
www.allitebooks.com

http://www.allitebooks.org

Marmalade SDK Mobile Game
Development Essentials

Get to grips with the Marmalade SDK to develop
games for a wide range of mobile devices, including
iOS, Android, and more

Sean Scaplehorn

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Marmalade SDK Mobile Game Development Essentials

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2012

Production Reference: 2161112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-336-3

www.packtpub.com

Cover Image by Neha Rajappan (neha.rajappan1@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Sean Scaplehorn

Reviewers
Joshua Bycer

Tim Closs

Marc Evans

Jern-Kuan Leong

Ronald Tan Heng Neng

Francis Styck

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Dayan Hyames

Technical Editor
Charmaine Pereira

Copy Editors
Aditya Nair

Insiya Morbiwala

Project Coordinator
Amey Sawant

Proofreader
Maria Gould

Indexer
Tejal Soni

Graphics
Valentina D'silva

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sean Scaplehorn is a programmer with 15 years of experience in the videogames
industry, who has worked on projects for both console and mobile devices. He has
worked on games published by companies including Sony, Electronic Arts, Konami,
Square Enix, and Namco.

Sean got his first home computer while still at primary school, which kick-started
his interest in programming. After learning to code from typing in listings printed
in computer magazines, he went on to write his own games and shared them with
his school friends. He knew then that writing games was what he wanted to do
when he grew up.

However, on leaving university, Sean spent a couple of years writing software
for printing check books. When he could stand it no longer, he made the leap into
videogames development and hasn't looked back since.

He worked at Ideaworks3D, the company behind the Marmalade SDK, for four years.
In this time he saw the Marmalade SDK evolve from an in-house technology to being
a product in its own right, when it was launched as the Airplay SDK.

Sean now works from his home in the South of England as a freelance game coder.

I would like to thank the following people for their help and support
while writing this book. To my wife Sandra and daughter Kara for
their patience and understanding while Daddy "wrote his book",
and to Marc Evans, a longtime friend and former colleague, for his
invaluable feedback on my writing.

I would also like to thank Simon Pick for giving an eager young man
the best first job in the games industry he could have wished for, and
Tim Closs, CTO of Marmalade, for kindly taking the time to review
this book during its development to ensure its accuracy.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Joshua Bycer is a game industry analyst with over 7 years of experience examining
game design and the trends of the industry. He has been published locally on game
sites Gamasutra and QuarterToThree, and internationally in Igromania Magazine. He
has maintained the blog site chronicgamedesigner.blogspot.com since 2007 and is
in the process of setting up his new site game-wisdom.com.

His goal is to expand critical writing on the industry, to better examine future trends,
and raise the standard for critical analysis.

Tim Closs has over 20 years' experience of commercial software development, and
joined Marmalade in 2004. As CTO, Tim has lead the creation and productization of
the Marmalade SDK, and continues to drive the company's technology and product
strategies. Tim holds a Mathematics degree and Theoretical Physics postgraduate
diploma from Cambridge University.

Marc Evans has been developing software almost as long as he has been playing
games, and is currently involved in improving the content creation experience for
the artists and designers of major console games.

www.allitebooks.com

http://www.allitebooks.org

Jern-Kuan Leong has been interested in programming ever since he started
playing computer games on his 286s. He spent the early part of his career in
enterprise software development, and quickly jumped into the games industry
when the opportunity came. He has worked with LucasArts for four years and more
recently with NVIDIA. He continues to explore the joy of game programming and
design to this day.

Ronald Tan Heng Neng has worked at Ubisoft, IBM, and is currently the
producer at 12 Gigs, Inc. (www.12gigs.com), a cross-platform social mobile casino
games network in the San Francisco Bay Area, with hit titles on Facebook, iOS,
Android, and Amazon.

Since obtaining his BSc (Hons) in Business Information Technology at Birmingham
City University (United Kingdom), Ronald has garnered more than a decade of
professional program/project management experience. This valuable experience
also led him back to his passion in games, with a focus on games production
and execution. Ronald also holds the highly sought after Project Management
Professional (PMP)® and Certified IT Project Manager (CITPM) certifications.

In his spare time Ronald enjoys reading, traveling, developing small games, and
blogging occasionally on topics he's passionate about at http://ronald-tan.com.

Francis Styck has been developing games since his college days at UNLV, while
pursuing an Engineering degree in the 1980s when games were written in Assembly
language on the Atari 800 and Commodore 64. He continued with his education
at UNLV and graduated with an MBA in 2001. Today, he is still writing games but
now uses the power of C++, Marmalade, and cocos2d-x to support many platforms
and devices. You can stay in touch with Francis using LinkedIn at http://www.
linkedin.com/in/styck.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started with Marmalade	 7

Installing the Marmalade SDK	 7
Installing a development environment	 8
Choosing your Marmalade license type	 8
Downloading and installing Marmalade	 9
Using the Marmalade Configuration Utility	 10
Managing your Marmalade account and licenses	 12

Viewing an overview of your account	 12
Updating your profile information	 12
Managing your licenses	 12
Managing your user list	 13

Creating a Marmalade project	 13
Creating the "Hello World" project	 13

The MKB file for the "Hello World" project	 14
The source file for the "Hello World" project	 15

Building the "Hello World" project	 18
The build directory	 19
The data directory	 19

Building and running in the Windows simulator	 22
Deploying a Marmalade project	 23

Compiling the "Hello World" project for the ARM CPU	 23
Deploying the "Hello World" project	 24

Installing on Android devices	 26
Installing on iOS devices	 27
Installing on BlackBerry QNX devices	 30
Installing on Bada devices	 33

Summary	 34

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Resource Management and 2D Graphics Rendering	 35
The Marmalade ITX file format	 35

The CIwManaged class	 37
Instantiating a class with the class factory	 37
Parsing a class	 38
Serializing a class	 41
Resolving a class	 42

The Marmalade resource manager	 43
Adding IwResManager to a project	 44
Specifying resources with a GROUP file	 44
Loading groups and accessing resources	 45
The CIwResource class	 47
GROUP file serialization	 47
Resource handlers	 48

Graphics APIs provided by the Marmalade SDK	 49
The s3eSurface API	 49
The IwGL API and OpenGL ES	 50
The Iw2D API	 52
The IwGx API	 52

Using IwGx to render 2D graphics	 53
IwGx initialization and termination	 53
Rendering a polygon	 54

Materials and textures	 54
Vertex streams	 57
Color streams	 59
UV streams	 60
Drawing a polygon	 61
Displaying the rendered image	 64

Example code	 64
The ITX project	 64
The Graphics2D project	 65
The Skiing project	 65

The GameObject class	 66
The ModeManager and Mode classes	 66

Summary	 67
Chapter 3: User Input	 69

Detecting key input	 69
Initialization and update of key information	 70
Detecting key state	 71

Detecting key state changes using polling	 71
Detecting key state changes using callbacks	 72

Detecting character code input	 73
Detecting character code input using polling	 74
Detecting character code input using callbacks	 74

Table of Contents

[iii]

Inputting strings	 74
Detecting touch screen and pointer input	 76

Determining available pointer functionality	 77
Determining the type of pointer input	 78
Determining the type of stylus input	 79

Updating current pointer input status	 79
Detecting single touch input	 79

Detecting single touch input using polling	 80
Detecting single touch input using callbacks	 81

Detecting multi-touch input	 82
Detecting multi-touch input using polling	 83
Multi-touch input using callbacks	 84

Recognizing gesture inputs	 85
Detecting a swipe gesture	 85
Detecting a pinch gesture	 86

Detecting accelerometer input	 86
Starting and stopping accelerometer input	 87
Reading accelerometer input	 88
Smoothing accelerometer input	 89
Testing accelerometer input on the Windows simulator	 90

Example code	 91
The Gesture project	 92
The Slide project	 92
The Skiing project	 92

Player rotation	 92
The ModeTitle and ModeGameOver classes	 93
The Camera class	 93
The Input Manager classes	 93
The SkierController class	 93

Summary	 94
Chapter 4: 3D Graphics Rendering	 95

A quick 3D graphics primer	 95
Describing a 3D model	 95

Specifying a model's vertex stream	 96
Specifying a model's index stream	 97
Specifying a model's color, UV, and normal streams	 98

Performing 3D to 2D projection	 100
Understanding matrices for 3D graphics	 100
Converting between coordinate systems	 101
Clipping planes	 103

Lighting	 105
Emissive lighting	 105
Ambient lighting	 105
Diffuse lighting	 106
Specular lighting	 106

Table of Contents

[iv]

Using IwGx to render 3D graphics	 106
Preparing IwGx for 3D rendering	 106
Setting lighting information	 107
Model data for the cube	 109
The view matrix	 113
The model matrix	 114
Rendering the model	 115

Using a 3D modeling package to create model data	 115
The Marmalade 3D exporter plugins	 116

Installing the plugins	 116
Exporting a model	 117

The Blender plugin	 121
Installing Blender and the exporter plugin	 121
Exporting a model	 122

The Marmalade 3D model datafile formats	 124
The GROUP file	 125
The MTL file	 125
The GEO file	 126

Loading and rendering an exported 3D model	 129
Adding the IwGraphics API to a project	 129
Loading and accessing an exported 3D model	 129
Rendering an exported 3D model	 130
Releasing 3D model data	 130

Example code	 131
The Cube project	 131
The Cube2 project	 131
The Skiing project	 132

Migration to 3D	 132
Addition of a collision detection system	 133

Summary	 134
Chapter 5: Animating 3D Graphics	 135

A quick 3D animation primer	 135
Animating with model matrices	 135

Animating by translation	 136
Animating by rotation	 136
Animating by scaling	 139

3D model animation	 140
Using morph targets	 140
Using boned animations	 142

Using a 3D modeling package to create animation data	 144
Exporting animations using the Marmalade 3D exporter plugins	 144
Exporting animations using the Blender plugin	 147

Table of Contents

[v]

The Marmalade 3D animation file formats	 148
The SKEL file	 148
The SKIN file	 151
The ANIM file	 153

Loading and rendering an exported 3D animation	 157
Adding the IwAnim API to a project	 157
Loading and accessing a 3D animation	 157
Playing back a 3D animation	 158
Rendering a 3D animation	 159

Exploring 3D animation further	 160
Playing an animation backwards	 160
Blending between animations	 160
Detecting animation playback events	 160
Optimizing animation playback	 161
Playing sub-animations	 162
Offset animations	 163
Obtaining bone positions and rotations	 164

Example code	 164
The Flag project	 165
The Skiing project	 166

New gameplay features	 166
Animations added	 167

Summary	 167
Chapter 6: Implementing Fonts, User Interfaces,
and Localization	 169

Implementing fonts	 169
Adding the IwGxFont API to a project	 169
Creating a font resource	 170
The GXFONT file format	 172
Loading and accessing font resources	 173
Drawing text using a font resource	 173

Drawing text on screen	 174
Text wrapping and justification	 175
Changing font size at runtime	 176
Optimizing drawing by preparing text	 177

Implementing user interfaces	 177
The IwUI API	 178
The IwNUI API	 178
Implementing our own user interface solution	 179

Using a generic approach	 179
Making good use of class inheritance	 179
Implementing a data-driven system	 181

Table of Contents

[vi]

Responding to user input events	 181
Screen resolution and orientation	 182
Adding template functionality	 184

Localizing your project	 185
Creating a text spreadsheet	 185
Getting the text into the game	 186

Comma-separated values files	 186
Processing using a Python script	 186
Selecting the correct language to use at runtime	 188

Example code	 189
The Font project	 189
The UI project	 190
The Skiing project	 191

Summary	 191
Chapter 7: Adding Sound and Video	 193

Multimedia support in Marmalade	 193
The s3eAudio API	 194

Starting audio playback	 194
Pausing, resuming, and stopping playback	 195
Changing volume	 195
Other audio queries	 196
End of track notification	 196

The s3eSound API	 198
Starting sound playback	 198
Pausing, resuming, and stopping playback	 199
Global sound settings	 200
Sound notifications	 201

The SoundEngine module	 203
Adding the SoundEngine module to a project	 204
Loading and accessing sound resources	 205
Playing, stopping, and altering sound parameters	 207

The s3eVideo API	 207
Starting video playback	 208
Determining video codec support	 208
Pausing, resuming, and stopping video playback	 209
End of video notification	 209
Other video queries	 210

Example code	 210
The Sound project	 211
The Video project	 211
The Skiing project	 211

Summary	 212

Table of Contents

[vii]

Chapter 8: Supporting a Wide Range of Devices	 213
Accommodating a wide range of device types	 213

Dealing with different screen resolutions	 214
Using different resources for different screen resolutions	 214
Checking device capabilities	 215

Configuring your game using ICF file settings	 215
Built-in ICF settings	 215
Defining new ICF settings	 219
Accessing ICF settings in code	 219
Limiting ICF settings by platform and device	 221

Creating multiple resource sets	 222
Using build styles	 223

Adding extra resource directories	 224
Supported build style platforms	 224
Specifying which build style to use	 226

Using resource templates	 227
Defining material templates	 228
Defining image templates	 230
Defining model templates	 231
Defining animation templates	 232
Defining GROUP file templates	 232

Producing binary versions of resources	 232
Compressing resources using the Derbh archiver	 234

Creating a Derbh archive	 234
Using a Derbh archive in code	 236
The automatic Derbh method	 236

Creating different deployment types	 237
Specifying icons, application names, and other details	 237
Specifying asset lists	 239
Creating and using deployment types	 240

Example code	 242
The build styles project	 243
The Skiing project	 243

Summary	 244
Chapter 9: Adding Social Media and Other Online Services	 245

Launching a web page in the device browser	 245
Integrating with social media	 246

Using Facebook	 246
Creating a Facebook app	 247
Creating a Facebook test user	 249
Adding the s3eFacebook API to a Marmalade project	 251
Checking for s3eFacebook support	 252
Initialization and termination	 252

Table of Contents

[viii]

Logging in and out of Facebook	 252
Posting a message to a user's wall	 254
Further s3eFacebook features	 256

Using Twitter	 256
Connecting to other types of online services	 257

Supporting social gaming networks	 257
Using Apple's Game Center	 257
Using Scoreloop	 258

Supporting in-app purchases	 258
Adding in-app purchasing for iOS devices	 259
Adding in-app purchasing for Android devices	 259

Using advertising	 260
Implementing iAd support for iOS devices	 260
Using other advertising solutions	 260

Example code	 261
The Facebook project	 261
The Skiing project	 262

Summary	 262
Chapter 10: Extending Marmalade with the
Extensions Development Kit (EDK)	 263

Why is the EDK necessary?	 263
Creating an extension for gyroscope input	 264

Declaring the extension API	 265
Making an extension for Windows	 267

Creating a Windows extension	 268
Implementing a Windows extension	 269
Building a Windows extension	 269

Making an Android extension	 269
Installing the required software for Android development	 269
Creating an Android extension	 270
Implementing an Android extension	 271
Building an Android extension	 275

Making an iOS extension	 276
Installing the required software for iOS development	 276
Creating an iOS extension	 276
Implementing an iOS extension	 276
Building an iOS extension	 279

Using the Gyroscope extension	 279
Example code	 280

The Gyroscope project	 280
The GyroTest project	 280
The Skiing project	 280

Summary	 281
Index	 283

Preface
The modern mobile device is an immensely powerful piece of equipment.
Technology has advanced to such an extent that the current generation of
cell phones and tablets are able to host games and applications that are both
graphically and sonically impressive, and can even be compared to the titles
available on home consoles and computers.

However, writing a game that will run on the plethora of available devices is
difficult. There are a number of different platforms to support (for example,
Android and iOS) and each platform can have devices that range considerably
in terms of capabilities and processing power.

This is where the Marmalade SDK comes to the rescue! Marmalade is a
cross-platform solution that allows us to write the source code for a video
game once in C++ (a language that most video game developers will already
be familiar with) and then deploy it to a number of different platforms,
including iOS, Android, and BlackBerry PlayBook.

In this book we shall be learning how to use the Marmalade SDK to implement
all the features demanded of a modern mobile video game.

What this book covers
Chapter 1, Getting Started with Marmalade: We start our journey into the world
of the Marmalade SDK by learning how to install the SDK and build a simple
"Hello World" application. We will then discover how to deploy and run the
finished program to a number of different mobile platforms.

Preface

[2]

Chapter 2, Resource Management and 2D Graphics Rendering: Most video games are
media-rich experiences packed full of superb graphics and stunning sound effects
and music. In this chapter we will first look at how Marmalade makes it easy for
us to load graphics and other resources into memory by using the built-in resource
handling system. We will then discover how to render simple two-dimensional
graphics on the screen.

Chapter 3, User Input: Our games will need to allow the user to provide input
to control the action; so in this chapter we will be looking at how to respond to
keypad, touch screen, and accelerometer inputs.

Chapter 4, 3D Graphics Rendering: Mobile devices now feature graphics processing
units that enable them to easily render beautiful 3D graphics. After a brief overview
of the basics of 3D rendering, we will then learn how to use Marmalade to render a
spinning cube, first by generating the 3D model data in code and later by discovering
how we can use a 3D modeling package to create and export a 3D model that can be
loaded and drawn in a Marmalade application.

Chapter 5, Animating 3D Graphics: Building on the foundation of the previous
chapter, we will then cover how to make our 3D graphics more interesting by
making them animated.

Chapter 6, Implementing Fonts, User Interfaces, and Localization: Before a user can even
play the first level of our game, they will first need to navigate its menu system. This
chapter covers Marmalade's support for font rendering, the ways in which a user
interface can be constructed, and finishes up with a look at how to localize a game
so it can support multiple languages.

Chapter 7, Adding Sound and Video: Sound and music are both very important aspects
of a video game and can make a game feel much more immersive and exciting,
so learning how to add these elements to a game is the main aim of this chapter.
Marmalade. also allows us to display full motion video clips, so we'll take a brief
look at this too.

Chapter 8, Supporting a Wide Range of Devices: Different mobile devices have different
capabilities and can also vary in terms of both main processor and graphics rendering
power. In this chapter we look at ways in which Marmalade helps us to support as
wide a range of devices as possible by allowing our game to adapt to the hardware it
is running on. We'll also look at using Marmalade's built-in support for compressing
and decompressing files to reduce the size of our game's installation package.

Chapter 9, Adding Social Media and Other Online Services: Since most devices are now
permanently connected to the Internet, this chapter explores some of the options
available to us for adding online features to our games, from integration with
Facebook to displaying adverts as a possible revenue stream.

Preface

[3]

Chapter 10, Extending Marmalade with the Extensions Development Kit (EDK): While the
Marmalade SDK does a great job of standardizing most of the normal requirements
of writing a videogame, such as displaying graphics or playing sounds, there
sometimes comes the requirement to access a device feature that Marmalade does
not support directly. This chapter shows how we can get access to the underlying
SDK on Windows, iOS, and Android in order to access device features that we
would otherwise not be able to.

What you need for this book
You will need the following in order to make full use of the content of this book:

•	 An Internet-connected PC with at least 1GB RAM running Windows XP
Service Pack 2, Vista, or Windows 7

•	 Microsoft Visual Studio 2005/2008/2010 (C++ Express editions are
suitable for this)

•	 A licensed copy of the Marmalade SDK

The first chapter will explain how to install a suitable version of Microsoft Visual
Studio, and how to obtain Marmalade and purchase a license for it.

For making iOS deployments, you will also need to have signed up to Apple's iOS
Developer Program; further details on this are also provided in the first chapter.

For the chapters on 3D graphics, it will also be beneficial if you have one of the
supported modeling packages available. Marmalade provides direct support for
Autodesk 3DS Max and Autodesk Maya, but a cheaper alternative is the open
source Blender package.

Who this book is for
This book is intended to show you how to use Marmalade to implement the
features required by a video game. It is not intended as a guide on how to write
a video game, although there is sample code provided for a simple game that
grows alongside each chapter of the book.

Since the Marmalade SDK is implemented in C++, you are expected to already
be able to code in this programming language.

You are also expected to have a working knowledge of the concepts involved in
both 2D and 3D graphics rendering. Brief overviews are provided in the relevant
chapters, but they are intended merely as a refresher and to introduce terminology
used in later parts of the book.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The value used for platform is
normally just the name of the operating system."

A block of code is set as follows:

{OS=IPHONE}
Message="Hello iOS!"
{}
{OS=QNX}
Message="Hello BlackBerry!"
{}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

{OS=IPHONE}
Message="Hello iOS!"
{}
{OS=QNX}
Message="Hello BlackBerry!"
{}

Any command-line input or output is written as follows:

C:\PlayBook> blackberry-debugtokenrequest -cskpass <password> -keystore
sigtool.p12 -storepass <password> -deviceId 0x<device id> debugtoken.bar

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click
on the Deploy All button and an install package will be made."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from http://www.packtpub.com/sites/
default/files/downloads/3363OT_images.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Getting Started
with Marmalade

In this chapter, we will first be learning how to get the Marmalade SDK set up for
development. While Marmalade is available in both Windows and Mac versions,
the Windows version is the most developed of the two and is what we shall be
primarily covering in this book. By the end of this chapter, we will know how to
do the following:

•	 Set up a Windows PC for development using the Marmalade SDK
•	 Create and build a "Hello World" project
•	 Deploy and run the "Hello World" project on several mobile platforms

So without further ado, let's get started!

Installing the Marmalade SDK
The following sections will show you how to get your PC set up for development
using Marmalade, from installing a suitable development environment through to
licensing, downloading, and installing your copy of Marmalade.

Getting Started with Marmalade

[8]

Installing a development environment
Before we can start coding, we will first need to install a version of Microsoft's Visual
C++, which is the Windows development environment that Marmalade uses. If you
don't already have a version installed, you can download a copy for free. At the time
of writing, the Express 2012 version had just been released but the most recent, free
version directly supported by Marmalade was still Visual C++ 2010 Express, which
can be downloaded from the following URL:

http://www.microsoft.com/visualstudio/en-us/products/2010-editions/
visual-cpp-express

Follow the instructions on this web page to download and install the product.

For the Apple Mac version of Marmalade, the supported development
environment is Xcode, which is available as a free download from the
Mac App Store. In this book, we will be assuming that the Windows
version of Marmalade will be used, unless specifically stated otherwise.

Choosing your Marmalade license type
With a suitable development environment in place, we can now get on to
downloading Marmalade itself. First, you need to head over to the Marmalade
website using the following URL:

http://www.madewithmarmalade.com

At the top of the website are two buttons labeled Buy and Free Trial. Click on one of
these (it doesn't matter which, as they both go to the same place!) and you'll see a page
explaining the licensing options, which are also described in the following table:

License type Description
Evaluation This is free to use but is time limited (currently 45 days), and while

you can deploy it to all supported platforms, you are not allowed to
distribute the applications built with this version.

Community This is the cheapest way of getting started with Marmalade, but you are
limited to only being able to release it on iOS and Android, and your
application will also feature a Marmalade splash screen on startup.

Indie This version removes the limitations of the basic license, with no splash
screen and the ability to target any supported platform.

Professional This version adds dedicated support from Marmalade should you face
any issues during development, and provides early access to the new
versions of Marmalade.

Chapter 1

[9]

When you have chosen the license level, you will first need to register with the
Marmalade website by providing an e-mail address and password.

The e-mail address you register will be linked to your license and
will be used to activate it later. Make sure you use a valid e-mail
address when registering.

Once you are registered, you will be taken to a web page where you can choose the
level of license you require. After confirming payment, you will be sent an e-mail
that allows you to activate your license and download the Marmalade installer.

Downloading and installing Marmalade
Now that you have a valid license, head back to the Marmalade website using the
same URL we used earlier.

1.	 If you are not already logged on to the website, do so using the Login link
at the top-right corner of the web page.

2.	 Click on the Download button, and you will be taken to a page where
you can download both the most recent and previous releases of the
Marmalade installer. Click on the button for the version you require, to
start downloading it. Once the download is complete, run the installer
and follow the instructions. The installer will first ask you to accept the
End User License Agreement by selecting a radio button, and will then
ask for an installation location.

3.	 Next, enter the file location you want to install to. The default installation
directory drops the minor revision number (so version 6.1.1 will be installed
into a subdirectory called 6.1). You may want to add the minor revision
number back in, to make it easier to have multiple versions of Marmalade
installed at the same time.

4.	 Once the installer has finished copying the files to your hard drive, it will
then display the Marmalade Configuration Utility, which is described in
greater detail in the next section. Once the Configuration Utility has been
closed, the installer will then offer you the option of launching some useful
resources, such as the SDK documentation, before it exits.

It is possible to have more than one version of the Marmalade
SDK installed at a time and switch between versions as you need,
hence the advice regarding the installation directory. This becomes
very useful when device-specific bugs are fixed in a new version
of Marmalade, but you still need to support an older project that
requires a different version of Marmalade.

Getting Started with Marmalade

[10]

Using the Marmalade Configuration Utility
The Marmalade Configuration Utility window appears at the end of the installation
process, but it can also be launched from its shortcut icon:

When launching the Marmalade Configuration Utility on Windows
Vista or Windows 7, you should right-click on the icon and select the
Run as administrator option, otherwise any changes that you make
might not be applied.

The most important element is the License Information box. Below this is a button
labeled Activate License... that allows you to activate your Marmalade installation.
Follow these steps to get activated:

1.	 Click on the Activate License... button to display a dialog box that asks
you to enter the e-mail address and password you used when obtaining
your license.

Chapter 1

[11]

2.	 The dialog box also has a drop-down box labeled Machine ID (Ethernet
MAC address), which you should make sure is set to the MAC address of
an Ethernet port that will always be present on your computer. Normally
you won't need to change this.

3.	 Click on the OK button to connect to the Marmalade licensing server. You
will be asked to select the license you want to install. (Normally there will
only be a single option available.) Do so and click on OK.

4.	 A summary of the End User License Agreement (EULA), appropriate to the
type of license you are using, will be displayed, so click on OK to accept it.
A reference to the full EULA is also provided in the dialog box.

5.	 You should now see a message confirming successful license installation.
At this point Marmalade is ready to go!

Before we finish here though, let's look at the other available options. The first is
labeled Marmalade System (S3E) Base and consists of a drop-down box that allows
you to select the version of the Marmalade SDK you want to use, if you have more
than one installed of course!

S3E is short for Segundo Embedded Execution Environment and this
is the lowest layer of the Marmalade SDK. This naming convention
was adopted by the SDK during its early days of development, and
it remains to this day. As you will see later in this book, there are a
great many APIs that are prefixed with this name.

The Default Build Environment lets you choose which development environment
you wish to use, assuming you have more than one supported version of Visual
C++ installed.

The drop-down box labeled RVCT ARM Compiler allows you to change the
compiler that will be used when making a device build. (Most mobile devices contain
an ARM CPU, so we must compile our code for this processor type.) Marmalade
ships with the GCC compiler and uses this by default, but it can also make use of the
RVCT C++ compiler from ARM, which is an additional purchase and can produce
better optimized code. We normally do not need to change this setting and can leave
it on the first option labeled Do not use RVCT.

The Advanced Options... button provides access to a more verbose project-building
option and also some experimental parts of the SDK. You will not normally need to
make any changes here.

Getting Started with Marmalade

[12]

Managing your Marmalade account and
licenses
Before we get on to doing some actual coding, it is worth mentioning how you can
manage your Marmalade license and account. If you head back to the Marmalade
website and log on, you'll notice a link at the top-right corner of the site labeled
My Account.

Hover your mouse pointer over this link, and a menu of options that allow you to
change your account details and license usage will appear. The following sections
provide further information on each of these options.

Viewing an overview of your account
The menu option called Overview takes you to a page where you can see your
personal details along with a summary of the number of licenses and users you
have set up under your account. From this screen, there are buttons that allow you
to update your profile, modify registered user information, buy new licenses, and
manage existing ones.

Updating your profile information
Clicking the Profile option in the My Account menu or clicking on the Update
Profile Information button on the profile overview screen will display a page that
allows you to alter information such as your name, contact information, address,
and account login password. There is also a checkbox that allows you to sign up
for e-mail news updates from Marmalade.

Managing your licenses
Clicking the Licenses link in the My Account menu or clicking on the button labeled
Manage on the overview screen will take you to a page where you can upgrade the
level of your license or buy further licenses for new team members.

The Manage Licenses section at the bottom of this page shows all the currently
active licenses in your account, and also allows you to release a license that is
currently in use so that it can be transferred to another computer.

Releasing a license is useful if you need to work on a different computer for some
reason, or if you have a new development computer that you wish to transfer your
license to. You can release a license as often as you like, but a single license can only
be used on a single computer at a time.

Chapter 1

[13]

Managing your user list
If you are working in a team then you will obviously need more than one Marmalade
license, but you also need to manage who has access to those licenses. Clicking on
the Users option in the My Account menu or clicking on the Manage Users button
on the overview page allows you to do this.

This page shows a list of all the users assigned to your account, and also has an
Invite Users section that allows you to add new users to your account. Enter their
e-mail addresses in the boxes provided, and click the Send invite button to send
them a mail telling them how to activate their own Marmalade account.

Creating a Marmalade project
With Marmalade installed, we can now get down to doing some coding, and what
better place to start than with the classic example of a "Hello World" program.

Creating the "Hello World" project
To begin a new project, we must first create an MKB file, which is Marmalade's
own project file format. We use MKB files to specify all the source files, libraries,
and build options needed to build our project.

The MKB file is actually used to generate a Visual C++ project file, but whenever we
want to add or remove a source file to our project, we must do so by editing the MKB
file and regenerating the Visual C++ project file from it using Marmalade's make file
builder script, which we'll be looking at in just a moment.

In addition to source files, the MKB file also allows you to list all the other
datafiles and resource files that your application will need in order to run, as
this information will be needed when it comes to deploying your application on
different mobile platforms.

Marmalade does come with a small tool called the LaunchPad, which can be used to
create a new project, but in the interest of learning how a Marmalade project is put
together, we will go about creating everything from scratch instead.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Marmalade

[14]

The MKB file for the "Hello World" project
Let's make a start on our "Hello World" project. Create a new directory to hold the
project files, and then create a file called Hello.mkb in this directory and enter the
following into it:

#
Main MKB file for Hello project
#

Modules used by this project
subprojects
{
 iwgx
}

The files that make up the project (source, data etc.)
files
{
 [SourceCode]
 (source)

 Main.cpp
}

Settings to configure the deployment process
deployments
{
 name="Hello"
 caption="Hello World"
}

The first section of Hello.mkb is the subprojects section, which lists all the
additional code modules used by our application. In this instance, a code module is
a library that can be added to our project either as a group of C or C++ source files
or, alternatively, as pre-compiled, linkable object files accompanying header files. In
the previous example, there is just one, iwgx, which is the Marmalade code module
responsible for rendering graphics.

All the higher level modules within Marmalade are referenced in this manner, and
you can also use this system to create your own modules to enable code re-use across
projects. To create a subproject module we use an MKF file, which amounts to a little
more than an MKB file with a different file extension! When we add an entry to the
subprojects list, the Marmalade makefile builder script will search for a suitable
MKF file that describes each subproject. We'll see detailed examples of how to do this
later in the book.

Chapter 1

[15]

The next section is labeled files, and this is where we list all the source code files
for our project. It is possible to split your source files up into different directories.
To make it easy, you simply put the directory name in brackets ((source) in our
example) and then list all the source files in the directory below.

It is also possible to group the related files together into subsections, which we do
using square brackets ([SourceCode] in our example). Any source files below this
will be added to that section and will then appear in a separate folder in the Visual
C++ Solution Explorer. There is no need for the directory and group names to match,
and indeed you can have more than one directory in a group if you so wish.

Finally we have the deployments section, which is where various settings are made
that control the process of deploying our application to different device types.

In our example we are making two settings. The name setting provides the filename
of our final executable and is also used in file and directory names created for us by
Marmalade, while caption sets the name that will appear under the application's
icon when installed on a device.

Both the aforementioned settings are examples of general settings that apply across
all device types, but there are also a great many other settings available, which are
specific to particular platforms, such as iOS or Android. A full list of these can be
found in the Marmalade Documentation help file that is installed as part of the
Marmalade SDK, and we'll also be looking at this in Chapter 8, Supporting a Wide
Range of Devices, of this book along with the additional sections of the MKB file that
have not yet been shown for this example.

The use of whitespace in the MKB file is pretty much up to your own personal
preference. Though most of the Marmalade examples tend to indent entries within
blocks, tabs or spaces can also be used.

Comments can also be added using the hash (#) character. Everything after the
hash character till the end of the current line is then considered a comment.

The source file for the "Hello World" project
We may now use the MKB file for our project but we still can't do anything with
it yet, as we've told Marmalade that there is a source file called Main.cpp, which
doesn't exist yet. If we were to try and use the MKB file to build the project, we
would get an error reported about this missing file, so let's create it.

Getting Started with Marmalade

[16]

You will recall that we said that our Main.cpp file would reside in a directory called
source in the MKB file, so first create this new subdirectory in the project directory.
Now, create a file called Main.cpp in the source directory and enter the following
into it:

//---
// Learning Mobile Game Development with Marmalade
// Chapter 1 - Hello
//---

// Marmalade SDK includes
#include "IwGx.h"
#include "s3eConfig.h"
#include "s3eDevice.h"

//---
// Main entry point
//---
int main()
{
 // Initialise Marmalade modules
 IwGxInit();

 // Set a default message, then check the ICF file to see if
 // a proper message has been specified
 char lMessage[S3E_CONFIG_STRING_MAX] = "Hello!";
 s3eConfigGetString("APP", "Message", lMessage);

 // Set screen clear colour to black
 IwGxSetColClear(0, 0, 0, 255);

 // Draw text at double default size
 IwGxPrintSetScale(2);

 // Loop until we receive a quit message
 while (!s3eDeviceCheckQuitRequest())
 {
 // Allow device to process its internal events
 s3eDeviceYield(0);

 // Clear the screen
 IwGxClear();

Chapter 1

[17]

 // Display our message on screen
 IwGxPrintString(10, 10, lMessage);

 // Flush IwGx draw buffers to screen
 IwGxFlush();

 // Swap screen double buffer
 IwGxSwapBuffers();
 }

 // Terminate Marmalade modules
 IwGxTerminate();

 return 0;
}

The code should be fairly simple to follow, but here is a quick breakdown.

First we reference the include files to allow us to use the parts of Marmalade that
are necessary for our application, and then we create our main entry point function
main. This is equivalent to the main() function in a standard C or C++ program,
except that it takes no parameters as Marmalade does not accept command-line
parameters. It's quite hard to specify command-line parameters on mobile devices,
so there really isn't any need!

The first thing our application needs to do is initialize Marmalade's rendering
module with a call to IwGxInit(), which will initialize the screen and set up
standard behavior such as double buffering of the display.

Next we allocate a character buffer that will contain the message that we will be
displaying on screen. We initialize it to a default message to make sure that there is
something to be shown, but we then use a call to the s3eConfigGetString function
to see if another message has been specified in the application's configuration file,
which will be explained in more detail shortly.

The following call to IwGxSetColClear sets the desired screen background color
to black, and then the call to IwGxPrintSetScale tells Marmalade to display text
using its built-in font (which is quite small in size) at double its default resolution.

We now enter our main processing loop that will continue until the
s3eDeviceCheckQuitRequest function returns a true value, which will happen if
the user quits the application or if the device sends a quit request to the application
for any reason.

Getting Started with Marmalade

[18]

The first line of our main loop is a call to s3eDeviceYield. This is a very important
function that must be called at regular intervals during our application, to allow
the device's OS to perform important tasks such as handling events—user inputs,
incoming phone calls, and so on. Under most circumstances, a single call to this
function in the main loop is sufficient.

The value passed to s3eDeviceYield is the maximum time (in milliseconds) that
our application will yield to the OS for. Normally this value is set to zero, which
yields long enough for the device to process the events, but will return control to
our application as soon as all the events have been processed.

Next, we call IwGxClear to clear the screen and then use IwGxPrintString to
display a message on the screen. IwGxFlush causes the Marmalade engine to then
process all our drawing requests to yield a final screen image that we can then
display to the world using IwGxSwapBuffers.

Finally, outside the main loop, we call IwGxTerminate to shut down Marmalade's
rendering engine, and finally return zero to indicate that our application was
completed without any errors.

Building the "Hello World" project
Now that we have set up our project and written the necessary code, it is finally time
to build it. To do this open a Windows Explorer window and navigate to the folder
containing Hello.mkb, and then just double-click on the file. You might see a brief
flash of a command-prompt window, but after a short delay, Visual C++ should
automatically start up with our project.

The act of double-clicking the MKB file actually causes the Marmalade makefile
builder script to be executed. This is actually a script written in the Python language,
which takes the MKB file and outputs a Visual C++ solution file and other required
elements. A file association is automatically set up when installing Marmalade, so
you can either double-click the file, or alternatively use the command prompt to
create your project by changing to the project directory and entering Hello.mkb.

Before we go on to compile and run the project though, let's take a quick look at
what Marmalade has created for us.

If you look in the project directory, there should be two new directories, which are
described in the following sections.

Chapter 1

[19]

The build directory
One of the directories created by the MKB file will be named build_hello_vcxx,
where the "xx" part is dependent on the version of Visual C++ you are using.

This directory is Marmalade's working directory and is where all the object files
created during building are stored. It will also be the home to our deployment
packages when it comes to making device builds.

A Visual C++ solution file created from the MKB file also lives in this directory,
and while you can use these files to switch between projects, you should never
add files or change project settings using the options in the Visual C++ IDE.

Always make project changes to the MKB file, then either close
Visual C++ and double-click the MKB file to rebuild the solution,
or alternatively perform a build inside Visual C++ to update the
solution file with any changes. You should not make changes
directly within the Visual C++ IDE as they will be lost the next
time that the MKB file is used to recreate the project file.

The data directory
The MKB file will also generate a directory called data, and this is where Marmalade
requires you to place any files that your application will need to load, such as
images, 3D model data, sound files, and others. While you can create this directory
and these files yourself, and it will not cause a problem, we might as well let the
makefile builder do it for us!

If you take a look inside the data directory, you will see that the build process has
also created two more files called app.icf and app.config.txt. These files are
used to configure your application and are explained in the following sections.

The app.config.txt file
This file provides a list of all the application-specific settings that can be made in the
app.icf file, along with a description of what each setting does and how it is used.
There are two reasons for using this file:

1.	 Adding entries to this file keeps your project settings documented in a single
place, so other coders can check this file to see what a particular setting does.

2.	 Any setting contained in the app.icf file that is not documented in the app.
config.txt file will generate a runtime error message when you try to
specify or access it in your program.

Getting Started with Marmalade

[20]

Additionally, the app.config.txt file also requires you to define a group name for
your settings, which is specified by using square brackets.

If you look at the s3eConfigGetString function call in the "Hello World" project
code, you will see an example of this. This call is trying to access a setting called
Message from the group APP, so let's add this into the app.config.txt file now, to
stop any asserts from firing when running our application. Edit the file and add the
following lines to the bottom of it:

[APP]
Message The message we want to display on screen

The app.icf file
The app.icf file is used to add the configuration settings to your application, and
as already stated these must be either documented in your project's app.config.
txt file or must alternatively be defined in a similar file within one of the subprojects
used by your application.

Adding a configuration setting is simply a matter of adding the setting name
followed by an equals sign and then the value you wish to use. You must also ensure
that you add the setting to the correct group, using the same square bracket notation
used in the app.config.txt file. Here's an example:

[APP]
Message="Hello World"

The settings made in the app.icf file can then be accessed in code using the
s3eConfigGetInt and s3eConfigGetString functions.

The app.icf file also has another couple of tricks up its sleeve, as settings can also be
made that are specific to a certain platform or even specific to an individual device.
Here's how you achieve this:

•	 To limit the application to a particular platform add the line {OS=platform},
and any settings following this will only apply to that device platform. The
value used for platform is normally just the name of the operating system,
for example, ANDROID, BADA, or WINDOWS, although it is worth mentioning
that you should use IPHONE to refer to iPhones, iPods, and iPads! If in doubt,
you can use a call to s3eDeviceGetString(S3E_DEVICE_OS) to discover the
value that you need to use for a particular operating system.

Chapter 1

[21]

•	 To limit the application to a particular device or devices, add the line
{ID=platform id}, and any following settings will only be applied when
run on the specified device. The platform value is the same as that used
previously, while the id is an identifier for a particular device. The format
of the id value depends on the operating system, but you can discover what
value to use for a particular device by calling s3eDeviceGetString(S3E_
DEVICE_ID). It is also possible to provide a comma-separated list of id
values if you need the settings to apply to more than one device.

Note that both of these settings will continue to take effect until a new OS or ID value
is specified. If you wish to return to applying all the settings globally, just add {}
after your last OS- or ID-specific setting.

It is good practice to ensure that your OS- or ID-specific sections always
terminate with {}, as not doing so can lead to a major head-scratching
session when you deploy to device and find that some setting you have
just changed doesn't appear to be taking effect.

To illustrate the use of {} , let's add some settings to the "Hello World" project app.
icf file. Open the file and add the following lines to the bottom of it:

[APP]
{OS=ANDROID}
Message="Hello Android!"
{}

{OS=BADA}
Message="Hello Bada!"
{}

{OS=IPHONE}
Message="Hello iOS!"
{}

{OS=QNX}
Message="Hello BlackBerry!"
{}

{OS=WINDOWS}
Message="Hello Windows!"
{}

You should be able to see from this that we have specified a different message string
for each different platform type that we wish to support.

Getting Started with Marmalade

[22]

Building and running in the Windows
simulator
Now it's time for us to see the "Hello World" project in action. It is just a simple
matter of compiling the code in Visual C++ and running it.

To compile the code, simply select Build | Build Solution or press the F7 key.
Visual C++ will compile and link the Main.cpp file.

Now we can execute the program. Select Debug | Start Debugging or simply
press F5. The Marmalade Windows Simulator will be launched, which will in
turn load and execute our program. The following image shows what the "Hello
World" project should look like when run in the Windows Simulator:

You will notice that the Windows Simulator contains a number of menu options.
These allow you to make the Windows Simulator run in as close a manner to any
device you choose as possible. The best way to see what you can change is to explore
the menu options yourself, but here are a few of the more useful things you can do:

•	 Accelerometer: Testing accelerometer inputs on Windows would be
impossible without Configuration | Accelerometer.... This brings up a dialog
box that allows you to use the mouse to rotate a 3D image of a phone, to
simulate the accelerometer input.

Chapter 1

[23]

•	 OpenGL ES version: The Windows Simulator option Configuration | GL...
allows you to emulate different versions of OpenGL ES, which makes it easy
to see what your game may look like on different types of hardware. It also
allows you to disable OpenGL ES support entirely, which will then force
Marmalade to use its built-in software renderer.

•	 Screen resolution: Mobile devices have a wide range of supported screen
resolutions, so Configuration | Surface... allows you to select any size for
the screen that you desire.

•	 Emulation of device suspend and resume: It is easy to forget that the primary
function of many devices is actually that of a telephone rather than of a gaming
platform, which means your application could potentially be interrupted at
any time by an incoming call. Marmalade takes care of most of the fiddly
details of handling this automatically, but there may still be situations when
you need to do something special under such circumstances. The Windows
Simulator allows you to test whether your application responds correctly by
way of Events | Simulate Suspend and Events | Simulate Resume.

Deploying a Marmalade project
We have now managed to create and run our first Marmalade application, but
running it on Windows isn't our ultimate goal. The whole reason for the Marmalade
SDK is to make it easy for us to develop our application once and then deploy it on
a whole range of mobile device platforms.

Of course we might need to alter some of our assets, for example, because we are
targeting a wide range of different screen resolutions and want our application to
look its best at all times, the code itself should need no modification in order to
run successfully.

To illustrate this, we will now take the "Hello World" project and get it running on
a number of different mobile device platforms.

Compiling the "Hello World" project for the
ARM CPU
Running our project in Windows meant we were compiling our code using the
standard Visual C++ compiler and therefore generating Intel x86 code. However, it
is a fact that the vast majority of mobile devices available today contain some version
or other of the ARM processor, so the first thing we need to do is compile our code
for ARM.

Getting Started with Marmalade

[24]

Luckily, Marmalade has made this incredibly easy for us. At the top of the Visual
C++ window, you should see a drop-down box that defaults to a setting called
(x86) Debug.

If you open the drop-down box, you will see several build types pre-configured for
us, but the one we are interested in is the GCC (ARM) Release option. Select this
and build the solution again (Build | Build Solution or press F7), and Visual C++
will use the GCC compiler to create an ARM version of our application.

Now we just need to get the code onto a device!

Deploying the "Hello World" project
Now that we have an ARM-compiled version of our code, we need to create an
install package so we can test it on a real mobile device. To do this we need to
use Marmalade System Deployment Tool. Follow these steps to go through the
deployment process:

1.	 To launch the tool, make sure the GCC (ARM) Release build type is selected
and the code has been compiled. Select Debug | Start Debugging (or press
F5). Instead of running the code in the debugger (which would make little
sense given that the Visual C++ debugger can only debug an Intel x86
executable), Marmalade System Deployment Tool will be launched instead.

Chapter 1

[25]

2.	 The program will first ask us to select the build type we wish to deploy and
will have a number of radio buttons for the types available. Only those build
types that are currently built will be selectable. In our case, we need to select
the ARM GCC Release radio button and then click on the button labeled
Next Stage >, to proceed to the next step.

3.	 The next page asks us to select a deployment configuration. We can specify
the directory where we want our deployed package files to be created,
and we also have a list of checkboxed items for the available deployment
configurations that we can choose from. Marmalade allows us to create
different configurations, which means we can deploy different resource
packages to different devices. For now we won't concern ourselves with any
of this, so just ensure that the Default setting is checked and then click on the
Next Stage > button again.

4.	 We are now presented with a page listing all the device types that we can
deploy to. Use the checkboxes to select which platforms to deploy to, and
then click on Next Stage > once more to be taken to the final page.

5.	 At the top of this last page, we can see a brief description of the different
deployment types we are about to make, with drop-down boxes for each, to
specify whether we should just generate the necessary package files, ignore
that build type completely, or optionally install and run the package as well.

The Package and Install options available in the Marmalade
System Configuration Tool often rely on your system being set up
with extra third-party software that isn't automatically installed as
part of the Marmalade SDK. For this reason in this book, we will
generally keep to using the Package option and install and run our
deployment packages using manual methods.

6.	 Now that we have configured the type of deployment we want, just press the
Deploy All button and Marmalade will make packages for all the different
targets we selected.

The default location for the deployment packages is within the Marmalade Build
directory. If you use Windows Explorer to look into this directory, you will see that a
new directory called deployments has been created. In turn, this directory contains a
folder called default, which comes from the deployment configuration we used.

It is possible to open Windows Explorer to the deployment folder
by clicking on the Explore… button on the final page of the
deployment utility.

Getting Started with Marmalade

[26]

The default directory contains subdirectories for each of our selected deployment
platforms, and each of these will contain a release directory since it was the release
build that we created the deployments from. Note that it is also possible to deploy a
debug build, which can be useful when debugging. Go into the release folder and
there you will find our freshly made deployment package.

All that is left to do now is to install and run it on a device.

Installing on Android devices
Let's start by looking at how to install an Android build.

Before being able to make an Android deployment with the deployment
tool, there is a prerequisite that the Java JDK must be installed. You can
download this from the following web page:
http://www.oracle.com/technetwork/java/javase/
downloads/index.html

The Android package file for the "Hello World" project is called Hello.apk, and to
install it we first need to copy it to an Android device. This can be done by copying
the file to an SD card, or if your device has built-in storage memory, copying the file
into that.

Before we can install our package, we first need to make sure that the Android
device will allow us to do so. Go into your device's Settings program and select the
Applications option. Here there is an Unknown sources option, which allows us to
install our own packages. Make sure this option is ticked.

Next find the file manager application on your device. Different devices may have
different names for this application, but it often has an icon with a picture of a filing
cabinet folder on it. Navigate the directories to find the location where you copied
the Hello.apk file, then tap on the file's entry in the list.

The screen will change to show a big list of things that the application is asking to
access, along with the Install and Cancel buttons. Click on the Install button and
the package will be installed. You can then choose the Open button to start your
application, or the Done button if you don't want to run it now. Click on Open and
we should then be greeted with our Hello Android! message.

By installing the Android SDK, it is also possible to speed up testing on
the device by allowing the deployment tool to automatically package,
install, and run the deployed package. Instructions on setting up the
Android SDK so this will work can be found in Chapter 10, Extending
Marmalade with the Extensions Development Kit (EDK) of this book.

Chapter 1

[27]

Installing on iOS devices
If you've tried to create an iOS build of the "Hello World" project, you will have
noticed that it currently fails to complete with a signing error. This is because you
will need to provide Marmalade with some certificate files, which can only be
generated by becoming a registered Apple developer.

Joining the iOS Developer Program currently costs $99 per year, and you can find
more details about it at the following web page:

https://developer.apple.com/programs/which-program/

Once you've signed up, you'll be able to access the iOS Dev Center that will then
allow you to create the required certificates. Normally you would require an Apple
Mac to generate these certificates, but, handily, Marmalade provides a small utility
called the iPhone Sign Request Tool that gets around this issue. Here is what you
need to do:

1.	 Launch the Marmalade iPhone Sign Request Tool and fill in the fields
as follows:

1.	 Certificate Request File: Pick a location where this file will be saved.
You will need to upload this to the iOS Dev Center shortly.

2.	 Key File: Choose developer_identity.key from the drop-down box.
3.	 Common Name: The name you used when registering with the iOS

Developer Program.
4.	 Email Address: The e-mail address you used when registering with

the iOS Developer Program.

2.	 Now log on to the iOS Dev Center and click on the iOS Provisioning
Portal link.

3.	 In the left-hand pane, click on the Certificates link. Click on the
Development tab and then on the Request Certificate button to bring up
a page of instructions. On this new page, press the Choose File button to
upload the file you generated in step 1.

4.	 Click on the Certificates link in the left-hand pane again, and click on the link
telling you to download the WWDR intermediate certificate. Save this file
into the subdirectory s3e\deploy\plugins\iphone\certificates of your
Marmalade SDK installation.

5.	 Refresh the Certificates page in your web browser until you see a Download
button in the Action column. Click on this button and save the file into the
directory from step 4, renaming it to developer_identity.cer.

Getting Started with Marmalade

[28]

6.	 In the left-hand pane, click on the Devices link to register your test devices
with the iOS Dev Center by clicking on the Add Devices button and then
entering a description for the device and its 40-character hex device ID. There
is a link labeled Finding the Device ID, which tells you how to discover this
value for a particular device.

7.	 Next click on the App IDs link and then on the New App ID button, and
register a new App ID to use for your applications. You just need to enter a
description (which can be anything you want) and a bundle identifier that is
of the form com.domainname.appname. The domainname part can be pretty
much anything you like (it doesn't necessarily have to relate to a real URL),
while the appname part should either be the name of your application, or you
can use an asterisk that then lets you use that App ID for any application.

8.	 Click on the Provisioning link and then click on the New Profile button. Enter
a descriptive name for the profile and tick the checkbox next to your certificate
name. Select the App ID you generated in step 7 from the drop-down box, and
then tick all the checkboxes for any device that you want this provisioning
profile to apply to.

9.	 Click on the Provisioning link again and keep refreshing this page until a
Download button appears next to your new provisioning profile.

There is more information on this process in the Marmalade Documentation help
file, and there are also How To tabs on most of the iOS Provisioning Portal pages
explaining the processes involved, although most of these assume that you are using
an Apple Mac to generate the various files.

With all those hurdles negotiated, we can then use Marmalade System Deployment
Tool to generate a properly signed iOS install package, which will be named Hello.
ipa. Now to get it installed onto a device!

It is possible to use iTunes to install your builds, but be warned that it tends to be
a little bit of hit and miss as to whether it will work. Sometimes iTunes does not
recognize that a new build is available and needs to be synched to the device. In my
experience, a more reliable option is to use the iPhone Configuration Utility, which
is a freely available Apple tool that can be downloaded from the following URL:

http://support.apple.com/kb/DL1466

Chapter 1

[29]

First of all, you need to let the iPhone Configuration Utility know about your
provisioning profile. Click on Provisioning Profiles in the far left pane and then
click on the Add button in the toolbar. Navigate to the provisioning profile file you
created in step 9 and click the Open button to add it to the list of available profiles.
Alternatively, you can drag-and-drop the file into the list from Windows Explorer.

Next, click on the Applications entry in the left-hand panel and then click on the
Add button. Find the Hello.ipa file in the deployment's release directory and click
on OK to add it to the list of known applications, or again you can drag-and-drop the
file from Windows Explorer into the list.

Now connect your iOS device to your computer using a USB cable. It should appear
in the bottom of the left-hand pane after a short delay. Click on the name of your
device and you should see five tabs appear in the main panel. Click the Provisioning
Profiles tab and then click on the Install button next to your provisioning profile.
Once done, this button will change to become a Remove button.

Our next step is to install the application itself, so click on the Applications tab to see
a list of all applications that are either installed on the device already, or which can
be installed. Find the entry labeled Hello and click on its Install button, which will
change to read Remove once the application is installed.

Getting Started with Marmalade

[30]

After all that, we can finally run our application by finding its icon on the device and
tapping on it. You should see the message Hello iOS!, which I admit may seem like
something of an anticlimax after going through such a drawn-out process.

Installing on BlackBerry QNX devices
Marmalade can also deploy to BlackBerry QNX devices, the best known of which is
the PlayBook tablet. In order to deploy to PlayBook, we need to do some setup work
first. In the steps that follow, there are some commandlines that need to be entered.
In these commandlines there are some arguments enclosed in angled brackets. After
each set of commands, there is a table explaining what to replace the angle-bracketed
arguments with.

1.	 First head over to the following URL to download the BlackBerry Native
SDK, which contains some tools needed for signing builds:
https://developer.blackberry.com/native/download/

2.	 Run the installer by right-clicking on its icon in Windows Explorer and
selecting the Run as Administrator option to avoid permission problems
when installing the SDK.

3.	 After the installation is complete, head over to the following URL to request
some signing keys:
https://www.blackberry.com/SignedKeys/nfc-form.html

4.	 We need to request a Device Code Signing Key, so select the first radio
button to request this key type and then enter the personal information
requested (your name, company name, and so on). You will also be asked
to enter a PIN value consisting of eight alphanumeric characters. Ensure
that you remember what you enter at this stage because you will need it to
complete the registration of the keys.

5.	 Make sure the checkbox labeled For BlackBerry PlayBook OS and
BlackBerry 10 and Higher is checked before ticking the license agreement
checkbox and clicking on the Submit button.

6.	 The key files will be e-mailed to you, but there can be a delay of a few hours
before they arrive. When you have the key files, create an empty folder
on your PC and save them into it. We'll be assuming a folder called C:\
PlayBook for the following steps.

Chapter 1

[31]

7.	 Open a command-prompt window and change the current directory to be
the one you created in step 6, and enter the following commands. The first
command sets up the PATH environment variable so that the other commands
can be executed. These commands register your key files with the BlackBerry
signing servers and allow your PC to generate debug tokens:
C:\PlayBook> C:\bbndk-2.0.1\bbndk-env.bat

C:\PlayBook> blackberry-keytool -genkeypair -keystore sigtool.p12
-storepass <password> -dname "cn=<company name>" -alias author

C:\PlayBook> blackberry-signer -csksetup -cskpass <password>

C:\PlayBook> blackberry-signer -register -csjpin <pin> -cskpass
<password> <RDK file>

C:\PlayBook> blackberry-debugtokenrequest.bat -register -cskpass
<password> -csjpin <pin> <PBDT file>

Argument Value to enter
<company name> The company name you specified when requesting the key

files in step 4.
<password> A password of your choosing. Use the same value in each

command.
<PBDT file> The filename of the PBDT key file that was e-mailed to you

in step 6. This filename should be of the form client-
PBDT-1234567.csj, where the numeric part will be
unique to your key file.

<pin> The PIN value you specified when requesting the key files
in step 4.

<RDK file> The filename of the RDK key file that was e-mailed to you
in step 6. This filename should be of the form client-
RDK-1234567.csj, where the numeric part will be
unique to your key file.

8.	 We can now generate a debug token file with the following commandline:
C:\PlayBook> blackberry-debugtokenrequest -cskpass <password>
-keystore sigtool.p12 -storepass <password> -deviceId 0x<device
id> debugtoken.bar

Getting Started with Marmalade

[32]

Argument Value to enter
<device id> The device ID of your BlackBerry device. As an example,

you can find out this value on a PlayBook by going into
the settings screen, clicking on the About item in the left-
hand pane, and selecting the Hardware option in the drop-
down box. The value labeled PIN is the device ID. When
you specify this value in the commandline, make sure you
prefix it with 0x, as you would in C++ source code, to
indicate a hexadecimal value.

<password> This is the same password you used in the previous set of
commands.

9.	 To install the debug token on to the device, first ensure that the device is
connected via WiFi to the same network as your PC and then look at the
device settings to determine the IP address assigned to it. This can be found
by going to the About panel and selecting Network in the drop-down box.

10.	 Next we must enable development mode on the device, which can be done
in the settings screen. Choose the Security panel and then click on the
Development Mode entry on that screen. Set the toggle control next to Use
Development Mode to On. You will be asked to enter a password for using
development mode, so enter one into the edit boxes and click on the Upload
Debug Token button.

11.	 Now we have to enter one more commandline to install the debug token on
the device.
C:\PlayBook> blackberry-deploy -installDebugToken debugtoken.bar
-device <ip address> -password <device password>

Argument Value to Enter
<device password> The device password you set in step 10.

<ip address> The IP address of the device as discovered in step 9.

