
[1]

www.allitebooks.com

http://www.allitebooks.org

Mastering Ansible

Design, develop, and solve real world automation
and orchestration needs by unlocking the automation
capabilities of Ansible

Jesse Keating

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Ansible

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authornor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference:1191115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B32PB, UK.

ISBN 978-1-78439-548-3

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Jesse Keating

Reviewers
Ryan Eschinger

Sreenivas Makam

Tim Rupp

Sawant Shah

Patrik Uytterhoeven

Acquisition Editor
Meeta Rajani

Content Development Editor
Zeeyan Pinheiro

Technical Editor
Rohan Uttam Gosavi

Copy Editor
Pranjali Chury

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Jesse Keating is an accomplished Ansible user, contributor, and presenter. He has
been an active member of the Linux and open source communities for over 15 years.
He has first-hand experience with a variety of IT activities, software development,
and large-scale system administration. He has presented at numerous conferences
and meet-ups, and he has written many articles on a variety of topics.

His professional Linux career started with Pogo Linux as a Lead Linux Engineer
handling many duties, including building and managing automated installation
systems. For 7 years, Jesse served at the Fedora Release Engineer as a senior software
engineer at Red Hat. In 2012, he joined Rackspace to help manage Rackspace's public
Cloud product, where he introduced the use of Ansible for the large-scale automation
and orchestration of OpenStack-powered Clouds. Currently, he is a senior software
engineer and the OpenStack release lead at Blue Box, an IBM company, where he
continues to utilize Ansible to deploy and manage OpenStack Clouds.

He has worked as technical editor on Red Hat Fedora and Enterprise Linux 4
Bible, A Practical Guide to Fedora and Red Hat Enterprise Linux 4th Edition, Python:
Create-Modify-Reuse, and Practical Virtualization Solutions: Virtualization from
the Trenches. He has also worked as a contributing author on Linux Toys II,
and Linux Troubleshooting Bible. You can find Jesse on Twitter using the handle
@iamjkeating, and find his musings that require more than 140 characters
on his blog at https://derpops.bike.

www.allitebooks.com

https://derpops.bike
http://www.allitebooks.org

Acknowledgment

I'd like to thank my wife—my partner in crime, my foundation, my everything. She
willingly took the load of our family so that I could hide away in a dark corner to
write this book. Without her, it would never have been done. She was also there to
poke me, not so gently, to put down the distractions at hand and go write! Thank
you Jessie, for everything. I'd like to to thank my boys too, Eamon and Finian, for
giving up a few (too many) evenings with their daddy while I worked to complete
one chapter or another. Eamon, it was great to have you so interested in what it
means to write a book. Your curiosity inspires me! Fin, you're the perfect remedy for
spending too much time in serious mode. You can always crack me up! Thank you,
boys for sharing your father for a bit.

I'd also like to thank all my editors, reviewers, confidants, coworkers past and
present, and just about anybody who would listen to my crazy ideas, or read a
blurb I put on the page. Your feedback kept me going, kept me correct, and kept
my content from being completely adrift.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ryan Eschinger is an independent software consultant with over 15 years of
experience in operations and application development. He has a passion for helping
businesses build and deploy amazing software. Using tools such as Ansible, he
specializes in helping companies automate their infrastructure, establish automated
and repeatable deployments, and build virtualized development environments that
are consistent with production. He has worked with organizations of all shapes,
sizes, and technical stacks. He's seen it all—good and bad—and he loves what he
does. You can find him in one of the many neighborhood coffee shops in Brooklyn,
NY, or online at http://ryaneschinger.com/.

Sreenivas Makam is currently working as a senior engineering manager
at Cisco Systems, Bangalore. He has a master's degree in electrical engineering
and around 18 years of experience in the networking industry. He has worked
on both start-ups and big established companies. His interests include SDN, NFV,
Network Automation, DevOps, and Cloud technologies. He also likes to try out
and follow open source projects in these areas. You can find him on his blog at
https://sreeninet.wordpress.com/.

www.allitebooks.com

http://ryaneschinger.com/
https://sreeninet.wordpress.com/
http://www.allitebooks.org

Tim Rupp has been working in various fields of computing for the last 10 years. He
has held positions in computer security, software engineering, and most recently, in
the fields of Cloud computing and DevOps.

He was first introduced to Ansible while at Rackspace. As part of the Cloud
engineering team, he made extensive use of the tool to deploy new capacity for the
Rackspace Public Cloud. Since then, he has contributed patches, provided support
for, and presented on Ansible topics at local meetups.

He is currently stationed at F5 Networks, where he is involved in Solution
development as a senior software engineer. Additionally, he spends time assisting
colleagues in various knowledge-sharing situations revolving around OpenStack
and Ansible.

I'd like to thank my family for encouraging me to take risks and
supporting me along the way. Without their support, I would have
never come out of my shell to explore new opportunities. I'd also
like to thank my girlfriend for putting up with my angry beaver
moments as I balance work with life.

Sawant Shah is a passionate and experienced full-stack application developer with
a formal degree in computer science.

Being a software engineer, he has focused on developing web and mobile applications
for the last 9 years. From building frontend interfaces and programming application
backend as a developer to managing and automating service delivery as a DevOps
engineer, he has worked at all stages of an application and project's lifecycle.

He is currently spearheading the web and mobile projects division at the Express
Media Group—one of the country's largest media houses. His previous experience
includes leading teams and developing solutions at a software house, a BPO, a
non-profit organization, and an Internet startup.

He loves to write code and keeps learning new ways to write optimal solutions.
He blogs his experiences and opinions regarding programming and technology
on his personal website, http://www.sawantshah.com, and on Medium,
https://medium.com/@sawant.You can follow him on Twitter, where he
shares learning resources and other useful tech material at @sawant.

www.allitebooks.com

http://www.sawantshah.com
https://medium.com/@sawant
http://www.allitebooks.org

Patrik Uytterhoeven has over 16 years of experience in IT. Most of this time was
spent on HP Unix and Red Hat Linux. In late 2012, he joined Open-Future, a leading
open source integrator and the first Zabbix reseller and training partner in Belgium.

When he joined Open-Future, he gained the opportunity to certify himself
as a Zabbix Certified trainer. Since then, he has provided training and public
demonstrations not only in Belgium but also around the world, in countries such
as the Netherlands, Germany, Canada, and Ireland. His next step was to write a
book about Zabbix. Zabbix Cookbook was born in March 2015 and was published by
Packt Publishing.

As he also has a deep interest in configuration management, he wrote some Ansible
roles for Red Hat 6.x and 7.x to deploy and update Zabbix. These roles, and some
others, can be found in the Ansible Galaxy at https://galaxy.ansible.com/
list#/users/1375.

He is also a technical reviewer of Learning Ansible and the upcoming book, Ansible
Configuration Management, Second Edition, both by Packt Publishing.

www.allitebooks.com

https://galaxy.ansible.com/list#/users/1375
https://galaxy.ansible.com/list#/users/1375
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and readPackt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt atwww.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: System Architecture and Design of Ansible 1

Ansible version and configuration 2
Inventory parsing and data sources 3

The static inventory 3
Inventory variable data 4
Dynamic inventories 7
Run-time inventory additions 9
Inventory limiting 9

Playbook parsing 12
Order of operations 13
Relative path assumptions 15
Play behavior keys 17
Host selection for plays and tasks 18
Play and task names 19

Module transport and execution 21
Module reference 22
Module arguments 22
Module transport and execution 24

Task performance 25
Variable types and location 26

Variable types 26
Accessing external data 28

Variable precedence 28
Precedence order 28

Extra-vars 29
Connection variables 29
Most everything else 29
The rest of the inventory variables 30

Table of Contents

[ii]

Facts discovered about a system 30
Role defaults 30

Merging hashes 30
Summary 32

Chapter 2: Protecting Your Secrets with Ansible 33
Encrypting data at rest 33

Things Vault can encrypt 34
Creating new encrypted files 35

The password prompt 36
The password file 37
The password script 38

Encrypting existing files 38
Editing encrypted files 40
Password rotation for encrypted files 41
Decrypting encrypted files 42
Executing ansible-playbook with Vault-encrypted files 43

Protecting secrets while operating 44
Secrets transmitted to remote hosts 45
Secrets logged to remote or local files 45

Summary 47
Chapter 3: Unlocking the Power of Jinja2 Templates 49

Control structures 49
Conditionals 49

Inline conditionals 52
Loops 53

Filtering loop items 54
Loop indexing 55

Macros 58
Macro variables 59

Data manipulation 67
Syntax 67
Useful built-in filters 68

default 68
count 69
random 69
round 69

Useful Ansible provided custom filters 69
Filters related to task status 70
shuffle 71
Filters dealing with path names 71
Base64 encoding 73
Searching for content 75

Omitting undefined arguments 76

Table of Contents

[iii]

Python object methods 77
String methods 77
List methods 78
int and float methods 78

Comparing values 79
Comparisons 79
Logic 79
Tests 79

Summary 80
Chapter 4: Controlling Task Conditions 81

Defining a failure 81
Ignoring errors 81
Defining an error condition 83

Defining a change 88
Special handling of the command family 90
Suppressing a change 92

Summary 93
Chapter 5: Composing Reusable Ansible Content with Roles 95

Task, handler, variable, and playbook include concepts 96
Including tasks 96

Passing variable values to included tasks 99
Passing complex data to included tasks 101
Conditional task includes 103
Tagging included tasks 105

Including handlers 107
Including variables 109

vars_files 109
Dynamic vars_files inclusion 110
include_vars 111
extra-vars 114

Including playbooks 115
Roles 115

Role structure 115
Tasks 116
Handlers 116
Variables 116
Modules 116
Dependencies 117
Files and templates 117
Putting it all together 117

Role dependencies 118
Role dependency variables 118
Tags 119
Role dependency conditionals 120

Table of Contents

[iv]

Role application 120
Mixing roles and tasks 123

Role sharing 126
Ansible Galaxy 126

Summary 131
Chapter 6: Minimizing Downtime with Rolling Deployments 133

In-place upgrades 133
Expanding and contracting 136
Failing fast 139

The any_errors_fatal option 140
The max_fail_percentage option 142
Forcing handlers 144

Minimizing disruptions 147
Delaying a disruption 147
Running destructive tasks only once 152

Summary 154
Chapter 7: Troubleshooting Ansible 155

Playbook logging and verbosity 155
Verbosity 156
Logging 156

Variable introspection 157
Variable sub elements 159

Subelement versus Python object method 162
Debugging code execution 163

Debugging local code 164
Debugging inventory code 164
Debugging Playbook code 168
Debugging runner code 169

Debugging remote code 172
Debugging the action plugins 176

Summary 177
Chapter 8: Extending Ansible 179

Developing modules 179
The basic module construct 180
Custom modules 180
Simple module 181

Module documentation 184
Providing fact data 190
Check mode 191

Developing plugins 193
Connection type plugins 193
Shell plugins 193

Table of Contents

[v]

Lookup plugins 193
Vars plugins 194
Fact caching plugins 194
Filter plugins 194
Callback plugins 196
Action plugins 198
Distributing plugins 199

Developing dynamic inventory plugins 199
Listing hosts 201
Listing host variables 201
Simple inventory plugin 201

Optimizing script performance 206
Summary 208

Index 209

[vii]

Preface
Welcome to Mastering Ansible, your guide to a variety of advanced features and
functionality provided by Ansible, which is an automation and orchestration tool.
This book will provide you with the knowledge and skills to truly understand
how Ansible functions at the fundamental level. This will allow you to master the
advanced capabilities required to tackle the complex automation challenges of today
and beyond. You will gain knowledge of Ansible workflows, explore use cases
for advanced features, troubleshoot unexpected behavior, and extend Ansible
through customization.

What this book covers
Chapter 1, System Architecture and Design of Ansible, provides a detailed look at the ins
and outs of how Ansible goes about performing tasks on behalf of an engineer, how
it is designed, and how to work with inventories and variables.

Chapter 2, Protecting Your Secrets with Ansible, explores the tools available to encrypt
data at rest and prevent secrets from being revealed at runtime.

Chapter 3, Unlocking the Power of Jinja2 Templates, states the varied uses of the
Jinja2 templating engine within Ansible, and discusses ways to make the most
out of its capabilities.

Chapter 4, Controlling Task Conditions, describes the changing of default behavior of
Ansible to customize task error and change conditions.

Chapter 5, Composing Reusable Ansible Content with Roles, describes the approach to
move beyond executing loosely organized tasks on hosts to encapsulating clean
reusable abstractions to applying the specific functionality of a target set of hosts.

Chapter 6, Minimizing Downtime with Rolling Deployments, explores the common
deployment and upgrade strategies to showcase relevant Ansible features.

Preface

[viii]

Chapter 7, Troubleshooting Ansible, explores the various methods that can be employed
to examine, introspect, modify, and debug the operations of Ansible.

Chapter 8, Extending Ansible, discovers the various ways in which new capabilities
can be added to Ansible via modules, plugins, and inventory sources.

What you need for this book
To follow the examples provided in this book, you will need access to a computer
platform capable of running Ansible. Currently, Ansible can be run from any
machine with Python 2.6 or 2.7 installed (Windows isn't supported for the control
machine). This includes Red Hat, Debian, CentOS, OS X, any of the BSDs, and so on.

This book uses the Ansible 1.9.x series release.

Ansible installation instructions can be found at http://docs.ansible.com/
ansible/intro_installation.html.

Who this book is for
This book is intended for Ansible developers and operators who have an understanding
of the core elements and applications but are now looking to enhance their skills in
applying automation using Ansible.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"When ansible or ansible-playbook is directed at an executable file for an
inventory source, Ansible will execute that script with a single argument, --list."

A block of code is set as follows:

- name: add new node into runtime inventory
 add_host:
 name: newmastery.example.name
 groups: web
 ansible_ssh_host: 192.168.10.30

http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html

Preface

[ix]

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "The first is an
SSH feature, ControlPersist, which provides a mechanism to create persistent sockets
when first connecting to a remote host that can be reused in subsequent connections to
bypass some of the handshaking required when creating a connection."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[x]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

System Architecture and
Design of Ansible

This chapter provides a detailed exploration of the architecture and design of how
Ansible goes about performing tasks on your behalf. We will cover basic concepts
of inventory parsing and how the data is discovered, and then dive into playbook
parsing. We will take a walk through module preparation, transportation, and
execution. Lastly, we will detail variable types and find out where variables can be
located, the scope they can be used for, and how precedence is determined when
variables are defined in more than one location. All these things will be covered in
order to lay the foundation for mastering Ansible!

In this chapter, we will cover the following topics:

• Ansible version and configuration
• Inventory parsing and data sources
• Playbook parsing
• Module transport and execution
• Variable types and locations
• Variable precedence

System Architecture and Design of Ansible

[2]

Ansible version and configuration
It is assumed that you have Ansible installed on your system. There are many
documents out there that cover installing Ansible in a way that is appropriate for
the operating system and version that you might be using. This book will assume
the use of the Ansible 1.9.x version. To discover the version in use on a system with
Ansible already installed, make use of the version argument, that is, either ansible
or ansible-playbook:

Note that ansible is the executable for doing ad-hoc one-task
executions and ansible-playbook is the executable that will
process playbooks for orchestrating many tasks.

The configuration for Ansible can exist in a few different locations, where the first file
found will be used. The search order changed slightly in version 1.5, with the new
order being:

• ANSIBLE_CFG: This is an environment variable
• ansible.cfg: This is in the current directory
• ansible.cfg: This is in the user's home directory
• /etc/ansible/ansible.cfg

Some installation methods may include placing a config file in one of these locations.
Look around to check whether such a file exists and see what settings are in the file
to get an idea of how Ansible operation may be affected. This book will assume no
settings in the ansible.cfg file that would affect the default operation of Ansible.

Chapter 1

[3]

Inventory parsing and data sources
In Ansible, nothing happens without an inventory. Even ad hoc actions performed
on localhost require an inventory, even if that inventory consists just of the
localhost. The inventory is the most basic building block of Ansible architecture.
When executing ansible or ansible-playbook, an inventory must be referenced.
Inventories are either files or directories that exist on the same system that runs
ansible or ansible-playbook. The location of the inventory can be referenced at
runtime with the –inventory-file (-i) argument, or by defining the path in an
Ansible config file.

Inventories can be static or dynamic, or even a combination of both, and Ansible is
not limited to a single inventory. The standard practice is to split inventories across
logical boundaries, such as staging and production, allowing an engineer to run a set
of plays against their staging environment for validation, and then follow with the
same exact plays run against the production inventory set.

Variable data, such as specific details on how to connect to a particular host in your
inventory, can be included along with an inventory in a variety of ways as well, and
we'll explore the options available to you.

The static inventory
The static inventory is the most basic of all the inventory options. Typically, a static
inventory will consist of a single file in the ini format. Here is an example of a static
inventory file describing a single host, mastery.example.name:

mastery.example.name

That is all there is to it. Simply list the names of the systems in your inventory. Of
course, this does not take full advantage of all that an inventory has to offer. If every
name were listed like this, all plays would have to reference specific host names, or
the special all group. This can be quite tedious when developing a playbook that
operates across different sets of your infrastructure. At the very least, hosts should
be arranged into groups. A design pattern that works well is to arrange your systems
into groups based on expected functionality. At first, this may seem difficult if you
have an environment where single systems can play many different roles, but that is
perfectly fine. Systems in an inventory can exist in more than one group, and groups
can even consist of other groups! Additionally, when listing groups and hosts, it's
possible to list hosts without a group. These would have to be listed first, before any
other group is defined.

System Architecture and Design of Ansible

[4]

Let's build on our previous example and expand our inventory with a few more
hosts and some groupings:

[web]
mastery.example.name

[dns]
backend.example.name

[database]
backend.example.name

[frontend:children]
web

[backend:children]
dns
database

What we have created here is a set of three groups with one system in each, and
then two more groups, which logically group all three together. Yes, that's right; you
can have groups of groups. The syntax used here is [groupname:children], which
indicates to Ansible's inventory parser that this group by the name of groupname is
nothing more than a grouping of other groups. The children in this case are the names
of the other groups. This inventory now allows writing plays against specific hosts,
low-level role-specific groups, or high-level logical groupings, or any combination.

By utilizing generic group names, such as dns and database, Ansible plays can
reference these generic groups rather than the explicit hosts within. An engineer can
create one inventory file that fills in these groups with hosts from a preproduction
staging environment and another inventory file with the production versions of these
groupings. The playbook content does not need to change when executing on either
staging or production environment because it refers to the generic group names
that exist in both inventories. Simply refer to the right inventory to execute it in the
desired environment.

Inventory variable data
Inventories provide more than just system names and groupings. Data about the
systems can be passed along as well. This can include:

• Host-specific data to use in templates
• Group-specific data to use in task arguments or conditionals
• Behavioral parameters to tune how Ansible interacts with a system

Chapter 1

[5]

Variables are a powerful construct within Ansible and can be used in a variety of
ways, not just the ways described here. Nearly every single thing done in Ansible
can include a variable reference. While Ansible can discover data about a system
during the setup phase, not all data can be discovered. Defining data with the
inventory is how to expand the dataset. Note that variable data can come from many
different sources, and one source may override another source. Variable precedence
order is covered later in this chapter.

Let's improve upon our existing example inventory and add to it some variable data.
We will add some host-specific data as well as group specific data:

[web]
mastery.example.name ansible_ssh_host=192.168.10.25

[dns]
backend.example.name

[database]
backend.example.name

[frontend:children]
web

[backend:children]
dns
database

[web:vars]
http_port=88
proxy_timeout=5

[backend:vars]
ansible_ssh_port=314

[all:vars]
ansible_ssh_user=otto

In this example, we defined ansible_ssh_host for mastery.example.name to be
the IP address of 192.168.10.25. An ansible_ssh_host is a behavioral inventory
parameter, which is intended to alter the way Ansible behaves when operating
with this host. In this case, the parameter instructs Ansible to connect to the
system using the provided IP address rather than performing a DNS lookup on the
name mastery.example.name. There are a number of other behavioral inventory
parameters, which are listed at the end of this section along with their intended use.

System Architecture and Design of Ansible

[6]

Our new inventory data also provides group level variables for the web and
backend groups. The web group defines http_port, which may be used in an nginx
configuration file, and proxy_timeout, which might be used to determine HAProxy
behavior. The backend group makes use of another behavioral inventory parameter
to instruct Ansible to connect to the hosts in this group using port 314 for SSH, rather
than the default of 22.

Finally, a construct is introduced that provides variable data across all the hosts in
the inventory by utilizing a built-in all group. Variables defined within this group
will apply to every host in the inventory. In this particular example, we instruct
Ansible to log in as the otto user when connecting to the systems. This is also a
behavioral change, as the Ansible default behavior is to log in as a user with the
same name as the user executing ansible or ansible-playbook on the control host.

Here is a table of behavior inventory parameters and the behavior they intend
to modify:

Inventory parameters Behaviour
ansible_ssh_host This is the name of the host to connect to,

if different from the alias you wish to give
to it.

ansible_ssh_port This is the SSH port number, if not 22.
ansible_ssh_user This is the default SSH username to use.
ansible_ssh_pass This is the SSH password to use (this is

insecure, we strongly recommend using
--ask-pass or the SSH keys)

ansible_sudo_pass This is the sudo password to use (this is
insecure, we strongly recommend using
--ask-sudo-pass)

ansible_sudo_exe This is the sudo command path.
ansible_connection This is the connection type of the host.

Candidates are local, smart, ssh, or
paramiko. The default is paramiko before
Ansible 1.2, and smart afterwards, which
detects whether the usage of ssh will be
feasible based on whether the ssh feature
ControlPersist is supported

ansible_ssh_private_key_file This is the private key file used by SSH.
This is useful if you use multiple keys and
you don't want to use SSH agent

Chapter 1

[7]

Inventory parameters Behaviour
ansible_shell_type This is the shell type of the target system.

By default, commands are formatted using
the sh-style syntax. Setting this to csh or
fish will cause commands to be executed on
target systems to follow those shell's syntax
instead

ansible_python_interpreter This is the target host Python path. This
is useful for systems with more than one
Python, systems that are not located at /
usr/bin/python (such as *BSD), or for
systems where /usr/bin/python is not a 2.X
series Python. We do not use the /usr/bin/
env mechanism as it requires the remote user's
path to be set right and also assumes that the
Python executable is named Python, where
the executable might be named something like
python26.

ansible_*_interpreter This works for anything such as Ruby or
Perl and works just like ansible_python_
interpreter. This replaces the shebang of
modules which run on that host

Dynamic inventories
A static inventory is great and enough for many situations. But there are times when
a statically written set of hosts is just too unwieldy to manage. Consider situations
where inventory data already exists in a different system, such as LDAP, a cloud
computing provider, or an in-house CMDB (inventory, asset tracking, and data
warehousing) system. It would be a waste of time and energy to duplicate that data,
and in the modern world of on-demand infrastructure, that data would quickly grow
stale or disastrously incorrect.

Another example of when a dynamic inventory source might be desired is when
your site grows beyond a single set of playbooks. Multiple playbook repositories
can fall into the trap of holding multiple copies of the same inventory data, or
complicated processes have to be created to reference a single copy of the data. An
external inventory can easily be leveraged to access the common inventory data
stored outside of the playbook repository to simplify the setup. Thankfully, Ansible
is not limited to static inventory files.

System Architecture and Design of Ansible

[8]

A dynamic inventory source (or plugin) is an executable script that Ansible will
call at runtime to discover real-time inventory data. This script may reach out into
external data sources and return data, or it can just parse local data that already
exists but may not be in the Ansible inventory ini format. While it is possible and
easy to develop your own dynamic inventory source, which we will cover in a later
chapter, Ansible provides a number of example inventory plugins, including but not
limited to:

• OpenStack Nova
• Rackspace Public Cloud
• DigitalOcean
• Linode
• Amazon EC2
• Google Compute Engine
• Microsoft Azure
• Docker
• Vagrant

Many of these plugins require some level of configuration, such as user credentials
for EC2 or authentication endpoint for OpenStack Nova. Since it is not possible to
configure additional arguments for Ansible to pass along to the inventory script, the
configuration for the script must either be managed via an ini config file read from
a known location, or environment variables read from the shell environment used to
execute ansible or ansible-playbook.

When ansible or ansible-playbook is directed at an executable file for an
inventory source, Ansible will execute that script with a single argument, --list.
This is so that Ansible can get a listing of the entire inventory in order to build up
its internal objects to represent the data. Once that data is built up, Ansible will then
execute the script with a different argument for every host in the data to discover
variable data. The argument used in this execution is --host <hostname>, which
will return any variable data specific to that host.

In Chapter 8, Extending Ansible, we will develop our own custom inventory plugin to
demonstrate how they operate.

Chapter 1

[9]

Run-time inventory additions
Just like static inventory files, it is important to remember that Ansible will parse this
data once, and only once, per ansible or ansible-playbook execution. This is a
fairly common stumbling point for users of cloud dynamic sources, where frequently
a playbook will create a new cloud resource and then attempt to use it as if it were
part of the inventory. This will fail, as the resource was not part of the inventory
when the playbook launched. All is not lost though! A special module is provided
that allows a playbook to temporarily add inventory to the in-memory inventory
object, the add_host module.

The add_host module takes two options, name and groups. The name should be
obvious, it defines the hostname that Ansible will use when connecting to this
particular system. The groups option is a comma-separated list of groups to add
this new system to. Any other option passed to this module will become the host
variable data for this host. For example, if we want to add a new system, name it
newmastery.example.name, add it to the web group, and instruct Ansible to connect
to it by way of IP address 192.168.10.30, we will create a task like this:

- name: add new node into runtime inventory
 add_host:
 name: newmastery.example.name
 groups: web
 ansible_ssh_host: 192.168.10.30

This new host will be available to use, by way of the name provided, or by way of
the web group, for the rest of the ansible-playbook execution. However, once the
execution has completed, this host will not be available unless it has been added
to the inventory source itself. Of course, if this were a new cloud resource created,
the next ansible or ansible-playbook execution that sourced inventory from that
cloud would pick up the new member.

Inventory limiting
As mentioned earlier, every execution of ansible or ansible-playbook will parse
the entire inventory it has been directed at. This is even true when a limit has been
applied. A limit is applied at run time by making use of the --limit runtime
argument to ansible or ansible-playbook. This argument accepts a pattern, which
is basically a mask to apply to the inventory. The entire inventory is parsed, and at
each play the supplied limit mask further limits the host pattern listed for the play.

www.allitebooks.com

http://www.allitebooks.org

System Architecture and Design of Ansible

[10]

Let's take our previous inventory example and demonstrate the behavior of Ansible
with and without a limit. If you recall, we have the special group all that we can
use to reference all the hosts within an inventory. Let's assume that our inventory
is written out in the current working directory in a file named mastery-hosts, and
we will construct a playbook to demonstrate the host on which Ansible is operating.
Let's write this playbook out as mastery.yaml:

- name: limit example play
 hosts: all
 gather_facts: false

 tasks:
 - name: tell us which host we are on
 debug:
 var: inventory_hostname

The debug module is used to print out text, or values of variables. We'll use this
module a lot in this book to simulate actual work being done on a host.

