formats to describe
various entities as resources and relationships as resource properties. The following
components are defined for use with RDF:

•	 Resources: Any entity that is described by RDF is called a
resource. RDF is very flexible when it comes to the resource
descriptions. The resources are generally defined and referred to
as part of a “document” using a standard XML-based format as
shown in Figure 6-2.

•	 Properties: Attributes of entities are described as properties in
the RDF document. The relationships of resources with other
resources are also embedded in the description document as a
property.

•	 Statements: An RDF statement is defined as a collection of
an RDF resource along with one or more attributes plus the
properties associated with those attributes. At its very basic form,
the RDF statement represents an entity with its relationships to
other entities. A complete knowledge-based graph is a collection
of such statements.

Figure 6-2.  First steps from relationship to knowledge

Chapter 6 ■ Knowledge and Ontologies

85

RDF makes it very easy to construct knowledge-based graphs. It adds flexibility to
the knowledge generation and representation process. New attributes can be added to
resources by updating the XML statements. Similarly, new relationships are added by
simple document update.

Source: http://www.w3schools.com/xml/xml:rdf.asp
Figure 6-3 shows an example RDF document. The document refers to the resource

“http://www.w3school.com” and the document contains two attributes (title, author).
The attributes point to relationships with other resources. Figure 6-4 shows the graphical
representation of the relationship described by the document in Figure 6-3.

Figure 6-3.  RDF document

Figure 6-4.  Relationship described by the RDF document for Figure 6-3

6.2 � Freebase: Database of Relationships
Freebase was one of the first relationship-based data stores. It was started by a
company called Metaweb that aimed to provide a relationship-based database access to
commercial and non-commercial organizations. The database was built up on user-
submitted triplets as well as the relationships discovered from the web. The relationship
information contribution to the database was designed to be completely collaborative,
with anyone having the ability to submit relationship triplets for consideration to be
included as part of the database. Triplets used the RDF format for description. At its
peak, Freebase contained about 1.9 billion triplets depicting relationships. The company
was acquired by Google is 2010 and the database was used to partly construct Google’s
Knowledge Graph. The sketch in Figure 6-5 shows an equivalent representation of a
knowledge store similar to FreeBase-based graphs.

http://www.w3schools.com/xml/xml:rdf.asp
http://www.w3school.com/

Chapter 6 ■ Knowledge and Ontologies

86

6.3 � ConceptNet: Common Sense Knowledge
ConceptNet is an initiative from MIT (http://alumni.media.mit.edu/~hugo/
publications/papers/BTTJ-ConceptNet.pdf) that attempts to represent and provide
access to common sense knowledge. Concepts like “A lemon is sour,” “Fire is hot,”
and “To open a door one must usually turn a knob” are common sense concepts that
humans understand but computers need to be told. Having a knowledge base for such
concepts can significantly aid the machine understanding of higher-level concepts. For
example, asking a robot to “Go outside” implicitly assumes opening a door by turning
a knob. ConceptNet aims to provide this common sense in the form of a knowledge
base containing a massive amount of common sense information. Figure 6-6 shows an
example of how ConceptNet might represent and store common sense knowledge.

Figure 6-5.  An example rendition similar to a FreeBase knowledge store

http://alumni.media.mit.edu/~hugo/publications/papers/BTTJ-ConceptNet.pdf
http://alumni.media.mit.edu/~hugo/publications/papers/BTTJ-ConceptNet.pdf

Chapter 6 ■ Knowledge and Ontologies

87

6.4 � Microsoft’s Satori
Microsoft is actively building a knowledge representation repository called Microsoft
Satori. Currently the repository contains more than a billion objects and relationships
collected over multiple years. The main source of the knowledge is web data obtained
using crawlers like the ones used by the search engine Bing. Similar to Google’s
Knowledge Graph, the aim of Satori is to understand the user requirements and provide
intelligent assistance based on understanding of entity relationships. Satori utilizes
sources like Freebase and Wikipedia to build the knowledge base. Like NEIL, the
approach to knowledge building is automatic and the engine keeps running off a farm of
servers (50,000+) to find new relationships and analyze the existing knowledge for new
connections.

Since the main target vehicle for Satori for usages is Bing, Microsoft is targeting the
initial usages for recommendations by the browser. For example, the browser uses Satori for
exploring different relationships to suggest possible vacation itineraries as well as things to
do in different places to the users. Currently the browser offers “at-a-glance” answers and
“snapshots” about the people, places, and things in search results. It also “auto-suggests” as
users type to help disambiguate queries and get to answers more quickly.

The process involves understanding the general concepts as described by common
sense and integrating that with domain-specific instantiations and relationships.

6.5 � Google’s Knowledge Graph
Google has made it public that it intends to provide a semantic search capability that
exploits the relationships in the different forms from web pages. The data for these
relationships can come from text, images, and video. Leveraging their cache of web data,
Google has created a large knowledge graph from products like Maps, Finance, Movies

Figure 6-6.  A sketch representing part of ConceptNet for common sense knowledge

Chapter 6 ■ Knowledge and Ontologies

88

and Music. As the search engine crawls for new data, the search engine returns data that
is analyzed for inclusion in the ever-going rich knowledge graph. We can experience
the semantic search operation at work when we are using Google to look for something
and it tries to first understand what we might be searching for using machine learning
(autocomplete, Google Next) and then returns results that are not just web pages but a
human readable form of an answer (Figure 6-7).

Figure 6-7.  Google understands a user query and responds with answers vs. webpage
pointer (www.google.com)

6.6 � Wolfram Alpha
Wolfram Alpha is a knowledge engine with a search API built completely for answering
queries with semantic responses. Unlike other commercial search engines that have
started utilizing the data they have for generating knowledge, Wolfram Alpha was
designed with the goal of generating knowledge from web resources and providing both
commercial and non-commercial users access to this data for their applications. The
result is a web tool that actually answers user’s questions by traversing the knowledge-
based graph it has built (Figure 6-8).

http://www.google.com/

Chapter 6 ■ Knowledge and Ontologies

89

Total data stored by Wolfram Alpha’s knowledge engine currently exceeds 10 trillion
entities and relationships. The number of algorithms and models used to work on the
data exceeds 50,000.

The search engine works continuously in the background to discover new data and
relationships. It currently can answer your questions, teach you music, compare books,
and give you semantic weather information. Wolfram Alpha’s engine has been integrated
with many popular search engines.

6.7 � Facebook’s Entity Graph
Similar to Google, Facebook has a lot of data provided by the users as part of their
profile and interactions using the social network. Facebook’s Entity Graph is based on
this information. During its initial days, the company used to keep user information
as a simple text-based data store. In recent times, it has realized the power of relating
the data to each other and has switched from plain text representation to a structured
representation of the user’s social data. Having the ability to represent the user
information and various social relationships in a knowledge-based graph (called Entity
Graph by Facebook) enables the company to provide rich services to the users by
suggesting new connections based on existing social connections and user preferences.
The Entity Graph is also used for providing contextual search results on the social
networking site. For example, when you search for a name on Facebook, the site operates
on the structured data provided by the Entity Graph and the results returned are ranked
according to the best fit for you based on your social connections and activity.

Figure 6-8.  Wolfram Alpha query example (https://www.wolframalpha.com/)

https://www.wolframalpha.com/

Chapter 6 ■ Knowledge and Ontologies

90

6.8 � Apple’s Siri
Apple’s widely popular personal assistant Siri is built on the semantic search abilities
provided by engines like Wolfram Alpha.

6.9 � Semantic Web
We end this chapter with a very brief introduction to the concepts of the semantic web.
Currently, most of the World Wide Web is a syntactical collection of documents, i.e., the
web pages express concepts and ideas that stand fairly independently from other ideas on
other web pages. Of course, the syntax allows for explicit hyperlinking of entities between
the web pages.

