
[1]

www.allitebooks.com

http://www.allitebooks.org

Mastering Cross-Platform
Development with Xamarin

Master the skills required to steer cross-platform
applications from drawing board to app store(s)
using Xamarin

Can Bilgin

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Cross-Platform Development with Xamarin

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1280316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-568-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Can Bilgin

Reviewers
Engin Polat

Lance McCarthy

Toni Petrina

Commissioning Editor
Veena Pagare

Acquisition Editors
Vinay Argekar

Meeta Rajani

Content Development Editor
Siddhesh Salvi

Technical Editors
Pramod Kumavat

Siddhi Rane

Copy Editor
Roshni Banerjee

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Can Bilgin currently works for Authority Partners Inc. as a program architect. He
has been working in the software industry, primarily with Microsoft technologies,
for over a decade and has been recognized as a Microsoft Most Valuable Professional
(MVP) for his technical contributions. In this period, he played key roles in projects
for high profile clients using technologies such as BizTalk, SharePoint, Dynamics
CRM, Xamarin, WCF, and other web technologies.

His main passion lies in mobile and IoT development using the modern toolset
available for developers.

He tries to share his experience on his blog (http://canbilgin.wordpress.com),
social media (@can_bilgin), and through speaking engagements at both local and
international conferences and community events in the Balkans region.

This book is dedicated to three girls who shaped my life and
still are doing so: my best friend and beloved wife, Sanja Grebovic
Bilgin, our little daughter, Dilara Bilgin, and my loving mother,
Turkan Bilgin.

www.allitebooks.com

http://canbilgin.wordpress.com
http://www.allitebooks.org

About the Reviewers

Engin Polat has been involved in many large and medium-scale projects on .NET
technologies as a developer, architect, and consultant, and has won many awards
since 1999.

Since 2008, he has been giving training to many large enterprises in Turkey about
Windows development, web development, distributed application development,
software architecture, mobile development, cloud development, and so on.

Apart from this, he organizes seminars and events in many universities in Turkey
about .NET technologies, Windows platform development, cloud development,
web development, game development, and so on.

He shares his experiences on his personal blog (http://www.enginpolat.com).

He has MCP, MCAD, MCSD, MCDBA, and MCT certifications.

In 2012, he was recognized as a Windows Platform Development MVP (Most
Valuable Professional) by Microsoft.

Between 2013 and 2015, he was recognized as a Nokia Developer Champion; very
few people in the world are given this award. In 2015, he was recognized as the
Regional Director by Microsoft.

I'd like to thank my dear wife, Yeliz, and my beautiful daughter,
Melis Ada, for all the support they gave me while I was working on
this book project.

www.allitebooks.com

http://www.enginpolat.com
http://www.allitebooks.org

Lance McCarthy, Microsoft MVP, is a community leader with an acute expertise
for all things, such as .NET and C#, especially on the XAML stack, including WPF,
Silverlight, Windows Phone, and Windows Store apps. He is very helpful online
and guides and answers questions from Microsoft developers on Twitter as
@lancewmccarthy. In his free time, he writes his blog at http://WinPlatform.
wordpress.com, which focuses on Windows Universal apps. He organizes and
hosts events in the Boston area, such as user group nights, mini-code camps,
and full hackathons.

During the day, he is a senior technical support engineer at Telerik where he supports
developers with their Classic Windows, Universal Windows Platform, Web and
Mobile application development (Xamarin, Android native, and iOS native). He is also
a technical consultant for the Windows Developer social media team where he helps
respond to development questions via the official @WindowsDev Twitter account.

Previously, he worked for Nokia/Microsoft as a developer ambassador where he
sought out and engaged developers through outreach programs and provided them
with technical support and resources to make them successful on the Windows
Phone and Windows 8 platforms.

He was also an assistant professor at Harvard University for a short time where he
helped students build, market, and publish successful Windows Phone apps. At
Boston University, he was a guest professor for the Cloud computing course and
would teach one class a semester.

He has also appeared on podcasts, such as the Windows Developer Show, has been
a technical editor for publications and books, has won several app building contests
and hackathons (including the first place in the Microsoft Build 2013 hackathon), and
is a published developer with over a million downloads in the Windows Store.

I'd like to thank my wife Amy for her undying patience while I did
"more work after I got home from work" and to Can Bilgin for the
opportunity to review this.

www.allitebooks.com

http://WinPlatform.wordpress.com
http://WinPlatform.wordpress.com
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface ix
Chapter 1: Developing with Xamarin 1

Cross-platform projects with Xamarin 1
Xamarin as a platform 2
Xamarin as a product 3

Target platforms 3
Xamarin on Android 4
Xamarin on iOS 5
Windows Runtime apps 6

Setting up the development environment 6
Choosing the right development OS 7
Xamarin Studio setup and configuration 8
Visual Studio setup and configuration 10

Emulator options 13
Emulators for Android 13
iOS emulation 15

A typical Xamarin solution structure 15
Portable class libraries 16
Shared projects 18
Xamarin.Forms 20
NuGet packages 21
Components 23

Quality in cross-development 23
Reusability 23
Abstraction 23
Loose-coupling 24
Nativity 24

Summary 24

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Memory Management 27
Application Component lifecycle 27

Activity lifecycle (Android) 27
Active/Running 28
Paused 28
Backgrounded 28
Stopped 29
Restarted 29

Application lifecycle (iOS) 29
Garbage collection 31

GC on Xamarin projects 32
SGen garbage collector 32
Boehm garbage collector (iOS only) 32

Platform-specific concepts 33
Object reference types 33
Automatic Reference Counting (ARC) 33

Troubleshooting and diagnosis 34
Xamarin Profiler 34

Allocations instrument 35
Time Profiler 35

Device Monitor (Android only) 35
Instruments (iOS only) 37
Monotouch Profiler (iOS only) 38

Patterns and best practices 39
Disposable objects 39
The lapsed listener problem 40
Weak references 45
Cross-domain objects 47
Cyclic references (cycles) 49

Summary 52
Chapter 3: Asynchronous Programming 53

Multithreading on Xamarin 53
Single thread model 54
Task-based Asynchronous Pattern 55
Concurrency model on iOS 56

Asynchronous methods 56
Continuation 57
Cancellation 57
Progress 59
Task batches 60

Parallel execution 62

Table of Contents

[iii]

Patterns and best practices 64
Async pattern conversions 65
Multi-threading with tasks 67
Exception handling 74
Initialization pattern 77
Semaphores 80

Background tasks 82
Background tasks on iOS 83
Services (Android only) 84

Summary 86
Chapter 4: Local Data Management 87

Data in mobile applications 87
State 88
App data 88
Local files 89
External data 89

Application data 89
Installation directory 90

Android 90
iOS 92

Local storage 93
Android 93
iOS 96

Temporary storage 98
Local filesystem 99
SQLite 101
Patterns and best practices 104

Application preferences 104
File picker 106

Backup/Roaming 110
Android and Backup API 110
iOS and ubiquitous storage 114

Summary 120
Chapter 5: Networking 121

Connected apps 121
Web services 122

Transport 123
Messaging 123
SOAP/XML services 124
RESTful services 129

Table of Contents

[iv]

OData and OAuth 133
OData 133
OAuth 134

SignalR 136
Patterns and best practices 138

Async conversions 138
Data model abstraction 140
Service cache 144

Platform-specific concepts 148
Permissions 148
NSUrlConnection/NSUrlSession (iOS Only) 149
Background downloads 151
Push notifications 155

Cloud integration 157
Azure Mobile Services 157
Azure offline data 162
Azure authentication 164

Summary 167
Chapter 6: Platform Extras 169

Content sharing 169
File pickers and contracts (Windows Store apps) 170
Document Provider extensions (iOS) 172
ContentProvider and ContentResolver (Android) 174

Peripherals 176
Bluetooth 177
Wi-Fi Direct 178
Near Field Communication 178

Location data 179
Android location and Google Play services 179
Location services on iOS 186
Location data on Windows Runtime 188
Geofencing 189

Native libraries 193
Managed callable wrappers (Android) 193
Linking versus binding (iOS) 196

Summary 198

Table of Contents

[v]

Chapter 7: View Elements 199
Design philosophy 199

User expectations 200
Platform imperatives 200
Hardware dependency 202

Design metrics on Android 202
Design metrics on iOS 204
Design metrics on Windows Runtime 204

Design elements 205
The basic layout 205
Navigation 207

Horizontal navigation 208
Vertical navigation 212
Jump navigation 214

Content elements 214
Collection views 215
Modal views 225
Text views 231
Web views 232

Feedback 232
Indeterminate progress 232
Determinate progress 233

User interaction 234
Interactive controls 235

Text input 235
Dropdown selection 236
Option selection 237

Gestures 237
Summary 239

Chapter 8: Xamarin.Forms 241
Under the hood 241

Anatomy of Xamarin.Forms 242
Project structure 243

Components 247
Pages 247

Tabbed page 247
The MasterDetail page 249
NavigationPage 252
CarouselPage 252
ContentPage 253

Layouts 254
Views 258

Table of Contents

[vi]

Extending forms 263
Styles 264
Triggers and behaviors 267
Custom renderers 272

Patterns and best practices 273
Messaging infrastructure 273
Dependency injection 274
Shared project versus portable project 277
Platform-specific fine-tuning 279

Summary 281
Chapter 9: Reusable UI Patterns 283

Visual assets 283
Text resources 284

Xamarin.Android 284
Xamarin.iOS 287
Windows Phone 289

Image resources 290
Adaptive visual assets 291
Reusable assets 293

Localization 299
Locale and culture 299
Windows Phone 300
Xamarin.iOS 302
Xamarin.Android 303
Xamarin.Forms 304

Architectural patterns 306
MVC 307

iOS app architecture 308
MVVM 310

Windows Runtime 310
MVVM on Xamarin.iOS and Xamarin.Android 315
MVVM with Xamarin.Forms 316

Summary 316
Chapter 10: ALM – Developers and QA 317

Development pipeline 317
Troubleshooting and diagnostics 319
Unit testing 321

Platform-agnostic unit tests 322
Platform-specific unit tests 323

Table of Contents

[vii]

UI testing 325
Xamarin.UITests and Xamarin Test Cloud 325
Xamarin Test Recorder 327
Coded UI tests (Windows Phone) 327
Calabash 329

Summary 330
Chapter 11: ALM – Project and Release Management 331

Source control 331
TFVC 332
Git 332
TFS/Git scenarios 333

Git bridge 334
NuGet packages 335

Subversion (SVN) 336
Continuous integration 337

Visual Studio Team Services 337
TeamCity 339
Other 340

Automated testing 340
Beta deployment 342

HockeyApp 342
Crashlytics 344
TestFlight 344
Package distribution 344

Live telemetry 345
Xamarin Insights 346
Application Insights 347

Summary 348
Chapter 12: ALM – App Stores and Publishing 349

Release packages 349
Xamarin.Android app package (.apk) 350

Disabling debugging 350
Linking 350
Packing options 353
Packaging 354

Xamarin.iOS app bundle (.ipa) 355
Build options 355
Linking 356
Provisioning profile 356

Windows Phone app package (.appx) 357

Table of Contents

[viii]

Distribution options 357
App store(s) 357
Ad-hoc 358

Line of Business apps 359
Private channel distribution (Android) 359
Apple Developer Enterprise Program 359
Windows Phone private distribution 360

Summary 360
Index 361

[ix]

Preface
Although it was initially born as a community effort to port the .NET libraries and
common language runtime compilers to various operating systems, the Xamarin
product suite soon became the common ground to develop applications for Android
and iOS operating systems using the .NET framework and the most popular CLR
language, C#. The emergence of the Xamarin development platform created a new
development niche, serving products to a variety of platforms at the same time while
letting users adapt their existing .NET development skills to these new platforms and
produce applications for a wider range of devices and operating systems. Thanks to
Xamarin, developers are now enjoying a new era where development efforts don't
target only a single application platform, but span multiple devices including smart
phones, tablets, personal computers, and even wearable devices, creating highly
efficient native applications.

What this book covers
Chapter 1, Developing with Xamarin, provides an insightful look at the Xamarin
framework and architecture on target platforms. It also includes introductory
information and tips on preparing the development environment for Xamarin.

Chapter 2, Memory Management, investigates how memory is managed on iOS and
Android with Xamarin runtime. While drawing parallels with .NET platform,
it provides examples of pitfalls, patterns, and best practices.

Chapter 3, Asynchronous Programming, dives deep into asynchronous and
multi-threaded programming concepts. Platform-specific problems in
various threading scenarios on different platforms are discussed.

Chapter 4, Local Data Management, provides useful patterns and techniques to
efficiently use, manage, and roam data on mobile devices using Xamarin.

Preface

[x]

Chapter 5, Networking, contains a detailed look at the networking capabilities of
Xamarin applications and various service integration scenarios. Networking
implementations are illustrated with real-world examples, including the use
of local storage for data caching.

Chapter 6, Platform Extras, concentrates on platform-specific APIs and features.
It explains some of the peripherals that can be employed in Xamarin applications.
A look at native libraries and how to include them in cross-platform Xamarin
applications is also included in this chapter.

Chapter 7, View Elements, provides introductory information about UX
(User Experience) and design concepts, and an explanation of the differences
and similarities between design principles on Xamarin platforms.

Chapter 8, Xamarin.Forms, focuses on the various features and extensibility options
of Xamarin. It also covers the forms extension module and how to use it to generate
consistent user interfaces on multiple platforms.

Chapter 9, Reusable UI Patterns, discusses the strategies and patterns for reusing visual
assets in cross-platform projects. Some advanced software architectural topics about
MVC and MVVM patterns are also analyzed and demonstrated.

Chapter 10, ALM – Developers and QA, provides an introduction to Application
Lifecycle Management and continuous integration methodologies for Xamarin
cross-platform applications. As the part of the ALM process that is the most relevant
to developers, unit testing strategies are discussed and demonstrated, as well as
automated UI testing.

Chapter 11, ALM – Project and Release Management, explains the essentials of version
control and automated continuous integration workflows. Source control options,
as well as automated build strategies for Xamarin projects, are demonstrated.

Chapter 12, ALM – App Stores and Publishing, explains the processes related to
app package preparation and release, which constitutes the last step of the
application lifecycle.

Preface

[xi]

What you need for this book
In order to build the sample project and make use of the code samples in this book,
you will need a Xamarin.iOS and/or Xamarin.Android subscription, depending on
the platform you want to target. Most of the diagnostic tools used are distributed
as part of the development SDKs for the target platforms. As a development IDE,
you will need Visual Studio 2013 (or higher) or Xamarin Studio if you are using
or configuring a Windows based development environment, but only Xamarin
Studio otherwise. For testing and diagnostics, real mobile devices or SDK-provided
emulators can be used.

Who this book is for
This book is ideal for those who want to take their novice or intermediate-level
Xamarin mobile development skills to the next level to become the go-to person
within their organization. To fully understand the patterns and concepts described,
you should possess a reasonable level of knowledge and an understanding of the
core elements of cross-platform application development with Xamarin.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"For instance, Objective-C types such as NSObject, NSString, NSArray are exposed
in C# and provide binding to underlying types."

A block of code is set as follows:

namespace Master.Xamarin.Portable
{
 public class MyPhotoViewer
 {
 private readonly IStorageManager m_StorageManager;

Any command-line input or output is written as follows:

bcdedit /copy {current} /d "No Hyper-V"

bcdedit /set {<identifier from previous command>} hypervisorlaunchtype
off

Preface

[xii]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "It can still
be accessed using the Run with Mono HeapShot menu item under the Project menu
in Xamarin Studio."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xiii]

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiv]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Developing with Xamarin
This chapter examines the Xamarin framework and architecture on different target
platforms and identifies the differences and similarities. It also includes introductory
information and tips on preparing the development environment for Xamarin and
covers some of the Xamarin development essentials. This chapter is divided into the
following sections:

• Cross-platform projects with Xamarin
• Target platforms
• Setting up the development environment
• Emulator options
• A typical Xamarin solution structure
• Quality in cross-development

Cross-platform projects with Xamarin
Developers are enjoying a new era in which development is not restricted to one
single application platform but spans across various media such as cellphones,
tablets, personal computers, and even wearable devices. The shared code and assets
between the development projects improves the elegance and the quality of the
work. There is also a direct correlation between the robustness, the effort required
for maintaining a multi-platform application, and the reusable modules.

Universal application is a term previously used to identify applications targeting
devices running on the iOS operating system (the iPhone and iPad). However, the
same term is now used to describe Windows Runtime applications (Windows Store
and Windows Phone 8.1 - WinRT) and Android applications for phones and tablets.
With the release of Xamarin, a truly universal application concept was born. When
considering Xamarin applications, the term, universal, refers to applications that run
on all three platforms and adapt to the system resources.

Developing with Xamarin

[2]

In this universal application context, developers are now finding it difficult to get the
necessary solutions for common tasks on all three platforms. Moreover, taking on
each platform as a separate development project results in wasted developer hours
even though the main driving factors for such an application, namely data, business
logic, and UI, are conceptually almost identical on all platforms.

Development strategies and patterns for the Xamarin platform, some of which are
described in the rest of this book, try to resolve some of these problems and provide
the developers with the tools and strategies necessary to produce cross-platform,
manageable, and quality products.

Xamarin as a platform
Xamarin was initially born as a community effort to port the .NET libraries and
common language runtime compilers to different operating systems. Initial
attempts intended to create a set of binaries to develop, compile, and run
applications written in C#, the indigenous language of .NET, on Unix-based
platforms. This project, Mono, was later ported to many other operating
systems, including iOS (Mono-Touch) and Android (Mono for Android).

The emergence of the Xamarin development platform created a new development
niche creating products for three separate platforms at the same time, while allowing
users to adapt their existing .NET development skills to these new platforms and
produce applications for a wider range of devices and operating systems.

Microsoft has been a strong supporter of Xamarin platform and toolset
since the early phases. As you will see in the remainder of the chapter,
Xamarin tools were fully integrated into Visual Studio and finally
included in the Visual Studio 2015 setup. This partnership lasted until
the eventual acquisition of Xamarin by Microsoft which was publicly
announced in March 2016.

Xamarin provides compilers for each of the mentioned platforms so that the code
written in the .NET framework (-alike) is compiled into native applications. This
process provides highly efficient applications that differ greatly from interpreted
mobile HTML applications.

As well as native compilation, Xamarin also provides access to strongly typed
platform-specific features. These features are used in a robust manner with
compile-time binding to the underlying platform. Platform-specific execution can
also be extended with native invocations which is possible with the interop libraries.

Chapter 1

[3]

Xamarin as a product
Xamarin, as a development suite, comes in different flavors. Developers with
different sets of knowledge and experience can use these tools to set up their
development environment according to their own needs. The Xamarin
development environment can be configured on different operating systems.
However, it is currently not possible to develop for all three platforms on the
same operating system.

For developers who are looking to use the familiar interface of Visual Studio and
leverage existing skills, Xamarin extensions for Visual Studio offer a suitable option.
Once the extensions are installed, the environment is ready to develop Android and
Windows Phone applications. This extension lets the developers take full advantage
of Visual Studio, which includes designers for both of these platforms. In order to
develop iOS applications, you need to go through the so-called pairing process of
Visual Studio with an Apple OS X build machine. The build machine is used in
return to visualize storyboards in the development environment (Visual Studio),
compile iOS code, and debug applications.

The second option is to use Xamarin Studio. Xamarin Studio is a complete
IDE with some of the features you are familiar with from Visual Studio, such as
intellisense (smart code completion), code analysis, and code formatting. If you run
Xamarin Studio on Apple OS X, you can develop for Android and iOS platforms
with this IDE. However, with Xamarin Studio on Windows, you can only target the
Android platform.

An important part of this development suite is the real-time monitoring tool called
Xamarin Insights. Xamarin Insights lets developers monitor their live applications to
help detect and diagnose performance issues and exceptions, and discover how the
application is used. Xamarin Insights can also be connected to other applications so,
for instance, application errors can be directly pushed into a bug tracking system.

Target platforms
As mentioned, Xamarin created a new platform in which the development efforts
target multiple operating systems and a variety of devices. Most importantly,
compiled applications do not run an interpreted sequence but have a native code
base (such as Xamarin.iOS) or an integrated .NET application runtime (such as
Xamarin.Android). In essence, Xamarin replaces the Common Language Runtime
and IL for .NET applications with compiled binaries and an execution context, the
so-called mono runtime.

Developing with Xamarin

[4]

Xamarin on Android
With Android applications, mono runtime is placed right on top of the Linux kernel.
This creates a parallel execution context to the Android runtime. Xamarin code is
then compiled into IL and accessed by mono runtime. On the other hand, Android
runtime is accessed by the so-called Managed Callable Wrappers (MCW) which is
a marshalling wrapper between the two runtimes. The MCW layer is responsible for
converting managed types to Android runtime types and invoking Android code
at execution time. Every time that .NET code needs to invoke Java code, this JNI
(Java Interop) bridge is used. MCW provides a wide range of applications including
inheriting Java types, overriding methods and implementing Java interfaces.

The following image shows the Xamarin.Android architecture:

Figure 1: Xamarin.Android Architecture

Android.* and Java.* namespaces are used throughout the MCWs to access
device- and platform-specific features in Android runtime and Java APIs such
as facilities like audio, graphics, OpenGL, and telephony .

Using the interop libraries, it is also possible to load native libraries and execute
native code in the execution context with Xamarin.Android. The reverse callback
execution in this case is handled through Android Callable Wrappers (ACW).
ACW is a JNI bridge which allows the Android runtime to access the .NET domain.
An ACW is generated at compile-time for each managed class that is directly or
indirectly related to Java types (those that inherit Java.Lang.Object).

Chapter 1

[5]

Xamarin on iOS
In iOS applications, the use of an integrated parallel runtime is (unfortunately) not
permissible under the iOS SDK agreement. According to the iOS SDK agreement,
interpreted code can only be used if all of the the scripts and code are downloaded
and run by Apple's WebKit framework.

With this restriction in place, developers can still develop applications in .NET
and share code over the other three platforms. At compile time, projects are
first compiled into IL code and then (with the Mono Touch Ahead-Of-Time
compiler—mtouch) into static native iOS bits. This means that iOS applications
developed with Xamarin are completely native applications.

Figure 2: Xamarin.iOS Compilation

Xamarin.iOS, like Xamarin.Android, contains an interop engine that bridges
the .NET world with the Objective-C world. Through this bridge, under the
ObjCRuntime namespace, users are able to access iOS C-based APIs, as well as using
the Foundation namespace, and can use and derive from native types and access
Objective-C properties. For instance, Objective-C types like NSObject, NSString,
and NSArray are exposed in C# and provide binding to underlying types. These
types can be used either as memory references or as strongly-typed objects. This
improves the development experience and also increases type-safety.

Developing with Xamarin

[6]

This static compilation is the main reason for using a build machine to develop
iOS applications with Xamarin on the Windows platform. Therefore, there is no
reverse-callback functionality in Xamarin.iOS where calls to native runtime from
.NET code are supported but calls from native code back to .NET domain are not.
There are other features that are disabled because of the way that Xamarin.iOS
applications are compiled. For example, no generic types are allowed to inherit
from NSObject. Another important limitation is the fact that no dynamic type
creation is allowed at runtime which, in return, disables the use of dynamic
keywords in Xamarin.iOS applications.

Xamarin.iOS application packages, if built in a debug
configuration, are much larger than their Release counterparts
when compared to other platforms. These packages are
instrumented and not optimized by the linker. Profiling of
these packages is not allowed in Xamarin.iOS applications.

In a similar way to Xamarin.Android development, with Xamarin.iOS, it is also
possible to re-use native code and libraries from managed code. To do this, Xamarin
provides a project template called a binding library. A binding library helps
developers create managed wrappers for native Objective-C code.

Windows Runtime apps
Even though Xamarin does not include Windows Runtime as a target platform nor
provide specialized tools for it (other than Xamarin.Forms), cross-platform projects
that involve Xamarin can and generally do include Windows Runtime projects. Since
.NET and C# are indigenous to Windows Runtime, most of the shared projects (such
as portable libraries, shared projects, and Xamarin.Forms projects) can be reused in
Windows Runtime with no further modification.

With Windows Runtime, developers can create both Windows Phone 8.1 and
Windows Store applications. Windows Phone 8 and Windows Phone 8.1 Silverlight
can also be targeted and included in the PCL description.

Setting up the development environment
Xamarin projects can be carried out in various development environments. Since a
number of platforms are involved in such projects, the operating system, the IDE
selection, and the configuration are all crucial parts of the preparation.

Chapter 1

[7]

Environment setup not only depends on the target application
platforms but also on the Xamarin license. A comparison between
different licensing options and pricing information can be found on
the Xamarin website (https://store.xamarin.com/).

Choosing the right development OS
Android applications can be developed and compiled on Windows using both
Xamarin Studio and Visual Studio with Xamarin extensions installed, as well as on
an Apple OS X operating system with Xamarin Studio for Mac installed.