12.	 Now we have to add the following two lines to the deployments sections
of the MKB file, to allow us to make a valid deployment package:
playbook-author="<company name>"

playbook-authorid="<author id>"

Chapter 1

[33]

Argument Value to Enter
<company name> The company name value you specified when requesting

the key files in step 4.
<author id> Finding the value for this is a little convoluted.

First make a copy of the debugtoken.bar file
generated in step 8, renaming it with the extension .zip.
You can now use an archiving program to look inside
this file. Enter the META_INF directory and extract the
MANIFEST.MF file. Open this file in a text editor and
look for an entry called Package-Author-Id. The
string of characters following this entry is the value you
need to put in the MKB file.

13.	 If Visual C++ is open, shut it down. Double-click the project MKB file to
rebuild it with the changes made previously and start up Visual C++.
Perform a GCC (ARM) Release build of the project and then press F5
to launch the deployment tool.

14.	 In the deployment tool, change the settings to create a BlackBerry QNX
deployment. When you reach the page labeled Deployment Summary,
change the drop-down box to the Package and Install option before
clicking the Deploy All button.

15.	 The final page in the deployment tool will be displayed, which for BlackBerry
deployments has two additional fields. The first is labeled Device hostname
(or IP address) for which you should supply the IP address of the device
that you want to install the package to. The other field is labeled Device
password, and you should enter the password you set up in step 10. Click on
the Deploy All button again and the deployment will be made and installed
to the device over WiFi.

The build should now be installed on the device, so breathe a sigh of relief and then
look for its icon in the applications list. Touch the icon to run the program, and you
should be greeted with the merry little message Hello BlackBerry!

Installing on Bada devices
Installing a build on to a Bada device is one example where using the Package,
Install and Run option in Marmalade System Deployment Tool is actually a very
good idea, as it is not possible to copy the package to a Bada device manually to
install it.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Marmalade

[34]

To begin with, you need to install some device drivers for your Bada device so that
the deployment tool can connect to it. Marmalade does ship with some drivers for
Bada, but working out which of the three possible drivers matches your device can
be hard to work out. For this reason, it is better to first install the Samsung Kies
utility, which comes with a number of drivers and will install the correct one for
you automatically. You can download Kies from the following web address:

http://www.samsung.com/uk/support/usefulsoftware/KIES/JSP

After installing Kies, connect your device to your computer with a USB cable and
run the deployment tool. When you get to the platform selection page, you will
see that there are four possible options for Bada. You must select the correct one
for your device, which is based on both the version of Bada your device has and
also its screen resolution.

Having chosen the correct Bada platform option, click on the Next Stage > button
and then choose Package, Install and Run in the drop-down box at the top of the
window. Click on the Deploy All button and an install package will be made, which
is installed on to your device and executed, and you should then see the Hello Bada!
message in all its monochrome glory!

Summary
The "Hello World" project may have been very simple, but it has served to
demonstrate a surprising amount of the power of Marmalade. We now know
how to create a new Marmalade project, build it, and create and apply our
own application-specific settings to it.

We then ran our project in the Windows simulator and learned how to deploy
and run it on a number of different mobile platforms.

Displaying some text on the screen isn't the most exciting thing in the world
though, so in the next chapter we will learn how we can use the Marmalade
SDK to draw simple 2D images on the screen. We'll also be finding out how
Marmalade makes it easy for us to use bitmapped images.

Resource Management and
2D Graphics Rendering

Unless you happen to be writing an old school text adventure game (and perhaps
even if you are), chances are that you will want more than just text in a simple debug
font to appear on screen. Drawing nice-looking graphics demands that we should
also be able to load those graphics into memory in order to display them; so in this
chapter we will be looking at the following:

•	 Using Marmalade's resource manager to load games resources
•	 Extending the resource management system with our own custom classes
•	 The programming choices we have available to us for rendering purposes
•	 How to display a bitmapped image on screen using the IwGx API

The Marmalade ITX file format
An ITX file is Marmalade's built-in file format that can be used for loading all kinds
of data into our program. The extension ITX is short for Ideaworks TeXt; Ideaworks
being the original name of the company that created the SDK before they rebranded
themselves as Marmalade.

ITX files have a simple text format and are used as the basis for resource loading.
While it is possible to load resources ourselves, it is a bit like reinventing the wheel
when Marmalade already provides a great deal of support for this truly tedious
aspect of coding.

Marmalade has an API called IwUtil that contains a wide range of useful utility
functions ranging from memory management and debugging through to the
serialization of objects and random number generation. It also contains a class
called CIwTextParserITX, which allows us to load and process an ITX file.

Resource Management and 2D Graphics Rendering

[36]

To add this functionality to our own project, we just need to add iwutil to the
subprojects list of the MKB file and then add a call to IwUtilInit at the start of
our program, and IwUtilTerminate in our shutdown code.

Before we can use the text parser, we will need to create an instance of it by using
new CIwTextParserITX. This class is a singleton class, so we can create an instance
of it at the start of our program and then reuse it as much as we like in the rest of our
code (don't forget to release it on shutdown!). The instance can be accessed using the
IwGetTextParserITX function, and we can then load and parse an ITX file using the
following code:

IwGetTextParserITX()->ParseFile("myfile.itx");

An ITX file is little more than a big collection of class definitions. An instance
of a class is defined by first putting the name of the class followed by a list of
parameters for that instance enclosed in curly braces. Let's say we had a class called
WidgetClass that was defined as follows (don't worry about the CIwManaged class
and the IW_MANAGED_DECLARE macro for now, we'll come to these in a bit):

class WidgetClass : public CIwManaged
{
public:
 IW_MANAGED_DECLARE(WidgetClass)
 WidgetClass();
private:
 uint8 mColor[3];
 int32 mSize;
 bool mSparkly;
 WidgetClass* mpNextWidget;
 uint32 mNextWidgetHash;
};

Here is an example of how we might instantiate this class from within an ITX file:

WidgetClass
{
 name "red_widget"
 color { 255 0 0 }
 size 10
 sparkly true
}

WidgetClass
{
 name "green_widget"
 color { 0 255 0 }

Chapter 2

[37]

 size 20
 sparkly false
 next "red_widget"
}

This sample declares two instances of WidgetClass, and initializes those instances
with a name, color value, size, and a flag indicating whether the widget in question
is sparkly or not. Each of these settings is called an attribute, and they can be of any
type we desire—string, integer, floating point, boolean, or an array of values (the
color attribute provides an example of this).

Hopefully, you are looking at this and thinking how exactly this format can be
magically loaded and instanced by the Marmalade text parser, since it obviously
knows nothing about WidgetClass. A good question! The answer is that any class
that you wish to parse from an ITX file must first be derived from the Marmalade
class CIwManaged.

The CIwManaged class
The CIwManaged class is the base class used throughout the Marmalade SDK and
by our own classes whenever we want to be able to create instances of them by
loading from a file.

The class provides some virtual methods that we can override to allow the parser
to recognize our own custom classes, and also to serialize them into a binary format
and resolve any references to other classes or resources. It also provides the coding
glue required to instantiate copies of our class at runtime.

This facility is really useful for us as it allows us to make our code more data-driven.
Say we have a class that describes an item that the player can collect. We might have
lots of different item types in our game, so rather than creating instances of them
all in the source code, which only a programmer can then change, we could instead
instantiate them from an ITX file, which a game designer with no coding knowledge
can then edit.

Instantiating a class with the class factory
The first thing CIwTextParserITX will encounter in the ITX file is the class name,
which it will use to create a brand new instance of our class. It achieves this by
using the class factory, which is another part of the IwUtil API.

A class factory is a programming pattern that allows us to generate new instances of
objects at runtime by asking another class (the so-called factory) to create a relevant
class instance for us.

Resource Management and 2D Graphics Rendering

[38]

The Marmalade class factory system allows us to add our own classes to those
provided by the SDK itself by registering a unique hash value identifying the class
and a method that creates a new instance of it.

The hash value is normally derived by converting the name of the class into a
number by passing its name as a string to the IwUtil API's function IwHashString.
While this isn't guaranteed to produce a unique number, it is usually good enough
for our purposes and clashes with hash values from other class names are rare.

To add our own custom CIwManaged derived class to the class factory, we just need
to do the following (if you want to see a full example of this and indeed the things
we'll be covering in the next few sections, take a look at the source code for the ITX
project that accompanies this chapter):

1.	 Add the IW_MANAGED_DECLARE(CustomClassName) macro to the public
section of the class. This declares a method called GetClassName, which
will return the name of the class as a string, and also adds a couple of type
definitions to allow the class to be used more easily with the CIwArray class,
which is yet another piece of functionality provided by IwUtil.

2.	 Add the macro IW_MANAGED_IMPLEMENT_FACTORY(CustomClassName) to
the source file for the class. This macro implements the GetClassName
method and also creates the necessary class factory function that will be
used to create a new instance of our class.

3.	 Finally, we have to register our class with the class factory itself by adding
the macro IW_CLASS_REGISTER(CustomClassName) somewhere in our
initialization code.

With this done, we can now include our class in an ITX file. The CIwTextParserITX
class can now create a brand new instance of it with a call to the class factory
function IwClassFactoryCreate("CustomClassName").

Parsing a class
With the creation of a new instance of our class taken care of, the next step is to allow
CIwTextParserITX to configure that instance by modifying its members. This is
done with the following CIwManaged class' virtual methods:

Chapter 2

[39]

Method Description
ParseOpen This method gets called when the text parser reaches the open

curly brace of the class definition. It can be used to initialize
anything that might be needed internally during the process of
parsing an object.
It is important that you do not use this method to initialize all the
member variables of your class to some default values. The class
constructor is a far better place to do this, as it is guaranteed to be
called however the instance ends up being created.

ParseAttribute This method is called whenever an attribute is encountered in
the object definition. The attribute is passed as a standard C-style
string to this method, which can then process it as needed.
The text parser can be used within this method to extract any
data elements in a variety of different ways, including strings,
integers, and Boolean values.

ParseClose This method is called when the closing curly brace of the class
definition is encountered.

ParseCloseChild It is possible to embed class definitions inside other class
definitions in an ITX file. If a class does not implement the
ParseClose method then when its closing curly brace is
encountered, the ParseCloseChild method will be called on
the parent class with a pointer to the child class.
In this case parent and child do not refer to class inheritance
hierarchies, but rather to how the classes have been defined in
the ITX file. For example:
ParentClass
{
 name "parent"

 ChildClass
 {
 name "child"
 }
}

When overriding any of these methods, you should normally call the version of the
method from the superclass, be that CIwManaged or some other class derived from it.
For example, the name attribute is parsed by CIwManaged::ParseAttribute, which
not only reads the name for the class but also generates a hash value of the name.
The hash value is very important when it comes to serializing and resolving class
instances later.

Resource Management and 2D Graphics Rendering

[40]

The following diagram shows an example of how an instance of WidgetClass
defined earlier in this chapter would be processed by the ITX parser:

For WidgetClass the only method we would definitely need to implement is the
ParseAttribute method, which might look like the following code:

bool WidgetClass::ParseAttribute(CIwTextParserITX* apParser,
const char* apAttribute)
{
 if (!stricmp(apAttribute, "color"))
 {
 apParser->ReadUInt8Array(mColor, 3);
 }
else if (!stricmp(apAttribute, "size"))
 {
 apParser->ReadInt32(&mSize);
 }
else if (!stricmp(apAttribute, "sparkly"))
 {
 apParser->ReadBool(&mSparkly);
 }
else if (!stricmp(apAttribute, "next"))
 {
 CIwStringL lNextWidget;
 apParser->ReadString(lNextWidget);
 mNextWidgetHash = IwHashString(lNextWidget.c_str());
 }

Chapter 2

[41]

else
 return CIwManaged::ParseAttribute(apParser, apAttribute);
return true;
}

Serializing a class
Serializing an object instance is the process of converting the current state of the
object into (or from) a binary format.

While not strictly necessary when parsing an ITX file, it is still very much a useful
part of the functionality provided by CIwManaged, and forms an integral part of the
resource handling process that we will be seeing later in this chapter.

The serialization functionality can also be useful when it comes to saving out things
such as current game progress or high score tables, though of course we can still use
normal file handling operations to do this if we prefer.

Serialization of our class is handled by overriding the virtual method Serialise.
This method can then use the serialization functions provided by IwUtil, which all
start with the prefix IwSerialise.

For example, IwSerialiseInt32 will serialize an int32 value. All these functions
make use of the Marmalade type definitions for the basic variable types, as these
are far more explicit when it comes to the memory footprint of a variable. Take a
look at the header files IwSerialise.h and s3eTypes.h in the Marmalade SDK
installation for more information on the IwSerialise functions and the variable
types respectively.

We must make sure to call our superclass implementation of Serialise as well to
ensure every part of the object is serialized. Normally this would be the first thing we
do in our implementation of Serialise, but it does not have to be so as long as it is
called at some point.

We can serialize our objects to a file of our choosing by calling IwSerialiseOpen.
This allows us to specify the filename and a Boolean flag that indicates whether we
are reading or writing the file. We then call the Serialise method of each object we
want to serialize, and finally call IwSerialiseClose to finish the process.

One nice feature of the IwSerialise functions is that, in most cases, we do not have
to worry about whether the Serialise method has been called to write data to a file
or if it has been called to read data from a file. We just call the function and it will
read or write the value, as appropriate.

Resource Management and 2D Graphics Rendering

[42]

There are times that we will care about reading or writing values to a file; for
example, if we need to allocate a block of memory to read some values into. The
functions IwSerialiseIsReading and IwSerialiseIsWriting allow us to make
the appropriate decisions.

The following code snippet illustrates how the serialization functions are used by
showing what the Serialise method might look like for WidgetClass:

void WidgetClass::Serialise()
{
 CIwManaged::Serialise();
 IwSerialiseUInt8(mColor[0], 3);
 IwSerialiseInt32(mSize);
 IwSerialiseBool(mSparkly);
}

Resolving a class
The act of resolving a class instance is to fix up any parts of our class that are not
initialized correctly when parsing the object from an ITX file or having created it
from the serialization process.

When might this happen? The most frequent reason for needing to resolve our
instances is when the instance requires a pointer to another class that may not
exist when it is first created.

This is best illustrated by an example. Let's say our class contains a pointer to another
instance of our class in order to implement a linked list. When we read in our
instances, it is possible we might refer to an instance that has not yet been created
and so we can't create the linked list yet.

To solve this problem we instead store a value in our data that will allow us to look
up the required instance later. This might be a string representing the name of the
instance or perhaps a unique identifier number.

Once all the instances have been read in, we can then call the CIwManaged class'
virtual method Resolve on each instance in turn and obtain the required pointer
to the correct instance using whatever methodology we see fit. For example, we
might maintain a list of all instances of our class that gets added to whenever a
new instance is created. We can then use this list to look up the required instance.

It is not always necessary to create our own implementation of Resolve, but if we
do we must be sure to call the inherited version of the method from our superclass.

Chapter 2

[43]

We'll take one more look at WidgetClass to wrap this all up. You may
remember that it had a member mpNextWidget that points to another instance of
WidgetClass. In the ITX file, we supplied a value for this member by specifying
the name of another WidgetClass instance. In the ParseAttribute method, we
read in this name and calculated a hash value from it which was stored in the
mNextWidgetHash member variable.

We can implement the Resolve method and look up a pointer to the correct instance
but we'll also need to maintain a list of all WidgetClass instances in order to do this.
One way of doing this is to implement ParseClose and store each instance in a list.
The following code shows how this could be achieved:

void WidgetClass::ParseClose(CIwTextParserITX* apParser)
{
 // Add this instance to a list. gpWidgetList is an instance of a
 // Marmalade class called CIwManagedList which is very useful
 // for storing lists of objects derived from CIwManaged!
 gpWidgetList->Add(this);
}

void WidgetClass::Resolve()
{
 // Look up an instance of WidgetClass with the given hash
 if (mNextWidgetHash)
 {
 mpNextWidget = static_cast<WidgetClass*>
 (gpWidgetList->GetObjHashed(mNextWidgetHash));
 }
}

The Marmalade resource manager
Most bitmap art packages are capable of saving images in a number of different file
formats, but we really need access to the actual bitmap data itself, which may well be
stored in a compressed format with any particular file format.

Marmalade makes the task of loading images simple by way of the IwResManager
API. This API relies upon the ITX file format we have just discussed, and is not just
limited to loading images. It can also be used to load in data such as 3D models and
animations, and we can also use it to keep track of our own custom classes.

Resource Management and 2D Graphics Rendering

[44]

Earlier we had to create our own instance of CIwTextParserITX
in order to parse an ITX file. IwResManager creates its own instance
of CIwTextParserITX when it needs it, so we don't need to
worry about creating our own instance.

Adding IwResManager to a project
To make the IwResManager API available to a project, all that needs to be done is to
add iwresmanager to the subprojects list in the MKB file.

To initialize the API just add a call to IwResManagerInit, which will create a
singleton instance of the Marmalade resource manager class CIwResManager. This
class is used to load, free, and of course access our projects resources, whatever they
may be. The singleton can be accessed using the function IwGetResManager.

When our project terminates we should call IwResManagerTerminate, which will
destroy the resource manager singleton and any resources it may still have loaded
in memory.

Specifying resources with a GROUP file
Marmalade allows us to collect different types of resources together into a resource
group. We are free to mix images, sounds, 3D models, and any other data types we
might need to use.

Why would we want to group resources together? Well, let's say you are writing a
game with a number of different levels. Each level will have some common resources
(for example, the player graphics) but might have unique elements specific to that
level, so it would make sense to only have these resources in memory when the
level is being played. You could therefore create one resource group for the player
graphics, and individual ones for each level.

In order to load a resource group into our program, we first need to create a GROUP
file. A GROUP file is actually an ITX file with the extension .group that allows us to
list all the resources we want to gather together.

Let's start by taking a look at a sample GROUP file:

CIwResGroup
{
 name "game_resources"

 "./images/titlescreen.png"

Chapter 2

[45]

 "./sounds/sounds.group"
 "./levels/levels.itx"
}

The first line of this file is defining a new CIwResGroup class instance, which is the
class used to implement a resource group, and the first thing we do inside the curly
braces of the definition is to give the resource group a name. This name will be used
later to allow us to access the resource group.

A GROUP file should only contain a single CIwResGroup definition.
The Marmalade SDK documentation states that behavior is undefined
should you specify more than one. In practice this is not a problem
since the GROUP file is the lowest level block of resources that can be
loaded at a time, so there would be no real benefit in specifying more
than one CIwResGroup anyway.

The remaining lines of the example definition specify the resources we want to
include in this group, and most often these will just be filenames for the resources in
question. As we progress through this book we will see some extra functionality that
the group file provides us with, but for now we'll just concentrate on the main task of
loading resources.

In the example, we are specifying three files that we want to be part of this resource
group. The first is a bitmapped image saved in the PNG file format. The next
resource is a reference to another GROUP file. When this GROUP file is loaded, the
sounds.group file will be loaded into memory as well.

The final file we are including is levels.itx, which is a standard ITX file and would
be used to create instances of our own classes.

Loading groups and accessing resources
To load a GROUP file in our program, we do the following:

CIwResGroup* pResGroup;
pResGroup = IwGetResManager()->LoadGroup("groupfile.group");

This will look in the project's data directory for the specified GROUP file, and then
load it into memory. The LoadGroup method returns a pointer to the CIwResGroup
instance that was created, which we can store away somewhere so we can release
the resource group and all its resources later.

Resource Management and 2D Graphics Rendering

[46]

With the resource group in memory, we can access the individual resources in
one of two ways. The first way is to ask the CIwResGroup instance itself to locate a
particular resource for us. Here's how we do this:

CIwResource* pResource;
pResource = pResGroup->GetResNamed(name, type, flags);

In the call to GetResNamed, the name parameter is a null terminated string containing
the name of the resource we want to access. This is the value that is specified using
the name attribute in an ITX file. If no name value is explicitly specified, the name of
the first resource encountered in the GROUP file (minus any extension) will be used
for the name. In the example GROUP file in the previous section this name would
become titlescreen, since the first resource in the file is the titlescreen.png file.

The type parameter indicates the class of the resource that we are trying to locate.
This parameter is also a string and is simply the class name of the resource type.

Finally there is the flags parameter that we can normally leave out entirely as it
defaults to a value of zero. There are various flags we can use that alter the way the
search for our resource is performed. For example, IW_RES_PERMIT_NULL_F will
prevent an assert from being fired if the required resource could not be found. Check
the Marmalade documentation for more information on these flags, though in most
cases the default value of zero is what we need to use.

If the resource can't be found, the GetResNamed call will return NULL, otherwise it
returns our resource as a pointer to a CIwResource instance, which we can then cast
to the required class type.

The second way of accessing a resource is to ask the resource manager to find it by
searching through all the currently loaded groups. This can be very useful since it
means we don't have to know exactly which resource group to search in. Obviously
a full search of all currently loaded resource groups will be slower, but it means we
don't have to keep track of every resource group we load. After all, that's what the
resource manager is for! The call required to search all loaded groups for a particular
resource is as follows:

CIwResource* pResource;
pResource = IwGetResManager()->GetResNamed(name, type, flags);

The parameters are exactly the same as calling the CIwResGroup::GetResNamed
method.

Finally, we can remove a resource group and everything it contains from memory
by making the following call:

IwGetResManager()->DestroyGroup(pResGroup);

Chapter 2

[47]

We should destroy a group whenever we no longer need those resources in memory
(for example, a group containing resources for a particular level of a game only
needs to be in memory when playing that level). It isn't strictly necessary to destroy
all groups on shutdown however, as Marmalade will ensure everything that has
been allocated will be freed whenever an application is terminated.

The CIwResource class
We've already seen how the CIwManaged class can be used to allow us to easily
create instances of our own classes by loading them out of a file. This functionality
is improved further by the CIwResource class, which allows us to include our own
classes into a resource group.

In the GROUP file example shown in the previous section, we specified the levels.
itx file that may contain definitions of our own classes. If our custom classes used
CIwResource as their base class (or of course another class that was in turn derived
from CIwResource) then all of our resources can be added to the resource group,
saving us the bother of keeping track of them ourselves.

GROUP file serialization
It is great that we can load different types of resources so easily, but ultimately we
probably do not want to deploy our application with a collection of easily recognized
or editable files. There are several reasons for this:

•	 Loading speed: Parsing a text file and converting it into a class is a slower
operation than just loading in a ready parsed serialized version. It is also
possible that we might need to do some sort of conversion on the original
data to make it usable in the game, so if we can avoid doing this we will
improve the loading time of our game.

•	 To prevent hacking: If we ship a collection of text files and common file
formats such as PNG files, we make it very easy for someone to hack and
modify our game or make unauthorized use of the game's resources.

•	 Smaller code size: If we are loading resource data that is already in a form
that our game code can use directly, there is no need to include any code for
converting the original data format into our own internal one. This makes
the code size smaller and also helps guard against hackers a little more.

•	 Deployment size: Text files are often much larger than their serialized
binary equivalents, so shipping a binary version could reduce the size
of our install package.

Resource Management and 2D Graphics Rendering

[48]

Marmalade tackles all these issues by automatically converting every GROUP file we
load into its binary equivalent using the serialization functionality provided by the
CIwManaged class.

After the resource group has been fully loaded, the resource manager will call the
Serialise method on every instance of every resource contained within the group,
creating a file with .bin added to the original GROUP's filename. For example, the
resources in a file called images.group would be serialized to a file called images.
group.bin.

Once the serialized version of the GROUP file has been created, the resource
manager destroys the resource group and then recreates it from the newly serialized
version. This step is present as it makes catching problems, such as forgetting to
serialize a member variable of a class, easier to spot.

There is a useful ICF setting that controls the resource building process. Simply add
the following to the ICF file (refer back to Chapter 1, Getting Started with Marmalade,
for a discussion of what an ICF file is):

[RESMANAGER]
ResBuild=1

When set to 1, the ResBuild setting will ensure that the resource manager always
loads the GROUP file and serializes it. By setting it to 0, the GROUP file parsing
stage is skipped and instead any existing serialized version of the GROUP file will
be loaded directly. This can be very useful during development, to both increase
application startup time when no resources have been added or changed, and also
to match more closely the loading process on the device.

If you've made changes to the resources for your game but they aren't
appearing when you run it, the ResBuild flag is always a good first
port of call. It's amazing how easy it is to make a resource change and
forget that you've disabled resource building!

Resource handlers
There is one final part of the IwResManager API that is worth mentioning, and this is
the concept of resource handlers.

You may have wondered how the resource manager is able to load and process files
of different types. It's great that we can just list a bunch of filenames in a GROUP file,
but how exactly does a PNG format image file end up being loaded into a form that
we can use for rendering? Resource handlers, of course!

Chapter 2

[49]

A resource handler is a subclass of CIwResHandler that is used to load and process
resources of a particular type, identified by one or more filename extensions.

When the text parser comes across a filename in the GROUP file, it looks at the
file extension and then checks to see if a resource handler has been registered for
that extension. If no suitable handler is found an error will be raised, otherwise the
filename is passed to the relevant resource handler class that will then do whatever
needs to be done to the file to make it usable in our code.

The entire resource manager system in Marmalade relies on resource handlers in
order to work. GROUP files, ITX files, and bitmapped image files are all processed
by classes derived from CIwResHandler, and we can create our own custom resource
handlers should we want to make use of some other file type not supported by the
core Marmalade SDK.

We will be coming back to the subject of resource handlers when we talk about
implementing sound in Chapter 7, Adding Sound and Video of this book, since
Marmalade does not have support for any sound file formats as part of the core SDK.

Graphics APIs provided by the
Marmalade SDK
Now that we are familiar with resource management, we can get on to the more
interesting task of showing a picture on the display.

Marmalade spoils us by providing several different ways in which we can draw
graphics on the screen. The following sections provide an overview of the different
options available to us.

The s3eSurface API
The lowest level of display access is the s3eSurface API. This provides access to
the display by using a memory pointer that you can then use to directly read or
alter pixels.

You can discover the width and height of the display in pixels and also the pitch,
which is the number of bytes that you need to skip through memory to get to the
next row of the display image.

The pitch is affected by the pixel format of the display (16-, 24-, or 32-bit displays
are all possible) and often extra padding bytes are also added to allow each row
to begin on a word-aligned memory address, which can improve display memory
access times.

Resource Management and 2D Graphics Rendering

[50]

In practice this API is very rarely used, partly because it provides no support for
drawing bitmapped images or lines, but mostly because it is incredibly slow on
many modern devices due to the display being drawn by a Graphics Processing
Unit (GPU), which may place restrictions on how and when this memory can be
accessed by the CPU.

We will not be using this API anywhere in this book, but if you wish to use it
there is nothing you have to add to your project as it is always available in any
Marmalade project.

The IwGL API and OpenGL ES
As mentioned above, most mobile devices available today contain a GPU that is used
to speed up drawing operations and free the CPU for other tasks, such as updating
the current state of a game. The standard API that has been adopted across most
mobile platforms is OpenGL ES.

The OpenGL ES API is a derivative of the OpenGL API, which has been used on
many desktop systems for many years. OpenGL ES was conceived as a cut-down
version of OpenGL designed for embedded systems (hence the ES part of the name!).

There are two main versions of the OpenGL ES. The 1.x standard is intended for
devices that have fixed, function rendering pipelines, which means that while control
is provided in how a 3D point is transformed to 2D coordinates, and how a polygon
and its associated textures (if any) are rasterized to the screen, you are completely
limited to the options provided by the hardware.

The 2.x standard of OpenGL ES is intended for GPU hardware where the act of both
transforming 3D points and rasterizing the resultant polygons can be programmed
by way of shaders. A shader is a short program that can be applied very quickly
to either transform 3D points (a vertex shader) or work out the required color of a
rendered pixel (a pixel or fragment shader).

In most cases a device supporting OpenGL ES 2.x will also support OpenGL ES 1.x,
but the two cannot be mixed. When initializing OpenGL, you request one or the
other of these interfaces to be created as the OpenGL context. The context is really
nothing more than a big structure which stores all the information that OpenGL
needs in order to operate, such as the current frame buffer, pixel blending mode,
and available shaders.

Chapter 2

[51]

So what exactly is the IwGL API? Put simply, it is a wrapper for OpenGL ES that
allows us to make normal OpenGL ES function calls directly, but it also provides
some other very useful functionality:

•	 IwGL simplifies the process of initializing OpenGL ES to a single function
call—IwGLInit. This function call will initialize the frame buffer and set
up the OpenGL context so that it is ready and raring to go, with settings
that should be optimal for the type of hardware available. Fine control over
initialization is also provided to allow display and depth buffer formats to
be chosen using settings made in the application's ICF file.

•	 It provides context state caching functions, such as keeping a copy of all
textures currently uploaded to OpenGL ES. In the event of your application
being suspended (for example, by an incoming call) all its textures and other
resources could be lost, and normally it would be your responsibility to
reload everything you need. IwGL automatically takes care of all this for us.

•	 Any OpenGL ES extension functions (extra functionality that a particular
GPU may provide over and above the required base level of OpenGL ES)
become mapped to functions that can be called directly and will not cause an
error if that function is not actually supported. Normally you would need to
specifically check if an extension exists before trying to call it.

•	 It also provides a Virtual Resolution system that makes it easy to take
existing code that was hardcoded to a particular resolution or screen
orientation and make it run at a different resolution or orientation by
resizing or rotating the rendered image.

IwGL is an invaluable part of the Marmalade SDK when you are porting existing
code written using OpenGL ES, as it allows you to take advantage of Marmalade's
ability to deploy to multiple platforms without having to completely recode the
entire project.

However, we won't be using IwGL in this book either. While there is nothing to
stop us from using this API to develop a new project, it does mean we are limited to
targeting only devices that feature GPUs (or support a software emulated version of
OpenGL), and we still need to take care of things like loading textures ourselves.

You can use the IwGL API in your own project by adding iwgl to the subprojects
section of the MKB file.

Resource Management and 2D Graphics Rendering

[52]

The Iw2D API
Given that this is a chapter about 2D graphics rendering, the Iw2D API must surely
be the way to go, right?

Well, yes and no. It certainly has a lot going for it, like the following:

•	 It provides us with the ability to render flat shaded primitives such as lines,
arcs, rectangles, and polygons, either as outlines or filled shapes.

•	 It allows us to easily load bitmapped images and render them on screen and
also apply scaling or rotational transforms to those images.

•	 It makes it easy for us to draw text on screen that looks substantially better
than the default debug font we've currently seen.

•	 It provides certain optimizations that allow us to speed up rendering. For
example, it can batch together several requests to draw a particular image into
a single call, which can yield good performance increases on many devices.

However, as you've probably already inferred from the tone of this section, we won't
be using Iw2D in this book either.

If you are only interested in rendering 2D graphics, Iw2D may well be perfectly
adequate for your needs, but if you ever want to make the jump to 3D graphics you
will eventually find that the Iw2D API just doesn't do everything you need, such as
rendering textured polygons of any shape, not just rectangular.

Since we will be tackling 3D graphics later in this very book, it makes sense for us to
begin our journey into rendering with Marmalade by using 3D graphics itself.

If you want to use this API in your own project, just add iw2d to the subprojects
section of the MKB file.

The IwGx API
Finally we come to the API that we will be using in this book; in fact we have already
used a very small part of it in the creation of our "Hello World" project. Ladies and
gentlemen, I give you the IwGx API!

This API is extremely flexible and boasts the following functionalities:

•	 It supports both hardware and software rendering pipelines, so your code
can potentially run unaltered on modern hardware featuring a GPU yet still
fall back to a software-based renderer for older or less capable hardware. You
can even mix the two pipelines, so you could use the GPU for rasterization
but still use the CPU for transform and lighting operations.

Chapter 2

[53]

•	 It takes care of the nitty-gritty for us, such as initializing the display and
texture management, in a similar way to the IwGL API.

•	 It allows us to use features such as texture mapping and flat or gouraud
shading on arbitrary polygons.

•	 It provides some debugging functionality, such as simple text rendering
(as in our "Hello World" project) and rendering shapes like rectangles
and circles.

•	 It makes targeting OpenGL ES 2.x devices much easier, as it provides the
necessary shader programs to emulate the fixed function pipeline of Open
GL ES 1.x while still allowing us to provide our own custom shaders when
we want to.

By using IwGx for rendering 2D graphics from the start, we will find it a whole
lot easier to move on to drawing 3D polygons later, as the techniques involved are
incredibly similar.

With Version 6.1 of Marmalade, the IwGx API underwent a little
modernization and standardized using floating point values for
specifying polygon information. Prior to this version, some information
(for example, texture UV values) was specified in fixed point integer
formats. There was also a software-based rendering engine for targeting
old devices with no GPU hardware. If you have existing code that still
needs the old fixed point way of doing things, you can revert back by
adding define IW_USE_LEGACY_MODULES to the project MKB file.

It should come as no surprise by now that we can use IwGx in our project simply by
adding iwgx to the subprojects section of the MKB file.

Using IwGx to render 2D graphics
Now that we know how to load resources, we can get on with the fun stuff. We're
going to look at how we can draw a bitmapped image on screen.

IwGx initialization and termination
We've already seen how to do this in the "Hello World" project of Chapter 1, Getting
Started with Marmalade. We just call IwGxInit to set up IwGx at the start of our
program and IwGxTerminate to close it down again at the end.

Resource Management and 2D Graphics Rendering

[54]

Rendering a polygon
In IwGx, the most commonly used polygon types are lines, triangles, and quads
(basically two triangles that share a common edge).

Also supported are sprites, which are always rectangular in shape and do not
allow any scaling of textures, and n-polys, which can contain up to 63 vertices.

Sprites are rarely used since triangles and quads are more flexible, though they
can be faster to draw especially in software rendering mode. The n-poly can also
be faster to draw for the software renderer than a series of triangles, but they are
generally best avoided since they need to be converted into triangles on the fly in
order to be drawn using hardware rendering.

To render a polygon on screen, we at least need to specify where we want it to
appear on screen and what color we want it to be in. Additionally, we might want
to draw the polygon using a bitmapped image. The following sections show how
we can provide this information.

Materials and textures
First we let IwGx know what color (or indeed colors) and image we want applied
to our polygon. We do this by specifying the material we want to use, which is an
instance of the CIwMaterial class that groups together this information. To set
the material we want to use, we must provide IwGx with a pointer to the relevant
CIwMaterial instance using the following function call:

IwGxSetMaterial(pMaterial);

If we are drawing a polygon with no image applied to it, then the very minimum
information the material will need to provide is the color we want to use.

A material actually contains four different colors that, if you are at all familiar with
3D graphics rendering, you will probably recognize. They are the ambient, diffuse,
emissive, and specular colors. For 2D rendering purposes, it is only the ambient
color that we are concerned with. We'll look into the others when we move on to
3D rendering in Chapter 4, 3D Graphics Rendering.

The material also specifies the texture we want to apply. A texture specifies a
bitmapped image that we want to apply to our polygon, and is represented in
Marmalade by the CIwTexture class.

The CIwTexture class is actually a wrapper for the CIwImage class that actually
stores the pixel information for an image. CIwTexture adds functionality to control
how the image is actually rendered, with support for enabling and disabling features
such as bilinear filtering and mipmapping.

Chapter 2

[55]

Materials also provide control over other polygon rendering features, such as
whether the polygon is rendered flat or gouraud shaded, and how it should be
blended with the current screen contents when it is drawn.

Materials can either be created in code or they can be instanced by the resource
manager. The following sections illustrate this.

Creating materials in code
Creating a material in code requires little more than making a new instance of
CIwMaterial and using the available methods to set the color, textures, and
other settings. For example, to create a material that will render bright red,
semi-transparent polygons we could use the following code:

CIwMaterial* lpRedMaterial = new CIwMaterial;
lpRedMaterial->SetColAmbient(255, 0, 0, 128);
lpRedMaterial->SetAlphaMode(CIwMaterial::ALPHA_BLEND);

Note that Marmalade will raise an assert message if you try to create a local
CIwMaterial instance on the program stack. This happens because rendering
does not happen the moment you make a drawing function call, so by the time
rendering does occur, the material data will likely have been trashed by other
functions reusing the same area of stack space.

Creating materials using an MTL file
While creating materials in code is simple enough, there is an easier way, especially
when it comes to specifying materials with textures. This involves yet another use of
our friend, the ITX file.

A material file has the extension .mtl and again uses the same formatting rules as
an ITX file. We can create any number of CIwMaterial instances in an MTL file and
initialize them with the required colors, textures, and other settings.

As a bonus, any texture we refer to in the MTL file will also be loaded automatically,
meaning we don't have to list it separately in a GROUP file. In order for this to work,
all the source image files must reside in a subdirectory named textures, which is
located in the same directory as the MTL file, or alternatively they must already have
been loaded into memory either from another GROUP file or in the same GROUP file
prior to referencing the MTL file.

Marmalade natively supports the PNG, TGA, GIF, and BMP image
file formats. If you want to load any other type of bitmap, you will
need to provide your own custom resource handler to do so.

Resource Management and 2D Graphics Rendering

[56]

Here is an example of what an MTL file might look like:

CIwMaterial
{
 name "red"
 colAmbient { 255 0 0 128 }
 alphaMode BLEND
}

CIwMaterial
{
 name "grid"
 colAmbient { 128 128 128 128 }
 texture0 "grid.png"
 alphaMode ADD
 shadeMode FLAT
 filtering false
}

This example generates a semi-transparent red material equivalent to that created in
the previous section, and also a material using a texture named grid.png, which is
drawn flat shaded with additive transparency at half the original image brightness
and without bilinear filtering.

You may have noticed that the image is specified using an attribute
called texture0. Marmalade materials can actually be assigned two
textures that can be blended together when rendering a polygon and
they are referred to as texture0 and texture1. In this book we
will only be concerned with single texture materials.

There are far too many attribute names to list here, so for a complete list take a look
at the Marmalade documentation page for the CIwMaterial class. This page lists all
of them.

To make these materials available in our code, we just need to reference the MTL file
inside a GROUP file that we are loading. We can then get hold of the materials by
searching for them by name using the resource manager functions described earlier
in this chapter.

Chapter 2

[57]

It is recommended that when materials are created using an MTL
file, you do not modify any of their settings using the methods in the
CIwMaterial class. Instead, make a copy of the material using the
CIwMaterial::Copy method. While it is possible to do so, problems
can occur if the same material is used to render several different things,
since rendering does not occur as soon as a drawing function call is made.
The end result is therefore unpredictable as it would depend on how the
CIwMaterial happens to be configured when rendering finally occurs.

Vertex streams
In order to display a polygon on screen, we need to specify a list of screen
coordinates that define the corner points. Since we are only rendering in 2D at the
moment, each coordinate is specified as a CIwSVec2 instance, which is a vector class
defined in another Marmalade API called IwGeom. Any list of data items used
when rendering polygons, be it vertices, colors, or whatever, is often referred to as
a stream, so a list of vertices is called a vertex stream.

While we can specify this API to be part of our project by adding iwgeom to the
subprojects section of the MKB file and calling IwGeomInit and IwGeomTerminate,
there isn't actually a need to, since IwGx relies on this API itself.

The CIwSVec2 class defines a two-component vector using signed 16-bit integers, so
it is perfect for specifying screen coordinates.

The default screen coordinate system in IwGx places the origin at the top-left corner
of the screen, with the x component increasing horizontally to the right and the y
component increasing vertically downwards. It is possible to change the position of
the origin, however, by passing a CIwSVec2 instance containing the desired position
of the origin to the function IwGxSetScreenSpaceOrg.

Resource Management and 2D Graphics Rendering

[58]

The following diagram illustrates how we could specify the coordinates for a triangle
on a standard iPhone resolution screen (320 x 480 pixels). The top left of the screen is
the origin and has a coordinate position of (0,0), while the bottom-right corner has a
position of (320,480).

To render this triangle all we have to do is fill in an array of CIwSVec2 with the
coordinates and submit them to IwGx, as follows:

CIwSVec2* v = new CIwSVec2[3];
v[0].x = 160; v[0].y = 120;
v[1].x = 20; v[1].y = 360;
v[2].x = 300; v[2].y = 360;
IwGxSetVertStreamScreenSpace(v, 3);

The function call, IwGxSetVertStreamScreenSpace, allows us to specify a list of
screen space (that is, pixel) coordinates we want to use for rendering, but we must
also explicitly state how many vertices we are submitting. In the case of our triangle,
this is three.

It is also possible to specify our coordinates using sub-pixel positioning with the
function call IwGxSetVertStreamScreenSpaceSubPixel. It may be getting a bit on
the long side to type, but using sub-pixel positioning does provide the advantage of
smoother movement on screen, as we are no longer limited to only moving things
around the screen in terms of whole pixels.

Using sub-pixel coordinates can also improve the quality of the final rendered image,
as slow moving objects won't appear to jump between pixel positions if we are
rendering using bilinear filtering.

Chapter 2

[59]

IwGx only supports eight sub-pixel positions per pixel; so to convert our coordinates
to use sub-pixel positioning, all we need to do is multiply the screen coordinates by
eight or use the bitwise shift operator to shift left by three places.

Color streams
If we want to draw a polygon using flat shading, so that every pixel rendered is the
same color, we can just set the ambient color of our material and our work is done.

However, if we want to render a polygon using gouraud shading, we need to specify
a color to be used at each vertex. This can't be done with a material, so we need to
override the material's color information by providing our own color stream.

We do this by creating an array of CIwColour objects, which is Marmalade's chosen
method of representing a color. This class has four public member variables of type
uint8 (an unsigned byte) called r, g, b, and a, which (probably not surprisingly)
represent the red, green, blue, and alpha values of a color.

Note that because Marmalade was developed in the UK, all instances
of the word color in the API will actually be spelled colour.

CIwColour also provide several methods to make setting and manipulating
colors easier.

Returning to the triangle defined in the earlier diagram, if we wanted to color
the top of it red, the bottom-right corner green, and the bottom-left corner blue,
we can use the following code:

CIwColour* c = new CIwColour[3];
c[0].Set(255, 0, 0, 255);
c[1].Set(0 255, 0, 255);
c[2].Set(0, 0, 255, 255);
IwGxSetColStream(c);

Note that IwGxSetColStream does not require us to specify the number of colors
in our stream. This is because IwGx expects to find the same number of colors as
there are vertices. If we do not want to specify a color stream, we can just pass
NULL into the IwGxSetColStream function and the selected material's colors will
be used instead.

Resource Management and 2D Graphics Rendering

[60]

UV streams
When rendering a polygon with a texture, we need to somehow indicate how that
texture should be mapped to the polygon. We do this by specifying a UV stream that
allows us to state which part of the texture should appear at each vertex. The part of
the texture required for each rendered pixel can then be worked out by the rendering
engine by interpolating the UV values across the surface of the polygon.

In IwGx, UV coordinates are specified using floating point numbers. An individual
UV value is often written as (u, v) and is represented in IwGx using the CIwFVec2
class, which is a floating point equivalent of CIwSVec2 that we came across earlier.
The x component of the vector represents u, and the y component represents v.

UV values are mapped to a texture so that (0.0, 0.0) is the top left of the image
and (1.0, 1.0) is the bottom-right corner. We can repeatedly tile a texture up to a
maximum of eight times across our polygon by using values larger than one.

Prior to Marmalade version 6.1, UV values were given as 16-bit signed
integers using a 12-bit fixed point representation. The value 4096 is
equivalent to 1.0, 8192 is equivalent to 2.0, and 2048 is equivalent to 0.5.
The IwGeom API provides us with the define IW_GEOM_ONE, which
we can use to avoid having nasty-looking magic numbers throughout
our code. This functionality can still be used by reverting to the legacy
version of the IwGx API, as detailed earlier in this chapter.

By mapping UV values in this way, we make them independent of the actual size of
the texture image. If we change the size of the image for any reason, it won't mess up
rendering as our UV values do not need to change.

Chapter 2

[61]

As with vertex streams, all we have to do to specify a set of UV values is allocate
an array of CIwSVec2, populate the array, and submit it to IwGx. We don't need to
specify the number of UV values we are submitting, as IwGx expects to see the same
number of UVs as there are vertices. Here is some sample code that we might want
to use to apply a texture to a triangle:

CIwSVec2* uv = new CIwSVec2[3];
uv[0].x = IW_GEOM_ONE / 2; uv[0].y = 0;
uv[1].x = 0; uv[1].y = IW_GEOM_ONE;
uv[2].x = IW_GEOM_ONE; uv[2].y = IW_GEOM_ONE;
IwGxSetUVStream(uv, 0);

The second parameter of IwGxSetUVStream indicates which texture the UV values
apply to. If the material we are using only has a single texture, we can just leave this
parameter out entirely as it will default to 0, but if the material does have a second
texture, we need to supply a UV stream to be used with it by changing the second
parameter of IwGxSetUVStream to 1. This UV stream could be the same as the stream
for the first texture or it could be a completely different set of UV values.

If our material does not have a texture applied to it, there is no need to set the UV
stream to NULL as it will be ignored completely.

Drawing a polygon
We've now seen how to set just about all the information we need to specify how
we want our polygon to appear, so we can finally instruct IwGx to draw it. To do so,
we need to let IwGx know how our various input streams should be interpreted by
using the following function call:

IwGxDrawPrims(polygon_type, indices, num_indices);

The polygon_type parameter indicates whether we are drawing triangles, quads,
lines, sprites, or n-polys, while the indices parameter is an array of uint16 values
showing the order in which the elements of our input streams should be accessed.
This is called an index stream. The num_indices parameter is just a count of how
many elements are in the indices array.

Resource Management and 2D Graphics Rendering

[62]

The following diagram shows the types of polygons supported by IwGx. Note that it
is possible to draw more than one polygon at a time by providing longer streams of
data. This is something we should try to do as much as possible, since it prevents the
GPU from idling while it is waiting to be supplied with new polygon information.

The numbers labeling the vertices in the diagram correspond to the elements of the
index stream. When rendering, the indices array is traversed in the order shown for
each polygon type, and the values it contains indicate which element of the various
input streams should be used to render each vertex.

Chapter 2

[63]

To draw the triangle we've been building up to, we can use the following code snippet:

uint16* indices = new uint16[3];
indices[0] = 0; indices[1] = 1; indices[2] = 2;
IwGxDrawPrims(IW_GX_TRI_STRIP, indices, 3);

We could simplify this a little more as the index stream isn't actually necessary in this
instance since our input streams are accessed one element at a time in the order they
occur in the stream, so we can just specify NULL for the indices parameter like this:

IwGxDrawPrims(IW_GX_TRI_STRIP, NULL, 3);

When creating the index stream there is one other point to bear in mind, which is the
order in which we supply our vertices. Because IwGx can also be used to render 3D
polygons on screen, it supports back face culling, which prevents any polygon that is
facing away from the viewer from being rendered.

How is a polygon classified as facing toward or away from the viewer? If we label
each vertex of a polygon with an incrementing number, starting with zero for the
first vertex and following around the edges of the polygon from vertex to vertex,
then a polygon is facing the viewer if its vertices form an anti-clockwise pattern
when rendered on screen and considered in ascending numerical order. The order
the vertices are supplied in is called the winding order, and the following diagram
shows this more clearly:

Putting the vertices in the correct order is not the only way to solve this problem,
but it is worth getting in the habit of ordering the vertices in this way for when we
progress to rendering 3D polygons. We can disable or reverse the back face culling
operation on a per material basis by calling the CIwMaterial::SetCullMode method
with one of the following enumeration values: CULL_FRONT, CULL_BACK, or CULL_
NONE. The default is CULL_BACK.

Resource Management and 2D Graphics Rendering

[64]

If you are trying to draw a polygon and you just can't get it to appear,
the first thing to do is double-check the winding order of your vertices.
They may just be getting culled by the GPU and not being drawn!

Our polygon information has now been submitted for rendering; but we won't see it
appear on screen just yet.

Displaying the rendered image
The final step in making something appear on screen is to flush all the drawing
requests to the screen, and then display the final image.

IwGx automatically provides us with a double-buffered display setup. All this means
is we do all our rendering to an off-screen buffer and then switch to displaying this
buffer when all the drawing is complete. If we did not do this, we would likely see
an incomplete, flickering screen display as our graphics could be displayed in an
incomplete state if we drew straight to the visible display.

To complete the cycle of drawing, all we have to do is add the following two lines
of code:

IwGxFlush();
IwGxSwapBuffers();

That's it! We've drawn our first polygon!

Example code
If you download the code package for this chapter, you will find three projects that
illustrate the use of the Marmalade functionality we have learnt about in this chapter.

The ITX project
The ITX project demonstrates use of the ITX text parser and the CIwManaged class.

The example first creates custom instances of our own class by parsing an ITX file,
then serializes those instances out to a file. All the instances are then destroyed and
re-created by loading the serialized file back in.

The example also demonstrates the use of two more parts of the IwUtil API, which
we haven't covered in depth, but are very useful to know about. First is the class
CIwManagedList, which is used for maintaining a list of objects derived from
CIwManaged, and the second is the IwTrace system that allows us to log information
to a file (and to the standard output) in order to aid debugging.

Chapter 2

[65]

The Graphics2D project
The Graphics2D project pulls everything we've learnt in this chapter together to
render a rotating, textured polygon on screen. The following screenshot depicts
this project in action:

The Skiing project
Throughout this book, we will be building up an entire game example that puts
the things we have learnt into real practice. The game in question will be a simple
version of that old favorite, the slalom skiing game, where the player guides a skier
down a mountain, attempting to pass through as many flags as possible while
avoiding obstacles.

In this chapter we kick things off by having a skier graphic at the top of the screen that
moves from side to side, while some random trees scroll up the edges of the screen.

Resource Management and 2D Graphics Rendering

[66]

The following screenshot shows the project as it currently stands:

While this book is not intended to teach you the ins and outs of programming a
game (it's assumed you already know how to do that) it might still be worthwhile
providing a few notes on how the sample game is put together.

The GameObject class
The GameObject class is the base class for anything that makes up a part of the game
world. Currently there are two classes which inherit from this class, Skier and Tree.
No prizes for guessing what they represent!

GameObject provides two virtual methods that can be overridden by child classes
to implement the behavior of an in-game object. The GameObject::Update method
provides support for changing the position of an object by applying a velocity to it,
while the GameObject::Render method allows a size and a material to be defined, and
it will draw a textured polygon at the object's current position using this information.

The ModeManager and Mode classes
The main flow of most games is often represented internally as some kind of state
machine. Even the simplest game will normally have at least a title screen and the
main game screen, but add to this things such as pause modes, high score tables,
options screen, and the like, and you soon end up with a large number of states that
your game could be in.

Chapter 2

[67]

Often these states are completely mutually exclusive, but sometimes we might want
several states active, or at least visible, at the same time. For example, quite often
the pause mode will appear on top of the game screen. Only the pause mode will be
accepting input, but both it and the game screen need to be drawn.

One approach (and this is purely my own personal preference; your own may vary
wildly) is to create a separate class which handles a single part of the game. For want
of a better word, I represent these using a base class called Mode.

The Mode class is similar to the GameObject class in that it provides two virtual
methods called Update and Render. A mode can be made active, which means its
Update method will be executed in each frame, and it can be visible, which means
its Render method will be called. These two states are completely independent of
each other.

When a Mode instance is created, it is automatically added to a list maintained by
a singleton class called ModeManager. The ModeManager class uses the list of Mode
instances to update all active modes and render all visible modes on each iteration
of the main game loop.

Currently the project only consists of a single mode called ModeGame, which is
responsible for loading and freeing the required resources and also initializing,
updating, and rendering all the GameObjects that make up the game world.

Summary
In this chapter we've learnt about Marmalade's powerful resource management
system. We know how to use it at a simple level to just load and release resources
such as bitmapped images or our own custom classes; we also have a good idea
of how the resource management system is put together, and how we can extend
it with our own functionality.

We've also covered the options available for rendering on-screen images, and
seen how to use one of these, IwGx, to render polygons on the screen.

In the next chapter we'll be learning how we can start using the various input
options available on modern mobile devices, since the whole point of games is
that they are interactive.

User Input
A video game is not going to be a whole lot of fun to play if the user has no way
of controlling the events that happen, so in this chapter we will be looking at
the various ways in which we can add interactivity to our programs by using
Marmalade. By the end of this chapter you will know how to detect the following
types of input:

•	 Key presses
•	 Touch screen and pointer inputs
•	 Detection of gestures such as swipes and pinches
•	 Changes in device orientation using accelerometers

Detecting key input
We'll start our journey into the world of player input methods with the simplest
method possible—pressing keys, which we detect by using the s3eKeyboard API.
To use these functions in our code, we just need to include the s3eKeyboard.h file.

While the touch screen may now rule supreme as the primary method of interacting
with many modern devices, it is still worthwhile to know how to detect key presses.
Android devices, in particular, have keys that are intended to be used for quick
access to menus and for navigation around a program. Quite often these are not
even physical buttons, just an area at the bottom of the touch screen, but they are
still reported as key presses.

Key press detection is also extremely useful when debugging your code in the
Windows simulator, as Marmalade allows full access to your computer's keyboard too.
This makes it really easy to add a debugging functionality triggered by a key press.

The s3eKeyboard API allows us to detect key input either by key state or by
character input. It also provides functionality that allows us to determine what
kind of keyboard support the device we are running on has available.

User Input

[70]

Initialization and update of key information
There is a function called s3eKeyboardGetInt that allows us to find out what kind
of keyboard our device has. We can use this information to provide different input
methods to our program should we want to. For example, entering a user's name
on a high score might allow the user to enter their name directly if the device has a
full alphabetic keyboard, but could fall back to a method using arrow keys to cycle
through characters if the device does not feature a full keyboard.

The s3eKeyboardGetInt function call takes a single parameter from the
s3eKeyboardProperty enumeration, and returns an integer value. Details of
the available properties are provided in the following table:

Property name Description
S3E_KEYBOARD_HAS_NUMPAD Returns 1 if the device has a numeric

keypad, otherwise returns 0.

S3E_KEYBOARD_HAS_ALPHA Returns 1 if the device has an alphabetic
keypad, otherwise returns 0.

S3E_KEYBOARD_HAS_DIRECTION Returns 1 if the device has directional
controls (up, down, left, right, and a Select
or OK button), otherwise returns 0.

S3E_KEYBOARD_NUMPAD_ORIENTATION If the device has a numeric keypad, this
property will return the orientation of the
keypad relative to how the user is holding
the device (if this is possible to detect).

S3E_KEYBOARD_GET_CHAR Returns 1 if the device supports the
character code input method or 0 if it
does not.

The final value in this table can also be used with the function s3eKeyboardSetInt
to show and hide the virtual keyboard on Android and iOS devices, which will
then allow us to use the character code input method on these types of devices.
The following function call will display the virtual keyboard:

s3eKeyboardSetInt(S3E_KEYBOARD_GET_CHAR, 1);

To hide the virtual keyboard, pass in 0 instead of 1.

Given that this feature is limited to just Android and iOS, and there is no way of
determining whether the functionality is supported at runtime, this approach is
probably best avoided if you intend to support a wide range of devices.

Chapter 3

[71]

In order for our program to keep receiving updates on key presses, we must call the
function s3eKeyboardUpdate in our code, once per game frame. The s3eKeyboard
API keeps its own internal cache of the current key press states, which is updated
when calling this function; so if we don't call s3eKeyboardUpdate frequently, we
risk missing key press events.

Detecting key state
The most useful method of key detection for most arcade style games is to be able
to discover the up or down state of any key on the device. The s3eKeyboard API
provides two ways in which we can do this, these being polling the current key
state and by registering a callback function.

Detecting key state changes using polling
We'll start with the simplest approach of polling for the current state of a key. It may
be the simplest approach, but in most cases it is also the best approach as far as game
coding is concerned, since often all we want to know is whether a key is currently
pressed or released so that we can update our game state accordingly.

To detect the current state of any key on our device we make a call to
s3eKeyboardGetState, which takes a value from the s3eKey enumeration (take a
look at the s3eKeyboard.h file for a full list, but you can normally guess the name of
the enumeration fairly easily—for example, s3eKeyUp is the up arrow key, s3eKey4
is the number 4 key, and so on) to identify the key we are interested in. The function
returns an integer value that is a bit mask representing the current state of that key.
The following key states can be detected by performing a bitwise AND operation on
the return value:

Bit mask name Description
S3E_KEY_STATE_DOWN The key is currently being held down.

S3E_KEY_STATE_PRESSED The key went from being up to down in the last
call to s3eKeyboardUpdate.

S3E_KEY_STATE_RELEASED The key went from being down to up in the last
call to s3eKeyboardUpdate.

If the value returned from the function is zero, then the key can be assumed to
currently be in the up position (that is, not being held) and has not just been
released either.

User Input

[72]

The following code snippet shows how we would detect whether the number 3 key
has just been pressed:

if ((s3eKeyboardGetState(s3eKey3) & S3E_KEY_STATE_PRESSED) != 0)
{
 // Number 3 key has just been pressed!
}

Detecting key state changes using callbacks
It is also possible to be informed whenever a key is pressed or released by using a
callback function. Callbacks are preferred by many coders since they force us into
writing smaller, more manageable functions that often yield a more concise and
reusable solution. The polled approach to key detection may seem easier at first
glance but it is easy to end up with a codebase that has key state checking logic
spread across many source files. Using the callback approach will tend to ensure
key handling code is implemented in a more structured way.

To set up a callback function that detects key state changes, we use the
s3eKeyboardRegister function. We provide this function with the enumeration
value S3E_KEYBOARD_KEY_EVENT to identify the type of callback we are setting up,
a pointer to a function that will be the callback, and a void pointer that can be used
to pass in our own custom data to the callback function.

When a key is pressed or released, the function we specified will be called. The
callback function is passed a pointer to an s3eKeyboardEvent structure, which
details the key press or release and is also provided with the custom data pointer we
specified when registering the callback.