This kind of syntactical structure is easy for humans to understand, but the evolution
of intelligent machines raises the need for a web that can be understood by the machines
as well. Humans can parse the syntactical web effectively because the concepts of
definitions and descriptions are inherently understood by us. A statement like “the cat
jumped over a chair” makes sense to a human because we know what “cat,” “jump,”
and “chair” mean. A machine parsing such a sentence, however, needs to know these
concepts before it can make sense of the relationship between the entities in the sentence
<cat, jumped over, chair>. The current syntactic web is a collection of documents where
the computers do the presentation and the humans provide the links between the
information. The primary aim is the consumption of information by the humans. Unique
identities on the web are reserved for the documents in the form of URLs (Universal
Resource Locators), also called web addresses, like www.intel.com.

Current syntactical web layout makes it extremely difficult to process queries
requiring background knowledge of the context, locate information that needs to
combine multiple sources, reason about information from different web pages, etc. The
root of the problem with the syntactical web is that all the embedded metadata in the web
pages concentrates on the display properties only (font, placement, etc.) and none of the
relationship information to other entities on the web is available for interpretation.

The semantic web is an attempt to make the web machine readable by providing
access to information that can aid in making semantic sense of the web content. The
start of this effort has been made by adding semantic annotations to the already existing
content on the web. Before any such annotation can be used to describe concepts, it is
important to agree on the “meanings” of the concepts and objects being described. This
is done on the semantic web through the use of ontologies.

6.9.1 � Ontologies
Ontologies in their basic form provide meanings for the terms. Meanings of the terms
in ontologies is formally specified and made available to the users. New terms can be
formed by combining the information on existing terms from the same or multiple
ontologies. For the example above, an ontology could hold the definition of the “cat”
being a four-legged animal and the “chair” being a four-legged piece of furniture. Animal
and furniture could be further defined and described as part of an ontology.

http://www.intel.com/

Chapter 6 ■ Knowledge and Ontologies

91

Thus, the ontology for the semantic web is a vocabulary of terms to describe certain
realities along with any assumptions regarding the meaning of these descriptions.

6.9.1.1 � Components of an Ontology
Ontologies are comprised of two components

•	 Concept Names: Concept names describe terms. For example:

•	 Cat is a concept whose members are a kind of animal.

•	 Carnivore is a concept whose members are animals that eat parts
of other animals.

•	 Background Knowledge: Background knowledge imparts
meaning to terms. For example:

•	 Cats are carnivores.

•	 No individual can be both a carnivore and an herbivore.

6.9.1.2 � Ontology Languages
For the semantic web, various attempts have been made to define suitable ontology
languages. Prominent among them are RDFS and OWL. Since we focused on RDF as the
resource description format for relationships earlier in this chapter, we will use RDFS as
the means to understand ontologies.

RDFS or RDF Schema is intended to provide a vocabulary for terms used in RDF
descriptions for the semantic web. RDFS is object-oriented in the sense that it groups the
definitions and descriptions into multiple classes and their properties. The classes can
have sub- and super- classes and the properties can define a range of applicable values.

RDFS schemas are pointed to by Universal Resource Identifiers or URIs. For the
example of the relationship in the Figure 6-9, concepts/resources “Author,” “likes,” and
“coffee” will be described by the RDFS at the descriptions stored at accessible web
addresses referred to by URIs. Resources in general are any objects that can be referred to
through URIs. Properties are also defined as resources.

Figure 6-9.  Basic relationship triple

Figure 6-10 repeats the document presented in Figure 6-3 for us to observe the
syntax for resource description.

Chapter 6 ■ Knowledge and Ontologies

92

In the figure we see a statement “<rdf:Description rdf:about=http://www.
w3schools.com”>" pointing the parsing agent to the URI at http://www.w3schools.com
for a description of resources “title” and “author.”

Having the ability to link the instances and resource descriptions back to the
common ontologies allows the computer programs to understand the knowledge
representation and descriptions across different invocations. A cat can be interpreted
as the same animal when referred to by the animal name “cat” or the pet name of an
individual cat “Garfield.” Ontological methods lend syntax to the web, allowing for
expression of ideas vs. semantic document storage.

While RDFS is one way to implement ontologies, many other methods exist and
each comes with a package/tool for computers to browse and make connections between
concepts. First Order Logic (FOL)-based tools allow for combinations of concepts and
generation of new ones. Ontology based on Ontology Web Language OWL (https://www.
w3.org/OWL/) is one of the most popular ontologies accepted by the World Wide Web
consortium. The OWL language comes with tools for people to build their own ontologies
as well as operate on those already existing.

6.10 � Summary
This chapter provided a brief overview of the ultimate step in knowledge understanding
from sensor information. We introduced the concept of knowledge and how it can be
viewed as a collection of semantic relationships. Many knowledge-based commercial
applications were discussed that are heavily using the collected data from humans and
the web to build knowledge repositories with an aim to provide intelligent services. The
semantic web is the ultimate step in evolution of knowledge from raw data gathered by
sensors. It is also the last step in our journey of knowledge from sensors. The topic of
ontologies and the semantic web is large and fit for discussion in a dedicated book of
its own. We hope to have given you a brief introduction to the topic and the resources
in the reference section to follow the topic on your own. Interested readers can learn a
lot more about the technologies discussed with the help of references at the end of this
chapter. The next chapter will focus on the practical system and platform considerations
to implement a sensor-understanding pipeline in the real world.

Figure 6-10.  RDF with RDFS embedding

http://www.w3schools.com/
http://www.w3schools.com/
http://www.w3schools.com/
https://www.w3.org/OWL/
https://www.w3.org/OWL/

Chapter 6 ■ Knowledge and Ontologies

93

6.11 � References
•	 Google Knowledge Graph https://www.google.com/intl/

es419/insidesearch/features/search/knowledge.html

•	 ConceptNet http://alumni.media.mit.edu/~hugo/
publications/papers/BTTJ-ConceptNet.pdf

•	 Wolfram Alpha Source: https://www.wolframalpha.com/

•	 Google Search www.google.com

•	 Ontology Web Language OWL (https://www.w3.org/OWL/)

•	 De Raedt, L, Logical and Relational Learning. Springer, 2008.

•	 Suchanek, F. M., Kasneci, G., and G. Weikum. “Yago: A Core of
Semantic Knowledge” Proceedings of the 16th International
Conference on World Wide Web.

•	 Carlson, J., Betteridge, B., Kisiel, B., Settles, E. R. H. Jr. and T. M.
Mitchell. “Toward an Architecture for Never-Ending Language
Learning.” Proceedings of the Twenty-Fourth Conference on
Artificial Intelligence (2010): 1306–1313.

•	 Bollacker, K., Evans, C., Paritosh, P., Sturge, T. and J. Taylor.
“Freebase: A Collaboratively Created Graph Database for
Structuring Human Knowledge.” Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data.
(2008): 1247–1250.

•	 Singhal, A. “Introducing the Knowledge Graph: Things, Not
Strings,” May 2012. http://googleblog.blogspot.com/2012/05/
introducing-knowledge-graph-things-not.html

•	 Weikum, G. and M. Theobald. “From Information to Knowledge:
Harvesting Entities and Relationships from Web Sources.”
Proceedings of the Twenty-ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems. (2010): pp. 65–76.

•	 Davis, R., Shrobe, H., and P. Szolovits. “What is a Knowledge
Representation?” AI Magazine, 14, no. 1, (1993): 17–33.

•	 Sowa, J. F. “Semantic Networks.” Encyclopedia of Cognitive
Science, 2006.

•	 Minsky, M. “A Framework for Representing Knowledge.” MIT-AI
Laboratory Memo (1974): 306.

