

Mastering	CentOS	7	Linux	Server

Table	of	Contents

Mastering	CentOS	7	Linux	Server

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Advanced	User	Management

Managing	users	and	groups	from	GUI	and	the	command	line

Quotas

Password	aging

Setting	the	password	policy

Configuring	password	aging	and	password	length

Configuring	password	complexity	and	limiting	reused	password	usage

Configuring	login	failures

Sudoers

visudo

Reference

Summary

2.	Security

Introducing	SELinux

Installing	SELinux

SELinux	mode

SELinux	policy

SELinux	files	and	processes

Domain	transition

SELinux	users

Restricting	access	to	su	or	sudo

Restricting	permissions	to	run	scripts

Restricting	access	to	services

SELinux	audit	logs

SELinux	troubleshooting

Summary

3.	Linux	for	Different	Purposes

Configuring	a	gateway	server

Setting	up	a	VPN	server

Implementing	BIND	as	a	DNS	server

Setting	up	a	web	server	using	Apache-MySQL-PHP

Setting	up	an	FTP	server

Securing	Apache	and	FTP	with	OpenSSL

References

Summary

4.	Mail	Server	with	Postfix

Setting	up	and	configuring	of	Postfix	mail	server

Setting	up	MariaDB	for	virtual	domains	and	users

Setting	up	a	mail	tool	(Dovecot)	to	retrieve	mails

Configuring	the	OpenLDAP	Active	Directory	with	Postfix

Securing	the	mail	server	using	SSL/TLS

References

Summary

5.	Monitoring	and	Logging

Open	source	monitoring	tools

Ganglia

OpenNMS

Zabbix

Zenoss

Nagios

Icinga

Setting	up	Nagios	as	a	monitoring	server

Tools	to	set	up	a	logging	server

Rsyslog

Syslog-ng

Setting	up	and	configuring	Syslog-ng

References

Summary

6.	Virtualization

The	basics	of	virtualization	on	Linux

Full	virtualization

Paravirtualization

Setting	up	Xen	on	CentOS	7

Setting	up	KVM	for	full	virtualization	on	CentOS	7

Setting	up	OpenVZ	virtualization	on	CentOS	7

Setting	up	VirtualBox	virtualization	on	CentOS	7

Setting	up	Docker	on	CentOS	7

Establishing	services’	high	availability	using	HAProxy

References

Summary

7.	Cloud	Computing

An	overview	of	cloud	computing

Software	as	a	Service

Platform	as	a	Service	(PaaS)

Infrastructure	as	a	Service	(IaaS)

Cloud	computing	services

Public	cloud

Private	cloud

Hybrid	cloud

Introducing	OpenStack

OpenStack	compute

OpenStack	networking

OpenStack	storage

Components	of	OpenStack

Installing	and	configuring	OpenStack

References

Summary

8.	Configuration	Management

Introducing	configuration	management

Open	source	configuration	management	tools

Chef

SaltStack	(Salt)

Ansible

Puppet

Installing	and	configuring	Puppet

References

Summary

9.	Some	Additional	Tricks	and	Tools

SSH	for	remote	connection

Securing	SSH	and	the	root	login	configuration

SSH	key-based	authentication

Installing	and	configuring	SpamAssassin

Setting	up	the	Clamav	antivirus

Configuring	Mytop	for	a	MySQL	database

Setting	up	Samba	and	NFS	for	file	sharing

Introducing	the	Linux	system	and	network	monitoring	tools

References

Summary

Index

Mastering	CentOS	7	Linux	Server

Mastering	CentOS	7	Linux	Server
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	January	2016

Production	reference:	1250116

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-239-3

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Mohamed	Alibi

Bhaskarjyoti	Roy

Reviewers

Sayyed	Mehdi	Poustchi	Amin

Benjamin	KRAFT

Frank	Lemmon

Commissioning	Editor

Sarah	Crofton

Acquisition	Editor

Shaon	Basu

Content	Development	Editor

Merwyn	D’souza

Technical	Editor

Utkarsha	S.	Kadam

Copy	Editors

Joanna	McMahon

Merilyn	Pereira

Vikrant	Phadke

Project	Coordinator

Nikhil	Nair

Proofreader

Safis	Editing

Indexer

Rekha	Nair

Graphics

Jason	Monteiro

Abhinash	Sahu

Production	Coordinator

Melwyn	Dsa

Cover	Work

Melwyn	Dsa

About	the	Authors
Mohamed	Alibi	is	a	Linux	System	administrator	at	the	training	team	of	the	European
Bio-informatics	Institute	EMBL-EBI	at	the	Wellcome	Trust	Genome	Campus.	He	got	his
master’s	degree	in	Network	System	and	Telecom	from	the	Faculty	of	Sciences	of	the
Tunis	El	Manar	University,	with	an	internship	held	at	the	University	of	Illinois	Urbana-
Champaign	at	the	National	Center	for	Supercomputer	Applications	and	the	Carl	R.	Woese
Institute	for	Genomic	Biology.

He	started	his	career	as	a	system	and	network	administrator	at	Institut	Pasteur	de	Tunis
from	2011	to	2015.	During	this	time,	he	got	associated	with	the	network	project
H3ABioNet.	He	held	the	title	of	the	co-chair	of	the	Infrastructure	Working	Group,	helping
the	development	and	enhancement	of	the	computer	infrastructure	of	project	nodes.
Between	2014	and	2015,	he	started	his	career	as	a	part-time	professor	at	Superior	Institute
of	Biotechnology	of	Sidi	Thabet,	then,	as	a	system	administrator	trainer	with	the
University	of	Pretoria	as	part	of	the	project	H3ABioNet.	At	the	end	of	2015,	Mohamed	got
his	current	position	as	a	Linux	system	administrator	with	the	European	Bio-informatics
Institute.

He	reviewed	a	book	about	CentOS	7	troubleshooting	in	late	2014	and	early	2015.

I	would	like	to	acknowledge	my	family	for	their	constant	support	and	my	friends	and
colleagues	for	their	help	and	their	guiding	advices.	Special	thanks	go	to	my	fiancée	for	her
enormous	love	and	daily	encouragement	to	move	forward	in	my	career,	and	finally,	I
would	like	to	thank	all	my	work	colleagues	and	supervisors	for	giving	me	the	opportunity
to	expand	my	knowledge	and	my	experience.

Bhaskarjyoti	Roy	is	a	Linux	and	open	source	enthusiast	with	more	than	12	years	of
experience	in	Linux	system	administration,	virtualization,	and	cloud	computing.

He	provides	his	services	to	many	companies	and	organizations	on	a	daily	basis.	He	learns
from	his	experience,	which	he	has	gained	through	self-learning	and	serving	clients
regularly.	He	has	built	more	than	100	servers	based	on	various	CentOS	versions	running
different	types	of	services	such	as	virtualization,	web-server,	e-mail,	DNS,	and	many
more.

He	is	currently	working	with	gotcha!	Mobile	Solutions,	a	Dallas	based	digital	marketing
agency	specializing	in	local	SEO,	mobile	web	apps,	and	custom	web	development
projects.

I	am	thankful	to	my	wife	Hema,	without	whom	this	would	never	have	been	possible.	I	am
grateful	to	my	mom,	my	sis,	and	other	family	members	and	friends	who	have	always	stood
beside	me.	I	would	like	to	thank	Mr.	Krishnendu	Paul	(KP),	Mr.	Indranil	Dasgupta	(IDG)
and	Mr.	Chanchal	Debnath	for	their	support	and	encouragement.	Special	thanks	go	to	Mr.
Christopher	Jenkin,	CEO,	and	Mr.	Hassan	Khawaja,	Director	of	Operations,	gotcha!
Mobile	Solutions,	who	always	encouraged	me	to	achieve	and	perform	better.

About	the	Reviewers
Sayyed	Mehdi	Poustchi	Amin	(RHCE,	RHCSA,	CCNA,	MCITP,	MCTS,	MCSE,
MCSA,	and	MCP)	has	15	years	of	experience	in	the	information	technology	industry.	He
is	a	senior	datacenter	system	administrator	in	a	reputed	company	in	Toronto.	He	worked	as
a	developer,	and	later	as	a	system	administrator	at	Islamic	Azad	University	of	Mashhad,
Iran	from	2000	to	2010.	He	was	a	PhD	research	student	in	computer	science	at	SIU,	India
before	moving	to	Canada.	In	early	2008,	he	founded	the	Iran	Honeynet	Project	website,
which	provides	security-related	information	regarding	the	latest	attacks	observed	by	a
network	of	honeypots.

Mehdi	strongly	appreciates	his	wife	Hediyeh’s	constant	support	of	his	career	endeavors.
He	wants	to	thank	her	for	all	of	her	support	through	this	project.

Benjamin	KRAFT	is	a	system	administration	team	leader	in	a	major	internet	service
provider	based	in	Luxembourg.	Benjamin	Kraft	also	operates	for	a	well-known	European
DNS	registrar,	a	VoIP	operator,	and	a	SaaS	platform	provider.

Passionate	and	curious	about	everything	related	to	IT,	he	specializes	in	virtualization,
storage,	Linux	systems,	and	monitoring.

Frank	Lemmon	has	been	a	practicing	software	quality	engineer	for	more	than	three
decades.	He	has	broad	experience	in	systems	ranging	from	legacy	mainframe	computers,
to	contemporary	Windows,	Macintosh,	Android,	and	Linux	based	systems.

He	has	worked	at	a	number	of	companies	including	start-ups	and	big-name	players.
Currently,	he’s	working	for	a	public	company	in	the	student	services	sector,	where	he
enjoys	enabling	new	generations	of	students	to	attain	their	higher	education	in	a	cost-
effective	and	productive	fashion.

Frank	acted	as	a	reviewer	for	CentOS	6	Linux	Server	Cookbook	by	Packt	Publishing	and
also	helped	review	OWASP	Developer’s	Guide,	second	edition.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
CentOS	7	Linux	is	one	of	the	most	reliable	Linux	operating	systems	to	be	used	for
multiple	functionalities	in	a	computer	infrastructure.	It	is	like	Pandora’s	box	for	any
system	administrator	in	that	he	can	shape	it	to	perform	any	task	for	his	environment.

Having	a	CentOS	7	server	in	any	infrastructure	can	help	deploy	a	number	of	useful
services	to	maintain,	secure,	and	manage	the	infrastructure	in	a	smart	and	automated	way.

What	this	book	covers
Chapter	1,	Advanced	User	Management,	teaches	you	how	to	manage	users	and	groups	on
CentOS	7	to	get	a	better	understanding	of	how	it	is	organized.

Chapter	2,	Security,	shows	the	best	practices	to	secure	your	CentOS	7	and	some	of	its
valuable	services	from	many	attacks	that	could	disable	the	services	or	expose	some	critical
data.

Chapter	3,	Linux	for	Different	Purposes,	enumerates	and	introduces	a	step-by-step	tutorial
on	how	to	set	up	a	list	of	very	useful	services	that	your	computer	infrastructure	should
have.

Chapter	4,	Mail	Server	with	Postfix,	introduces	you	to	Postfix	as	a	common	open	source
mail	server	to	have	it	installed	and	configured	for	advanced	usage.

Chapter	5,	Monitoring	and	Logging,	monitors	your	infrastructure	and	follows	your
machine’s	issues	via	user-friendly	monitoring	and	logging	tools.

Chapter	6,	Virtualization,	initiates	your	virtual	environment	and	explores	the	possibilities
and	benefits	all	the	virtual	technologies	can	offer.

Chapter	7,	Cloud	Computing,	explores	Cloud	computing	by	building	your	own	Cloud
environment	using	OpenStack	and	its	amazing	components.

Chapter	8,	Configuration	Management,	takes	your	infrastructure	to	an	advanced	level
where	everything	runs	on	configuration	management	using	Puppet,	as	it	is	one	of	the	most
famous	configuration	management	tools	in	this	field.

Chapter	9,	Some	Additional	Tricks	and	Tools,	teaches	you	the	small	tricks	and	tools	that
can	make	your	life	easier	when	administrating	the	CentOS	7	server	for	any	use.

What	you	need	for	this	book
To	follow	this	book	properly,	we	recommend	that	you	have	one	CentOS	7	server	to	hold
most	of	these	services	with	the	following	characteristics:

CPU:	4	Core	3.00	GHz
Memory:	6	GB	RAM
Hard	Disk:	150	GB
Network:	1	Gbit/s

Also,	you	will	need	some	machines	with	the	following	characteristics	to	test	the	services
on:

CPU:	2	Core	3.00	GHz
Memory:	2	GB	RAM
Hard	Disk:	50	GB
Network:	1Gbit/s

A	good	Internet	connection	and	a	Gigabit	network	switch	are	also	required.

Who	this	book	is	for
If	you	are	a	Linux	system	administrator	with	an	intermediate	administration	level,	this	is
your	opportunity	to	master	the	brand	new	distribution	of	CentOS.	If	you	wish	to	possess	a
fully	sustainable	Linux	server,	with	all	its	new	tools	and	tweaks,	that	serves	a	variety	of
services	to	your	users	and	customers,	this	book	is	ideal	for	you.	It	is	your	ticket	to	easily
adapting	to	all	the	changes	made	in	the	latest	shift.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

<html>

				<title>

		Test	page

				</title>

				<body>

		<h1>This	is	a	test	page</h1>

				</body>

</html>

Any	command-line	input	or	output	is	written	as	follows:

testuser:x:1001:1001::/home/testuser:/bin/bash

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Then	we	define	the
fields	asked	to	fill	Country	Name,	State	or	Province	Name,	Locality	Name,
Organization	Name,	Organizational	Unit	Name,	Common	Name,	and	Email
Address.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/MasteringCentOS7LinuxServer_ColorImages.pdf

https://www.packtpub.com/sites/default/files/downloads/MasteringCentOS7LinuxServer_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Advanced	User	Management
In	this	chapter,	we	will	introduce	some	advanced	user	and	group	management	scenarios
along	with	some	examples	on	how	to	handle	advanced	level	options	such	as	password
aging,	managing	sudoers,	and	so	on,	on	a	day	to	day	basis.	Here,	we	are	assuming	that	we
have	already	successfully	installed	CentOS	7	along	with	a	root	and	user	credentials	as	we
do	in	the	traditional	format.	Also,	the	command	examples,	in	this	chapter,	assume	you	are
logged	in	or	switched	to	the	root	user.

The	following	topics	will	be	covered:

User	and	group	management	from	the	GUI	and	the	command	line
Quotas
Password	aging
Sudoers

Managing	users	and	groups	from	GUI
and	the	command	line
We	can	add	a	user	to	the	system	using	useradd	from	the	command	line	with	a	simple
command,	as	follows:

useradd	testuser

This	creates	a	user	entry	in	the	/etc/passwd	file	and	automatically	creates	the	home
directory	for	the	user	in	/home.	The	/etc/passwd	entry	looks	like	this:

testuser:x:1001:1001::/home/testuser:/bin/bash

But,	as	we	all	know,	the	user	is	in	a	locked	state	and	cannot	log	in	to	the	system	unless	we
add	a	password	for	the	user	using	the	command:

passwd	testuser

This	will,	in	turn,	modify	the	/etc/shadow	file,	at	the	same	time	unlock	the	user,	and	the
user	will	be	able	to	log	in	to	the	system.

By	default,	the	preceding	set	of	commands	will	create	both	a	user	and	a	group	for	the
testuser	user	on	the	system.	What	if	we	want	a	certain	set	of	users	to	be	a	part	of	a
common	group?	We	will	use	the	-g	option	along	with	the	useradd	command	to	define	the
group	for	the	user,	but	we	have	to	make	sure	that	the	group	already	exists.	So,	to	create
users	such	as	testuser1,	testuser2,	and	testuser3	and	make	them	part	of	a	common
group	called	testgroup,	we	will	first	create	the	group	and	then	we	create	the	users	using
the	-g	or	-G	switches.	So,	we	will	do	this:

#	To	create	the	group	:

groupadd	testgroup

#	To	create	the	user	with	the	above	group	and	provide	password	and	unlock

user	at	the	same	time	:

useradd	testuser1	-G	testgroup

passwd	testuser1

useradd	testuser2	-g	1002

passwd	testuser2

Here,	we	have	used	both	-g	and	-G.	The	difference	between	them	is:	with	-G,	we	create	the
user	with	its	default	group	and	assign	the	user	to	the	common	testgroup	as	well,	but	with
-g,	we	create	the	user	as	part	of	the	testgroup	only.	In	both	cases,	we	can	use	either	the
gid	or	the	group	name	obtained	from	the	/etc/group	file.

There	are	a	couple	more	options	that	we	can	use	for	an	advanced	level	user	creation;	for
example,	for	system	users	with	uid	less	than	500,	we	have	to	use	the	-r	option,	which	will
create	a	user	on	the	system,	but	the	uid	will	be	less	than	500.	We	also	can	use	-u	to	define
a	specific	uid,	which	must	be	unique	and	greater	than	499.	Common	options	that	we	can
use	with	the	useradd	command	are:

-c:	This	option	is	used	for	comments,	generally	to	define	the	user’s	real	name,	such
as	-c	"John	Doe".
-d:	This	option	is	used	to	define	home-dir;	by	default,	the	home	directory	is	created	in
/home	such	as	-d	/var/<user	name>.
-g:	This	option	is	used	for	the	group	name	or	the	group	number	for	the	user’s	default
group.	The	group	must	already	have	been	created	earlier.
-G:	This	option	is	used	for	additional	group	names	or	group	numbers,	separated	by
commas,	of	which	the	user	is	a	member.	Again,	these	groups	must	also	have	been
created	earlier.
-r:	This	option	is	used	to	create	a	system	account	with	a	UID	less	than	500	and
without	a	home	directory.
-u:	This	option	is	the	user	ID	for	the	user.	It	must	be	unique	and	greater	than	499.

There	are	few	quick	options	that	we	use	with	the	passwd	command	as	well.	These	are:

-l:	This	option	is	to	lock	the	password	for	the	user’s	account
-u:	This	option	is	to	unlock	the	password	for	the	user’s	account
-e:	This	option	is	to	expire	the	password	for	the	user
-x:	This	option	is	to	define	the	maximum	days	for	the	password	lifetime
-n:	This	option	is	to	define	the	minimum	days	for	the	password	lifetime

Quotas
In	order	to	control	the	disk	space	used	in	the	Linux	filesystem,	we	must	use	quota,	which
enables	us	to	control	the	disk	space	and	thus	helps	us	resolve	low	disk	space	issues	to	a
great	extent.	For	this,	we	have	to	enable	user	and	group	quotas	on	the	Linux	system.

In	CentOS	7,	the	user	and	group	quotas	are	not	enabled	by	default	so	we	have	to	enable
them	first.

To	check	whether	quota	is	enabled	or	not,	we	issue	the	following	command:

mount	|	grep	'	/	'

The	image	shows	that	the	root	filesystem	is	enabled	without	quota	as	mentioned	by	the
noquota	in	the	output.

Now,	we	have	to	enable	quota	on	the	root	(/)	filesystem,	and	to	do	that,	we	have	to	first
edit	the	file	/etc/default/grub	and	add	the	following	to	GRUB_CMDLINE_LINUX:

rootflags=usrquota,grpquota

In	file	GRUB_CMDLINE_LINUX	line	should	read	as	follows:

GRUB_CMDLINE_LINUX="rd.lvm.lv=centos/swap	vconsole.font=latarcyrheb-sun16	

rd.lvm.lv=centos/root	crashkernel=auto		vconsole.keymap=us	rhgb	quiet	

rootflags=usrquota,grpquota"

The	output	of	cat	/etc/default/grub	command	should	look	like	the	following

screenshot:

Since	we	have	to	reflect	the	changes	we	just	made,	we	should	backup	the	grub
configuration	using	the	following	command:

cp	/boot/grub2/grub.cfg	/boot/grub2/grub.cfg.original

Now,	we	have	to	rebuild	the	grub	with	the	changes	we	just	made	using	the	command:

grub2-mkconfig	-o	/boot/grub2/grub.cfg

Next,	reboot	the	system.	Once	it’s	up,	log	in	and	verify	that	the	quota	is	enabled	using	the
command	we	used	before:

mount	|	grep	'	/	'

It	should	now	show	us	that	the	quota	is	enabled	and	will	show	us	an	output	as	follows:

/dev/mapper/centos-root	on	/	type	xfs	

(rw,relatime,attr2,inode64,usrquota,grpquota)

Add	the	following	lead-in	before	image	and	apply	CIT	style	to	mount	|	grep	‘	/	‘

Now,	since	quota	is	enabled,	we	will	further	install	quota	using	the	following	to	operate
quota	for	different	users	and	groups,	and	so	on:

yum	-y	install	quota

Once	quota	is	installed,	we	check	the	current	quota	for	users	using	the	following
command:

repquota	-as

The	preceding	command	will	report	user	quotas	in	a	human-readable	format.

From	the	preceding	screenshot,	there	are	two	ways	we	can	limit	quota	for	users	and
groups;	one	is	setting	soft	and	hard	limits	for	the	size	of	disk	space	used,	and	another	is
limiting	the	user	or	group	by	limiting	the	number	of	files	they	can	create.	In	both	cases,
soft	and	hard	limits	are	used.	A	soft	limit	is	something	that	warns	the	user	when	the	soft
limit	is	reached,	and	the	hard	limit	is	the	limit	that	they	cannot	bypass.

We	will	use	the	following	command	to	modify	a	user	quota:

edquota	-u	username

The	preceding	command	output	shall	look	like	the	following	screenshot:

Now,	we	will	use	the	following	command	to	modify	the	group	quota:

edquota	-g	groupname

If	you	have	other	partitions	mounted	separately,	you	have	to	modify	the	/etc/fstab	file
command	to	enable	quota	on	the	filesystem	by	adding	usrquota	and	grpquota	after	the
defaults	for	that	specific	partition	as	in	the	following	screenshot,	where	we	have	enabled
the	quota	for	the	/var	partition:

Once	you	are	finished	enabling	quota,	remount	the	filesystem	and	run	the	following
commands:

To	remount	/var	:

mount	-o	remount	/var

To	enable	quota	:

quotacheck	-avugm

quotaon	-avug

Quota	is	something	all	system	admins	use	to	handle	disk	space	consumed	on	a	server	by
users	or	groups	and	limit	over	usage	of	the	space.	It	thus	helps	them	manage	the	disk
space	usage	on	the	system.	In	this	regard,	it	should	be	noted	that	you	plan	before	your
installation	and	create	partitions	accordingly	as	well	so	that	the	disk	space	is	used
properly.	Multiple	separate	partitions	such	as	/var	and	/home	etc	are	always	suggested,
as	generally	these	are	the	partitions	which	consume	most	space	on	a	Linux	system.	So,	if
we	keep	them	on	a	separate	partition,	it	will	not	eat	up	the	root	(/)	filesystem	space	and
will	be	more	failsafe	than	using	an	entire	filesystem	mounted	as	only	root.

Password	aging
It	is	a	good	policy	to	have	password	aging	so	that	the	users	are	forced	to	change	their
passwords	at	a	certain	interval.	This,	in	turn,	helps	to	keep	the	security	of	the	system	as
well.

We	can	use	chage	to	configure	the	password	to	expire	the	first	time	the	user	logs	in	to	the
system.

Note
Note:	This	process	will	not	work	if	the	user	logs	in	to	the	system	using	SSH.

This	method	of	using	chage	will	ensure	that	the	user	is	forced	to	change	the	password
right	away.

Tip
If	we	use	only	chage	<username>,	it	will	display	the	current	password	aging	value	for	the
specified	user	and	will	allow	them	to	be	changed	interactively.

The	following	steps	need	to	be	performed	to	accomplish	password	aging:

1.	 Lock	the	user.	If	the	user	doesn’t	exist,	we	will	use	the	useradd	command	to	create
the	user.	However,	we	will	not	assign	any	password	to	the	user	so	that	it	remains
locked.	But,	if	the	user	already	exists	on	the	system,	we	will	use	the	usermod
command	to	lock	the	user:

Usermod	-L	<username>

2.	 Force	immediate	password	change	using	the	following	command:

chage	-d	0	<username>

3.	 Unlock	the	account.	This	can	be	achieved	in	two	ways.	One	is	to	assign	an	initial
password	and	the	other	is	to	assign	a	null	password.	We	will	take	the	first	approach	as
the	second	one,	though	possible,	is	not	good	practice	in	terms	of	security.	Therefore,
here	is	what	we	do	to	assign	an	initial	password:

Use	the	Python	command	to	start	the	command-line	Python	interpreter:

import	crypt;	print

crypt.crypt("Q!W@E#R$","Bing0000/")

Here,	we	have	used	the	Q!W@E#R$	password	with	a	salt	combination	of	the
alphanumeric	character:	Bing0000	followed	by	a	/	character.	The	output	is	the
encrypted	password,	similar	to	BiagqBsi6gl1o.
Press	Ctrl	+	D	to	exit	the	Python	interpreter.

4.	 At	the	shell,	enter	the	following	command	with	the	encrypted	output	of	the	Python
interpreter:

usermod	-p	"<encrypted-password>"	<username>

So,	here,	in	our	case,	if	the	username	is	testuser,	and	the	encrypted	output	is	"
BiagqBsi6gl1o"	we	will	do:

usermod	-p	"BiagqBsi6gl1o"	testuser

Now,	upon	initial	login	using	the	Q!W@E#R$	password,	the	user	will	be	prompted	for	a	new
password.

Setting	the	password	policy
This	is	a	set	of	rules	defined	in	some	files,	which	have	to	be	followed	when	a	system	user
is	setting	up.	It’s	an	important	factor	in	security	because	one	of	the	many	security	breach
histories	was	started	with	hacking	user	passwords.	This	is	the	reason	why	most
organizations	set	a	password	policy	for	their	users.	All	users	and	passwords	must	comply
with	this.

A	password	policy	usually	is	defined	by	the	following:

Password	aging
Password	length
Password	complexity
Limit	login	failures
Limit	prior	password	reuse

Configuring	password	aging	and	password	length
Password	aging	and	password	length	are	defined	in	/etc/login.defs.	Aging	basically
means	the	maximum	number	of	days	a	password	might	be	used,	minimum	number	of	days
allowed	between	password	changes,	and	number	of	warnings	before	the	password	expires.
Length	refers	to	the	number	of	characters	required	for	creating	the	password.	To	configure
password	aging	and	length,	we	should	edit	the	/etc/login.defs	file	and	set	different
PASS	values	according	to	the	policy	set	by	the	organization.

Note
Note:	The	password	aging	controls	defined	here	do	not	affect	existing	users;	it	only	affects
the	newly	created	users.	So,	we	must	set	these	policies	when	setting	up	the	system	or	the
server	at	the	beginning.	The	values	we	modify	are:

PASS_MAX_DAYS:	The	maximum	number	of	days	a	password	can	be	used
PASS_MIN_DAYS:	The	minimum	number	of	days	allowed	between	password	changes
PASS_MIN_LEN:	The	minimum	acceptable	password	length
PASS_WARN_AGE:	The	number	of	days’	warning	to	be	given	before	a	password	expires

Let’s	take	a	look	at	a	sample	configuration	of	the	login.defs	file:

Configuring	password	complexity	and	limiting
reused	password	usage
By	editing	the	/etc/pam.d/system-auth	file,	we	can	configure	the	password	complexity
and	the	number	of	reused	passwords	to	be	denied.	Password	complexity	refers	to	the
complexity	of	the	characters	used	in	the	password,	and	the	reused	password	deny	refers	to
denying	the	desired	number	of	passwords	the	user	used	in	the	past.	By	setting	the
complexity,	we	force	the	usage	of	the	desired	number	of	capital	characters,	lowercase
characters,	numbers,	and	symbols	in	a	password.	The	password	will	be	denied	by	the
system	until	and	unless	the	complexity	set	by	the	rules	is	met.	We	do	this	using	the
following	terms:

Force	capital	characters	in	passwords:	ucredit=-X,	where	X	is	the	number	of
capital	characters	required	in	the	password.
Force	lower	case	characters	in	passwords:	lcredit=-X,	where	X	is	the	number	of
lowercase	characters	required	in	the	password.
Force	numbers	in	passwords:	dcredit=-X,	where	X	is	the	number	of	numbers
required	in	the	password.
Force	the	use	of	symbols	in	passwords:	ocredit=-X,	where	X	is	the	number	of
symbols	required	in	the	password.	For	example:

password	requisite	pam_cracklib.so	try_first_pass	retry=3	type=	

ucredit=-2	lcredit=-2	dcredit=-2	ocredit=-2

Deny	reused	passwords:	remember=X,	where	X	is	the	number	of	past	passwords	to	be
denied.	For	example:

password	sufficient	pam_unix.so	sha512	shadow	nullok	try_first_pass	

use_authtok	remember=5

Let’s	now	take	a	look	at	a	sample	configuration	of	/etc/pam.d/system-auth:

Configuring	login	failures
We	set	the	number	of	login	failures	allowed	by	a	user	in	the	/etc/pam.d/password-auth,
/etc/pam.d/system-auth,	and	/etc/pam.d/login	files.	When	a	user’s	failed	login
attempts	are	higher	than	the	number	defined	here,	the	account	is	locked	and	only	a	system
administrator	can	unlock	the	account.	To	configure	this,	make	the	following	additions	to
the	files.	The	following	deny=X	parameter	configures	this,	where	X	is	the	number	of	failed
login	attempts	allowed.

Add	these	two	lines	to	the	/etc/pam.d/password-auth	and	/etc/pam.d/system-auth
files	and	only	the	first	line	to	the	/etc/pam.d/login	file:

auth								required				pam_tally2.so	file=/var/log/tallylog	deny=3	

no_magic_root	unlock_time=300

account					required				pam_tally2.so

The	following	screenshot	is	a	sample	/etc/pam.d/system-auth	file:

The	following	is	a	sample	/etc/pam.d/login	file:

To	see	failures,	use	the	following	command:

pam_tally2	–user=<User	Name>

To	reset	the	failure	attempts	and	to	enable	the	user	to	log	in	again,	use	the	following
command:

pam_tally2	–user=<User	Name>	--reset

Sudoers
Separation	of	user	privileges	is	one	of	the	main	features	in	Linux	operating	systems.
Normal	users	operate	in	limited	privilege	sessions	to	limit	the	scope	of	their	influence	on
the	entire	system.	One	special	user	exists	on	Linux	that	we	know	already	is	root,	which
has	super-user	privileges.	This	account	doesn’t	have	any	restrictions	that	are	present	to
normal	users.	Users	can	execute	commands	with	super-user	or	root	privileges	in	a	number
of	different	ways.

There	are	mainly	three	different	ways	to	obtain	root	privileges	on	a	system:

Log	in	to	the	system	as	root.
Log	in	to	the	system	as	any	user	and	then	use	the	su	-	command.	This	will	ask	you
for	the	root	password	and	once	authenticated,	will	give	you	the	root	shell	session.
We	can	disconnect	this	root	shell	using	Ctrl	+	D	or	using	the	command	exit.	Once
exited,	we	will	come	back	to	our	normal	user	shell.
Run	commands	with	root	privileges	using	sudo	without	spawning	a	root	shell	or
logging	in	as	root.	This	sudo	command	works	as	follows:

sudo	<command	to	execute>

Unlike	su,	sudo	will	request	the	password	of	the	user	calling	the	command,	not	the	root
password.

The	sudo	doesn’t	work	by	default	and	requires	to	be	set	up	before	it	functions	correctly.

In	the	following	section,	we	will	see	how	to	configure	sudo	and	modify	the	/etc/sudoers
file	so	that	it	works	the	way	we	want	it	to.

visudo
The	sudo	is	modified	or	implemented	using	the	/etc/sudoers	file,	and	visudo	is	the
command	that	enables	us	to	edit	the	file.

Note
Note:	This	file	should	not	be	edited	using	a	normal	text	editor	to	avoid	potential	race
conditions	in	updating	the	file	with	other	processes.	Instead,	the	visudo	command	should
be	used.

The	visudo	command	opens	a	text	editor	normally,	but	then	validates	the	syntax	of	the	file
upon	saving.	This	prevents	configuration	errors	from	blocking	sudo	operations.

By	default,	visudo	opens	the	/etc/sudoers	file	in	vi	editor,	but	we	can	configure	it	to	use
the	nano	text	editor	instead.	For	that,	we	have	to	make	sure	nano	is	already	installed	or	we
can	install	nano	using:

yum	install	nano	-y

Now,	we	can	change	it	to	use	nano	by	editing	the	~/.bashrc	file:

export	EDITOR=/usr/bin/nano

Then,	source	the	file	using:

.	~/.bashrc

Now,	we	can	use	visudo	with	nano	to	edit	the	/etc/sudoers	file.	So,	let’s	open	the
/etc/sudoers	file	using	visudo	and	learn	a	few	things.

We	can	use	different	kinds	of	aliases	for	different	sets	of	commands,	software,	services,
users,	groups,	and	so	on.	For	example:

Cmnd_Alias	NETWORKING	=	/sbin/route,	/sbin/ifconfig,	/bin/ping,	

/sbin/dhclient,	/usr/bin/net,	/sbin/iptables,	/usr/bin/rfcomm,	

/usr/bin/wvdial,	/sbin/iwconfig,	/sbin/mii-tool

Cmnd_Alias	SOFTWARE	=	/bin/rpm,	/usr/bin/up2date,	/usr/bin/yum

Cmnd_Alias	SERVICES	=	/sbin/service,	/sbin/chkconfig

We	can	use	these	aliases	to	assign	a	set	of	command	execution	rights	to	a	user	or	a	group.
For	example,	if	we	want	to	assign	the	NETWORKING	set	of	commands	to	the	group	netadmin
we	will	define:

%netadmin	ALL	=	NETWORKING

Otherwise,	if	we	want	to	allow	the	wheel	group	users	to	run	all	the	commands,	we	will	do
the	following:

%wheel		ALL=(ALL)		ALL

If	we	want	a	specific	user,	john,	to	get	access	to	all	commands,	we	will	do	the	following:

john		ALL=(ALL)		ALL

We	can	create	different	groups	of	users,	with	overlapping	membership:

User_Alias						GROUPONE	=	abby,	brent,	carl

User_Alias						GROUPTWO	=	brent,	doris,	eric,

User_Alias						GROUPTHREE	=	doris,	felicia,	grant

Group	names	must	start	with	a	capital	letter.	We	can	then	allow	members	of	GROUPTWO	to
update	the	yum	database	and	all	the	commands	assigned	to	the	preceding	software	by
creating	a	rule	like	this:

GROUPTWO				ALL	=	SOFTWARE

If	we	do	not	specify	a	user/group	to	run,	sudo	defaults	to	the	root	user.

We	can	allow	members	of	GROUPTHREE	to	shut	down	and	reboot	the	machine	by	creating	a
command	alias	and	using	that	in	a	rule	for	GROUPTHREE:

Cmnd_Alias						POWER	=	/sbin/shutdown,	/sbin/halt,	/sbin/reboot,	

/sbin/restart

GROUPTHREE		ALL	=	POWER

We	create	a	command	alias	called	POWER	that	contains	commands	to	power	off	and	reboot
the	machine.	We	then	allow	the	members	of	GROUPTHREE	to	execute	these	commands.

We	can	also	create	Runas	aliases,	which	can	replace	the	portion	of	the	rule	that	specifies	to
the	user	to	execute	the	command	as:

Runas_Alias					WEB	=	www-data,	apache

GROUPONE				ALL	=	(WEB)	ALL

This	will	allow	anyone	who	is	a	member	of	GROUPONE	to	execute	commands	as	the	www-
data	user	or	the	apache	user.

Just	keep	in	mind	that	later,	rules	will	override	previous	rules	when	there	is	a	conflict
between	the	two.

There	are	a	number	of	ways	that	you	can	achieve	more	control	over	how	sudo	handles	a
command.	Here	are	some	examples:

The	updatedb	command	associated	with	the	mlocate	package	is	relatively	harmless.	If	we
want	to	allow	users	to	execute	it	with	root	privileges	without	having	to	type	a	password,
we	can	make	a	rule	like	this:

GROUPONE				ALL	=	NOPASSWD:	/usr/bin/updatedb

NOPASSWD	is	a	tag	that	means	no	password	will	be	requested.	It	has	a	companion	command
called	PASSWD,	which	is	the	default	behavior.	A	tag	is	relevant	for	the	rest	of	the	rule	unless
overruled	by	its	twin	tag	later	down	the	line.

For	instance,	we	can	have	a	line	like	this:

GROUPTWO				ALL	=	NOPASSWD:	/usr/bin/updatedb,	PASSWD:	/bin/kill	

In	this	case,	a	user	can	run	the	updatedb	command	without	a	password	as	the	root	user,
but	entering	the	root	password	will	be	required	for	running	the	kill	command.	Another
helpful	tag	is	NOEXEC,	which	can	be	used	to	prevent	some	dangerous	behavior	in	certain
programs.

For	example,	some	programs,	such	as	less,	can	spawn	other	commands	by	typing	this
from	within	their	interface:

!command_to_run

This	basically	executes	any	command	the	user	gives	it	with	the	same	permissions	that
less	is	running	under,	which	can	be	quite	dangerous.

To	restrict	this,	we	could	use	a	line	like	this:

username				ALL	=	NOEXEC:	/usr/bin/less

You	should	now	have	clear	understanding	of	what	sudo	is	and	how	we	modify	and	provide
access	rights	using	visudo.	There	are	many	more	things	left	here.	You	can	check	the
default	/etc/sudoers	file,	which	has	a	good	number	of	examples,	using	the	visudo
command,	or	you	can	read	the	sudoers	manual	as	well.

One	point	to	remember	is	that	root	privileges	are	not	given	to	regular	users	often.	It	is
important	for	us	to	understand	what	these	commands	do	when	you	execute	with	root
privileges.	Do	not	take	the	responsibility	lightly.	Learn	the	best	way	to	use	these	tools	for
your	use	case,	and	lock	down	any	functionality	that	is	not	needed.

Reference
Now,	let’s	take	a	look	at	the	major	reference	used	throughout	the	chapter:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

Summary
In	this	chapter,	you	learned	about	some	advanced	user	management	and	how	to	manage
users	through	the	command	line,	along	with	password	aging,	quota,	exposure	to
/etc/sudoers,	and	how	to	modify	them	using	visudo.	User	and	password	management	is
a	regular	task	that	a	system	administrator	performs	on	servers,	and	it	has	a	very	important
role	in	the	overall	security	of	the	system.

In	the	next	chapter,	we	will	look	into	advanced	security	features	called	Security-
Enhanced	Linux	(SELinux),	which	comes	integrated	with	CentOS	or	RedHat	Linux
operating	systems.

Chapter	2.	Security
In	this	chapter,	we	will	find	different	tools	and	utilities	that	we	can	use	to	secure	the
CentOS	system	we	are	using.	Security	is	the	most	important	part	for	a	system	or	server
and	thus,	a	System	Administrator’s	job	is	always	to	keep	the	system	up	to	date	and	secure
from	different	kind	of	attacks	that	happen	on	a	regular	basis	on	servers.

We	will	discuss	several	tools	here	starting	from	SELinux	to	other	security	tools	and
measures	that	we	can	take	on	a	CentOS	7	system.	Let’s	dive	into	them	one	by	one.

In	this	chapter,	we	will	look	into:

SELinux	and	its	tools
Installing	SELinux
Domain	transition
SELinux	users
SELinux	audit	logs	and	troubleshooting

Introducing	SELinux
Security	Enhanced	Linux	(SELinux)	is	a	set	of	kernel	modifications	and	user-space
tools	that	have	been	present	in	CentOS	for	quite	a	long	time.	It	is	a	kind	of	mechanism	that
supports	Mandatory	Access	Control	security	policies,	which	were	initially	developed	by
the	US	National	Security	Agency	and	later	released	in	the	public	domain	to	protect
computer	systems	from	malicious	intrusion	and	tampering.

Not	many	System	Administrators	use	SELinux.	Commonly,	people	are	reluctant	to	learn
about	SELinux	and	just	disable	it	directly.	However,	a	properly	configured	SELinux
system	can	reduce	the	security	risks	to	a	great	extent.

SELinux	implements	Mandatory	Access	Control	(MAC),	which	works	on	top	of	already
available	Discretionary	Access	Control	(DAC)	on	CentOS	7.	DAC	is	the	traditional
security	model	that	we	have	on	Linux	systems	where	we	have	three	entities:	User,	Group,
and	Others	who	can	have	a	combination	of	read,	write,	and	execute	permission	for	files
and	directories.	By	default,	if	a	user	creates	any	file	in	his	home	directory,	the	user	and	his
group	will	have	the	read	access	and	the	user	will	have	write	access	to	the	file	but	the	other
entity	might	also	have	read	access	to	it.

The	user	who	owns	the	file	can	change	this	access	policy	and	grant	or	revoke	access	as
well	as	ownership	of	the	file.	This	might	leave	critical	files	exposed	to	accounts	that	don’t
need	access	to	these	files	and	thus	pose	as	a	security	threat	to	the	running	system.	It
confines	every	process	to	its	own	domain	and	makes	sure	that	it	can	interact	only	with	a
defined	type	of	files	and	processes	and	thus	protect	the	system	from	a	hacker	hijacking	a
script	or	process	and	gaining	system-wide	control	through	it.

To	check	what	SELinux	packages	are	installed	on	your	system,	run	the	following
command:

rpm	-qa	|	grep	selinux

The	command	will	display	the	following	output:

Installing	SELinux
Install	all	the	packages	with	the	following	command;	this	will	install	the	rest	of	the
packages	and	update	the	already	installed	packages	on	the	system:

yum	install	policycoreutils	policycoreutils-python	selinux-policy	selinux-

policy-targeted	libselinux-utils	setroubleshoot-server	setools	setools-

console	mcstrans

Now,	we	will	have	all	the	packages	required	by	SELinux	installed	on	the	system.	Let’s
install	two	more	services	apache	(httpd)	for	the	web	server	and	FTP	(vsftpd)	server	on
the	system,	so	that	we	can	test	the	SELinux	with	them:

yum	install	httpd	vsftpd

Run	the	apache	service	now	using	either	of	the	following	commands:

systemctl	start	httpd

service	httpd	start

Check	the	status	of	httpd	using	either	of	the	following	commands:

service	status	httpd

systemctl	status	httpd

These	commands	will	show	that	it’s	running,	as	seen	in	the	following	screenshot:

Also,	start	vsftpd	using	either	of	the	following	commands	and	then	check	the	status	of
vsftp	in	the	same	way:

systemctl	start	vsftpd

service	vsftpd	start

Check	the	status	of	ftpd	using	either	of	the	following	commands:

service	status	ftpd

systemctl	status	ftpd

SELinux	mode
There	are	three	types	of	SELinux	modes;	they	are	as	follows:

Enforcing:	In	this	mode,	SELinux	enforces	its	policies	onto	the	system	and	makes
sure	that	all	access	by	unauthorized	users	or	processes	are	denied.	These	access
denial	events	are	also	logged	in	to	the	system	as	well,	which	we	will	look	into	later
on	in	this	chapter.
Permissive:	This	is	like	a	semi-enabled	mode	state	where	SELinux	doesn’t	deny	any
access	as	the	policies	are	in	permissive	mode.	This	is	the	best	mode	to	test	the
SELinux	policies.
Disabled:	In	this	mode,	the	SELinux	is	in	a	completely	disabled	state	and	no	logs	are
created	or	permissions	are	denied.

We	can	run	the	following	commands	to	get	the	present	SELinux	status:

getenforce

sestatus

The	outputs	from	the	preceding	commands	are	shown	in	the	following	image	when
SELinux	is	enabled	on	the	system:

The	main	SELinux	configuration	file	is	/etc/selinux/config.	We	will	now	enable
SELinux	by	setting	up	SELINUX=permissive	in	this	file,	and	then	saving	and	rebooting	the
system.

The	SELINUXTYPE	parameter	in	the	config	file	also	has	three	options,	as	follows:

Targeted:	This	is	the	default	value	that	allows	you	to	customize	and	fine-tune	your
policies
Minimum:	In	this	mode,	only	the	selected	processes	are	protected
MLS:	Multi	Level	Security	is	an	advanced	mode	of	protection	and	you	need	an
additional	package	to	install	it	as	well

We	will	keep	the	SELINUXTYPE	at	the	default	value	(that	is,	targeted).

This	is	necessary	to	set	the	SELinux	into	the	permissive	mode	the	first	time	it	runs,	as	it’s
required	to	label	all	files	on	the	system.	Otherwise,	processes	running	under	confined
domains	might	fail	as	they	can’t	access	the	files	with	correct	contexts.

Once	we	are	set	and	we	reboot	the	system,	it	will	label	all	the	files,	which	will	take	some
time	depending	on	the	system	with	SELinux	contexts.	Since	it’s	in	the	permissive	mode,
only	failures	and	access	denials	will	be	reported.

We	must	check	the	system	once	it	is	up	for	any	errors	using	the	following	command:

grep	'SELinux'	/var/log/messages

This	will	show	you	outputs	such	as	the	following	if	the	SELinux	is	running	in	permissive
mode:

May	25	01:54:46	localhost	kernel:	SELinux:		Disabled	at	runtime.

May	25	03:06:40	localhost	kernel:	SELinux:		Initializing.

May	25	03:06:58	localhost	systemd[1]:	Successfully	loaded	SELinux	policy	in	

2.863609s.

May	27	06:31:39	localhost	kernel:	SELinux:		Initializing.

May	27	06:31:55	localhost	systemd[1]:	Successfully	loaded	SELinux	policy	in	

1.944267s.

Now,	since	all	the	rules	are	loaded	and	the	files	are	labeled,	we	have	to	enable	the
SELinux	enforcing	mode	instead	of	the	permissive	mode.	So,	edit	the	SELinux	config
file	once	again	and	set	the	following	to	enforcing:

SELINUX=enforcing

Now,	reboot	the	server	once	again.

Once	it	is	back,	check	the	SELinux	status	with	the	sestatus	command	and	it	will	show
you	an	output	similar	to	the	following:

Now,	if	you	grep	SELinux	in	/var/log/messages	you	will	find	the	following:

May	27	11:18:21	localhost	kernel:	SELinux:	Initializing.

May	27	11:18:34	localhost	systemd[1]:	Successfully	loaded	SELinux	policy	in	

715.664ms.

To	check	the	SELinux	enforcing	status,	run	the	getenforce	command,	and	it	will	display
the	status	as	enforcing.

The	sestatus	command	will	display	more	details	about	the	operating	SELinux
configuration	as	follows:

If	we	want	to	change	the	SELinux	mode	temporarily	while	running	SELinux,	we	can	do
that	using	the	setenforce	command	as	follows:

setenforce	permissive

Now,	sestatus	will	show	you	the	following	screen:

Switch	back	to	the	enforcing	mode	using	the	following	command:

setenforce	enforcing

SELinux	policy
You	must	have	noticed	from	the	previous	SELinux	outputs	in	/var/log/messages	that	it
is	based	on	Policy.	Policy	means	a	set	of	rules	that	defines	the	relation,	security	and	access
rights	to	the	following:

User:	All	regular	Linux	users	are	defined	by	one	or	more	SELinux	users.	However,
please	note	that	SELinux	users	are	different	from	Linux	users.	Also,	note	that	a
running	process	or	a	program	is	defined	as	subject	in	the	SELinux.
Role:	They	are	like	filters	that	define	which	user	can	access	a	process	and	so	on.	It’s
like	a	gateway	between	a	user	and	a	process.	A	user	can	only	run	a	specific	process	if
the	role	grants	it	and	the	user	has	access	to	the	role.	SELinux	is	based	on	Role	Based
Access	Control	(RBAC).
Subject	and	Object:	Subject	is	like	a	process	or	a	program	and	object	is	anything
than	can	be	acted	on;	like	a	file,	port,	directory,	and	so	on.	The	actions	that	are
performed	by	a	subject	on	an	object	depend	on	the	subject’s	permissions.
Domain:	This	is	like	a	wrapper	around	the	Subject	(process),	which	tells	the	process
what	it	can	or	can’t	do.	For	example,	the	domain	will	define	the	directories,	folders,
files,	ports,	and	so	on	a	process	can	access.	Domains	are	related	to	subject	in
SELinux.
Type:	A	file’s	context	is	called	its	type.	For	example,	the	context	of	a	file	describes
whether	it’s	only	accessible	to	the	local	web	server	process	or	it’s	available	to	any
process	within	any	other	directory	such	as	/	and	so	on	or	which	specific	SELinux
user	is	the	owner	of	the	file.	Type	is	related	to	the	object	in	SELinux.

In	SELinux,	policy	defines	rules	for	users	access	to	roles,	role	access	to	domains,	and
domain	access	to	types.

There	are	three	forms	of	access	control	in	SELinux	defined	by	the	SELINUXTYPE	in	the
/etc/selinux/config	file:

Type	Enforcement	(TE):	This	is	the	primary	mechanism	of	access	control	used	in
the	targeted	policy
Role-Based	Access	Control	(RBAC):	This	is	based	around	SELinux	users	(not
necessarily	the	same	as	the	Linux	user),	but	not	used	in	the	default	targeted	policy
Multi-Level	Security	(MLS):	This	is	not	commonly	used	and	often	hidden	in	the
default	targeted	policy.

The	targeted	policy	is	used	by	default	in	SELinux	and	we	will	continue	our	discussion
based	on	it	here.

Also,	remember	that	SELinux	doesn’t	replace	the	traditional	DAC	policy	in	the	Linux
system.	Instead,	if	a	file	access	is	prohibited	by	the	DAC	policy,	the	SELinux	policy	will
not	be	evaluated	and	will	not	grant	access	to	the	file	even	if	is	allowed	by	SELinux.

SELinux	policies	are	loaded	in	a	modular	format	much	like	a	kernel	module	into	the
memory	and	can	be	viewed	using	the	following	command:

semodule	-l	|	more

The	semodule	command	can	be	used	for	installing,	removing,	reloading,	upgrading,
enabling,	and	disabling	SELinux	policy	modules	as	well.

The	module	files	are	located	in	/etc/selinux/targeted/modules/active/modules/	with
the	.pp	extension	and	are	not	human	readable.	But,	if	you	look	into	them	closely,	you	will
surely	find	that	they	are	actually	related	to	different	applications	in	Linux.

These	policy	modules	are	combined	into	an	active	policy	and	are	then	loaded	into	the
memory.	This	combined	binary	policy	can	be	found	in	the
/etc/selinux/targeted/policy/	directory:

We	cannot	modify	these	rules	directly	but	can	manage	them	using	the	semanage	boolean
command.	The	output	of	the	semanage	boolean	-l	|	less	command	will	show	us	this:

It	is	clearly	evident	in	the	second	line	of	the	preceding	output	that	the	FTP	service	access
to	user	home	directories	is	turned	off	at	this	moment.	We	can	also	see	just	the	status	of	the
ftpd	service	policies	using	the	following	command	pipeline:

semanage	boolean	-l	|	grep	ftpd

Now,	to	allow	FTP	users	to	access	their	home	directories	and	allow	read-write	access	we
have	to	issue	the	following	commands.	First	check	the	status	of	the	ftp_home_dir	policy
using	the	following	command:

getsebool	ftp_home_dir

This	will	display	the	following	output:

ftp_home_dir	-->	off

Now,	enable	access	to	the	user	home	directory	using	setsebool	-P	for	permanent:

setsebool	-P	ftp_home_dir	on

Now,	check	the	status	again:

getsebool	ftp_home_dir

This	will	show	the	following	output:

ftp_home_dir	-->	on

Now,	users	will	be	allowed	to	access	their	home	directories	via	the	FTP	provided;	the	FTP
protocol	is	allowed	in	the	firewall.

SELinux	files	and	processes
So	far,	we	have	looked	into	the	basics	of	SELinux	and	how	to	allow	a	service	like	vsftpd
to	allow	users	to	access	their	files	from	ftp.	Let’s	look	into	the	details	of	the	context	of
files	and	how	they	are	defined	in	SELinux.	Context	in	SELinux	is	a	collection	of
information	related	to	security,	which	helps	SELinux	determine	access	control	policies.	In
Linux,	everything	can	have	a	security	context	such	as	files,	directories,	services,	or	ports
but	security	context	means	different	type	of	things	for	different	objects.

We	can	display	the	SELinux	file	context	for	any	file	by	using	the	ls	–Z	parameter	like
this:

ls	-laZ	/home/test/*

In	the	preceding	output,	this	part	is	the	SELinux	context	for	that	specific	file:

system_u:object_r:user_home_t:s0

There	are	four	parts,	each	separated	by	a	colon	(:).	The	first	part	is	the	SELinux	user
context,	which	is	shown	as	system_u	here.	As	you	already	know,	each	Linux	system	user
is	mapped	to	a	SELinux	user	and	here	it	is	system_u.

The	second	part	is	the	SELinux	role,	which	is	object_r	here.

The	most	important	part	here	is	the	third	part,	which	is	mentioned	as	user_home_t.	This	is
the	one	that	defines	the	type	of	file,	and	from	this,	we	can	understand	that	it	belongs	to	the
user’s	home	directory.

The	fourth	part	(s0)	actually	explains	the	sensitivity	of	the	file	and	it	actually	works	with
the	Multi-Level	Security.	The	first	three	parts	are	more	important,	so	we	will	only	work
with	them.