For iOS application development, whether using Visual Studio on Windows or
Xamarin Studio on Apple OS X, an Apple Macintosh computer, running at least OS X
Mountain Lion, is required. The build machine should have the Xcode development
tools with iOS SDK together with the Xamarin.iOS suite installed.

On the other hand, Windows Store applications can only be developed on the
Windows platform.

Apple OS X Microsoft Windows
Xamarin Studio Xamarin Studio Visual Studio

iOS Apps Yes Yes (with OS X
Build Machine)

Android Apps Yes Yes Yes
Windows Store Apps Yes

Figure 3: Development IDEs on OS X and Windows

On the virtualization front, developers are also limited. OS X cannot be installed and
run on a non-Apple branded machine nor can it be virtualized, according to the end
user agreement. On the other hand, you can set up a virtual machine on an OS X
development machine for Microsoft Windows and Visual Studio. However, in this
case, the system should be running nested virtualization for Hyper-V to run Visual
Studio for Windows Phone and Android emulators. Even though Parallels and
VMWare Fusion support nested virtualization, Microsoft doesn't support nesting
Hyper-V and, therefore, such machines may be unstable.

www.allitebooks.com

https://store.xamarin.com/
http://www.allitebooks.org

Developing with Xamarin

[8]

Xamarin Studio setup and configuration
Xamarin Studio can be set up on both the Windows and OS X operating systems.
Developers can download it from www.xamarin.com and follow the installation
instructions. Xamarin components for target platforms (for example, Xamarin.iOS,
Xamarin.Android, and so on) together with the dependencies for these platforms
(for example, Android SDK) should be downloaded and installed on the
development machine. One required component for OS X, which has
to be installed separately and configured, is the iOS SDK with the Xcode
development environment.

Figure 4: Xamarin Setup on Mavericks (OS X 10.9)

www.xamarin.com

Chapter 1

[9]

On Microsoft Windows, it is important to mention that Xamarin Studio only
supports the development of Android applications. Neither Windows Phone
nor iOS application (even with the remote build machine) projects can be
viewed, modified, or compiled with Xamarin Studio on Windows.

Figure 5: Xamarin Dev. Environment Setup on OS X

While developing on OS X, the only option for developing Windows Phone
applications together with iOS and Android, is to use a Windows virtual machine
and run Visual Studio in parallel with Xamarin Studio. This setup is also helpful
for developers who use Team Foundation Server as the source control, since they
can use the enhanced integration offered by Visual Studio Client rather than the
standalone TFS Everywhere. It can also be set up so that the OS host machine
can be paired with Visual Studio to become the build host for iOS applications.

Developing with Xamarin

[10]

Visual Studio setup and configuration
A typical Windows development platform configuration for Xamarin projects
includes Visual Studio 2013 or 2015, an Apple OS X build host and Hyper-V and/or
VirtualBox to be able to use Android and Windows Phone emulators. Xamarin.iOS
applications are then compiled and emulated on the Apple OS X build host.

Figure 6: Windows Platform Xamarin Development Environment

In spite of the fact that it is technically possible to run OS X with a
virtual machine in the Microsoft Windows environment, Apple's
license agreement does not allow this:
"2.H. Other Use Restrictions: The grants set forth in this License do not
permit you to, and you agree not to, install, use or run the Apple Software
on any non-Apple-branded computer, or to enable others to do so."

On Microsoft Windows, the Xamarin installation is similar to the Xamarin Studio
setup on Apple OS X. All of the prerequisites for Xamarin development are installed
with the Xamarin for Windows package, together with the Visual Studio extension.

Chapter 1

[11]

Figure 7: Visual Studio 2015 Setup

One of the key differences between OS X and Microsoft Windows is that Visual
Studio 2015 now includes cross-platform development tools such as Android SDK,
development kits, and Xamarin project templates. Therefore, the Xamarin installation
is only responsible for installing the extensions for the requested platforms (that is,
Xamarin.iOS and/or Xamarin.Android).

Developing with Xamarin

[12]

In order to develop and test iOS applications and visualize and edit storyboards
with Visual Studio, an Apple OS X machine must be connected to Visual Studio as
a build host. Xamarin 4.0 introduced the concept of Xamarin Mac Agent, which is a
background process on the OS X machine providing the required SSH connection
to Visual Studio (a secure connection over port 22). Prior to Xamarin 4.0, the build
host machine needed to run the so-called Mac build host which was used to pair the
Mac host with Visual Studio. The only prerequisites for Xamarin Mac Agent are to
have Xamarin.iOS installed on both the Windows workstation and the OS X build
host and the build host to have a remote login enabled for the current user. In Visual
Studio, the Find Xamarin Mac Agent dialog helps establish the remote connection.

Figure 8: Xamarin.iOS Build Host

It is important to keep in mind that the Mac machine paired with Visual Studio has
to have Xcode with iOS SDK installed. A developer account (either enrolled into the
app developer program or not) must also be added to the accounts configuration
section of Xcode.

If the account associated with Xcode does not have a paid subscription to
the developer program, the platform for the iOS projects can only be set
for simulator and debug selection to one of the simulator options, not an
actual device. Otherwise, the user will be presented with an error message
such as, No valid iOS code signing keys found in keychain.

Chapter 1

[13]

Emulator options
There are a number of emulators for compiled Xamarin projects for the target
platform and the development environment. Developers have most flexibility with
the emulator for the Android platform, whereas the options for iOS and Windows
Store Apps are limited to the SDK-provided emulators.

Emulators for Android
Android applications can be run and tested on a number of emulators on both
Microsoft Windows and Apple OS X operating systems.

Android SDK comes with the default emulator that is installed on the development
machine. This emulation option is available both on OS X and Windows
operating systems.

Figure 9: AVD and Genymotion Emulators

This Android emulator uses the Android Virtual Devices (AVD) to emulate
the Linux kernel and the Android runtime. It does not require any additional
virtualization software to run, however, the lack of virtualization support makes
AVD much less responsive and makes the startup time relatively longer. It also
provides a wide range of emulation options for developers, from SMS and telephony
to hardware, peripherals, and power events.

Developing with Xamarin

[14]

The Genymotion emulator (https://www.genymotion.com/) is one of the most
popular emulation options for Xamarin and Android developers. Although it
is available with a free license, the free version only allows for GPS and camera
emulation. The Genymotion emulator runs on (and is installed with) VirtualBox
virtualization software.

VirtualBox together with Hyper-V
Virtual Box software cannot be run alongside Hyper-V virtualization
software, which is required for Windows Phone development and
emulation on Windows operating systems. In order to use both the
Windows Phone emulator and the Genymotion Android emulator, you
can create a dual boot option to disable and enable Hyper-V on Windows
start-up.
bcdedit /copy {current} /d "No Hyper-V"

bcdedit /set {<identifier from previous command>}
hypervisorlaunchtype off

This would create a second boot option to start Windows without the
Hyper-V feature so that the virtualization can be used by VirtualBox.

The last and the most recent Android emulation option is the Visual Studio Android
emulator. This Android emulator runs on Hyper-V and provides various device API
versions and emulation options for developers.

Figure 10: Visual Studio Android Emulator

https://www.genymotion.com/

Chapter 1

[15]

The Visual Studio Android emulator is installed as part of the Visual Studio 2015
installation and can also be installed as an extension later. The emulator provides
a similar experience to the Windows Phone emulator and allows developers and
testers to use almost the same set of emulation options with different device profiles
as well as different API levels.

iOS emulation
iOS emulation is only possible with the Xcode tools and iOS SDK. The iOS simulator
can be started either directly on Apple OS X while developing with Xamarin Studio,
or by pairing the build machine with the Visual Studio Xamarin extension running
on Microsoft Windows. It also can be used to test both iPhone and iPad applications.

A typical Xamarin solution structure
A Xamarin solution can be composed of different types of projects. Some of these
projects are platform-specific projects and the others are shared project types or
modules that make it possible to reuse code across platforms.

Figure 11: Xamarin project solution structure on Visual Studio and Xamarin Studio

Developing with Xamarin

[16]

Portable class libraries
Portable class libraries are the most common way of sharing code between
cross-platform projects. PCLs provide a set of common reference assemblies that
enable .NET libraries and binaries to be used on any .NET-based runtime or with
Xamarin compilers—from phones to clients, to servers and clouds. PCL modules
are designed to use only a specific subset of the .NET framework and can be set to
target different platforms.

Figure 12: Portable Class Library Targets

Microsoft has a designation for each target combination and each profile also gets
a NuGet target. A subset of .NET libraries for portable class libraries were released
through NuGet with the release of Visual Studio 2013. This makes it possible for
developers to release their work through NuGet packages, targeting a wide range
of mobile platforms (see the NuGet packages section for more information).

Chapter 1

[17]

The currently preferred profile and the greatest common subset
for Xamarin projects is the so-called Profile 259. The Microsoft
support designation for this profile is the .NET Portable Subset
(.NET Framework 4.5, Windows 8, Windows Phone 8.1, Windows
Phone Silverlight 8) and the NuGet target framework profile is
portable-net45+netcore45+wpa81+wp8.

While creating a PCL, the biggest drawback is the fact that no platform-specific code
can be included in or referenced by the project. This caveat is generally addressed by
the abstraction of platform-specific requirements or by using dependency injection or
similar methods to introduce the implementation in platform-specific projects.

For instance, in the device-specific peripheral example below, the common portable
class library has a constructor that accepts two separate interfaces which can be
injected with a dependency injection container or can be initialized with a
device-specific implementation. The common library, in return, creates a
business logic implementation, as shown:

namespace Master.Xamarin.Portable
{
 public class MyPhotoViewer
 {
 private readonly IStorageManager m_StorageManager;

 private readonly ICameraManager m_CameraManager;
 public MyPhotoViewer(IStorageManager storageManager,
 ICameraManager cameraManager)
 {
 m_StorageManager = storageManager;
 m_CameraManager = cameraManager;
 }

 public async Task TakePhotoAsync()
 {
 var photoFileIdentifier =
 await m_CameraManager.TakePhotoAndStoreAsync();

 var photoData =
 await m_StorageManager
 .RetrieveFileAsync(photoFileIdentifier);

 // TODO: Do something with the photo buffer
 }
 }

 /// <summary>
 /// Should be implemented in Platform Specific Library

Developing with Xamarin

[18]

 /// </summary>
 public interface IStorageManager
 {
 Task<string> StoreFileAsync(byte[] buffer);

 Task<byte[]> RetrieveFileAsync(string fileIdentifier);
 }

 /// <summary>
 /// Should be implemented in Platform Specific Library
 /// </summary>
 public interface ICameraManager
 {
 Task<string> TakePhotoAndStoreAsync();
 }
}

Shared projects
The term, shared project, was initially coined by the Microsoft team with the release
of Universal Apps for Windows Phone and Windows Runtime (that is, Visual Studio
2013). With the arrival of Xamarin, shared projects can also be referenced by Android
and iOS projects. These types of projects are essentially wrappers or containers for
shared code and resource files that are linked to multiple projects and platforms.
Shared file assets are included in the referencing projects later and compiled as
part of these modules.

Figure 13: Shared Projects

Chapter 1

[19]

While using shared projects, developers should be careful when including platform-
specific code since the shared elements will be included in all the referencing
projects and compiled. Compiler directives (for example, #if __ANDROID__) can be
introduced in shared projects to denote that certain parts of the code are only for a
specific platform.

Visualizing platform-specific code in shared projects
With Visual Studio (2013 or higher), it is possible to visualize different
execution paths according to the combinations of conditional compilation
constants.

Figure 14: Visual Studio shared project editor

Visual Studio provides a dropdown in the top corner of the editor
window which determines the platform-specific projects that are
referencing the shared project. By selecting the project, you can see the
disabled sections of the code, according the target platform.

If we used the same example to take a photo, we would need to create two
completely different implementations for the same action, as shown here:

private async Task<string> TakePhotoAsync()
{
 string resultingFilePath = "";

 var fileName = String.Format("testPhoto_{0}.jpg", Guid.NewGuid());

#if __ANDROID__

 Intent intent = new Intent(MediaStore.ActionImageCapture);
 var file = new File(m_Directory, fileName);
 intent.PutExtra(MediaStore.ExtraOutput, Net.Uri.FromFile(_file));

Developing with Xamarin

[20]

 // TODO: Need an event handler with TaskCompletionSource for
 // Intent's result
 m_CurrentActivity.StartActivityForResult(intent, 0);

 resultingFile = file.AbsolutePath;

#elif WINDOWS_PHONE_APP

 ImageEncodingProperties imgFormat = ImageEncodingProperties.
CreateJpeg();

 // create storage file in local app storage
 var file = await LocalStore.CreateFileAsync(fileName);

 resultingFilePath = file.Path;

 // take photo
 await capture.CapturePhotoToStorageFileAsync(imgFormat, file);

#endif

 return resultingFile;
}

Xamarin.Forms
Xamarin.Forms is the unified library for creating UI implementations for target
platforms to be rendered with native controls. Xamarin.Forms projects are generally
created as PCL projects and can be referenced by Xamarin.iOS, Xamarin.Android,
and Windows Phone development projects. Xamarin.Forms components can also be
included in shared projects and can utilize platform-specific features.

Chapter 1

[21]

Developers can effectively create common UI implementations with these forms,
either declaratively (with XAML), or by using the API provided. These views, which
are constructed with Xamarin.Forms components, are then rendered at runtime with
platform-specific controls.

Development projects can be realized with Xamarin.Forms by creating the data
access model up until the UI components with a shared implementation, thus raising
the amount of shared code between the platforms to as much as, or at times more
than, 90%.

NuGet packages
NuGet, which was initially an open source Microsoft initiative to share code among
developers, has now become a much larger ecosystem. While NuGet servers can
be used as an open source library-sharing platform, many development teams use
NuGet as a private company repository for compiled libraries.

NuGet packaging is a viable code-sharing and reuse strategy for Xamarin projects
since it is supported by both Xamarin Studio and Visual Studio (with no further
installation following Visual Studio 2012).

The NuGet target framework moniker for Xamarin projects is mono and there are
further groupings such as MonoAndroid10, which refers to projects with a target
framework of MonoAndroid version 1.0 or higher. Other platform targets are:

• MonoAndroid: Xamarin.Android
• Xamarin.iOS: Xamarin.iOS Unified API (supports 64-bit)
• Xamarin.Mac: Xamarin.Mac's mobile profile
• MonoTouch: iOS Classic API

Developing with Xamarin

[22]

Developers are free to either re-use publicly available NuGet packages or create their
own repository to store compiled packages to include in Xamarin projects.

Creating NuGet packages in Visual Studio 2015
With the release of Visual Studio 2015, there is a new project template that
should help developers to create and reuse NuGet packages.

Figure 15: The Visual Studio NuGet package project template

More information on creating NuGet packages and publishing them can
be found on the NuGet documentation hub: (http://docs.nuget.
org/create/creating-and-publishing-a-package)

http://docs.nuget.org/create/creating-and-publishing-a-package
http://docs.nuget.org/create/creating-and-publishing-a-package

Chapter 1

[23]

Components
Components are another approach to re-using compiled libraries and modules in
Xamarin projects. The Component Store is built into both Xamarin Studio and Visual
Studio and it has gathered a number of re-usable submissions from developers since
its release in 2013. Components can be downloaded and installed into projects in
the same way as for NuGet packages by using the Xamarin Component Store. The
Xamarin Component Store can be found at https://components.xamarin.com.

Quality in cross-development
Some development terms help developers create robust, maintainable,
high-quality code when developing for multiple platforms. These code descriptors
help development teams identify architectural problems, software issues and
random errors.

Reusability
"How much of the code can be reused throughout the project?"

Reusability is one of the key quality identifiers in cross-platform development
projects. Xamarin, especially with the release of Xamarin.Forms, has provided
developers with extensive resources to create platform-agnostic components that can
decrease redundancy and reduce developer hours in complex projects. Code quality
matrices generated by Visual Studio and unit test coverage results can convert this
descriptor into a quantifiable measure.

Abstraction
"How much do the shared components know about the platform?"

It is almost unavoidable not to include platform-specific bits in cross-platform
solutions. The level that these modules are abstracted to increases the robustness of
the shared components and is closely related to how loosely the implemented logic
is coupled with the underlying platform. In this way, the shared components can be
tested easily with mock or fake libraries without having to create platform-specific
test harnesses. Unit test code coverage results help determine the testability of
the application.

https://components.xamarin.com

Developing with Xamarin

[24]

Loose-coupling
"How easy is it to transpose the project into another platform?"

On top of the platform-specific abstracted implementation, an autonomous shared
implementation layer creates flexible solutions which can easily be adapted to other
platforms. Reducing the dependencies of the shared logic to the underlying platform
not only inherently increases the reusability but also the agility of the development
projects. The number of conditional compilation blocks or if or else loops for the
underlying platform on shared projects identifies the amount of code executed
according to the platform.

Nativity
"How much does your application blend into the platform?"

Even though the ultimate goal while developing with Xamarin is to create an
application that can be easily compiled onto multiple targets, the applications
created with Xamarin should look, feel and behave as if they were designed for
that specific platform. The UI paradigms and user interaction mechanisms of each
platform should be respected while creating a common foundation. Nativity is
more of a nominal and subjective measure when compared to the aforementioned
code descriptors.

Summary
In this chapter, we have discussed some of the key features of the Xamarin
development suite and development on previously described platforms and looked
at Xamarin essentials for developing mobile applications. The remaining chapters
refer to these key features and the differences between the platforms to identify
valuable patterns and strategies to create cross-platform applications with Xamarin.

The architectural overview of the target platforms and how Xamarin applications
are developed and compiled on these platforms were also discussed. The most
important difference between these platforms is that Xamarin.Android (and also
Windows Phone) uses .NET binaries and mono (and .NET) runtime to execute code,
whereas Xamarin.iOS applications have a completely different setup and double
compilation (Ahead-of-Time) to make use of .NET binaries, but not to run
them directly.

Chapter 1

[25]

Whilst developing for Android and iOS platforms with Xamarin, developers are also
forced to select between different OS platforms and development IDEs. The selection
and configuration of the development environment depends on the targeted platforms.
IDE features and emulator and simulator options play an important role in this
selection. While providing a familiar interface and letting the developers transfer their
.NET-related skills and know-how, the OS X operating system together with Xamarin
Studio is currently a more viable option for developing iOS applications.

Another important refresher was for the Xamarin solution structure. We talked
about how developers can share code between different platforms and re-use public
or private stores to include shared modules. Shared projects make up the basis for
most cross-platform development patterns and strategies together with portable
class libraries.

Overall, when using the Xamarin specifications and features, the main objective
of developers should be to create loosely coupled, platform-agnostic modules that
increase productivity and improve the quality of cross-platform development projects.

[27]

Memory Management
This chapter investigates how memory is managed on iOS and Android with
Xamarin runtime. Whilst drawing parallels to the .NET platform, it will provide
examples of memory management problems and issues that can cause leaks, and
also look at useful patterns that can help developers save valuable resources. This
chapter is divided into the following sections:

• Application Component lifecycle
• Garbage collection
• Platform-specific concepts
• Troubleshooting and diagnosis
• Patterns and best practices

Application Component lifecycle
Each platform in the Xamarin ecosystem has certain processes and states that the
applications go through during their execution lifetime. Developers can implement
certain methods and subscribe to lifecycle events such as application start,
suspension, termination, and backgrounding to handle much needed
application state and release resources which are no longer required.

Activity lifecycle (Android)
In Android applications, contrary to the conventional application development
model, any activity can be the access point to the application (as long as it is
designated as such). Any activity in the application can be initialized at start-up or
can be resumed directly when the application is resuming or restarting from a crash.

In order to manage the lifecycle of the activities, there are distinct states and events
which help developers organize memory resources and program features.

www.allitebooks.com

http://www.allitebooks.org

Memory Management

[28]

Active/Running
An activity is said to be in the active state when an application is the application
in focus and the activity is in the foreground. At this state, unless extraordinary
measures are required by the operating system (for example, in case of system out
of memory or application becoming unresponsive), the developer does not need to
worry about the memory and resources, as the application has the highest priority.

In a creation cycle, OnCreate is the first method that is called by the application. This
is the initialization step where the views are created, the variables are introduced,
and static data resources are loaded.

OnStart or OnRestart (if the activity is restarting after it was backgrounded) is the
second event method in a creation cycle. This method(s) can be overridden if specific
data reload procedures need to be implemented. This is the last method called before
the activity becomes visible.

The OnResume method is called after a successful launch of the activity. This method
is the indication that the application is ready for user interaction. It can be used to
(re)subscribe to external events, display alerts/user messages, and communicate
with device peripherals.

Paused
An activity is paused when either the device goes to sleep having this activity in the
foreground, or the activity is partially hidden by another dialog or activity. In this
state, the activity is still "alive" but cannot interact with the user.

The OnPause event method is called right before the activity goes into the Paused
state. This event method is the ideal place to unsubscribe from any external event
providers, commit any unsaved changes and clean up any objects consuming
memory resources since the user interaction is not possible in the Paused state. The
activity will call only the OnResume method when once again the activity has the
highest priority, it will not go through the full creation cycle.

Backgrounded
An activity goes into the Backgrounded state when the user presses the home button
or uses the app switcher. In this state, it is not guaranteed that the activity will stay
alive until the user "restarts" the application.

Chapter 2

[29]

The OnStop method is called when the application is backgrounded or stopped. The
difference between the Backgrounded and Stopped states is that the activity is in
the Stopped state when it is being prepared for destruction and it will be followed
by the OnDestroy method since the application is dismissed and will not be used
by the user anymore. If the user resumes the application, the activity will call the
OnRestart method and a full creation process will follow.

Stopped
The Stopped state represents the end of the lifecycle for the activity. The activity
enters this state when the user presses the back button signifying that the application
is not needed anymore. However, it is also possible that the activity is taken into this
state because the system is starved of memory resources and it needs to take down
activities that are on the lower priority states like paused or backgrounded.

The OnDestroy method follows the Stopped state and it is the last lifecycle event
method that is called. It is the last chance for the application to stop long running
processes that might cause leaks or clean up other persistent resources. It is advisable
to implement most of the resource clean up in OnPause and OnStop methods, since
OnDestroy can be called unexpectedly by the system contrary to the user initiated
OnPause and OnStop methods.

Restarted
An activity is said to be "restarted" when it comes back to user interaction after it was
backgrounded. Restarted activities can reload any saved state information and create
an uninterrupted user experience. After going through the initialization steps,
the application goes into the Running state again.

Application lifecycle (iOS)
On iOS, the application lifecycle is handled through UI application delegates. Once
the delegate methods are implemented and registered, the methods will be invoked
by the execution context.

public class Application
{
 static void Main(string[] args)
 {
 UIApplication.Main(args, null, "AppDelegate");
 }
}

Memory Management

[30]

[Register("AppDelegate")]
public partial class AppDelegate : UIApplicationDelegate
{
 //Implement required methods
}

Application events on iOS are a little more complicated than the top-down execution
of events on Android. Developers can insert their methods into transitive states
using the state-related methods implemented in the AppDelegate.

Figure 1: iOS Application State Transitions

The most important state-related methods are the following:

• WillFinishLaunching is the first chance of the application to execute code
at launch time. It indicates the application has started to launch but the state
has not yet been restored.

• FinishedLaunching is called once the state restoration occurs after the
WillFinishLaunching is completed.

• OnActivated and OnResignActivation are similar to OnPause and
OnResume event methods on the Android platform.

Chapter 2

[31]

• DidEnterBackground is called when the application enters the
Backgrounded state. It is similar to the OnStop method on Android but there
is a time constriction on this method; the method should execute in less
than 5 seconds, and the method exits without notification after the allocated
time. If more time is needed to execute certain methods in this delegate,
applications can start a background task to complete the execution.

• WillEnterForeground and WillTerminate can follow the
DidEnterBackground execution. If the former method is called, the
application is about to be brought back to foreground and active state,
otherwise, the application is prepared to be terminated because the system
needs more memory, or the user is closing a backgrounded application.

Garbage collection
Garbage collection (GC) is one of the most effective automated memory
management techniques on modern application development platforms.
In simple terms, with automated garbage collection, memory resources are
allocated for objects used by the application and reclaimed for resources no
longer needed by the application.

In spite of the fact that garbage collection, as an automated process,
takes over the burden of managing memory allocations, it can have
a significant impact on performance. This performance handicap
is one of the main reasons why there is no garbage collection
mechanism on the iOS platform.

In theory, GC is responsible for reclaiming memory resources occupied by runtime
elements that cannot be reached by the current executing application. However, this
mechanism cannot always identify these unreachable resources correctly and/or
have unexpected results while purging the identified memory pointers.

Memory leaks occur when an application fails to identify and/or free the
resources occupied by unreachable code elements, which can lead to memory
exhaustion problems.

Dangling pointers happen when a memory region is freed while references still exist
in the execution context. These references are then removed and memory can be
re-allocated for another use.

Double free bugs occur when a memory region is already reclaimed and the
application or garbage collector tries to free this region once more.