•	 Berners-Lee, T. , Hendler, J. and O. Lassila, “The Semantic Web.”
2001. http://www.scientificamerican.com/article/the-
semantic-web

https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
http://alumni.media.mit.edu/~hugo/publications/papers/BTTJ-ConceptNet.pdf
http://alumni.media.mit.edu/~hugo/publications/papers/BTTJ-ConceptNet.pdf
https://www.wolframalpha.com/
http://www.google.com/
https://www.w3.org/OWL/
http://googleblog.blogspot.com/2012/05/
http://www.scientificamerican.com/article/the-semantic-web
http://www.scientificamerican.com/article/the-semantic-web

Chapter 6 ■ Knowledge and Ontologies

94

•	 Klyne, G. and J. J. Carroll, “Resource Description Framework
(RDF): Concepts and Abstract Syntax.” Feb. 2004. http://www.
w3.org/TR/2004/REC-rdf-concepts-20040210/

•	 Cyganiak, R., Wood, D. and M. Lanthaler, “RDF 1.1 Concepts and
Abstract Syntax.” Feb. 2014. http://www.w3.org/TR/2014/REC-
rdf11-concepts-20140225/

•	 Brachman, R. and H. Levesque, Knowledge Representation
and Reasoning. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2004.

•	 West, R., Gabrilovich, E., Murphy, K., Sun, S., Gupta, R. and
D. Lin. “Knowledge Base Completion via Search-based Question
Answering.” Proceedings of the 23rd International Conference on
World Wide Web, (2014): 515–526.

•	 Lenat, D. B. “CYC: A Large-scale Investment in Knowledge
Infrastructure.” Commun. ACM 38, no. 11 (1995): 33–38.

•	 Vrandecic, D. and M. Krötzsch, “Wikidata: A Free Collaborative
Knowledgebase.” Communications of the ACM 57, no. 10, (2014):
78–85.

•	 Fader, A., Soderland, S. and O. Etzioni. “Identifying Relations
for Open Information Extraction.” Proceedings of the Conference
on Empirical Methods in Natural Language Processing. (2011):
1535–1545.

•	 Qian, R. “Understand Your World with Bing, Bing Search Blog.”
Mar. 2013. http://blogs.bing.com/search/2013/03/21/
understand-your-world-with-bing/

•	 Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D.,
Kalyanpur, A. A., Lally, A., Murdock, J. W., Nyberg, E., Prager,
J. and others, “Building Watson: An Overview of the DeepQA
Project.” AI Magazine 31, no. 3, (2010): 59–79.

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2014/REC- rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC- rdf11-concepts-20140225/
http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/

95© Omesh Tickoo and Ravi Iyer 2017
O. Tickoo and R. Iyer, Making Sense of Sensors, DOI 10.1007/978-1-4302-6593-1_7

CHAPTER 7

End-to-End System
Architecture Implications

In this last chapter of the book, we discuss the system-level implications for processing
sensor data and analyzing the processed data for insights and knowledge management.
To get started, let's start by looking at what a typical end-to-end system architecture might
look like. Figure 7-1 shows a few typical end-to-end system architectures for different
environments consisting of three platforms.

Phone
Comms

Gateway or
Hub

Cloud
Platforms &
Services

Sensors
(e.g. Factory)

Aggregation
Platform or

Gateway

Private Cloud
or Public

Cloud

Sensors
(Smart Space)

Phone or
Access Point

On-Premise
Private Cloud
Or Pub Cloud

Wearable
Phone
or Hub

Cloud
Platforms &

Services

Figure 7-1.  Example end-to-end system architectures

Chapter 7 ■ End-to-End System Architecture Implications

96

In Figure 7-1, the first end-to-end system architecture considers the phone as a
sensor capture device. Today's phones capture valuable sensor data that includes location
data (for navigation as well as assistance), audio data (speech Q&A), motion data (for
health/fitness and navigation), and visual data (pictures and video for personal usage,
social media, and other purposes). When such data is captured in a home environment,
it goes through a communications gateway (for Wi-Fi communication) or a personal hub,
and then becomes available to the cloud. While the gateway/hub is primarily used as a
communication medium, such platforms have larger compute capabilities and could be
used for additional local processing in some scenarios. Ultimately, the cloud platform is
typically in a datacenter and has abundant processing resources available for analyzing
the data as well as providing valuable services as a result of it.

Similarly, Figure 7-1 also shows a wearable example. Consider a fitness device on the
wrist that measures your motion. Such a device typically has low bandwidth connectivity
within a short range and therefore communicates to an on-body device like a phone for
the ability to upload the data to the cloud when required. More sophisticated smart watch
devices may have additional communication capabilities like Wi-Fi and cellular enabling
them to also connect to a local connectivity hub as well as directly communicate with the
cloud platform when required. The wearable typically has low compute capabilities for
low power (mW to 100s mWs), whereas the phone or hub has high compute capabilities
at medium power (Watts) and the cloud platform has the ability to scale to 10s/100s of
Watts and beyond.

Expanding further, instead of a wearable, we could also consider an edge sensor
device in a smart space that senses motion or captures audio/visual data for interactivity.
Such devices in a smart space may communicate through a phone or local access point
to the cloud. In this case, the cloud platform could in fact just be an on-premise platform
that provides the service within the local vicinity or a public cloud in a datacenter
depending on the usage of interest. The last end-to-end system in Figure 7-1 is an
extension to this, since it considers an aggregation platform or gateway in an industrial
factory-like environment to perform the aggregation of sensing data across multiple
sensors and provides potential analytics locally as well as transmits this data to a private
or public cloud platform for further processing.

7.1 � Platform Data Processing Considerations
In this chapter, we will now consider where such sensor processing could be or should be
accomplished for some of the usages we discussed earlier in this book and talk about the
opportunities and challenges going forward in this domain.

Here are the typical considerations when determining where the processing should
be done in an end-to-end platform:

7.1.1 � Compute Capability
Each of the platforms in the end-to-end system architecture has very different levels
of compute capabilities due to limitations in battery life, form factor, or other aspects
such as cost and even cooling. For example, a simplistic sensor node may have only
one microcontroller core and some simple control logic running at less than 100 MHz,

Chapter 7 ■ End-to-End System Architecture Implications

97

whereas a gateway platform could have cores running at 100s of MHz to 1GHz as well as
additional hardware logic for specialized media or communications functionality. The
cloud platform typically has many cores, each running at multiple GHz. Given this wide
possible range of compute characteristics, it becomes important to determine where to
run parts of the overall application or service of interest. A sensor node, for example, may
only be able to accomplish a little amount of processing, while sending the data to the
gateway or cloud can enable much richer analytics and services.

7.1.2 � Battery Life & Power Constraints
Typically, the reason behind the limited compute power available at a sensor node or a
phone is the fact that it is battery-operated and therefore is required to run at milliwatts
or several 10s of milliwatts on average. Given this characteristic, such devices are typically
“asleep” for long periods of time and only do processing when some interesting sensor
data arrives or an event of interest occurs. When considering speech processing, for
instance, an edge device may only be able to determine whether there was a keyword
spoken, whereas the actual command is processed on the gateway and the full Q&A
processing and service is provided from the cloud. This is done in order to save the
battery life and limit the cost of the sensor node.

7.1.3 � Interactivity and Latency
The example provided above on speech recognition provides an interesting perspective
in terms of partitioning of the overall workload. If interactivity and latency are important,
one would like to run as much of the processing closer to the device as possible to
minimize the latency of sending data to the cloud and getting back an answer. However,
at the same time, interactivity may require access to data in the cloud where the
domain expertise for generating the answer is actually available. One way of solving this
problem is to consider local (user and device-specific) commands/questions vs. global
commands/questions and enable local commands at the edge node (or nearby), while
processing global (more generic) commands in the cloud.

•	 Bandwidth Availability

In addition to needing local processing for interactivity, the other key consideration
for local processing is bandwidth availability. If the bandwidth available on the local node
is very low, it becomes difficult (higher latency) to send all of the data to the cloud for
processing. Communications processing also costs power and therefore there is typically
a tradeoff between local compute vs. communication to the cloud. If the edge device is
mobile, the availability of bandwidth also changes, depending on coverage at the current
location as well as indoor vs. outdoor scenarios.

7.1.4 � Storage & Memory Constraints
Due to form factor and power constraints, the amount of storage and memory available is
also limited on a local edge device and grows as gateways and cloud platforms are considered.
Therefore, if history is required for answering a question (speech example again), then it is

Chapter 7 ■ End-to-End System Architecture Implications

98

almost imperative that the gateway or cloud provide the answer by processing the history in
the context of the question. However, if the answer requires minimal history (only recent few
seconds or minutes), then perhaps the local device has the ability to store the raw data or the
metadata needed to answer questions later. In addition to historical data, having access to
other data can also be equally important as discussed below.