Now,	let’s	look	at	the	SELinux	process	context	using	the	httpd	file	that	we	installed
before.	Let’s	start	the	httpd	process	first	using:

systemctl	httpd	start

Now	let’s	run	the	ps	command	with	the	additional	-Z	flag	to	see	the	process	context:

ps	-efZ	|	grep	httpd

The	security	context	in	the	preceding	output	is	as	follows:

system_u:system_r:httpd_t:s0

In	SELinux,	users	are	suffixed	by	_u,	roles	are	suffixed	by	_r,	and	types	are	suffixed	by
_t.

For	a	process	to	run	like	httpd,	it	needs	to	access	its	files	and	action	them.	We	already
have	seen	that	each	process	can	only	have	access	to	certain	types	(files,	directories,	ports,
and	so	on).

SELinux	defines	these	access	rules	in	a	policy.	These	access	rules	follow	the	standard
allow	statement	as	follows:

allow	<domain>	<type>:<class>	{	<permissions>	};

A	generic	allow	statement	indicates:

Whether	a	process	is	of	a	certain	domain
That	the	resource	object	the	process	is	trying	to	access	is	of	a	certain	class	and	type
Whether	it	can	allow	access	or	deny	access

Let’s	see	how	this	works	in	consideration	with	the	security	context	of	the	https	process
that	we	have	already	looked	into.

The	document	root	or	the	default	directory	for	httpd	is	/var/www/html.	Now,	let’s	create
a	file	in	there	and	check	its	security	context:

touch	/var/www/html/index.html

ls	-Z	/var/www/html/*

The	file	context	for	the	index.html	file	we	created	is	shown	to	be	httpd_sys_content_t.

We	will	use	the	sesearch	command	in	the	following	way	to	check	the	type	of	access
allowed	for	the	httpd	daemon:

sesearch	--allow	--source	httpd_t	--target	httpd_sys_content_t	--class	file

The	flags	used	in	the	preceding	command	are	easily	understandable;	source	domain	is
httpd_t,	which	the	domain	apache	is	running	within.	We	wanted	to	list	the	target
resources	that	are	files	and	have	the	type	context	httpd_sys_content_t.

Notice	the	first	line	of	context	output	in	the	preceding	screenshot	is:

allow	httpd_t	httpd_sys_content_t	:	file	{	ioctl	read	getattr	lock	open	}	;

Now,	if	you	relate	it	with	the	generic	allow	statement	previously,	we	will	clearly
understand	that	the	httpd	service	has	I/O	control,	read,	get	attribute,	lock,	and	open	access
to	the	files	of	the	httpd_sys_content_t	type.	And,	in	our	case,	the	index.html	file	that
we	created	is	also	of	the	same	type,	which	means	the	httpd	service	will	have	access	to	this
index.html	file.

Let’s	create	a	test	web	page	modifying	the	index.html	file	so	that	we	can	check	its	output
from	the	browser.	Add	the	following	lines	into	the	index.html	file	using	your	favorite
editor	and	save	it:

<html>

				<title>

		Test	page

				</title>

				<body>

		<h1>This	is	a	test	page</h1>

				</body>

</html>

We	will	change	the	permission	of	the	/var/www	folder	followed	by	httpd	restart	using

the	following	commands:

chmod	-R	755	/var/wwwsystemctl	restart	httpd

You	might	have	to	allow	the	http	port	in	the	firewall	if	you	are	doing	it	for	the	first	time
using	the	following	commands:

firewall-cmd	--permanent	--add-port=80/tcp

firewall-cmd	--permanent	--add-service=http

firewall-cmd	–reload

Now	try	to	access	it	from	the	browser.	It	will	show	you	the	output	as	in	the	following
screenshot:

Now,	let’s	see	if	we	change	the	type	context	of	the	index.html	file	and	whether	we	will
still	be	able	to	access	it	or	not.	We	will	use	the	chcon	command	to	change	the	type	context
and	will	use	the	–type	flag	for	this	purpose	as	shown	here:

chcon	--type	var_t	/var/www/html/index.html

If	we	check	the	context	of	the	file	using	ls	-Z	,	it	will	show	us:

-rwxr-xr-x.	root	root	unconfined_u:object_r:var_t:s0			

/var/www/html/index.html

It	is	visible	that	the	type	has	been	changed	to	var_t	here.

Now,	if	you	try	to	access	the	web	page	again,	it	will	show	you	an	error	or	you	might	see	a
default	page	but	not	the	same	page	that	we	saw	before.	This	is	because	we	have	changed
the	type	context	for	the	index.html	file.

To	revert	it,	we	will	use	the	following	command:

restorecon	-v	/var/www/html/index.html

Now,	if	we	access	the	site	again,	we	will	see	that	it	works	again	as	before.

The	SELinux	enforcing	mode	guarantees	that	unless	otherwise	specified	by	the	policy,

processes	and	files	are	created	with	the	same	context	as	their	parents.	What	this	means	is
that	if	process	A	is	spawning	process	B,	the	spawned	process	B	will	run	in	the	same
domain	as	process	A	unless	specified	differently	by	the	SELinux	policy,	and	similarly,	if
we	have	a	directory	with	some	context_t	type,	unless	defined	otherwise,	the	files	or
directories	under	it	will	inherit	the	same	context_t	type.

In	CentOS	7,	the	contexts	of	all	files	that	exist	in	the	system	are	listed	in	the
/etc/selinux/targeted/contexts/files/file_contexts	file	and	contexts	of	new
directories	and	files	are	recorded	in	the
/etc/selinux/targeted/contexts/files/file_contexts.local	file.	Since	chcon	is
used	to	change	context	temporarily	and	restorecon	is	used	to	restore	the	context,
restorecon	actually	looks	into	this	file	to	restore	the	original	context	of	a	file.

Let’s	create	/www/html:

mkdir	-p	/www/html

Now,	we	copy	the	contents	from	/var/www/html	to	/www/html	using	the	following
command:

cp	/var/www/html/index.html	/www/html/

If	we	check	the	context	of	the	file,	we	will	find	that	it’s	different	from	what	we	have	for
/var/www/html/index.html	and	its	default_t	because	that	is	the	context	of	its	parent
directory.

Further,	even	if	we	change	the	httpd	configuration	file	to	an	open	index.html	file	from
this	new	location,	we	will	still	face	errors	because	the	contexts	are	not	right	yet.	While
copying	the	index.html	file	from	/var/www/html	to	/www/html,	it	inherited	the	context
from	its	parent	directory,	which	is	default_t.

To	resolve	this	issue	we	will	have	to	change	its	context.

To	permanently	change	the	context	of	the	index.html	file	under	/www/html	that	we
created	before,	we	will	follow	two	steps:

semanage	fcontext	--add	--type	httpd_sys_content_t	"/www(/.*)?"

semanage	fcontext	--add	--type	httpd_sys_content_t	"/www/html(/.*)?"

Now,	we	check	the	context	database	from	the
/etc/selinux/targeted/contexts/files/file_contexts.local	file:

Now,	we	will	run	the	restorecon	command	to	relabel	the	file	or	directory	to	what	has
been	recorded	in	the	previous	step:

restorecon	-Rv	/www

This	will	work	in	three	levels;	first	it	will	relabel	the	/www	directory,	then	the	/www/html
directory,	and	finally,	the	/www/html/index.html	file.

Now,	if	we	try	to	access	the	web	page	it	should	work.

There	is	also	a	command	called	matchpathcon,	and	it	is	very	handy	to	troubleshoot
context	related	issues.	It	can	compare	the	context	of	a	current	resource	with	what’s	under
the	SELinux	context	database	and	report	back.	If	the	match	is	different,	it	suggests	the
changes	required.	We	can	run	the	command	using	the	-V	flag	for	/www/html/index.html
in	the	following	way:

matchpathcon	-V	/www/html/index.html

Domain	transition
Now,	let’s	find	out	how	a	process	accesses	other	processes.

Let’s	consider	that	the	vsftpd	process	is	running;	if	it’s	not	started,	we	can	start	it	using
the	following	command:

systemctl	start	vsftpd

The	vsftpd	process	is	started	by	the	systemd	process;	this	is	a	replacement	of	the	Sys	V
init	process	and	runs	within	a	context	of	init_t:

ps	-eZ	|	grep	init

The	systemd	process	running	under	the	init_t	domain	is	very	short	lived;	it	invokes
/usr/sbin/vsftpd,	which	has	a	type	context	ftpd_exec_t,	and	when	this	binary
executable	starts,	it	becomes	the	vsftpd	service	itself	and	runs	in	the	ftpd_t	domain.

So,	here’s	the	systemd	process	running	under	the	init_t	domain	executing	a	binary	file
with	the	ftpd_exec_t	type.	The	binary	file	then	starts	a	service	within	the	ftpd_t	domain.

Domain	transition	is	followed	by	three	strict	rules:

The	parent	process	of	the	source	domain	must	have	the	permission	to	execute	the
application	between	both	the	domains
The	file	context	for	that	application	must	be	identified	as	an	entry	point	for	the	target
domain
The	original	domain	must	be	allowed	to	transit	to	the	target	domain

Let’s	run	the	sesearch	command	for	the	vsftpd	service	to	check	whether	it	follows	these
rules:

1.	 First,	the	source	domain	init_t	must	have	permission	to	execute	the	application	in
the	ftpd_exec_t	context.	So	we	run:

sesearch	-s	init_t	-t	ftpd_exec_t	-c	file	-p	execute	-Ad

We	found	the	following	output:

allow	init_t	ftpd_exec_t	:	file	{	read	getattr	execute	open	}	;

So,	the	init_t	can	read,	get	attribute,	execute,	and	open	files	of	the	ftpd_exec_t
context.

2.	 Next,	we	check	whether	the	binary	file	is	the	entry	point	for	the	target	domain
ftpd_t:

sesearch	-s	ftpd_t	-t	ftpd_exec_t	-c	file	-p	entrypoint	-Ad

We	found	that	it	is:

allow	ftpd_t	ftpd_exec_t	:	file	{	ioctl	read	getattr	lock	execute	

execute_no_trans	entrypoint	open	}	;

3.	 Finally,	the	source	domain	init_t	needs	to	have	permission	to	transit	to	the	target
ftpd_t	domain:

sesearch	-s	init_t	-t	ftpd_t	-c	process	-p	transition	–Ad

We	can	see	that	the	source	domain	has	that	permission	as	well:

allow	init_t	ftpd_t	:	process	transition	;

SELinux	also	supports	processes	that	run	under	unconfined	domains;	for	example,
unconfined_t.	This	is	the	domain	where	logged	in	users	run	their	processes	by	default.

SELinux	users
As	explained	before,	SELinux	users	are	different	from	normal	Linux	users.	SELinux	users
are	defined	in	the	policy	that’s	loaded	into	the	memory	at	boot	time,	and	there	are	only	a
few	of	these	users.

After	SELinux	is	enforced,	each	regular	user	account	is	mapped	to	a	SELinux	user
account.	There	can	be	multiple	user	accounts	mapped	to	the	same	SELinux	user.	This
enables	the	normal	user	account	to	inherit	the	permission	of	its	SELinux	counterpart.

To	view	the	mapping,	we	will	run	the	following	command:

semanage	login	-l

Here,	we	will	find	that	there	are	only	three	Login	Names	as	shown	in	the	preceding
screenshot	representing	the	Linux	user	accounts.	Any	Linux	user	is	mapped	to	the	entry
shown	as	__default__	here.	The	user	root	is	not	mapped	to	default,	instead	it	has	its	own
entry	and	there	is	system_u	for	the	running	processes	or	services.	The	second	column
indicates	the	SELinux	user	they	are	mapped	to.	Normal	user	accounts	and	roots	are
mapped	to	unconfined_u,	whereas	the	processes	and	services	are	mapped	to	the	system_u
SELinux	user.	For	now,	ignore	the	third	column,	which	shows	the	Multi-Level	Security
(MLS)	Multi	Category	Security	(MCS)	class	for	the	user,	and	the	last	column	(service)
as	well.

To	see	the	SELinux	users	that	are	available	in	the	system,	use	the	semanage	user	command

as	follows:

semanage	user	-l

The	table	in	the	preceding	screenshot	shows	the	SELinux	users	available	in	the	system	and
the	roles	they	have	access	to.	We	already	discussed	that	SELinux	roles	are	like	gateways
between	a	user	and	a	process.	We	also	compared	them	to	filters,	where	a	user	can	enter	a
role,	provided	the	role	grants	it.	If	a	role	is	authorized	to	access	a	process	domain,	the
users	associated	with	that	role	will	be	able	to	enter	that	process	domain.

Now,	run	the	id	-Z	command	as	the	root	user.	It	will	show	the	SELinux	security	context
for	the	root:

So,	the	root	user	is	mapped	to	the	unconfined_t	SELinux	user,	which	is	authorized	to	the
unconfined_r	role,	which	in	turn	is	authorized	to	run	processes	in	the	unconfined_t
domain.

We	already	saw	that	there	are	several	SELinux	users	available	in	the	system.	Let’s	discuss
some	of	them	here:

guest_u:	This	type	of	user	doesn’t	have	access	to	the	X	Windows	system	or
networking	and	also	cannot	execute	the	su	or	sudo	commands
xguest_u:	This	type	of	user	has	access	to	GUI	and	the	network	via	the	browser	only
user_u:	This	type	of	user	has	general	access	to	GUI	and	the	network	but	cannot	run
su	or	sudo
staff_u:	This	is	the	same	as	user_u	except	that	they	can	run	sudo.
system_u:	This	is	meant	for	system	services	and	are	not	mapped	with	regular	user
accounts

Restricting	access	to	su	or	sudo
We	can	restrict	a	user	from	running	the	su	or	sudo	commands	by	changing	the	user’s
SELinux	user	mapping	like	this:

semanage	login	-a	-s	user_u	test

The	preceding	command	will	change	the	Linux	test	user’s	mapping	to	user_u	and	will
not	allow	the	su	or	sudo	commands	access.

Note
This	will	only	take	effect	when	the	user	is	not	logged	in.

Restricting	permissions	to	run	scripts
To	restrict	the	Linux	test	user’s	ability	to	run	scripts	we	have	to	do	two	things.	First,	we
change	the	user’s	mapping	to	guest_u,	the	same	way	as	we	did	previously:

semanage	login	-a	-s	guest_u	test

By	default,	SELinux	allows	users	mapped	to	guest_t	to	execute	scripts	from	their	home
directories.	We	can	confirm	the	same	using	the	following	command:

getsebool	allow_guest_exec_content

It	will	show	that	guest_exec_content	is	on.	So,	the	second	step	is	that	we	disable	the
guest_exec_content	using	this:

setsebool	allow_guest_exec_content	off

Now,	the	test	user	for	whom	we	changed	the	mapping	won’t	be	able	to	execute	any	scripts
even	if	he	has	full	access	to	his	home	directory	and	the	files	that	he	creates	there.

If	we	do	a	grep	to	see	what	SELinux	is	preventing	/var/log/messages,	it	will	show	us	the
access	denial	along	with	an	alert	ID.	We	can	note	the	alert	ID	and	run:

sealert	-l	<alert	id>

It	will	show	us	full	details	about	the	access	denial	along	with	some	suggestions	to	remove
it	as	well.

Restricting	access	to	services
Assume	we	have	a	user	admin	with	access	to	sudo	so	that	it	can	run	commands	with	sudo
to	start	and	stop	services	like	httpd.	Now,	even	if	the	user	has	sudo	accesses,	we	can	stop
him	from	management	access	to	services	by	changing	his	user	mapping	to	user_u,	the
same	way	we	did	before:

semanage	login	-a	-s	user_u	admin

This	will	restrict	the	user	admin	from	restarting	or	stopping	services.

We	can	verify	the	user_u	access	info	by	running	the	seinfo	command	as	the	root:

seinfo	-uuser_u	-x

This	output	shows	the	roles	user_u	can	have	access	to;	they	are	object_r	and	user_r.

Let’s	go	one	step	further	and	run	the	same	command	to	find	out	what	domains	the	user_r
role	is	authorized	to	enter:

seinfo	-ruser_r	-x

There	is	a	long	list	of	domains	the	role	can	enter.	Now,	let’s	find	out	whether	the	role	can
enter	the	domain	httpd_t	by	just	filtering	the	output	with	grep:

seinfo	-ruser_r	-x	|	grep	httpd_t

This	will	return	nothing,	which	means	that	the	user_r	role	is	not	authorized	to	enter	the
httpd_t	domain,	and	therefore,	it	is	unable	to	start	the	httpd	process	or	daemon.

SELinux	audit	logs
In	CentOS	7,	we	should	look	into	two	files	for	SELinux-related	errors	and	alerts;	they	are
as	follows:

/var/log/audit/audit.log

/var/log/messages

SELinux	troubleshooting
SELinux	comes	with	some	tools	that	are	very	useful	for	checking	errors	and
troubleshooting.	We	already	saw	one,	sealert	-l	<alert	id>,	where	we	gather	the	alert
ID	by	looking	into	/var/log/messages.	There	is	another	command	called	ausearch,
which	is	also	very	helpful	in	checking	errors	if	the	auditd	service	is	running,	which	is	as
follows:

ausearch	-m	avc	-c	httpd

Summary
In	this	chapter,	we	looked	into	various	aspects	of	SELinux	and	how	to	configure	it;	we
also	demonstrated	how	to	use	it	according	to	our	needs.	However,	be	cautious	and	never
test	SELinux	on	a	production	system.	It	is	better	to	use	a	production	replica	and	test
everything	there	first.	The	SELinux	facility	will	enhance	the	security	of	a	system	when	it’s
properly	configured,	but	it’s	best	used	when	strict	security	controls	are	necessary	and	only
when	it	is	deployed	with	care.

In	the	next	chapter,	we	will	look	at	how	Linux	can	be	used	for	a	variety	of	purposes.

Chapter	3.	Linux	for	Different	Purposes
The	plans	we	make	to	set	up	a	server	infrastructure	or	a	data	center	are	generally	the	same.
We	always	try	to	organize	services	between	the	servers	that	we	are	running,	respecting	our
needs.	Servers	operating	on	a	Linux	system	can	be	used	to	run	multiple	services	at	once	or
just	one	depending	on	how	much	processing	power	that	service	will	need	and	its	position
inside	the	network.	Following	the	needs	of	the	users,	system	administrators	should	always
be	ready	to	set	up	or	to	take	down	services	in	their	infrastructure.	Usually,	for	a	basic
system	installation,	there	will	be	a	number	of	services	already	installed	but	not	well
configured.

This	chapter	will	cover	some	of	the	main	Linux	services	that	most	users	are	in	need	of,
and	also	how	to	set	up,	configure,	and	operate	them.	Then	we	are	going	to	explore	some	of
those	service’s	aspects,	how	to	secure	them,	and	how	to	operate	them	in	the	best	way
possible.

In	this	chapter,	we	are	going	to	learn	to:

Configure	a	Gateway	server	using	iptables	and	IP	masquerading
Install	a	VPN	server
Implement	BIND	as	a	DNS	server
Set	up	and	use	a	web	server	using	Apache-MySQL-PHP	with	ModSecurity
Install	an	FTP	server
Implement	OpenSSL	in	Apache	and	FTP

Configuring	a	gateway	server
In	many	network	infrastructures,	system	administrators	need	to	separate	their	servers	and
workstation	inside	multiple	subnetworks.	Others	use	private	network	addresses	that	can	be
associated	with	public	addresses	using	the	Network	Address	Translation	(NAT)
technology.	A	Linux	gateway	server	is	one	of	the	common	solutions	that	can	help	set	up
this	kind	of	configuration.	The	following	screenshot	is	a	presentation	of	an	example	of	an
architecture	where	the	Gateway	server	serves	to	pass	through	both	local	and	external
networks:

As	per	the	requirement,	we	are	in	need	of	a	Linux	server	with	at	least	two	network
interfaces	(as	a	best	practice).	We	then	need	to	make	a	bridge	between	the	two	networks
associated	with	them.	During	this	section,	we	will	be	working	on	setting	up	a	gateway
between	public	(external)	and	private	(local)	addresses	using	IP	forwarding	and	NAT	rules
to	route	the	traffic	from	the	private	network	to	the	public	network.	We	will	call	the
external	network	Wide	Area	Network	(WAN)	and	the	local	network	Local	Area
Network	(LAN).

Note
The	traffic	generated	from	the	local	network	will	appear	to	originate	from	the	Gateway
server	to	the	external	network.	In	this	example,	we	will	need	another	machine	to	present	a
server	inside	the	LAN	network.

First,	we	will	set	up	the	network	configuration	of	the	WAN	interface.	To	do	so,	there	will	be

two	options:	either	the	interface	will	take	its	IP	configuration	via	DHCP	(automatic)	or	we
set	it	ourselves	manually	(static).	In	our	case,	we	will	do	the	automatic	configuration	since
our	WAN	network	is	provided	by	a	router	that	serves	DHCP	configuration.

We	will	start	by	editing	the	configuration	file	of	the	designated	interface	eth0:

$	sudo	nano	/etc/sysconfig/network-scripts/ifcfg-eth0

The	file	will	contain	the	following	lines:

HWADDR="XX:XX:XX:XX:XX:XX"

TYPE="Ethernet"

BOOTPROTO="dhcp"

DEFROUTE="yes"

PEERDNS="yes"

PEERROUTES="yes"

IPV4_FAILURE_FATAL="no"

IPV6INIT="yes"

IPV6_AUTOCONF="yes"

IPV6_DEFROUTE="yes"

IPV6_PEERDNS="yes"

IPV6_PEERROUTES="yes"

IPV6_FAILURE_FATAL="no"

DEVICE="eth0"

UUID="01f7dbb3-7ac8-406d-a88b-76082e0fa6eb"

ONBOOT="yes"

We	should	focus	on	the	line	where	BOOTPROTO	is	written,	which	is	the	protocol	to	use	for
the	network	configuration,	and	we	need	to	make	sure	that	it	is	set	on	dhcp.

The	default	installation	sets	all	the	interfaces	to	the	DHCP	configuration	unless	they	have
been	modified	during	the	installation	or	later.

Also,	we	need	to	make	sure	that	the	DEVICE	is	set	to	the	interface	name	that	we	are	going
to	use	to	serve	the	DHCP	server	and	as	named	in	our	server	(for	our	case	it	is	eth0).	Then
the	option	ONBOOT	is	set	to	yes.

Note
After	editing	the	file,	if	needed,	make	sure	to	save	the	modifications	before	leaving	the
text	editor.

After	making	sure	that	all	changes	are	successfully	set,	we	need	to	restart	the	network
manager	so	the	machine	can	take	the	DHCP	configuration:

$	sudo	systemctl	restart	network.service

During	the	execution	of	this	step,	the	network	connection	may	be	lost.	We	need	to	make
sure	that	we	do	not	need	it	in	the	meantime.

Now	we	can	move	to	the	configuration	of	the	second	network	interface	of	the	gateway
server	connected	to	the	LAN.	For	this	configuration,	we	need	to	use	a	static	IP	address.

In	a	similar	way	to	the	first	interface,	we	are	going	to	edit	the	configuration	file	of	this
interface	eth1:

$	sudo	nano	/etc/sysconfig/network-scripts/ifcfg-eth1

Also,	this	file	will	contain	some	configuration	files,	but	we	will	be	interested	in	only	some
of	them:

HWADDR="XX:XX:XX:XX:XX:XX"

TYPE="Ethernet"

BOOTPROTO="dhcp"

DEFROUTE="yes"

PEERDNS="yes"

PEERROUTES="yes"

IPV4_FAILURE_FATAL="no"

IPV6INIT="yes"

IPV6_AUTOCONF="yes"

IPV6_DEFROUTE="yes"

IPV6_PEERDNS="yes"

IPV6_PEERROUTES="yes"

IPV6_FAILURE_FATAL="no"

DEVICE="eth1"

UUID="	b3fcc00e-a7d9-4b55-a32c-1e88e394aaf6"

ONBOOT="yes"

This	is	the	default	configuration,	so	we	need	to	change	it	from	a	dynamic	configuration	to
a	static	one.

The	modification	will	consist	of	modifying	some	lines	and	adding	others.

We	start	by	changing	the	configuration	protocol	from	dhcp	to	static	to	look	like	this:
BOOTPROTO="static"

Then	we	add	the	static	IP	address	with	this	line:	IPADDR="10.0.1.1".

Then	the	network	mask,	NETMASK="255.255.255.0".

And,	finally,	we	make	sure	that	the	option	DEVICE	is	set	to	eth1	and	the	option	ONBOOT	is
set	to	yes.

Again,	to	make	sure	that	this	configuration	is	successfully	applied,	we	need	to	restart	the
network	service:

$	sudo	systemctl	restart	network.service

Note
If	the	configuration	does	not	take	effect	when	typing	ifconfig,	to	check	the	interfaces’
configuration	we	need	to	run	this	command:

$	sudo	systemctl	restart	network.service

$	sudo	systemctl	status	network.service

Now	we	move	on	to	the	configuration	of	a	client,	the	machine	that	will	be	using	the
gateway	server.	So	we	need	to	configure	its	interface	for	the	LAN	network.	Since	we	are
not	limited	to	one	specific	client,	if	we	have	a	graphical	interface	we	can	just	go	to	the
connected	interface	and	enter	these	configurations:

IP	address:	10.0.1.2

Network	Mask:	255.255.255.0

Gateway:	10.0.1.1

For	the	DNS	server,	we	will	go	with	Google	DNS,	which	is	very	reliable:

DNS	server:	8.8.8.8

Note
It	is	not	an	obligation	to	enter	the	Google	DNS	server	address.	Some	sites	may	be
blocking	it,	others	may	be	using	their	local	DNS	server.	Depending	on	the	need	and	if	we
don’t	have	any,	Google	DNS	will	be	fine.

If	we	need	to	use	another	CentOS	7	server,	we	may	need	to	do	the	same	steps	during	the
static	server	configuration.

We	edit	the	configuration	file	of	the	interface:

$	sudo	nano	/etc/sysconfig/network-scripts/ifcfg-eth1

By	changing	the	configuration	protocol	to	static	and	add	these	two	lines:

IPADDR="10.0.1.2"

NETMASK="255.255.255.0"

We	also	sure	that	ONBOOT=yes	and	DEVICE=eth0.

To	use	the	Google	DNS	server,	we	can	edit	the	/etc/resolv.conf	file:

$	nano	/etc/resolv.conf

To	add	these	two	lines:

nameserver	8.8.8.8

nameserver	8.8.4.4

Then	restart	the	network	service:

$	sudo	systemctl	restart	network.service

We	go	back	to	our	Gateway	server,	then	start	doing	the	configuration	of	the	IP	forwarding.
First,	we	need	to	enable	it	for	the	IPv4	packet	forwarding:

$	sudo	sysctl	-w	net.ipv4.ip_forward=1

To	hold	maintain	configuration	on	every	system	restart	we	need	to	make	a	modification	to
the	IP	forwarding	configuration	file:

$	sudo	nano	/etc/sysctl.conf

Then	add	this	line	and	save:

net.ipv4.ip_forward	=	1

To	reload	the	configuration	made	to	the	file,	we	need	to	run	this	command:

$	sudo	sysctl	–w

The	current	configuration	can	be	visualized	via	this	command:

$	sudo	cat	/proc/sys/net/ipv4/ip_forward

Now	we	go	to	enabling	NAT	configuration.	Using	iptables,	we	need	to	enable	the	IP
masquerading.	firewalld	is	a	service	that	allows	easy	configuration	of	iptables	easily.
To	use	firewalld	we	will	rely	on	the	command	firewalld-cmd,	then	we	enter	the
required	configuration.

We	start	by	configuring	the	NAT	in	firewalld.	First,	we	will	set	the	LAN	network	as	a
trusted	zone:

$	sudo	firewall-cmd	--permanent	--zone=trusted	--add-source=10.0.1.0/24

Then	we	integrate	the	LAN	interface	eth1	to	a	zone	called	internal:

$	sudo	firewall-cmd	--change-interface=eth1	--zone=internal	--permanent

We	do	the	same	for	the	WAN	interface	eth0	to	a	zone	called	external:

$	sudo	firewall-cmd	--change-interface=eth0	--zone=external	--permanent

Then	we	configure	the	masquerade	option	for	the	external	WAN:

$	sudo	firewall-cmd	--zone=external	--add-masquerade	--permanent

For	an	optional	DNS	configuration,	we	can	make	it	pass	through	the	internal	zone:

$	sudo	firewall-cmd	--zone=internal	--add-service=dns	–-permanent

Before	we	finish,	we	make	sure	that	the	NAT	is	configured	to	pass	through	traffic	from	the
LAN	to	the	WAN	interface:

$	sudo	firewall-cmd	--permanent	--direct	--passthrough	ipv4	-t	nat	-I	

POSTROUTING	-o	eth0	-j	MASQUERADE	-s	10.0.1.0/24	

Finally,	we	need	to	reload	the	firewall	service	so	that	the	configuration	takes	effect:

$	sudo	firewall-cmd	–reload

After	this	point,	the	Gateway	server	should	be	running	well.	To	test	the	configuration,	we
need	to	ping	any	website	from	any	machine	located	on	the	LAN	network:

$	ping	www.google.com

Then	we	need	to	see	the	following	kind	of	output	to	know	that	our	Gateway	server	is
working	correctly:

PING	www.google.com	(216.58.210.196):	56	data	bytes

64	bytes	from	216.58.210.196:	seq=0	ttl=50	time=55.799	ms

64	bytes	from	216.58.210.196:	seq=1	ttl=50	time=65.751	ms

64	bytes	from	216.58.210.196:	seq=2	ttl=50	time=54.878	ms

64	bytes	from	216.58.210.196:	seq=3	ttl=50	time=54.186	ms

64	bytes	from	216.58.210.196:	seq=4	ttl=50	time=93.656	ms

---	www.google.com	ping	statistics	---

5	packets	transmitted,	5	packets	received,	0%	packet	loss

round-trip	min/avg/max	=	54.186/64.854/93.656	ms

We	would	recommend	the	use	of	a	DHCP	server	to	set	up	the	configuration	for	all	the
clients	if	we	are	using	a	desktop	machine	and	are	not	in	need	of	static	configuration.	Even
for	a	more	advanced	DHCP	configuration	we	can	associate	specific	IP	addresses	to	the
servers	via	their	interfaces’	MAC	address.

Setting	up	a	VPN	server
OpenVPN	is	an	opensource	software	application	that	implements	virtual	private
network	(VPN)	techniques	for	creating	secure	point-to-point	or	site-to-site	connections	in
routed	or	bridged	configurations	and	remote	access	facilities.

As	a	requirement	for	this	section,	we	are	in	need	for	a	CentOS	7	server	with	the	capacity
to	install	some	packages	and	make	some	changes	to	the	network	configuration	files
(internet	and	root	access).	At	a	later	stage,	we	may	need	to	create	some	authentication
certificates.	We	will	cover	how	to	do	that	too.

First,	we	will	start	with	the	installation	of	the	required	packages.	And	before	we	do	that,
OpenVPN	isn’t	available	in	the	default	CentOS	standard	repository,	so	we	need	to	add	the
EPEL	repository	that	contains	the	popular	additional	packages:

$	sudo	yum	install	epel-release

After	this	command	is	done,	we	can	start	OpenVPN.	We	also	need	to	install	an	RSA
generator	to	generate	the	SSL	key	pairs	that	we	will	use	to	secure	the	VPN	connection:

$	sudo	yum	install	openvpn	easy-rsa

By	the	end	of	the	execution	of	the	command,	the	OpenVPN	and	the	easy-rsa	are
successfully	installed	on	the	system.

Now	we	move	to	the	configuration	part	of	the	OpenVPN.	Since	OpenVPN	has	an	example
of	a	configuration	file	in	its	documentation	directory,	we	are	going	to	use	the	server.conf
file	as	our	initial	configuration	and	build	on	that.	To	do	so,	we	need	to	copy	it	to	the	/etc
directory:

$	sudo	cp	/usr/share/doc/openvpn-*/sample/sample-config-files/server.conf	

/etc/openvpn/

Then	we	can	edit	it	to	suit	our	needs:

$	sudo	nano	/etc/openvpn/server.conf

After	opening	the	file,	we	need	to	remove	some	commented	lines	and	make	some	little
changes	as	follows	(using	nano	to	look	for	the	lines	to	change,	we	should	use	Ctrl	+	w,
then	type	the	word	we	are	looking	for).

First,	we	need	to	set	the	RSA	encryption	length	to	be	2048	bytes,	so	we	need	to	make	sure
that	the	option	line	that	indicates	the	filename	is	going	to	be	used	like	this.

dh	dh2048.pem

Note
Some	articles	suggest	that	a	DH	key	with	1024	bytes	is	vulnerable,	so	we	recommend
using	a	DH	key	with	2048	bytes	or	more	for	better	security.	The	vulnerability	is	called
Logjam	and	for	more	details,	you	can	read	more	about	it	at:
http://sourceforge.net/p/openvpn/mailman/message/34132515/

http://sourceforge.net/p/openvpn/mailman/message/34132515/

Then	we	need	to	uncomment	the	line	push	redirect-gateway	def1	bypass-dhcp"",
which	tells	the	client	to	redirect	all	traffic	to	OpenVPN.

Next	we	need	to	set	a	DNS	server	to	the	client,	since	it	will	not	be	able	to	use	the	one
provided	by	the	ISP.	Again,	I	will	go	with	the	Google	DNS	8.8.8.8	and	8.8.4.4:

push	"dhcp-option	DNS	8.8.8.8"

push	"dhcp-option	DNS	8.8.4.4"

Finally,	to	lead	a	smooth	run	for	the	OpenVPN,	we	need	to	run	it	through	no	privileges
first.	To	do	so	we	need	to	run	it	through	a	user	and	group	called	nobody:

user	nobody

group	nobody

Then	save	the	file	and	exit.

By	now,	the	configuration	part	of	the	OpenVPN	service	is	done.	We’ll	move	on	to	the
certificate	and	key	generation	part,	where	we	need	to	create	some	script	using	Easy	RSA.
We	start	by	creating	a	directory	of	Easy	RSA	in	the	configuration	folder	of	the	OpenVPN:

$	sudo	mkdir	-p	/etc/openvpn/easy-rsa/keys

Then	we	need	to	populate	the	folder	with	the	predefined	scripts	of	Easy	RSA	that	generate
keys	and	certificates:

$	sudo	cp	-rf	/usr/share/easy-rsa/2.0/*	/etc/openvpn/easy-rsa/

To	perform	an	easy	VPN	setup,	we	will	start	by	typing	our	information	once	and	for	all	in
the	vars	file:

$	sudo	nano	/etc/openvpn/easy-rsa/vars

We	are	basically	changing	the	lines	that	start	with	export	KEY_	to	update	their	values	to
match	the	ones	of	the	organization	desired,	and	at	some	point	we	may	need	to	uncomment
them:

export	KEY_COUNTRY="UK"

export	KEY_PROVINCE="GL"

export	KEY_CITY="London"

export	KEY_ORG="City-Center"

export	KEY_EMAIL="user@packt.co.uk"

export	KEY_OU="PacktPublishing"

#	X509	Subject	Field

export	KEY_NAME="server"

export	KEY_CN="openvpn.packt.co.uk"

Then	save	the	file	and	exit.

The	field	KEY_NAME	represents	the	name	of	the	files	.key	and	.crt.

The	field	KEY_CN	is	where	we	should	put	the	domain	or	the	sub-domain	that	leads	to	our
VPN	server.

To	make	sure	that	no	issues	arise	during	our	use	of	the	OpenSSL	configuration	file	due	to
a	version	update,	we	will	remove	the	version	from	the	filename:

$	sudo	cp	/etc/openvpn/easy-rsa/openssl-1.0.0.cnf	/etc/openvpn/easy-

rsa/openssl.cnf

Now	we	move	to	the	creation	of	certificate	and	keys	creation.	We	need	to	be	in	the
/etc/openvpn/easy-ras	folder	to	run	the	scripts:

$	cd	/etc/openvpn/easy-rsa

Then	we	start	the	source	in	the	variables:

$	sudo	source	./vars

After	that	we	clean	any	old	generated	keys	and	certificates:

$	sudo	./clean-all

Then	we	build	the	certification	authority,	which	has	its	information	already	defined	as
default	options:

$	sudo	./build-ca

Now	we	create	the	keys	and	certificates	for	our	VPN	server.	We	skip	the	challenge
password	phase	by	pressing	Enter.	Then	we	make	sure	to	validate	by	typing	Y	for	the	last
step:

$	sudo	./build-key-server	server

When	running	this	command,	we	should	see	the	following	message	if	it	is	running
correctly:

Check	that	the	request	matches	the	signature

Signature	ok

The	Subject's	Distinguished	Name	is	as	follows

countryName											:PRINTABLE:'UK'

stateOrProvinceName			:PRINTABLE:'GL'

localityName										:PRINTABLE:'London'

organizationName						:PRINTABLE:'City-Center'

organizationalUnitName:PRINTABLE:'PacktPublishing'

commonName												:PRINTABLE:'server'

name																		:PRINTABLE:'server'

emailAddress										:IA5STRING:'user@packt.co.uk'

Also,	we	need	to	generate	the	Diffie-Hellman	(dh)	key	exchange.	This	may	take	a	while
longer,	as	compared	to	the	other	commands:

$	sudo	./build-dh

After	finishing	this	step,	we	will	have	all	our	keys	and	certificates	ready.	We	need	to	copy
them	so	they	can	be	used	by	our	OpenVPN	service:

$	cd	/etc/openvpn/easy-rsa/keys

$	sudo	cp	dh2048.pem	ca.crt	server.crt	server.key	/etc/openvpn

All	the	clients	of	this	VPN	server	need	certificates	to	get	authenticated.	So	we	need	to

share	those	keys	and	certificates	with	the	desired	clients.	It	is	best	to	generate	separate
keys	for	each	client	that	needs	to	connect.

For	this	example,	we	will	only	generate	keys	for	one	client:

$	cd	/etc/openvpn/easy-rsa

$	sudo	./build-key	client

With	this	step,	we	can	say	that	we	are	done	with	the	certificates.

Now	for	the	routing	step.	We	will	do	the	routing	configuration	using	iptables	directly
without	the	need	of	using	firewalld.

If	we	want	to	only	use	the	iptables	configuration,	we	will	first	make	sure	that	its	services
are	installed:

$	sudo	yum	install	iptables-services

Then	disable	the	firewalld	service:

$	sudo	systemctl	mask	firewalld

$	sudo	systemctl	enable	iptables

$	sudo	systemctl	stop	firewalld

$	sudo	systemctl	start	iptables

$	sudo	iptables	--flush

Then	we	add	the	rule	to	iptables	that	does	the	forwarding	of	the	routing	to	the	OpenVPN
subnet:

$	sudo	iptables	-t	nat	-A	POSTROUTING	-s	10.0.1.0/24	-o	eth0	-j	MASQUERADE

$	sudo	iptables-save	>	/etc/sysconfig/iptables

Then	we	need	to	enable	IP	forwarding	in	sysctl	by	editing	the	file	sysctl.conf:

$	sudo	nano	/etc/sysctl.conf

Then	add	the	following	line:

net.ipv4.ip_forward	=	1

Finally,	restart	the	network	service	so	this	configuration	can	take	effect:

$	sudo	systemctl	restart	network.service

We	can	now	start	the	OpenVPN	service,	but	before	we	do	this,	we	need	to	add	it	to
systemctl:

$	sudo	systemctl	-f	enable	openvpn@server.service

Then	we	can	start	the	service:

$	sudo	systemctl	start	openvpn@server.service

If	we	want	to	check	whether	the	service	is	running,	we	can	use	the	command	systemctl:

$	sudo	systemctl	status	openvpn@server.service

We	should	see	this	message	with	the	activity	status	active	(running):

openvpn@server.service	-	OpenVPN	Robust	And	Highly	Flexible	Tunneling	

Application	On	server

			Loaded:	loaded	(/usr/lib/systemd/system/openvpn@.service;	enabled)

			Active:	active	(running)	since	Thu	2015-07-30	15:54:52	CET;	25s	ago

After	this	check,	we	can	say	that	our	VPN	server	configuration	is	done.	We	can	now	go	to
the	client	configuration	regardless	of	the	operating	system.	We	need	to	copy	the
certificates	and	the	keys	from	the	server.	We	need	to	copy	these	three	files:

/etc/openvpn/easy-rsa/keys/ca.crt

/etc/openvpn/easy-rsa/keys/client.crt

/etc/openvpn/easy-rsa/keys/client.key

There	are	a	variety	of	tools	to	copy	these	files	from	the	server	to	any	client.	The	easiest
one	is	scp,	the	shell	copy	command	between	two	Unix	machines.	For	Windows	machines
we	can	use	folder	sharing	tools	such	as	Samba,	or	we	can	use	another	tool	equivalent	to
SCP	called	WinSCP.

From	the	client	machine,	we	start	by	copying	the	desired	files:

$	scp	user@openvpn.packt.co.uk:/etc/openvpn/easy-rsa/keys/ca.crt	

/home/user/

$	scp	user@openvpn.packt.co.uk:/etc/openvpn/easy-rsa/keys/client.crt	

/home/user/

$	scp	user@openvpn.packt.co.uk:/etc/openvpn/easy-rsa/keys/client.key	

/home/user/

After	the	copying	is	done	we	should	create	a	file,	client.ovpn,	which	is	a	configuration
file	for	the	OpenVPN	client	that	helps	set	up	the	client	to	get	connected	to	the	VPN
network	provided	by	the	server.	The	file	should	contain	the	following:

client

dev	tun

proto	udp

remote	server.packt.co.uk	1194

resolv-retry	infinite

nobind

persist-key

persist-tun

comp-lzo

verb	3

ca	/home/user/ca.crt

cert	/home/user/client.crt

key	/home/user/client.key

We	need	to	make	sure	that	the	first	line	contains	the	name	of	the	client	typed	in	the	keys
and	certificate.	After	this,	remote	should	be	the	public	IP	address	of	the	server	or	its
domain	address.	In	the	end,	the	correct	location	of	the	three	client	files	should	be	copied
from	the	server.

The	file	client.ovpn	could	be	used	with	multiple	VPN	clients	(OpenVPN	client	for
Linux,	Tunnelblick	for	MAC	OS	X,	OpenVPN	Community	Edition	Binaries	for
Windows)	to	get	them	configured	to	connect	to	the	VPN.

On	a	CentOS	7	server	we	will	use	the	OpenVPN	client.	To	use	this	configuration,	we	use

the	command	openvpn	--config:

$	sudo	openvpn	--config	~/path/to/client.ovpn

By	getting	the	client	connected	to	the	VPN	server,	we	can	confirm	that	our	VPN	service	is
working	well.

Implementing	BIND	as	a	DNS	server
BIND	is	the	most	widely	used	open	source	name	server	application.	It	helps	implement
the	Domain	Name	System	(DNS)	protocols	for	the	Internet.	It	provides	a	robust	and
stable	platform	on	which	to	build	a	distributed	computing	system,	with	knowledge	that
those	systems	are	fully	compliant	with	published	DNS	standards.	It	helps	resolve	queries
about	names	by	sending	those	questions	to	the	appropriate	servers	and	responding
appropriately	to	the	servers’	replies.

As	an	example	of	the	implementation	of	BIND,	we	will	set	up	an	internal	DNS	server	to
resolve	some	public	IP	addresses	inside	the	network	to	simplify	the	mapping	inside	a	large
environment.

We	need	the	following	prerequisites	to	implement	BIND:

One	server	to	have	BIND	installed	and	configured	on	it
Two	machines,	either	servers	or	simple	workstations,	to	test	the	DNS	service
Root	privilege	to	be	able	to	set	up	BIND	and	configure	the	network	to	resolve	from
our	internal	DNS	server

First,	we	will	start	by	installing	BIND	on	our	DNS	server:

$	sudo	yum	install	bind	bind-utils

After	getting	BIND	installed,	we	start	configuring	our	DNS	server.

The	BIND	service	has	a	bunch	of	configuration	files	that	get	included	from	its	main
configuration	file,	named.conf,	which	is	associated	with	the	process	that	BIND	runs:

$	sudo	nano	/etc/named.conf

At	the	beginning	of	the	file	we	need	to	add	a	block	just	before	the	options	block,	the	acl
"trusted"	block,	where	we	are	going	to	define	the	list	of	clients	allowed	to	do	recursive
DNS	queries.	Since	our	server	will	be	serving	two	subnets	we	will	add	its	two	addresses:

acl	"trusted"	{

				192.168.8.12;		#	Our	DNS	server	inside	the	subnet	192.168.8.0/24

				10.0.1.1;		#	Our	DNS	server	inside	the	subnet	10.0.1.0/24

				192.168.8.5;				#	Webserver

				10.0.1.2;				#	client	host

};

We	need	to	make	some	modifications	inside	the	options.	Since	we	are	using	IPv4	only,
we	need	to	comment	the	IPv6	line:

#	listen-on-v6	port	53	{	::1;	};	

And	to	make	sure	that	the	DNS	server	will	listen	in	both	subnets,	we	will	add	the
following	two	addresses:

listen-on	port	53	{	127.0.0.1;	192.168.8.12;	10.0.1.1;	};

With	the	IP	address	192.168.8.12	as	the	IP	address	of	the	DNS	server.

Then	we	change	the	line	allow-query	from	pointing	to	the	localhost	to	point	to	the
trusted	clients	ACL:

allow-query	{	trusted;	};

Note
If	we	don’t	fully	rely	on	our	DNS	server	to	respond	to	all	queries,	we	can	use	a	secondary
DNS	server	by	typing	this	command	inside	the	options:

allow-transfer	{	localhost;	192.168.8.1;	};

And	finally,	at	the	end	of	the	file	we	need	to	add	the	line	that	includes	the	local	file
configuration:

include	"/etc/named/named.conf.local";

Then	we	save	the	file	and	move	to	the	local	file	configuration	to	set	the	DNS	zones:

$	sudo	nano	/etc/named/named.conf.local

The	file	will	be	empty	since	we	are	the	ones	who	created	it,	so	we	need	to	fill	it	with	the
necessary	zones.

First,	we	will	add	the	forward	zone.	To	do	so	we	need	to	enter	the	following	lines:

zone	"packt.co.uk"	{

type	master;

file	"/etc/named/zones/db.packt.co.uk";		#	The	location	of	the	zone	

configuration	file.

};

Now	we	will	add	the	Reverse	zone.	Since	our	first	LAN	is	at	192.168.8.0/24	we	start
with	the	Reverse	zone	name,	which	will	be	8.168.192,	the	reverse	of	192.168.8:

zone	"8.168.192.in-addr.arpa"	{

type	master;

file	"/etc/named/zones/db.8.168.192";		#	The	subnet	of	192.168.8.0/24

};

Now	we	do	same	with	our	second	LAN	on	10.0.1.0/24,	so	its	reverse	zone	name	1.0.10:

zone	"1.0.10.in-addr.arpa"	{

type	master;

file	"/etc/named/zones/db.1.0.10";		#	The	subnet	of	10.0.1.0/24

};

We	need	to	do	the	same	thing	for	all	the	subnets	in	the	network,	then	we	save	the	file.

After	finishing	with	setting	the	zones	and	the	Reverse	zones,	we	move	on	to	create	and	fill
up	their	corresponding	files.

We	start	by	creating	the	forwarding	file,	which	is	where	we	define	DNS	records	for
forward	DNS	lookups.	We	create	the	folder	in	which	we	are	going	to	put	all	the	zone	files.
Then	we	start	creating	our	zone	files	inside	it:

$	sudo	chmod	755	/etc/named

$	sudo	mkdir	/etc/named/zones

Then	we	create	the	Forward	zone	file	and	fill	it	up:

$	sudo	nano	/etc/named/zones/db.packt.co.uk

We	need	to	add	the	following	lines.	Starting	with	the	SOA	record	by	adding	the	domain	of
the	DNS	server,	we	need	to	increment	the	serial	value	every	time	we	edit	the	zone	file	so
the	change	can	take	effect	after	restarting	the	service:

$TTL				604800

@		IN		SOA		server.packt.co.uk.		admin.packt.co.uk.		(

3				;	Serial

604800				;	Refresh

86400				;	Retry

2419200		;	Expire

604800)		;	Negative	Cache	TTL

For	the	serial,	we	can	make	it	more	understandable	by	making	it	look	like	a	date:
{yyyymmmdddss}	yyyy	=	year,	mm	=	month,	dd	=	day,	ss	=	a	sequence	number.

Then	we	add	the	name	server	records:

;	name	servers	-	NS	records 
IN		NS		server.packt.co.uk.

Then	we	add	the	A	records	for	the	hosts	that	belong	to	this	zone,	which	will	include
every	machine,	either	a	server	or	a	workstation,	which	we	want	to	address	with	our	DNS
server:

;	name	servers	-	A	records

server.packt.co.uk.		IN		A		192.168.8.12

;	192.168.8.0/24	-	A	records

server2.packt.co.uk.		IN		A		192.168.8.5

;	10.0.1.0/24	-	A	records

client1.packt.co.uk.		IN		A		10.0.1.2

server.packt.co.uk.		IN		A		10.0.1.1

Now	we	create	the	Reverse	zone	files.	It	is	where	we	define	DNS	PTR	records	for	reverse
DNS	lookups.

We	start	with	the	first	Reverse	zone	db.1.0.10:

$	sudo	nano	/etc/named/zones/db.1.0.10

As	we	have	done	for	the	first	zone	file,	we	need	to	define	the	SOA	domain:

$TTL				604800

@		IN		SOA		server.packt.co.uk.		admin.packt.co.uk.	(

																														3									;	Serial

																									604800									;	Refresh

																										86400									;	Retry

																								2419200									;	Expire

																									604800)							;	Negative	Cache	TTL

Then	the	name-server	records:

;	name	servers	-	NS	records

IN		NS		server.packt.co.uk.

Finally,	we	add	the	PTR	records	that	list	all	the	machines	with	IP	addresses	that	are	on	the
subnet	of	the	zone	file:

;	PTR	Records

1		IN		PTR		server.packt.co.uk.		;	10.0.1.1

2		IN		PTR		client1.packt.co.uk.		;	10.0.1.2

Then	we	do	the	second	Reverse	zone	file	db.8.168.192:

$	sudo	nano	/etc/named/zones/db.8.168.192

We	add	the	SOA	domain:

$TTL				604800

@		IN		SOA		server.packt.co.uk.		admin.packt.co.uk.	(

																														3									;	Serial

																									604800									;	Refresh

																										86400									;	Retry

																								2419200									;	Expire

																									604800)							;	Negative	Cache	TTL

Then	we	add	the	name-server	records:

;	name	servers	-	NS	records

IN		NS		server.packt.co.uk.

And	we	finish	with	the	PTR	records:

;	PTR	Records

12		IN		PTR		server.packt.co.uk.		;	192.168.8.12

5		IN		PTR		webserver.packt.co.uk.		;	192.168.8.5

We	save	all	files.	And	we	check	the	BIND	configuration	by	checking	the	syntax	of	the
files	named.conf*:

$	sudo	named-checkconf

If	no	errors	are	shown,	it	means	that	all	configuration	files	are	well	written	with	no	syntax
mistakes.	Otherwise,	try	to	track	the	errors	and	fix	them	using	the	error	message.

Then	check	the	zone	files	using	the	command	named-checkzone	in	each	zone	if	we	have
many:

$	sudo	named-checkzone	packt.co.uk	/etc/named/zones/db.packt.co.uk

If	the	zone	is	successfully	set	we	should	see	this	kind	of	message:

zone	packt.co.uk/IN:	loaded	serial	3

OK

We	should	see	the	same	thing	for	the	Reverse	zones:

$	sudo	named-checkzone	1.0.10.in-addr.arpa	/etc/named/zones/db.1.0.10

$	sudo	named-checkzone	8.168.192.in-addr.arpa	/etc/named/zones/db.8.168.192

We	should	also	see	the	same	message	if	everything	is	well	configured.	Otherwise,	we	need
to	troubleshoot	the	following	error	message:

zone	8.168.192.in-addr.arpa/IN:	loaded	serial	3

OK

After	checking	all	configurations,	we	are	now	ready	to	start	the	BIND	service.

And	just	before	that	we	need	to	make	sure	that	our	firewall	allows	us	to	do	so.	We	need	to
open	port	53	using	the	Firewalld	service:

$	sudo	firewall-cmd	--permanent	--add-port=53/tcp

$	sudo	firewall-cmd	--permanent	--add-port=53/udp

$	sudo	firewall-cmd	--reload

After	reloading	the	Firewall,	the	change	will	take	effect	and	now	we	can	start	the	DNS
service:

$	sudo	systemctl	start	named

Then	we	enable	it	so	it	can	start	at	the	system	boot:

$	sudo	systemctl	enable	named

With	this	step	the	DNS	server	is	now	ready	to	receive	and	respond	to	DNS	queries.