Memory Management

[32]

GC on Xamarin projects
Managed code, as defined by the Common Language Runtime in the .NET framework,
is application code where the memory resources are managed by the native garbage
collector. GC, on initialization, allocates a segment of the memory to store and manage
memory resources, which is called the "managed heap". The garbage collection in CLR
happens on three different generations where objects with different lifespans live in
the heap. Promotion between the generation and survival of objects depend on which
generation they are placed in and how they survived prior GC cycles.

SGen garbage collector
SGen garbage collector is the generational garbage collector used in most Xamarin
projects (both Xamarin.iOS and Xamarin.Android). SGen performs more frequent
garbage collections over smaller sets of objects which makes it more efficient over
the conservative Boehm GC.

SGen utilizes three heaps, namely The Nursery, Major Heap, and Large Object Space,
to allocate memory segments for objects according to their memory requirements,
and objects are promoted between the heaps when they survive through GC cycles.
In this setup, The Nursery, similar to Generation 0 in CLR on .NET, is where most
objects are created and destroyed and most of the GC cycles occur to release memory
resources. Objects surviving the minor GC cycles can be promoted to the major
heap. The major heap only has major GC passes in case the heap itself is running
out of memory. The last heap is only for larger objects that have higher memory
requirements, and does not accept promotion from other heaps.

It is important to remember that during a garbage collection cycle
all the threads registered with the runtime, including the main run
loop thread are paused. One exception to this execution pause is the
separate process that continues to run the iOS animations.

Boehm garbage collector (iOS only)
Boehm GC (aka Boehm-Demers-Weiser garbage collector) is an open-source
garbage collector implementation that was initially created for C/C++ language
implementations. As a conservative garbage collector, it still has procedures for leak
detection, supports "finalized" semantics, and has limited support for generational
implementations which makes it an attractive candidate for implementations and
ports on various platforms.

An implementation of Boehm GC is only available for Xamarin.iOS applications
using the Classic API, in which it is the default garbage collector.

Chapter 2

[33]

Platform-specific concepts
In order to understand the memory management techniques and pitfalls, one must
understand some platform-related concepts. Even though Xamarin provides an almost
platform agnostic development experience, iOS and Android platforms deal with
memory allocations and references slightly differently from .NET CLR and each other.

Object reference types
Referred objects can be classified according to application needs. This classification
helps the garbage collector decide whether the memory allocation can be released for
the referred objects.

A strong reference protects the object from being "garbage collected". A referred
object is said to be strongly referenced/reachable when the class instance is directly
used by the current execution context.

Weak references can be used for class instances when the need for the reference
does not interfere with garbage collection. When the referred object is weakly
reachable, the dependent section of code has to check whether the object is still
alive before using the referenced object. Weak references have two types in CLR
according to the dispose and finalization processes implemented by the declaring
types: long and short weak references. Long weak references are types that can live
on to be recreated and can be finalized by a destructor rather than being disposed or
garbage collected.

Soft and phantom references are specific to Android runtime. Soft references, in
simple terms, are a little more persistent than the weak references, and would only
be cleared up by the garbage collector under memory pressure even though the
object is no longer strongly reachable. Phantom references are the weakest reference
in Android runtime. They are only used to implement specialized object finalization
methods and have to be associated with a reference queue for processing.

Automatic Reference Counting (ARC)
Automatic Reference Counting is a compiler feature that was introduced in iOS 5. It
is referred to as a compiler feature since it cannot be classified as a garbage collection
implementation. It is a static analysis implementation where the compiler analyses
the code execution tree and inserts retain and release messages according to the
object persistence requirements.

With ARC, traditional memory management calls are not allowed to be inserted in
the application to allocate memory and release memory addresses.

Memory Management

[34]

Troubleshooting and diagnosis
Profiling is the term used to describe the dynamic system analysis while the target
application is running. Profilers generally collect data about metrics such as CPU
utilization, framerate values, and most importantly data about memory allocations.
Especially with Xamarin projects, since we are dealing with multiple platforms,
profiling becomes an important part of testing and diagnostics.

There are numerous tools that one can use to profile memory usage on Xamarin
projects, Xamarin Profiler being the only one that can be used both for Xamarin.iOS
and Xamarin.Android applications.

Xamarin Profiler
Xamarin Profiler is the newest addition to the Xamarin Suite. This profiler has the
advantage over other platform-specific applications since it can be run either on OS X
or Windows targeting Xamarin.Android or Xamarin.iOS applications.

Figure 2: Xamarin Profiler

Chapter 2

[35]

It was designed to give developers almost real time (depending on the sampling
rate) information about the memory heaps for Xamarin applications. It can also save
memory allocation snapshots which can later on be accessed and analyzed.

It can be started directly from Visual Studio or Xamarin Studio and can be used with
both emulator and real device build/run configurations.

Currently there are two instruments you can select in the initial popup window.

Allocations instrument
The first instrument is the Allocations template which provides detailed information
on the memory segments and allocations. In this view, developers can see a
generalized list of allocations grouped by the class name under the Summary tab.
The Call Tree tab gives a list of threads in the application and how they relate to the
memory objects. Allocation list provides live data about the object allocations, and
the Snapshots tab gives information about the memory snapshots stored.

Time Profiler
Time Profiler is the second instrument that can be used in Xamarin Profiler.
It provides valuable information on how much time the application spent executing
a certain method. Developers can see a whole stack trace on each method.

Device Monitor (Android only)
Android Device Monitor is hitherto the main diagnostic tool for Android
development. And for Xamarin developers, when Android SDK is installed, device
monitor can be accessed directly from a tool box item on Visual Studio and under the
tools menu on Xamarin Studio.

On the main page of the device monitor there is a tree-view displaying each device
or simulator that can be attached to with the device monitor.

Only a single debugger can be attached to any device at a time,
therefore other debuggers have to be detached before using the
device monitor.

Memory Management

[36]

Once the device is selected, developers can get allocation information and the heap
state using the graphical interface. It is also possible to trigger garbage collection
cycles using the device monitor.

Figure 3: Android Device Monitor attached to Visual Studio Emulator

Chapter 2

[37]

Instruments (iOS only)
Instruments is a valuable application that is installed together with the Xcode toolset.
In this application developers are provided with a big set of diagnostic tools varying
from energy consumption, graphic resources, to memory allocations.

The allocations instrument has a very similar interface to Xamarin Profiler, and gives
almost real-time data about memory objects.

Figure 4: Instruments Profiling Xamarin Application

Memory Management

[38]

The Xcode Instruments tool can be used both together with an actual device or the
iOS simulator. It can be started directly from Xamarin Studio. Once the application is
started on the iOS simulator or on the actual device, it becomes available in the target
selection window.

Figure 5: Instruments with iOS Simulator set as target

If you are developing Xamarin.iOS applications on Microsoft
Windows with an OS X build machine, you will not be able
to access the Instruments directly from the development
station. Once the application is either on the test device or the
simulator, you can start the instruments on the build machine
and choose the correct target to analyze.

Monotouch Profiler (iOS only)
Monotouch Profiler was the Xamarin tool used to diagnose memory issues with
Xamarin.iOS applications before it was superseded by Xamarin Profiler. It can still be
accessed using the Run with Mono HeapShot menu item under the Project menu in
Xamarin Studio. While providing useful information about memory allocations and
the heap, it currently does not go further than being a lightweight application to take
memory snapshots.

Chapter 2

[39]

Patterns and best practices
While dealing with managed runtime and garbage collection, there are certain
patterns and anti-patterns developers must be careful with. If not handled properly,
both managed and native objects can produce noncollectable traces, which in turn
can cause memory leaks and unnecessary resource consumption.

Disposable objects
The resources managed by the garbage collector are generally limited to memory
allocations. Other resources like network sockets, database handles, UI elements,
and file/device descriptors need to have additional definitions or mechanisms.

In managed runtime, these object resources can be cleaned up in two different ways.
The first, less efficient, unpredictable way is to implement a destructor/finalizer.
With a finalizer implementation, once the garbage collector decides the object is no
longer strongly reachable, the resources such as network sockets can be disposed.
However, finalizable objects have to wait for the following GC cycle to be cleaned
up and cannot be finalized with developers' initiatives.

Another way to clean-up application resources is to implement the IDisposable
interface in the class that has the references to the resources. This interface requires
only a single Dispose method implementation to get rid of managed resources. The
garbage collector also offers a method (GC.SuppressFinalize) to avoid finalization
since the object is going to be disposed using the IDisposable interface.

public class DisposableFinalizableClass : IDisposable
{

 private ManagedResource m_Resource; // reference to a resource

 public DisposableFinalizableClass()
 {
 m_Resource = new ManagedResource(); // allocates the resource
 }

 /// <summary>
 /// Destructor for the DisposableFinalizableClass
 /// <remarks>
 /// Note that we are not overriding the object.Finalize method
 /// but providing a destructor for the Finalize method to call
 /// </remarks>

Memory Management

[40]

 /// </summary>
 ~DisposableFinalizableClass()
 {
 Dispose(false);
 }

 /// <summary>
 /// Implementing the Dispose method
 /// </summary>
 public void Dispose()
 {
 Dispose(true);

 // Letting the GC know that there is no more need for
 // Finalization, the resources are already cleaned-up
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (disposing)
 {
 if (m_Resource != null) m_Resource.Dispose();
 }
 else
 {
 // Called from Finalize
 // Clean-up any unmanaged resources
 }
 }
}

The fact that disposable objects can be used together with using blocks, gives a
deterministic way for developers to release associated resources as soon as the
object is no longer needed.

The lapsed listener problem
One of the most common patterns used with UI elements or legacy API
implementations is the observer pattern. As you might know, there are two
stakeholders in this pattern, the observer and provider. The observer subscribes
to the event provided by the provider to receive updates.

Chapter 2

[41]

The lapsed listener problem occurs when the observer pattern is implemented
incorrectly or better yet incompletely. In this pattern, after the subscription, the
provider keeps a strong reference to the observer. If this subscription is not removed
before the subscriber goes out of context, the application will leak the subscriber
object since it cannot be garbage collected (for example, an Android activity, or a
view model).

In order to demonstrate this problem, we will use a singleton implementation of
Fibonacci sequence with asynchronous methods as the event provider.

public event EventHandler<int> CalculationCompleted;

public event EventHandler<List<int>> RangeCalculationCompleted;

/// <summary>
/// Calculates n-th number in Fibonacci sequence
/// </summary>
/// <param name="ordinal">Ordinal of the number to calculate</param>
public void GetFibonacciNumberAsync(int ordinal)
{
 var task = Task.Run(() =>
 {
 var result = GetFibonacciNumberInternal(ordinal);
 if (CalculationCompleted != null) CalculationCompleted(this,
result);
 });

 // Avoiding Deadlocks on the UI thread
 task.ConfigureAwait(false);
}

/// <summary>
/// Calculates a range of numbers in Fibonnaci sequence
/// </summary>
/// <param name="firstOrdinal">Ordinal of the first number</param>
/// <param name="lastOrdinal">Ordinal of the last number</param>
public void GetFibonacciRangeAsync(int firstOrdinal, int lastOrdinal)
{
 var task = Task.Run(() =>
 {
 var result = GetFibonacciRangeInternal(firstOrdinal,
lastOrdinal);

Memory Management

[42]

 if (RangeCalculationCompleted != null)
RangeCalculationCompleted(this, result);
 });

 task.ConfigureAwait(false);
}

public static FibonacciSource Instance
{
 get
 {
 return m_Instance ?? (m_Instance = new FibonacciSource());
 }
}

We will implement two separate view models using MvvmCross and use associated
views to invoke the asynchronous methods, then navigate back to the main view
using the Close method on the view models. In the constructor of each view model,
we will be subscribing to the respective event on the FibonacciSource.

Figure 6: Fibonacci Calculator App

Chapter 2

[43]

In order to investigate any memory leaks, we navigate back and forth between the
main and the calculation views. After a couple of iterations on both of the views (that
is, single and range), we have the results shown below on the Xamarin Profiler (just
using the "Allocations" template.)

Figure 7: Xamarin Profiler Results

You will notice that none of the instances of SingleCalculationViewModel are alive
after garbage collection (you can trigger a GC run with GC.Collect()), however
RangeCalculationViewModel instances are persistent. The reason for this is the
missing unsubscribe call in the close command of the RangeCalculationViewModel.

private MvxCommand m_CloseCommand;

public ICommand CloseCommand
{
 get
 {

Memory Management

[44]

 m_CloseCommand = m_CloseCommand ?? new MvxCommand(DoClose);
 return m_CloseCommand;
 }
}

private void DoClose()
{
 // FibonacciSource.Instance.RangeCalculationCompleted -=
OnCalculationCompleted;
 Close(this);
}

We could have also used the OnPause event on this Android application or any other
relevant event on other platforms to get rid of the subscription before the subscriber
or the view component that holds the subscriber goes out of context.

In this scenario, another solution would be to use a TaskCompletionSource to
convert the observable pattern to an awaitable one. Wrapping up the observable
Fibonacci source would give you a better control over the subscription and the
resulting asynchronous task would be better suited for mobile development and
MVVM pattern.

private Task<List<int>> CalculateFibonacciRangeAsync(int firstOrdinal,
int secondOrdinal)
{
 TaskCompletionSource<List<int>> taskCompletionSource = new TaskCom
pletionSource<List<int>>();

 EventHandler<List<int>> calcCompletedEventHandler = null;

 calcCompletedEventHandler =
 (sender, e) =>
 {
 FibonacciSource.Instance.RangeCalculationCompleted -=
calcCompletedEventHandler;
 taskCompletionSource.SetResult(e);
 };

 FibonacciSource.Instance.RangeCalculationCompleted +=
calcCompletedEventHandler;

 FibonacciSource.Instance.GetFibonacciRangeAsync(firstOrdinal,
secondOrdinal);

 return taskCompletionSource.Task;
}

Chapter 2

[45]

Finally, this async task would be called with a ContinueWith statement to set the
result in the view model.

private void DoCalculate()
{
 if (!string.IsNullOrWhiteSpace(Input1) && !string.
IsNullOrWhiteSpace(Input2))
 {
 int numberOrdinal1, numberOrdinal2;

 if (int.TryParse(Input1, out numberOrdinal1) && int.
TryParse(Input2, out numberOrdinal2))
 {
 InfoText = "Calculating";

 var fibonacciTask = CalculateFibonacciRangeAsync(numberOrd
inal1, numberOrdinal2)
 .ContinueWith(task =>
 {
 Result = string.Join(",", task.Result);
 InfoText = "";
 });

 fibonacciTask.ConfigureAwait(false);

 return;
 }
 }

 InfoText = "Invalid Input";
}

Weak references
Weak references can be of great assistance while dealing with loosely coupled
application layers. In these type of scenarios, where objects need to be managed
outside the class domain, weak referencing can be used to remove these instances
from the GC protection based on the notion of reachability because of the strong
references they have to other layers of the application.

Memory Management

[46]

Let us assume in the previous example that the Fibonacci sequence items are handled
as reference values with a class called FibonacciItem. This class carries the value
calculated and the time it was calculated.

public class FibonacciItem
{
 public int Value { get; private set; }

 private readonly DateTime m_Calculated;

 public FibonacciItem(int value, DateTime calculatedTime)
 {
 Value = value;

 m_Calculated = calculatedTime;
 }
}

To decrease the processing time, we can now implement a caching mechanism which
would force the source to recalculate the value according to the ordinal if it does
not already exist in the cache or just does not sound right is disposed of in favor
of memory resources. For this purpose we can use the WeakReference to cache
Fibonacci items.

public class FibonacciCache
{
 // Dictionary to contain the cache.
 private static Dictionary<int, WeakReference> _cache;

 public FibonacciCache()
 {
 _cache = new Dictionary<int, WeakReference>();
 }

 /// <summary>
 /// Accessor to FibonacciItem references
 /// </summary>
 /// <param name="ordinal"></param>
 /// <returns>FibonacciItem if it is still alive</returns>
 public FibonacciItem this[int ordinal]
 {
 get
 {
 if (!_cache.ContainsKey(ordinal)) return null;

Chapter 2

[47]

 if (_cache[ordinal].IsAlive)
 {
 // Object was obtained with the weak reference.
 FibonacciItem cachedItem = _cache[ordinal].Target as
FibonacciItem;
 return cachedItem;
 }
 else
 {
 // Object reference is already disposed of
 return null;
 }
 }
 set
 {
 _cache[ordinal] = new WeakReference(value);
 }
 }
}

Cross-domain objects
In Xamarin applications, one of the most common memory issues, cross-heap
references, occur when there is a cross-over between the native runtime and
mono runtime. This issue stems from the fact that mono runtime is almost
handled as a separate domain and managed in a heap only with GC handles
to the native domain.

In an Android scenario, where Java objects are referenced by managed C# objects
or vice versa, the communication between the two runtimes becomes expensive.
For instance, if we were implementing the Fibonacci calculator without using the
ViewModel pattern, we would want to create a data adaptor to load the range
calculation results into a list view.

private void OnFibonacciCalculationCompleted(object sender,
List<FibonacciItem> result)
{
 RunOnUiThread(() =>
 {
 var listView = FindViewById<ListView>(Resource.Id.lstResult);

 listView.Adapter = new ArrayAdapter<string>(this, Resource.
Layout.ListViewItem,

Memory Management

[48]

 result.Select(val => val.Value.ToString()).ToArray());

 });
}

This implementation has a higher cost of being garbage collected. It also has
performance penalties considering the language crossing, not to mention the
fact that objects from each world are effectively mirrored increasing the memory
allocation costs.

The solution here would be to do as much work as possible in the managed
world and let the runtime take care of the rest. So instead of using the native
ArrayAdapter, we could implement a base adapter that would feed the
FibonacciItem instances to the ListView.

public class FibonacciResultsAdapter : BaseAdapter<FibonacciItem>
{
 List<FibonacciItem> m_ResultItems;

 Activity m_Context;

 public FibonacciResultsAdapter(Activity context,
List<FibonacciItem> items)
 {
 m_Context = context;
 m_ResultItems = items;
 }

 public override long GetItemId(int position) { return position; }

 public override FibonacciItem this[int position]
 {
 get { return m_ResultItems[position]; }
 }

 public override int Count
 {
 get { return m_ResultItems.Count; }
 }

 public override View GetView(int position, View convertView,
ViewGroup parent)

Chapter 2

[49]

 {
 View view = convertView;

 if (view == null)
 view = m_Context.LayoutInflater.Inflate(Resource.Layout.
ListViewItem, null);

 view.FindViewById<TextView>(Android.Resource.Id.txtOutput).
Text = m_ResultItems[position].Value.ToString();

 return view;
 }
}

By implementing the adapter we removed the usage of Java type ArrayAdapter,
ArrayList and the Java references to the FibonacciItem instances.

The same applies to scenarios where native objects are being inherited in the
managed domain. These, so-called, "special objects" are handled differently by
the garbage collector. They have to be rescanned for all the references they carry
with each garbage collection cycle.

Cyclic references (cycles)
Cyclic references occur, in general terms, when the underlying platform uses some
type of reference counting as memory management strategy and the memory is
cleaned up according to the number of references to that specific object instance.

Reference counting was abandoned by Microsoft with the release of .NET and the
introduction of the generational tracing garbage collection. SGen in mono runtime
on Android devices also uses some form of a mark and sweep algorithm. In both
runtimes, the references are traced from so called "application roots". These objects
are the ones that are "presumed" to be alive at the time of a garbage collection cycle.

The roots can be:

• References to global objects
• References to static objects
• References to static fields
• References on the stack to local objects
• References to objects waiting to be finalized
• References in CPU registers to objects on the managed heap

Memory Management

[50]

However, as mentioned before, on iOS, garbage collection was abandoned in favor
of performance and yet ARC (automatic reference counting) fails to deal with what
is called a retain cycle. Retain cycle occurs when the lower elements (aka children) in
the creation hierarchy require references to the parent items. In this scenario, when
the child or the parent sends a release, the dealloc methods never get to run since
there is an extra reference keeping each of the items alive.

Figure 8: Retain Cycle

This native iOS problem becomes a problem in Xamarin applications when managed
objects derive from native objects (that is, any object deriving from NSObect) such
as UI controls. When managed classes are inheriting from native objects, in order to
keep them from getting garbage collected, Xamarin.iOS creates a GCHandle. These
GCHandles, together with the managed references between the objects, create the
described (indirect) retain cycle.

If we were dealing with a parent UIView that holds an array of children and the child
view objects that were retaining a reference to the parent object:

public class RetainingParentClass : UIView
{
 public RetainingParentClass()
 {

 }
}

Chapter 2

[51]

public class RetainingChildClass : UIView
{
 private RetainingParentClass m_Parent;

 public RetainingChildClass(RetainingParentClass parent)
 {
 m_Parent = parent;
 }
}

The following piece of code would create a retain cycle and would cause memory
leaks in the application:

var parent = new RetainingParentClass();

parent.Add(new RetainingChildClass(parent));

If we were to execute this code in the constructor of a view, every time the
application navigates to this view, we would be creating a new parent object,
never to be garbage collected.

Figure 9: Instruments view for retained objects

In this case, the easiest fix would be to use a WeakReference while we are creating a
reference to the parent object from the child one. Using the weak reference avoids the
retain cycle situations and does not interfere with the garbage collection.

public class RetainingChildClass : UIView
{
 private WeakReference<RetainingParentClass> m_Parent;

Memory Management

[52]

 public RetainingChildClass(RetainingParentClass parent)
 {
 m_Parent = new WeakReference<RetainingParentClass>(parent);
 }
}

Another option would be to implement IDisposable interface to remove the strong
link between the objects by setting the references to null before GC.

Summary
In order to manage application resources, one must have a deeper understanding
of the application lifecycle. Application lifecycle events, outlined in this chapter, are
the main access points to underlying platform runtime on both iOS and Android. If
used properly, the event delegates and event methods on both platforms can help
developers save valuable resources and avoid memory problems.

Other concepts discussed were garbage collection, object references, and automatic
reference counting. These concepts make up the foundation of memory management
on target Xamarin platforms.

We also had a closer look at the diagnostic and profiling tools for target platforms
and how they can be used effectively. While iOS and Android platforms each have
a native app to analyze memory allocations, Xamarin Profiler provides a unified
solution for both platforms.

Finally, useful patterns were outlined for different memory related issues and
pitfalls. To analyze these patterns, Xamarin Profiler and Instruments were used
for Android and iOS applications respectively.

In the next chapter, we will be looking at asynchronous implementation techniques
and investigate various patterns of multi-threading and background execution.

[53]

Asynchronous Programming
This chapter deep-dives into the asynchronous and multithreaded programming
concepts. We will discuss platform-specific problems and give an in-depth
description of how threading scenarios are executed on different platforms.
The chapter is divided into following sections:

• Multithreading on Xamarin
• Asynchronous methods
• Parallel execution
• Patterns and best practices
• Background tasks

Multithreading on Xamarin
Xamarin platforms together with Windows Runtime follow the basic principles
of a single-threaded apartment model. In this model, in simple terms, a process
is assigned a single thread which acts as the main trunk for all the other possible
branches to be created from and yield back to.

While developers still have the ability to create and consume multiple threads, in
modern applications on Xamarin target platforms, this model has been extended
with concurrency implementations that delegate the responsibility of thread
management to runtime and allow the developer only to define execution blocks
which may or may not be executed on a separate thread.

Asynchronous Programming

[54]

Single thread model
In Android and iOS, each mobile application is started and run on a single thread
that is generally referred to as the main or the UI thread. Most of the UI interaction
and process lifecycle event handlers and delegates are executed on this thread.

In this model, developers' main concern should be keeping the main thread
accessible to UI interaction as long as possible. If we were to execute a blocking
call on this thread, it immediately would be reflected to the user as a screen freeze
or an application nonresponsive error, which will inevitably get terminated by the
so-called watch-dog implementation of the underlying platform. In addition to
the platform-specific restrictions, users also expect a responsive UI at all times and
cannot tolerate frozen screens even for a fraction of a second. If the screen freeze
lasts any longer, they will try to forcefully terminate the application (see the Feedback
section of Chapter 7, View Elements).

Developers can still create, consume, and monitor other threads from the main thread.
It is possible to use background threads and invoke long running processes in the
background. For this purpose, the System.Threading namespace and threading
related classes are available on Xamarin.iOS and Xamarin.Android projects.
Moreover, each platform has its own threading implementation under the hood.

For example, let's imagine we want to execute a long running process and we do not
want this method to block the UI thread. With classic threading, the implementation
would look similar to:

//var threadStart = new ThreadStart(MyLongRunningProcess);
//(new Thread(threadStart)).Start();

// Or simply
(new Thread(MyLongRunningProcess)).Start();

Each Thread can give information about the current execution state, and it can be
canceled, started, interrupted, or even joined by another thread. Developers can
use the threading model for throttling their application and/or executing their code
more efficiently without committing the cardinal sin of blocking the UI thread.

It might get a little complicated when the process you are executing on a separate
thread needs to update a UI component. This would be a cross-thread violation.