7.1.5  Access to other data (crowd-sourced or
expert data)
Access to data from other devices or previously collected data may also be useful
when doing a Q&A session (speech example). Therefore, the cloud platforms have an
advantage in performing the Q&A that requires data for specific domains. If the data is
crowdsourced, the approach could be hierarchical where the local gateways can provide
some context but the ultimate root of the hierarchy is the cloud platform where all
crowdsourced data can be aggregated, processed, and stored.

7.1.6 � Throughput & Batch processing
In some cases, the analytics requires a large amount of data to be collected and
processed together. For example, if there is a transcription on an event required and this
transcription is not required to be real-time, then processing at the cloud is more suitable
than at the edge. The availability of the entire data can help better analytics in terms of
summarizing the event as well as better context for various sections of the transcription.
Such scenarios tend to be biased towards cloud execution rather than local execution on
the edge device.

7.1.7 � Security and Privacy
Privacy plays an important role in determining local vs. cloud processing. If the data is
sensitive, then the bias towards local processing is high due to considerations such as loss
of data integrity and exposure of the data, as well as concern over security breaches. In
addition to local processing on the edge device, the consideration for on-premise servers
vs. public cloud infrastructure is also dependent on the sensitivity of the data and the
availability of security capabilities to anonymize the data as well as protect it from being
misused.

7.1.8 � Hierarchical processing
Ultimately, the benefits and trade-offs between local edge device processing and cloud
processing end up with a convergence towards hierarchical processing, where some
processing is done on the edge and the amount of processing accomplished at the
gateway and the cloud progressively increases. The use of hierarchy is not limited only to
basic static partitioning but also dynamic approaches that exploit the availability of many
distributed nodes to perform the processing in a parallel manner.

Chapter 7 ■ End-to-End System Architecture Implications

99

7.2  End-to-end System Partitioning and
Architecture
Figure 7-2 illustrates the above considerations for partitioning the workload between the
three platforms in the end-to-end architecture. The figure shows how the considerations
above bias the location of data processing between edge and the cloud.

Edge Processing Cloud Processing

Limited
Bandwidth

Compute
Availability

Battery Life
& Power

Limited
Comms

Privacy

Memory &
Storage

Interactivity
& Latency

Access to
Other Data

Hierarchical
Processing

Static Partitioning

Dynamic Partitioning

Figure 7-2.  Example end-to-end system architectures

A more detailed understanding of the platform architecture within the end-to-
end system might be of interest as we explore the partitioning approach further. To
accomplish this, we will explore five different platform examples: (a) simple sensor node,
(b) wearable platform, (c) phone platform, (d) gateway platform, and (e) cloud server
platform.

7.2.1 � Sensor Node
A typical microcontroller-based sensor node architecture is shown in Figure 7-3.
Such a platform typically has a microcontroller chip along with external sensors, a
battery, and potentially an external communications chip as well. The growing trend
is to integrate the communications functionality as part of the microcontroller SoC
(system-on-chip).

Chapter 7 ■ End-to-End System Architecture Implications

100

Within the microcontroller SoC, there is a controller core for embedded processing
along with memory, embedded storage, and interfaces to sensors. In addition to the
embedded core, there is potentially additional special purpose logic or engines that
enable sensor processing locally on the device. The type of special-purpose logic
depends heavily on the usage but ranges from digital signal processing to security
(crypto) processing to media processing to pattern matching. These platforms typically
optimize for ultra-low power, especially leakage power, in order to increase battery life for
predominantly inactive usages.

7.2.2 � Wearable Platform
Another type of platform that is emerging and getting increasingly sophisticated is a
wearable platform. A wearable platform architecture looks similar to the sensor node
architecture, except that the core runs at higher frequencies. It is likely that there are
two cores, one for higher performance while and the other for low power always-on
processing. Such architectures also tend to have more special purpose logic for DSP
(Digital Signal Processing), security, and other functionality. In addition, there is more
communications and memory/storage capability in wearable platforms as compared to
simplistic sensor nodes.

Ucontroller
Core

Special Purpose
Engine or Logic

Memory
Embedded

Storage

Interfaces to Sensors Sensors

Battery

Comms
(Discrete or Integrated)

Figure 7-3.  Example sensor node platform architecture

Chapter 7 ■ End-to-End System Architecture Implications

101

Figure 7-4 illustrates the key differences between a simplistic sensor platform and a
wearable platform. A simplistic sensor node may primarily run bare-metal code written
to it so one function executes extremely efficiently. Wearable platforms are getting
more sophisticated and may run embedded operating systems to provide more rich
functionality. Wearables may also have interfaces to displays, especially for devices like
smart watches. While these displays are fairly small, they still provide a rich user interface
for accessing different micro-applications and services for consumer usages.

The key communications capabilities on wearable devices include Bluetooth and
potentially Wi-Fi capabilities. Bluetooth provides the ability to build personal area
networks within a short range. More recently, Bluetooth low energy (BLE) provides
minimized Bluetooth communications but at ultra-low power and energy. Almost
every operating system running on phone supports Bluetooth and BLE capabilities in
order to enable connectivity to wearable platforms. By doing so, the phone can act as
a more powerful hub for wearables as they get used on the go in daily life. Bluetooth
provides special-purpose profiles ranging from health care to fitness to headset and
beyond. Beyond Bluetooth, more powerful wearable platforms have recently started
implementing Wi-Fi capabilities to provide more bandwidth in home environments but
at the cost of additional power. Such capabilities are useful as wearable platforms include
higher bandwidth sensors such as audio and video.

7.2.3 � Phone Platform
The next major platform example is the phone platform. Today's phone platforms are
very powerful, with multiple (potentially heterogeneous) cores, special purpose engines
including graphics, connectivity capabilities, and significant memory and storage
capabilities. Figure 7-5 shows an example of a mobile platform architecture that consists
of the above key capabilities.

Ucontroller
Core

Special Purpose
Engine or Logic

Memory
Embedded

Storage

Interfaces to Sensors Sensors

Battery

Comms
(Discrete or Integrated)

Higher perf cores

Embedded OS

BLE or Wifi comms

Higher mem/storage

Display Interface

Figure 7-4.  From sensor node to wearable platforms

Chapter 7 ■ End-to-End System Architecture Implications

102

A smart phone platform has multiple usage dimensions, including: (a) rich
visual experience with social media, video, and other playback capabilities, (b) rich
communications experience with many cloud applications, (c) rich sensing capabilities
with both external hard sensors, as well as soft sensing such as access to browsing,
mail, and other user activities, and (d) rich application experience, with many available
applications downloaded from a cloud store. In order to support all of these experiences,
but within a form factor and battery life constraint, the architecture supports multiple
levels of operation from always-on sensing to power-efficient light activity to high
performance processing when required.

In order to support low-power execution, special purpose engines are developed
and integrated into a phone platform for all of the important subsystems: (i) imaging,
(ii) graphics and media processing, (iii) crypto processing, (iv) audio processing as well
as speech recognition, (v) visual processing, and (vi) communications capabilities that
include Bluetooth, Wi-Fi, and cellular subsystems. In addition, the phone platform also
typically integrates a sensor hub to process rich sensor data from motion, location, audio,
and vision at a low power profile. The smart phone platform has access to large memory
and storage subsystems. In summary, a smart phone platform today is equivalent
in compute capabilities to a small supercomputer from almost 25 years ago. This is
especially evident when looking at the increasing core count in smart phone platforms
and the continuous addition of memory and storage within the platform.