Now, let's execute this simple playbook without supplying a limit. For simplicity's
sake, we will instruct Ansible to utilize a local connection method, which will execute
locally rather than attempting to SSH to these nonexistent hosts. Let's take a look at
the following screenshot:

Chapter 1

[11]

As we can see, both hosts backend.example.name and mastery.example.name
were operated on. Let's see what happens if we supply a limit, specifically to limit
our run to only frontend systems:

We can see that only mastery.example.name was operated on this time. While there
are no visual clues that the entire inventory was parsed, if we dive into the Ansible
code and examine the inventory object, we will indeed find all the hosts within, and
see how the limit is applied every time the object is queried for items.

It is important to remember that regardless of the host's pattern used in a play, or the
limit supplied at runtime, Ansible will still parse the entire inventory set during each
run. In fact, we can prove this by attempting to access host variable data for a system
that would otherwise be masked by our limit. Let's expand our playbook slightly and
attempt to access the ansible_ssh_port variable from backend.example.name:

- name: limit example play
 hosts: all
 gather_facts: false

 tasks:
 - name: tell us which host we are on
 debug:
 var: inventory_hostname

 - name: grab variable data from backend
 debug:
 var: hostvars['backend.example.name']['ansible_ssh_port']

System Architecture and Design of Ansible

[12]

We will still apply our limit, which will restrict our operations to just mastery.
example.name:

We have successfully accessed the host variable data (by way of group variables) for
a system that was otherwise limited out. This is a key skill to understand, as it allows
for more advanced scenarios, such as directing a task at a host that is otherwise
limited out. Delegation can be used to manipulate a load balancer to put a system
into maintenance mode while being upgraded without having to include the load
balancer system in your limit mask.

Playbook parsing
The whole purpose of an inventory source is to have systems to manipulate. The
manipulation comes from playbooks (or in the case of ansible ad hoc execution,
simple single task plays). You should already have a base understanding of playbook
construction so we won't spend a lot of time covering that, however, we will delve into
some specifics of how a playbook is parsed. Specifically, we will cover the following:

• Order of operations
• Relative path assumptions
• Play behavior keys

Chapter 1

[13]

• Host selection for plays and tasks
• Play and task names

Order of operations
Ansible is designed to be as easy as possible for a human to understand. The
developers strive to strike the best balance between human comprehension and
machine efficiency. To that end, nearly everything in Ansible can be assumed to be
executed in a top to bottom order; that is the operation listed at the top of a file will
be accomplished before the operation listed at the bottom of a file. Having said that,
there are a few caveats and even a few ways to influence the order of operations.

A playbook has only two main operations it can accomplish. It can either run a play,
or it can include another playbook from somewhere on the filesystem. The order
in which these are accomplished is simply the order in which they appear in the
playbook file, from top to bottom. It is important to note that while the operations are
executed in order, the entire playbook, and any included playbooks, is completely
parsed before any executions. This means that any included playbook file has to exist
at the time of the playbook parsing. They cannot be generated in an earlier operation.

Within a play, there are a few more operations. While a playbook is strictly ordered
from top to bottom, a play has a more nuanced order of operations. Here is a list of
the possible operations and the order in which they will happen:

• Variable loading
• Fact gathering
• The pre_tasks execution
• Handlers notified from the pre_tasks execution
• Roles execution
• Tasks execution
• Handlers notified from roles or tasks execution
• The post_tasks execution
• Handlers notified from post_tasks execution

Here is an example play with most of these operations shown:

- hosts: localhost
 gather_facts: false

 vars:

System Architecture and Design of Ansible

[14]

 - a_var: derp

 pre_tasks:
 - name: pretask
 debug: msg="a pre task"
 changed_when: true
 notify: say hi

 roles:
 - role: simple
 derp: newval

 tasks:
 - name: task
 debug: msg="a task"
 changed_when: true
 notify: say hi

 post_tasks:
 - name: posttask
 debug: msg="a post task"
 changed_when: true
 notify: say hi

Regardless of the order in which these blocks are listed in a play, this is the order in
which they will be processed. Handlers (the tasks that can be triggered by other tasks
that result in a change) are a special case. There is a utility module, meta, which can
be used to trigger handler processing at that point:

- meta: flush_handlers

This will instruct Ansible to process any pending handlers at that point
before continuing on with the next task or next block of actions within a play.
Understanding the order and being able to influence the order with flush_handlers
is another key skill to have when there is a need to orchestrate complicated actions,
where things such as service restarts are very sensitive to order. Consider the initial
rollout of a service. The play will have tasks that modify config files and indicate
that the service should be restarted when these files change. The play will also
indicate that the service should be running. The first time this play happens, the
config file will change and the service will change from not running to running.
Then, the handlers will trigger, which will cause the service to restart immediately.
This can be disruptive to any consumers of the service. It would be better to flush the
handlers before a final task to ensure the service is running. This way, the restart will
happen before the initial start, and thus the service will start up once and stay up.

Chapter 1

[15]

Relative path assumptions
When Ansible parses a playbook, there are certain assumptions that can be made
about the relative paths of items referenced by the statements in a playbook. In most
cases, paths for things such as variable files to include, task files to include, playbook
files to include, files to copy, templates to render, scripts to execute, and so on, are all
relative to the directory where the file referencing them lives. Let's explore this with
an example playbook and directory listing to show where the things are.

• Directory structure:
.
├── a_vars_file.yaml
├── mastery-hosts
├── relative.yaml
└── tasks
 ├── a.yaml
 └── b.yaml

• Contents of _vars_file.yaml:

something: "better than nothing"

• Contents of relative.yaml:

- name: relative path play
 hosts: localhost
 gather_facts: false

 vars_files:
 - a_vars_file.yaml

 tasks:
 - name: who am I
 debug:
 msg: "I am mastery task"

 - name: var from file
 debug: var=something

 - include: tasks/a.yaml

System Architecture and Design of Ansible

[16]

• Contents of tasks/a.yaml:

- name: where am I
 debug:
 msg: "I am task a"

- include: b.yaml

• Contents of tasks/b.yaml:

- name: who am I
 debug:
 msg: "I am task b"

Here the execution of the playbook is shown as follows:

Chapter 1

[17]

We can clearly see the relative reference to paths and how they are relative to the
file referencing them. When using roles there are some additional relative path
assumptions, however we'll cover that in detail in a later chapter.

Play behavior keys
When Ansible parses a play, there are a few keys it looks for to define various
behaviors for a play. These keys are written at the same level as hosts: key.
Here are the keys that can be used:

• any_errors_fatal: This Boolean key is used to instruct Ansible to treat any
failure as a fatal error to prevent any further tasks from being attempted.
This changes the default where Ansible will continue until all the tasks are
complete or all the hosts have failed.

• connection: This string key defines which connection system to use for
a given play. A common choice to make here is local, which instructs
Ansible to do all the operations locally, but with the context of the system
from the inventory.

• gather_facts: This Boolean key controls whether or not Ansible will perform
the fact gathering phase of operation, where a special task will run on a host
to discover various facts about the system. Skipping fact gathering, when you
are sure that you do not need any of the discovered data, can be a significant
time saver in a larger environment.

• max_fail_percentage: This number key is similar to any_errors_fatal, but
is more fine-grained. This allows you to define just what percentage of your
hosts can fail before the whole operation is halted.

• no_log: This is a Boolean key to control whether or not Ansible will log
(to the screen and/or a configured log file) the command given or the
results received from a task. This is important if your task or return deal
with secrets. This key can also be applied to a task directly.

• port: This is a number key to define what port SSH (or an other remote
connection plugin) should use to connect unless otherwise configured
in the inventory data.

• remote_user: This is a string key that defines which user to log in with on
the remote system. The default is to connect as the same user that ansible-
playbook was started with.

System Architecture and Design of Ansible

[18]

• serial: This key takes a number and controls how many systems Ansible will
execute a task on before moving to the next task in a play. This is a drastic
change from the normal order of operation, where a task is executed across
every system in a play before moving to the next. This is very useful in
rolling update scenarios, which will be detailed in later chapters.

• sudo: This is a Boolean key used to configure whether sudo should be used
on the remote host to execute tasks. This key can also be defined at a task
level. A second key, sudo_user, can be used to configure which user to sudo
to (instead of root).

• su: Much like sudo, this key is used to su instead of sudo. This key also has a
companion, su_user, to configure which user to su to (instead of root).

Many of these keys will be used in example playbooks through this book.

Host selection for plays and tasks
The first thing most plays define (after a name, of course) is a host pattern for the
play. This is the pattern used to select hosts out of the inventory object to run the
tasks on. Generally this is straightforward; a host pattern contains one or more blocks
indicating a host, group, wildcard pattern, or regex to use for the selection. Blocks
are separated by a colon, wildcards are just an asterisk, and regex patterns start with
a tilde:

hostname:groupname:*.example:~(web|db)\.example\.com

Advanced usage can include group index selection or even ranges within a group:

Webservers[0]:webservers[2:4]

Each block is treated as an inclusion block, that is, all the hosts found in the first
pattern are added to all the hosts found in the next pattern, and so on. However, this
can be manipulated with control characters to change their behavior. The use of an
ampersand allows an inclusion selection (all the hosts that exist in both patterns).
The use of an exclamation point allows exclusion selection (all the hosts that exist in
the previous patterns that are NOT in the exclusion pattern):

Webservers:&dbservers
Webservers:!dbservers

Chapter 1

[19]

Once Ansible parses the patterns, it will then apply restrictions, if any. Restrictions
come in the form of limits or failed hosts. This result is stored for the duration of
the play, and it is accessible via the play_hosts variable. As each task is executed,
this data is consulted and an additional restriction may be placed upon it to handle
serial operations. As failures are encountered, either failure to connect or a failure
in execute tasks, the failed host is placed in a restriction list so that the host will
be bypassed in the next task. If, at any time, a host selection routine gets restricted
down to zero hosts, the play execution will stop with an error. A caveat here is that
if the play is configured to have a max_fail_precentage or any_errors_fatal
parameter, then the playbook execution stops immediately after the task where this
condition is met.

Play and task names
While not strictly necessary, it is a good practice to label your plays and tasks with
names. These names will show up in the command line output of ansible-playbook,
and will show up in the log file if ansible-playbook is directed to log to a file. Task
names also come in handy to direct ansible-playbook to start at a specific task and to
reference handlers.

There are two main points to consider when naming plays and tasks:

• Names of plays and tasks should be unique
• Beware of what kind of variables can be used in play and task names

Naming plays and tasks uniquely is a best practice in general that will help to
quickly identify where a problematic task may reside in your hierarchy of playbooks,
roles, task files, handlers, and so on. Uniqueness is more important when notifying
a handler or when starting at a specific task. When task names have duplicates, the
behavior of Ansible may be nondeterministic or at least not obvious.

System Architecture and Design of Ansible

[20]

With uniqueness as a goal, many playbook authors will look to variables to satisfy
this constraint. This strategy may work well but authors need to take care as to
the source of the variable data they are referencing. Variable data can come from
a variety of locations (which we will cover later in this chapter), and the values
assigned to variables can be defined at a variety of times. For the sake of play and
task names, it is important to remember that only variables for which the values can
be determined at playbook parse time will parse and render correctly. If the data of
a referenced variable is discovered via a task or other operation, the variable string
will be displayed unparsed in the output. Let's look at an example playbook that
utilizes variables for play and task names:

- name: play with a {{ var_name }}
 hosts: localhost
 gather_facts: false

 vars:
 - var_name: not-mastery

 tasks:
 - name: set a variable
 set_fact:
 task_var_name: "defined variable"

 - name: task with a {{ task_var_name }}
 debug:
 msg: "I am mastery task"

- name: second play with a {{ task_var_name }}
 hosts: localhost
 gather_facts: false

 tasks:
 - name: task with a {{ runtime_var_name }}
 debug:
 msg: "I am another mastery task"

Chapter 1

[21]

At first glance, one might expect at least var_name and task_var_name to render
correctly. We can clearly see task_var_name being defined before its use. However,
armed with our knowledge that playbooks are parsed in their entirety before
execution, we know better:

As we can see, the only variable name that is properly rendered is var_name, as it
was defined as a static play variable.

Module transport and execution
Once a playbook is parsed and the hosts are determined, Ansible is ready to execute
a task. Tasks are made up of a name (optional, but please don't skip it), a module
reference, module arguments, and task control keywords. A later chapter will cover
task control keywords in detail, so we will only concern ourselves with the module
reference and arguments.

System Architecture and Design of Ansible

[22]

Module reference
Every task has a module reference. This tells Ansible which bit of work to do.
Ansible is designed to easily allow for custom modules to live alongside a playbook.
These custom modules can be a wholly new functionality, or they can replace
modules shipped with Ansible itself. When Ansible parses a task and discovers the
name of the module to use for a task, it looks into a series of locations in order to find
the module requested. Where it looks also depends on where the task lives, whether
in a role or not.

If a task is in a role, Ansible will first look for the module within a directory tree
named library within the role the task resides in. If the module is not found there,
Ansible looks for a directory named library at the same level as the main playbook
(the one referenced by the ansible-playbook execution). If the module is not found
there, Ansible will finally look in the configured library path, which defaults to
/usr/share/ansible/. This library path can be configured in an Ansible config
file, or by way of the ANSIBLE_LIBRARY environment variable.

This design, allowing modules to be bundled with roles and playbooks, allows for
adding functionality, or quickly repairing problems very easily.

Module arguments
Arguments to a module are not always required; the help output of a module will
indicate which models are required and which are not. Module documentation can
be accessed with the ansible-doc command:

Chapter 1

[23]

This command was piped into cat to prevent shell paging
from being used.

Arguments can be templated with Jinja2, which will be parsed at module execution
time, allowing for data discovered in a previous task to be used in later tasks; this is a
very powerful design element.

System Architecture and Design of Ansible

[24]

Arguments can be supplied in a key = value format, or in a complex format that
is more native to YAML. Here are two examples of arguments being passed to a
module showcasing the two formats:

- name: add a keypair to nova
 nova_keypair: login_password={{ pass }} login_tenant_name=admin
 name=admin-key

- name: add a keypair to nova
 nova_keypair: login_password: "{{ pass }}" login_tenant_name: admin
 name: admin-key

Both formats will lead to the same result in this example; however, the complex
format is required if you wish to pass complex arguments into a module. Some
modules expect a list object or a hash of data to be passed in; the complex format
allows for this. While both formats are acceptable for many tasks, the complex
format is the format used for the majority of examples in this book.

Module transport and execution
Once a module is found, Ansible has to execute it in some way. How the module is
transported and executed depends on a few factors, however the common process
is to locate the module file on the local filesystem and read it into memory, and then
add in the arguments passed to the module. Finally, the boilerplate module code
from core Ansible is added to complete the file object in memory. What happens next
really depends on the connection method and runtime options (such as leaving the
module code on the remote system for review).

The default connection method is smart, which most often resolves to the ssh
connection method. With a default configuration, Ansible will open an SSH
connection to the remote host, create a temporary directory, and close the connection.
Ansible will then open another SSH connection in order to write out the task object
from memory (the result of local module file, task module arguments, and Ansible
boilerplate code) into a file within the temporary directory that we just created and
close the connection.

Finally, Ansible will open a third connection in order to execute the module
and delete the temporary directory and all its contents. The module results are
captured from stdout in the JSON format, which Ansible will parse and handle
appropriately. If a task has an async control, Ansible will close the third connection
before the module is complete, and SSH back in to the host to check the status of the
task after a prescribed period until the module is complete or a prescribed timeout
has been reached.

Chapter 1

[25]

Task performance
Doing the math from the above description, that's at least three SSH connections
per task, per host. In a small fleet with a small number of tasks, this may not be a
concern; however, as the task set grows and the fleet size grows, the time required to
create and tear down SSH connections increases. Thankfully, there are a couple ways
to mitigate this.

The first is an SSH feature, ControlPersist, which provides a mechanism to create
persistent sockets when first connecting to a remote host that can be reused in
subsequent connections to bypass some of the handshaking required when creating
a connection. This can drastically reduce the amount of time Ansible spends on
opening new connections. Ansible automatically utilizes this feature if the host
platform where Ansible is run from supports it. To check whether your platform
supports this feature, check the SSH main page for ControlPersist.

The second performance enhancement that can be utilized is an Ansible feature
called pipelining. Pipelining is available to SSH-based connection methods and is
configured in the Ansible configuration file within the ssh_connection section:

[ssh_connection]
pipelining=true

This setting changes how modules are transported. Instead of opening an SSH
connection to create a directory, another to write out the composed module, and a
third to execute and clean up, Ansible will instead open an SSH connection and start
the Python interpreter on the remote host. Then, over that live connection, Ansible
will pipe in the composed module code for execution. This reduces the connections
from three to one, which can really add up. By default, pipelining is disabled.

Utilizing the combination of these two performance tweaks can keep your playbooks
nice and fast even as you scale your fleet. However, keep in mind that Ansible will
only address as many hosts at once as the number of forks Ansible is configured
to run. Forks are the number of processes Ansible will split off as a worker to
communicate with remote hosts. The default is five forks, which will address up to
five hosts at once. Raise this number to address more hosts as your fleet grows by
adjusting the forks= parameter in an Ansible configuration file, or by using the –
forks (-f) argument with ansible or ansible-playbook.

System Architecture and Design of Ansible

[26]

Variable types and location
Variables are a key component of the Ansible design. Variables allow for dynamic play
content and reusable plays across different sets of inventory. Anything beyond the
very basics of Ansible use will utilize variables. Understanding the different variable
types and where they can be located, as well as learning how to access external data or
prompt users to populate variable data, is the key to mastering Ansible.

Variable types
Before diving into the precedence of variables, we must first understand the various
types and subtypes of variables available to Ansible, their location, and where they
are valid for use.

The first major variable type is inventory variables. These are the variables that
Ansible gets by way of the inventory. These can be defined as variables that are
specific to host_vars to individual hosts or applicable to entire groups as group_
vars. These variables can be written directly into the inventory file, delivered by
the dynamic inventory plugin, or loaded from the host_vars/<host> or group_
vars/<group> directories.

These types of variables might be used to define Ansible behavior when dealing
with these hosts, or site-specific data related to the applications that these hosts
run. Whether a variable comes from host_vars or group_vars, it will be assigned
to a host's hostvars, and it can be accessed from the playbooks and template files.
Accessing a host's own variables can be done just by referencing the name, such
as {{ foobar }}, and accessing another host's variables can be accomplished by
accessing hostvars. For example, to access the foobar variable for examplehost:
{{ hostvars['examplehost']['foobar'] }}. These variables have global scope.

The second major variable type is role variables. These are variables specific to a
role that are utilized by the role tasks and have scope only within the role that they
are defined in, which is to say that they can only be used within the role. These
variables are often supplied as a role default, and are meant to provide a default
value for the variable, but can easily be overridden when applying the role. When
roles are referenced, it is possible to supply variable data at the same time, either by
overriding role defaults or creating wholly new data. We'll cover roles in-depth in
later chapters. These variables apply to all hosts within the role and can be accessed
directly, much like a host's own hostvars.

Chapter 1

[27]

The third major variable type is play variables. These variables are defined in the
control keys of a play, either directly by the vars key or sourced from external files
via the vars_files key. Additionally, the play can interactively prompt the user for
variable data using vars_prompt. These variables are to be used within the scope
of the play and in any tasks or included tasks of the play. The variables apply to all
hosts within the play and can be referenced as if they are hostvars.

The fourth variable type is task variables. Task variables are made from data
discovered while executing tasks or in the fact gathering phase of a play. These
variables are host-specific and are added to the host's hostvars and can be used as
such, which also means they have global scope after the point at which they were
discovered or defined. Variables of this type can be discovered via gather_facts
and fact modules (modules that do not alter state but rather return data), populated
from task return data via the register task key, or defined directly by a task making
use of the set_fact or add_host modules. Data can also be interactively obtained
from the operator using the prompt argument to the pause module and registering
the result:

- name: get the operators name
 pause:
 prompt: "Please enter your name"
 register: opname

There is one last variable type, the extra variables, or extra-vars type. These
are variables supplied on the command line when executing ansible-playbook
via --extra-vars. Variable data can be supplied as a list of key=value pairs, a
quoted JSON data, or a reference to a YAML-formatted file with variable data
defined within:

--extra-vars "foo=bar owner=fred"
--extra-vars '{"services":["nova-api","nova-conductor"]}'
--extra-vars @/path/to/data.yaml

Extra variables are considered global variables. They apply to every host and have
scope throughout the entire playbook.

System Architecture and Design of Ansible

[28]

Accessing external data
Data for role variables, play variables, and task variables can also come from external
sources. Ansible provides a mechanism to access and evaluate data from the control
machine (the machine running ansible-playbook). The mechanism is called a
lookup plugin, and a number of them come with Ansible. These plugins can be used
to lookup or access data by reading files, generate and locally store passwords on
the Ansible host for later reuse, evaluate environment variables, pipe data in from
executables, access data in the Redis or etcd systems, render data from template
files, query dnstxt records, and more. The syntax is as follows:

lookup('<plugin_name>', 'plugin_argument')

for example, to use the mastery value from etcd in a debug task:

- name: show data from etcd
 debug: msg="{{ lookup('etcd', 'mastery') }}"

Lookups are evaluated when the task referencing them is executed, which allows
for dynamic data discovery. To reuse a particular lookup in multiple tasks and
reevaluate it each time, a playbook variable can be defined with a lookup value. Each
time the playbook variable is referenced the lookup will be executed, potentially
providing different values over time.

Variable precedence
As you learned in the previous section, there are a few major types of variables
that can be defined in a myriad of locations. This leads to a very important question,
what happens when the same variable name is used in multiple locations? Ansible
has a precedence for loading variable data, and thus it has an order and a definition
to decide which variable will "win". Variable value overriding is an advanced usage
of Ansible, so it is important to fully understand the semantics before attempting
such a scenario.

Precedence order
Ansible defines the precedence order as follows:

1. Extra vars (from command line) always win
2. Connection variables defined in inventory
3. Most everything else

Chapter 1

[29]

4. Rest of the variables defined in inventory
5. Facts discovered about a system
6. Role defaults

This list is a useful starting point, however things are a bit more nuanced, as we
will explore.

Extra-vars
Extra-vars, as supplied on the command line, certainly overrides anything else.
Regardless of where else a variable might be defined, even if it's explicitly set in a
play with set_fact, the value provided on the command line will be the value used.

Connection variables
Next up are connection variables, the behavioral variables outlined earlier. These
are variables that influence how Ansible will connect to and execute tasks on a
system. These are variables like ansible_ssh_user, ansible_ssh_host, and others
as described in the earlier section regarding behavioral inventory parameters. The
Ansible documentation states that these come from the inventory, however, they can
be overridden by tasks such as set_fact. A set_fact module on a variable such
as ansible_ssh_user will override the value that came from the inventory source.
There is a precedence order within the inventory as well. Host-specific definitions
will override group definitions, and child group definitions will override parent of
group definitions. This allows for having a value that applies to most things in a
group and overrides it on specific hosts that would be different. When a host belongs
to multiple groups and each group defines the same variable with different values,
the behavior is less defined and strongly discouraged.

Most everything else
The "most everything else" block is a big grouping of sources. These include:

• Command line switches
• Play variables
• Task variables
• Role variables (not defaults)

www.allitebooks.com

http://www.allitebooks.org

System Architecture and Design of Ansible

[30]

These sets of variables can override each other as well, with the rule being that
the last supplied variable wins. The role variables in this set refer to the variables
provided in a role's vars/main.yaml file and the variables defined when assigning
a role or a role dependency. In this example, we will provide a variable named
role_var at the time we assign the role:

- role: example_role
 role_var: var_value_here

An important nuance here is that a definition provided at role assignment time will
override the definition within a role's vars/main.yaml file. Also remember the last
provided rule; if within the role example_role, the role_var variable is redefined
via a task, that definition will win from that point on.

The rest of the inventory variables
The next lower set of variables is the remaining inventory variables. These are
variables that can be defined within the inventory data, but do not alter the
behavior of Ansible. The rules from connection variables apply here.

Facts discovered about a system
Discovered facts variables are the variables we get when gathering facts. The exact
list of variables depends on the platform of the host and the extra software that can
be executed to display system information, which might be installed on said host.
Outside of role defaults, these are the lowest level of variables and are most likely to
be overridden.

Role defaults
Roles can have default variables defined within them. These are reasonable defaults
for use within the role and are customization targets for role applications. This makes
roles much more reusable, flexible, and tuneable to the environment and conditions
in which the role will be applied.

Merging hashes
In the previous section, we focused on the order of precedence in which variables
will override each other. The default behavior of Ansible is that any overriding
definition for a variable name will completely mask the previous definition of that
variable. However, that behavior can be altered for one type of variable, the hash.
A hash variable (a "dictionary" in Python terms) is a dataset of keys and values.
Values can be of different types for each key, and can even be hashes themselves for
complex data structures.

Chapter 1

[31]

In some advanced scenarios, it is desirable to replace just one bit of a hash or add
to an existing hash rather than replacing the hash altogether. To unlock this ability,
a configuration change is necessary in an Ansible config file. The config entry is
hash_behavior, which takes one of replace, or merge. A setting of merge will
instruct Ansible to merge or blend the values of two hashes when presented with an
override scenario rather than the default of replace, which will completely replace
the old variable data with the new data.

Let's walk through an example of the two behaviors. We will start with a hash
loaded with data and simulate a scenario where a different value for the hash is
provided as a higher priority variable.

Starting data:

hash_var:
 fred:
 home: Seattle
 transport: Bicycle

New data loaded via include_vars:

hash_var:
 fred:
 transport: Bus

With the default behavior, the new value for hash_var will be:

hash_var:
 fred:
 transport: Bus

However, if we enable the merge behavior we would get the following result:

hash_var:
 fred:
 home: Seattle
 transport: Bus

There are even more nuances and undefined behaviors when using merge, and as
such, it is strongly recommended to only use this setting if absolutely needed.

System Architecture and Design of Ansible

[32]

Summary
While the design of Ansible focuses on simplicity and ease of use, the architecture
itself is very powerful. In this chapter, we covered key design and architecture
concepts of Ansible, such as version and configuration, playbook parsing, module
transport and execution, variable types and locations, and variable precedence.

You learned that playbooks contain variables and tasks. Tasks link bits of code
called modules with arguments, which can be populated by variable data. These
combinations are transported to selected hosts from provided inventory sources. A
fundamental understanding of these building blocks is the platform on which you
can build a mastery of all things Ansible!

In the next chapter, you will learn how to secure secret data while operating Ansible.

[33]

Protecting Your
Secrets with Ansible

Secrets are meant to stay secret. Whether they are login credentials to a cloud service
or passwords to database resources, they are secret for a reason. Should they fall into
the wrong hands, they can be used to discover trade secrets and private customer
data, create infrastructure for nefarious purposes, or worse. All of which could cost
you or your organization a lot of time and money and cause a headache! In this
chapter, we cover how to keep your secrets safe with Ansible.