Let’s	now	do	a	client	configuration	to	test	the	DNS	server.	On	a	Linux	server,	we	only
need	to	modify	the	resolv.conf	file	by	adding	the	name-server	IP	address	and	the	search
domain:

$	sudo	nano	/etc/resolv.conf

By	adding	the	following	lines,	then	saving:

search	nyc3.example.			#	Our	domain

nameserver	10.0.1.1			#	The	DNS	server	IP	address

Now	we	can	start	the	test.	We	will	use	a	simple	ping	and	the	command	nslookup.	The
ping	will	only	test	whether	we	can	reach	the	machine	giving	its	domain	name:

$	ping	webserver.packt.co.uk

PING	webserver.packt.co.uk	(192.168.8.5):	56	data	bytes

64	bytes	from	192.168.8.5:	icmp_seq=0	ttl=64	time=0.046	ms

64	bytes	from	192.168.8.5:	icmp_seq=1	ttl=64	time=0.092	ms

64	bytes	from	192.168.8.5:	icmp_seq=2	ttl=64	time=0.117	ms

64	bytes	from	192.168.8.5:	icmp_seq=3	ttl=64	time=0.092	ms

---	webserver.packt.co.uk	ping	statistics	---

4	packets	transmitted,	4	packets	received,	0.0%	packet	loss

round-trip	min/avg/max/stddev	=	0.046/0.087/0.117/0.026	ms

There	are	also	other	tools	that	can	give	more	detailed	results	when	testing	the	DNS	service
such	as	dig	and	nslookup	to	do	a	simple	DNS	lookup:

$	nslookup	webserver.packt.co.uk

Server:				10.0.1.1

Address:				10.0.1.1#53

Name:						webserver.packt.co.uk

Address:					192.168.8.5	webserver.packt.co.uk

After	running	the	DNS	lookup,	we	will	try	a	reverse	DNS	lookup:

$	nslookup	webserver.packt.co.uk

Server:				10.0.1.1

Address:				10.0.1.1#53

5.8.168.192.in-addr.arpa		name	=	webserver.packt.co.uk.

After	running	all	these	tests,	we	should	check	whether	all	the	values	are	true,	to	confirm
that	we	have	a	fully-working	DNS	server.

Setting	up	a	web	server	using	Apache-
MySQL-PHP
One	of	the	common	services	that	a	Linux	server	offers	is	being	a	web	server,	to	give	its
user	the	capacity	to	host	their	web	content	in	a	secure,	fast,	and	reliable	location,
browsable	from	all	over	the	world.	In	this	section,	we	are	going	to	show	you	how	to	set	up
a	reliable	web	server	on	a	CentOS	7	server	with	some	security	modules	that	will	secure
the	website,	and	we	will	do	an	implementation	of	a	Content	Management	System
(CMS):	Joomla.

Our	web	server	will	host	dynamic	websites	and	web	applications.	So	we	will	install	a
LAMP	(Stack)	server,	represent	a	Linux	operating	system	with	the	Apache	web	server,
where	the	site	data	will	be	stored	in	MySQL	databases	(using	MariaDB,	which	is	a
community-developed	fork	of	the	MySQL	relational	database	management	system
intended	to	remain	free	under	the	GNU	GPL),	and	dynamic	content	processed	by	PHP.

We	will	start	with	the	installation	of	the	Apache	web	server,	which	is	the	most	popular
web	server	in	the	world:

$	sudo	yum	install	httpd

By	the	end	of	the	command,	the	Apache	web	server	is	successfully	installed.	We	can	start
it	using	the	command	systemctl:

$	sudo	systemctl	start	httpd.service

Before	testing	the	service,	we	need	to	make	sure	that	the	server	firewall	allows	web
access.	So,	we	need	to	open	the	ports	that	Apache	is	serving	from,	HTTP	(80)	and	HTTPS
(443):

$	sudo	firewall-cmd	--permanent	--add-service=http

$	sudo	firewall-cmd	--permanent	--add-service=https

$	sudo	firewall-cmd	--reload

We	can	now	test	the	web	server	by	typing	in	any	other	machine	web	browser	inside	the
same	network	IP	address	of	the	server	(http://Server_IP_Address).	We	should	see
something	like	this:

After	making	sure	that	the	service	is	working	fine,	we	need	to	add	it	to	the	system	startup
services:

$	sudo	systemctl	enable	httpd.service

Now	we	will	set	up	two	virtual	hosts	on	Apache	to	show	Apache’s	capacity	to	support
multiple	websites.

For	the	next	part,	we	will	make	a	number	of	changes	to	the	Apache	configuration	file,	so
we	will	create	a	backup	file:

$	sudo	cp	/etc/httpd/conf/httpd.conf	/etc/httpd/conf/httpd.conf.backup

Apache	has	the	capacity	to	separate	its	functionality	and	components	into	units	that	can	be
customized	and	configured	independently.	These	units	are	called	virtual	hosts.	Virtual
hosts	allow	us	to	host	multiple	domains.	Each	configured	domain	will	direct	the	visitors	to
a	specific	folder	specified	to	the	website,	which	holds	its	information.	This	technique	is
extendable	as	long	as	the	server	can	handle	the	traffic	attracted	by	the	websites	stored
inside	it.

First,	we	need	to	make	the	folders	where	we	are	going	to	store	our	websites.	The	directory
/var/www/	is	our	web	server	root	directory:

$	sudo	mkdir	–p	/var/www/packt.co.uk/home

$	sudo	mkdir	–p	/var/www/packt2.co.uk/home

Then	we	grant	these	folders	permission	to	be	accessible	by	changing	the	ownership	from
the	root	(the	user	who	just	created	them)	to	the	$USER	(the	user	that	is	currently	logged	in):

$	sudo	chown	–R	$USER:$USER	/var/www/packt.co.uk/home

$	sudo	chown	–R	$USER:$USER	/var/www/packt2.co.uk/home

To	fully	test	the	virtual	hosts,	we	need	to	create	an	example	HTML	page	to	be	opened	at
the	client	web	browser:

$	nano	/var/www/packt.co.uk/home/index.html

Then	we	add	some	HTML	code	to	populate	the	page:

<html>

		<head>

				<title>Packt	Home	Page</title>

		</head>

		<body>

				<h1>Welcome	to	the	home	page	of	the	Packt	Publishing	1st	example	web	

server	</h1>

		</body>

</html>

Similarly,	for	the	second	host,	we	need	to	create	the	same	file	with	different	content	to	tell
the	difference:

$	nano	/var/www/packt2.co.uk/home/index.html

And	then	we	put	in	the	following	HTML	code:

<html>

		<head>

				<title>Packt2	Home	Page</title>

		</head>

		<body>

				<h1>Welcome	to	the	home	page	of	the	Packt	Publishing	2nd	example	web	

server	</h1>

		</body>

</html>

Now	we	need	to	create	the	virtual	host	files	in	the	Apache	configuration	folder.	We	start
by	creating	the	folders	where	we	need	to	put	our	files:

$	sudo	mkdir	/etc/httpd/sites-available

$	sudo	mkdir	/etc/httpd/sites-enabled

Then	we	need	to	tell	the	Apache	service	to	use	the	configuration	provided	at	the	sites-
enabled	directory	by	editing	the	Apache	main	configuration	file.	This	configuration	can
also	be	obtained	as	the	configuration	directory	/etc/httpd/conf.d.

$	sudo	nano	/etc/httpd/conf/httpd.conf.

Then	we	add	the	following	line	to	the	end	of	the	file:

IncludeOptional	sites-enabled/*.conf

We	save	the	file,	then	we	move	to	the	virtual	host	file	creation	in	the	folder	sites-

available.	The	file	should	always	end	with	.conf	so	the	Apache	service	can	use	it:

$	sudo	nano	/etc/httpd/sites-available/packt.co.uk.conf

Then	we	put	the	following	configuration	inside	it:

<VirtualHost	*:80>

				ServerName	www.packt.co.uk

				ServerAlias	packt.co.uk

				DocumentRoot	/var/www/packt.co.uk/home

				ErrorLog	/var/log/httpd/packt.co.uk_error.log

				CustomLog	/var/log/httpd/packt.co.uk_requests.log	combined

</VirtualHost>

We	save	the	file,	and	then	do	the	same	thing	for	the	second	virtual	host:

$	sudo	nano	/etc/httpd/sites-available/packt2.co.uk.conf

And	we	put	the	following	commands	inside	it:

<VirtualHost	*:80>

				ServerName	www.packt2.co.uk

				ServerAlias	packt2.co.uk

				DocumentRoot	/var/www/packt2.co.uk/home

				ErrorLog	/var/log/httpd/packt2.co.uk_error.log

				CustomLog	/var/log/httpd/packt2.co.uk_requests.log	combined

</VirtualHost>

After	configuring	both	sites,	we	can	now	activate	the	Virtual	Hosts	to	be	usable:

$	sudo	ln	-s	/etc/httpd/sites-available/packt.co.uk.conf	/etc/httpd/sites-

enabled/packt.co.uk.conf

$	sudo	ln	-s	/etc/httpd/sites-available/packt2.co.uk.conf	/etc/httpd/sites-

enabled/packt2.co.uk.conf

To	make	sure	that	all	the	configurations	we	have	done	will	be	effected,	we	need	to	restart
the	Apache	service	by	using	either	of	these	commands:

$	sudo	apachectl	restart

$	sudo	systemctl	restart	httpd.service

Note
If	we	ever	get	any	error	related	to	our	server	host	name,	try	to	use	this	command	to	change
it	and	get	rid	of	the	error:

$	sudo	hostnamectl	set-hostname	--static	packt.co.uk

In	our	case,	those	domains	are	not	public	and	they	are	not	defined	by	any	DNS	server.	So
we	can	either	add	them	to	our	local	DNS	server	or	we	can	just	add	them	to	the	/etc/hosts
file	in	our	client	machine	(the	machine	where	we	are	going	to	open	the	web	browser).	This
step	is	only	to	do	the	test.	Usually	we	should	define	them	with	the	DNS	server	of	the	ISP
or	at	the	local	DNS	server:

$	sudo	nano	/etc/hosts

Then	we	add	the	two	lines	that	associate	our	web	server	IP	address	to	the	two	domains	that
we	have	created:

Server_IP_Address				packt.co.uk

Server_IP_Address				packt2.co.uk

Then	we	go	to	the	client	web	browser	and	we	type	the	domain	in	the	address	bar:

http://packt.co.uk

We	should	see	the	page	associated	with	the	first	domain.	We	do	the	same	thing	for	the
second	domain.	If	the	test	is	valid,	we	confirm	that	our	virtual	hosts	have	been	created
properly.

Now	we	can	move	to	secure	Apache	against	one	of	the	most	common	attacks	that	is	affect
the	world’s	websites.	A	brute-force	attack	or	Distributed	Denial	of	Service	(DDoS)
attack	is	a	kind	of	attack	that	sends	multiple	requests	to	the	same	web	server	to	overload	it
and	make	it	unreachable.	Now	we	are	going	to	set	up	modules	that	help	secure	our	web
server	from	the	kinds	of	attack.	Mod_Security	and	Mod_evasive	are	the	basic	modules	that
will	help	detect	and	prevent	intrusions,	and	help	reinforce	the	web	server	protection
against	brute-force	or	DDoS	attacks.	First,	we	need	to	install	the	modules	using	the
package	manager.	We	require	that	the	system	already	has	the	EPEL	repository	installed:

$	sudo	yum	install	mod_security	mod_evasive

So	to	verify	that	the	installation	is	complete	we	need	to	see	whether	there	are	two	files	that
have	been	created	in	the	/etc/httpd/conf.d/	folder:

$	sudo	ls	/etc/httpd/conf.d/mod_*

/etc/httpd/conf.d/mod_evasive.conf

/etc/httpd/conf.d/mod_security.conf

To	make	sure	that	Apache	loads	these	two	modules	when	it	starts,	we	need	to	add	some
configuration	options	to	the	two	configuration	files,	which	have	been	created	after	the
installation:

$	sudo	nano	/etc/httpd/conf.d/mod_evasive.conf

$	sudo	nano	/etc/httpd/conf.d/mod_security.conf

And	we	add	the	following	lines	respectively	or	we	make	sure	that	they	are	uncommented:

LoadModule	evasive20_module	modules/mod_evasive24.so

LoadModule	security2_module	modules/mod_security2.so

Now	we	can	restart	Apache	so	the	configuration	can	take	effect:

$	sudo	service	httpd	restart

We	start	by	configuring	the	Mod_Security	module.	So	we	need	to	set	up	a	Core	Rule	Set
(CRS).	We	will	download	a	free	CRS	(OWASP)	to	have	it	configured	for	our	web	server.
We	need	to	create	a	directory	to	put	the	rules	inside	before	downloading	its	package:

$	sudo	mkdir	/etc/httpd/crs-tecmint

$	cd	/etc/httpd/crs-tecmint

$	sudo	wget	https://github.com/SpiderLabs/owasp-modsecurity-

crs/tarball/master

After	that	we	can	extract	the	package	there	and	we	can	change	its	name	to	an	appropriate
one:

$	sudo	tar	–xzvf	master

$	sudo	mv	SpiderLabs-owasp-modsecurity-crs-c63affc/	owasp-modsecurity-crs

Now	we	can	start	configuring	the	Mod_Security	module.	We	need	to	copy	the	sample	file
configuration	into	another	file	without	the	.example	extension:

$	cd	owasp-modsecurity-crs

$	sudo	cp	modsecurity_crs_10_setup.conf.example	

modsecurity_crs_10_setup.conf

Then	tell	Apache	to	use	this	module	by	inserting	the	following	line	into	the	Apache	main
configuration	file:

$	sudo	nano	/etc/httpd/conf/httpd.conf

<IfModule	security2_module>

				Include	crs-tecmint/owasp-modsecurity-crs/modsecurity_crs_10_setup.conf

				Include	crs-tecmint/owasp-modsecurity-crs/base_rules/*.conf

</IfModule>

Now	we	need	to	create	a	configuration	file	in	the	/etc/httpd/modsecurity.d/	directory
to	make	it	easier	to	upgrade	the	CRSs	if	there	are	newer	versions:

$	sudo	nano	/etc/httpd/modsecurity.d/tecmint.conf

After	creating	the	new	file,	we	need	to	add	the	following	line	and	save	the	file:

<IfModule	mod_security2.c>

		SecRuleEngine	On

		SecRequestBodyAccess	On

		SecResponseBodyAccess	On	

		SecResponseBodyMimeType	text/plain	text/html	text/xml	application/octet-

stream	

		SecDataDir	/tmp

</IfModule>

With	this	step	we	can	say	that	the	Mod_Security	module	is	successfully	installed	and
configured.	We	can	now	move	to	the	next	module,	Mod_Evasive.	To	configure	this
module,	we	need	to	make	sure	that	some	lines	are	not	commented	in	the	main
configuration	file:

$	sudo	nano	/etc/httpd/conf.d/mod_evasive.conf

And	then	check	the	IfModule	options	are	successfully	set:

<IfModule	mod_evasive24.c>

				DOSHashTableSize				3097

				DOSPageCount								2

				DOSSiteCount								50

				DOSPageInterval					1

				DOSSiteInterval					1

				DOSBlockingPeriod			10

</IfModule>

Let’s	go	through	the	previous	code	in	some	detail:

DOSHashTableSize:	This	option	specifies	the	size	of	the	hash	table	used	to	keep	track
of	the	IP’s	activities
DOSPageCount:	The	legitimate	number	of	identical	requests	to	one	resource	from	one
IP	address
DOSSiteCount:	The	same	as	the	DOSPageCount,	but	for	all	the	requests	that	can	be
made
DOSBlockingPeriod:	The	blacklisting	period	for	an	IP	that	excludes	the	options	on
top

Those	numbers	are	an	example	of	configuration.	We	can	change	them	as	per	our	need.

An	extra	option	that	can	be	useful	is	DOSSystemCommand,	which	helps	to	run	some	script
that	can	block	IP	addresses.	To	do	so	we	need	to	add	it	to	the	configuration	file.

DOSSystemCommand	"sudo	/etc/httpd/scripts/ban_ip.sh	%s".

And	we	need	to	create	the	script	at	an	appropriate	location:

$	sudo	nano	/etc/httpd/scripts/ban_ip.sh

And	we	should	add	the	following	code	inside	it:

#!/bin/sh

IP=$1

IPTABLES="/sbin/iptables"

MOD_EVASIVE_LOGDIR=/tmp

$IPTABLES	-I	INPUT	-s	$IP	-j	DROP

echo	"$IPTABLES	-D	INPUT	-s	$IP	-j	DROP"	|	at	now	+	2	hours

rm	-f	"$MOD_EVASIVE_LOGDIR"/dos-"$IP"

This	script	requires	some	system	modifications	to	run	properly.	Let’s	make	it	executable:

$	sudo	chmod	+x	/etc/httpd/scripts/ban_ip.sh

We	need	to	add	a	line	to	the	Sudoers	rule	file:

$	sudo	nano	/etc/Sudoers

apache	ALL=NOPASSWD:	/usr/local/bin/scripts/ban_ip.sh

Defaults:apache	!requiretty

For	security	reasons,	editing	the	file	directly	may	be	harmful.	We	recommend	using	the
following	command:

$	sudo	visudo

Second,	this	script	works	with	iptables	so	we	need	to	deactivate	Firewalld	and	install
and	activate	iptables:

$	sudo	yum	update	&&	yum	install	iptables-services

$	sudo	systemctl	enable	iptables

$	sudo	systemctl	start	iptables

$	sudo	systemctl	status	iptables

Then	apply	the	new	configuration	we	need	to	restart	the	Apache	service:

$	sudo	systemctl	restart	httpd

Finally,	our	web	server	is	well	secured	and	configured.

As	a	small	tip,	the	Apache	server	by	default	shows	what	operating	system	and	version	it
has	been	running	on.	Sometimes	it	shows	what	modules	are	installed.	That	information
can	be	very	valuable	for	attackers	to	use	as	a	vulnerability,	so	we	need	to	disable	the
display	of	that	information:

$	sudo	nano	/etc/httpd/conf/httpd.conf

And	then	we	change	the	following	two	lines	to	look	like	this:

ServerSignature	Off

ServerTokens	Prod

We	can	now	move	to	database	installation.	The	database	in	a	server	is	essential	for	the
execution	of	a	dynamic	website	to	be	used	as	a	medium	to	store	its	data.	Usually,	on	old
Linux	versions,	we	install	MySQL	as	our	default	database	server	but	recently	most	Linux
distros	have	migrated	to	the	MariaDB	database	server.	To	do	so,	we	need	to	use	the
package	manager	to	install	it:

$	sudo	yum	install	mariadb-server	mariadb

We	are	going	to	install	some	modules	that	are	not	available	in	the	default	repository.	So
we	need	to	install	the	EPEL	repository	to	make	sure	that	we	are	covered	for	this	part:

$	sudo	yum	install	epel-release

Then	we	start	the	service	and	enable	it	for	the	next	startup:

$	sudo	systemctl	start	mariadb

$	sudo	systemctl	enable	mariadb.service

To	have	a	well-secured	database	server,	we	need	to	use	the	MariaDB	secure	installation
command.	This	command	is	very	useful	to	customize	the	level	of	security	of	the	database
server	with	a	variety	of	options:

$	sudo	mysql_secure_installation

Note
We	should	make	sure	to	specify	a	powerful	root	password	for	the	database	during	the
execution	of	the	command.

To	make	sure	that	our	database	server	is	working	correctly	we	can	just	run	the	CLI
interface	and	run	some	basic	SQL	commands:

$	sudo	mysql	-u	root	-p

We	type	the	password	already	set	during	the	secure	installation	and	we	will	have	the
MariaDB	CLI.	To	quit	it	just	type	quit.

In	order	not	to	type	the	password	each	time,	we	can	write	the	password	in	a	file	located	in
our	home	directory	~/.my.cnf	and	add	the	following	line:

[mysql]\npassword=password

We	can	now	move	to	the	PHP5	installation.	In	the	future,	we	will	add	phpmyadmin,	which
is	a	program	that	allows	the	management	of	the	MariaDB	database	via	a	graphical
interface	accessible	via	the	web	browser.	First,	we	start	by	installing	PHP5	and	the	library
that	supports	MySQL	for	PHP:

$	sudo	yum	install	php	php-mysql

We	can	edit	/etc/php/php.ini	to	configure	where	to	put	error	messages,	the	maximum
size	to	upload	a	file	to	the	website	(very	useful	for	dynamic	websites	that	handle	files),
and	so	on.

We	can	do	some	minor	configuration	to	make	PHP	more	secure.	First,	we	can	remove	the
information	and	errors	message	and	log	them	to	a	log	file.	Then	turn	off	remote	code
execution.	Also,	if	we	are	not	in	need	of	a	file	upload	in	the	website,	we	can	disable	it.	We
need	to	use	a	safe	SQL	mode.	Finally,	we	disable	dangerous	PGP	functions:

$	sudo	nano	/etc/php.d/secutity.ini

Then,	change	the	following	lines:

expose_php=Off

display_errors=Off

log_errors=On

error_log=/var/log/httpd/php_scripts_error.log

allow_url_fopen=Off

allow_url_include=Off

sql.safe_mode=On

magic_quotes_gpc=Off

disable_functions	

=exec,passthru,shell_exec,system,proc_open,popen,curl_exec,curl_multi_exec,

parse_ini_file,show_source

To	protect	PHP	from	known	and	unknown	flows,	we	consider	installing	the	Suhosin
advanced	protection	system:

$	sudo	yum	install	php-devel

$	sudo	cd	/usr/local	

$	sudo	wget	–c	https://download.suhosin.org/suhosin-0.9.38.tar.gz

$	sudo	tar	-xzvf	suhosin-0.9.38.tar.gz

$	sudo	cd	suhosin-0.9.38

$	sudo	phpize

$	sudo	./configure

$	sudo	make	

$	sudo	make	install

Now	we	configure	it	so	Apache	starts	using	it:

$	sudo	echo	'extension=suhosin.so'	>	/etc/php.d/suhosin.ini

Then	we	restart	Apache:

$	sudo	systemctl	restart	httpd

Now,	we	move	to	the	installation	of	the	packages	required	for	the	phpmyadmin	installation:

$	sudo	yum	install	php-gd	php-pear	php-mbstring	

After	installing	them,	we	install	the	phpmyadmin	package:

$	sudo	yum	install	phpMyAdmin

We	need	to	do	a	little	configuration	to	enable	outside	access	to	the	interface	of	phpmyadmin
other	than	from	the	server	itself.	We	need	to	edit	its	configuration	file:

$	sudo	nano	/etc/httpd/conf.d/phpMyAdmin.conf

Then	we	need	to	comment	the	old	configuration:

#<Directory	/usr/share/phpMyAdmin/>

#			<IfModule	mod_authz_core.c>

#					#	Apache	2.4

#					<RequireAny>

#							Require	ip	127.0.0.1

#							Require	ip	::1

#					</RequireAny>

#			</IfModule>

#			<IfModule	!mod_authz_core.c>

#					#	Apache	2.2

#					Order	Deny,Allow

#					Deny	from	All

#					Allow	from	127.0.0.1

#					Allow	from	::1

#			</IfModule>

#</Directory>

And	add	the	new	configuration	that	grants	access:

<Directory	/usr/share/phpMyAdmin/>

								Options	none

								AllowOverride	Limit

								Require	all	granted

</Directory>

Finally,	we	need	to	change	the	authentication	from	cookie	to	http:

$	sudo	nano	/etc/phpMyAdmin/config.inc.php

And	change	this	line	to	look	like	this:

$cfg['Servers'][$i]['auth_type']					=	'http';

So	that	the	change	can	take	effect,	we	need	to	restart	Apache:

$	sudo	systemctl	restart	httpd.service

To	test	whether	it	worked,	we	only	need	to	type	in	any	web	browser	located	on	the	same

network	as	the	web	server	http://Server_IP_Addr	ess/phpmyadmin.	Then	we	need	to
provide	the	database	root	user	and	its	password	to	log	in.	We	can	secure	phpMyAdmin	by
editing	its	configuration	file	such	as	restricting	the	source	IP	address	that	can	access	the
service.

To	be	able	to	install	a	Content	Management	System	(CMS)	such	as	Wordpress,	Joomla,
or	Drupal,	we	need	to	install	some	PHP	modules:

$	sudo	yum	-y	install	php-gd	php-ldap	php-odbc	php-pear	php-xml	php-xmlrpc	

php-mbstring	php-snmp	php-soap	curl	curl-devel

After	installing	those	modules,	we	can	proceed	with	our	CMS	installation.	In	our	case,	we
will	be	installing	Joomla.	First,	we	need	to	go	to	the	Joomla	website	and	download	the
latest	version	into	/var/www	or	any	Virtual	Host	folder.	Using	Wget	we	will	download
the	Joomla	package:

$	cd	/var/www/packt2.co.uk/home/

$	get	-c	https://github.com/joomla/joomla-

cms/releases/download/3.4.3/Joomla_3.4.3-Stable-Full_Package.zip

Then	we	need	to	extract	the	package	using	the	unzip	command:

$	unzip	Joomla_3.4.3-Stable-Full_Package.zip

Note
We	need	to	make	sure	that	the	folder	where	we	are	going	to	extract	the	package	is	empty
to	have	a	safe	installation	with	no	errors.

After	that	we	can	go	and	open,	in	any	client	web	browser,	the	domain	where	we	extracted
the	CMS	package:

http://packt2.co.uk

Then	we	need	to	follow	the	steps	of	the	installation	provided	on	the	website.	Here	is	a
brief	description	of	what	we	should	provide	to	finish	the	installation:

1.	 We	need	to	provide	the	website	name	and	some	of	the	site	administrator	information
(mail,	name,	password):

2.	 In	the	database	part,	we	need	to	provide	which	database	we	are	using	(MySQL),	then
the	server	host	name	(localhost),	and	the	user	and	password	of	the	database	(root),
and	finally	a	name	of	the	database	in	which	to	store	the	site	information:

3.	 If	needed,	we	can	enable	the	FTP	server	by	providing	the	FTP	user	and	its	password,
and	verify	the	service	to	check	whether	it	is	running.

4.	 Then	we	will	have	an	overview	where	we	can	check	the	configuration	that	we	have
entered	and	we	can	have	it	sent	to	the	administrator	via	e-mail.

5.	 Finally,	we	click	install	to	have	the	website	installed	and	configured.

As	this	screenshot	shows,	we	can	determine	the	status	of	the	pre-requirement	of	our

CMS:

6.	 The	installation	site	will	remind	us	to	remove	the	installation	folder	since	it	can
present	a	vulnerability	to	the	website.	So	to	reinforce	the	security	we	need	to	remove
it	manually:

$	sudo	rm	-rf	installation/

7.	 Then	we	need	to	copy	the	configuration	provided	on	the	site	and	put	it	inside	a	file
that	we	create	in	the	site	folder	and	then	save	it:

$	sudo	nano	configuration.php

We	can	access	the	site	and	navigate	to	it	or	we	can	open	the	administration	panel	to	make
some	tweaks	to	the	site	or	manage	the	settings:

http://packt2.co.uk/administator

Now	we	can	say	that	we	have	installed	and	secured	our	web	server	and	it	is	ready	for	use.

Setting	up	an	FTP	server
As	we	know,	multiple	clients	need	a	file	exchange,	and	one	of	the	common	services	that
allows	an	easy	and	fast	file	exchange	is	the	FTP	technologies.	In	this	section,	we	will	talk
about	how	to	set	up	an	FTP	server	to	help	transfer	data	between	two	machines	in	the	same
network	or	from	different	networks.

First,	we	need	to	install	an	FTP	server	using	the	default	package	manager:

$	sudo	yum	install	vsftpd	ftp

After	having	the	server	installed,	we	can	start	the	configuration	by	editing	the	VSFTPD
configuration	file:

$	sudo	nano	/etc/vsftpd/vsftpd.conf

We	need	to	find	the	following	lines	and	change	them	as	shown:

anonymous_enable=NO		#	Disable	anonymous	login

ftpd_banner=Welcome	to	The	Packt	FTP	Service.		#	Banner	message

use_localtime=YES		#	Make	the	server	use	the	local	machine	time

local_enable=YES		#	Allow	local	users	to	login

write_enable=YES		#	Allow	Local	users	to	write	to	directory

Then	we	should	restart	the	service	and	add	it	to	the	system	startup	to	auto-start	at	the	next
boot:

$	sudo	systemctl	enable	vsftpd

$	sudo	systemctl	start	vsftpd

Note
Basically,	most	of	the	errors	that	won’t	let	the	service	start	are	related	to	typos	in	the
configuration	file.	If	we	ever	get	any,	we	should	first	check	that	file	for	any	miswritten
options.

After	that,	to	make	sure	that	the	service	is	accessible	from	other	machines	other	than	the
machine	itself,	we	need	to	open	the	FTP	port	in	the	firewall:

$	sudo	firewall-cmd	--permanent	--add-port=21/tcp

$	sudo	firewall-cmd	--permanent	--add-port=20/tcp

$	sudo	firewall-cmd	--permanent	--add-service=ftp

$	sudo	firewall-cmd	--reload

Then	update	the	SELinux	Boolean	values	for	FTP	service:

$	sudo	setsebool	-P	ftp_home_dir	on

And,	finally,	we	should	make	some	FTP	users	so	clients	can	use	them	to	log	in:

$	sudo	useradd	packt

$	sudo	passwd	packt

Now	we	can	start	testing	the	service	by	going	to	one	of	the	clients	either	on	the	same
network	or	outside,	and	do	as	follows:

$	ftp	Server_IP_Address

Or:

$	ftp	domain_name

And	then	we	type	in	the	user	and	its	password	which	we	have	already	defined.	If	we	get
access	to	the	FTP	service	that	means	that	our	FTP	server	is	successfully	set	up.

Securing	Apache	and	FTP	with	OpenSSL
Most	services	provided	around	the	world	are	very	attractive	to	hackers	to	attack	and	steal
valuable	information	or	to	block	its	activity.	In	this	section	we	are	going	to	present	a
solution	that	helps	secure	two	of	the	most	commonly	used	services	(HTTPFTP).	This
solution	is	OpenSSL	as	an	open	source	toolkit	implementing	the	Secure	Sockets	Layer
(SSL)	and	Transport	Layer	Security	(TLS)	protocols	as	well	as	a	robust	cryptography
library.

We	will	start	with	the	implementation	of	OpenSSL	for	FTP	file	transfer	to	make	it	more
secure.	First,	we	need	to	ensure	OpenSSL	is	installed	on	our	system:

$	sudo	yum	install	openssl

Then	we	start	configuring	the	service	to	work	with	our	FTP	server	VSFTPD.	So	we	need
to	create	an	SSL	certificate	to	use	with	TLS	since	it	the	latest	most	secure	technology
created.	To	do	so	we	need	to	create	a	folder	to	store	the	files	to	be	generated	using	SSL:

$	sudo	mkdir	/etc/ssl/private

Then	we	create	the	certificate	with	the	keys:

$	sudo	openssl	req	-x509	-nodes	-days	365	-newkey	rsa:2048	-keyout	

/etc/ssl/private/vsftpd.pem	-out	/etc/ssl/private/vsftpd.pem		-sha256

We	need	to	fill	in	the	details	required	during	the	execution	of	the	command:

openssl:	The	basic	SSL	command	to	manage	SSL	certificates	and	keys
req	–x509:	To	specify	the	public	key	infrastructure	standards	for	SSL	and	TLS
-node:	To	tell	OpenSSL	to	skip	the	passphrase	security	option
-days	365:	To	set	the	time	of	the	validity	of	this	certificate
-newkey	rsa:1024:	To	create	a	new	RSA	key	1024	bits	long
-keyout:	To	tell	OpenSSL	where	to	generate	the	private	key	file
-out:	To	tell	OpenSSL	where	to	generate	the	certificate	file

Then	we	add	the	SSL	details	to	our	FTP	server	main	configuration	file:

$	sudo	nano	/etc/vsftpd/vsftpd.conf

We	specify	the	location	of	the	certificate	and	the	key	files:

rsa_cert_file=/etc/ssl/private/vsftpd.pem

rsa_private_key_file=/etc/ssl/private/vsftpd.pem

Then	we	enable	the	use	of	SSL:

ssl_enable=YES

allow_anon_ssl=NO

force_local_data_ssl=YES

force_local_logins_ssl=YES

Then	we	restrict	the	connections	to	TLS:

ssl_tlsv1=YES

ssl_sslv2=NO

ssl_sslv3=NO

Then	we	add	some	optional	configuration	to	reinforce	the	site	security:

require_ssl_reuse=NO

ssl_ciphers=HIGH

Then	we	restart	the	FTP	service	to	enable	the	change:

$	sudo	systemctl	restart	vsftpd

Then	we	can	test	it	via	an	FTP	client	(Filezilla)	that	has	the	capacity	to	connect	via	FTPS
to	see	that	the	connection/transfer	is	now	secured.

We	now	move	on	to	the	second	part	of	this	section	where	we	are	going	to	secure	our	web
server	Apache.	We	will	be	installing	the	OpenSSL	module	for	Apache	then	we	will
configure	it	to	secure	Apache.

First,	we	need	to	make	sure	that	Apache	is	successfully	installed	and	the	same	thing	can
also	be	started	for	OpenSSL.	Then	we	can	start	the	installation	of	the	module	Mod_ssl:

$	sudo	yum	install	mod_ssl

After	installing	it,	we	move	to	the	configuration	part.	We	need	to	create	a	folder	in	which
we	are	going	to	store	our	keys	and	certificate	files:

$	sudo	mkdir	/etc/httpd/ssl

Then	we	create	our	keys	and	certificates	using	OpenSSL:

$	sudo	sudo	openssl	req	-x509	-nodes	-days	365	-newkey	rsa:2048	-keyout	

/etc/httpd/ssl/apache.key	-out	/etc/httpd/ssl/apache.crt	–sha256

We	need	to	fill	in	all	the	required	details	to	finish	the	files’	creation.

Note
The	SSL	key	in	Apache	must	be	without	password	less	to	not	cause	a	manual
reconfiguration	every	time	the	server	restart.

After	creating	all	our	files,	we	need	to	set	up	a	virtual	host	to	use	with	the	new	certificate.
To	do	so	we	need	to	start	by	editing	Apache’s	SSL	configuration	file:

$	sudo	nano	/etc/httpd/conf.d/ssl.conf

We	need	to	find	the	section	that	begins	with	<VirtualHost	_default_:443>,	to	make
some	changes	to	it	to	make	sure	that	the	SSL	certificate	is	correctly	set.

First,	we	need	to	uncomment	the	DocumentRoot	line	and	change	the	location	to	the	desired
site	that	we	need	to	secure:

DocumentRoot	"/var/www/packt.co.uk/home"

We	do	the	same	thing	for	the	line	ServerName	and	we	need	to	change	the	domain	to	the
desired	one:

ServerName	packt.co.uk:443

And	finally,	we	need	to	find	the	SSLCertificateFile	and	the	SSLCertificateKeyFile
lines	and	change	them	to	point	to	where	we	have	created	the	SSL	certificate	and	key:

SSLCertificateFile	/etc/httpd/ssl/apache.crt

SSLCertificateKeyFile	/etc/httpd/ssl/apache.key

SSLEngine	on

SSLProtocol	all	-SSLv2	-SSLv3

SSLCipherSuite	HIGH:MEDIUM:!aNULL:!MD5

Then	we	save	the	file	and	restart	Apache	to	enable	the	change:

$	sudo	systemctl	restart	httpd

To	test	this	configuration,	we	need	to	use	a	web	browser	of	a	client	machine	and	type	in
https://www.packtpub.com/	uk.	Then	accept	the	certificate	and	access	the	site.

https://www.packtpub.com/

References
Now	that	we	have	gone	through	the	chapter,	let’s	take	a	look	at	the	references	used:

Firewalld	configuration	guide:
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-firewall-using-
firewalld-on-centos-7
OpenVPN	server	overview:	https://openvpn.net/index.php/access-
server/overview.html
BIND	DNS	server	page:	https://www.isc.org/downloads/bind/
Web	server	(LAMP)	wiki	page:
https://en.wikipedia.org/wiki/LAMP_(software_bundle)
FTP	server	Wiki	page:	https://en.wikipedia.org/wiki/File_Transfer_Protocol
FTPS	vs	SFTP:	https://www.eldos.com/security/articles/4672.php?page=all
Mod_SSL	for	Apache	documentation:	http://www.modssl.org/docs/
OpenSSL	webpage:	https://www.openssl.org/

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-firewall-using-firewalld-on-centos-7
https://openvpn.net/index.php/access-server/overview.html
https://www.isc.org/downloads/bind/
https://en.wikipedia.org/wiki/LAMP_(software_bundle)
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://www.eldos.com/security/articles/4672.php?page=all
http://www.modssl.org/docs/
https://www.openssl.org/

Summary
This	chapter	is	a	description	of	a	list	of	services	that	the	CentOS	Linux	system	offers	to	its
users.	This	description	is	a	step-by-step	explanation	of	how	those	services	can	be	installed
on	CentOS	7	and	how	to	configure	them	for	best	practice.	We	have	talked	about
implementing	a	Gateway	server,	using	Firewalld,	inside	a	local	network.	Then	we	have
established	a	VPN	server,	using	OpenVPN,	to	have	clients	access	the	network	from	all
around	the	world.	After	that,	we	have	set	up	a	DNS	server	using	the	BIND	service.	Then
we	have	installed	the	essential	packages	to	set	up	a	fully	running	web	server	that	can
support	a	dynamic	website	with	some	tweaking	to	make	it	more	secure,	easy	to	manage,
and	extensible,	using	Apache	and	its	modules,	MariaDB	and	PHP.	We	moved	to	set	up	an
FTP	server	to	have	clients	access	it	to	transfer	data.	And	we	have	finished	with	securing
both	our	web	server	and	our	FTP	server	using	the	OpenSSL	self-signed	certificates	and
keys.

We	are	not	done	yet	with	what	CentOS	7	can	offer.	Check	out	our	next	Chapter	4,	Mail
server	using	PostFix,	which	explores	in	depth	how	to	set	up,	configure,	and	secure	a	mail
server	using	Postfix.

Chapter	4.	Mail	Server	with	Postfix
Nowadays,	many	people	are	already	using	configured	and	reliable	web-based	mail
services	such	as	Gmail,	Yahoo,	and	so	on.	Most	of	those	people	are	questioning	the	need
for	a	local	e-mail	server	installed	inside	their	server	environment.	Well,	servers	also	need
to	send	e-mails,	not	only	humans;	and	it	is	useful	for	many	other	needs,	especially	when
notifying	an	administrator	if	a	server	is	in	a	critical	state.

Postfix	is	a	high-performance	open	source	Mail	Transfer	Agent	(MTA)	for	Linux
systems.	It	is	fast,	easy	to	administrate,	and	secure.	It	helps	to	route	and	deliver	electronic
mail.	Postfix	supports	encryption	and	virtual	domains,	and	its	configuration	files	are	clear,
and	easy	to	understand,	and	edit.

The	installation	of	Postfix	will	be	divided	into	multiple	sections.	Since	this	chapter	is	all
about	setting	up	an	e-mail	server	using	Postfix	and	adding	some	tools	to	make	it	fully
qualified	and	then	securing	it,	we	will	do	the	installation	step	by	step,	where	we	are	going
to	stretch	it	into	the	different	chapter	sections	every	time	we	add	a	new	tool	or	a	new
tweak.

During	this	chapter,	we	are	going	to	learn	the	following	things:

Set	up	and	configure	the	Postfix	e-mail	server	using	CentOS	7	Linux
Configure	it	to	store	users	and	virtual	domains	on	a	MySQL	database
Set	up	a	mail	tool	(Dovecot)	to	get	e-mail
Configure	the	OpenLDAP	active	directory
Secure	both	mail	services	using	SSL/TLS

Setting	up	and	configuring	of	Postfix	mail
server
As	we	all	know,	Postfix	as	an	MTA	acts,	as	an	SMTP	server.	It	accepts	incoming	mail	and
passes	it	to	the	service	responsible	for	retrieving	mails.	Then	it	forwards	outgoing	mails	to
the	next	responsible	SMTP	server.	For	the	SMTP	service,	we	need	to	have	the	port	25/TCP
open	in	the	system’s	firewall.	Postfix	is	very	easy	to	set	up	and	configure.	We	only	need	to
make	sure	that	some	pre-installation	steps	have	been	done	in	order	to	have	a	clean	setup.

First,	we	need	to	open	the	required	port	at	the	firewall	for	all	the	needed	services	for	a
mail	server,	using	Firewalld.	The	ports	we	are	going	to	open	are	from	the	following
services:

Simple	Mail	Transfer	Protocol	(SMTP):	25	on	TCP
Secure	SMTP	(SMTPS):	465	on	TCP
Mail	Submission	Agent	(MSA):	587	on	TCP
Post	Office	Protocol	3	(POP3):	110	on	TCP
Secure	POP3:	995	on	TCP
Internet	Message	Access	Protocol	(IMAP):	143	on	TCP
Secure	IMAP	(IMAP	SSL):	993	on	TCP

This	is	how	to	apply	the	change	in	the	system	local	firewall	using	Firewalld:

$	sudo	firewall-cmd	--permanent	--add-port=25/tcp

$	sudo	firewall-cmd	--permanent	--add-port=465/tcp

$	sudo	firewall-cmd	--permanent	--add-port=587/tcp

$	sudo	firewall-cmd	--permanent	--add-port=995/tcp

$	sudo	firewall-cmd	--permanent	--add-port=993/tcp

$	sudo	firewall-cmd	--permanent	--add-port=143/tcp

$	sudo	firewall-cmd	--permanent	--add-port=110/tcp

$	sudo	firewall-cmd	--reload

After	that,	we	need	to	have	an	accurate	time	for	the	server,	so	we	need	to	install	an	NTP
client	to	synchronize	the	machine	time	with	one	of	many	worldwide	available	NTP
servers.	We	need	to	install	the	NTP	client	service	using	the	yum	package	manager:

$	sudo	yum	install	ntpd

Usually,	an	NTP	client,	when	installed,	already	has	some	default	NTP	servers	configured
to	synchronize	its	time	with	them.	But	if	we	have	a	local	NTP	server	and	we	want	to	use
it,	we	can	always	go	to	the	configuration	file	of	NTP	and	add	it.	As	a	best	practice,	it	is
advised	to	always	have	at	least	three	NTP	servers:

$	sudo	nano	/etc/ntp.conf

We	look	for	the	lines	that	start	with	server	and	we	comment	the	unneeded	servers	and	add
those	that	we	want	(shown	as	LOCAL_NTP_SERVER_IP_ADDRESS	in	the	following	snippet):

#server	0.centos.pool.ntp.org	iburst

server	LOCAL_NTP_SERVER_IP_ADDRESS	iburst

We	need	to	start	the	NTP	service	and	add	it	to	the	system	startup	services:

$	sudo	systemctl	start	ntpd

$	sudo	systemctl	enable	ntpd

To	verify	whether	the	NTP	client	is	synchronizing	with	the	defined	servers,	we	need	to	use
the	command	ntpq	-p.	Let’s	have	a	look	at	the	following	output:

After	making	our	server	time	accurate,	we	need	to	make	sure	that	our	server’s	hostname	is
well	configured,	since	a	foreign	mail	server	may	not	accept	mail	from	our	server	due	to	its
suspicious	name.	We	can	verify	this	using	the	following	command:

$	hostname	-f

If	we	receive	a	fully-qualified	domain	name	server.domain	we	can	proceed,	where
server	is	the	host	name	of	our	server	and	domain	is	where	it	belongs.	Otherwise,	we	need
to	set	one	by	editing	the	hostname	configuration	files:

$	sudo	nano	/etc/hosts

$	sudo	nano	/etc/hostname

Or	you	can	also	use	the	following	command:

$	sudo	hostnamectl	set-hostname

We	should	ensure	we	write	a	well-written	domain	address.	Then	we	save	the	files.

And,	finally,	we	need	to	check	our	DNS	resolution.	Our	server	should	be	using	a	fully-
qualified	DNS,	which	means	that	it	can	resolve	addresses	from	all	around	the	Web.	We
need	to	check	the	/etc/resov.conf	file:

$	sudo	cat	/etc/resolv.conf

If	we	are	not	sure	that	the	configured	DNS	server	is	well	updated	to	handle	all	our	queries,
we	can	edit	the	file	and	add	some	DNS	servers	that	we	are	sure	are	qualified	(Google
DNS:	8.8.8.8,	8.8.4.4).	We	can	test	our	DNS	server	using	the	nslookup	command:

$	sudo	nano	/etc/resolv.conf

We	are	now	ready	to	install	Postfix	on	our	server.	As	we	have	mentioned	before,	the
installation	and	the	configuration	will	keep	adding	and	configuring	to	the	same	server	for
each	section.

In	this	section,	we	will	start	by	installing	and	configuring	our	Postfix	as	an	SMTP	server.
First,	we	need	to	install	the	postfix	package	using	yum.	We	need	to	plan	for	the	coming
sections.	Since	the	default	version	of	Postfix	in	the	yum	package	manager	doesn’t	support

MariaDB	(the	drop-in	replacement	for	MySQL),	we	need	to	install	Postfix	from	the
CentOSPlus	repository.	Just	before	starting	the	installation,	we	need	to	add	an	exclusion
to	some	repositories	to	prevent	overwriting	the	Postfix	packages	update:

$	sudo	nano	/etc/yum.repos.d/CentOS-Base.repo

Then	we	need	to	make	sure	to	add	the	line	exclude=postfix	to	the	end	of	the	[base]	and
the	[updates]	repository	source	to	look	like	this:

[base]

name=CentOS-$releasever	-	Base

exclude=postfix

#released	updates

[updates]

name=CentOS-$releasever	-	Updates

exclude=postfix

After	saving	the	file,	we	can	start	the	package	installation.	We	will	do	the	installation	of
the	essential	packages	to	have	a	fully-functioning	mail	server:	Postfix	as	an	MTA	mail
server	for	the	SMTP,	Dovecot	serves	for	IMAP,	and	POP	daemons	and	some	supporting
packages	for	the	authentication	service:

$	sudo	yum	--enablerepo=centosplus	install	postfix

$	sudo	yum	install	dovecot	mariadb-server	dovecot-mysql

Here,	we	will	merge	the	installation	of	the	tools	but	the	configuration	will	be	separated
into	each	section	of	this	chapter.

After	having	the	Postfix	mail	server	installed,	we	can	start	with	the	configuration.	Postfix
has	almost	all	of	its	options	as	either	commented	or	not	fully	applicable.	So	to	have
Postfix	fully	configured	we	need	to	go	to	its	main	configuration	file	and	make	some
changes.	First,	we	open	the	file	using	any	text	editor:

$	sudo	nano	/etc/postfix/main.cf

Then	we	start	changing	uncommented	lines	and	adding	information	about	the	desired	mail
server.	Since	we	are	going	to	make	many	separate	changes	in	a	big	file,	we	should	not	add
any	unnecessary	lines	because	we	will	be	pointing	to	which	line	we	should	change	at	a
time.	At	any	point	if	we	are	using	nano	as	a	text	editor	we	can	always	use	the	search
option	to	look	up	the	desired	line	using	the	combination	of	Ctrl	+	W	and	typing	in	the	first
part	of	the	line.

Next,	we	need	to	define	our	mail	server	hostname.	We	go	to	the	line	of	the	option
myhostname	and	we	uncomment	the	line	and	change	it	with	the	desired	information,	such
as	in	the	following	example:

myhostname	=	server.packt.co.uk

Then,	we	need	to	set	up	the	domain	name	at	the	line	of	the	option	mydomain,	as	shown	in
the	following	example:

mydomain	=	packt.co.uk

This	is	followed	by	the	origin,	which	has	the	same	value	as	the	domain,	at	the	line	of	the
option	myorigin:

myorigin	=	$mydomain

Then	we	define	which	network	interfaces	our	server	will	be	providing	its	services
(listening)	to.	In	our	case	we	will	just	use	all	of	them.	To	set	up	that,	we	either	comment
line	116	and	uncomment	line	113,	or	just	change	line	116	to	the	following	code:

inet_interfaces	=	all

Then	we	move	to	the	line	of	the	option	mydestination	to	add	the	domain	address	to	the
end	of	the	destination	domain’s	line:

mydestination	=	$myhostname,	localhost.$mydomain,	localhost,	$mydomain

Then	we	make	a	big	jump	to	the	line	of	the	option	mynetworks	to	uncomment	it	and	add
the	other	networks	that	we	will	be	using	for	the	network	related	to	the	server:

mynetworks	=	127.0.0.0/8,	192.168.8.0/24,	10.0.1.0/24

Then	we	jump	to	the	line	of	the	option	home_mailbox	to	uncomment	the	mailbox	folder
location	option	and	change	it	to	whatever	suits	our	needs:

home_mailbox	=	maildir/

We	end	the	line	counting	by	going	to	the	line	of	the	option	smtpd_banner	and	uncomment
it	and	changing	it	to	look	like	the	following	code:

smtpd_banner	=	$myhostname	ESMTP

Then	we	go	to	the	end	of	the	file	and	add	the	following	lines	and	limit	the	e-mail	size	for
the	server	to	handle	(10	mega	bytes=	10485760):

message_size_limit	=	10485760

Also,	we	need	to	limit	the	mailbox	folder	size	(1	giga	bytes=	1073741824):

mailbox_size_limit	=	1073741824

And,	finally,	we	set	up	the	SMTP	server	authentication	configuration	option	lines:

smtpd_sasl_type	=	dovecot

smtpd_sasl_path	=	private/auth

smtpd_sasl_auth_enable	=	yes

smtpd_sasl_security_options	=	noanonymous

broken_sasl_auth_clients	=	yes

smtpd_sasl_local_domain	=	$myhostname

smtpd_recipient_restrictions	=	

permit_mynetworks,permit_auth_destination,permit_sasl_authenticated,reject

This	configuration	is	considered	as	the	initial	one.	After	having	it	set,	we	can	always	use
the	command	postconf	-e	to	change	an	option	or	set	a	new	one.	If	we	ever	needed	to
change	the	server	hostname,	we	need	to	write	it	as	follows:

$	sudo	postconf	-e	'myhostname	=	mailserver.packt.co.uk'

After	making	sure	that	all	configurations	are	well	set,	we	can	start	our	Postfix	service	and
add	it	to	the	system	startup	services:

$	sudo	systemctl	restart	postfix

$	sudo	systemctl	enable	postfix

Just	to	verify	that	everything	is	ok,	we	need	to	do	a	small	test	to	the	Postfix	services.
There	are	many	ways	to	do	this	test.	We	will	go	with	the	traditional	way	of	sending	a	mail
using	the	command	mail	and	then	verifying	the	mail	log	file	located	at
/var/log/maillog:

$	echo	"Testing	the	Postfix	mail	service"	|	mail	-s	"This	is	a	test	mail"	

user2@server.packt.co.uk	&&	tail	-f	/var/log/maillog

Then	we	should	see	the	following	message	in	the	mail	log	file,	which	tells	us	the
following	message	to	know	that	the	mail	has	been	sent	ok	and	the	Postfix	services	are
working	fine:

server	postfix/local[28480]:	98E2F61B6365:	to=<user2@server.packt.co.uk>,	

relay=local,	delay=0.02,	delays=0.01/0/0/0,	dsn=2.0.0,	status=sent	

(delivered	to	maildir)

With	this	step,	we	can	say	that	we	have	successfully	configured	Postfix	as	an	MTA.	But
this	may	not	be	a	well	set	up	mail	server.	We	need	to	add	and	configure	a	few	tools	to	help
make	it	well	qualified	and	secure.	We	will	start	adding	and	configuring	the	necessary	tools
during	the	next	sections.	This	is	how	our	mail	server	will	look	like	after	having	all	it
components	installed	and	running:

Setting	up	MariaDB	for	virtual	domains
and	users
Since	we	have	already	installed	MariaDB	(the	drop-in	replacement	for	MySQL)	during
the	postfix	installation,	we	can	proceed	to	the	configuration.	But	if	we	ever	needed	to
reinstall	the	package	again,	we	can	always	use	yum:

$	sudo	yum	install	mariadb-server

The	first	thing	to	do	to	start	the	MariaDB	configuration	is	to	start	the	service.	Also,	we
need	to	add	it	to	the	system	startup	services:

$	sudo	systemctl	enable	mariadb.service

$	sudo	systemctl	start	mariadb.service

Then	we	start	the	configuration	by	setting	up	the	secure	installation	mode	where	we	can
set	up	or	change	the	MariaDB	root	password,	remove	anonymous	user	accounts,	disable
root	logins	outside	of	the	local	host,	and	so	on:

$	sudo	mysql_secure_installation

We	should	make	sure	to	answer	yes	at	the	end	to	finish	the	configuration.

Now	we	have	the	MariaDB	service	well	configured	and	ready	to	be	used.	We	will	start
setting	up	the	new	database	to	use	it	with	Postfix.	To	add	the	new	database,	we	need	to
open	the	MariaDB	shell:

$	sudo	mysql	-u	root	-p

Then	we	create	a	new	database:

>	CREATE	DATABASE	mail;

Next,	we	switch	to	that	database	to	start	making	changes	in	it:

>	USE	mail;

Then	we	create	a	database	user	to	be	the	mail	administrator	by	granting	them	permissions
on	the	mail	database:

>	GRANT	SELECT,	INSERT,	UPDATE,	DELETE	ON	mail.*	TO	

'mail_admin'@'localhost'	IDENTIFIED	BY	'mail_admin_password';

>	GRANT	SELECT,	INSERT,	UPDATE,	DELETE	ON	mail.*	TO	

'mail_admin'@'localhost.localdomain'	IDENTIFIED	BY	'mail_admin_password';

The	administrator	password	mail_admin_password	should	be	a	very	strong	password	to
better	secure	the	mail	server	database.