Chapter 3

[55]

For instance, if we wanted to update a UI component from a separate thread
in an Android activity, we would need to execute it on the activity as follows
(using Activity.RunOnUiThread):

this.RunOnUiThread(() => { UpdateUIComponent(); });

The same execution on iOS would look similar to (using NSObject.
InvokeOnMainThread):

this.InvokeOnMainThread(() => { UpdateUIComponent(); });

For reference, on Windows Runtime the same execution would look like this:

CoreApplication.MainView
 .CoreWindow.Dispatcher.RunAsync(CoreDispatcherPriority.Normal,
 () => { UpdateUIComponent(); });

The implementation in classic threading gets even more complex when there
is an exception or the operation has to be canceled, not to mention the fact that
synchronization between threads and thread-safe data flow is completely left to
developers or third-party implementations.

Another important mishap of using the System.Threading namespace and the
classic threading model in Xamarin, is that this namespace and thread-related
classes cannot be used in PCLs.

Task-based Asynchronous Pattern
Since the introduction of the Tasks framework in .NET 4.0 and its later adoption
by Mono, the Task-based Asynchronous Pattern (TAP) has become de-facto
the main implementation strategy for mobile applications. While providing the
required abstraction from the treading structure, it also gives the development
teams the opportunity to create easily readable, manageable, and scalable
application projects. As mentioned earlier, since each Xamarin target platform has
the threading implemented according to the underlying runtime, this abstraction
that the Tasks framework provides makes it the perfect candidate for asynchronous
implementations in cross-platform projects and an invaluable part of portable
class libraries.

Asynchronous Programming

[56]

In this pattern, each execution block is represented by a Task or a Task<T> according
to the return value of the block (for example, if the block is returning void, it
should be converted to return Task and if the block is returning an int, the method
signature should be Task<int>). Tasks can be executed either synchronously or
asynchronously, can be awaited for a result or executed as a promise with a callback
on completion, can be pushed to another thread-pool or executed on the main thread
taking processor time when available.

Tasks are especially suited for computationally intensive operations, since they
provide excellent control over when and how the asynchronous method is executed.
Cancellation and progress support on these methods makes long running processes
easily manageable.

Concurrency model on iOS
Concurrency and operation blocks on iOS runtime are Apple's take on the same
issues that the Tasks framework is trying to resolve. In essence, the Tasks framework
and concurrency model on iOS are the solution to creating multitasking, robust, and
easily scalable applications by creating an abstraction layer so that applications do
not directly manage threads, but let the operating system decide on where and when
to execute operations.

The iOS runtime uses operation or dispatch queues to asynchronously dispatch tasks
in a first-in-first-out (FIFO) manner. This approach provides automatic thread-pool
management as well as a simple programming interface.

While the iOS runtime constructs such as NSOperation, NSBlockOperation, and
NSOperationQueue are implemented in the Xamarin.iOS framework and are ready
to use, the implementations would only be targeting the iOS platform while Tasks
can be used on all three platforms.

Asynchronous methods
The Task Parallel Library (TPL) constitutes the core part of parallel computing in
the .NET framework and has inherently the same stature in Xamarin runtime(s).

Asynchronous method execution, together with the async and await keywords
(introduced with C# 5.0), can make the apps more responsive and efficient and
decrease the complexity of implementing multithreading and synchronization.
Without having the need to implement a parameterized thread, start and push are
delegated to a background thread, with so called "awaitables." You can convert your
methods to async promises easily with Task or Task<T> as the return type. In return,
the runtime chooses the best time to execute the code and returns the result to your
execution context.

Chapter 3

[57]

For instance, the previous thread creation example with Tasks would be as simple as:

Task.Run(() => MyLongRunningProcess());

// Or
Task.Factory.StartNew(MyLongRunningProcess, TaskCreationOptions.
LongRunning);

However, the Tasks framework is not only about creating threads or executing non-
blocking methods, but also about coordinating and managing these asynchronous
tasks in the easiest way possible. There are many static helper methods as well as
methods implemented for Tasks that help developers to easily implement some of
these coordination scenarios.

Continuation
The ContinueWith function on the Task class allows the developers to chain
dependent Tasks together and execute them as one Task as a whole. The
continuation delegate is executed once the result from the first task is posted back to
the task scheduler. It is important to mention that the first task and the continuation
methods are not necessarily executed on the same thread. The code is as follows:

Task.Run(() => MyLongRunningProcess())
 .ContinueWith(task => MySecondLongRunningProcess());

In case the second task was dependent on the result from the first task:

Task.Run(() => MyLongRunningProcess())
 .ContinueWith(task => MySecondLongRunningProcess(task.
Result));

Cancellation
CancellationToken and CancellationTokenSource are used as the remote token
to control the execution lifetime of an async method, thread, or a number of threads
and the event source that the token reflects the events of.

In simple terms, CancellationTokenSource is responsible for throwing either
time-based or manual cancel events and these events can be retrieved through
the token in the context of the asynchronous method.

Asynchronous Programming

[58]

You can create a cancellation source using the default constructor and time-based
cancellation can be added to the token:

m_CancellationSource = new CancellationTokenSource();

var token = m_CancellationSource.Token;

// You can cancel it after a certain amount of time, which would
trigger an OperationCanceledException
// m_CancellationSource.CancelAfter(2000);

Once we are executing an async method, we can use the token from this source,
or we can associate it with a TaskFactory to create a cooperating list of tasks:

Task.Run(() =>
{
 // Executing my long running method
 if (token.IsCancellationRequested)
 {
 token.ThrowIfCancellationRequested();
 }
}, token);

Or:

var taskFactory = new TaskFactory(m_CancellationSource.Token);
taskFactory.StartNew(() =>
 {
 // Executing my long running method
 if (Task.Factory.CancellationToken != CancellationToken.None
&& Task.Factory.CancellationToken.IsCancellationRequested)
 {
 Task.Factory.CancellationToken
 .ThrowIfCancellationRequested();
 }
 });

Finally, you can also cancel the thread or a group of threads using the Cancel
or CancelAfter (with a time delay) methods of CancellationTokenSource.

Chapter 3

[59]

Progress
Another asynchronous control feature that helps keep the user informed about the
operations being invoked in the background is the progress callback implementation.
Just like CancellationToken, we can supply the asynchronous tasks with an event
handler for progress events that the asynchronous method can invoke to pass
progress information back to the main thread.

For simple progress reporting, it is enough to expand asynchronous methods with an
additional parameter that derives from the IProgress<T> interface.

For instance, if we were to implement a progress event handler in the
GetFibonacciRangeAsync method, we could use the number of values to be
calculated and the current ordinal being calculated to report an overall progress
in percentages:

public async Task<List<int>> GetFibonacciRangeAsync(int firstOrdinal,
int lastOrdinal, IProgress<int> progress = null)
{
 var results = new List<int>();

 for (var i = firstOrdinal; i < lastOrdinal; i++)
 {
 results.Add(await GetFibonacciNumberAsync(i));

 decimal currentPercentage = (decimal) lastOrdinal - i/
(decimal) lastOrdinal - firstOrdinal;

 if (progress != null)
 progress.Report((int)(currentPercentage * 100);
 }

 return results;
}

Asynchronous Programming

[60]

In order to be able to use the progress value in our view model, we can make use
of the Progress<T> class, which is the default implementation of IProgress<T>.
The code is as follows:

Action<int> reportProgress = (value) =>
{
 InfoText = string.Format("{0}% Completed", value);
};

var progress = new Progress<int>(reportProgress);

m_SourceAsync.GetFibonacciRangeAsync(numberOrdinal1, numberOrdinal2,
progress)
 .ContinueWith(task =>
 {
 Result = string.Join(",", task.Result.Select(val=>val));
 InfoText = "";
 });

Task batches
In task-based asynchronous pattern, there are other ways than continuation to
execute tasks in a batch, even in parallel. The example from the previous section was
awaiting each number calculation separately and executing the next call. However,
the manner in which the inner methods were implemented made them independent
from each other. Hence, it is not actually necessary to wait for them one by one to
return the result. The code is as follows:

List<Task<int>> calculations = new List<Task<int>>();

Mvx.Trace("Starting Calculations");

for (var i = firstOrdinal; i < lastOrdinal; i++)
{
 var currentOrdinal = i;
 calculations.Add(Task.Factory.StartNew(() =>
 GetFibonacciNumberInternal(currentOrdinal).Value,
TaskCreationOptions.LongRunning));
}

Mvx.Trace("Starting When All", DateTime.Now);
int[] results = await Task.WhenAll(calculations);
Mvx.Trace("Calculations Completed", DateTime.Now);

return results.OrderBy(value=>value).ToList();

Chapter 3

[61]

The Mvx static class and the Trace method are provided by the
MvvmCross library. It will be further discussed in later chapters.

Now, each Fibonacci number in the sequence is calculated in parallel and when the
sequence range is complete, an array of result values is returned. Finally, we sort the
array and return the list of values.

We can extend this implementation by adding a progress notifier with an interlocked
(thread-safe) counter:

calculations.Add(Task.Factory.StartNew(() =>
 GetFibonacciNumberInternal(currentOrdinal).Value,
TaskCreationOptions.LongRunning)
 .ContinueWith(task =>
 {
 if (progress != null)
 {
 var currentTotal = Interlocked.Increment(ref
currentCount);
 decimal currentPercentage = (decimal) currentTotal/
(decimal) totalCount;
 progress.Report((int)(currentPercentage * 100));
 }
 return task.Result;
 }));

The resulting log traces from the calculations above are as follows:

09-07 21:18:29.232 I/mono-stdout(3094): mvx:Diagnostic: 40.80
Starting Calculations
09-07 21:18:29.352 I/mono-stdout(3094): mvx:Diagnostic: 40.92
Starting When All
09-07 21:18:30.432 I/mono-stdout(3094): mvx:Diagnostic: 42.00
Calculations Completed

The total time for the calculations was about 1.2 seconds.

Repeating the same calculations with an await on each method would give the
following output (calculating ordinal 4 until 11):

09-07 21:26:58.716 I/mono-stdout(3281): mvx:Diagnostic: 10.60
Starting Calculations
09-07 21:26:58.724 I/mono-stdout(3281): mvx:Diagnostic: 10.61
Starting calculating ordinal 4
…

Asynchronous Programming

[62]

09-07 21:27:03.900 I/mono-stdout(3281): mvx:Diagnostic: 15.78
Starting calculating ordinal 11
09-07 21:27:05.028 I/mono-stdout(3281): mvx:Diagnostic: 16.91
Calculations Completed

The same calculations took around 6.3 seconds overall.

On top of WhenAll, developers are also equipped with the WhenAny, WaitAll,
WaitAny methods on the Task class and ContinueWhenAll and ContinueWhenAny
on the TaskFactory class.

Parallel execution
In the previous section, the discussion was centered on the System.Threading.Tasks
namespace and the Task class. Even though tasks are the cornerstone of the
task-based asynchronous model and so-called Task Parallelism, the concurrent
collections namespace makes up the Data Parallelism side of the async model
and provides developers with tools to execute code most efficiently and in a
thread-safe manner.

BlockingCollection<T> is one of the concurrent collection implementations
that encapsulates the core synchronization and coordination between threads and
provides a thread-safe data storage to implement a provider-consumer model in
Xamarin applications.

Using BlockingCollection<T>, we can easily implement a new method that makes
use of the parallel execution from the previous example. In this implementation, our
view model will be the consumer and the Fibonacci source and the range calculation
tasks will be the provider.

If we were to rewrite the range calculation method using a blocking collection, our
method signature would be similar to:

public async Task GetFibonacciRangeAsync(int firstOrdinal, int
lastOrdinal, BlockingCollection<int> blockingCollection)

So in a way, the consumer is going to create the blocking collection and will pass it
to the provider to fill it up with the calculated values. The provider in return will
need to push each calculated value from the parallel tasks with the TryAdd or Add
methods. The code is as follows:

for (var i = firstOrdinal; i < lastOrdinal; i++)
{
 var currentOrdinal = i;

Chapter 3

[63]

 calculations.Add(Task.Factory.StartNew(() =>
 GetFibonacciNumberInternal(currentOrdinal).Value,
TaskCreationOptions.LongRunning)
 .ContinueWith(task =>
 {
 blockingCollection.Add(task.Result);
 return task.Result;
 }));
}

Finally, once all the calculations are completed, the provider needs to mark the
collection as add-completed. The code is as follows:

//
// Collection is filled completely
await Task.WhenAll(calculations).ContinueWith(task =>
{
 blockingCollection.CompleteAdding();
});

While these tasks are being executed on the provider side, we can create the
consumer in our view model with a while loop, checking on certain intervals
if there is a new item with TryTake until it is completed. However, there is
already an implemented method on the concurrent collection for this purpose:
GetConsumingEnumerable. Using this method makes the execution on the
consumer thread as simple as a foreach block. The code is as follows:

var blockingCollection = new BlockingCollection<int>();

var fibonacciTask = (new FibonacciSourceAsync())
 .GetFibonacciRangeAsync(numberOrdinal1,
 numberOrdinal2, blockingCollection);

fibonacciTask.ConfigureAwait(false);

//
// Starting the Consumer thread
Task.Factory.StartNew(() =>
{
 foreach (var item in blockingCollection.GetConsumingEnumerable())
 {
 var currentItem = item;
 if (Result != string.Empty) Result += ",";

Asynchronous Programming

[64]

 Result += currentItem;
 }

 InfoText = "Done";

}, TaskCreationOptions.LongRunning);

In this model, the provider thread (together with each parallel task being executed)
and the consumer thread are executed almost instantaneously and the results are
reflected to the UI almost immediately through the view model.

In the previous implementation, even though possibly multiple values are added to
the blocking collection and the blocking collection's support for multiple consumers,
the foreach loop follows a more linear execution. We can extend this model by
adding multiple consumers using the Parallel.ForEach extension method from
the System.Threading.Tasks.Parallel namespace. The code is as follows:

Task.Factory.StartNew(() =>
{
 var result = Parallel.ForEach(blockingCollection.
GetConsumingEnumerable(), item =>
 {
 UpdateUIWithItem(item);
 }).IsCompleted;

 if (result) InfoText = "Done";
}, TaskCreationOptions.LongRunning);

There are other constructs and implementation patterns that developers can
use and adapt on concurrent scenarios such as Partitioner, ActionBlock,
ConcurrentScheduler, among others. However, these concepts are beyond the
scope of this book.

Patterns and best practices
It is possible to draw parallels with and even convert from the classic threading and
eventing patterns while implementing asynchronous tasks. However, async methods
have to be implemented with caution to avoid deadlocks and uncaught exceptions.

Chapter 3

[65]

Async pattern conversions
The Observer pattern—also known as the Event-based Asynchronous Pattern
(EAP)—used to be the main development tool for long running processes and
service/remote application APIs. Events and delegates still make up a considerable
amount of UI-related implementation in modern applications.

However, asynchronous tasks and awaitables provide a much more convenient way
to deal with long running processes and chain completion methods.

Fortunately, it is possible to implement conversion patterns from other async
patterns to task-based implementations. These types of scenarios involve using the
TaskCompletionSource class.

In order to demonstrate this, we will be using a simplified version of the Fibonacci
source implementation from previous examples:

public event EventHandler<int> CalculationCompleted;

public event EventHandler<string> CalculationFailed;

/// <summary>
/// Calculates n-th number in Fibonacci sequence
/// </summary>
/// <param name="ordinal">Ordinal of the number to calculate</param>
public void GetFibonacciNumber(int ordinal)
{
 try
 {
 var result = GetFibonacciNumberInternal(ordinal);

 if (CalculationCompleted != null)
 CalculationCompleted(this, result);
 }
 catch (Exception ex)
 {
 if (CalculationFailed != null) CalculationFailed(this,
 ex.Message);
 }
}

Asynchronous Programming

[66]

In this example, we have an event handler for successful calculations and another
one for failed calculations (for example, if the ordinal is less than 0, it should throw
an ArgumentOutOfRangeException).

Our aim here is to implement an asynchronous method, which we can execute and
yield the result to the UI without having to subscribe to the event every time a new
FibonacciSource is created.

For this purpose, we can implement a new version of FibonacciSource and expose
only async methods instead of event-based methods. The code is as follows:

public class FibonacciSourceAsync : FibonacciSource
{
 public new Task<int> GetFibonacciNumberAsync(int ordinal)
 {
 var myTaskSource = new TaskCompletionSource<int>();

 EventHandler<FibonacciItem> onCalculationCompleted = null;
 EventHandler<string> onCalculationFailed = null;

 //
 // Subscribe to TaskCompleted: When the CalculationCompleted
event is fired, set result.
 onCalculationCompleted = (sender, args) =>
 {
 // Not forgetting to release the event handler
 CalculationCompleted -= onCalculationCompleted;
 myTaskSource.SetResult(args.Value);
 };

 //
 // Subscribe to TaskFailed: If there is an error in the
execution, set error.
 onCalculationFailed = (sender, args) =>
 {
 CalculationFailed -= onCalculationFailed;
 myTaskSource.SetException(new Exception(args));
 };

 CalculationCompleted += onCalculationCompleted;

 CalculationFailed += onCalculationFailed;

Chapter 3

[67]

 // Finally execute the task and return the associated Task
promise.
 base.GetFibonacciNumberAsync(ordinal);

 return myTaskSource.Task;

 }
}

Now calls to calculate Fibonacci numbers would look similar to:

public async Task<int> CalculateFibonacciValueAsync(int ordinal)
{
 var fibonacciSource = new FibonacciSourceAsync();

 try
 {
 return (await fibonacciSource.GetFibonacciNumberAsync(ordin
al));
 }
 catch (Exception ex)
 {
 // TODO: Do something with exception
 }
}

This implementation can be further extended with progress and cancellation
token implementations.

Multi-threading with tasks
One important thing to realize about asynchronous calls is that they don't
necessarily run on a separate thread. As a matter of fact, calls are "scheduled"
to run in a so-called Synchronization Context on the main thread unless they are
instructed otherwise. Synchronization Context is the message queue that takes care
of the scheduling of the async calls that need to be awaited. Once the async method
(or Task in most of the cases) is successfully executed, the result is posted back onto
the Synchronization Context (that is, the main UI thread).

For demonstration purposes, we will be using the async implementation (EAP
conversion) from the previous example with some additional diagnostic calls to get
additional information about the threads and synchronization contexts being used.

Asynchronous Programming

[68]

The TraceThreadInfo method and the associated ThreadInfo
class used in the examples here is a custom implementation used
through dependency injection. The reason for this is that threading
namespace only contains task-related classes in PCLs and the only
way to actually get the current thread ID is to use platform-specific
implementation. Platform-specific implementation patterns will be
discussed in detail in later chapters.

In the tracing method, we will be logging the current thread ID and the current
synchronization context:

public IThreadInfo ThreadInfo
{
 get { return Mvx.GetSingleton<IThreadInfo>(); }
}

private void TraceThreadInfo(string message)
{
 Debug.WriteLine("{0} on Thread '{1}'", message,
 ThreadInfo.CurrentThreadId);
 Debug.WriteLine("Current Synchronization Context is {0}",
 SynchronizationContext.Current);
}

The calculation command attached to the calculate button is:

TraceThreadInfo("Begin DoCalculate");

if (!string.IsNullOrWhiteSpace(Input))
{
 int numberOrdinal;

 if (int.TryParse(Input, out numberOrdinal))
 {
 InfoText = "Calculating";

 TraceThreadInfo("Calling GetFibonacciNumberAsync");

 var result = await GetFibonacciNumberAsync(numberOrdinal);

 TraceThreadInfo("Response from GetFibonacciNumberAsync");

 Result = result.ToString();

Chapter 3

[69]

 InfoText = string.Empty;

 TraceThreadInfo("End DoCalculate");

 return;
 }
}

InfoText = "Invalid Input";

The associated trace log will look like this:

Trace for in-line execution of tasks

Looking at the trace messages of the execution stack above, one can easily see that in
spite of the fact we are dealing with async tasks, the whole execution takes place on
the main thread except for the actual call for the internal method of the source (that
is, it is executed on Thread 106). The rest of the method calls have Android.App.
SyncContext as the synchronization context and the execution order is no different
than the call sequence that is implemented.

Asynchronous Programming

[70]

Changing the implementation a little bit and using the ContinueWith function of the
Task item, we get slightly different results. The code is as follows:

TraceThreadInfo("Calling GetFibonacciNumberAsync");

await GetFibonacciNumberAsync(numberOrdinal).ContinueWith(task =>
{
 TraceThreadInfo("Response from GetFibonacciNumberAsync");

 Result = task.Result.ToString();

 InfoText = string.Empty;
});

TraceThreadInfo("End DoCalculate");

The trace log for this implementation looks like this:

Async execution of Tasks

Chapter 3

[71]

As the trace log suggests, ContinueWith lambda is executed on a separate thread but
the execution is still sequential.

An important note here is that we are assigning the results back to the
ViewModel on a separate thread. In this example, the cross-thread
invocation is handled by the MvvmCross framework. If we were to deal
with this assignment, the call would look similar to:

await GetFibonacciNumberAsync(numberOrdinal).
ContinueWith(task =>
{
 TraceThreadInfo("Response from
GetFibonacciNumberAsync");

 this.RunOnUiThread(() =>
 {
 txtResult.Text = task.Result.ToString();
 });

 txtInfo.Text = "";
});

In the preceding example, once the execution gets onto a separate thread, the
synchronization context is nullified. In .NET runtime, asynchronous tasks that
are not tracked by the main synchronization context are actually assigned a
TaskScheduler instance and the execution is done through this context. In
this case, TaskScheduler is responsible to redirect the success post messages
back to the main thread if the task is configured to use the same context (that is,
ConfigureAwait(true)).

However, the way synchronization context works in .NET and the configured task
invocations yield back to the main thread can cause deadlocks if the asynchronous
tasks are called synchronously (that is, with Task.Result or Task.Wait()) on the
main thread. In such a scenario, once the async call finishes executing and tries to
yield back into the main context, the main context will still not be accessible since it
is actually waiting for the async task itself to complete.

Asynchronous Programming

[72]

ConfigureAwait(false) informs the scheduler not to look for and post back
the result to the same execution context where the task was invoked, but rather
just execute and run to completion on the execution context. This avoids the
deadlock scenario.

This deadlock scenario is specific for .NET runtime and because of the way mono
runtime on Android and Mono.Touch compiler deal with the task executions; the
deadlocks currently do not happen on these platforms. However, it is important to
follow the coding conventions associated with asynchronous tasks and awaitables
to avoid any unexpected behavior.

In order to execute the whole task on a separate thread we can use Task.Run
(which will push the task to the ThreadPool) or Task.Factory.StartNew. Using
the StartNew method would let you define which type of a method you are about
to execute in this task and let the runtime make an informed decision about using
a different thread. The code is as follows:

var task = Task.Factory.StartNew(async () =>
{
 TraceThreadInfo("Calling GetFibonacciNumberAsync");

 var result = await GetFibonacciNumberAsync(numberOrdinal);

 TraceThreadInfo("Response from GetFibonacciNumberAsync");

 Result = result.ToString();

 InfoText = string.Empty;

}, TaskCreationOptions.LongRunning);

task.ConfigureAwait(false);

Chapter 3

[73]

In the trace below, the biggest difference with the previous examples is that the
DoCalculate method exits before even the execution starts for the task we created
for the calculations. This type of execution would eloquently fit with the MVVM
pattern applied on a cross platform mobile app project. It would avoid any UI
blocking issues and create a sense of continuity for the user.

Starting a new async task

Asynchronous Programming

[74]

If we want to analyze the same execution on the iOS application (that is, calculate the
number on the Fibonacci sequence on a certain ordinal), we can easily identify the
threading pattern with the Xcode Instruments "System Trace" template.

Calculating four different Fibonacci numbers

Exception handling
Handling exceptions can become cumbersome if correct asynchronous paths are not
followed in multithreaded implementations. However, in most cases, the async/
await language constructs take the load of the developers. If the async chain is not
broken and calls are implemented correctly, catching exceptions in asynchronous
context is no different than catching them with linear code.

Chapter 3

[75]

Using our example from previous sections:

try
{
 var result = await GetFibonacciNumberAsync(numberOrdinal);

 Result = result.ToString();

 InfoText = "";
}
catch (Exception ex)
{
 Debug.WriteLine("Error:" + ex.Message);
 InfoText = "EX:" + ex.Message;
}

In this example, if the ordinal we pass in as a parameter is a negative number, it
would throw an exception with the message Cannot calculate Fibonacci number for a
negative number and we would be displaying the error message in the info textbox.

However, if we were to use the ContinueWith construct to execute the same code the
outcome would have been a little different:

try
{
 await GetFibonacciNumberAsync(numberOrdinal).ContinueWith(result
=>
 {
 Result = result.Result.ToString();

 InfoText = string.Empty;
 });
}
catch (Exception ex)
{
 Debug.WriteLine("Error:" + ex.Message);
 InfoText = "EX:" + ex.Message;
}

Asynchronous Programming

[76]

In this example, the exception message we would receive would be One or more
errors occurred. The reason for this is that the exception thrown in the second
scenario is an AggregateException because of the async chain we created.