• Encrypting data at rest
• Protecting secrets while operating

Encrypting data at rest
As a configuration management system or an orchestration engine, Ansible has great
power. In order to wield that power, it is necessary to entrust secret data to Ansible.
An automated system that prompts the operator for passwords all the time is not
very efficient. To maximize the power of Ansible, secret data has to be written to a
file that Ansible can read and utilize the data from within.

This creates a risk though! Your secrets are sitting there on your filesystem in plain
text. This is a physical and digital risk. Physically, the computer could be taken from
you and pawed through for secret data. Digitally, any malicious software that can
break the boundaries set upon it could read any data your user account has access to.
If you utilize a source control system, the infrastructure that houses the repository is
just as much at risk.

Protecting Your Secrets with Ansible

[34]

Thankfully, Ansible provides a facility to protect your data at rest. That facility
is Vault, which allows for encrypting text files so that they are stored "at rest" in
encrypted format. Without the key or a significant amount of computing power,
the data is indecipherable.

The key lessons to learn while dealing with encrypting data at rest are:

• Valid encryption targets
• Creating new encrypted files
• Encrypting existing unencrypted files
• Editing encrypted files
• Changing the encryption password on files
• Decrypting encrypted files
• Running the ansible-playbook command to reference encrypted files

Things Vault can encrypt
Vault can be used to encrypt any structured data file used by Ansible. This is
essentially any YAML (or JSON) file that Ansible uses during its operation.
This can include:

• group_vars/ files
• host_vars/ files
• include_vars targets
• vars_files targets
• --extra-vars targets
• role variables
• Role defaults
• Task files
• Handler files

If the file can be expressed in YAML and read by Ansible, it is a valid file to encrypt
with Vault. Because the entire file will be unreadable at rest, care should be taken to
not be overzealous in picking which files to encrypt. Any source control operations
with the files will be done with the encrypted content, making it very difficult to peer
review. As a best practice, the smallest amount of data possible should be encrypted;
this may even mean moving some variables into a file all by themselves.

Chapter 2

[35]

Creating new encrypted files
To create new files, Ansible provides a new program, ansible-vault. This program
is used to create and interact with Vault encrypted files. The subroutine to create
encrypted files is the create subroutine. Lets have a look at the following screenshot:

To create a new file, you'll need to know two things ahead of time. The first is the
password Vault should use to encrypt the file, and the second is the file name. Once
provided with this information, ansible-vault will launch a text editor, whichever
editor is defined in the environment variable EDITOR. Once you save the file and exit
the editor, ansible-vault will use the supplied password as a key to encrypt the file
with the AES256 cipher.

All Vault encrypted files referenced by a playbook need to be
encrypted with the same key or ansible-playbook will be
unable to read them.

The ansible-vault program will prompt for a password unless the path to a file
is provided as an argument. The password file can either be a plain text file with
the password stored as a single line, or it can be an executable file that outputs the
password as a single line to standard out.

Let's walk through a few examples of creating encrypted files. First, we'll create one
and be prompted for a password; then we will provide a password file; and finally
we'll create an executable to deliver the password.

Protecting Your Secrets with Ansible

[36]

The password prompt
On opening, the editor asks for the passphrase, as shown in the following screenshot:

Once the passphrase is confirmed, our editor opens and we're able to put content
into the file:

On my system, the configured editor is vim. Your system may
be different, and you may need to set your preferred editor as
the value for the EDITOR environment variable.

Chapter 2

[37]

Now we save the file. If we try to read the contents, we'll see that they are in fact
encrypted, with a small header hint for Ansible to use later:

The password file
In order to use ansible-vault with a password file, we first need to create the
password file. Simply echoing a password in a file can do this. Then we can reference
this file while calling ansible-vault to create another encrypted file:

Just as when being prompted for a password, the editor will open and we can write
out our data.

Protecting Your Secrets with Ansible

[38]

The password script
This last example uses a password script. This is useful for designing a system in
which a password can be stored in a central system for storing credentials and
shared with contributors to the playbook tree. Each contributor could have their own
password to the shared credentials store, from where the Vault password can be
retrieved. Our example will be far simpler: just simple output to standard out with a
password. This file will be saved as password.sh. The file needs to be marked as an
executable for Ansible to treat it as such. Lets have a look at the following screenshot:

Encrypting existing files
The previous examples all dealt with creating new encrypted files using the
create subroutine. But what if we want to take an established file and encrypt it?
A subroutine exists for this as well. It is named encrypt, and it is outlined in the
following screenshot:

Chapter 2

[39]

As with create, encrypt expects a password (or password file) and the path to
a file. In this case, however, the file must already exist. Let's demonstrate this by
encrypting an existing file, a_vars_file.yaml, we have from a previous chapter:

We can see the file contents before and after the call to encrypt. After the call, the
contents are indeed encrypted. Unlike the create subroutine, encrypt can operate
on multiple files, making it easy to protect all the important data in one action.
Simply list all the files to be encrypted, separated by spaces.

Attempting to encrypt already encrypted files will result
in an error.

Protecting Your Secrets with Ansible

[40]

Editing encrypted files
Once a file has been encrypted with ansible-vault, it cannot be edited directly.
Opening the file in an editor would result in the encrypted data being shown. Making
any changes to the file would damage the file and Ansible would be unable to read
the contents correctly. We need a subroutine that will first decrypt the contents of the
file, allow us to edit these contents, and then encrypt the new contents before saving
it back to the file. Such a subroutine exists and is called edit. Here is a screenshot
showing the available options:

All our familiar options are back, an optional password file/script and the file to edit.
If we edit the file we just encrypted, we'll notice that ansible-vault opens our editor
with a temporary file as the file path:

Chapter 2

[41]

The editor will save this and ansible-vault will then encrypt it and move it to
replace the original file as shown in the following screenshot:

Password rotation for encrypted files
Over time, as contributors come and go, it is a good idea to rotate the password used
to encrypt your secrets. Encryption is only as good as the other layers of protection of
the password. ansible-vault provides a subroutine, named rekey, that allows us
to change the password as shown here:

Protecting Your Secrets with Ansible

[42]

The rekey subroutine operates much like the edit subroutine. It takes in an optional
password file/script and one or more files to rekey. Note that while you can supply
a file/script for decryption of the existing files, you cannot supply one for the new
passphrase. You will be prompted to input the new passphrase. Let's rekey our
even_more_secrets.yaml file:

Remember that all the encrypted files need to have a matching key. Be sure to re-key
all the files at the same time.

Decrypting encrypted files
If, at some point, the need to encrypt data files goes away, ansible-vault provides
a subroutine that can be used to remove encryption for one or more encrypted files.
This subroutine is (unsurprisingly) named decrypt as shown here:

Chapter 2

[43]

Once again, we have an optional argument for a password file/script and then
one or more file paths to decrypt. Let's decrypt the file we created earlier using our
password file:

Executing ansible-playbook with Vault-
encrypted files
To make use of our encrypted content, we need to be able to inform ansible-
playbook how to access any encrypted data it might encounter. Unlike ansible-
vault, which exists solely to deal with file encryption/decryption, ansible-playbook
is more general purpose and will not assume it is dealing with encrypted data by
default. There are two ways to indicate that encrypted data may be encountered. The
first is the argument --ask-vault-pass, which will prompt for the vault password
required to unlock any encountered encrypted files at the very beginning of a playbook
execution. Ansible will hold this provided password in memory for the duration of the
playbook execution. The second method is to reference a password file or script via the
familiar --vault-password-file argument.

Let's create a simple playbook named show_me.yaml that will print out the value of
the variable inside a_vars_file.yaml, which we encrypted in a previous example:

- name: show me an encrypted var
 hosts: localhost

Protecting Your Secrets with Ansible

[44]

 gather_facts: false

 vars_files:
 - a_vars_file.yaml

 tasks:
 - name: print the variable
 debug:
 var: something

The output is as follows:

Protecting secrets while operating
In the previous section of this chapter, we covered protecting your secrets at rest on
the filesystem. However, that is not the only concern while operating Ansible with
secrets. Secret data is going to be used in tasks as module arguments or loop inputs
or any number of other things. This may cause the data to be transmitted to remote
hosts, logged to local or remote log files, or displayed on screen. This section of the
chapter discusses strategies for protecting your secrets during operation.

Chapter 2

[45]

Secrets transmitted to remote hosts
As we learned in Chapter 1, System Architecture and Design of Ansible, Ansible will
combine module code and arguments and write this out to a temporary directory
on the remote host. This means your secret data is transferred over the wire AND
written to the remote filesystem. Unless you are using a connection plugin other than
ssh, the data over the wire is already encrypted, preventing your secrets from being
discovered by simple snooping. If you are using a connection plugin other than ssh,
be aware of whether or not data is encrypted while in transit. Using any connection
method that is not encrypted is strongly discouraged.

Once the data is transmitted, Ansible may write this data out in clear form
to the filesystem. This can happen if pipelining (which we learned about in
Chapter 1, System Architecture and Design of Ansible) is not in use, OR if Ansible has
been instructed to leave remote files in place via the ANSIBLE_KEEP_REMOTE_FILES
environment variable. Without pipelining, Ansible will write out the module code
plus arguments into a temporary directory that is to be deleted, upon execution.
Should there be a loss of connectivity between writing out the file and executing it,
the file will be left on the remote filesystem until manually removed. If Ansible is
explicitly instructed to keep remote files in place, Ansible will write out and leave a
remote file in place, even if pipelining is enabled. Care should be taken with these
options when dealing with highly sensitive secrets, even though typically only the
user Ansible logs in as (or sudos to) on the remote host should have access to the
leftover file. Simply deleting anything in the ~/.ansible/tmp/ path for the remote
user will suffice to clean secrets.

Secrets logged to remote or local files
When Ansible operates on a host, it will attempt to log the action to syslog. If this
action is being carried out by a user with appropriate rights, it will cause a message
to appear in the syslog file of the host. This message includes the module name and
the arguments passed along to that command, which could include your secrets. To
prevent this from happening, a play and task key named no_log has been created.
Setting no_log to true will prevent Ansible from logging the action to syslog.

Protecting Your Secrets with Ansible

[46]

Locally, Ansible can be instructed to log its actions as well. An environment variable
called ANSIBLE_LOG_PATH controls this. Without this variable set, Ansible will only
log to standard out. Setting this variable to a path that can be written to by the
user running ansible-playbook will cause Ansible to log actions to this path. The
verbosity of this logging matches that of the verbosity shown on screen. By default,
no variables or return details are displayed on screen. With a verbosity level of one
(-v), input data and return data is displayed on screen (and potentially in the local
log file). Since this can include secrets, the no_log setting applies to the on-screen
display as well. Let's take our previous example of displaying an encrypted secret
and add a no_log key to the task to prevent it showing its value:

- name: show me an encrypted var
 hosts: localhost
 gather_facts: false

 vars_files:
 - a_vars_file.yaml

 tasks:
 - name: print the variable
 debug:
 var: something
 no_log: true

If we execute this playbook we should see that our secret data is protected, as follows:

Ansible censored itself to prevent showing sensitive data.

Chapter 2

[47]

Summary
Ansible can deal with sensitive data. It is important to understand how this data
is stored at rest and how this data is treated when utilized. With a little care and
attention, Ansible can keep your secrets secret. Encrypting secrets with ansible-
vault can protect them while dormant on your filesystem or in a shared source
control repository. Preventing Ansible from logging task data can protect against
leaking data to remote log files or on-screen displays.

In the next chapter, we will explore the powers of the Jinja2 templating engine used
by Ansible.

[49]

Unlocking the Power of
Jinja2 Templates

Templating is the lifeblood of Ansible. From configuration file content to variable
substitution in tasks, to conditional statements and beyond, templating comes into
play with nearly every Ansible facet. The templating engine of Ansible is Jinja2, a
modern and designer-friendly templating language for Python. This chapter will
cover a few advanced features of Jinja2 templating.

• Control structures
• Data manipulation
• Comparisons

Control structures
In Jinja2, a control structure refers to things in a template that control the flow of
the engine parsing the template. These structures include, but are not limited to,
conditionals, loops, and macros. Within Jinja2 (assuming the defaults are in use), a
control structure will appear inside blocks of {% … %}. These opening and closing
blocks alert the Jinja2 parser that a control statement is provided instead of a normal
string or variable name.

Conditionals
A conditional within a template creates a decision path. The engine will consider the
conditional and choose from two or more potential blocks of code. There is always a
minimum of two: a path if the conditional is met (evaluated as true), and an implied
else path of an empty block.

Unlocking the Power of Jinja2 Templates

[50]

The statement for conditionals is the if statement. This statement works much like
it does in Python. An if statement can be combined with one or more optional
elif with an optional final else, and unlike Python, requires an explicit endif. The
following example shows a config file template snippet combining both a regular
variable replacement and an if else structure:

setting = {{ setting }}
{% if feature.enabled %}
feature = True
{% else %}
feature = False
{% endif %}
another_setting = {{ another_setting }}

In this example, the variable feature.enabled is checked to see if it exists and is not
set to False. If this is true, then the text feature = True is used; otherwise, the text
feature = False is used. Outside of this control block, the parser does the normal
variable substitution for the variables inside the mustache brackets. Multiple paths
can be defined by using an elif statement, which presents the parser, with another
test to perform should the previous tests equate to false.

To demonstrate rendering the template, we'll save the example template as demo.j2.
We'll then make a playbook named template-demo.yaml that defines the variables
in use and then uses a template lookup as part of a pause task to display the
rendered template on screen:

- name: demo the template
 hosts: localhost
 gather_facts: false
 vars:
 setting: a_val
 feature:
 enabled: true
 another_setting: b_val
 tasks:
 - name: pause with render
 pause:
 prompt: "{{ lookup('template', 'demo.j2') }}"

Chapter 3

[51]

Executing this playbook will show the rendered template on screen while it waits for
input. We can simply press Enter to complete the playbook:

If we were to change the value of feature.enabled to false, the output would be
slightly different:

Unlocking the Power of Jinja2 Templates

[52]

Inline conditionals
The if statements can be used inside of inline expressions. This can be useful in
some scenarios where additional newlines are not desired. Let's construct a scenario
where we need to define an API as either cinder or cinderv2:

API = cinder{{ 'v2' if api.v2 else '' }}

This example assumes api.v2 is defined as Boolean True or False. Inline if
expressions follow the syntax of <do something> if <conditional is true>
else <do something else>. In an inline if expression, there is an implied else;
however, that implied else is meant to evaluate as an undefined object, which will
normally create an error. We protect against this by defining an explicit else, which
renders a zero length string.

Let's modify our playbook to demonstrate an inline conditional. This time, we'll use
the debug module to render the simple template:

- name: demo the template
 hosts: localhost
 gather_facts: false
 vars:
 api:
 v2: true
 tasks:
 - name: pause with render
 debug:
 msg: "API = cinder{{ 'v2' if api.v2 else '' }}"

Execution of the playbook will show the template being rendered:

Chapter 3

[53]

Changing the value of api.v2 to false leads to a different result:

Loops
A loop allows you to create dynamically created sections in template files, and is useful
when you know you need to operate on an unknown number of items in the same
way. To start a loop control structure, the for statement is used. Let's look at a simple
way to loop over a list of directories in which a fictional service might find data:

data dirs
{% for dir in data_dirs %}
data_dir = {{ dir }}
{% endfor %}

In this example, we will get one data_dir = line per item within the data_dirs
variable, assuming data_dirs is a list with at least one item in it. If the variable is
not a list (or other iterable type) or is not defined, an error will be generated. If the
variable is an iterable type but is empty, then no lines will be generated. Jinja2 allows
for the reacting to this scenario and also allows substituting in a line when no items
are found in the variable via an else statement. In this next example, assume that
data_dirs is an empty list:

data dirs
{% for dir in data_dirs %}
data_dir = {{ dir }}
{% else %}
no data dirs found
{% endfor %}

Unlocking the Power of Jinja2 Templates

[54]

We can test this by modifying our playbook and template file again. We'll update
demo.j2 with the above template content and make use of a prompt in our playbook
again:

- name: demo the template
 hosts: localhost
 gather_facts: false
 vars:
 data_dirs: []
 tasks:
 - name: pause with render
 pause:
 prompt: "{{ lookup('template', 'demo.j2') }}"

Running our playbook will show the following result:

Filtering loop items
Loops can be combined with conditionals as well. Within the loop structure, an if
statement can be used to check a condition using the current loop item as part of the
conditional. Let's extend our example and protect against using (/) as a data_dir:

data dirs
{% for dir in data_dirs %}

Chapter 3

[55]

{% if dir != "/" %}
data_dir = {{ dir }}
{% endif %}
{% else %}
no data dirs found
{% endfor %}

The preceding example successfully filters out any data_dirs item that is (/) but
takes more typing than should be necessary. Jinja2 provides a convenience that
allows you to filter loop items easily as part of the for statement. Let's repeat the
previous example using this convenience:

data dirs
{% for dir in data_dirs if dir != "/" %}
data_dir = {{ dir }}
{% else %}
no data dirs found
{% endfor %}

Not only does this structure require less typing, but it also correctly counts the loops,
which we'll learn about in the next section.

Loop indexing
Loop counting is provided for free, yielding an index of the current iteration of the
loop. As variables, these can be accessed in a few different ways. The following table
outlines the ways they can be referenced:

Variable Description
loop.index The current iteration of the loop (1 indexed)
loop.index0 The current iteration of the loop (0 indexed)
loop.revindex The number of iterations until the end of the loop (1 indexed)
loop.revindex0 The number of iterations until the end of the loop (0 indexed)
loop.first Boolean True if the first iteration
loop.last Boolean True if the last iteration
loop.length The number of items in the sequence

Unlocking the Power of Jinja2 Templates

[56]

Having information related to the position within the loop can help with logic
around what content to render. Considering our previous examples, instead of
rendering multiple lines of data_dir to express each data directory, we could
instead provide a single line with comma-separated values. Without having access to
loop iteration data, this would be difficult, but when using this data, it can be fairly
easy. For the sake of simplicity, this example assumes a trailing comma after the last
item is allowed, and that whitespace (newlines) between items is also allowed:

data dirs
{% for dir in data_dirs if dir != "/" %}
{% if loop.first %}
data_dir = {{ dir }},
{% else %}
 {{ dir }},
{% endif %}
{% else %}
no data dirs found
{% endfor %}

The preceding example made use of the loop.first variable in order to determine
if it needed to render the data_dir = part or if it just needed to render the
appropriately spaced padded directory. By using a filter in the for statement, we get
a correct value for loop.first, even if the first item in data_dirs is the undesired
(/). To test this, we'll once again modify demo.j2 with the updated template and
modify template-demo.yaml to define some data_dirs, including one of / that
should be filtered out:

- name: demo the template
 hosts: localhost
 gather_facts: false
 vars:
 data_dirs: ['/', '/foo', '/bar']
 tasks:
 - name: pause with render
 pause:
 prompt: "{{ lookup('template', 'demo.j2') }}"

Chapter 3

[57]

Now, we can execute the playbook and see our rendered content:

If in the preceding example trailing commas were not allowed, we could utilize
inline if statements to determine if we're done with the loop and render commas
correctly, as shown in the following example:

data dirs.
{% for dir in data_dirs if dir != "/" %}
{% if loop.first %}
data_dir = {{ dir }}{{ ',' if not loop.last else '' }}
{% else %}
 {{ dir }}{{ ',' if not loop.last else '' }}
{% endif %}
{% else %}
no data dirs found
{% endfor %}

Unlocking the Power of Jinja2 Templates

[58]

Using inline if statements allows us to construct a template that will only render a
comma if there are more items in the loop that passed our initial filter. Once more,
we'll update demo.j2 with the above content and execute the playbook:

Macros
The astute reader will have noticed that in the previous example, we had some
repeated code. Repeating code is the enemy of any developer, and thankfully, Jinja2
has a way to help! A macro is like a function in a regular programming language—
it's a way to define a reusable idiom. A macro is defined inside a {% macro … %} …
{% endmacro %} block and has a name and can take zero or more arguments. Code
within a macro does not inherit the namespace of the block calling the macro, so all
arguments must be explicitly passed in. Macros are called within mustache blocks
by name and with zero or more arguments passed in via parentheses. Let's create a
simple macro named comma to take the place of our repeating code:

{% macro comma(loop) %}
{{ ',' if not loop.last else '' }}
{%- endmacro -%}
data dirs.
{% for dir in data_dirs if dir != "/" %}
{% if loop.first %}
data_dir = {{ dir }}{{ comma(loop) }}
{% else %}

Chapter 3

[59]

 {{ dir }}{{ comma(loop) }}
{% endif %}
{% else %}
no data dirs found
{% endfor %}

Calling comma and passing it in the loop object allows the macro to examine the
loop and decide if a comma should be emitted or not. You may have noticed some
special marks on the endmacro line. These marks, the (-) next to the (%), instruct
Jinja2 to strip the whitespace before, and right after the block. This allows us to have
a newline between the macro and the start of the template for readability without
actually rendering that newline when evaluating the template.

Macro variables
Macros have access inside them to any positional or keyword argument passed
along when calling the macro. Positional arguments are arguments that are assigned
to variables based on the order they are provided, while keyword arguments are
unordered and explicitly assign data to variable names. Keyword arguments can also
have a default value if they aren't defined when the macro is called. Three additional
special variables are available:

• varargs

• kwargs

• caller

The varargs variable is a holding place for additional unexpected positional
arguments passed along to the macro. These positional argument values will
make up the varargs list.

The kwargs variable is like varargs; however, instead of holding extra positional
argument values, it will hold a hash of extra keyword arguments and their
associated values.

The caller variable can be used to call back to a higher level macro that may have
called this macro (yes, macros can call other macros).

In addition to these three special variables are a number of variables that expose
internal details regarding the macro itself. These are a bit complicated, but we'll
walk through their usage one by one. First, let's take a look at a short description
of each variable:

• name: The name of the macro itself
• arguments: A tuple of the names of the arguments the macro accepts

Unlocking the Power of Jinja2 Templates

[60]

• defaults: A tuple of the default values
• catch_kwargs: A Boolean that will be defined as true if the macro accesses

(and thus accepts) the kwargs variable
• catch_varargs: A Boolean that will be defined as true if the macro accesses

(and thus accepts) the varargs variable
• caller: A Boolean that will be defined as true if the macro accesses the

caller variable (and thus may be called from another macro)

Similar to a class in Python, these variables need to be referenced via the name of the
macro itself. Attempting to access these macros without prepending the name will
result in undefined variables. Now, let's walk through and demonstrate the usage of
each of them.

name
The name variable is actually very simple. It just provides a way to access the name
of the macro as a variable, perhaps for further manipulation or usage. The following
template includes a macro that references the name of the macro in order to render it
in the output:

{% macro test() %}
{{ test.name }}
{%- endmacro -%}
{{ test() }}

If we were to update demo.j2 with this template and execute the template-demo.
yaml playbook, the output would be:

Chapter 3

[61]

arguments
The arguments variable is a tuple of the arguments that the macro accepts. These
are the explicitly defined arguments, not the special kwargs or varargs. Our
previous example would have rendered an empty tuple (), so lets modify
it to get something else:

{% macro test(var_a='a string') %}
{{ test.arguments }}
{%- endmacro -%}
{{ test() }}

Rendering this template will result in the following:

defaults
The defaults variable is a tuple of the default values for any keyword arguments
that the macro explicitly accepts. Let's change our macro to display the default values
as well as the arguments:

{% macro test(var_a='a string') %}
{{ test.arguments }}
{{ test.defaults }}
{%- endmacro -%}
{{ test() }}

Unlocking the Power of Jinja2 Templates

[62]

Rendering this version of the template will result in the following:

catch_kwargs
This variable is only defined if the macro itself accesses the kwargs variable in
order to catch any extra keyword arguments that might have been passed along.
Without accessing the kwargs variable, any extra keyword arguments in a call to
the macro will result in an error when rendering the template. Likewise, accessing
catch_kwargs without also accessing kwargs will result in an undefined error.
Let's modify our example template again so that we can pass along extra kwargs:

{% macro test() %}
{{ kwargs }}
{{ test.catch_kwargs }}
{%- endmacro -%}
{{ test(unexpected='surprise') }}

Chapter 3

[63]

The rendered version of this template will be:

catch_varargs
Much like catch_kwargs, this variable exists if the macro accesses the varargs
variable. Modifying our example once more, we can see this in action:

{% macro test() %}
{{ varargs }}
{{ test.catch_varargs }}
{%- endmacro -%}
{{ test('surprise') }}

Unlocking the Power of Jinja2 Templates

[64]

The template's rendered result will be:

caller
The caller variable takes a bit more explaining. A macro can call out to another
macro. This can be useful if the same chunk of the template is to be used multiple
times, but part of the inside changes more than could easily be passed as a macro
parameter. The Caller variable isn't exactly a variable, it's more of a reference back
to the call in order to get the contents of that calling macro. Let's update our template
to demonstrate the usage:

{% macro test() %}
The text from the caller follows:
{{ caller() }}
{%- endmacro -%}
{% call test() %}
This is text inside the call
{% endcall %}

Chapter 3

[65]

The rendered result will be:

A call to a macro can still pass arguments to that macro—any combination of arguments
or keyword arguments can be passed. If the macro utilizes varargs or kwargs, then
extras of those can be passed along as well. Additionally, a macro can pass arguments
back to the caller too! To demonstrate this, let's create a larger example. This time, our
example will generate out a file suitable for an Ansible inventory:

{% macro test(group, hosts) %}
[{{ group }}]
{% for host in hosts %}
{{ host }} {{ caller(host) }}
{%- endfor %}
{%- endmacro -%}
{% call(host) test('web', ['host1', 'host2', 'host3']) %}
ssh_host_name={{ host }}.example.name ansible_sudo=true
{% endcall %}
{% call(host) test('db', ['db1', 'db2']) %}
ssh_host_name={{ host }}.example.name
{% endcall %}

Unlocking the Power of Jinja2 Templates

[66]

Once rendered, the result will be:

We called the test macro twice, once per each group we wanted to define. Each
group had a subtly different set of host variables to apply, and those were defined in
the call itself. We saved ourselves some typing by having the macro call back to the
caller passing along the host from the current loop.

Control blocks provide programming power inside of templates, allowing template
authors to make their templates efficient. The efficiency isn't necessarily in the initial
draft of the template. Instead, the efficiency really comes into play when a small
change to a repeating value is needed.

Chapter 3

[67]

Data manipulation
While control structures influence the flow of template processing, another tool exists
to modify the contents of a variable. This tool is called a filter. Filters are like small
functions, or methods, that can be run on the variable. Some filters operate without
arguments, some take optional arguments, and some require arguments. Filters can
be chained together as well, where the result of one filter action is fed into the next
filter and the next. Jinja2 comes with many built-in filters, and Ansible extends these
with many custom filters available to you when using Jinja2 within templates, tasks,
or any other place Ansible allows templating.