When we no longer wish to receive key state notifications, we can call
s3eKeyboardUnRegister to disable the callback mechanism. We just need
to pass the S3E_KEYBOARD_KEY_EVENT enumeration and the pointer to our
callback method to stop the callbacks from occurring any more.

Here's a code snippet to illustrate how we might detect state changes to the
number 3 key:

// Callback function that will receive key state notifications
int32 KeyStateCallback(s3eKeyboardEvent* apKeyEvent,
 void* apUserData)
{
 if (apKeyEvent->m_Key == s3eKey3)
 {
 if (apKeyEvent->m_Pressed)
 {

Chapter 3

[73]

 // Number 3 key has just been pressed
 }
 else
 {
 // Number 3 key has just been released
 }
 }
}

// We use this to register the callback function…
s3eKeyboardRegister(S3E_KEYBOARD_KEY_EVENT,
 (s3eCallback) KeyStateCallback, NULL);

// …and this to cancel notifications
s3eKeyboardUnRegister(S3E_KEYBOARD_KEY_EVENT,
 (s3eCallback) KeyStateCallback);

The method of key press detection to be used is really down to project requirements
and personal preference. Since a call to s3eKeyboardUpdate will cache the state of
every key for us, a polled approach may be best if we need to detect the current state
of several keys at any time. A callback approach may be better if we just want to
respond immediately to a key press and are less interested in tracking the key's state
beyond this.

Detecting character code input
The s3eKeyboard API also provides support for reading character codes from the
keyboard. With this approach, we don't receive any notification of when a key
was pressed or released. Instead, we receive a stream of character codes which
automatically take into account any special modifier keys; so if a user pressed the
Shift key, followed by the A key, then released both these keys, we would only
receive the character code for a capital letter A.

This approach is probably less useful for most games due to it not being an
immediate form of notification, especially since fewer and fewer devices now
feature physical keys that can be pressed.

Not all devices support this input method, so you should use a call to
s3eKeyboardGetInt(S3E_KEYBOARD_GET_CHAR) to determine if it can be used.

For the sake of completeness though, let us look at how we can receive character
codes using either polling or callbacks.

User Input

[74]

Detecting character code input using polling
To find out if a key that generates a character code has been pressed, all we have to
do is call the following function:

s3eWChar lCharCode = s3eKeyboardGetChar();

The s3eWChar type is just an alternate type definition for the standard C++ type
wchar_t, a wide character. While this type can vary in size, it is assumed to be a
16-bit value in Marmalade. When a key is pressed, its character code will be added
to the back of a queue. Calling this function will return the character to the front of
the queue, or S3E_WEOF if the queue is empty. We often call this function in a loop
in order to try and keep the queue empty and not risk losing key presses.

The character codes returned will depend on the device you are running on, but in
most cases the standard alphabet A through Z, numbers, and punctuation characters
will be ASCII codes, just stored in a 16-bit value.

Detecting character code input using callbacks
Using the callback method of receiving character codes takes the same approach as
the callback method for receiving key state changes.

We again use s3eKeyboardRegister and s3eKeyboardUnRegister to start and
stop notifications from occurring, but we use the enumeration value S3E_KEYBOARD_
CHAR_EVENT to indicate that it is a character code event we want to receive.

The callback function we provide will now be sent a pointer to an
s3eKeyboardCharEvent structure that contains a single member of type s3eWChar
named m_Char. This member will contain the character code that was generated by
the user.

Character code input is really only recommended if you are running
on a device with a physical keyboard, as using virtual keyboards on
touch screen devices can be unreliable with many key presses going
unnoticed, particularly when characters outside the normal ASCII
character set are entered (for example, Chinese or Japanese text entry).

Inputting strings
We've already seen how we can use the s3eKeyboard functionality to read character
codes, but if we want to allow the user to enter a string and we don't mind our
program forsaking its own user interface in favor of a standard modal string entry
dialog, then we have a shortcut available to us.

Chapter 3

[75]

The s3eOSReadString API makes string entry really simple; but it is not actually
supported on every platform. To use this API we include the file s3eOSReadString.h,
and then make a call to the function s3eOSReadStringAvailable to see if string entry
functionality is available for use.

If we are able to use the API, then we have two functions at our disposal. The
first is s3eOSReadStringUTF8, which will display a string entry dialog and
return a UTF-8 encoded string as a const char pointer. The second method is
s3eOSReadStringUTF8WithDefault, which allows us to also specify a UTF-8
string that will be used to populate the string dialog when it appears.

UTF-8 is a widely used character format that allows full multilingual
character support. It is often used when memory concerns are
foremost, as single-byte characters such as the standard ASCII
character set can still be represented in a single byte. Characters
from outside the ASCII set (for example, Japanese Kanji) are
encoded with two, three, or more bytes of information. One big
advantage of UTF-8 is that you can continue to use null-terminated
strings since it is guaranteed that a zero byte will never form part of
a valid character code.

Both functions otherwise work in the same way. They both return a pointer to the
string entered by the user (the API will take care of freeing this memory), or NULL
if the user canceled the dialog.

They both also take an optional last parameter that can customize the layout of
the string entry dialog. If the parameter is omitted or the value zero is passed, no
restrictions are applied. The following table shows the other values that can be used:

Value Description
S3E_OSREADSTRING_FLAG_EMAIL Indicates that we are expecting an e-mail

address to be entered.

S3E_OSREADSTRING_FLAG_NUMBER Indicates that we are expecting a numeric
value to be entered.

S3E_OSREADSTRING_FLAG_PASSWORD Indicates that the application will use the OS
method for entering a password, possibly
hiding characters as they are entered.

S3E_OSREADSTRING_FLAG_URL Indicates that we are expecting a URL to be
entered.

User Input

[76]

When using these functions in an application, it is possible that the user may enter
characters that we are then unable to process or display; this should be kept in
mind, as generic string input may not always be a good choice (for example, you
may be unable to display every possible character that can be entered using your
game's font!).

Using this API will also likely break the look and feel of the game as its super whizzy
UI is suddenly overlaid or replaced by a drab and boring system dialog.

These reasons, combined with the fact that it is not supported by all platforms, may
mean that it is a better decision to implement our own in-game string entry routines.
That being said, it is still a useful API to know about, if only for debugging purposes.

Detecting touch screen and pointer input
There aren't many devices released these days that don't feature a touch screen.
Most new devices have adopted this as the primary input method and have dropped
physical buttons almost entirely.

In Marmalade we detect touch screen events using the s3ePointer API, which I
have to admit is perhaps not the most obvious name for an API that handles touch
screen input. To use this API in our own program we just need to include the
s3ePointer.h file.

The reason for this slightly bizarre naming is that when this API was first
developed, touch screens were not commonplace. Instead, some devices had little
joystick-style nubs that were able to move a pointer around the screen, much like
a mouse on a computer.

Due to the fact that touch screen input is primarily concerned with a screen
coordinate and that it was unlikely that a device would arrive that had both
touch screen and pointer inputs, the Marmalade SDK simply adapted the existing
s3ePointer API to accommodate touch screens as well, since your finger or stylus is
effectively a pointer anyway.

For the purpose of this chapter, whenever we talk about a position being "pointed
at", we mean either an on-screen cursor has been moved to that position or a touch
screen has had a contact made at that position. Positions are always returned as
pixel positions relative to the top-left corner of the screen, as shown in the following
diagram that shows what to expect on a device with a portrait HVGA screen size,
such as a non-retina display iPhone:

Chapter 3

[77]

In the following sections, we will learn how to discover the capabilities available
for use on the device we are running on and how to handle both single and
multi-touch screens.

Determining available pointer functionality
We use the function s3ePointerGetInt to determine the properties of the hardware
we are running on. We pass in one of the values in the following table, and we can
then use the result to tailor our input methodology accordingly.

Property Description
S3E_POINTER_AVAILABLE Returns 1 if we can use the s3ePointer API on

the device, or 0 if we can't.

S3E_POINTER_HIDE_CURSOR If the system has some kind of mouse pointer-
like cursor displayed on screen, this property
will return 1 if the pointer is currently visible,
otherwise it returns 0. This property can also
be used in the s3ePointerSetInt function
to show and hide the cursor.

S3E_POINTER_TYPE This will return the type of pointer we have at
our disposal. See the next sub-section for more
information on this.

User Input

[78]

Property Description
S3E_POINTER_STYLUS_TYPE This will return the type of stylus our device

uses. See the next sub-section for more
information on this.

S3E_POINTER_MULTI_
 TOUCH_AVAILABLE

If the device supports multi-touch (being able to
detect more than one press on the touch screen
at a time) the value 1 will be returned. Single
touch devices will return 0.

For most game code, it is usually enough to first use the S3E_POINTER_AVAILABLE
property to see if we have pointer capability available and the S3E_POINTER_MULTI_
TOUCH_AVAILABLE property to configure our input methodology appropriately.

Determining the type of pointer input
When supplying the property type S3E_POINTER_TYPE to s3ePointerGetInt, the
return value is one from the s3ePointerType enumeration.

Return Value Description
S3E_POINTER_TYPE_INVALID Invalid request. The most likely cause is that the

s3ePointer API is not available on this device.

S3E_POINTER_TYPE_MOUSE Pointer input is coming from a device that
features an on-screen cursor to indicate position.
The cursor may be controlled by a mouse or some
other input device, such as a joystick.

S3E_POINTER_TYPE_STYLUS Pointer input is from a stylus-based input
method, most likely a touch screen of some sort.

In the majority of cases this distinction is not normally that important, but it might be
relevant if you need to track the movement of the pointer.

With a mouse, our code will receive events whenever the pointer is moved across the
screen, whether a mouse button is held or not. On a touch screen, we will obviously
only receive movement events when the screen is being touched.

This is most notable when running on the simulator, as we will receive
pointer events whenever the mouse pointer is moved within the bounds
of the simulator window.

Chapter 3

[79]

Determining the type of stylus input
If we use s3ePointerGetInt with the property S3E_POINTER_TYPE and get the
return type S3E_POINTER_TYPE_STYLUS, we can interrogate a little further to find
out what type of stylus we will be using by calling s3ePointerGetInt again with
the property S3E_POINTER_STYLUS_TYPE. The return values possible are in the
following table:

Return Value Description
S3E_STYLUS_TYPE_INVALID Call was invalid; most likely because we are not

running on a hardware that uses a stylus.
S3E_STYLUS_TYPE_STYLUS Inputs are made by touching a stylus to the

input surface.
S3E_STYLUS_TYPE_FINGER Inputs are made by touching a finger to the

input surface.

This is probably not a distinction that we will need to worry about in most cases, but
it might be useful to know so that games can be made more forgiving about inputs
when they are made with a finger, since a stylus has a much smaller contact surface
and should therefore allow for a far more accurate input.

Updating current pointer input status
In order to keep the s3ePointer API up-to-date with current touch screen inputs, it is
necessary to call the s3ePointerUpdate function once per frame. This will update
the cache of the current pointer status that is maintained within the s3ePointer API.

Detecting single touch input
If the s3ePointer API is available on our device, we are guaranteed to be able to
detect and respond to the user touching the screen and moving their stylus or
finger about, or moving an on-screen cursor around and pressing some kind of
selection button.

Even if our hardware supports multi-touch, we can still make use of single touch
input if our game has no need to know about multiple simultaneous touch points.
This may make it a little simpler to code our game, as we don't need to worry about
issues such as two buttons on our user interface being pressed at the same time.

As with key input, we can choose to use either a polled or callback-based approach.

User Input

[80]

Detecting single touch input using polling
We can determine the current on-screen position being pointed at (either by the
on-screen cursor or a touch on the screen) by using the s3ePointerGetX and
s3ePointerGetY functions, which will return the current horizontal and vertical
pixel positions being pointed at.

In the case of a touch screen, the current position returned by these functions will be
the last known position pointed at if the user is not currently making an input. The
default value before any touches have been made will be (0,0)—the top-left corner of
the screen.

To determine whether an input is currently in progress, we can use the function
s3ePointerGetState, which takes an element from the s3ePointerButton
enumeration and returns a value from the s3ePointerState enumeration. The
following table shows the values that make up the s3ePointerButton enumeration:

Value Description
S3E_POINTER_BUTTON_SELECT Returns the status of either the left mouse

button or a touch screen tap.

S3E_POINTER_BUTTON_LEFTMOUSE An alternative name for S3E_POINTER_
BUTTON_SELECT, which you may prefer to
use if detecting other mouse buttons as well.

S3E_POINTER_BUTTON_RIGHTMOUSE Returns the status of the right mouse button.

S3E_POINTER_BUTTON_MIDDLEMOUSE Returns the status of the middle mouse
button.

S3E_POINTER_BUTTON_
MOUSEWHEELUP

Used to determine if the user has scrolled the
mouse wheel upwards.

S3E_POINTER_BUTTON_
MOUSEWHEELDOWN

Used to determine if the user has scrolled the
mouse wheel downwards.

The next table shows the members of the s3ePointerState enumeration, which
indicate the current status of the requested pointer button or touch screen tap:

Value Description
S3E_POINTER_STATE_UP The button is not depressed or contact is not

currently made with the touch screen.

S3E_POINTER_STATE_DOWN The button is being held down or contact has
been made with the touch screen.

Chapter 3

[81]

Value Description
S3E_POINTER_STATE_PRESSED The button or touch screen has just been pressed.

S3E_POINTER_STATE_RELEASED The button or touch screen has just been released.

S3E_POINTER_STATE_UNKNOWN Current status of this button is not known.
For example, the middle mouse button status
was requested but there is no middle mouse
button present on the hardware.

With this information we now have the ability to track the pointer or touch screen
position and determine when the user has touched or released the touch screen or
pressed a mouse button.

Detecting single touch input using callbacks
It is also possible to keep track of pointer events using a callback-based system. For
single touch input, there are two event types that we can register callback functions
for; these are button and motion events.

We can start receiving pointer events by calling the s3ePointerRegister function,
and we can stop them by calling s3ePointerUnRegister. Both functions take
a value to identify the type of event we are concerned with, and a pointer to a
callback function.

When registering a callback function, we can also provide a pointer to our own
custom data structure that will be passed into the callback function whenever an
event occurs.

The following code snippet shows how we can register a callback function that will
be executed whenever the touch screen or a mouse button is pressed or released:

// Callback function that will receive pointer button notifications
int32 ButtonEventCallback(s3ePointerEvent* apButtonEvent,
 void* apUserData)
{
 if (apButtonEvent->m_Button == S3E_POINTER_BUTTON_SELECT)
 {
 if (apButtonEvent->m_Pressed)
 {
 // Left mouse button or touch screen pressed
 }
 else

User Input

[82]

 {
 // Left mouse button or touch screen released
 }
 }
 return 0;
}

// We use this to register the callback function…
s3ePointerRegister(S3E_POINTER_BUTTON_EVENT,
 (s3eCallback) ButtonEventCallback, NULL);

// …and this to cancel notifications
s3ePointerUnRegister(S3E_POINTER_BUTTON_EVENT,
 (s3eCallback) ButtonEventCallback);

The button event callback's first parameter is a pointer to an s3ePointerEvent
structure that contains four members. The button that was pressed is stored in a
member called m_Button that is of the type s3ePointerButton (see the table in
the Detecting single touch input using polling section earlier in this chapter for more
details on this enumerated type).

The m_Pressed member will be 0 if the button was released and 1 if it was
pressed. You might expect this to be of type bool rather than an integer but it
isn't, because this is a C-based API, not C++-based and bool is not a part of the
standard C language.

We can also discover the screen position where the event occurred by using the
structure's m_x and m_y members.

It is also possible to register a callback that will inform us when the user
has performed a pointer motion. We again use the s3ePointerRegister/
s3ePointerUnRegister functions, but this time use S3E_POINTER_MOTION_EVENT
as the callback type.

The callback function we register will be passed a pointer to an
s3ePointerMotionEvent structure that consists of just m_x and m_y members
containing the screen coordinate that is now being pointed at.

Detecting multi-touch input
A multi-touch capable display allows us to detect more than one touched point on
the screen at a time. Every time the screen is touched, the device's OS will assign
that touch point an ID number. As the user moves their finger around the screen, the
coordinates associated with that ID number will be updated until the user removes
their finger from the screen, whereupon that touch will become inactive and the ID
number becomes invalid.

Chapter 3

[83]

While Marmalade does provide a polling-based approach to handling multi-touch
events, the callback approach is possibly the better choice as it leads to slightly more
elegant code and is a little more efficient.

Detecting multi-touch input using polling
Marmalade provides us with a set of functions to allow multi-touch
detection. The functions s3ePointerGetTouchState, s3ePointerGetTouchX,
and s3ePointerGetTouchY are equivalent to the single touch functions
s3ePointerGetState, s3ePointerGetX, and s3ePointerGetY, except that
the multi-touch versions take a single parameter—the touch ID number.

The s3ePointer API also declares a preprocessor define S3E_POINTER_TOUCH_MAX
that indicates the maximum possible value for the touch ID number (plus one!).
As the user touches and releases the display, the touch ID numbers will be re-used.
It is important to bear this in mind.

The following code snippet shows a loop that will allow us to process the currently
active touch points:

for (uint32 i = 0; i < S3E_POINTER_TOUCH_MAX; i++)
{
 // Find position of this touch id. Position is only valid if the
 // state for the touch ID is not S3E_POINTER_STATE_UNKNOWN or
 // S3E_POINTER_STATE_UP
 int32 x = s3ePointerGetTouchX(i);
 int32 y = s3ePointerGetTouchY(i);

 switch(s3ePointerGetTouchState(i))
 {
 case S3E_POINTER_STATE_RELEASED:
 // User just released the screen at x,y
 break;
 case S3E_POINTER_STATE_DOWN:
 // User just pressed or moved their finger to x,y
 // We need to know if we've already been tracking this
 // touch ID to tell whether this is a new press or a move
 break;
 default:
 // This touch ID is not currently active
 break;
 }
}

www.allitebooks.com

http://www.allitebooks.org

User Input

[84]

The biggest issue with this approach is that Marmalade never sends us an explicit
notification that a touch event has just occurred. The s3ePointerGetTouchState
function never returns S3E_POINTER_STATE_PRESSED, so instead we need to keep
track of all touch IDs we have seen active so far when handling S3E_POINTER_
STATE_DOWN. If a new touch ID is seen, we have detected the just-pressed condition.

While this code will work, I hope you will find that the callback-based approach that
we are about to consider leads to a slightly more elegant solution.

Multi-touch input using callbacks
As with the polling approach, multi-touch detection using callbacks is almost exactly
the same as the single touch callback method. We still use s3ePointerRegister and
s3ePointerUnRegister to start and stop events being sent to our code, but instead
we use S3E_POINTER_TOUCH_EVENT to receive notifications of the user pressing or
releasing the screen, and S3E_POINTER_TOUCH_MOTION_EVENT to find out when the
user has dragged their finger across the screen.

The callback function registered to S3E_POINTER_TOUCH_EVENT will be sent a
pointer to an s3ePointerTouchEvent structure. This structure contains the screen
coordinates where the event occurred (the m_x and m_y members), whether the
screen was touched or released (the m_Pressed member, which will be set to 1 if the
screen was touched), and most importantly the ID number for this touch event (the
m_TouchID member), which we can use to keep track of this touch as the user moves
their finger around the display.

The S3E_POINTER_TOUCH_MOTION_EVENT callback will receive a pointer to an
s3ePointerTouchMotionEvent structure. This structure contains the ID number
of the touch event that has been updated and the new screen coordinate values.
These structure members have the same names as their equivalent members in the
s3ePointerTouchEvent structure.

Marmalade provides us with no way of adjusting the frequency of touch events.
Instead, it is really just dependant on how often the underlying operating system
code dispatches such events.

Hopefully you can see that the callback-based method is a little neater than the
polled method. Firstly, we can say goodbye to the truly nasty loop needed in the
polled method to detect all currently active touches.

Secondly, with careful coding we can use the same code path to handle both single
and multi-touch input. If we code first for multi-touch input, then making single
touch work is simply a case of adding a fake touch ID to incoming single touch
events and passing them through to the multi-touch code.

Chapter 3

[85]

Recognizing gesture inputs
The arrival of the touch screen to mobile devices brought with it a new set of
terminology related to making inputs to our programs. For years we have been
using a mouse, clicking and dragging to interact with programs, and now with touch
screens we have quickly become comfortable with the idea of swiping and pinching.

These methods of interaction have become known as gestures and users have
become so used to them now that if your application doesn't respond as they expect,
they may get quickly frustrated with your application.

Unfortunately, Marmalade does not provide any support for detecting these
gestures, so instead we have to code for them ourselves. The following sections
aim to provide some guidance on how to easily detect both swipes and pinches.

Detecting a swipe gesture
A swipe occurs when the user touches the screen and then slides that touch point
quickly across the screen before releasing the screen.

To detect a swipe we must therefore first keep track of the screen coordinates where
the user touched the screen and the time at which this occurred. When this touch
event comes to an end due to the user releasing the screen, we first check the time it
lasted for. If the length of time is not too long (say less than a quarter of a second), we
check the distance between the start and end points. If this distance is large enough
(perhaps a hundred pixels in length, or a fraction of the screen display size), then we
have detected a swipe.

Often we only want to respond to a swipe if it is in a certain direction. We can
determine this by using the dot product, the formula for which is shown in the
following diagram:

The dot product is calculated by multiplying the x and y components of the two
vectors together and summing the results, or by multiplying the length of the two
vectors together and then multiplying by the cosine of the angle between the two
vectors.

To check if the user's swipe lies in a particular direction, we first make the direction
of the swipe into a unit vector, then dot product this with a unit vector in the desired
swipe direction. By using unit vectors we reduce the formula on the left-hand side of
the previous diagram to just the cosine of the angle between the vectors, so it is now
very simple to see if our swipe lies along the desired direction.

User Input

[86]

If the dot product value is very close to 1, then our two direction vectors are close to
being parallel, since cos(0°) = 1, and we've detected a swipe in the required direction.
Similarly, if the dot product is close to -1, we've detected a swipe in the opposite
direction, as cos(180°) = -1.

Detecting a pinch gesture
Pinch gestures can only be used on devices featuring multi-touch displays, since
they require two simultaneous touch points. A pinch gesture is often used to allow
zooming in and out to occur and is performed by placing two fingers on the screen
and then moving them together or apart. This is most easily achieved using the
thumb and index finger.

Detecting a pinch gesture in code is actually quite simple. As soon as we have
detected two touch points on the screen, we calculate a vector from one point to the
other and find the distance of this vector. This is stored as the initial distance and will
represent no zooming.

As the user moves their fingers around the screen, we just keep calculating the new
distance between the two touch points, and then divide this distance by the original
distance. The end result of this calculation is a zoom scale factor. If the user moves
their fingers together, the zoom factor will be less than one; if they move them apart,
the zoom value will be greater than one.

The pinch gesture is complete once the user removes at least one finger from
the display.

Detecting accelerometer input
The final input method we will be considering in this chapter is the accelerometer,
which allows us to detect the orientation that the user is currently holding the
device at. An accelerometer is a sensor that can measure the forces applied to
a device, be they static forces such as gravity, or dynamic forces generated by
waving the device around.

Most devices will have three accelerometers aligned perpendicularly to each
other, as shown in the following diagram. This configuration allows us to discover
exactly how the user is holding the device at any time and so provides a method of
controlling our game.

Chapter 3

[87]

The directions of the arrows in the previous diagram show the directions in which
acceleration will yield a positive value. This means that if you hold the device level
with the display upwards in front of you, tipping it to the right will yield a positive
value on the x axis accelerometer, tipping it away from you will generate positive
y axis values and moving the device vertically upwards will generate a positive
z axis value.

The Marmalade SDK provides us with access to the accelerometers of a device
using the s3eAccelerometer API, which we can use in our code by including the
s3eAccelerometer.h file.

Starting and stopping accelerometer input
Before attempting to use the accelerometer in our program, we must first check to
see if accelerometer input is available on our device. If support is available, then
we can start receiving accelerometer input. We do this with the following check:

if (s3eAccelerometerGetInt(S3E_ACCELEROMETER_AVAILABLE) != 0)
{
 // Accelerometer is available! Start receiving input.
 s3eAccelerometerStart();
}

When we have finished using the accelerometers, we just make a call to
s3eAccelerometerStop and we will receive no further inputs.

User Input

[88]

It is good practice on mobile devices to ensure that we only enable parts
of the hardware when we are actually using them, since this helps to
conserve battery power. In the case of accelerometers, the power use
is probably so small that it is insignificant, but this is an area of mobile
game programming that is always worth keeping in mind.

Reading accelerometer input
Finding the current accelerometer input values is really very simple. Marmalade
provides three functions which return the current accelerometer value for each
axis. These functions are called s3eAccelerometerGetX, s3eAccelerometerGetY,
and s3eAccelerometerGetZ. Unsurprisingly, they return the current value of the
accelerometer for the specified axis.

The values returned by these functions use a value of 1000 (though we should use
the handy definition S3E_ACCELEROMETER_1G to avoid magic numbers in our code!)
to represent an acceleration equivalent to normal Earth gravity.

When a sharp, quick movement is made to the device, the forces being applied to
it will be greater than the normal gravitational force. In this case, the magnitude
of the vector formed from the accelerometer values will be greater than S3E_
ACCELEROMETER_1G. This can be a useful way of detecting whether the user has
been shaking the device.

If the device were to be horizontally on a table, we should get a value of 0 returned
for both the X and Y axes, and -1000 for the z axis, since gravity acts downwards!
As we rotate the device, the values returned will form a vector showing the direction
in which gravity is acting, and we can then use this to determine the orientation of
the device.

Using some trigonometry, we can work out the angle of tip around the x axis
(forward/backward) and Y-axis (left/right). The angle around the X-axis can be
found by taking the arc tan of the Y-accelerometer value divided by the Z value.

The angle around the y axis is a little trickier. First we have to find the length of
the accelerometer vector projected onto the YZ plane, then we can find the arc tan
of the X-accelerometer value divided by the projected length.

Chapter 3

[89]

If all this sounds like too much scary math, the following code snippet does it all for
us. Note than when calculating the rotation around the x axis using the IwGeomAtan2
function, we negate both the Y- and Z-accelerometer values in order to yield a more
usable result range, with 0 degrees returned when the device is level and increasing
values when tipped away from the user.

iwangle xAngle = IwGeomAtan2(-accY, -accZ);
int32 lYZProjection = (int32) sqrtf((float) ((accY * accY) +
 (accZ * accZ)));
iwangle yAngle = IwGeomAtan2(accX, lYZProjection);

Smoothing accelerometer input
One problem we will encounter when using the accelerometer for input is that the
values returned from it tend to be a bit "jumpy". Even the steadiest hand will be
unable to hold the device still enough to see a steady value being returned from the
accelerometer. This can cause your game to register movements when you don't
want it to.

A common approach for solving this problem is to smooth the accelerometer values
by combining the current readings with the previous readings. The easiest way of
doing this is shown in the following code:

int32 accX = 0, accY = 0, accZ = 0;
int32 lSmoothFactor = IW_GEOM_ONE / 4;
// The following loop shows how we generate the smoothed accelerometer
// inputs. In a real application the code within the loop would be
called once
// per game frame.
while (TRUE)
{
 int32 deltaX = s3eAccelerometerGetX() - accX;
 int32 deltaY = s3eAccelerometerGetY() - accY;
 int32 deltaZ = s3eAccelerometerGetZ() - accZ;
 accX += IW_FIXED_MUL(lSmoothFactor, deltaX);
 accY += IW_FIXED_MUL(lSmoothFactor, deltaY);
 accZ += IW_FIXED_MUL(lSmoothFactor, deltaZ);
}

User Input

[90]

The variables accX, accY, and accZ are the smoothed accelerometer values that
we will use in our program for input. The lSmoothFactor value determines how
much smoothing we are applying to the inputs. If it is set to IW_GEOM_ONE, no
smoothing will be applied and the results will be exactly what is coming in from
the accelerometers.

Lower values for the smoothing factor will generate less jittery input values, but this
will be at the expense of adding a certain amount of lag to the inputs. The degree of
lag depends on how often the smoothing code is executed, which in turn depends on
the frame rate of your game.

Working out a good value to use for the smoothing factor is really just a case of
trial and error. You just need to keep tweaking the value until you achieve a
suitable result.

IW_FIXED_MUL is a useful function provided by Marmalade for
doing fixed point multiplication where IW_GEOM_ONE (4096) is
equivalent to one. It multiplies the two parameters together and
then shifts the result back down to be in the correct range.

Testing accelerometer input on the Windows
simulator
Given that computers don't tend to feature accelerometer inputs of any kind,
testing this form of input in the Windows simulator may appear to be impossible.
Fortunately, Marmalade does provide us with a way of doing so.

When running an application in the simulator, select the menu item Configuration
| Accelerometer… and a window showing a small 3D representation of a mobile
device will be displayed:

Chapter 3

[91]

By clicking and dragging on this virtual device, we can alter the accelerometer
inputs being fed into the simulator. It's a little tricky to use for playing a game
but it normally suffices, so you can at least test applications that rely solely on
accelerometer inputs.

The window also provides some edit boxes that show the current values of the
accelerometer inputs as you rotate the 3D device about. These can also be used
to enter exact values should you have need to do so.

Example code
The code package for this chapter contains three projects that demonstrate the
things we've learnt in this chapter.

User Input

[92]

The Gesture project
This project demonstrates the use of the s3ePointer API by showing the screen
coordinates pointed at by the user. If a multi-touch display is available, it will show
multiple touch points.

The project also demonstrates a simple approach for detecting swipes and pinches
and how it is possible to use the same gesture detection code with both single- and
multi-touch capable displays.

The Slide project
The Slide project shows how to use the s3eAccelerometer API to read the current
accelerometer values, apply a smoothing algorithm to them, and generate the angles
of tip around the X- and Y-axes.

It also demonstrates something a little more game-like by allowing you to move a
little red box around the screen by tipping the device.

The Skiing project
Our skiing game becomes interactive in this chapter, allowing you to rotate the
skier left and right and have him move across the screen and affect the speed of
scrolling. The skier can be controlled either by key presses and touch screen or
accelerometer input.

We also have more of a game-like flow with the addition of a title screen mode that
allows the input method to be selected, and a game over mode, which is triggered
when the player goes into the trees at the edge of the game world.

The following sections highlight some of the new classes added to the project.

Player rotation
Rotation of the player has been achieved by including a number of different
animation frames, each showing the player at a different angle of rotation. This
makes it easy to slot into our existing GameObject code, which expects to draw a
square image that is not rotated.

While this solution is very simple, it is perhaps not the best option. We could instead
have extended GameObject to support rotated images, which would have both
saved memory (we would not have needed to store all the extra animation frames)
and yielded smoother rotation results, as the skier currently steps between frames at
10-degree rotation increments.

Chapter 3

[93]

The ModeTitle and ModeGameOver classes
These classes implement the title screen and game over modes of the game. These
have been added to make the project feel a little more like a game, although they are
very basic to look at.

More importantly, these classes show how we can switch between game modes by
making them active and visible. Take particular note of the ModeGameOver class,
which stops the normal game mode from updating, but still allows it to render so we
can see the game world along with the game over message.

The Camera class
The Camera class has been added to the project to allow us to specify a viewing
point in the world. When rendering, we now use the camera position as the origin's
location on the screen. So when we move the camera, the entire screen display will
move relative to it. This makes it possible to do a horizontal scrolling effect without
having to update the x coordinate of everything in the game world.

Another reason for making this change is to make our life easier when we upgrade
the game to use 3D models in the next chapter, since this is closer to the way 3D
graphics are rendered.

The Input Manager classes
Three new singleton classes have also been added to the project to make access
to key, touch screen, and accelerometer inputs a little tidier. They are called
KeyManager, TouchManager, and AccelerometerManager respectively.

These classes wrap the functionality provided by Marmalade into a simpler interface,
which makes our game code easier to read. It also means that we can make changes
to the inputs at a later date without having to change the game code. For example,
the KeyManager class provides methods to indicate if the left or right arrow keys
have been held. If we want to remap those keys or provide alternate possible keys,
we can do so in the KeyManager code and our game code will work just fine.

The SkierController class
In order to add a layer of abstraction between the Skier class and the various
input managers, the SkierController class has been added. This class provides a
"steering" value, which is an integer number ranging from—IW_GEOM_ONE to +IW_
GEOM_ONE that indicates how much the user is attempting to steer left (a negative
value) or right (a positive value). The Skier class can just use this value to rotate the
skier without needing to consider how this value is derived.

User Input

[94]

Internally, the SkierController class generates the steering value using the selected
input method from the title screen.

For keyboard input, the left and right arrow keys modify the current steering value a
little bit each frame.

Touch screen input uses the horizontal position of the player's finger on the screen
to generate the value; so it is -1 when the player is touching the left-hand side of the
screen and +1 when they are touching the right-hand side.

Finally, accelerometer input just scales the x axis accelerometer value into the
required range.

Summary
In this chapter, we've covered how to make our programs interactive by detecting
key and touch screen presses and by using the accelerometers of modern mobile
devices. We've also seen how we can build on the basic functionality provided in
order to detect swipe and pinch gestures.

In the next chapter, we'll be returning to things more graphical by showing how we
can use Marmalade to render 3D graphics in our games.

3D Graphics Rendering
The graphics hardware inside the average smartphone is now capable of rendering
3D graphics of a surprisingly high quality for a device that is small enough to fit into
your pocket.

The Marmalade SDK makes using 3D graphics in your own games extremely easy to
do, as you will discover when we cover the following topics in this very chapter:

•	 The basics of 3D graphics rendering—projection, clipping, lighting, and so on
•	 Creating and rendering a simple 3D model entirely in code
•	 Exporting 3D model data from a modeling package
•	 Loading exported 3D models into memory and rendering them

A quick 3D graphics primer
Before we get our hands dirty with rendering code, let's just touch on some of the
basics of how 3D rendering can be achieved. If you already have a good handle of
3D rendering techniques then feel free to skip this section.

Describing a 3D model
In computer graphics a 3D representation of an object is often referred to as a model.
When we build a model in three dimensions for use in a video game, we create a
group of triangles that define the shape of the model. We can also use quadrilaterals
to make the modeling process easier, but these ultimately get converted into two
triangles when it comes to rendering time.

The simplest representation of a 3D model is therefore little more than a big list of
vertices which define the triangles required to render the model, but we often specify
a host of extra information so we can control exactly how the model should appear
on screen.

3D Graphics Rendering

[96]

Specifying a model's vertex stream
Every 3D model has a pivot point, also called its origin, which is the point around
which the model will rotate and scale. In a 3D modeling package this point can be
positioned wherever you want it to be, but to make the mathematics easier in a game
we would normally treat the point (0, 0, 0) as the pivot point.

Each triangle in the model is defined by three vertices, and each vertex consists of
an x, y, and z component which declares the position of the vertex in what is called
model space (sometimes also referred to as object space). This just means that the
components of each vertex are relative to the model's pivot point.

The following diagram shows an example of a cube. The pivot point is positioned at
the very centre of the cube and is hence the origin of model space. The corner points
use both positive and negative values, but each component has an absolute value of
100, which yields a cube with edges of length 200 units. For clarity, the three front
faces of the cube also show how they have been built from two triangles.

In order to provide Marmalade with the vertices of the cube, we simply use
Marmalade's three-component floating pointer vector class CIwFVec3 to provide an
array of vertices. As with the 2D rendering, we've already seen this is called a vertex
stream, except that this time the stream consists of three component vectors.

Chapter 4

[97]

Specifying a model's index stream
You will notice that the corners of the cube in the previous diagram have been
labeled with a number as well as their model space coordinates. If we cast our
minds back to our work with 2D graphics, we will remember that Marmalade
renders polygons by accepting a stream of vertices as input and also a stream of
indices that defines the order in which those vertices should be processed.

The same approach applies when rendering 3D graphics. We specify the index
stream as an array of unsigned 16-bit integers (uint16) and this dictates the order
in which the vertices will be read out of the stream for rendering.

One advantage of using an index stream is that we can potentially refer to the same
point several times without having to duplicate it in the vertex stream, thus saving
us some memory. Since the index stream is just telling the GPU which order it has to
process the data contained in the vertex, color, UV, and normal streams, it can be as
long or as short as we want it to be. The index stream doesn't even need to reference
every single element of the other streams, meaning we could potentially create one
set of streams that can be referenced by multiple different index streams.

Another advantage of index streams is that we can use them to speed up rendering.
You will recall that we used the function call IwGxDrawPrims to render a 2D
polygon. To render 3D polygons, we use the exact same call. Each call to this
function results in the rendering engine having to perform some initialization, so
if we can find a way to minimize the number of draw calls we have to make, we
can render the game world more quickly.

We can use the index stream to achieve this by inserting degenerate polygons into
the polygon render list. A degenerate polygon is one that does not modify any pixels
when it is drawn and this is achieved by ensuring that all the vertices that make up
the polygon will lie on the same line. Most graphics hardware are clever enough to
recognize a degenerate polygon and will not waste time trying to render it.

As an example, let's assume we are rendering some triangle strips. We could render
them by calling IwGxDrawPrims twice, or we could join the two strips with some
degenerate polygons and render them both with a single call to IwGxDrawPrims.
We can continue to do this to join together as many triangle strips as we want.

3D Graphics Rendering

[98]

How do we specify the degenerate triangle? The easiest way, shown in the following
diagram, is to duplicate the last point of the first strip and the first point of the
second strip. This yields four degenerate triangles (A3A4A4, A4A4B0, A4B0B0,
B0B0B1) but is preferable to making several draw calls. The dotted line in the
following diagram shows the extra degenerate triangles (which collapse to form a
line!) that join the strips together:

}Index stream: A , A , A , A , A , A , B , B , B , B , B , B0 1 3 4 4 0 0 1 22 43

Represents Four Degenerate Triangles

A0

A1

A2 A4

A3 B0 B2 B4

B1 B3

Specifying a model's color, UV, and normal streams
Just as with 2D rendering, there are a number of other stream types we can supply
to make the polygons we render look more interesting. We can provide both color
and texture UV streams in exactly the same way we did when rendering in two
dimensions, but we can also specify a third stream type called a normal stream.

In 3D mathematics, a normal vector is defined as the vector which is perpendicular
to two other non-parallel vectors, or in other words a vector that points in the
direction in which the polygon is facing. The following diagram shows an example
illustrating this:

Why is the normal stream useful? Well, it allows us to simulate the effects of lights
on our 3D model. By providing each vertex of our model with a unit normal (that is,
a vector that points in the direction of the polygon's normal and which has a length
of one unit), we can calculate the amount of light reflected from that vertex and
adjust the color it is rendered with accordingly.

Chapter 4

[99]

Real time lighting of a 3D model can be a time-intensive task, so when writing a
game we try to avoid doing so when possible in order to speed up rendering. If we
do not want to light a 3D model, there is no need to specify a normal stream; so, by
not lighting a model we save memory too.

There are a couple of points to bear in mind when specifying these additional streams.

Firstly, Marmalade expects the number of colors, UVs, and normals provided to
match the number of vertices provided. While you can specify streams of different
lengths, this will normally cause an assert to be fired and obviously it could yield
unexpected results when rendering.

Secondly, and perhaps most importantly, these additional streams may require us
to add extra copies of our vertices into the vertex stream since we can only provide a
single index stream.

Take the example of a cube where each vertex is a corner point of three different
faces of the cube. Since each face points in a different direction, we will need to
duplicate each vertex three times so it can be referenced in the index stream along
with the three different normal vectors.

We can also run into the same problem when the UV or color at a vertex varies
across each polygon that it forms a part of.

For each different combination of color, UV, and normal we encounter, we need to
provide an additional copy of each vertex, and therefore also an additional color, UV,
and normal value so that all the streams are the same length.

3D Graphics Rendering

[100]

Performing 3D to 2D projection
When rendering our 3D world to the display, we have to somehow convert our 3D
model vertex data into 2D screen coordinates before we can draw anything. This
process is called projection and is normally carried out using matrix mathematics to
convert vertices between coordinate systems until we end up with screen coordinates
that allow the triangles that make up a 3D model to be rendered on screen.

Projection of model
on to 2D screen plane

View point

3D model

The following sections provide an overview of the steps involved in projecting a
point on to the screen to make sure you are familiar with the key concepts involved.
A thorough explanation of the mathematics of 3D graphics is beyond the scope of
this book, so it is expected that you will be familiar with what a matrix is, and with
geometric operations such as rotations, scaling, and translations.

Understanding matrices for 3D graphics
Think back to school math lessons and you will hopefully remember matrices being
described as a useful tool when trying to perform operations such as rotations,
translations, and scaling on vectors.

My personal recollection about learning matrices was that they seemed slightly
magical at the time. Here was a grid of numbers that could be used to perform a
range of really useful geometric operations and, what's more, you could combine
several matrices by multiplying them together to perform several operations in one
go. The concept itself made sense, but there were so many numbers involved that it
seemed a bit bewildering.

In 3D geometry we generally use a 4 x 4 matrix, with the top left 3 x 3 grid of
numbers representing the rotation and scaling part of the matrix, and the first three
numbers of the bottom row representing the required translation.

Chapter 4

[101]

While the translation part made perfect sense to me, the 3 x 3 rotation and scaling
part of the matrix was something I never really had a good handle on until the
day I found out that what this part of the matrix actually represents is the size and
direction of the x, y, and z axes.

Take a look at the following image that shows the identity matrix for a 4 x 4 matrix.
All this means is that every element in the matrix is 0 except for those in the top-left
to bottom-right diagonal, which are all 1:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Direction of x-axis

Direction of y-axis

Direction of z-axis

Position

y

Z

X

Notice that the first three numbers on the top row are (1, 0, 0), which just so happens
to be a unit vector along the x axis. Similarly, the second row is (0, 1, 0), which
represents a unit vector along the y axis and the third row (0, 0, 1) is a unit vector
along the z axis.

Once I realized this, it became much more obvious how to create matrices to perform
different kinds of geometric operations.

Want a rotation around the y axis? Just work out vectors for the directions in which
the x axis and z axis would need to lie for the desired rotation, and slot these into the
relevant parts of the matrix. Similarly, a scale operation just means that we provide a
non-unit-sized vector for each axis we want to scale along.

Some of you may be reading this and thinking "that's obvious", but if this helps just
one person to get a better understanding of how to understand matrix mathematics,
my work is done!

Converting between coordinate systems
When we looked at how a 3D model is represented in terms of data, we talked
about the vertices of the model being in model space. In order to use these
vertices for rendering, we therefore have to convert our model space vertices
into screen coordinates.

3D Graphics Rendering

[102]

The first step in this process is to use a model matrix to convert the vertices from
model space into world space. Each vertex in the model is multiplied by the model
matrix, which will first rotate and scale the vertices so that the model is orientated
correctly, then translate each point so that the model's pivot point is now at the
translation provided in the matrix.

Now that all our vertices are positioned correctly in our virtual world, the next step
is to convert them into view space, which is the coordinate system defined by the
position and orientation of our viewpoint, which for obvious reasons is normally
referred to as our camera. We do this by providing another matrix called the view
matrix (or camera matrix if you prefer), which will rotate, scale, and translate the
world space vertices so that they are now relative to our camera view.

With the vertices now in view space, the final operation is to convert the vertices into
2D screen coordinates. We have two ways of doing this, these being an orthographic
projection or a perspective projection.

An orthographic projection takes the view space coordinates and just scales and
translates the x and y components of each vertex to put them onto the screen. The z
component of the vertex plays no part in calculating the actual screen coordinates
but it is used for working out the drawing order of polygons since it is used as a
depth value.

However, in most cases we use a perspective projection. Again the x and y
components of each view space vertex are used to generate the x and y screen
coordinates, but this time they are divided by the z component of the vertex,
which has the effect of making objects that are further away appear smaller.

The components are also multiplied by a constant value called the perspective
multiplier. This value is actually the distance at which the view plane lies from
the camera. The view plane is the plane which contains the rectangular area of
the screen display.

Normally, when we think about a camera view it is more convenient to think
about the field of view, which is the horizontal angle of our viewing cone.
The following diagram shows how we can convert this angle into the correct
perspective multiplier value:

Chapter 4

[103]

where pm = perspective multiplier
and sw = screen width in pixels

view plane

tan 2= 2.pm
sw

pm = sw
2.tan 2

sw

pm

The next part of perspective projection is to translate the projected point. Normally
we want a point that is directly in front of the camera to be in the center of the screen,
so we would add an offset of half the screen width to the x component and half the
screen height to the y-component. It is possible to specify a different offset position,
which is particularly useful if we ever want to display a 3D model as part of a game's
user interface. Let's say you wanted to draw a 3D model of a collectable object that
the player has just picked up at the top right of the screen. Specifying the offset to
be this screen position is much easier than trying to calculate a position in 3D space
relative to the camera position that equates to the required area of the screen.

Clipping planes
We've already discussed the view plane as being the plane which contains the final
screen display, but there are some further planes which are used to help speed up
rendering and also avoid some strange graphical glitches from occurring.

First we have the far clip plane and the near clip plane, which lie parallel to the
view plane. We tell Marmalade where we want these planes to reside by supplying
the perpendicular distance of these planes from the camera view point.

The far clip plane prevents polygons that are too far away from the camera from
being rendered, while the near clip plane, unsurprisingly, prevents polygons that
are too close to the camera from being rendered. The near clip plane is particularly
important because if we were not to use it we would start to see models that lie
behind the camera being rendered on screen.

3D Graphics Rendering

[104]

You should generally try to keep the far and near clip planes as close together
as possible, as these values are also used for calculating depth buffer values.
If the planes are too far apart, you can start to encounter render issues that are
sometimes called shimmering or Z-fighting. These can occur when there is not
enough resolution in the depth buffer values, which results in far distance polygons
rendering with jagged edges or worse still, randomly poke through each other as
they or the camera are moved. The following image shows another example of
Z-fighting that can occur when trying to render two overlapping co-planar polygons:

There are also four more clipping planes named left, right, top, and bottom. These
are planes which pass through the camera position and one of the left, right, top, or
bottom borders of the screen display area on the view plane. Together they form a
pyramid-shaped volume that emanates from the camera and defines the part of 3D
space that is visible and could therefore appear on screen.

The clipping planes are managed automatically for us by Marmalade, and they are
very useful as they allow us to quickly reject an entire model from being submitted
for rendering if it is completely off screen. The off-screen check is performed using a
bounding sphere for the model we are rendering, which is simply a sphere centered
at the model's pivot point that encompasses all the vertices of the model. The
bounding sphere can be quickly tested against all six clip planes and the model can
be skipped if the bounding sphere is completely outside the clipping volume.

Chapter 4

[105]

Lighting
To finish up our 3D primer, let's take a quick look at how real-time lighting is
achieved. We won't dwell on the mathematics of it all, since Marmalade mostly takes
care of this for us, so instead we'll just explain the different types of lighting we can
take advantage of.

Each of the lighting types we are about to discuss can be enabled or disabled
whenever you want. Disabling different lighting types can yield faster render times.

Emissive lighting
The simplest type of lighting Marmalade provides is emissive lighting, which is
little more than the amount of color that a rendered polygon will naturally have.
The emissive lighting color is provided by the CIwMaterial instance that is set
when rendering the polygon.

Emissive lighting is useful if you want to draw polygons in a single flat color, but
normally we want a bit more flexibility than that, so we might set a color stream
instead, or use one of the other forms of lighting.

Ambient lighting
Ambient lighting provides the background level of light in our scene, such as the
light which might be provided by the Sun.

Without ambient lighting, any polygon that is not facing a light source directly
would have very little light applied to it and so would appear black. Normally this
is not very desirable, so we can use ambient lighting to provide a base level of color
and brightness to our polygons.

In Marmalade, we set a global ambient lighting term as an RGB color. The
CIwMaterial instance used when rendering also has an ambient light value that is
combined with the global ambient light. If the material ambient light is set to bright
white, the polygon will be rendered with the full amount of the global ambient light.

If the global ambient lighting is disabled, the material ambient color is used
directly to control the color of the rendered polygons. This provides an easy way of
brightening or darkening a model at rendering time.

3D Graphics Rendering

[106]

Diffuse lighting
In order to use diffuse lighting our model data must provide a normal stream. A
diffuse light comprises of both a color and a direction in which the light is pointing.
The light's direction vector is combined with the normal vector for each vertex in the
model using the dot product operation.

The result of the dot product operation is multiplied by the global diffuse lighting
color and the current CIwMaterial diffuse color or the RGB value from the color
stream, if one has been provided. This will yield the final color value that is used
when rendering the polygon to the screen.

Specular lighting
As with diffuse lighting, specular lighting can only work if we have provided a
normal stream. It also needs a diffuse light to be specified as it relies on the direction
of the diffuse light.

This type of lighting allows us to make a model appear shinier by causing it to briefly
become brighter when it is facing the direction of the diffuse light.

We can specify both a global and a specular light color specific to CIwMaterial, and
additionally the material also provides a setting for the specular power. This value
allows us to narrow down the response of the specular lighting. A higher number
means that the vertex normal must be almost parallel to the lighting direction before
the specular lighting will take effect.

Using IwGx to render 3D graphics
Remember when we were looking at 2D graphics rendering in Chapter 2, Resource
Management and 2D Graphics Rendering, I said we would be using IwGx because it
would make the transition to rendering 3D graphics that much easier. Now's the
time to see if my claim was true!

In this section, we shall look at how we can implement the 3D equivalent of the
"Hello World" program—a spinning cube.

Preparing IwGx for 3D rendering
As with 2D rendering, the very first thing we need to do is initialize the IwGx
API by calling IwGxInit, and of course we should call IwGxTerminate at the
end of our program.

Chapter 4

[107]

With IwGx ready to go we next need to set up our projection. We're going to be
using a perspective projection, so we need to be able to specify the perspective
multiplier value that we want to use. The code to do this is as follows:

IwGxSetPerspMul((float) IwGxGetScreenWidth() * 0.5f);

This line of code sets the perspective multiplier up, to provide a 90 degree field of
view. See the section Converting Between Coordinate Systems earlier in this chapter for
more information on how to calculate the required perspective multiplier value.

Next we have to set the far and near clipping planes' distances. For our demo
purposes we'll choose a value of 10 for the near plane and 1000 for the far plane;
these values are set as follows:

IwGxSetFarZNearZ(1000.0f, 10.0f);

These values are in view space units and can be set to any value greater than zero
(the far value should be greater than the near value too!) that works well for the
needs of our game. Normally it is the far clip distance that is most important, as it
needs to be set far enough out that our world is rendered satisfactorily, but not so
far that the frame rate suffers because we are rendering too much.

You may be wondering why these numbers have been written
as 10.0f and not just 10 or 10.0? The reason is to ensure that the
compiler treats these values as a single precision float value. The
latter two forms will both be interpreted as a double and this can
lead to a time consuming conversion from double to float.

Setting lighting information
In order to make our spinning cube look a little more attention grabbing, we'll set up
some lights so that as the cube spins its faces change color accordingly. The lighting
support provided by Marmalade may look a little limited, but is generally adequate
for most mobile games' needs.

Marmalade only allows us to define a single ambient light and a single diffuse light.
Let's start by setting the global ambient lighting value.

The first function we call is IwGxSetLightType, which takes an ID number to
identify the light we wish to modify and a definition describing the type of light we
are specifying. Presumably this API has been chosen so that Marmalade can easily
be made to support more lights in the future, but for now the ID number can only be
zero or one, and the light type must be one of IW_GX_LIGHT_AMBIENT, IW_GX_LIGHT_
DIFFUSE, or IW_GX_LIGHT_UNUSED. The latter value can be used to disable the light.

3D Graphics Rendering

[108]

With the type of light taken care of, we set the color of light using the function call
IwGxSetLightCol. There are two versions of this function. Both take the ID of the
light we wish to modify, but the RGB color of the light can either be specified as
three uint8 values for red, green, and blue, or a pointer to a CIwColour instance
can be supplied instead.

The following code sets the light with ID zero to be an ambient light with a
mid-grey color:

IwGxSetLightType(0, IW_GX_LIGHT_AMBIENT);
IwGxSetLightCol(0, 128, 128, 128);

Now let's create a diffuse light with a specular highlight. We'll need two additional
functions to do this, IwGxSetLightSpecularCol to set the color of the specular
highlight, and IwGxSetLightDirn to set the direction in which the light is pointing.
The direction is specified as a unit vector in terms of world space coordinates. Here's
some code to illustrate this:

CIwFVec3 lLightDir(1000.0f, 0.0f, 1000.0f);
lLightDir.Normalise();

IwGxSetLightType(1, IW_GX_LIGHT_DIFFUSE);
IwGxSetLightCol(1, 128, 128, 128);
IwGxSetLightSpecularCol(1, 200, 200, 200, 255);
IwGxSetLightDirn(1, &lLightDir);

This code snippet sets up the light ID one to be a diffuse light with mid-grey
intensity and a brighter grey specular highlight. The light is pointing at a 45 degree
angle between the x and z axes of the world.

Our lights have now been initialized, so all that is left to do is let Marmalade know
we want to switch them on! There are a number of functions available to allow us
to do this. We can either use IwGxLightingOn and IwGxLightingOff to enable or
disable all the initialized light sources, or we can enable each part of the lighting
model independently. The following example code disables emissive lighting but
enables ambient, diffuse, and specular lighting:

IwGxLightingAmbient(true);
IwGxLightingDiffuse(true);
IwGxLightingEmissive(false);
IwGxLightingSpecular(true);

Chapter 4

[109]

Since we are using specular lighting, there is one more thing to do. The material that
is used to render our polygons must have a specular color and power specified. The
material's specular color is used to modulate the global specular color, while the
power value indicates how close the vertex normal must be to the light direction for
the specular highlight to kick in. The power value is a uint8 value and only very low
values (that is, less than 8) produce notable differences in the rendered effect. Here is
the code to illustrate this:

CIwMaterial* lpMaterial = new CIwMaterial;
lpMaterial->SetColSpecular(255, 255, 255);
lpMaterial->SetSpecularPower(3);

The previous examples are just making use of Marmalade's built-in
lighting model since it is easy to use and works well enough for most
needs. However, there is absolutely no reason we have to use this
lighting model, as there is nothing stopping us from generating our
own color stream using whatever lighting algorithm we want to use.
Alternatively we could employ OpenGL ES 2.0 shaders, although
discussion of this particular topic is beyond the scope of this book.

Model data for the cube
We're going to render a lit cube with a different color on each face, so we need to
provide some data streams for the vertices, colors, and normals, and an index stream
to show how this data should be interpreted by the rendering engine. Since we are
not using textures in this example, there is no need to provide a UV stream.

We also want to be as efficient as possible in our drawing, so our aim is to draw
the entire cube with just a single call to IwGxDrawPrims. To do so we'll need to
have three copies of each vertex (one for each face that the vertex is part of) so we
can assign different colors and normals to it, and we'll also need to specify some
degenerate triangles in our index stream to join all the faces together into one big
triangle strip.

Let's start with the vertex stream. We allocate an array of CIwFVec3 and initialize
it with the vertex data. The cube pivot point will be dead center, so all the vertex
coordinates will have the same magnitude.

const uint32 lVertexCount = 24;
CIwFVec3* v = new CIwFVec3[lVertexCount];
v[0].x = 100.0f; v[0].y = -100.0f; v[0].z = -100.0f;
v[1].x = -100.0f; v[1].y = -100.0f; v[1].z = -100.0f;
v[2].x = 100.0f; v[2].y = 100.0f; v[2].z = -100.0f;
v[3].x = -100.0f; v[3].y = 100.0f; v[3].z = -100.0f;

3D Graphics Rendering

[110]

v[4].x = 100.0f; v[4].y = -100.0f; v[4].z = 100.0f;
v[5].x = 100.0f; v[5].y = -100.0f; v[5].z = -100.0f;
v[6].x = 100.0f; v[6].y = 100.0f; v[6].z = 100.0f;
v[7].x = 100.0f; v[7].y = 100.0f; v[7].z = -100.0f;
v[8].x = 100.0f; v[8].y = -100.0f; v[8].z = 100.0f;
v[9].x = 100.0f; v[9].y = 100.0f; v[9].z = 100.0f;
v[10].x = -100.0f; v[10].y = -100.0f; v[10].z = 100.0f;
v[11].x = -100.0f; v[11].y = 100.0f; v[11].z = 100.0f;
v[12].x = -100.0f; v[12].y = -100.0f; v[12].z = 100.0f;
v[13].x = -100.0f; v[13].y = 100.0f; v[13].z = 100.0f;
v[14].x = -100.0f; v[14].y = -100.0f; v[14].z = -100.0f;
v[15].x = -100.0f; v[15].y = 100.0f; v[15].z = -100.0f;
v[16].x = -100.0f; v[16].y = 100.0f; v[16].z = -100.0f;
v[17].x = -100.0f; v[17].y = 100.0f; v[17].z = 100.0f;
v[18].x = 100.0f; v[18].y = 100.0f; v[18].z = -100.0f;
v[19].x = 100.0f; v[19].y = 100.0f; v[19].z = 100.0f;
v[20].x = -100.0f; v[20].y = -100.0f; v[20].z = -100.0f;
v[21].x = -100.0f; v[21].y = -100.0f; v[21].z = 100.0f;
v[22].x = 100.0f; v[22].y = -100.0f; v[22].z = -100.0f;
v[23].x = 100.0f; v[23].y = -100.0f; v[23].z = 100.0f;

The vertices have been ordered a face at a time, so the first four vertices form the
front of the cube, the next four the right hand face, and so on. You are free to specify
the order however you see fit, since ultimately it will be the index stream that
determines how the individual triangles will be rendered.