Then	we	submit	the	change:

>	FLUSH	PRIVILEGES;

Now	we	start	creating	the	necessary	tables	inside	our	database.	First,	we	create	the	virtual
domains	table:

>	CREATE	TABLE	domains	(domain	varchar(50)	NOT	NULL,	PRIMARY	KEY	(domain)	

);

Then	we	create	the	table	that	handles	mail	forwarding:

>	CREATE	TABLE	forwardings	(source	varchar(80)	NOT	NULL,	destination	TEXT	

NOT	NULL,	PRIMARY	KEY	(source));

Next,	we	create	the	table	in	which	we	are	going	to	store	the	mail	server	users:

>	CREATE	TABLE	users	(email	varchar(80)	NOT	NULL,	password	varchar(20)	NOT	

NULL,	PRIMARY	KEY	(email));

Finally,	we	create	the	transports	table:

>	CREATE	TABLE	transport	(domain	varchar(128)	NOT	NULL	default	'',	

transport	varchar(128)	NOT	NULL	default	'',	UNIQUE	KEY	domain	(domain));

We	have	set	up	our	mail	server	database	table’s	initial	configuration	successfully.	We	can
now	leave	the	MariaDB	shell:

>	quit

To	enable	Postfix	to	communicate	with	the	MariaDB	server,	we	need	to	set	up	MariaDB	to
listen	to	the	localhost	at	IP	address	127.0.0.1.	To	set	this	configuration,	we	need	to	edit
/etc/my.cnf	and	add	the	following	section	[mysql]:

bind-address=127.0.0.1

Then	we	restart	the	MariaDB	service:

$	sudo	systemctl	restart	mariadb.service

We	are	not	yet	finished	with	our	mail	server	database	configuration.	Now	we	go	back	to
the	Postfix	configuration	to	set	up	communication	with	the	database	earlier	created	code
within	MariaDB.	So	we	need	tell	Postfix	which	table	of	which	database	it	should	use	to
store	specific	information	(users,	virtual	domains,	and	so	on).

We	start	by	creating	configuration	files	for	each	table.	For	the	virtual	domains
configuration,	we	are	creating	a	file	called	/etc/postfix/mysql-virtual_domains.cf:

$	sudo	nano	/etc/postfix/mysql-virtual_domains.cf

Then	we	put	the	following	code	inside	it	and	save	it:

user	=	mail_admin

password	=	mail_admin_password

dbname	=	mail

query	=	SELECT	domain	AS	virtual	FROM	domains	WHERE	domain='%s'

hosts	=	127.0.0.1

Again,	the	mail_admin_password	should	be	replaced	with	the	strong	one	that	we	created
earlier.	This	goes	for	all	of	the	following	files	that	we	are	going	to	create.

Then	we	create	the	configuration	file	for	the	virtual	forwarding	at	/etc/postfix/mysql-
virtual_forwardings.cf:

$	sudo	nano	/etc/postfix/mysql-virtual_forwardings.cf

We	add	the	following	code	inside	it:

user	=	mail_admin

password	=	mail_admin_password

dbname	=	mail

query	=	SELECT	destination	FROM	forwardings	WHERE	source='%s'

hosts	=	127.0.0.1

We	create	another	configuration	file	for	the	virtual	mailbox	called	/etc/postfix/mysql-
virtual_mailboxes.cf:

$	sudo	nano	/etc/postfix/mysql-virtual_mailboxes.cf

And	we	insert	the	following	code:

user	=	mail_admin

password	=	mail_admin_password

dbname	=	mail

query	=	SELECT	

CONCAT(SUBSTRING_INDEX(email,'@',-1),'/',SUBSTRING_INDEX(email,'@',1),'/')	

FROM	users	WHERE	email='%s'

hosts	=	127.0.0.1

And,	finally,	we	do	the	same	for	the	virtual	e-mail	mapping	by	creating	the	file
/etc/postfix/mysql-virtual_email2email.cf:

$	sudo	nano	/etc/postfix/	mysql-virtual_email2email.cf

Then	add	the	following	code	inside	it	and	save	it:

user	=	mail_admin

password	=	mail_admin_password

dbname	=	mail

query	=	SELECT	email	FROM	users	WHERE	email='%s'

hosts	=	127.0.0.1

Now	we	set	the	files’	permissions	and	ownership	to	make	Postfix	able	to	handle	the	new
configuration	files:

$	sudo	chmod	o=	/etc/postfix/mysql-virtual_*.cf

$	sudo	chgrp	postfix	/etc/postfix/mysql-virtual_*.cf

Then	we	create	a	user	and	group	for	mail	handling.	The	virtual	mailboxes	will	be	all
stored	under	this	user	home	directory.	We	are	choosing	the	group	5000	to	keep	our
distance	from	the	ones	created	by	the	system	for	the	regular	users:

$	sudo	groupadd	-g	5000	vmail

$	sudo	useradd	-g	vmail	-u	5000	vmail	-d	/home/vmail	-m

To	complete	the	configuration,	we	need	to	make	some	minor	changes	to	the	Postfix
configuration.	We	will	not	open	the	configuration	file	and	edit	it,	we	will	only	add	them
using	the	command	postconf	-e.

We	start	by	locating	the	new	configuration	file	created	to	address	the	database	tables:

$	sudo	postconf	-e	'virtual_alias_domains	='

$	sudo	postconf	-e	'virtual_alias_maps	=	proxy:mysql:/etc/postfix/mysql-

virtual_forwardings.cf,	mysql:/etc/postfix/mysql-virtual_email2email.cf'

$	sudo	postconf	-e	'virtual_mailbox_domains	=	

proxy:mysql:/etc/postfix/mysql-virtual_domains.cf'

$	sudo	postconf	-e	'virtual_mailbox_maps	=	proxy:mysql:/etc/postfix/mysql-

virtual_mailboxes.cf'

Then	we	set	the	location	where	the	mailbox	folder	will	be	created:

$	sudo	postconf	-e	'virtual_mailbox_base	=	/home/vmail'

Finally,	we	see	the	user	UID	who	will	take	control	of	the	configuration	files	and	add	the
mailbox	folder:

$	sudo	postconf	-e	'virtual_uid_maps	=	static:5000'

$	sudo	postconf	-e	'virtual_gid_maps	=	static:5000'

To	finish	the	mail	server	database	configuration,	we	need	to	restart	the	Postfix	service	to
submit	the	change:

$	sudo	systemctl	restart	postfix.service

We	can	say	that	we	have	finished	our	mail	server	database	service.	Still,	if	we	need	to
configure	Postfix	with	the	virtual	domain	to	use	them	to	send	e-mail	with	a	domain	name
different	from	the	system’s	default	domain	name,	we	need	to	make	some	minor
modifications	to	the	Postfix	main	configuration	file.	Also,	we	can	always	use	the
command	postconf	-e	to	make	quick	changes:

$	sudo	nano	/etc/postfix/main.cf

Then	we	add	the	following	code	at	the	end	of	the	file:

virtual_alias_domains	=	packtmail2.co.uk

virtual_alias_maps	=	hash:/etc/postfix/virtual

Then	we	need	to	add	the	new	domain	to	the	virtual	domain	file,	/etc/postfix/virtual:

$	sudo	nano	/etc/postfix/virtual

Then	we	add	the	following	snippet	anywhere:

user1@mail.packtmail2.co.uk	user1

Then	we	apply	the	change	by	refreshing	the	Postfix	map	and	restarting	the	service:

$	sudo	postmap	/etc/postfix/virtual

$	sudo	systemctl	reload	postfix

Setting	up	a	mail	tool	(Dovecot)	to	retrieve
mails
As	we	have	said	earlier,	Dovecot	is	an	open	source	IMAP	and	POP3	server.	It	is	fast,
easy	to	set	up	and	configure,	and	it	uses	very	little	RAM	memory.	For	this	section,	we	are
going	to	install	it	to	work	with	Postfix	as	MDA	(POP/IMAP	service)	and	sieve	for	sorting
mail	at	the	mail	server	POP/IMAP	service.	As	this	image	shows,	Dovocot	is	positioned
between	the	user	mailbox	and	Postfix:

Since	we	have	already	installed	Dovecot,	we	now	only	need	to	configure	it	to	work
alongside	Postfix.	If	we	ever	miss	the	installation,	we	can	always	use	the	yum	package
manager	to	reinstall	it:

$	sudo	yum	install	dovecot

Then,	we	need	to	add	Dovecot	support	to	the	Postfix	configuration	file.	Again,	we	will	not
go	and	edit	the	file;	we	will	only	use	the	command	postconf	-e.	First,	we	need	to	enable
Dovecot	to	use	the	SMTP	and	enable	the	service	authentication:

$	sudo	postconf	-e	'smtpd_sasl_type	=	dovecot'

$	sudo	postconf	-e	'smtpd_sasl_path	=	private/auth'

$	sudo	postconf	-e	'smtpd_sasl_auth_enable	=	yes'

$	sudo	postconf	-e	'broken_sasl_auth_clients	=	yes'

$	sudo	postconf	-e	'smtpd_sasl_authenticated_header	=	yes'

Then	we	enable	Postfix	to	create	and	extend	the	mail	directory	if	needed:

$	sudo	postconf	-e	'virtual_create_maildirsize	=	yes'

$	sudo	postconf	-e	'virtual_maildir_extended	=	yes'

Finally,	we	set	the	mail	transport	parameters:

$	sudo	postconf	-e	'proxy_read_maps	=	$local_recipient_maps	$mydestination	

$virtual_alias_maps	$virtual_alias_domains	$virtual_mailbox_maps	

$virtual_mailbox_domains	$relay_recipient_maps	$relay_domains	

$canonical_maps	$sender_canonical_maps	$recipient_canonical_maps	

$relocated_maps	$transport_maps	$mynetworks	$virtual_mailbox_limit_maps'

$	sudo	postconf	-e	'virtual_transport	=	dovecot'

$	sudo	postconf	-e	'dovecot_destination_recipient_limit	=	1'

For	this	section,	we	will	use	the	default	security	option	provided	by	Dovecot	so	we	need	to
tell	Postfix	to	use	the	SSL	certificate	and	key	provided	by	Dovecot:

$	sudo	postconf	-e	'smtpd_use_tls	=	yes'

$	sudo	postconf	-e	'smtpd_tls_cert_file	=	

/etc/pki/dovecot/certs/dovecot.pem'

$	sudo	postconf	-e	'smtpd_tls_key_file	=	

/etc/pki/dovecot/private/dovecot.pem'

Then	we	move	to	the	service	configuration	file	of	Postfix,	/etc/postfix/master.cf:

$	sudo	nano	/etc/postfix/master.cf

Add	the	Dovecot	service	to	the	bottom	of	the	file,	then	save	it	and	exit:

dovecot			unix		-							n							n							-							-							pipe

				flags=DRhu	user=vmail:vmail	argv=/usr/libexec/dovecot/deliver	-f	

${sender}	-d	${recipient}

Then	we	move	to	the	Dovecot	service	configuration.	Before	we	start	the	configuration,	we
need	to	have	a	copy	of	the	initial	configuration	file	backed	up:

$	sudo	cp	/etc/dovecot/dovecot.conf	/etc/dovecot/dovecot.conf-backup

For	this	example,	we	are	going	to	create	our	own	new	configuration	file	where	we	will
specify	every	single	parameter	one	by	one.	We	will	create	a	new	file	with	the	same	name
as	the	original	configuration	file:

$	sudo	nano	/etc/dovecot/dovecot.conf

Then	we	add	the	following	code	without	the	description:

#	We	define	the	protocols	that	we	want	to	be	serving

protocols	=	imap	pop3

#	Enable	Dovecot	to	listen	to	all	domains

listen	=	*

#	Define	the	time	format	to	be	shown	at	the	log	file

log_timestamp	=	"%Y-%m-%d	%H:%M:%S	"

#	Define	the	location	of	the	received	mails

mail_location	=	maildir:/home/vmail/%d/%n/Maildir

#	Locate	the	files	to	be	used	for	the	SSL	authentication

ssl_cert	=	/etc/pki/dovecot/certs/dovecot.pem

ssl_key	=	/etc/pki/dovecot/private/dovecot.pem

#	Define	Mailbox	main	domain	setting

namespace	{

				type	=	private

				separator	=	.

				prefix	=	INBOX.

				inbox	=	yes

}

#	Define	the	service	users	option	

service	auth	{

				unix_listener	auth-master	{

								mode	=	0600

								user	=	vmail

				}

				unix_listener	/var/spool/postfix/private/auth	{

								mode	=	0666

								user	=	postfix

								group	=	postfix

				}

user	=	root

}

service	auth-worker	{

				user	=	root

}

#	Configure	the	protocol	LDA

protocol	lda	{

				log_path	=	/home/vmail/dovecot-deliver.log

				auth_socket_path	=	/var/run/dovecot/auth-master

				postmaster_address	=	postmaster@packt.co.uk

}

#	Configure	the	protocol	POP3

protocol	pop3	{

				pop3_uidl_format	=	%08Xu%08Xv

}

#	Database	configuration

passdb	{

				driver	=	sql

				args	=	/etc/dovecot/dovecot-sql.conf.ext

}

userdb	{

				driver	=	static

				args	=	uid=5000	gid=5000	home=/home/vmail/%d/%n	allow_all_users=yes

}

We	save	the	file	to	have	the	configuration	stored.	Then	we	need	to	create	the	database	files
already	assigned	to	the	Dovecot	configuration	file:

$	sudo	nano	/etc/dovecot/dovecot-sql.conf.ext

Then	we	add	the	following	code,	changing	the	mail	administrator	password
mail_admin_password	for	the	one	already	set	in	an	earlier	section	where	we	have	setup
the	MariaDB	database:

driver	=	mysql

connect	=	host=127.0.0.1	dbname=mail	user=mail_admin	

password=mail_admin_password

default_pass_scheme	=	CRYPT

password_query	=	SELECT	email	as	user,	password	FROM	users	WHERE	

email='%u';

Then	we	arrange	the	files	permission	and	ownership	to	restrict	access	to	the	files:

$	sudo	chgrp	dovecot	/etc/dovecot/dovecot-sql.conf.ext

$	sudo	chmod	o=	/etc/dovecot/dovecot-sql.conf.ext

Then	we	move	to	configure	the	Dovecot	authentication	parameters	located	in	its
configuration	folder,	/etc/dovecot/conf.d/.	We	start	with	the	authentication	process
configuration	file:

$	sudo	nano	/etc/dovecot/conf.d/10-auth.conf

We	need	to	locate	the	following	lines	and	change	them:

#	Line	10:	needs	to	uncommented	and	changed

disable_plaintext_auth	=	no

#	Line	100:	We	need	to	add	it	login	at	the	end

auth_mechanisms	=	plain	login	

Then	we	move	to	the	mailbox	configuration	file:

$	sudo	nano	/etc/dovecot/conf.d/10-mail.conf

Then	uncomment	the	following	line	and	change	its	end	to	match	with	the	following	code:

#	Line	30:	Define	the	mailbox	directory	location

mail_location	=	maildir:~/maildir

Similarly,	we	need	to	edit	the	master	configuration	file	to	define	the	Postfix	user	who	will
use	the	SMTP	authentication:

$	sudo	nano	/etc/dovecot/conf.d/10-master.conf

Then	uncomment	the	unix_listener	/var/spool/postfix/private/auth	section,	and
add	it	to	the	user	and	group	lines:

#	Line	96-100:	Set	the	user	and	group	for	the	Unix	listener	section

unix_listener	/var/spool/postfix/private/auth	{

				mode	=	0666

				user	=	postfix	

				group	=	postfix	

}

Finally,	we	configure	the	SSL	authentication	configuration	file:

$	sudo	nano	/etc/dovecot/conf.d/10-ssl.conf

And	we	change	the	SSL	option	from	no	to	yes:

#	Line	8:	change	it	yes

ssl	=	yes

Before	starting	the	test,	we	need	to	make	sure	that	we	have	defined	two	variables	in	our
/etc/aliases	configuration	file:

$	sudo	nano	/etc/aliases

Then	we	check	the	following	code:

postmaster:	root

root:	postmaster@packt.co.uk

Then	we	update	the	aliases	list:

$	sudo	newaliases

And	to	finish	the	Dovecot	configuration,	we	need	to	restart	both	the	Postfix	and	Dovecot
services.	Also,	we	need	to	add	Dovecot	to	the	system	startup	services:

$	sudo	systemctl	restart	postfix.service

$	sudo	systemctl	restart	dovecot.service

$	sudo	systemctl	enable	dovecot.service

To	verify	that	the	services	are	running	well	and	there	is	no	problem	with	the	configuration
files	we	need	to	check	the	mail	log	file:

$	sudo	tail	/var/log/maillog

We	should	see	something	like	the	following	code	to	know	that	Dovecot	is	running	well:

dovecot:	master:	Dovecot	v2.2.10	starting	up	for	imap,	pop3	(core	dumps	

disabled)

Note
Sometimes,	SELinux	prevents	Dovecot	from	using	the	system	resource	so	we	need	to
grant	Dovecot	access	to	the	system	resource,	or	if	we	have	an	alternative	way	to	secure	the
server	we	can	either	disable	SELinux	or	set	it	as	permissive.

At	this	point,	our	mail	server	is	fully	qualified	to	work	as	a	sender	and	receiver	with	a
well-organized	database	and	a	medium	security	level.	We	can	start	testing	our	mail	server.

First,	we	will	use	the	Telnet	service	to	check	that	Postfix	SMTP-AUTH	and	TLS	are
working	fine.	We	need	to	install	Telnet	and	if	it	doesn’t	exist	on	the	system,	run	the
following	command:

$	sudo	yum	install	telnet

Then	we	run	the	test:

$	telnet	localhost	25

Telnet	will	connect	and	we	will	see	the	Telnet	shell,	inside	which	we	type	inside	the
following	command:

>	ehlo	localhost

To	know	that	our	test	is	positive,	we	need	to	see	the	following	message:

250-server.packt.co.uk

250-PIPELINING

250-SIZE	10485760

250-VRFY

250-ETRN

250-STARTTLS

250-AUTH	PLAIN

250-AUTH=PLAIN

250-ENHANCEDSTATUSCODES

250-8BITMIME

250	DSN

Then	we	exit	the	Telnet	shell:

>	quit

Now	we	will	test	the	mail	service.	To	do	that,	we	need	to	first	populate	our	database	with	a
test	domain	and	user.	First,	we	enter	the	MariaDB	database	shell:

$	sudo	mysql	-u	root	-p

Then	we	switch	to	our	mail	database:

>	USE	mail;

Then	we	create	a	new	domain	at	the	domains	table:

>	INSERT	INTO	domains	(domain)	VALUES	('packtmail.co.uk');

We	add	a	new	user	to	that	domain.	We	need	to	enter	a	good	password	for	the	real	users
later:

>	INSERT	INTO	users	(email,	password)	VALUES	('user1@packtmail.co.uk',	

ENCRYPT('user_password'));

Then	we	exit	the	MariaDB	shell.

Now	we	need	to	send	a	test	mail	to	our	newly	created	user.	We	need	to	use	Mailx,	so	if	we
don’t	have	it	installed	we	need	to	do	so	before	the	test:

$	sudo	yum	install	mailx

Then	we	send	our	test	mail:

$	mailx	user1@packtmail.co.uk

We	need	to	put	the	Subject	and	then	press	Enter.	If	we	ever	need	to	insert	a	copied
address,	we	need	to	write	Cc:	then	add	the	copied	address.	Then	we	type	in	the	message
and	press	Enter,	then	to	send	it	we	need	to	put	.	at	the	end	and	press	Enter.

To	check	whether	the	mail	has	been	sent,	we	go	to	the	mail	log	file;

$	sudo	tail	/var/log/maillog

Then	we	should	see	something	like	the	following	code	to	know	that	it	is	ok:

to=<user1@packtmail.co.uk>,	relay=dovecot,	delay=0.11,	

delays=0.07/0.01/0/0.03,	dsn=2.0.0,	status=sent	(delivered	via	dovecot	

service)	

Now	we	check	the	Dovecot	delivery	by	visualizing	the	Dovecot	delivery	log:

$	sudo	tail	/home/vmail/dovecot-deliver.log

And	we	should	see	something	like	the	following	line	to	make	sure	that	it	is	working:

lda(user1@packtmail.co.uk):	Info:	msgid=

<20150822073408.6537761B3936@server.packt.co.uk>:	saved	mail	to	INBOX

Now	we	can	test	our	mailbox	via	the	mail	client.	For	this	example,	we	are	going	to	use
Mutt,	which	is	a	simple	mail	client.	But	before	using	it,	we	need	to	install	it	first:

$	sudo	yum	install	mutt

Then	we	need	to	go	to	the	location	where	the	new	user	mailbox	is	stored	and	run	Mutt:

$	sudo	cd	/home/vmail/packtmail.co.uk/user1/Maildir/

And	now	we	run	Mutt:

$	sudo	mutt	–f	.

The	message	showing	that	we	need	to	create	a	root	mailbox	is	not	required,	so	we	can	skip
it.	And	to	exit	Mutt	type	q.

Then	we	will	have	a	pretty	clear	interface	where	we	can	navigate	using	keyboard	direction
and	press	Enter	to	see	what	is	inside	the	mail.	To	confirm	that	our	mail	server	is	well
configured	and	running,	we	should	see	the	test	mail	that	we	have	sent	using	Mailx:

Configuring	the	OpenLDAP	Active
Directory	with	Postfix
For	this	section,	we	are	going	to	use	OpenLDAP	as	a	backend	to	both	our	Postfix	(as	an
MTA)	and	Dovecot	(as	an	POP3/IMAP	server)	users,	in	order	for	them	to	be	connected	to
each	other,	and	help	with	address	lookup	and	aliases.

Note
OpenLDAP	is	an	open	source	implementation	of	the	Lightweight	Directory	Access
Protocol	(LDAP).	This	section	doesn’t	cover	how	to	install	an	OpenLDAP	server.	We	will
assume	that	we	have	one	already	configured	inside	our	network.

Our	OpenLDAP	server	has	the	following	information	as	follows:

dn:	uid=user,ou=people,dc=packtldap,dc=co,dc=uk

objectClass:	posixAccount

objectClass:	inetOrgPerson

uid:	user1

homeDirectory:	/home/user1

userPassword:	<passwordhash>

For	the	configuration	of	the	LDAP	settings	for	both	of	our	services,	we	need	to	edit	and
add	some	options	to	their	configuration	files.	We	will	start	with	Dovecot.	We	will	first
open	the	Dovecot	main	configuration	file	with	a	text	editor,	then	make	the	necessary
changes:

$	sudo	nano	/etc/dovecot/dovecot.conf

Then	we	check	the	following	options	if	any	change	is	needed	or,	if	they	don’t	exist,	we
need	to	add	them:

#	Define	the	mail	user	and	group	UID	and	GID

mail_uid	=	5000

mail_gid	=	5000

#	Define	the	default	Authentication	method

auth	default	{

		mechanisms	=	plain

		#	Define	the	LDAP	database	password	file

		passdb	ldap	{

										args	=	/etc/dovecot/dovecot-ldap.pass

		}

		#	Define	the	LDAP	database	user	file

		userdb	ldap	{

										args	=	/etc/dovecot/dovecot-ldap.user

		}

		#	Define	the	socket	Listening	parameters	

		socket	listen	{

								client	{

										path	=	/var/spool/postfix/private/auth

										mode	=	0660

										user	=	postfix

										group	=	postfix

		}

}

Then	we	need	to	create	the	LDAP	database	files	and	populate	them:

$	sudo	nano	/etc/dovecot/dovecot-ldap.user

Next,	we	add	the	following	code	with	the	necessary	change,	then	we	save:

hosts	=	packtldap.co.uk:389

sasl_bind	=	no

auth_bind	=	yes

ldap_version	=	3

deref	=	never

base	=	uid=%n,ou=people,dc=packtldap,dc=co,dc=uk

scope	=	base

user_attrs	=	homeDirectory=home

dn	=	uid=manager,dc=packtldap,dc=co,dc=uk

dnpass	=	password

The	following	image	shows,	OpenLDAP	serves	both	inbox	and	outbox	mail	services:

We	do	the	same	thing	for	the	second	LDAP	database	file:

$	sudo	nano	/etc/dovecot/dovecot-ldap.pass

Then	we	add	the	following	code	with	the	necessary	change,	save	the	file,	and	exit:

hosts	=	packtldap.co.uk:389

sasl_bind	=	no

auth_bind	=	yes

ldap_version	=	3

deref	=	never

base	=	uid=%n,ou=people,dc=packtldap,dc=co,dc=uk

scope	=	base

dn	=	uid=manager,dc=packtldap,dc=co,dc=uk

dnpass	=	password

With	this	step,	we	can	say	that	Dovecote	is	successfully	configured	to	use	our	LDAP
server.	We	proceed	to	the	Postfix	configuration.	As	usual	we	can	edit	the	main
configuration	file,	/etc/postfix/main.cf	using	a	text	editor	or	we	can	just	use	the	fast
configuration	setup	command:

$	sudo	postconf	-e	'accounts_server_host	=	packtldap.co.uk'

$	sudo	postconf	-e	'accounts_search_base	=	

ou=people,dc=packtldap,dc=co,dc=uk'

$	sudo	postconf	-e	'accounts_query_filter	=	(&(objectClass=inetOrgPerson)

(mail=%s))'

$	sudo	postconf	-e	'accounts_result_attribute	=	homeDirectory'

$	sudo	postconf	-e	'accounts_result_format		=		%s/Mailbox'

$	sudo	postconf	-e	'accounts_scope	=	sub'

$	sudo	postconf	-e	'accounts_cache	=	yes'

$	sudo	postconf	-e	'accounts_bind	=	yes'

$	sudo	postconf	-e	'accounts_bind_dn	=	

uid=manager,dc=packtldap,dc=co,dc=uk'

$	sudo	postconf	-e	'accounts_bind_pw	=	password'

$	sudo	postconf	-e	'accounts_version	=	3'

$	sudo	postconf	-e	'virtual_transport	=	virtual'

$	sudo	postconf	-e	'virtual_uid_maps	=	static:5000'

$	sudo	postconf	-e	'virtual_gid_maps	=	static:5000'

$	sudo	postconf	-e	'virtual_mailbox_base	=	/'

$	sudo	postconf	-e	'virtual_mailbox_maps	=	ldap:accounts'

$	sudo	postconf	-e	'virtual_mailbox_domains	=	packtldap.co.uk'

Then	to	submit	the	change,	we	need	to	restart	both	services:

$	sudo	systemctl	restart	postfix.service

$	sudo	systemctl	restart	dovecot.service

Securing	the	mail	server	using	SSL/TLS
SSL/TLS	encryption	for	Postfix	gives	our	mail	server	the	capacity	to	not	only	authenticate
remote	SMTP	servers	but	also	to	encrypt	the	e-mails	that	we	send	between	our	server	and
the	receiver’s	server.

To	configure	SSL	to	encrypt	connections,	we	first	need	to	create	our	own	personalized	and
specific	SSL	certificates.

We	need	to	go	the	TLS	certificates	directory	to	create	our	new	certificate	there:

$	cd	/etc/pki/tls/certs/

Then	we	create	our	first	key	file:

$	sudo	openssl	genrsa	-des3	-out	mailserver.key	2048

Then	the	tool	will	ask	for	a	passphrase.	We	should	give	something	strong	and	retype	it
when	the	tool	asks	us	to	do	so.

After	that	we	need	to	start	using	the	OpenSSL	tool;	so	if	it	is	not	installed	we	need	to
install	it	first:

$	sudo	yum	install	openssl

Then	we	use	OpenSSL	to	write	the	RSA	key:

$	sudo	openssl	rsa	-in	server.key	-out	server.key

Then	write	in	the	passphrase	that	has	already	defined	and	carry	on	to	have	the	key
generated.

Now	we	move	on	to	certificate	creation.	In	the	same	folder,	we	run	the	following
command:

$	sudo	make	mailserver.csr

Then	we	fill	in	the	information	as	each	filed	asked:	Country	Name,	State	or	Province
Name,	Locality	Name,	Organization	Name,	Organizational	Unit	Name,	Common
Name,	and	Email	Address	and	for	the	final	two	entries	(A	challenge	password,	and	an
optional	company	name)	we	can	skip	them.

Then	we	create	a	private	key	using	OpenSSL:

$	sudo	openssl	x509	-in	mailserver.csr	-out	server.crt	-req	-signkey	

mailserver.key	-days	3650	–sha256

Then	we	move	to	the	configuring	Postfix	and	Dovecot	to	use	the	SSL/TLS	encryption.

First,	we	are	going	to	start	by	setting	up	Postfix	to	use	SSL/TLS	by	making	some
modifications	at	its	main	configuration	file,	/etc/postfix/main.cf.	We	can	always	use	a
text	editor	to	edit	the	file	and	change	the	parameters,	or	we	can	just	use	the	command
postconf	-e	to	set	them	up	in	a	faster	way.

We	will	add	some	lines	to	the	Postfix	configuration	file	to	protect	it	from	some	recent

attacks	against	OpenSSL:

$	sudo	nano	"/etc/postfix/main.cf

smtpd_tls_exclude_ciphers	=	aNULL,	eNULL,	EXPORT,	DES,	RC4,	MD5,	PSK,	

aECDH,	EDH-DSS-DES-CBC3-SHA,	EDH-RSA-DES-CDC3-SHA,	KRB5-DE5,	CBC3-SHA

smtpd_tls_dh1024_param_file	=	/etc/ssl/private/dhparams.pem

smtpd_tls_mandatory_protocols	=	!SSLv2,	!SSLv3

smtpd_tls_protocols	=	!SSLv2,	!SSLv3

smtp_tls_mandatory_protocols	=	!SSLv2,	!SSLv3

smtp_tls_protocols	=	!SSLv2,	!SSLv3

We	create	the	cert	file:

$	cd	/etc/ssl/private/

$	sudo	openssl	dhparam	-out	dhparams.pem	2048

$	sudo	chmod	600	dhparams.pem

Then	we	need	to	make	sure	that	the	TLS	is	enabled	to	be	used	with	SMTP:

$	sudo	postconf	-e	'smtpd_use_tls	=	yes'

Then	we	need	to	redefine	the	certificate	and	key	files	position:

$	sudo	postconf	-e	'smtpd_tls_cert_file	=	

/etc/pki/tls/certs/mailserver.crt'

$	sudo	postconf	-e	'smtpd_tls_key_file	=	/etc/pki/tls/certs/mailserver.key'

Then	we	set	the	location	of	the	TLS	session	database	cache:

$	sudo	postconf	-e	'smtpd_tls_session_cache_database	=	

btree:/etc/postfix/smtpd_scache'

That	is	all	for	the	main	configuration	file.	We	will	now	configure
/etc/postfix/master.cf:

$	sudo	nano	/etc/postfix/master.cf

We	need	to	uncomment	some	options	of	Submission	and	SMTPS	between	lines	16	to	35	of
the	original	file,	to	look	like	the	following	uncommented:

submission					inet		n							-							n							-							-							smtpd

		-o	syslog_name=postfix/submission

		-o	smtpd_sasl_auth_enable=yes

		-o	smtpd_recipient_restrictions=permit_sasl_authenticated,reject

		-o	milter_macro_daemon_name=ORIGINATING

smtps							inet			n							-							n							-							-							smtpd

		-o	syslog_name=postfix/smtps

		-o	smtpd_tls_wrappermode=yes

		-o	smtpd_sasl_auth_enable=yes

		-o	smtpd_recipient_restrictions=permit_sasl_authenticated,reject

		-o	milter_macro_daemon_name=ORIGINATING

We	have	finished	with	the	Postfix	configuration	to	use	SSL.	We	can	now	configure	SSL
for	Dovecot.	We	only	need	to	make	a	few	changes	at	the	/etc/dovecot/conf.d/10-
ssl.conf	file:

$	sudo	nano	/etc/dovecot/conf.d/10-ssl.conf

First,	we	need	to	make	sure	that	the	SSL	option	is	activated:

#	Line8:	change	it	to	yes	

ssl	=	yes

Then	we	change	the	SSL	certificate	and	key	location:

#	Line	14,	15:	change	the	files	location	to	the	new	one

ssl_cert	=	</etc/pki/tls/certs/mailserver.crt

ssl_key	=	</etc/pki/tls/certs/mailserver.key

And,	finally,	we	need	to	restart	the	services	to	submit	the	change:

$	sudo	systemctl	restart	postfix.service

$	sudo	systemctl	restart	dovecot.service

References
Now	that	we	have	gone	through	the	chapter,	let’s	take	a	look	at	the	references	used:

Postfix	home	page:	www.postfix.org
Postfix	MySQL	support:	http://www.postfix.org/MYSQL_README.html
Dovecot	home	page	overview:	http://www.dovecot.org
Postfix	virtual	hosts	overview:
http://www.akadia.com/services/postfix_separate_mailboxes.html
Dovecot	configuration	file:	http://wiki.dovecot.org/MainConfig
LDAP	support	in	Postfix:	http://www.postfix.org/LDAP_README.html
Postfix	TLS	support:	http://www.postfix.org/TLS_README.html

http://www.postfix.org
http://www.postfix.org/MYSQL_README.html
http://www.dovecot.org
http://www.akadia.com/services/postfix_separate_mailboxes.html
http://wiki.dovecot.org/MainConfig
http://www.postfix.org/LDAP_README.html
http://www.postfix.org/TLS_README.html

Summary
This	chapter	describes	in	a	step-by-step	tutorial	how	to	set	up	a	fully-qualified	mail	server
starting	from	sending	a	service	SMTP	using	Postfix.	We	then	started	organizing	the	mail
server,	focusing	on	sending/receiving	mail	and	virtual	domains	management	via	a	secure
database	service	MariaDB.	Next,	we	learned	about	the	mail	reception	service	using
POP3/IMAP	using	the	MDA	Dovecot	with	a	medium	level	of	security	provided	by	the
service	itself.	Then	to	start	the	extension	part,	which	shows	when	the	server	can	connect	to
an	LDAP	server	and	can	gather	useful	information	about	the	users	and	use	them	to	send
and	receive	mail.	Finally,	we	finished	off	with	a	customized	security	level	using	OpenSSL
to	generate	new	certificate	and	keys	to	secure	the	service’s	authentication	and	encryption
of	the	e-mails	to	be	sent.

In	the	next	chapter,	we	will	learn	how	to	set	up	and	configure	tools	such	as	Nagios	and
syslog-ng	on	CentOS	to	monitor	different	services,	and	collect	and	process	logs.

Chapter	5.	Monitoring	and	Logging
In	a	large	computer	infrastructure,	system	administrators	cannot	easily	handle	the
monitoring	of	all	system	services	and	hardware	issues	for	every	machine.	There	should	be
a	tool	that	helps	gather	the	statuses	of	every	machine	in	the	infrastructure	and	presents
them	in	a	comprehensive	way	to	the	system	administrators.	Therefore,	monitoring	systems
have	been	developed	to	satisfy	the	needs	of	monitoring	a	wide	variety	of	computer
infrastructure	and	help	prevent	system	or	hardware	damage.

This	chapter	is	an	exploration	of	the	world	of	monitoring	and	logging	tools	and	the
methodologies	needed	to	better	implement	the	right	tools	and	configure	them	with	the
right	parameters	to	guard	and	supervise	a	personalized	computer	infrastructure.

Through	this	chapter,	you	are	going	to	learn	these	topics:

The	most	common	open	source	monitoring	tools	available
How	to	set	up	Nagios	as	a	monitoring	server	with	some	clients	to	monitor
The	variety	of	tools	used	as	a	logging	server
How	to	set	up	and	configure	syslog-ng	as	a	logging	server

Open	source	monitoring	tools
Monitoring	tools	can	show	real-time	information	about	the	system,	service,	and	hardware
status.	Through	this	information,	a	system	administrator	can	tell	whether	there	is
something	acting	weirdly	or	showing	weakness.	Then,	they	can	act	and	try	to	resolve	the
issue	before	it	gets	worse.

This	section	presents	the	most	common	open	source	monitoring	tools.	A	monitoring	tool	is
usually	chosen	depending	on	what	its	main	need	is.	Some	monitoring	tools	are	specialized
in	monitoring	the	characteristics	of	a	set	of	machines.	Others	help	store	and	generate	a
graph	of	the	history	to	be	used	for	future	system	analysis.

Many	organizations	rely	on	their	monitoring	tools	to	output,	in	order	to	not	only	maintain
their	system	and	prevent	potential	problems,	but	also	to	determine	their	system’s	rush
hours	and	when	the	system	is	more	idle	status	This	helps	them	rather	reinforce	their
system	capacities	and	save	power	and	resources.

Ganglia
We	will	start	by	talking	about	one	of	the	most	common	monitoring	system	tools.	Ganglia
is	a	scalable	distributed	monitoring	system	for	high-performance	computing
infrastructures.	It	is	widely	used	with	clusters	and	grid	architectures.	It	is	a	web-based	tool
that	allows	its	users	to	visualize	the	history	of	a	machine’s	statistics,	such	as	CPU	load
averages,	network	usage,	and	so	on.	It	has	been	developed	to	achieve	a	low	per-node
overhead	and	high	concurrency.	It	is	currently	used	by	thousands	of	clusters	worldwide.

Source:	http://assets.digitalocean.com/

Ganglia	is	based	on	two	basic	services,	one	installed	on	the	client	machine	and	one	on	the
server.	On	the	client-side,	the	service	is	called	gmond.	gmond	is	a	multithreaded	daemon
that	runs	on	the	client	machines	that	we	want	to	monitor.	Its	services	are	basically	related
to:

Monitoring	a	machine’s	status	change
Announcing	the	relevant	changes
Listening	to	the	state	of	other	Ganglia	nodes
Responding	to	requests	for	the	XML	descriptions	of	the	machines	it	is	running	on

Then,	we	have	the	Ganglia	PHP	web	frontend,	which	is	installed	on	the	monitoring	server.
It	provides	a	view	of	the	gathered	information	via	real-time,	dynamic	web	pages.	These
pages	are	the	dashboards	provided	by	Ganglia	to	its	users	(including	system
administrators).	They	are	well	organized	in	a	meaningful	way	to	present	the	machine’s
status	to	the	system	administrators	to	make	the	diagnostics	part	much	more	easier	for
them.	The	Ganglia	web	frontend	stores	data	about	machines	for	up	to	1	year,	and	it	has	a
lot	of	customizable	parameters	for	viewing	a	machine’s	status	history.

Ganglia	is	a	very	useful	tool	for	monitoring	machines’	statuses	and	has	a	very	reliable

http://assets.digitalocean.com/

dashboard	for	history	management	and	all	types	of	troubleshooting	related	issues.	Still,	it
is	not	a	tool	that	can	easily	monitor	every	single	service,	especially	when	working	in	a
server	environment	in	which	system	administrators	prioritize	service	administration	over
the	machine	itself.

Source:	http://bezha.od.ua

http://bezha.od.ua

OpenNMS
OpenNMS	is	an	open	source,	enterprise-grade	network	monitoring	and	management
platform.	It	is	a	distributed	and	scalable	management	application	for	all	aspects	of	network
management.	It	is	designed	to	be	highly	customizable	to	create	a	unique	and	integrated
management	solution.

OpenNMS	supports	four	main	functional	areas:

Event	management	and	notification
Discovery	and	provisioning
Service	monitoring
Data	collection

OpenNMS	is	accessible	via	a	web-based	interface	that	is	smart	and	well	organized	to
create	high-level	reports	from	the	databases	and	the	collected	performance	data.	It	is	well
used	for	its	monitoring	using	the	SNMP	protocol,	alerts/notifications,	reporting,
escalations,	and	its	well-organized	and	clear	dashboard.	Still,	it	is	pretty	difficult	to	learn
how	to	use	it	and	personalize	it	by	making	personalized	scripts.	Also,	most	of	the
advanced	features	are	paid	and	other	costs	are	included.	It	could	take	a	lot	of	time	to	set	up
and	configure	to	work	perfectly,	but	the	result	is	always	more	than	satisfying.

Source:	http://docs.opennms.org

http://docs.opennms.org

Zabbix
Zabbix	is	a	piece	of	open	source	enterprise-level	software	used	for	the	real-time
monitoring	of	networks	and	applications.	It	has	been	designed	to	monitor	and	track	the
status	of	various	network	services,	servers,	and	other	pieces	of	network	hardware.	It	has
the	capacity	to	monitor	the	main	protocols	(HTTP,	FTP,	SSH,	POP3,	SMTP,	SNMP,
MySQL,	and	so	on).

Source:	http://image.slidesharecdn.com

Zabbix	features	a	high-performance	capacity	for	handling	hundreds	of	thousands	of
devices.	Also,	it	has	the	capacity	of	auto-discovery	to	identify	machines	within	the	same
network.	Zabbix	comes	with	a	web-based	interface	meant	to	show	the	monitoring
dashboard.	This	interface	is	accessible	via	a	secure	user’s	authentication,	and	it	has
distributed	monitoring	with	a	centralized	web	administration	that	can	visualize	and
compare	any	value	it	monitors.	This	dashboard	can	be	customized	to	the	needs	of	its	user.

Zabbix	has	the	capability	to	monitor	just	about	any	event	on	your	network,	from	network
traffic	to	how	many	papers	are	left	in	your	printer.

However,	Zabbix	is	more	complex	to	set	up	and	configure	compared	to	other	monitoring
tools	and	it	requires	a	good	documentation	to	install	it	with	best	practices.

http://image.slidesharecdn.com

Source:	http://dist.alternativeto.net/

http://dist.alternativeto.net/

Zenoss
Zenoss,	sometimes	called	Zenoss	Core,	is	a	free	open	source	application,	server,	and
network	management	platform	based	on	the	Zope	application	server.	It	provides	system
administrators	with	a	web-based	interface	that	offers	the	capacity	to	monitor	availability,
inventory/configuration,	performance,	and	events.

Zenoss	features	the	following	aspects:

Monitoring	a	remote	location	worldwide	through	a	nice-looking	map,	such	as	Google
Maps
A	beautiful	web	interface	that	is	very	user	friendly
Automatic	discovery	of	client	system	parameters
Work	with	simple	and	plain	SNMP

Zenoss	looks	very	advanced	and	fancy,	but	still	it	has	a	slightly	slow	web	interface.	It
doesn’t	support	real-time	notification.	We	should	always	wait	for	it	to	process	the
information	to	have	a	clear	view	on	what	is	happening	on	the	environment.	It	has	a	single
dashboard,	which	makes	monitoring	a	little	difficult	for	many	system	administrators.	Also,
it	is	a	limited	open	source	solution;	for	more	advanced	features,	we	need	to	pay	more.
However,	for	those	willing	to	pay	and	invest	in	it,	we	would	say	that	it	is	a	very	good
choice.

Source:	http://socializedsoftware.com/

http://socializedsoftware.com/

Nagios
Nagios	is	an	open	source	application	for	monitoring	systems,	networks,	and	infrastructure.
It	offers	monitoring	and	alerting	services	for	servers,	network	equipment,	applications,	and
services	on	large	computer	infrastructures.	It	has	two	types	of	alerts,	one	for	notifying	the
issue	and	the	other	for	notifying	whether	the	issue	has	been	resolved.

Source:	http://n2rrd-wiki.diglinks.com

Nagios	monitors	network	services,	host	resources,	and	probes	via	network	plugins	and	via
remotely	run	scripts.	It	has	a	large	community,	which	has	allowed	the	development	of
some	really	powerful	plugins.	It	is	considered	one	of	the	easiest	monitoring	tools	to	set	up
and	use	via	its	web	interface.	Still,	it	has	some	downsides	related	to	the	quality	of	third-
party	plugins	and	some	complex	writing	and	configuring	of	self-created	plugins.	Finally,	it
triggers	a	lot	of	notifications	and	alerts,	so	we	might	need	to	configure	it	with	the	proper
plugins	to	help	monitor	everything	in	the	infrastructure.

http://n2rrd-wiki.diglinks.com

Icinga
Icinga	is	an	open	source	system	and	network-monitoring	tool.	It	was	originally	created	as
a	fork	of	the	Nagios	monitoring	system.	It	is	well	developed	in	terms	of	its	web	interface,
to	provide	something	more	beautiful	and	more	interactive	than	Nagios.

Icinga’s	efficacy	lies	in	its	capacity	to	implement	really	powerful	plugins.	It	implements
many	famous	preferment	graphical	tools,	such	as	PNP4Nagios,	inGraph,	and	Graphite.
Icinga’s	most	famous	feature	is	its	lightness,	where	it	doesn’t	overload	the	system	when
running	and	it	generates	an	information	graph	in	real	time.	For	extremely	big
infrastructures,	Icinga	is	designed	to	run	on	multithreads	to	run	thousands	of	checks	every
second	without	any	overload	on	the	system’s	resources.

Source:	https://www.icinga.org/

Icinga	has	a	pretty	large	community,	and	they	help	integrate	patches	very	quickly.	There
are	two	official	versions	of	Icinga:	one	for	the	Web	1	Icinga	and	one	for	the	Web	2
Icinga2.	But	it	is	still	on	the	way	to	being	well	developed.

https://www.icinga.org/

Source:	https://www.icinga.org/

https://www.icinga.org/

Setting	up	Nagios	as	a	monitoring	server
For	this	chapter,	we	are	going	to	work	with	Nagios	as	our	best	choice,	considering	the
performance	and	the	simplicity	of	its	setup	and	configuration.	As	we	have	already
mentioned,	Nagios	is	open	source	software	that	can	be	installed	on	multiple	Linux
distributions.	In	our	case,	we	will	be	installing	it	on	CentOS	7.	It	is	a	network,
infrastructure,	and	server-monitoring	tool.	It	will	be	monitoring	switches,	applications,	and
services.	It	has	an	alerting	feature	that	helps	inform	users	about	all	issues	that	occur	while
the	infrastructure	is	being	monitored.	It	also	alerts	the	user	if	the	issues	have	been	fixed.
Other	than	monitoring,	Nagios	also	has	the	ability	to	identify	system	or	network	issues
that	could	cause	problems,	with	real-time	problem	notification.	Furthermore,	it	has	some
security	features,	by	virtue	of	which	it	can	identify	security	breaches	in	the	infrastructure.

In	this	section,	we	are	going	to	install	Nagios	on	a	machine.	It	will	act	as	our	monitoring
server.	We	need	a	test	client	to	have	it	monitored.	The	client	will	have	some	common
services;	we	will	try	to	mess	with	them	a	little	to	test	the	Nagios	notification	service.

Let’s	talk	a	bit	about	the	things	we	need	before	we	start	our	monitoring	server	installation.

First,	we	need	to	have	the	Linux	Apache	MySQL	PHP	(LAMP)	services	installed	on	our
machine.	Since	Nagios	will	be	accessible	via	the	web	interface,	having	a	web	server
installed	is	something	obvious.	For	a	more	detailed	and	secure	web	server	installation,	you
can	go	back	and	check	out	Chapter	3,	Linux	for	Different	Purposes.

Nagios	won’t	be	installed	from	the	CentOS	7	package	manager.	We	have	to	download	it
and	then	compile	it,	so	we	need	basic	compiling	tools	and	a	downloading	tool	to	download
the	Nagios	source	code	archive.	We	will	install	these	using	Yum,	the	CentOS	package
manager:

$	sudo	yum	install	gcc	cpp	glibc	glibc-common	glibc-devel	glibc-headers	gd	

gd-devel	kernel-headers	libgomp	libmpc	mpfr	make	net-snmp	openssl-devel	

xinetd

We	wait	until	the	installation	is	done	and	then	proceed	to	the	next	step	of	the	preparation.

In	order	to	run	the	Nagios	process,	we	need	to	create	a	Nagios	user	and	give	it	a	password:

$	sudo	useradd	nagios

$	sudo	passwd	Really_Secure_Password

We	need	to	make	sure	that	we	are	using	well-secured	passwords	while	creating	any.

Next,	we	create	a	new	group	called	nagcmd	to	allow	external	commands	to	be	submitted
through	the	web	interface	once	it’s	up-and-running	.	Then,	we	need	to	add	both	Nagios
and	Apache	to	this	group:

$	sudo	groupadd	nagcmd

$	sudo	usermod	-a	-G	nagcmd	nagios

$	sudo	usermod	-a	-G	nagcmd	apache

We	move	on	to	the	final	step,	which	is	downloading	the	source	archive	for	the	latest
version	of	Nagios.	To	do	the	downloading,	we	will	be	using	Wget,	a	tool	that	we	have

already	installed.

During	this	tutorial,	we	will	be	using	Nagios	4:

$	wget	http://prdownloads.sourceforge.net/sourceforge/nagios/nagios-

4.1.1.tar.gz

After	downloading	the	latest	Nagios	stable	version,	we	need	to	extract	it.	Well,	since
Nagios	will	be	installed	at	the	position	where	we	are	going	to	extract	its	source,	we	are
going	to	put	it	in	an	appropriate	location.	We	have	a	choice	between	/usr/local	and
/opt,	so	we	need	to	copy	the	source	package	file	there	and	then	extract	it.	For	this
example,	we	will	just	go	with	/usr/local:

$	sudo	cp	nagios-4.1.1.tar.gz	/usr/local/

$	cd	/usr/local/

$	sudo	tar	xzvf	nagios-4.1.1.tar.gz

After	extracting	the	archive,	there	will	be	a	new	folder	created,	holding	the	named	Nagios
and	including	the	corresponding	version.	We	need	to	go	inside	the	folder	to	start
compiling	it:

$	cd	nagios-4.1.1/

Just	before	we	start	the	compiling	process,	we	need	to	run	the	configuration	script	that	will
help	run	the	compiling	process	with	no	error	by	configuring	it	to	use	the	available
compiling	tools	that	we	have	installed	previously:

$	sudo	./configure	--with-command-group=nagcmd

This	configuration	process	has	the	option	to	set	up	the	latest	created	group	as	the	one	that
will	be	running	the	internal	commands.

Now,	we	are	actually	able	to	start	the	compiling	process:

$	sudo	make	all

This	command	can	take	a	lot	of	time	depending	on	the	machine’s	processing	power.

After	doing	this,	we	proceed	to	the	installation	phase.	We	need	to	install	Nagios,	its
initialization	scripts,	some	sample	configuration	files,	and	the	Nagios	web	interface:

$	sudo	make	install

$	sudo	make	install-commandmode

$	sudo	make	install-init

$	sudo	make	install-config

$	sudo	make	install-webconf

Before	moving	on	the	next	step,	we	need	to	set	up	our	Nagios	administrator	user	and
password	to	access	the	web	interface:

$	sudo	htpasswd	-c	/usr/local/nagios/etc/htpasswd.users	nagiosadmin

Then,	we	type	in	the	password	twice	to	have	our	web	interface	administrator	well	created
and	configured.

After	Nagios	has	been	installed,	we	can	add	some	useful	plugins.	First,	we	need	to

download	the	latest	stable	source	version	of	those	plugins.	We	need	to	go	to	the
/usr/local	folder	and	download	the	plugin’s	source	archive	there.	This	step	installs
everything	there	well	organized	for	future	diagnostics:

$	cd	/usr/local

Then,	we	start	the	download	using	Wget:

$	sudo	wget	http://nagios-plugins.org/download/nagios-plugins-2.1.1.tar.gz

Note
We	used	the	sudo	command	because	during	the	download,	the	file	is	written	in	a	folder
with	no	user	access	to	write	on	it.

After	completing	the	download,	we	can	start	extracting	the	archive	using	the	same
command:

$	sudo	tar	xzvf	nagios-plugins-2.1.1.tar.gz

Then,	we	enter	the	directory	we	just	created:

$	cd	nagios-plugins-2.1.1/

Again,	we	need	to	compile	the	source	files.	Just	before	compiling,	we	need	to	run	the
configuration	script	with	some	useful	options,	as	follows:

$	sudo	./configure	--with-nagios-user=nagios	--with-nagios-group=nagios	--

with-openssl

For	the	configuration	option,	we	set	the	user	and	group	Nagios	as	the	default	to	access	and
use	the	plugins.	Also,	we	use	OpenSSL	to	secure	the	plugin	usage.