Syntax
A filter is applied to a variable by way of the pipe symbol (|), followed by the name
of the filter and then any arguments for the filter inside parentheses. There can be a
space between the variable name and the pipe symbol, as well as a space between the
pipe symbol and the filter name. For example, if we wanted to apply the filter lower
(which makes all the characters lowercase) to the variable my_word, we would use
the following syntax:

{{ my_word | lower }}

Because the lower filter does not take any arguments, it is not necessary to attach an
empty parentheses set to it. If we use a different filter, one that requires arguments,
we can see how that looks. Let's use the replace filter, which allows us to replace
all occurrences of a substring with another substring. In this example, we want to
replace all occurrences of the substring no with yes in the variable answers:

{{ answers | replace('no', 'yes') }}

Applying multiple filters is accomplished by simply adding more pipe symbols and
more filter names. Let's combine both replace and lower to demonstrate the syntax:

{{ answers | replace('no', 'yes') | lower }}

We can easily demonstrate this with a simple play that uses the debug command to
render the line:

- name: demo the template
 hosts: localhost
 gather_facts: false
 tasks:
 - name: debug the template
 debug:
 msg: "{{ answers | replace('no', 'yes') | lower }}"

Unlocking the Power of Jinja2 Templates

[68]

Now, we can execute the playbook and provide a value for answers at run time:

Useful built-in filters
A full list of the filters built into Jinja2 can be found in the Jinja2 documentation. At
the time of writing this book, there are over 45 built-in filters, too many to describe
here. Instead, we'll take a look at some of the more commonly used filters.

default
The default filter is a way of providing a default value for an otherwise
undefined variable, which will prevent Ansible from generating an error. It is
shorthand for a complex if statement checking if a variable is defined before
trying to use it, with an else clause to provide a different value. Let's look at
two examples that render the same thing. One will use the if / else structure,
while the other uses the default filter:

{% if some_variable is defined %}
{{ some_variable }}
{% else %}
default_value
{% endif %}
{{ some_variable | default('default_value') }}

The rendered result of each of these examples is the same; however, the example
using the default filter is much quicker to write and easier to read.

Chapter 3

[69]

While default is very useful, proceed with caution if you are using the same
variable in multiple locations. Changing a default value can become a hassle, and it
may be more efficient to define the variable with a default at the play or role level.

count
The count filter will return the length of a sequence or hash. In fact, length is an
alias of count to accomplish the same thing. This filter can be useful for performing
any sort of math around the size of a set of hosts or any other case where the count of
some set needs to be known. Let's create an example in which we set a max_threads
configuration entry to match the count of hosts in the play:

max_threads: {{ play_hosts | count }}

random
The random filter is used to make a random selection from a sequence. Let's use this
filter to delegate a task to a random selection from the db_servers group:

- name: backup the database
 shell: mysqldump -u root nova > /data/nova.backup.sql
 delegate_to: "{{ groups['db_servers'] | random }}"
 run_once: true

round
The round filter exists to round a number. This can be useful if you need to perform
floating-point math and then turn the result into a rounded integer. The round filter
takes optional arguments to define a precision (default of 0) and a rounding method.
The possible rounding methods are common (rounds up or down, the default), ceil
(always round up), and floor (always round down). In this example, we'll round a
math result to zero precision:

{{ math_result | round | int }}

Useful Ansible provided custom filters
While there are many provided filters with Jinja2, Ansible includes some additional
filters that playbook authors may find particularly useful. We'll outline a few of
them here.

Unlocking the Power of Jinja2 Templates

[70]

Filters related to task status
Ansible tracks task data for each task. This data is used to determine if a task has
failed, resulted in a change, or was skipped all together. Playbook authors can
register the results of a task and then use filters to easily check the task status. These
are most often used in conditionals with later tasks. The filters are aptly named
failed, success, changed, and skipped. They each return a Boolean value. Here is
a playbook that demonstrates the use of a couple of these:

- name: demo the filters
 hosts: localhost
 gather_facts: false
 tasks:
 - name: fail a task
 debug:
 msg: "I am not a change"
 register: derp
 - name: only do this on change
 debug:
 msg: "You had a change"
 when: derp | changed
 - name: only do this on success
 debug:
 msg: "You had a success"
 when: derp | success

The output is as shown in the following screenshot:

Chapter 3

[71]

shuffle
Similar to the random filter, the shuffle filter can be used to produce randomized
results. Unlike the random filter, which selects one random choice from a list, the
shuffle filter will shuffle the items in a sequence and return the full sequence back:

- name: demo the filters
 hosts: localhost
 gather_facts: false
 tasks:
 - name: shuffle the cards
 debug:
 msg: "{{ ['Ace', 'Queen', 'King', 'Deuce'] | shuffle }}"

The output is as shown in the following screenshot:

Filters dealing with path names
Configuration management and orchestration frequently refers to path names, but
often only part of the path is desired. Ansible provides a few filters to help.

Unlocking the Power of Jinja2 Templates

[72]

basename
To obtain the last part of a file path, use the basename filter. For example:

- name: demo the filters
 hosts: localhost
 gather_facts: false
 tasks:
 - name: demo basename
 debug:
 msg: "{{ '/var/log/nova/nova-api.log' | basename }}"

The output is as shown in the following screenshot:

dirname
The inverse of basename is dirname. Instead of returning the final part of a path,
dirname will return everything except the final part. Let's change our previous play
to use dirname, and run it again:

Chapter 3

[73]

expanduser
Often, paths to various things are supplied with a user shortcut, such as ~/.stackrc.
However some uses may require the full path to the file. Rather than the complicated
command and register call to use the shell to expand the path, the expanduser filter
provides a way to expand the path to the full definition. In this example, the user
name is jkeating:

- name: demo the filters
 hosts: localhost
 gather_facts: false
 tasks:
 - name: demo filter
 debug:
 msg: "{{ '~/.stackrc' | expanduser }}"

The output is as shown in the following screenshot:

Base64 encoding
When reading content from remote hosts, like with the slurp module (used to read
file content from remote hosts into a variable), the content will be Base64 encoded.
To decode such content, Ansible provides a b64decode filter. Similarly, when
running a task that requires Base64 encoded input, regular strings can be encoded
with the b64encode filter.

Let's read content from the file derp:

- name: demo the filters
 hosts: localhost
 gather_facts: false

Unlocking the Power of Jinja2 Templates

[74]

 tasks:
 - name: read file
 slurp:
 src: derp
 register: derp
 - name: display file content (undecoded)
 debug:
 var: derp.content
 - name: display file content (decoded)
 debug:
 var: derp.content | b64decode

The output is as shown in the following screenshot:

Chapter 3

[75]

Searching for content
It is fairly common in Ansible to search a string for a substring. In particular, the
common administrator task of running a command and grepping the output for
a particular key piece of data is a reoccurring construct in many playbooks. While
it's possible to replicate this with a shell task to execute a command and pipe the
output into grep, and use careful handling of failed_when to catch grep exit codes,
a far better strategy is to use a command task, register the output, and then utilize
Ansible-provided regex filters in later conditionals. Let's look at two examples, one
using the shell, pipe, grep method, and another using the search filter:

- name: check database version
 shell: neutron-manage current |grep juno
 register: neutron_db_ver
 failed_when: false
- name: upgrade db
 command: neutron-manage db_sync
 when: neutron_db_ver|failed

The above example works by forcing Ansible to always see the task as successful, but
assumes that if the exit code from the shell is non-zero then the string juno was not
found in the output of the neutron-manage command. This construct is functional,
but a bit clunky, and could mask real errors from the command. Let's try again using
the search filter:

- name: check database version
 command: neutron-manage current
 register: neutron_db_ver
- name: upgrade db
 command: neutron-manage db_sync
 when: not neutron_db_ver.stdout | search('juno')

This version is much cleaner to follow and does not mask errors from the first task.

The search filter searches a string and will return True if the substring is found
anywhere within the input string. If an exact complete match is desired instead,
the match filter can be used. Full Python regex syntax can be utilized inside the
search / match string.

Unlocking the Power of Jinja2 Templates

[76]

Omitting undefined arguments
The omit variable takes a bit of explaining. Sometimes, when iterating over a hash
of data to construct task arguments, it may be necessary to only provide some
arguments for some of the items in the hash. Even though Jinja2 supports in-line
if statements to conditionally render parts of a line, this does not work well in an
Ansible task. Traditionally, playbook authors would create multiple tasks, one for
each set of potential arguments passed in, and use conditionals to sort the loop
members between each task set. A recently added magic variable named omit solves
this problem when used in conjunction with the default filter. The omit variable
will remove the argument that the variable was used with altogether.

To illustrate how this works, let's consider a scenario where we need to install a set
of Python packages with pip. Some of the packages have a specific version, while
others do not. These packages are in a list of hashes named pips. Each hash has a
name key and potentially a ver key. Our first example utilizes two different tasks to
complete the installs:

- name: install pips with versions
 pip:
 name: "{{ item.name }}"
 version: "{{ item.ver }}"
 with_items: pips
 when: item.ver is defined
- name: install pips without versions
 pip:
 name: "{{ item.name }}"
 with_items: pips
 when: item.ver is undefined

This construct works, but the loop is iterated twice and some of the iterations will be
skipped in each task. This next example collapses the two tasks into one and utilizes
the omit variable:

- name: install pips
 pip:
 name: "{{ item.name }}"
 version: "{{ item.ver | default(omit) }}"
 with_items: pips

This example is shorter, cleaner, and doesn't generate extra skipped tasks.

Chapter 3

[77]

Python object methods
Jinja2 is a Python-based template engine. Because of this, Python object methods
are available within templates. Object methods are methods, or functions, that are
directly accessible by the variable object (typically a string, list, int, or float).
A good way to think about this is if you were writing Python code and could write
the variable, then a period, then a method call, you would then have access to do
the same in Jinja2. Within Ansible, only methods that return modified content or a
Boolean are typically used. Let's explore some common object methods that might be
useful in Ansible.

String methods
String methods can be used to return new strings or a list of strings modified in some
way, or to test the string for various conditions and return a Boolean. Some useful
methods are as follows:

• endswith: Determines if the string ends with a substring
• startswith: Like endswith, but from the start
• split: Splits the string on characters (default is space) into a list of substrings
• rsplit: The same as split, but starts from the end of the string and

works backwards
• splitlines: Splits the string at newlines into a list of substrings
• upper: Returns a copy of the string all in uppercase
• lower: Returns a copy of the string all in lowercase
• capitalize: Returns a copy of the string with just the first character

in uppercase

We can create a simple play that will utilize some of these methods in a single task:

- name: demo the filters
 hosts: localhost
 gather_facts: false

 tasks:
 - name: string methods
 debug:
 msg: "{{ 'foo bar baz'.upper().split() }}"

Unlocking the Power of Jinja2 Templates

[78]

The output is as shown in the following screenshot:

Because these are object methods, we need to access them with dot notation rather
than as a filter via (|).

List methods
Only a couple methods do something other than modify the list in-place rather than
returning a new list, and they are as follows:

• index: Returns the first index position of a provided value
• count: Counts the items in the list

int and float methods
Most int and float methods are not useful for Ansible.

Sometimes, our variables are not exactly in the format we want them in. However,
instead of defining more and more variables that slightly modify the same content,
we can make use of Jinja2 filters to do the manipulation for us in the various places
that require that modification. This allows us to stay efficient with the definition
of our data, preventing many duplicate variables and tasks that may have to be
changed later.

Chapter 3

[79]

Comparing values
Comparisons are used in many places with Ansible. Task conditionals are
comparisons. Jinja2 control structures often use comparisons. Some filters use
comparisons as well. To master Ansible's usage of Jinja2, it is important to
understand which comparisons are available.

Comparisons
Like most languages, Jinja2 comes equipped with the standard set of comparison
expressions you would expect, which will render a Boolean true or false.

The expressions in Jinja2 are as follows:

Expression Definition
== Compares two objects for equality
!= Compares two objects for inequality
> True if the left-hand side is greater than the right-hand side
< True if the left-hand side is less than the right- hand side
>= True if the left-hand side is greater than or equal to the right-hand side
<= True if the left-hand side is less than or equal to the right-hand side

Logic
Logic helps group two or more comparisons together. Each comparison is referred to
as an operand:

• and: Returns true if the left and the right operand are true
• or: Returns true if the left or the right operand is true
• not: Negates an operand
• (): Wraps a set of operands together to form a larger operand

Tests
A test in Jinja2 is used to see if a value is something. In fact, the is operator is used
to initiate a test. Tests are used any place a Boolean result is desired, such as with if
expressions and task conditionals. There are many built-in tests, but we'll highlight a
few of the particularly useful ones.

• defined: Returns true if the variable is defined
• undefined: The opposite of defined

www.allitebooks.com

http://www.allitebooks.org

Unlocking the Power of Jinja2 Templates

[80]

• none: Returns true if the variable is defined, but the value is none
• even: Returns true if the number is divisible by 2
• odd: Returns true if the number is not divisible by 2

To test if a value is not something, simply use is not.

We can create a playbook that will demonstrate some of these value comparisons:

- name: demo the logic
 hosts: localhost
 gather_facts: false
 vars:
 num1: 10
 num3: 10
 tasks:
 - name: logic and comparison
 debug:
 msg: "Can you read me?"
 when: num1 >= num3 and num1 is even and num2 is not defined

The output is as shown in the following screenshot:

Summary
Jinja2 is a powerful language that is used by Ansible. Not only is it used to generate
file content, but it is also used to make portions of playbooks dynamic. Mastering
Jinja2 is vital for creating and maintaining elegant and efficient playbooks and roles.

In the next chapter, we will explore more in depth Ansible's capability to define what
constitutes a change or failure for tasks within a play.

[81]

Controlling Task Conditions
Ansible fundamentally operates on the concept of task statuses: Ok, Changed, Failed,
or Skipped. These statuses determine whether any further tasks should be executed
on a host, and whether handlers should be notified due of any changes. Tasks can also
make use of conditionals that check the status of previous tasks to control operation.

In this chapter, we'll explore ways to influence Ansible when determining the
task status:

• Controlling what defines a failure
• Controlling what defines a change

Defining a failure
Most modules that ship with Ansible have an opinion on what constitutes an error.
An error condition is highly dependent upon the module and what the module is
attempting to accomplish. When a module returns an error, the host will be removed
from the set of available hosts, preventing any further tasks or handlers from being
executed on that host. Furthermore, the ansible-playbook function or Ansible
execution will exit with nonzero, indicating failure. However, we are not limited
by a module's opinion of what an error is. We can ignore errors or redefine the
error condition.

Ignoring errors
A task argument, named ignore_errors, is used to ignore errors. This argument is
a Boolean, meaning that the value should be something Ansible understands to be
true, such as yes, on, true, or 1 (string or integer).

Controlling Task Conditions

[82]

To demonstrate how to use ignore_errors, let's create a playbook named errors.
yaml, in which we attempt to query a webserver that doesn't exist. Normally,
this would be an error, and if we don't define ignore_errors, we get the default
behavior, that is, the host will be marked as failed and no further tasks will be
attempted on that host. Let's take a look at the following code snippet:

- name: broken website
 uri:
 url: http://notahost.nodomain

Running the task as is will give us an error:

Now, let's imagine that we didn't want Ansible to stop here, and instead we wanted
it to continue. We can add the ignore_errors condition to our task like this:

- name: broken website
 uri:
 url: http://notahost.nodomain
 ignore_errors: true

Chapter 4

[83]

This time when we run the playbook, our error will be ignored, as we can see here:

Our task error is ignored. Any further tasks for that host will still be attempted and
the playbook does not register any failed hosts.

Defining an error condition
The ignore_errors argument is a bit of a blunt hammer. Any error generated
from the module used by the task will be ignored. Furthermore, the output, at first
glance, still appears like an error, and may be confusing to an operator attempting
to discover a real failure. A more subtle tool is the failed_when argument. This
argument is more like a fine scalpel, allowing a playbook author to be very specific
as to what constitutes an error for a task. This argument performs a test to generate a
Boolean result, much like the when argument. If the test results in a Boolean truth, the
task will be considered a failure. Otherwise, the task will be considered successful.

The failed_when argument is quite useful when used in combination with the
command or shell module, and when registering the result of the execution. Many
programs that are executed can have detailed nonzero exit codes that mean different
things; however, these modules all consider an exit code of anything other than zero
to be a failure. Let's look at the iscsiadm utility. This utility can be used for many
things related to iSCSI. For the sake of our demonstration, we'll use it to discover any
active iscsi sessions:

- name: query sessions
 command: /sbin/iscsiadm –m sessions
 register: sessions

Controlling Task Conditions

[84]

If this were to be run on a system where there were no active sessions, we'd see
output like this:

We can just use the ignore_errors argument, but that would mask other
problems with iscsi. So, instead of this, we want to instruct Ansible that an exit
code of 21 is acceptable. To that end, we can make use of a registered variable to
access the rc variable, which holds the return code. We'll make use of this in a
failed_when statement:

- name: query sessions
 command: /sbin/iscsiadm –m sessions
 register: sessions
 failed_when: sessions.rc not in (0, 21)

Chapter 4

[85]

We simply stated that any exit code other than 0 or 21 should be considered a failure.
Let's see the new output after this modification:

The output now shows no error, and, in fact, we see a new data key in the results—
failed_when_result. This shows whether our failed_when statement rendered
true or false. It was false in this case.

Many command-line tools do not have detailed exit codes. In fact, most typically
use 0 for success and one other non-zero code for all failure types. Thankfully, the
failed_when argument is not just limited to the exit code of the application; it is a
free form Boolean statement that can access any sort of data required. Let's look at a
different problem, one involving git. We'll imagine a scenario in which we want to
ensure that a particular branch does not exist in a git checkout. This task assumes a
git repository checked out in the /srv/app directory. The command to delete a git
branch is git branch -D. Let's have a look at the following code snippet:

- name: delete branch bad
 command: git branch -D badfeature
 args:
 chdir: /srv/app

The command and shell modules use a different format for
providing module arguments. The command itself is provided
a free form, while module arguments go into an args hash.

Controlling Task Conditions

[86]

If we start with just this command, we'll get an error, an exit code of 1 if the branch
does not exist:

Ansible gave us a warning and suggestion to use the git module
instead of using the command module to run the git commands.
We're using the command module to easily demonstrate our topic
despite the existence of the git module.

Without the failed_when and changed_when argument, we would have to create a
two-step task combo to protect ourselves from errors:

- name: check if branch badfeature exists
 command: git branch
 args:
 chdir: /srv/app
 register: branches
- name: delete branch bad
 command: git branch -D badfeature
 args:
 chdir: /srv/app
 when: branches.stdout | search('badfeature')

Chapter 4

[87]

In the scenario in which the branch doesn't exist, running these tasks looks as follows:

While the task set is functional, it is not efficient. Let's improve upon this and
leverage the failed_when functionality to reduce the two tasks into one:

- name: delete branch bad
 command: git branch -D badfeature
 args:
 chdir: /srv/app
 register: gitout
 failed_when: gitout.rc != 0 and not gitout.stderr |
search('branch.*not found')

Controlling Task Conditions

[88]

We check the command return code for anything other than 0 and then use the
search filter to search the stderr value with a regex branch.*not found. We use
the Jinja2 logic to combine the two conditions, which will evaluate to an inclusive
true or false option:

Defining a change
Similar to defining a task failure, it is also possible to define what constitutes a changed
task result. This capability is particularly useful with the command family of modules
(command, shell, raw, and script). Unlike most other modules, the modules of this
family do not have an inherent idea of what a change may be. In fact, unless otherwise
directed, these modules only result in failed, changed, or skipped. There is simply no
way for these modules to assume a changed condition versus unchanged.

Chapter 4

[89]

The changed_when argument allows a playbook author to instruct a module on
how to interpret a change. Just like failed_when, changed_when performs a test
to generate a Boolean result. Frequently, the tasks used with changed_when are
commands that will exit nonzero to indicate that no work is needed to be done. So
authors will often combine changed_when and failed_when to fine-tune the task
result evaluation. In our previous example, the failed_when argument caught the
case in which there was no work to be done but the task still showed a change. We
want to register a change on the exit code 0, but not on any other exit code. Let's
expand our example task to accomplish this:

- name: delete branch bad
 command: git branch -D badfeature
 args:
 chdir: /srv/app
 register: gitout
 failed_when: gitout.rc != 0 and not gitout.stderr |
search('branch.*not found')
 changed_when: gitout.rc == 0

Now, if we run our task when the branch still does not exist, we'll see the
following output:

Note how the key changed now has the value false.

Controlling Task Conditions

[90]

Just to be complete, we'll change the scenario so that the branch does exist and run it
again. To create the branch, simply run git branch badfeature from the /srv/app
directory. Now we can execute our playbook once again to see the output, which is
as follows:

This time, our output is different. It's registering a change, and the stdout data
shows the branch being deleted.

Special handling of the command family
A subset of the command family of modules (command, shell, and script) has
a pair of special arguments that will influence whether or not the task work has
already been done, and thus, whether or not a task will result in a change. The
options are creates and removes. These two arguments expect a file path as a value.
When Ansible attempts to execute a task with the creates or removes arguments,
it will first check whether the referenced file path exists. If the path exists and the
creates argument was used, Ansible will consider that the work has already been
completed and will return ok. Conversely, if the path does not exist and the removes
argument is used, then Ansible will again consider the work to be complete, and it
will return ok. Any other combination will cause the work to actually happen. The
expectation is that whatever work the task is doing will result in either the creation
or removal of the file that is referenced.

Chapter 4

[91]

The convenience of creates and removes saves developers from having to do a
two-task combo. Let's create a scenario in which we want to run the script frobitz
from the files/ subdirectory of our project root. In our scenario, we know that
the frobitz script will create a path /srv/whiskey/tango. In fact, the source of
frobitz is the following:

#!/bin/bash
rm –rf /srv/whiskey/tango
mkdir /srv/whiskey/tango

We don't want this script to run twice as it can be destructive to any existing data.
The two-task combo will look like this:

- name: discover tango directory
 stat:
 path: /srv/whiskey/tango
 register: tango

- name: run frobitz
 script: files/frobitz --initialize /srv/whiskey/tango
 when: not tango.stat.exists

Assuming that the file already exists, the output will be as follows:

Controlling Task Conditions

[92]

If the /srv/whiskey/tango path did not exist, the stat module would have returned
far less data, and the exists key would have a value of false. Thus, our frobitz
script would have been run.

Now, we'll use creates to reduce this down to a single task:

- name: run frobitz
 script: files/frobitz creates=/srv/whiskey/tango

The script module is actually an action_plugin, which will be
discussed in Chapter 8, Extending Ansible. The script action_plugin
only accepts arguments in the key=value format.

This time, our output will be slightly different:

Making good use of creates and removes will keep
your playbooks concise and efficient.

Suppressing a change
Sometimes it can be desirable to completely suppress changes. This is often used
when executing a command in order to gather data. The command execution isn't
actually changing anything; instead, it's just gathering info, like the setup module.
Suppressing changes on such tasks can be helpful for quickly determining whether a
playbook run resulted in any actual change in the fleet.

Chapter 4

[93]

To suppress change, simply use false as an argument to the changed_when task
key. Let's extend one of our previous examples to discover the active iscsi sessions
to suppress changes:

- name: discover iscsi sessions
 command: /sbin/iscsiadm -m sessions
 register: sessions
 failed_when: sessions.rc != 0 and not sessions.stderr | search('No
active sessions')
 changed_when: false

Now, no matter what comes in the return data, Ansible will treat the task as ok
rather than changed:

Summary
In general, Ansible does a great job at determining when there are failures or
actual changes made by a task. However, sometimes Ansible is either incapable or
just needs some fine-tuning based on the situation. To facilitate this, a set of task
constructs exist for playbook authors to utilize. In the next chapter, we'll explore the
use of Roles to organize tasks, files, variables, and other content.

[95]

Composing Reusable Ansible
Content with Roles

For many projects, a simple, single Ansible playbook may suffice. As time goes on
and projects grow, additional playbooks and variable files are added, and task files
may be split out. Other projects within an organization may want to reuse some of
the content; either the projects get added to the directory tree or the desired content
may get copied between multiple projects. As the complexity and size of the scenario
grows, something more than a loosely organized handful of playbooks, task files,
and variable files is highly desired. Creating such a hierarchy can be daunting and
may explain why many uses of Ansible start simple and only grow into a better
organization once the scattered files become unwieldy and a hassle to maintain.
Making the migration can be difficult and may require rewriting significant portions
of playbooks, which can further delay reorganization efforts.

In this chapter, we will cover the best practices for composable, reusable, and
well-organized content within Ansible. Lessons learned in this chapter will help
developers design Ansible content that grows well with the project, avoiding the need
for difficult redesign work later. The following is an outline of what we will cover:

• Task, handler, variable, and playbook include concepts
• Roles
• Designing top level playbooks to utilize roles
• Sharing roles across projects

Composing Reusable Ansible Content with Roles

[96]

Task, handler, variable, and playbook
include concepts
The first step to understanding how to efficiently organize an Ansible project
structure is to master the concept of including files. The act of including files allows
content to be defined in a topic specific file that can be included into other files one
or more times within a project. This inclusion feature supports the concept of DRY
(Don't Repeat Yourself).

Including tasks
Task files are YAML files that define one or more tasks. These tasks are not directly
tied to any particular play or playbook; they exist purely as a list of tasks. These files
can be referenced by playbooks or other task files by way of the include operator.
This operator takes a path to a task file, and as we learned in Chapter 1, System
Architecture and Design of Ansible, the path can be relative from the file referencing it.

To demonstrate how to use the include operator to include tasks, let's create a
simple play that includes a task file with some debug tasks within it. First, let's
write our playbook file, and we'll call it includer.yaml:

- name: task inclusion
 hosts: localhost
 gather_facts: false

 tasks:
 - name: non-included task
 debug:
 msg: "I am not included"

 - include: more-tasks.yaml

Next, we'll create more-tasks.yaml in the same directory that holds includer.yaml:

- name: included task 1
 debug:
 msg: "I am the first included task"

- name: include task 2
 debug:
 msg: "I am the second included task"

Chapter 5

[97]

Now, we can execute our playbook to observe the output:

We can clearly see our tasks from the include file execution. Because the include
operator was used within the play's tasks section, the included tasks were executed
within that play. In fact, if we were to add a task to the play after the include
operator, we would see that the order of execution follows as if all the tasks from the
included file existed at the spot at which the include operator was used:

 tasks:
 - name: non-included task
 debug:
 msg: "I am not included"

 - include: more-tasks.yaml

 - name: after-included tasks
 debug:
 msg: "I run last"

Composing Reusable Ansible Content with Roles

[98]

If we run our modified playbook, we will see the task order we expect:

By breaking these tasks into their own file, we could include them multiple times or
in multiple playbooks. If we ever have to alter one of the tasks, we only have to alter
a single file, no matter how many places this file gets referenced.