Now we'll create the normal stream. Normals in Marmalade are also specified as
instances of CIwFVec3, and they are expected to have unit length. This means that
the magnitude of the vector should be one. Here's a code snippet that will do the job:

CIwFVec3* n = new CIwFVec3[lVertexCount];
n[0].x = 0.0f; n[0].y = 0.0f; n[0].z = -1.0f;
n[1].x = 0.0f; n[1].y = 0.0f; n[1].z = -1.0f;
n[2].x = 0.0f; n[2].y = 0.0f; n[2].z = -1.0f;
n[3].x = 0.0f; n[3].y = 0.0f; n[3].z = -1.0f;
n[4].x = 1.0f; n[4].y = 0.0f; n[4].z = 0.0f;
n[5].x = 1.0f; n[5].y = 0.0f; n[5].z = 0.0f;
n[6].x = 1.0f; n[6].y = 0.0f; n[6].z = 0.0f;
n[7].x = 1.0f; n[7].y = 0.0f; n[7].z = 0.0f;
n[8].x = 0.0f; n[8].y = 0.0f; n[8].z = 1.0f;
n[9].x = 0.0f; n[9].y = 0.0f; n[9].z = 1.0f;
n[10].x = 0.0f; n[10].y = 0.0f; n[10].z = 1.0f;
n[11].x = 0.0f; n[11].y = 0.0f; n[11].z = 1.0f;
n[12].x = -1.0f; n[12].y = 0.0f; n[12].z = 0.0f;

Chapter 4

[111]

n[13].x = -1.0f; n[13].y = 0.0f; n[13].z = 0.0f;
n[14].x = -1.0f; n[14].y = 0.0f; n[14].z = 0.0f;
n[15].x = -1.0f; n[15].y = 0.0f; n[15].z = 0.0f;
n[16].x = 0.0f; n[16].y = 1.0f; n[16].z = 0.0f;
n[17].x = 0.0f; n[17].y = 1.0f; n[17].z = 0.0f;
n[18].x = 0.0f; n[18].y = 1.0f; n[18].z = 0.0f;
n[19].x = 0.0f; n[19].y = 1.0f; n[19].z = 0.0f;
n[20].x = 0.0f; n[20].y = -1.0f; n[20].z = 0.0f;
n[21].x = 0.0f; n[21].y = -1.0f; n[21].z = 0.0f;
n[22].x = 0.0f; n[22].y = -1.0f; n[22].z = 0.0f;
n[23].x = 0.0f; n[23].y = -1.0f; n[23].z = 0.0f;

Now we need a color stream. Just as with 2D rendering, this requires an array of
CIwColour instances. Here comes the code snippet!

CIwColour* c = new CIwColour[lVertexCount];
c[0].Set(255, 0, 0, 255);
c[1].Set(255, 0, 0, 255);
c[2].Set(255, 0, 0, 255);
c[3].Set(255, 0, 0, 255);
c[4].Set(255, 255, 0, 255);
c[5].Set(255, 255, 0, 255);
c[6].Set(255, 255, 0, 255);
c[7].Set(255, 255, 0, 255);
c[8].Set(0, 255, 0, 255);
c[9].Set(0, 255, 0, 255);
c[10].Set(0, 255, 0, 255);
c[11].Set(0, 255, 0, 255);
c[12].Set(0, 0, 255, 255);
c[13].Set(0, 0, 255, 255);
c[14].Set(0, 0, 255, 255);
c[15].Set(0, 0, 255, 255);
c[16].Set(0, 255, 255, 255);
c[17].Set(0, 255, 255, 255);
c[18].Set(0, 255, 255, 255);
c[19].Set(0, 255, 255, 255);
c[20].Set(255, 128, 0, 255);
c[21].Set(255, 128, 0, 255);
c[22].Set(255, 128, 0, 255);
c[23].Set(255, 128, 0, 255);

3D Graphics Rendering

[112]

Finally, it's time for the index stream to be created. Again, as with 2D rendering, this
is just an array of uint16 values which indicate the order in which elements of the
streams should be accessed. Here's the code:

const uint32 lIndexCount = 34;
uint16* i = new uint16[lIndexCount];

// Front face (red)
i[0] = 0; i[1] = 1; i[2] = 2; i[3] = 3;
// Degenerate
i[4] = 3; i[5] = 7;
// Right face (yellow)
i[6] = 7; i[7] = 6; i[8] = 5; i[9] = 4;
// Degenerate
i[10] = 4; i[11] = 9;
// Back face (green)
i[12] = 9; i[13] = 11; i[14] = 8; i[15] = 10;
// Degenerate
i[16] = 10; i[17] = 12;
// Left face (blue)
i[18] = 12; i[19] = 13; i[20] = 14; i[21] = 15;
// Degenerate
i[22] = 15; i[23] = 16;
// Bottom face (cyan)
i[24] = 16; i[25] = 17; i[26] = 18; i[27] = 19;
// Degenerate
i[28] = 19; i[29] = 23;
// Top face (orange)
i[30] = 23; i[31] = 21; i[32] = 22; i[33] = 20;

Note than the first four values in the stream define the first full face of the cube. The
next two values form a degenerate triangle that allows us to link the first face to the
second face without actually rendering anything. As we saw earlier in this chapter,
the easiest way to link two triangle strips is to repeat the last index of the first strip
and start the next strip with two copies of its first index. This pattern continues until
we've drawn the last face of the cube.

The order in which the vertices are specified is the most important consideration, as
we must ensure we get this correct for the culling mode we'll be using. For back-face
culling (so faces that are away from the camera are not rendered) we need the vertex
order to be in anti-clockwise order for the first triangle specified.

Chapter 4

[113]

As we are using triangle strips, the order of the vertices actually alternates between
anti-clockwise and clockwise. Normally we don't have to worry about this too
much since the natural order of the vertices in the strip takes care of it, but it can
cause problems when you try to join together triangle strips that contain an odd
number of vertices.

The general rule for joining triangle strips with degenerate triangles is
that a strip with an odd number of points will require the order of the
points in the next strip to be reversed. For example, if your first triangle
strip contains an odd number of points, the first triangle of the next
strip will need to be specified in clockwise rather than anti-clockwise
order; otherwise it will not be culled correctly.

The view matrix
When rendering 3D graphics, we need to be able to provide a position and
direction that we want to view our game world from. We do this by supplying
a view or camera matrix; in Marmalade this can be done using an instance of
the CIwFMat class.

The CIwFMat class represents a 4 x 4 matrix using a 3 x 3 array of float for the
rotation part, and CIwFVec3 for the translation part. The remaining elements of the
4 x 4 matrix (that is, the right-most column of numbers) are fixed to be the same as
the identity matrix (0, 0, 0, and 1 from top to bottom of the column). These values
never have any influence on normal 3D transformations; so by leaving them out we
save memory, and also the matrix multiplication code can be made slightly more
efficient by not having to perform multiplications for these parts of the matrix.

Time to create a suitable view matrix. For the purposes of our spinning cube, it
would be good if we could specify a position for the camera and then calculate the
correct rotation for the matrix to view our cube. Luckily the matrix classes have a
method called LookAt that makes this easy to do:

CIwFMat vm;
vm.t.x = 0.0f; vm.t.y = 0.0f; vm.t.z = -400.0f;
vm.LookAt(vm.t, CIwFVec3::g_Zero, CIwFVec3::g_AxisY);

The previous code declares a new CIwMat instance and sets its translation to (0, 0,
-400). We then call the LookAt method, which is passed the position we want the
camera to be placed at, the point in space we want it to be orientated towards, and
a unit vector in the vertically up direction.

3D Graphics Rendering

[114]

Marmalade's default coordinate system when rendering in 3D has the x axis positive
direction running from left to right across the screen, while the z axis positive
direction runs into the screen. However, the positive y axis runs in a direction from
the top of the screen to the bottom, which may not be what you initially expect. We
are used to thinking about the height above the ground as a positive number, but in
Marmalade it would be negative.

Once we have a view matrix, we can call the function IwGxSetViewMatrix with a
const pointer to the matrix.

The model matrix
The model matrix is used to position our 3D model in the world and allow it to
be rotated or scaled as desired. As with the view matrix, the model matrix can be
specified using a CIwFMat instance.

For our spinning cube we will create a matrix that spins the cube around the x and
y axes. We do this by creating two matrices, one for x axis rotation and another for
y axis rotation, which we then multiply together. We will be positioning our cube at
the world origin.

CIwFMat lModelMatrix;
lModelMatrix.SetRotY(lRotationY);
CIwFMat lRotX;
lRotX.SetRotX(lRotationX);
lModelMatrix.PreMult(lRotX);

The code shown declares two instances of CIwFMat and uses the methods SetRotY
and SetRotX to generate the rotation matrices around the y and x axes respectively.
The rotation angles are provided by two variables lRotationY and lRotationX,
which are both of the type float and represent an angle (in radians) to rotate by. If
we increase the values of these two variables with each iteration of the main game
loop, it will change the orientation of the cube and make it appear to rotate when
rendered.

Be careful when using the SetRotX, SetRotY, and SetRotZ methods
of the matrix classes. These methods take two further bool parameters
that allow the translation part of the matrix and any elements of the 3 x 3
rotation part of the matrix that are not used in the rotation to be zeroed.
Both of these parameters default to true; so, in particular, if you set up
a translation in the matrix before calling one of these methods, it will get
lost unless you specify false as the second parameter.

Chapter 4

[115]

Once we have our two rotation matrices, we multiply them together to generate
the final model matrix using the PreMult method. The order in which matrices are
multiplied together is very important as the end rotation will vary depending on the
order used. Marmalade provides us with PreMult and PostMult methods to allow
us to determine whether the calling matrix is the first matrix or the second in the
multiplication.

When we have our model matrix ready, we just call IwGxSetModelMatrix to use it
for rendering.

Rendering the model
All the hard work is now done and we can finally submit our cube for rendering. The
following code will submit all our streams and our cube will be rendered. Hopefully
you'll see just how close it is to the code we used for rendering in 2D:

IwGxSetColClear(128, 190, 220, 255);
IwGxClear();

IwGxSetMaterial(lpMaterial);
IwGxSetVertStreamModelSpace(v, lVertexCount);
IwGxSetNormStream(n, lVertexCount);
IwGxSetColStream(c);
IwGxDrawPrims(IW_GX_TRI_STRIP, i, lIndexCount)

IwGxFlush();
IwGxSwapBuffers();

Using a 3D modeling package to create
model data
We've seen how to create the streams of data for a cube in code, and to be honest it's
not pretty! Even a simple shape such as a cube requires so much data that it becomes
very difficult for us to keep track of it all and almost impossible to create a more
complex 3D shape.

Luckily there is an easier way. We can use a 3D modeling package to create, color,
and texture a 3D model and export all the required data in a format that Marmalade
can then load and use.

3D Graphics Rendering

[116]

The Marmalade 3D exporter plugins
Marmalade comes with exporter plugins for the two modeling packages used in most
professional game development studios—Maya and 3DS Max. The details in the
following sections apply equally to the exporters for both of these modeling packages.

Installing the plugins
The exporter plugins are installed to your computer when you install the main SDK,
but they are not automatically installed into the modeling package for use. In order
to use the exporters, we must use the Marmalade Launch Pad program to set them
up, as shown in the following steps:

1.	 Start the Marmalade LaunchPad program. On Windows it can be found
inside the Marmalade folder in the Start menu. You should see a window
appear, containing a tabbed view.

2.	 Click on the tab labeled Install Exporters. The following screen shown
should appear:

Chapter 4

[117]

3.	 Use the tabs on this screen to select the version of the 3D modeling package
you want to install. You must choose both the correct version of your
package and whether it is a 32-bit or 64-bit installation. Maya 7.0 and 3DS
Max 8.0 are the oldest supported versions. The older versions of the exporters
are contained in the tabs labeled Maya 32bit Legacy and Max 32bit legacy.

4.	 Click on the Install… button next to the required version of your modeling
package and the exporter will be installed. Windows User Account Control
will probably pop up a request first to ensure you want to proceed, so just
click the Yes button in this dialog.

Exporting a model
With the plugin installed, start up your 3D modeling package and create or load a
model that you wish to export. Since this is a coding book, we won't be going into
any details about how to create a 3D model.

If you are a programmer by trade and have no idea how to use a 3D
modeling package, don't feel bad. I have seen some truly terrible
"programmer art" over the years; so think of this lack of knowledge
as a good thing and get a real artist involved in making the artwork
for your game. You'll be glad you did!

3D Graphics Rendering

[118]

Assuming you have a 3D model ready to export, let's get the Marmalade exporter
plugin going. The exporter window itself is shown in the following figure:

The manner in which the exporter window will be displayed depends on the
modeling package you are using.

•	 In Maya you can access the exporter by using the menu option Marmalade
Tools | Marmalade Studio: Maya Exporter or from the icon in the
Marmalade Studio tab.

•	 In 3DS Max, the exporter can be opened by clicking on the Utilities tab,
then clicking on the Marmalade Studio Exporter button to open the rollout
section. Within the rollout, there is another button labeled Marmalade
Studio Exporter, which will display the exporter window.

Chapter 4

[119]

The exporter window should now be on screen, and as you can see there are a great
many options available. We can do without most of them for now, so we'll only
cover the ones we need in order to export a non-animated 3D model.

The first thing we need to set is the Current Project field. The exporter maintains a
list of projects that, at its simplest level, is just a quick way of choosing a directory
where the exported model files will be created.

Since we've not yet created an exporter project, let's do so by clicking on the button
labeled Set Project. The following dialog will appear:

To create a new project click on the Add… button at the bottom of the dialog
and you will be prompted to enter a name for the project. Once you've accepted
the name, the project will appear in the Projects: list.

Click on the Browse… button and locate the data directory in our code project.
All resource files need to reside with our code project's data directory; this will
make exporting model files to the correct place much easier.

For now we will ignore the other settings in this dialog as they are beyond the
scope of this chapter; so click the OK button to return to the main exporter
window, which should now have our newly created project selected in the
Current Project drop-down list and the data directory we set above in the
Project Data Directory field.

3D Graphics Rendering

[120]

With the project set, we can now follow these steps to export the model:

1.	 First locate the Export Type field. Next to this field is a button with a
greater-than symbol. Click this button and choose model from the pop-up
menu that appears. The Export Type field should change to scene (model).

2.	 Now look at the first set of checkboxes labeled Enable export of. We only
need the geometry and exportgroup options to be ticked to export the
correct set of files.

3.	 The next set of checkboxes is labeled Export Flags. We don't need to have
any of these settings checked.

4.	 Now we reach the Asset Name field. This specifies the base filename that
will be used when the exporter generates the various output files.

5.	 The Save To Location field allows a directory path relative to the Project
Data Directory field to be provided. All files generated will be created
within this directory, which will itself be created if it does not already exist.

6.	 Scale Factor allows us to provide a numeric scaling factor that will be
applied to the x, y, and z components of every exported vertex. This allows
artists to create their models using familiar units such as meters in the
modeling package, but then convert those units into a different scale for
use in the game, such as the ever popular "number that is a power of 2" so
beloved of us programmer types. Note, however, that it is vital to ensure
that all artists working on a project use the same units and scale factors as
each other, otherwise you'll have real problems trying to get all these models
to work together properly in the game!

7.	 Next we can choose to export either everything in the current scene, just
the selected objects, or just the visible objects using the drop-down list
labeled Export.

8.	 The Transform Type drop-down box lets us choose whether the exported
vertices should be in model space or world space. In most cases, when
exporting individual models we would choose the local option (another
way of saying model space!).

9.	 The final setting we may be interested in is the Texture Dir field. This allows
a directory to be specified, from which any textures to be used on the model
will be exported. It can be either an absolute path or relative to the Project
Data Directory.

10.	 That completes all the fields we currently need to be concerned with. All that
is left to do is click on the Export! button, which will generate the necessary
files and then display a window listing all the files that were created during
the export process.

Chapter 4

[121]

The Blender plugin
There's no doubt that both Maya and 3DS Max are superb products, but it's also true
that they carry a fairly hefty price tag. Unfortunately, Marmalade does kind of rely
on using one of these two heavyweight packages.

Admittedly, Marmalade does also ship with a converter for Collada, a file format
that was created to enable the interchange of 3D models between different packages.
I hesitate to recommend this approach however, as at the time of writing, the Collada
converter that ships with Marmalade is known to be a little buggy, particularly when
it comes to exporting animations.

Luckily there is a cheaper alternative. There is a 3D modeling package by the name
of Blender, which is free to download and use; however, the Blender team is always
happy to accept donations to continuously improve the product, so if you find it
useful do consider helping them out.

The Marmalade SDK does not come with support for Blender, but thankfully due to
the efforts of Benoit Muller there is a rather groovy exporter plugin that does a great
job of replacing the 3DS Max and Maya exporters.

Installing Blender and the exporter plugin
If you do not already have Blender installed, head over to the Blender website and
download a copy. The URL is as follows:

http://www.blender.org/

Installing Blender is just a case of executing the downloaded installer and following
the on-screen instructions.

With Blender installed, we now need to get hold of the exporter plugin, which can be
found at the following URL:

http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Import-
Export/Marmalade_Exporter

The plugin is a Python script that can be installed into Blender using the
following steps:

1.	 Copy the downloaded plugin file io_export_marmalade.py into the
Blender plugins directory. On Windows this will normally be something
like C:\Program Files\Blender Foundation\Blender\2.63\scripts\
addons.

2.	 Start Blender and go to File | User Preferences….

http://www.blender.org/
http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Import-Export/Marmalade_Exporter
http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Import-Export/Marmalade_Exporter

3D Graphics Rendering

[122]

3.	 Click on the Addons tab at the top of the preferences window.
4.	 In the Categories list on the left-hand side of the window, click on

Import-Export. You should see a screen that looks something like
the one shown in the following figure:

5.	 Find the Import-Export: Marmalade Cross-platform Apps (.group) entry
and click the checkbox on the right-hand side of it to enable the plugin.

Exporting a model
To export a 3D model using the Blender exporter, follow these steps:

1.	 Create or load the model you wish to export into Blender.
2.	 Go to File | Export | Marmalade cross-platform Apps (.group). The

main 3D view will be replaced with a filename requester. The bottom-left
corner of the window should contain the exporter options and look like the
following image:

Chapter 4

[123]

3.	 First choose the location you want to export the datafiles to, using the file
requester. There are two text edit boxes at the top of the screen; the topmost
is the directory to save to and the bottom specifies the filename we want to
use for exporting. This filename should be a GROUP file, so its extension
should always be .group.

4.	 In the exporter settings, first use the Export drop-down list to select
whether you want just the selected models to be exported or all models
in the current scene.

5.	 The Merge option controls what happens when there are several models
in the scene to be exported. The default option, None, exports each model
individually with its coordinates in model space, and is the option we require
for now. The other two options allow multiple models to be merged as either
a single big mesh of polygons or as a number of separate meshes, with all
vertices specified in world space coordinates.

6.	 The Scale Percent value allows model vertices to be scaled up or down so
that the artist can build the models using the most convenient measurement
units in Blender, yet still allow the exported model to have vertices scaled to
a set of units that may be more useful in the game.

3D Graphics Rendering

[124]

7.	 The Flip Normals checkbox will reverse the direction of all exported
normals. Normally this can be left unchecked, but it can be useful to fix
models that have been lit incorrectly and have their normals pointing in
the wrong direction.

8.	 The Apply Modifiers checkbox will cause any mesh modifiers applied to
the model in Blender to be evaluated before the export data is created. This
defaults to being switched off.

9.	 If vertex colors have been applied to the model, they will only be exported if
the Export Vertices Colors checkbox is selected.

10.	 The next checkbox, Export Material Colors, determines whether materials
created during the export process will be exported with their defined colors.

11.	 The Export Textures and UVs checkbox should be checked if you have
texture-mapped polygons in your model.

12.	 Since Marmalade will need access to any images used in texturing the model,
the Copy Textures Files checkbox can be selected to ensure image files are
also copied across to the export directory.

13.	 The remaining settings are mostly concerned with exporting animations, so
we can ignore them for now; however, it is worth mentioning the Verbose
checkbox which logs information about the export process to Blender's
console window. This may help you solve problems with your models when
the export process doesn't work exactly as expected.

14.	 When all settings have been made, click on the Export Marmalade button,
which is at the top right of the Blender window. Alternatively, if you wish
to cancel the export process, there is a Cancel button underneath the
export button.

The Marmalade 3D model datafile formats
We've now seen how we can export 3D model data from a modeling package,
but we haven't yet looked at the files themselves that are generated as part of
the export process.

While we shouldn't need to make manual changes to these files, it is useful to know
a little about them as it can help to discover why a model hasn't been exported quite
as expected to.

Let's take a look at the files that would be generated for a cube model similar to the
one we created in code earlier in this chapter.

Chapter 4

[125]

The GROUP file
The first file generated is a GROUP file that will be created in the directory specified
in the exporter settings. The GROUP file contains a list of the individual model files
(called GEO files) that were exported. Here's what the GROUP file for the example
cube model would look like:

// Source file: C:/Work/MarmaladeBook/Maya/Cube.mb
// Exported By: Sean on 05/30/12 16:30:55

CIwResGroup
{
 name "Cube"
 "./models/Cube.geo"
}

The exporter helpfully includes the name of the source modeling package file that
was used to do the export, details about when the export was made, and by whom.

It then just declares a new CIwResGroup instance, named based on the asset name
specified at export time. The resource group is populated by a list of the GEO files
that need to be loaded.

The MTL file
We've already created an MTL file by hand when working with 2D graphics, so it
should already look familiar. Here is what the file might look like for the cube:

// Source file: C:/Work/MarmaladeBook/Maya/Cube.mb
CIwMaterial
{
 name "Cube/phong1"
 colAmbient {127,127,127}
 colDiffuse {127,127,127}
 colSpecular {255,255,255}
 specularPower 3
}

Again the exporter includes the name of the source modeling package file used
to generate the MTL file. The CIwMaterial instances defined in this file are all
generated from the materials used in the modeling package, so it's easy for an
artist to change colors and other material attributes in the comfort of their favorite
modeling tool.

The exporter creates a sub-directory called models in the specified export directory
and the MTL files are written into this directory.

3D Graphics Rendering

[126]

The GEO file
The most important file type to be exported is the GEO file, as this is the file
that actually contains all the data to describe our 3D model. In common with all
Marmalade resources, this file is yet another use of the ITX file format.

GEO files are processed by way of a resource handler class called
CIwResHandlerGEO. This class takes care of loading all the data from the GEO file
and submitting it to a singleton class called CIwModelBuilder. This class processes
the model data and generates an optimized version of the data for fast rendering,
which is then serialized to a file.

The CIwModelBuilder class is only available in debug builds, so you can only load
model data in a release build by loading the serialized version of the GROUP file that
references the GEO file.

The exporter will write the GEO files into the model's sub-directory in the same way
as it does with MTL files.

You may have noticed that the GROUP file shown earlier only references
the GEO files, not the MTL files. The GEO resource handler takes care
of loading the MTL files automatically by checking to see if an MTL file
exists with the same base filename as the GEO file.

Let's look at the innards of the GEO file for our cube model.

// Source file: C:/Work/MarmaladeBook/Maya/Cube.mb
CIwModel
{
 name "Cube"
 CMesh
 {
 name "Cube"
 scale 100.0
 CVerts
 {
 numVerts 8
 v {-100,-100,100}
 v {100,-100,100}
 v {-100,100,100}
 v {100,100,100}
 v {-100,100,-100}
 v {100,100,-100}
 v {-100,-100,-100}

Chapter 4

[127]

 v {100,-100,-100}
 }
 CVertNorms
 {
 numVertNorms 6
 vn {0,0,1}
 vn {0,1,0}
 vn {0,0,-1}
 vn {0,-1,0}
 vn {1,0,0}
 vn {-1,0,0}
 }
 CVertCols
 {
 numVertCols 6
 col {1,0,0,1}
 col {0,1,1,1}
 col {0,0,1,1}
 col {1,1,0,1}
 col {1,0.50000,0,1}
 col {0,1,0,1}
 }
 CSurface
 {
 material "phong1"
 CQuads
 {
 numQuads 6
 q {2,0,-1,-1,0} {3,0,-1,-1,0} {1,0,-1,-1,0}
{0,0,-1,-1,0}
 q {4,1,-1,-1,4} {5,1,-1,-1,4} {3,1,-1,-1,4}
{2,1,-1,-1,4}
 q {6,2,-1,-1,5} {7,2,-1,-1,5} {5,2,-1,-1,5}
{4,2,-1,-1,5}
 q {0,3,-1,-1,1} {1,3,-1,-1,1} {7,3,-1,-1,1}
{6,3,-1,-1,1}
 q {3,4,-1,-1,3} {5,4,-1,-1,3} {7,4,-1,-1,3}
{1,4,-1,-1,3}
 q {4,5,-1,-1,2} {2,5,-1,-1,2} {0,5,-1,-1,2}
{6,5,-1,-1,2}
 }
 }
 }
}

3D Graphics Rendering

[128]

Yet again the exporter will include a comment referencing the source modeling
package file before beginning to define an instance of CIwModel, which is the class
used by Marmalade to represent a complete collection of 3D model data.

The CIwModel instance is first given a name. This name actually comes from the
name given to the model in the modeling package and is the name used to access
the model in our code, so it is important for the artist to name things sensibly.

A CMesh instance is declared next, which is a class that groups together all the
various bits of model data. This class, and all the other classes we are about to see
that are contained within it, are only ever used internally to the model builder. Once
the model has been processed these classes will no longer exist in memory, so we
can't use them in our code to access the raw model data.

The scale value used to export the vertex data is listed first in the CMesh instance,
and this is followed by classes which declare the various types of model data. In the
cube example we can see CVerts, CVertNorms, and CVertCols, which are little more
than big lists of vertex, normal, and color data respectively. A similar class called
CUVs also exists to provide texture information.

Next we see a class called CSurface. This class provides polygon information for the
model, and an instance will exist for every material used in the model. The material
used is specified first, and then comes the polygon information. A CQuads instance
is used to provide a list of all the quadrilateral polygons using the material, and a
CTris instance lists the triangular polygons.

A polygon is defined by supplying a collection of data for each vertex in the polygon.
The polygon is supplied as a group of five numbers enclosed in curly braces. These
numbers are indices into the blocks of data specified earlier in the file and occur in
the following order:

{Vertex index, Normal index, UV 0 index, UV 1 index, Color index}

There are two UV values as it is possible for a material to specify two textures that
will be blended together at render time, and each of these textures can have its own
UV stream.

Once all this data has been loaded, the model builder class will analyze it and create
a version of the data that is far more optimal for real-time rendering purposes.

Chapter 4

[129]

Loading and rendering an exported 3D
model
OK, so now we've got the model data exported, how do we go about loading it into
our program and rendering it? It's actually surprisingly easy, as these next sections
will show.

Adding the IwGraphics API to a project
Marmalade's 3D model rendering code is part of the IwGraphics API, so before we
can draw anything we need to add this library to our project. This is done by adding
iwgraphics to the subprojects section of the MKB file.

We then need to add a call to IwGraphicsInit at the start of our program, and
IwGraphicsTerminate at the end. This API relies on both IwGx and IwResManager,
so we must call the initialization functions for both of these APIs before calling the
IwGraphics one.

Loading and accessing an exported 3D model
You've probably already guessed that this is almost trivially easy. The exporter
generated a GROUP file, so all we have to do is load it into memory and then dig the
model out of the resource group. Here's a block of code which does just that:

CIwResGroup* lpCubeGroup = IwGetResManager()->
LoadGroup("Cube/Cube.group");
CIwModel* lpCube = static_cast<CIwModel*>(lpCubeGroup->
GetResNamed("Cube", "CIwModel"));

Or alternatively you could do the following if you don't want to be bothered with
retaining a pointer to the resource group instance:

CIwModel* lpCube = static_cast<CIwModel*>(IwGetResManager()->
GetResNamed("Cube", "CIwModel"));

That's it. The model is now loaded into memory and ready to render.

3D Graphics Rendering

[130]

Rendering an exported 3D model
It is time to render the model on the screen and this too is incredibly easy. All we
have to do is set our view and model matrices using IwGxSetViewMatrix and
IwGxSetModelMatrix, then execute the following:

lpCube->Render();

The variable lpCube is the pointer to the CIwModel instance that we retrieved from
the resource manager in the previous section.

In actual fact the Render method can take two optional parameters. The first
parameter is a bool value that tells Marmalade to check a bounding sphere for the
model against the clipping planes to see if it actually needs to be rendered. This
parameter defaults to true, so the check is done by default. The bounding sphere is
generated automatically for us by the model builder code.

The second parameter is a flags field. Aside from one flag that is supposed to
have something to do with a 2D screen rotation (I say "supposed" because I can't
say it did very much when I tried it), the other flags are only relevant when dealing
with animated 3D models that contain normal data, so we will not worry over these
for now.

Releasing 3D model data
Since our 3D model data has been loaded into memory using the resource group
system, we can make use of the same mechanism of destroying groups to release
model data from memory that we no longer need. As a recap, we just do the
following if we have a pointer to the CIwResGroup containing the 3D data:

IwGetResManager()->DestroyGroup(lpCubeGroup);

Alternatively we can release a group from memory by destroying it by name,
like this:

IwGetResManager()->DestroyGroup("Cube");

Chapter 4

[131]

Example code
Here are some details about the example projects that accompany this chapter.

The Cube project
This is a complete example of the first spinning cube project discussed in this
chapter, where we generate the model data in code and submit it to IwGx for
rendering using IwGxDrawPrims. See the following screenshot:

The Cube2 project
This project is almost identical to the previous project, except that the model data
for the cube has been exported as a GEO file from a 3D modeling package.

3D Graphics Rendering

[132]

The Skiing project
For this chapter the Skiing game waves goodbye to its old bitmapped graphics and
instead says hello to some new 3D models instead. A screenshot of the game with its
new 3D skin can be seen in the following figure:

The following sections describe some of the other more interesting changes to the
game code for this chapter.

Migration to 3D
The first step was to change all position and velocity information from being 2D
vectors to 3D vectors, which meant changing CIwVec2 instances to CIwFVec3 and
making sure that the extra component in the vector was initialized.

Chapter 4

[133]

Since we tend to think about the y axis being the height above the ground, the y
component was used for height in the game too. However, since the skier and trees are
stuck to the floor, this means the y component of all position vectors is always zero.

The game therefore scrolls the trees along the z axis and the camera is placed high
in the air and orientated to look at the skier. This still provides the effect of the trees
moving up the screen.

The second step was to get rid of all the old 2D textures and replace them with 3D
models. Since the GameObject class dealt with all the rendering, all that had to be
done was to change this class to use CIwModel instances instead of CIwMaterial
instances. The child classes then just provided a pointer to a model instead of a
pointer to the material.

The GameObject class also had a y axis rotation added to it. This is used to rotate the
skier model, which leads to a far smoother motion than we had previously.

The trees also use the rotation feature. The game features only one tree model, but
by rotating it at random angles it makes the game look far more interesting without
having to add more game resources.

Addition of a collision detection system
The code now features a very simple collision detection system. The GameObject
class now allows a collision radius to be set, which is then used to perform sphere
intersection tests.

The ModeGame::Update method now steps through every game object (currently just
trees, of course) in the game world and finds out how far away it is from the skier. If
the distance is less than the combined collision radius of the skier and the other game
object, a collision has occurred.

So, to act on these collisions, a virtual method called OnCollide has been added to
the GameObject class. Child objects can override this class and then react accordingly
whenever they collide with another object. The Skier class implements this method
so that whenever the skier collides with a tree, the game is over.

3D Graphics Rendering

[134]

Summary
We now know how to render 3D graphics that have either been generated in code or
have been exported from a 3D modeling package. Which method we eventually use
depends on what we are trying to do.

If rendering in game characters or scenery, the exported model route is definitely the
best way to go; but creating our own polygon data in code is a much better and more
efficient way of creating effects such as particle systems, since it is much easier to
batch a large number of individual polygons into a single draw call.

We've also learnt how to export 3D model data from three different modeling
packages—Maya, 3DS Max, and Blender—and load this exported data into our
program and render it.

We'll be sticking with 3D rendering for a little while longer as the next chapter is all
about making our models animated.

Animating 3D Graphics
We've now seen how to create a 3D model and display it on the screen, but we're
currently limited to non-animated models. Sure, we can rotate or scale to our heart's
content, but that really doesn't cut it when you want to animate something more
complex than a cube, say for example a human figure.

In this chapter we will be looking at the following topics:

•	 A quick overview of the concepts involved in 3D animation
•	 Exporting animations from a 3D modeling package
•	 Loading and rendering an exported 3D animation in a Marmalade project

A quick 3D animation primer
Let's start by looking at the ways in which animation of 3D models can be achieved.

Animating with model matrices
By far the simplest and most obvious way of animating a 3D model is to alter its
position, orientation, and size. All three of these properties can be specified using the
model matrix set at the time of rendering the model.

We could store a matrix in our game class, and for each frame multiply it by a second
matrix representing the change in position, rotation, and scale; but this approach is
generally not reliable. Over time the matrix starts to degrade due to the cumulative
effect of precision errors in the multiplications and additions involved. The matrix
will often end up becoming non-orthogonal (that is, its three axes are no longer at
right angles to each other), which yields a shearing effect on the 3D model. The scale
can also be affected by these precision errors, causing the 3D model to gradually
shrink in size!

Animating 3D Graphics

[136]

A far more reliable way is to store the translation, rotation, and scale separately, and
calculate a fresh matrix for every frame. How this can be achieved is described in the
following sections.

Animating by translation
Our game class simply needs to maintain a position vector containing the current
world position of the object. We can move an in-game object around the world by
adding a velocity vector that indicates how far the game object has moved in this
frame and in what direction, with reference to the stored position vector.

To generate the final model matrix all we need to do is copy the position vector into
the translation part of the matrix. We normally do this as the last step, as the act of
multiplying matrices together when generating the rotation and scale will affect the
translation of the matrix.

// lTimeStep is the time elapsed since the last frame (here we're
// setting it to the time interval required to run at 30 frames
// per second).
float lTimeStep = 1.0f / 30.0f;

// Calculate how far we've moved this frame and update position
CIwFVec3 lVelocityStep = mVelocity * lTimeStep;
mPosition += lVelocityStep;

// Copy the position into the matrix used to render the model
mModelMatrix.t = mPosition;

Animating by rotation
The top left 3 x 3 section of the model matrix specifies the rotation at which we want
the model to be drawn. Our game object stores the required rotation and updates it
on a frame-by-frame basis. When it is time to render, we just use the stored rotation
to calculate the rotation matrix.

There are a number of ways in which the rotation of the object might be stored. Three
of the most common ways are shown in the following section.

Rotation using Euler angles
Euler angles consist of the required angle of rotation in the x, y, and z axes, which
we would normally store using a vector. If rotation is not desired around every axis,
you may choose to store only those rotation values that you require.

Chapter 5

[137]

Euler angles are quite easy to both visualize and implement, which is why they are
used so often. To convert a set of Euler angles into a rotation matrix, all we need
to do is generate three matrices for the rotations around each of the axes and then
multiply them together.

However, this is where the problem with Euler angles lies. Matrix multiplication
yields different results depending on the order in which you multiply the matrices;
so when using Euler angles, it is vital that you choose the order of multiplication
carefully, depending on what you are trying to achieve. The following diagram
shows an example to illustrate this:

In the diagram, we are rotating an arrow that points straight along the positive
y axis. In the first row we rotate by 90 degrees around the z axis and then by 90
degrees around the y axis. The arrow ends up pointing along the z axis.

In the second row of the diagram, we take the same original arrow but apply the
rotations in the opposite order. As you can see, this time the arrow finishes in the
direction of the x axis.

Animating 3D Graphics

[138]

The following code snippet shows how you can build up a complete rotation matrix
for Euler angles applied in the order XYZ:

CIwFMat lMatXYZ;
lMatXYZ.SetRotX(xAngle);
lMatXYZ.PostRotateY(yAngle);
lMatXYZ.PostRotateZ(zAngle);

All angles used in Marmalade are specified in radians, not degrees.

Rotation using axis-angle pairs
The axis-angle method of representing a rotation requires a direction vector and an
angle of rotation to be stored. The vector represents the direction in which we want
an object to be orientated, while the angle allows the object to be rotated around
that axis.

We might find this way of specifying a rotation useful when dealing with player
characters. For example, to orient a human character we might specify the direction
vector as being the positive y axis, which then allows the angle of rotation to be used
to change the heading of the character.

Marmalade allows us to convert an axis-angle pair into a matrix for rendering,
as follows:

CIwFVec3 lDir(0.0f, 1.0f, 0.0f);
float lAngle = PI / 2.0f;
CIwFMat lMat;
lMat.SetAxisAngle(lDir, lAngle);

Rotation using quaternions
A quaternion is yet another method of representing three-dimensional rotations, and
is a concept that, when you first come across it, seems a little mind-blowing. Instead
of going on about four dimensional hyperspheres and making parts of your brain
melt, I'm just going to provide a quick guide to what you need to know in order
to use quaternions. If you want to learn more about them, I suggest you search for
"quaternions" on Google!

A quaternion consists of four components: x, y, z, and w. A 3D rotation is
represented as a unit quaternion, which, in a similar manner to vectors, just
means that the magnitude of the sum of the squares of all four components is one.

Chapter 5

[139]

Multiplying two unit quaternions is similar to multiplying two rotation matrices
together. The result represents the first orientation rotated by the second, and the
result is different depending on the order in which you perform the multiplication.

The big problem with quaternions is that they are almost impossible to visualize.
If given a set of Euler angles or an axis-angle pair, most people can form an image
in their mind of what that rotation would look like, but the same can't be said
of quaternions.

Quaternions can however be created fairly easily from both a rotation matrix
(and therefore Euler angles) and an axis-angle pair. The following diagram
shows the relationship between the axis-angle pairs and quaternions:

Quaternions really come into their own for 3D animation of boned characters, a topic
we will be coming to later in this chapter. This is a technique that requires an awful
lot of rotations to be calculated every time you want to update the animation frame,
and luckily quaternions make this far more efficient in terms of both memory usage
and execution speed.

While the theory behind quaternions may be a little scary for us mere mortals,
there is really little need to worry about the math, as Marmalade provides us
with a quaternion class, CIwFQuat, that we can use. As an example, creating a
quaternion from an axis-angle pair and then producing a rotation matrix from
it can be done as follows:

CIwFQuat lQuat;
lQuat.SetAxisAngle(1.0f, 0.0f, 0.0f, PI / 2.0f);
CIwFMat lMat(lQuat);

Animating by scaling
The scaling factor is normally stored either as a vector containing the required size in
the x, y, and z axes, or alternatively as a single scale value which is applied equally to
each axis. Often the latter is sufficient, as models tend to look odd when they are not
scaled uniformly in each axis.

Animating 3D Graphics

[140]

A scaling matrix is very simple to create, as all you have to do is place the scaling
factors required for the x, y, and z axes in the diagonal going from the top left to the
bottom right of the 3 x 3 rotation part of the matrix. All the other cells are left as zero.

Since creating a scaling matrix is so simple, the CIwFMat class does not include
any methods for creating a general scaling matrix. It does however provide some
shortcut methods that make it easy to scale a matrix by the same scaling factor on
each axis. The following code snippet provides an example:

CIwFMat lMat;
lMat.SetRotX(PI / 2.0f);
lMat.ScaleRot(2.0f);

This code will create a rotation matrix of 90 degrees around the x axis and then scale
up just the rotation part of the matrix by a factor of two. You can also choose to scale
up just the translation part of the matrix or both the rotation and translation by using
the ScaleTrans and Scale methods respectively.

3D model animation
Model matrix animation is, of course, extremely important, as without it we would
be unable to orient and move our 3D models in the game world; but on its own it
doesn't make for the most exciting looking game.

Most games require more than this. For example, we might want a human or animal
character to walk, run, jump, or perform some other type of motion. Ideally, we need
a way of making the overall shape of our 3D model change over time.

The following sections explain how we can achieve this.

Using morph targets
A simple approach to 3D model animation is to use morph targets. For this we alter
the vertex positions of our 3D model to yield key frames of the animation. A key
frame is just a particular set of vertex positions for the model that are an important
part of the overall animation, such as the various positions a character's legs move
through as they walk. The key frame also has a time associated with it.

The following diagram shows a very simple example of a stick man raising his
arm. Key Frame 1 at time index 0 seconds has the arm in a lowered position, while
Key Frame 2 at time index 2 seconds has it raised. Each of these key frames can be
thought of as an individually exported 3D model.

Chapter 5

[141]

If we want to play back this animation, we could just draw the relevant 3D model at
the correct time, but this would yield very jerky results akin to 2D bitmap animation.
Instead, we can calculate an Interpolated Frame for any time index between 0 and 2
seconds to give a much smoother result.

Calculating the interpolated frame is simple enough. We work out a delta vector
from each vertex in the first key frame to the corresponding vertex in the second
key frame. We then scale the delta vector by the ratio of the time index we want to
calculate for, divided by the total time between the two key frames, and add the
scaled result on to the position of the vertex in the first key frame.

In the diagram, we want to calculate an interpolated frame at time index 1 second, so
we would scale the delta vectors by a factor of half. The end result will be the frame
shown where the arm is half raised.

This approach may be easy to implement, but ultimately we find that there are a few
problems with it, as follows:

•	 Accuracy of resultant animation: Take a good look at the interpolated frame
of the stick man in the previous diagram and you will see that the stick man's
arm has actually shrunk. This is because we are interpolating the vertex
positions in a straight line, whereas we really need the end vertices to be
rotated around the shoulder point.

•	 Number of key frames required: In order to produce a good quality
animation we need to store a good number of key frames. In the example
of our stick man animation, we could provide additional key frames that
would then minimize the arm shortening effect. However, since we need
to store the position of every vertex in the model, whether it has moved
or not, this soon becomes a large amount of data.

Animating 3D Graphics

[142]

•	 The need to ensure that the vertex order does not change between key
frames: The only way we can reliably implement morph target animation
is if every vertex in the model is in the same position in the vertex stream
for every key frame. When exporting a 3D model from a modeling package,
the vertex stream order can end up changing between frames, which would
then cause our animation to behave incorrectly as vertices interpolate
between completely wrong positions.

For the reasons listed, Marmalade does not support morph target animations, though
it is fairly trivial to implement such an approach if you so wish. Morph targets can
still be extremely useful for tasks such as facial animation, which, with the increasing
power of mobile devices, may soon be a more common feature in mobile games.

Using boned animations
Most 3D video games will implement the animation of 3D models using a boned
animation system. This method works by allowing an animator to set up a skeleton
of virtual bones, which can then be used to deform the vertices of a 3D model. The
3D model itself often gets referred to as the skin for purposes of animation.

To set up a boned animation, the first step is to use a 3D modeling package to create
the 3D model you want to animate in its bind pose. The bind pose is normally
chosen to be a position in which it is easy to access every polygon in the model for
texturing and coloring purposes, as well as for laying out the skeleton. For a human
character this often means a pose where the arms are held outstretched horizontally
from the body and the feet are spaced a short distance apart.

With the bind pose created, the animator then starts the rigging process. This
involves adding the skeleton to the model by placing bones in relevant places. The
bones are linked together to form a hierarchy; so whenever a bone is moved, all the
bones which are linked to it as children will move too. Ultimately there will be one
top-level parent bone in the hierarchy and this is called the root bone.

For performance reasons it is good to keep the number of bones to a minimum,
but this must be balanced against having enough to allow good quality animation.
The following diagram shows what the 3D skier character used in our example
game project looks like after being rigged:

Chapter 5

[143]

Once the bones have been laid out, the next step is to bind the skin (in other words,
the mesh of polygons) to the skeleton. This is done by allowing each vertex of the
3D model to be modified by one or more bones.

If a vertex is mapped to more than one bone, a weight is also defined for each bone
that determines how much of an effect it will have on the vertex. Weights range
from zero to one and the sum of all the weights for a particular vertex should add
up to one.

Most 3D modeling packages will have a good first attempt at doing the binding
process automatically, but normally the animator will need to make some
adjustments to the binding so that the skin animates correctly when the bones
of the skeleton are moved.

Animating 3D Graphics

[144]

With all that done, the animator can then make the character do whatever they want
simply by rotating and moving the bones around to define the required key frame
positions, just like with morph targets. The boned system will produce much better
quality in the final animation, and the amount of memory required to store the key
frames is normally not too large, since all that needs to be stored is the orientation
and position of each bone.

The Marmalade SDK comes complete with a boned animation system, which we will
be learning about in the rest of this chapter. The system is very flexible and there are
very few limitations to it.

The main things to be aware of are that you can only have a single root bone, a
maximum of 256 bones in total, and each vertex can only be affected by a maximum
of four bones. In most cases these limitations are unlikely to cause you any problems.

Using a 3D modeling package to create
animation data
Entire books have been written explaining how best to create a 3D animated
character; so, unsurprisingly, we won't be looking at how to actually produce
an animated 3D model here. Indeed, my warning in the previous chapter about
"programmer art" probably goes double for "programmer animation". For evidence
to back this statement up, look no further than the graphics accompanying the
example programs of this book, which are all examples of "programmer art" made by
yours truly. I really should heed my own advice.

Anyway, with that tip hopefully now rammed home, let's see how we can export
animation data from a 3D modeling package.

Exporting an animation requires a number of new file types to be exported. These
will be discussed in detail later, but in short they are files that represent the skeleton,
the skin, and the actual animations themselves. The following sections will show
how to export this data.

Exporting animations using the Marmalade
3D exporter plugins
If you are using 3DS Max or Maya to create your animations, the required animation
files are exported using the Marmalade exporter plugin. To refresh your memory, the
exporter plugin window is shown in the following screenshot:

Chapter 5

[145]

To export an animation, just load it into your modeling package and follow these steps:

1.	 Set up the export options in the same way as we did for exporting a static
model. Please look at the steps listed in Chapter 4, 3D Graphics Rendering, if
you've forgotten what the various options are for. We'll now take a look at
the additional animation-specific options.

Animating 3D Graphics

[146]

2.	 Ensure that just the geometry, skeleton, and exportgroup checkboxes are
ticked in the group labeled Enable export of.

3.	 You can now click on the Export! button to write out the GEO, MTL, and
GROUP files for the model. Two new file types will also be exported, the
SKEL and SKIN files, which as you can probably guess represent the skeleton
and skin information for the model.

The files exported in these steps are necessary in order to animate the model, but
they don't actually contain any animation data as such. Here's how we get hold of
the data that will describe how the model is actually animated:

1.	 Go back to the exporter plugin window and click on the button to the right
of the Export Type combobox. A pop-up menu should appear from which
you should select the anim option.

2.	 The checkboxes in the Enable export of section should change so that only
the animation checkbox is ticked.

3.	 In the Export Flags section, the multianim checkbox can be selected if you
have several animations in the scene to export. Note that each animation
should be for the same 3D model.

4.	 The Anim Range Type option can take one of three possible values. The
default is Visible Range, which will export only the range of frames that
are currently visible on the animation track bar in the modeling package.
The next option is Individual Anim Range, which will only export
animation data between the first and last key frame of each animation.
The final option, Full Range, is only available in Maya. It will export the
entire animation regardless of whether a range of frames has been set on
the animation track bar or not.

Chapter 5

[147]

5.	 The Anims Ranges option allows you to split one big animation sequence
up into several smaller animations. If you click on the Edit… button, the
dialog box just seen will be displayed. Use the Add button to create a new
animation range, use the Name textbox to name the animation, and then
drag the sliders to set the Start and End frames for the animation. Use the
Delete button to delete an animation range from the list. The Done button
will close the dialog and accept any changes made, while the Cancel button
will discard any changes made before closing the dialog.

6.	 The final option that affects animation export is the Sub Anim Root textbox.
You can enter the name of one of the bones in the skeleton and the animation
data will only be exported for that bone and its children. We'll learn more
about sub-animations later in this chapter.

7.	 With all the animation-related options in the exporter now set up, just click
on the Export! button to output one or more ANIM files. The number of files
exported depends on how many animations were in the scene, the status of
the multianim checkbox, and whether the Anims Ranges option was used.

Exporting animations using the Blender
plugin
You can also export animations using the Blender plugin. The terminology used in
Blender for animations is a little unusual, as Blender calls the skeleton an armature,
but aside from that the approach to animation is the same.

Animating 3D Graphics

[148]

Here are the steps you should follow to export an animated model from Blender:

1.	 Load the animation you wish to export into Blender and then go to File |
Export | Marmalade Cross-platform Apps (.group) to display the export
options screen. As a reminder, the export options are shown in the previous
screenshot, but please refer to the steps listed in Chapter 4, 3D Graphics
Rendering, for more information about the standard model export settings.

2.	 To tell the exporter to write out all the different animation file types, ensure
that the Export Armatures checkbox is selected.

3.	 The Animations Frames combobox contains three options. None will
export no animation data, Keyframes Only will export just the data for the
key frames of the animation (this is the option you would normally want
to select), and Full Animation will export data for every frame regardless
of whether it is a key frame or not (this is often referred to as "baking" the
animation and means you get the exact animation seen in the modeling
package at the expense of an increase in animation memory footprint).

4.	 The Animations Actions combobox contains two settings. Default
Animation will export only the animation that has been selected as the
default for the armature. The other option is All Animations, which will
export all the animations currently defined for the armature.

5.	 The final setting is the Animation FPS value. This dictates the playback
speed in frames per second for the animation, so it is possible to speed up or
slow down an animation by changing this value without the need to alter all
the key frame timings.

6.	 To export the data, ensure that you have a file location and name entered
in the boxes at the top of the screen and then click on the Export
Marmalade button.

The Marmalade 3D animation file formats
We can now export the animation data from the 3D modeling package of our choice,
but before we actually make use of them, let's take a quick look at the new file types
that we've just generated.

The SKEL file
A SKEL file contains all the information pertaining to the skeleton of our animation.
The file first defines an instance of a CIwAnimSkel class, which is a wrapper for a
number of CIwAnimBone instances.

Chapter 5

[149]

The CIwAnimSkel instance is derived from the CIwResource class and therefore has
a name associated with it so that it can be looked up in the resource manager. The
name of the instance is taken from the filename of a SKEL file, which in turn comes
from the name of the root bone of the skeleton.

Each of the CIwAnimBone instances have a name, position, and rotation associated
with it, which defines the bind pose of the animation. The position is just a vector in
model space, while the rotation is stored as a quaternion. Except for the first bone,
which is the root bone, each bone will also list its parent bone, thus building up the
skeletal hierarchy.

The SKEL file gets exported into the models sub-directory alongside the GEO and
MTL files. An example of a SKEL file is as follows:

CIwAnimSkel
{
 numBones 12
 CIwAnimBone
 {
 name "FlagPoleBase"
 pos {-0.38309,-1.27709,0}
 rot {0.70711,0,0,0.70711}
 }
 CIwAnimBone
 {
 name "PoleA"
 parent "FlagPoleBase"
 pos {258.20248,0.00000,0}
 rot {1,0,0,0}
 }
 CIwAnimBone
 {
 name "PoleB"
 parent "PoleA"
 pos {255.88675,0.00000,0}
 rot {1.00000,0,0,-0.00200}
 }
 CIwAnimBone
 {
 name "PoleC"
 parent "PoleB"
 pos {257.60138,-0.00000,0}
 rot {0.00000,0.99998,0.00615,0.00000}
 }

Animating 3D Graphics

[150]

 CIwAnimBone
 {
 name "PoleD"
 parent "PoleC"
 pos {255.08751,-0.00000,-0.00000}
 rot {0.00000,0.99998,0.00621,0.00000}
 }
 CIwAnimBone
 {
 name "PoleE"
 parent "PoleD"
 pos {257.19775,0.00000,-0.00000}
 rot {1.00000,0,0,0.00206}
 }
 CIwAnimBone
 {
 name "FlagStart"
 parent "PoleE"
 pos {152.41219,0.00000,-0.00000}
 rot {0.61894,0,0,-0.78544}
 }
 CIwAnimBone
 {
 name "FlagA"
 parent "FlagStart"
 pos {85.99931,-0.00000,-0.00000}
 rot {0.99505,0,0,0.09934}
 }
 CIwAnimBone
 {
 name "FlagB"
 parent "FlagA"
 pos {57.19376,0.00000,-0.00000}
 rot {1.00000,0,0,0.00128}
 }
 CIwAnimBone
 {
 name "FlagC"
 parent "FlagB"
 pos {61.42473,0.00000,-0.00000}
 rot {0.99996,0,0,0.00846}
 }
 CIwAnimBone

Chapter 5

[151]

 {
 name "FlagD"
 parent "FlagC"
 pos {60.33911,0,-0.00000}
 rot {0.99996,0,0,-0.00877}
 }
 CIwAnimBone
 {
 name "FlagE"
 parent "FlagD"
 pos {60.36695,-0.00000,-0.00000}
 rot {0.99985,0,0,0.01754}
 }
}

The SKIN file
The SKIN file is the bridge between the skeleton and the vertices of the 3D model in
its bind pose. It contains all the data representing which vertices are influenced by
which bones.

The file starts by defining an instance of the CIwAnimSkin class. This instance contains
references to the CIwAnimSkel instance that defines the bones of the required skeleton,
and also the CIwModel instance that will be used for rendering the model once the new
vertex positions have been calculated. As with the SKEL file, the name given to the
CIwAnimSkin instance is derived from the filename of the SKIN file.

The file then contains a number of instances of the CIwAnimSkinSet class, which
indicates which vertices are modified by which bones. This is achieved by first listing
the bones, up to a maximum of four, then the number of vertices in the set. The bone
weights are then specified for each vertex by providing the index of the vertex in
the model vertex stream, followed by a weight value for each bone. The sum of the
weight values for each vertex must total to one.

The SKIN file is also exported to the models subdirectory and the following code
provides a partial example of one. These files tend to be quite large due to the sheer
amount of data required for even a simple animation, so an extract should provide
enough of a flavor of what these files look like.

CIwAnimSkin
{
 skeleton "FlagPoleBase"
 model "Flag"
 CIwAnimSkinSet

Animating 3D Graphics

[152]

 {
 useBones { FlagPoleBase }
 numVerts 16
 vertWeights {0,1}
 vertWeights {1,1}
 vertWeights {2,1}
 vertWeights {3,1}
 vertWeights {4,1}
 vertWeights {35,1}
 vertWeights {58,1}
 vertWeights {60,1}
 vertWeights {62,1}
 vertWeights {64,1}
 vertWeights {65,1}
 vertWeights {90,1}
 vertWeights {91,1}
 vertWeights {92,1}
 vertWeights {93,1}
 vertWeights {94,1}
 }
 CIwAnimSkinSet
 {
 useBones { FlagPoleBase PoleA }
 numVerts 10
 vertWeights {5,0.50170,0.49830}
 vertWeights {6,0.50251,0.49749}
 vertWeights {7,0.50177,0.49823}
 vertWeights {8,0.50116,0.49884}
 vertWeights {9,0.50114,0.49886}
 vertWeights {57,0.50251,0.49749}
 vertWeights {59,0.50177,0.49823}
 vertWeights {61,0.50116,0.49884}
 vertWeights {63,0.50114,0.49886}
 vertWeights {66,0.50170,0.49830}
 }

// Several more CIwAnimSkinSet instances would have been
// defined here but they have been left out to avoid
// filling the book with boring numbers!

 CIwAnimSkinSet
 {
 useBones { FlagA FlagB FlagC FlagD }

Chapter 5

[153]

 numVerts 8
 vertWeights {39,0.15992,0.33285,0.33292,0.17431}
 vertWeights {44,0.15632,0.33444,0.33462,0.17462}
 vertWeights {49,0.17817,0.32895,0.32812,0.16476}
 vertWeights {54,0.18163,0.32749,0.32638,0.16450}
 vertWeights {106,0.15632,0.33444,0.33462,0.17462}
 vertWeights {112,0.17817,0.32895,0.32812,0.16476}
 vertWeights {120,0.18163,0.32749,0.32638,0.16450}
 vertWeights {121,0.15992,0.33285,0.33292,0.17431}
 }
 CIwAnimSkinSet
 {
 useBones { FlagB FlagC FlagD FlagE }
 numVerts 20
 vertWeights {40,0.14751,0.34532,0.34603,0.16114}
 vertWeights {41,0.02763,0.13480,0.41879,0.41879}
 vertWeights {45,0.14368,0.34743,0.34842,0.16046}
 vertWeights {46,0.02625,0.13072,0.42151,0.42151}
 vertWeights {50,0.16232,0.34459,0.34444,0.14865}
 vertWeights {51,0.03730,0.16777,0.39776,0.39717}
 vertWeights {55,0.16581,0.34255,0.34229,0.14936}
 vertWeights {56,0.03875,0.17110,0.39544,0.39471}
 vertWeights {102,0.02763,0.13480,0.41879,0.41879}
 vertWeights {103,0.02625,0.13072,0.42151,0.42151}
 vertWeights {107,0.14368,0.34743,0.34842,0.16046}
 vertWeights {108,0.02625,0.13072,0.42151,0.42151}
 vertWeights {109,0.03730,0.16777,0.39776,0.39717}
 vertWeights {113,0.16232,0.34459,0.34444,0.14865}
 vertWeights {114,0.03730,0.16777,0.39776,0.39717}
 vertWeights {115,0.03875,0.17110,0.39544,0.39471}
 vertWeights {122,0.16581,0.34255,0.34229,0.14936}
 vertWeights {123,0.14751,0.34532,0.34603,0.16114}
 vertWeights {124,0.03875,0.17110,0.39544,0.39471}
 vertWeights {125,0.02763,0.13480,0.41879,0.41879}
 }
}

The ANIM file
The final file type we need to consider is the ANIM file, which as its name suggests
is the file that actually defines a particular animation.

The file first declares an instance of the CIwAnim class, which, as with the other
animation class types, will be given a resource name derived from the filename.