7.2.4 � Gateway Platform
Our next platform description is for a gateway or hub platform. A gateway or hub
platform has multiple processing cores, communications functionality that includes
router capabilities along with media processing, and security as a key focus, especially
if it is a hub platform or a set-top box in a home-like setting. In addition, it usually

Cores

Image Processsing

Security / Crypto

Audio/Speech

Vision Processing

Comms

Graphics/Media

Memory I/F

Storage I/F

Sensor Hub

Figure 7-5.  Heterogeneous mobile platform architecture

Chapter 7 ■ End-to-End System Architecture Implications

103

integrates a significant amount of memory and storage to handle a large amount of
media, multiple simultaneous communication streams, and metadata storage. For set-
top box-like capability, the ability to interface with digital cable as well as large displays
becomes crucial and therefore the amount of processing, storage, and special purpose
functionality increases further.

Such a platform is typically not battery-operated (unlike devices discussed in this
section previously) and therefore the gateway/hub is typically always wall-powered and
available for processing at high performance. Employing such platforms as part of an
end-to-end system architecture provides the opportunity to offload processing from the
sensor/phone edge device to a central device like the gateway for both aggregation as well
as high performance processing (saving battery power). At the same time, the gateway/
hub can provide the benefits of low interactive latency since it is within the premise with
high bandwidth communications capabilities like Wi-Fi.

7.2.5 � Cloud Server Platform
Last but not least, we should also walk through the capabilities of a commercial server
residing within a cloud datacenter. Traditionally, server platforms have a large number
of cores (16-48 for example) and run at high performance, especially when it comes to
throughput. Since multiple server platforms are in the cloud, the ability exists not only
to do parallel processing within the server but also to accomplish parallel processing
amongst multiple server machines within a cluster or within the overall datacenter. A
simplistic description of a server platform architecture is shown in Figure 7-7 (top).

Core Core Core Core

Media Processing & Security

Communications / Router Functionality

Memory

Storage

Figure 7-6.  Gateway or hub platform architecture

Chapter 7 ■ End-to-End System Architecture Implications

104

More recent server architectures are attempting to provide customization for even
high power-efficient performance. This includes the integration of programmable/
reconfigurable logic like FPGAs (Field Programmable Gate Arrays) as well as other
accelerators such as GPUs (Graphics Processor Units) and domain-specific engines.

As is probably evident in the picture in Figure 7-7, the abundance of high
performance cores illustrates the higher compute capabilities of servers as compared to
edge devices or gateways. Servers typically run within the power constraint of several 100
Watts as compared to phones which run at Watts and wearables or sensor nodes which
are sub-Watt in battery life/capacity.

7.3  End-to-End Processing & Mapping
Examples
The above description of each of the platforms hopefully illustrates the reason why an
end-to-end system architecture is needed to accomplish a rich experience like visual
recognition and processing. In order to delve into this further, let us consider three
examples of processing: (a) speech processing, (b) visual processing, and (c) machine
learning and classification tasks. These will further provide a current understanding of
where certain tasks can be performed based on the considerations described earlier in
this chapter. Let's start with speech processing.

Cores

On-Die Memory

Off-die Memory & Storage

Cores

On-Die Memory

Off-die Memory & Storage

Accelerators (FPGA, GPU, other)

High Performance
Server Architecture

(Cores)

Emerging Server
Architectures

For Customization
(Cores + Customizable Engines)

Figure 7-7.  Cloud server platform architectures

Chapter 7 ■ End-to-End System Architecture Implications

105

7.3.1 � Speech Processing Example
In order to understand speech processing in detail, let us consider an example usage.
Consider a wearable device on the person's body that intends to provide the capability of
an assistant who has the ability to answer questions. The end-to-end architecture for such
a usage includes (a) wearable device on the body, (b) smart phone in the pocket, and (c)
cloud platform in the datacenter. Here we recap the speech processing pipeline as well
as the end-to-end system architecture in order to start considering how the partitioning
could be accomplished between the different platforms listed above.

To recap the speech flow, a typical flow for Q&A assistance includes noise reduction
(to clean the audio sample), voice activity detection (to detect human voice), keyword
recognition (to identify the trigger word), speaker recognition (to identify the correct
speaker), command and control (to identify commands), LVCSR (for continuous speech
recognition), natural language processing (to determine what the words imply), and Q&A
service (to determine the answer for the question).

For this example, the key considerations we will use to partition the speech flow
on to the platforms in the end-to-end architecture are: (a) available compute within
a constrained power and battery life envelope and (b) available memory capability
for storing speech models needed for the processing. We will assume that other
considerations are secondary in order to be able to illustrate implications of even just a
few priorities.

Today, most devices only accomplish keyword recognition on an edge device like a
wearable, smart phone, or even an ambient hub. But advances in low-power hardware
designs are emerging to push the envelope on what can be processed closer to the edge
rather than having to send all of the audio data to the cloud. These advances typically
involve implementing speech algorithms using a hardware-software co-design approach.
The resulting low power hardware design may not only be able to achieve keyword
recognition but also some level of command & control (small vocabulary) on the local
device at low power (milliwatts). As a result, a wearable in the near future should be
able to provide processing for functionality all the way to limited command & control.
Figure 7-8 shows an example partitioning of the speech pipeline over an end-to-end
platform architecture.

Figure 7-8.  End-to-end partitioning of speech flow (example)

Chapter 7 ■ End-to-End System Architecture Implications

106

For a larger vocabulary in command & control but somewhat lower vocabulary
in continuous speech recognition and natural language processing, a more powerful
system in the end-to-end flow is required. With advances in HW/SW co-design, such
capabilities should be possible on a smart phone or hub-like platform in the near
future. Ultimately, for large-vocabulary speech recognition and full natural language
processing, a cloud platform is needed not only to address the compute requirements
but also to accommodate the memory needs for large and multiple language models.
Last but not least, a question & answering service that is more generalized requires
a cloud service since it requires public domain knowledge for determining
appropriate answers based not only on the question but also on employing the
context of the usage.

7.3.2 � Visual Processing Example
Our next example of end-to-end partitioning (visual processing) considers a richer
sensor (camera) and therefore more significant amounts of compute, bandwidth,
and analytics. Here we consider the end-to-end architecture which considers a
phone-like edge device (could also be a visual monitoring device with similar
capabilities or even a mobile augmented reality device using a phone-like platform),
a local hub that provides contextual data, and a cloud platform delivering richer
visual services.

Figure 7-9 shows a few of the visual processing capabilities that are needed for
most usages and a mapping of those to the potential platform where this can be
achieved with compute, battery life, memory/storage capacity, and availability of
contextual models and data in mind. We start with gesture recognition, which can
be achieved locally. Gesture recognition can be recognition of hand poses as well as
dynamic movements; and as long as the number of gestures are limited, the goal of
recognition can be achieved on the edge device itself within 10s of milliwatts to 100s
of milliwatts (based on complexity). As we start to consider object recognition, it
gets more challenging for a local device to accomplish this, especially if the number
of objects scale from 100s to 1000s to millions. For 100s of objects, a local device can
provide the object models for object recognition and can achieve the recognition
needed. However, if the objects are unbounded and require a large object database,
the processing requires a cloud server that can match it against a large database. A
hierarchical approach is also possible, where the local hub determines the context of
the object recognition and caches some of the frequent objects that are expected in
the usage (within a spatial/temporal distance).

Chapter 7 ■ End-to-End System Architecture Implications

107

Similar to object recognition, processing for face recognition also depends on the
number of faces involved (whether it is a home with a few faces vs. a corporation with
1000s of faces vs. a public query with millions of faces). Depending on this, the processing
can be accomplished on the local edge device, the hub, or the cloud server. Face
detection (knowing there is a face in the frame and identifying where it is) can certainly
be accomplished on the local device, but face recognition requires a scalable hierarchical
approach as described above.

Currently, there is a lot of research activity on scene understanding and video
summarization. Understanding a scene implies knowing not only the individual entities
in the image but also the activity or context in the scene. This requires each of the
above capabilities (object, face, gesture) and more. Depending on the level of scene
recognition required, it can be accomplished on the hub or in the cloud. Similarly,
video summarization attempts to identify the salient scenes in a video and identify what
the overall video consists of in terms of activity and storyline. Video summarization
at a limited scale (identifying representative scenes that summarize the video) can be
accomplished in the hub, whereas further summarization such as determining the
activity and storyline may require cloud processing.