Chapter 5

[99]

Passing variable values to included tasks
Sometimes we want to split out a set of tasks but have those tasks act slightly
differently depending on variable data. The include operator allows us to define
and override variable data at the time of inclusion. The scope of the definition is
only within the included task file (and any other files that the file may itself include).
To illustrate this capability, let's create a new scenario in which we need to touch a
couple of files, each in their own directory path. Instead of writing two file tasks for
each file (one to create the directory and another to touch the file), we'll create a task
file with each task that will use variable names in the tasks. Then, we'll include the
task file twice, each time passing different data in. First, we'll do this with the task
file files.yaml:

- name: create leading path
 file:
 path: "{{ path }}"
 state: directory

- name: touch the file
 file:
 path: "{{ path + '/' + file }}"
 state: touch

Next, we'll create the play to include the task file we've just created, passing along
variable data for the path and file variables:

- name: touch files
 hosts: localhost
 gather_facts: false

 tasks:
 - include: files.yaml
 path: /tmp/foo
 file: herp

 - include: files.yaml
 path: /tmp/foo
 file: derp

Variable definitions provided when including files can either
be in the inline format of key=value or in the illustrated
YAML format of key: value.

Composing Reusable Ansible Content with Roles

[100]

When we run this playbook, we'll see four tasks get executed, the two tasks from
within files.yaml twice. The second set should result in only one change, as the
path is the same for both sets:

Chapter 5

[101]

Passing complex data to included tasks
When wanting to pass complex data to included tasks, such as a list or hash, an
alternative syntax can be used when including the file. Let's repeat the last scenario,
only this time, instead of including the task file twice, we'll include it once and pass a
hash of the paths and files in. First, we'll work the task file:

- name: create leading path
 file:
 path: "{{ item.value.path }}"
 state: directory
 with_dict: files

- name: touch the file
 file:
 path: "{{ item.value.path + '/' + item.key }}"
 state: touch
 with_dict: files

Now, we'll alter our playbook to provide the files hash in a single include statement:

- name: touch files
 hosts: localhost
 gather_facts: false

 tasks:
 - include: files.yaml
 vars:
 files:
 herp:
 path: /tmp/foo
 derp:
 path: /tmp/foo

When supplying variable data to an include statement and using
YAML syntax, the variables can be listed with or without a top-level
vars key. The vars key is useful if any variable name might conflict
with an existing Ansible control argument.

Composing Reusable Ansible Content with Roles

[102]

If we run this new playbook and task file, we should see similar but slightly different
output, the end result of which is the /tmp/foo directory already in place and the
two files herp and derp being touched within:

Using this manner of passing in a hash of data allows for the growing of the set of
things created without the need to grow the number of include statements in the
main playbook.

Chapter 5

[103]

Conditional task includes
Similar to passing data into included files, conditionals can also be passed into
included files. This is accomplished by attaching a when statement to the include
operator. This conditional does not cause Ansible to evaluate the test to determine
whether or not the file should be included; rather, it instructs Ansible to add the
conditional to each and every task within the included file (and any other files that
said file may include).

It is not possible to conditionally include a file. Files will always
be included; however, a task conditional can be applied to every
task within.

Let's demonstrate this by modifying our first example that includes simple debug
statements. We'll add a conditional and pass along some data for the conditional to
use. First, let's modify the playbook:

- name: task inclusion
 hosts: localhost
 gather_facts: false

 tasks:
 - include: more-tasks.yaml
 when: item | bool
 a_list:
 - true
 - false

Next, let's modify more-tasks.yaml to loop over the a_list variable in each task:

- name: included task 1
 debug:
 msg: "I am the first included task"
 with_items: a_list

- name: include task 2
 debug:
 msg: "I am the second included task"
 with_items: a_list

Composing Reusable Ansible Content with Roles

[104]

Now, let's run the playbook and see our new output:

We can see a skipped iteration per task, the iteration where the item evaluated to
a Boolean false. It's important to remember that all hosts will evaluate all included
tasks. There is no way to influence Ansible to not include a file for a subset of hosts.
At most, a conditional can be applied to every task within an include hierarchy so
that included tasks may be skipped. One method to include tasks based on host facts
is to utilize the group_by action plugin to create dynamic groups based on host facts.
Then, you can give the groups their own plays to include specific tasks. This is an
exercise left up to the reader.

Chapter 5

[105]

Tagging included tasks
When including task files, it is possible to tag all the tasks within the file. The tags
key is used to define one or more tags to apply to all the tasks within the include
hierarchy. The ability to tag at include time can keep the task file itself unopinionated
about how the tasks should be tagged, and can allow for a set of tasks to be included
multiple times but with different data and tags passed along.

Tags can be defined at the include statement or at the play itself
to cover all includes (and other tasks) in a given play.

Let's create a simple demonstration to illustrate how tags can be used. We'll start
with a playbook that includes a task file twice, each with a different tag name and
different variable data:

- name: task inclusion
 hosts: localhost
 gather_facts: false

 tasks:
 - include: more-tasks.yaml
 data: first
 tags: first

 - include: more-tasks.yaml
 data: second
 tags: second

Now, we'll update more-tasks.yaml to do something with the data being provided:

- name: included task
 debug:
 msg: "My data is {{ data }}"

Composing Reusable Ansible Content with Roles

[106]

If we run this playbook without selecting tags, we'll see this task run twice:

Now, if we select which tag to run, say the second tag, by altering our ansible-
playbook arguments, we should see only that occurrence of the included task being run:

Our example used the --tags command line argument to indicate which tagged
tasks to run. A different argument, --skip-tags, allows the expression of the
opposite: which tagged tasks to not run.

Chapter 5

[107]

Including handlers
Handlers are essentially tasks. They're a set of potential tasks to trigger by way of
notifications from other tasks. As such, handler tasks can be included just like regular
tasks can. The include operator is legal within the handlers block.

Unlike with task includes, variable data cannot be passed along when including
handler tasks. However, it is possible to attach a conditional to a handler inclusion to
apply the conditional to every handler within the file.

Let's create an example to demonstrate. First, we'll create a playbook that has a
task that will always change and that includes a handler task file and attaches a
conditional to that inclusion:

- name: touch files
 hosts: localhost
 gather_facts: false

 tasks:
 - name: a task
 debug:
 msg: "I am a changing task"
 changed_when: true
 notify: a handler

 handlers:
 - include: handlers.yaml
 when: foo | default('true') | bool

Next, we'll create handlers.yaml to define our handler task:

- name: a handler
 debug:
 msg: "handling a thing"

Composing Reusable Ansible Content with Roles

[108]

If we execute this playbook without providing any further data, we should see our
handler trigger:

Now, let's run the playbook again. This time we'll define foo as false and as an
extra-var in our ansible-playbook execution arguments:

This time, since foo evaluates to false, our included handler gets skipped.

Chapter 5

[109]

Including variables
Variable data can also be separated into loadable files. This allows for sharing
variables across multiple plays or playbooks or including variable data that lives
outside the project directory (such as secret data). Variable files are simple YAML
formatted files providing keys and values. Unlike task include files, variable include
files cannot further include more files.

Variables can be included in three different ways: via vars_files, via include_
vars, or via --extra-vars (-e).

vars_files
The vars_files key is a play directive. It defines a list of files to read from to
load variable data. These files are read and parsed at the time the playbook itself
is parsed. Just as with including tasks and handlers, the path is relative to the file
referencing the file.

Here is an example play that loads variables from a file:

- name: vars
 hosts: localhost
 gather_facts: false

 vars_files:
 - variables.yaml

 tasks:
 - name: a task
 debug:
 msg: "I am a {{ name }}"

Now, we need to create variables.yaml in the same directory as our playbook:

name: derp

Composing Reusable Ansible Content with Roles

[110]

Running the playbook will show that the name variable value is properly sourced
from the variables.yaml file:

Dynamic vars_files inclusion
In certain scenarios, it may be desirable to parameterize the variable files to be
loaded. It is possible to do this by using a variable as part of the filename; however,
the variable must have a value defined at the time the playbook is parsed, just like
when using variables in task names. Let's update our example play to load a variable
file based on the data provided at execution time:

- name: vars
 hosts: localhost
 gather_facts: false

 vars_files:
 - "{{ varfile }}"

 tasks:
 - name: a task
 debug:
 msg: "I am a {{ name }}"

Chapter 5

[111]

Now, when we execute the playbook, we'll provide the value for varfile with
the –e argument:

In addition to the variable value needing to be defined at execution time, the file to
be loaded must also exist at execution time. Even if a reference to a file is four plays
down in a playbook and the file itself is generated by the first play, unless the file
exists at execution time, ansible-playbook will report an error.

include_vars
The second method to include variable data from files is the include_vars module.
This module will load variables as a task action and will be done for each host.
Unlike most modules, this module is executed locally on the Ansible host; therefore,
all paths are still relative to the play file itself. Because the variable loading is done
as a task, evaluation of variables in the filename happens when the task is executed.
Variable data in the file name can be host-specific and defined in a preceding
task. Additionally, the file itself does not have to exist at execution time, it can be
generated by a preceding task as well. This is a very powerful and flexible concept
that can lead to very dynamic playbooks if used properly.

Before getting ahead of ourselves, let's demonstrate a simple usage of include_vars
by modifying our existing play to load the variable file as a task:

- name: vars
 hosts: localhost

Composing Reusable Ansible Content with Roles

[112]

 gather_facts: false

 tasks:
 - name: load variables
 include_vars: "{{ varfile }}"

 - name: a task
 debug:
 msg: "I am a {{ name }}"

Execution of the playbook remains the same, and our output differs only slightly
from previous iterations:

Just like with other tasks, looping can be done to load more than one file in a single
task. This is particularly effective when using the special with_first_found loop to
iterate through a list of increasingly more generic file names until a file is found to be
loaded. Let's demonstrate this by changing our play to use gathered host facts to try
to load a variable file specific to the distribution, specific to the distribution family, or
finally, a default file:

- name: vars
 hosts: localhost
 gather_facts: true

 tasks:
 - name: load variables
 include_vars: "{{ item }}"

Chapter 5

[113]

 with_first_found:
 - "{{ ansible_distribution }}.yaml"
 - "{{ ansible_os_family }}.yaml"
 - variables.yaml

 - name: a task
 debug:
 msg: "I am a {{ name }}"

Execution should look very similar to previous runs, only this time we'll see a fact-
gathering task, and we will not pass along extra variable data in the execution:

We can also see from the output which file was found to load. In this case,
variables.yaml was loaded, as the other two files did not exist. This practice is
commonly used to load variables that are operating system specific to the host
in question. Variables for a variety of operating systems can be written out to
appropriately named files. By utilizing the variable ansible_distribution, which
is populated by fact gathering, variable files that use ansible_distribution values
as part of their name can be loaded by way of a with_first_found argument. A
default set of variables can be provided in a file that does not use any variable data
as a failsafe.

Composing Reusable Ansible Content with Roles

[114]

extra-vars
The final method of loading variable data from a file is to reference a file path with
the --extra-vars (or -e) argument to ansible-playbook. Normally, this argument
expects a set of key=value data; however, if a file path is provided and prefixed with
the @ symbol, Ansible will read the entire file to load variable data. Let's alter one of
our earlier examples in which we used -e, and instead of defining a variable directly
on the command line, we'll include the variable file we've already written out:

- name: vars
 hosts: localhost
 gather_facts: false

 tasks:
 - name: a task
 debug:
 msg: "I am a {{ name }}"

When we provide a path after the @ symbol, the path is relative to the current
working directory, regardless of where the playbook itself lives. Let's execute
our playbook and provide a path to variables.yaml:

When including a variable file with the --extra-vars argument,
the file must exist at ansible-playbook execution time.

Chapter 5

[115]

Including playbooks
Playbook files can include other whole playbook files. This construct can be useful
to tie together a few independent playbooks into a larger, more comprehensive
playbook. Playbook inclusion is a bit more primitive than task inclusion. You
cannot perform variable substitution when including a playbook, you cannot apply
conditionals, and you cannot apply tags either. The playbook files to be included
must exist at the time of execution as well.

Roles
With a functional understanding of the inclusion of variables, tasks, handlers, and
playbooks, we can move on to the more advanced topic of Roles. Roles move beyond
the basic structure of a few playbooks and a few broken-out files to reference.
Roles provide a framework for fully independent, or interdependent, collections
of variables, tasks, files, templates, and modules. Each role is typically limited to
a particular theme or desired end result, with all the necessary steps to reach that
result either within the role itself or in other roles listed as dependencies. Roles
themselves are not playbooks. There is no way to directly execute a role. Roles have
no setting for which host the role will apply to. Top-level playbooks are the glue that
binds the hosts from your inventory to roles that should be applied to those hosts.

Role structure
Roles have a structured layout on the file system. This structure exists to provide
automation around, including tasks, handlers, variables, modules, and role
dependencies. The structure also allows for easy reference of files and templates
from anywhere within the role.

Roles all live in a subdirectory of a playbook archive, in the roles/ directory. This
is, of course, configurable by way of the roles_path general configuration key,
but let's stick to the defaults. Each role is itself a directory tree. The role name is the
directory name within roles/. Each role can have a number of subdirectories with
special meaning that are processed when a role is applied to a set of hosts.

A role may contain all these elements, or as few as just one of them. Missing elements
are simply ignored. Some roles exist just to provide common handlers across a
project. Other roles exist as a single dependency point that, in turn just depends on
numerous other roles.

Composing Reusable Ansible Content with Roles

[116]

Tasks
The task file is the main meat of a role. If roles/<role_name>/tasks/main.yaml
exists, all the tasks therein and any other files it includes will be embedded in the
play and executed.

Handlers
Similar to tasks, handlers are automatically loaded from roles/<role_name>/
handlers/main.yaml, if the file exists. These handlers can be referenced by any task
within the role, or by any tasks within any other role that lists this role as a dependency.

Variables
There are two types of variables that can be defined in a role. There are role
variables, loaded from roles/<role_name>/vars/main.yaml, and there are role
defaults, which are loaded from roles/<role_name>/defaults/main.yaml. The
difference between vars and defaults has to do with precedence order. Refer to
Chapter 1, System Architecture and Design of Ansible, for a detailed description of the
order. Role defaults are the lowest order variables. Literally, any other definition of
a variable will take precedence over a role default. Role defaults can be thought of
as place holders for actual data, a reference of what variables a developer may be
interested in defining with site-specific values. Role variables, on the other hand,
have a higher order of precedence. Role variables can be overridden, but generally
they are used when the same data set is referenced more than once within a role. If
the data set is to be redefined with site-local values, then the variable should be listed
in the role defaults rather than the role variables.

Modules
A role can include custom modules. While the Ansible project is quite good at
reviewing and accepting submitted modules, there are certain cases where it may
not be advisable, or even legal, to submit a custom module upstream. In those cases,
delivering the module with the role may be a better option. Modules can be loaded
from roles/<role_name>/library/ and can be used by any task in the role, or any
later role. Modules provided in this path will override any other copies of the same
module name anywhere else on the file system, which can be a way of distributing
added functionality to a core module before the functionality has been accepted
upstream and released with a new version of Ansible.

Chapter 5

[117]

Dependencies
Roles can express a dependency upon another role. It is common practice for sets
of roles to all depend on a common role so that any tasks, handlers, modules, and
so on. Those roles may depend upon need only having to be defined once in the
common role. When Ansible processes a role for a set of hosts, it will first look for any
dependencies listed in roles/<role_name>/meta/main.yaml. If any are defined,
those roles will be processed and the tasks within will be executed (after also checking
for any dependencies listed within) until all dependencies have been completed before
starting on the initial role tasks. We will describe role dependencies more in depth later
in this chapter.

Files and templates
Task and handler modules can reference files relatively within roles/<role_name>/
files/. The filename can be provided without any prefix and will be sourced from
roles/<role_name>/files/<file_name>. Relative prefixes are allowed as well, in
order to access files within subdirectories of roles/<role_name>/files/. Modules
such as template, copy, and script may take advantage of this.

Similarly, templates used by the template module can be referenced relatively within
roles/<role_name>/templates/. This sample code uses a relative path to load the
template derp.j2 from the full roles/<role_name>/templates/herp/derp.j2 path:

- name: configure herp
 template:
 src: herp/derp.j2
 dest: /etc/herp/derp.j2

Putting it all together
To illustrate what a full role structure might look like, here is an example role by the
name of demo:

roles/demo
├── defaults
│ └── main.yaml
├── files
│ └── foo
├── handlers
│ └── main.yaml
├── library
│ └── samplemod.py
├── meta
│ └── main.yaml

Composing Reusable Ansible Content with Roles

[118]

├── tasks
│ └── main.yaml
├── templates
│ └── bar.j2
└── vars
 └── main.yaml

When creating a role, not every directory or file is required. Only the files that exist
will be processed.

Role dependencies
As stated before, roles can depend on other roles. These relationships are called
dependencies and they are described in a role's meta/main.yaml file. This file
expects a top-level data hash with a key of dependencies; the data within is a
list of roles:

dependencies:
 - role: common
 - role: apache

In this example, Ansible will fully process the common role first (and any dependencies
it may express) before continuing with the apache role, and then finally starting on the
role's own tasks.

Dependencies can be referenced by name without any prefix if they exist within the
same directory structure or live within the configured roles_path. Otherwise, full
paths can be used to locate roles:

role: /opt/ansible/site-roles/apache

When expressing a dependency, it is possible to pass along data to the dependency.
The data can be variables, tags, or even conditionals.

Role dependency variables
Variables that are passed along when listing a dependency will override values for
matching variables defined in defaults/main.yaml or vars/main.yaml. This can be
useful for using a common role like an apache role as a dependency while providing
application-specific data such as what ports to open in the firewall, or what apache
modules to enable. Variables are expressed as additional keys to the role listing. Let's
update our example to add simple and complex variables to our two dependencies:

dependencies:

Chapter 5

[119]

 - role: common
 simple_var_a: True
 simple_var_b: False
 - role: apache
 complex_var:
 key1: value1
 key2: value2
 short_list:
 - 8080
 - 8081

When providing dependency variable data, two names are reserved and should not
be used as role variables: tags and when. The former is used to pass tag data into a
role, and the latter is used to pass a conditional into the role.

Tags
Tags can be applied to all the tasks found within a dependency role. This functions
much in the same way as tags being applied to included task files, as described
earlier in this chapter. The syntax is simple: the tags key can be a single item or a
list. To demonstrate, let's add some tags to our example dependency list:

dependencies:
 - role: common
 simple_var_a: True
 simple_var_b: False
 tags: common_demo
 - role: apache
 complex_var:
 key1: value1
 key2: value2
 short_list:
 - 8080
 - 8081
 tags:
 - apache_demo
 - 8080
 - 8181

As with adding tags to included task files, all the tasks found within a dependency
(and any dependency within that hierarchy) will gain the provided tags.

Composing Reusable Ansible Content with Roles

[120]

Role dependency conditionals
While it is not possible to prevent the processing of a dependency role with a
conditional, it is possible to skip all the tasks within a dependency role hierarchy by
applying a conditional to a dependency. This mirrors the functionality of task inclusion
with conditionals as well. The when key is used to express the conditional. Once again,
we'll grow our example by adding a dependency to demonstrate the syntax:

dependencies:
 - role: common
 simple_var_a: True
 simple_var_b: False
 tags: common_demo
 - role: apache
 complex_var:
 key1: value1
 key2: value2
 short_list:
 - 8080
 - 8081
 tags:
 - apache_demo
 - 8080
 - 8181
 when: backend_server == 'apache'

Role application
Roles are not plays. They do not possess any opinions about which hosts the role
tasks should run on, what connection methods to use, whether or not to operate
serially, or any other play behaviors described in Chapter 1, System Architecture and
Design of Ansible. Roles must be applied inside of a play within a playbook, where all
these opinions can be expressed.

To apply a role within a play, the roles operator is used. This operator expects a list
of roles to apply to the hosts in the play. Much like describing role dependencies,
when describing roles to apply, data can be passed along such as variables, tags, and
conditionals. The syntax is exactly the same.

Chapter 5

[121]

To demonstrate applying roles within a play, let's create a simple role and apply it
in a simple playbook. Let's build the role named simple, which will have a single
debug task in roles/simple/tasks/main.yaml that prints the value of a role
default variable defined in roles/simple/defaults/main.yaml. First, let's create
the task file:

- name: print a variable
 debug:
 var: derp

Next, we'll write our default file with a single variable, derp:

derp: herp

To execute this role, we'll write a playbook with a single play to apply the role. We'll
call our playbook roleplay.yaml, and it'll live at the same directory level as the
roles/ directory:

- hosts: localhost
 gather_facts: false

 roles:
 - role: simple

If no data is provided with the role, an alternative syntax that
just lists the roles to apply can be used, instead of the shown
hash. However, for consistency, I feel it's best to always use
the same syntax within a project.

Composing Reusable Ansible Content with Roles

[122]

We'll re-use our mastery-hosts inventory from earlier chapters and execute
the playbook:

Thanks to the magic of roles, the derp variable value was automatically loaded from
the role defaults. Of course, we can override the default value when applying the
role. Let's modify our playbook and supply a new value for derp:

- hosts: localhost
 gather_facts: false

 roles:
 - role: simple
 derp: newval

Chapter 5

[123]

This time when we execute, we'll see newval as the value for derp:

Multiple roles can be applied within a single play. The roles: key expects a list
value. Just add more roles to apply more roles:

- hosts: localhost
 gather_facts: false

 roles:
 - role: simple
 derp: newval
 - role: second_role
 othervar: value
 - role: third_role
 - role: another_role

Mixing roles and tasks
Plays that use roles are not limited to just roles. These plays can have tasks of their
own, as well as two other blocks of tasks: pre_tasks and post_tasks. The order in
which these are executed is not dependent upon which order these sections are listed
in the play itself; rather, there is a strict order to block execution within a play. See
Chapter 1, System Architecture and Design of Ansible, for details on the playbook order
of operations.

Composing Reusable Ansible Content with Roles

[124]

Handlers for a play are flushed at multiple points. If there is a pre_tasks block,
handlers are flushed after all pre_tasks are executed. Then, the roles and tasks
blocks are executed (roles first, then tasks, regardless of the order they are written
in the playbook), after which, handlers will be flushed again. Finally, if a post_tasks
block exists, handlers will be flushed once again after all post_tasks have executed.
Of course, handlers can be flushed at any time with the meta: flush_handlers call.
Let's expand on our roleplay.yaml to demonstrate all the different times handlers
can be triggered:

- hosts: localhost
 gather_facts: false

 pre_tasks:
 - name: pretask
 debug: msg="a pre task"
 changed_when: true
 notify: say hi

 roles:
 - role: simple
 derp: newval

 tasks:
 - name: task
 debug: msg="a task"
 changed_when: true
 notify: say hi

 post_tasks:
 - name: posttask
 debug: msg="a post task"
 changed_when: true
 notify: say hi

 handlers:
 - name: say hi
 debug: msg="hi"

We'll also modify our simple role's tasks to notify the say hi handler as well:

- name: print a variable
 debug: var: derp
 changed_when: true
 notify: say hi

Chapter 5

[125]

Note that this only works because the say hi handler has been defined
in the play that is calling the simple role. If the handler is not defined,
an error will occur. It's best practice to only notify handlers that exist
within the same role or any role marked as a dependency.

Running our playbook should result in the say hi handler being called a total of three
times: once for pre_tasks, once for roles and tasks, and once for post_tasks:

Composing Reusable Ansible Content with Roles

[126]

While the order in which pre_tasks, roles, tasks, and post_tasks are written
into a play does not impact the order in which those sections are executed, it's best
practice to write them in the order that they will be executed. This is a visual cue to
help remember the order and to avoid confusion when reading the playbook later.

Role sharing
One of the advantages of using roles is the ability to share the role across plays,
playbooks, entire project spaces, and even across organizations. Roles are designed to
be self-contained (or to clearly reference dependent roles) so that they can exist outside
of a project space in which the playbook that applies the role lives. Roles can be installed
in shared paths on an Ansible host, or they can be distributed via source control.

Ansible Galaxy
Ansible Galaxy (https://galaxy.ansible.com/) is a community hub for finding
and sharing Ansible roles. Anybody can visit the website to browse the roles and
reviews. Plus, users who create a login can provide reviews of the roles they've
tested. Roles from Galaxy can be downloaded using the ansible-galaxy utility
provided with Ansible.

The ansible-galaxy utility can connect to and install roles from the Ansible Galaxy
website. This utility will default to installing roles into /etc/ansible/roles. If
roles_path is configured, or if a run-time path is provided with the --roles-path
(or –p) option, the roles will be installed there instead. If any roles have been installed
to the roles_path or the provided path, ansible-galaxy can list those and show
information about those as well. To demonstrate the usage of ansible-galaxy, let's
use it to install a role for managing known_hosts for ssh from Ansible Galaxy into the
roles directory we've been working with. Installing roles from Ansible Galaxy requires
a username.rolename, as multiple users may have uploaded roles with the same
name. In this case, we want the ssh_known_hosts role from the user bfmartin:

https://galaxy.ansible.com/

Chapter 5

[127]

Now we can make use of this role by referencing bfmartin.ssh_known_hosts in a
play or another role's dependencies block. We can also list it and gain information
about it using the ansible-galaxy utility:

Composing Reusable Ansible Content with Roles

[128]

Some of the data being displayed by the info command lives within the role itself,
in the meta/main.yaml file. Previously, we've only seen dependency information in
this file and it may not have made much sense to name the directory meta, but now
we see that other metadata lives in this file as well:

The ansible-galaxy utility can also help in the creation of new roles. The init
method will create a skeleton directory tree for the role, as well as populate the
meta/main.yaml file with placeholders for Galaxy-related data. The init method
takes a variety of options, as shown in the help output:

Chapter 5

[129]

Let's demonstrate this capability by creating a new role in our working directory
named autogen:

For roles that are not suitable for Ansible Galaxy, such as roles dealing with in-
house systems, ansible-galaxy can install directly from a git URL. Instead of just
providing a role name to the install method, a full git URL with an optional version
can be provided instead. For example, if we wanted to install the foowhiz role from
our internal git server, we could simply do the following:

Composing Reusable Ansible Content with Roles

[130]

Without version info, the master branch will be used. Without name data, the name
will be determined from the URL itself. To provide a version, append a comma and
the version string that git can understand, such as a tag or branch name, like v1:

A name for the role can be added with another comma followed by the name string.
If you need to supply a name but do not wish to supply a version, an empty slot is
still required for the version. For example:

Roles can also be installed directly from tarballs as well, by providing a URL to the
tarball in lieu of a full git URL, or a role name to fetch from Ansible Galaxy.

When you need to install many roles for a project, it's possible to define multiple
roles to download and install using a YAML formatted file that ends with .yaml
(or .yml). The format of this file allows you to specify multiple roles from multiple
sources and retain the ability to specify versions and role names. In addition, the
install path can be defined per-role, and finally, the source control method can be
listed (currently only git and hg are supported):

- src: <name or url>
 path: <optional install path>
 version: <optional version>
 name: <optional name override>
 scm: <optional defined source control mechanism

- src: <name or url>

Chapter 5

[131]

To install all the roles within a file, use the --roles-file (-r) option with the
install method:

Summary
Ansible provides the capability to divide content logically into separate files. This
capability helps project developers to not repeat the same code over and over again.
Roles within Ansible take this capability a step further and wrap some magic around
the paths to the content. Roles are tunable, reusable, portable, and shareable blocks
of functionality. Ansible Galaxy exists as a community hub for developers to find,
rate, and share roles. The ansible-galaxy command-line tool provides a method
of interacting with the Ansible Galaxy site or other role-sharing mechanisms. These
capabilities and tools help with the organization and utilization of common code.