Animating 3D Graphics

[154]

The skeleton that this animation will be applied to is the first thing that the CIwAnim
instance will specify. This is then followed by a number of CIwAnimKeyFrame
declarations that detail the positions and orientations of each affected bone at a
particular time index.

Key frames do not need to list the orientation and position of each bone in the
skeleton. If a bone has not moved relative to its parent, its position will remain as
it was at the previous key frame.

The exporters will create an anims sub-directory to hold all the ANIM files. An
example of an ANIM file is provided in the following code; but as with the SKIN file,
this is just a partial example so as to not fill the pages of this book with lots of numbers:

CIwAnim
{
 skeleton "FlagPoleBase"
 // Keyframe# 1
 CIwAnimKeyFrame
 {
 time 0
 bone "FlagPoleBase"
 pos {-0.38309,-1.27709,0}
 rot {0.70711,0,0,0.70711}

 bone "PoleA"
 pos {258.20248,0.00000,0}
 rot {1,0,0,0}

 bone "PoleB"
 pos {255.88675,0.00000,0}
 rot {1.00000,0,0,-0.00200}

 bone "PoleC"
 pos {257.60138,-0.00000,0}
 rot {0.00000,0.99998,0.00615,0.00000}

 bone "PoleD"
 pos {255.08751,-0.00000,-0.00000}
 rot {0.00000,0.99998,0.00621,0.00000}

 bone "PoleE"
 pos {257.19775,0.00000,-0.00000}
 rot {1.00000,0,0,0.00206}

 bone "FlagStart"

Chapter 5

[155]

 pos {152.41219,0.00000,-0.00000}
 rot {0.61894,0,0,-0.78544}

 bone "FlagA"
 pos {85.99931,-0.00000,-0.00000}
 rot {0.99505,0,0,0.09934}

 bone "FlagB"
 pos {57.19376,0.00000,-0.00000}
 rot {1.00000,0,0,0.00128}

 bone "FlagC"
 pos {61.42473,0.00000,-0.00000}
 rot {0.99996,0,0,0.00846}

 bone "FlagD"
 pos {60.33911,0,-0.00000}
 rot {0.99996,0,0,-0.00877}

 bone "FlagE"
 pos {60.36695,-0.00000,-0.00000}
 rot {0.99985,0,0,0.01754}

 }
 // Keyframe# 5
 CIwAnimKeyFrame
 {
 time 0.16667
 bone "FlagPoleBase"
 pos {-0.38309,-1.27709,0}
 rot {0.73026,0,0,0.68317}

 bone "PoleA"
 pos {258.20248,0.00000,0}
 rot {0.99889,0,0,-0.04716}

 bone "PoleB"
 pos {255.88675,0.00000,0}
 rot {0.99864,0,0,-0.05222}

 bone "PoleC"
 pos {257.60138,-0.00000,0}
 rot {0.00000,0.99857,-0.05338,0.00000}

Animating 3D Graphics

[156]

 bone "PoleD"
 pos {255.08751,-0.00000,-0.00000}
 rot {0.00000,0.99624,0.08662,-0.00000}

 bone "PoleE"
 pos {257.19775,0.00000,-0.00000}
 rot {0.99483,0,0,-0.10158}

 }
 // Keyframe# 15
 CIwAnimKeyFrame
 {
 time 0.58333
 bone "FlagPoleBase"
 pos {-0.38309,-1.27709,0}
 rot {0.70668,0,0,0.70754}

 bone "PoleA"
 pos {258.20248,0.00000,0}
 rot {0.99873,0,0,0.05033}

 bone "PoleB"
 pos {255.88675,0.00000,0}
 rot {0.99775,0,0,0.06711}

 bone "PoleC"
 pos {257.60138,-0.00000,0}
 rot {0.00000,0.99951,0.03144,-0.00000}

 bone "PoleD"
 pos {255.08751,-0.00000,-0.00000}
 rot {0.00000,0.99996,0.00868,0.00000}

 bone "PoleE"
 pos {257.19775,0.00000,-0.00000}
 rot {0.99853,0,0,0.05420}

 }
 // Further key frames follow to define the remainder of the
 // animation but these have been removed to avoid including
 // large amounts of datafile in the pages of this book
}

Chapter 5

[157]

Loading and rendering an exported 3D
animation
We're now in a position to start rendering a 3D animation, and as with rendering a
static 3D model it's also surprisingly easy to do.

Adding the IwAnim API to a project
Before we can use Marmalade's animation functionality, we first need to add the
IwAnim API to our project. This API builds on top of the IwGraphics API required
for rendering static 3D models.

As with all such Marmalade APIs, we add support for IwAnim to a project by listing
iwanim in the subprojects section of the MKB file. We must then call IwAnimInit
after IwGraphicsInit has been called, and at shutdown time we need to call
IwAnimTerminate.

Loading and accessing a 3D animation
The GROUP file format comes to our rescue once again in order to get animation
data loaded into memory. The export process will have created a GROUP file for us
already that will include the GEO, MTL, SKEL, and SKIN files, so we just need to
add entries for the ANIM files that we want to use.

With everything referenced in the GROUP file, we just need to load it into memory
using the resource manager, and then access the resources in the same way as we do
for any other resource.

The following code snippet illustrates how we might load a GROUP file and then
access the resources needed for rendering an animated 3D model:

CIwResGroup* lpFlagGroup = IwGetResManager()->
 LoadGroup("Flag/Flag.group");
CIwModel* lpFlag = static_cast<CIwModel*>(lpFlagGroup->
 GetResNamed("Flag", "CIwModel"));
CIwAnimSkel* lpSkel = static_cast<CIwAnimSkel*>(lpFlagGroup->
 GetResNamed("FlagPoleBase", "CIwAnimSkel"));
CIwAnimSkin* lpSkin = static_cast<CIwAnimSkin*>(lpFlagGroup->
 GetResNamed("Flag", "CIwAnimSkin"));
CIwAnim* lpFlagWobble = static_cast<CIwAnim*>(lpFlagGroup->
 GetResNamed("FlagWobble", "CIwAnim"));

Right, now that we have the resources in memory, we need to do something
with them.

Animating 3D Graphics

[158]

Playing back a 3D animation
In order to play back an animation, we need to let Marmalade know which
animation we want to play, how fast it should be played back, and whether we
want it to be a one shot or looping animation. All this and more is provided by
the CIwAnimPlayer class.

After creating a new instance of CIwAnimPlayer, we must provide it with a pointer
to the skeleton instance for animation. This is done as follows:

CIwAnimPlayer* lpAnimPlayer = new CIwAnimPlayer;
lpAnimPlayer->SetSkel(lpSkel);

The player object is now ready to start animating, so we just need to pass it details
about the animation we want to play. This can be done with just a single line of code:

lpAnimPlayer->PlayAnim(lpFlagWobble, 1.0f,
 CIwAnimBlendSource::LOOPING_F, 0.0f);

The PlayAnim method first takes a pointer to the CIwAnim instance we wish to play.
It then expects to see a playback speed, some control flags, and a blending interval.

The playback speed is specified so that a value of 1 yields the normal exported
animation speed. Doubling this value will play the animation back at twice the
speed, and so on.

The function's third parameter is a set of control flags that are primarily used to
indicate whether the animation should loop when it reaches the last key frame. If
looping is desired, the flag CIwAnimBlendSource::LOOPING_F should be used.

There are a number of other values defined by CIwAnimBlendSource, but most of
these are intended for read-only status flags and the CIwAnimPlayer class provides
other methods that should be used to determine the current status. Therefore, the
only other flag that will be used in this method is CIwAnimBlendSource::RESET_IF_
SAME_F, which will force the animation player to restart the specified animation if it is
already the current animation. If an animation that is already being played is passed in
to the PlayAnim method, the request will be ignored unless this flag is used.

The animation player is now initialized, so the final thing that must be done is
instruct it to calculate the required animation frame. This is done by calling the
Update method of the CIwAnimPlayer instance on every iteration of the main
game loop, as shown in the following code:

lpAnimPlayer->Update(lTimeStep);

Chapter 5

[159]

The lTimeStep parameter is a float value indicating the amount of time (in
seconds) by which the current animation state should be advanced. When this
call completes, a copy of the skeleton will have been created with all the bones
positioned and rotated correctly in order to render the current frame of animation.

Rendering a 3D animation
With the animation player now merrily updating away, the final step is to render
the animated model. This is possibly the easiest part of the entire process, as the
following code demonstrates:

IwGxSetViewMatrix(&lViewMatrix);
IwGxSetModelMatrix(&lModelMatrix);

IwAnimSetSkelContext(lpAnim->GetSkel());
IwAnimSetSkinContext(lpSkin);

lpFlag->Render();

IwAnimSetSkelContext(NULL);
IwAnimSetSkinContext(NULL);

Hopefully most of this already looks familiar to you. The first step is to set the view
and model matrices we want to use for rendering. We then need to provide some
information about the frame of animation, namely the animated skeleton and the
skin data.

The skeleton information is maintained by the CIwAnimPlayer instance and can
be retrieved using the GetSkel method. The skin is just the CIwAnimSkin instance
as loaded by the resource manager. We use the IwAnimSetSkelContext and
IwAnimSetSkinContext functions to provide this data to the rendering engine.

To render the animated model to the screen, all we have to do is call the Render
method on lpFlag, which is a pointer to a CIwModel instance, just as we would
if we were rendering the model without any animation.

After rendering, we clear the skin and skeleton contexts so that future model
rendering calls won't try and use incorrect data during rendering. This is a good
habit to get into as determining why an unanimated model has suddenly started
deforming wildly could be a tricky bug to track down.

Animating 3D Graphics

[160]

Exploring 3D animation further
Congratulations! You're now able to render fully animated 3D models! While this
is a pretty cool achievement, the functionality we've seen so far has only scratched
the surface of what the IwAnim API allows us to do. The following sections describe
some of the other features that we have at our disposal.

Playing an animation backwards
There are some occasions when it is useful to be able to play an animation
backwards. As an example, imagine a character kneeling down to examine an object.
Rather than create a whole new animation to enable them to stand up again, we
could just play the kneeling animation backwards instead.

Playing an animation backwards is achieved simply by passing a negative animation
speed into the call to PlayAnim, so a value of -1 will play the animation backwards
at normal speed.

Blending between animations
When transitioning between two animations, we often don't want to just snap
straight to the beginning of the new sequence, as this can result in a noticeable jump
between the current frame of animation and the first frame of the new animation.
We can solve this problem by blending between animations.

We touched on how to achieve this earlier, when we first introduced the PlayAnim
method. The final parameter in this method is the blending time, which is specified
as a value in seconds using a floating point number.

By specifying a non-zero blending interval, the animation player will calculate the
frames of animation required for both the old and new animations, then generate a
third transition frame by interpolating between these two frames over the specified
time. The transition frame is what is then used to draw the 3D model. Once the
blend interval is over, the original animation will stop being calculated as it is no
longer required.

Detecting animation playback events
Being able to detect when an animation has looped or has finished playing is
important because we can start to link animations together or prevent the user from
performing a task until an animation has completed. For instance, imagine a player
has to reload a weapon and an animation is played to show this happening. We
need to know when the animation has completed so we can allow the player to start
attacking again.

Chapter 5

[161]

The CIwAnimPlayer class allows us to detect when a one shot animation has
completed, by calling the IsCurrentAnimComplete method that will return true
when the animation has finished.

There is also the IsCurrentBlendComplete method that will return true when the
animation player has finished blending between two animations.

Detecting when an animation has looped is also possible, although CIwAnimPlayer
does not provide us with a quick shortcut way of detecting this event. Instead, we
have to do a little manual flag testing.

At any time, the animation player can be updating two main animations: current
animation (defined as the animation that was last specified using the PlayAnim
method) and the previous animation (the one that was playing at the time PlayAnim
was last called with a blending interval).

The current status of these two animations are stored in instances of the
CIwAnimBlendSource class, which we can access using the CIwAnimPlayer class'
methods named GetSourceCurr and GetSourcePrev. The CIwAnimBlendSource
class has a method called GetFlags that returns playback status information as
a bitmask. To detect if the animation has looped, we just need to see if the flag
CIwAnimBlendSource::LOOPED_F is set. The following source code shows this in
action:

if (lpAnimPlayer->GetSourceCurr()->GetFlags() &
 CIwAnimBlendSource::LOOPED_F)
{
 // Animation has looped!
}

If you prefer this approach, you can also use the flag
CIwAnimBlendSource::COMPLETE_F to detect when a single shot animation
has finished.

Optimizing animation playback
Do you remember that we calculated the current animation frame by calling the
Update method of CIwAnimPlayer? This method has to do quite a lot of work,
some of which we might not actually need to do on a frame-by-frame basis. For
example, if an in-game character is currently not visible on the screen, we might
want to ensure that we still step through its animation; but calculating the bone
positions for the current frame of animation is a waste of processor time as we
won't be rendering the animation.

Animating 3D Graphics

[162]

The Update method is actually implemented by calling three other methods of
CIwAnimPlayer, which we can call independently if we so wish.

The first method is UpdateParameters, which takes the time increment we need to
update the animation by as its sole parameter. This method will update the current
time indexes of all the animations currently in use by the animation player and set
flags to indicate whether those animations have completed or looped.

The UpdateSources method takes no parameters and is used to work out the
current bone orientations for each animation, applying any blending between
animations as required.

Finally there is the UpdateMatrices method, which again takes no parameters.
This performs the final step of converting all the positions and orientations of each
bone into a matrix that will be used to update the vertex stream of the 3D model
during rendering.

These methods need to be called in the order presented previously, but there is no
need to call all three methods in every frame if we do not need the results of that
method to be calculated.

Playing sub-animations
Sub-animations allow us to animate only a part of the entire skeleton, which can
be useful when we want an in-game character to be able to perform two different
actions at once. For example, a character might be able to wield several different
weapons while moving around the game world. The main animation applied to
the character would be an animation for walking, running, or just standing still.
Sub-animations can then be overlaid on top of the main animation to show the
player holding, firing, or reloading the different weapon types.

In order to export a sub-animation, all we need to do is specify the name of the bone
that is the root of the sub-animation in the Sub Anim Root field of the Marmalade
exporter plugin. In the example situation given previously, you might choose to
export the sub-animation starting at a bone that has the two arm bones as children.

The Blender plugin does not currently support this feature unfortunately, though
you could potentially export the entire animation and then delete by hand any
references to bones higher in the hierarchy than the sub-animation root bone in
the ANIM file.

Chapter 5

[163]

With the sub-animation exported, all we have to do to play it back is call the
PlaySubAnim method of CIwAnimPlayer. An example of how to use this function is
as follows:

lpAnimPlayer->PlaySubAnim(0, lpFlagWave, 1.0f,
CIwAnimBlendSource::LOOPING_F, 0.0f);

As you can see, it is almost identical in structure to the PlayAnim method. The only
difference is an extra initial parameter, which is the sub-animation index number.
The animation player can support two different sub-animations at the same time
and the index number should be 0 or 1 to indicate which sub-animation you wish
to change.

To detect the current playback status of a sub-animation, we can get hold of the
CIwAnimBlendSource instance using the GetSourceSub method of CIwAnimPlayer.
This method takes a single parameter, which is the index number of the sub-
animation required.

Offset animations
When dealing with animations that cause a game character to move, such as
walking, running, or making an attacking move, it is desirable to update the position
of the character with respect to the animation being played so that the character's feet
do not appear to slip on the ground.

Marmalade provides a method of doing this by way of an offset animation, which is
an animation that consists of a single bone whose position and rotation can be used
to move an object around the game world. Offset animations are exported using the
same export process as any other animation.

To use an offset animation, we use the PlayOfsAnim method of CIwAnimPlayer, as
shown in the following code:

lpAnimPlayer->PlayOfsAnim(lpMovementAnim, 1.0f, 0);

The parameters of this function are pointers to the offset animation instance, the
speed of playback (again a value of 1 will play back at normal speed), and the
required animation flags; so it is possible to play back offset animations as one shot
or looped.

To find the current status of the offset animation, we can use the GetSourceOfs
method on CIwAnimPlayer to retrieve the CIwAnimBlendSource instance that
maintains it.

Animating 3D Graphics

[164]

We can also find out position and rotation information for the start, end, and current
offsets using the methods GetMatOfsInitial, GetMatOfsFinal, and GetMatOfs
of CIwAnimPlayer. Each of these methods allows access to a CIwFMat object
representing the current orientation of the offset. We can then use this information to
allow us to update the position of a game character accordingly, so that other game
functions such as collision detection continue to work correctly.

Obtaining bone positions and rotations
When discussing sub-animations earlier, we presented the example of a character
being able to hold a variety of different weapons. Sub-animations will, of course,
only provide half the solution to this problem, as they will move the character's arms
to the correct pose; but, because the weapon is not part of the source 3D model, the
character will just appear to be clutching at thin air.

We need some way of drawing a further model depicting the weapon, but how can
we get it positioned in the correct place?

The answer is to ask the animation player to provide us with the current orientation
and position of a bone that is located at the point where the weapon model
would need to be drawn. We can do this by calling the GetBoneNamed method of
CIwAnimPlayer, which will return a pointer to a CIwAnimBone instance representing
the current orientation of the requested bone.

The position and rotation of the bone can be found using the GetPos and GetRot
methods of CIwAnimBone, which allow us to generate a matrix in model space, or
alternatively the GetMat method will return a model space matrix representing both
the position and rotation of the bone if it has been calculated during the update of
the CIwAnimPlayer instance.

Using the bone information, we can easily calculate a model matrix for rendering the
weapon model in the correct place. First we use the bone information to generate a
matrix in model space, we then multiply this by any rotation matrix needed to orient
the character in the game world. Finally, add the world position of the character and
the weapon model can be rendered in the character's hand.

Example code
The following sections give an overview of the sample projects accompanying
this chapter.

Chapter 5

[165]

The Flag project
This example demonstrates playing back both a main and sub-animation. A flag is
rendered waving in a virtual breeze. Every few seconds the flagpole will wobble
around but the flag on the end of the pole will continue to flap around. A screen
grab can be seen in the following figure:

The animation of the flag waving is achieved as a looping sub-animation, while
the flagpole wobble is the main animation, which is started every five seconds as
a one-shot animation.

One of the problems with this approach is that the sub-animation will only play
if there is a main animation currently in progress. Rather than create a one frame
animation of the flagpole standing still, a cunning trick has been employed.

The flagpole wobble animation is actually playing continuously, but at zero speed.
Since the first frame of the wobble animation is of the pole in an upright position,
we have achieved our aim of a static animation frame.

Every five seconds the wobble animation is then restarted as a one-shot animation.
When the wobble animation has completed, we return to playing it at zero speed to
hold the flagpole steady again.

Animating 3D Graphics

[166]

The Skiing project
The changes to the Skiing project for this chapter really make it seem like much more
of a game. The following screenshot and the following sections highlight the new bits
and pieces that have been added:

New gameplay features
Previously, there was not a great deal of actual gameplay to be had in the game. We
could steer the little skier left and right, but aside from crashing into a tree there
wasn't actually an awful lot to do.

To combat this, gates consisting of a couple of flags have been added. The player
must steer the skier through these in order to increase their score, which is now
displayed at the bottom of the screen.

To implement the gates, a new class called Flag has been created. The ModeGame
class picks a random position across the course and spawns a flag a short distance
left and right of that position. The flags scroll up the screen, and when they scroll off
the top a new random position is chosen for them at the bottom of the game world.

Chapter 5

[167]

The ModeGame class maintains pointers to the two instances of Flag so that it can be
detected when they have scrolled offscreen and need repositioning, plus we can also
use these pointers to work out when the player has moved between them.

Randomly placed rocks have also been introduced, which must be avoided because
colliding with them ends the game, just like steering into the trees does. These
are represented by another new class called Rock. This class is very similar to the
existing Tree class, the main difference being that when the rock scrolls off the top
of the screen it is replaced at the bottom with a new horizontal position.

Animations added
Given the subject matter of this chapter, it's fairly obvious that adding animations
to the game would be one of the changes made.

Our little skier character has been given a looping animation, so the little chap now
pushes himself along using his skiing poles. If the player collides with a tree or
rock, the poor little fellow will also now take a tumble and end up in a heap on the
ground. Ouch!

The other animation added to the game has been for the flag. It is the same animation
structure demonstrated in this chapter's other example project. A sub-animation
plays to make the flag wave in the wind, while the main animation is of the flagpole
wobbling about.

Rather than wobbling at set time intervals, the animation is instead triggered when
the player skis too close to the flag.

Summary
We've covered the topic of 3D animation quite extensively in this chapter. We can
now move, rotate, and scale our 3D models in the game world, and we can make the
actual shape of the model change using boned animations to make characters walk,
run, jump, dance, or whatever we require them to do.

We've also looked at some more advanced topics, such as blending between
animations, applying sub-animations on top of a main animation, and retrieving
bone position and orientation information from an in-progress animation to allow us
to find the location of a particular part of a model.

In the next chapter we'll return to just two dimensions, as we look at how we can
make the user interface of our games look a little prettier than just using badly laid
out debug fonts.

Implementing Fonts, User
Interfaces, and Localization

Now that we have the knowledge to create 3D worlds populated with animated
characters, we really need to start thinking about how to improve the look of the
user interface we present to the player.

In this chapter we'll be covering the following:

•	 Creating fonts that can be used in a Marmalade project
•	 Drawing and formatting of text
•	 Discussing ways of implementing your game's user interface
•	 Localizing your game into multiple languages

Implementing fonts
The first step toward improving the look of our game is to say goodbye to the debug
font and replace it with something a little more stylish. The Marmalade SDK comes
complete with an API called IwGxFont dedicated to font rendering, so let's put it to
good use.

Adding the IwGxFont API to a project
By now I'm sure you must be able to hazard a guess as to how this is done. That's
right, just add iwgxfont to the subprojects section in the MKB file, and then make
a call to IwGxFontInit to initialize the API, and IwGxFontTerminate to free it at
shutdown time.

Implementing Fonts, User Interfaces, and Localization

[170]

As the name of this API suggests, it requires IwGx in order to work. We also need
IwResManager so we can load the font data into memory, so the initialization call for
IwGxFont must occur after these two modules have been initialized, as shown in the
following code snippet:

IwGxInit();
IwResManagerInit();
IwGxFontInit();

Creating a font resource
The first thing we need to do is create a CIwGxFont resource describing the font that
we want to use. This is easily done thanks to the Marmalade Studio - Font Builder
utility that is installed as part of the Marmalade SDK. The following image shows a
screenshot of this program in action:

The IwGxFont API renders text by drawing each character individually by using
sections of a large bitmap that contains an image of all the characters we need to
render. Generating the bitmap itself is fairly trivial and could be done with any
art package, but we need to somehow be able to specify which part of the bitmap
represents which character. This is where IwGxFont and the font builder utility come
to our aid.

Chapter 6

[171]

Here are the basic steps needed to generate a font resource:

1.	 Start the Marmalade Studio - Font Builder utility. You can find a Windows
Start button menu shortcut for it under Marmalade | x.x | Tools, where x.x
represents the version number of the Marmalade SDK you have installed.

2.	 In the top-left panel labeled Input, first click on the Select… button to
display a font selection dialog. Choose the font, size, and style you require
and click on OK. You can choose any installed Windows font, whether it be
a scalable TrueType font or a fixed-size bitmapped font.

3.	 The Characters textbox allows you to specify a list of the characters you
require in your font. A default selection covering most European languages
is present, but you can add or remove as many characters as you want. Fewer
characters is obviously better though, as it will reduce the size of the bitmap
that gets generated and thus take up less memory. It is also possible to
populate this textbox by loading a text file using File | Load Character Map.
The Characters textbox will then contain every unique character present in
the text file, minus formatting characters such as tabs or newlines.

4.	 Moving on to the section labeled Output Options, you can choose a color
for the font using the numeric entry boxes or by clicking on the Select…
button to display a color selection dialog. It is recommended that you keep
the color set to the default of bright white as the text color can then easily be
set at runtime.

5.	 There are also some other settings here that allow you to adjust the look of
the font. There are checkboxes to force all characters to be in capitals and to
enable the addition of a drop shadow to the font. If this checkbox is ticked,
a textbox allows the pixel offset of the drop shadow to be specified.

6.	 Next, look at the top right panel labeled Output. Here we can see a preview
of what the generated font characters will look like. Just click on the Redraw
button and after a short delay the characters will appear in the view area.
You can then use the two sets of Prev and Next buttons to cycle through each
character.

7.	 We're nearly ready to export the font; but before we can, we need to specify
where we want the font files to be created, which is done in the Saving and
Loading panel. Click on the Browse… button to display a file requester to
choose the required directory or enter it directly into the Save Path textbox.
The last part of this filename is the base filename that will be used to export
the font data.

8.	 To create the font files, ensure that the two checkboxes labeled Save .TGA
and Save .gxfont are checked, then click on the Create button.

Implementing Fonts, User Interfaces, and Localization

[172]

There are a number of options we haven't explored in this run-through, as most of
the time you won't need to worry about them. In particular, we skipped the panel
labeled Input (per range) Options entirely.

This panel provides control over font features such as kerning, which is the offset
between the characters of a font. Kerning can sometimes be useful for bringing
certain character combinations closer together. For example, consider the capital
letters A and V. The shapes of these characters mean you may want to draw them
slightly closer to provide a more natural looking result when they are displayed
next to each other.

You can also declare subranges of characters, which allow you to apply different
global settings to certain ranges of characters. You can use this facility to use
completely different sizes of characters or even completely different source fonts, for
different character ranges. This can be particularly useful if we want to create a font
that contains characters from the standard ASCII set and characters from another
language. The font we use for the ASCII characters may not contain the characters for
the other language, so we can create a sub range that allows us to pick a completely
different font for those characters.

The GXFONT file format
The font builder utility creates two types of files to define a font resource. The first of
these is the actual font bitmap, which is exported in the Targa file format, an image
file format usually identified by the file extension .tga.

The second file exported is a GXFONT file, which acts as both a way of allowing the
font to be reloaded into the font builder for further editing, and a way of loading the
font into our own programs.

The following is an example GXFONT file for a font containing only numeric
characters drawn using the standard Windows font Arial Black at 20 points:

//Temp file created by AS Font Builder (User: Sean At: 06/29/12
18:00:06)
//Command Line:
//: -fontdesc "0;-27;0;0;0;900;0;0;0;0;3;2;1;34;Arial Black" 0 4 0
-pad 0 0
//: -col #FFFFFF -shadow 0 -spacing 4 -force16 0

CIwGxFont
{
 utf8 1
 image numbers.tga
 charmap "0123456789"
}

Chapter 6

[173]

As you can see, it's fairly self-explanatory. The comments at the start of the file are
primarily used by the font builder utility to know what settings were used to create
the font, so you should leave these values well alone if you want to edit the font later.

We can edit a font in the font builder utility at a later date by using
File | Load Font or by pressing the Load… button. A file requester
will appear allowing us to choose the GXFONT file we wish to edit.

The part of the GXFONT file we're really interested in is the definition of the
CIwGxFont instance. The three parameters we see here indicate that the character
encoding to be used with this font should be UTF-8, the bitmap image to use is
called numbers.tga, and the characters present in the font are the numerals zero
through nine.

By default, UTF-8 character encoding is chosen, as this format often
provides the most compact memory representation of text strings,
at least as far as European languages are concerned.

If we've specified any other font settings in the font builder utility, such as character
subranges or kerning information, this will also be represented in both the comments
at the top of the file and the CIwGxFont structure. We won't cover this here though,
since the font builder takes care of all the hard work for us.

Loading and accessing font resources
As with all the resource types we've seen, we load a font resource into our program
by adding a reference to it into a GROUP file, loading the GROUP file using the
resource manager, and then searching for the font resource.

For completeness, here is a code snippet showing how to do this:

CIwResGroup* lpResGroup = IwGetResManager()->
LoadGroup("fonts/fonts.group");
CIwGxFont* lpSmallFont = static_cast<CIwGxFont*>(IwGetResManager()->
GetResNamed("small", "CIwGxFont"));

Drawing text using a font resource
With a font resource loaded and a pointer to it obtained, we can start to draw some
text on screen with it. First we'll look at the basics of drawing a string of text, then
we'll take a look at how we can justify the text, change its size, and how we can make
drawing it a little more optimized.

Implementing Fonts, User Interfaces, and Localization

[174]

Drawing text on screen
When we were looking at how to create a font resource, it was mentioned that a color
could be chosen for the font. It is recommended to choose white so we can change
the color of our text at runtime to any color we want. We change the color of the font
by modulating the font bitmap with our chosen color, so if the font bitmap is not
white this will not produce the desired color change.

We'll be seeing how to change the font color in a moment, but in order for font
coloring to work there is one quirk of IwGxFont that must be mentioned first.

When attempting to recolor a font at runtime, we must ensure
that emissive lighting is enabled using the function call
IwGxLightingEmissive(true). IwGxFont affects the color
of a font by using the emissive lighting component, which will
not be applied if it is disabled.

With the note about lighting out of the way, the first step in rendering text is to
indicate which font we want to use to draw it. This is done by passing a pointer
to the relevant CIwGxFont instance into the function IwGxFontSetFont.

Next, we can set the color we want to use with IwGxFontSetCol. There are two
versions of this function, one that takes a reference to a const CIwColour instance,
and another that takes the color value as a uint32 value. When using the latter, bear
in mind that the color is specified as ABGR—that is, alpha in the most significant
byte, then blue, green, and red in the least significant byte.

We now need to indicate where on the screen we want the text to appear, which
we do by defining a rectangular area in which the text should appear. This is
specified by using a CIwRect instance that contains x and y values for the top
left of the rectangle, plus a width and height value. The function call we use is
IwGxFontSetRect.

Drawing the text is now possible using the IwGxFontDrawText function. The first
parameter is the string of text to print and is specified as a const CIwChar pointer.
CIwChar is just a typedef type for the standard C char type.

The default encoding for text is UTF-8. For text comprising of characters from the
ASCII set, this means we don't have to do anything to the text data at all.

The function also takes a second parameter, which is the length of the text to be
drawn. This has a default parameter value of -1, which indicates the entire string
should be drawn. Any other value will draw the specified number of characters.
This is handy if you want to implement a system common in many games where
text appears on screen one character at a time.

Chapter 6

[175]

Putting this all together, here's an example that draws "Hello World" on the screen
in yellow:

IwGxLightingEmissve(true);
IwGxFontSetFont(lpSmallFont);
IwGxFontSetCol(0xFF00FFFF);
IwGxFontSetRect(CIwRect(0, 0,IwGxGetScreenWidth(), 100));
IwGxFontDrawText("Hello World");

Text wrapping and justification
Wondering why we specified a rectangular area for our text rather than just a screen
position? The reason is so that IwGxFont can wrap and justify our text for us.

While Marmalade does allow us to include the line feed character in
our code to force a new line in our text, it does not provide support
for other formatting characters such as tabs or backspace. It is far
better to allow Marmalade to word wrap text for us than to insert
line feeds in our text by hand, because if we change the font size or
the dimension of the rectangular draw area we won't have to change
the text itself in any way.

The default behavior when rendering text is to word wrap whenever a line of text
exceeds the bounds of the rectangular area set with IwGxFontSetRect. We can alter
this behavior using the IwGxFontSetFlags function, which can take a combination
of the following values OR'ed together:

Value Definition
IW_GX_FONT_DEFAULT_F Uses default font settings.

IW_GX_FONT_NOWRAP_F Does not wrap text at the edge of the rectangle's
boundary.

IW_GX_FONT_NOWORDWRAP_F Does not perform full word wrapping on text.

IW_GX_FONT_ONELINE_F Only renders a single line of text. Rendering stops
when a newline character ('\n') is reached.

IW_GX_FONT_NUMBER_ALIGN_F Forces all numbers to be displayed with the same
width.

IW_GX_FONT_UNDERLINE_F Draws the text with underlining.

IW_GX_FONT_ITALIC_F Draws the text in italics.

Implementing Fonts, User Interfaces, and Localization

[176]

Value Definition
IW_GX_FONT_RIGHTTOLEFT_F Draws characters from right to left. Useful for

drawing languages such as Arabic.
IW_GX_FONT_NOWORDSPLIT_F Wraps text at the end of words. A word can

overlap the end of the rectangle boundary, but the
next word will start on the next line.

Flags can be cleared again using IwGxFontClearFlags.

We can also specify whether text is drawn left aligned, right aligned, or centered in
the rectangular bounding area using the function IwGxFontSetAlignmentHor, which
takes one of the following values:

Value Definition
IW_GX_FONT_ALIGN_LEFT Aligns text to the left of the bounding box.
IW_GX_FONT_ALIGN_CENTRE Centres text horizontally in the bounding box.
IW_GX_FONT_ALIGN_RIGHT Aligns text to the right edge of the bounding box.
IW_GX_FONT_ALIGN_
PARAGRAPH

Performs left or right alignment, as defined by
the device's localization settings.

We can do similar alignments vertically as well using IwGxFontSelAlignmentVer
with one of these values:

Value Definition
IW_GX_FONT_ALIGN_TOP Text is drawn so that the top line of text touches

the top of the bounding box.
IW_GX_FONT_ALIGN_MIDDLE Text is centered vertically in the bounding box.
IW_GX_FONT_ALIGN_BOTTOM Text is drawn so the bottom of the last line of

text touches the bottom of the bounding box.

Changing font size at runtime
Sometimes it is desirable to be able to animate text by making changes in its size. For
example, in a shooting game the score awarded for killing an enemy might appear at
the position of the enemy then gradually grow larger and fade out.

The function IwGxFontSetScale enables us to do this. It takes two parameters so the
font can be scaled by different amounts, both horizontally and vertically. The scaling
factors are passed in as fixed point values, with IW_GEOM_ONE indicating a scaling
factor of 1 and therefore no change in size.

Chapter 6

[177]

IwGxFont draws text by rendering a rectangular polygon for each character in
our text, with the relevant part of the font image mapped on to it. By specifying a
scaling factor we can change the size of the polygons used to render the individual
characters, though this can yield poor results if we scale up by a large factor (for
example, more than double the original size of the font).

Optimizing drawing by preparing text
One of the problems with rendering text is that in order to perform alignment, word
wrapping, and the like, it is necessary to format the text by considering it one character
at a time to see if the next character crosses the rectangular bounding box area.

If we need to draw a piece of fixed text, such as an instructions screen, we can
prevent having to calculate the formatting information in every frame by preparing
the text for rendering once and then using some cached data to draw it from then on.

To do this we use the function IwGxFontPrepareText. This function takes a
reference to a CIwGxFontPreparedData class instance, the string of text to prepare,
and optionally the number of characters in the string that we want to consider. If this
parameter is omitted, the entire string is processed.

With the text prepared we can then draw it using another version of
the IwGxFontDrawText function. This version takes a reference to the
CIwGxFontPreparedData instance and two optional parameters that indicate
the first character from the prepared data to draw and the number of characters
to draw. Here's a code example:

CIwGxFontPreparedData lFontData;
IwGxFontSetRect(CIwRect(100, 100, 200, 100));
IwGxFontPrepareText(lFontData, "This is the text to be prepared!");
IwGxFontDrawText(lFontData);

Note that the text will be drawn on screen at the position indicated by the formatting
rectangle set in the call to IwGxFontSetRect.

Implementing user interfaces
Every game will need some kind of user interface, even if it is just a button that
can be pressed to start a new game. In this section we will take a look at how a
user interface can be implemented for your own game.

Implementing Fonts, User Interfaces, and Localization

[178]

The IwUI API
The Marmalade SDK ships with an API called IwUI, which allows us to create user
interfaces for our projects consisting of buttons, labels, and other common controls.

This API is very feature-rich and allows interfaces to be created not just for games,
but also for more serious applications. Marmalade used to ship with a tool called
the Marmalade Studio UI Builder, but this is sadly no longer a supported part of
the SDK. However, it is still possible to access this tool by either installing an older
version of Marmalade (one of the v5.2.x releases is probably best) or by downloading
its source code from https://github.com/marmalade/UI-Builder.

It is also possible to use IwUI without using the UI creation tool by constructing ITX
files that describe our interface layouts, by hand. These layout files can end up being
quite verbose and therefore hard to maintain, so the Marmalade Studio UI Builder
made editing layouts a bit more manageable.

The Marmalade documentation states that the reason for dropping the UI Builder
from the SDK was to allow a standardized UI markup system to be used that is
supported by a number of other third party tools. At the time of writing this book, no
further announcement had been made regarding exactly what form this will take.

There seems no doubt that the IwUI API will remain a part of Marmalade for the
foreseeable future. However, we won't be delving any deeper into the API itself
in this book as it seems likely that a new UI system will be making its way into
Marmalade soon. If you are interested in what IwUI can do, take a look at the
Marmalade documentation and the plethora of sample code that ships with the SDK.

The IwNUI API
Marmalade provides a second user interface API called IwNUI. The "N" stands for
Native, as this API allows you to construct user interfaces using the standard UI
controls for the platform that your application runs on.

This may sound like a good idea but the main drawback is that it is only supported
on iOS and Android. All other platforms will use a default style implemented using
the previously mentioned IwUI API.

At any rate most games tend to implement their own UI that is in keeping with the
style of the game, and this normally means we don't want to use standard OS user
interface controls, but IwNUI is a good choice if you happen to want to develop a
utility or other application type.

Chapter 6

[179]

Implementing our own user interface solution
Given that we're effectively starting from square one with our user interface
implementation, let's consider how we could go about creating our own solution.

The following sections highlight some of the issues to be aware of when developing
user interface code. One of the example projects accompanying this chapter
implements a user interface library that tries to take most of the following into account.

Using a generic approach
It really is worth taking the time to develop as generic a solution as possible when
dealing with user interface code. While implementing the frontend of a game isn't
particularly difficult to code, it is far too easy to find yourself writing UI code from
scratch for each project.

By investing in a generic approach, you can quickly put together a functional UI
for all your projects. Frontend menu systems actually tend to be little more than a
collection of buttons and labels; so why write this code multiple times? Implement
these types of controls once and you can then spend more time creating customized
controls when your game demands it.

It is recommended that you implement your UI code by creating a separate subproject,
as this will help ensure that your solution is as generic and self-contained as possible.

Marmalade makes it easy for us to create our own library modules by
using the same system the SDK uses for including its component parts.
Simply create an MKB file referencing all the source files that are part
of the library, but save it with the extension .mkf instead of .mkb. You
can then reference this module by adding the name of the MKF file
(minus the extension) to the subprojects section of the main project
MKB file. Library module directories should be placed in the same
place as the main project directory so that they can be located when
creating the project from the MKB file.

Making good use of class inheritance
A good class hierarchy can make implementing your UI a much more pleasant
experience and it is well worth taking a look at existing systems to see how they
have been constructed.

Implementing Fonts, User Interfaces, and Localization

[180]

Most modern UI implementations will normally start with a base level class from
which all other control types are derived, which for discussion purposes in this
chapter we will call an element. An element will take care of things such as the
positioning of a control and internal naming so that the handling of UI events
can be standardized.

When implementing a class representing an element, we should make use of virtual
methods that can be overridden by child classes to change default behavior. At the
very least this normally means that we should have methods that can be called to
update and render the control.

Another extremely useful concept is that of a frame, which has the ability to group
several elements together so they can be moved, enabled, or hidden at the same time.

When updating or rendering the user interface, the frame is responsible for deciding
whether or not to update or render the child elements it contains.

The positioning and sizing of all elements contained within a frame should also be
calculated relative to the position and size of the frame itself.

Having implemented classes representing both elements and frames, it is possible
to implement most common UI controls very simply. Here are a few examples to
illustrate this:

•	 A label control simply displays a line of text on screen. It can be derived
from the element class and at its simplest all we need to define are member
variables to store the text to be drawn, and some font and color information.
We can then override the virtual render method to allow the text to be drawn
at the position indicated by the element class.

•	 A bitmap control is very similar to a label but displays an image instead of
text. We just need to store a pointer to the image we want to draw (perhaps
as a CIwTexture or CIwMaterial pointer) and then implement the render
method to draw it on screen.

•	 A button control can be derived from a frame. Most UI systems allow an
image or a text string (or both) to be displayed on the button, so we can
implement this just by adding label or bitmap controls to the list of elements
contained within the frame.

•	 A slider control could also use the frame as a basis and could include
two bitmap controls, one for the backing of the slider and another for the
selection knob. A label could also be included if you want to display the
current position of the slider as a numeric value.

Hopefully this gives you an idea of how, with a little initial planning, implementing
a diverse range of user interface controls actually becomes very easy.

Chapter 6

[181]

Implementing a data-driven system
With a good class hierarchy in place, the next step is to ensure that your UI can be
created easily from a configuration datafile. While it is perfectly possible to create all
your controls in code, this is hard to maintain and, most crucially, can then only be
edited by a programmer.

Allowing your UI to be constructed from a datafile means that other members of
your team can help with designing the UI. Having a datafile format also makes it
easier to develop a user interface layout tool if you want to make the process even
easier for people to use.

We've already seen how we can use the ITX file format to construct our own custom
classes from a file at runtime, so it makes sense to employ this methodology to our
UI code (refer back to Chapter 2, Resource Management and 2D Graphics Rendering, if
you want to refresh your memory on this). No point in writing more code than we
have to!

Responding to user input events
The user interface of a game must solve two main issues. The first is relaying
information to the player, and we've already discussed how this can be done earlier.
The second is responding to user inputs.

As discussed earlier in this book, modern mobile devices allow a great many ways
of allowing the player to interact with a game. Which of these you support, depends
on the devices you are trying to target, but by far the most popular choice is the
touch screen. Pressing on-screen buttons is just a very natural way of interacting
with a application, so it is pretty much guaranteed you will end up supporting touch
screens for your own UI.

Obviously not all controls need to respond to being touched. For example, a label is
unlikely to do anything, so it makes sense to provide some mechanism that allows us
to indicate which controls should respond to touches and which shouldn't.

While we could just add some virtual methods to the element class that gets called
whenever a touch has been detected within its bounding area, this is probably not
the best solution as it starts to make the element class a little cluttered.

We really want to encapsulate this sort of functionality somehow, and a good way
of doing this is by using an Event system. Such a system works by having a central
event manager whose sole job is to receive event messages from one part of the code
and pass those messages on to any class instance that has registered itself with the
event manager to be notified of a particular event.

Implementing Fonts, User Interfaces, and Localization

[182]

To implement such a system, we can introduce two new base classes. An Event
class, which is the base class for all event message types, and an EventHandler class,
which contains a single virtual method called Execute that will be called in order to
respond to an Event.

At its most basic level, the Event class will just contain a single member that is used
as a unique identifier for a particular type of event, for example, an enumerated type.
We can declare our own event types by deriving them from an Event and adding
members for any information we might want to pass along with the message. For
example, a touch screen event might contain the screen coordinates of where the
touch occurred.

Any class that wants to respond to a particular event can then derive from the
EventHandler class and provide an implementation for the virtual method. When a
new instance of a class is constructed, it registers its interest in any event by passing
the unique identifier of the event and a pointer to itself (cast as an EventHandler
pointer) to the event handler.

Now, whenever an event occurs we create an instance of the event type in question,
populate its members with information about that event, and pass it to the event
manager. The event manager will compare the unique identifier of the event against
its list of registered instances and then call the Execute method of EventHandler
for any of registered instance that wanted to be notified about the type of event that
has just occurred. The event message will be passed into the Execute method of the
instance so that its data can then be acted upon accordingly.

Screen resolution and orientation
Chances are that your game could well be executed on a number of different devices
that have different screen resolutions and aspect ratios, which can make creating a
nice looking user interface a real chore.

It is therefore important to provide a very flexible way in which the position and size
of UI controls can be specified.

When specifying screen coordinates, widths, and heights for controls, consider
allowing both exact pixel sizes and ratios of the width and height of the containing
frame to be used.

It is also good to allow a control to be conformed to a particular aspect ratio when
using ratios to define sizes. Being able to ensure that the control has a particular
aspect ratio makes it much easier to keep a consistent layout of any child control and
is particularly important when drawing bitmapped images that will look strange
if they end up stretched. When fixing a control to a particular aspect ratio, you will
want to be able to indicate whether the width or the height should change to keep
the control in the correct shape.

Chapter 6

[183]

Being able to lay out controls relative to each other is also a useful thing to be able to
do. One way of doing this is by specifying that a control should take in its position
by adding an offset to the position of another control.

Another thing that can throw a spanner in the works is when the user rotates the
device and the screen changes between portrait and landscape orientations. For most
games we will want screen orientation changes to be ignored, since most games are
designed to either be played in portrait or landscape and not both.

Ignoring screen orientation changes is made simple by adding the DispFixRot
setting to the application's ICF file, as follows:

[S3E]
DispFixRot=Landscape

This setting can take the following values:

Value Description
Free Screen will rotate when the user rotates the device. This is

the default value if DispFixRot is not used.
Portrait Screen will always be kept in portrait aspect but can rotate

when the device is held in either of the possible portrait
orientations. It is easy to miss the fact that there are two
possible portrait orientations since the phone could be held
upside down!

Landscape Screen will always be kept in landscape aspect but can
rotate when the device is held in either of the possible
landscape orientations. Again, note that there are two
possible landscape orientations depending on which
direction you rotate the phone from its normal portrait
position.

FixedPortrait Screen will be fixed in the device's default portrait
orientation and will not rotate at all.

FixedLandscape Screen will be fixed in the device's default landscape
orientation and will not rotate at all.

If we do choose to support screen orientation changes, we need some way of detecting when
the orientation has changed. We can do this by setting up a callback function as follows:

// This is the callback function
int32 OnOrientationChanged(s3eSurfaceOrientation* apOrientation,
void* apUserData)
{
 if (apOrientation->m_OrientationChanged)

Implementing Fonts, User Interfaces, and Localization

[184]

 {
 if (apOrientation->m_Width > apOrientation->m_Height)
 {
 // Switch to landscape
 }
 else
 {
 // Switch to portrait
 }
 }
 return 0;
}

// Call this somewhere in our set up code
s3eSurfaceRegister(S3E_SURFACE_SCREENSIZE, (s3eCallback)
 OnOrientationChanged, NULL);

It is highly recommended, if you are supporting both portrait and landscape in
your game, that you define specific layouts of your controls for each orientation
and switch between them when the device is rotated. Trying to accommodate both
orientations with a single layout is possible but tends to yield uninspiring results
in both orientations, so make the most of the available screen space by providing
custom layouts for each.

Adding template functionality
Consistency is an important part of the user interface design. We expect controls of
a similar type to look the same. If they don't, the design starts to look sloppy and
unprofessional. It's therefore useful to be able to provide a way of defining certain
aspects of our UI once, and Template definitions allow us to do just that.

A relatively easy way of implementing templates is to be able to copy the settings
of one UI control into another. We can create a control that will never actually be
displayed, but will act as a template for other controls. When creating a new control
we can copy all member settings from the template and then proceed to make
changes to the settings so that the control displays whatever we need it to.

One way of implementing this is to add a virtual method to the element class, which
is given a pointer to the template control. Each class can override this method to set
its member variables based on the values contained in the template. By calling the
virtual method in the parent class, we can copy all member variable settings from the
template right down to the base element class.

Chapter 6

[185]

Localizing your project
As the progress of technology marches on, the world seems to become a smaller
place and your game may well end up being played on devices all across the globe.
It's therefore well worth considering localizing your game so that players across the
world can experience your game in their own language.

While supporting every language known to man would be impractical, many
best-selling games now offer support for at least the EFIGS languages (English,
French, Italian, German, and Spanish), and you can often add Portuguese, Russian,
Polish, Japanese, Korean, and both Simplified and Traditional Chinese to the list
as well.

Supporting other languages other than your own native tongue is well worth it,
as players would much rather play a game they can read and understand than
one they can't.

Whether or not you decide to support other languages, there is still a benefit in
implementing your game's text in the manner I am about to describe, since it allows
you to remove all the text from your source code and put it all in one place, which
makes changing the text a much easier process.

Creating a text spreadsheet
The first step in localizing the text in your game is to use a program such as
Microsoft Excel or OpenOffice Calc to create a spreadsheet containing all the text for
your game. By using a spreadsheet it is very easy to add or insert new strings of text,
and the columns of the spreadsheet can be used to provide translations of the strings
for each language you want to support. The following screenshot shows an example
of such a spreadsheet:

Implementing Fonts, User Interfaces, and Localization

[186]

In this spreadsheet the first column is used as a text identifier field. This is just
a string of text that we can use in our source code and datafiles to represent a
particular string of text.

The first row is used to indicate which language each column of the spreadsheet
represents. In the example, we have used the standard two letter ISO country codes
to represent the supported languages, namely English (EN) and French (FR).

The rest of the spreadsheet is then just the actual text that we want to appear in
the game.

Getting the text into the game
With the text for our game now in a spreadsheet, how do we access it from inside
our game code? The answer is to process the spreadsheet into a format that is easy
for us to load and use in game code.

Comma-separated values files
One option would be to export the text as a Comma-Separated Values (CSV) file
from our spreadsheet program. This is a simple text-only format that outputs each
row of the database as a separate line in the file, with the contents of each cell listed
separated by commas.

The trouble with this approach is it can be error-prone. Having a comma in the text
of one of your strings can play havoc with the output since the comma is already
used to indicate the end of one string and the beginning of the next. This is often
gotten around by enclosing each string in quote marks, but then this can cause
further problems if a string needs to include a quote mark too!

Remember also that IwGxFont expects text to be supplied in UTF-8 format by
default. If you are supporting languages such as Japanese or Korean, this becomes
very important and some spreadsheet programs do not support exporting a CSV File
in UTF-8 format.

Processing using a Python script
A much better method of getting the text out of a spreadsheet and into our game is
to process the spreadsheet into a simple datafile, which can be easily loaded into our
game. To demonstrate this, we'll be making use of the Python scripting language.

Python may have a rather strange approach to code layout (the scoping level of your
code is indicated by how much it is indented, rather than using notation such as
curly braces to indicate the start and end of a section of code), but there is no denying
that it is extremely good at this kind of task.

Chapter 6

[187]

You can get hold of an installer for Python from the following URL:

http://www.python.org/download/

The approach we will be using is to access the data from the text spreadsheet by
accessing it directly. If we save the spreadsheet in Excel 97 format (file extension
.xls, supported by most spreadsheet programs), there is an excellent Python library
called xlrd that can be downloaded here:

http://pypi.python.org/pypi/xlrd/

Install Python first and then install the xlrd library. It's a good idea to ensure that
the Python executable can be easily found by adding the Python install directory
to your path environment variable. An easy way to check if the Python directory is
already in your path variable is to open up a command prompt window and enter
path to display the current list of directories that will be searched.

To illustrate just how simple accessing data from a spreadsheet file is, using Python
and xlrd, the following script will open a spreadsheet file and output all the rows
and columns it contains:

import xlrd

lXLS = xlrd.open_workbook("StringList.xls")
lSheet = lXLS.sheet_by_index(0)
for lRow in range(lSheet.nrows):
 lCells = lSheet.row_values(lRow, 0, lSheet.ncols)
 print lCells

Even if you've never set eyes on a Python script before, this should be fairly easy to
follow, but here's a brief explanation.

The import xlrd line is equivalent to the #include directive in C/C++. It's just
stating that we want to make use of the xlrd library.

Next we open the spreadsheet file by calling the xlrd.open_workbook method,
passing in the filename of the spreadsheet we want to use. This returns an instance of a
Python class defined by xlrd that represents the spreadsheet file. Note that Python is a
loosely typed language and there is no need to declare what type the variable must be.

We call the sheet_by_index method on the spreadsheet object to retrieve the first
worksheet from the spreadsheet. This yields another Python object representing
the worksheet.

Implementing Fonts, User Interfaces, and Localization

[188]

We then enter a for loop that causes the lRow variable to iterate between 0 and
the number of populated rows in the spreadsheet. Within the loop we use the
worksheet object to access the spreadsheet cells an entire row at a time using
the row_values method.

Python has a built-in list type and this is what is being used to access all the cells on
the row in one go. The lCells variable will contain a list whose elements are each
cell in the row.

Finally we use the Python print command to display the entire list to standard
output. You can use print in Python to display just about any type, including lists,
in a human-readable form.

The UI example project that accompanies this chapter includes a Python script
that will take a spreadsheet as input and convert it into a simple datafile for each
language contained in the spreadsheet.

The datafiles list the number of strings in the file followed by a hash value generated
from the text identifier field (the first column of the spreadsheet) and the string itself.
It is fairly trivial to write C++ code to load this file into memory.

The use of a hashing function here means it is possible for two strings
to end up with the same hash value, causing a collision in the string
table that means the wrong string may get returned. In practice a
good hashing function will mean this hardly ever happens, but if you
start getting the wrong string returned this might be the cause. The
easiest way to rectify such a problem is just to rename one of the text
identifiers in the collision!

To access a particular text string, we use the identifier field in our code. A hash value
is generated from the identifier field and the list of string data is searched for that
hash value. If a match is found, the corresponding text string is returned, otherwise
an assert can be raised and a default string of text returned. The default text can be
something like "Missing String!", which makes it easier to track down problems such
as getting the identifier field wrong in code, or the string just not being present in the
text datafile when it should be.

Selecting the correct language to use at runtime
We now have the ability to supply our game with strings of text in multiple
languages, but how do we decide which of those languages to actually use? One
method of course is to implement a language select screen during startup of
our game and then load the relevant string table depending on the user's input.
However, there is a much nicer way available to us.

Chapter 6

[189]

The s3eDevice API allows us to find out which language is currently in use on the
device we are running on. Simply insert the following line of code during the startup
portion of your game code:

int32 lLanguage = s3eDeviceGetInt(S3E_DEVICE_LANGUAGE);

The return value will be a member of the s3eDeviceLanguage enumeration, for
example S3E_DEVICE_LANGUAGE_ENGLISH or S3E_DEVICE_LANGUAGE_GERMAN. A full
list of all possible language codes can be found in s3eDevice.h.

With the language type determined by this call, we can then load the correct table
of strings and the user will magically get to see your game in their own language,
assuming you've supported it of course!

Example code
There are three example projects associated with this chapter, which are described in
the following sections.

The Font project
The first example project demonstrates the use of the IwGxFont API and can be seen
in the following screenshot. This example demonstrates how to use multiple fonts in
a project, preparing text for printing, and scaling a font up and down in size:

Implementing Fonts, User Interfaces, and Localization

[190]

The UI project
The UI example implements a user interface library that adheres to the discussion on
how to implement UI code presented earlier in this chapter. It also presents a fully
functional localization library, including a Python script that can convert an XLS
spreadsheet into separate language datafiles. The script also produces a file for each
language detailing all the characters that were used by any of the strings for that
language. This can be very useful when generating a font resource to display the text.

The UI and localization library have been implemented as Marmalade subprojects
(called GUI and Localise), which makes them very easy to re-use in other projects.
If you find either of them useful, feel free to make use of them in your own projects.

The text strings are contained in an XLS file contained in the data/text
directory. English and French strings have been included, though apologies to
any French-speaking readers if these strings are not a 100 percent correct, as they
were generated using an online translation engine

In the Windows Simulator it is possible to see the program running using both of the
supplied language files. With the application running, go to Configuration | Device….
In the dialog that appears, there is a drop-down box labeled Reported Device
Language. Choose ENGLISH or FRENCH in this list and then click on the OK button.
Quit the program and run it again and the selected language will be used.

A screenshot of this sample in action is as follows:

Chapter 6

[191]

The Skiing project
Finally we come to our evolving Skiing! game, which now has a simple yet much
nicer looking user interface thanks to the GUI and Localise modules created for
the UI example. The following screenshot shows the new main menu screen:

Summary
In this chapter we've seen how we can add fonts of any style and size to our
projects using the IwGxFont API. We also learnt how to use the Marmalade
Studio Font Builder to convert TrueType fonts into bitmapped fonts that can
be loaded by IwGxFont.

We also discussed how to implement our own user interface library and how we
can localize our game by adding support for more than one language.

In the next chapter we'll be looking at how we can stop our games from being silent
affairs with the addition of sound effects and music. We'll also be taking a brief look
at how to add a video file playback.

Adding Sound and Video
Your game may look stunning, but if it's silent your audience will probably find it a
dull experience. Fortunately, Marmalade allows us to remedy this with its support
for sound and video playback. In this chapter we will learn about the following:

•	 Playing back audio files recorded in formats such as MP3
•	 Adding multiple simultaneous sound effects using sound samples
•	 Playing back full-motion video clips

Multimedia support in Marmalade
Modern mobile phones and tablet devices are now capable of playing back good
quality music and video, so it makes sense that Marmalade should provide ways
in which we can harness these abilities.

Marmalade provides three different API layers that apply to multimedia support.
These are s3eSound, s3eAudio, and s3eVideo. Unsurprisingly, the latter relates to
the playback of video files, but you may be wondering why there are two APIs
provided relating to sound.

The difference between s3eSound and s3eAudio is that the former is generally used
for sound effects while the latter is normally used for music. The s3eSound API
allows us to play several different sound effects at the same time, but by default
only provides support for 16-bit mono-PCM sound samples. The s3eAudio API
on the other hand allows us to play compressed formats such as MP3, but we are
limited (on most devices) to playing a single audio track.

The good news is that most modern devices lets us have the best of both worlds
by allowing both s3eSound and s3eAudio to be used at the same time.

Adding Sound and Video

[194]

In the following sections we'll look at how to make use of all three of these APIs and
will also take a look at another module called SoundEngine, that makes using the
s3eSound API a bit easier.

The s3eAudio API
Let's start with the quickest and easiest way of allowing our games to stop being the
strong, silent type.

The s3eAudio API allows us to play compressed music formats such as MP3 and
AAC. Some devices may also allow us to play other formats, such as MIDI files.
Marmalade makes use of whichever audio codecs a particular device may have
built-in rather than decoding the audio itself, so be sure to check that your chosen
audio format is supported by all the devices you wish to target.