Figure 7-9.  Partitioning of visual processing (example)

Chapter 7 ■ End-to-End System Architecture Implications

108

It should be noted that a key trade-off as we consider visual processing is the
bandwidth needed to transmit the data from the local device to the hub to the cloud.
Since transmitting visual data is expensive, it is also important to consider whether
the raw data is transmitted from one node to the other, or if only the features extracted
from the raw data should be transmitted for the processing required. In addition, since
the purpose of the visual processing is not to create recorded content that is humanly
viewable later, it is also not critical to maintain the highest resolution and frame rate for
the visual stream as it is transmitted from one node to another in the end-to-end system
architecture. Last but not least, it is also important to determine when the raw data can be
discarded and only the metadata is retained depending on the usage model in question.

7.3.3 � Learning and Classification
Another view of capabilities that are partitioned across the end-to-end system
architecture is that of learning and classification. Machine learning techniques are
increasingly used for pattern matching, audio, and visual recognition. The disruption
with machine learning was that instead of writing code-based or rule-based approaches
to recognizing patterns, actual data is used as training samples for developing a model.

For example, if an IMU gesture needs to be recognized, a gesture model can be
developed by training a machine learning model (a neural network, for example) with
gestures captured from a collection of individuals. This training process requires the
device to capture the data but does not necessarily require the device to learn the models
directly. A cloud-based solution can be used for training and development of the model
and then the resulting model can be downloaded to the devices that are deployed in
order to do the recognition during real-time.

Such partitioning can be thought of as two distinct steps: (a) offline training and
(b) online classification. In fact, the base model used in many usages today relies on the
cloud to do both offline training as well as online classification (as shown in Figure 7-10
top left). However, such a model has challenges when the latency to send raw data to the
cloud for online classification becomes limiting to the usage. Therefore, newer models
have emerged where the device does the classification by implementing the classification
locally based on the trained model produced from the offline cloud training. Even this
model can be restrictive when changes due to personalization or anomalies cannot
be easily incorporated. As a result, researchers have been working on techniques for
detecting anomalies and sending them to the cloud for updates to the local model. The
cloud collects these anomalies and produces an updated model routinely and deploys
the update to the field. Researchers are also trying to accomplish continuous learning by
learning local changes on the device itself. These changes can not only be transmitted to
the cloud for updates but also used to update the model locally.

Chapter 7 ■ End-to-End System Architecture Implications

109

7.4  Programmability Considerations for
End-to-End Partitioning
When implementing a sensing to knowledge management capability, it is also important
to consider programmability of components of the solution. Since speech and visual
algorithms are continuously evolving and variants of machine learning algorithms or
neural networks are being developed every few months, it becomes critical that current
implementations can be modified with ease. In addition, the previous sections in this
chapter presented multiple partitioning possibilities and it becomes critical that these
can also be dynamically changed if hardware or algorithm improvements become
possible.

One approach is to develop APIs (application programming interfaces) that allow
software developers to consistently use common interfaces but allow flexibility in
modifying the implementation underneath. For example, if a speech pipeline employs
HMMs (hidden Markov models) in their implementation for language models, changing
this to WFST (weighted finite state transducers) in the future should be possible if the
APIs are defined well and the implementation is flexible as a result.

Figure 7-10.  Learning and classification (offline vs. online)

Chapter 7 ■ End-to-End System Architecture Implications

110

Furthermore, since processing of a component can be mapped to many different
platforms (local device, gateway, or cloud platform) and within each platform the processing
engine could be a core, a GPU, an FPGA, or an accelerator (or special purpose engine), it
becomes important that the implementation abstracts these details to provide flexibility
of changing the mapping and underlying components. An example of such a flexible
approach is remote offloading where the authors propose an OpenCL-based solution for
abstracting the function that needs to be executed such that it can be run on a local device
or a remote platform and can also be run on any processing engine on these platforms (core
or accelerator). Such solutions are gaining in popularity since heterogeneous architectures
are becoming more common due to power/performance advantages. Figure 7-11 shows
the decomposition of a workload into functional components and illustrates the use of a
stub to redirect the execution of the function to any platform and processing engine within
the platform. The policy used for determining where to run a function could be based on
available bandwidth for data transfer, power/performance (affecting battery life of device),
and potentially availability of the platform and engine (if multiple workloads are running
simultaneously or the platform is not always available on the network).

7.5 � Summary and Future Opportunities
This chapter presented the end-to-end architecture for sensor processing pipelines.
As described in this chapter through various examples, there are multiple challenges in
developing end-to-end system architectures for speech or vision capabilities and usages.
This opens up many opportunities for further research and development. Here we will list
a few of these opportunities:

•	 Developing special purpose engines and accelerators for specific
algorithms and primitives

•	 Developing end-to-end system architectures that provide the
ability for dynamic mapping and partitioning flexibility.

Figure 7-11.  Workload decomposition and function mapping

Chapter 7 ■ End-to-End System Architecture Implications

111

•	 Developing tools and models that allow for exploration of suitable
partitioning policies

•	 Developing common processing pipelines across multiple usages

•	 Developing runtimes/programming models for end-to-end
systems

7.6 � Conclusion
This chapter concludes the overview of different facets of sensor data processing to
make sense of the environments around us. We hope that the book achieved the goal
of exposing the readers to a high-level understanding of the concepts and operations
involved. The discussions in the book detailed the steps in making sense of sensors
through (a) recognizing data from a single sensor, (b) using multiple sensing modes to
improve recognition performance and implement new usages, (c) deriving usage context
and in turn using the context for improving recognition operations, (d) deriving semantic
relationships from recognized information, (e) representing the relationships to build
knowledge graphs, (e) operating on the knowledge for implementing intelligent usages,
and (d) system considerations for implementing sensor-driven knowledge pipelines.

While this book is aimed at providing a high-level bird's-eye view of the technologies
involved, the content is aimed at providing a reader with an understanding of the
generic nature of the knowledge pipeline across various sensing modes and usages. The
information gained from the book should equip the reader with enough background to
get to the next step of learning by choosing the domain and technology area of interest.
The references provided at the end of the book chapters are a good start for such a quest.

7.7 � References
•	 OpenCL: https://www.khronos.org/opencl/

•	 Eom, H., St Juste, P., Figueiredo, R., Tickoo, O., Illikkal, R. and R.
Iyer. “OpenCL-based Remote Offloading Framework for Trusted
Mobile Cloud Computing.” IEEE International Conference on
Parallel and Distributed Systems (ICPADS '13).

•	 Iyer, R., Srinivasan, S., Tickoo, O., Fang, Z., Illikkal, R., Zhang,
S., Chadha, V., Stillwell, Jr., P. M. and S. E. Lee. “CogniServe:
Heterogeneous Server Architecture for Large-Scale Recognition.”
IEEE Micro 31, no. 3 (2011): 20–31,

•	 Barroso, L.A., Dean, J. and U. Holzle. “Web Search for a Planet:
The Google Cluster Architecture.” IEEE Micro 23, no. 2 (2003):
22–28.

•	 Takacs, G. et al. “Outdoors Augmented Reality on Mobile Phone
Using Loxel-Based Visual Feature Organization.” Proc. ACM 1st
Int’l Conf. Multimedia Information Retrieval (MIR 08), (2008):
427–434.

https://www.khronos.org/opencl/

Chapter 7 ■ End-to-End System Architecture Implications

112

•	 Bay, H. et al. “Speeded-Up Robust Features (SURF).” J. Computer
Vision and Image Understanding 110, no. 3 (200): 346–359.

•	 Lowe, D.G. “Distinctive Image Features from Scale-Invariant
Keypoints.” Int’l J. Computer Vision 60, no. 2 (2004): 91–110.

•	 Srinivasan, S. et al. “Performance Characterization and
Acceleration of Optical Character Recognition on Handheld
Platforms.” Proc. IEEE Int’l Symp. Workload Characterization
(IISWC 10) (2010).