In the next chapter, we'll cover different deployment and upgrade strategies and the
Ansible features useful for each strategy.

[133]

Minimizing Downtime with
Rolling Deployments

Application deployments and upgrades can be approached in a variety of different
strategies. The best approach depends on the application itself, the capabilities of the
infrastructure the application runs on, and any promised service-level agreements
with the users of the application. Whatever strategy you use, Ansible is well suited
to facilitate the deployment. In this chapter, we'll walk through a couple of common
deployment strategies and showcase the Ansible features that will be useful within
those strategies. We'll also discuss a couple of other deployment considerations that
are common across both deployment strategies, which are:

• In-place upgrades
• Expanding and contracting
• Failing fast
• Minimizing disruptive actions

In-place upgrades
The first type of deployment we'll cover is in-place upgrades. This style of deployment
operates on infrastructure that already exists in order to upgrade the existing
application. This model can be seen as a traditional model that existed when the
creation of new infrastructure was a costly endeavor in terms of both time and money.

Minimizing Downtime with Rolling Deployments

[134]

To minimize the downtime during this type of an upgrade, a general design pattern
is to deploy the application across multiple hosts behind a load balancer. The load
balancer will act as a gateway between users of the application and the servers that
run the application. Requests for the application will come to the load balancer, and
depending on configuration, the load balancer will decide which backend server to
direct the request to.

To perform a rolling in-place upgrade of an application deployed with this pattern,
each server (or a small subset of the servers) will be disabled at the load balancer,
upgraded, and then re-enabled to take on new requests. This process will be repeated
for the remaining servers in the pool until all servers have been upgraded. As only
a portion of the available application servers is taken offline to be upgraded, the
application as a whole remains available for requests. Of course, this assumes that an
application can perform well with mixed versions running at the same time.

Let's build a playbook to upgrade a fictional application. Our fictional application
will run on servers foo-app01 through foo-app08, which exist in the group foo-app.
These servers will have a simple website being served via the nginx webserver, with
the content coming from a foo-app git repository, defined by the variable foo-app.
repo. A load balancer server, foo-lb, running the haproxy software, will front these
app servers.

In order to operate on a subset of our foo-app servers, we need to employ the serial
mode. This mode changes how Ansible will execute a play. By default, Ansible will
execute tasks of a play across each host in the order that the tasks are listed. Each
task of the play is executed across every host before moving on to the next task. If we
were to use the default method, our first task would remove every server from the
load balancer, which would result in a complete outage of our application. The serial
mode, instead, lets us operate on a subset so that the application as a whole stays
available, even if some of the members are offline. In our example, we'll use a serial
amount of two in order to keep the majority of the application members online:

- name: Upgrade foo-app in place
 hosts: foo-app
 serial: 2

Chapter 6

[135]

Now, we can start creating our tasks. The first task will be to disable the host from
the load balancer. The load balancer runs on the foo-lb host; however, we're
operating on the foo-app hosts. Therefore, we need to delegate the task using the
delegate_to task operator. This operator redirects where Ansible will connect in
order to execute the task, but keeps all the variable context of the original host. We'll
use the haproxy module to disable the current host from the foo-app backend pool:

 tasks:
 - name: disable member in balancer
 haproxy:
 backend: foo-app
 host: "{{ inventory_hostname }}"
 state: disabled
 delegate_to: foo-lb

With the host disabled, we can now update the foo-app content. We'll use the git
module to update the content path with the desired version defined as foo-version.
We'll add a notify handler to this task to reload the nginx server if the content
update results in a change. This can be done every time, but we're using this as an
example of notify:

 - name: pull stable foo-app
 git:
 repo: "{{ foo-app.repo }}"
 dest: /srv/foo-app/
 version: "{{ foo-version }}"
 notify:
 - reload nginx

Our next step would be to re-enable the host in the load balancer; however, if we
did that task next, we'd put the old version back in place, as our notified handler
hasn't run yet. So, we need to trigger our handlers early by way of the meta: flush_
handlers call, which we learned about in the previous chapter:

 - meta: flush_handlers

Minimizing Downtime with Rolling Deployments

[136]

Now, we can re-enable the host in the load balancer. We can just enable it straight
away and rely on the load balancer to wait until the host is healthy before sending
requests to it. However, because we are running with a reduced number of available
hosts, we need to ensure that all the remaining hosts are healthy. We can make use
of a wait_for task to wait until the nginx service is once again serving connections.
The wait_for module will wait for a condition on either a port or a file path. In our
example, we will wait for port 80 and the condition that port should be in. If it is
started (the default), this means it is accepting connections:

 - name: ensure healthy service
 wait_for:
 port: 80

Finally, we can re-enable the member within haproxy. Once again, we'll delegate the
task to foo-lb:

 - name: enable member in balancer
 haproxy:
 backend: foo-app
 host: "{{ inventory_hostname }}"
 state: enabled
 delegate_to: foo-lb

Of course, we still need to define our reload nginx handler:

 handlers:
 - name: reload nginx
 service:
 name: nginx
 state: restarted

This playbook, when run, will now perform a rolling in-place upgrade of
our application.

Expanding and contracting
An alternative to the in-place upgrade strategy is the expand and contract strategy.
This strategy has become popular of late thanks to the self-service nature of on-
demand infrastructure, such as cloud computing or virtualization pools. The ability
to create new servers on demand from a large pool of available resources means that
every deployment of an application can happen on brand new systems. This strategy
avoids a host of issues. These include a build up of cruft on long running systems,
such as:

• The configuration files no longer managed by Ansible are left behind

Chapter 6

[137]

• The run-away processes consume resources in the background
• Things manually changed by humans with shell access to the server

Starting afresh each time also removes differences between an initial deployment
and an upgrade. The same code path can be used, reducing the risk of surprises
while upgrading an application. This type of an install can also make it extremely
easy to roll back if the new version does not perform as expected. In addition to this,
as new systems are created to replace old systems, the application does not need to
go into a degraded state during the upgrade.

Let's reapproach our previous upgraded playbook with the expand and contract
strategy. Our pattern will be to create new servers, deploy our application, verify our
application, add new servers to the load balancer, and remove old servers from the
load balancer. First, let's start with creating new servers. For this example, we'll make
use of an OpenStack Compute Cloud to launch new instances:

- name: Create new foo servers
 hosts: localhost

 tasks:
 - name: launch instances
 os_server:
 name: foo-appv{{ version }}-{{ item }}
 image: foo-appv{{ version }}
 flavor: 4
 key_name: ansible-prod
 security_groups: foo-app
 auto_floating_ip: false
 state: present
 auth:
 auth_url: https://me.openstack.blueboxgrid.com:5001/v2.0
 username: jlk
 password: FAKEPASSW0RD
 project_name: mastery
 register: launch
 with_sequence: count=8

Minimizing Downtime with Rolling Deployments

[138]

In this task, we're looping over a count of 8 using with_sequence. Each loop in the
item variable will be replaced with a number. This allows us to create eight new
server instances with a name based on the version of our application and the number
of the loop. We're also assuming a prebuilt image to use so that we do not need to
do any further configuration of the instance. In order to use the servers in future
plays, we need to add their details to the inventory. To accomplish this, we register
the results of the run in the launch variable, which we'll use next to create runtime
inventory entries:

 - name: add hosts
 add_host:
 name: "{{ item.openstack.name }}"
 ansible_ssh_host: "{{ item.openstack.private_v4 }}"
 groups: new-foo-app
 with_items: launch.results

This task will create new inventory items with the same name as that of our server
instance. To help Ansible know how to connect, we'll set ansible_ssh_host to the
IP address that our cloud provider assigned to the instance (this is assuming that the
address is reachable by the host running Ansible). Finally, we'll add the hosts to the
group new-foo-app. As our launch variable comes from a task with a loop, we need
to iterate over the results of that loop by accessing the results key. This allows us to
loop over each launch action to access the data specific to that task.

Next, we'll operate on the servers to ensure that the new service is ready for use.
We'll use wait_for again, just like we did earlier, as part of a new play on our
new-foo-app group:

- name: Ensure new app
 hosts: new-foo-app
 tasks:
 - name: ensure healthy service
 wait_for:
 port: 80

Once they're all ready to go, we can reconfigure the load balancer to make use of our
new servers. For the sake of simplicity, we will assume a template for the haproxy
configuration that expects hosts in a new-foo-app group, and the end result will be
a configuration that knows all about our new hosts and forgets about our old hosts.
This means that we can simply call a template task on the load balancer system itself
rather than attempting to manipulate the running state of the balancer:

- name: Configure load balancer
 hosts: foo-lb
 tasks:

Chapter 6

[139]

 - name: haproxy config
 template:
 dest: /etc/haproxy/haproxy.cfg
 src: templates/etc/haproxy/haproxy.cfg

 - name: reload haproxy
 service:
 name: haproxy
 state: reloaded

Once the new configuration file is in place, we can issue a reload of the haproxy
service. This will parse the new configuration file and start new listening processes
for new incoming connections. The existing connections will eventually close and the
old processes will terminate. All new connections will be routed to the new servers
running our new application version.

This playbook can be extended to decommission the old version of the servers, or
that action may happen at a different time, when it has been decided that a rollback
to the old version capability is no longer necessary.

The expand and contract strategy can involve more tasks, and even separate
playbooks for creating a golden image set, but the benefits of fresh infrastructure for
every release far outweigh the extra tasks or added complexity of creation followed
by deletion.

Failing fast
When performing an upgrade of an application, it may be desirable to fully stop the
deployment at any sign of error. A partially upgraded system with mixed versions
may not work at all, so continuing with part of the infrastructure while leaving the
failed systems behind can lead to big problems. Fortunately, Ansible provides a
mechanism to decide when to reach a fatal error scenario.

By default, when Ansible is running through a playbook and encounters an error,
Ansible will remove the failed host from the list of play hosts and continue with the
tasks or plays. Ansible will stop executing once either all the requested hosts for a
play have failed, or all the plays have been completed. To change this behavior, there
are a couple of play controls that can be employed. Those controls are any_errors_
fatal and max_fail_percentage.

Minimizing Downtime with Rolling Deployments

[140]

The any_errors_fatal option
This setting instructs Ansible to consider the entire operation to be fatal and stop
executing immediately if any host encounters an error. To demonstrate this, we'll
add a new group to our mastery-hosts inventory using a pattern that will expand
up to 10 new hosts:

[failtest]
failer[01:10]

Then we'll create a play on this group with any_errors_fatal set to true. We'll also
turn off fact gathering since these hosts do not exist:

- name: any errors fatal
 hosts: failtest
 gather_facts: false
 any_errors_fatal: true

We want a task that will fail for one of the hosts but not the others. Then, we'll want
a second task as well to demonstrate that the playbook will stop executing tasks after
the first error:

 tasks:
 - name: fail last host
 fail:
 msg: "I am last"
 when: inventory_hostname == play_hosts[-1]
 - name: never ran
 debug:
 msg: "I should never be ran"
 when: inventory_hostname == play_hosts[-1]

Chapter 6

[141]

Now when we execute, we'll see one host fail but the entire play will stop after the
first task:

We can see that just one host failed; however, Ansible reported all hosts to have
failed and aborted the playbook before getting to the next play.

Minimizing Downtime with Rolling Deployments

[142]

The max_fail_percentage option
This setting allows play developers to define a percentage of hosts that can fail before
the whole operation is aborted. At the end of each task, Ansible will perform a math
operation to determine the number of hosts targeted by the play that have reached
a failure state, and if that number is greater than the number allowed, Ansible will
abort the playbook. This is similar to any_errors_fatal, in fact, any_errors_fatal
internally just expresses a max_fail_percentage parameter of 0, where any failure
is considered fatal. Let's edit our play from the preceding code and change our max_
fail_percentage parameter to 20:

- name: any errors fatal
 hosts: failtest
 gather_facts: false
 max_fail_percentage: 20

By making that change, our play should complete both tasks without aborting:

Chapter 6

[143]

Now, if we change our conditional so that we fail on over 20 percent of the hosts,
we'll see the playbook abort early:

 - name: fail last host
 fail:
 msg: "I am last"
 when: inventory_hostname in play_hosts[0:3]

We're setting up three hosts to fail, which will give us a failure rate of greater than 20
percent. The max_fail_percentage setting is the maximum allowed, so our setting
of 20 would allow 2 out of the 10 hosts to fail. With three hosts failing, we will see a
fatal error before the second task:

Minimizing Downtime with Rolling Deployments

[144]

Forcing handlers
Normally, when Ansible encounters a fatal state, it exits immediately. This means
that any pending handlers will not be run. This can be undesirable, and there is a
play control that will force Ansible to process pending handlers even when reaching
a fatal scenario. This play control is force_handlers, which must be set to the
Boolean true. When force_handlers is true, handlers are immediately flushed
once a fatal condition is experienced. Any pending handlers for a failed host will also
be processed.

Let's modify our preceding example a little to demonstrate this functionality.
We'll change our max_fail_percentage parameter to 0 (the equivalent of any_
errors_fatal) and change the first task a bit. Instead of simply failing, we now
want to create some form of change. We can do this with the debug module using
the changed_when task control, even though the debug module will never register
a change by default. In the interest of shorter output, we'll also want to apply a
conditional to the execution of the debug module to limit the execution to the last
two hosts in the group. We'll use the failed_when control to create a failure on the
second-to-last host. Finally, we'll notify our critical handler of any changes:

- name: any errors fatal
 hosts: failtest
 gather_facts: false
 max_fail_percentage: 0
 tasks:
 - name: change a host
 debug:
 msg: "I am last"
 when: inventory_hostname in play_hosts[-2:]
 changed_when: true
 failed_when: inventory_hostname == play_hosts[-2]
 notify: critical handler

Our second task remains unchanged, but we will define our critical handler:

 - name: never ran
 debug:
 msg: "I should never be ran"
 when: inventory_hostname == play_hosts[-1]
 handlers:
 - name: critical handler
 debug:
 msg: "I really need to run"

Chapter 6

[145]

Let's run this new play to show the default behavior of the handler not being executed:

Now, we add the force_handlers play control and set it to true:

- name: any errors fatal
 hosts: failtest

Minimizing Downtime with Rolling Deployments

[146]

 gather_facts: false
 max_fail_percentage: 0
 force_handlers: true

This time, when we run the playbook, we should see the handler run even for the
failed hosts:

Chapter 6

[147]

Forcing handlers to run can really be useful for repeated playbook runs. The first run
may result in some changes, but if a fatal error is encountered before the handlers
are flushed, those handler calls will be lost. Repeated runs will not result in the same
changes, so the handler will never run without manual interaction. Forcing handlers
to execute will make some attempt at ensuring that those handler calls are not lost.

Minimizing disruptions
During deployments, there are often tasks that can be considered disruptive or
destructive. These tasks may include restarting services, performing database
migrations, and so on. Disruptive tasks should be clustered together to minimize
the overall impact on an application, while destructive tasks should only be
performed once.

Delaying a disruption
Restarting services for a new code version is a very common need. When viewed
in isolation, a single service can be restarted whenever the code and configuration
for the application has changed without concern for the overall distributed system
health. Typically, a distributed system will have roles for each part of the system,
and each role will operate essentially in isolation on the hosts targeted to perform
those roles. When deploying an application for the first time, there is no existing
uptime of the whole system to worry about, so services can be restarted at will.
However, during an upgrade, it may be desirable to delay all service restarts until
every service is ready to minimize interruptions.

Reuse of role code is strongly encouraged rather than designing a completely
separate upgrade code path. To accommodate a coordinated upgrade, the role
code for a particular service needs protection around the service restart. A common
pattern is to put a conditional statement on the disruptive tasks that check a
variable's value. When performing an upgrade, this variable can be defined
at runtime to trigger this alternative behavior. This variable can also trigger a
coordinated restart of services at the end of the main playbook once all roles have
completed, to cluster the disruption and minimize the total outage.

Let's create a fictional application upgrade that involves two roles with simulated
service restarts. We'll call these roles microA and microB:

roles/microA
├── handlers
│ └── main.yaml
└── tasks
 └── main.yaml

Minimizing Downtime with Rolling Deployments

[148]

roles/microB
├── handlers
│ └── main.yaml
└── tasks
 └── main.yaml

For both of these roles, we'll have a simple debug task that simulates the installation of
a package. We'll notify a handler to simulate the restart of a service. And, to ensure that
the handler will trigger, we'll force the task to always register as changed:

roles/microA/tasks/main.yaml:

- name: install microA package
 debug:
 msg: "This is installing A"
 changed_when: true
 notify: restart microA
 roles/microB/tasks/main.yaml:

- name: install microB package
 debug:
 msg: "This is installing B"
 changed_when: true
 notify: restart microB

The handlers for these roles will be debug actions as well, and we'll attach a
conditional to the handler task to only restart if the upgrade variable evaluates
to the Boolean false. We'll also use the default filter to give this variable a default
value of false:

roles/microA/handlers/main.yaml:

- name: restart microA
 debug:
 msg: "microA is restarting"
 when: not upgrade | default(false) | bool

roles/microB/handlers/main.yaml:

- name: restart microB
 debug:
 msg: "microB is restarting"
 when: upgrade | default(false) | bool

Chapter 6

[149]

For our top-level playbook, we'll create four plays. The first two plays will apply
each of the micro roles and the last two plays will do the restarts. The last two plays
will only be executed if performing an upgrade, so they will make use of the upgrade
variable as a condition. Let's have a look at the following code snippet:

micro.yaml:

- name: apply microA
 hosts: localhost
 gather_facts: false

 roles:
 - role: microA

- name: apply microB
 hosts: localhost
 gather_facts: false

 roles:
 - role: microB

- name: restart microA
 hosts: localhost
 gather_facts: false

 tasks:
 - name: restart microA for upgrade
 debug:
 msg: "microA is restarting"
 when: upgrade | default(false) | bool

- name: restart microB
 hosts: localhost
 gather_facts: false

 tasks:
 - name: restart microB for upgrade
 debug:
 msg: "microB is restarting"
 when: upgrade | default(false) |bool

Minimizing Downtime with Rolling Deployments

[150]

If we execute this playbook without defining the upgrade module, we will see the
execution of each role and the handlers within. The final two plays will just have
skipped tasks:

Chapter 6

[151]

Now, let's execute the playbook again, and this time, we'll define the upgrade as
true at runtime:

Minimizing Downtime with Rolling Deployments

[152]

This time, we can see that our handlers are skipped but the final two plays have tasks
that execute. In a real world scenario, where many more things are happening in the
microA and microB roles, and potentially other micro-service roles on other hosts,
the difference could be of many minutes or more. Clustering the restarts at the end
can reduce the interruption period significantly.

Running destructive tasks only once
Destructive tasks come in many flavors. They can be one-way tasks that are
extremely difficult to roll back, one-time tasks that cannot easily be rerun, or they
can be race condition tasks that, if performed in parallel, would result in catastrophic
failure. For these reasons and more, it is essential that these tasks are performed only
once from a single host. Ansible provides a mechanism to accomplish this by way of
the run_once task control.

The run_once task control will ensure that the task only executes a single time from
a single host, regardless of how many hosts happen to be in a play. While there are
other methods to accomplish this goal, such as using a conditional to make the task
only execute on the first host of a play, the run_once control is the simplest and most
direct way to express this desire. Additionally, any variable data registered from a
task controlled by run_once will be made available to all hosts of the play, not just
the host that was selected by Ansible to perform the action. This can simplify later
retrieval of the variable data.

Let's create an example playbook to demonstrate this functionality. We'll reuse our
failtest hosts created in an earlier example to have a pool of hosts, and select two
of them using a host pattern. We'll do a debug task set to run_once and register the
results, then access the results in a different task by a different host:

runonce.yaml:

- name: run once test
 hosts: failtest[0-2]
 gather_facts: false

 tasks:
 - name: do a thing
 debug:
 msg: "I am groot"
 register: groot
 run_once: true

 - name: what is groot
 debug:
 var: groot
 when: inventory_hostname == play_hosts[-1]

Chapter 6

[153]

When we run this play, we'll pay special attention to the hostnames listed for each
task operation:

We can see that the do a thing task is executed on the host failer01, while the
what is groot task, which examines the data from the do a thing task, operates
on host failer02.

Minimizing Downtime with Rolling Deployments

[154]

Summary
Deployment and upgrade strategies are a matter of taste. Each come with distinct
advantages and disadvantages. Ansible does not possess an opinion on which is
better, and therefore is well suited to perform deployments and upgrades regardless
of the strategy. Ansible provides features and design patterns that facilitate a variety
of styles with ease. Understanding the nature of each strategy and how Ansible can
be tuned for that strategy will empower you to decide and design deployments for
each of your applications.

In the next chapter, we'll cover topics that will help when things don't quite go as
expected when executing Ansible playbooks.

[155]

Troubleshooting Ansible
Ansible is simple but powerful. The simplicity of Ansible means that the operation
is easy to understand and follow. Being able to understand and follow is critically
important when debugging unexpected behavior. In this chapter, we will explore
the various methods that can be employed to examine, introspect, modify, and,
otherwise debug the operation of Ansible:

• Playbook logging and verbosity
• Variable introspection
• Debugging local code execution
• Debugging remote code execution

Playbook logging and verbosity
Increasing the verbosity of Ansible output can solve many problems. From invalid
module arguments to incorrect connection commands, increased verbosity can be
critical to pinpointing the source of an error. Playbook logging and verbosity were
briefly discussed in Chapter 2, Protecting Your Secrets with Ansible, with regards to
protecting secret values while executing playbooks. This section will cover verbosity
and logging further in-depth.

Troubleshooting Ansible

[156]

Verbosity
When executing playbooks with ansible-playbook, the output is displayed on
standard out. With the default level of verbosity, very little information is displayed.
As a play is executed, ansible-playbook will print a PLAY header with the name
of the play. Then, for each task, a TASK header is printed with the name of the task.
As each host executes the task, the name of the host is displayed along with the task
state, which can be ok, fatal, or changed. No further information about the task
is displayed, such as the module being executed, the arguments provided to the
module, or the return data from the execution. While this is fine for well-established
playbooks, I tend to want a little more information about my plays. In all previous
examples in this book, we've used a verbosity level of 2 (-vv) so that we can see the
module, module arguments, and return data. There are five total levels of verbosity:
none, which is the default level; 1 (-v), where the return data is displayed; 2 (-vv) for
input data as well, 3 (-vvv), which provides details of the connection attempts; and
4 (-vvvv), which will pass along extra verbosity options to the connection plugins
(such as passing -vvv to the ssh commands). Increasing the verbosity can help
pinpoint where errors might be occurring, as well as provide extra insight into how
Ansible is performing its operations.

As mentioned in Chapter 2, Protecting Your Secrets with Ansible, verbosity beyond one
can leak sensitive data to standard out and log files, so care should be taken when
using increased verbosity in a potentially shared environment.

Logging
While the default is for ansible-playbook to log to standard out, the amount of
output may be greater than the buffer of the terminal emulator being used; therefore,
it may be necessary to save all the output to a file. While various shells provide
some mechanism to redirect output, a more elegant solution is to direct ansible-
playbook to log to a file. This is accomplished by way of either a log_path definition
in the ansible.cfg file or by setting ANSIBLE_LOG_PATH as an environment variable.
The value of either should be the path to a file. If the path does not exist, Ansible will
attempt to create the file. If the file does exist, Ansible will append to the file, allowing
consolidation of multiple ansible-playbook execution logs.

The use of a log file is not mutually exclusive with logging to standard output. Both
can happen at the same time, and the verbosity level provided has an effect on both.

Chapter 7

[157]

Variable introspection
A common set of problems encountered when developing Ansible playbooks is the
improper use or invalid assumption of the value of variables. This is particularly
common when registering the results of one task in a variable and later using that
variable in a task or template. If the desired element of the result is not accessed
properly, the end result will be unexpected or, perhaps, even harmful.

To troubleshoot improper variable usage, inspection of the variable value is the key.
The easiest way to inspect a variable's value is with the debug module. The debug
module allows for displaying free form text on screen, and like with other tasks, the
arguments to the module can take advantage of the Jinja2 template syntax as well.
Let's demonstrate this usage by creating a sample play that executes a task, registers
the result, and then shows the result in a debug statement using the Jinja2 syntax to
render the variable:

- name: variable introspection demo
 hosts: localhost
 gather_facts: false

 tasks:
 - name: do a thing
 uri:
 url: https://derpops.bike
 register: derpops

 - name: show derpops
 debug:
 msg: "derpops value is {{ derpops }}"

Troubleshooting Ansible

[158]

Now, when we run this play, we'll see the displayed value for derpops:

The debug module has a different option that may be useful as well. Instead of
printing a free form string to debug template usage, the module can simply print
the value of any variable. This is done using the var argument instead of the msg
argument. Let's repeat our example, but this time, we'll use the var argument, and
we'll access just the server subelement of the derpops variable:

- name: variable introspection demo
 hosts: localhost
 gather_facts: false

 tasks:
 - name: do a thing
 uri:
 url: https://derpops.bike
 register: derpops

 - name: show derpops
 debug:
 var: derpops.server

Chapter 7

[159]

Running this modified play will show just the server portion of the derpops variable:

In our example, which used the msg argument to debug, the variable needed to be
expressed inside mustache brackets, but when using var, it did not. This is because
msg expects a string, so Ansible needs to render the template as a string. However,
var expects a single unrendered variable.

Variable sub elements
Another frequent mistake in playbooks is to improperly reference a subelement of a
complex variable. A complex variable is one that is more than simply a string; it is
either a list or a hash. Often the wrong subelement will be referenced, or the element
will be improperly referenced expecting a different type.

While lists are fairly easy to work with, hashes present some unique challenges. A hash
is an unordered key-value set of potentially mixed types, which could also be nested.
A hash can have one element that is a single string, while another element can be a list
of strings, and a third element can be another hash with further elements inside of it.
Knowing how to properly access the right subelement is critical to success.

Troubleshooting Ansible

[160]

For an example, let's modify our previous play a bit more. This time we'll allow
Ansible to gather facts, and then we'll show the value of ansible_default_ipv4:

- name: variable introspection demo
 hosts: localhost

 tasks:
 - name: show a complex hash
 debug:
 var: ansible_default_ipv4

The output is shown in the following screenshot:

Chapter 7

[161]

Using debug to display the entire complex variable is a great way to learn all the
names of the subelements.

This variable has elements that are strings, along with elements that are lists of
strings. Let's access the last item in the list of flags:

- name: variable introspection demo
 hosts: localhost

 tasks:
 - name: show a complex hash
 debug:
 var: ansible_default_ipv4.flags[-1]

The output is shown in the following screenshot:

Because flags is a list, we can use the list index method to select a specific item from
the list. In this case, -1 will give us the very last item in the list.