Due to its ubiquity, it is recommended that you use MP3 as your
format of choice. There are very few devices (if any) that can't
play an MP3 file and the format itself allows you a wide variety of
bit rates so you can trade-off between audio quality and file size.

Let's now take a look at how we can get an audio track playing and what other
functionality the s3eAudio API provides for us. There is nothing we need to add to
our MKB file in order to allow us to use s3eAudio, as it is one of the low level APIs
of Marmalade that is always available for use. All we need to do is include the
header file s3eAudio.h in any source file that needs access to s3eAudio functions.

Starting audio playback
There are two ways of starting the playback of an audio track. The first allows us to
specify the filename of the audio track we want to play and the number of times we
would like the track to repeat, and looks like this:

s3eAudioPlay("music.mp3", aRepeatCount);

The filename is just a standard C, null-terminated string and is relative to the data
directory when run from Windows or the application install directory on the device.
Specifying a number for the repeat count will cause the audio track to play that many
times, while setting it to zero will cause the track to loop continuously.

The other method is to play the audio track from an area of memory as follows:

s3eAudioPlayFromBuffer(apBuffer, aBufferLength, aRepeatCount);

Chapter 7

[195]

The parameters apBuffer and aBufferLength provide the memory location where
the audio track resides and the length of audio data in bytes. The repeat count is
specified in the same manner as with s3eAudioPlay.

In most cases we will find that the first method is good enough since it is easy to
use and doesn't require us to allocate blocks of memory and fill it with data. You
may find that the buffer method provides slightly faster initial playback if you have
preloaded the audio data, but on most recent devices the difference is negligible.

If you make a call to either of these functions while an audio track is currently
playing, that track will be stopped and the new track will begin playing.

Pausing, resuming, and stopping playback
Once an audio track is playing, we can pause playback by calling the s3eAudioPause
function. The audio can be started again from the point at which it was paused by
calling s3eAudioResume. Finally, to stop playback completely just call s3eAudioStop.

All three of these functions take no parameters and will return S3E_RESULT_
SUCCESS when no errors occur. An error is raised if any of these functions are
called when it makes no sense to do so, for example calling s3eAudioPause
when there is no audio playing.

Changing volume
Like most of the low level APIs in Marmalade, s3eAudio features a pair of functions
called s3eAudioGetInt and s3eAudioSetInt that are used to change attributes
related to that API. In s3eAudio, one of the things we use these functions for is to
change the volume of audio playback.

To set the playback volume we can make the following call:

s3eAudioSetInt(S3E_AUDIO_VOLUME, S3E_AUDIO_MAX_VOLUME / 2);

In the aforementioned example we set the volume to half of S3E_AUDIO_MAX_VOLUME,
which is the maximum allowed volume.

To determine the current volume we use this code:

int32 lVolume = s3eAudioGetInt(S3E_AUDIO_VOLUME);

We can also request the default volume for audio by passing in the value S3E_
AUDIO_VOLUME_DEFAULT. This is the default volume level for playing audio and has
been chosen by the Marmalade SDK so as to provide a fairly consistent volume level
across all devices.

Adding Sound and Video

[196]

Other audio queries
The s3eAudioGetInt function allows us to make several other queries regarding
audio playback. The following table shows which properties can be specified:

Property Description
S3E_AUDIO_STATUS Returns current audio status—one of S3E_AUDIO_

STOPPED, S3E_AUDIO_PLAYING, S3E_AUDIO_
PAUSED, or S3E_AUDIO_FAILED.

S3E_AUDIO_POSITION Returns the current position in the audio track in
milliseconds, or 0 if no track is playing. Note that not
all platforms support this feature.

S3E_AUDIO_CHANNEL Returns the currently selected audio channel. This
property can also be used in s3eAudioSetInt
to select which audio channel the future audio
commands will be applied to. See the following
property for more on audio channels.

S3E_AUDIO_NUM_CHANNELS Returns the number of audio channels available. On
most platforms this will return 1 since most devices
only allow a single audio track to be played at any
time. Some devices provide more than one channel,
meaning more than one audio track can be played
simultaneously.

S3E_AUDIO_MUTES_
S3ESOUND

Returns 1 if the hardware is not capable of
outputting sound through both s3eAudio and
s3eSound at the same time. In this instance playing
an audio track will cause s3eSound processing to
continue, but without actually producing any output.

S3E_AUDIO_DURATION Returns the length, in milliseconds, of the track
currently playing.

S3E_AUDIO_PLAYBACK_
FROM_HTTP_AVAILABLE

Returns 1 if the hardware is able to play an audio
track by streaming from a URL.

End of track notification
There are two methods we can use to determine when an audio track has finished.
One is to use a polled approach, the other is to make use of a callback.

Chapter 7

[197]

To poll whether an audio track has completed or not, we can do the following:

if (s3eAudioIsPlaying() == S3E_FALSE)
{
 // Audio is not playing!
}

This function returns S3E_TRUE if the audio is currently playing, or S3E_FALSE
if it is stopped or paused. This function is actually just a shortcut for calling
s3eAudioGetInt with the property S3E_AUDIO_STATUS.

The callback approach is also very simple to use, as the following code snippet shows:

int32 AudioFinished(s3eAudioCallbackData* apAudioData,
void* apUserData)
{
 // apAudioData->m_ChannelID identifies the audio channel that
 // has completed.
 // s3eCallback functions must return a value, but in case of
 // audio callback the value returned does not matter.
 return 0;
}

// Use the following line to set up the audio callback
s3eAudioRegister(S3E_AUDIO_STOP, (s3eCallback) AudioFinished, NULL);

// And this line to remove the callback function
s3eAudioUnRegister(S3E_AUDIO_STOP, (s3eCallback) AudioFinished);

The callback function will be called whenever an audio track finishes and will pass
the pointer to user data supplied as the last parameter in the s3eAudioRegister call
by using the apUserData argument. It will not be called if we have asked the audio
track to be looped unless it is the last repetition. The function will also be called if
the audio is stopped due to an error, such as a corrupted track. We can determine
whether completion was caused due to error by calling the s3eAudioGetError
function, which returns an error code of the enumerated type s3eAudioError. A
complete list of error codes can be found in s3eAudio.h.

The decision of whether to use the polling or callback-based approach depends on
your application, and indeed quite often in games we don't even really care that
much about when an audio track has finished as we often just want the same track to
loop forever until a new piece of audio is required. If you are just waiting for a jingle
to finish during a splash screen, the polled method is probably adequate, but if you
want to join several tracks together one after the other, the callback approach would
probably lead to a clean solution.

Adding Sound and Video

[198]

The s3eSound API
If you want to add spot sound effects to your game, such as laser bolts and
explosions, the s3eSound API is what you need to use. This API allows multiple
sound samples to be played simultaneously at different volumes and pitch by
mixing them together into a single output.

To make use of the s3eSound API, simply include the file s3eSound.h in your
source code.

The API expects all sound effects to be supplied as uncompressed 16-bit signed
PCM. File formats such as WAV are not supported by the API, so you must write
your own code to load and extract the sample data from such files.

As you read through this section you may start to think that there's an awful lot to do
in order to play some sound effects. While this may appear to be the case, s3eSound
is actually a very low-level API and provides enough flexibility to allow you to code
your own complex sound routines.

Later in this chapter we will be covering the SoundEngine module, which comes
with Marmalade to provide a wrapper for the s3eSound API. The SoundEngine
module takes care of most of the hard work involved in using the s3eSound API for
us and also includes the ability to load WAV files directly from a GROUP file.

Starting sound playback
In order to play a sound sample using s3eSound, the first thing we have to do is
allocate a free sound channel. The s3eSound API provides a limited number of
channels (we'll see later how to determine exactly how many are available) that
allow us to specify a sound sample, volume, and playback rate. The sound data
for all currently active channels is then mixed together in the inner workings of
s3eSound into a single waveform and this is what is played through the device's
sound hardware. To allocate a free channel, we make the following function call:

int32 lChannel = s3eSoundGetFreeChannel();

This will return the ID number of a free channel, or -1 if no channel is available.
Most of the time it is unlikely that a free channel will not be available, but if we are
playing a lot of sound effects we might want to consider tagging each of our sound
effects with a priority value and maintaining a list of currently active sounds. When
we run out of channels, we can check the list of sounds and reclaim the channel
being used by the lowest priority sound effect, assuming that it is at a lower priority
than the sound we wish to start of course!

Chapter 7

[199]

Assuming a channel is available we must set up the playback rate of our sample
data, which is done like this:

s3eSoundChannelSetInt(lChannel, S3E_CHANNEL_RATE, lFrequency);

The first parameter is the sound channel ID we just allocated. The second parameter
indicates that we want to set the playback rate for that channel, and the third
parameter is the actual desired playback rate in Hertz (Hz). The maximum frequency
that can be set is specified by the define S3E_SOUND_MAX_FREQ.

We should also set the volume that we want the sound to be played at, which is also
done using the s3eSoundChannelSetInt function:

s3eSoundChannelSetInt(lChannel, S3E_CHANNEL_VOLUME, lVolume);

The valid values for the lVolume parameter are from 0 to the define S3E_SOUND_
MAX_VOLUME.

It is possible to change the volume and playback rate at any time once
the sound has started playing. This makes it possible to implement
effects such as volume fades or pitch shifts.

Now we can start playing our sound sample. We do this with the following call:

s3eSoundChannelPlay(lChannel, lSampleData, lNumSamples, lRepeatCount,
lLoopIndex);

Unsurprisingly, we first pass in the channel ID we are using, followed by the address
in memory where the 16-bit PCM sample data can be found in the lSampleData
parameter. The lNumSamples parameter is the number of actual sound samples in
our waveform (not the number of bytes), and lRepeatCount indicates how often
we want the sound to repeat. A value of 0 will play the sound forever. Finally the
lLoopIndex parameter allows us to specify which sample to start at if the sound
repeats. This makes it possible to use sounds that only need to repeat a portion of
the sample data.

Pausing, resuming, and stopping playback
Once a sound channel has started playing a sound sample, we might want to
temporarily suspend its playback or stop it entirely. To pause a sound channel we
use the function s3eSoundChannelPause, and we can start playing it again from the
paused position using s3eSoundChannelResume. To stop a sound channel entirely
we call s3eSoundChannelStop. Each of these functions takes a single parameter,
which is the channel ID we want to affect.

Adding Sound and Video

[200]

To determine the current playback status of a particular sound channel we can use
the s3eSoundChannelGetInt function as follows:

if (s3eSoundChannelGetInt(lChannel, S3E_CHANNEL_STATUS) == 1)
{
 // Sound channel is currently playing
}

if (s3eSoundChannelGetInt(lChannel, S3E_CHANNEL_PAUSED) == 1)
{
 // Sound channel is currently active, but paused
}

Note that this function can also be used with the S3E_CHANNEL_RATE and S3E_
CHANNEL_VOLUME properties to discover the current sample rate and volume for a
particular channel.

Finally, it is also possible to affect all currently active sound channels at once using
the functions s3eSoundPauseAllChannels, s3eSoundResumeAllChannels, and
s3eSoundStopAllChannels. These functions take no inputs and are extremely useful
for handling situations like going in and out of pause mode, or when switching
from one part of the game to another (for example, when exiting the title screen and
entering the main game).

Global sound settings
As well as being able to read and write settings on a per channel basis, we can
also make settings that affect sound support globally. To do this we use the
s3eSoundSetInt and s3eSoundGetInt functions as follows:

// To read a global sound setting
int32 lValue = s3eSoundGetInt(lProperty);

// To change a global sound setting
s3eSoundSetInt(lProperty, lValue);

Here are some of the more useful values for the lProperty parameter:

Property Description
S3E_SOUND_VOLUME Can be used to read or write the current master

sound volume. This will scale the volumes of each
individual channel appropriately. The maximum
value is determined by the define S3E_SOUND_
MAX_VOLUME.

Chapter 7

[201]

Property Description
S3E_SOUND_DEFAULT_FREQ This is the default frequency that will be used

when starting playback on a sound channel. If all
our sound waveforms have the same sample rate,
it is possible to write to this property once and
not have to set the sample rate explicitly when
playing each individual sound.

S3E_SOUND_NUM_CHANNELS A read-only value indicating the maximum
number of simultaneous sounds that can be
played.

S3E_SOUND_USED_CHANNELS A read-only value that shows which sound
channels are currently in use. This is returned
as a bit mask with the least significant bit
relating to sound channel 0. This value could
be used to determine an available sound
channel, but for future compatibility using
s3eSoundGetFreeChannel to do this is
recommended.

S3E_SOUND_AVAILABLE A read-only value that returns 1 if s3eSound is
available on the device.

S3E_SOUND_VOLUME_DEFAULT A read-only value that is used as the default value
for the global sound volume. It can vary from
device to device and is intended to allow sound
output to be at a similar volume across all devices.

There are other values described in the Marmalade documentation, but we won't
cover them here as they are used for purposes such as custom sound stream
generation, which are beyond the scope of this book.

Sound notifications
We have already seen how to use a polled method of detecting whether or not a
sound channel is currently playing, but sometimes it is useful to know exactly
when a sound sample has finished playing, for example, so we can immediately
start playing back a new sound effect.

Adding Sound and Video

[202]

The s3eSound API allows us to set several different callback functions on a
per channel basis and we use the functions s3eSoundChannelRegister and
s3eSoundChannelUnRegister to enable and disable them as follows:

// To set up a sound channel callback
s3eSoundChannelRegister(lChannel, lCallbackType, (s3eCallback)
 CallbackFunction, lpUserData);

// To disable a sound channel callback
s3eSoundChannelUnRegister(lChannel, lCallbackType);

As with all other Marmalade callbacks, we specify the code for the callback function
by passing in a pointer to the function itself, and we can also register a block of
user data that will be passed into this function when it is triggered. There are four
different callback types called S3E_CHANNEL_END_SAMPLE, S3E_CHANNEL_STOP_
AUDIO, S3E_CHANNEL_GEN_AUDIO, and S3E_CHANNEL_GEN_AUDIO_STEREO. We will
only take a look at the first two of them here, as the latter two are concerned with
generating custom audio streams and are beyond the scope of this book. For an
example of how to use these callback types, take a look at the source code for the
SoundEngine module, which we'll be covering in the next section.

First let's look at the S3E_CHANNEL_END_SAMPLE callback, which allows us to loop
sounds and join different sounds together as a sequence. The registered callback
function is passed a pointer to an s3eSoundEndSampleInfo structure as its first
parameter. The structure indicates which sound channel has ended by using its m_
Channel member.

If we want to start a completely new sound playing on this channel, we can set the
m_NewData member of the s3eSoundEndSampleInfo structure to the start address of
the new sample data, and the m_NumSamples member to the number of samples in
the new waveform.

The structure also contains a member called m_RepsRemaining, which allows us to
change the number of repetitions of the sample data we want on this sound channel.
Note, though, that this callback will still be triggered every time the end of the
sample data has been reached.

If we wish the channel to continue playing sample data, be it the original data or
a new sample specified using the m_NewData and m_NumSamples members of the
s3eSoundEndSampleInfo structure, we must return a non-zero value from the
callback function. If zero is returned, the sound channel will stop playing.

Chapter 7

[203]

The following code example puts the functionality described previosuly into practice:

// Simple structure used to indicate the next sound sample to play
typedef struct
{
 void* mSampleData;
 uint32 mSampleCount;
} NewSoundData;

// Sample callback function that will start a new sound effect
// playing if one has been specified when registering the
// callback function
int32 SoundEndCallback(s3eSoundEndSampleInfo* apInfo,
 NewSoundData* apSound)
{
 if (apSound)
 {
 apInfo->m_NewData = apSound->mSampleData;
 apInfo->m_NumSamples = apSound->mSampleCount;
 apInfo->m_RepsRemaining = 1;
 }
 return apInfo->m_RepsRemaining;
}

// Register the callback function to play a new sound when
// current sound completes
s3eSoundChannelRegister(lChannel, S3E_CHANNEL_END_SAMPLE,
 (s3eCallback) SoundEndCallback,
 &lNewSoundDataInstance);

The second callback type we'll consider is S3E_CHANNEL_STOP_AUDIO. This callback
will occur whenever a sound channel finishes playing a sound completely (for
example, if we have an S3E_CHANNEL_END_SAMPLE callback set and we return zero
from it to end all playback). It is passed a pointer to an s3eSoundEndSampleInfo
structure, but the only valid field is the m_Channel member.

The SoundEngine module
As the previous section of this chapter shows, the basics of using s3eSound are
actually fairly straightforward. The main issue that we have to deal with as
developers is the fact that s3eSound can only support raw uncompressed 16-bit
PCM samples, which means it is our responsibility to get the sound data into
memory so it can be played.

Adding Sound and Video

[204]

One of the most common file formats for storing sound samples is the WAV file, so
wouldn't it be great if we could use this format to store our sound effects? Wouldn't
it also be great if we could load these files into memory using the same resource
manager code that we've used for textures and 3D models?

The answer to our prayers is the SoundEngine module, which is a layer that sits
on top of s3eSound and allows us to easily load and access sound effects using the
resource manager.

The SoundEngine module doesn't just stop there though. It also wraps up the
s3eSound calls we've learnt about in this chapter and it allows us to support a
further sound format that can be stored in WAV files—namely the compressed IMA
ADPCM type. This is particularly useful given that sound sample data can be quite
large in size; so this format helps us claw back some memory space at the expense of
a slight drop in sound quality.

The following sections give a brief introduction to using this module, but for full
details you should refer to the source and header files to see all the functionality
SoundEngine has to offer. The sound example project accompanying this chapter
also makes use of this module, so take a look at that to learn more.

Adding the SoundEngine module to a project
The SoundEngine module actually ships with the Marmalade SDK, but it lives,
awkwardly, in the examples directory. The easiest way to solve this is to just copy
the entire SoundEngine directory to the directory where your project resides and
then reference it by adding SoundEngine to your MKB files subprojects. This is the
same approach we used with the GUI and Localise modules that were introduced
in the sample code for the previous chapter.

The location of the SoundEngine module in the examples folder
means it isn't really considered part of the main Marmalade SDK.
In practice it is highly unlikely that the SoundEngine code will
suddenly disappear from the SDK, since the s3eSound API is unlikely
to change drastically from what it is now; so you shouldn't have any
concerns about using it directly in your own projects. If you prefer to
write your own code, SoundEngine does at least serve the purpose
of being a very good example of how to use the s3eSound API.

With the module added to our project, we can include the file IwSound.h in our code
to make use of it. A call to IwSoundInit is needed to set everything up and a call to
IwSoundTerminate cleans up at the end of our program.

Chapter 7

[205]

We must also add a custom resource handler to allow WAV files to be loaded by the
resource manager. The following code snippet will do the trick:

IwGetResManager()->AddHandler(new CIwResHandlerWAV);

Finally, there is a manager class that takes care of all sound-related events and we
must ensure that we call the Update method of this class somewhere within the main
game loop. We do this with the following line of code:

IwGetSoundManager()->Update();

Loading and accessing sound resources
To load a WAV file all we have to do is add a reference to its filename into a GROUP
file, though we still need to do a little more in order to be able to play the sound
back. What we need to do is declare an instance of the class CIwSoundSpec.

This class allows us to reference a particular sound sample by name and lets us set a
volume and pitch to play the sound at. We can also specify whether or not we want
the sound to loop (note that SoundEngine currently provides no way of specifying
the number of times to loop the sound; we can only indicate continuous looping).
Here's an example definition:

CIwSoundSpec
{
 name gun1
 data gun_shot1

 // Play at the default pitch for the sample
 pitch 1.0

 // Play at half volume
 vol 0.5

 // Do we want this sound to loop?
 looping false
}

The pitch and vol (volume) parameters are specified as fractional scales, where
1.0 indicates the default pitch or volume level of a sound. We can also specify a
range for both these parameters that allows a random value to be chosen when
starting the sound. Specifying a range for the pitch can be quite useful to add a bit
of variety to the sound effects in your game without having to add lots of slightly
different sound samples.

Adding Sound and Video

[206]

The example below shows how to specify ranges for the volume and pitch:

CIwSoundSpec
{
 name gun2
 data gun_shot2

 // Choose a random pitch when playing this sound
 pitchMin 0.9
 pitchMax 1.1

 // Choose a random volume when playing this sound
 volMin 0.9
 volMax 1.1

 // Do we want this sound to loop?
 looping false
}

Another useful class that we have access to is CIwSoundGroup. This allows us to
collect a number of different sound effects together and pause, resume, stop, or alter
the volume or pitch of any that are currently being played all at the same time. Note
that a sound group only allows a single volume or pitch value to be specified, not a
random range:

CIwSoundGroup
{
 name guns

 // Reduce volume of all gun sounds by a half
 vol 0.5

 // Include the gun1 sound in this group
 addSpec gun1
}

Sounds can be added to groups using the addSpec keyword, or alternatively you
can add CIwSoundSpec to a group when it is defined by using the group keyword
followed by the group name, in its definition. We can use either method, but the
group or sound must have been declared before we make reference to it.

Chapter 7

[207]

To access a sound specification or group, we just load the GROUP file and retrieve
them using the resource manager in the normal way. Here's an example:

IwGetResManager()->LoadGroup("sounds.group");
CIwSoundSpec* lpGunSpec = static_cast<CIwSoundSpec*>(
 IwGetResManager()->GetResNamed("gun1", "CIwSoundSpec"));
CIwSoundGroup* lpGunsGroup = static_cast<CIwSoundGroup*>(
 IwGetResManager()->GetResNamed("guns", "CIwSoundGroup"));

Playing, stopping, and altering sound
parameters
Once we have hold of a pointer to CIwSoundSpec we can start playing it by calling
the Play method, which will do all the behind-the-scenes stuff of allocating a free
channel and setting volume and playback speed. The Play method can be passed an
optional parameter, which is an instance of the class CIwSoundParams, that allows
the volume and pitch to be modified when starting the sound.

The Play method returns a pointer to a CIwSoundInst class, which has methods to
allow that single instance of the sound to have its volume or pitch modified, and also
provides methods called Pause, Resume, and Stop, which should be self explanatory!
If no free sound channel is available, the Play method will return NULL.

If we have a pointer to CIwSoundGroup we can affect all currently playing instances
of sounds contained within it. Again there are Pause, Resume, and Stop methods that
do what you would expect, plus there are the methods SetVol and SetPitch that
will scale the current volume and pitch of the sounds. These methods use the value
IW_GEOM_ONE (4096) to indicate a scale of one.

The s3eVideo API
We'll finish our look at Marmalade's multimedia support by having a whirlwind
look at support for playing video clips using the s3eVideo API. To make use of
the functions it provides, we just need to include the s3eVideo.h file into our
source code.

Adding Sound and Video

[208]

Before we begin, there are two things to consider when using video clips in our
games. The first is that while it is possible to specify where on the screen the video
clip will appear, it will always be drawn on top of all other graphics. The second
issue is that due to hardware limitations in many mobile devices, the s3eVideo API
cannot be used at the same time as the s3eAudio and s3eSound APIs. In the case of
s3eAudio, any currently playing track will be stopped (this also applies the other
way around—starting an audio track will stop a currently playing video clip). The
s3eSound API will continue processing its events while a video clip is playing, but
its sound output will be silenced until the video clip is finished. For most games
we would probably decide it is best to explicitly stop all s3eSound playback before
starting a video clip, particularly if we are doing anything advanced like joining
sound samples together using the callback system.

Starting video playback
The s3eVideo API works in a similar manner to the s3eAudio API. To start playing
a video clip we use the s3eVideoPlay function, specifying the filename of the video
clip, the number of times we want it to loop, a screen position, and the size that we
want to display it at, as follows:

s3eVideoPlay(lFileName, lRepeatCount, lX, lY, lWidth, lHeight);

The video clip will automatically resize to fit the rectangle, but no attempt is made to
keep the correct aspect ratio.

Where possible it is usually best to try to make your video clips the same resolution
as the rectangular area you want to display them in. This will avoid any unnecessary
stretching of the image (which can look quite ugly!) and may lead to slightly better
performance, though on most modern devices the resize will be happening in
hardware and there will be no appreciable difference.

The actual size of the video file itself is also worth bearing in mind, since we often
want to minimize the size of the final install package. Ultimately, we need to use a bit
of trial and error until we get a result that ticks all the boxes for acceptable quality,
performance, and file size.

Determining video codec support
The s3eVideo API makes use of the device's built-in video decoding, so not all
video formats will be playable on all devices. To determine whether support for a
particular codec is available, there is a function called s3eVideoIsCodecSupported
that takes a value from the s3eVideoCodec enum. Take a look at the s3eVideo.h file
or the Marmalade documentation for a complete list of possible values.

Chapter 7

[209]

Pausing, resuming, and stopping video
playback
Again the parallels with the s3eAudio API are apparent when it comes to
controlling video playback. The functions s3eVideoPause, s3eVideoResume,
and s3eVideoStop all take no parameters and are used to pause, resume, and
finish video clip playback respectively.

End of video notification
We have the choice of polling or callbacks once more for detecting the end of video
playback. Let's start with the polled method that involves a call to the function
s3eVideoIsPlaying, which will return S3E_TRUE if a video is playing or S3E_FALSE
if a video is paused or stopped. Quite simple really!

If we want to use the callback approach, the following code snippet illustrates what
to do:

int32 VideoFinished(void* apSystemData, void* apUserData)
{
 // apSystemData will always be NULL as there is no data associated
 // with this callback.
 // Return value is unimportant.
 return 0;
}

// To set up the callback function
s3eVideoRegister(S3E_VIDEO_STOP, (s3eCallback) VideoFinished, NULL);

// And to cancel it again...
s3eVideoUnRegister(S3E_VIDEO_STOP, (s3eCallback) VideoFinished);

The callback will be triggered whenever video playback stops, either because we
explicitly call s3eVideoStop, an error in playback such as a corrupted video file
occurs, or if an audio track is started using s3eAudioPlay. Note that the callback is
not triggered between repetitions of the video clip if we are looping it.

For most games, video clips will probably only be used during introductory
sequences or tutorials, since using video in the game itself is probably not practical.
With this in mind, a polled approach for detecting when a video clip is finished is
normally sufficient.

Adding Sound and Video

[210]

Other video queries
The s3eVideo API, like the s3eSound and s3eAudio APIs, also has a pair of functions
for reading and writing global video parameters. They are called s3eVideoGetInt
and s3eVideoSetInt. They are called as follows:

int32 lValue = s3eVideoGetInt(lProperty);
s3eVideoSetInt(lProperty, lValue);

The following table shows the values that can be used for the lProperty parameter:

Property Description
S3E_VIDEO_VOLUME This property is used to find the current volume level

for the sound associated with the video clip and also
to set a new volume. The maximum volume level is
defined by the value S3E_VIDEO_MAX_VOLUME.

S3E_VIDEO_DEFAULT_VOLUME This is a read-only property that shows the default
volume that will be used for playing back the sound
in a video clip. Its value is intended to provide a
similar level of volume across all device types.

S3E_VIDEO_STATUS This is a read-only parameter showing the current
status of the video playback. It will return one of
the following values: S3E_VIDEO_STOPPED, S3E_
VIDEO_PLAYING, S3E_VIDEO_PAUSED, or S3E_
VIDEO_FAILED.

S3E_VIDEO_POSITION This property returns the current playback position of
the video in milliseconds, or 0 if no video is playing.
This parameter cannot be written to, so it is not
possible to jump to a particular point in a video clip.

Example code
This chapter has three example projects associated with it and they are described in
the following sections. The sound, audio, and video clips used in these projects were
sourced from a couple of great websites that offer a vast variety of stock media for
free! Links to these websites are provided here:

http://www.royalty-free-music-room.com

http://www.partnersinrhyme.com

http://www.royalty-free-music-room.com

Chapter 7

[211]

The Sound project
This project demonstrates use of the s3eAudio API and the SoundEngine module
(which in turn makes use of s3eSound).

On running the example you'll be presented with three clickable buttons that have
been implemented using the GUI module introduced in the last chapter. The first
button toggles an MP3 track on and off using s3eAudio, while the other two start
some sound effects using SoundEngine.

The Video project
This is another simple example showing how to use the s3eVideo API to start and
stop a video clip. A button at the bottom of the screen will start and stop a video clip,
which is played in a continuous loop.

The Skiing project
Finally we come to the Skiing project once again and it will come as no surprise that
it has been enhanced by the addition of some music and sound effects.

The main menu now plays an MP3 audio track while waiting for the player to press
a button. On pressing a button, a confirmation sound effect is played.

In the game itself, several sounds have been added. A swooshing sound is produced,
by using a looping sample, whenever the skier moves and the pitch of this sample is
decreased as the player turns, to make things sound a little more dynamic.

Other sounds that have been added include a selection of celebratory sounds for
when the player passes through a gate, a painful-sounding yell for when the player
collides with an obstacle, and a springy sound that gets played when the player
collides with a flag pole and causes it to wobble.

Adding Sound and Video

[212]

Summary
As this chapter draws to a close, our look at Marmalade's multimedia support has
now given us the ability to play sound effects, music tracks, and also play back
video clips.

There are very few games that don't feature sound or music of some sort, and
adding a few sound effects can make a world of difference to your game. While
not all games need to make use of video, it is nice to know we have it at our
disposal should we ever need to use it.

In the next chapter we'll be looking at how Marmalade can make it easier for
us to target as wide a range of devices as possible, from entry-level handsets to
top-of-the-range ones.

Supporting a Wide Range
of Devices

It's really great that the Marmalade SDK allows us to target so many different
devices and platforms. However, a certain degree of care and awareness is required
in order to optimize your application fully for all of these varying device types.

In this chapter we'll be covering the following subjects:

•	 A general overview of the kinds of things to be wary of when trying to
support a wide range of different devices

•	 A more advanced look at the ICF filesystem we encountered back in the
first chapter of this book

•	 Using Marmalade's built-in systems to allow multiple different data sets
to be used and to process those data sets in different ways (for example,
allowing the final texture format used on the device to be specified)

•	 Configuring the deployment system to make different types of builds
•	 Using the Derbh archiver to reduce the size of our assets in the install package

Accommodating a wide range of device
types
Mobile operating systems such as iOS or Android are capable of running on a
widely varying range of devices. Before we get on to discussing the ways in which
Marmalade makes it easy for us to target multiple device types, we'll first highlight
some of the things to keep in mind when developing a game so that it will look and
run its best on as many different devices as possible.

Supporting a Wide Range of Devices

[214]

Marmalade also ships with a whitepaper that covers some of the things to be
careful about when developing a game destined to run on more than one device
specification. You can find it in the Marmalade documentation at Whitepapers |
Device Independent Code.

Dealing with different screen resolutions
Probably the most immediately notable difference between different devices will be
the screen resolution. Taking iOS as an example, you may find yourself having to
support screen resolutions ranging from 320 x 480 at the low end through the two
different iPhone Retina screen resolutions (640 x 960 and 640 x 1136) and iPad at 1024
x 768, right up to the frankly crazy resolution of 2048 x 1536 of the most recent iPad
(you'll be hard pressed to find a PC monitor capable of displaying that resolution!).

We've already touched on this subject in Chapter 6, Implementing Fonts, User Interfaces,
and Localization, when we discussed the best way of implementing a user interface.
We should never hardcode our game to work at a fixed screen resolution as it will be
much harder to port it across to other screen resolutions later.

Instead, we should query Marmalade for the screen dimensions and then use these
values to position and size everything we want to draw, whether that be through
using percentages of the screen size, by clamping objects to the edges of the screen,
or indeed some other method of your own choosing. We can find the screen width
and height as follows:

uint32 lScreenWidth = IwGxGetScreenWidth();
uint32 lScreenHeight = IwGxGetScreenHeight();

These functions will also automatically take care of device orientation. The returned
values will change when the player rotates the device, unless we have disabled this
functionality using the DispFixRot ICF file setting (more on this setting shortly).

Using different resources for different screen
resolutions
Using the screen dimensions to position and size the elements we wish to draw
works well, but it does lead to a further problem. We may find that any images used
to render items on screen start to look blurry or blocky if they have to be scaled up in
size too much.

Similarly, fonts that work well at a low resolution may become impossible to read
because they are too small when used on a higher-resolution device. While we could
just apply a scale to the font when rendering, a more aesthetically pleasing solution
is to use a different version of the font created at a bigger point size.

Chapter 8

[215]

Luckily, as we'll see later in this chapter, Marmalade has a very easy-to-use solution
for this problem that allows us to provide alternate sets of resources that can be used
when targeting different sets of screen resolutions.

Checking device capabilities
Another thing to be vigilant of when targeting a large number of different devices is
that some devices may not include support for certain Marmalade SDK features.

Some devices may feature a multi-touch display while others only have single
touch or indeed no touch screen at all. Some may not feature accelerometer inputs
or keypads. It is therefore a good idea to ensure that we call the various Marmalade
functions that enquire whether these and other features are available for use and
what capabilities are provided, so that we can then provide the user with options
tailored to their device.

Configuring your game using ICF file
settings
If you cast your mind back to the "Hello World" project in the very first chapter of
this book, you will recall that we used the ICF file to display a different welcome
message depending on which platform the code was being executed on. Don't worry
if you've forgotten how all this works, as we'll be covering it again shortly.

This functionality proves extremely useful when we are trying to target as many
different devices as possible, as there are built-in parameters that allow us to apply
different settings for a range of things including memory usage, OpenGL ES graphics
performance, splash screens, and much more.

Built-in ICF settings
ICF file settings are assigned to a section identifier which is defined by placing the
name of the section in square brackets. When specifying a value for an ICF setting
you must ensure that it appears after the correct section identifier, otherwise it will
not be found at runtime and an assert will be raised. Here's an example:

[S3E]
MemSize=10000000
SysAppVersion="1.0.0"

Supporting a Wide Range of Devices

[216]

There are far too many ICF settings to be able to cover all of them in this book, so
instead we'll be taking a look at some of the more immediately useful ones. If you
want to see a complete list, take a look in the Marmalade documentation, by going to
Marmalade | Marmalade Development Tools Reference | ICF File Settings.

The following table shows a few of the settings that control Marmalade at its lowest
level. The section identifier for these settings is [S3E]:

Setting Value
type

Description

MemSize Integer The size, in bytes, of the main memory heap
available to an application. A Marmalade
application can actually have up to ten
memory heaps available, so there are also
settings called MemSize0 through MemSize9,
which allow the sizes of these heaps to be
declared. MemSize0 is actually equivalent
to using MemSize. For more information on
memory heaps take a look at the s3eMemory
API in the Marmalade documentation.

MemSizeDebug Integer The size, in bytes, of the debug memory heap
when a Windows debug build is executed.
This is a special block of memory that is
used for tasks such as processing 3D models
and converting textures to different formats
during the resource building process.

SysAppVersion String Allows an application to access its version
number. While this value can be set in the
ICF file, it can also be set using the MKB
deployment's version setting.

SysGlesVersion Integer Identifies whether the application should
attempt to initialize an OpenGL ES 1.x or 2.x
interface. Only the major version number
(that is, 1 or 2) can be specified.

SysStackSize Integer The size of the stack available to the program,
in bytes. It is useful, for example, when an
application requires extra stack space (due to
heavily recursive algorithms).

Chapter 8

[217]

Setting Value
type

Description

SplashScreenFile String The name of an image file that will be
displayed while an application is loading. The
filename is relative to the data directory.

SplashScreenBkR,

SplashScreenBkG, and
SplashScreenBkB

Byte A value from 0 through 255 to specify the
red, green, and blue component values of
the splash screen background color. This is
the color that will be used to clear the screen
before displaying the specified splash screen
image, assuming the image is smaller than the
screen size.

SplashScreenWidth and
SplashScreenHeight

Integer The width and height that the splash screen
image should be drawn at. If smaller than the
screen size, the image will be centered.

AudioAllowBackground 0 or 1 When set to 1 this allows any audio track a
user may have started (for example, through
the iPod application on an iOS device) to
continue playing when our application starts.

DispFixRot String Allows the screen to be locked to a
particular orientation, rather than rotating
when the user rotates the device. Can be
set to one of the following values: Free,
Portrait, Landscape, FixedPortrait,
or FixedLandscape. The Free setting
allows any device orientation, while
FixedPortrait and FixedLandscape
keep the screen orientation locked to a default
portrait or landscape aspect, which can be
very important to prevent unwanted screen
rotations when using the accelerometer to
control a game!

Supporting a Wide Range of Devices

[218]

The following table lists some useful parameters for altering the initialization of
OpenGL ES. These settings must occur after the section identifier [GL]:

Setting Value type Description
AlphaInFrameBuffer 0 or 1 When set to 1, this setting indicates that the

frame buffer also includes the destination
alpha channel.

EGL_RED_SIZE,
EGL_GREEN_SIZE,
EGL_BLUE_SIZE,
EGL_ALPHA_SIZE

Integer Indicates the number of bits to be used to
store each of the red, green, blue, and alpha
channels in the frame buffer. For best render
quality, all of these settings would normally
be given the value 8, yielding an RGBA8888
display. Most hardware can also support
formats such as RGBA5551 and RGB565,
which will use less video memory and may
render faster at the expense of a drop in
visual quality.

EGL_DEPTH_SIZE Integer The number of bits to use for the depth
buffer. Valid values are 16, 24, and 32,
with the latter giving the most precision and
therefore least chance of Z-buffer clashes
when rendering, at the expense of slower
rendering and more memory usage.

We'll finish off with some settings related to resource management that we'll be
looking at in more depth later in this chapter. They have been included here for
easy reference. The settings reside in the ICF section [RESMANAGER]:

Setting Value type Description
ResBuild 0 or 1 When set to 1, the Windows debug build will load

resources by parsing the original GROUP files and
loading the source models, textures, and other
resources. Once the data has been processed, it is
saved to the data-ram directory in a binary format.
If this setting is set to 0, the source assets will not be
loaded and any existing binary-formatted data will
be loaded directly. This can speed up testing when
there have been no changes made to game data.

ResBuildStyle String Specifies the resource building style to use when
the Windows debug build is processing the original
source assets. As we will learn later in this chapter,
this parameter allows us to provide different sets of
resources to cater for devices of varying abilities.

Chapter 8

[219]

Defining new ICF settings
One of the best things about ICF files is that we are able to make use of them
ourselves by creating our own custom settings. To define new settings we just need
to add them to the file app.config.txt, which is automatically generated for us
when creating a new project using an MKB file.

When defining new settings, we can also provide a string of text that explains
what this setting is for. While this description isn't actually used or needed by the
Marmalade SDK, it's a good way of documenting what a setting is supposed to do!

It is, however, important to add definitions for all our settings to
the app.config.txt file because it will prevent the application
generating lots of asserts when it is executed. In a Windows Debug
build, Marmalade checks to see if an ICF setting has been declared
both when loading the ICF file at the start of execution and also
whenever we try to access a setting from within our own code.

We can also define our own section identifiers in the app.config.txt file simply
by listing the name of the section in square brackets and following it with the
new setting definitions. Here's an example illustrating how to create new section
identifiers and settings:

[GAME_DEBUG]
SkipToLevel Skip to a level at game start

[GAME]
FrameRate The frame rate we want the game to run at
MaximumHealth Amount of energy the player has at game start

Defining our own section identifiers can be extremely useful when creating library
modules, such as the GUI and Localise modules created in Chapter 6, Implementing
Fonts, User Interfaces, and Localization. The only difference when creating a module
is that the app.config.txt file changes to modulename.config.txt and it should
reside in a subdirectory called docs in the module's main directory. As an example,
if we were to add our own settings to the GUI module we would create a directory
called GUI\docs, and the file that lists the settings would be called GUI.config.txt.

Accessing ICF settings in code
It's very little use to be able to provide settings in the ICF files without some way of
accessing them. This is where the s3eConfig API comes into play and we can use it
by just including the s3eConfig.h header file.

Supporting a Wide Range of Devices

[220]

The first function we will look at is s3eConfigGetString, which takes the section
identifier and setting name we want to access and also a pointer to an array of char
that will be used to return the value of the setting when the function completes. Since
the app.icf file is really little more than an ASCII text file, all this function does is
return the string of text following the equals sign for the specified ICF setting.

The char array supplied to s3eConfigGetString should be at least of length S3E_
CONFIG_STRING_MAX, as this is the largest string size the function can return. If the
requested setting can't be found in the ICF file this buffer will not be changed, which
is very useful as it allows us to set up a default value for the parameter in our code.

// Set default first level
char lLevelName[S3E_CONFIG_STRING_MAX];
strcpy(lLevelName, "level1");

s3eConfigGetString("GAME_DEBUG", "SkipToLevel", &lLevelName);
// lLevelName will still contain "level1" if the SkipToLevel setting
// could not be found in the ICF file

Quite often we will want to specify ICF settings, which just need a numeric
value. To make this easier for us, Marmalade provides another function called
s3eConfigGetInt, which, instead of a pointer to a char array, takes a pointer to an
int variable.

This function will read the setting string from the ICF file and then attempt to
convert it into an integer value. If this fails (for example, the string contains non-
numeric characters or is out of the range of an int) or the setting does not exist in
the ICF file, the variable's current value will not be changed, thus allowing default
values to be specified in code.

Both functions will return S3E_RESULT_SUCCESS if the setting value could
be retrieved, or S3E_RESULT_ERROR if there was a problem. The function
s3eConfigGetError will let us discover what the problem was by returning one of
the following values:

Value Description
S3E_CONFIG_ERR_NONE No error occurred.

S3E_CONFIG_ERR_PARAM One of the parameters to s3eConfigGetInt or
s3eConfigGetString was not valid. For example,
a NULL value passed in.

S3E_CONFIG_ERR_NOT_FOUND The requested ICF setting could not be found.

S3E_CONFIG_ERR_PARSE There was a problem converting the ICF setting value
to an integer when using s3eConfigGetInt.

Chapter 8

[221]

Limiting ICF settings by platform and device
When targeting a large number of different devices, it is not uncommon to have a
situation where we want to be able to do different things depending on the device
the application is running on.

The ICF filesystem makes handling this incredibly easy by allowing us to provide
different values for parameters based on both the operating system of the device
and even by individual device type.

To begin with, we can provide different settings on a platform-wide basis. The
"Hello World" project from Chapter 1, Getting Started with Marmalade, has already
demonstrated this, but to recap, we limit the settings to a particular operating
system using the OS conditional. This is best illustrated by an example:

[GAME]
FrameRate=20

{OS=BADA}
FrameRate=15

{OS=IPHONE}
FrameRate=30
{}

This example sets a default value for the FrameRate setting of 20. It then overrides
this value for Bada devices with a value of 15 and for iOS devices with a value of 30.
Note that for legacy reasons the value IPHONE refers to all iOS devices (all versions of
iPad and iPod touch as well as all iPhones).

The earlier example ends with open and close braces. This returns all
settings made after this point to being global settings that apply to all
devices and platforms.

It is also possible to make settings that will only apply to a particular subset of
devices on a particular platform. This is done using the ID conditional that first
specifies the platform type and then has a comma-separated list of device identifiers
that the setting should apply to. Here's another example:

[GAME]
FrameRate=30

{ID=ANDROID "HTC Hero", "T-Mobile G1"}
FrameRate=20
{}

Supporting a Wide Range of Devices

[222]

Here we set a default value for the FrameRate setting of 30, then limit the value to
just 20 if the game is running on either of the listed Android devices. Quote marks
are only required on device names that contain spaces.

Wondering how to discover the device name? Often it is the name of the device,
but this is not always the case. The easiest way to discover the device name
for a particular device is to create a short test program that makes a call to
s3eDeviceGetString, as follows:

const char* lpDeviceID = s3eDeviceGetString(S3E_DEVICE_ID);

The s3eDeviceGetString function and its sibling
s3eDeviceGetInt allow us to determine an awful lot of
information about the device we're running on, including the
operating system, processor type, phone number, current language
settings, and much more. Take a look at the s3eDevice.h header
file or the Marmalade documentation for more details.

Creating multiple resource sets
Since Marmalade allows us to target so many different devices, it seems a shame to
limit ourselves to a subset of them just because our graphics are too low or too high
resolution for certain devices, or some devices have less memory and therefore can't
handle lots of high resolution textures.

Another issue we might face is that different devices support different file formats
for audio or video clips. To improve render speed and memory usage we might also
consider using hardware texture compression, which of course varies depending on
the type of graphics processor a particular device has.

Marmalade provides a couple of solutions to these problems. The first, more global
approach is to make use of build styles, which allow us to both load different sets of
resource files when loading a GROUP file and specify the type of hardware texture
compression to apply.

Build styles are then enhanced by the concept of resource templates, which allow us
to more finely control the configuration of resources. Resource templates can be used
to affect the final format of a texture or to modify the way a 3D model is converted
for use in the game, among other things.

Chapter 8

[223]

Using build styles
Marmalade comes with a number of built-in build styles that allow us to build
resources for all the common GPU formats used across mobile devices. The build
styles available are shown in the following table:

Build style Description
sw Build resources optimized for use with Marmalade's legacy

software renderer. Resources built in this way cannot be
rendered using hardware acceleration. This format is now
only of use if we are using the IW_USE_LEGACY_MODULES
define in our MKB file in order to make the software renderer
available for use.

gles1 Builds resources without any form of texture compression.
This is the default if no build style is specified.

gles1-pvrtc Same as gles1, but uses the PVRTC format for texture
compression on images where this type of compression works
well. Typically this just means images with no alpha channel,
as PVRTC tends to perform badly on such textures.

gles-atitc Same as gles1, but uses the ATITC texture compression
format where possible.

gles1-dxt Same as gles1, but uses the DXT format for texture
compression.

gles2-etc Intended for use on devices that make use of OpenGL ES 2.x
and support the ETC texture compression format.

We can also define our own custom build styles should the default ones not
suffice. To do this we create a file in the data directory called resbuildstyles.
itx. This file is automatically loaded by the resource manager when it is initialized
in the call to IwResManagerInit and it contains one or more instances of the
CIwResBuildStyle class.

To declare a build style instance we must give it a name so that it can be selected
for use, an optional list of directories in which resource files can reside, and an
indication of the platform this build style is targeting. Note that in the case of build
styles, the platform does not refer to any particular operating system; instead it
refers to the type of GPU the style targets, which for the most part means the type
of hardware texture compression to be used.

Supporting a Wide Range of Devices

[224]

Here's an example of a resbuildstyles.itx file that will be used for discussion in
the following sections:

CIwResBuildStyle
{
 name "default"
 platform "GLES1"
}
CIwResBuildStyle
{
 name "pvrtc"
 addReadPrefix "data-pvrtc"
 platform "IMG_MBX"
}
CIwResBuildStyle
{
 name "atitc"
 addReadPrefix "data-atitc"
 platform "ATI_IMAGEON"
}

Adding extra resource directories
The addReadPrefix parameter allows us to add a new search path that will
be checked whenever we attempt to load a file of any kind. A directory name
is specified; this must be a subdirectory within the project's data directory.
If you want to add more than one extra search directory, just include further
addReadPrefix entries.

Whenever we try to open a file, Marmalade will first look in the list of extra
directories specified by the build style in the order they were specified. If the
requested file is found in one of these directories, it will be loaded from there;
otherwise the resource manager will revert to looking in the data directory.

Supported build style platforms
The platform field of a CIwResBuildStyle instance can take one of the
following values:

Chapter 8

[225]

Platform value Description
SW Build resources optimized for use with Marmalade's legacy

software renderer. Again, we must be using the IW_USE_LEGACY_
MODULES define in our MKB in order to use this.

GLES1 This is the default option if none is specified and builds resources
that can be rendered efficiently using OpenGL ES.

IMG_MBX Same as GLES1, but uses the PVRTC format for texture
compression on images where this type of compression works well.

IMG_MBX_VGP Currently the same as IMG_MBX.

ATI_IMAGEON Same as GLES1, but uses the ATITC format for texture compression
where possible.

NVIDIA_
GOFORCE

Currently performs the same as GLES1.

ARM_MALI Currently performs the same as GLES1.

While the platform identifier makes it easy to create resources for different types
of GPU, it is also possible to be a little more specific about the type of texture
compression to use. This can be done by specifying the platform as GLES1 and
adding a textureFormat setting. For example, the atitc entry from the earlier
example could be written as follows:

CIwResBuildStyle
{
 name "atitc"
 addReadPrefix "data-atitc"
 platform "GLES1"
 textureFormat "ATITC"
}

The following values can be used for the textureFormat parameter:

Value Description
PVRTC_2 Uses 2-bit PVR texture compression. Not normally recommended, as it

tends to produce poor-quality results. Can be used on devices featuring
an Imagination-produced chipset, such as iOS devices.

PVRTC_4 Uses 4-bit PVR texture compression. This type generally yields good
results for textures with no alpha channel, but can be quite poor when
compressing transparent textures. By default Marmalade will not perform
this type of compression on any source texture with an alpha component.
This type of compression is supported by devices using an Imagination
GPU, for example iOS devices.

Supporting a Wide Range of Devices

[226]

Value Description
ATITC Will compress textures using ATI compression. Automatically uses 4-bit

compression on textures with no alpha channel, or 8-bit compression
on textures with transparency. Supported on ATI/Qualcomm chipsets
typically used in many Android devices.

ETC Uses 4-bit Ericsson texture compression on textures with no alpha
channel. Transparent textures cannot be compressed. Supported on ATI/
Qualcomm chipsets and most chipsets that support OpenGL ES 2.x.

DXT1,
DXT3, and
DXT5

DXT1 compression is a 4-bit format used for non-transparent textures.
DXT3 is an 8-bit format that allows transparent textures to be compressed.
DXT5 is another 8-bit format that has better support for gradients in
the alpha channel. If DXT3 or DXT5 is specified and an opaque texture
is encountered, Marmalade will automatically use DXT1 compression
instead. Available on NVidia Tegra2 chipset devices.

Specifying which build style to use
With our build styles declared, we now just need to let Marmalade know which
of them to use when loading resources. The easiest way of doing this is to use the
ResBuildStyle ICF setting, which we do by adding the following to our ICF file:

[RESMANAGER]
ResBuildStyle=pvrtc

We can also switch between build styles at runtime as the resource manager
provides methods for us to set and get the current build style. The following code
snippets illustrate this:

// Discover the currently selected build style
CIwStringL lCurrentStyle = IwGetResManager()->
 GetBuildStyleCurrName();

// To change to a different build style
IwGetResManager()->SetBuildStyle("atitc");

Bear in mind, however, that while it is easy to switch between build styles, this
behavior is only supported in Windows debug builds. When we create a release
build for devices, we will generally only provide the resources required for that
device type in order to reduce the size of the installation package. We'll be looking
at how to achieve this later in this chapter.

Chapter 8

[227]

Using resource templates
Build styles allow us to make decisions on how the resources for our game are
processed on a global level; but sometimes we want a little more fine-grained control
so we can treat different types of resources in different ways.

This is where resource templates come into play. Put simply, all a resource template
allows us to do is alter the default settings that are applied when processing textures,
materials, 3D models, animations, and GROUP files.

Resource templates can be defined in an ITX file that we parse before attempting to
load any resources. Since these are only required in Windows debug builds, we do
not need to load this file if we won't be building resources.

Marmalade provides a handy define, IW_BUILD_RESOURCES, which is only defined
in Windows debug builds. Using this define, we can reduce the size of our compiled
code by excluding any resource processing code. For example, if our resource
template definitions are contained in a file called restemplates.itx, we could use
the following code snippet to load the file:

#ifdef IW_BUILD_RESOURCES
IwGetTextParserITX()->ParseFile("restemplates.itx");
#endif

The following code provides an example of what the restemplates.itx file might
look like. We'll discuss the different resource template types in greater detail in the
coming sections; but notice how a template called default is defined for each type.
This is so we can revert to normal loading behavior should we want to.

CIwResTemplateImage
{
 name "default"

 formatHW FORMAT_UNDEFINED
 formatSW FORMAT_UNDEFINED
}

CIwResTemplateImage
{
 name "rgba4444_nomipmap"

 formatHW RGBA_4444
 mipMapping false
}

CIwResTemplateMTL

Supporting a Wide Range of Devices

[228]

{
 name "default"
}

CIwResTemplateMTL
{
 name "clamped_unfiltered"
 clampUV true
 filtering false
}

Once a resource template has been defined, it can be invoked from within a GROUP
file by using the useTemplate parameter. This parameter takes the type and name of
a resource template, searches for it and, if found, applies any settings defined in the
template to any resource of the type that is loaded from then on. Here's an example:

CIwResGroup
{
 name "images"

 useTemplate "image" "rgba4444_nomipmap"
 useTemplate "mtl" "clamped_unfiltered"

 "./materials.mtl"

 useTemplate "image" "default"
 useTemplate "mtl" "default"
}

Defining material templates
A material resource template is declared by an instance of the CIwResTemplateMTL
class and is used to provide a starting configuration for all instances of CIwMaterial
that are created while the template is in use.

We can specify any parameter in a material template that can be applied to a
CIwMaterial instance when processed from an ITX file. In the following table,
a few of the more useful ones for template purposes are listed, but for a complete
list take a look at the Marmalade documentation for CIwMaterial:

Chapter 8

[229]

Parameter Description
colAmbient,
colDiffuse,
colEmissive, and
colSpecular

Allows a default RGBA color to be specified for the ambient,
diffuse, emissive, and specular lighting components. For
example: colAmbient { 255, 255, 255, 255 }.

cullMode Specifies the back-face culling method to use for the material.
Can be one of BACK, FRONT, or NONE.

alphaMode Specifies a default transparency mode. Can be one of NONE,
ADD, SUB, HALF, or BLEND.

blendMode Specifies the blending type that will be used when drawing.
Possible values are MODULATE, MODULATE_2X, MODULATE_4X,
DECAL, ADD, REPLACE, and BLEND.

alphaTest Specifies the type of alpha test to use when drawing pixels.
Consists of a test type followed by an alpha value. Valid test
types are DISABLED, NEVER, LESS, EQUAL, LEQUAL, GREATER,
GEQUAL, NOTEQUAL, and ALWAYS. For example: alphaTest
GEQUAL 128.

zDepthOfs and
zDepthOfsHW

Allows this material to have an offset added to the z
component of vertices when they are rendered, to force
drawing backwards or forwards. Useful for drawing glowing
effects so they can be forced to appear behind or in front of a
3D model. zDepthOfs is used in the software renderer and
zDepthOfsHW is used when rendering with OpenGL ES.

filtering Set to true to use bilinear filtering when rendering.

clampUV If true, the UV coordinates are clamped within the bounds of
the texture. This helps avoid the problems caused by bilinear
filtering when rendering the edges of a texture, as bilinear
filtering will attempt to blend between texels on the left and
right or top and bottom of the image as it will assume the
texture can be tiled otherwise.

Supporting a Wide Range of Devices

[230]

Defining image templates
We can also use the resource template system to specify how we want images
to be processed, which includes the ability to specify what texture format is
used. To define a resource template for images we have to declare an instance of
CIwResTemplateImage, which can be configured using the following parameters:

Parameter Description
formatSW and
formatHW

Converts any image to the requested format. The
two versions of this parameter allow a format to
be defined for the software renderer and another
format for OpenGL ES rendering.
For a complete list of texture formats, take a look at
the Marmalade documentation for the CIwImage
class, but bear in mind that some of these formats
apply only to software or hardware rendering. For
example, OpenGL ES does not support any of the
palette-based formats, while the software renderer
does not support compressed formats such as
PVRTC or ATITC.

compressForDiskSpace When true, converting textures using the
formatSW and formatHW parameters will only
store the converted version in the binary version of
the GROUP file if it is smaller (in memory terms)
than the image in its original format. Defaults to
false.

mipMapping When true, mipmaps will automatically be
generated for the image. It can be very useful to set
this to false for images that will form part of the
UI, since these generally want to be drawn at their
native size and mipmaps will not be needed.

allowLowQualityCompression If using a hardware compressed format,
Marmalade will not use the requested compression
if the resulting texture is likely to be of low quality,
for example, when using PVRTC on an image with
an alpha channel. Setting this parameter to true
allows you to force Marmalade to perform the
requested compression.

ignoreImages If set to true, images will be ignored and a 2 x 2
checkerboard texture will be used instead. Can be
useful when debugging to speed up loading time.

Chapter 8

[231]

Defining model templates
When loading a 3D model from a GEO file, we can use an instance of the
CIwResTemplateGEO resource template to control how the model is processed. Many
of the options available allow us to increase rendering performance when we know
that a particular model will be used under certain conditions; for example, it will
only ever be rendered using OpenGL ES or it may have been exported with normals,
which are not required as the model will never be rendered with lighting enabled.

Some of the more useful settings are shown in the following table, but there
are a great many more, so check out the Marmalade documentation for
CIwResTemplateGEO for more details:

Parameter Description
scale Allows a floating point value that will be used to scale all the

vertices of the model, to be specified. Can be useful to allow
3D models to be created in a modeling package with one scale
and used at a different scale in the game.

buildCols,
buildNorms,
buildUVs, and
buildUV1s

If set to true, the processed model data will include vertex
colors, normals, and UV information, assuming it exists in
the exported model. This can be useful to save memory in the
game if lighting or textures are not required on the model.

triStrip If set to true, a model will be conditioned for rendering
using triangle strips. The default is false, which will cause
triangle lists to be generated. Only takes effect if the model is
being conditioned for rendering with OpenGL ES.

calculateNorms If set to true, the model builder will attempt to generate
vertex normals for lighting purposes. Useful if the source
model was exported without normals for any reason.

chunked If set to true, the model will be subdivided into smaller
"chunks" for rendering using binary space partitioning. This
can be useful when rendering a model much larger than screen
size, as it allows whole sections of the model which are off-
screen to be ignored.

maxPrimsPerChunk Used in conjunction with the chunked parameter to specify
the maximum number of polygons each chunk of the model
should contain.