Then,	we	start	compiling	the	plugins:

$	sudo	make

After	that,	we	can	start	the	installation:

$	sudo	make	install

Once	this	command	is	executed	with	no	errors,	we	can	say	that	our	Nagios	Plugins	are
well	installed.	We	can	move	on	to	set	up	the	Nagios	Remote	Plugin	Executor	(NRPE).
This	is	a	Nagios	agent	that	simplifies	remote	system	monitoring	using	scripts	that	are
hosted	on	remote	systems.	We	need	to	download,	configure,	compile,	and	install	it	in	the
same	way.	We	first	need	to	find	the	latest	stable	version	of	the	source	package,	and	then
we	download	it	to	/usr/local:

$	cd	/usr/local/

$	sudo	wget	http://downloads.sourceforge.net/project/nagios/nrpe-2.x/nrpe-

2.15/nrpe-2.15.tar.gz

Next,	we	extract	it	at	the	same	location,	and	go	inside	the	folder	to	start	the	compilation:

$	sudo	tar	xzvf	nrpe-2.15.tar.gz

$	cd		nrpe-2.15/

We	start	by	running	the	NRPE	configuration	script.	We	define	the	user	and	the	group
using	the	Nagios	process	and	the	security	tools:

$	sudo	./configure	--enable-command-args	--with-nagios-user=nagios	--with-

nagios-group=nagios	--with-ssl=/usr/bin/openssl	--with-ssl-

lib=/usr/lib/x86_64-linux-gnu

Then,	we	run	the	compiling	command,	followed	by	the	installation	commands:

$	sudo	make	all

$	sudo	make	install

$	sudo	make	install-xinetd

$	sudo	make	install-plugin

$	sudo	make	install-daemon

$	sudo	make	install-daemon-config

Next,	we	configure	the	xinetd	startup	script:

$	sudo	nano	/etc/xinetd.d/nrpe

We	need	to	look	for	the	line	that	starts	with	only_from	and	then,	add	the	IP	address	of	the
monitoring	server.	It	can	be	a	public	or	a	private	address	depending	on	where	we	want	to
make	the	server	accessible	from:

only_from	=	127.0.0.1	10.0.2.1

Then,	we	save	the	file	to	give	only	our	Nagios	server	the	capacity	to	communicate	with
NRPE.	After	that,	we	add	the	following	line	to	define	the	port	number	for	the	NRPE
service:

$	sudo	echo	"nrpe	5666/tcp	#	NRPE"	>>	/etc/services

To	have	this	configuration	active	and	running,	we	need	to	restart	xinetd	to	launch	NRPE:

$	sudo	service	xinetd	restart

Now,	we	have	our	Nagios	monitoring	server	officially	installed.	We	can	proceed	with	the
configuration	steps.	We	go	to	the	Nagios	main	configuration	file	and	activate	the	folder
that	will	store	all	the	configuration	files:

$	sudo	nano	/usr/local/nagios/etc/nagios.cfg

Then,	we	uncomment	the	following	line,	save	the	file,	and	exit:

cfg_dir=/usr/local/nagios/etc/servers

Note
This	is	just	an	example	of	a	server.	It	can	also	be	done	for	network	equipments	or
workstations	or	any	other	type	of	network-connected	machine.

We	create	the	configuration	folder	that	will	store	the	configuration	file	for	each	machine
that	will	be	monitored:

$	sudo	mkdir	/usr/local/nagios/etc/servers

Then,	we	move	on	to	configure	the	Nagios	contacts	file	to	set	the	e-mail	address

associated	with	the	Nagios	administrator.	Usually,	it	is	used	to	receive	alerts:

$	sudo	nano	/usr/local/nagios/etc/objects/contacts.cfg

Now,	we	need	to	change	the	administrator	e-mail	address.	To	do	so,	we	need	to	type	in	the
right	one	after	the	email	option:

email																											packtadmin@packt.co.uk								;	<<*****	

CHANGE	THIS	TO	YOUR	EMAIL	ADDRESS	******

Then,	we	save	the	file	and	exit	it.

Now,	we	proceed	to	the	check_nrpe	command	configuration.	We	start	by	adding	a	new
command	to	our	Nagios	server:

$	sudo	nano	/usr/local/nagios/etc/objects/commands.cfg

We	add	the	following	lines	at	the	end:

define	command{

								command_name	check_nrpe

								command_line	$USER1$/check_nrpe	-H	$HOSTADDRESS$	-c	$ARG1$

}

We	save	the	file	and	exit	to	allow	the	new	command	to	become	usable.

Now,	we	go	ahead	and	configure	the	access	restriction	to	IP	addresses	that	can	access	the
Nagios	web	interface:

$	sudo	nano	/etc/httpd/conf.d/nagios.conf

We	need	to	comment	these	two	lines:

Order	allow,deny

Allow	from	all

Next,	we	uncomment	the	following	three	lines:

#		Order	deny,allow

#		Deny	from	all

#		Allow	from	127.0.0.1

Note
These	lines	appear	twice	in	the	configuration	file,	so	we	need	to	do	the	same	thing	twice	in
the	same	file.	This	step	is	only	for	reinforcing	Nagios	security.

We	can	always	add	any	network	or	address	to	allow	it	to	have	access	to	the	monitoring
server:

Allow	from	127.0.0.1	10.0.2.0/24

We	can	always	check	whether	there	is	any	configuration	error	in	the	Nagios	configuration
file	using	the	following	command:

$	/usr/local/nagios/bin/nagios	-v	/usr/local/nagios/etc/nagios.cfg

Just	before	starting	Nagios,	we	need	to	make	the	Nagios	CGI	accessible	by	changing

SELinux	actions	from	enforcing	mode	to	permissive:

$	sudo	nano	/etc/selinux/config

Then,	we	change	this	line	to	look	like	the	following:

SELINUX=permissive

Now,	we	can	restart	the	Nagios	service	and	add	it	to	the	startup	menu.	We	also	need	to
restart	the	Apache	service:

$	sudo	systemctl	start	nagios.service

$	sudo	systemctl	enable	nagios.service

$	sudo	systemctl	restart	httpd.service

We	can	now	access	the	Nagios	server,	but	still	we	need	to	be	allowed	to	try	accessing	it
from	the	server	itself,	or	from	a	machine	that	is	connected	to	the	network	that	is	allowed	to
access	the	server.	So,	we	go	to	the	web	browser	and	type
http://Nagios_server_IP_Address/nagios.	Then,	we	type	the	admin	username,
nagiosadmin,	and	its	password,	which	has	already	been	defined	earlier,	to	get	access	to
the	Nagios	interface.

Now,	we	move	on	to	our	client	server—the	one	that	we	want	to	monitor	using	Nagios.
First,	we	need	to	install	the	required	packages.	For	CentOS	7,	we	need	to	have	the	EPEL
repository	installed	in	order	to	get	the	required	packages:

$	sudo	yum	install	epel-release

Now,	we	can	install	the	Nagios	plugins	and	NRPE:

$	sudo	yum	install	nrpe	nagios-plugins-all	openssl

Let’s	start	by	updating	the	NRPE	configuration	file:

$	sudo	nano	/etc/nagios/nrpe.cfg

We	have	to	find	the	line	that	starts	with	allowed_hosts	and	add	the	IP	address	of	our
monitoring	server:

allowed_hosts=127.0.0.1,10.0.2.1

Then,	we	save	and	exit	the	file.	To	complete	the	configuration,	we	need	to	start	the	NRPE
service	and	add	it	to	the	startup	menu:

$	sudo	systemctl	start	nrpe.service

$	sudo	systemctl	enable	nrpe.service

Once	we	are	done	configuring	the	host	that	we	want	to	monitor,	we	go	to	the	Nagios
server	to	add	it	to	the	configuration	folder.

On	the	Nagios	server,	we	need	to	create	a	file	with	the	name	of	the	machine.	We	can	take
the	machine	hostname	or	put	something	that	indicates	the	role	of	the	machine	or	any	other
indication:

$	sudo	nano	/usr/local/nagios/etc/servers/packtserver1.cfg

Then,	we	add	the	following	lines,	replacing	host_name	with	the	client	hostname	replacing
the	alias	value	with	a	short	description	of	the	server’s	main	job,	and	finally	replacing
address	with	the	server	IP	address:

define	host	{

								use																													linux-server

								host_name																							packtserver1

								alias																											Packt	Apache	server

								address																									10.0.2.12

								max_check_attempts														5

								check_period																				24x7

								notification_interval											30

								notification_period													24x7

}

With	this	configuration	saved,	Nagios	will	only	monitor	whether	the	host	is	up	or	down.
To	make	it	do	more,	we	need	to	add	some	services	to	monitor,	such	as	HTTP	and	SSH.
Also,	we	are	adding	the	option	to	check	whether	the	server	is	active.	We	need	to	open	the
same	file	and	define	a	service	block	for	each	service	that	we	want	to	monitor:

$	sudo	nano	/usr/local/nagios/etc/servers/packtserver1.cfg

define	service	{

								use																													generic-service

								host_name																							packtserver1

								service_description													SSH

								check_command																			check_ssh

								command_line		$USER1$/check_ssh	$ARG1$	$HOSTADDRESS$

								notifications_enabled											0

}

define	service	{

								use																													generic-service

								host_name																							packtserver1

								service_description													HTTP

								check_command																			check_http

				command_line		$USER1$/check_http	-I	$HOSTADDRESS$	$ARG1$

								notifications_enabled											0

}

define	service	{

								use																													generic-service

								host_name																							packtserver1

								service_description													PING

								check_command																			check_ping!100.0,20%!500.0,60%

}

Then,	we	save	the	file	and	reload	the	Nagios	service:

$	sudo	systemctl	reload	nagios.service

We	will	see	the	new	server	on	the	host	list	and	its	services	on	the	services	list.	To	test
whether	Nagios	is	doing	its	job,	we	disable	the	SSH	service:

$	sudo	systemctl	stop	sshd.service

Then,	on	the	web	interface,	we	can	see	how	the	service	will	go	down	from	green	to	red.
The	red	signal	means	that	the	test	for	that	service	has	failed	or	has	returned	nothing,	which
means	that	the	service	is	rather	disabled	or	inaccessible.	An	error	notification	e-mail	will
be	received	by	the	Nagios	administrator.

Source:	https://thenullterminator.wordpress.com/

After	that,	we	try	the	second	test,	to	start	the	service:

$	sudo	systemctl	start	sshd.service

To	indicate	that	the	service	is	back,	another	e-mail	is	received	with	the	new	status,	where
all	its	information	will	turn	to	green,	as	shown	in	the	following	screenshot:

https://thenullterminator.wordpress.com/

Source:	https://www.digitalocean.com/

Now,	after	setting	up	the	first	server,	we	can	go	ahead	and	add	all	the	machines,	including
the	switches,	printers,	and	workstations	that	we	need	to	monitor.	Also,	to	be	more
practical,	we	should	add	only	those	services	that	we	care	about.	So,	if	we	have	a	server
that	runs	a	number	of	services	and	we	will	be	using	only	two	of	them,	it	is	pointless	to	add
all	of	them	and	overload	the	server	dashboard	and	the	mailbox	of	the	administrator	with
things	that	we	don’t	care	about,	which	are	later	treated	as	spam.

Now,	we	will	configure	the	NRPE	daemon	to	receive	information	from	the	clients	about
their	status.	First,	at	the	Nagios	server,	we	edit	the	Xinetd	NRPE	configuration	file	to	add
which	IP	address	the	server	should	listen	from:

$	sudo	nano	/etc/xinetd.d/nrpe

We	need	to	add	the	IP	address	after	the	only_from	option:

only_from							=	127.0.0.1	10.0.2.1

Then,	we	need	to	add	the	NRPE	service	to	the	system	services:

$	sudo	nano	/etc/services

We	add	the	following	line	at	the	end	of	the	file:

nrpe	5666/tcp	#	NRPE

To	have	it	submitted,	we	restart	the	Xinetd	service:

$	sudo	systemctl	restart	Xinetd

Then,	we	go	to	the	client	and	make	these	modifications:

https://www.digitalocean.com

$	sudo	/usr/lib/nagios/plugins/check_users	-w	5	-c	10

$	sudo	/usr/lib/nagios/plugins/	check_load	-w	15,10,5	-c	30,25,20

$	sudo	/usr/lib/nagios/plugins/check_disk	-w	20%	-c	10%	-p	/dev/sda1

These	three	commands	are	used	to	activate	the	Nagios	agent	to	send	information	about
server	load	and	disk	storage.	In	our	case,	our	disk	is	defined	as	sda1.	We	can	check	the
naming	of	the	disk	using	the	lsblk	command.

Tools	to	set	up	a	logging	server
Logging	means	collecting	system	and	service	output	information.	It	can	be	simple
information,	a	warning,	or	an	error	for	telling	the	status	of	the	concerned	daemon.	For	a
system	administrator,	the	daily	work	load	can	be	really	heavy.	Thus,	they	have	always
been	adopting	the	best	logging	tools	to	monitor	their	infrastructure’s	behavior.	Also,	the
relevant	information	should	be	readable	and	quickly	understandable.

Many	system	administrators	mainly	use	either	of	two	open	source	solutions:	Syslog-ng
and	Rsyslog.

Rsyslog
Rsyslog	is	a	rocket-fast	system	for	log	processing.	It	offers	high	performance,	great
security,	and	a	modular	design.	It	has	developed	quickly	and	has	evolved	to	be	considered
as	a	Swiss	Army	Knife	in	the	logging	field.	It	has	a	strong	enterprise	focus	and	also	scales
down	to	smaller	systems.	It	supports	MySQL,	PostgreSQL,	failover	log	destinations,
syslog/tcp	transport,	fine-grained	output	format	control,	high-precision	timestamps,
queued	operations,	and	the	ability	to	filter	parts	of	any	message.

Rsyslog	has	the	ability	to	listen	to	TCP/UDP	connections,	but	with	a	downside	due	to	its
limitation	to	the	log	rate,	where	it	can	lose	some	of	the	log	information	during	an
overload.	It	can	load	a	decent	number	of	modules.	It	can	also	discriminate	log	filtering	by
program,	source,	message,	PID,	and	so	on.

Syslog-ng
Syslog-ng	is	an	open	source	implementation	of	the	syslog	protocol	for	Linux	and	Unix-
like	systems.	It	features	content-based	filtering,	rich	filtering	compatibilities,	and	flexible
configuration.	It	also	adds	some	important	features	to	syslog,	such	as	these:

Using	TCP	for	transporting	logging	information
The	ability	to	format	log	messages	using	the	Unix-shell-like	(bash)	variable
expansion
The	ability	to	send	log	messages	to	local	applications
The	ability	to	save	logging	information	directly	to	a	database
Classifying	incoming	log	messages	and,	at	the	same	time,	extracting	structured
information	from	unstructured	syslog	messages
Processing	structured	message	formats	transmitted	over	syslog
The	ability	to	correlate	multiple	incoming	messages	to	form	a	more	complex,
correlated	event

Syslog-ng	is	the	next	generation	successor	of	syslog.	It	is	one	of	the	best	tools	for
managing	logs;	it	treats	the	log	entities	as	an	object	(source,	destination,	filter,	and	so	on),
and	its	syntax	is	easily	understandable.	It	is	a	highly	portable	application	and	is	available
for	many	more	platforms,	which	makes	it	very	suitable	for	sites	with	diversity	in
platforms.	It	has	the	capacity	to	compare	the	contents	of	log	messages	to	a	database	of
predefined	message	patterns.	Thus,	Syslog-ng	is	able	to	identify	the	exact	type	of
messages	and	sort	them	into	message	classes.	Then,	it	can	be	used	to	classify	the	type	of
event	described	in	the	log	messages.

Here,	we	are	going	to	install	and	configure	Syslog-ng	in	CentOS	7	to	be	our	logging
server.

Setting	up	and	configuring	Syslog-ng
By	default,	with	the	installation	of	CentOS	7,	there	will	be	Rsyslog	installed	for	storing
the	log	of	the	system	and	its	applications.	Luckily,	we	will	have	all	our	system	log	files
stored	and	organized	the	way	syslog	wants.	We	will	be	using	these	log	files	with	the
installation	of	Syslog-ng,	and	we	will	have	them	organized	in	a	more	suitable	way:

First,	before	starting	the	installation,	we	need	to	set	up	the	EPEL	repository:

$	sudo	yum	install	epel-release

Tip
All	of	the	upcoming	package	repository	checking	and	application	availability	is	optional.
We	can	always	proceed	with	the	installation	of	Syslog-ng.

To	verify	that	the	EPEL	repository	has	been	added,	we	can	use	the	following	command:

$	sudo	yum	repolist

This	command	shows	the	list	of	repositories	available	for	the	YUM	package	manager	to
download	and	install	the	packages	from.	Now,	after	having	the	EPEL	repository,	we	need
to	check	whether	any	change	needs	to	be	made	after	adding	it.	So,	we	need	to	type	in	this
command:

$	sudo	yum	check-update

Note
This	command	is	not	necessary;	we	wanted	to	use	it	for	additional	knowledge	on	how	to
check	the	Yum	repository	update.

Finally,	to	check	the	availability	of	the	syslog-ng	application	in	the	newly	added	EPEL
repository,	we	need	to	type	the	following:

$	sudo	yum	list	*syslog-ng*

Now,	we	go	back	to	the	installation	phase.	We	will	be	using	yum	since	we	have	properly
verified	the	existence	of	the	application	package:

$	sudo	yum	install	syslog-ng	syslog-ng-libdbi

We	need	to	confirm	the	installation	of	these	packages.	Then,	we	wait	until	it	is	done.

To	activate	syslog-ng	and	make	it	the	default	logging	tool,	we	need	to	start	by	disabling
rsyslog:

$	sudo	systemctl	stop	rsyslog

$	sudo	systemctl	disable	rsyslog

Then,	we	go	to	its	configuration	file	to	have	it	working	in	a	proper	way.	We	open	the	file
using	any	text	editor:

$	sudo	nano	/etc/syslog-ng/syslog-ng.conf

Next,	we	make	the	required	change	to	make	it	look	like	the	following:

@version:3.5

@include	"scl.conf"

#--

--

#	/etc/syslog-ng/syslog-ng.conf:	configuration	file

#	$Revision:	0.3-r5	(CentOS	Edition	by	Wakko	Warner)	$

#	$Comment:	Any	comments	please	send	to	wakko@acmelabs.spb.ru	$

#--

--

	

#	Note:	it	also	sources	additional	configuration	files	(*.conf)

#							located	in	/etc/syslog-ng/conf.d/

	

#	Global	Options

options	{

		#	Enable	or	disable	the	chained	hostname	format

		chain_hostnames	(off);

		#	The	number	of	lines	buffered	before	written	to	file

		flush_lines	(0);

		log_fifo_size	(1000);

		#	The	default	action	of	syslog-ng	is	to	log	a	STATS	line

		#	to	the	file	every	10	minutes.		That's	pretty	ugly	after	a	while.

		#	Change	it	to	every	12	hours	so	you	get	a	nice	daily	update	of

		#	how	many	messages	syslog-ng	missed	(0).

		stats_freq	(43200);

		time_reopen	(10);

		#	The	default	action	of	syslog-ng	is	to	log	a	MARK	line

		#	to	the	file	every	20	minutes.		That's	seems	high	for	most

		#	people	so	turn	it	down	to	once	an	hour.		Set	it	to	zero

		#	if	you	don't	want	the	functionality	at	all.

		mark_freq(3600);

		#	Enable	or	disable	hostname	rewriting

		keep_hostname	(yes);

		#	Enable	or	disable	directory	creation	for	destination	files

		create_dirs	(yes);

		#	userid/groupid/permission	value	for	files

		owner	("root");

		group	("adm");

		perm	(0640);

		#	userid/groupid/permission	value	for	directories

		dir_owner	("root");

		dir_group	("adm");

		dir_perm	(0750);

		#	Enable	or	disable	DNS	usage

		use_dns	(no);

		#	Add	Fully	Qualified	Domain	Name	instead	of	short	hostname

		use_fqdn	(no);

		long_hostnames	(off);

};

source	s_sys	{

				system();

				internal();

				#	udp(ip(0.0.0.0)	port(514));

};

#	Sources	of	syslog	messages	(both	local	and	remote	messages	on	the	server)

source	s_local	{

		system();

		internal();

};

source	s_tcp	{	tcp	(ip	("127.0.0.1")	port	(514)	max-connections	(1));	};

source	s_udp	{	udp	(ip	("0.0.0.0")	port	(514));	};

	

#	By	default	messages	are	logged	to	tty12…

#destination	d_console_all	{	file("/dev/tty12");	};

#	...if	you	intend	to	use	/dev/console	for	programs	like	xconsole

#	you	can	comment	out	the	destination	line	above	that	references	/dev/tty12

#	and	uncomment	the	line	below.

#destination	d_console_all	{	file("/dev/console");	};

#destination	d_console_all	{	file("/dev/null");	};

destination	d_console_all	{	program("/bin/cat	>/dev/null");	};

#	Destinations

destination	d_usertty	{	usertty("*");	};

destination	d_everything	{

		file("/var/log/syslog-$HOST/$YEAR-$MONTH/$FACILITY.$PRIORITY.log"

				template("$FULLDATE	$MSGHDR$MSG\n")

				template_escape(no)

);

};

#	Filters

filter	f_emergency	{	level(emerg);	};

filter	f_fetchmail_warnings	{

		not(match("fetchmail"	value("PROGRAM"))

		and	match("Warning:	the	connection	is	insecure,	continuing	anyways."	

value("MESSAGE")));

};

log	{

		source(s_local);

		filter(f_emergency);

		destination(d_usertty);

};

log	{

		source(s_local);

		filter(f_fetchmail_warnings);

		destination(d_everything);

};

log	{

		source(s_local);

		filter(f_fetchmail_warnings);

		destination(d_console_all);

};

log	{

		source(s_tcp);

		destination(d_everything);

};

log	{

		source(s_tcp);

		destination(d_console_all);

};

log	{

		source(s_udp);

		destination(d_everything);

};

log	{

		source(s_udp);

		destination(d_console_all);

};

#	Source	additional	configuration	files	(.conf	extension	only)

@include	"/etc/syslog-ng/conf.d/*.conf"

#	vim:ft=syslog-ng:ai:si:ts=4:sw=4:et:

At	this	point,	we	can	start	the	syslog-ng	service	and	enable	it	to	start	during	system
startup:

$	sudo	systemctl	start	syslog-ng.service

$	sudo	systemctl	enable	syslog-ng.service

With	this	step,	we	have	configured	our	logging	server	using	syslog-ng	to	perform	well-
organized	and	useful	logging.

References
Now,	let’s	look	at	the	references	used	throughout	the	chapter:

The	Ganglia	home	page,	http://ganglia.sourceforge.net/
The	OpenNMS	home	page,	http://www.opennms.org/
The	Zabbix	home	page,	http://www.zabbix.com/
The	Zenoss	home	page,	http://zenoss.com/
The	Icinga	home	page,	https://www.icinga.org/
The	Nagios	home	page,	https://www.nagios.org/
The	Rsyslog	home	page,	http://www.rsyslog.com/doc/master/index.html
The	Syslog-ng	home	page,	https://syslog-ng.org/

http://ganglia.sourceforge.net/
http://www.opennms.org/
http://www.zabbix.com/
http://zenoss.com/
https://www.icinga.org/
https://www.nagios.org/
http://www.rsyslog.com/doc/master/index.html
https://syslog-ng.org/

Summary
Over	the	course	of	this	chapter,	we	introduced	a	variety	of	choices	of	open	source
monitoring	and	logging	tools	for	CentOS	7	servers.	Then,	we	discussed	a	step-by-step
tutorial	on	how	to	set	up	and	configure	Nagios	and	Syslog-ng	logging	as	our	logging
server.	We	also	talked	about	some	of	these	tools’	major	features	that	help	simplify	our
choice.

In	the	next	chapter,	we	will	have	a	brief	introduction	to	a	variety	of	virtualization
technologies.	Also,	we	will	take	this	opportunity	to	give	you	a	step-by-step	tutorial	on
establishing	a	small	virtual	machine.

Chapter	6.	Virtualization
These	days,	computer	infrastructures	have	changed	in	many	ways.	We	no	longer	see	a
room	full	of	servers,	each	responsible	for	providing	several	services	depending	on	how
powerful	they	are.	In	these	times,	we	only	see	a	few	big	servers	composed	of	several	units
so	as	to	reinforce	their	capacities.	This	type	of	server	hosts	several	virtual	servers	that
serve	the	same	old	purposes	as	per	the	infrastructure	requirements.

In	our	days,	being	a	system	administrator	for	bare-metal	machines	is	just	not	enough.
Virtual	machines	are	on	the	rise;	we	should	admit	this.	Big	companies	are	no	longer	using
old	architectures;	it	is	no	longer	a	good	option.	A	lot	of	money	and	huge	management
effort	is	required	to	sustain	them.

In	this	chapter,	we	are	going	to	explain	virtualization	as	a	concept,	where	we	will	see	how
to	set	up	several	virtualization	technologies,	and	then	give	an	example	of	how	to	create
some	virtual	machines	for	each	one	of	those	technologies.	Finally,	we	will	explain,	in
brief,	what	Docker	is	and	how	to	add	an	image	and	access	the	Docker	container.

Through	this	chapter,	you	are	going	to	learn	the	following	topics:

Basics	of	virtualization
Concept	of	full	virtualization
Concept	of	paravirtualization
Understanding	Xen	and	how	to	use	it
Using	KVM	to	set	up	some	Linux	virtual	machines
Creating	a	virtual	machine	using	OpenVZ
Setting	up	and	configuring	virtual	machines	on	VirtualBox
Understanding	Docker	and	how	to	create	a	container	and	access	it
Establishing	services’	high	availability	using	HAProxy

The	basics	of	virtualization	on	Linux
Virtualization	is	the	capacity	to	create	a	machine-like	program	that	simulates,	the	physical
behavior	of	a	real	machine	running	through	virtual	hardware	including	CPU,	RAM,	Hard
disk,	Network	card,	and	so	on,	where	those	resources	are	all	being	taken	from	the	physical
machine	running	the	virtual	one.

Earlier,	the	way	of	managing	services	was	to	deploy	a	new	server	or	upgrade	the	old	one
to	meet	the	requirements	of	the	new	services	to	perform	long	and	complex	migrations	in
the	event	of	a	hardware	failure.	All	the	time,	there	would	be	too	little	RAM,	too	few	disks,
or	low	processing	power.	Managers	got	tired	of	trying	to	fix	the	existent	system	while
paying	a	lot	of	money	to	help	maintain	an	old	server	that	was	no	longer	supported.
However,	they	did	not	have	too	many	options,	since	the	services	running	on	those
machines	were	very	important	and	essential.	Companies	were	deploying	servers	that
would	not	work	on	their	peak	capacity,	and	there	was	no	better	way	of	controlling	every
server’s	capacity	for	the	right	services	with	the	right	hardware	equipment.	All	of	these
reasons	made	the	newborn	solution	of	virtualization	grow	so	fast.	Just	after	a	while	from
its	first	deployment,	virtualization	has	been	integrated	in	many	fields,	specially	in	the	field
of	computer	science.	Virtualization	allows	an	abstraction	of	the	physical	hardware,	to	run
multiple	virtual	machines	on	a	single	shared	resource	(CPU,	Memory,	Networking,	and
Storage):

Source:	http://cdn.arstechnica.net

Now,	this	new	technology	is	booming.	We	are	witnessing	a	new	virtualization	service
being	born	each	day.	Virtualization	has	been	divided	into	many	types:

http://cdn.arstechnica.net

We	have	network	virtualization,	which	is	related	to	virtual	network	creation	and
management	to	separate	groups	of	machines	from	each	other.	They	are	connected	to
the	same	switch	and	group	of	switches.
We	also	have	application	virtualization,	wherein	we	put	an	application	or	an
ensemble	of	applications	inside	a	container,	and	then	we	make	the	application	believe
that	it	is	running	on	its	original	supported	system.	So,	it	believes	that	it	can	access	the
resource	that	it	needs.
Finally,	we	have	full	machine	virtualization.	This	is	a	kind	of	virtualization	that
creates	a	full	virtual	machine	(desktop,	server)	with	its	virtual	hardware	and	the
dedicated	services	on	demand.	This	virtualization	involves	abstraction	of	the	server-
based	workload	(the	work	load	demanded	by	the	virtual	machine	user)	from	the
underlying	hardware.	The	virtual	machine	won’t	notice	if	it	is	running	on	a	physical
or	a	virtual	hardware	as	long	as	the	hardware	answering	its	service’s	demands	for
resources	(store	data,	network	access	to	other	machines,	and	so	on).

In	this	chapter,	we	will	focus	on	both	application	virtualization	and	desktop	virtualization.

A	piece	of	software	called	hypervisor	is	executed	on	the	physical	machine	to	help	with	the
virtualization	of	the	data	center,	with	a	goal	of	a	platform	for	the	virtual	machines.	The
hypervisor’s	main	job	is	to	organize	dynamically	the	physical	resources	between	the
different	virtual	machines	running	under	its	control.	This	gives	them	the	capacity	to	run
independently	of	the	physical	machine	where	a	system	administrator	can	relocate	a	virtual
machine	from	a	host	to	another	without	affecting	it.	A	hypervisor,	also	called	a	virtual
machine	manager,	is	a	program	that	allows	multiple	operating	systems	to	share	a	single
hardware	host.

While	using	a	virtual	machine	or	a	container,	we	are	expecting	to	provide	the	applications
or	services	with	an	operating	system	that	can	host	them	and	simplify	their	communication
to	the	hardware.	Since	those	machines	are	not	really	running	on	the	physical	hardware,
virtualization	allows	them	to	access	dynamically	and	flexibly	the	CPU,	memory,	storage,
and	networking	resources	as	necessary.

Virtualization	can	increase	flexibility	and	management	and	offers	a	better	scalability	with
an	enormous	saving	in	costs.	The	service’s	workload	gets	deployed	faster,	with	a	visible
increase	in	performance-on-demand	availability,	while	getting	the	scalability	function
automated,	to	simplify	the	infrastructure	management	for	the	IT	support	guys.

Let’s	enumerate	some	of	the	major	advantages	of	having	a	virtualization	solution	installed
on	a	server	infrastructure:

Reduction	in	the	number	of	hardware	and	operating	costs
Delivery	of	high	availability	of	applications	and	services
Minimization	or	elimination	of	downtime	(with	best	practice	methods)
Increase	in	the	IT	team’s	productivity,	efficiency,	agility,	and	responsiveness
Increase	in	speed	and	simplification	of	application	and	resource	provisioning
Support	for	business	continuity	and	disaster	recovery	as	an	increase	in	the	system’s
security

Enabling	centralized	management
Building	a	true	software-defined	data	center
Exploiting	the	full	advantages	of	multicore	processor	machines

The	following	figure	shows	an	example	of	three	Linux	virtual	machines	running	on	one
Linux	server.	These	machines	are	controlled	and	managed	by	a	type	of	hypervisor
depending	on	the	virtualization	chosen:

A	virtual	machine	really	is	just	some	files	in	some	format	stored	at	a	specific	location	on
the	host	machine.	For	some	technologies,	it	can	also	be	an	LVM	logical	volume	or	a	direct
device.	The	virtual	disk	used	by	a	virtual	machine	is	just	another	file	encapsulated	within
it.	Inside	a	virtual	machine,	managing	the	OS	and	applications	can	be	simplified	(in	some
ways;	it	is	complicated	in	others).

But	the	good	thing	is	that	having	the	virtual	machine	as	just	a	folder	full	of	files	that	can
be	copied	and	moved	makes	it	easier	to	backup	in	the	event	of	a	hardware	failure	on	the
physical	machine.	In	such	cases,	the	manager	should	simply	buy	a	new	server,	load	the
backed-up	virtual	machines	on	it,	and	run	the	entire	environment	again	as	if	nothing	ever
happened.

Using	the	CentOS	repository,	we	have	a	choice	between	two	virtualization	technologies:
Xen	and	KVM.	To	understand	these	virtualization	technologies,	you	need	to	understand
the	two	different	approaches	to	virtualization:	full	virtualization	and	paravirtualization.

Note
A	combination	of	paravirtualization	and	full	virtualization	has	been	created,	called	hybrid
virtualization.	In	it,	some	parts	of	the	guest	operating	system	use	paravirtualization	for
certain	hardware	drivers,	and	the	host	uses	full	virtualization	for	other	features.	This	often
produces	superior	performance	on	the	guest	without	the	need	for	the	guest	to	be
completely	paravirtualized.

Full	virtualization
Full	virtualization	is	a	virtualization	technology	that	completely	simulates	virtual
hardware	underneath	the	virtual	machines,	with	no	interaction	with	the	physical	hardware.
It	requires	that	the	entire	hardware	underneath	the	virtual	machine	to	become
unnoticeable.	This	technology	can	simulate	any	kind	of	physical	hardware	on	demand	to
answer	the	need	of	the	system	running	on	the	virtual	machine,	which	answers	any	service
or	application	demand	for	specific	baremetal	hardware.	In	other	words,	full	virtualization
is	a	virtualization	capacity	to	fully	run	the	guest	machine	without	letting	it	become	aware
that	it	is	running	on	a	virtual	environment.	The	virtual	machine,	in	this	case,	has	a	fully
virtualized	hardware	to	run	its	services	on.	They	don’t	have	any	interaction	with	the
physical	hardware.

The	following	diagram	shows	how,	during	full	virtualization,	the	underlying	platform	runs
the	guest	OS	without	being	modified	or	being	aware	that	it	is	running	on	a	virtualization:

There	is	a	specific	type	of	full	virtualization	called	hardware-assisted	virtualization.	In
this,	the	CPU	architecture	helps	with	the	execution	of	hardware	virtualization	through
some	special	instructions	that	might	allow	the	guest	machine	to	execute	privileged
instructions	directly	on	the	CPU,	even	though	it	is	a	virtualization.

Using	the	CentOS	7	server,	we	can	conduct	full	virtualization	or	hardware-assisted	full
virtualization	by	using	either	Xen	or	KVM.	We	will	see	how	to	do	so	in	the	Setting	up	Xen
for	CentOS	7	section.

On	a	larger	scale,	solutions	that	can	implement	full	virtualization	include	VMware’s
family	of	hypervisors,	Xen	and	XenServer,	VirtualBox,	QEMU,	and	KVM.

Paravirtualization
Paravirtualization	is	a	new	kind	of	enhancement	to	the	virtualization	technology.	It	has	the
capacity	of	making	the	guest	OS	recompile	before	being	installed	on	the	vertical	machine
that	serves	the	virtual	machines	to	identify	between	virtual	and	physical	hardware.	With
the	use	of	this	virtualization,	we	have	a	better	optimization	in	system	performance	via
conserving	computing	resources.	It	is	due	to	this	technology	that	we	don’t	need	to	dedicate
resources	for	the	virtual	machines	and	will	be	used	only	as	necessary.	Differing	from	the
full	virtualization	where	we	need	to	create	the	virtual	resources	and	dedicate	them	to	the
virtual	machine,	it	is	rather	being	used	or	not.

In	paravirtualization,	the	guest	operating	system	is	managed	by	the	hypervisor—as	a	layer
lying	between	the	physical	machine	and	the	virtual	machines—to	efficiently	enable	and
share	physical	device	access.	While	it	normally	doesn’t	require	full	device	emulation	or
dynamic	recompiling	to	perform	privileged	instructions,	paravirtualization	often	performs
at	a	near-native	speed.

This	preceding	architecture	shows	how	the	paravirtualization	virtual	machines	interact
with	the	physical	hardware	through	the	special	hypervisor	that	communicates	directly	with
the	modifier	OS	to	optimize	the	communication.

Paravirtualization	is	an	expansion	of	a	technology	invented	by	IBM.	Xen	is	an	open
source	software	project	that	incorporates	paravirtualization.	The	Xen	hypervisor	is	what
brought	about	the	term	paravirtualization.	Today,	most	virtualization	solutions	support
paravirtualization	as	a	norm.	A	number	of	Linux	development	vendors	have	collaborated
on	a	new	form	of	paravirtualization,	initially	developed	by	the	Xen	group,	and	it	provides
a	hypervisor-agnostic	interface	between	the	hypervisor	and	guest	OS	kernels.

Setting	up	Xen	on	CentOS	7
Xen	is	an	open	source	solution	used	to	run	multiple	virtual	systems	on	one	machine.	It
supports	both	paravirtualization	and	hardware-assisted	full-virtualization.	Xen	is	a	very
powerful	virtualization	solution.	It	offers	the	capacity	to	use	both	virtualization
technologies	at	the	same	time	to	always	answer	the	user’s	demands.

To	create	our	virtualization	environment	using	Xen,	we	need	to	make	sure	that	the	Xen
Hypervisor	will	boot	just	before	the	machine’s	own	kernel	to	have	access	to	as	much
physical	hardware	as	possible,	so	it	can	be	used	to	serve	our	environment’s	virtual
machines.

Source:	http://www.2virt.com

In	this	section,	we	are	going	to	set	up	Xen4	for	CentOS	7.	Xen4	is	not	supported	by	the
default	CentOS	7	repository,	so	we	need	to	add	the	CentOS	Xen	repository.	But	first,	we
need	to	make	sure	that	we	have	some	packages	installed.	These	will	be	needed	later	during
the	installation	of	Xen:

$	sudo	yum	install	bridge-utils	SDL	net-tools

Then	we	add	the	latest	Xen	repository	using	YUM:

$	sudo	yum	install	centos-release-xen

In	this	tutorial,	we	will	be	installing	Xen	Version	4.5,	so	we	need	to	run	the	installation
command	as	follows:

$	sudo	yum	install	xen

To	verify	that	the	installation	is	done,	we	need	to	list	the	Xen	kernel	archive,	which	is	in
the	/boot	folder:

$	ls	–l	/boot/xen.gz

http://www.2virt.com

We	should	see	the	following	code:

lrwxrwxrwx.	1	root	root							12	Aug	23	02:10	/boot/xen.gz	->	xen-4.5.1.gz

Now,	we	move	on	to	the	installation	of	the	kernel-xen	package.	This	installation	should
be	executed	separately	from	the	Xen	installation	and	after	it	so	that	the	system	boot	loader
grub	can	detect	the	new	kernel	and	get	configured	correctly:

$	sudo	yum	install	kernel-xen

After	having	the	new	kernel	installed,	we	should	resolve	the	SELinux	issue.	We	can	try	to
resolve	the	issues	by	determining	which	modules	the	SELinux	is	blocking	and	resolve
that,	or	if	we	have	a	better	method	to	secure	our	server,	we	can	just	disable	it.	To	disable
SELinux,	we	just	need	to	go	to	its	configuration	file	and	disable	it:

$	sudo	nano	/etc/sysconfig/selinux

Then,	consider	this	line:

SELINUX=enforcing

Change	it	to	the	following:

SELINUX=disabled

Otherwise,	if	we	need	to	check	the	issues,	we	can	follow	this.	First,	we	check	the	log	file
for	the	cause	of	the	issue:

$	sudo	cat	/var/log/messages

Then,	we	activate	the	blockage:

$	sudo	grep	xend	/var/log/audit/audit.log	|	audit2allow	-M	custom_xen

$	sudo	semodule	-i	custom_xen.pp

And	this	should	resolve	the	issue.	Finally,	we	can	restart	the	system	and	boot	the	new	Xen
kernel.	After	the	restart,	we	need	to	check	whether	the	Xen	kernel	is	correctly	installed:

$	sudo	xl	info

To	use	Xen,	we	need	to	install	some	tools	and	packages	to	make	the	virtual	machines	run
well.	First,	we	need	to	make	sure	that	the	basic	usage	packages	are	installed:

$	sudo	yum	install	bridge-utils	tunctl	wget	vim-enhanced	rsync	openssh-

clients	libvirt	python-virtinst	libvirt-daemon-xen	

Then,	we	need	to	configure	the	network.	But	before	that,	we	must	create	the	bridge
interface:

$	sudo	nano	/etc/sysconfig/network-scripts/ifcfg-brid0

Next,	we	add	the	following	lines	inside	the	file	that	we	have	just	opened	using	nano	and
save	it:

DEVICE=brid0

TYPE=Bridge

BOOTPROTO=dhcp

ONBOOT=yes

Then,	we	make	minor	changes	to	the	default	network	interface	configuration	file	to	use	the
bridged	interface:

$	sudo	nano	/etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0

HWADDR=XX:XX:XX:XX:XX:XX

ONBOOT=yes

TYPE=Ethernet

IPV6INIT=no

USERCTL=no

BRIDGE=brid0

Note
We	need	to	change	the	MAC	address	with	the	Ethernet	interface	MAC	address.	We	can
check	that	using	ifconfig.

After	that,	we	reboot	the	system.	With	this,	the	bridge	network	is	ready	to	be	used.	Then,
we	download	any	Linux	system	for	the	test.	Next,	we	need	to	make	it	an	IMG	file	using
the	dd	command:

$	sudo	dd	if=/dev/zero	of=Centos.img	bs=4K	count=0	seek=1024K

qemu-img	create	-f	raw	Centos.img	8G

Then,	we	download	any	Linux	system	for	the	test.	Moreover,	we	must	create	a	kick-start
file	and	put	it	at	the	same	location:

$	sudo	nano	ks.cfg

Then,	we	add	the	following	code	with	the	required	modification:

kernel	=	"/boot/vmlinuz-xen-install"

ramdisk	=	"/boot/initrd-xen-install"

extra	=	"text"

name	=	"mailserver"

memory	=	"256"

disk	=	['tap:aio:/srv/xen/mailserver.img,xvda,w',]

vif	=	['bridge=brid0',]

vcpus=1

on_reboot	=	'destroy'

on_crash	=	'destroy'

Finally,	we	use	virt-install	to	create	the	VM:

$	sudo	virt-install	-d	-n	CentOS7VM1	-r	1024	--vcpus=2	\

--bridge=brid0	--disk	./Centos.img	\

--nographics	-p	-l	"./Centos"	\

--extra-args="text	console=com1	utf8	console=hvc0	ks=./ks.cfg"

Now	the	virtual	machine	should	start	and	be	able	to	get	an	IP	from	the	DHCP	server;	so
we	can	continue	tweaking	it	and	adding	the	required	service.

For	Xen	usage,	we	need	to	use	the	following	commands	(we	are	going	to	present	the	most
common	ones.	For	more,	you	can	always	follow	this	link

https://www.centos.org/docs/5/html/Virtualization-en-US/virt-task-xm-create-manage-
doms.html):

To	connect	to	the	virtual	machine:

$	sudo	xm	console	CentOS7VM1

To	shutdown	or	reboot	a	machine:

$	sudo	xm	shutdown	CentOS7VM1

$	sudo	xm	reboot	CentOS7VM1

To	remove	(terminate)	a	machine:

$	sudo	xm	destroy	CentOS7VM1

To	suspend	and	resume	a	machine:

$	sudo	xm	suspend	CentOS7VM1

$	sudo	xm	resume	CentOS7VM1

To	rename	a	machine

$	sudo	xm	rename	CentOS7VM1	CentOS7VM2

To	pause,	and	then	unpause	a	machine:

$	sudo	xm	pause	CentOS7VM1

$	sudo	xm	unpause	CentOS7VM1

https://www.centos.org/docs/5/html/Virtualization-en-US/virt-task-xm-create-manage-doms.html

Setting	up	KVM	for	full	virtualization	on
CentOS	7
KVM	can	only	support	hardware-assisted	full	virtualization.	And	there	is	still	work	going
on	in	supporting	paravirtualization.	KVM	is	a	kernel	module	that	only	works	with	the
default	Linux	kernel	(we	should	not	install	it	on	the	Xen	one).	KVM	creates	virtual
machines	using	a	personalized	version	of	Qemu	for	KVM	called	Qemu-kvm.

Source:	http://www.virtualopensystems.com

KVM	has	many	useful	features	and	advantages	supported	by	its	hypervisor:

Thin	provisioning:	This	is	the	capacity	to	allocate	flexible	storage	and	manage	the
available	space	for	the	virtual	machines
Overcommitting:	This	is	the	capacity	to	allocate	more	CPU	and	memory	power
more	that	the	available	resource	on	the	physical	machine
Automatic	NUMA	balancing:	This	is	an	improvement	to	the	application	running	on
the	NUMA	hardware
Disk	I/O	throttling:	This	is	the	capacity	to	manage	limits	of	the	physical	system	disk
input	and	output	requests	sent	by	the	virtual	machines

http://www.virtualopensystems.com

Virtual	CPU	hot	add	capability:	This	is	the	capacity	to	adjust	the	processing	power
of	the	virtual	machines	without	any	downtime

Before	starting	the	KVM	installation,	we	need	to	check	some	pre-installation	steps.	First,
we	check	whether	the	machine	CPU	can	handle	the	virtualization	technology:

$	sudo	grep	-e	'(vmx|svm)'	/proc/cpuinfo

To	know	whether	that’s	true,	we	need	to	see	the	vmx	or	svm	word	highlighted	in	the
command	output:

Then,	we	make	sure	that	the	system	packages	are	all	updated:

$	sudo	yum	update

Next,	we	change	the	working	mode	of	SELinux	to	permissive	to	make	sure	that	it	won’t
bother	the	execution	of	KVM:

$	sudo	nano	/etc/sysconfig/selinux

Then,	consider	this	line:

SELINUX=enforcing

Change	it	to	the	following:

SELINUX=permissive

We	can	now	start	the	installation.	First,	we	will	install	the	Qemu	package	to	provide	a	user
level	for	KVM	and	its	disk	image	manager:

$	sudo	yum	install	qemu-img	qemu-kvm	

Then,	we	need	to	install	the	GUI	for	the	virtual	machine’s	administration,	the	command-
line	tools	to	administrate	the	virtual	environment,	the	tool	that	helps	create	virtual
machines	from	the	CLI,	and	the	hypervisor	library:

$	sudo	yum	install	virt-manager	libvirt	libvirt-python	libvirt-client	xauth	

dejavu-lgc-sans-fonts

Finally,	for	CentOS	7,	we	add	the	virtualization	client,	virtualization	platform,	and
virtualization	tools:

$	sudo	yum	groupinstall	virtualization-client	virtualization-tools	

virtualization-platform	

With	this	step	done,	we	can	say	that	we	have	finished	installing	the	required	tools	and
packages.	Now,	we	go	to	the	configuration	part.	First,	we	need	to	restart	the	virtualization
daemon	to	make	sure	that	the	entire	configuration	is	well	set:

$	sudo	systemctl	restart	libvirtd

Then,	we	check	whether	it	is	running	well	or	not:

$	sudo	systemctl	status	libvirtd

We	should	see	this	as	the	output:

Now,	we	move	on	to	the	network	configuration.	We	need	to	create	a	bridge	interface	to
allow	the	guest	system	to	access	an	external	network.	To	do	so,	we	must	enable	IP
forwarding:

$	sudo	echo	"net.ipv4.ip_forward	=	1"|sudo	tee	/etc/sysctl.d/99-

ipforward.conf

Then,	we	check	whether	it	is	well	set:

$	sudo	sysctl	-p	/etc/sysctl.d/99-ipforward.conf

After	that,	we	need	to	change	the	network	configuration	by	keeping	the	original	interface
as	it	is,	but	we	will	assign	its	IP	address	to	the	bridge:

$	sudo	nano	/etc/sysconfig/network-scripts/ifcfg-eth0

Next,	we	add	the	following	line	to	the	end	of	the	file	and	save	it:

BRIDGE=virbrid0

Then,	we	create	the	bridge	interface	configuration	file:

$	sudo	nano	/etc/sysconfig/network-scripts/ifcfg-brid0

After	that,	we	put	the	following	code	inside	the	file	we	just	opened	for	editing,	and	save	it:

DEVICE="brid0"

TYPE=BRIDGE

ONBOOT=yes

BOOTPROTO=static

IPADDR="10.0.0.2"

NETMASK="255.255.255.0"

GATEWAY="10.0.0.1"

DNS1="8.8.8.8"

After	rebooting	the	system,	we	can	say	that	the	network	configuration	is	well	set.

After	we	complete	the	KVM	installation	and	configuration,	it’s	time	to	start	using	the	host.
The	first	thing	we	need	to	do	is	create	a	new	domain	or	virtual	machine.	To	do	so,	using
the	CLI,	we	will	make	use	of	the	virt-install	command.	First,	we	need	to	see	the	list	of
templates	known	to	our	KVM	installation:

$	sudo	virt-install	--os-variant=list

We	need	an	ISO	of	the	Linux	OS	to	use	it	for	the	installation.	Then,	we	can	start	the	setup
of	a	new	virtual	machine:

$	sudo	virt-install		--name=CentOS7guest		--ram=1024		--vcpus=2		--

cdrom=./CentOS-7.1-x86_64-minimal.iso	--os-type=linux	--os-variant=rhel7		-

-network	bridge=brid0	--graphics=spice		--disk	

path=/var/lib/libvirt/images/CentOS7.dsk,size=10

The	options	written	in	the	preceding	command	are	as	follows:

name:	This	is	the	name	of	the	virtual	machine
ram:	This	is	the	memory	size	in	MB
vcpus:	This	is	the	number	of	virtual	CPUs
cdrom:	This	is	the	location	of	the	ISO	image
os-type:	This	is	the	OS	type,	such	as	Linux,	Windows,	or	Unix
os-variant:	This	is	the	OS	variant,	such	as	rhel	6	or	Solaris
network:	This	is	the	network	interface	and	connectivity
graphics:	This	is	the	guest	display	settings
disk	path:	This	is	the	location	of	the	disk	with	a	size	of	10	GB

Once	we	have	issued	the	preceding	command,	virt-install	will	create	a	virtual	machine
and	start	the	virt	viewer	console	for	the	OS	installation.

Note
There	is	always	a	graphical	mode	perform	the	previous	treatment.	The	graphical	tools	is
called	virt-manager	found	a	the	system	tools.

The	following	commands	are	meant	for	better	management	of	the	KVM	virtual	machines
after	being	deployed:

To	list	the	virtual	machines	running	on	KVM:

$	sudo	virsh	--connect	qemu:///system	list

To	get	more	information	about	a	virtual	machine:

$	sudo	virsh	dominfo	CentOS7guest

To	stop	a	running	guest	machine:

$	sudo	virsh	--connect	qemu:///system	shutdown	CentOS7guest

To	start	a	virtual	machine:

$	sudo	virsh	--connect	qemu:///system	start	CentOS7guest

To	delete	a	guest	machine:

$	sudo	virsh	--connect	qemu:///system	destroy	CentOS7guest

$	sudo	virsh	--connect	qemu:///system	undefineCentOS7guest

$	sudo	rm	-f	/var/lib/libvirt/images/CentOS7guest.img

Finally,	the	code	used	to	automatically	start	a	virtual	machine	with	the	host	system
startup:

$	sudo	virsh	--connect	qemu:///system	autostart	CentOS7guest

$	sudo	virsh	--connect	qemu:///system	dominfo	CentOS7guest	|	grep	Auto

Source:	https://virt-manager.org/

https://virt-manager.org/

Setting	up	OpenVZ	virtualization	on
CentOS	7
OpenVZ	is	a	new	form	of	virtualization	technology	that	we	call	a	container	based	one.	It
basically	creates	multiple	secure	and	isolated	Linux	containers	running	on	a	single	Linux
server.	This	container	technology	allows	better	server	utilization,	since	we	are	not
installing	a	full	virtual	machine,	just	a	container	to	hold	some	of	it,	and	it	eliminates
application	conflict.	The	virtual	machine	running	on	OpenVZ	platform	are	on	a	standalone
mode,	where	it	is	the	capacity	to	run	without	falling	in	any	type	of	conflict	with	any	other
virtual	machine	running	on	the	same	platform.	Those	machines	are	independent	from	each
other.

The	virtual	machines	running	on	OpenVZ	have	their	own	operating	system,	IP	address,
processes,	memory	or	storage	space,	application	and	configuration	files,	and	so	on.

Source:	http://www.quantact.com

While	using	OpenVZ,	the	virtualization	is	run	through	the	system-level	virtualization
technology,	where	the	guest	system	uses	the	same	kernel	as	the	physical	machine	system
unlike	KVM	and	VirtualBox	and	this	helps	with	the	usage	effectiveness	of	the	physical
machine	processing	power	and	the	storage	power.

For	a	better	usage	for	OpenVZ,	we	might	need	to	use	QEMU	and	Virtuozzo	as
management	utilities.	We	really	recommend	the	usage	of	the	OpenVZ	container	and
virtual	machines	on	a	Virtuozzo	installation	of	images.

For	CentOS	7,	there	is	no	working	OpenVZ	distribution	as	of	now.	So,	we	are	going	to
install	its	forked	project,	Virtuozzo	7,	which	is	capable	of	all	OpenVZ	options	and	more.
Yet,	we	are	going	to	use	the	OpenVZ	tools	only.