Troubleshooting Ansible

[162]

Subelement versus Python object method
A less common but confusing gotcha comes from a quirk of the Jinja2 syntax.
Complex variables within Ansible playbooks and templates can be referenced in
two ways. The first style is to reference the base element by the name, followed by
a bracket and the subelement within quotes inside the brackets. This is the standard
subscript syntax. For example, to access the herp subelement of the derp variable,
we use the following:

{{ derp['herp'] }}

The second style is a convenience method that Jinja2 provides, which is to use a
period to separate the elements. This is called dot notation:

{{ derp.herp }}

There is a subtle difference in how these styles work that has to do with Python
objects and object methods. As Jinja2 is at its heart a Python utility, variables in
Jinja2 have access to their native Python methods. A string variable has access to
Python string methods, a list has access to list methods, and a dictionary has access
to dictionary methods. When using the first style, Jinja2 will first search the element
for a subelement of the provided name. If none is found, Jinja2 will then attempt
to access a Python method of the provided name. However, the order is reversed
when using the second style: first a Python object method is searched for and if not
found, then a subelement is searched for. This difference matters when there is a
name collision between a subelement and a method. Imagine a variable named derp,
which is a complex variable. This variable has a subelement named keys. Using each
style to access the keys element will result in different values. Let's build a playbook
to demonstrate this:

- name: sub-element access styles
 hosts: localhost
 gather_facts: false
 vars:
 - derp:
 keys:
 - c
 - d
 tasks:
 - name: subscript style
 debug:
 var: derp['keys']
 - name: dot notation style
 debug:
 var: derp.keys

Chapter 7

[163]

When running this play, we clearly see the difference between the two styles.
The first style successfully references the keys subelement, while the second style
references the keys method of Python dictionaries:

Generally, it's best to avoid using subelement names that conflict with Python object
methods. However, if that's not possible, the next best thing to do is to be aware of
the difference in subelement reference styles and choose the appropriate one.

Debugging code execution
Sometimes logging and inspection of variable data is not enough to troubleshoot a
problem. When this happens, it can be necessary to dig deeper into the internals of
Ansible. There are two main sets of Ansible code: the code that runs locally on the
Ansible host, and the module code that runs remotely on the target host.

Troubleshooting Ansible

[164]

Debugging local code
The local Ansible code is the lion's share of the code that comes with Ansible. All the
playbook, play, role, and task parsing code live locally. All the task result processing
code and transport code live locally. All the code except for the assembled module
code that is transported to the remote host lives locally.

Local Ansible code can be broken down into three major sections: inventory,
playbook, and runner. Inventory code deals with parsing inventory data from
host files, dynamic inventory scripts, or combinations of the two in directory trees.
Playbook code is used to parse the playbook YAML code into Python objects within
Ansible. Runner code is the core API and deals with forking processes, connecting
to hosts, executing modules, handling results, and most other things. Learning the
general area to start debugging comes with practice, but the general areas described
here are a starting point.

As Ansible is written in Python, the tool for debugging local code execution is the
Python debugger, pdb. This tool allows us to insert break points inside the Ansible
code and interactively walk through the execution of the code, line by line. This is
very useful for examining the internal state of Ansible as the local code executes.
There are many books and websites that cover the usage of pdb, and these can be
found with a simple web search for an introduction to Python pdb, so we will not
repeat them here. The basics are to edit the source file to be debugged, insert a new
line of code to create a break point, and then execute the code. Code execution will
stop where the breakpoint was created and a prompt will be provided to explore the
code state.

Debugging inventory code
Inventory code deals with finding inventory sources, reading or executing the
discovered files, parsing the inventory data into inventory objects, and loading
variable data for the inventory. To debug how Ansible will deal with an inventory,
a breakpoint must be added inside inventory/__init__.py or one of the other
files within the inventory/ subdirectory. This directory will be located on the local
filesystem wherever Ansible has been installed. On a Linux system, this is typically
stored in the path /usr/lib/python2.7/site-packages/ansible/inventory/.
This path may be inside of a Python virtual environment if Ansible has been installed
that way. To discover where Ansible is installed, simply type which ansible
from the command line. This command will show where the ansible executable is
installed, and may indicate a Python virtual environment. For this book, Ansible has
been installed in a Python virtual environment with the path /Users/jkeating/.
virtualenvs/ansible/.

Chapter 7

[165]

To discover the path to the ansible python code, simply type python –c "import
ansible; print(ansible)". On my system this shows <module 'ansible' from
'/Users/jkeating/.virtualenvs/ansible/lib/python2.7/site-packages/
ansible/__init__.pyc'>, from which we can deduce that the inventory
subdirectory is located at /Users/jkeating/.virtualenvs/ansible/lib/
python2.7/site-packages/ansible/inventory/.

Within inventory/__init__.py there is a class definition for the Inventory
class. This is the inventory object that will be used throughout a playbook run,
and it is created when ansible-playbook parses the options provided to it for
an inventory source. The __init__ method of the Inventory class does all the
inventory discovery, parsing, and variable loading. To troubleshoot an issue in those
three areas, a breakpoint should be added within the __init__() method. A good
place to start would be after all of the class variables are given an initial value and
just before any data is processed. In version 1.9.x of Ansible, this would be line 69
of inventory/__init__.py. To insert a breakpoint, we must first import the pdb
module and then call the set_trace() function:

Troubleshooting Ansible

[166]

To start debugging, save the source file and then execute ansible-playbook as
normal. When the breakpoint is reached, the execution will stop and a pdb prompt
will be displayed:

From here, we can issue any number of debugger commands, such as the
help command:

Chapter 7

[167]

The where and the list commands can help us determine where we are in the stack,
and where we are in the code:

The where command showed us that we're in inventory/__init__.py in the
__init__() method calling the isinstance function. The next frame up is in a
different file, the ansible-playbook executable file, and the function in that file is
main(); this line calls to ansible.inventory.Inventory to create the inventory
object. Above that is a different line from the same file, the call to main() itself inside
a call to sys.exit().

The list command shows the source code around our current point of execution,
five lines before and five lines after.

Troubleshooting Ansible

[168]

From here, we can guide pdb through the function line by line with the next
command. And, if we chose to, we can trace into other function calls with the
step command. We can also print variable data to inspect values:

We can see that the host_list variable is defined as mastery-hosts, which is the
string we gave ansible-playbook for our inventory data. We can continue to walk
through or jump around, or just use the continue command to run until the next
breakpoint or the completion of the code.

Debugging Playbook code
Playbook code is responsible for loading, parsing, and executing playbooks. The
main entry point for playbook handling is playbook/__init__.py, inside of which
lives the PlayBook class. A good starting point for debugging playbook handling is
line 155:

Putting a breakpoint here will allow us to trace through finding the playbook file and
parsing it. Specifically, stepping into the _load_playbook_from_file() function,
we will be able to follow the parsing in action.

Chapter 7

[169]

The PlayBook class __init__() function just does the initial parsing. Other
functions within the class are used for the execution of plays and tasks. A
particularly interesting function is the run() method. This method will loop through
all of the plays in the playbook and execute the plays, which will, in turn, execute
the individual tasks. This is the function to walk through if facing an issue related
to play parsing, play or task callbacks, tags, play host selection, serial operation,
handler running, or anything in between.

Debugging runner code
Runner code in Ansible is the connector code that binds together inventory data,
playbooks, plays, tasks, and the connection methods. While each of those other
code bits can be individually debugged, how they interact can be examined within
runner code.

The Runner class is defined in runner/__init__.py. This class is the core interface
to Ansible. The class creation function, __init__(), creates a series of placeholder
attributes, as well as sets some default values. Of interest in this function is the code
path that sets up the connection method. The default connection method is smart,
which actually examines the system running Ansible to determine which set of
features to use. Let's put in a break point here to walk through the execution:

Troubleshooting Ansible

[170]

Now we can run our objmethod.yml playbook again to get into a debugging state:

We can check the value of self.transport by printing it out, but we know it'll
be smart. What's more interesting is what comes next. The transport is first set to
ssh as a default outcome, and then the platform is checked to ascertain whether
it's a darwin system, which means an Apple OS X, and whether there is a remote_
password defined. A remote password would be defined if we were using password
authentication with the ssh rather than ssh keys:

Chapter 7

[171]

My development system is a Mac laptop running OS X, so the first half of this
statement should evaluate to true; however, this playbook execution is not
using a remote password, so the code that would set the transport to paramiko
is skipped over.

The next code block is the else block, where the Runner code will construct an ssh
command to determine whether the host ssh supports ControlPersist—the feature
of ssh that keeps sockets to remote hosts open for a period of time for fast reuse.
Let's have a look a the following screenshot:

Let's walk through the next couple of lines and then print out what the value of err
is. This will show us the result of the ssh execution and the whole string that Ansible
will be searching within:

Troubleshooting Ansible

[172]

As we can see, the search string is not within the err variable, so the transport
remains ssh instead of being set to paramiko.

There are many other functions within the Runner class, such as the task delegation
setup in _compute_delegate(), the task module transport and execution in _
execute_module(), searching for a module file in _configure_module(), dealing
with multiprocessing when there is more than one fork in _parallel_exec(), and
many more.

A quick note on forks and debugging: when Ansible uses
multiprocessing for multiple forks, debugging becomes difficult. A
debugger may be attached to one fork and not another, which will make
it very difficult to debug the code. Unless specifically debugging the
multiprocessing code, a best practice is to stick to a single fork.

Debugging remote code
The remote code is the code that Ansible transports to a remote host in order to
execute. This is typically module code, or in the case of action_plugins, other
snippets of code. Using the debugging method discussed in the previous section to
debug module execution will not work, as Ansible simply copies the code over and
then executes it. There is no terminal attached to the remote code execution, and thus,
no way to attach to a debugging prompt. That is, without editing the module code.

To debug module code, we need to edit the module code itself to insert a debugger
break point. Instead of directly editing the installed module file, create a copy of the
file in a library/ directory relative to the playbooks. This copy of the module code
will be used instead of the installed file, which makes it easy to temporarily edit a
module without disrupting other users of modules on the system.

Unlike with other Ansible code, module code cannot be directly debugged with
pdb, because the module code is assembled and then transported to a remote host.
Thankfully, there is a solution in the form of a slightly different debugger named
epdb—the Enhanced Python Debugger. This debugger has the ability to start a
listening service on a provided port in order to allow remote connections into the
Python process. Connecting to the process remotely will allow debugging the code
line by line, just as we did with other Ansible code.

Chapter 7

[173]

To demonstrate how this debugger works, first we're going to need a remote host.
For this example, we're using a remote host by the name of debug.example.com, and
setting the IP address to a host that is already set up and waiting. Next, we need a
playbook to execute a module that we'd like to debug:

- name: remote code debug
 hosts: debug.example.com
 gather_facts: false

 tasks:
 - name: a remote module execution
 service:
 name: dnsmasq
 state: stopped
 enabled: no

This play simply calls the service module to ensure that the dnsmasq service
is stopped and will not start up upon boot. As stated above, we need to make a
copy of the service module and place it in library/. The location of the service
module to copy from will vary based on the way Ansible is installed. Typically, this
module will be located in the modules/core/system/ subdirectory of where the
Ansible Python code lives, like /Users/jkeating/.virtualenvs/ansible/lib/
python2.7/site-packages/ansible/modules/core/system/service.py on my
system. Then, we can edit it to put in our break point:

Troubleshooting Ansible

[174]

We'll put the break point just before the service object gets created, near line 1404.
First, the epdb module must be imported (meaning that the epdb Python library
needs to exist on the remote host), then the server needs to be started with the
serve() function. This function takes an optional port argument to define which
port to use instead of the default 8080. Now, we can run this playbook to set up the
server that will wait for a client connection:

Now that the server is running, we can connect to it from another terminal.
Connecting to the running process requires the epdb software as well, which
supplies client code. I find it easiest to use the edb client software within an
interactive ipython session. First, import the epdb library and then call the
connect() method with the address of the server and port as arguments:

Chapter 7

[175]

From this point on, we can debug as normal. The commands we've used before still
exist, such as list to show where in the code the current frame is:

Using the debugger, we can walk through the service module to track how it
decides which underlying tool to use to interact with services on a host, trace which
commands are executed on the host, determine how a change is computed, and so
on. The entire file can be stepped through, including any other external libraries the
module may make use of, allowing debugging of other non-module code on the
remote host as well.

Troubleshooting Ansible

[176]

An unfortunate side effect of using epdb is that when exiting the debugger, the task
itself will fail due to some output printed by epdb when it starts the server:

Because of this side effect, it is not possible to debug more than one task per host in a
given ansible-playbook run.

Debugging the action plugins
Some modules are actually action plugins. These are tasks that will execute some
code locally before transporting code to the remote host. Some examples of action
plugins include copy, fetch, script, and template. The source to these plugins
can be found in runner/action_plugins/. Each plugin will have its own file in this
directory that can be edited to have break points inserted to debug the code executed
prior to (or in lieu of) sending code to the remote host. Debugging these is typically
done with pdb, as most of the code is executed locally.

Chapter 7

[177]

Summary
Ansible is software, and software breaks. It's not a matter of if, but when. Invalid
input, improper assumptions, unexpected environments—all things that can lead
to a frustrating situation when tasks and plays are just not performing as expected.
Introspection and debugging are troubleshooting techniques that can quickly turn
frustration into elation when a root cause is discovered.

In our last chapter, we will learn how to extend the functionality of Ansible by
writing our own modules, plugins, and inventory sources.

[179]

Extending Ansible
Ansible takes the kitchen sink approach to functionality. There are nearly
300 modules available for use within Ansible at the time of writing this book. In
addition, there are numerous callback plugins, lookup plugins, filter plugins, and
dynamic inventory plugins. Even with all of that functionality, there still can exist a
need to add new functionality.

This chapter will explore the following ways in which new capabilities can be added
to Ansible:

• Developing modules
• Developing plugins
• Developing dynamic inventory plugins

Developing modules
Modules are the workhorses of Ansible. They provide just enough abstraction to
enable playbooks to be stated simply and clearly. There are nearly 150 core modules
maintained by the core Ansible development team covering clouds, commands,
databases, files, network, packaging, source control, system, utilities, web
infrastructure and more. In addition, there are more than 100 other extra modules,
largely maintained by community contributors, that expand functionality in many of
these categories. The real magic happens inside the module code, which takes in the
arguments passed to it and works to establish the desired outcome.

Modules in Ansible are the bits of code that get transported to the remote host to
be executed. They can be written in any language that the remote host can execute;
however, Ansible provides some very useful shortcuts if writing the module in Python.

Extending Ansible

[180]

The basic module construct
A module exists to satisfy a need—the need to do some piece of work on a host.
Modules usually, but not always, expect input, and will return some sort of output.
Modules also strive to be idempotent, allowing rerunning the module over and
over again without having a negative impact. In Ansible, the input is in the form
of command-line arguments to the module, and output is delivered as JSON to
standard out.

Input is generally provided in the space-separated key=value syntax, and it's up
to the module to deconstruct these into the usable data. If using Python, there are
convenience functions to manage this, and if using a different language, then it is up
to the module code to fully process the input.

The output is JSON formatted. Convention dictates that in a success scenario, the
JSON output should have at least one key, changed, which is a Boolean to indicate
whether the module execution resulted in a change or not. Additional data can
be returned as well, which may be useful to define specifically what changed, or
provide important information back to the playbook for later use. Additionally, host
facts can be returned in the JSON data to automatically create host variables based
on the module execution results. We will see more on this later.

Custom modules
Ansible provides an easy mechanism to utilize custom modules outside of what
comes with Ansible. As we learned in Chapter 1, System Architecture and Design
of Ansible, Ansible will search many locations to find a requested module. One
such location, the first location, is the library/ subdirectory of the path where the
top-level playbook resides. This is where we will place our custom module so that
we can use it in our example playbook.

Modules can also be embedded within roles to deliver the added functionality that
a role may depend upon. These modules are only available to the role that contains
them or any other roles or tasks executed after the role containing the module. To
deliver a module with a role, place the module in the library/ subdirectory of the
role's root.

Chapter 8

[181]

Simple module
To demonstrate the ease of writing Python-based modules, let's create a simple
module. The purpose of this module will be to remotely copy a source file to a
destination file, a simple task that we can build up from. To start our module, we
need to create the module file. For easy access to our new module, we'll create the
file in the library/ subdirectory of the working directory we've already been using.
We'll call this module remote_copy.py, and to start it off, we'll need to put in a
sha-bang line to indicate that this module is to be executed with Python:

#!/usr/bin/python
#

For Python-based modules, the convention is to use /usr/bin/python as the listed
executable. When executed on a remote system, the configured Python interpreter
for the remote host is used to execute the module, so fret not if your Python doesn't
exist in this path. Next, we'll import a Python library we'll use later in the module,
called shutil:

import shutil

Now, we're ready to create our main function. The main function is essentially the
entry point to the module, where the arguments to the module will be defined and
where the execution will start. When creating modules in Python, we can take some
shortcuts in this main function to bypass a lot of boilerplate code, and get straight
to the argument definitions. We do this by creating an AnsibleModule object and
giving it an argument_spec dictionary for the arguments:

def main():
 module = AnsibleModule(
 argument_spec = dict(
 source=dict(required=True, type='str'),
 dest=dict(required=True, type='str')
)
)

In our module, we're providing two arguments. The first argument is source, which
we'll use to define the source file for the copy. The second argument is dest, the
destination for the copy. Both of these arguments are marked as required, which will
cause an error from Ansible if one of the two is not provided. Both arguments are of
the type string. The location of the AnsibleModule class has not yet been defined,
as that happens later in the file.

Extending Ansible

[182]

With a module object at our disposal, we can now create the code that will do the
actual work on the remote host. We'll make use of shutil.copy and our provided
arguments to accomplish the copy:

 shutil.copy(module.params['source'],
 module.params['dest'])

The shutil.copy function expects a source and a destination, which we've provided
by accessing module.params. The module.params dictionary holds all of the
parameters for the module. Having completed the copy, now we are ready to return
the results to Ansible. This is done via another AnsibleModule method, exit_json.
This method expects a set of key=value arguments and will format it appropriately
for a JSON return. Since we're always performing a copy, we will always return a
change for simplicity's sake:

 module.exit_json(changed=True)

This line will exit the function, and thus the module. This function assumes a
successful action and will exit the module with the appropriate return code for
success: 0. We're not done with our module's code though, we still have to account
for the AnsibleModule location. This is where a bit of magic happens, where we tell
Ansible what other code to combine with our module to create a complete work that
can be transported:

from ansible.module_utils.basic import *

That's all it takes! That one line gets us access to all of the basic module_utils, a
decent set of helper functions and classes. There is one last thing we should put into
our module, a couple of lines of code telling the interpreter to execute the main()
function when the module file is executed:

if __name__ == '__main__':
 main()

Now our module file is complete and we can test it with a playbook. We'll call our
playbook simple_module.yaml, and store it in the same directory as the library/
directory where we've just written our module file. We'll run the play on localhost
for simplicity's sake and use a couple of filenames in /tmp for the source and
destination. We'll also use a task to ensure that we have a source file to begin with:

- name: test remote_copy module
 hosts: localhost
 gather_facts: false

 tasks:

Chapter 8

[183]

 - name: ensure foo
 file:
 path: /tmp/foo
 state: touch

 - name: do a remote copy
 remote_copy:
 source: /tmp/foo
 dest: /tmp/bar

To run this playbook, we'll reference our mastery-hosts file. If the remote_copy
module file is written to the correct location, everything will work just fine, and the
screen output will look as follows:

Our first task touches the /tmp/foo path to ensure that it exists, and then our second
task makes use of remote_copy to copy /tmp/foo to /tmp/bar. Both tasks are
successful, resulting in a change each time.

Extending Ansible

[184]

Module documentation
No module should be considered complete unless it contains documentation on how
to operate the module. Documentation for modules exists within the module itself, in
special variables called DOCUMENTATION, EXAMPLES, and RETURN.

The DOCUMENTATION variable contains a specially formatted string describing the
module name, the version at which it was added to Ansible (if it is in Ansible
proper), a short description of the module, a longer description, a description of the
module arguments, author and license information, and any extra notes useful to
users of the module. Let's add a DOCUMENTATION string to our module:

import shutil

DOCUMENTATION = '''

module: remote_copy
version_added: future
short_description: Copy a file on the remote host
description:
 - The remote_copy module copies a file on the remote host from a
given source to a provided destination.
options:
 source:
 description:
 - Path to a file on the source file on the remote host
 required: True
 dest:
 description:
 - Path to the destination on the remote host for the copy
 required: True
author:
 - Jesse Keating
'''

Chapter 8

[185]

The format of the string is essentially YAML, with some top-level keys containing
hash structures (like the options key). Each option has subelements to describe
the option, indicate whether the option is required, list any aliases for the option,
list static choices for the option, or indicate a default value for the option. With
this string saved to the module, we can test our formatting to ensure that the
documentation will render correctly. This is done via the ansible-doc tool with an
argument to indicate where to search for modules. If we run it from the same place
as our playbook, the command will be ansible-doc –M library/ remote_copy,
and the output will be as follows:

In this example, I've piped the output into cat to prevent the pager from hiding the
execution line. Our documentation string appears to be formatted correctly, and
provides the user with important information regarding the usage of the module.

The EXAMPLES string is used to provide one or more example uses of the module,
snippets of the task code that one would use in a playbook. Let's add an example
task to demonstrate the usage. This variable definition traditionally goes below the
DOCUMENTATION definition:

EXAMPLES = '''
Example from Ansible Playbooks
- name: backup a config file
 remote_copy:
 source: /etc/herp/derp.conf
 dest: /root/herp-derp.conf.bak
'''

Extending Ansible

[186]

With this variable defined, our ansible-doc output will now include the example,
as we can see in the following screenshot:

The last documentation variable, RETURN, is a relatively new feature of module
documentation. This variable is used to describe the return data from a module
execution. Return data is often useful as a registered variable for later usage,
and having documentation of what return data to expect can aid in playbook
development. Our module doesn't have any return data yet; so before we can
document return data, we first have to add return data. This can be done by
modifying the module.exit_json line to add more information. Let's add the
source and dest data into the return output:

 module.exit_json(changed=True, source=module.params['source'],
 dest=module.params['dest'])

Chapter 8

[187]

Rerunning the playbook will show extra data being returned as shown in the
following screenshot:

Looking closely at the return data, we can see more data than we put in our
module. This is actually a bit of a helper functionality within Ansible; when a return
dataset includes a dest variable, Ansible will gather more information about the
destination file. The extra data gathered is gid (group ID), group (group name), mode
(permissions), uid (owner ID), owner (owner name), size, and state (file, link, or
directory). We can document all of these return items in our RETURN variable, which
is added after the EXAMPLES variable:

RETURN = '''
source:
 description: source file used for the copy
 returned: success
 type: string
 sample: "/path/to/file.name"
dest:
 description: destination of the copy
 returned: success
 type: string

Extending Ansible

[188]

 sample: "/path/to/destination.file"
gid:
 description: group ID of destination target
 returned: success
 type: int
 sample: 502
group:
 description: group name of destination target
 returned: success
 type: string
 sample: "users"
uid:
 description: owner ID of destination target
 returned: success
 type: int
 sample: 502
owner:
 description: owner name of destination target
 returned: success
 type: string
 sample: "fred"
mode:
 description: permissions of the destination target
 returned: success
 type: int
 sample: 0644
size:
 description: size of destination target
 returned: success
 type: int
 sample: 20
state:
 description: state of destination target
 returned: success
 type: string
 sample: "file"
'''

Chapter 8

[189]

Each return item is listed with a description, the cases when the item would be in
the return data, the type of item it is, and a sample of the value. The RETURN string is
essentially repeated verbatim in the ansible-doc output, as shown in the following
(abbreviated) example:

Extending Ansible

[190]

Providing fact data
Similar to data returned as part of a module exit, a module can directly create facts
for a host by returning data in a key named ansible_facts. Providing facts directly
from a module eliminates the need to register the return of a task with a subsequent
set_fact task. To demonstrate this usage, let's modify our module to return the
source and dest data as facts. Because these facts will become top-level host
variables, we'll want to use more descriptive fact names than source and dest:

 facts = {'rc_source': module.params['source'],
 'rc_dest': module.params['dest']}

 module.exit_json(changed=True, ansible_facts=facts)

We'll also add a task to our playbook to use one of the facts in a debug statement:

 - name: show a fact
 debug:
 var: rc_dest

Now, running the playbook will show the new return data plus the use of the variable:

Chapter 8

[191]

If our module does not return facts, we will have to register the output and use
set_fact to create the fact for us, like this:

 - name: do a remote copy
 remote_copy:
 source: /tmp/foo
 dest: /tmp/bar
 register: mycopy

 - name: set facts from mycopy
 set_fact:
 rc_dest: "{{ mycopy.dest }}"

Check mode
Since version 1.1, Ansible has supported check mode, a mode of operation that will
pretend to make changes to a system without actually changing the system. Check
mode is useful for testing whether a change will actually happen, or if a system state
has drifted since the last Ansible run. Check mode depends on modules to support
check mode and return data as if it had actually completed the change. Supporting
check mode in our module requires two changes; the first is to indicate that the
module supports check mode, and the second is to detect when check mode is active
and return data before execution.

Supporting check mode
To indicate that a module supports check mode, an argument has to be set when
creating the module object. This can be done before or after the argument_spec
variable is defined in the module object; here, we will do it after it is defined:

 module = AnsibleModule(
 argument_spec = dict(
 source=dict(required=True, type='str'),
 dest=dict(required=True, type='str')
),
 supports_check_mode=True
)

Extending Ansible

[192]

Handling check mode
Detecting when check mode is active is very easy. The module object will have a
check_mode attribute, which will be set to Boolean value true when check mode
is active. In our module, we want to detect whether check mode is active before
performing the copy. We can simply move the copy action into an if statement
to avoid copying when check mode is active. The return can happen without
any changes:

 if not module.check_mode:
 shutil.copy(module.params['source'],
 module.params['dest'])

Now, we can run our playbook and add the –C argument to our execution. This
argument engages check mode. We'll also test to ensure that the playbook did not
actually create and copy the files. Let's take a look at the following screenshot:

Chapter 8

[193]

Although the module output looks like it created and copied files, we can see that the
files referenced did not exist before execution and still do not exist after execution.

Developing plugins
Plugins are another way of extending or modifying the functionality of Ansible.
While modules are executed as tasks, plugins are utilized in a variety of other places.
Plugins are broken down into a few types, based on where they would plug in to the
Ansible execution. Ansible ships some plugins for each of these areas, and end users
can create their own to extend the functionality of these specific areas.

Connection type plugins
Any time Ansible makes a connection to a host to perform a task, a connection
plugin is used. Ansible ships with a few connection plugins, including ssh, docker,
chroot, local, and smart. Additional connection mechanisms can be utilized by
Ansible to connect to remote systems by creating a connection plugin, which may be
useful if faced with connecting to some new type of system, like a network switch,
or maybe your refrigerator some day. Creating connection plugins is a bit beyond
the scope of this book; however, the easiest way to get started is to read through
the existing plugins that ship with Ansible and pick one to modify it as necessary.
The existing plugins can be found in runner/connection_plugins/ wherever the
Ansible Python libraries are installed on your system, such as /Users/jkeating/.
virtualenvs/ansible/lib/python2.7/site-packages/ansible/runner/
connection_plugins/ on my system.