Supporting a Wide Range of Devices

[232]

Defining animation templates
The CIwResTemplateANIM class allows ANIM file data to be adjusted when
being processed. It only provides a couple of options, which are listed in the
following table:

Parameter Description
zeroMotionTolerance Allows a floating point value to be specified that will be

used to filter the translation part of any key frame data.
When animating a model it is possible that the artist may
accidentally include some small movements to the bone
positions, which yields a larger output data set. This value
allows movements up to the specified value to be ignored,
which can mean fewer key frames have to be output.

transformPrecision Another floating point value that specifies the precision
to be used when animating. The default value is 4.0,
meaning that the animation mathematics are calculated
at four times the world space resolution. If you have an
animation with lots of subtle movements, you may want to
consider increasing this value so that those movements are
not lost.

Defining GROUP file templates
Finally, there is the CIwResTemplateGROUP class that is used for creating a texture
atlas. A texture atlas is simply a collection of several smaller textures that are laid
out within a much larger texture. This can improve rendering speed since fewer
texture swaps are required when rendering.

We won't be looking at texture atlases in detail in this book, so if you want
further information take a look at the Marmalade documentation page for the
CIwResTemplateGROUP class.

Producing binary versions of resources
Previously in this book we've seen references to the fact that Marmalade produces
binary versions of our resources, which are normally both smaller in size and quicker
to load compared to the source assets.

Until now we've kind of glossed over this a little, but now that we know about build
styles it's worth taking a closer look.

Chapter 8

[233]

The binary versions of resources are generated automatically for us whenever we
load a GROUP file, assuming we have the ICF setting ResBuild set to 1 and we're
running a Windows debug build of our game. These files are written out with the file
extension .group.bin into a directory called data-ram, which lives alongside the
regular data directory where our source assets reside.

If we look inside the data-ram directory for any project, we'll discover another set
of subdirectories and these are what contain the binary versions of our resources.
These subdirectories correspond to the extra prefix directories that we specify in
our build styles.

When the .group.bin files are written out, they will always be written to the prefix
directory specified by the currently active build style, regardless of whether the source
file was read from the standard data directory or from the extra prefix directory.

The relative directory path from the data directory will also be created in the output
directory when writing out the binary versions of the files.

This makes it very easy for us to deploy different sets of resources to different
platforms as we just need to include all the .group.bin files from one of the
subdirectories of data-ram.

Let's illustrate this with a quick example. Suppose we have a file data/images/
images.group that loads in a number of textures. If no build style is specified, the
default is the Marmalade-defined GLES1 style, which specifies a prefix directory
called data-gles1. The binary version of the file will be written to the file path
data-ram/data-gles1/images/images.group.bin.

If we now run our program again, with the pvrtc build style selected (as defined
in the section on build styles earlier in this chapter), the images will be converted to
PVRTC format and instead written to the file path data-ram/data-pvrtc/images/
images.group.bin.

As it happens, Marmalade does not just write out the binary versions of the GROUP
files, it also creates a number of other files that can be useful for debugging purposes.
We won't look at these in detail in this book, but you might find them useful to
take a look at if you're having problems with some resource not being processed as
expected. In particular, there is a file with the extension .group.bin.txt that details
all the classes encountered while processing a particular GROUP file.

Supporting a Wide Range of Devices

[234]

There is one drawback to this approach, that is, you must load every
single GROUP file that your game makes reference to in order to
generate all the binary versions of them. This can particularly be a
problem if your game has a large number of levels and you have a
GROUP file for each level. A good way of solving this issue is to create
a special mode for your game that can be given a list of all the required
GROUP files (and potentially any dependencies between them) and will
then load each file in turn to generate the binary version.

Compressing resources using the Derbh
archiver
Game resources can soon grow very large in size, so it would be great if we could
somehow compress these files so that they take up less space in our installation
package, particularly if there are any restrictions on the maximum size an install
package can have.

Marmalade provides just such a feature in the form of Derbh archives, which is very
similar to compression systems such as ZIP that you will no doubt be familiar with.
Derbh supports multiple compression algorithms, including the standard LZMA
and also its own proprietary algorithm, which can achieve improved compression by
operating over multiple files simultaneously.

The Marmalade SDK provides an API which allows us to load compressed files as
easily as if they were provided as individual uncompressed files. A command-line
utility called DZip is also provided to generate the archives in the first place.

Creating a Derbh archive
To create a Derbh archive, the first thing we have to do is create a DZip
Configuration File (DCL). This file is passed to the DZip utility to specify the source
files and how they should be compressed. Here is a simple example of a DCL file
taken from the Skiing example project for this chapter:

archive data-ram\data-gles1\skiing.dz
basedir data
basedir data-ram\data-gles1

file text\EN.str 0 dz
file models.group.bin 0 dz
file flag\flag.group.bin 0 dz

Chapter 8

[235]

file rock\rock.group.bin 0 dz
file skier\skierskiing.group.bin 0 dz
file sound\sound.group.bin 0 dz
file tree\tree.group.bin 0 dz
file ui\ui.group.bin 0 dz

The first line uses the archive keyword to specify the name of the Derbh archive to
be created, which is normally given the extension .dz. It is possible to create several
archives at once by simply adding further archive entries.

The basedir keyword allows us to specify a directory in which to search for the files
that will make up the archive. In the previous example we specify the directories
data and data-ram\data-gles1.

Next we list all the files that will be added to the archive using the file keyword.
The first parameter is the name of the file to include, which should be relative to one
of the directories specified by the basedir keyword. This is followed by a number
and a compression type. The number refers to which archive the file should be added
to, with zero being the first archive specified in the DCL file.

There are a number of compression types available, although note that not all of
them actually compress the source file! We can use a different compression type for
each file if we so wish. The following table shows the types available:

Type Description
lzma Uses lzma compression, which generally gives the best compression

ratio and has a reasonable decompression speed.
dz Marmalade's own compression format, which gives a good compression

ratio and decompression speed.

zlib Uses zlib compression, which provides a less optimal compression ratio
but has a very good decompression speed.

zero A block of zeros the same size as the file will be added to the archive.
Can be used for debugging purposes, for example, if we need to detect
corrupted files.

copy The file is included uncompressed in the archive. In the case of a file
type that is already compressed, this can produce a smaller end file size
for the archive than trying to compress the file.

With the DCL file constructed, we can then build the archive file using the DZip
utility. This utility can be found as the file tools\dzip\dzip.exe in the Marmalade
SDK install directory.

Supporting a Wide Range of Devices

[236]

To create the archive, simply pass the name of the DCL file into the DZip utility,
ensuring you run the command from within a directory where the archive and
basedir entries can be located.

Using a Derbh archive in code
With a Derbh archive created, it is then really easy to make use of it in our game.
Firstly we need to add support for the Derbh API by adding derbh to the list of
subprojects in the MKB file. We also need to include the derbh.h file to provide
access to the API functions.

To make use of our archive file we just need to add a call to the function
dzArchiveAttach, which takes a single parameter—the filename of the Derbh
archive itself. From then on any call to open a file will first check to see if it exists in
the Derbh archive, and if it does the data will automatically be decompressed and
returned whenever we try to read from the file. It really is that simple!

We can attach more than one archive at a time as well by simply calling
dzArchiveAttach for each archive we wish to use.

If a request is made for a file that doesn't appear in the archive, Marmalade will then
look in the data and data-ram directories.

If we want to stop using a Derbh archive for any reason, we can either call
dzArchiveDetach to remove the last archive that was attached or we can specify
the archive to detach using the dzArchiveDetachNamed function.

It is important to note that only files loaded from within the application
code will be accessible from an attached Derbh archive. If you are
trying to start a music track with s3eAudio or a video clip with
s3eVideo, these files must exist as separate files as they are loaded by
the operating system native methods, which obviously will have no
way of accessing a Derbh file's contents.

The automatic Derbh method
For most projects there is actually an even easier way of making use of Derbh
archives, which doesn't require us to create a DCL file or build a Derbh file ourselves.
We don't even have to attach the archive in our code! To make use of this feature, all
we need to do is add the following to the deployments section of our MKB file (we'll
be covering this section of the MKB file in greater detail in just a moment).

Chapter 8

[237]

deployments
{
 auto-derbh
}

With this in place, the Marmalade Deployment Tool will automatically build us a
Derbh archive from the relevant files in the assets section of the MKB file (again,
the assets section will be discussed shortly) and will attach it before our application
code starts executing.

Be wary of using the automatic Derbh facility if you ever deploy files
that need to be modified by your code after installation. You will
not be able to modify a file once it is contained within an archive, so
you would instead need to make a copy of any such files in a new
location the first time your application runs.

Creating different deployment types
It's now time to take a deeper look at how Marmalade handles the deployment
process. If you've been following the sample code, you may be wondering how
we are able to make a deployment package that contains all the necessary resource
files in order to function. Or, if we're creating multiple resource sets, how do we
choose which one to pair with our code when creating the installer package?

We also need a way of including icons and captions that will be used to represent
our application when installed on a device.

All of this magic occurs in the MKB file, and the following sections aim to explain
exactly what you have to do.

Specifying icons, application names, and
other details
The deployments section of the MKB file is where we can set all manner of attributes
that will be applied to the final installation package of our application. There are a
huge number of deployment options that can be specified, some of which are global
to all supported platforms and some that are operating system specific.

Supporting a Wide Range of Devices

[238]

The following table lists several of the more immediately useful attributes, but you
should go to Marmalade | Marmalade Development Tools Reference | MKB File
Settings | Deployment Options in the Marmalade documentation for full details.

Attribute Description
assets Specifies which asset group to use in a deployment.

This will be explained in greater detail in the
following sections.

name Specifies the name of the deployment. This name
will be used for the name of the installation
directory, the executable file, and the installation
package file. If this value is not specified, the
filename of the MKB file will be used instead.

caption This is the name that will be used to identify the
application once installed on the device—for
example, the text that appears underneath a
program icon. If no caption is specified, the name
value will be used instead.

app-icf Allows an alternative file to be specified for use
instead of the default app.icf file.

version Specifies the version number of the application. It
should be provided in the form major.minor.
revision.

version-major,
version-minor, and
version-revision

An alternative way of specifying the version
number. Each of these attributes should be
followed by a number representing the respective
part of the version number.

iphone-icon,
iphone-icon-ipad,
iphone-icon-high-res, and
iphone-icon-ipad-high-res

Sets the icons for use in iOS deployment. These
settings specify a filename to an icon of suitable
format and dimension to be used as the specified
icon type.

android-icon,
android-icon-hdpi, and
android-icon-ldpi

Sets the filenames containing the icons for use on
Android deployments.

bada-icon Specifies the file to be used for the icon on Bada
deployments.

As you can see, there are options for specifying the icon files for most platforms and
indeed there are further platform-specific attributes for specifying information such
as application signing keys.

Chapter 8

[239]

You should check out the aforementioned page of the Marmalade documentation for
further details on this, as you will be unable to produce final deployment packages
for submission purposes without this information.

Specifying asset lists
We need some way of listing all the resource files that have to be included in the
deployment package so our game can run. Marmalade allows us to do this by way
of the assets section of the MKB file. Here's an example from this chapter's version
of the Skiing project:

assets
{
 [common]
 (data)
 sound/music.mp3

 [normal]
 <include common>
 (data-ram/data-gles1)
 skiing.dz

 [highres]
 <include common>
 (data-ram/data-highres)
 skiing.dz
}

This small example demonstrates most of the functionality available in the assets
section. First, you will notice the use of square brackets to create named groups of
assets. In the example we have asset groups called common, normal, and highres.

Normal brackets are used to specify a directory, relative to the directory containing
the MKB file, where files that need to be included in the deployment package can be
located. This is then followed by the files themselves. You can have any number of
these blocks of files in an asset group.

The important thing to remember about how directories and files are specified in an
asset group is that the directory in brackets becomes the root path of the application's
installation directory on the device. Let's illustrate this by looking at an example.

First we have the common asset group, which specifies that the file called sound/
music.mp3 can be found in the data directory. When installed on the device, the
music.mp3 file will be written into a subdirectory called sound in the application's
installation directory.

Supporting a Wide Range of Devices

[240]

Now let's consider the asset group called normal. Here the path to the file is
completely enclosed in the brackets and just the name of the file, skiing.dz, is
specified. This will result in the skiing.dz file being written into the application's
installation directory.

There is one final feature of the assets section demonstrated by the example, which
is the ability to include an asset group from within another asset group. This is done
using the include keyword, which is enclosed in angle brackets along with the name
of the asset group to be included.

Looking at the example we can see that both the normal and highres asset groups
include the common asset group.

Creating and using deployment types
We can now look at creating different configurations for different devices. The
deployments sections of the MKB file also allows us to create different deployment
types by specifying a name in square brackets. All settings that are made after this
will only apply to that deployment type. Settings can be applied globally across
all deployment types by specifying them with square brackets before defining a
deployment type.

It is possible to limit a deployment type to a certain set of mobile platforms by
following the name in square brackets with a platform identifier or a comma-
separated list of platforms in quote marks.

A full list of all the platforms supported by Marmalade at the time of this writing is
provided in the following table:

Platform Notes
android Specifies the Android operating system.

iphone Any iOS-based device—iPhone, iPod touch, or iPad.

bada Targets the Samsung Bada platform.

lgtv Specifies the LG Smart TV system.

playbook For targeting the Blackberry Playbook tablet.

symbian9 Builds an application that runs on Symbian 9 S60 or Symbian ^3 devices.

Chapter 8

[241]

Platform Notes
webos Targets the webOS platform, the best known device being the now

discontinued HP TouchPad.

winmobile Allows for Windows Mobile 6 device support. Note that Marmalade
cannot target Windows Phone 7.

win32 For x86 Windows builds.
osx For x86 Apple Mac builds (when using the Mac version of Marmalade).

It is not mandatory to specify a platform list in a deployment type. If no list is given,
it is assumed that any platform is a valid target.

Once a deployment type has been specified, any attributes will only apply to that
deployment type. This is particularly useful to us for being able to specify different
sets of resources. By using the assets attribute we can specify the asset group that
we want to be included in the final deployment package. The following example of
the deployments section is taken from the Skiing project for this chapter.

deployments
{
 name="SkiingC8"
 caption="SkiingC8"

 [normal]
 assets=normal

 [highres]
 assets=highres
}

Supporting a Wide Range of Devices

[242]

To create an installation package for a particular deployment type, all we have to do
is follow the same deployment instructions provided in Chapter 1, Getting Started with
Marmalade, of this book to start up the Marmalade System Deployment Tool. The
second page of this application allows us to choose the deployment types that we
want to create by clicking on checkboxes, as shown in the following screenshot:

This page does allow you to create and modify deployment types by way of the
Add <config>, Copy <config>, and Remove <config> buttons, but I personally
prefer specifying them by hand in the MKB file. Using these buttons modifies the
MKB file accordingly.

Once you have progressed through all the pages of the deployment tool and made
the deployment packages, they can be found in the folder build_projectname_
vcxx\deployments, where projectname is the name of the MKB file and vcxx
refers to the version of Microsoft Visual C++ that you are using for development.

Example code
There are two example projects that accompany this chapter, and they are described
in the following sections.

Chapter 8

[243]

The build styles project
This is a very simple example demonstrating the use of build styles, resource
templates, and deployment types. It is based on the Graphics2D example from
Chapter 2, Resource Management and 2D Graphics Rendering.

The resbuildstyles.itx file defines a build style called highres that specifies a
prefix directory called data-highres. If you look inside the data directory, you will
see that the jar of the marmalade image in data\images\textures\marmalade.png
is 256 x 256 pixels in size. A new directory for the highres build style has also been
added, containing a 512 x 512 version of this image. This file is called data\data-
highres\images\textures\marmalade.png.

If you now look at the app.icf file, you will see the new entry
ResBuildStyle=highres. If you run the program with this line in place, the 512 x
512 version of the image will be loaded. Comment out or remove this line, and the
256 x 256 image will be loaded.

The restemplates.itx file shows a simple example of a resource template that
will force the images to be converted into RGBA4444 format and also disables
mipmapping. This resource template is used in the data\images\images.group file
to reduce the size of the images.group.bin file as no mipmap images need to be
stored in it.

Finally, the BuildStyles.mkb file declares two deployment types called normal and
highres. When making an install package using the Marmalade System Deployment
Tool, we can select either of these options to include the low or high resolution images.
Note that the deployment tool will also list the default deployment type as this is
always defined automatically by the deployment tool. Using the default type will not
include any resources and so will not work on the device.

The Skiing project
For this chapter the Skiing project has been updated to use build styles, resource
templates, and deployment types. It also makes use of Derbh archives to reduce the
size of the install package.

In this instance the build styles system has been used to allow a larger size of font to
be used on devices with a higher screen resolution. The data\data-highres\ui\
fonts directory contains alternative versions of the font files skiing.gxfont and
skiing.tga that will be loaded when the highres build style has been selected in
the app.icf file.

Supporting a Wide Range of Devices

[244]

No changes were necessary to any of the UI layout configuration since we used the
approach of sizing controls based on the screen dimensions of the device. We just
need a slightly bigger sized font to fill the larger screen area better.

To make deployments easier and to reduce the overall memory size of install
packages, the Derbh API has also been used. If you look in the root project directory,
you will see two new files called skiing.dcl and skiing-highres.dcl. These files
list all the resources needed by the game and are used as input to the DZip tool to
create the archive files. A batch file called MakeDerbh.bat has also been included to
demonstrate use of the DZip tool.

Note that the Derbh archives can obviously not be created until the various .group.
bin files have been generated. In order to do this you will need to run the game
twice, once with the ResBuildStyle=highres setting set in the app.icf file and
again with this line commented out.

The two DCL files create the target archives inside the data-ram\data-gles1 and
data-ram\data-highres directories, but both generate an archive called skiing.
dz. The deployment types in the Skiing.mkb file include the relevant version of this
file so our code becomes independent of the deployment type. At the start of the
program we just have to attach the skiing.dz archive with the dzArchiveAttach
function in order to access the correct resource files.

Summary
In this chapter we have learnt how Marmalade makes it easy to organize our
resource files so that we can create different versions of them for devices of different
specifications. We only need to provide alternative versions of resources that must
be different, for example higher resolution textures. Any common files, such as
configuration and GROUP files, can generally stay the same.

We've also covered the use of resource templates to allow us finer control over
how our resources will be used in the game (for example, by specifying a particular
type of texture compression to be used) and we've seen how to make different
deployment types that include the same core code but different resource files.

Finally, we've also looked at the Derbh API to allow us to compress our resource files
to save space in the installation package.

In the next chapter we'll be looking at how we can make use of social media to allow
our players to share information about our game with their Facebook friends.

Adding Social Media and
Other Online Services

Modern mobile devices are now amazingly powerful when it comes to graphics and
sound, but perhaps the biggest differentiator between them and other dedicated
hand-held videogame systems is that most of them are able to connect to the Internet.

While other gaming systems may be able to go online via WiFi, many modern
devices can also use a 3G or other such data connections to connect to the Internet
wherever the user happens to be. For this reason many games now feature the
ability to connect to social media sites such as Facebook, or to share scores using
services such as Apple's Game Center.

In this chapter, we will be looking at how it is possible to use Marmalade to add
the following online capabilities to our games:

•	 Launching a web browser to display a web page
•	 Integrating with Facebook on iOS and Android
•	 Familiarizing ourselves with the possibilities for other online functionality,

including advertising and in-app purchasing

Launching a web page in the device
browser
Let's start our foray into the realm of the connected world by looking at the
simplest way of adding an online feature to our games—launching a web page
in the device browser.

Adding Social Media and Other Online Services

[246]

Being able to direct the user to a website can be extremely useful for things such as
instruction manuals, hints and tips, or technical support access. It is also great for
cross promotion of titles by making it really simple to deliver a Get More Games
button that highlights other games you have created.

How do we accomplish this magic? It's really simple! Just include the header file
s3eOSExec.h and then make a call to s3eOSExecAvailable to see if the functionality
is supported by the platform we are running on. Most of the platforms supported by
Marmalade allow this functionality, but it is always best to check!

If support is available, all we have to do is call the function s3eOSExecExecute
with the URL of the web page and a Boolean value indicating whether or not our
application will quit. On platforms that don't support multi-tasking this parameter
will make no difference, so it is usually OK to set this flag to false to ensure that our
application is not closed down.

Here's a code snippet to illustrate:

if (s3eOSExecAvailable())
{

 s3eOSExecExecute("http://www.google.com", false);
}

The main disadvantage of this approach is that by launching the application in
the device's internal web browser, it takes the user away from our game; but in
the cases mentioned previously, this may be an acceptable trade-off given how
easy it is to implement.

Integrating with social media
Social media sites such as Facebook provide a great way of advertising our games by
getting our players to spread the word for us. There are countless examples of games
which allow players to post a message to their Facebook wall or Twitter feed to show
off their latest high score or boast about achieving a certain target in the game.

In this section we will take a detailed look at how we can implement integration with
Facebook and we will also talk briefly about Twitter.

Using Facebook
Marmalade comes with an API called s3eFacebook that wraps up most of the tricky
stuff involved in communicating with the Facebook servers. Unfortunately this ease
of use does come at a price, which is that it is only supported on iOS and Android.

Chapter 9

[247]

If Facebook support is required across all platforms, we would need to implement
everything from scratch using HTTP requests via the IwHTTP API provided with
Marmalade. This is a challenging task, so we'll be using the s3eFacebook API in this
part of the book.

Creating a Facebook app
The first step in Facebook integration to a Marmalade project is to create a Facebook
App on the Facebook website, which is really little more than a way of authenticating
the source of any Facebook API requests.

When we create a Facebook App we are provided with two hexadecimal values. One
is called the App Id (also known sometimes as the API Key) and the other is the App
Secret. These values will be needed when we send requests to Facebook in order to
identify our application on the Facebook servers.

To create a Facebook App follow these steps:

1.	 Log in to Facebook by visiting www.facebook.com and entering your
username and password. If you do not already have a Facebook account,
you can also sign up for one at this address.

2.	 Once you are logged in to Facebook, visit the URL www.facebook.com/
developers. If you have never created a Facebook App before, you will see a
dialog like the one in the preceding screenshot. This screen has a single drop-
down box that allows you to specify whether everyone or just your friends
will be able to see posts created by the application. For now leave this set to
the default value of Everyone and click on the Go to App button.

Adding Social Media and Other Online Services

[248]

3.	 You will now see a screen detailing all the Facebook Apps you have created,
which will be empty assuming this is the first App you have ever created!
Click on the + Create New App button to start creating a Facebook App.

4.	 The previous dialog box shown should now appear, minus the pink box
containing the text about verifying your account (more on this in a moment).
For the purpose of this chapter all we need to supply is the App Name value,
which is a string that will be shown to the user when our Marmalade project
first attempts to access Facebook. It therefore makes sense to use the name of
the game or perhaps your company name for this field.

5.	 Click the Continue button to create the Facebook App. Note that the
remaining fields can be ignored for now. The App Namespace value is used
to reference the application on Facebook as a URL or as part of an HTTP
request and is for more advanced Facebook integration. The Locale and Web
Hosting controls can also be ignored for the purposes of this chapter.

6.	 You will now be shown one of those annoying Captcha dialogs to prove
you are a human and not some kind of spamming web bot. Enter the words
shown in the image to proceed.

7.	 At this point it is likely that you will be shown the Create New App dialog
from step 4 again, this time with the text in the little pink box. This is another
security check put in place by Facebook to stop hundreds of rogue Facebook
applications from being created. You need to authorize your Facebook
account before you can create a Facebook App. I would suggest you click the
link labeled mobile phone to verify your account as it is by far the easiest
way. You will be asked to enter your mobile phone number so a text message
can be sent to you containing an authorization code that you then enter into a
dialog to verify yourself.

Chapter 9

[249]

8.	 Once you have verified your account you will return to the Create New App
dialog once again. Ensure the App Name value is correct and click on the
Continue button again. The Captcha screen will likely rear its ugly head once
more, so fill it in.

9.	 At this point the Facebook App has been created and you should now
be looking at a screen similar to that shown before, which shows various
pieces of information about the Facebook App. The most important are the
App Id/App Key and App Secret values, which you'll need later; so make
a note of them.

Creating a Facebook test user
We will obviously want to test the Facebook integration of our application out once it
has been implemented, but it would be good if we didn't have to spam all our friends
with test wall posts and the like. It's therefore a good idea to create a test user.

Adding Social Media and Other Online Services

[250]

For understandable reasons Facebook doesn't really want us to create full Facebook
accounts for our test users, so instead they allow us to create test users using our
Facebook App. Follow these steps to create a test user:

1.	 Log in to Facebook and then visit the www.facebook.com/developers page.
2.	 Click on the relevant Facebook App in the left-hand pane and then click on

the link labeled Edit Roles on the right-hand side of the Roles section of
the page.

3.	 The Roles page for the Facebook App will be displayed (see previous
screenshot). At the bottom there is a section labeled Test Users, which
has a link labeled Add that you should click on to create new test users.

4.	 A small dialog box will appear with three options. The first is labeled
Number to Add and is a drop-down box allowing between one and ten
test users to be generated.

5.	 The Authorize this App checkbox allows us to determine whether the created
users have already authorized the Facebook App to use their account. It's
worth creating users of both types to fully test our application, but ultimately
it's up to you whether you authorize now or when we first try to log in using
this user account.

Chapter 9

[251]

6.	 Finally, the Enable Ticker checkbox lets you decide whether the user will
be using the Facebook Ticker interface (which is a real-time timeline of wall
posts and other events) or the older standard interface. Not all users have
access to the newer Ticker interface, so it is again worth testing your project
using both methods.

7.	 Click the Add button to create the new users. You will return to the screen
first shown in step 3, but the new users will be shown at the bottom of the
page now.

8.	 Each test user will have a couple of links next to them. You should first
click on the Set Password link to allow a password to be set for this user. A
textbox will appear, to allow you to enter a password.

9.	 Next, click on the Switch To link next to one of the users to log in as that user
and display their Facebook wall.

10.	 At the top right of the test user's wall, there should be a button labeled Edit
Profile. Click on it.

11.	 On the Edit Profile screen, click on the Contact Information link in the left-
hand side panel.

12.	 At the top of the screen there should be two e-mail addresses associated with
the profile. One of these should be of the form username@tfbnw.net, which
is the e-mail address we will need to use later to log in as the test user. Make
a note of this e-mail address and the password you set in step 8.

Adding the s3eFacebook API to a Marmalade
project
With the Facebook App and test users configured, let's get down to adding Facebook
support to a Marmalade project. The first thing to do is open the project MKB file and
add s3eFacebook to the list of subprojects. We can then include the s3eFacebook.h
file whenever we need to make use of the s3eFacebook API functions.

We also need to add another configuration setting to the MKB file in the
deployments section. The line in question looks like this and is only needed for iOS
builds. On iOS our application temporarily loses focus when we log in to Facebook
and this value ensures that we regain control when the login process is completed:

iphone-bundle-url-schemes="fb0123456789abcdef"

The hexadecimal value following the initial fb should be replaced with the 16-digit
App Id generated by the Facebook App.

Adding Social Media and Other Online Services

[252]

Checking for s3eFacebook support
As previously mentioned, the s3eFacebook API is only supported on iOS and
Android, so it's good to be able to check at runtime whether we can support
Facebook or not. This is easily done using the s3eFacebookAvailable function,
which will return S3E_TRUE if the API is available or S3E_FALSE if it isn't.

Initialization and termination
Before we can call any of the s3eFacebook APIs, we must first initialize a Facebook
session. We do this with a call to the function s3eFBInit that takes a single parameter,
a null-terminated string containing the App Id of the Facebook App we want to use.

The function will return a pointer to an s3eFBSession instance, which we will need
to use to access the Facebook API and make requests to it.

We can release the Facebook session with a call to s3eFBTerminate, which takes the
session pointer returned from s3eFBInit as its only argument.

It is sufficient to call the s3eFBInit function the first time we want to make any
Facebook request and then to use this same session information for the execution
life of our application. The s3eFBTerminate function only needs to be called at
shutdown time.

Logging in and out of Facebook
Before we can make any Facebook request, we must first log in to Facebook. This
is done with the s3eFBSession_LogIn function, which takes five parameters. The
first is the s3eFBSession pointer returned from s3eFBInit. We can then specify
a callback function, which will be triggered once successfully logged in. A pointer
to a block of user data can also be specified, which will be passed into the callback
function when it is triggered.

The callback function can be specified as NULL, in which case we need to check for
login to be completed by calling the s3eFBSession_LoggedIn function. This takes
the session pointer as an argument and will return S3E_TRUE when the session is
logged in.

The final two parameters of s3eFBSession_LogIn are an array of null-terminated
strings listing the Facebook API permissions we want to make use of and the number
of permissions in this array. Permissions allow our application to notify the user
that our application wants to perform certain operations on their account, such as
posting to their wall or accessing their photo collection. A full list of permissions
can be found at the web page http://developers.facebook.com/docs/
authentication/permissions/.

Chapter 9

[253]

The following example code shows a sample callback function and how to use it with
the s3eFBSession_Login function:

// Login callback
void LoginCallback(struct s3eFBSession* apSession,
s3eResult* apLoginResult, void* apUserData)
{
 if (*apLoginResult == S3E_RESULT_SUCCESS)
 {
 // Logged in OK
 }
 else
 {
 // Login failed
 }
}

// Log in to Facebook using the session returned from s3eFBInit.
const char* permissions[] = { "publish_stream" };

s3eFBSession_Login(lpSession, LoginCallback, NULL,
 permissions, 1);

This code attempts to log in to Facebook requesting the publish_stream permission
that allows an application to post to a user's wall.

When a Facebook login attempt is made, our application will lose focus and the
device's Facebook application will be started. If the user doesn't have a Facebook
application installed, the device's web browser will be launched instead.

You will be asked to provide your Facebook account's login details, so for testing
purposes enter the details for one of the test user accounts we generated earlier. Once
logged in, another screen will appear detailing what our application wants to do
with the user's Facebook account. In the previous example this would just be posting
to the user's wall. If the Facebook App has not yet been authorized for the Facebook
account, the screen will also have two buttons labeled Allow and Don't Allow,
which the user can use to grant or disallow access respectively.

The Facebook login process will first look to see if a user is already
logged in to Facebook by looking for a browser cookie, and will
not ask for username and password details if this is the case. If the
test device is also your own personal device, you will probably
want to log out of Facebook before testing your application to
avoid annoying those on your friends list!

Adding Social Media and Other Online Services

[254]

After authorizing (or indeed disallowing) the Facebook App, our application will
regain focus and the login callback function will be triggered to say whether the
process was successful or not. If the Facebook app was not authorized or there is no
Internet connection available, login will fail.

Logging back out of Facebook again is also simple. All we have to do is make a call
to s3eFBSession_Logout, passing the s3eFBSession pointer as its only argument.
In practice we only ever need to log out of Facebook on closing our application or if
you specifically want to log off to allow different user credentials to be used instead.
The session will not expire or become invalid as long as our application is executing.

Posting a message to a user's wall
We'll now take a look at one of the most common things that games use Facebook
for: posting a message to the user's wall to alert their friends to a new high score or
some in-game achievement.

In order to do this we'll be making use of the Facebook Graph API. There are other
ways, but the Graph API is the most up-to-date way of doing so and doesn't look
likely to be replaced any time soon.

For more information on the Facebook Graph API take a look at the web
page http://developers.facebook.com/docs/reference/
api/, and for details about wall posts take a look at http://
developers.facebook.com/docs/reference/api/post/.

To begin making a Facebook Graph API request, we use the function s3eFBRequest_
WithGraphPath. This function takes as arguments the session pointer, the desired
Facebook Graph path, and the HTTP method to use (GET or POST). The Graph path
and HTTP method are both specified as null-terminated strings.

The function will return a pointer to an s3eFBRequest structure representing the
new request if it is successful, or NULL if it fails.

With the request structure created, we can now add the various parameters we
need to it using the functions s3eFBRequest_AddParamNumber and s3eFBRequest_
AddParamString. Both functions take the s3eFBRequest structure pointer and a
null-terminated string for the parameter name as their first two parameters. The
third parameter is a 64-bit integer value (Marmalade defines a type called int64 for
this) for the former function call, or a const char pointer to a null terminated string
for the latter function.

Chapter 9

[255]

Most Graph API values will require you to specify an access token to show that
your application is authorized to make requests. The access token is provided
to our application as part of the login process and we can retrieve it using the
s3eFBSession_AccessToken function, which again takes the session pointer as its
sole input. The access token is returned as a const char pointer.

The access token can then be added to a Graph request using the s3eFBRequest_
AddParamString function by specifying access_token for the parameter name and
using the return value from the s3eFBSession_AccessToken function as the value
for the parameter.

Once all parameters have been added to the request, we can send it to the Facebook
servers using the s3eFBRequest_Send function. This function takes the request
pointer as its first input, followed by a callback function and a pointer to an optional
block of data that will be passed to the callback function when it is triggered.

The function will return immediately with S3E_RESULT_SUCCESS if the request was
sent, or S3E_RESULT_ERROR if there was a problem transmitting it. The s3eFacebook
API will wait for the request from Facebook to arrive and will call the specified
callback function with the result when it does.

When a request is completed we should make a call to s3eFBRequest_Delete to free
any resources associated with it.

Let's look at an example illustrating all of the previous points for posting a simple
message to the user's wall:

// Sample callback function for s3eFBRequest_Send function
void RequestCallback(struct s3eFBRequest* apRequest,
 s3eResult* apRequestResult, void* apUserData)
{
 if (*apRequestResult == S3E_RESULT_SUCCESS)
 {
 // Request successful
 }
 else
 {
 // Request failed
 }

 // Free the request resources
 s3eFBRequest_Delete(apRequest);
}

// The following code snippet illustrates how we can send a request

Adding Social Media and Other Online Services

[256]

// to Facebook using the Graph API to post a wall message

s3eFBRequest* lpRequest = s3eFBRequest_WithGraphPath(lpSession,
 "me/feed", "POST");
if (lpRequest)
{
 // Add the required parameters
 const char* lpAccessToken = s3eFBSession_AccessToken(lpSession);
 s3eFBRequest_AddParamString(lpRequest, "access_token",
 lpAccessToken);
 s3eFBRequest_AddParamString(lpRequest, "message",
 "Hello Facebook!");

 // Send the request to Facebook
 if (s3eFBRequest_Send(lpRequest, RequestCallback, NULL) ==
 S3E_RESULT_SUCCESS)
 {
 // Wait for the callback to be triggered now!
 }
 else
 {
 // Error occurred sending request, so free it
 s3eFBRequest_Delete(lpRequest);
 }
}

Further s3eFacebook features
The previous sections really just scratch the surface of the kind of Facebook
integration that is possible using s3eFacebook. For example, we have made no
mention of processing any results sent back to our application by the Facebook
API. There is a whole family of functions with the prefix s3eFBRequest_Response
that allow the return values from a Facebook request to be analyzed.

For more information on the entire s3eFacebook API, go to Marmalade API
Reference | Extensions API Documentation | Facebook Extension | Facebook
API Reference in the Marmalade documentation.

Using Twitter
Sadly Marmalade provides no dedicated built-in support for Twitter; so if Twitter
is important to you, you'll need to provide your own implementation.

Chapter 9

[257]

One way of doing this would be to use the Twitter API directly by sending HTTP
requests to Twitter's servers using the IwHTTP API. This would allow a solution to
be created that should work fine on all operating systems; but this might require a lot
of code to be implemented to deal with all the possible problems that can occur when
working online (for example, lack of internet connection, server timeouts, and so on).

Another possibility, although it would be limited to iOS and Android, would be to
use the Marmalade Extensions Development Kit (EDK) to access existing Twitter
solutions on these two platforms. This may be simpler to implement since the
low level Twitter API HTTP requests will have been taken care of; but the EDK
is currently only supported by iOS and Android. Chapter 10, Extending Marmalade
with the Extensions Development Kit (EDK), of this book will be looking at the EDK in
more detail.

If you are interested in supporting Twitter in Marmalade, the following web page
may be of use to you:

https://dev.twitter.com/docs/twitter-libraries#cplusplus

It mentions a number of existing C++-based libraries for accessing Twitter that may
form a good starting point for a Marmalade solution.

Connecting to other types of online
services
We'll now take a quick look at some of the other types of online services that games on
mobile devices typically connect to. While we won't be covering these in depth, it's still
worth giving them a mention in order to form a better picture of what is possible.

Supporting social gaming networks
Social gaming networks such as Apple's Game Center or cross-platform solutions
such as Scoreloop or OpenFeint have become commonplace in many mobile games.
In the following sections we will look at some of the possibilities we have available
in Marmalade projects for these types of services.

Using Apple's Game Center
One of the most well-known social gaming systems in the mobile games world has to
be Apple's Game Center (http://www.apple.com/game-center/). Unsurprisingly,
this system is solely devoted to iOS-based devices, so if you are developing a game
for iOS this is probably going to be your first choice for support.

Adding Social Media and Other Online Services

[258]

We cannot access Apple's API directly given that it is an Objective-C library,
so Marmalade instead comes with a wrapper API for the service, called
s3eIOSGameCenter.

The s3eIOSGameCenter API is far too big for us to delve into here, but it is quite
a close wrapping of the standard Apple-supplied API and thus fairly simple to
understand how to convert any sample code you may come across on the Internet to
use the Marmalade wrappers. An example project to demonstrate its use is supplied
in the Marmalade installation folder examples\s3eIOSGameCenter and there is
plenty of information in the Marmalade documentation too, at Marmalade API
Reference | S3E API Documentation | S3E: iOS Only | S3E iOS Game Center.

Support is provided for all the major features of Game Center, including
leaderboards and achievements, multiplayer matchmaking, and even voice chat!

Using Scoreloop
The Scoreloop system is an extremely popular cross-platform solution that, at the
time of writing, supports iOS, Android, BlackBerry PlayBook, and Windows Phone
7. Given that Marmalade supports the first three of these platforms, combined with
the fact that the nice people at Scoreloop also supply a version of their API that can
be used directly in a Marmalade project, this system is a very good choice if you
want to support social gaming in a cross-platform project.

The Marmalade version of Scoreloop provides support for leaderboards,
achievements, and Scoreloop's challenge system for offline multiplayer gaming.

More information on Scoreloop can be found at www.scoreloop.com, where you can
sign up for a free developer account and download the latest version of the SDK.

Supporting in-app purchases
The current popularity of so-called Freemium games has come about because there
are now other ways of charging for games besides a single up-front purchase cost.
The advent of in-app purchases (IAP) has allowed us to literally give away our
games for free and yet still make a profit by selling additional game modes or level
packs to users after they have already played and enjoyed our games.

In the following sections we will be looking at how Marmalade allows in-app
purchases to be supported on iOS and Android.

Chapter 9

[259]

Adding in-app purchasing for iOS devices
As with Game Center, the in-app purchase SDK supplied by Apple is written in
Objective-C, so we can't use it directly in a Marmalade project.

Again Marmalade solves this problem by wrapping up the Apple libraries into an
API called s3eIOSAppStoreBilling.

This API allows us to obtain a list of in-app products that are available for purchase
and their costs. We can then make a request to purchase a particular product and
will be notified of success or failure when Apple's servers have taken care of all the
behind-the-scenes stuff that needs to be done in order to process the payment.

Just like the original Apple implementation, there is no support for allowing a user
to automatically download extra data when a purchase has been made. Instead we
have to implement this ourselves on receipt of the purchase confirmation, which
would involve either shipping all the "unlockable" data with the original application
download or downloading it from our own server.

For more information on this API, take a look in the Marmalade documentation
by going to Marmalade API Reference | S3E API Documentation | S3E: iOS
Only | S3E iOS App Store Billing, and the example code that can be found in the
Marmalade installation at examples\s3e\s3eIOSAppStoreBilling.

Adding in-app purchasing for Android devices
Marmalade also provides a wrapper API for implementing in-app purchases on
Android called s3eAndroidMarketBilling. The naming of this API is still based on the
original name of the Android store (Android Marketplace), but it works fine with the
renamed Google Play system.

Sadly Marmalade hasn't been able to provide a single API that can target multiple
platforms, simply because the iOS and Android systems work so differently. A good
example of this is that the Google Play system does not allow us to query the list of
available products for an application. This is a really strange omission on Google's
part (especially given that you do have to set up a product list on the Google Play
servers anyway) and it means we either have to hardcode our product identifiers
into our application or provide our own server to mirror this information.

Information on this API can be found in the documentation by going to
Marmalade API Reference | S3E API Documentation | S3E: Android Only |
S3E Android Market Billing, and there is some sample code at examples\s3e\
s3eAndroidMarketBilling.

Adding Social Media and Other Online Services

[260]

Using advertising
We've just looked at in-app purchases as being one way of generating an income
from your games, but another way is to make use of one of the many advertising
solutions available. Just like those clickable adverts that are a common part of most
websites, we can give over a little part of our game's screen display to adverts that
will then provide another potential income stream.

The following sections explore some of the options available to us.

Implementing iAd support for iOS devices
As you are probably aware, Apple has its own advertising solution purely for iOS,
called iAd. Again this requires use of an Objective-C API, so the Marmalade SDK
provides a C wrapper for it called s3eIOSIAD.

This is a very simple API that allows you to request an advertisement from the iAd
servers. If an advert is available you have control over when to show it, so the advert
only needs to be visible at certain points in your game if you so wish.

Documentation on this API can be found at Marmalade API Reference | S3E API
Documentation | S3E: iOS Only | S3E iOS iAd, and example code exists in the
Marmalade installation directory at examples\s3e\s3eIOSIAd.

Using other advertising solutions
Since iAd can only be used on iOS platforms, we are forced to consider other possible
solutions when targeting other platforms (although most of these other solutions can
still be used on iOS as it happens!).

Marmalade does not provide support for any other advertising systems directly,
but other developers have taken up the challenge here and have made their own
solutions available for use on the Marmalade Code Community pages.

At the time of writing there are a couple of useful projects called s3eAdWhirl and
s3eAdNinja that at least provide support for Android. These solutions are quite
clever in that they actually target multiple sources of mobile advertising in order to
ensure that an advert is shown in your application as often as possible to maximize
your revenue.

The IwGameAds module is another open-source community project that shows how
to integrate with multiple ad services and works across more platforms than you
can shake a very large stick at. The full source code and documentation for it can be
found at the following web address:

http://www.drmop.com/index.php/iwgameads-sdk/

Chapter 9

[261]

In the unlikely event that these don't suit your needs and there is a particular mobile
advertising system you would like to use, another possibility is to implement your
own support for that system using the Extensions Development Kit that is described
in more detail in the next chapter.

Example code
Now let's take a look at the example code associated with this chapter.

The Facebook project
The Facebook project brings together into one place all the information contained
in this chapter about posting to a user's Facebook wall so you can easily see how to
implement the code in a more real-world application.

On running the sample, we are presented with two menu buttons. The first allows
us to log in and out of Facebook while the second allows us to post a message to our
wall when we have successfully logged in. A status message will be displayed at the
bottom of the screen.

The s3eFacebook API has been further wrapped into a small class called Facebook,
which deals with logging in and out of Facebook and building up Graph API
requests. This is a good approach as it provides a further layer of abstraction and
keeps all the s3eFacebook API usage in one place. If the core Facebook API were
to change for any reason (possible, given that Facebook could potentially change
the way in which things have to be done at any time), all the code that needs to be
updated is easy to find.

The message to post to the wall is requested using the
s3eOSReadStringUTF8WithDefault function; so this example also serves as
a guide to using this API.

If you want to build and run this sample code, you will need to create your own
Facebook App and supply the App Id and App Secret values generated for it. The
app.icf file contains two settings allowing these values to be specified (though
currently only the App Id is actually used in the code!).

It is also necessary to modify the iphone-bundle-url-schemes line in the
deployments section of the project's MKB file. If this setting is not changed, the
application will not regain focus after the Facebook login process on iOS devices.

As mentioned when discussing the s3eFacebook API earlier in this chapter, this
sample code will only work on iOS and Android devices.

Adding Social Media and Other Online Services

[262]

The Skiing project
This chapter sees Facebook support being added to the Skiing project. The
Facebook.cpp and Facebook.h files created for the Facebook project have been
added to the Skiing project unchanged in order to support posting a message to
the user's wall.

When the player reaches the "game over" screen, a check is made to see if Facebook
support is available. If it isn't, the normal "game over" message is displayed and after
a short delay the user will return to the title screen.

If Facebook functionality is available, a slightly different "game over" screen is
displayed. This version informs the player of their score and then asks if they wish
to post a message on their wall to boast about it to their friends. Buttons marked Yes
and No are provided to allow the player to choose what to do.

If they click on the Yes button, the game will attempt to log in to Facebook and then
post a message detailing the player's score. The request also references an image file
and a web page link that will also be displayed alongside the wall message.

As with the previous Facebook project, it is necessary to create your own Facebook
App and supply the correct values for the App Id, App Secret, and the iphone-
bundle-url-schemes setting.

Summary
In this chapter we've taken a quick look at how to add various kinds of online
services to our games. Specifically, we've seen how to add Facebook support to
our titles and now know where to start looking should we want to include social
gaming, advertising, or in-app purchases.

Each of these topics could easily fill an entire chapter, but unfortunately there just
isn't room in this book to go any deeper. Hopefully you now have a good idea of
the options available though.

At several points in this chapter the Extensions Development Kit (EDK) was
mentioned as a possible way of implementing online features that are currently
not supported as part of the base Marmalade SDK. In the next chapter, we will be
taking a look at the EDK to see how we can access APIs that form part of the iOS
and Android operating systems.

Extending Marmalade
with the Extensions

Development Kit (EDK)
In the previous chapter we mentioned how Marmalade's Extensions Development
Kit (EDK) was a possible way of adding functionality to a Marmalade application
that had not been otherwise exposed, by using the standard Marmalade APIs.

In this chapter we'll be looking at the following topics:

•	 An overview of what the EDK is and why it is needed
•	 How to extend Marmalade by creating an EDK extension for Windows,

iOS, and Android to support reading gyroscope information

Why is the EDK necessary?
The Marmalade SDK manages to work its magic of being able to take one codebase
and deploy it to multiple platforms by providing a set of APIs that sit on top of the
APIs specific to each platform.

A deployed application executable actually consists of two separate files. Our
application code is compiled into an S3E file, which is the Marmalade equivalent of
a Windows Dynamic Link Library (DLL). This file is the same across all platforms.

In order to execute our S3E file, a Loader program is used. This program is the glue
between the platform we are running on and our own code. The loader program starts
up first, loads the S3E file into memory, and then passes control to the code within it.
If our code needs to make a platform-dependant call, it actually makes a request to a
function in the loader that will then call the correct operating system function.

Extending Marmalade with the Extensions Development Kit (EDK)

[264]

The loader program is a fixed entity and cannot be changed by us, so Marmalade
provides us with the EDK system to enable us to make platform-specific function
calls. Certain parts of the Marmalade SDK have actually been implemented in just
this manner; for example, the s3eFacebook API is actually an extension!

The only problem with the EDK is that it is not a completely cross-platform solution.
At the time of writing, it was only possible to write extensions for iOS, Android,
Windows, and Mac OSX.

Since this book is primarily concerned with development using the
Windows version of Marmalade, we won't be looking at how to build
a Mac extension here, however we will need access to a Mac computer
in order to build iOS extensions since, by necessity, we have to use the
Apple iOS SDK, which is not available as a Windows download. For
details on creating Mac extensions, look in the Marmalade documentation
by going to Marmalade (C++) | Extensions Development Kit (EDK) |
EDK Guides by Platform | OS X EDK Guide.

Creating an extension for gyroscope
input
To illustrate the process of creating a Marmalade extension, we'll take a look at how
to add support for gyroscope input. This is a useful addition since it lets us add a
whole new input method to our games yet it also demonstrates just how easy it is to
extend Marmalade's functionality.

Our extension will consist of the following functions:

Function Description
GyroscopeAvailable This function is automatically generated for us by the

EDK build process. It returns S3E_TRUE if the Gyroscope
extension is supported for the current platform, and S3E_
FALSE if it isn't.

GyroscopeSupported Not all mobile devices actually contain gyroscope hardware,
so this function is provided to determine whether or not we
can make use of the gyroscope in our game. The function
returns a normal C++ bool value indicating whether a
gyroscope is present.

Chapter 10

[265]

Function Description
GyroscopeStart and
GyroscopeStop

These two functions start and stop the hardware generating
gyroscope input data.

GyroscopeGetX,
GyroscopeGetY, and
GyroscopeGetZ

Returns the current gyroscope data values for the X, Y, and
Z axes. The values are returned as float values in radians
per second.

The API detailed earlier provides the bare minimum functionality required to
provide gyroscope support and has deliberately been kept simple in order to
demonstrate the process of building an extension more clearly.

Declaring the extension API
The first step in creating an extension is to specify the functions it will contain,
which we will do using an S4E file. This file is used to define the API of our
extension and is best illustrated by an example. If you want to follow along, create
a new directory called Gyroscope and create a file called Gyroscope.s4e inside it
with the following contents:

include:
#include <s3eTypes.h>

functions:
bool GyroscopeSupported() false
void GyroscopeStart() void
void GyroscopeStop() void
float GyroscopeGetX() 0.0f
float GyroscopeGetY() 0.0f
float GyroscopeGetZ() 0.0f

The example starts with the line include:, which is then followed by any number of
C preprocessor commands, include files, structure definitions, and class definitions
that will become part of the extension's main header file. In our case we are just
including the s3eTypes.h file; but if we needed to pass lots of data between
the extension and the calling code, we might want to add structures or classes,
enumerations, and definitions here too.

Next we have the functions: section of the file, which is little more than a list of the
functions that our extension will contain and can be called from within a Marmalade
project that makes use of the extension.

Extending Marmalade with the Extensions Development Kit (EDK)

[266]

We do not have to list the GyroscopeAvailable function explicitly
in the list of functions. The EDK build process automatically generates
this function for us by taking the name of the S4E file and appending
"Available" to the end of it.

As you can see, the functions are listed almost as if they were normal C function
prototypes. Each function is listed on its own line by first stating the return type and
then its name and parameter list (which all just happen to be empty in this example!).

Additionally, each function in the S4E file function list also specifies a default value
it will return and can be followed by a number of optional directives that control
the behavior of the function, how it is added to the extension, and how it is called.
Our example makes no use of these directives, but the following table shows what
can be specified:

Directive Description
run_on_osthread Specifies that the extension function should only be executed

on the main OS thread of the application. This is particularly
important if the function performs any kind of user interface
interaction, as many platforms will only allow UI calls to be
made on the main thread.

no_lock Disables thread-safe locking when calling this function. By
default all extension functions can only be called on a single
thread at any particular time and locking code is automatically
generated to ensure that this happens.

fast Enables fast stack switching. This is an optimization option,
which means less data needs to be passed between our
application and the loader when making an extension function
call by using the same stack as the loader module. Normally the
loader module and our application code have separate stacks.

no_assert Stops an assert from being raised if an extension function is
called on a platform for which the extension has not been built.
The default value for the function will be returned.

Chapter 10

[267]

Directive Description
order By default each function listed in the S4E file will be added to the

extension in list order and this order is used internally to locate
the correct function pointer to call. As our extension develops
over time, we may want to add or depreciate functions but
still keep related functions together in the S4E file. By adding
order=x after a function declaration we say that this function
will occupy position x in the function order, with x=1 being
immediately after the last function that does not specify an
order value. If that sounds confusing, don't worry; for our own
projects we will probably never need to make use of this feature
as it is only really an issue if we are making our extension
available for other people to use!

There are also a number of global directives that can be specified in the S4E file and
these should be listed at the very start of the file before the include: line. Again our
example makes no use of these directives, but for your information they are listed in
the following table:

Directive Description
no_init_term Specifies that the extension needs no initialization or termination

functions to be automatically generated. It is unlikely you
will ever use this directive since these functions are generally
required in order to set up the interface between the extension
and our project code.

errors Allows access to some macros that make communication of
errors easier to implement by automatically generating functions,
such as GetError, present in many of the S3E APIs that make
up the low-level Marmalade API.

globals Declares that the extension will require a global structure block
allocated for its internal use and makes some macros available in
order to support getting and setting values in this structure.

callbacks States that this extension wants to make use of callbacks and will
automatically define callback IDs to support this using the same
approach used in other built-in S3E APIs.

Making an extension for Windows
We'll begin by creating our extension for use on Windows. Obviously it's unlikely
that a Windows PC would feature gyroscope hardware (though I guess not
impossible!), but starting with the Windows version is easiest as it does not require
us to install any additional software or SDKs in order to build it.

Extending Marmalade with the Extensions Development Kit (EDK)

[268]

Creating a Windows extension
Since we won't actually be supporting gyroscope input on Windows, our API only
needs to return false in the GyroscopeSupported function and the functions for
accessing current gyroscope values should always return a 0 value. Obviously the
start and stop functions need to do absolutely nothing!

We've already created the S4E file, so now we'll put it to use. Open Windows
Explorer, navigate to the Gyroscope directory, and then right-click on the
Gyroscope.s4e file. Select the menu option Build Windows Extension, which
will run a Python script that generates a number of new files and directories.

In the main Gyroscope directory three new files are created:

•	 Gyroscope_build.mkf is the MKF file for the extension that allows us
to specify additional generic or platform-dependant source files that are
needed for building it

•	 Gyroscope.mkf is the MKF file any Marmalade project that makes
use of our extension will need to include as a subproject to access the
extension functions

•	 Gyroscope_windows.mkb is the MKB file that creates a Visual Studio
project that we can use to compile the extension code

There are four subdirectories created as well. We can safely ignore the stamp
directory, which contains a file used internally by the EDK build scripts to track
changes to the extension API. We can also ignore the files in the interface
directory, which are autogenerated and should not be altered.

The h directory contains a single file, Gyroscope.h, which again we should not
modify, as any changes we make will be overwritten by the extension creation
scripts. This file is very useful, however, as it is the file we will include in our
project sources to access the functions in the extension.

Finally there is the source directory that in turn contains three more subdirectories.
The generic subdirectory contains source files that will define the default behavior
of the extension if platform-specific source files are not provided. The h directory
also contains files that are used across all platforms for building the extension code.
While we can make changes to these files, it is unlikely we will ever need to.

This leaves us with the windows subdirectory that contains a single file called
Gyroscope_platform.cpp. This file contains stubs for each of our extension functions
that were generated from the data provided in the functions list of the S4E file.

Chapter 10

[269]

Note however that all the stubbed functions end with the suffix _platform. The EDK
system actually generates a set of generic functions with the exact names specified
in the S4E file that calls the equivalent functions that are suffixed with _platform, if
they exist. This is necessary so that code that uses an extension can still be compiled
and executed on a platform for which an extension has not, or cannot, be created.

Implementing a Windows extension
Ordinarily we would need to modify the Gyroscope_platform.cpp file to
implement the extension; but for our purposes no changes are actually necessary
as the generated stubs provide the desired functionality on Windows.

Obviously, in this case a Windows extension is a little redundant, but bear in mind
we could always create a more complex extension that somehow emulates gyroscope
behavior, perhaps using a joystick or some other input device.

Building a Windows extension
To build the extension, we just double-click the Gyroscope\Gyroscope_windows.
mkb file to create a Visual Studio project. Once Visual Studio starts up, select the (x86)
Release build type from the drop-down menu at the top of the Visual Studio IDE,
go to the menu option Build | Build Solution (or just press the F7 key), and the
Windows version of the extension will be created. Simple!

Making an Android extension
Now we'll turn our attention to Android. We'll need to install some software
before we can begin, though, as the build process needs to be able to access Java
development tools and the Android SDK.

Installing the required software for Android
development
First of all you will need to install the Java JDK, which is available for download
at the following address:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

When downloading the JDK, make sure it is Version 6 that you
download and not the newer Version 7. The Android SDK is not
guaranteed to work correctly with Version 7.

Once the install package has downloaded, execute it and follow the instructions
to install the Java development tools to your PC.

Extending Marmalade with the Extensions Development Kit (EDK)

[270]

Next you will need to download the Android SDK and NDK. The Android SDK is
the Java library normally used to develop Android applications, while the NDK is an
additional set of libraries that allows Java Android code to interface with compiled
C++ code.

The Android SDK is available at the following URL:

http://developer.android.com/sdk/index.html

It comes as a Windows installer file; so just execute it, accept all the default install
options, and wait for it to install.

Once the Android SDK has been installed, it is useful to set the
environment variable ANDROID_ROOT to the installation directory.
This lets the Marmalade deployment tool know where the Android
platform tools can be found so that it can automatically install and
run generated package files on an Android device connected to
your PC using a USB cable.

Next you can visit the following URL to download the Android NDK:

http://developer.android.com/tools/sdk/ndk/index.html

You will need different versions of the NDK depending on which
version of Marmalade you are using. If you are using Marmalade
6.1 or higher, as expected in this book, you will need NDK version
8. For earlier versions of Marmalade, you will need NDK version 7.

The NDK is supplied as a ZIP archive, so you will need to decompress it using a
suitable archiving program (for example, WinZip). The NDK should be contained in
a directory named something like android-ndk-xxx, where xxx refers to the version
number of the NDK. You can either copy this directory into the root of your C: or
you can set the environment variable NDK_ROOT to point to the installation path.

Creating an Android extension
Now that we have the necessary development tools in place, we can create
the Android extension files by again using the Windows Explorer to locate
the Gyroscope.s4e file. Right-click on the file and select the Build Android
Extension menu option.

The files Gyroscope_android.mkb and Gyroscope_android_java.mkb will be
created in the main Gyroscope directory. These files will be used later to build
the extension code.