•	 Andersen, D.G. et al. “FAWN: A Fast Array of Wimpy Nodes.” Proc.
ACM SIGOPS 22nd Symp. Operating Systems Principles (SOSP 09)
(2009): 1–14.

•	 V. Reddi et al., “Web Search Using Mobile Cores: Quantifying and
Mitigating the Price of Efficiency,” Proc. 37th Ann. Int’l Symp.
Computer Architecture (ISCA 10), ACM Press, 2010, pp. 314–325.

113

�       � A
Accelerometer, 25–27
Advanced driver assistance

system (ADAS), 1
Apple’s Siri, 90
Application performance requirements

accuracy, 11
latency, 12

Application programming interfaces
(APIs), 109

Artificial Intelligence (AI), 83
Artificial neural networks (ANNs), 53
ASR. See Automatic speech

recognition (ASR)
Assessor, 78
Audio processing

ASR, 30–32
classification, 29–30
NLP, 32–33
VAD, 30

Audio sensors, 19–21
Audio streams, 43
Audio-visual query system, 49
Automatic speech

recognition (ASR), 30–32

�       � B
Bag of features Kernels, 72–73
Bandwidth, 13
Bayesian inference, 51
Bluetooth low energy (BLE), 101
Bootstrapping methods, 78
Bootstrapping unit, 78
Brain machine interface (BMI)

sensors, 4

�       � C
Camera sensors, 4
Chemical and biosensors, 39–40
Cloud platform

architectures, 103–104
crowdsourced data, 98
vs. local process, 98
vs. on-premise servers, 98
private/public, 96

Cluttered scenes, 62
Complementary

sensor fusion, 47
ConceptNet, 86
Consistency-inconsistency effect, 61
Context

and recognition, 57
in recognition, 59

accuracy, 59
compute, 60
power, 60
speed, 60

representing, 64–65
roles, 59
vs. saliency, 65
understanding, 58

Context extraction process, 10
Contextual recognition

human recognition, 60–61
humans to machines, 62

cluttered scenes, 62
illumination changes, 63
noisy data, 62
object pose variability, 63
occluded data, 62
poor resolution, 62

Contextual relationships, 6

Index

© Omesh Tickoo and Ravi Iyer 2017
O. Tickoo and R. Iyer, Making Sense of Sensors, DOI 10.1007/978-1-4302-6593-1

■ INDEX

114

Cooperative sensor fusion, 47
Coupling-based classification, 44
Cross-domain experts, 51

�       � D
Dampseter-Shaefer inference method, 52
Dasarathy Model, 46

DAI-DAO, 46
DAI-FEO, 47
DEI-DEO, 47
FEI-DEO, 47
FEI-FEO, 47

Data abstractions
contextual relationships, 6
features, 5
knowledge, 6–7
query and response, 7
raw sensor data, 4
recognition entities, 5
semantic relationship, 5

Data-feature level fusion, 46
Data formats, 51
Data In-Data Out (DAI-DAO), 46
Data In-Feature Out (DAI-FEO), 47
Data lifecycle stages, 2
Decision In-Decision Out (DEI-DEO), 47
Defuzzification process, 52
Degree of membership, 52
Detectors, 79
Digital signal processing (DSP), 100
Domain dependent knowledge-based

relationship extraction
methods, 70

Domain independent relationship
extraction methods, 70

Dual Iterative Pattern Relation
Expansion (DIPRE)

entity search phase, 76
new entity search phase, 76
new pattern generation phase, 76
seed phase, 75
snowball, 77
termination criteria, 76

�       � E
Electronic world, 1
End-to-end system architectures

bandwidth availability, 97
battery life & power constraints, 97

compute capability, 96
crowd-sourced/ expert data, 98
gateway/hub, 96
hierarchical processing, 98
interactivity and latency, 97
partitioning and architecture

(see Partitioning approach)
phone, 96
platform data processing, 96
private/public cloud platform, 96
security and privacy, 98
storage and memory constraints, 97
throughput/batch processing, 98

Entity search phase, 76
Extractor unit, 78

�       � F
Facebook, 89
Face recognition algorithm, 5–6, 10
Feature-based methods, 71–72
Feature extractors, 9
Feature In-Decision Out (FEI-DEO), 47
Feature In-Feature Out (FEI-FEO), 47
Field programmable

gate arrays (FPGAs), 104
Filter-based smoothening methods, 62
First order logic (FOL), 92
First order relationship, 68
Freebase, 85–86
Fuzzification process, 52
Fuzzy logic-based sensor fusion systems

defuzzification, 52
fuzzification, 52
inference, 52
overview, 52

�       � G
Gateway/hub platform, 102–103
Gateways, 15
Gesture recognition, 35–37
Google’s knowledge graph, 87–88
Gyroscope, 27–28

�       � H
Hand gesture, 49–50
Hidden Markov models (HMMs), 109
Higher order relationship, 68
Human recognition, 60–61

■ INDEX

115

�       � I, J
Inertial measurement

unit (IMU), 19, 28, 108
Inertial sensor processing

accelerometer, 25–27
DOF, 24–25
external device, 24
gesture recognition, IMU, 28
gyroscope, 27–28
MEMS, 24
motion, 24–25

Inferencing approaches
Bayesian inference, 51
Dampster-Shaefer inference, 52
Fuzzy logic-based inference, 52

�       � K
Kernel-based methods

bag of features, 72–73
goals, 72
tree, 73–74

KnowItAll systems, 78
Knowledge, 83

Apple’s Siri, 90
building block, 7
ConceptNet, 86
data abstractions, 6
defined, 3
Facebook, 89
Freebase, 85–86
Google, 87–88
Microsoft Satori, 87
ontologies

components, 91
languages, 91–92

operations, 3
relationship, 83, 84
representation, 3
semantic web, 90
Wolfram Alpha, 88–89

Knowledge-based relationship
extraction methods, 70

Knowledge-based systems, 57–58

�       � L
Labeled data, 74
Large vocabulary continuous speech

recognition (LVCSR), 21

Least squares method, 54
Lexico-syntactic pattern-based

relationship extraction.
See Domain independent
relationship extraction methods

Location sensor, 39
Loosely coupled sensor data fusion, 45

�       � M
Machine learning techniques, 108
Magnetic sensors, 39
Memory constraints, 13
Metaweb, 85
Microelectromechanical systems

(MEMS), 19–20
Microphones, 2, 4, 15
Microsoft Satori, 87
Motion, 4
Multi-modal recognition, benefits, 43–44
Multiple detectors, 79

�       � N
Natural language processing (NLP), 32–33
Network constraints, 12

bandwidth, 13
reliability, 13

Neural network-based inference, 53
Never ending image learning (NEIL)

candidate entity detector training, 79
new instance discovery, 80
object-attribute relationships, 80
object-object relationships, 79
relationship discovery, 79
retraining of detectors, 80
scene-attribute relationship, 80
scene-object relationship, 80

New entity search phase, 76, 77
New instance discovery, 80
New pattern generation phase, 76
Noisy data, 62
Non-image-based contextual

recognition, 61

�       � O
Object-attribute relationships, 80
Object-object relationships, 79
Object pose variability, 63
Object recognition, 33–35

■ INDEX

116

Occluded data, 62
Ontologies, semantic web

components, 91
languages, 91–92

�       � P, Q
Partitioning approach

cloud server platform, 103–104
future opportunities, 110
gateway platform, 102–103
learning and classification, 108
mapping, 104
phone platform, 101–102
programmability

considerations, 109–110
sensor node, 99–100
speech processing, 105–106
visual processing, 106–108
wearable platform, 100–101

Partonomic relationships, 79
Phone platform, 101–102
Pipeline, 1, 4, 8–11
Poor resolution, 62
Pose-based context, 59
Power constraint, 12
Pre-trained relationship, 68, 71–72
Proximity sensor, 38–39