Shell plugins
Much like connection plugins, Ansible makes use of shell plugins to execute things
in a shell environment. Each shell has subtle differences that Ansible cares about
in order to properly execute commands, redirect output, discover errors, and other
such interactions. Ansible supports a number of shells, including sh, csh, fish, and
powershell. We can add more shells by implementing a new shell plugin.

Lookup plugins
Lookup plugins are how Ansible accesses outside data sources from the host system,
and implements language features such as looping constructs (with_*). A lookup
plugin can be created to access data from an existing data store, or to create a new
looping mechanism. The existing lookup plugins can be found in runner/lookup_
plugins/.

Extending Ansible

[194]

Vars plugins
Constructs to inject variable data exist in the form of vars plugins. Data such as
host_vars and group_vars are implemented via plugins. While it's possible to
create new variable plugins, most often it is better to create a custom inventory
source or a fact module instead.

Fact caching plugins
Recently (as of version 1.8), Ansible gained the ability to cache facts between
playbook runs. Where the facts are cached depends on the configured cache plugin
that is used. Ansible includes plugins to cache facts in memory (not actually cached
between runs), memcached, redis, and jsonfile. Creating a fact caching plugin can
enable additional caching mechanisms.

Filter plugins
While Jinja2 includes a number of filters, Ansible has made filters pluggable to
extend the Jinja2 functionality. Ansible includes a number of filters that are useful
to Ansible operations, and users of Ansible can add more. Existing plugins can be
found in runner/filter_plugins/.

To demonstrate the development of a filter plugin, we will create a simple filter plugin
to do a silly thing to text strings. We will create a filter that will replace any occurrence
of "the cloud" with "somebody else's computer". We'll define our filter in a file within a
new directory, filter_plugins/, in our existing working directory. The name of the
file doesn't matter, as we'll define the name of the filter within the file; so, lets name our
file filter_plugins/sample_filter.py. First, we need to define the function that
will perform the translation, and provide the code to translate the strings:

def cloud_truth(a):
 return a.replace("the cloud", "somebody else's computer")

Next, we'll need to construct a FilterModule object and define our filter within
it. This object is what Ansible will load, and Ansible expects there to be a filters
function within the object that returns a set of filter names to functions within
the file:

class FilterModule(object):
 '''Cloud truth filters'''
 def filters(self):
 return {'cloud_truth': cloud_truth}

Chapter 8

[195]

Now, we can use this filter in a playbook, which we'll call simple_filter.yaml:

- name: test cloud_truth filter
 hosts: localhost
 gather_facts: false
 vars:
 statement: "I store my files in the cloud"
 tasks:
 - name: make a statement
 debug:
 msg: "{{ statement | cloud_truth }}"

Now, let's run our playbook and see our filter in action:

Our filter worked, and it turned "the cloud" into "somebody else's computer". This is
a silly example without any error handling, but it clearly demonstrates our capability
to extend Ansible and Jinja2's filter capabilities.

Although the file name a filter exists in can be whatever the
developer wants to name it, a best practice is to name it after the
filter itself so that it can easily be found in the future, potentially
by other collaborators. This example did not follow this to
demonstrate that the file name is not attached to the filter name.

Extending Ansible

[196]

Callback plugins
Callbacks are places in Ansible execution that can be plugged into for added
functionality. There are expected callback points that can be registered against to trigger
custom actions at those points. Here is a list of possible points to trigger functionality:

• runner_on_failed

• runner_on_ok

• runner_on_skipped

• runner_on_unreachable

• runner_on_no_hosts

• runner_on_async_poll

• runner_on_async_ok

• runner_on_async_failed

• playbook_on_start

• playbook_on_notify

• playbook_on_no_hosts_matched

• playbook_on_no_hosts_remaining

• playbook_on_task_start

• playbook_on_vars_prompt

• playbook_on_setup

• playbook_on_import_for_host

• playbook_on_not_import_for_host

• playbook_on_play_start

• playbook_on_stats

As an Ansible run reaches each of these states, any plugins that have code to run at
these points will be executed. This provides a tremendous ability to extend Ansible
without having to modify the base code.

Chapter 8

[197]

Callbacks can be utilized in a variety of ways: to change how things are displayed
on screen, to update a central status system on progress, to implement a global
locking system, or nearly anything imaginable. It's the most powerful way to
extend the functionality of Ansible. To demonstrate our ability to develop a callback
plugin, we'll create a simple plugin that will print something silly on the screen as a
playbook executes:

1. First, we'll need to make a new directory to hold our callback. The location
Ansible will look for is callback_plugins/. Much like the filter plugin
above, we do not need to name our callback plugin anything special,
although it is good practice to name the file uniquely.

2. We'll name ours callback_plugins/simple_callback.py. Inside this file,
we'll need to create a CallbackModule class, subclassed from object.

3. Within this class, we define one or more of the callback points we'd like to
plug into in order to make something happen.

4. We only have to define the points we want to plug in. In our case we'll plug
into the on_any point so that our plugin runs at every callback spot.

5. We'll also make use of a helper function display, which we can use to cause
text to show up on the screen.
from ansible.callbacks import display

class CallbackModule(object):
 def on_any(self, *args, **kwargs):
 msg = '\xc2\xaf_(\xe3\x83\x84)_/\xc2\xaf'
 display(msg * 8)

Extending Ansible

[198]

That's all we have to write into our callback. Once it's saved, we can rerun our
previous playbook, which exercised our sample_filter, but this time we'll see
something different on screen:

Very silly, but demonstrates the ability to plug into various points of a playbook
execution. We chose to display a series of shrugs on screen, but we could have just as
easily interacted with some internal audit and control system to record actions, or to
report progress to an IRC or Slack channel.

Action plugins
Action plugins exist to hook into the task construct without actually causing
a module to be executed, or to execute code locally on the Ansible host before
executing a module on the remote host. A number of action plugins are included
with Ansible and can be found in runner/action_plugins/. One such action plugin
is the template plugin used in place of a template module. When a playbook
author writes a template task, that task will actually call the template plugin to do
the work. The plugin, among other things, will render the template locally before
copying the content to the remote host. Because actions have to happen locally, the
work is done by an action plugin. Another action plugin we should be familiar with
is the debug plugin, which we've used heavily in this book to print content. Creating
a custom action plugin is useful when trying to accomplish both local work and
remote work in the same task.

Chapter 8

[199]

Distributing plugins
Much like distributing custom modules, there are standard places to store custom
plugins alongside playbooks that expect to use plugins. The default locations
for plugins are the locations that are shipped with the Ansible code install,
subdirectories within ~/.ansible/plugins/, and subdirectories of the project root
(the place where the top-level playbook is stored). To utilize plugins from any other
location, we need to define the location to find the plugin for the plugin type in an
ansible.cfg file.

When distributing plugins inside the project root, each plugin type gets its own
top-level directory:

• action_plugins/

• cache_plugins/

• callback_plugins/

• connection_plugins/

• shell_plugins/

• lookup_plugins/

• vars_plugins/

• filter_plugins/

As with other Ansible constructs, the first plugin with a given name found will be
used, and just as with modules, the paths relative to the project root are checked first,
allowing a local override of an existing plugin. Simply place the plugin file into the
appropriate subdirectory, and it will automatically get used when referenced.

Developing dynamic inventory plugins
Inventory plugins are bits of code that will create inventory data for an Ansible
execution. In many environments, the simple ini file style inventory source and
variable structure is not sufficient to represent the actual infrastructure being
managed. In such cases, a dynamic inventory source is desired, one that will
discover the inventory and data at runtime for every execution of Ansible. A
number of these dynamic sources ship with Ansible, primarily to operate Ansible
with the infrastructure built into one cloud computing platform or another. A short,
incomplete list of dynamic inventory plugins that ship with Ansible includes:

• apache-libcloud

• cobbler

• console_io

Extending Ansible

[200]

• digital_ocean

• docker

• ec2

• gce

• libvirt_lxc

• linode

• openshift

• openstack

• rax

• vagrant

• vmware

• windows_azure

An inventory plugin is essentially an executable script. Ansible calls the script with
set arguments (--list or --host <hostname>) and expects JSON formatted output
on standard out. When the –-list argument is provided, Ansible expects a list of
all the groups to be managed. Each group can list host membership, child group
membership, and group variable data. When the script is called with the –-host
<hostname> argument, Ansible expects host-specific data to be returned (or an
empty JSON dictionary).

Using a dynamic inventory source is easy. A source can be used directly by referring
to it with the –i (--inventory-file) option to ansible and ansible-playbook,
or by placing the plugin file in the ansible.cfg configured inventory path, or by
putting the plugin file inside the directory referred to by either the inventory path in
ansible.cfg or by the –i runtime option.

Before creating an inventory plugin, we must understand the expected format for
when --list or –-host is used with our script.

Chapter 8

[201]

Listing hosts
When the –-list argument is passed to an inventory script, Ansible expects the
JSON output data to have a set of top-level keys. These keys are named for the
groups in the inventory. Each group gets its own key. The structure within a group
key varies depending on what data needs to be represented in the group. If a group
just has hosts and no group level variables, the data within the key can simply be a
list of host names. If the group has variables or children (group of groups), then the
data needs to be a hash, which can have one or more keys named hosts, vars, or
children. The hosts and children subkeys have a list value, a list of the hosts that
exist in the group, or a list of the child groups. The vars subkey has a hash value,
where each variable's name and value is represented by a key and value.

Listing host variables
When the –-host <hostname> argument is passed to an inventory script, Ansible
expects the JSON output data to simply be a hash of the variables, where each
variable name and value is represented by a key and a value. If there are no variables
for a given host, an empty hash is expected.

Simple inventory plugin
To demonstrate developing an inventory plugin, we'll create one that simply prints
the same host data we've been using in our mastery-hosts file. Integrating with a
custom asset management system or an infrastructure provider is a bit beyond the
scope of this book, so we'll simply code the systems into the plugin itself. We'll write
our inventory plugin to a file in the top level of our project root named mastery-
inventory.py, and make it executable. We'll use Python for this file for the ease of
handling execution arguments and JSON formatting:

1. First, we'll need to add a sha-bang line to indicate that this script is to be
executed with Python:
#!/usr/bin/env python
#

2. Next, we'll need to import a couple of Python modules that we will need
later in our plugin:
import json
import argparse

Extending Ansible

[202]

3. Now, we'll create a Python dictionary to hold all of our groups. Some of our
groups just have hosts, while others have variables or children. We'll format
each group accordingly:
inventory = {}
inventory['web'] = {'hosts': ['mastery.example.name'],
 'vars': {'http_port': 80,
 'proxy_timeout': 5}}
inventory['dns'] = {'hosts': ['backend.example.name']}
inventory['database'] = {'hosts': ['backend.example.name'],
 'vars': {'ansible_ssh_user': 'database'}}
inventory['frontend'] = {'children': ['web']}
inventory['backend'] = {'children': ['dns', 'database'],
 'vars': {'ansible_ssh_user': 'blotto'}}
inventory['errors'] = {'hosts': ['scsihost']}
inventory['failtest'] = {'hosts': ["failer%02d" % n for n in
 range(1,11)]}

4. To recreate our failtest group, which in our inventory file was represented
as failer[01:10], we used a Python list comprehension to produce the list
for us, formatting the items in the list just like our original inventory file.
Every other group entry is self-explanatory.

5. Our original inventory also had an all group variable that provided a
default variable ansible_ssh_user to all groups (which groups could
override) that we'll define here and make use of later in the file:
allgroupvars = {'ansible_ssh_user': 'otto'}

6. Next, we need to enter the host-specific variables into their own dictionary.
Only two nodes in our original inventory have host-specific variables:
hostvars = {}
hostvars['web'] = {'ansible_ssh_host': '192.168.10.25'}
hostvars['scsihost'] = {'ansible_ssh_user': 'jkeating'}

7. With all our data defined, we can now move on to the code that will handle
argument parsing. This is done via the argparse module we imported earlier
in the file:
parser = argparse.ArgumentParser(description='Simple Inventory')
parser.add_argument('--list', action='store_true',
 help='List all hosts')
parser.add_argument('--host', help='List details of a host')
args = parser.parse_args()

Chapter 8

[203]

8. After parsing the arguments, we can deal with either the –-list or –-host
actions. If a list is requested, we simply print a JSON representation of our
inventory. This is where we'll take into account the allgroupvars data, the
default ansible_ssh_user for each group. We'll loop through each group,
create a copy of the allgroupvars data, update that data with any data that
may already exist in the group, then replace the group's variable data with
the newly updated copy. Finally, we'll print out the end result:
if args.list:
 for group in inventory:
 ag = allgroupvars.copy()
 ag.update(inventory[group].get('vars', {}))
 inventory[group]['vars'] = ag
 print(json.dumps(inventory))

9. Finally, we'll handle the –-host action by printing the JSON formatted
variable data for the provided host, or an empty hash if there is no
host-specific variable data for the provided host:
elif args.host:
 print(json.dumps(hostvars.get(args.host, {})))

Now, our inventory is ready to test! We can execute it directly and pass the --help
argument we get for free using argparse. This will show us the usage of our script
based on the argparse data we provided earlier in the file:

Extending Ansible

[204]

If we pass –-list, we'll get the output of all our groups; and, if we pass –-host with
a couple of hosts, we'll get either the host data or an empty set:

And now with the –-host argument:

Now, we're ready to use our inventory file with Ansible. Let's make a new playbook
(inventory_test.yaml) to display the hostname and ssh username data:

- name: test the inventory
 hosts: all
 gather_facts: false

 tasks:
 - name: hello world
 debug:
 msg: "Hello world, I am {{ inventory_hostname }}.
 My username is {{ ansible_ssh_user }}"

Chapter 8

[205]

To use our new inventory plugin with this playbook, we simply refer to the plugin
file with the -i argument. Because we are using the all hosts group in our playbook,
we'll also limit the run to a few groups to save on screen space:

As we can see, we get the hosts we expect, and we get the default ssh user for
master.example.name. The backend.example.name and scsihost each show
their host-specific ssh username.

Extending Ansible

[206]

Optimizing script performance
With this inventory script, when Ansible starts, it will execute the script once with
–-list to gather the group data. Then, Ansible will execute the script again with
–-host <hostname> for each host it discovered in the first call. With our script,
this takes very little time as there are very few hosts, and our execution is very fast.
However, in an environment with a large number of hosts or a plugin that takes a
while to run, gathering the inventory data can be a lengthy process. Fortunately,
there is an optimization that can be made in the return data from a –-list call that
will prevent Ansible from rerunning the script for every host. The host-specific
data can be returned all at once inside the group data return, inside of a top-level
key named _meta that has a subkey named hostvars that contains a hash of all the
hosts that have host variables and the variable data itself. When Ansible encounters
a _meta key in the –-list return, it'll skip the –-host calls and assume that all of
the host-specific data was already returned, potentially saving significant time! Let's
modify our inventory script to return host variables inside of _meta, and create an
error condition inside the –-host option to show that –-host is not being called:

1. First, we'll add the _meta key to the inventory dictionary after all of the
hostvars have been defined, just before parsing arguments:
hostvars['scsihost'] = {'ansible_ssh_user': 'jkeating'}

inventory['_meta'] = {'hostvars': hostvars}

parser = argparse.ArgumentParser(description='Simple Inventory')

2. Next we'll change the –-host handling to raise an exception:
elif args.host:
 raise StandardError("You've been a bad boy")

Chapter 8

[207]

Now, we'll re-run the inventory_test.yaml playbook to ensure that we're still
getting the right data:

Just to be sure, we'll manually run the inventory plugin with the –-hosts argument
to show the exception:

With this optimization, our simple playbook using our inventory module now runs
nearly twice as fast, just because of the gained efficiency in inventory parsing.

Extending Ansible

[208]

Summary
Ansible is a great tool, however, sometimes it doesn't offer all the functionality
one might desire. Not every bit of functionality is appropriate to support the main
project, nor is it possible to integrate with custom proprietary data sources. For these
reasons, there exist facilities within Ansible to extend the functionality. Creating and
using custom modules is made easy due to shared module base code. Many different
types of plugins can be created and used with Ansible to affect operations in a
variety of ways. Inventory sources beyond what Ansible supports can still be used
with relative ease and efficiency.

In all cases, there exists a mechanism to provide modules, plugins, and inventory
sources alongside the playbooks and roles that depend on the enhanced
functionality, making it seamless to distribute.

[209]

Index
A
action plugins 198
Ansible

about 1
configuration 2
dynamic inventory plugins, developing 199
modules 179
plugins, developing 193
version 2

Ansible Galaxy
about 126-131
URL 126

AnsibleModule method 182
any_errors_fatal option 140, 141

B
behavioral inventory parameter 5
built-in filters

count 69
default 68, 69
random 69
round 69

C
callback plugins 196-198
change

command family, special handling 90-92
defining 88-90
suppressing 92, 93

check mode, simple module
about 191
handling 192
supporting 191

code execution
debugging 163

comparisions 79
conditionals

about 49-51
inline conditionals 52

connection type plugins 193
connection variables 29
contract strategy 136-139
control machine 28
ControlPersist 25
control structure

about 49
conditionals 49-51
inline conditionals 52
loops 53, 54
macros 58, 59

custom modules 180

D
data

encrypting, at rest 33, 34
disruptions

delaying 147-152
destructive tasks, running

only once 152, 153
managing 147

dot notation 162
DRY (Don't Repeat Yourself) 96
dynamic inventory plugins

about 199, 200
developing 199-205
hosts, listing 201
host variables, listing 201

[210]

E
encrypted files

ansible-playbook, encrypting with
Vault-encrypted files 43, 44

decrypting 42, 43
editing 40
existing files, encrypting 38, 39
new encrypted files, creating 35
password file 37
password prompt 36, 37
password rotation 41, 42
password script 38

errors
about 139
any_errors_fatal option 140, 141
handlers, forcing 144-147
max_fail_percentage option 142, 143

expand strategy 136-139
extra-vars 29

F
fact caching plugins 194
failure

defining 81
error condition, defining 83-87
errors, ignoring 81-83

filter
about 67
Base64 encoding 73, 74
basename filter 72
built-in filters 68
content, searching for 75
custom filters 69
dealing, with path names 71
dirname filter 72
expanduser filter 73
plugins 194, 195
shuffle 71
syntax 67
task status related 70
undefined arguments, omitting 76

H
handlers

including 107, 108

HAProxy behavior 6

I
included tasks

complex data, passing 101, 102
variable values, passing 99, 100

in-place upgrades 133-136
inventory

code, debugging 164-168
dynamic inventories 7, 8
limiting 9-12
parsing 3
run-time inventory additions 9
static inventory 3, 4
variables 26
variable data 4-7

L
local code

about 164
inventory code, debugging 164-168
Playbook code, debugging 168, 169
runner code, debugging 169-172

logic 79
lookup plugin 28, 193
loops

about 53, 54
indexing 55-57
items, filtering 54, 55

M
macros

about 58, 59
name 60

macros, variables
about 59, 60
arguments 61
caller 64-66
catch_kwargs 62
catch_varargs 63
defaults 61
name 60

max_fail_percentage option 142, 143
module

arguments 22, 24

[211]

execution 21-24
construct 180
custom modules 180
developing 179
reference 22
simple module 181-183
task performance 25
transport 21-24

P
Playbook

code, debugging 168, 169
including 115
logging 155, 156
verbosity 156

Playbook parsing
about 12, 13
operations, order 13, 14
path assumptions 15-17
Play behavior keys 17
play, names 19-21
plays and tasks, host selecting for 18
task, names 19-21

plugins
action plugins 198
callback plugins 196, 197
connection type plugins 193
developing 193
distributing 199
fact caching plugins 194
filter plugins 194, 195
lookup plugins 193
shell plugins 193
vars plugins 194

Python object methods
about 77
int and float methods 78
list methods 78
string methods 77, 78

R
remote code

action plugins, debugging 176
debugging 172-176

role dependencies
about 118

conditionals 120
tags 119
variables 118, 119

roles
about 115
and tasks, mixing 123-126
Ansible Galaxy 126-131
application 120-123
default 26
sharing 126
structure 115
variables 26

roles structure
about 115
dependencies 117
files and templates 117
handlers 116
modules 116
tasks 116
variables 116

runner code
debugging 169-172

S
secrets

about 33
logged to remote or local files 45, 46
protecting, with operating 44
transmitted, to remote hosts 45

shell plugins 193
simple inventory plugin

about 201-205
script performance, optimizing 206, 207

simple module
about 181-183
check mode 191
documentation 184-189
fact data, providing 190

static inventory 3, 4

T
tasks

about 96-98
complex data, passing to included

tasks 101, 102
conditional task includes 103, 104

[212]

included tasks, tagging 105, 106
variable values, passing to included

tasks 99
tests 79, 80

V
values, comparing 79
variable

dynamic vars_files inclusion 110, 111
external data, accessing 28
extra-vars 114
extra variables 27
fact modules 27
include_vars 111-113
including 109
play variables 27
task variables 27
types 26, 27
vars_files 109, 110

variable introspection
about 157-159
variable sub elements 159

variable precedence
about 28
connection variables 29
discovered facts variables 30
extra vars 29
hashes, merging 30, 31
inventory variables 30
most everything else 29, 30
order 28
role defaults 30

variable sub elements
about 159, 161
versus Python object method 162, 163

variable values
passing, to included tasks 99, 100

vars plugins 194
Vault 34

Thank you for buying
Mastering Ansible

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Ansible Configuration
Management
Second Edition
ISBN: 978-1-78528-230-0 Paperback: 122 pages

Leverage the power of Ansible to manage your
infrastructure efficiently

1. Configure Ansible on your Linux and Windows
machines effectively.

2. Extend Ansible to add features such as looping,
conditional executions, and task delegations.

3. Explore the capabilities of Ansible from basic
to more advanced topics with the help of this
step-by-step guide.

Learning Ansible
ISBN: 978-1-78355-063-0 Paperback: 308 pages

Use Ansible to configure your systems, deploy
software, and orchestrate advanced IT tasks

1. Use Ansible to automate your infrastructure
effectively, with minimal effort.

2. Customize and consolidate your configuration
management tools with the secure and
highly-reliable features of Ansible.

3. Unleash the abilities of Ansible and extend
the functionality of your mainframe system
through the use of powerful, real-world
examples.

Please check www.PacktPub.com for information on our titles

Ansible Configuration
Management
ISBN: 978-1-78328-081-0 Paperback: 92 pages

Leverage the power of Ansible to quickly configure
your Linux infrastructure with ease

1. Starts with the most simple usage of Ansible
and builds on that.

2. Shows how to use Ansible to configure your
Linux machines.

3. Teaches how to extend Ansible to add features
you need.

4. Explains techniques for using Ansible in large,
complex environments.

Creating Development
Environments with Vagrant
Second Edition
ISBN: 978-1-78439-702-9 Paperback: 156 pages

Leverage the power of Vagrant to create and manage
virtual development environments with Puppet,
Chef, and VirtualBox

1. Get your projects up and running quickly
and effortlessly by simulating complicated
environments that can be easily shared
with colleagues.

2. Provision virtual machines using Puppet,
Ansible, and Chef.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgment
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: System Architecture and Design of Ansible
	Ansible version and configuration
	Inventory parsing and data sources
	The static inventory
	Inventory variable data
	Dynamic inventories
	Run-time inventory additions
	Inventory limiting

	Playbook parsing
	Order of operations
	Relative path assumptions
	Play behavior keys
	Host selection for plays and tasks
	Play and task names

	Module transport and execution
	Module reference
	Module arguments
	Module transport and execution
	Task performance

	Variable types and location
	Variable types
	Accessing external data

	Variable precedence
	Precedence order
	Extra-vars
	Connection variables
	Most everything else
	The rest of the inventory variables
	Facts discovered about a system
	Role defaults

	Merging hashes

	Summary

	Chapter 2: Protecting Your
Secrets with Ansible
	Encrypting data at rest
	Things Vault can encrypt
	Creating new encrypted files
	The password prompt
	The password file
	The password script

	Encrypting existing files
	Editing encrypted files
	Password rotation for encrypted files
	Decrypting encrypted files
	Executing ansible-playbook with Vault-encrypted files

	Protecting secrets while operating
	Secrets transmitted to remote hosts
	Secrets logged to remote or local files

	Summary

	Chapter 3: Unlocking the Power of
Jinja2 Templates
	Control structures
	Conditionals
	Inline conditionals

	Loops
	Filtering loop items
	Loop indexing

	Macros
	Macro variables

	Data manipulation
	Syntax
	Useful built-in filters
	default
	count
	random
	round

	Useful Ansible provided custom filters
	Filters related to task status
	shuffle
	Filters dealing with path names
	Base64 encoding
	Searching for content

	Omitting undefined arguments
	Python object methods
	String methods
	List methods
	int and float methods

	Comparing values
	Comparisons
	Logic
	Tests

	Summary

	Chapter 4: Controlling Task Conditions
	Defining a failure
	Ignoring errors
	Defining an error condition

	Defining a change
	Special handling of the command family
	Suppressing a change

	Summary

	Chapter 5: Composing Reusable Ansible Content with Roles
	Task, handler, variable, and playbook include concepts
	Including tasks
	Passing variable values to included tasks
	Passing complex data to included tasks
	Conditional task includes
	Tagging included tasks

	Including handlers
	Including variables
	vars_files
	Dynamic vars_files inclusion
	include_vars
	extra-vars

	Including playbooks

	Roles
	Role structure
	Tasks
	Handlers
	Variables
	Modules
	Dependencies
	Files and templates
	Putting it all together

	Role dependencies
	Role dependency variables
	Tags
	Role dependency conditionals

	Role application
	Mixing roles and tasks

	Role sharing
	Ansible Galaxy

	Summary

	Chapter 6: Minimizing Downtime with Rolling Deployments
	In-place upgrades
	Expanding and contracting
	Failing fast
	The any_errors_fatal option
	The max_fail_percentage option
	Forcing handlers

	Minimizing disruptions
	Delaying a disruption
	Running destructive tasks only once

	Summary

	Chapter 7: Troubleshooting Ansible
	Playbook logging and verbosity
	Verbosity
	Logging

	Variable introspection
	Variable sub elements
	Subelement versus Python object method

	Debugging code execution
	Debugging local code
	Debugging inventory code
	Debugging Playbook code
	Debugging runner code

	Debugging remote code
	Debugging the action plugins

	Summary

	Chapter 8: Extending Ansible
	Developing modules
	The basic module construct
	Custom modules
	Simple module
	Module documentation
	Providing fact data
	Check mode

	Developing plugins
	Connection type plugins
	Shell plugins
	Lookup plugins
	Vars plugins
	Fact caching plugins
	Filter plugins
	Callback plugins
	Action plugins
	Distributing plugins

	Developing dynamic inventory plugins
	Listing hosts
	Listing host variables
	Simple inventory plugin
	Optimizing script performance

	Summary

	Index