AggregateException in async chain

The result would have been the same if we were using the .Result or .Wait() calls
on the task itself.

The important part of this implementation is where we are calling await on the
asynchronous method. The catch block would never have been called if this was
not the case. Without the await keyword, the try/catch block would have been just
checking if the preparation of the Task went as expected, not the actual execution.

Another type of async execution that cannot be caught with a try/catch block is
the type of async methods that return void instead of a Task or Task<T>. Similar
to having an exception thrown in an event handler, the only two places they
would be caught are the AppDomain.UnhandledException or Application.
ThreadException events. It is always a better practice for asynchronous
methods to return Task and then return void.

Chapter 3

[77]

However, in the ContinueWith implementation, with the reference to the Task
at hand, we can also check for the status of the task once it runs to completion
before we make the result assignment. This assignment is what actually causes the
exception to bubble-up to upper layers. In this case, we do not need a try/catch
block. The code is as follows:

await GetFibonacciNumberAsync(numberOrdinal).ContinueWith(result =>
{
 TraceThreadInfo("Response from GetFibonacciNumberAsync");

 if (result.IsFaulted)
 {
 Result = string.Empty;

 InfoText = string.Join("\r\n", result.Exception
 .InnerExceptions.Select(exception => exception.Message));
 }
 else
 {
 Result = result.Result.ToString();

 InfoText = string.Empty;
 }
});

Initialization pattern
Especially in scenarios where a service is involved, a common requirement is to have
an initialization function that would prepare the communication channel and/or
make a "ping" or an authentication call. When developers are confronted with this
type of a scenario, the biggest mistake they can make is to call the asynchronous
initialization function in the constructor with a .Result and/or .Wait() statement
(making it a synchronous call).

For this scenario, let's assume we have a service that implements an interface with
two simple async method implementations.

public interface IService
{
 Task<string> AuthenticateAsync(string username, string password);

 Task<int> ServiceMethodAsync(string myParameter);
}

www.allitebooks.com

http://www.allitebooks.org

Asynchronous Programming

[78]

In order to be able to call ServiceMethodAsync, we first need to make an
AuthenticateAsync call and receive the authentication token from the
service. The code is as follows:

public MyService(string username, string password)
{
 //
 // Following call would block the constructor
 // IMPORTANT: If it was being called from the main UI thread, it
might cause a deadlock
 // Blocking Call Example 1:
 // AuthenticateAsync(username, password).Wait();
 // Blocking Call Example 2:
 m_Token = AuthenticateAsync(username, password).Result;
}

In this example, we implemented the call for authentication in the constructor of the
service. Even though the implementation might work in some cases, if the service
constructor is called from the main UI thread, the thread would go into a deadlock
as it was described in the previous section.

The easiest solution would be to either expose the initialization function to outer
layers or have the service call initialization before each service call. For this
purpose we can wrap the authentication call in an initialization method.
The code is as follows:

public MyService(string username, string password)
{
 m_Username = username;
 m_Password = password;
}

private async Task EnsureInitializationAsync()
{
 if (string.IsNullOrEmpty(m_Token))
 {
 m_Token = await AuthenticateAsync(m_Username, m_Password);
 }
}

The service method call would look similar to this:

public async Task<int> ServiceMethodAsync(string myParameter)
{
 await EnsureInitializationAsync();

Chapter 3

[79]

 try
 {
 int result = await InternalServiceMethodAsync(myParameter);

 return result;
 }
 catch (Exception ex)
 {
 // TODO:
 throw;
 }
}

As mentioned, we can also expose the initialization through an interface:

/// <summary>
/// Describes the service as requiring async initialization
/// </summary>
public interface IAsyncInitialization
{
 /// <summary>
 /// The result of the asynchronous initialization.
 /// </summary>
 Task Initialization { get; }
}

public class MyService : IService, IAsyncInitialization
{
...

 public Task Initialization { get; private set; }

 public MyService(string username, string password)
 {
 m_Username = username;
 m_Password = password;

 Initialization = EnsureInitializationAsync();
 }

 private async Task EnsureInitializationAsync()
 {
 if (string.IsNullOrEmpty(m_Token))
 {

Asynchronous Programming

[80]

 m_Token = await AuthenticateAsync(m_Username, m_Password);
 }
 }

...
}

In this case, the caller method needs to check if the service needs async initialization
and check for the required task results. The code is as follows:

if (serviceInstance is IAsyncInitialization)
{
 /// Wait for the results of the initialization
 await serviceInstance.Initialization;
}

await serviceInstance.ServiceMethodAsync("param");

Semaphores
Synchronization and throttling methodology on the asynchronous context is a
little different than the classic .NET runtime implementations. For instance, lock
blocks are not allowed on async calls and you will not be able to use Mutex for
synchronization. Mutex is inapplicable as a mutex can only be owned by a single
thread and async executions are not guaranteed to complete on the same thread as
they started. The code is as follows:

//
// Error: The 'await' operator cannot be used in the body of a lock
statement
//lock (m_FibonacciSource)
//{
// var result = await GetFibonacciNumberAsync(numberOrdinal);
//}

//
// Warning: Might work but not guaranteed
m_Mutex.WaitOne(200);

await GetFibonacciNumberAsync(numberOrdinal).ContinueWith((task) =>
{
 TraceThreadInfo("Response from GetFibonacciNumberAsync");

 Result = task.Result.ToString();

Chapter 3

[81]

 InfoText = string.Empty;
});

m_Mutex.ReleaseMutex();

In order to handle the non-deterministic execution and threading model of
asynchronous tasks, a new construct was added to .NET: Semaphore. Semaphore
(implementation of WaitHandle) and SemaphoreSlim (lightweight version of
Semaphore that is implemented with monitors) types do not enforce thread identity
on the Wait and Release calls and can be asynchronously awaited.

For instance, let's execute a number of parallel calculations orchestrated with a
semaphore that allows 3 access count (SemaphoreSlim(3) or SemaphoreSlim(3,3))
such as:

var semaphoreSlim = new SemaphoreSlim(3);

int count = 11;

for (var i = 0; i < 7; i++)
{
 Task.Factory.StartNew(() =>
 {
 return semaphoreSlim.WaitAsync().ContinueWith((waitTask) =>
 {
 return Task.Factory.StartNew(() =>
 {
 return GetFibonacciNumberAsync(count = Interlocked
 .Increment(ref count)).ContinueWith(
 (calculateTask) =>
 {
 TraceThreadInfo(string.Format(
 "Current count on Semaphore: {0}",
 semaphoreSlim.Release() + 1));
 });

 }, TaskCreationOptions.LongRunning);
 });
 }, TaskCreationOptions.LongRunning);

Asynchronous Programming

[82]

This parallel execution can be easily spotted on the average system time view of
Instruments' System Trace template. This is shown in the screenshot below where
each ordinal calculation would give the exact number of peaks on the selected
calculation threads):

System time average on synchronized threads

Background tasks
Threading and task solutions are not the only option when there is a need to
execute a not time-bound, long running process. Moreover, both of these options
are for executing code when your application is in the foreground or in an active
state. When the application is entering the backgrounded or suspended state, the
application might still require the execution of some longer method before the
volatile data is lost, or it might require a process to be running in the background
when the application is not in an interactive state.

For these types of scenarios, both iOS and Android offer backgrounding and
background operation options.

Chapter 3

[83]

Background tasks on iOS
Background tasks on iOS are the easiest way for your application to execute
processing tasks without the need for the UI thread or having to respond to
lifecycle delegates.

There are three types of background tasks that can be executed for different needs:

• Background-safe tasks: These tasks are the ones that can be executed at any
stage of the process lifetime. They are not affected and/or interrupted by the
application going into the background. The code is as follows:
nint taskId = UIApplication.SharedApplication
 .BeginBackgroundTask(() =>
{
 // TODO: Do something if the allotted time runs out
});

// TODO: Implement the processing logic

if (taskId != UIApplication.BackgroundTaskInvalid)
{
 UIApplication.SharedApplication.EndBackgroundTask(taskId);
}

• DidEnterBackground tasks: Another type of background task is executed
to pass the state-save or clean-up logic to a background process. The
DidEnterBackground lifetime delegate is used to initialize these tasks and
continue processing even after the application goes into the background
state. The creation of these tasks is similar to the background-safe tasks.
The only difference is that the EndBackgroundTask method has to be called
inside the execution block rather than the calling thread, since the calling
process might have already returned not waiting for the execution of the
background task. The code is as follows:
public override void DidEnterBackground (UIApplication
application)
{
 nint taskId = UIApplication.SharedApplication
 .BeginBackgroundTask(() =>
 {
 // TODO: Do something if the allotted time runs out
 });

 Task.Run(() =>
 {

Asynchronous Programming

[84]

 // TODO: Implement the processing logic
 UIApplication.SharedApplication.EndBackgroundTask(taskId);
 });
}

• Background transfers: These tasks are specific to iOS 7+ and provide a longer
processing time (a strict limit on other background tasks is 600 seconds, while
background transfers can last up to 10,000 seconds). Background transfer tasks
are used to perform long lasting network operations and upload/download
large files over the wire.

Services (Android only)
On the Android platform, once the activities enter the backgrounded state, they
cannot perform tasks and are usually stopped soon after entering the background.
Services are application components introduced to provide an interface for
developers to start and stop long running processes in the background.

Even though services are created as part of an application, they have their own
separate lifecycle and can run even if the application and activity that started them
was stopped or destroyed.

A service can take one or both of two forms:

• Started: A service is "started" when an activity explicitly starts it by calling
the StartService method using an intent. A started service is generally
used as a BackgroundWorker and once the processing operation is finished,
the service itself or the activity stops it.

• Bound: A "bound" service generally acts as the provider to clients in the
activities of the application or even other applications. A bound service is
kept alive as long as another component is bound to it.

Both of these initialization patterns use the callback methods similar but not limited
to OnStartCommand, OnBind, OnCreate, and OnDestroy to start background
processing and deal with its lifetime.

There are various base classes implemented in the Android namespace and
according to the requirements, these base classes can be implemented and
started or bound.

Chapter 3

[85]

In order to implement a started service to do some background processing, the first
step of the implementation process would be to create the IntentService class:

[Service]
[IntentFilter(new String[] { "com.xamarin.MyDemoService" })]
public class MyDemoService : IntentService
{
 public MyDemoService()
 : base("MyDemoService")
 {
 }

 protected override void OnHandleIntent(Intent intent)
 {
 var myParameter = intent.GetStringExtra("parameter");

 // Invoke long running process
 DoWork(myParameter);
 }
}

The IntentService base class already deals with lifecycle events such as OnStart,
so all we have to implement is the OnHandleIntent method to respond to intent
requests from activities. The two attributes of the class, Service and IntentFilter,
are used by Xamarin compiler to generate the entries in the application manifest.
The debug build for this implementation gives out the following service entry in
the application manifest. The code is as follows:

<service android:name="md5d06a1058f86cf8319abb1555c0b54fbf.
MyDemoService">
 <intent-filter>
 <action android:name="com.xamarin.MyDemoService" />
 </intent-filter>
</service>

With this implementation in an activity, the intent service can be started by either
using the intent filter entry or using the type of the service.

//StartService (new Intent (this, typeof(MyDemoService)));
StartService(new Intent("com.xamarin.MyDemoService"));

Asynchronous Programming

[86]

Summary
Overall, asynchronous/concurrent implementation patterns and background
tasks allow the developers to push the heavy-lifting away from the UI thread
and create responsive applications in the single-threaded paradigm of modern
mobile applications.

The Task-based Asynchronous Pattern provides an efficient and scalable way to
implement asynchronous operations with ease. Moreover, progress, cancellation,
and concurrent collections help monitor, scale, and manage the execution of these
asynchronous blocks while providing a way to cooperate between each other.
Implementing these blocks, developers do not need to carry the burden of threads,
synchronization, and scaling the threads according to the hardware resources.

After analyzing memory and CPU-related topics so far in this book, in the next
chapter we will discuss local storage and how to use it efficiently.

[87]

Local Data Management
In this chapter, you will find patterns and techniques to efficiently use, manage, and
roam data on mobile devices. It also investigates SQLite database creation and usage
strategies. The chapter is divided into the following sections:

• Data in mobile applications
• Application data
• Local filesystem
• Data roaming
• SQLite
• Patterns and best practices
• Backup/roaming

Data in mobile applications
The term "data" can refer to different types of information and storage locations in
mobile app development. It can be used to describe a volatile state that is created and
destroyed each time a view in the application is used, or it might refer to persisted
settings and configuration information that are required to run the application, or
even the data stored in the local filesystem. Each type of data is created and persisted
or destroyed throughout the lifecycle of the application or a view in the application.
We can talk about four distinct groups for this discussion.

Local Data Management

[88]

Each data type is stored and accessed from different locations and each location has
its own unique restriction and access models.

Data type storage locations

State
Mobile applications are generally stateful. Transient data that is used to visualize
items on the UI or the data created by the user of the application falls into this
category. The purpose of state is to maintain a consistent app experience across
sessions, devices, and/or process lifecycle. Application settings or the current
state of the view is a good example for this category.

App data
App data generally refers to the data that is essential for the execution of the
application. This data is created, stored, and managed by the application itself. It can
be structured data storage or it might be the cached version of online application
resources. This type of data can be raw, in the form of a SQLite database, or stored
by other facilities on the current device by the current application.

Chapter 4

[89]

App data stored in different locations can survive through different stages of an
application lifecycle.

App data lifecycle

Local files
Local files are the stored items in the local filesystem. These files are generally
created outside the lifecycle and/or scope of the application and are only made use
of by the application. For instance, a photo taken by the user can later on be used by
the mail client app as an attachment item.

External data
External data can be described as the combination of all the other data sources
that are used by the application during runtime. This can include network
or web resources.

Application data
Application data makes up the core of the data storage on Xamarin platforms
and Windows Runtime. This data is specific to your application. It lives and
eventually dies with it, and in most cases it is not relevant or even accessible by
other applications running on the same device or even by the user who is using the
application (at least directly).

The application has unrestricted access to application data, or so-called isolated
storage, without having to ask for permission from the user or add a declaration and
can (in most cases) write, read, and query items in this storage according to the type
of the application data location.

Local Data Management

[90]

Installation directory
The installation directory is the innermost part of the accessible data storages and
is the most intimate location for the application. Access to this location by the
application is unrestricted but read-only. The access models on iOS, Android,
and Windows Runtime vary greatly.

Android
For Xamarin.Android applications, the installation directory essentially refers to the
compressed Android package (the .apk file), and the defined subdivisions are just
abstractions of folders packaged and added to the manifest during the compilation.
The installation directory and subfolders can be accessed in various ways.

Android package and the project tree

The most important location in the installation directory for Android apps is the
Resources folder. Resources can be generalized as the UI-related items that will be
used to render the views of the application. One of the resource types that can be
included in the application package is the drawable type. Drawable resources are
image resources and can exist in alternate flavors for different conditions and devices
that the application runs on (see Chapter 9, Reusable UI Patterns). In order for the
compiler to include the resources in the application package, the build action of
each item in this folder has to be set to AndroidResource.

Chapter 4

[91]

It is important to mention that Android packages do not allow
filenames to contain uppercase characters, and yet Xamarin
developers can include these types of files in their projects.
Xamarin.Android deals with this by renaming the resources during
compilation (for example, see the XamarinLogo.png file in the
drawable folder).

Programmatically, they can be accessed using the generated Resource class
to get the assigned resource ID and the Resources static class that provides
access methods, or by using the android.resource:// protocol and the resource
identifier (or the package name together with the resource name). However, in most
scenarios, using only the assigned ID to use the resources with UI controls will
suffice. The code is as follows:

var myImageResourceId = Resource.Drawable.XamarinLogo;

var myImageView = (ImageView)
 FindViewById(Resource.Id.MyImageView);

// Set the Image resource using the id.
myImageView.SetImageResource(myImageResourceId);

// OR:

// Retrieving the resource itself and then assigning it.
Drawable myImageResource =
 Resources.GetDrawable(myImageResourceId);
myImageView.SetImageDrawable(myImageResource);

In the declarative UI (layouts), the drawable resources folder can be accessed
with the alias @drawable. Similarly, string resources can be accessed with @string.
The code is as follows:

<ImageView android:src="@drawable/xamarinlogo"
 android:layout_width="wrap_content"
 android:layout_height="match_parent" />

Local Data Management

[92]

Another important location in the installation directory is the Assets folder. The
Assets folder is used for any raw assets that you want deployed together with your
application (other than the Resources folder) and not to be processed by the compiler
or the runtime. Assets can be retrieved with the AssetManager class, and the Assets
property in the Activity class can be used to access the AssetManager class. The code
is as follows:

Task.Run(async () =>
{
 using (var dataPackageStream = Assets.Open("Data.csv"))
 using (var streamReader = new StreamReader(dataPackageStream))
 {
 var content = await streamReader.ReadToEndAsync();
 // TODO: Do something with the comma separated content.
 }
});

Other resource types in the installation location, such as layouts, raw, and string
resources can also be accessed in the described manner using the abstraction
provided by Android runtime.

iOS
The building units of an iOS application, such as executable code and associated
resources, are contained in a so-called bundle. A bundle is part of the application
sandbox and the path to the bundle is determined by the operating system during
installation.

Similar to Android applications, iOS application projects can also include compiled
image resources (bundle resources). These items are then accessed using the
abstraction layer provided by the runtime.

For instance, in order to access an image resource from the bundle directory, you
would need to call the FromFile method on the UIImage class:

var image = UIImage.FromFile("XamarinLogo.png");

//
// OR making a roundtrip (get the path, read the file, create
// image
// Similar to /data/Containers/Bundle/Application/<id>/
XamarinMasteriOS.app/
 XamarinLogo.png

Chapter 4

[93]

var imagePath = NSBundle.MainBundle.
 GetUrlForResource("XamarinLogo", "png").Path;
var fileContent = System.IO.File.ReadAllBytes(imagePath);

var secondImage = UIImage.
 LoadFromData(NSData.FromArray(fileContent));

Similar to the access model in Android applications, the
bundle container is read-only and should not be modified.
The simple reason for this is that iOS application bundles are
signed by the publisher key and any change in the bundle
container would invalidate the package signature.

Local storage
There is a both in the second part as well. Android and iOS runtimes provide
different storage facilities for application data both in the form of structured
data and raw content files.

Android
On the Android platform, Shared Preferences and Internal Storage are the two
local storage options. Both of these options have different access models and your
applications have read/write access to these locations.

Using SharedPreferences is the most basic way of storing data on the Android
platform. This class provides a simple persistent dictionary implementation that
allows the application to create, modify, and retrieve primitive data types (that is,
boolean, float, int, long, string, and string_array) and their associated key.
The size on these values is only restricted by the data type itself.

As the name suggests, SharedPreferences is generally
used to store configuration options selected by the user and
is persisted across user sessions. There is also a base activity
implementation, PreferenceActivity, to easily create
and reuse a view for user preferences that makes use of the
SharedPreferences for the application.

Local Data Management

[94]

The usage pattern for SharedPreferences class is straightforward. In order to use
the default preferences for the activity or a custom preference file, the Activity class
provides specialized methods:

// Retrieve an object for accessing private to this activity
ISharedPreferences myPreferences =
 GetPreferences(FileCreationMode.Private);

// Retrieve and hold the contents of the preference file
'MyCustomPreferences'
ISharedPreferences myCustomPreferences =
 GetSharedPreferences("MyCustomPreferences",
 FileCreationMode.Private);

After the retrieve call, the preference file is created according to the
FileCreationMode class selected if it did not exist already. To get the value
of a preference entry, you can use one of the get methods provided by the class.
The code is as follows:

var myStringValue = myCustomPreferences.GetString("MyStringValue",
 string.Empty);
var myIntValue = myCustomPreferences.GetInt("MyIntValue",
 default(int));

To edit the values, the Editor class for the SharedPreferences class can be used.
The code is as follows:

ISharedPreferencesEditor myEditor = myCustomPreferences.Edit();
myEditor.PutString("MyStringValue", myStringValue);
myEditor.PutInt("MyIntValue", myIntValue);

// Apply the current changes from the editor back
// to the Singleton SharedPreferences class
myEditor.Apply();

// OR
// Commit the changes to the singleton instance
// AND the disk immediately
myEditor.Commit();

Internal Storage is the dedicated storage for your application. The application is free
to create and retrieve any type of file (and folder) in this directory.

Chapter 4

[95]

FileCreationMode is an access modifier used in Android runtime to
define the access type and permission levels of a file.

• Append: If the file already exists, then write data to the end
of the existing file instead of erasing. This is to be used with
Android.Content.Context.OpenFileOutput.

• EnableWriteAheadLogging: When this database's open flag is
set, the database is opened with write-ahead logging enabled by
default.

• MultiProcess: legacy behavior in and before Gingerbread
(Android 2.3) and is implied when targeting such releases.
For applications targeting higher SDK versions, it must be set
explicitly. When used together with SharedPreferences, the
file on disk will be checked for modifications even if the shared
preferences instance is already loaded in this process. This
behavior is desired when the application has multiple processes
accessing the same file.

• Private: This is the default file creation mode where the created
file can only be accessed by the calling application (or all
applications sharing the same user ID).

• WorldReadable/WorldWritable: Both deprecated in API level
17 for security vulnerabilities, they can pose to enable file access
to application files.

Files in this folder, without any manifest declaration, can be accessed with the
designated methods on the application context or by using the Xamarin/Mono
implementation of IO methods. The code is as follows:

// Creating a file in the application internal storage root
using(var fileStreamInRootPath =
 this.OpenFileOutput("FileInRootPath", FileCreationMode.Private))
using (var streamWriter = new StreamWriter(fileStreamInRootPath))
{
 streamWriter.Write("Hello World!");
}

//
// Reading the contents of the file
using(var fileStreamInRootPath =
 this.OpenFileInput("FileInRootPath"))

Local Data Management

[96]

using (var streamReader = new StreamReader(fileStreamInRootPath))
{
 var stringContent = streamReader.ReadToEnd();
}

// Getting the file path.
// e.g.: /data/data/Xamarin.Master.Android/files/FileInRootPath
var filePath = FilesDir.AbsolutePath + "/" + "FileInRootPath";

// Using the Xamarin (Mono) implementation.
System.IO.File.AppendAllText(filePath, "\r\nAdditional Content");
var allText = System.IO.File.ReadAllText(filePath);

In addition to basic CRUD operations, you can also create additional folders and
enumerate files and folders.

iOS
The simplest data storage option on iOS applications are the property lists. (the
.plist files). These files are designed to be used for relatively small amounts of
data that can be represented with primitive data types. They can be defined as
dictionaries or arrays that are serialized and persisted in XML format.

You can read and write to a property list directly using the associated classes
(NSArray and NSDictionary). For instance, a simple implementation that creates
and reads a property list would look similar to the following code (with additional
diagnostic entries):

myNSDictionary.WriteToFile(dictionaryPath, true);

Debug.WriteLine("File Contents:");
var fileContents = System.IO.File.ReadAllText(dictionaryPath);
Debug.WriteLine(fileContents);

var myNewNSDictionary = NSDictionary.FromFile(dictionaryPath);

Debug.WriteLine("Values read from plist:");
foreach (var key in myNewNSDictionary.Keys)
{
 var keyValue = myNewNSDictionary[key];
 Debug.WriteLine(string.Format("Value for the key '{0}' is
 '{1}'", key, keyValue));
}

Chapter 4

[97]

The output from the preceding implementation would look like this:

File Contents:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.
com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>firstKey</key>

 <string>firstValue</string>

 <key>secondKey</key>

 <string>secondValue</string>

 <key>thirdKey</key>

 <integer>8</integer>

</dict>

</plist>

Values read from plist:

Value for the key 'firstKey' is 'firstValue'

Value for the key 'secondKey' is 'secondValue'

Value for the key 'thirdKey' is '8'

When it comes to the local file storage, the iOS filesystem reserves several
locations for applications; each of these locations have a specific purpose
from the application's perspective.

• Documents/: The Documents library is generally designated for
user-generated content. This folder should be used if the contents of the files
are to be exposed to the user. Contents of this folder are backed up by iTunes.

• Documents/Inbox: The Inbox folder is where files that are requested to be
opened by the application are kept. An application can read and delete these
files; it does not have privileges to modify these documents.

• Library/: The Library folder is the root directory for the files that you
don't want to expose to the user. Applications can create files and additional
folders in this directory.

• Library/Application Support: This subdirectory in the library folder
is generally used to contain files managed by your application, such as
configuration files, templates, saved data, and purchases. Contents destined
for this folder should be placed in a custom subdirectory with the bundle
identifier or company ID of your app.

Local Data Management

[98]

• Library/Caches: The Caches folder is used for non-essential, application
created files.

• Library/Preferences: App-specific preferences are stored in this folder.
However, access to this folder should be done through the preferences API.

• tmp/: The tmp folder is another location for non-essential temporary files.