To	install	Virtuozzo	7,	we	need	to	install	the	RPM-based	distribution	package.	First,	we
need	to	bring	the	meta	information	of	the	virtuozzo-release	package	into	the	YUM
repository:

http://www.quantact.com

$	sudo	yum	localinstall	

http://download.openvz.org/virtuozzo/releases/7.0/x86_64/os/Packages/v/virt

uozzo-release-7.0.0-10.vz7.x86_64.rpm

Then,	we	install	the	mandatory	Virtuozzo	RPM	packages:

$	sudo	yum	install	-y	prlctl	prl-disp-service	vzkernel

Now,	we	have	OpenVZ	kernel	installed.	We	move	on	to	the	kernel	parameter
configuration:

$	sudo	nano	/etc/sysctl.conf

Then,	we	add	the	following	code:

#	On	Hardware	Node	we	generally	need

#	packet	forwarding	enabled	and	proxy	arp	disabled

net.ipv4.ip_forward	=	1

net.ipv6.conf.default.forwarding	=	1

net.ipv6.conf.all.forwarding	=	1

net.ipv4.conf.default.proxy_arp	=	0

#	Enables	source	route	verification

net.ipv4.conf.all.rp_filter	=	1

#	Enables	the	magic-sysrq	key

kernel.sysrq	=	1

#	We	do	not	want	all	our	interfaces	to	send	redirects

net.ipv4.conf.default.send_redirects	=	1

net.ipv4.conf.all.send_redirects	=	0

After	that,	we	make	SELinux	act	permissive	to	ensure	that	OpenVZ	works	fine:

$	sudo	nano	/etc/sysconfig/selinux

Next,	we	need	to	have	the	configuration	line	to	make	it	look	like	the	following:

SELINUX=permissive

This	part	is	optional.	We	can	install	the	OpenVZ	usage	statistics	tools	if	needed:

$	sudo	yum	install	vzctl	vzquota	ploop

Now,	since	we	have	successfully	installed	OpenVZ,	we	can	reboot	the	system	and	log	in
through	the	OpenVZ	kernel.	We	need	to	edit	the	OpenVZ	configuration	file	to	set	the
same	subnet	for	physical	and	virtual	machines:

$	sudo	nano	/etc/vz/vz.conf

Then,	we	find	and	uncomment	the	following	line	and	change	its	option	to	this:

NEIGHBOUR_DEVS=all

Now,	we	can	set	up	a	web-based	interface	for	OpenVZ	to	help	administrate	it.	We	need	to
download	the	installation	script	and	run	it:

$	sudo	wget	-O	-	http://ovz-web-panel.googlecode.com/svn/installer/ai.sh	|	

sh

Then,	add	the	port	from	where	this	web	interface	is	going	to	serve	using	Firewalld:

$	sudo	firewall-cmd	--zone=public	--permanent	--add-port=3000/tcp

Then,	reload	Firewalld:

$	sudo	firewall-cmd	--reload

The	web-based	interface	will	be	serving	its	web	interface	at	the	machine	hostname	or	IP
address	followed	by	port	number	3000:

http://<the-hostname>:3000

Now,	we	are	going	to	start	using	OpenVZ	to	download	a	container	and	start	using	it.	First,
we	need	to	specify	a	folder	to	put	our	containers	into:

$	mkdir	OpenVZCont

$	cd	OpenVZCont

Then,	we	download	an	example	container:

$	wget	http://download.openvz.org/template/precreated/centos-7-x86_64-

minimal.tar.gz

Next,	we	unpack	the	tar	file:

$	tar	–xzvf	centos-7-x86_64-minimal.tar.gz

Then,	we	type	this	command	to	create	our	first	virtual	machine:

$	sudo	vzctl	create	101	--ostemplate	centos-7-x86_64-minimal

Our	container	ID	is	101,	since	they	typically	start	from	100.	Now,	we	set	an	IP	address	for
our	container:

$	sudo	vzctl	set	101	--ipadd	10.0.0.14	--save

Then	comes	a	DNS	server:

$	sudo	vzctl	set	101	--nameserver	8.8.8.8	--save

After	having	the	network	configuration	ready,	we	can	start	our	newly	created	container:

$	sudo	vzctl	start	101

We	can	verify	that	it	is	running	by	pinging	its	IP	address:

$	ping	10.0.0.14

Now,	we	can	log	in	to	our	container	to	explore	it:

$	sudo	vzctl	enter	101

We	are	in	the	newly	created	container.	We	can	do	whatever	we	want	with	it.	To	exit	the
virtual	machine,	we	can	simply	type	exit	in	the	terminal.	Also,	using	the	OpenVZ	web
interface,	we	can	visualize	its	status	and	do	some	administrative	management	through	it.

Source:	https://bderzhavets.wordpress.com/

https://bderzhavets.wordpress.com/

Setting	up	VirtualBox	virtualization	on
CentOS	7
Oracle	VirtualBox	is	a	virtualization	application	that	has	the	capacity	to	run	on	multiple
computer	architectures	(Intel,	AMD-based	systems)	and	on	almost	every	available	OS
(OSX,	Linux,	Windows,	Solaris,	and	so	on),	where	it	allows	its	users	to	run	multiple
operating	systems	on	the	same	physical	machine.	Basically,	virtual	box	is	a	full
virtualization	technology.

Most	people	count	on	it	while	using	multiple	systems	and	need	to	export	and	import
template	virtual	machines,	where	virtual	box	offers	a	variety	of	options	to	exchange	virtual
machines	between	all	kinds	of	infrastructures.

Source:	http://www.oracle.com

http://www.oracle.com

This	section	will	show	you	how	to	install	Oracle	VirtualBox	5.0.2	on	CentOS	7.	Firstly,
we	need	to	add	the	VirtualBox	yum	repository	to	our	system.	So,	we	need	to	create	its
repo	file	in	the	YUM	repository	directory:

$	sudo	nano	/etc/yum.repos.d/virtualbox.repo

Then,	we	need	to	put	the	following	code	into	the	file	and	save	it:

[virtualbox]

name=Oracle	Linux	/	RHEL	/	CentOS-$releasever	/	$basearch	-	VirtualBox

baseurl=http://download.virtualbox.org/virtualbox/rpm/el/$releasever/$basea

rch

enabled=1

gpgcheck=1

gpgkey=http://download.virtualbox.org/virtualbox/debian/oracle_vbox.asc

We	should	also	have	the	EPEL	repository	installed:

$	sudo	rpm	-ivh	

http://ftp.jaist.ac.jp/pub/Linux/Fedora/epel/7/x86_64/e/epel-release-7-

5.noarch.rpm

Before	we	start	the	installation,	we	need	to	install	some	necessary	packages	to	make	sure
that	VirtualBox	works	fine:

$	sudo	yum	install	gcc	make	kernel-headers	kernel-devel	fontforge	binutils	

patch		dkms	glibc-headers	glibc-devel	qt	libgomp

Then,	we	set	up	an	environment	variable	called	KERN_DIR,	from	which	VirtualBox	will	get
the	kernel	source	code:

$	export	KERN_DIR=/usr/src/kernels/3.10.0-229.14.1.el7.x86_64

Tip
My	latest	kernel	version	is	stored	in	this	directory:	3.10.0-229.14.1.el7.x86_64.	It
might	change	over	time	due	to	upgrades.

Then,	we	can	start	the	installation	of	VirtualBox	using	YUM:

$	sudo	yum	install	VirtualBox-5.0

After	the	installation,	we	need	to	rebuild	the	kernel	modules	using	the	following
command:

$	sudo	systemctl	start	vboxdrv

Now,	we	have	VirtualBox	installed	and	ready	for	use.	Still,	VirtualBox	only	supports
graphical	interfaces,	so	we	need	to	have	one	installed	and	then	we	can	start	it	and	use	it.

We	need	to	have	a	graphical	interface	installed	on	our	server	and	we	have	a	long	list	to
choose	from.	I	would	recommend	Gnome,	as	it	is	one	of	the	most	used	interfaces	with	its
user-friendliness	and	its	low	resources	consumption.

Using	Gnome	as	the	graphical	interface,	we	can	start	VirtualBox:

$	sudo	virtualbox	&

Then,	we	can	go	ahead	and	create	a	new	virtual	machine.	We	give	it	a	name	and	a	type,	as
shown	here:

Next,	we	proceed	to	configure	the	amount	of	RAM	to	give	it,	as	shown	in	the	following
screenshot:

Then	comes	the	amount	of	disk	space,	as	follows:

VirtualBox	offers	some	extra	services	that	allow	the	mouse	and	the	keyboard	of	the
original	system	to	switch	between	the	physical	and	the	virtual	machine.	To	install	those
tools,	we	can	go	to	the	VM	menu,	then	the	Guest	option,	and	then	install	the	virtual
machine	guest	tools.	It	will	take	some	time	to	get	installed,	then	we	need	to	restart	the
virtual	machine	so	that	those	tools	can	start	working.

To	finish,	we	have	our	virtual	machine	ready	to	be	executed,	as	shown	in	the	following
screenshot:

Setting	up	Docker	on	CentOS	7
Sharing	the	same	technology	as	OpenVZ	on	using	the	container	technology,	Docker	is
another	alternative	for	container-based	software	virtualization.	Docker	is	famous	due	to	its
capacity	to	automatically	deploy	applications.	Those	templates	or	containers	are	divided
between	community	containers	presented	as	templates	provided	by	the	Docker
community,	or	private	containers	provided	by	individual	users.	Some	of	the	user-
personalized	containers	can	be	publicly	available,	others	can	be	stored	in	a	private	folder
that	can	be	accessed	by	their	creator	or	some	one	he	wants	to	share	with.	Docker
containers	are	portable,	lightweight,	and	encapsulated	application	modules.

According	to	the	industry	analyst	firm,	451	Research:

“Docker	is	a	tool	that	can	package	an	application	and	its	dependencies	in	a	virtual
container	that	can	run	on	any	Linux	server.	This	helps	enable	flexibility	and
portability	on	where	the	application	can	run,	whether	on	premises,	public	cloud,
private	cloud,	bare	metal,	etc.”

To	install	Docker,	we	are	going	to	use	the	Docker	installation	script.	Here,	we	have
another	way	to	install	Docker	via	YUM—the	traditional	way:

1.	 First,	we	need	to	make	sure	that	our	system	packages	are	updated:

$	sudo	yum	update

2.	 Then,	we	run	the	Docker	installation	script:

$	sudo	curl	-sSL	https://get.docker.com/	|	sh

Source:	http://blog.ouseful.info/

3.	 This	script	will	add	the	Docker	repository	to	the	system	repository	and	then	install
Docker.

4.	 If	too	many	users	are	going	to	use	Docker	in	our	system,	we	need	to	add	them	to	the
Docker	group:

$	sudo	usermod	-aG	docker	packt

5.	 Then,	we	start	the	Docker	daemon.	Add	it	to	the	system	startup	script:

$	sudo	systemctl	docker	start

$	sudo	systemctl	enable	docker.service

6.	 To	verify	that	Docker	is	correctly	installed,	we	have	a	simple	image	container	that	we
can	test:

$	sudo	docker	run	hello-world

7.	 To	download	a	Docker	container,	we	need	to	look	for	its	name	and	then	type	in	the
following	command:

$	sudo	docker	pull	centos7

http://blog.ouseful.info/

8.	 To	run	the	container,	we	need	to	use	the	docker	run	command	with	the	-i	option	to
attach	stdin	and	stdout	to	the	container,	and	the	-t	option	to	allocate	a	tty
interface:

$	sudo	docker	run	-i	-t	centos7	/bin/bash

9.	 To	leave	the	Docker	container	without	losing	the	shell	terminal,	we	need	to	follow
the	following	sequence:	Ctrl-p	and	Ctrl-q	at	the	same	time.

10.	 For	more	community	containers	that	are	publicly	available	on	the	Web,	we	can
always	use	the	following	command:

$	sudo	docker	search	centos7

Source:	http://blog.ouseful.info/

http://blog.ouseful.info/

Establishing	services’	high	availability
using	HAProxy
For	this	section,	we	are	going	to	show	in	brief	how	to	setup	a	high-availability/load
balancer	to	control	traffic	over	a	specific	service;	in	our	case,	we	will	use	HTTP	as	for
web	server’s	traffic.

Source:	assets.digitalocean.com

For	this	job,	we	are	using	HAProxy	as	an	open	source	solution	for	load	balancing	and
services’	high	availability	through	multiple	servers.	It	is	commonly	used	for	a	website’s
traffic	load	balancing.	HAProxy	distributes	the	workload	over	many	servers	that	offer	the
same	services	(basically	web	servers,	databases,	and	so	on)	to	improve	the	overall
performance	of	the	service	and	its	reliability.

As	we	said	earlier,	this	section	is	going	to	install	and	configure	a	high	availability	load
balancer	to	share	the	load	between	three	web	servers	and	a	backup	server	in	case	of	server
or	service	failure	to	take	over.

So,	we	will	have	an	infrastructure	that	looks	like	this:

HAProxy	server:

OS:	CentOS	7
IP	address:	172.25.25.166	and	10.0.0.10
Hostname:	haproxy.packt.co.uk

Web	server	1:

OS:	CentOS	7
IP	address:	10.0.0.11
Hostname:	webserver1.packt.co.uk

Web	server	2:

http://assets.digitalocean.com

OS:	CentOS	7
IP	address:	10.0.0.12
Hostname:	webserver2.packt.co.uk

Web	server	3:

OS:	CentOS	7
IP	address:	10.0.0.13
Hostname:	webserver3.packt.co.uk

Backup	web	server:

OS:	CentOS	7
IP	address:	10.0.0.20
Hostname:	backupwebserver.packt.co.uk

First,	we	will	start	by	setting	the	web	servers	and	to	do	so,	we	will	be	only	using	the
default	page	generated	by	Apache	after	being	installed.	For	more	information	on	how	to
setup	a	web	server,	you	can	always	refer	to	Chapter	3,	Linux	for	Different	Purposes.	So,
we	will	only	need	to	have	Apache	installed	and	running	and	we	need	to	configure	the
network	and	the	machine’s	hostname.

First,	we	will	use	the	default	package	manager	for	CentOS	7	YUM	to	install	the	Apache
web	server:

$	sudo	yum	install	httpd

Then	after	that,	we	configure	the	hostname:

$	sudo	nano	/etc/hostname

And	we	make	sure	it	looks	like	this:

Webserver1.packt.co.uk

After	that,	we	go	to	each	hosts	file	and	we	configure	the	domain	to	the	default	localhost
while	adding	the	list	of	all	the	servers	with	their	IP	addresses:

$	sudo	nano	/etc/hosts

Note
This	part	is	only	needed	if	there	is	no	reliable	DNS	server	inside	the	infrastructure	that	can
resolve	all	the	infrastructure	servers.

We	change	the	default	localhost	address	127.0.0.1	domain	name:

127.0.0.1		webserver1		Webserver1.packt.co.uk

Then,	we	add	the	following	lines:

10.0.0.10		haproxy		haproxy.packt.co.uk

10.0.0.11		Webserver1		Webserver1.packt.co.uk

10.0.0.12		Webserver2		Webserver2.packt.co.uk

10.0.0.13		Webserver3		Webserver3.packt.co.uk

10.0.0.20		backupWebserver			backupWebserver.packt.co.uk

Before	finishing,	we	need	to	open	the	HTTPS	and	HTTPS	ports	at	the	webserver	firewall
to	make	the	service	accessible	for	the	visitors:

$	sudo	firewall​cmd	​​permanent	​​zone=public	​​add​port=80/tcp
$	sudo	firewall​cmd	​​permanent	​​zone=public	​​add​port=443/tcp
$	sudo	firewall​cmd	​​reload

By	this	step,	we	can	say	that	we	have	all	our	web	servers	ready.	We	can	now	move	to	our
HAProxy	server	installation.	First,	we	need	to	open	the	needed	ports	for	the	web	service
and	log	reception	used	by	HAProxy:

$	sudo	firewall​cmd	​​permanent	​​zone=public	​​add​port=80/tcp
$	sudo	firewall​cmd	​​permanent	​​zone=public	​​add​port=443/tcp
$	sudo	firewall​cmd	​​permanent	​​zone=public	​​add​port=514/udp
$	sudo	firewall​cmd	​​reload

Then,	we	can	start	the	installation:

$	sudo	yum	install	haproxy

And	now,	we	go	to	the	configuration	part.	Before	doing	the	main	HAProxy	configuration,
we	need	to	setup	the	HAProxy	logging	feature	configuration	for	debugging:

$	sudo	nano	/etc/haproxy/haproxy.cfg

Under	the	#Global	settings	options,	we	need	to	make	sure	that	the	following	line	is	not
commented:

log									127.0.0.1	local2	info

Some	minor	modification	needs	to	happen	at	the	Rsyslog	configuration	file	too:

$	sudo	nano	/etc/rsyslog.conf

That	is	where	we	need	to	uncomment	the	following	two	lines:

$ModLoad	imudp

$UDPServerRun	514

Before	finishing,	we	need	to	have	a	file	that	represents	HAProxy	at	the	Rsyslog	log	folder:

$	sudo	nano	/etc/rsyslog.d/haproxy.conf

And	while	creating	it	using	Nano,	we	need	to	put	the	following	line	inside	it:

local2.*		/var/log/haproxy.log

Save	the	file,	then	apply	the	changes	and	restart	Rsyslog	service:

$	sudo	systemctl	restart	rsyslog.service

Now,	we	can	go	to	the	HAProxy	Global	settings	configuration:

$	sudo	nano	/etc/haproxy/haproxy.cfg

First,	at	the	default	section,	we	need	to	setup	the	timeout	for	a	more	personalized	solution.
Since	our	server	is	just	doing	the	load	balancing,	we	can	always	use	port	80.	So,	we	need
to	take	over	that	port,	by	removing	its	association	to	the	Httpd	service:

$	sudo	nano	/etc/httpd/conf/httpd.conf

Then,	we	change	the	listening	port	to	anything	other	than	80.	In	our	example,	8080:

Listen	8080		

Then,	we	go	to	the	Main	Frontend	section	to	change	the	port	on	which	the	web	interface
is	serving.	So	we	need	to	change	the	whole	section	to	look	like	the	following:

Frontend		HAProxy

bind		*:80

reqadd	X-Forwarded-Proto:\	http

default_backend		HAProxy

And	we	need	to	comment	out	the	Backend	section	to	replace	it	with	the	following:

#	use_backend	static		if	url_static

backend	HAProxy	*:80

mode	http

stats	enable

stats	hide-version

stats	uri	/stats

stats	realm	Haproxy\	Statistics

stats	auth	haproxy:password				#	Change	"password"	with	a	well	secured	

password

balance	roundrobin	

option	httpchk

option		httpclose

option	forwardfor

cookie	LB	insert

		server	webserver1	10.0.0.11:80	cookie	webserver1	check

server	webserver3	10.0.0.12:80	cookie	webserver2	check

server	webserver3	10.0.0.13:80	cookie	webserver3	check

server	backupwebserver	10.0.0.20:80	check	backup

We	need	to	make	sure	that	the	end	of	the	file	matches	our	infrastructure	IP	addresses	and
hostnames.	Then,	we	can	start	the	HAProxy	server	and	add	it	to	the	startup	system
services:

$	sudo	systemctl	start	haproxy.service

$	sudo	systemctl	enable	haproxy.service

To	verify	that	there	is	no	error	at	the	configuration	file,	we	can	always	check	the	service
status	using	the	following	command:

$	sudo	systemctl	status	haproxy.service	-l

Then,	we	get	each	web	server	and	put	a	test	page	just	to	access	it	and	collect	the	test
results.	Then,	we	open	the	web	interface	of	HAProxy	to	visualize	the	status	of	the	load
balancing	http://10.0.0.10/stats	or	http://172.25.25.166/stats.

If	we	get	to	see	the	following	interface,	that	means	that	our	high	availability	server	is
running	well.	If	we	need	to	enable	https	to	access	the	web	interface	of	HAProxy	using
SSL,	we	can	always	install	OpenSSL	and	configure	our	server	to	use	it.

References
Now,	let’s	look	at	the	references	used	throughout	the	chapter:

VMware	Documentation	Center:	http://pubs.vmware.com/vsphere-51/index.jsp
VMware	Virtualization:	http://www.vmware.com/virtualization.html
Full	virtualization	wiki:	https://en.wikipedia.org/wiki/Full_virtualization
Paravirtualization	wiki:	https://en.wikipedia.org/wiki/Paravirtualization
Xen	project	wiki:	http://wiki.xen.org/wiki/Xen_Project_Software_Overview
KVM	home	page:	http://www.linux-kvm.org/page/Main_Page
OpenVZ	home	page:	https://openvz.org/Main_Page
VirtualBox	home	page:	https://www.virtualbox.org
Docker	documentation:	http://www.modssl.org/docs/
HAProxy	web	page:	http://www.haproxy.org/

http://pubs.vmware.com/vsphere-51/index.jsp
http://www.vmware.com/virtualization.html
https://en.wikipedia.org/wiki/Full_virtualization
https://en.wikipedia.org/wiki/Paravirtualization
http://wiki.xen.org/wiki/Xen_Project_Software_Overview
http://www.linux-kvm.org/page/Main_Page
https://openvz.org/Main_Page
https://www.virtualbox.org
http://www.modssl.org/docs/
http://www.haproxy.org/

Summary
This	chapter	started	with	a	brief	description	of	the	basics	of	virtualization.	Then,	we
defined	full	virtualization	and	paravirtualization.	Next,	to	better	explain	all	of	that
practically	using	a	variety	of	open	source	virtualization	tools,	we	started	with	Xen	as	a
paravirtualization	and	full	virtualization	solution.	We	moved	on	to	KVM	as	a	full
virtualization	solution,	container	virtualization,	OpenVZ,	and	the	VirtualBox	tool.	This
allows	an	easy	setup	through	its	beautiful	graphical	interface.

We	concluded	the	chapter	with	Docker	and	its	ways	of	using	containers	from	the	Web.	By
the	end	of	this	chapter,	we	can	say	that	we	have	seen	various	virtualization	technologies
and	how	to	create	virtual	machines	using	them.

In	the	next	chapter,	we	will	get	a	chance	to	explore	the	cloud	computing	technology	and
apply	some	examples	using	the	open	source	solution,	OpenStack.

Chapter	7.	Cloud	Computing
The	new	generation	of	services	provided	via	the	Internet	is	known	as	cloud	computing.	In
the	computer	industry,	many	organizations	use	cloud	computing	as	they	don’t	like	to
purchase	the	equipment	that	can	resolve	their	resource	solutions,	or	hire	what	is	required
to	manage	and	maintain	it.	Cloud	computing	is	like	a	third-party	data	source	that	offers
various	capabilities	to	store	and	process	data.

Within	the	list	of	the	best	solutions	for	establishing	a	cloud-computing	environment,	we
have	chosen	OpenStack.	In	this	chapter,	we	will	cover	in	brief	what	cloud	computing	is
and	how	to	set	up	a	single	node	using	OpenStack.

Over	the	course	of	this	chapter,	we	will	go	through	the	following	topics:

Overview	of	cloud	computing
Cloud-computing	services
Introducing	OpenStack
Components	of	OpenStack
Installing	and	setting	up	of	OpenStack

An	overview	of	cloud	computing
Cloud	computing	is	the	capacity	to	perform	computing	outside	the	usual	way	of	relying	on
local	machines.	Cloud	computing	relies	on	shared	resources	to	handle	the	needed
calculation	or	treatment.	It	shares	the	same	aspects	as	Grid	computing	where	both
technologies	have	its	processing	power	gathered	to	resolve	or	treat	problems	too	heavy	for
a	standalone	machine	(server	or	a	personal	computer).

The	goal	of	cloud	computing	is	to	harness	high	supercomputing	power	to	perform	high-
level	computations	in	consumer-oriented	applications,	such	as	finance,	personalized
information	delivery,	data	storage,	and	so	on.

In	order	to	perform	this	overwhelming	task,	cloud	computing	relies	on	a	gigantic	number
of	super	powerful	servers	(blades…)	connected	through	an	extremely	fast	connection
(InfiniBand	(IB))	to	share	the	workload	across	their	computing	units.	This	kind	of
infrastructure	runs	on	specially	configured	systems,	where	they	are	linked	together	to
simplify	the	task.	Some	infrastructures	rely	on	virtualization	technology	to	enhance	their
cloud	computing.

Source:	http://networksolutionsintl.com

Briefly,	the	most	precise	reason	for	many	companies	to	use	cloud	computing	is	that	it
enables	them	to	make	computer	resources	look	like	a	utility,	which	they	can	pay	for	over
time	without	having	the	real	hardware	on	site	and	the	burden	of	managing	it	and
sustaining	it	within	their	team.	Also,	cloud	computing	offers	many	interesting	features	for

http://networksolutionsintl.com

enterprises,	such	as:

Elasticity:	The	capacity	to	scale	computing	resources	up	and	down	as	the	need
requires
Self-service	provisioning:	The	capacity	to	provide	the	required	amount	of	resources
for	the	job,	on	demand
Pay	per	use:	The	capacity	to	measure	the	resources	used	by	the	users	so	they	only
get	charged	for	the	resources	they	have	used

Cloud	computing	has	hugely	evolved	over	time.	However,	it	has	always	kept	the	main
three	board	services:

Software	as	a	Service	(SaaS)
Platform	as	a	Service	(PaaS)
Infrastructure	as	a	Service	(IaaS)

Software	as	a	Service
SaaS	refers	to	every	application	running	on	a	machine	other	than	the	current	user	machine,
where	the	user	has	access	to	some	or	all	of	its	services	through	their	web	browser,	and
sometimes	through	a	thin	client	application	that	only	works	as	a	presentation	interface.
SaaS	applications	are	generally	accessible	worldwide	using	any	kind	of	device	that	can
access	the	Internet	(computer,	mobile,	and	so	on).	The	thing	that	makes	an	SaaS
application	work	well	is	that	it	is	a	kind	of	scalable	application	where	the	user	can	process
its	treatment	over	as	many	virtual	machines	as	needed	to	answer	the	load	demand.	Most
cloud-computing	infrastructures	use	a	load-balancing	system	to	organize	the	load	between
the	virtual	machines,	where	the	application	keeps	running	without	any	interruption	and
perform	a	better	execution	results.

Source:	http://icorees.com/

SaaS	is	characterized	as	follows:

Its	services	are	accessible	for	any	connected	device
Easy-to-use	application	just	after	signing	in
Where	everything	is	stored	on	the	cloud	over	hundreds	of	machines	well	configured
for	disasters	such	as	disk	crash	and	so	on,	plus	user	data	and	services	are	always
available
Computing	power	for	applications	is	always	scalable	when	needed

We	can	distinguish	some	of	the	most	famous	SaaS	that	we	use	every	day,	such	as	e-mail
services	(Gmail,	Yahoo…),	social	media	and	communication	tools	(Facebook,	Skype…).
All	we	need	to	use	these	daily	services	is	an	Internet	connection	and	a	device	that	has	a
web	browser	or	a	thin	client	application	for	mobile.

http://icorees.com/

Platform	as	a	Service	(PaaS)
PaaS	is	a	service	that	offers	its	clients	the	capacity	to	build	and	deploy	applications	on	a
cloud-based	environment.	PaaS	acts	like	SaaS	when	providing	scalability	to	its	users.
When	deploying	their	applications,	they	have	on-demand	access	to	the	needed	resource	to
run	their	application,	where	it	offers	all	those	services	without	the	pain	of	buying,
maintaining	and	managing	the	hardware	needed	for	the	application	to	run,	with	all	the
logistics	behind	it.	PaaS	has	been	well	developed	to	offer	to	its	clients	pre-prepared
templates	to	simplify	the	initialization	on	the	platform.

Source:	https://www.zoho.com/

We	can	distinguish	some	major	benefits	of	using	PaaS	from	the	traditional	solution,	as
follows:

Speeds	up	the	development	of	applications	where	the	environment	is	already	there,
and	makes	it	ready	for	marketing	where	it	is	already	hosted
Removes	the	complexity	of	managing	the	middleware	and	simplifies	the	task	of
having	it
Simplifies	the	deployment	of	web	applications

https://www.zoho.com/

Infrastructure	as	a	Service	(IaaS)
The	third	service	is	IaaS,	a	kind	of	service	that	offers	its	users	everything	needed	to
establish	a	fully	qualified	infrastructure.	IaaS	provides	servers	with	different
characteristics,	network	equipment,	and	storage	space	on	demand.	The	user	of	the
infrastructure	has	all	the	rights	to	manage	his	infrastructure	as	desired,	with	all	the	rights
of	a	system	and	network	administrator.	This	service	offers	its	users	more	than	just	the
infrastructure	but	a	pack-kind	of	resource	(small,	medium,	and	extra-large	computing
power	and	memory)	to	answer	the	workload	requirements.	As	we	said	before,	users	act	as
system	and	network	administrators	so	as	to	deploy	their	applications.	They	then	need	to
establish	their	networks,	install	the	desired	OS,	and	set	up	their	machines,	where	the	users
also	maintain,	manage	and	update	their	systems	manually,	as	desired.

Source:	http://cloudplus.com/

The	benefits	of	IaaS	can	be	summed	up	as	follows:

It	removes	the	task	of	investing	in	hardware
As	with	other	cloud	solutions,	IaaS	is	scalable	on	demand	to	answer	the	user	need	for
resources	and	equipment
A	variety	of	flexible	and	innovative	services	are	provided	as	per	user	requirements

http://cloudplus.com/

Cloud	computing	services
After	explaining	the	different	types	of	cloud	computing,	we	should	now	have	a	look	at
how	those	services	are	provided.	For	that,	we	categorize	them	into	three	major	types:
public	cloud,	private	cloud,	and	hybrid	cloud.

Public	cloud
We	will	start	by	introducing	the	public	cloud.	The	public	cloud,	as	its	name	suggests,	is	a
publicly	available	cloud.	Usually,	a	public	cloud	service	is	scalable	on	how	much	the	user
is	willing	to	pay,	either	for	resources	or	special	services.	Since	it	is	on	the	cloud,	users
don’t	have	to	worry	about	hardware	purchases,	management,	and	maintenance.	Most
services	provided	as	a	public	cloud	are	SaaS,	with	a	small	number	as	PaaS.	Most	of	those
services	are	available	on	demand.	Usually,	the	users	are	charged	for	the	resources	they	are
using	(CPU,	memory,	storage,	Internet	bandwidth)	more	than	for	the	service	itself.

Source:	http://nextgenaccess.zserver.co.uk/

Resources	sharing	on	a	public	cloud	appear	when	multiple	users	access	the	same	service
where	it	is	hosted	on	one	or	many	servers,	and	also	where	those	servers	need	to	process
the	tasks	sent	by	the	clients.	Some	infrastructures	are	better	than	others	whereby	they	can
handle	really	heavy	traffic;	others	may	find	it	a	bit	more	difficult.	On	this	stage,	clients
may	experience	slowness	in	their	application	and	that	is	what	really	affects	the	service	in	a
bad	way.

http://nextgenaccess.zserver.co.uk/

Private	cloud
In	contrast	to	the	public	cloud,	the	private	cloud	is	a	kind	of	dedicated	service	for	one	user
or	one	organization.	Being	used	by	one	customer	does	not	make	it	different	to	any	other
cloud.	It	can	still	be	managed	and	administrated	by	a	third-party	company	or	by	an
internal	team.

Most	organizations	tend	to	use	a	private	cloud	due	to	its	advantages	of	allocation	and	to	be
able	to	control	the	resources.	This	is	different	from	the	public	cloud	where	it	is	shared
between	multiple	users.	Also	the	public	cloud	features	a	self-service	interface	that	helps
and	simplifies	the	resources	management	and	allocation	for	system	administrators	with	a
faster	method	on	demand,	more	advanced	security	protocols	for	better	security	of	the	user
data,	and	an	advanced	automated	system	that	helps	with	the	resource	management	to
optimize	the	workload.

Source:	http://blogs.dlt.com

http://blogs.dlt.com

Hybrid	cloud
A	hybrid	cloud	is	a	combination	of	the	public	cloud	and	the	private	cloud.	To	be	more
specific,	the	private	cloud	can	sometimes	be	very	expensive	and	hard	to	adjust,	especially
for	little	applications	that	do	not	require	the	advantages	that	the	private	cloud	is	offering.
While	a	public	cloud	is	not	that	much	more	expensive	a	solution,	and	has	the	advantage	of
fast	deployment	of	its	applications,	organizations	tend	to	mix	the	use	of	both	services,
depending	on	their	needs,	and	that’s	what	has	made	the	hybrid	cloud	popular.	The	hybrid
cloud	allows	organizations	to	keep	important	data	on	their	private	cloud	and	offer	light
services	such	as	SaaS	on	a	public	cloud,	with	the	capacity	to	switch	to	the	desired	service
whenever	needed.

Source:	http://www8.hp.com

http://www8.hp.com

Introducing	OpenStack
We	have	now	thoroughly	described	cloud	computing,	its	services,	and	how	a	customer	can
utilize	these	services.	Now,	we	need	to	talk	about	our	role	in	this.	Knowing	how	to	use	a
cloud-computing	service,	such	as	an	IaaS	to	deploy	an	infrastructure	on	it,	is	not	really	one
of	the	hardest	tasks	for	a	system	administrator.	But	the	one	that	every	system	administrator
should	know	is	how	to	deploy	one	and	how	to	offer	those	services	to	their	clients.	In	this
section,	we	are	going	to	explore	how	to	have	a	cloud	running	within	our	infrastructure	and
how	to	provide	those	services	running	on	our	CentOS	7	server.	To	perform	this	task	we
will	be	using	one	of	the	most	famous	open	source	cloud	solutions	for	Linux,	OpenStack,
which	is	a	free	cloud-computing	solution	that	helps	initiate,	manage,	and	sustain	a	huge
pool	of	virtual	machines	with	the	required	resources	(CPU,	memory,	networking,	and
storage).	This	infrastructure	is	managed	through	a	user-friendly	web	interface	that	helps
present	the	status	of	the	nodes	to	the	system	administrator,	and	gives	them	easy	access	to
manage	the	infrastructure	resources.	OpenStack	provides	open	source	and	enterprise
services	as	per	the	user’s	demands,	which	make	it	well	used	by	multiple	organizations.

Today,	OpenStack	is	used	by	hundreds	of	worldwide	organizations	to	maintain	their	cloud
infrastructure	where	they	use	it	to	have	their	cloud	solutions	up	and	running,	and	where	it
is	used	for	both	public	or	private	cloud	services.	Most	organizations	providing	cloud
services,	to	either	the	public	or	private,	use	OpenStack	to	deliver	an	IaaS	service.

Source:	https://www.openstack.org/software/

OpenStack	manages	three	major	sections	under	its	API:	compute,	networking	and	storage.
Through	this	API,	OpenStack	creates	a	sustainable	environment	for	the	infrastructures	it
manages.

https://www.openstack.org/software/

OpenStack	compute
OpenStack	compute	is	the	capacity	to	offer	computing	resources	on	demand	for	the
customer	while	managing	the	resources	that	have	been	requested.	OpenStack	compute	not
only	offers	what	the	customers	are	running	on	their	applications	but	also	ensures	that	the
service	itself	is	running	well	by	organizing	the	resources	and	the	applications.	OpenStack
compute	is	accessible	via	both	the	web	interface	for	administration	and	via	the	API	for
developing	and	building	applications.	This	architecture	enables	economic	usage	of	the
physical	hardware	where	it	scales	it	horizontally.	This	technology	also	manages	and
automates	a	huge	pool	of	computing	resources,	while	it	offers	a	compatibility	with	a
variety	of	virtualization	technologies.

OpenStack	networking
OpenStack	networking	is	the	capacity	to	manage	networking	for	the	cloud	resources
managed	by	OpenStack.	This	technology	ensures	that	the	network	resources	connecting
the	cloud	infrastructure	are	always	available	and	do	not	contain	any	bottlenecks,	other	that
just	performing	what	a	network	administrator	should	do	to	maintain	its	infrastructure
network.

OpenStack	networking	offers	a	flexible	networking	model	to	answer	needs	such	as	flat
networks,	VLAN	configurations,	GRE,	and	VXLAN.	It	provides	the	same	services	that
the	ordinary	physical	network	hardware	provides	such	as	routing,	NAT	and	DHCP,	and
static	IP	association.	IT	is	also	equipped	with	an	intelligent	system	that	helps	redirect
traffic	in	case	of	a	failure	or	overload,	to	help	maintain	a	better	networking	capacity.
OpenStack	networking	not	only	supports	automated	network	management	but	also	offers
its	users	the	capacity	to	manage	their	network	manually	by	adjusting	their	proper
connections,	and	connect	servers	and	terminals	to	each	other	as	required.	Users	can	also
take	advantage	of	Software-defined	networking	(SDN)	technology	for	a	multi-tenancy
configuration	and	massive	scale	such	as	OpenFlow.	It	also	offers	support	for	advanced
networking	services	architecture	from	multiple	common	vendors.	Finally,	it	offers	an
advanced	extension	that	integrates	common	network	administration	techniques	such	as
VPN	for	private	connection,	IDS	for	reinforcing	security,	load	balancing,	firewalls	for
setting	access	rules,	and	so	on.

OpenStack	storage
OpenStack	storage	is	the	data	storage	services	offered	by	OpenStack	inside	its
architecture.	Through	its	fully	distributed	API	storage	platform,	cloud	applications	can
access	storage	space	through	multiple	technologies	and	architectures	(archiving,	backup,
data	retention).	Storage	with	OpenStack	is	always	scalable,	to	answer	the	user	and
application’s	demands,	by	allowing	block	devices	to	be	added	to	each	other	and	assuring	a
better	performance.	OpenStack	storage	has	the	capacity	to	be	integrated	with	enterprise
storage	platforms	such	as	SolidFire	and	NetApp.

Components	of	OpenStack
OpenStack	is	a	very	big	platform	that	has	many	small	components,	assuring	the	full
functionality	of	its	services.	Most	of	those	components	are	made	by	the	open	source
community	to	help	meet	the	needs	of	its	users.	For	this	section,	we	are	going	to	talk	about
the	OpenStack	community	components	as	part	of	its	core.	What	characterizes	those
components	are	that	they	are	maintained	by	the	OpenStack	community,	to	be	presented	as
part	of	the	solution.

Source:	http://redhatstackblog.redhat.com/

These	components	are	described	as	follows:

Horizon:	This	is	the	component	responsible	of	setting	up	the	OpenStack	dashboard.
It	is	from	where	the	OpenStack	administrator	manages	the	infrastructure.	It	is	the
only	graphical	interface	OpenStack	has,	so	far.	Horizon	provides	a	look	into	what	is
happening	in	the	cloud	infrastructure	and	gives	to	the	system	administrators	some
functionality	to	manage	it.	On	the	other	hand,	the	dashboard	does	not	support
developer’s	access.	There	is	always	an	application-programming	interface	(API)
where	they	can	access	resources	and	other	aspects	of	the	cloud.
Nova:	This	is	OpenStack’s	primary	computing	engine.	It	is	the	main	component
responsible	for	deploying	and	managing	the	virtual	machines	of	the	cloud
infrastructure,	rather	than	just	being	a	small	infrastructure	or	a	grid	of	super
computers.	It	also	manages	and	organizes	other	instances	such	as	handling	cloud-
computing	tasks.
Neutron:	This	is	OpenStack’s	networking	component.	It	is	basically	the	one	essential
part	to	ensure	networking	between	different	components	of	the	cloud	infrastructure.	It
also	supports	multiple	technologies	to	make	sure	that	communication	is	reliable.
Keystone:	This	is	the	service	responsible	for	identifying	management	for	OpenStack.
It	organizes	the	users	using	the	cloud	and	also	organizes	their	access	permissions.	It
organizes	the	resources	which	they	are	using.	It	is	also	a	great	help	for	the	developer
for	tracking	user	usage	and	access	methods.
Swift:	This	is	the	component	responsible	of	the	storage	system	for	OpenStack.	It
stores	the	data	in	an	advanced	method	where	the	developers	only	specify	the	file	as	a
piece	of	information,	and	OpenStack	decides	where	to	store	that,	which	helps	with

http://redhatstackblog.redhat.com/

scaling	and	resolves	storage	capacity	issues.	It	makes	most	of	the	common	tasks,
such	as	backup	and	security,	the	responsibility	of	the	system	more	than	the	developer.
Cinder:	This	is	a	smaller	storage	component	that	organizes	block	storage.	It	helps
with	the	enhancement	of	data	access	in	the	disk	drive	and	organizes	in	traditional
ways	the	speed	of	data	access	depending	on	the	need.
Heat:	This	is	the	OpenStack	orchestration	component.	It	is	a	method	to	store
information	about	cloud	applications	where	it	has	defined	the	resources	needed	for
that	application	for	better	organization	of	the	cloud	infrastructure.
Glance:	This	is	the	component	that	organizes	the	virtual	copies	of	the	hard	disks,
what	are	known	as	images,	to	be	used	later	as	templates	for	deploying	new	virtual
machines.
Ceilometer:	This	is	the	component	that	helps	with	the	billing	services	for	cloud
usage	by	individual	users.	It	acts	as	a	meter	that	reports	the	system	usage	during	the
period	where	the	user	starts	using	the	cloud.

These	components	are	very	important	where	some	of	them	depend	on	the	other,	and	many
basic	cloud	services	won’t	be	available	if	some	of	them	become	disabled	or	excluded.	One
of	the	components	that	is	very	important	is	the	orchestration	component	where	it	helps
organize	a	large	number	of	machines	and	perform	high-computer	processing	without	any
difficulty.

Installing	and	configuring	OpenStack
After	a	brief	explanation	of	cloud	computing	and	OpenStack,	we	can	now	move	on	to
OpenStack	installation	on	a	CentOS	7	Linux	server.	First	of	all,	we	are	going	to	make	a
few	basic	environment	configurations	and	then	set	it	up.

For	this	installation,	we	will	have	our	cloud	infrastructure	as	follows:

The	Router/Gateway	server	as	eth	machine	to	provide	Internet	access	to	the	external
websites,	with	the	IP	address:	10.0.1.1
The	cloud	server	to	host	OpenStack,	with	the	IP	address:	10.0.1.2
The	hosts	that	will	be	used	for	the	cloud	computing,	with	their	IP	addresses	as
follows:	10.0.1.4,	10.0.1.5,	10.0.1.6

To	have	OpenStack	well	secured,	the	community	integrated	many	services	to	ensure	that
some	of	those	services	secure	data	access	and	user	authentication	with	encrypted	data
transmission.	For	this	action,	we	will	need	to	have	OpenSSL	installed	on	our	cloud	server
so	that	OpenStack	can	use	it	to	run	its	services:

$	sudo	yum	install	openssl

To	have	a	safe	installation	without	errors,	we	need	to	disable	the	firewall,	if	there	is	one,
like	this:

$	sudo	systemctl	stop	firewalld.service

Then	we	need	to	make	sure	that	the	server	is	connected	to	the	local	network	and	has
Internet	access.	To	do	so,	we	need	to	ping	one	machine	at	the	local	network	and	a	nicely
working	web	server	(https://www.google.co.in/):

$	ping	–c	5	10.0.1.1

PING	10.0.1.1	(10.0.1.1)	56(84)	bytes	of	data.

64	bytes	from	10.0.1.1:	icmp_seq=1	ttl=255	time=1.21	ms

64	bytes	from	10.0.1.1:	icmp_seq=2	ttl=255	time=4.19	ms

64	bytes	from	10.0.1.1:	icmp_seq=3	ttl=255	time=4.32	ms

64	bytes	from	10.0.1.1:	icmp_seq=4	ttl=255	time=4.15	ms

64	bytes	from	10.0.1.1:	icmp_seq=5	ttl=255	time=4.01	ms

---	10.0.1.1	ping	statistics	---

5	packets	transmitted,	5	received,	0%	packet	loss,	time	4007ms

rtt	min/avg/max/mdev	=	1.214/3.580/4.324/1.186	ms

$	ping	–c	5	www.google.com

The	result	of	the	test	should	look	like	the	following:

https://www.google.co.in/

Then	we	need	to	add	all	the	nodes	involved	(controller	node,	network	node,	compute
node,	object	storage	node,	and	block	storage	node):

$	sudo	nano	/etc/hosts

Next,	to	have	the	nodes	well	synchronized	among	each	other,	we	need	to	set	up	a	time
server	to	configure	a	time	for	all	the	servers.	To	do	this,	we	will	be	using	the	NTP	service.
First,	however,	we	need	to	install	it:

$	sudo	yum	install	ntp

Then	we	need	to	start	it	and	make	it	run	at	system	startup:

$	sudo	systemctl	enable	ntpd.service

$	sudo	systemctl	start	ntpd.service

To	verify	the	installation,	we	need	to	use	the	following	command:

$	sudo	ntpq	-c	peers

To	see	the	output	of	this	command,	have	a	look	at	the	following:

$	sudo	ntpq	-c	assoc

To	see	the	output	of	this	command,	refer	to	the	following:

We	need	to	see	sys.peer	in	the	condition	column	at	any	line.

Note
We	need	to	do	the	same	for	all	the	involved	nodes.

Now,	we	put	SELinux	into	permissive	mode:

$	sudo	nano	/etc/selinux/config

Then	consider	this	line:

SELINUX=enforcing

Change	it	to	the	following	line:

SELINUX=	permissive

Then	we	should	reboot	the	system	so	that	the	change	can	take	effect.

After	the	system	starts	up,	we	can	move	on	to	the	package	source	configuration.	First,	we
need	to	make	sure	that	our	system	packages	are	all	updated:

$	sudo	yum	update	–y

Then	we	install	the	epel	repository:

$	sudo	yum	install	epel-release

Next,	we	check	whether	the	additional	EPEL	repository	is	enabled:

$	sudo	nano	/etc/yum.repos.d/epel.repo

We	need	to	make	sure	that	all	modules	([epel]	[epel-debuginfo]	[epel-source])	are
enabled:

enabled=1

Then	we	proceed	to	install	the	YUM	plugin	priorities	to	enable	assignment	of	relative
priorities	within	repositories:

$	sudo	yum	install	yum-plugin-priorities

Finally,	we	can	set	up	the	OpenStack	repository:

$	sudo	yum	install	

https://repos.fedorapeople.org/repos/openstack/openstack-juno/rdo-release-

juno-1.noarch.rpm

To	make	OpenStack	automatically	manage	security	policies	for	its	services,	we	need	to
install	the	OpenStack-SELinux	package:

$	sudo	yum	install	openstack-selinux

Just	before	installing	the	official	package	for	the	OpenStack	service,	we	will	be	installing
some	tools	needed	for	the	SELinux	policies	for	OpenStack	of	our	cloud-computing
platform.	We	will	first	install	the	database	server.	For	that,	we	will	have	the	Python
MySQL	library	and	the	MariaDB	server:

$	sudo	yum	install	mariadb	mariadb-server	MySQL-python

After	having	MariaDB	installed,	we	need	to	go	ahead	and	configure	it.	First,	we	need	to
start	the	database	server	and	add	it	to	the	system	startup:

$	sudo	systemctl	enable	mariadb.service

$	sudo	systemctl	start	mariadb.service

By	default,	OpenStack	is	installed	with	a	no	password	policy	for	the	root.	We	need	to
change	that	during	the	first	use,	while	performing	a	secure	setup.

At	this	point,	we	have	properly	set	all	the	required	tools	and	configurations.	We	can	start
the	OpenStack	package	installation.	We	can	install	each	OpenStack	component
individually,	or	make	it	faster	by	installing	and	configuring	them	all	at	the	same	time.	To
do	so,	we	will	be	using	the	yum	package	manager:

$	sudo	yum	install	-y	openstack-packstack

For	a	single-node	OpenStack	deployment,	we	should	use	the	following	command	to
configure	it:

$	sudo	packstack	--allinone

We	should	see	a	message	that	starts	as	follows	to	conclude	that	the	installation	is	done
correctly	and	the	configuration	has	been	started	properly.	This	may	take	some	time	to
finish.

The	following	screen	appears	if	the	configuration	is	done	properly:

After	getting	the	configuration	done,	there	will	be	two	authentication	credentials	generated
to	be	used	by	the	administrator.	The	first	is	for	the	Nagios	Server.	The	login	and	the
password	will	appear	on	the	screen,	so	we	need	to	save	them	to	change	the	password	later.
The	second	one	is	for	the	OpenStack	dashboard,	which	will	be	stored	in	a	file	at	the	root
directory,	called	keystonerc_admin.

The	first	of	the	two	web	interfaces	should	look	like	this	as	a	confirmation	that	the	node	is
running:

The	second	interface	looks	like	what	is	shown	in	the	following	screenshot:

Now	we	can	move	on	to	the	network-bridging	configuration.	We	need	to	create	a	bridge
interface:

$	sudo	nano	/etc/sysconfig/network-scripts/ifcfg-br-ex

After	creating	the	file,	we	need	to	put	the	following	code	into	it:

DEVICE=br-ex

DEVICETYPE=ovs

TYPE=OVSBridge

BOOTPROTO=static

IPADDR=10.0.1.2	#	Old	eth0	IP	

NETMASK=255.255.255.0	#	the	netmask

GATEWAY=10.0.1.1	#	the	gateway

DNS1=8.8.8.8	#	the	nameserver

ONBOOT=yes

Now	we've	got	to	fix	the	eth0	configuration	file	to	look	like	the	

following:

BOOTPROTO="none"

IPV4_FAILURE_FATAL="no"

IPV6INIT="yes"

IPV6_AUTOCONF="yes"

IPV6_DEFROUTE="yes"

IPV6_FAILURE_FATAL="no"

NAME="eth0"

UUID="XXXXXXXXXX"

ONBOOT="yes"

HWADDR="XXXXXXXXXXXXXX"	#	this	is	the	Ethernet	network	Mac	address

IPV6_PEERDNS="yes"

IPV6_PEERROUTES="yes"

TYPE=OVSPort

DEVICETYPE=ovs

OVS_BRIDGE=br-ex

ONBOOT=yes

Then	we	add	the	following	lines	to	the	Neutron	configuration	file	to	look	like	the
following	in	the	[ovs]	module:

$	sudo	nano	/etc/neutron/plugin.ini

[ovs]

network_vlan_ranges	=	physnet1

bridge_mappings	=	physnet1:br-ex

Next,	we	restart	the	network:

$	sudo	systemctl	restart	network.service

The	following	part	is	optional,	wherein	we	are	going	to	show	in	detail	what	happens	if	we
run	the	manual	way	and	not	the	automatic	interactive	way.

If	we	want	to	deploy	other	nodes	manually,	we	should	be	using	packstack	with	the	--
install-hosts	option	and	then	put	the	other	host	IP	address:

$	sudo	packstack	--install-hosts=10.0.1.4

If	there	are	many	hosts,	we	can	add	a	comma	(,)	between	the	IP	addresses:

$	sudo	packstack	--install-hosts=10.0.1.4,10.0.1.5,10.0.1.6

While	this	command	is	executed,	we	will	be	asked	to	type	the	root	password	from	each
system	individually	to	connect	to	the	system,	install	OpenStack,	and	take	control	over	it:

root@10.0.1.4's	password:

We	know	that	the	installation	is	done	when	we	see	the	following	message:

****	Installation	completed	successfully	******

An	answer	file	containing	all	the	chosen	configuration	options	is	saved	to	the	disk	in	the
system	from	which	we	run	packstack.	This	file	can	be	used	to	automate	future
deployments:

*	A	new	answerfile	was	created	in:	/root/packstack-answers-XXXXXXXX-

XXXX.txt

A	file	containing	the	authentication	details	of	the	OpenStack	admin	user	is	saved	to	the
disk	in	the	system	on	which	the	OpenStack	client	tools	were	deployed.	We	will	need	these
details	to	manage	the	OpenStack	environment:

*	To	use	the	command	line	tools	you	need	to	source	the	file	

/root/keystonerc_admin	created	on	10.0.1.4

We	can	run	packstack	interactively	to	create	both	single-node	and	multiple-node
OpenStack	deployments:

$	sudo	packstack

After	running	this	command,	we	need	to	follow	the	list	of	steps	to	have	the	nodes
deployed.

First,	it	will	ask	for	the	public	key	to	be	stored	in	the	server	to	get	automatic	SSH	access,
so	we	need	to	have	one	generated	already:

$	ssh-keygen	–t	rsa

Then	we	give	its	location,	which	is	~/.ssh/id_rsa.pub:

Enter	the	path	to	your	ssh	Public	key	to	install	on	servers:

Next,	we	select	the	services	that	we	need	to	deploy.	We	can	choose	whatever	we	need:

Should	Packstack	install	Glance	image	service	[y|n]	[y]	:

Should	Packstack	install	Cinder	volume	service	[y|n]	[y]	:

Should	Packstack	install	Nova	compute	service	[y|n]	[y]	:

Should	Packstack	install	Horizon	dashboard	[y|n]	[y]	:

Should	Packstack	install	Swift	object	storage	[y|n]	[y]	:

Each	selected	service	can	be	deployed	on	either	a	local	or	a	remote	system.	Where	each
service	is	deployed	will	be	determined	based	on	the	IP	addresses	that	we	provide	later	in
the	deployment	process.

OpenStack	includes	a	number	of	client	tools.	Enter	y	to	install	the	client	tools.	A	file
containing	the	authentication	values	of	the	administrative	user	will	also	be	created:

Should	Packstack	install	OpenStack	client	tools	[y|n]	[y]	:

Optionally,	the	packstack	script	will	configure	all	servers	in	the	deployment	to	retrieve
date	and	time	information	using	the	Network	Time	Protocol	(NTP).	To	use	this	facility,
enter	a	comma-separated	pool	of	NTP	servers:

Enter	a	comma	separated	list	of	NTP	server(s).	Leave	plain	if	Packstack	

should	not	install	ntpd	on	instances.:

Optionally,	the	packstack	script	will	install	and	configure	Nagios	to	provide	advanced
facilities	for	monitoring	the	nodes	in	the	OpenStack	environment:

Should	Packstack	install	Nagios	to	monitor	openstack	hosts	[y|n]	[n]	:	

We	now	move	on	to	the	configuration	of	the	MySQL	Instance.	OpenStack	services	require
a	MySQL	database	to	store	data	in.	To	configure	the	database,	we	go	through	the
following.

We	type	the	IP	address	of	the	server	to	deploy	the	MySQL	database	server	on:

Enter	the	IP	address	of	the	MySQL	server	[10.0.1.1]	:

Enter	the	password	to	be	used	for	the	MySQL	administrative	user.	If	we	do	not	enter	a
value,	it	will	be	generated	randomly.	The	generated	password	will	be	available	in	both	the
~/.my.cnf	file	of	the	current	user	and	the	answer	file:

Enter	the	password	for	the	MySQL	admin	user	:

OpenStack	services	use	the	Qpid	messaging	system	to	communicate.	Enter	the	IP	address
of	the	server	to	deploy	Qpid	on:

Enter	the	IP	address	of	the	QPID	service		[10.0.1.2]	:

OpenStack	uses	keystone	(openstack-keystone)	for	identity,	token,	catalog,	and	policy
services.	If	the	keystone	installation	has	been	selected,	then	enter	the	IP	address	of	the
server	to	deploy	keystone	on	when	prompted:

Enter	the	IP	address	of	the	Keystone	server		[10.0.1.2]	:

OpenStack	uses	glance	(openstack-glance-*)	to	store,	discover,	and	retrieve	virtual
machine	images.	If	the	glance	installation	has	been	selected,	then	enter	the	IP	address	of
the	server	to	deploy	glance	on	when	prompted:

Enter	the	IP	address	of	the	Glance	server		[10.0.1.2]	:

To	provide	volume	storage	services,	OpenStack	uses	Cinder	(openstack-cinder-*).	Enter
the	IP	address	of	the	server	to	deploy	Cinder	on.	If	the	installation	of	the	volume	services
was	selected,	then	these	additional	configuration	prompts	will	be	presented:

Enter	the	IP	address	of	the	Cinder	server		[10.0.1.2]	:

The	packstack	utility	expects	the	storage	for	use	with	Cinder	to	be	available	in	a	volume
group	named	cinder-volumes.	If	this	volume	group	does	not	exist,	then	we	will	be	asked
whether	we	want	it	to	be	created	automatically.