Chapter 10

[271]

The source directory will now contain a new directory called android that contains
two files Gyroscope.java and Gyroscope_platform.cpp. The former is where we
can add Java code that uses the Android SDK code to implement our extension API.
The latter is the C++ code that our Marmalade project will call, which in turn calls
the Java implementation code.

It is possible to implement the entire extension in the Gyroscope_platform.cpp file
by using the Java Native Interface (JNI) to access and call into the compiled Java
code; but this adds an extra layer of complexity and implementing the extension in
Java is normally a far easier proposition!

Implementing an Android extension
To implement the gyroscope code for Android, we will need to edit the file source\
android\Gyroscope.java. First we need to make a reference to the Java classes
we'll be using; so change the list of import declarations at the top of the file to look
like this:

import com.ideaworks3d.marmalade.LoaderAPI;
import com.ideaworks3d.marmalade.LoaderActivity;

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;

The first two imports allow us access to some helper functions that provide
access to things such as the application's main Activity class (all applications in
Android need to be derived from this base class). We'll need this to access some
system resources.

The remaining imports are for the parts of the Android SDK that we will need to use
to access the gyroscope data.

The EDK system has generated a Java class called Gyroscope that contains stubs
for all the methods we need to implement. We will need to alter the class definition
slightly, though, as we need to implement some methods that will receive gyroscope
updates. Change the class definition as follows:

class Gyroscope implements SensorEventListener

SensorEventListener is a Java interface that our class must implement in order to
receive sensor events (in our case, gyroscope data).

Extending Marmalade with the Extensions Development Kit (EDK)

[272]

We'll also add some member variables for caching the gyroscope values and a flag
that we'll use to handle the fact that some Android devices return gyroscope values
in degrees per second rather than radians per second. Add the following code to the
bottom of the class definition:

// Cached gyroscope values
private float x;
private float y;
private float z;

// Are the results in degrees/s or radians/s
private boolean mUsesDegrees;

Before we start implementing the EDK itself, we'll add a couple of private helper
functions to allow us to access the Android SensorManager and gyroscope Sensor
instances that will allow us to retrieve the current gyroscope data. Add the following
two methods at the beginning of the class definition:

// Helper function for accessing the Android SensorManager
private SensorManager GetSensorManager()
{
 Context lContext = (Context) LoaderActivity.m_Activity;
 SensorManager lSensorManager = (SensorManager)
 lContext.getSystemService(Context.SENSOR_SERVICE);
 return lSensorManager;
}

// Helper function for accessing the Android Gyroscope Sensor
private Sensor GetGyroscopeSensor()
{
 SensorManager lSensorManager = GetSensorManager();
 if (lSensorManager == null)
 return null;

 Sensor lGyroscope =
 lSensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE);
 return lGyroscope;
}

The GetSensorManager method accesses the global SensorManager instance by
using the main Context class of the Marmalade application. We do this using
Marmalade's LoaderActivity class that contains a member variable that is a
reference to the main Android SDK Activity class instance. This reference can then
be cast into a reference to a Context instance, since Activity derives from Context.

Chapter 10

[273]

Once we have the Context reference, we use it to obtain a reference to the Android
SensorManager class that is responsible for controlling input devices, including the
gyroscope. If no reference is available, a null reference will be returned.

The GetGyroscopeSensor method lets us check for the presence of a gyroscope by
requesting the SensorManager class for the default gyroscope handler. If a suitable
handler is not found (that is, a return value of null), there is no gyroscope hardware
available on this device.

Now we can start implementing the API by looking at the GyroscopeSupported
method. This function needs to return true only if the device has gyroscope
hardware. We can do this as follows:

public boolean GyroscopeSupported()
{
 Sensor lSensor = GetGyroscopeSensor();
 return lSensor != null;
}

It is now time to implement the function that will allow us to start receiving
gyroscope data. Find the GyroscopeStart method and change it to the following
code snippet:

public void GyroscopeStart()
{
 x = 0.0f;
 y = 0.0f;
 z = 0.0f;
 mUsesDegrees = false;

 Sensor lGyroscope = GetGyroscopeSensor();
 if (lGyroscope != null)
 {
 mUsesDegrees = lGyroscope.getMaximumRange() > 100;
 GetSensorManager().registerListener(this, lGyroscope,
 SensorManager.SENSOR_DELAY_FASTEST);
 }
}

In this method we start by ensuring that the cached gyroscope values are zero and we
assume that the device will return values in radians per second. We then obtain the
gyroscope's Sensor class instance using our private GetGyroscopeSensor method.

Extending Marmalade with the Extensions Development Kit (EDK)

[274]

To determine whether this device returns values in degrees or radians, we look at the
maximum range value of the gyroscope sensor. We set the mUsesDegrees member
variable to true if the maximum range is greater than 100, as there does not appear
to be any more robust way of determining this.

We then set our class instance to be a listener for gyroscope data. Periodically, the
onSensorChanged method (which we have yet to implement) will be called with
new gyroscope values.

Next we will implement the GyroscopeStop function, which should look like this:

public void GyroscopeStop()
{
 SensorManager lSensorManager = GetSensorManager();
 if (lSensorManager != null)
 {
 lSensorManager.unregisterListener(this);
 }

 x = 0.0f;
 y = 0.0f;
 z = 0.0f;
}

Yet again we obtain the SensorManager class reference and tell it that we no longer
want to receive gyroscope data. We also clear the cached gyroscope values just in
case our code tries to access them while the gyroscope hardware is not active.

The next three methods we need to implement are those that return the cached
gyroscope values. These are easy to implement and should look like this:

public float GyroscopeGetX()
{
 return x;
}

public float GyroscopeGetY()
{
 return y;
}

public float GyroscopeGetZ()
{
 return z;
}

Chapter 10

[275]

We are now almost finished. All that is left to do is implement the listener methods
that are part of the SensorEventListener interface that we have derived the
Gyroscope class from. Add the following code after the GyroscopeGetZ method.

public void onAccuracyChanged(Sensor aSensor, int aAccuracy)
{
}

public void onSensorChanged(SensorEvent aEvent)
{
 if (aEvent.accuracy != SensorManager.SENSOR_STATUS_UNRELIABLE)
 {
 x = aEvent.values[0];
 y = aEvent.values[1];
 z = aEvent.values[2];

 if (mUsesDegrees)
 {
 x = (x * 3.14159267f) / 180.0f;
 y = (y * 3.14159267f) / 180.0f;
 z = (z * 3.14159267f) / 180.0f;
 }
 }
}

The onAccuracyChanged method is left empty since it must be implemented to
satisfy the interface. The onSensorChanged method is important, though, as this
will receive the new gyroscope input values. We first check to see if the passed in
SensorEvent contains reliable data (the device itself will determine what constitutes
reliable data); then, we just pull out the new gyroscope values and store them in our
member variables.

If we determined that the device is returning values in degrees per second, we
do a quick conversion to radians to ensure that our extension always returns
consistent values.

Building an Android extension
Our Android extension code is now ready to be built and this is even simpler than
it was with the Windows version. All we have to do is open Windows Explorer and
navigate to the Gyroscope directory, and double-click first the Gyroscope_android_
java.mkb file and then the Gyroscope_android.mkb file. The first MKB file will
build the Java code, while the second will build the C++ code that will be called from
our project code and that will in turn call the Java code.

Extending Marmalade with the Extensions Development Kit (EDK)

[276]

Making an iOS extension
Building an EDK extension for iOS is a little more involved as it requires us to have
access to the Apple iOS SDK and therefore an Apple Mac.

Installing the required software for iOS
development
Firstly, you will need to download the iOS SDK that is bundled together with
Apple's XCode development environment. Head over to the following web page,
which will contain a link to open the Mac App Store where the latest version of
XCode can be downloaded:

https://developer.apple.com/xcode/index.php

Once XCode has downloaded and you have installed it, you will then need to
download the Marmalade SDK in its Mac OS X incarnation. Head over to the
Marmalade website at the following URL, log in, and download the Mac version
of Marmalade.

https://www.madewithmarmalade.com/downloads

Install the Marmalade SDK to the default location. If you only have a single
Marmalade license, you will need to use the Marmalade website to release the
license from your PC so you can use it on the Mac. Refer to Chapter 1, Getting
Started with Marmalade, of this book for more information on how to do this.

Creating an iOS extension
Unsurprisingly, we create the files needed for the iOS Extension in a similar manner
to the Windows and Android extensions. Just right-click on the Gyroscope.s4e file
and select the menu option Build iPhone Extension.

Just two new files will be created for the iOS extension. These are Gyroscope_
iphone.mkb, which is the MKB file that we will use to build the extension code,
and source\iphone\Gyroscope_platform.mm, which contains the auto-generated
stubs for our API functions.

Implementing an iOS extension
To implement the iOS version of the Gyroscope extension, we need to edit the
Gyroscope_platform.mm file. This file is an Objective-C source file that also allows
us to use C and C++ code in the same file. The function stubs are all standard C-style
functions, but we can still make use of Objective-C classes and features within them.

Chapter 10

[277]

On iOS, we use an Objective-C class called CMMotionManager to gain access to
gyroscope data, so we first need to let our code know about this class by changing
the list of included files as follows:

#include <CoreMotion/CoreMotion.h>
#include "Gyroscope_internal.h"

We'll also declare a global pointer to a CMMotionManager instance that we will use
throughout the rest of our code. Add the following line after the include files:

CMMotionManager* gpMotionManager = nil;

We'll need to allocate an instance of this class before we can access the gyroscope.
Luckily, the EDK build script has generated a function called GyroscopeInit_
platform that is automatically called for us when we use the extension in our
project, so this will make a good place to allocate a new CMMotionManager instance,
as shown in the following code:

s3eResult GyroscopeInit_platform()
{
 gpMotionManager = [[CMMotionManager alloc] init];

 return S3E_RESULT_SUCCESS;
}

We also need to free the instance when our application is terminated and
once again the EDK build script has come to our rescue with the function
GyroscopeTerminate_platform. We need to modify this function so that it stops
the gyroscope, if it is still active, and then releases the CMMotionManager instance.
Here's the completed function:

void GyroscopeTerminate_platform()
{
 GyroscopeStop_platform();
 [gpMotionManager release];
}

The rest of the implementation is actually surprisingly easy, as the
CMMotionManager class works in a very similar manner to the API we have
chosen for the extension. We'll start with checking to see if gyroscope hardware
is available. The GyroscopeSupported_platform function looks like this:

bool GyroscopeSupported_platform()
{
 return gpMotionManager.gyroAvailable;
}

Extending Marmalade with the Extensions Development Kit (EDK)

[278]

Starting and stopping the gyroscope hardware is also little more than calling a
method of the CMMotionManager class. For safety we wrap these calls with further
checks to make sure the gyroscope is available and not already started or stopped.

void GyroscopeStart_platform()
{
 if (gpMotionManager.gyroAvailable && !gpMotionManager.gyroActive)
 {
 [gpMotionManager startGyroUpdates];
 }
}

void GyroscopeStop_platform()
{
 if (gpMotionManager.gyroAvailable && gpMotionManager.gyroActive)
 {
 [gpMotionManager stopGyroUpdates];
 }
}

The only thing left to do is get hold of the current gyroscope input values. The
CMMotionManager class contains a property called gyroData of class CMGyroData,
which in turn contains a CMRotationRate property called, funnily enough,
rotationRate that holds the current gyroscope data.

The following code shows the implementation for getting hold of the gyroscope
data for the x axis. How to obtain the y and z axes values should be fairly obvious
from this!

float GyroscopeGetX_platform()
{
 CMGyroData* lpGyroData = [gpMotionManager gyroData];
 if (lpGyroData)
 {
 CMRotationRate lpRotRate = [lpGyroData rotationRate];
 return lpRotRate.x;
 }
 else
 {
 return 0.0f;
 }
}

There is one final thing we have to do before we can build the extension, and that
is to tell the EDK build tools that we need to include the iOS SDK framework
CoreMotion, as this contains the code for the CMMotionManager class.

Chapter 10

[279]

To add a framework to our extensions, we must edit the Gyroscope.mkf file. Look
for the deployments section for iOS towards the bottom of the file (Marmalade refers
to it as the "iphone platform" for legacy reasons) and add the following line to it:

iphone-link-opts="-framework CoreMotion"

Building an iOS extension
So far, all of the previous steps for creating an iOS extension can be done equally
well on Windows or Mac, but this final step absolutely requires us to use a Mac.

We need to ensure the Mac has access to the entire Gyroscope
directory. How you achieve this is up to you, but a good way
is to share the Gyroscope directory out on your development
Windows PC and then access this share on the Mac. This way
the code is built on the Mac but all the compiled files are already
in the correct place on your Windows development machine.

To build the extension you first need to open a Mac terminal window. Make the
Gyroscope directory the current directory in the terminal window and then enter
the following command line:
mkb Gyroscope_iphone.mkb –arm

This will build the extension and our work on the Mac is done. Simple, but kind of
annoying that we only needed to execute one command, isn't it?

Using the Gyroscope extension
We've now seen how to create and build extension modules for Windows, Android,
and iOS, but how do we make use of them in our Marmalade projects?

It's actually surprisingly easy. All we have to do is reference our extension in the
project MKB file's subprojects section (the easiest way to do this is to provide
a relative path to the Gyroscope directory from the main project directory), just
as we would with any normal code module, and then include the auto-generated
Gyroscope.h header file so we can call the extension functions.

The only thing to bear in mind is that because an extension may not have been
created for every platform we wish to target, we must make sure the extension is
available for use before we call any of its functions. This is easily done by using the
GyroscopeAvailable function that is automatically generated for us by the EDK
build scripts. If this function returns S3E_TRUE, the extension is available for use.
If it returns S3E_FALSE, any call to an extension function will fire an assert but will
otherwise do nothing.

Extending Marmalade with the Extensions Development Kit (EDK)

[280]

There are also no special steps required for building or deploying our application,
even on Android, where any code written in Java needs to be supplied in a JAR file.
The deployment tool will automatically add any required extension files to the install
package without us having to do a thing.

Example code
The following sections detail the code samples that accompany this chapter.

The Gyroscope project
This project contains the complete source code for the Gyroscope extension
developed throughout the course of this chapter. Compiled versions of the
extension have also been included so you can build the other example projects
for this chapter without having to first build the extension itself.

The GyroTest project
The GyroTest project is a simple example that makes use of the Gyroscope extension.
It demonstrates how to include the Gyroscope extension into a project, how to
check if the extension is available, and then how to call the extension function if it
is available.

The sample will be displayed on screen whether or not gyroscope support is
available. If it is, the raw gyroscope values will also be displayed on screen.

The Skiing project
Our final update to the Skiing project sees it make use of the Gyroscope extension
developed in this chapter as another possible control method.

As with the other input methods in the game, a class called GyroscopeManager has
been created, which wraps up the Gyroscope extension. This then keeps all use of
the extension functions in a single source file, which makes it easier to update should
we ever change the API of the extension in any way.

No matter how still the device is, even if left lying on a stable surface, the gyroscope
values will always have a certain amount of jitter. The GyroscopeManager class deals
with this by maintaining a filtered version of the gyroscope inputs that are used to
control the skier in the game.

Chapter 10

[281]

In every update of the main game loop, a new filtered value for each gyroscope axis
is calculated by adding a percentage of the difference between the current filtered
value and the new raw value for each axis to the current filtered value. This results in
the smaller effects of jitter mostly being ignored without losing the larger intentional
gyroscope inputs from the player.

Summary
In this chapter we've looked at how to use the Extensions Development Kit to extend
the functionality of Marmalade. As you can see, it is relatively easy to create an
extension that can make use of the APIs available on each of the platforms currently
supported by the EDK.

The Gyroscope extension is a good example of supporting a hardware feature that
hasn't yet been exposed in the main Marmalade SDK, but extensions can also come
in extremely handy if you want to use any third party libraries that may have been
created directly for a particular platform using its native SDK.

As this book draws to a close, you should now have a good grasp of the power of the
Marmalade SDK and will hopefully be jumping at the opportunity of developing a
game and launching it on a number of extremely popular platforms. Happy coding
and best of luck writing the next big gaming phenomenon!

Index
Symbols
2D graphics

rendering, IwGx used 53
3D animation

about 135
accessing 157
boned animations, setting up 142-144
exploring 160
loading 157
playing back 158
rendering 159

3D animation, exploring
animation playback events,

detecting 160, 161
animation playback, optimizing 161, 162
animation, playing backwards 160
animations, blending 160
bone positions, obtaining 164
offset animation 163
rotations, obtaining 164
sub-animations, playing 162, 163

3D animation file formats, Marmalade 153,
154

SKEL file 148, 149
SKIN file 151

3D exporter plug-ins, Marmalade
installing 116, 117

3D graphics
about 95
matrices 100, 101
rendering, IwGx used 106

3D model
about 95
exporting, Blender used 122, 124
rendering 115

3D model animation
about 140
morph targets, using 140, 141

3D model data
releasing 130

3D modeling package
used, for creating animation data 144
used, for creating model data 115

3D rendering
IwGx, preparing for 106, 107

3DS Max 116
3D, to 2D projection

performing 100
.mkb extension 179
.mkf extension 179
.mtl extension 55
.tga extension 172

A
AAC 194
aBufferLength parameter 195
accelerometer 86
accelerometer input

detecting 86, 87
reading 88
smoothing 89
starting 87
stopping 87
testing, on Windows simulator 90, 91

AccelerometerManager class 93
account

viewing 12
addReadPrefix parameter 224
addSpec keyword 206

[284]

advertising
using 260

advertising solutions
using 260

allowLowQualityCompression
parameter 230

AlphaInFrameBuffer setting 218
alphaMode parameter 229
alphaTest parameter 229
ambient lighting 105
Android 213
Android build

installing 26
Android development

software, installing 269, 270
Android devices

in-app purchases (IAP), adding for 259
Android extension

building 275
creating 270, 271
implementing 271-274

animation
playing, backwards 160

animation, by rotation
about 136
axis-angle pairs used 138
Euler angles used 136-138
quaternions used 138, 139

animation, by scaling 139
animation, by translation 136
animation data

creating, 3D modeling package used 144
animation playback

optimizing 161, 162
animation playback events

detecting 160, 161
animations

blending 160
exporting, Blender plugin used 147, 148
exporting, Marmalade 3D exporter plugins

used 144-147
animation templates

defining 232
animation templates, parameters

transformPrecision 232
zeroMotionTolerance 232

ANIM file 153, 154

Anims Ranges option 147
apBuffer parameter 195
app.config.txt file 19, 219
app.icf file 20, 21
App Id 247
Apple Game Center

about 258
URL 257

App Secret 247
apUserData argument 197
armaturet 147
ARM CPU

Hello World project, compiling for 23, 24
AudioAllowBackground setting 217
audio playback

end, of track notification 196, 197
pausing 195
resuming 195
starting 194, 195
stopping 195
volume, changing 195

axis-angle method 138

B
Bada device

build, installing on 33, 34
binary versions

producing, of resources 232, 233
Bind Pose 142
bitmap control 180
BlackBerry QNX devices

Marmalade, deploying on 30-33
Blender

installing 121, 122
used, for exporting 3D model 122, 124

Blender plugin
about 121
used, for exporting animations 147, 148

blendMode parameter 229
boned animations

about 142
setting up 142-144

build
installing, on Bada device 33, 34

buildCols parameter 231
build directory 19

[285]

buildNorms parameter 231
build style platform values, Marmalade

ARM_MALI 225
ATI_IMAGEON 225
GLES1 225
IMG_MBX 225
IMG_MBX_VGP 225
NVIDIA_GOFORCE 225
SW 225

build styles
about 222
extra resource directories, adding 224
gles1 223
gles1-dxt 223
gles1-pvrtc 223
gles2-etc 223
gles-atitc 223
sw 223
using 223

Build Styles project 243
buildUV1s parameter 231
buildUVs parameter 231
button control 180

C
calculateNorms parameter 231
callbacks

used, for detcting character code input 74
used, for detecting key state changes 72, 73
used, for detecting multi-touch input 84
used, for detecting single touch input 81, 82

callbacks directive 267
Camera class 93
camera matrix 102
character code input

about 74
detecting 73
detecting, callbacks used 74
detecting, polling used 74

chunked parameter 231
CIwAnimBlendSource class 161
CIwAnimPlayer class 158, 161
CIwAnimSkel class 148
CIwAnimSkin class 151
CIwAnimSkinSet class 151
CIwColour 59

CIwFMat class 113, 140
CIwFQuat class 139
CIwFVec3 class 96
CIwFVec3 instance 132
CIwGxFontPreparedData instance 177
CIwManaged class

about 36-38, 47, 64
ParseAttribute method 39
ParseCloseChild method 39
ParseClose method 39
ParseOpen method 39

CIwMaterial class 57
CIwMaterial::Copy method 57
CIwMaterial instance 105, 133
CIwMaterial::SetCullMode method 63
CIwModelBuilder class 126
CIwModel instance 128, 133
CIwResBuildStyle class 223
CIwResGroup::GetResNamed method 46
CIwResource class 47, 149
CIwResTemplateANIM class 232
CIwResTemplateGROUP class 232
CIwSoundGroup class 206
CIwSoundInst class 207
CIwTextParserITX class 35
CIwTexture class 54
CIwVec2 instance 132
clampUV parameter 229
class

instantiating, with class factory 37, 38
parsing 38-40
resolving 42, 43
serializing 41, 42

class factory
about 37
class, instantiating with 37, 38

class inheritance
using 179, 180

clipping planes 103, 104
CMesh instance 128
CMMotionManager class 277, 278
CMRotationRate property 278
code

Derbh archive, using in 236
ICF settings, accessing in 219, 220
materials, creating in 55

colAmbient parameter 229

[286]

colDiffuse parameter 229
colEmissive parameter 229
Collada 121
collision detection system feature 133
color stream

about 59
specifying, for model 98, 99

colSpecular parameter 229
Comma-Separated Values (CSV) files 186
community license type 8
compressForDiskSpace parameter 230
compression types

copy 235
dz 235
lzma 235
zero 235
zlib 235

const pointer 114
CQuads instance 128
CSurface class 128
CTris instance 128
cube

data, modeling for 109-112
Cube2 project 131
Cube project 131
cullMode parameter 229
current pointer input status

updating 79

D
data

modeling, for cube 109-112
data directory

about 19
app.config.txt file 19
app.icf file 20, 21

data-driven system
implementing 181

datafile
text spreadsheet, processing into 186-188

datafile formats, Marmalade 3D model
about 124
GEO file 126, 128
GROUP file 125
MTL file 125

degenerate polygon 97

delta vector 141
deployment types

application names, specifying 237, 238
asset lists, specifying 239, 240
creating 237, 240-242
details, specifying 237, 238
icons, specifying 237, 238
using 240-242

Derbh archive
creating 234, 235
using, in code 236

Derbh archiver
used, for compressing game resources 234

development environment
installing 8

device
capabilities, checking 215
ICF settings, limiting by 221

device browser
web page, launching in 245, 246

device capabilities
checking 215

Device Code Signing Key 30
device types

accommodating 213
screen resolutions 214

diffuse lighting 106
DispFixRot setting

about 183, 214, 217
FixedLandscape value 183
FixedPortrait value 183
Free value 183
Landscape value 183
Portrait value 183

downloading
Marmalade 9

drawing
optimizing, by text preparation 177

Dynamic Link Library (DLL) 263
DZip Configuration File (DCL) 234

E
EDK

about 257, 263
limitation 264
purpose 263, 264

[287]

EFIGS languages 185
EGL_ALPHA_SIZE setting 218
EGL_BLUE_SIZE setting 218
EGL_DEPTH_SIZE setting 218
EGL_GREEN_SIZE setting 218
EGL_RED_SIZE setting 218
element 180
emissive lighting 105
End User License Agreement (EULA) 11
errors directive 267
Euler angles 136-138
evaluation license type 8
Event class 182
EventHandler class 182
example projects

Cube2 project 131
Cube project 131
Skiing project 132

Execute method 182
exported 3D animation

accessing 157
loading 157

exported 3D model
accessing 129
loading 129
rendering 129, 130

exporter plug-in
installing 121, 122

extension
creating, for Android 269-271
creating, for gyroscope input 264, 265
creating, for iOS 276
creating, for Windows 267, 268

extension API
declaring 265-267

Extensions Development Kit. See EDK

F
Facebook

about 246
logging in 252-254
logging out 252-254
message, posting to user wall 254, 255
test user, creating 249, 251
URL 247
using 246

Facebook app
creating, steps 247-249

Facebook Graph API 254
Facebook project 261
Facebook session

initializing 252
terminating 252

Facebook test user
creating 249, 251

far clip plane 103
fast directive 266
field of view 102
filtering parameter 229
Flag project 165
Font Builder utility 170, 171
Font project 189
font resources

accessing 173
creating, steps 171, 172
loading 173
used, for drawing text 173

fonts
implementing 169

font size
changing, at runtime 176, 177

for loop 188
formatHW parameter 230
formatSW parameter 230
frame 180

G
game

configuring, ICF file settings used 215
GameObject class 66, 67, 133
GameObject::Render method 66
GameObject::Update method 66
game resources

about 234
compressing, Derbh archiver used 234

GCC (ARM) Release option 24
GEO file 126
gesture inputs

recognizing 85
Gesture project 92
gestures 85
GetClassName method 38

[288]

GetGyroscopeSensor method 273
GetSensorManager method 272
GetSkel method 159
globals directive 267
global sound settings 200, 201
Graphics2D project 65
graphics APIs, Marmalade SDK

about 49
Iw2D API 52
IwGL API 51
IwGx API 52, 53
OpenGL ES 50
s3eSurface API 49

Graphics Processing Unit (GPU) 50
GROUP file

about 125
about 44
loading 45
resources, specifying with 44, 45
serializing 47, 48
templates, defining 232

GROUP file serialization 47, 48
GROUP file templates

defining 232
group keyword 206
groups

loading 46
GXFONT file

about 172
example 172, 173

GyroscopeAvailable function 264, 266, 279
Gyroscope_build.mkf file 268
Gyroscope class 275
Gyroscope directory

about 279
files 268

Gyroscope extension
using 279

GyroscopeGetX function 265
GyroscopeGetY function 265
GyroscopeGetZ function 265
GyroscopeGetZ method 275
gyroscope input

extension, creating for 264, 265
GyroscopeManager class 280
Gyroscope.mkf file 268, 279
Gyroscope_platform.cpp file 268

Gyroscope projectt 280
GyroscopeStart function 265
GyroscopeStart method 273
GyroscopeStop function 265, 274
GyroscopeSupported function 264, 268
GyroscopeSupported method 273
Gyroscope_windows.mkb file 268
GyroTest project 280

H
hashing function 188
Hello.apk file 26
Hello.ipa file 29
Hello World project

Android build, installing 26
building 18
build, installing on Bada device 33, 34
compiling, for ARM CPU 23, 24
creating 13
deploying 24-26
iOS build, installing 27-30
MKB file 14, 15
running, in Windows simulator 22, 23
source file 15-18

I
iAd support

implementing, for iOS devices 260
ICF file settings

about 215
AlphaInFrameBuffer 218
AudioAllowBackground 217
DispFixRot 217
EGL_ALPHA_SIZE 218
EGL_BLUE_SIZE 218
EGL_DEPTH_SIZE 218
EGL_GREEN_SIZE 218
EGL_RED_SIZE 218
MemSize 216
MemSizeDebug 216
ResBuild 218
ResBuildStyle 218
SplashScreenBkB 217
SplashScreenBkG 217
SplashScreenBkR 217
SplashScreenFile 217

[289]

SplashScreenHeight 217
SplashScreenWidth 217
SysAppVersion 216
SysGlesVersion 216
SysStackSize 216
used, for configuring game 215

ICF settings
accessing, in code 219, 220
limiting, by device 221
limiting, by platform 221

Ideaworks TeXt. See ITX
identity matrix 101
ignoreImages parameter 230
image templates

defining 230
image templates, parameters

allowLowQualityCompression 230
compressForDiskSpace 230
formatHW 230
formatSW 230
ignoreImages 230
mipMapping 230

in-app purchases (IAP)
about 258
adding, for Android devices 259
adding, for iOS devices 259

index stream
advantages 97
about 61
specifying, for model 97

Indie license type 8
Input Manager classes 93
installing

3D exporter plug-ins 116, 117
Blender 121, 122
exporter plug-in 121, 122
Android build 26
development environment 8
iOS build 27-30
Marmalade 9
Marmalade SDK 7

iOS 213
iOS build

installing 27-30
iOS Dev Center 27
iOS Developer Program 27

iOS development
software, installing 276

iOS devices
iAd support, implementing for 260
in-app purchases (IAP), adding for 259

iOS extension
about 276
building 279
creating 276
implementing 276-278

iPhone Configuration Utility 28
iPhone Sign Request Tool 27
IsCurrentAnimComplete method 161
IsCurrentBlendComplete method 161
ITX 35
ITX file 35-37
ITX project 64
Iw2D API

about 52
functionalities 52

IwAnim API
adding, to Marmalade project 157

IwAnimSetSkelContext function 159
IwAnimSetSkinContext function 159
IW_FIXED_MUL function 90
IwGeom 57
IwGeom API 60
IwGetTextParserITX function 36
IwGL API

about 51
functionalities 51

IwGraphics API
adding, to project 129

IwGraphicsInit 129
IwGraphicsTerminate 129
IwGx

about 131
used, for rendering 2D graphics 53
preparing, for 3D rendering 106, 107
used, for rendering 3D graphics 106

IwGx API
about 52
functionalities 52, 53
initialization 53
termination 53

IwGxDrawPrims 97, 131

[290]

IwGxFlush 18
IW_GX_FONT_ALIGN_BOTTOM 176
IW_GX_FONT_ALIGN_CENTRE 176
IW_GX_FONT_ALIGN_LEFT 176
IW_GX_FONT_ALIGN_MIDDLE 176
IW_GX_FONT_ALIGN_PARAGRAPH 176
IW_GX_FONT_ALIGN_RIGHT 176
IW_GX_FONT_ALIGN_TOP 176
IwGxFont API

adding, to project 169, 170
used, for justifying text 175, 176
used, for wrapping text 175, 176

IwGxFontClearFlags 176
IW_GX_FONT_DEFAULT_F 175
IwGxFontDrawText function 174, 177
IwGxFontInit 169
IW_GX_FONT_ITALIC_F 175
IW_GX_FONT_NOWORDSPLIT_F 176
IW_GX_FONT_NOWORDWRAP_F 175
IW_GX_FONT_NOWRAP_F 175
IW_GX_FONT_NUMBER_ALIGN_F 175
IW_GX_FONT_ONELINE_F 175
IwGxFontPrepareText function 177
IW_GX_FONT_RIGHTTOLEFT_F 176
IwGxFontSetAlignmentHor function 176
IwGxFontSetCol function 174
IwGxFontSetFlags function 175
IwGxFontSetFont function 174
IwGxFontSetScale function 176
IwGxFontTerminate 169
IW_GX_FONT_UNDERLINE_F 175
IwGxInit() method 17
IwGxLightingEmissive(true) 174
IwGxPrintSetScale method 17
IwGxPrintString method 18
IwGxSetColClear method 17
IwGxSetColStream function 59
IwGxSetLightCol function 108
IwGxSetLightType function 107
IwGxSetVertStreamScreenSpace

function 58
IwGxSetVertStreamScreenSpaceSubPixel

function 58
IwGxSwapBuffers method 18
IwHashString function 38
IwHTTP API 247
IW_MANAGED_DECLARE macro 36

IwNUI API 178
IwResManager API

about 43
adding, to project 44
resouce handlers 48, 49

IwResManagerTerminate function 44
IwUI API 178
IwUtil 35
IwUtil API 37

J
Java Native Interface (JNI) 271

K
key frames 140
key information

initializing 70, 71
updating 70, 71

key input
detecting 69

KeyManager class 93
key press detection 69
key state

detecting 71
key state changes

detecting, callbacks used 72, 73
detecting, polling used 71, 72

L
label control 180
LaunchPad 13
lCells variable 188
levels.itx file 45
licenses

managing 12
license type, Marmalade

community 8
evaluation 8
Indie 8
professional 8
selecting 8, 9

lighting 105
lighting information

setting 107, 108

[291]

lighting, types
ambient 105
diffuse 106
emissive 105
specular 106

lLoopIndex parameter 199
lNumSamples parameter 199
LoaderActivity class 272
loader program 263
LoadGroup method 45
LookAt method 113
lProperty parameter

about 200, 210
values 201, 210

lRepeatCount parameter 199
lRow variable 188
lSampleData parameter 199
lTimeStep parameter 159

M
Main.cpp file 16
main() function 17
Marmalade

3D exporter plug-ins 116
3D animation file formats 148
account, viewing 12
build styles, specifying for use 226
build styles, using 223
connecting, to online services 257
deploying, on BlackBerry

QNX devices 30-33
ployment types, creating 237
velopment environment, installing 8
downloading 9
installing 9
ITX file format 35-37
licenses, managing 12
license type, selecting 8, 9
profile information, updating 12
resource manager 43
SDK, installing 7
supported build style platforms 224, 225
URL 8
user list, managing 13
multimedia support 193

Marmalade 3D exporter plugins
used, for exporting animations 144-147

Marmalade Configuration Utility
about 10
using 10

Marmalade Documentation help file 15
Marmalade project

creating 13
deploying 23
IwAnim API, adding to 157
s3eFacebook API, adding to 251

Marmalade SDK
graphics APIs 49
installing 7

Marmalade System Deployment Tool
about 24, 33
launching 24

materials
creating, in code 55
creating, MTL file used 55, 56

material templates
about 228
defining 228, 229

material templates, parameters
alphaMode 229
alphaTest 229
blendMode 229
clampUV 229
colAmbient 229
colDiffuse 229
colEmissive 229
colSpecular 229
cullMode 229
filtering 229
zDepthOfs 229

matrices
for 3D graphics 100, 101

maxPrimsPerChunk parameter 231
Maya 116
MemSizeDebug setting 216
MemSize setting 216
message

posting, to user wall on Facebook 254, 255
Microsoft Excel 185
MIDI files 194
mipMapping parameter 230

[292]

MKB file, Hello World project 14, 15
mobile operating systems 213
Mode class 67
ModeGameOver class 93
ModeGameOverModeGameOver class 93
ModeGame::Update method 133
model

about 95
color streams, specifying 98, 99
exporting 117-120
index stream, specifying 97
normal streams, specifying 98, 99
UV streams, specifying 98, 99
vertex system, specifying 96

model data
creating, 3D modeling package used 115

model matrices
animating with 135, 136

model matrix 102, 114
model space 96
model space vertices

converting, into screen coordinates 101-103
model templates

defining 231
model templates, parameters

buildCols 231
buildNorms 231
buildUV1s 231
buildUVs 231
calculateNorms 231
chunked 231
maxPrimsPerChunk 231
scale 231
triStrip 231

ModeManager class 67
ModeTitle class 93
morph targets

about 140
used, for 3D model animation 140, 141

MP3 194
MTL file

about 125
used, for creating materials 55, 56

multimedia support, Marmalade 193
multiple resource sets

creating 222

multi-touch input
detecting 82
detecting, polling used 83

N
near clip plane 103
new ICF settings

defining 219
no_assert directive 266
no_init_term directive 267
no_lock directive 266
non-retina display iPhone 76
normal stream

about 98
specifying, for model 98, 99

normal vector 98

O
object space. See model space
offset animation 163
onAccuracyChanged method 275
OnCollide method 133
onSensorChanged method 274, 275
OpenFeint 257
OpenGL API 50
OpenGL ES API 50
OpenOffice Calc 185
order directive 267
origin 96
orthographic projection 102

P
ParseAttribute method 39, 40, 43
ParseCloseChild method 39
ParseClose method 39
ParseOpen method 39
PATH environment variable 31
perspective multiplier 102
perspective projection 102, 103
pinch gesture

about 86
detecting 86

pivot point 96
platform

ICF settings, limiting by 221

[293]

PlayAnim method 158, 160
PlayBook tablet 30
Play method 207
PlaySubAnim method 163
pointer functionality

availability, determining 77, 78
pointer input

detecting 76, 77
type, determining 78

polling
used, for detecting character code input 74
used, for detecting key state changes 71, 72
used, for detecting multi-touch input 83
used, for detecting single touch input 80, 81

polygon
drawing 61-64
rendering 54

polygon, rendering
about 54
color streams 59
materials 54
textures 54
UV streams 60, 61
vertex streams 57, 58

polygon_type parameter 61
PostMult method 115
PreMult method 115
print command 188
professional license type 8
profile information

updating 12
project

IwGraphics API, adding to 129
IwGxFont API, adding to 169, 170
IwResManager API, adding to 44
localizing 185
SoundEngine module, adding to 204, 205

projection 100
project, localizing

about 185
text, getting into game 186
text spreadsheet, creating 185, 186

Python
about 186
used, for processing text spreadsheet 186,

187, 188

Q
quaternion 138, 139

R
rendered image

displaying 64
Render method 130
ResBuild flag 48
ResBuild setting 218
ResBuildStyle setting 218
resource handlers 48, 49
resource manager 43
resources

accessing 46
binary versions, producing of 232, 233
specifying, with GROUP file 44, 45
using, for screen resolutions 214, 215

resource templates
about 222
using 227, 228

rigging process 142
root bone 142
row_values method 188
run_on_osthread directive 266
runtime

font size, changing at 176, 177

S
S3E 11
s3eAccelerometerGetX function 88
s3eAccelerometerGetY function 88
s3eAccelerometerGetZ function 88
s3eAudio API 194
S3E_AUDIO_CHANNEL property 196
S3E_AUDIO_DURATION property 196
s3eAudioGetError function 197
s3eAudioGetInt function 195, 196
s3eAudio.h file 194
S3E_AUDIO_MUTES_S3ESOUND

property 196
S3E_AUDIO_NUM_CHANNELS

property 196
s3eAudioPause function

used, for pausing audio playback 195

[294]

S3E_AUDIO_PLAYBACK_FROM_HTTP_
AVAILABLE property 196

S3E_AUDIO_POSITION property 196
s3eAudioResume function

used, for resuming audio playback 195
s3eAudioSetInt function 195
S3E_AUDIO_STATUS property 196, 197
s3eAudioStop function

used, for stopping audio playback 195
S3E_CHANNEL_RATE property 200
S3E_CHANNEL_VOLUME property 200
S3E_CONFIG_ERR_NONE 220
S3E_CONFIG_ERR_NOT_FOUND 220
S3E_CONFIG_ERR_PARAM 220
S3E_CONFIG_ERR_PARSE 220
s3eConfigGetString function 17, 20
s3eDeviceCheckQuitRequest function 17
s3eDeviceGetInt function 222
s3eDeviceGetString function 222
s3eFacebook API

about 246
adding, to Marmalade project 251
future features 256
support, checking 252

S3E file
about 263
executing 263

s3eIOSAppStoreBilling 259
s3eIOSGameCenter API 258
s3eIOSIAD 260
s3eKeyboard API 69
S3E_KEYBOARD_GET_CHAR property 70
s3eKeyboardGetInt function 70
s3eKeyboardGetInt(S3E_KEYBOARD_

GET_CHAR) function 73
S3E_KEYBOARD_HAS_ALPHA

property 70
S3E_KEYBOARD_HAS_DIRECTION

property 70
S3E_KEYBOARD_HAS_NUMPAD

property 70
s3eKeyboard.h file 69
S3E_KEYBOARD_KEY_EVENT 72
S3E_KEYBOARD_NUMPAD_

ORIENTATION property 70
s3eKeyboardProperty enumeration 70
s3eKeyboardRegister function 72

s3eKeyboardSetInt function 70
s3eKeyboardUpdate function 71
S3E_KEY_STATE_DOWN 71
S3E_KEY_STATE_PRESSED 71
S3E_KEY_STATE_RELEASED 71
s3eOSExecAvailable 246
s3eOSExec.h file 246
s3eOSReadString API 75

used, for entering strings 75, 76
S3E_OSREADSTRING_FLAG_EMAIL 75
S3E_OSREADSTRING_FLAG_

NUMBER 75
S3E_OSREADSTRING_FLAG_

PASSWORD 75
S3E_OSREADSTRING_FLAG_URL 75
s3ePointer API 76
S3E_POINTER_AVAILABLE

property 77, 78
S3E_POINTER_BUTTON_LEFTMOUSE 80
S3E_POINTER_BUTTON_

MIDDLEMOUSE 80
S3E_POINTER_BUTTON_

MOUSEWHEELDOWN 80
S3E_POINTER_BUTTON_

MOUSEWHEELUP 80
S3E_POINTER_BUTTON_

RIGHTMOUSE 80
S3E_POINTER_BUTTON_SELECT 80
s3ePointerGetInt function 77
s3ePointerGetState function 83
s3ePointerGetTouchState function 83, 84
s3ePointerGetTouchX function 83
s3ePointerGetTouchY function 83
s3ePointerGetX function 83
s3ePointerGetY function 83
S3E_POINTER_HIDE_CURSOR

property 77
S3E_POINTER_MULTI_TOUCH_

AVAILABLE property 78
s3ePointerRegister function 81
S3E_POINTER_STATE_DOWN 80
S3E_POINTER_STATE_PRESSED 81
S3E_POINTER_STATE_RELEASED 81
S3E_POINTER_STATE_UNKNOWN 81
S3E_POINTER_STATE_UP 80
S3E_POINTER_STYLUS_TYPE property 78
S3E_POINTER_TYPE_INVALID 78

[295]

S3E_POINTER_TYPE_MOUSE 78
S3E_POINTER_TYPE property 77
S3E_POINTER_TYPE_STYLUS 78
s3ePointerUpdate function 79
s3eSound API

about 198
global sound settings 200, 201
sound notifocations 201-203
sound playback, starting 198, 199

S3E_SOUND_AVAILABLE property 201
s3eSoundChannelGetInt function

used, for determining current playback
status 200

s3eSoundChannelPause function
used, for pausing sound playback 199

s3eSoundChannelResume function
used, for resuming sound playback 199

s3eSoundChannelSetInt function 199
s3eSoundChannelStop function

used, for stopping sound playback 199
S3E_SOUND_DEFAULT_FREQ

property 201
s3eSoundGetInt function 200
S3E_SOUND_NUM_CHANNELS

property 201
s3eSoundSetInt function 200
S3E_SOUND_USED_CHANNELS

property 201
S3E_SOUND_VOLUME_DEFAULT

property 201
S3E_SOUND_VOLUME property 200
S3E_STYLUS_TYPE_FINGER 79
S3E_STYLUS_TYPE_INVALID 79
S3E_STYLUS_TYPE_STYLUS 79
s3eSurface API 49
s3eVideo API

about 207
video codec support, determining 208
video playback, starting 208

S3E_VIDEO_DEFAULT_VOLUME prop-
erty 210

s3eVideoPause function
used, for pausing video playback 209

S3E_VIDEO_POSITION property 210
s3eVideoResume function

used, for resuming video playback 209

S3E_VIDEO_STATUS property 210
s3eVideoStop function

used, for stopping video playback 209
S3E_VIDEO_VOLUME property 210
S4E file 265
Samsung Kies utility

about 34
URL, for downloading 34

Scale method 140
scale parameter 231
ScaleTrans method 140
Scoreloop

about 257
using 258

screen
text, drawing on 174, 175

screen coordinates
model space vertices,

converting into 101-103
screen resolutions

dealing with 214
resources, using for 214, 215

Segundo Embedded Execution
Environment. See S3E

SensorEventListener interface 275
SensorManager class 274
Serialise method 41, 42, 48
SetPitch method 207
SetRotX method 114
SetRotY method 114
SetRotZ method 114
SetVol method 207
shaders 50
sheet_by_index method 187
shimmering 104
single touch input

detecting 79
detecting, callbacks used 81, 82
detecting, polling used 80, 81

SKEL file 148, 149
Skier class 93, 133
SkierController class 93
Skiing project

about 132, 211
collision detection system feature 133
migration, to 3D 132

[296]

about 65, 66, 92, 166, 191, 243, 244, 262, 280
added animation 167
Camera class 93
Input Manager classes 93
ModeGameOver class 93
ModeTitle class 93
new game play features 166
player rotation 92
SkierController class 93

SKIN file 151
Slide project 92
slider control 180
social gaming networks 257
social media sites 246
SoundEngine module

about 198, 203, 204
adding, to project 204, 205
sound resources, accessing 205, 206
sound resources, loading 205, 206

sound parameters
altering 207
playing 207
stopping 207

sound playback
pausing 199
resuming 199
starting 198, 199
status, determining 200
stopping 199

Sound project 211
sound resources

accessing 205, 206
loading 205, 206

sounds.group file 45
source file, Hello World project 15-18
specular lighting 106
specular power 106
SplashScreenBkB setting 217
SplashScreenBkG setting 217
SplashScreenBkR setting 217
SplashScreenFile setting 217
SplashScreenHeight setting 217
SplashScreenWidth setting 217
stream 57
strings

entering, s3eOSReadString API used 75, 76

stylus input
type, determining 79

sub-animations
about 162
playing 162, 163

swipe 85
swipe gesture

about 85
detecting 85, 86

SysAppVersion setting 216
SysGlesVersion setting 216
SysStackSize setting 216

T
Targa file format 172
template functionality

adding, to user interface solution 184
text

drawing, font resource used 173
drawing, on screen 174, 175
justifying, IwGxFont API used 175, 176
wrapping, IwGxFont API used 175, 176

text, getting into game
Comma-separated values files 186
correct language, using at runtime 188
Python, used for processing text

spreadsheet 186-188
text spreadsheet

creating 185, 186
processing, into datafile 186-188

texture atlas 232
textureFormat parameter

about 225
values 225

TouchManager class 93
touch screen

about 76
detecting 76, 77

transformPrecision parameter 232
triStrip parameter 231
Twitter

about 246
using 256

type
determining, for pointer input 78
determining, for stylus input 79

[297]

U
UI project 190
unit normal 98
unit quaternion 138
UpdateMatrices method 162
Update method 67, 162
UpdateParameters method 162
UpdateSources method 162
user input events

responding to 181, 182
user interfaces

implementing 177
user interface solution

class inheritance, using 179, 180
data-driven system, implementing 181
generic approach, using 179
implementing 179
orientation 182-184
screen resolution 182-184
template functionality, adding 184

user list
managing 13

UTF-8
about 75
advantages 75

UV streams
specifying, for model 98, 99
about 60, 61

V
vertex stream 57, 58
vertex system

specifying, for model 96
video codec support

determining 208
video game 69
video playback

end, of track notification 209
pausing 209

resuming 209
starting 208
stopping 209

Video project 211
video queries 210
view matrix 102, 113
view plane 102
view space 102
Virtual Resolution system 51
Visual C++ 2010 Express 8
volume

changing, for audio playback 195

W
web page

launching, in device browser 245, 246
winding order 63
Windows extension

building 269
creating 268
implementing 269

Windows Simulator
about 22
accelerometer input, testing on 90, 91
Hello World project, running 22, 23

world space 102

X
Xcode 8
xlrd library 187

Z
zDepthOfsHW parameter 229
zDepthOfs parameter 229
zeroMotionTolerance parameter 232
Z-fighting 104

Thank you for buying
Marmalade SDK Mobile Game
Development Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Cocos2d for iPhone 1 Game
Development Cookbook
ISBN: 978-1-84951-400-2 Paperback: 446 pages

Over 90 recipes for iOS 2D game development
using cocos2d

1.	 Discover advanced Cocos2d, OpenGL ES, and
iOS techniques spanning all areas of the game
development process

2.	 Learn how to create top-down isometric games,
side-scrolling platformers, and games with
realistic lighting

3.	 Full of fun and engaging recipes with modular
libraries that can be plugged into your project

Unity 3D Game Development by
Example Beginner's Guide
ISBN: 978-1-84969-054-6 Paperback: 384 pages

A seat-of-your-pants manual for building fun, groovy
little games quickly

1.	 Build fun games using the free Unity 3D game
engine even if you've never coded before

2.	 Learn how to "skin" projects to make totally
different games from the same file – more
games, less effort!

3.	 Deploy your games to the Internet so that your
friends and family can play them

Please check www.PacktPub.com for information on our titles

Unity iOS Game Development
Beginners Guide
ISBN: 978-1-84969-040-9 Paperback: 314 pages

Develop iOS games from concept to cash flow
using Unity

1.	 Dive straight into game development with no
previous Unity or iOS experience

2.	 Work through the entire lifecycle of developing
games for iOS

3.	 Add multiplayer, input controls, debugging, in
app and micro payments to your game

4.	 Implement the different business models that
will enable you to make money on iOS games

CryENGINE 3 Cookbook
ISBN: 978-1-84969-106-2 Paperback: 324 pages

Over 90 recipes written by Crytek developers for
creating third-generation real-time games

1.	 Begin developing your AAA game or
simulation by harnessing the power of the
award winning CryENGINE3

2.	 Create entire game worlds using the powerful
CryENGINE 3 Sandbox.

3.	 Create your very own customized content for
use within the CryENGINE3 with the multiple
creation recipes in this book

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
with Marmalade
	Installing the Marmalade SDK
	Installing a development environment
	Choosing your Marmalade license type
	Downloading and installing Marmalade
	Using the Marmalade Configuration Utility
	Managing your Marmalade account and licenses
	Viewing an overview of your account
	Updating your profile information
	Managing your licenses
	Managing your user list

	Creating a Marmalade project
	Creating the "Hello World" project
	The MKB file for the "Hello World" project
	The source file for the "Hello World" project

	Building the "Hello World" project
	The build directory
	The data directory

	Building and running in the Windows simulator

	Deploying a Marmalade project
	Compiling the "Hello World" project for the ARM CPU
	Deploying the "Hello World" project
	Installing on Android devices
	Installing on iOS devices
	Installing on BlackBerry QNX devices
	Installing on Bada devices

	Summary

	Chapter 2: Resource Management and 2D Graphics Rendering
	The Marmalade ITX file format
	The CIwManaged class
	Instantiating a class with the class factory
	Parsing a class
	Serializing a class
	Resolving a class

	The Marmalade resource manager
	Adding IwResManager to a project
	Specifying resources with a GROUP file
	Loading groups and accessing resources
	The CIwResource class
	GROUP file serialization
	Resource handlers

	Graphics APIs provided by the Marmalade SDK
	The s3eSurface API
	The IwGL API and OpenGL ES
	The Iw2D API
	The IwGx API

	Using IwGx to render 2D graphics
	IwGx initialization and termination
	Rendering a polygon
	Materials and textures
	Vertex streams
	Color streams
	UV streams
	Drawing a polygon
	Displaying the rendered image

	Example code
	The ITX project
	The Graphics2D project
	The Skiing project
	The GameObject class
	The ModeManager and Mode classes

	Summary

	Chapter 3: User Input
	Detecting key input
	Initialization and update of key information
	Detecting key state
	Detecting key state changes using polling
	Detecting key state changes using callbacks

	Detecting character code input
	Detecting character code input using polling
	Detecting character code input using callbacks

	Inputting strings

	Detecting touch screen and pointer input
	Determining available pointer functionality
	Determining the type of pointer input
	Determining the type of stylus input

	Updating current pointer input status
	Detecting single touch input
	Detecting single touch input using polling
	Detecting single touch input using callbacks

	Detecting multi-touch input
	Detecting multi-touch input using polling
	Multi-touch input using callbacks

	Recognizing gesture inputs
	Detecting a swipe gesture
	Detecting a pinch gesture

	Detecting accelerometer input
	Starting and stopping accelerometer input
	Reading accelerometer input
	Smoothing accelerometer input
	Testing accelerometer input on the Windows simulator

	Example code
	The Gesture project
	The Slide project
	The Skiing project
	Player rotation
	The ModeTitle and ModeGameOver classes
	The Camera class
	The Input Manager classes
	The SkierController class

	Summary

	Chapter 4: 3D Graphics Rendering
	A quick 3D graphics primer
	Describing a 3D model
	Specifying a model's vertex stream
	Specifying a model's index stream
	Specifying a model's color, UV, and normal streams

	Performing 3D to 2D projection
	Understanding matrices for 3D graphics
	Converting between coordinate systems
	Clipping planes

	Lighting
	Emissive lighting
	Ambient lighting
	Diffuse lighting
	Specular lighting

	Using IwGx to render 3D graphics
	Preparing IwGx for 3D rendering
	Setting lighting information
	Model data for the cube
	The view matrix
	The model matrix
	Rendering the model

	Using a 3D modeling package to create model data
	The Marmalade 3D exporter plugins
	Installing the plugins
	Exporting a model

	The Blender plugin
	Installing Blender and the exporter plugin
	Exporting a model

	The Marmalade 3D model datafile formats
	The GROUP file
	The MTL file
	The GEO file

	Loading and rendering an exported 3D model
	Adding the IwGraphics API to a project
	Loading and accessing an exported 3D model
	Rendering an exported 3D model
	Releasing 3D model data

	Example code
	The Cube project
	The Cube2 project
	The Skiing project
	Migration to 3D
	Addition of a collision detection system

	Summary

	Chapter 5: Animating 3D Graphics
	A quick 3D animation primer
	Animating with model matrices
	Animating by translation
	Animating by rotation
	Animating by scaling

	3D model animation
	Using morph targets
	Using boned animations

	Using a 3D modeling package to create animation data
	Exporting animations using the Marmalade 3D exporter plugins
	Exporting animations using the Blender plugin

	The Marmalade 3D animation file formats
	The SKEL file
	The SKIN file
	The ANIM file

	Loading and rendering an exported 3D animation
	Adding the IwAnim API to a project
	Loading and accessing a 3D animation
	Playing back a 3D animation
	Rendering a 3D animation

	Exploring 3D animation further
	Playing an animation backwards
	Blending between animations
	Detecting animation playback events
	Optimizing animation playback
	Playing sub-animations
	Offset animations
	Obtaining bone positions and rotations

	Example code
	The Flag project
	The Skiing project
	New gameplay features
	Animations added

	Summary

	Chapter 6: Implementing Fonts, User Interfaces, and Localization
	Implementing fonts
	Adding the IwGxFont API to a project
	Creating a font resource
	The GXFONT file format
	Loading and accessing font resources
	Drawing text using a font resource
	Drawing text on screen
	Text wrapping and justification
	Changing font size at runtime
	Optimizing drawing by preparing text

	Implementing user interfaces
	The IwUI API
	The IwNUI API
	Implementing our own user interface solution
	Using a generic approach
	Making good use of class inheritance
	Implementing a data-driven system
	Responding to user input events
	Screen resolution and orientation
	Adding template functionality

	Localizing your project
	Creating a text spreadsheet
	Getting the text into the game
	Comma-separated values files
	Processing using a Python script
	Selecting the correct language to use at runtime

	Example code
	The Font project
	The UI project
	The Skiing project

	Summary

	Chapter 7: Adding Sound and Video
	Multimedia support in Marmalade
	The s3eAudio API
	Starting audio playback
	Pausing, resuming, and stopping playback
	Changing volume
	Other audio queries
	End of track notification

	The s3eSound API
	Starting sound playback
	Pausing, resuming, and stopping playback
	Global sound settings
	Sound notifications

	The SoundEngine module
	Adding the SoundEngine module to a project
	Loading and accessing sound resources
	Playing, stopping, and altering sound parameters

	The s3eVideo API
	Starting video playback
	Determining video codec support
	Pausing, resuming, and stopping video playback
	End of video notification
	Other video queries

	Example code
	The Sound project
	The Video project
	The Skiing project

	Summary

	Chapter 8: Supporting a Wide Range
of Devices
	Accommodating a wide range of device types
	Dealing with different screen resolutions
	Using different resources for different screen resolutions
	Checking device capabilities

	Configuring your game using ICF file settings
	Built-in ICF settings
	Defining new ICF settings
	Accessing ICF settings in code
	Limiting ICF settings by platform and device

	Creating multiple resource sets
	Using build styles
	Adding extra resource directories
	Supported build style platforms
	Specifying which build style to use

	Using resource templates
	Defining material templates
	Defining image templates
	Defining model templates
	Defining animation templates
	Defining GROUP file templates

	Producing binary versions of resources

	Compressing resources using the Derbh archiver
	Creating a Derbh archive
	Using a Derbh archive in code
	The automatic Derbh method

	Creating different deployment types
	Specifying icons, application names, and other details
	Specifying asset lists
	Creating and using deployment types

	Example code
	The build styles project
	The Skiing project

	Summary

	Chapter 9: Adding Social Media and Other Online Services
	Launching a web page in the device browser
	Integrating with social media
	Using Facebook
	Creating a Facebook app
	Creating a Facebook test user
	Adding the s3eFacebook API to a Marmalade project
	Checking for s3eFacebook support
	Initialization and termination
	Logging in and out of Facebook
	Posting a message to a user's wall
	Further s3eFacebook features

	Using Twitter

	Connecting to other types of online services
	Supporting social gaming networks
	Using Apple's Game Center
	Using Scoreloop

	Supporting in-app purchases
	Adding in-app purchasing for iOS devices
	Adding in-app purchasing for Android devices

	Using advertising
	Implementing iAd support for iOS devices
	Using other advertising solutions

	Example code
	The Facebook project
	The Skiing project

	Summary

	Chapter 10: Extending Marmalade
with the Extensions Development Kit (EDK)
	Why is the EDK necessary?
	Creating an extension for gyroscope input
	Declaring the extension API
	Making an extension for Windows
	Creating a Windows extension
	Implementing a Windows extension
	Building a Windows extension

	Making an Android extension
	Installing the required software for Android development
	Creating an Android extension
	Implementing an Android extension
	Building an Android extension

	Making an iOS extension
	Installing the required software for iOS development
	Creating an iOS extension
	Implementing an iOS extension
	Building an iOS extension

	Using the Gyroscope extension
	Example code
	The Gyroscope project
	The GyroTest project
	The Skiing project

	Summary

	Index