Access to these library locations is possible using the System.IO namespace and
associated classes.

Temporary storage
Temporary storage and/or the cache directory is another location that the
application does not need any specific permission. This is where non-essential
files can be saved by the application to decrease network or processing time.
The persistence of these folders is not guaranteed by the operating system.

In both Android and iOS systems, designated cache and/or temp locations
are accessed through the context properties and the CRUD operations can be
performed using the System.IO namespace and the related classes.

On Android, the cache directory can be accessed with the CacheDir property
on the context:

// Path similar to /data/data/Xamarin.Master.Android/cache
var cacheFilePath = this.CacheDir.AbsolutePath + "/" +
 "CacheFile";

// Writing to the file
System.IO.File.AppendAllLines(cacheFilePath, new[] { "Cached
 Content" });

// Reading the file
var cachedContent = System.IO.File.ReadAllText(cacheFilePath);

On iOS, there are two separate locations for temporary files (/temp/) and cache files
(Library/Caches/). Cache files are persisted for longer than the temporary data, but
they still might be deleted by the system to free up disk space. The code is as follows:

// getting the root application sandbox path
var documents = Environment.GetFolderPath (Environment.SpecialFolder.
MyDocuments);
// paths to caches and temporary files directories.var cache = Path.
Combine(documents, "..", "Library", "Caches");
var tmp = Path.Combine(documents, "..", "tmp");

Neither of these directories are backed up or synchronized to iCloud.

Chapter 4

[99]

Local filesystem
On iOS, applications cannot programmatically access files external to the application
sandbox (for example, an iOS application cannot programmatically navigate to the
user's picture directory and pick a file). The bridge between the local filesystem and
the iOS app's sandbox was limited to the image picker controller until iOS 8. iOS 8
introduces the new document picker controller and document provider API. In this
interaction model, the application implementing the document provider extension
creates the document picker UI and the host application uses this provided UI to let
the user select the documents to be used in the host application execution (similar to
the file open picker and provider capability on the Windows Runtime platform).

UIImagePickerController

For Android, on top of the local file storage that is only app-specific, applications
have access to two other locations: public and private external storage (depending on
the hardware). External storage in this context refers to SD card storage, which is not
available on iOS systems. On Android runtime, applications can have access to the
root path (OS root path) and iterate through public folders.

Local Data Management

[100]

Let's have a look at the returned paths for some of the internal and external paths on
an Android filesystem:

Trace.WriteLine(Environment.RootDirectory, "FileSystem");
Trace.WriteLine(Environment.DataDirectory, "FileSystem");

Trace.WriteLine(this.GetExternalFilesDir(Environment.
 DirectoryDownloads).AbsolutePath, "FileSystem");
Trace.WriteLine(this.GetExternalFilesDir(Environment.
 DirectoryDocuments).AbsolutePath, "FileSystem");

// Call with GetExternalFilesDir
Trace.WriteLine(this.GetExternalFilesDir(Environment.
 DirectoryMovies).AbsolutePath, "FileSystem");
Trace.WriteLine(this.GetExternalFilesDir(Environment.
 DirectoryMusic).AbsolutePath, "FileSystem");
Trace.WriteLine(this.GetExternalFilesDir(Environment.
 DirectoryPictures).AbsolutePath, "FileSystem");

Trace.WriteLine(Environment.GetExternalStoragePublicDirectory
 (Environment.DirectoryMovies).AbsolutePath, "FileSystem");
Trace.WriteLine(Environment.GetExternalStoragePublicDirectory
 (Environment.DirectoryMusic).AbsolutePath, "FileSystem");
Trace.WriteLine(Environment.GetExternalStoragePublicDirectory
 (Environment.DirectoryPictures).AbsolutePath, "FileSystem");

Trace.WriteLine(Environment.DownloadCacheDirectory, "FileSystem");
Trace.WriteLine(Environment.ExternalStorageDirectory,
 "FileSystem");

The output to these calls identifies the app-specific and public locations:

I/mono-stdout(10079): FileSystem: /system
I/mono-stdout(10079): FileSystem: /data
I/mono-stdout(10079): FileSystem: /storage/emulated/0/Android/data/
Xamarin.Master.Android/files/Download
I/mono-stdout(10079): FileSystem: /storage/emulated/0/Android/data/
Xamarin.Master.Android/files/Documents
I/mono-stdout(10079): FileSystem: /storage/emulated/0/Android/data/
Xamarin.Master.Android/files/Movies
I/mono-stdout(10079): FileSystem: /storage/emulated/0/Android/data/
Xamarin.Master.Android/files/Music
I/mono-stdout(10079): FileSystem: /storage/emulated/0/Android/data/
Xamarin.Master.Android/files/Pictures

Chapter 4

[101]

I/mono-stdout(10079): FileSystem: /storage/emulated/0/Movies
I/mono-stdout(10079): FileSystem: /storage/emulated/0/Music
I/mono-stdout(10079): FileSystem: /storage/emulated/0/Pictures
I/mono-stdout(10079): FileSystem: /cache
I/mono-stdout(10079): FileSystem: /storage/emulated/0

In spite of the fact that Android developers have access to a vast set of options
for storage access methods, they are required to implement their own file picker
dialogs or use interfaces provided by other installed applications (Android
runtime also offers a provider-consumer type of file sharing implementation
between applications).

A sample file browser implementation (Xamarin recipes)

If there is an application that, by default, handles the file dialogs (the activity that can
handle ActionGetContent intent), it can be invoked with an intent and the result
can be accessed through the OnActivityResult callback method.

SQLite
SQLite database implementations provide a relational persisted data structure in
mobile application projects. Unlike the general server/client model that is used by
relational databases, SQLite is a local database implementation and the data is stored
in application local storage. Both Xamarin.iOS and Xamarin.Android application
projects can include a SQLite database and associated implementations.

Local Data Management

[102]

In order to use SQLite, developers are to choose to between the cross-platform
implementation of ADO.Net, where the SQL queries are supposed to be created
and included as plain text, or use the linq-2-entities access model of the SQLite.Net
portable class library. It is available as a NuGet package and a component.

SQLite.Net PCL

For the following demonstration, we will use the asynchronous version of the
SQLite.Net library.

Implementation of the SQLite data access layer with SQLite.Net generally follows a
code first database programming paradigm. In this pattern, developers first define
their data model by creating entity classes and defining the data structure using the
provided attributes. The code is as follows:

public class LocationInfo
{
 [PrimaryKey, AutoIncrement]
 public int LocationInfoId { get; set; }

Chapter 4

[103]

 public string Name { get; set; }

 public double Latitude { get; set; }

 public double Longitude { get; set; }
}

Once the data model implementation is finished, we can start creating the SQLite
access methods.

In order to create a SQLite connection, first an application storage location has to be
defined for the database file. The code is as follows:

public TravelContext(string sqlitePath, ISQLitePlatform platform)
{
 var connectionString = new SQLiteConnectionString(sqlitePath,
 false);
 var connectionWithLock =
 new SQLiteConnectionWithLock(platform, connectionString);
 m_SqliteConnection = new SQLiteAsyncConnection(() =>
 connectionWithLock);

 // OR with non-async connection
 //var connection = new SQLiteConnection(platform, sqlitePath);
}

In this implementation, ISQLitePlatform provides the much needed abstraction for
the platform-specific APIs.

After the SQLite connection is ready for use, we can implement the data tables'
access and creation methods. The code is as follows:

private void InitTablesAsync()
{
 var tasks = new List<Task<CreateTablesResult>>();

 tasks.Add
 (m_SqliteConnection.CreateTableAsync<LocationInfo>());
 tasks.Add(m_SqliteConnection.CreateTableAsync<City>());
 tasks.Add(m_SqliteConnection.CreateTableAsync<Landmark>());
 tasks.Add(m_SqliteConnection.CreateTableAsync<Comment>());

 // OR

Local Data Management

[104]

 //var initTask = m_SqliteConnection.
 CreateTablesAsync<LocationInfo, City, Landmark, Comment>();

 var initTask = Task.WhenAll(tasks);
 initTask.ConfigureAwait(false);
}

We can now expose the tables through public properties in our data context, so the
upper layers can execute queries against these tables. The code is as follows:

var dbPath = Path.Combine(this.FilesDir.Path, "myTravelDb.db3");

// TODO: Use Dependency Injection
var platform = new SQLitePlatformAndroid();

var myDbContext = new TravelContext(dbPath, platform);

var landmarksInCityTask = await myDbContext.Landmarks
 .Where(item => item.CityId == cityId).ToListAsync();

It is possible to extend the data model with entity relations and cascade operations.
There are also available extensions for the SQLite.Net PCL library for lazy loading
and child-related operations.

Patterns and best practices
In this section, we will have a look at two common patterns that are common to
mobile applications and how to implement these usage scenarios in a platform
agnostic manner.

Application preferences
Application preferences is a common scenario in mobile applications. In order to use
the previously described property list on iOS and SharedPreferences on Android,
a common dictionary interface is often the most appropriate approach. The interface
would then be inherited on platform-specific projects and can be injected into the
common library.

For a simple demonstration, we can define a simple interface that will retrieve and
save string values. The code is as follows:

public interface ISettingsProvider
{
 string this[string key] { get; set; }
}

Chapter 4

[105]

The implementation on the Android side would use a simple dictionary using a
shared preference implementation. The code is as follows:

public class SettingsProvider : ISettingsProvider
{
 private readonly ISharedPreferences m_SharedPreferences;

 public SettingsProvider(string name = "default")
 {
 // Retrieve and hold the contents of the preference file'
 m_SharedPreferences =
 Application.Context.GetSharedPreferences(name,
 FileCreationMode.Private);
 }

 public string this[string key]
 {
 get
 {
 if (m_SharedPreferences.Contains(key))
 m_SharedPreferences.GetString(key, string.Empty);
 return string.Empty;
 }
 set
 {
 var editor = m_SharedPreferences.Edit();
 editor.PutString(key, value);
 editor.Apply();
 }
 }
}

On the iOS side, the implementation would use an NSMutableDictionary class to
facilitate the preferences being edited by the user. The code is as follows:

public string this[string key]
{
 get
 {
 if (m_MyNSMutableDictionary.ContainsKey(new
 NSString(key)))
 {

Local Data Management

[106]

 return MyNSMutableDictionary [key].ToString();
 }

 return string.Empty;
 }
 set
 {
 MyNSMutableDictionary [key] = new NSString(value);
 MyNSMutableDictionary.WriteToFile(GetPropertyListPath(),
 true);
 }
}

Now that the persisted dictionary has been implemented on both platforms,
we can include the application settings as a singleton to be used with a
dependency injection.

This implementation can be extended using the Settings API on the iOS platform and
using the preferences views (PreferencesFragment and PreferencesActivity) on
the Android platform to create a more native-looking implementation.

File picker
In a cross-platform application project, if we are following an MVVM pattern, the
view-model should reside in a shared project or a PCL so that the business logic
can be shared between the apps. However, if we have a requirement to pick a file
for processing, the method implementation should reside in the view itself since
the platform-specific project that holds the view has access to platform features.
Although it would be moving the business logic to the UI components, the work
has to be done by the view.

You can, however, delegate the responsibility of the view model to the view
without compromising the MVVM implementation. The delegation process can be
executed through Inversion of Control (IOC) into the interface that defines the file
picking operation.

To demonstrate this usage, we will use an interface called IFilePickerService. In
this example, we just want to let the user pick a file and return the resulting file path
back to the view-model and maybe the model. The code is as follows:

public interface IFilePickerService
{
 Task<string> PickFileAsync();
}

Chapter 4

[107]

We will use this interface in the view-model to call for the view to execute the logic.
The code is as follows:

return new MvxCommand(() =>
{
 m_FilePickerService.PickFileAsync()
 .ContinueWith(task =>
 {
 Debug.WriteLine("File Picked:" + task.Result);
 });
});

For Android implementation, we will be using the default file manager application
that supports the respective intent type. We need to convert intent execution and the
callback call on the OnActivityResult class into an asynchronous implementation.
In order to do this, we will be using a task completion source. The code is as follows:

private TaskCompletionSource<string> m_PickFileCompletionSource;

The private variable will be initialized every time the intent is called and the result
will be set in the callback method. With this pattern in mind, the interface method
implementation would look similar to this:

public Task<string> PickFileAsync()
{
 m_PickFileCompletionSource = new
 TaskCompletionSource<string>();

 Intent intent = new Intent();
 intent.SetType("*/*");
 intent.SetAction(Intent.ActionGetContent);
 intent.AddCategory(Intent.CategoryOpenable);

 try
 {
 StartActivityForResult(intent, 0);
 }
 catch(ActivityNotFoundException ex)
 {
 throw new InvalidOperationException("Could not find a file
 manager");
 }

 return m_PickFileCompletionSource.Task;
}

Local Data Management

[108]

Finally, the callback method implementation would be just setting the result on the
TaskCompletionSource class. The code is as follows:

protected override void OnActivityResult(int requestCode, Result
 resultCode, Intent data)
{
 base.OnActivityResult(requestCode, resultCode, data);

 if (resultCode == Result.Ok)
 {
 m_PickFileCompletionSource.TrySetResult(data.Data.Path);
 }
 else if(resultCode == Result.Canceled)
 {
 m_PickFileCompletionSource.SetCanceled();
 }
}

Now that we have the IFilePickerService interface created, at least on the
Android side, we have to register the type with the dependency injection provider
we are using, and then we can rely on it to resolve the type in the view-model
initialization. (We will be using the MVVMCross framework in this example.)

The code is as follows:

public MainView()
{
 Mvx.RegisterType<IFilePickerService>(()=>this);
}

The resulting application would execute the pick file command and open up
the file browser, returning the file path back to the view model. If the user cancels
the file selection, the task would throw an exception notifying that the operation
has been cancelled.

Chapter 4

[109]

Default file browser

For the iOS side of the story, our job is a little easier:

public Task<string> PickFileAsync()
{
 var taskCompletionSource = new TaskCompletionSource<string>();

 var documentTypes = new string[] { UTType.PNG, UTType.Image,
 UTType.BMP };

 var filePicker =
 new UIDocumentPickerViewController(documentTypes,
 UIDocumentPickerMode.Open);

 EventHandler<UIDocumentPickedEventArgs>
 documentPickedHandler = (sender, args) =>
 {
 taskCompletionSource.SetResult(args.Url.Path);
 };

 filePicker.DidPickDocument += documentPickedHandler;

 return taskCompletionSource.Task;
}

With this completed, we just need to register the type and we finally have a
cross-platform implementation of a command relying on the dependency
injected, platform-specific methods.

Local Data Management

[110]

Backup/Roaming
Xamarin target platforms both offer cloud sync and backup mechanisms. While the
Android backup strategy is more of an async background process where backup and
restore operations have to be initiated by the calling application, the iOS and iCloud
roaming strategy provides seamless integration to the filesystem.

Android and Backup API
Android Backup API and Google-provided backup transport services provide an
easily accessible way for application developers to back up and restore application
data to remote cloud storage. It is possible to restore data after a factory reset or one
device to another using the APIs provided by the BackupManager.

Backup operations are executed by the BackupManager in Android runtime
and operations related to the application data are delegated to the BackupAgent
registered in the application manifest. It is important to remember the fact that
your application has to be registered in the Android Backup Service. It is crucial
to include the backup service key that you receive from the registration in the
package manifest.

In order to create a BackupAgent, you must implement the OnBackup and OnRestore
methods of the BackupAgent abstract class. In these methods, the old and new states
of your data are served in the form of ParcelFileDescriptor (file metadata that
can be used to access the actual file). In the restore method, you also receive the
application version that might be helpful if the data structure has changed
between application updates.

Another way to create an agent is to use the existing agent template
(BackupAgentHelper) and use the existing helper classes to back up and
restore certain subsets of your application data.

For instance, the SharedPreferencesBackupHelper class is a generic
implementation of a backup operator on SharedPreferences files that are used by
your application. The preferences groups for the application can be passed onto the
helper and the helper class can deal with the backup logic implementation.

Another helper class is the FileBackupHelper class that can be used to back up and
restore application files.

Chapter 4

[111]

In order to demonstrate the Backup API and a usual backup scenario, we can
create a backup agent that will trace out the backup events and method executions.
The implementation class should derive from the BackupAgentHelper class:

public class PreferencesBackupService : BackupAgentHelper
{
 // TODO: Override the methods we might need
}

To include this backup agent in our application, we can either edit the application
manifest or use the ApplicationAttribute attribute in the assembly info. Both
AssemblyInfo.cs and AndroidManifest.xml can be found under the Properties
project folder.

Application manifest and AssemblyInfo

Local Data Management

[112]

Using the ApplicationManifest.xml file, let's add the backup agent and backup
services key:

<application android:label="Xamarin.Master.Android"
 android:icon="@drawable/Icon"
 android:backupAgent="PreferencesBackupService">
 <meta-data android:name="com.google.android.backup.api-key"
 android:value="..." />
</application>

The preceding application manifest entry is how it would look if we were dealing
with Java class libraries, not Xamarin and the JNI Bridge. In fact, this registration
would throw an error as soon as a backup request is received. The code is as follows:

09-22 18:28:33.647 E/ActivityThread(32153): Agent threw during creation:
java.lang.ClassNotFoundException: Didn't find class "Xamarin.Master.
Android.PreferencesBackupService" on path: DexPathList[[zip file "/data/
app/Xamarin.Master.Android-1.apk"],nativeLibraryDirectories=[/data/app-
lib/Xamarin.Master.Android-1, /system/lib]]

To register the PreferencesBackupService class with the Android runtime, we
need to add an identifier for the type itself. Since we are not using a namespace
qualifier in the manifest declaration, we can register the class in the application
default namespace:

[Register("Xamarin.Master.Android.PreferencesBackupService")]
public class PreferencesBackupService : BackupAgentHelper

If we were to use the Application attribute to register our backup agent without the
application manifest entries, the attributes would look similar to the following using
the AssemblyInfo.cs file:

[assembly: Application(AllowBackup = true,
 BackupAgent = typeof(PreferencesBackupService))]
[assembly: MetaData("com.google.android.backup.api_key",
 Value = "...")]

In this case, the android callable wrapper (ACW) is created with the default naming
convention for our backup agent and inserted into the application manifest, so we
didn't need to register our class additionally. The generated entry for the application
manifest contains the MD5 hash of the pair namespace and the containing assembly:

md5d06a1058f86cf8319abb1555c0b54fbf.PreferencesBackupService

Chapter 4

[113]

If you are developing with Visual Studio and running your application
on Emulator, you can see the generated MD5 values for the Android
exposed classes in the <projectdir>\obj\<buildconfig>\
android\src directory.

Android source directory

Once the registration is complete, we can override a couple of methods in the agent
class to get the trace information. The code is as follows:

public override void OnCreate()
{
 var preferencesHelper =
 new SharedPreferencesBackupHelper(this,
 "ApplicationSettings");
 AddHelper("ApplicationPreferences", preferencesHelper);

 Debug.WriteLine("PreferencesBackupService was created",
 "BackUp");

 base.OnCreate();
}

Local Data Management

[114]

You can now open an Android Adb Console and use the following commands to
trigger a backup request:

adb shell bmgr enable true

adb shell bmgr run

Once your data segments change, you can use the DataChanged method of the
BackupManager class and use it to request restore operations. (Restore operations
are, under normal circumstances, scheduled and performed by Android backup
services, so the app does not need to explicitly call it.)

The code is as follows:

BackupManager backupManager = new BackupManager(this);

// Notifying the backup manager about data changes
backupManager.DataChanged();

// Using an implementations of RestoreObserver class to request
restore
backupManager.RequestRestore(new MyRestoreObserver());

iOS and ubiquitous storage
In order to use iCloud features in your iOS applications, they must be configured in
the Apple Provisioning Portal and the project manifest.

In the provisioning portal, while creating the App ID, iCloud must be selected as one
of the enabled services. Then, using the <TeamID>.<BundeID> format, the container
identifier must be inserted into the Entitlements.plist file. The keys that have to
be edited are as follows:

com.apple.developer.ubiquity-kvstore-identifier

com.apple.developer.ubiquity-container-identifiers

On iOS, the simplest synchronization mechanism provided is for primitive data
types in the form of key/value pairs. This is used for simple user preferences or
application required values that need to be synchronized between separate clients.
The total size of a key/value pair cannot exceed 64 kilobytes, while the maximum
value size is 64 kB and key size is 64 bytes.

Chapter 4

[115]

The synchronizing context can be accessed through the
NSUbiquitousKeyValueStore class. The code is as follows:

/// <summary>
/// Synchronizes local values to the cloud
/// </summary>
private void SyncUpSettings()
{
 var store = NSUbiquitousKeyValueStore.DefaultStore;
 //
 // Can use designated set functions for different value types
 // string, bool, NSData, NSDictionary, NSObject[], long, double
 store.SetString("myStringValue", "New String Value");
 store.SetLong("myLongValue", 1234);
 store.SetBool("myBoolValue", true);
 store.Synchronize();
}

Using the same store, you can access the values:

/// <summary>
/// Gets the values from synchronized local storage
/// </summary>
/// <returns></returns>
private Dictionary<string,object> GetValues()
{
 var results = new Dictionary<string,object>();
 var store = NSUbiquitousKeyValueStore.DefaultStore;

 //
 // Getting the synchronized LOCAL values
 results.Add("myStringValue",store.GetString("myStringValue"));
 results.Add("myLongValue", store.GetLong("myLongValue"));
 results.Add("myBoolValue", store.GetBool("myBoolValue"));

 return results;
}

The synchronization process does not happen right after the synchronize
method is invoked. The process is initiated according to iCloud's own schedule;
up-sync generally happens within 5 seconds, while the only way to exactly
know when the down-sync occurs is by adding an Observer delegate to the
NSUbiquitousKeyValueStore events.

Local Data Management

[116]

The code is as follows:

NSNotificationCenter.DefaultCenter.AddObserver(
 NSUbiquitousKeyValueStore.DidChangeExternallyNotification,
 (notification) =>
 {
 NSDictionary userInfo = notification.UserInfo;

 // NInt: 0-ServerChange, 1-InitialSyncChange,
 // 2-QuotaViolationChange
 NSNumber reasonNumber = (NSNumber) userInfo.
 ObjectForKey(NSUbiquitousKeyValueStore.ChangeReasonKey);

 // NSString[] You can used the changed items list to sync only
those values
 NSArray changedKeys = (NSArray) userInfo.
 ObjectForKey(NSUbiquitousKeyValueStore.ChangedKeysKey);

 // OR get the latest values from synchronized local storage
 var latestValues = GetValues();
 });

For synchronized files, the implementation is a little more complicated.
While backup and restore scenarios are automatically handled by the iOS
application and iTunes, for keeping a synchronized file storage, developers need
to implement the UIDocument class to prepare type of documents that needs to be
synced between devices.

The UbiquityContainer directory is managed by the so-called daemons to
coordinate the synchronization and modifications of the files on the iCloud
context. In order not to cause concurrency problems and interfere with the
daemon processing, the files in question need to be accessed and modified
with the NSFilePresenter and NSFileCoordinator classes.

The easiest way to use the presenters and coordinators for file operations is to
implement the UIDocument base class. There are two virtual methods that need
to be implemented to read data and write data to documents.