Answering	yes	means	that	packstack	will	create	a	raw	disk	image	in	/var/lib/cinder
and	mount	it	for	use	by	Cinder	using	a	loopback	device:

Should	Cinder's	volumes	group	be	createdi	(for	proof-of-concept	

installation)?	[y|n]	[y]:

If	we	chose	to	have	packstack	create	the	cinder-volumes	volume	group,	then	we	will	be
prompted	to	enter	its	size	in	gigabytes	(GB):

Enter	Cinder's	volume	group	size		[20G]	:

OpenStack	uses	Nova	to	provide	compute	services.	Nova	is	itself	made	up	of	a	number	of
complementary	services	that	must	be	deployed.	If	the	installation	of	the	compute	services
was	selected,	then	these	additional	configuration	prompts	will	be	presented.

The	Nova	API	service	(openstack-nova-api)	provides	web	service	endpoints	for
authenticating	and	interacting	with	the	OpenStack	environment	over	HTTP	or	HTTPS.	We
type	the	IP	address	of	the	server	to	deploy	the	Nova	API	service	on:

Enter	the	IP	address	of	the	Nova	API	service		[10.0.1.3]	:

Nova	includes	a	certificate	management	service	(openstack-nova-cert).	Enter	the	IP
address	of	the	server	to	deploy	the	Nova	certificate	management	service	on:

Enter	the	IP	address	of	the	Nova	Cert	service		[10.0.1.3]	:

The	Nova	VNC	proxy	provides	facilities	to	connect	users	of	the	Nova	compute	service	to
their	instances	running	in	the	OpenStack	cloud.	Enter	the	IP	address	of	the	server	to
deploy	the	Nova	VNC	proxy	on:

Enter	the	IP	address	of	the	Nova	VNC	proxy		[10.0.1.3]	:

The	packstack	script	is	able	to	deploy	one	or	more	compute	nodes.	Enter	a	comma-

separated	list	containing	the	IP	addresses	or	hostnames	of	all	the	nodes	that	you	wish	to
deploy	compute	services	on:

Enter	a	comma	separated	list	of	IP	addresses	on	which	to	install	the	Nova	

Compute	services		[10.0.1.3]	:

A	private	interface	must	be	configured	to	provide	DHCP	services	on	the	Nova	compute
nodes.	Enter	the	name	of	the	private	interface	to	use:

Enter	the	Private	interface	for	Flat	DHCP	on	the	Nova	compute	servers		

[eth1]	:

The	Nova	network	service	(openstack-nova-network)	provides	network	services	for
compute	instances.	Enter	the	IP	address	of	the	server	to	deploy	the	Nova	network	service
on:

Enter	the	IP	address	of	the	Nova	Network	service		[10.0.1.3]	:

A	public	interface	must	be	configured	to	allow	connections	from	other	nodes	and	clients.
Enter	the	name	of	the	public	interface	to	use:

Enter	the	Public	interface	on	the	Nova	network	server		[eth0]	:

A	private	interface	must	be	configured	to	provide	DHCP	services	on	the	Nova	network
server.	Enter	the	name	of	the	private	interface	to	use:

Enter	the	Private	interface	for	Flat	DHCP	on	the	Nova	network	server		

[eth1]	:

All	compute	instances	are	automatically	assigned	a	private	IP	address.	Enter	the	range
within	which	these	private	IP	addresses	must	be	assigned:

Enter	the	IP	Range	for	Flat	DHCP	[10.0.2.0/24]	:

Compute	instances	can	optionally	be	assigned	publicly	accessible	floating	IP	addresses.
Enter	the	range	within	which	floating	IP	addresses	will	be	assigned:

Enter	the	IP	Range	for	Floating	IP's	[10.0.1.0/24]	:

The	Nova	scheduler	(openstack-nova-scheduler)	is	used	to	map	compute	requests	to
compute	resources.	Enter	the	IP	address	of	the	server	on	which	you	want	to	deploy	the
Nova	scheduler:

Enter	the	IP	address	of	the	Nova	Scheduler	service		[10.0.1.4]	:

In	the	default	configuration,	Nova	allows	overcommitment	of	physical	CPU	and	memory
resources.	This	means	that	more	of	these	resources	can	be	made	available	for	running
instances	than	actually	physically	exist	on	the	compute	node.

The	amount	of	overcommitment	that	is	permitted	is	configurable.

The	default	level	of	CPU	overcommitment	allows	16	virtual	CPUs	to	be	allocated	for	each
physical	CPU	socket	or	core	that	exists	on	the	physical	compute	node.	Press	Enter	to
accept	the	default	level	or	enter	a	different	value	if	desired:

Enter	the	CPU	overcommitment	ratio.	Set	to	1.0	to	disable	CPU	

overcommitment	[16.0]	:	

The	default	level	of	memory	over	commitment	allows	up	to	50%	more	virtual	memory	to
be	allocated	than	what	exists	on	the	physical	compute	node.	Press	Enter	to	accept	the
default	or	enter	a	different	value	if	desired:

Enter	the	RAM	overcommitment	ratio.	Set	to	1.0	to	disable	RAM	

overcommitment	[1.5]	:

If	installation	of	the	client	tools	was	selected	then	enter	the	IP	address	of	the	server	to
install	the	client	tools	on	when	prompted:

Enter	the	IP	address	of	the	client	server		[10.0.1.4]	:

OpenStack	uses	Horizon	(openstack-dashboard)	to	provide	a	web-based	user	interface	or
dashboard	for	access	to	OpenStack	services,	including	Cinder,	Nova,	Swift,	and	Keystone.
If	the	installation	of	the	Horizon	dashboard	was	selected	then	these	additional
configuration	values	will	be	requested.

Enter	the	IP	address	of	the	server	to	deploy	Horizon	on:

Enter	the	IP	address	of	the	Horizon	server		[10.0.1.4]	:

To	enable	HTTPS	communication	with	the	dashboard,	we	enter	y	when	prompted.	Enabling
this	option	ensures	that	user	access	to	the	dashboard	is	encrypted:

Would	you	like	to	set	up	Horizon	communication	over	https	[y|n]	[n]	:	

If	we	have	already	selected	to	install	Swift	object	storage,	then	these	additional
configuration	values	will	be	requested.

Enter	the	IP	address	of	the	server	that	is	to	act	as	the	Swift	proxy.	This	server	will	act	as
the	public	link	between	clients	and	the	Swift	object	storage:

Enter	the	IP	address	of	the	Swift	proxy	service		[10.0.1.2]	:

Enter	a	comma-separated	list	of	devices	that	the	Swift	object	storage	will	use	to	store
objects.	Each	entry	must	be	specified	in	HOST/DEVICE	format,	where	the	Host	is
replaced	by	the	IP	address	of	the	host	the	device	is	attached	to,	and	Device	is	replaced	by
the	appropriate	path	to	the	device:

Enter	the	Swift	Storage	servers	e.g.	host/dev,host/dev		[10.0.1.2]	:

The	Swift	object	storage	uses	zones	to	ensure	that	each	replica	of	a	given	object	is	stored
separately.	A	zone	might	represent	an	individual	disk	drive	or	array,	a	server,	all	the
servers	in	a	rack,	or	even	an	entire	data	center.

When	prompted,	enter	the	number	of	Swift	storage	zones	that	must	be	defined.	Note	that
the	number	provided	must	not	be	bigger	than	the	number	of	individual	devices	specified,
as	follows:

Enter	the	number	of	swift	storage	zones,	MUST	be	no	bigger	than	the	number	

of	storage	devices	configured		[1]	:

The	Swift	object	storage	relies	on	replication	to	maintain	the	state	of	objects,	even	in	the
event	of	a	storage	outage	in	one	or	more	of	the	configured	storage	zones.	Enter	the	number
of	replicas	that	Swift	must	keep	of	each	object	when	prompted.

A	minimum	of	three	replicas	is	recommended	to	ensure	a	reasonable	degree	of	fault
tolerance	in	the	object	store.	Note,	however,	that	the	number	of	replicas	specified	must	not
be	greater	than	the	number	of	storage	zones,	as	it	would	result	in	one	or	more	of	the	zones
containing	multiple	replicas	of	the	same	object:

Enter	the	number	of	swift	storage	replicas,	MUST	be	no	bigger	than	the	

number	of	storage	zones	configured		[1]	:

Currently,	packstack	supports	the	use	of	either	Ext4	or	XFS	file	systems	for	object	storage.
The	default	and	recommended	choice	is	ext4.	Enter	the	desired	value	when	prompted:

Enter	FileSystem	type	for	storage	nodes	[xfs|ext4]		[ext4]	:

The	packstack	utility	allows	us	to	configure	the	target	servers	to	retrieve	software
packages	from	a	number	of	sources.	We	can	leave	this	part	blank	to	rely	on	the	nodes’
default	package	sources:

Enter	a	comma-separated	list	of	URLs	to	any	additional	yum	repositories	to	

install:

At	this	point,	we	will	be	asked	to	confirm	the	deployment	details	that	we	provided.	Type
yes	and	press	Enter	to	continue	with	the	deployment.	Then,	it	will	show	us	all	the
information	already	provided	during	the	entire	phase.	After	verifying	that	everything	is	set
properly,	we	type	yes	for	the	following	question:

Proceed	with	the	configuration	listed	above?	(yes|no):	yes

Now,	packstack	will	commence	deployment.	Note	that	when	packstack	is	setting	up
SSH	keys,	it	will	prompt	us	to	enter	the	root	password	to	connect	to	machines	that	are	not
already	configured	to	use	key	authentication.

Applying	the	Puppet	manifests	to	all	machines	involved	in	the	deployment	takes	a
significant	amount	of	time.	The	packstack	utility	provides	continuous	updates,	indicating
which	manifests	are	being	deployed	as	it	progresses	through	the	deployment	process.
Once	the	process	completes,	a	confirmation	message	will	be	displayed:

	****	Installation	completed	successfully	******

					(Please	allow	Installer	a	few	moments	to	start	up…..)

Additional	information:

	*	A	new	answerfile	was	created	in:	/root/packstack-answers-xxxxx-xxxxx.txt

	*	Time	synchronization	was	skipped.	Please	note	that	unsynchronized	time	

on	server	instances	might	be	a	problem	for	some	OpenStack	components.

	*	To	use	the	command	line	tools	source	the	file	/root/keystonerc_admin	

created	on	10.0.1.2

	*	To	use	the	console,	browse	to	http://10.0.0.2/dashboard

	*	The	installation	log	file	is	available	at:	/var/tmp/packstack/xxxx-xxxx-

TkY04B/openstack-setup.log

You	have	mail	in	/var/spool/mail/root

You	have	successfully	deployed	OpenStack	using	packstack.

The	configuration	details	that	we	provided	are	also	recorded	in	an	answer	file,	which	can
be	used	to	recreate	the	deployment	in	future.	This	answer	file	is	stored	in	~/answers.txt
by	default.

With	this	step,	we	can	say	that	we	have	nicely	installed	and	configured	OpenStack	as	a
cloud-computing	solution	to	be	used	inside	a	little	infrastructure	of	CentOS	7	Linux
servers.

The	OpenStack	dashboard	will	be	our	best	way	to	have	a	better	and	clean	way	to	visualize
useful	information	about	the	status	of	the	cloud	infrastructure.	It	is	extremely	useful	for
system	administrators	to	maintain	the	infrastructure	and	troubleshoot	the	system	for	any
issues.	Here	are	some	screenshots	that	show	some	of	the	dashboard	overview	pages:

Source:	http://dachary.org/?p=2969

The	following	page	presents	the	list	of	the	running	machines	(nodes)	with	some	useful
information	about	the	nodes,	and	also	gives	us	some	options	to	manage	them.

http://dachary.org/?p=2969

Source:	http://assist-software.net

Then	we	shall	see	the	network	page	that	shows	the	topology	of	the	network	holding	the
cloud	nodes.

http://assist-software.net

Source:	http://4.bp.blogspot.com

There	is	another	Nova	API	dashboard	with	a	better-designed	interface	to	be	used	for
presentation	and	a	gigantic	dashboard	screen	used	specially	for	monitoring	big	grid
computer	infrastructure.	The	first	dashboard	screen	shows	information	about	the	API’s	in
use:

http://4.bp.blogspot.com

Source:	http://openstack-in-production.blogspot.com

The	second	dashboard	screen	shows	the	history	of	execution	of	those	API	as	well
presented	log:

Source:	http://openstack-in-production.blogspot.com

http://openstack-in-production.blogspot.com
http://openstack-in-production.blogspot.com

References
Now,	let’s	have	a	look	at	the	references	used	throughout	the	chapter:

What	is	cloud	computing?,	IBM:	http://www.ibm.com/cloud-computing/what-is-
cloud-computing.html
OpenStack	home	page:	https://www.openstack.org/
OpenStack	platform	for	Redhat:	https://access.redhat.com/documentation/en/

http://www.ibm.com/cloud-computing/what-is-cloud-computing.html
https://www.openstack.org/
https://access.redhat.com/documentation/en/

Summary
This	chapter	was	a	description	of	how	to	have	an	open	source	cloud-computing	solution
within	a	small	or	large	computer	infrastructure.	We	started	by	defining	the	concept	of
cloud	computing,	and	then	we	introduced	OpenStack	and	described	its	components	in
brief.	We	showed	a	practical	way	to	set	up	and	configure	an	OpenStack	node	using—by
choice—all	of	its	components.

In	the	next	chapter,	you	are	going	to	learn	automatic	system	configuration	using	one	of	the
most	recent	tools	that	does	this	in	a	well-organized	way—Puppet.

Chapter	8.	Configuration	Management
According	to	a	study,	most	of	the	critical	errors	that	occur	in	large	IT	systems	are	due	to
people	and	processes.	Half	of	those	errors	are	due	to	a	lack	of	release	synchronization,
coordination	between	machines,	and	configuration	management.	Big	machinery	and
infrastructure	are	way	too	hard	to	manage	and	maintain	for	any	single	team.	Having	an
identical	configuration	set	for	every	machine	to	make	them	all	work	in	synchronization	is
a	nightmare	for	management	teams.	For	these	reasons,	we	have	a	process	called
Configuration	Management	(CM).

In	this	chapter,	we	are	going	to	describe	how	to	use	the	CM	process	to	maintain	and
manage	a	CentOS	7	Linux	server	infrastructure.	We	are	going	to	describe	in	brief	some	of
the	most	common	open	source	configuration	management	tools,	with	an	example	of
setting	up	a	management	server	with	a	client	using	Puppet.

Through	this	chapter,	you	are	going	to	learn	these	topics:

Operating	system	configuration	management
Open	source	configuration	management	tools
Installation	and	configuration	of	a	Puppet	server	and	client

Introducing	configuration	management
Configuration	management	is	a	process	that	helps	organize	multiple	machines/systems	so
that	they	can	coordinate	with	each	other	to	perform	one	rather	big	process	or	run	multiple
redundant	processes.	It	is	widely	used	by	military	organizations	to	manage	their	systems,
such	as	weapon	systems,	vehicles,	and	information	systems.	Outside	the	military,	it	is
widely	used	in	IT	service	management	for	big	infrastructure	handling.

There	are	still	many	IT	organizations	that	work	with	old	and	traditional	tools	such	as
customized	scripts	(shell	scripts,	expect	scripts,	and	so	on)	and	manual	process
implementation	to	run	repetitive	tasks.	We	have	well	acknowledged	the	fact	that	those
techniques	are	no	longer	effective,	especially	when	used	in	large-scale	infrastructures.
Even	for	small	infrastructures,	it	is	hard	to	track	and	maintain	them	due	to	all-time
configuration	changes.	All	of	this	may	have	a	direct	impact	on	the	reliability	of	the
infrastructure	itself,	which	may	also	affect	the	productivity	of	the	organization.

Automated	configuration	management	has	put	an	end	to	manual	scripting	and
configuration;	it	has	also	been	used	to	perform	other	tasks	that	most	system	administrators
do	on	a	daily	basis	(system	updates,	firmware	patch,	release	update	and	management,	and
so	on).

For	the	new	generation	of	system	administrators,	everything	is	automated.	Most	machines
run	on	the	same	set	of	configurations,	and	a	set	of	servers	to	manage	them	all.	Everything
is	watched	by	monitoring	tools.	The	job	of	a	system	administrator	is	to	initialize	their
infrastructure’s	basic	configuration	to	start	their	configuration	management	server,	set	up
clients	if	needed	on	other	machines,	and	then	start	sending	configurations	to	the	clients	to
apply	it.	The	configuration	management	server	will	act	as	the	master	of	the	Puppets	and
send	them	direct	orders	to	follow	for	whatever	their	architecture	or	type	of	OS	is.

Source:	http://flylib.com/

For	our	case,	we	will	be	setting	up	a	CentOS	7	server	to	control	a	CentOS	7	client	using
configuration	management,	where	we	are	going	to	show	you	how	manual	configuration	is
time	consuming	and	unreliable.	Before	that,	we	will	be	showing	you	a	list	of	famous	open
source	tools	used	for	configuration	management:

Source:	http://www.axiossystems.it

http://flylib.com/
http://www.axiossystems.it

Open	source	configuration	management
tools
In	this	section,	we	are	going	to	enumerate	the	world’s	most	famous	open	source
configuration	management	tools,	going	through	the	description	of	each	tool,	the	major
focus,	and	where	it	can	serve	well.

Chef
Chef	is	a	configuration	management	tool	that	helps	us	configure	and	maintain	servers	that
provide	a	variety	of	services.	Chef	uses	something	called	recipes,	made	to	describe	the
desired	management	(configuration,	installation,	change)	for	the	server’s	applications	and
utilities.	It	is	widely	used	for	infrastructure	with	cloud-computing-based	platforms	(such
as	Rackspace,	Internap,	Amazon,	Google,	OpenStack,	SoftLayer,	and	Microsoft)	because
of	its	capacity	to	automatically	provision	and	configure	new	machines	on	the	go.	The
scalability	of	Chef	allows	it	to	be	used	for	small	and	large	infrastructures	on	demand.

Chef	can	be	executed	as	a	server	or	a	client.	The	clients	are	executed	on	the
servers/machines	that	we	want	to	manage	using	our	server.	And	the	Chef	server	agent	is
installed	in	one	centralized	server,	on	which	it	manages	the	recipes	depending	on	what	the
administrator	has	defined	for	each	node	(web	server,	cluster	machine,	storage	server,	and
so	on).	Then	the	client	executes	the	recipes	sent	to	it	by	the	server.	By	default,	the	client
updates	its	recipe	from	the	server	every	30	minutes	to	see	whether	there	is	any	change	that
needs	to	be	done.

At	the	beginning	of	the	project,	Chef	used	to	manage	only	Linux	machines,	but	now	it	is
capable	of	managing	Windows	machines	as	well.	The	Chef	server	is	now	supported	by
multiple	Linux	platforms	(RHEL/CentOS,	FreeBSD,	OSX,	Solaris,	and	so	on).

This	is	what	it	looks	like,	architecture-wise,	after	having	Chef	installed.	The	first	images
shows	the	interaction	between	chef	and	a	variety	of	nodes	that	can	manage.

Source:	http://www.yet.org

http://www.yet.org

The	following	screenshot	show	the	interaction	between	chef	and	the	Amazon	web	services
to	be	on	use	for	advanced	configuration

Source:	https://www.chef.io/

Note
For	more	detailed	information	on	how	to	set	up	and	master	Chef,	please	have	a	look	at
some	of	Packt’s	other	books	on	Chef	at:	https://www.packtpub.com/all/?search=chef

https://www.chef.io/
https://www.packtpub.com/all/?search=chef

SaltStack	(Salt)
SaltStack	is	a	Python-based	open	source	configuration	management	tool.	It	is	also	called	a
remote	engine.	In	a	way,	it	is	a	new	approach	to	infrastructure	management.	It	is	easy	to
run,	scalable,	can	handle	thousands	of	nodes,	and	can	establish	very	fast	communication
between	its	nodes	(servers,	terminals,	and	so	on).

It	is	well	known	due	to	its	dynamic	communication	inside	the	infrastructures	it	mages,
where	it	benefit	amazingly	from	that	to	organize,	execute,	and	establish	configuration
management	through	its	nodes,	as	well	as	much	more.

It	is	available	for	a	variety	of	operating	systems	(CentOS,	Debian,	RHEL,	Ubuntu,	and
even	Windows).

Salt	is	designed	to	be	very	extensible,	wherein	it	has	the	capacity	to	use	module
management	so	as	to	be	moldable	to	a	variety	of	applications.	Salt	offers	dynamic
modules	to	manage	the	remote	execution	and	administration	of	its	components.	They	are
categorized	as	follows:	execution	modules,	state	modules,	grains,	renderer	modules,
returners,	and	runners.

SaltStack	has	a	paid	product	called	SaltStack	Enterprise.	It	is	designed	for	big
infrastructures	in	IT	organizations,	system	administration,	site	reliability	engineering,	and
development	configuration	and	management	for	modern	data	center	infrastructures,
applications,	and	code.	It	is	briefly	depicted	in	the	following	figure,	which	shows	how	it
covers	a	variety	of	fields	to	help	the	establishment,	management,	and	maintenance	of	the
following	services	shown	in	the	two	following	figures:

Source:	http://www.saltstack.com

This	figure	shows	the	interaction	between	the	three	major	services	(ITOps,	DevOps,
CloudOps)	and	the	capacity	to	use	SaltStack	to	manage	those	all	together.

http://www.saltstack.com

Source:	http://www.saltstack.com

SaltStack	services	operate	on	several	steps	as	shown	in	the	following	figure:

http://www.saltstack.com

Source:	http://saltstack.com

Note
For	more	detailed	information	on	how	to	set	up	and	master	SaltStack,	please	have	a	look
at	some	of	Packt’s	other	books	on	SaltStack	at:	https://www.packtpub.com/all/?
search=saltstack.

http://saltstack.com
https://www.packtpub.com/all/?search=saltstack

Ansible
Ansible	is	a	free	and	simple	solution	for	configuration	management.	It	is	well	known	for
automated	configuration	management,	whereby	it	relies	on	SSH	to	access	nodes	and
configure	them	through	Python-based	solutions.	It	uses	a	minimal	amount	of	dependencies
and	environment	tools	(such	as	client	agents),	and	is	secure.	It	is	also	very	reliable	and
does	not	require	very	advanced	learning	lessons	to	start	using	it.

Its	configuration	requires	the	editing	of	some	human-readable	configuration	files	to	ensure
that	everyone	can	understand	them,	if	an	update	or	reconfiguration	is	ever	needed.	It
requires	only	the	SSH	password	or	an	SSH	key	in	order	to	access	the	nodes	to	be
managed,	without	the	need	for	the	installation	of	an	agent.	So,	there	will	definitely	be	no
need	to	worry	about	not	having	the	agent	running	due	to	an	upgrade,	patch,	or	daemon
malfunction.

Ansible	supports	modules	as	well.	Basically,	most	of	them	run	on	JSON	and	it	has
standard	output	support	for	all	kinds	of	programming	languages.	It	also	includes	more
than	200	modules,	which	can	be	used	to	manage	and	automate	services.

It	is	well	supported	by	the	RHEL	community	(Red	Hat,	Fedora,	CentOS,	and	Scientific
Linux).	It	is	easily	downloadable	through	the	EPEL	repository.	It	is	also	supported	by
other	Linux	distributions	of	the	Debian	family,	and	other	Unix-like	systems	such	as	OS	X,
BSD,	and	recently	by	MS	Windows.

Source:	https://sysadmincasts.com

Note
For	more	detailed	information	on	how	to	set	up	and	master	Ansible,	please	have	a	look	at
some	of	Packt’s	other	books	on	Ansible	at:	https://www.packtpub.com/all/?search=ansible

https://sysadmincasts.com
https://www.packtpub.com/all/?search=ansible

Puppet
Puppet	is	an	open	source	configuration	management	tool	designed	to	manage	and
configure	machines	within	the	same	infrastructure,	to	simplify	various	system
administration	tasks	where	the	user	declares	the	machines’	states	and	resources	using
different	ways	(Ruby	DSL,	Puppet	declaration	language,	and	others).	It	is	published	under
the	GPL	and	Apache	licenses.	It	is	mainly	used	to	manage	and	configure	Unix-based
machines	and	Microsoft	systems.	To	establish	Puppet,	as	best	practice,	we	require	a
Puppet	server	agent	to	do	the	role	of	a	configuration	management	server	and	for	the	other
nodes,	the	ones	the	server	is	going	to	manage,	we	require	the	client	version.	Puppet
inspects	each	node’s	configuration,	and	then	identifies	the	changes	between	the	old	and
the	new	configurations	specified	at	its	configuration	file,	if	there	are	any.	Then	it	starts
making	the	required	changes	to	adjust	the	node	to	the	specified	state.	This	task	is	useful;
not	only	for	establishing	a	new	configuration,	but	also	for	regaining	it	if	anything	goes
wrong	with	the	machines.

Basically,	Puppet’s	major	advantages	are	that	it	automates	every	step	of	the	software
delivery	process,	from	the	provisioning	of	physical	and	virtual	machines	to	organization
and	reporting.	Puppet	is	widely	used	by	many	organizations	because	it	has	the	following
features:

It	is	designed	to	prevent	duplication	during	the	process	of	problem	resolution
It	gives	the	capacity	to	make	rapid	and	repeatable	configurations	automatically
It	simplifies	the	management	of	both	physical	and	virtual	devices
It	makes	the	task	of	system	administration	much	easier

Puppet	offers	two	services:	one	as	an	open	source	and	free	solution,	and	the	other	as	a	paid
solution	for	enterprises.	Both	of	them	serve	to	help	system	administrators	automate	their
infrastructure	configuration	management.	Puppet	Enterprise	has	much	more	to	offer	for
big	enterprises.

Source:	http://www.slideshare.net/

Puppet	is	not	just	a	simple	configuration	management	tool.	It	is	a	streamlined	node
installation,	management,	and	repair	solution	that	simplifies	the	management	of	a	grid	of
nodes.

As	the	following	figure	shows,	to	use	Puppet	to	establish	a	new	configuration,	there	are
four	important	steps	to	be	followed:	Define,	Simulate,	Enforce,	and	Report.	Herein,	the
system	administrator	first	defines	what	kind	of	configuration	needs	to	be	set.	Then,	Puppet
tests	the	deployment	without	harming	the	infrastructure	and	makes	sure	that	it	will	work
ok.	After	that,	Puppet	starts	comparing	what	is	new	to	what	is	already	being	used,	and
starts	enforcing	what	needs	to	be	done	to	meet	the	user’s	demands.	Finally,	it	reports	the
status	of	each	node	on	its	dashboard.

http://www.slideshare.net/

Source:	http://www.slideshare.net

Installing	and	configuring	Puppet
For	our	Puppet	installation,	we	are	going	to	install	the	free	open	source	version	of	Puppet.

We	have	chosen	Puppet	to	be	our	primary	configuration	management	solution	because
Puppet	is	a	more	declarative	solution.	This	has	made	it	more	attractive	for	damage	repair
than	any	other	solution.

There	are	two	possible	architectures	for	Puppet:	the	Agent/Master	architecture	or	the
standalone	architecture.	The	Agent/Master	architecture	is	based	on	one	or	many	Puppet
master	servers	managing	servers/nodes	that	has	a	Puppet	client	agent	running	as	a
background	service.	In	the	standalone	architecture,	the	client	nodes	run	Puppet	as	a	master
and	slave	agent	at	the	same	time.	Which	is	used	usually	to	schedule	management	tasks	or
jobs	to	that	machine	it	is	installed	on.

In	this	chapter,	we	are	going	to	use	the	Client/Master	architecture,	where	we	are	going	to
use	two	CentOS	7	servers;	one	will	be	used	as	the	master	Puppet	server	and	the	other	as
the	client	that	the	Puppet	agent	will	run	on.

Before	starting	the	installation,	we	need	to	make	sure	that	some	preinstallation	tasks	are

http://www.slideshare.net

done.	We	have	already	decided	on	the	architecture,	so	we	have	a	better	idea	of	which
software	packages	we	are	going	to	install.

Then	we	should	define	which	machine	will	act	as	a	Puppet	server	agent.	We	should	always
start	by	installing	the	server	and	then	move	on	to	the	clients.

The	following	figure	presents	the	interaction	between	the	Puppet	master	and	client	when
trying	to	establish	a	change	requested	by	the	manager	from	the	Puppet	master	interface:

Source:	http://elatov.github.io/2014/08/setting-up-puppet-master-on-centos-7/

Our	infrastructure	will	consist	of	the	following:

Puppet	master	server:

http://elatov.github.io/2014/08/setting-up-puppet-master-on-centos-7/

OS:	CentOS	7
IP	address:	10.0.0.10
Hostname:	masterpuppet.packt.co.uk

First	client	server:

OS:	CentOS	7
IP	address:	10.0.0.11
Hostname:	webserver1.packt.co.uk

Second	client	server:

OS:	CentOS	7
IP	address:	10.0.0.12
Hostname:	webserver2.packt.co.uk

Usually,	we	should	check	which	Linux	version	and	family	we	are	using	for	the	clients	and
the	servers	of	the	infrastructure.	In	our	case,	we	have	already	defined	those	to	be	CentOS
7	for	all	the	machines	of	our	environment.

After	that,	the	Puppet	architecture	will	be	managed	through	the	network,	so	we	should
make	sure	that	all	the	nodes	(servers	and	clients)	are	well	configured	to	run	the	Puppet
traffic.	And	we	need	to	open	the	default	Puppet	access	port	8140	for	incoming	connections
at	the	server	so	that	the	client	can	access	it:

$	sudo	firewall-cmd	--permanent	--zone=public	--add-port=8140/tcp

$	sudo	firewall-cmd	--reload

Finally,	for	the	network,	we	should	have	all	the	nodes	configured	with	a	unique	hostname,
and	each	one	of	the	machines	needs	to	have	in	its	/etc/hosts	file	all	the	other	machines
defined	with	their	IP	addresses:

$	sudo	nano	/etc/hosts

10.0.0.10		masterpuppet.packt.co.uk

10.0.0.11		webserver1.packt.co.uk

10.0.0.12		webserver2.packt.co.uk

To	ensure	that	all	the	confirmations	are	synchronized	between	the	nodes,	we	need	to
establish	a	network	time-server	(using	NTP)	connection	to	have	all	nodes	synchronized
with	the	same	time:

We	can	now	start	the	installation	of	our	Puppet	server:

1.	 The	first	step	is	to	enable	the	Puppet	open	source	repository	that	offers	Puppet,
PuppetDB,	and	other	packages.	We	will	be	using	RPM	to	add	the	Puppetlabs	file	to

the	system:

$	sudo	rpm	-ivh	https://yum.puppetlabs.com/puppetlabs-release-el-

7.noarch.rpm

2.	 Then	we	install	the	Puppet	server:

$	sudo	yum	install	puppet-server

3.	 We	need	to	accept	all	that	the	installation	manager	may	ask,	for	example,	the	RPM-
GPG-Key	verification,	and	whether	we	want	to	install	the	package	or	not.

4.	 Then	we	need	to	configure	Puppet	to	understand	that	this	node	is	the	master	Puppet
server:

$	sudo	nano	/etc/puppet/puppet.conf

5.	 Next,	we	need	to	add	these	two	lines	under	the	[main]	section:

				dns_alt_names	=	masterpuppet,masterpuppet.packt.co.uk

				certname	=	masterpuppet.packt.co.uk

6.	 Since	this	is	our	Puppet	server,	we	need	to	create	its	certificate.	We	need	to	start	the
Puppet	server	manually,	for	long	enough	until	it	creates	the	required	certificate.	After
that,	we	need	to	stop	it	because	we	are	still	running	the	configuration:

$	sudo	puppet	master	--verbose	--no-daemonize

7.	 After	getting	the	following	message,	we	need	to	hit	Ctrl	+	C	to	stop	the	service:

Notice:	Starting	Puppet	master	version	3.8.4

At	this	point,	we	can	start	Puppet.	But	we	would	like	to	integrate	the	Puppet	service	with
Apache	to	make	it	one	service	that	can	serve	both	by	installing	a	special	module.	To	do
this,	we	need	to	install	some	useful	packages:

$	sudo	yum	install	mod_passenger	curl	curl-devel	make	automake	httpd	httpd-

devel	mod_ssl	ruby-devel	rubygems	gcc	gcc-c++	pygpgme	zlib-devel	openssl-

devel

Then	we	need	to	install	Passenger,	which	is	an	open	source	tool	that	we	will	use	to	install
some	Apache	plugins	to	help	with	the	development	of	the	Puppet	web	server.	For	the
installation	task,	we	will	use	GEM,	a	Ruby	tool	for	installing	Ruby-based	packages:

$	sudo	gem	install	rack	passenger

From	that	point	onward,	we	can	install	the	Passenger	Apache	module.	For	CentOS	7,	we
need	to	locate	the	executable	file.	It	doesn’t	get	its	binary	set	in	the	BIN	environment
during	the	installation.	So,	we	need	to	execute	it	from	where	it	is	installed:

$	sudo	locate	passenger-install-apache2-module	

$	sudo	/usr/local/share/gems/gems/passenger-5.0.21/bin/passenger-install-

apache2-module

After	that,	we	follow	the	instructions	provided	by	the	last	command	as	follows.

First,	we	need	to	write	1	to	install	the	Apache	2	module:

1.	The	Apache	2	module	will	be	installed	for	you.

Then	we	just	type	Enter	whenever	the	program	asks.	We	can	ignore	the	warnings	and	hope
for	no	errors.	Otherwise,	we	need	to	make	sure	that	we	have	installed	all	the	required	tools
earlier.	We	know	that	it	is	done	when	we	see	the	error	and	warning	summary,	and	we	get
this	message:

Phusion	Passenger	is	a	registered	trademark	of	Hongli	Lai	&	Ninh	Bui.

Next,	we	create	the	two	directories	where	Puppet	is	going	to	generate	its	public	and
temporary	files,	and	set	ownership	to	its	configuration	file:

$	sudo	mkdir	-p	/usr/share/puppet/rack/puppetmasterd/public	

/usr/share/puppet/rack/puppetmasterd/tmp

$	sudo	cp	/usr/share/puppet/ext/rack/config.ru	

/usr/share/puppet/rack/puppetmasterd/

$	sudo	chown	puppet:puppet	/usr/share/puppet/rack/puppetmasterd/config.ru

To	finish,	we	create	the	Puppet	virtual	host	file	at	the	Apache2	configuration	directory,	as
follows:

$	sudo	nano	/etc/httpd/conf.d/puppetmaster.conf

We	fill	it	with	the	following	configuration	options,	changing	the	red	text	depending	on

what	we	have	configured	on	a	different	environment:

#	CentOS	7:

#	Set	those	as	the	Gems	and	Passenger	version	installed	on	your	system

LoadModule	passenger_module		/usr/local/share/gems/gems/passenger-

5.0.21/buildout/apache2/mod_passenger.so

PassengerRoot	/usr/local/share/gems/gems/passenger-5.0.21/

PassengerRuby	/usr/bin/ruby

#	And	the	passenger	performance	tuning	settings:

PassengerHighPerformance	On

PassengerUseGlobalQueue	On

#	Passenger	Max	Pool	should	be	configured	as	3/2	the	number	of	CPU	cores	of	

the	master	machine:

PassengerMaxPoolSize	4

#	Limit	number	of	request	before	recycling

PassengerMaxRequests	1000

#	Limit	time	for	process	to	set	as	idle

PassengerPoolIdleTime	600

Listen	8140

<VirtualHost	*:8140>

				SSLEngine	On

				#	Only	allow	high	security	cryptography.	Alter	if	needed	for	

compatibility.

				SSLProtocol													All	–SSLv3

				SSLCipherSuite										HIGH:!ADH:RC4+RSA:-MEDIUM:-LOW:-EXP

				SSLCertificateFile	 /var/lib/puppet/ssl/certs/unixmen-

centos7.arnhem.chello.nl.pem

				SSLCertificateKeyFile	 /var/lib/puppet/ssl/private_keys/unixmen-

centos7.arnhem.chello.nl.pem

				SSLCertificateChainFile	/var/lib/puppet/ssl/ca/ca_crt.pem

				SSLCACertificateFile				/var/lib/puppet/ssl/ca/ca_crt.pem

				SSLCARevocationFile					/var/lib/puppet/ssl/ca/ca_crl.pem

				SSLVerifyClient									optional

				SSLVerifyDepth										1

				SSLOptions														+StdEnvVars	+ExportCertData

				#	These	request	headers	are	used	to	pass	the	client	certificate

				#	authentication	information	on	to	the	puppet	master	process

				RequestHeader	set	X-SSL-Subject	%{SSL_CLIENT_S_DN}e

				RequestHeader	set	X-Client-DN	%{SSL_CLIENT_S_DN}e

				RequestHeader	set	X-Client-Verify	%{SSL_CLIENT_VERIFY}e

				#RackAutoDetect	On

				DocumentRoot	/usr/share/puppet/rack/puppetmasterd/public/

				<Directory	/usr/share/puppet/rack/puppetmasterd/>

								Options	None

								AllowOverride	None

								Order	Allow,Deny

								Allow	from	All

				</Directory>

</VirtualHost>

We	set	SELinux	to	permissive	to	let	the	new	modules	use	the	resources:

$	sudo	nano	/etc/selinux/config

Next,	we	change	the	SELINUX	option	to	look	like	this:

SELINUX=permissive

Then	we	need	to	restart	the	Apache	service	and	add	it	to	the	system	startup	services,	while
disabling	the	Puppet	service:

$	sudo	systemctl	restart	httpd.service

$	sudo	systemctl	enable	httpd.service

$	sudo	systemctl	disable	puppetmaster.service

With	this	step	done,	we	can	say	that	we	are	done	configuring	the	server.	We	can	now
proceed	to	setting	up	and	configuring	the	clients.

Source:	http://www.aosabook.org

As	we	said	earlier,	we	need	to	make	sure	that	the	/etc/hosts	file	is	well	configured	and
has	all	the	nodes	(whether	client	or	server)	on	it.	Plus,	we	need	to	make	sure	that	the	NTP
service	is	running	and	loading	the	time	for	the	same	time-server	as	our	server.	Usually,	we
can	just	go	with	the	default	set	by	the	system	and	that	works	fine:

$	sudo	yum	install	ntp	ntpdate

$	sudo	systemctl	start	ntpd

$	sudo	systemctl	enable	ntpd

As	with	the	server,	we	do	the	same	thing	to	configure	the	Puppet	repository	for	the	clients:

$	s

udo	rpm	-ivh	https://yum.puppetlabs.com/puppetlabs-release-el-7.noarch.rpm

Then	we	install	the	Puppet	client	agent:

$	sudo	yum	install	puppet

Next,	just	before	starting	the	service,	we	need	to	add	the	Puppet	master	server	id	to	the

http://www.aosabook.org

client	agent	configuration	file.	So,	we	go	ahead	and	edit	the	Puppet	configuration	file.	We
add	the	server	address	under	the	agent	option:

$	sudo	nano	/etc/puppet/puppet.conf

[agnet]

server	=	masterpuppet.packt.co.uk

report	=	true

pluginsync	=	true

Then	we	save	the	file,	start	the	service,	and	enable	it	for	the	system	startup	services:

$	sudo	systemctl	enable	puppet.service

$	sudo	systemctl	start	puppet.service

We	need	to	do	the	same	for	all	client	servers.

After	that,	we	go	back	to	our	Puppet	server	and	check	whether	the	certificate	has	been
sent:

$	sudo	puppet	cert	list

We	should	see	something	like	this:

"webserver1.packt.co.uk"	(SHA256)	

04:55:E0:82:4E:AD:7F:3C:9C:C7:52:79:98:ED:5E:A6:B0:B5:85:08:DC:81:E5:2D:A6:

32:ED:8B:5C:F4:3B:DA

This	means	that	we	have	a	client	asking	the	server	to	approve	a	certificate	request.	We	can
sign	each	server	certificate	using	this	command:

$	sudo	puppet	cert	sign	webserver1.packt.co.uk

We	can	now	go	back	to	the	client	to	check	whether	the	certificate	is	successfully	set	using
the	following	command:

$	sudo	puppet	agent	-t

We	know	that	it	is	well	configured	if	we	get	the	following	output:

At	this	point,	our	puppet	Master	and	Client	infrastructure	is	working	fine.	Let’s	try	and
create	a	configuration	from	the	Puppet	server	and	send	it	to	the	client	to	apply	it.

We	need	to	create	a	manifest	file	called	site.pp	in	the	/etc/puppet/manifest	folder,	as
follows:

$	sudo	nano	/etc/puppet/manifests/site.pp

Then	we	test	the	service	by	making	the	client	nodes	(webserver1	and	webserver2)	and
install	some	tools.	We	need	to	add	the	following	code	to	the	last	opened	file	for	editing:

node	'webserver1',	'webserver2	{

														package	{	'php'	:

														ensure	=>	installed,

																							}

}

To	verify	that	Puppet	is	running	well	we	can	always	go	to	the	client	and	type	in	the
following:

$	sudo	puppet	agent	--test

By	default,	the	Puppet	agent	will	check	the	Puppet	server	every	30	minutes	to	see	whether
there	is	any	change	that	has	happened	so	that	it	can	apply	it.	Therefore,	during	the	test,	we
can	always	force	a	manual	update,	as	we	did	earlier.	The	update	time	can	be	changed,	by
changing	it	in	the	Puppet	configuration	file	under	the	[main]	section,	as	follows:

$	sudo	nano	/etc/puppet/puppet.conf

runinterval	=	900	#	To	make	change	every	15	minutes	(60	x	time	in	minutes)

Then	we	can	change	it	to	have	a	service	installed	and	ensure	that	it	is	running:

node	'webserver1',	'webserver2	{

														

														package	{	'httpd'	:	

														ensure	=>	installed,	

																							}	->		#	this	to	ensure	that	the	order	before	it	is	

executed	before	going	to	the	order	after	it

														service	{'httpd':	

														ensure	=>	running,	

														enable	=>	true,	

																							}

}

We	can	also	install	a	program	that	is	located	only	at	the	EPEL	repository	by	forcing	the
installation	of	the	EPEL	repository	before	the	program:

node	'webserver1',	'webserver2	{								

package	{	'epel-release'	:	

														ensure	=>	installed,	

																							}		->

														package	{	'iperf'	:	

														ensure	=>	installed,	

																							}

}

Then	we	can	perform	some	user	manipulation	where	we	can	create	a	user	on	all	the	client
servers.	First,	we	need	to	create	it	at	the	same	machine	to	get	its	password	with	the
hashing.	Then	we	edit	the	site.pp	file	to	give	some	information	about	the	user:

node	'webserver1'	{

														

																	user	{	"usertest":		

																	ensure	=>	"present",

																	shell	=>	'/bin/bash',	

																	home	=>	'/home/usertest',	

																	managehome	=>	true,	

																	password	=>	'############################',	}

}

Before	finishing	the	chapter,	we	would	like	to	explore	what	the	Puppet	Labs	offer	as	extra
modules,	which	we	can	use	without	the	need	to	create	our	own,	to	perform	simple,	daily
tasks.	To	search	for	the	modules,	we	use	the	following	command:

$	sudo	puppet	module	search	ftp

Then,	to	install	the	desired	one,	we	use	the	install	option:

$	sudo	puppet	module	install	puppetlabs-apache

Then,	to	check	what	is	installed,	we	go	to	the	/etc/puppet/module	folder,	and	there	we
will	have	all	the	modules	with	their	configuration	files.	We	can	always	change	them
depending	on	our	needs.

Source:	http://static.virtualizationpractice.com

Note
We	believe	that	we	have	presented	some	decent	information	about	how	to	use	Puppet	for
CentOS	7	but	still	Puppet	has	a	lot	to	offer.	To	explore	more	about	it,	please	check	some	of
Packt’s	other	books	on	mastering	Puppet	at:	https://www.packtpub.com/all/?
search=puppet

http://static.virtualizationpractice.com
https://www.packtpub.com/all/?search=puppet

References
Now,	let’s	have	a	look	at	the	references	used	throughout	the	chapter:

Configuration	management	on	Wikipedia:
https://en.wikipedia.org/wiki/Configuration_management
Chef	website:	https://www.chef.io/
SaltStack	website:	http://saltstack.com
Ansible	website:	http://www.ansible.com
Puppet	website:	https://puppetlabs.com
What	is	puppet	web	page:	https://puppetlabs.com/puppet/what-is-puppet

https://en.wikipedia.org/wiki/Configuration_management
https://www.chef.io/
http://saltstack.com
http://www.ansible.com
https://puppetlabs.com
https://puppetlabs.com/puppet/what-is-puppet

Summary
In	this	chapter,	we	introduced	configuration	management	and	its	benefits	for	system
administrators,	especially	when	working	in	a	big	computer	environment.	We	introduced	in
brief	some	of	the	well-known	open	source	solutions	used	to	carry	out	configuration
management	on	Linux	servers,	especially	CentOS	7.	Then	we	chose	Puppet	as	our
candidate	to	show	in	a	step-by-step	tutorial	how	to	set	up	and	configure	master/client
architecture.	And,	finally,	we	have	tested	some	commands	on	the	client	nodes.

In	the	final	chapter,	we	will	show	you	a	few	things	that	we	believe	every	system
administrator	using	Linux	in	general	and	CentOS	more	specifically	should	know,	to	better
manage	and	secure	their	infrastructure	in	the	best-practice	ways.

Chapter	9.	Some	Additional	Tricks	and
Tools
For	daily	Linux	usage,	most	system	administrators/users	must	master	a	few	techniques	to
help	them	use	their	Linux	machine	to	its	full	potential.	It	is	like	having	a	Swiss	Army
knife	and	using	it	to	just	cut	vegetables.	Linux	hides	many	useful	techniques	for	daily-life
tasks,	and	CentOS	7	is	one	of	the	latest	and	most	reliable	OS	that	many	users	can	use	to
solve	tons	of	problems.

Through	this	chapter,	we	are	going	to	show	some	of	the	most	needed	tools	that	we	believe
any	system	administrator	should	know	how	to	use.	We	will	be	showing	how	to	use	these
tricks	and	tools	to	better	manage	a	CentOS	7	server	infrastructure.

Within	this	chapter,	we	are	going	to	present	the	following	topics:

Connecting	to	multiple	Linux	machines	using	SSH
Securing	SSH	and	root	login	configurations
SSH	key-based	authentication
Installation	and	configuration	of	SpamAssassin
Setting	up	the	Clamav	antivirus
Configuration	of	Mytop	for	a	MySQL	database
Setting	up	Samba	and	NFS	for	file	sharing
Introduction	to	some	Linux	system	and	network	monitoring	tools

SSH	for	remote	connection
As	we	all	know,	SSH	is	the	Secure	Shell	connection	that	we	use	to	connect	remotely	to	a
Linux	machine.	It	is	the	main	tool	used	by	system	administrators	for	remote	management
of	their	infrastructure.	It	is	one	of	the	essential	tools	that	we	find	in	a	basic	installation	of
CentOS	7	and	almost	all	Linux	distributions	by	default.

Usually,	SSH	is	only	installed	as	a	client,	so	you	can	only	remotely	connect	to	other
machines;	but	this	is	not	the	case	for	a	basic	system	installation.	When	installing	the
CentOS	7	server,	it	should	already	have	the	SSH	server	installed	and	running.

To	install	the	SSH	server,	we	can	just	rely	on	the	default	package	repository	without
adding	any	extra	third-party	repository:

$	sudo	yum	install	openssh-server

After	having	the	SSH	server	installed,	we	should	start	the	service	and	enable	it	for	default
system	startup	services:

$	sudo	systemctl	start	sshd.service

$	sudo	systemctl	enable	sshd.service

For	security,	most	machines	have	the	default	SSH	port	closed,	so	we	need	to	open	it	from
the	default	firewall	manager:

$	sudo	firewall​cmd	​​permanent	​​zone=public	​​add​port=ssh/tcp
$	sudo	firewall​cmd	​​reload

That’s	all	we	need	to	do	to	make	a	machine	remotely	accessible.

To	access	this	machine,	we	only	need	to	type	ssh	followed	by	the	username	and	the	IP
address	or	the	hostname	(if	the	machine	is	stored	at	the	DNS	server	or	listed	at	the	local
/etc/hosts	file)	of	the	machine	desired	to	connect	to:

$	ssh	user1@server1.packt.co.uk

$	ssh	user1@10.0.0.10

Usually,	if	the	server	is	running	and	the	sshd	service	is	listening,	then	there	should	be	an
exchange	of	public	keys	upon	the	first	ever	connection	to	that	server	using	this	machine.
Otherwise,	the	server	will	just	ask	for	the	desired	user	password	to	allow	the	login.

When	we	connect	to	a	remote	machine	using	SSH,	it	is	like	us	having	an	open	window	to
that	machine,	and	we	are	kind	of	stuck	to	that,	which	is	a	network-consuming	way	of
connecting	if	we	are	using	it	for	a	long	period,	and	especially	if	we	are	just	connected
without	really	typing	any	commands.	So	we	need	to	close	the	terminal	window	to	leave
the	remote	connection	session	and	free	the	resources	reserved.	SSH	offers	some	useful
options	such	as	–t.	Through	this	option,	we	can	send	a	command	to	be	executed	on	the
remote	machine	and	send	back	the	output:

$	ssh	-t	user1@server1.packt.co.uk	cat	/etc/hosts

This	command	will	only	show	the	containment	of	the	/etc/hosts	file	without	keeping	the

windows	open.

We	can	also	use	SSH	to	send	files	between	two	machines	to	or	from	a	remote	machine,
using	the	scp	command:

$	scp	user1@server1.packt.co.uk:/home/user1/Desktop/file1.txt		./Desktop/

In	the	next	section,	we	will	show	you	how	to	secure	SSH	and	manage	a	root	login.

Source:	https://www.allegrosoft.com/

https://www.allegrosoft.com/

Securing	SSH	and	the	root	login
configuration
For	this	section,	we	are	going	to	show	some	basic	and	advanced	ways	to	secure	the	SSH
service	to	mitigate	more	threats.	We	will	need	to	make	some	minor	changes	to	the
/etc/ssh/sshd_config	file.	We	will	explain	every	line	as	we	change	it	gradually:

$	sudo	nano	/etc/ssh/sshd_config

Uncomment	the	SSH	version	2	line	to	use	only	the	newer	version	of	SSH,	which	is	more
secure	and	reliable.	The	line	should	look	like	the	following:

Protocol	2

We	can	limit	users’	access	to	restrict	some	users	from	accessing	the	server.	We	do	this
using	SSH:

DenyUsers	Baduser1	baduser2

Then	we	can	set	up	the	time	out	for	the	SSH	connection	to	always	close	the	sessions	that
are	not	active	for	a	defined	period	of	time.	We	need	to	set	the	countdown	to	start	from	the
moment	the	session	became	idle:

ClientAliveInterval	360

ClientAliveCountMax	0

Then	we	can	disable	the	root	login	using	SSH:

PermitRootLogin	no

In	addition,	we	can	disable	empty	password	usage,	whereby	users	do	not	have	the	right	to
log	in	if	they	don’t	have	a	password:

PermitEmptyPasswords	no

In	addition	to	that,	we	can	do	the	same	thing	for	password	authentication.	We	can	force	all
logins	to	happen	via	generated	keys:

PasswordAuthentication	no

Then	a	warning	banner	is	always	useful.	So,	if	we	need	to	create	one,	we	should	edit
/etc/issues	and	add	any	kind	of	banner:

$	sudo	nano	/etc/issue

Then	we	should	restart	the	service	so	that	it	can	take	effect:

$	sudo	systemctl	restart	sshd	

Some	servers	are	publicly	accessible,	so	they	may	need	an	extra	reinforcement	to	their
SSH	service.	For	this	task,	we	will	be	installing	a	tool	called	Fail2Ban,	which	is	a	very
reliable	tool	that	helps	protect	many	services	from	brute-force	attacks.	It	basically	scans
the	log	file	for	the	specific	service	and	looks	for	failed	login	attempts	in	order	to	block

them.	To	have	it	installed,	we	need	to	install	the	EPEL	repository	first:

$	sudo	yum	install	epel-release

Then	we	need	to	install	it	with	Rsyslog,	since	it	scans	the	log	output	taken	from	Rsyslog:

$	sudo	yum	install	fail2ban	rsyslog

To	have	it	working	fine,	we	can	update	it	or	update	the	SELinux	policy.