�       � R
Raw sensor data, 4, 8

audio/speech, 4
BMI, 4
motion, 4
temperature, 4
vision, 4

Real-time applications, 11–12, 15
Recognition process

audio processing, 29–33
inertial sensor

processing, 23–18
IoTO, 18
mobile phones, 17
types, sensor

audio sensors, 19–21
IMU, 19
visual sensors, 21–23

visual processing, 33–38
wearable devices, 17–18

Redundant sensor fusion, 47
Relationship description format (RDF)

components, 84
document, 85
Freebase, 85–86
RDFS, 91–92
relationship representation, 84

Relationship discovery, 79
Relationship extraction methods

algorithms, 68
domain dependent, 70
knowledge-based, 70
supervised, 71
understanding, 67

Resource sharing constraints, 13
Restricted recognition, 45, 49–50
Routers, 15
Rule-based systems, 57–58

�       � S
Scene-attribute relationship, 80
Scene-object relationship, 80
Scene understanding, 65
Seed phase, 75
Semantic context, 59
Semantic fusion, 45
Semantic relationship, 5
Semantic web, 90
Semi-supervised methods

iteration, 75
labeled data, 74
new patterns, 75
pattern induction, 75
relationship extraction, 75
seeding, 75

Sensor
fusion, 51
stages of data processing

and applications, 2
Sensor configuration model

complimentary fusion, 47
cooperative fusion, 47
redundant fusion, 47

Sensor data fusion
loosely coupled/restricted

recognition, 45
tightly coupled/data-feature

level fusion, 46
uncoupled/semantic fusion, 45

■ INDEX

117

Sensor node, 99–100
Sensors

devices, 1–2, 15
overview, 1
raw data, 4
smart, 15
smart phones, 1
smart watches, 1

Servers, 15
Smartphones, 1, 2
Smart sensors, 15
Smart thermostats, 1
Smart watches, 1
Snowball, 77
Spatial context, 59
Speech processing, 105–106
Speech recognition, 44, 49
Structured phase, 68
Supervised relationship

extraction methods, 71–72, 74
Syntactic features, 72

�       � T
Taxonomic relationships, 79
Temperature sensors, 4
Termination criteria, 76
Text-based relationship, 67–69
TextRunner system, 78
Tightly coupled sensor data fusion, 46, 50

Touch sensors, 39
Tree Kernels, 73–74

�       � U
Uncoupled sensor data fusion, 45
Universal Resource

Identifiers (URIs), 91
Universal Resource Locators (URLs), 90

�       � V
Video summarization, 37–38, 44
Visual processing, 106–108

gesture recognition, 35–37
object recognition, 33–35
video summarization, 37–38

Visual recognition, 43
Visual sensors, 21–23
Voice activity detection (VAD), 30

�       � W, X, Y, Z
Wearable platform, 100–101
Web addresses, 90
Weighted finite state

transducers (WFST), 109
Wolfram Alpha, 88–89
World Wide Web

consortium (W3C), 84, 92

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Chapter 1: Introducing the Pipeline
	1.1 Motivation
	1.2 Next Level of Data Abstractions
	1.3 Operations
	1.4 Constraints and Parameters
	1.5 Physical Platforms
	1.6 Summary
	1.7 References

	Chapter 2: From Data to Recognition
	2.1 Sensor Types and Levels of Recognition
	2.1.1 Inertial measurement unit
	2.1.2 Audio Sensors
	2.1.3 Visual Sensors

	2.2 Inertial Sensor Processing
	2.2.1 Defining Motion and Degrees of Freedom
	2.2.1.1 Accelerometer
	2.2.1.2 Gyroscope
	2.2.1.3 Combining the accelerometer and gyroscope readings
	2.2.1.4 Gesture Recognition Using IMU

	2.3 Audio Processing and Recognition—From sound to speech
	2.3.1 Audio Classification
	2.3.2 Voice Activity Detection
	2.3.3 Automatic Speech Recognition (ASR)
	2.3.4 Natural Language Processing (NLP)

	2.4 Visual Processing and Recognition
	2.4.1 Object Recognition
	2.4.2 Gesture Recognition
	2.4.3 Video Summarization

	2.5 Other Sensors
	2.5.1 Proximity Sensor
	2.5.2 Location Sensor
	2.5.3 Touch sensors
	2.5.4 Magnetic Sensors
	2.5.5 Chemical and Biosensors

	2.6 Summary
	2.7 References

	Chapter 3: Multimodal Recognition
	3.1 Why Multi-modality
	3.2 Multimodality Flavors
	3.2.1 Coupling-based Classification
	3.2.2 Dasarathy Model
	3.2.3 Sensor Configuration Model

	3.3 Example Implementations
	3.3.1 Semantic Fusion
	3.3.2 Restricted Recognition
	3.3.3 Tight Fusion

	3.4 Mathematical Approaches for Sensor Fusion
	3.4.1 Inferencing Approaches
	3.4.2 Estimation Approaches

	3.5 Summary
	3.6 References

	Chapter 4: Contextual Recognition
	4.1 Relationship between Context and Recognition
	4.1.1 Rule-based Systems
	4.1.2 Knowledge-based Systems

	4.2 Understanding Context
	4.2.1 Different Roles for Context

	4.3 Including Context in Recognition
	4.4 Motivation from Human Recognition
	4.4.1 Image-based Contextual Recognition
	4.4.2 Non-image-based Contextual Recognition

	4.5 Contextual Recognition: From Humans to Machines
	4.6 Representing Context
	4.7 Concluding Thoughts on Scene Understanding
	4.7.1 Saliency vs Context for Recognition

	4.8 Summary
	4.9 References

	Chapter 5: Extracting and Representing Relationships
	5.1 High-level View of Extracting Relationships from Text
	5.2 Relationship Extraction Methods
	5.2.1 Knowledge-based Relationship Extraction
	5.2.1.1 Domain Dependent Relationship Extraction Methods
	5.2.1.2 Domain Independent Relationship Extraction Methods
	5.2.1.3 Performance of Knowledge-based Relationship methods

	5.2.2 Supervised Relationship Extraction
	5.2.2.1 Feature-based Methods
	5.2.2.2 Kernel-based Methods
	5.2.2.3 Limitations of Supervised Methods

	5.2.3 Semi-supervised Methods
	5.2.3.1 Dual Iterative Pattern Relation Expansion (DIPRE)
	5.2.3.2 Snowball
	5.2.3.3 KnowItAll
	5.2.3.4 TextRunner

	5.3 NEIL (Never Ending Image Learning)
	5.4 Summary
	5.5 References

	Chapter 6: Knowledge and Ontologies
	6.1 Relationship Representation using RDF
	6.2 Freebase: Database of Relationships
	6.3 ConceptNet: Common Sense Knowledge
	6.4 Microsoft’s Satori
	6.5 Google’s Knowledge Graph
	6.6 Wolfram Alpha
	6.7 Facebook’s Entity Graph
	6.8 Apple’s Siri
	6.9 Semantic Web
	6.9.1 Ontologies
	6.9.1.1 Components of an Ontology
	6.9.1.2 Ontology Languages

	6.10 Summary
	6.11 References

	Chapter 7: End-to-End System Architecture Implications
	7.1 Platform Data Processing Considerations
	7.1.1 Compute Capability
	7.1.2 Battery Life & Power Constraints
	7.1.3 Interactivity and Latency
	7.1.4 Storage & Memory Constraints
	7.1.5 Access to other data (crowd-sourced or expert data)
	7.1.6 Throughput & Batch processing
	7.1.7 Security and Privacy
	7.1.8 Hierarchical processing

	7.2 End-to-end System Partitioning and Architecture
	7.2.1 Sensor Node
	7.2.2 Wearable Platform
	7.2.3 Phone Platform
	7.2.4 Gateway Platform
	7.2.5 Cloud Server Platform

	7.3 End-to-End Processing & Mapping Examples
	7.3.1 Speech Processing Example
	7.3.2 Visual Processing Example
	7.3.3 Learning and Classification

	7.4 Programmability Considerations for End-to-End Partitioning
	7.5 Summary and Future Opportunities
	7.6 Conclusion
	7.7 References

	Index