Let's assume that we want to keep a synchronized context for serialized entity
data for our application. First, we need to declare our class as inheriting and
implementing the required constructor from the UIDocument class. The code
is as follows:

public class EntityDocument<T> : UIDocument
{

Chapter 4

[117]

 public EntityDocument(NSUrl url)
 : base(url)
 {
 m_Type = typeof(T);
 }

We then need to implement the two virtual methods. The following load method
defined just deserializes the data from the cloud into the entity defined in the generic
class type definition. The code is as follows:

/// <summary>
/// Content down-sync'd from the cloud
/// </summary>
public override bool LoadFromContents(NSObject contents,
 string typeName, out NSError outError)
{
 // TODO: Implement a try/catch block to return (if any)
 errors as well as negative result (i.e. return false).
 outError = null;

 if (contents != null)
 {
 var serializedData = NSString.FromData((NSData)contents,
 NSStringEncoding.UTF8);
 m_Entity =
 JsonConvert.DeserializeObject<T>(serializedData);
 }

 // LoadFromContents called when an update occurs
 NSNotificationCenter.DefaultCenter.
 PostNotificationName(string.Format("{0}DocumentModified",
 m_Type.Name), this);

 return true;
}

Finally, we can implement the save method that will serialize the object and serve
the stream to be saved in the ubiquitous container. The code is as follows:

/// <summary>
/// Content to up-sync to the cloud
/// </summary>
public override NSObject ContentsForType(string typeName, out NSError
outError)

Local Data Management

[118]

{
 // TODO: Implement a try/catch block to return (if any)
 errors as well as negative result (i.e. return false).
 outError = null;

 if (m_Entity != null)
 {
 var serializedData =
 JsonConvert.SerializeObject(m_Entity);

 NSData docData = new NSString(serializedData).
 Encode(NSStringEncoding.UTF8);

 return docData;
 }

 return null;
}

In order to be able to use this implementation with an example class, named
LocationInfo, we can first implement a load file procedure (we are using a single
file query for each location loaded, but this can be extended using queries like
ENDSWITH or CONTAINS). The code is as follows:

private void GetLocationsInfo(string locationName)
{
 var locationDataQuery = new NSMetadataQuery();
 locationDataQuery.SearchScopes = new NSObject[]
 {NSMetadataQuery.UbiquitousDocumentsScope};

 locationDataQuery.Predicate =
 NSPredicate.FromFormat(string.Format("{0} == %@",
 NSMetadataQuery.ItemFSNameKey),
 new NSString(locationName + "Data.txt"));

 NSNotificationCenter.DefaultCenter.AddObserver(this,
 new Selector("locationLoaded:"),
 NSMetadataQuery.DidFinishGatheringNotification,
 locationDataQuery);

 locationDataQuery.StartQuery();
}

Chapter 4

[119]

Once the query returns, we can expand the object into the data needed. The code is
as follows:

[Export("locationLoaded:")]
private void DidFinishGatheringHandler(NSNotification notification)
{
 var locationQuery = (NSMetadataQuery) notification.Object;
 locationQuery.DisableUpdates();
 locationQuery.StopQuery();
 NSNotificationCenter.DefaultCenter.RemoveObserver(this,
 NSMetadataQuery.DidFinishGatheringNotification,
 locationQuery);

 LoadLocationInfo(locationQuery);

 // listen for notifications that the document was modified
 via the // server
 NSNotificationCenter.DefaultCenter.AddObserver(this,
 new Selector("itemReloaded:"),
 new NSString("LocationInfoDocumentModified"),
 null);

}

The LoadLocationInfo function in the example would simply try to open the file
and deal with the loaded data. The code is as follows:

private void LoadLocationInfo(NSMetadataQuery locationDataQuery)
{
 if (locationDataQuery.ResultCount == 1)
 {
 NSMetadataItem item = (NSMetadataItem)
 locationDataQuery.ResultAtIndex(0);
 var url = (NSUrl)item.
 ValueForAttribute(NSMetadataQuery.ItemURLKey);
 m_LocationData = new EntityDocument<LocationInfo>(url);
 m_LocationData.Open((success) =>
 {
 if (success)
 {
 var info = m_LocationData.Entity;
 // TODO: Do something with the location info
 loaded
 }

Local Data Management

[120]

 else
 Console.WriteLine("failed to open iCloud
 document");
 });
 }
}

Notice that we are also subscribing to the data changed event with the notification
name we defined in the EntityDocument<T> class (string.Format("{0}
DocumentModified", m_Type.Name). The reload implementation is simply
gathering the object from the notification itself. The code is as follows:

[Export("itemReloaded:")]
private void DataReloadedHandler(NSNotification notification)
{
 var locationData = (EntityDocument<LocationInfo>)
 notification.Object;
 var entityData = locationData.Entity;
 // TODO: Do something with the location info loaded.
}

For saving and synchronizing the data, we just need to assign the new data and
update the change count on the UIDocument class. The code is as follows:

private void SyncLocationDataChanges(LocationInfo info)
{
 m_LocationData.Entity = info;
 m_LocationData.UpdateChangeCount(UIDocumentChangeKind.Done);

}

This topic will be discussed further in Chapter 5, Networking.

Summary
In this chapter, we discussed some of the local storage containers and access
strategies. In both of the Xamarin platforms, with the additional option to back
up and synchronize the data to the cloud, developers can create a consistent user
interface as well as stateful mobile applications.

In the next chapter, we will discuss the network connectivity options and how
to use connected data together with local storage options provided with the target
Xamarin platforms.

[121]

Networking
In this chapter, we will take a detailed look at the networking capabilities of Xamarin
applications and various service integration scenarios. The chapter also includes
real-world examples on how to use local storage for data caching on connected
app scenarios. It is divided into the following sections:

• Connected apps
• Web services
• Push notifications
• SignalR
• Patterns and best practices
• Platform-specific concepts
• Cloud integration

Connected apps
Mobile applications by definition should be as lightweight and resource-efficient as
possible. You cannot expect to package media and other content into the application
and then distribute the app or create an extravagant size of storage for user data,
especially with applications whose main purpose is to provide user access to related
content or store and manipulate the data.

For instance, while dealing with cross-platform projects, one of the easiest ways
to create unified business logic and storage is to create a web service layer and
delegate the responsibility and logic to this layer. In this scenario, the application(s)
would be simply responsible for serving the content provided by the service layer or
communicating the user input to the service layer.

Networking

[122]

This approach not only increases the efficiency of the application(s) but also creates
an abstraction between the logic implementation and the presentation. This allows
the developers to be free from the platform constraints on technology choices for
storage and execution.

It is also important to mention that applications' dependency on external resources is
not a matter of choice but has rather become a necessity, since applications are more
and more dependent on third-party web service APIs and social media networks.

Web services
A web service is generally defined as an interoperable machine-to-machine
communication over the wire (network). In the context of cross-platform
application, the most important term in this definition would be "interoperable".
Web services written in different frameworks or languages and running on different
type of runtimes and hardware conform to the same standards, most of which can
be consumed by applications running on a variety of platforms, including Xamarin
target platforms.

Xamarin target platforms, namely iOS and Android, and Windows Runtime,
can access stateless web services using the TCP/IP (short for Transmission
Control Protocol / Internet Protocol) stack over a secure or non-secure HTTP
(short for Hypertext Transfer Protocol) transport layer. Even though various data
representations can be consumed via web services, JSON and XML are the most
common text-based notations used.

While defining or accessing a web service, there are three basic
elements that need to be taken into consideration. We can call
these the A-B-C of a web service: Address, Binding, and Contract.
The address is the remote access location to the service, binding
defines the transport and security protocols, and contract defines
the data types and the methods used by the service.

Chapter 5

[123]

While the methods and data types defined in the web service contract are very
case-specific, transport and serialization protocols that can be used by Xamarin
applications can be generalized.

In web service scenarios, if the consumer is a Xamarin target platform, you should
always be persistent about using asynchronous implementation for the client
implementation. Asynchronous implementation for the web service clients
decreases the chance of blocking the main thread, as discussed previously, and
protects the application from network shortage related errors and crashes.

Transport
For Xamarin applications on both iOS and Android platforms, the main
communication protocol is HTTP. HTTP transport can be secured on the client
and/or message level using a certificate or credentials.

The message-level security is optional in other versions of iOS and Xamarin.Android
applications. In iOS 9, the App Transport Security (ATS) feature enforces secure
connections to network resources. Even though it is possible to add certain domains
to the exclusion list, or to turn off the ATS altogether for the target applications, it is
strongly advised that you use secure transport over HTTP (or HTTPS) for Xamarin.
iOS applications.

Even though communication protocols for TCP, UDP, or web sockets over HTTP
are fully or partially supported on Xamarin platforms, with the current service
infrastructure implementation, these communication channels cannot be used
with web services.

Messaging
Messaging specifications of a service define which format should be used while
communicating data over the HTTP transport layer.

Networking

[124]

In Xamarin applications dealing with web services, messages should be constructed
either according to the SOAP (Simple Object Access Protocol) or using POX (short for
Plain Old XML) or JSON, depending on the service requirements.

Simple SOAP Communication Example

The messaging structure is mainly important for the serialization and deserialization
of request and response pairs between the client and server implementations. Hence,
it is possible to employ other types of data communication models, which would
require additional custom implementation for the client and the server.

SOAP/XML services
SOAP web services use XML data objects enveloped in SOAP-defined schemas.
Windows Communication Foundation (WCF) services and ASP.Net Legacy
Services (ASMX) are both SOAP services and conform to the SOAP protocol.

Chapter 5

[125]

SOAP web service contracts are defined in Web Service Description Language
(WSDL) and the WSDL document, together with other XML data schemas (for
example, XSD files), are generally accessible through the web service URL. Using this
document, web services can be defined in a consistent manner, irrespective of the
underlying language, and can be interfaced with and consumed by various clients.

Service WSDL for a SOAP 1.1 Service

In Xamarin applications, one of the possible ways to create a so-called proxy
(service consumer) is to use the Silverlight SDK to generate the access code.
The main reason for using the Silverlight SDK is the fact that the Windows
Communication Foundation client infrastructure is not fully included in
the Xamarin core and only a subset of client features, very similar to the
Silverlight framework, can be used to access web services.

Networking

[126]

In order to generate the client, you can simply use the command-line tool to execute
the following command:

slsvcutil http://localhost/ ReferenceService.svc /d:c:\bin\

SLSvcUtil can be found in various SDKs including Windows Phone
7, Windows Phone 8, Windows Phone 8.1 (Silverlight), as well as the
actual Silverlight SDK directories:

• C:\Program Files (x86)\Microsoft SDKs\Windows
Phone\v7.0\Tools\SlSvcUtil.exe

• C:\Program Files (x86)\Microsoft SDKs\Windows
Phone\v8.0\Tools\SlSvcUtil.exe

• C:\Program Files (x86)\Microsoft SDKs\Windows
Phone\v8.1\Tools\SlSvcUtil.exe

• C:\Program Files (x86)\Microsoft SDKs\
Silverlight\v5.0\Tools\SlSvcUtil.exe

The preceding command would generate a WCF client that can communicate
with any web service that supports the SOAP 1.1 profile. If we were to consume a
WCF service, the supported binding configurations would be BasicHttpBinding
and WebHttpBinding (essentially a REST binding). WSHttpBinding and similar
configurations use other SOAP profiles to envelope the data requests and responses.

Generating Silverlight Proxy

The generated client would have both the Event-Based and Asynchronous
Programming Model (APM) asynchronous methods for accessing the client.

[OperationContract (AsyncPattern=true, Action=
 "master.xamarin.com/ReferenceService/GetRegions", ReplyAction=
 "master.xamarin.com/ReferenceService/GetRegionsResponse")]

Chapter 5

[127]

IAsyncResult BeginGetRegions(Xamarin.Master.TravelTrace.Data.Region
filter,
 AsyncCallback callback, object asyncState)
List<Xamarin.Master.TravelTrace.Data.Region>
 EndGetRegions(IAsyncResult result)

public void GetRegionsAsync(Xamarin.Master.TravelTrace.Data.Region
filter)

Another approach would be to create a web reference in Visual Studio or Xamarin
Studio. A web reference can only be used to communicate with services that
implement the WS-I Basic Profile 1.1 (in other words, SOAP 1.1). Web reference
generated clients use the ASMX communication stack (.NET 2.0 Services Technology)
as opposed to the WCF client infrastructure used by service references.

Add Web Reference Dialog (Visual Studio)

If we were to compare the generated clients from the web reference and the
Silverlight SDK, we could easily identify the underlying technologies.

// Web Service Generated Client.
[System.ComponentModel.DesignerCategoryAttribute("code")]
[System.Web.Services.WebServiceBindingAttribute(Name="BasicHttpBindi
ng_ReferenceService", Namespace="master.xamarin.com")]
[GeneratedCodeAttribute("System.Web.Services", "4.6.79.0")]

Networking

[128]

public partial class AsmxReferenceServiceClient : System.Web.Services.
Protocols.SoapHttpClientProtocol

// WCF Generated Client
[GeneratedCodeAttribute("System.ServiceModel", "4.0.0.0")]
public partial class ReferenceServiceClient : System.ServiceModel.
ClientBase<ReferenceService>, ReferenceService

Looking at the class diagram for both of the generated proxies, we can get some
more insight into the method execution strategies:

Generated Proxy Comparison

The ideal way to integrate the generated proxy in a cross-platform project would be
to add the service reference in a portable class library to be used by platform-specific
projects. In order to be able to add a service reference in a PCL project in Visual Studio,
you must remove Windows Phone 8.1 as one of the targets and/or add a reference
to the System.ServiceModel namespace (Visual Studio will automatically remove
Windows Phone 8.1 from the targets list). The Windows Phone 8.1 platform does not
include the Windows Communication Foundation client assemblies. After this step,
the Add Service Reference option will appear under the project context menu.

For scenarios involving Windows Phone 8.1, the more appropriate solution would be
to use a RESTful service and a client.

Chapter 5

[129]

RESTful services
RESTful services are one of the most common distributed system implementations
involving mobile applications. Compared to SOAP services, they don't have the
overhead of SOAP protocols or the enveloping of the request/response pairs. In
essence, network traffic caused by a SOAP method call is the same as the request/
response pair of a REST call. The simplicity of the Representational State Transfer
(REST) model increases the performance and maintainability. Stateless and
cacheable approaches of RESTful services makes them an optimal solution for
Xamarin target platforms.

REST services can essentially be described as static HTTP endpoints. The HTTP
verbs (GET, PUT, POST, and DELETE) used to access these endpoints define the type
of method to be invoked on the service layer (PUT for update, POST for create, and
DELETE for delete actions). The messaging structure can vary from JSON to XML,
even to ATOM.

On Xamarin target platforms, there are various out-of-the-box options and additional
components available for REST-based web services. Any of these options can be used
to execute web requests and request/response pairs can be serialized/deserialized
according to the requirements and chosen messaging media-type.

Since we are making ordinary web requests to the REST endpoints, the simplest
implementation would involve the HttpClient, which is included in the System.
Net.Http namespace.

For instance, if we were to implement a base class that will handle the CRUD (create,
read, update, and delete) methods on the RESTful version of the web service used in
the previous section (TravelTrace.ReferenceDataService), we could implement a
per-call wrapper around the inner HTTP client layer.

public BaseClient(string baseAddress, string securityToken)
{
 if (string.IsNullOrEmpty(baseAddress)) throw new ArgumentNullExcep
tion("baseAddress");

 BaseAddress = new Uri(baseAddress);

 // Storing the security token in a class property of type string
 SecurityToken = securityToken.StartsWith("Bearer") ?
securityToken.Substring(7) : securityToken;

 m_HttpClient = CreateHttpClient();
}

Networking

[130]

You will notice that we are using the base address as the server address and, if any,
using the security token to initialize our client. In this implementation, the create
method will simply create the HTTP client and use the authentication token as a
default header. Another important requirement is to set the "Accept" header to
announce which type of content the client is expecting from the server (JSON
in this example).

private HttpClient CreateHttpClient()
{
 var httpClient = new HttpClient();
 httpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQuali
tyHeaderValue("application/json"));

 if (string.IsNullOrEmpty(SecurityToken))
 {
 httpClient.DefaultRequestHeaders.Authorization = new Authentic
ationHeaderValue("Bearer", SecurityToken);
 }

 return httpClient;
}

After the HTTP pipeline is ready to execute the requests, we can start implementing
the base methods for the REST service.

protected async Task<string> GetStringAsync(string path)
{
 // if we are using the BaseClient multiple times
 // we can create a new transport with each method
 //HttpClient httpClient = CreateHttpClient();

 try
 {
 // Get the response from the server url and REST path for the
data
 var response = await m_HttpClient
 .GetAsync(new Uri(BaseAddress, path));

 if (response.StatusCode == HttpStatusCode.Unauthorized)
 {
 throw new UnauthorizedAccessException(
 "Access Denied");
 }

Chapter 5

[131]

 if (response.IsSuccessStatusCode)
 {
 return await response.Content.ReadAsStringAsync();
 }

 throw new WebException(response.ReasonPhrase);
 }
 catch (Exception ex)
 {
 // TODO:
 throw ex;
 }
}

Now, the GetRegions method looks like this:

var regions = await GetStringAsync("regions");

The result of this request can be visualized in the debug screen:

JSON data returned from Web API

Networking

[132]

However, this is only the string representation of the service data, and we would
need to extend our implementation to include a JSON serializer. There are multiple
options available for serialization, including the standard libraries available through
the Microsoft BCL package: System.Xml and System.Json namespaces. NewtonSoft
Json.NET is still one of the most popular JSON libraries and available through NuGet.

public async Task<List<Region>> GetRegionsAsync(Region filter = null)
{
 var result = new List<Region>();

 var regions = await GetStringAsync("regions");
 var resultingList = JToken.Parse(regions);

 await Task.Run(() =>
 {
 result.AddRange(resultingList["value"]
 .Select(item => item.ToObject<Region>()));
 });

 return result;
}

Using this implementation, we can create generic methods in the base class
implementation and push the serialization responsibility to this layer.

protected async Task<List<T>> GetListAsync<T>(string path)
{
 List<T> result = new List<T>();

 try
 {
 var response = await GetStringAsync(path);
 var resultingList = JToken.Parse(response);

 await Task.Run(() =>
 {
 result.AddRange(resultingList["value"]
 .Select(item => item.ToObject<T>()));
 });
 }
 catch (Exception ex)
 {
 // TODO:
 throw ex;
 }

 return result;
}

Chapter 5

[133]

We can extend this generic implementation for other web methods and create the
basis for our RESTful client. The authentication scenario will be discussed further
in the following section.

There are many more REST consumer implementations available for the Xamarin
developer and these modules can be included in cross-platform projects via
components and NuGet packages (RestSharp, Hammock, and so on).

OData and OAuth
OData and OAuth are two widely accepted standards/protocols for RESTful
communication scenarios. Xamarin mobile applications that deal with external
resources, and especially third-party web service APIs, are generally implementing
these protocols.

OData
Unlike SOAP, which is a communication protocol, REST is simply an architectural
approach to web service implementations. RESTful services do not need to conform
to certain specifications and may vary greatly. In order to identify the requirements
for RESTful services and create a uniform structure for data being exchanged
between the client applications and the server, OData was initiated by Microsoft
in 2007. OData is now an internationally accepted protocol that is maintained by
OASIS and supported/used by various applications, platforms, and companies
(for example, Microsoft Azure Mobile Services, Microsoft Office 365 Web Access,
Salesforce, SAP Netweaver Gateway Solution, IBM WebSphere, and so on).

In OData protocol, each object set is defined by an endpoint in line with REST
principles. For GET requests, these entity set endpoints can either accept object
identifiers, which results in the details of that specific entity instance, or entities in
the list can be queried with OData filter and other query options.

Similar to the WSDL in SOAP/XML services, accessible endpoints (entity sets and
functions) and types used in the service contracts are generally served through the
metadata endpoint with a CSDL (OData Common Schema Definition Language) file
in OData.

To access the whole list of elements, visit http://localhost/Xamarin.Master.
TravelTrace.Service.Api/odata/regions.

To access a single element in the entity set endpoint, visit http://localhost/
Xamarin.Master.TravelTrace.Service.Api/odata/regions(guid'90222c18-
66fa-441a-b069-0115faa1e0f1').

Networking

[134]

To query the list of elements with a filter, visit http://localhost/Xamarin.
Master.TravelTrace.Service.Api/odata/regions?$filter=Continent eq
'Europe'.

Advanced OData queries involving additional property expansions, lambda
operators, and functions are also possible with the OData protocol; however,
these topics are beyond the scope of this book.

There are multiple NuGet packages and components available both as open source
and/or free to download that help with the client generation for OData services.

OAuth
OAuth is an open standard used generally by service providers for authorization.
A general use case for OAuth would be to use third-party identity providers
such as Live ID (Microsoft), Google, Facebook, or Twitter for authentication and
authorization in a mobile or web application.

A classic OAuth 2.0 implementation scenario is generally a two-step process. The first
step involves the user granting access to the client application through the provider
web interface. The second step is using the authorization code received from the
provider's web interface to get an access token to access the provider's resources.

Facebook as Auth Provider

Chapter 5

[135]

The first step of the authorization process on a web application is generally an
iframe displaying the provider's authorization page. In a Xamarin application,
this step is executed using a web view control or a more specialized implementation
(WebAuthenticationBroker is an out-of-box control on Windows Phone 8.1).
Implementing the two-step authentication process can become quite cumbersome
considering the fact that the provider's page makes a callback request to the client
application page with the authorization token and the client app is responsible for
parsing and extracting this token either from the callback URL or the body of
the content.

Xamarin.Auth Components

To provide access to OAuth APIs and simplify the implementation, developers can
make use of the available Xamarin OAuth component: Xamarin.Auth (available
on Xamarin.iOS and Xamarin.Android platforms). There is also an accompanying
component for social media provider APIs: Xamarin.Social.

Using the Xamarin.Auth implementation, authenticating with the Facebook API can
become as simple as a few lines of code.

var authenticationBroker = new OAuth2Authenticator(
 clientId: "<App ID from https://developers.facebook.com/apps>",
 scope: "",
 authorizeUrl: new Uri("https://m.facebook.com/dialog/oauth/"),
 redirectUrl: new Uri("http://www.facebook.com/connect/login_
success.html"));

authenticationBroker.Completed += (sender, eventArgs) =>
{
 DismissViewController(true, null);

 if (eventArgs.IsAuthenticated)
 {
 // TODO: eventArgs.Account contains the authenticated user
info
 }
 else
 {

Networking

[136]

 // TODO: Possibly the user denied access to the account or
 // the user could not authenticate with the provider
 }
};

// The GetUI method returns UINavigationControllers on iOS, and
Intents on Android
PresentViewController(authenticationBroker.GetUI(), true, null);

SignalR
ASP.NET SignalR is a web server-side technology that allows developers to pass
real-time updates to their applications. SignalR works in a similar way to WCF
duplex channels where the server side is accessible through the main service contract
and the server-to-client communication occurs through the callback contract. While
WCF duplex channels provide support for the same scenarios as SignalR, duplex
channel implementation is currently not supported in any of the Xamarin target
platforms. On the other hand, there is a component available for use on all Xamarin
target platforms for SignalR.

SignalR Component

Chapter 5

[137]

SignalR takes advantage of WebSockets, which enables bidirectional communication
over the HTTP transport. In essence, WebSockets works almost in the same way as
TCP Sockets; however, the connection is established over the HTTP transport layer.

Using SignalR, applications requiring real-time data can be implemented without
resorting to polling or listener channel implementations, which is neither scalable
nor efficient on mobile platforms.

SignalR is generally implemented with a Hub application on the server-side, which
creates different event sinks to be subscribed by different applications. Each client
that subscribes to a certain channel gets event notifications and data over these
channels in a normal broadcast scenario in a string format or already deserialized
as a complex type.

// Connect to the server
var hubConnection = new HubConnection("http://xamarin.traveltrace.
com/");

// Create a proxy to the 'MainHub' on the SignalR server
var myHubProxy = hubConnection.CreateHubProxy("MainHub");

// Subscribe to message from the server
myHubProxy.On<string>("ServerStringCall", message =>
{
 // TODO: use the message update from the channel
});

// Subscribe to message with a complex type
myHubProxy.On<Region>("ServerComplexCall", message =>
{
 // TODO: use the message update from the channel
});

// Start the connection
await hubConnection.Start();

SignalR server implementations can, generally speaking, replace RESTful service
actions. These duplex hubs can provide functions to be called by the consumers as
well as update calls from the server to listening clients.

Networking

[138]

While different message formats can be used to exchange data, most
implementations employ the JSON format to serialize and deserialize data, and
Json.NET is the default serialization library used by the SignalR component.

await myHubProxy.Invoke("MySimpleServerMethod", "myParameter");
await myHubProxy.Invoke<Region>("MyComplexServerMethod", new
Region{Continent = Continent.Europe});

On top of the server invoked events, SignalR channels also offer lifetime events:

• Received: Raised when any data is received on the connection. Provides the
received data.

• ConnectionSlow: Raised when the client detects a slow or frequently
dropping connection.

• Reconnecting: Raised when the underlying transport begins reconnecting.
• Reconnected: Raised when the underlying transport has reconnected.
• StateChanged: Raised when the connection state changes. Provides the old

state and the new state.
• Closed: Raised when the connection has disconnected.

SignalR supports SSL transport security as well as having the ability to integrate
with the existing authentication and authorization providers already being used
by the web server and mobile applications.

Patterns and best practices
In mobile applications, developers often use certain reusable design patterns while
using web services and other communication channels in development projects.
These patterns aim to increase the efficiency and increase the code sharing not only
between platforms but also among various execution domains of cross-platform
mobile applications.

Async conversions
The generated proxies for WCF and/or SOAP/XML services generally include either
an event-based async implementation or an asynchronous invoke pattern with begin
and end methods. Both of these implementations can be converted to a task-based
async pattern.