Then	we	go	ahead	to	configure	it	in	order	to	secure	SSH.	We	need	to	create	a	file	named
sshd.local	in	the	jail	folder	of	Fail2Ban:

$	sudo	nano	/etc/fail2ban/jail.d/sshd.local

Then	we	add	the	following	code	inside	it:

[sshd]

enabled		=	true

filter			=	sshd

#action		=	firewallcmd-ipset

maxretry	=	8

bantime		=	172800

This	will	ban	attacks	for	48	hours.	Then	we	start	the	service	and	enable	it	for	system
startup	services:

$	sudo	systemctl	start	fail2ban

$	sudo	systemctl	enable	fail2ban

We	can	now	say	that	we	are	done	with	securing	SSH.	Let’s	try	to	manage	root	login
access.	We	have	already	shown	how	we	can	disable	root	login	using	SSH.	Let’s	manage
the	Sudoers	file	a	little	to	have	a	user	execute	superuser	commands	without	the	need	to
type	in	a	password.

First,	we	need	to	install	sudo	on	the	server.	Usually,	most	CentOS	7	server	installations
have	sudo	installed.

Then	we	can	just	use	the	group	wheel.	If	needed,	we	can	create	a	new	one:

$	sudo	nano	/etc/sudoers

And	we	go	to	the	line	describing	the	group	wheel:

%wheel	ALL=(ALL)		ALL

Here,	we	need	to	add	a	word	to	make	the	users	under	this	group	gain	root	access	using
sudo,	and	they	don’t	need	to	use	passwords	every	time:

%wheel	ALL=(ALL)		NOPASSWD:	ALL

Note
Some	system	administrators	do	not	advise	this	option,	because	if	there	is	an	error	that	gets
typed,	there	is	no	turning	back.	It	is	always	a	choice	to	take	for	this	option	depending	on
the	need.

SSH	key-based	authentication
As	we	have	noticed	by	using	SSH	every	time,	we	need	to	type	the	password,	which	is	not
something	recommended	in	many	security	policies.	This	is	where	we	will	use	the	SSH
feature	to	use	authentication	by	using	public/private	keys.

SSH	provides	a	tool	for	creating	public/private	keys	to	use	for	remote	connection
authentication,	without	the	need	to	use	a	password.	How	do	we	do	that?	It’s	simple.	For
this	test	example	we	are	going	to	create	a	new	RSA	key,	a	little	bit	more	secure	than	the
usual	(we	can	create	different	types	of	keys	such	as	dsa,	ecdsa,	ed25519):

$	ssh-keygen	–t	rsa	-b	2048	-v

Then	we	follow	the	steps	presented	by	the	command.	For	a	default	installation,	we	can	just
keep	typing	Enter.	Otherwise,	we	can	always	add	some	kind	of	passphrase	to	make	it
more	secure.	We	may	need	to	specify	the	key	file	name	so	we	can	use	it	later.

Then	we	need	to	copy	the	newly	created	keys	file	to	the	host	that	we	want	to	connect	to.
There	are	two	ways	of	doing	this.	The	traditional	way,	which	is	to	literally	copy	the	key
file	into	the	server	that	we	want	to	remote	connect	to	without	using	a	password.	Where	we
need	to	put	the	file	in	the	subfolder	.ssh	located	at	the	current	user	folder.	Or,	we	can
simply	use	the	ssh-copy-id	command	that	does	the	same	job	without	the	pain:

$	ssh-copy-id	user1@server1.packt.co.uk

Then	we	need	to	type	the	password	for	the	last	time.

After	that,	any	SSH	remote	connection	or	file	transfer	can	be	done	without	the	need	for	a
password.

Source:	https://www.digitalocean.com/

https://www.digitalocean.com/

Installing	and	configuring	SpamAssassin
SpamAssassin	is	one	of	the	most	powerful	spam	filters	that	work	with	Postfix	to	filter	all
mails	that	may	present	a	threat.

We	will	use	it	to	filter	all	Postfix	mails	on	our	mail	server	(as	we	described	in	Chapter	4,
Mail	Server	with	Postfix,	about	how	to	get	one	up	and	running).

First,	we	need	to	install	it	using	the	default	package	manager:

$	sudo	yum	install	spamassassin

Then	it	is	installed.	Now	we	move	on	to	the	configuration	part:

$	sudo	nano	/etc/mail/spamassassin/local.cf

We	have	some	lines	that	we	need	to	make	sure	are	in	the	file.	So,	we’d	rather	write	them
or	uncomment	them	if	they	are	commented:

rewrite_header	Subject	***SPAM***

required_hits	5.0

report_safe	0

required_score	5

Next,	we	create	a	new	user	group	and	a	user	to	manage	the	service:

$	sudo	groupadd	spamd

$	sudo	useradd	-g	spamd	-s	/bin/false	-d	/var/log/spamassassin	spamd

$	sudo	chown	spamd:spamd	/var/log/spamassassin

Then	we	have	our	service	well	configured.	We	move	on	to	the	Postfix	part,	where	we
should	make	some	minor	changes	to	its	master	configuration	file:

$	sudo	nano	/etc/postfix/master.cf

We	need	to	go	to	the	line	of	the	SMTPD	configuration	and	add	the	following	line:

-o	content_filter=spamassassin

Therefore,	it	should	look	like	this:

smtp						inet		n							-							n							-							-							smtpd	-o	

content_filter=spamassassin

After	that,	we	add	the	following	line:

spamassassin	unix	-	n	n	-	-	pipe	flags=R	user=spamd	argv=/usr/bin/spamc	-e	

/usr/sbin/sendmail	-oi	-f	${sender}	${recipient}

We	save	the	file	and	quit.	Now	we	need	to	update	the	SpamAssassin	rules	by	typing	the
following:

$	sudo	sa-update	--nogpg

Now,	to	make	the	change	in	the	SpamAssassin	service	and	the	Postfix	server,	we	need	to
restart	it	and	then	we	are	done:

$	sudo	systemctl	restart	spamassassin

$	sudo	systemctl	restart	postfix.service

Setting	up	the	Clamav	antivirus
Clamav	is	an	open	source	antivirus	tool.	Its	basic	usage	is	for	detecting	viruses,	malware,
and	malicious	software	on	Linux-based	machines.

To	install	Clamav,	we	need	to	install	the	EPEL	repository:

$	sudo	yum	install	epel-release

Then	we	can	install	Clamav	with	all	its	useful	tools:

$	sudo	yum	install	clamav-server	clamav-data	clamav-update	clamav-

filesystem	clamav	clamav-scanner-systemd	clamav-devel	clamav-lib	clamav-

server-systemd

Before	we	start	configuring,	we	need	to	make	sure	that	SELinux	will	let	Clamav	work
without	issues:

$	sudo	setsebool	-P	antivirus_can_scan_system	1

To	check	whether	the	option	is	active,	we	need	to	type	this:

$	sudo	getseboot	–a	|	grep	virus

Then	we	remove	the	example	configuration,	so	we	can	make	our	own	configuration:

$	sudo	sed	-i	'/^Example/d'	/etc/clamd.d/scan.conf

After	removing	the	example	lines,	we	need	to	do	some	modifications	to	define	the	TCP
server	type	and	to	define	the	user	root	to	execute	the	antivirus:

$	sudo	nano	/etc/clamd.d/scan.conf

We	uncomment	the	following	line:

LocalSocket	/var/run/clamd.scan/clamd.sock

We	add	those	two	lines	at	the	end	of	the	file	and	save:

User	root

LocalSocket	/var/run/clamd.<SERVICE>/clamd.sock

To	keep	the	Clamav	database	up	to	date,	we	need	to	enable	a	tool	called	Freshclam.
Therefore,	we	need	to	create	a	backup	file	from	its	configuration	file:

$	sudo	cp	/etc/freshclam.conf	/etc/freshclam.conf.bak

Again	we	remove	the	example	lines:

$	sudo	sed	-i	'/^Example/d'	/etc/freshclam.conf

Otherwise,	if	needed,	we	can	adjust	the	options	for	a	more	personalized	solution.	We	need
to	run	Freshclam	to	update	the	database	manually	and	to	check	whether	the	configuration
is	successfully	set:

$	sudo	freshclam

We	need	to	create	the	file	that	will	act	as	the	service	file	to	run	the	Freshclam	daemon:

$	sudo	nano	/usr/lib/systemd/system/clam-freshclam.service

Then	we	put	the	following	code	inside	the	file	and	save	it:

[Unit]

Description	=	freshclam	scanner

After	=	network.target

[Service]

Type	=	forking

ExecStart	=	/usr/bin/freshclam	-d	-c	4

Restart	=	on-failure

PrivateTmp	=	true

[Install]

WantedBy=multi-user.target

Next,	we	should	check	whether	the	service	is	well	configured	by	running	it	and	checking
its	status:

$	sudo	systemctl	start	clam-freshclam.service

$	sudo	systemctl	status	clam-freshclam.service	-l

If	everything	is	running	fine	and	there	is	no	problem,	we	add	it	to	the	system	startup
service:

$	sudo	systemctl	enable	clam-freshclam.service

Now	we	need	to	create	the	Clamav	service	file.	We	have	an	example	service	file	that	we
need	to	copy	into	the	system	services	folder.	We	need	to	change	its	name	to	something
understandable.	Then,	we	need	to	make	some	minor	modifications	to	it:

$	sudo	mv	/usr/lib/systemd/system/clamd@.service	

/usr/lib/systemd/system/clamd.service

Since	we	have	changed	the	name,	we	need	to	change	it	at	the	file	that	uses	this	service	as
well:

$	sudo	nano	/usr/lib/systemd/system/clamd@scan.service

We	change	the	first	line	by	removing	@	to	look	like	this:

.include	/lib/systemd/system/clamd.service

At	the	same	location,	we	need	to	change	the	Clamd	service	file:

$	sudo	nano	/usr/lib/systemd/system/clamd.service

We	add	the	following	lines	at	the	end:

[Install]

WantedBy=multi-user.target

And	we	remove	%i	from	both	the	Description	and	ExecStart	options.	Then	we	change
them	to	look	like	the	following:

Description	=	clamd	scanner	daemon

ExecStart	=	/usr/sbin/clamd	-c	/etc/clamd.d/scan.conf	--nofork=yes

Before	running	any	service,	we	need	to	check	whether	we	have	any	errors.	We	will	run
Clamd	manually:

$	sudo	/usr/sbin/clamd	-c	/etc/clamd.d/scan.conf	–nofork=yes

Then,	if	everything	goes	fine,	we	start	the	services	and	add	them	to	the	system	startup
services:

$	sudo	systemctl	enable	clamd.service

$	sudo	systemctl	enable	clamd@scan.service

$	sudo	systemctl	start	clamd.service

$	sudo	systemctl	start	clamd@scan.service

For	a	final	verification	of	the	Clamav	services,	we	check	its	status:

$	sudo	systemctl	status	clamd.service	-l

$	sudo	systemctl	status	clamd@scan.service	-l

For	a	test	scan	of	the	current	folder,	we	run	the	following	command:

$	sudo	clamscan	--infected	--remove	--recursive	./

This	is	the	architecture	how	ClamAV	should	be	located	in	our	infrastructure:

Source	https://wiki.jenkins-ci.org/display/JENKINS/Home

The	following	figure	shows	a	better	description	between	the	components	of	a	mail	server
to	explain	how	ClamAV	help	secure	our	mail	service:

https://wiki.jenkins-ci.org/display/JENKINS/Home

Source:	https://aphyr.com/

https://aphyr.com/

Configuring	Mytop	for	a	MySQL
database
Mytop	is	an	open	source	solution	that	helps	monitor	the	MySQL	database’s	activities	and
performance,	or	what	we	now	know	as	MariaDB	for	CentOS	7.	It	is	a	non-GUI
monitoring	tool.	Therefore,	it	kind	of	provides	an	interphase	through	the	shell	command
line.

To	install	Mytop,	we	should	make	sure	that	the	installation	is	going	to	be	at	the	same
server	where	the	MariaDB	database	server	is	installed.	Then	we	add	the	EPEL	repository,
as	follows:

$	sudo	yum	install	epel-release

Next,	we	execute	the	installation	using	yum:

$	sudo	yum	install	mytop

For	the	configuration,	we	only	need	to	create	a	configuration	file	at	the	root	folder:

$	sudo	nano	/root/.mytop

Then	we	type	the	following	text	inside	it:

host=localhost

db=mysql

delay=3

port=3306

socket=

batchmode=0

color=1

idle=1

This	is	a	personalized	configuration	that	will	be	used	during	the	execution	of	the	program.

To	run	it,	we	need	to	type	in	the	following	command:

$	sudo	mytop	--prompt

Then	we	need	to	type	in	the	MariaDB	root	password.	Otherwise,	if	we	are	accessing	using
a	non-root	user,	we	can	always	type	this:

$	sudo	mytop	–u	user1	--prompt

Or	if	we	need	one	specific	database,	we	have	the	following:

$	sudo	mytop	–d	packtdb--prompt

To	know	that	it	is	working	fine,	you	should	see	the	following	interface:

For	more	information	on	how	to	interact	with	the	Mytop	GUI,	you	can	always	check	out
its	manual:

$	man	mytop

Source:	http://i.gzn.jp

http://i.gzn.jp

Setting	up	Samba	and	NFS	for	file	sharing
Samba	is	an	open	source	project	with	the	goal	of	providing	a	secure	and	stable	data	and
printer-sharing	service	across	multiple	operating	systems	(Windows,	Linux,	and	Mac	OS).

Samba	works	using	the	Session	Message	Block	(SMB)	protocol,	which	is	a	protocol
supported	by	most	Windows	OS	and	Mac	OS	to	serve	those	clients	who	have	access	to
shared	resources	such	as	Linux	storage	media,	printers,	serial	ports	(hardware	equipment).

For	the	tutorial,	we	are	going	to	use	a	CentOS	7	Samba	server	and	Mac	OS	machine	to	use
the	service	to	have	access	to	a	shared	folder.

First,	we	will	start	by	installing	Samba	on	our	CentOS	7	server:

$	sudo	yum	install	samba	samba-client	samba-common

Before	starting	the	configuration,	we	need	to	make	some	backup,	environment	creation,
and	firewall	setup.	So	first,	we	need	to	create	a	backup	for	the	Samba	configuration	file	to
make	sure	not	to	mess	up	the	original	configuration	(this	is	useful	in	case	of	having	many
updated	configurations).	We	better	keep	a	backup	of	each	stage	in	the	update	process:

$	sudo	cp	/etc/samba/smb.conf	/etc/samba/smb.conf.backup

Then	we	need	to	create	the	folder	that	we	need	to	share,	or	prepare	it	to	be	shared	if	it	is
already	there.	We	need	to	set	the	user	permissions	to	grant	everything	to	that	folder:

$	sudo	mkdir	/SharedFolder/

$	sudo	chmod	-R	755	/SharedFolder/

Finally,	we	need	to	open	the	Samba	service	port	at	the	server	firewall:

$	sudo	firewall-cmd	--permanent	--zone=public	--add-service=samba

$	sudo	firewall-cmd	--reload

Now	we	can	start	making	the	necessary	configuration	to	the	Samba	configuration	file:

$	sudo	nano	/etc/samba/smb.conf

We	need	to	make	sure	that	we	set	the	appropriate	workgroup	(usually	it	is	set	as
WORKGROUP):

workgroup	=	WORKGROUP

And	we	define	a	shared	folder.

[Shared	Folder]

path	=	/SharedFolder

read	only	=	no

guest	ok	=	yes

browsable	=yes

writable	=	yes

create	mask	=	0755

directory	mask	=	0755

We	save	the	file	and	create	some	Samba	users:

$	sudo	smbpasswd	–a	user1

Then	we	type	in	a	password	and	retry	typing	it	to	create	a	new	one.

If	we	want	some	folders	to	be	shared	with	a	specific	user,	we	need	to	add	the	following
line	to	the	folder	definition	and	we	need	to	disable	guest	login	by	changing	guest	ok	=
yes	to	guest	ok	=	no:

valid	users	=	user1

For	the	testing	phase,	we	need	to	start	the	services:

$	sudo	systemctl	enable	smb.service

$	sudo	systemctl	enable	nmb.service

$	sudo	systemctl	start	smb.service

$	sudo	systemctl	start	nmb.service

Then	we	go	to	the	client	side	and	type	this	link	at	the	server	connection:

smb://server_ip_address

This	test	is	used	on	a	Mac	machine.	For	a	Windows	machine,	we	type	the	following	link	at
the	Explorer	address	field:

\\server_ip_address

Then	we	will	have	a	login	screen,	where	we	need	to	type	the	Samba	user	ID	and	password,
like	this:

After	typing	the	correct	user	ID	and	password,	there	should	be	a	screen	showing	the
possible	folder	that	this	user	can	have	access	to,	as	follows:

Then	we	will	have	our	folder	accessible	with	the	rights	as	defined	in	the	configuration
folder.	Since	we	have	write	permissions,	we	can	create	a	folder	and	then	check	whether	it
did	actually	happen	on	the	server.

We	can	run	our	server	to	verify	whether	the	change	made	by	the	client	has	been	applied.

If	we	ever	need	to	change	any	of	the	folder-sharing	configuration,	we	must	restart	the
services	to	apply	the	change:

$	sudo	systemctl	restart	smb.service

$	sudo	systemctl	restart	nmb.service

Samba	is	good	for	multiple-environment	file	sharing,	but	we	should	not	forget	about
Linux’s	most	famous	file-sharing	solution—Network	File	System	(NFS).	NFS	is	a	client-
server	tool	used	to	share	data	between	multiple	Linux	systems,	via	mounting	many	remote
shared	folders	and	drives	across	the	network	to	directly	access	those	files	at	the	client	side.

We	are	going	to	establish	an	NFS	client-server	test	on	CentOS	7	to	show	how	it	works.

First,	we	need	to	install	the	service	at	the	server:

$	sudo	yum	install	nfs-utils	nfs-utils-lib

Then	we	start	the	service	responsible	for	ensuring	the	functionality	of	the	service:

$	sudo	systemctl	enable	rpcbind

$	sudo	systemctl	start	rpcbind

$	sudo	systemctl	enable	nfs-server

$	sudo	systemctl	start	nfs-server

$	sudo	systemctl	start	nfs-lock

$	sudo	systemctl	start	nfs-idmap

We	prepare	a	folder	to	be	shared:

$	sudo	mkdir	/NFSsharedFolder

$	sudo	chmod	–R	0755	/NFSsharedFolder

Then,	to	export	this	folder	and	make	it	accessible	to	be	mounted	on	the	client,	we	go	ahead
and	edit	the	/etc/export	file:

$	sudo	nano	/etc/export

And	we	add	the	following	line:

/NFSsharedFolder	172.25.0.0/16(rw,sync,no_root_squash,no_all_squash)

This	line	means	that	we	are	exporting	this	folder	to	all	IP	addresses	in	the	network.	The	rw
option	gives	write	permissions	to	the	folder,	sync	makes	sure	that	the	folder	is	always	in
synchronization,	no_root_squash	gives	root	privileges	for	the	folder	at	the	client	side,	and
finally,	no_all_squash	enables	the	user’s	authority.

After	every	change	to	the	export	file,	we	need	to	restart	the	NFS	server:

$	sudo	systemctl	restart	nfs-server

Finally,	we	need	to	open	the	NFS	services’	ports	at	the	server	firewall.	Reload	the	firewall
to	apply	the	changes:

$	sudo	firewall-cmd	--permanent	--add-port=111/tcp

$	sudo	firewall-cmd	--permanent	--add-port=875/tcp

$	sudo	firewall-cmd	--permanent	--add-port=2049/tcp

$	sudo	firewall-cmd	--permanent	--add-port=20048/tcp

$	sudo	firewall-cmd	--permanent	--add-port=42955/tcp

$	sudo	firewall-cmd	--permanent	--add-port=46666/tcp

$	sudo	firewall-cmd	--permanent	--add-port=54302/tcp

$	sudo	firewall-cmd	--reload

With	this	step,	we	can	say	that	we	are	done	configuring	the	server.	Now	we	move	to	the
client.	Just	like	the	server,	we	need	to	install	the	NFS	utilities:

$	sudo	yum	install	nfs-utils	nfs-utils-lib

Then	start	the	appropriate	services:

$	sudo	systemctl	enable	rpcbind

$	sudo	systemctl	start	rpcbind

$	sudo	systemctl	enable	nfs-server

$	sudo	systemctl	start	nfs-server

$	sudo	systemctl	start	nfs-lock

$	sudo	systemctl	start	nfs-idmap

Before	mounting	the	network-shared	folder,	we	need	to	make	sure	that	there	is	a	location
to	mount	on:

$	sudo	mkdir	/NFSfolder

$	sudo	chmod	–R	755	/NFSfolder

To	test	mount	the	folder,	we	can	use	the	mount	command	or	make	the	system	mount	it
automatically	by	editing	the	/etc/fstab	file:

$	sudo	mount	-t	nfs	172.25.22.10:/NFSsharedFolder/	/NFSfolder/

$	sudo	nano	/etc/fstab

In	addition,	we	insert	the	following	line:

172.25.22.10:/NFSsharedFolder/	/NFSfolder/	nfs	defaults	0	0

For	a	faster	connection,	we	can	always	use	the	fourth	version	of	NFS	by	typing	the
following:

172.25.22.10:/NFSsharedFolder/	/NFSfolder/	nfs4	defaults	0	0

NFS4	has	more	to	offer	than	NFS3.	We	would	recommend	it	for	an	environment	that	has
Linux	servers	that	do	support	NFS4.

Finally,	if	we	need	to	check	what	we	have	mounted	on	a	specific	NFS	client,	we	use
mount:

$	sudo	mount

Introducing	the	Linux	system	and
network	monitoring	tools
In	the	final	section	of	our	chapter,	we	are	going	to	present	a	number	of	very	useful	tools	to
monitor	both	systems	and	networks	for	our	CentOS	7	server.

We	will	start	by	showing	some	system	monitoring	tools.	We	believe	that	most	of	these
tools	need	the	EPEL	repository	installed,	so	we	can	just	install	it	before	trying	to	install
any	of	those	tools:

$	sudo	yum	install	epel-release

The	first	tool	that	we	are	going	to	talk	about	is	Htop.	It	is	kind	of	the	same	as	the	old	top
command,	but	it	has	a	very	user-friendly	interface,	wherein	it	is	much	more	interactive
with	many	shortcuts,	a	graphical	colored	presentation	of	the	process,	and	the	CPU,
Memory,	and	SWAP	Memory	in	a	bar	shaped	way,	to	show	how	much	of	those	are	used.
To	install	Htop,	we	just	need	to	use	Yum:

$	sudo	yum	install	htop

And	to	run	it,	we	simply	need	to	type	htop.	There	is	no	configuration	needed:

$	htop

We	should	see	this	kind	of	interface:

The	second	system-monitoring	tool	on	the	list	is	Iotop.	It	does	look	like	the	old	top

command,	but	it	specializes	in	showing	the	system	available	disk	input	and	output	access
in	real	time.	It	shows	each	process	activity,	and	how	much	it	is	using	the	hard	disk
(read/write	speed	and	actual	usage).	To	install	it,	we	need	to	use	YUM	again,	but	usually	it
is	installed	on	most	CentOS	7	servers	by	default:

$	sudo	yum	install	ioptop

To	use	it	we	need	to	type	the	name:

$	ioptop

We	will	have	the	following	interface:

Just	before	going	to	the	network	monitoring	tools,	we	should	take	a	quick	look	at	this	tool
that	performs	monitoring	for	both	systems	and	networks.	Monitorix	is	an	open	source,
lightweight	monitoring	tool	for	systems	and	network	monitoring.	It	collects	system	and
network	activities	on	a	regular	basis	in	order	to	show	them	in	a	well-presented	graph
through	a	web-based	interface.	It	is	very	helpful	for	detecting	bottlenecks	and	system
failures	for	better	management.

To	install	Monitorix,	we	need	to	install	a	few	necessary	packages	first:

$	sudo	yum	install	rrdtool	rrdtool-perl	perl-libwww-perl	perl-MailTools	

perl-MIME-Lite	perl-CGI	perl-DBI	perl-XML-Simple	perl-Config-General	perl-

HTTP-Server-Simple

Then	we	install	Monitorix:

$	sudo	yum	install	monitorix

It	is	kind	of	a	service,	so	we	need	to	start	it	and	enable	it	for	the	login	service	startup:

$	sudo	systemctl	start	monitorix

$	sudo	systemctl	enable	monitorix

We	may	need	to	disable	SELinux	or	set	it	to	permissive	to	make	our	service	work	fine.	In
addition,	since	Monitorix	serves	at	port	8080,	we	need	to	open	that	at	the	firewall,	as
follows:

$	sudo	firewall-cmd	--permanent	--zone=public	—add-port=8080/tcp

$	sudo	firewall-cmd	--reload

Then	we	can	start	using	it	by	using	a	browser.	We	type	the	following	at	the	address
section:

http://Server_IP_address:8080/monitorix

Thus,	we	will	have	the	following	interface:

We	will	get	to	see	a	variety	of	graphs	for	multiple	pieces	of	information,	as	follows:

This	was	about	system	load	average	usage	and	the	next	one	is	about	the	network	status:

Now,	let’s	talk	about	some	useful	network	monitoring	tools.	We	will	first	talk	about
Netstat,	which	is	one	of	the	most	common	tools	for	monitoring	a	network’s	incoming	and
outgoing	traffic.	It	is	very	useful	for	network	troubleshooting.	It	is	usually	installed	on	the
system,	so	we	only	need	to	execute	it:

$	netstat	-a

Then	we	will	have	this	kind	of	output:

After	this,	we	have	IPTraf,	which	is	a	real-time	network-monitoring	tool.	It	gathers
information	about	network	traffic	activity,	such	as	TCP,	UDP,	IP,	and	ICMP	statistics,	and
then	presents	them	in	its	interface.	To	install	it,	we	need	to	use	YUM:

$	sudo	yum	install	iptraf

Then	we	just	type	its	name	to	run	it.

Finally,	there	is	IfTop,	which	is	an	open	source	tool	that	reports	network	activities	in	real
time.	It	is	very	useful	for	troubleshooting	connections	with	outside	servers,	since	it	uses
the	Pcap	library	to	capture	incoming	and	outgoing	packages	on	the	desired	network
interface.	To	install	it,	we	use	yum	again:

$	sudo	yum	install	iptop

Then,	to	use	it,	we	need	to	type	the	command	with	the	desired	interface	to	listen	to:

$	sudo	iptop	-i	eth0

References
Now,	let’s	have	a	look	at	the	references	used	throughout	the	chapter:

OpenSSH	website:	http://www.openssh.com
SpamAssassin	website:	http://spamassassin.apache.org/
Clamav	website:	http://www.clamav.net/
Mymap	manual:	http://jeremy.zawodny.com/mysql/mytop/
Samba	website:	https://www.samba.org/
NFS	wiki:	http://nfs.sourceforge.net/nfs-howto/ar01s03.html
Trafshow	wiki:	https://www.freshports.org/net/trafshow/
Monitorix	home	page:	http://www.monitorix.org/

http://www.openssh.com
http://spamassassin.apache.org/
http://www.clamav.net/
http://jeremy.zawodny.com/mysql/mytop/
https://www.samba.org/
http://nfs.sourceforge.net/nfs-howto/ar01s03.html
https://www.freshports.org/net/trafshow/
http://www.monitorix.org/

Summary
This	chapter	was	a	summary	of	topics	that	we	believe	should	be	mentioned	to	any	system
administrator	willing	to	administrate	CentOS	7.	We	started	by	presenting	a	way	to	easily
access	multiple	machines	from	one	place.	We	saw	how	to	protect	services,	and	it	is	a	kind
of	best	practice	to	make	sure	that	the	server	is	configured	and	secured.	Then	we	presented
a	way	to	share	data	across	multiple	servers,	which	is	very	useful	for	both	the	installation
phase	and	daily	usage.	Finally,	we	covered	how	to	monitor	our	services’	activities	on	both
the	system	and	the	network.

The	job	of	a	system	administrator	varies	from	time	to	time.	Sometimes	it	gets	easier	and
sometimes	it	gets	harder,	especially	during	a	new	installation.	So,	we	have	covered	those
tools	that	help	soften	the	hard	times	and	make	them	more	manageable.

We	believe	that	this	book	is	equivalent	to	Mastering	Red	Hat	or	Scientific	Linux,	which
are	resources	that	are	very	much	in	demand	in	the	field	of	Linux	system	administration.
As	system	administrators	and	as	open	source	users,	we	believe	that	mastering	this	field
requires	more	than	just	reading	the	book.	You	need	to	explore	the	part	that	we	talked	about
briefly	on	making	your	own	scenarios	of	testing	and	try	to	make	it	more	complex.	After
all,	we	always	learn	from	the	hard	experiences	in	our	careers	and	not	from	the	easiest
ones.

Index
A

access	control,	SELinux
Type	Enforcement	(TE)	/	SELinux	policy
Role-Based	Access	Control	(RBAC)	/	SELinux	policy
Multi-Level	Security	(MLS)	/	SELinux	policy

Ansible
about	/	Ansible
image	source,	URL	/	Ansible
URL	/	Ansible,	References

Apache
securing,	with	OpenSSL	/	Securing	Apache	and	FTP	with	OpenSSL

Apache-MySQL-PHP
used,	for	setting	up	web	server	/	Setting	up	a	web	server	using	Apache-MySQL-
PHP

application-programming	interface	/	Components	of	OpenStack
audit	logs,	SELinux	/	SELinux	audit	logs

B
BIND

about	/	Implementing	BIND	as	a	DNS	server
implementing,	as	DNS	server	/	Implementing	BIND	as	a	DNS	server

C
Ceilometer	/	Components	of	OpenStack
CentOS	7

Xen,	setting	up	/	Setting	up	Xen	on	CentOS	7
KVM,	setting	up	for	full	virtualization	/	Setting	up	KVM	for	full	virtualization
on	CentOS	7
OpenVZ	virtualization,	setting	up	/	Setting	up	OpenVZ	virtualization	on	CentOS
7
VirtualBox	virtualization,	setting	up	/	Setting	up	VirtualBox	virtualization	on
CentOS	7
Docker,	setting	up	/	Setting	up	Docker	on	CentOS	7

Chef
about	/	Chef
image	source,	URL	/	Chef
URL	/	Chef,	References

Cinder	/	Components	of	OpenStack
Clamav	antivirus

setting	up	/	Setting	up	the	Clamav	antivirus
image	source,	URL	/	Setting	up	the	Clamav	antivirus
URL	/	References

cloud	computing
overview	/	An	overview	of	cloud	computing
image	source,	URL	/	An	overview	of	cloud	computing
services	/	An	overview	of	cloud	computing,	Cloud	computing	services
Software	as	a	Service	(SaaS)	/	Software	as	a	Service
Platform	as	a	Service	(PaaS)	/	Platform	as	a	Service	(PaaS)
Infrastructure	as	a	Service	(IaaS)	/	Infrastructure	as	a	Service	(IaaS)
URL	/	References

command	line
groups,	managing	/	Managing	users	and	groups	from	GUI	and	the	command	line
users,	managing	/	Managing	users	and	groups	from	GUI	and	the	command	line

components,	OpenStack
about	/	Components	of	OpenStack
Horizon	/	Components	of	OpenStack
Nova	/	Components	of	OpenStack
Neutron	/	Components	of	OpenStack
Keystone	/	Components	of	OpenStack
Swift	/	Components	of	OpenStack
Cinder	/	Components	of	OpenStack
Heat	/	Components	of	OpenStack
Glance	/	Components	of	OpenStack
Ceilometer	/	Components	of	OpenStack

configuration	management	(CM)

about	/	Introducing	configuration	management
image	source,	URL	/	Introducing	configuration	management
open	source	tools	/	Open	source	configuration	management	tools
URL	/	References

Content	Management	System	(CMS)
setting	up	/	Setting	up	a	web	server	using	Apache-MySQL-PHP

/	Setting	up	a	web	server	using	Apache-MySQL-PHP

D
Discretionary	Access	Control	(DAC)	/	Introducing	SELinux
DNS	server

BIND,	implementing	as	/	Implementing	BIND	as	a	DNS	server
Docker

setting	up,	on	CentOS	7	/	Setting	up	Docker	on	CentOS	7
image	source,	URL	/	Setting	up	Docker	on	CentOS	7
home	page,	URL	/	References

Domain	Name	System	(DNS)	protocols	/	Implementing	BIND	as	a	DNS	server
domain	transition

about	/	Domain	transition
rules	/	Domain	transition

Dovecot
setting	up,	for	retrieving	mails	/	Setting	up	a	mail	tool	(Dovecot)	to	retrieve
mails

F
Fail2Ban	/	Securing	SSH	and	the	root	login	configuration
features,	cloud	computing

elasticity	/	An	overview	of	cloud	computing
self-service	provisioning	/	An	overview	of	cloud	computing
pay	per	use	/	An	overview	of	cloud	computing

features,	KVM
thin	provisioning	/	Setting	up	KVM	for	full	virtualization	on	CentOS	7
overcommitting	/	Setting	up	KVM	for	full	virtualization	on	CentOS	7
automatic	NUMA	balancing	/	Setting	up	KVM	for	full	virtualization	on	CentOS
7
disk	I/O	throttling	/	Setting	up	KVM	for	full	virtualization	on	CentOS	7
virtual	CPU	hot	add	capability	/	Setting	up	KVM	for	full	virtualization	on
CentOS	7

files,	SELinux	/	SELinux	files	and	processes
FTP

securing,	with	OpenSSL	/	Securing	Apache	and	FTP	with	OpenSSL
FTP	server

setting	up	/	Setting	up	an	FTP	server
full	virtualization

about	/	Full	virtualization
URL	/	References

G
Ganglia

about	/	Ganglia
image	source,	URL	/	Ganglia
gmond	/	Ganglia
home	page,	URL	/	References

gateway	server
configuring	/	Configuring	a	gateway	server

Glance	/	Components	of	OpenStack
gmond	/	Ganglia
Google

URL	/	Installing	and	configuring	OpenStack
groups

managing,	from	command	line	/	Managing	users	and	groups	from	GUI	and	the
command	line
managing,	from	GUI	/	Managing	users	and	groups	from	GUI	and	the	command
line

GUI
users,	managing	/	Managing	users	and	groups	from	GUI	and	the	command	line
groups,	managing	/	Managing	users	and	groups	from	GUI	and	the	command	line

H
HAProxy

used,	for	establishing	service’	high	availability	/	Establishing	services’	high
availability	using	HAProxy
URL	/	References

Heat	/	Components	of	OpenStack
high	availability,	service

establishing,	with	HAProxy	/	Establishing	services’	high	availability	using
HAProxy

Horizon	/	Components	of	OpenStack
Hybrid	Cloud

about	/	Hybrid	cloud
image	source,	URL	/	Hybrid	cloud

hybrid	virtualization	/	The	basics	of	virtualization	on	Linux
hypervisor	/	The	basics	of	virtualization	on	Linux

I
Icinga

about	/	Icinga
image	source,	URL	/	Icinga
versions,	for	Web	1	Icinga	/	Icinga
versions,	for	Web	2	Icinga2	/	Icinga
home	page,	URL	/	References

IMAP	server	/	Setting	up	a	mail	tool	(Dovecot)	to	retrieve	mails
Infrastructure	as	a	Service	(IaaS)

about	/	Infrastructure	as	a	Service	(IaaS)
image	source,	URL	/	Infrastructure	as	a	Service	(IaaS)
benefits	/	Infrastructure	as	a	Service	(IaaS)

installation
SELinux	/	Installing	SELinux
OpenStack	/	Installing	and	configuring	OpenStack

Internet	Message	Access	Protocol	(IMAP)	/	Setting	up	and	configuring	of	Postfix
mail	server

J
Joomla	/	Setting	up	a	web	server	using	Apache-MySQL-PHP

K
Keystone	/	Components	of	OpenStack
KVM

about	/	The	basics	of	virtualization	on	Linux
setting	up,	for	full	virtualization	on	CentOS	7	/	Setting	up	KVM	for	full
virtualization	on	CentOS	7
image	source,	URL	/	Setting	up	KVM	for	full	virtualization	on	CentOS	7
home	page,	URL	/	References

L
Lightweight	Directory	Access	Protocol	(LDAP)	/	Configuring	the	OpenLDAP	Active
Directory	with	Postfix
Linux

virtualization,	basics	/	The	basics	of	virtualization	on	Linux
Linux	Apache	MySQL	PHP	(LAMP)	/	Setting	up	Nagios	as	a	monitoring	server
Linux	system

about	/	Introducing	the	Linux	system	and	network	monitoring	tools
Local	Area	Network	(LAN)	/	Configuring	a	gateway	server
logging	server

setting	up,	tools	/	Tools	to	set	up	a	logging	server
login	failures

configuring	/	Configuring	login	failures

M
mails

retrieving,	Dovecot	used	/	Setting	up	a	mail	tool	(Dovecot)	to	retrieve	mails
mail	server

securing,	SSL/TLS	used	/	Securing	the	mail	server	using	SSL/TLS
Mail	Submission	Agent	(MSA)	/	Setting	up	and	configuring	of	Postfix	mail	server
Main	Frontend	section	/	Establishing	services’	high	availability	using	HAProxy
Mandatory	Access	Control	(MAC)	/	Introducing	SELinux
MariaDB

setting	up,	for	virtual	domains	/	Setting	up	MariaDB	for	virtual	domains	and
users
setting	up,	for	virtual	users	/	Setting	up	MariaDB	for	virtual	domains	and	users

MDA	/	Setting	up	a	mail	tool	(Dovecot)	to	retrieve	mails
modes,	SELinux

about	/	SELinux	mode
enforcing	/	SELinux	mode
permissive	/	SELinux	mode
disabled	/	SELinux	mode

Monitorix
about	/	Introducing	the	Linux	system	and	network	monitoring	tools
installing	/	Introducing	the	Linux	system	and	network	monitoring	tools
URL	/	References

Multi-Level	Security	(MLS)	/	SELinux	users
Multi	Category	Security	(MCS)	/	SELinux	users
Mymap	manual

URL	/	References
MySQL	database

Mytop,	configuring	for	/	Configuring	Mytop	for	a	MySQL	database
Mytop

configuring,	for	MySQL	database	/	Configuring	Mytop	for	a	MySQL	database

N
Nagios

about	/	Nagios
image	source,	URL	/	Nagios,	Setting	up	Nagios	as	a	monitoring	server
setting	up,	as	monitoring	server	/	Setting	up	Nagios	as	a	monitoring	server
home	page,	URL	/	References

Nagios	Remote	Plugin	Executor	(NRPE)	/	Setting	up	Nagios	as	a	monitoring	server
Network	Address	Translation	(NAT)	technology	/	Configuring	a	gateway	server
network	monitoring	tools

about	/	Introducing	the	Linux	system	and	network	monitoring	tools
Network	Time	Protocol	(NTP)	/	Installing	and	configuring	OpenStack
Neutron	/	Components	of	OpenStack
NFS

setting	up,	for	file	sharing	/	Setting	up	Samba	and	NFS	for	file	sharing
URL	/	References

Nova	/	Components	of	OpenStack

O
OpenLDAP

about	/	Configuring	the	OpenLDAP	Active	Directory	with	Postfix
OpenLDAP	Active	Directory

configuring,	with	Postfix	/	Configuring	the	OpenLDAP	Active	Directory	with
Postfix

OpenNMS
about	/	OpenNMS
functional	areas	/	OpenNMS
image	source,	URL	/	OpenNMS
home	page,	URL	/	References

open	source	configuration	management	tools
about	/	Open	source	configuration	management	tools
Chef	/	Chef
SaltStack	(Salt)	/	SaltStack	(Salt)
Ansible	/	Ansible
Puppet	/	Puppet

open	source	monitoring	tools
about	/	Open	source	monitoring	tools
Ganglia	/	Ganglia
OpenNMS	/	OpenNMS
Zabbix	/	Zabbix
Zenoss	/	Zenoss
Nagios	/	Nagios
Icinga	/	Icinga

OpenSSH
URL	/	References

OpenStack
about	/	Introducing	OpenStack
image	source,	URL	/	Introducing	OpenStack,	Installing	and	configuring
OpenStack
computing	/	OpenStack	compute
networking	/	OpenStack	networking
storage	/	OpenStack	storage
components	/	Components	of	OpenStack
installing	/	Installing	and	configuring	OpenStack
configuring	/	Installing	and	configuring	OpenStack
home	page,	URL	/	References
platform	for	Redhat,	URL	/	References

OpenVZ
home	page,	URL	/	References

OpenVZ	virtualization
setting	up	on	CentOS	7	/	Setting	up	OpenVZ	virtualization	on	CentOS	7

image	source,	URL	/	Setting	up	OpenVZ	virtualization	on	CentOS	7
options,	passwd	command

-l	/	Managing	users	and	groups	from	GUI	and	the	command	line
-u	/	Managing	users	and	groups	from	GUI	and	the	command	line
-e	/	Managing	users	and	groups	from	GUI	and	the	command	line
-x	/	Managing	users	and	groups	from	GUI	and	the	command	line
-n	/	Managing	users	and	groups	from	GUI	and	the	command	line

options,	SELINUXTYPE
targeted	/	SELinux	mode
minimum	/	SELinux	mode
MLS	/	SELinux	mode

options,	useradd	command
-c	/	Managing	users	and	groups	from	GUI	and	the	command	line
-d	/	Managing	users	and	groups	from	GUI	and	the	command	line
-g	/	Managing	users	and	groups	from	GUI	and	the	command	line
-G	/	Managing	users	and	groups	from	GUI	and	the	command	line
-r	/	Managing	users	and	groups	from	GUI	and	the	command	line
-u	/	Managing	users	and	groups	from	GUI	and	the	command	line

P
paravirtualization

about	/	Paravirtualization
URL	/	References

password
length,	configuring	/	Configuring	password	aging	and	password	length
complexity,	configuring	/	Configuring	password	complexity	and	limiting	reused
password	usage
reused	password	count,	limiting	/	Configuring	password	complexity	and	limiting
reused	password	usage
login	failures,	configuring	/	Configuring	login	failures

password	aging
about	/	Password	aging
accomplishing	/	Password	aging
configuring	/	Configuring	password	aging	and	password	length

password	policy
setting	/	Setting	the	password	policy

Platform	as	a	Service	(PaaS)
about	/	Platform	as	a	Service	(PaaS)
benefits	/	Platform	as	a	Service	(PaaS)
image	source,	URL	/	Platform	as	a	Service	(PaaS)

policy,	SELinux
about	/	SELinux	policy
user	/	SELinux	policy
role	/	SELinux	policy
Subject	and	Object	/	SELinux	policy
domain	/	SELinux	policy
type	/	SELinux	policy

POP3	server	/	Setting	up	a	mail	tool	(Dovecot)	to	retrieve	mails
Postfix

OpenLDAP	Active	Directory,	configuring	with	/	Configuring	the	OpenLDAP
Active	Directory	with	Postfix
references	/	References

Postfix	mail	server
configuring	/	Setting	up	and	configuring	of	Postfix	mail	server
setting	up	/	Setting	up	and	configuring	of	Postfix	mail	server

Postfix	SMTP-AUTH	/	Setting	up	a	mail	tool	(Dovecot)	to	retrieve	mails
Post	Office	Protocol	3	(POP3)	/	Setting	up	and	configuring	of	Postfix	mail	server
Private	Cloud

about	/	Private	cloud
image	source,	URL	/	Private	cloud

processes,	SELinux	/	SELinux	files	and	processes
Public	Cloud

about	/	Public	cloud
image	source,	URL	/	Public	cloud

Puppet
about	/	Puppet
features	/	Puppet
image	source,	URL	/	Puppet,	Installing	and	configuring	Puppet
installing	/	Installing	and	configuring	Puppet
configuring	/	Installing	and	configuring	Puppet
URL	/	Installing	and	configuring	Puppet,	References
web	page,	URL	/	References

Q
Qemu-kvm	/	Setting	up	KVM	for	full	virtualization	on	CentOS	7
quotas

about	/	Quotas

R
Red	Hat	Stack

URL	/	Components	of	OpenStack
references	/	Reference,	References

Firewalld	configuration	guide	/	References
OpenVPN	server	overview	/	References
BIND	DNS	server	page	/	References
Web	server	(LAMP)	wiki	page	/	References
FTP	server	Wiki	page	/	References
FTPS,	vs	SFTP	/	References
Mod_SSL	for	Apache	documentation	/	References
OpenSSL	webpage	/	References
URLs	/	References,	References
installing	/	References
URL	/	References

Role	Based	Access	Control	(RBAC)	/	SELinux	policy
root	login	configuration

securing	/	Securing	SSH	and	the	root	login	configuration
Rsyslog

about	/	Rsyslog
home	page,	URL	/	References

S
SaltStack	(Salt)

about	/	SaltStack	(Salt)
image	source,	URL	/	SaltStack	(Salt)
URL	/	SaltStack	(Salt),	References

Samba
setting	up,	for	file	sharing	/	Setting	up	Samba	and	NFS	for	file	sharing
about	/	Setting	up	Samba	and	NFS	for	file	sharing
URL	/	References

Secure	IMAP	(IMAP	SSL)	/	Setting	up	and	configuring	of	Postfix	mail	server
Secure	POP3	/	Setting	up	and	configuring	of	Postfix	mail	server
Secure	SMTP	(SMTPS)	/	Setting	up	and	configuring	of	Postfix	mail	server
Secure	Sockets	Layer	(SSL)	/	Securing	Apache	and	FTP	with	OpenSSL
SELinux

about	/	Introducing	SELinux
installing	/	Installing	SELinux
modes	/	SELinux	mode
policy	/	SELinux	policy
files	/	SELinux	files	and	processes
processes	/	SELinux	files	and	processes
users	/	SELinux	users
audit	logs	/	SELinux	audit	logs
troubleshooting	/	SELinux	troubleshooting

services,	cloud	computing
about	/	Cloud	computing	services
Public	Cloud	/	Public	cloud
Private	Cloud	/	Private	cloud
Hybrid	Cloud	/	Hybrid	cloud

Session	Message	Block	(SMB)	/	Setting	up	Samba	and	NFS	for	file	sharing
Simple	Mail	Transfer	Protocol	(SMTP)	/	Setting	up	and	configuring	of	Postfix	mail
server
Software	as	a	Service	(SaaS)

about	/	Software	as	a	Service
image	source,	URL	/	Software	as	a	Service
characteristics	/	Software	as	a	Service

Software	defined	networking	(SDN)	/	OpenStack	networking
SpamAssassin

installing	/	Installing	and	configuring	SpamAssassin
about	/	Installing	and	configuring	SpamAssassin
configuring	/	Installing	and	configuring	SpamAssassin
URL	/	References

SSH
using,	for	remote	connection	/	SSH	for	remote	connection

securing	/	Securing	SSH	and	the	root	login	configuration
SSH	key-based	authentication

about	/	SSH	key-based	authentication
SSL/TLS

used,	for	securing	mail	server	/	Securing	the	mail	server	using	SSL/TLS
sudo	(su)	commands

access,	restricting	/	Restricting	access	to	su	or	sudo
script	running	permissions,	restricting	/	Restricting	permissions	to	run	scripts
service	access,	restricting	/	Restricting	access	to	services

sudoers
about	/	Sudoers
visudo	command	/	visudo

Swift	/	Components	of	OpenStack
Syslog-ng

about	/	Syslog-ng
features	/	Syslog-ng
setting	up	/	Setting	up	and	configuring	Syslog-ng
configuring	/	Setting	up	and	configuring	Syslog-ng
home	page,	URL	/	References

T
Telnet	service	/	Setting	up	a	mail	tool	(Dovecot)	to	retrieve	mails
TLS	/	Setting	up	a	mail	tool	(Dovecot)	to	retrieve	mails
tools,	for	setting	up	logging	server

about	/	Tools	to	set	up	a	logging	server
Rsyslog	/	Rsyslog
Syslog-ng	/	Syslog-ng

Trafshow
URL	/	References

Transport	Layer	Security	(TLS)	/	Securing	Apache	and	FTP	with	OpenSSL

U
users

managing,	from	GUI	/	Managing	users	and	groups	from	GUI	and	the	command
line
managing,	from	command	line	/	Managing	users	and	groups	from	GUI	and	the
command	line
MariaDB,	setting	up	for	/	Setting	up	MariaDB	for	virtual	domains	and	users

users,	SELinux
about	/	SELinux	users
guest_u	/	SELinux	users
xguest_u	/	SELinux	users
user_u	/	SELinux	users
staff_u	/	SELinux	users
system_u	/	SELinux	users

V
VirtualBox

home	page,	URL	/	References
VirtualBox	virtualization

setting	up,	on	CentOS	7	/	Setting	up	VirtualBox	virtualization	on	CentOS	7
image	source,	URL	/	Setting	up	VirtualBox	virtualization	on	CentOS	7

virtual	domains
MariaDB,	setting	up	for	/	Setting	up	MariaDB	for	virtual	domains	and	users

virtual	hosts	/	Setting	up	a	web	server	using	Apache-MySQL-PHP
virtualization,	Linux

basics	/	The	basics	of	virtualization	on	Linux
image	source,	URL	/	The	basics	of	virtualization	on	Linux
types	/	The	basics	of	virtualization	on	Linux
benefits	/	The	basics	of	virtualization	on	Linux

virtual	private	network	(VPN)	/	Setting	up	a	VPN	server
visudo	command	/	visudo
VMware	Documentation	Center

URL	/	References
VMware	Virtualization

URL	/	References
VPN	server

setting	up	/	Setting	up	a	VPN	server

W
web	server

setting	up,	Apache-MySQL-PHP	used	/	Setting	up	a	web	server	using	Apache-
MySQL-PHP

Wget	tool	/	Setting	up	Nagios	as	a	monitoring	server
Wide	Area	Network	(WAN)	/	Configuring	a	gateway	server
WinSCP	/	Setting	up	a	VPN	server

X
Xen

about	/	The	basics	of	virtualization	on	Linux,	Paravirtualization
setting	up,	on	CentOS	7	/	Setting	up	Xen	on	CentOS	7
image	source,	URL	/	Setting	up	Xen	on	CentOS	7
URL	/	Setting	up	Xen	on	CentOS	7,	References

Z
Zabbix

about	/	Zabbix
image	source,	URL	/	Zabbix
home	page,	URL	/	References

Zenoss
about	/	Zenoss
features	/	Zenoss
image	source,	URL	/	Zenoss
home	page,	URL	/	References

	Mastering CentOS 7 Linux Server
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Advanced User Management
	Managing users and groups from GUI and the command line
	Quotas
	Password aging
	Setting the password policy
	Configuring password aging and password length
	Configuring password complexity and limiting reused password usage
	Configuring login failures
	Sudoers
	visudo
	Reference
	Summary
	2. Security
	Introducing SELinux
	Installing SELinux
	SELinux mode
	SELinux policy
	SELinux files and processes
	Domain transition
	SELinux users
	Restricting access to su or sudo
	Restricting permissions to run scripts
	Restricting access to services
	SELinux audit logs
	SELinux troubleshooting
	Summary
	3. Linux for Different Purposes
	Configuring a gateway server
	Setting up a VPN server
	Implementing BIND as a DNS server
	Setting up a web server using Apache-MySQL-PHP
	Setting up an FTP server
	Securing Apache and FTP with OpenSSL
	References
	Summary
	4. Mail Server with Postfix
	Setting up and configuring of Postfix mail server
	Setting up MariaDB for virtual domains and users
	Setting up a mail tool (Dovecot) to retrieve mails
	Configuring the OpenLDAP Active Directory with Postfix
	Securing the mail server using SSL/TLS
	References
	Summary
	5. Monitoring and Logging
	Open source monitoring tools
	Ganglia
	OpenNMS
	Zabbix
	Zenoss
	Nagios
	Icinga
	Setting up Nagios as a monitoring server
	Tools to set up a logging server
	Rsyslog
	Syslog-ng
	Setting up and configuring Syslog-ng
	References
	Summary
	6. Virtualization
	The basics of virtualization on Linux
	Full virtualization
	Paravirtualization
	Setting up Xen on CentOS 7
	Setting up KVM for full virtualization on CentOS 7
	Setting up OpenVZ virtualization on CentOS 7
	Setting up VirtualBox virtualization on CentOS 7
	Setting up Docker on CentOS 7
	Establishing services' high availability using HAProxy
	References
	Summary
	7. Cloud Computing
	An overview of cloud computing
	Software as a Service
	Platform as a Service (PaaS)
	Infrastructure as a Service (IaaS)
	Cloud computing services
	Public cloud
	Private cloud
	Hybrid cloud
	Introducing OpenStack
	OpenStack compute
	OpenStack networking
	OpenStack storage
	Components of OpenStack
	Installing and configuring OpenStack
	References
	Summary
	8. Configuration Management
	Introducing configuration management
	Open source configuration management tools
	Chef
	SaltStack (Salt)
	Ansible
	Puppet
	Installing and configuring Puppet
	References
	Summary
	9. Some Additional Tricks and Tools
	SSH for remote connection
	Securing SSH and the root login configuration
	SSH key-based authentication
	Installing and configuring SpamAssassin
	Setting up the Clamav antivirus
	Configuring Mytop for a MySQL database
	Setting up Samba and NFS for file sharing
	Introducing the Linux system and network monitoring tools
	References
	Summary
	Index