Chapter 5

[139]

In order to convert the event-based async service method to a task-based one,
we can use TaskCompletionSource<T> and return the task that is produced
(refer to Chapter 3, Asynchronous Programming).

public Task<List<Region>> GetRegionsAsync(Region filter = null)
{
 var taskAwaiter = new TaskCompletionSource<List<Region>>();

 var client = CreateServiceClient();

 EventHandler<GetRegionsCompletedEventArgs>
 completedDelegate = null;

 completedDelegate = (sender, args) =>
 {
 if (args.Error != null)
 {
 taskAwaiter.SetException(args.Error);
 }

 taskAwaiter.SetResult(args.Result);

 client.GetRegionsCompleted -= completedDelegate;
 };

 client.GetRegionsCompleted += completedDelegate;

 client.GetRegionsAsync(new Region { Continent =
 Continent.Europe });

 return taskAwaiter.Task;
}

For the async invoke pattern, we can use the designated methods from the
TaskFactory. The FromAsync method of the TaskFactory uses the begin and end
methods together with the async state object (which can, for example, be used for
cancellation token or progress callback) and creates an awaitable task.

public Task<List<Region>> GetRegionsAsync(Region filter = null)
{
 var client = (ReferenceService.ReferenceService)
CreateServiceClient();

Networking

[140]

 var task = Task<List<Region>>.Factory
 .FromAsync(
 (callback, o) => client.BeginGetRegions(filter, callback, o),
 result => client.EndGetRegions(result),
 null);

 return task;
}

Data model abstraction
Following the quality identifiers that were put forward previously, in service-related
scenarios, it is important to create a data model abstraction layer which can be used
by different branches of a cross-platform application.

Using the travelers' guide application example from previous sections, we can
analyze the sharing strategy. In this example, as a development team or a single
developer, we are responsible for:

• Implementing the service layer responsible for accessing the database and
connecting to external APIs, if necessary

• Implementing the shared common logic which will be used by
Xamarin applications

• Implementing the Xamarin.iOS and Xamarin.Android applications
• Implementing the Windows Phone 8.1 application
• Implementing the web interface which will employ a Silverlight

component (optional)

For simplicity, we will be implementing only a single data type and a single
GET method.

For the contracts and the data objects, we can create a portable library that will be
targeting Xamarin platforms together with .NET 4.5. The reason we are including
the .NET profile is because we will be using the data model in the service layer
implementation as well.

The implementation starts by creating the Data Transfer Model objects. These objects
are generally the reflection of the database tables used on the service layer. However,
one-to-one mapping between DTOs and DBOs (Entity Framework items) is not
absolutely necessary since the DTO abstraction layer's sole purpose is to create an
abstraction layer over the actual data repository that we will be dealing with.

public class Region
{

Chapter 5

[141]

 [JsonProperty("id")]
 public Guid Id { get; set; }

 [JsonProperty("name")]
 public string Name { get; set; }

 [JsonProperty("continent")]
 public Continent Continent { get; set; }
}

Notice that we are including Json.NET attributes to define class
properties. They are used to format the JSON object attributes during
serialization/deserialization to camel-case (for example, camelCase),
which is the JavaScript convention, rather than the .NET convention
of pascal-case (for example, PascalCase) for property names. These
property definitions can be used with RESTful clients and web
service implementations. This will not interfere with other service or
client layer use cases.

After we create the model, we can define the interface(s) that will be used
by the web service and associated clients. We will define two interfaces
for synchronous implementation on the service layer and asynchronous
consumption on the client side.

namespace Xamarin.Master.TravelTrace.Common.Infrastructure
{
 public interface IReferenceService
 {
 List<Region> GetRegions(Region filter = null);

 List<Country> GetCountries(Country filter = null);

 List<City> GetCities(City filter = null);
 }

 public interface IReferenceServiceAsync
 {
 Task<List<Region>> GetRegionsAsync(Region filter = null);

 Task<List<Country>> GetCountriesAsync(Country filter = null);

 Task<List<City>> GetCitiesAsync(City filter = null);
 }
}

Networking

[142]

The service implementation strategy would normally be to use a RESTful layer.
For demonstration purposes, let's implement the WCF service in a separate project,
reusing the data model defined and the interface previously created.

Solution Structure

In this implementation, each service method will be calling a data repository
(Entity Framework/MSSQL) and the repository will be returning the DTO
objects by converting the database layer entities.

Chapter 5

[143]

The next section of the project that we need to implement would be the service
data consumer layer. We will create a new portable library for this layer and use
a generated WCF client. After creating the project and adding the reference to the
System.ServiceModel namespace and the common portable library that contains
the DTO model, an important detail to remember is to make sure that the generated
proxy reuses the referenced libraries.

Service Reference Properties

If you are using the Silverlight SDK to generate the client, it is a little more
complicated to include the existing libraries so that the types are reused.
In order to do this, you can use the "reference" switch (or simply, /r:)
and point the utility to the assemblies that contain the implemented types.

slsvcutil http://localhost/ReferenceService.svc

 /d:c:\bin\ /r:C:\Local\Xamarin.Master.TravelTrace.
Common.dll

Networking

[144]

After creating the proxy, we have a structure in which the data model and the
contracts are shared by different layers of the application including the service,
data access layer, service proxy, and finally, the applications.

Shared service structure

The implementation, however, should be further extended with conversions to
task-based async implementation on the service proxy. Another useful improvement
would be to implement local DB caching and offline storage. For this caching layer,
the same DTO implementation can be reused.

If we were to include a Windows Phone 8.1 client in this cross-platform project,
the only solution to the lack of WCF infrastructure would be to exchange the WCF
service with a RESTful implementation.

Service cache
When dealing with network scenarios, it is important to keep in mind that mobile
devices do not always have a good network connectivity or network at all. In order
to make the Xamarin connected app usable even in offline scenarios, a caching layer
can be implemented to store and return data items that do not often change.

Chapter 5

[145]

For instance, in travel guide applications, users will want to access guides, and
possibly maps, even when they are with a roaming connection or, even worse,
without any connection at all. To facilitate offline storage, we can implement a
SQLite database that uses the existing data transfer objects as storage items and
updates the data on certain intervals when there is Internet connectivity.

The first step of the implementation would be to revise our DTO layer classes and
add SQLite attributes if needed. This will create a dependency on the service layer
for SQLite assemblies; the other option is either to use linked code files between the
service layer and the client libraries or to recreate the DTO objects specifically for the
SQLite data store.

public class Region
{
 public Region()
 {
 Countries = new List<Country>();
 }

 [PrimaryKey]
 [JsonProperty("id")]
 public Guid Id { get; set; }

 [JsonProperty("name")]
 public string Name { get; set; }

 [JsonProperty("continent")]
 public Continent Continent { get; set; }

 [OneToMany(CascadeOperations = CascadeOperation.CascadeInsert |
CascadeOperation.CascadeRead)]
 [JsonProperty("countries")]
 public List<Country> Countries { get; set; }
}

Networking

[146]

In this scenario, in order to create a data context that will use the online storage
if available and use the local data storage if Internet connectivity is limited, we
can implement the same data interface that we created for the service proxy in the
previous examples for the SQLite data source and create one parent handler
for the data sync context.

Data Abstraction on App Tiers

In the sync context, for GET methods, the service calls will be used only for updating
the local storage and actual results will be returned from the local storage. For
PATCH, POST, and PUT calls, depending on the online connectivity, we will be
either saving the data locally or pushing the deltas and new object instances to the
service and updating the local data with the updates.

public class DataSyncContext : IReferenceServiceAsync
{
 public IReferenceServiceAsync LocalDataService { get; set; }

 public IReferenceServiceAsync RemoteDataService { get; set; }

...

 public async Task<List<Region>> GetRegionsAsync(Region filter =
null)

Chapter 5

[147]

 {
 try
 {
 // Getting the online results
 var results = await RemoteDataService.
GetRegionsAsync(filter);

 // If there were any online changes.
 SyncToLocal(results);
 }
 catch (Exception ex)
 {
 // TODO:
 }

 // Returning the local storage results (with or without
updates)
 return await LocalDataService.GetRegionsAsync(filter);
 }
...
}

For performance improvement in this implementation, when we are loading data for
certain visualizations, we can first call the local data provider and continue with UI
updates and then call the web service method and the same continuation delegate.

Action<List<Region>> onRegionsLoaded = regions =>
{
 // Update the view-model data or the UI.
};

DataContext.LocalDataService.GetRegionsAsync()
 .ContinueWith((task) =>
 {
 onRegionsLoaded(task.Result);
 });

DataContext.GetRegionsAsync()
 .ContinueWith((task) =>
 {
 onRegionsLoaded(task.Result);
 });

Networking

[148]

Platform-specific concepts
There are other concepts and network communication methods on Xamarin
platforms that are provided by the native runtime and supported by Xamarin.

Permissions
In order for an Android or Windows Phone application to access Internet, the
application manifest should declare that the application will need to use the
network to access resources.

The permission on Android system is declared using the uses-permission tag in
the manifest node of the XML file:

<uses-permission android:name="android.permission.INTERNET" />

While this declaration will suffice in most use case scenarios, in order to access
the current network status or the Wi-Fi status, you must also declare the network
state permissions:

<uses-permission android:name="android.permission.ACCESS_NETWORK_
STATE" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"
/>

For a Windows phone, the app capability to declare would be ID_CAP_NETWORKING.

Application manifests for both platforms can be edited through the application
project properties in the designated configuration section.

Chapter 5

[149]

Android Manifest

iOS, other than the App Transport Security (ATS) that was mentioned previously,
does not enforce any manifest setup or permissions for applications to use
network connection.

NSUrlConnection/NSUrlSession (iOS Only)
Apart from the different client libraries available for use with Xamarin target
platforms, some native implementations can also be used to call and receive
external web data. One of these available options for Xamarin.iOS platform is
NSUrlConnection. With the help of NSUrlConnection, developers can make
web requests and use the response.

Networking

[150]

A simple web request to retrieve the data from the previously demonstrated static
data endpoint on iOS would look similar to this:

public Task<List<Region>> GetRegionsAsync(Region filter = null)
{
 var nsUrlRequest = new NSUrlRequest(new NSUrl(myServiceEndpoint));

 var taskSource = new TaskCompletionSource<List<Region>>();

 var nsUrlConnection = new NSUrlConnection(nsUrlRequest,
 new ConnectionSerializingHandler<List<Region>>(taskSource));
 nsUrlConnection.Start();

 return taskSource.Task;
}

The implementation for the connection delegate would involve the deserialization
of the data and assigning the result to the TaskCompletionSource so the method
execution can be finalized.

public class ConnectionSerializingHandler<T> :
 NSUrlConnectionDataDelegate where T:class,new()
{
 private StringBuilder m_ResponseStore;

 private TaskCompletionSource<T> m_TaskCompletion;
 public bool IsFinishedLoading { get; set; }
 public string ResponseContent { get; set; }

 public ConnectionSerializingHandler(TaskCompletionSource<T>
taskCompletionSource)
 : base()
 {
 m_ResponseStore = new StringBuilder();
 m_TaskCompletion = taskCompletionSource;
 }
 public override void ReceivedData(NSUrlConnection connection,
NSData data)
 {
 if (data != null)
 {
 m_ResponseStore.Append(data);
 }

Chapter 5

[151]

 }

 public override void FinishedLoading(NSUrlConnection connection)
 {
 IsFinishedLoading = true;
 ResponseContent = m_ResponseStore.ToString();

 // TODO: implement deserialization and
 m_TaskCompletion.SetResult(result);
 }
}

Even though this implementation is possible on the iOS platform, considering the
cost of passing the mono to iOS bridge (likewise on Android and JNC Bridge), this
type of implementation should be avoided, and either only native or mono runtime
code should be used to communicate over the network.

In a similar manner, we can implement the usage scenario for the new NSUrlSession
class in iOS. However, NSUrlSession can also be used in background download
scenarios. Therefore, we will discuss it in the next section.

Background downloads
When the application requires larger network resources than the client UI can wait
for, in Xamarin mobile applications we can resort to background downloads. Both
iOS and Android platforms offer implementations for background downloads and
these strategies can be executed on Xamarin runtime.

For Xamarin.Android application developers, the easiest way to execute a
background download is to use the Download Manager API service/application
provided since API level 9. The download manager can be initialized with a
request and the application can subscribe to event notification(s) regarding
the download status.

First, we need to create a request to pass onto the DownloadManager:

global::Android.Net.Uri downloadUri = global::Android.Net.Uri.
Parse("<URL to Download>");
DownloadManager.Request request = new DownloadManager.
Request(downloadUri);

// Types of networks on which this download will be executed.

Networking

[152]

request.SetAllowedNetworkTypes(DownloadNetwork.Wifi);

// Allowed on Roaming connection?
request.SetAllowedOverRoaming(false);

// Allowed on Metered Connection?
request.SetAllowedOverMetered(false);

//Set the title of this downloaded
request.SetTitle("My Background Download");

//Set the description of this downloaded
request.SetDescription("Xamarin.Android download using
DownloadManager");

//Set the local destination for the downloaded file
request.SetDestinationInExternalFilesDir(this, global::Android.
OS.Environment.DirectoryDownloads, "MyDownloadedData.xml");
// or use the request.SetDestinationUri()

Once the request is ready to be executed, we can get the DownloadManager instance
and queue the download request:

m_DownloadManager = (DownloadManager)GetSystemService(DownloadService
);

// Enqueue the request
// The download reference will be used to retrieve the status
m_CurrentDownloadReference = m_DownloadManager.Enqueue(request);

The download reference can be used to get the current status information about the
queued download or cancel the ongoing background download.

To get the current status of the download or cancel it, we can use the respective
methods on the DownloadManager instance.

// Removing the queued request from the DownloadManager queue.
m_DownloadManager.Remove(m_CurrentDownloadReference);

//
// Retrieving the current status of the download queue
// Create a query to retrieve the download status(s)

Chapter 5

[153]

DownloadManager.Query myDownloadQuery = new DownloadManager.Query();
myDownloadQuery.SetFilterById(m_CurrentDownloadReference);
// Request the queued download items as a data table.
var cursor = m_DownloadManager.InvokeQuery(myDownloadQuery);
var statusColumn =
 cursor.GetColumnIndex(DownloadManager.ColumnStatus);
var status = (DownloadStatus)cursor.GetInt(statusColumn);

This implementation can be extended with the notification(s) that are received from
the DownloadManager application using a BroadcastReceiver class.

public class DownloadBroadcastReceiver : BroadcastReceiver
{
 public override void OnReceive(Context context, Intent intent)
 {
 // Get the download reference from the intent broadcast
 long referenceId =
 intent.GetLongExtra(DownloadManager.ExtraDownloadId, -1);

 // TODO: Implement the delegated execution
 }
}

We can now register the broadcast receiver with the DownloadManager instance and
update the UI with a possible delegated implementation for updating it.

//set filter to only when download is complete and register broadcast
receiver
IntentFilter filter = new IntentFilter(DownloadManager.
ActionDownloadComplete);
// TODO: We can extend the DownloadBroadcastReceiver with delegates
RegisterReceiver(new DownloadBroadcastReceiver(), filter);

On top of the broadcasts mechanism, the Download Manager App UI can also be
invoked within the Xamarin applications to give a uniform UI about on-going or
completed transfers.

On the iOS platform (at least post iOS 7), background transfers (both download and
upload operations) are made possible with NSUrlSession. NSUrlSession provides
an easy to implement interface that lets developers create an efficient and reliable
transfer processes.

Networking

[154]

The implementation strategy for NSUrlSession initially involves the implementation
of an NSUrlSessionDelegate, which will be the responsible "handler" for the
transfer process. Basic methods related to the health and status of the transfer
are exposed through this delegate and can be implemented to provide required
information for the transfer or give real-time updates to the application user.

• DidFinishEventsForBackgroundSession is called when the background
session is complete

• DidReceiveChallenge is invoked when the server requests credentials
• DidBecomeInvalid is invoked when there is a problem with the session

NSUrlSessionDelegate provides the base implementation for more specialized
transfer delegates: NSUrlSessionDownloadDelegate for download operations and
NSUrlSessionTaskDelegate for upload operations. These delegate classes expose
additional status methods related to the transfer tasks (for example, download
delegate provides methods to retrieve notifications about the download progress).

For instance, if we were to use the same example as on Xamarin.Android
with the BroadcastReceiver implementation, the NSUrlSessionDownloadDelegate
implementation would require three basic methods for completion, error,
and progress.

public class DownloadTaskDelegate : NSUrlSessionDownloadDelegate
{
 public override void DidFinishDownloading(
 NSUrlSession session, NSUrlSessionDownloadTask downloadTask,
 NSUrl location)
 {
 // TODO: Implement the delegate for download finished
 }
 public override void DidBecomeInvalid(NSUrlSession session,
 NSError error)
 {
 //base.DidBecomeInvalid(session, error);

 // TODO: Implement the delegate for error
 }
 public override void DidWriteData(NSUrlSession session,
 NSUrlSessionDownloadTask downloadTask, long bytesWritten,
 long totalBytesWritten,
 long totalBytesExpectedToWrite)
 {

Chapter 5

[155]

 //base.DidWriteData(session, downloadTask, bytesWritten,
 // totalBytesWritten, totalBytesExpectedToWrite);

 // TODO: Implement the delegate for download progress
 }
}

After the delegate implementation is complete, we can create the session and start
the download operation using the NSUrlSession.

NSUrlSessionConfiguration downloadSessionConfiguration =
NSUrlSessionConfiguration.BackgroundSessionConfiguration ("com.
TravelTravel.BackgroundTransfer");
m_DownloadSession = NSUrlSession
 .FromConfiguration(downloadSessionConfiguration,
 new DownloadTaskDelegate(),
 new NSOperationQueue());
NSUrl url = NSUrl.FromString("<URL to Download>");
NSUrlRequest request = NSUrlRequest.FromUrl(url);
m_DownloadTask = m_DownloadSession.CreateDownloadTask(request);

On top of the handler implementation, the iOS app can be woken to execute
certain code, such as a local mobile notification to inform the user about
the completed sessions. For the task complete event, one needs to use
the iOS application delegate (refer to Chapter 2, Memory Management) for
DidFinishEventsForBackgroundSession.

Mobile notifications (also called pushed notifications for remote scenarios)
are user notifications that are executed on the OS level to inform the user about
application-related updates. They can be triggered both locally or by using a
remote server.

Push notifications
Push notifications are subtle UI messages that can help an application to provide the
user information about an asynchronous task being executed by the service layer or
about an external event that is related to the application instance itself (for example,
messages from social networks, approval for a travel reservation, and so on).

Networking

[156]

It is possible to create and receive push notifications on both Xamarin platforms and
Windows Phone. These notifications are triggered by a secondary server/application
(for example, service layer), brokered by the corresponding messaging infrastructure
provider for the platform and displayed by the application on the target client. For
the Android platform, the messaging provider is Google Cloud Messaging (GCM)
and it is the Apple Notification Push Service (APNS) for iOS. Both of these service
providers require your application to be registered to receive push notifications
and the server application to have the credentials to be able to authenticate with
the notification services. Similarly, Windows Notification Services (WNS)
adopts a federated authentication mechanism.

Both GCM and APNS use a subscription model in which the client app on a
specific device subscribes/registers for the push notifications and an addressing
token is created. The addressing token is used, later on, by the server to send push
notifications to the message broker service (for example, GCM) and the queued
messages are delivered to the specific client.

Push Notifications

Chapter 5

[157]

On top of the classic messaging model, GCM also supports topic-based and
group-based messages where the receivers are not limited to a single device/
application pair. It is also possible with GCM to create a duplex channel where
the client is able to send messages back to the server layer.

Push notifications on these platforms can be used to trigger various tasks, the most
common of which is to navigate to a certain view and continue the business process
flow initialized by the notification.

Although it is relatively elementary on the client side to subscribe to push
notifications, cross-platform scenarios require complex implementation to introduce
a single server environment to provide messages to both GCM and APNS. However,
there are platform-agnostic implementations available for both of these platforms.
The Microsoft Azure platform and the notification hub is one of these solutions,
where communication with GCM and APNS are both supported through usage
of the same business logic implementation.

Cloud integration
Even though there are multiple cloud service providers as development platforms
for creating the backend for mobile applications, Microsoft Azure stands out
among the competitors with its inherent natural bond to the .NET platform and
subsequently Xamarin, considering its evolution. Most of the features supported by
Azure have a specific implementation for Xamarin target platforms.

Azure Mobile Services
Azure Mobile Services is a scalable cloud development platform that helps
developers add functionality to their mobile applications with ease. The patterns
and features described in this chapter related to network services such as OData
services, offline data storage, push notifications, and OAuth authentication providers
are already included in the mobile services SDK and can be configured through the
Azure management console.

In order to demonstrate aforementioned features, we can incorporate them into our
demo application.

Networking

[158]

The initial step would be to create a mobile service on the Azure management console.
For this purpose, we will select a compute service and create the mobile service.

Create Compute Service

Then, we will set up the mobile service endpoint and create the SQL database to
store the online data.

Mobile Service Setup

Chapter 5

[159]

Once the setup is complete, the "personalized" service layer project can be
downloaded in order to integrate the mobile services into the application project.

Connect Mobile Services to an existing Xamarin app

In the service layer project, you will notice that there is only a single controller
created for your convenience. We will be extending the project with additional
controllers and adding a reference to our own DTO data model. In order to reuse the
types created in the previous sections, instead of referencing the common data model
project directly, we add the data type files as a reference to the new service project
that we downloaded from the Azure portal. The reason for the referenced files is that
the data objects in the service project have to derive from EntityData class. Another
change we need to make is to convert the class definitions to partial and remove
the SQLite references, for example, you can comment out the SQLite property
descriptors or use conditional compilation.

Networking

[160]

In this example, we are using AZURE as the build constant for the Azure web service.

public partial class Region
{
 public Region()
 {
 Countries = new List<Country>();
 }

#if !AZURE
 [PrimaryKey]
 [JsonProperty("id")]
 public Guid Id { get; set; }
#endif

#if !AZURE
 [JsonProperty("name")]
#endif
 public string Name { get; set; }

#if !AZURE
 [JsonProperty("continent")]
#endif
 public Continent Continent { get; set; }

#if !AZURE
 [OneToMany(CascadeOperations = CascadeOperation.CascadeInsert |
CascadeOperation.CascadeRead)]
 [JsonProperty("countries")]
#endif

 public List<Country> Countries { get; set; }
}

Finally, create a data object definition using a partial declaration for the
Region class:

public partial class Region : EntityData
{
}

Chapter 5

[161]

After this step, you can simply use the existing project item template for the
controller to add the specialized data endpoint (Microsoft Azure Mobile Services
Table Controller).

Microsoft Azure Mobile Services Table Controller

This will create a controller for the data object and insert the type into the
data context.

Once the project is published and the mobile services are running, SQL database
tables are going to be migrated automatically. This migration also applies to data
table column changes or future additions to the DTO model.

Now we can add the NuGet package or the component to our client application and
add the necessary initialization code, as described in the start page of mobile services
section on the Azure management console.

In the main activity, we create the following mobile service instance:

public static MobileServiceClient MobileService =
 new MobileServiceClient(
 "https://traveltrace.azure-mobile.net/",
 "<Removed for security reasons>"
);

Add the following to an event handler or the OnCreate function:

// Intialization the mobile services on the mobile platform
CurrentPlatform.Init();

// Adding a region item to the database
var item = new Region {Continent = Continent.Europe,
 Name = "Balkan"};

Networking

[162]

MobileService.GetTable<Region>().InsertAsync(item)
 .ContinueWith((result) =>
{
 System.Diagnostics.Debug.Write(result.Status);
});

After the code is successfully executed, the data on the Azure database can be
observed using SQL Management Studio or the Visual Studio SQL Server tools.

Azure Data Sample

Now that we have a working service layer and a client that can communicate with it,
we can have a look at the local synchronization.

Azure offline data
For local data caching and offline scenarios, Azure Mobile Services SDK already
implements a synchronization framework where the local data is stored in SQLite
database and the synchronization is handled by pull and push commands (push
requests upload local changes to the cloud store whereas pull requests download
the latest changes from the server) using a default conflict handler. Each pull request
automatically issues a push request where the local data is pushed to the cloud
storage. Conflicts are resolved according to the created and updated fields,
which are members of each object type defined using the EntityData base class.

Before starting the implementation, we need to download and install
the Azure Mobile Services SQLiteStore NuGet package.

Chapter 5

[163]

In order to initialize the default local data store, we will use the
MobileServicesSQLiteStore implementation. Custom local store implementation
can be incorporated using the IMobileServiceLocalStore interface.

private async Task InitLocalStoreAsync()
{
 // new code to initialize the SQLite store
 string path = Path.Combine(
 Environment.GetFolderPath(
 Environment.SpecialFolder.Personal), "traveltrace.db");

 if (!File.Exists(path))
 {
 File.Create(path).Dispose();
 }

 var store = new MobileServiceSQLiteStore(path);
 store.DefineTable<Region>();

 // Uses the default conflict handler, which fails on conflict
 await MobileService.SyncContext.InitializeAsync(store);
}

After the local store is initialized and the synchronization context is created,
we can implement the synchronization method that can be called every time
the application starts.

private async Task SyncAsync()
{
 // IMobileServiceSyncTable<Region> RegionsTable = MobileService.
GetSyncTable<Region>();
 await MobileService.SyncContext.PushAsync();
 await RegionsTable.PullAsync("AllRegions", RegionsTable.
CreateQuery());
}

Both the PushAsync and PullAsync methods additionally accept filter expressions so
one can limit the synchronization to certain entities.

In this implementation, once the synchronization context is in place, if the
service connection is not available, the IMobileServiceSyncTable<T> interface
implementations handle the offline data and the data is kept in the local store until
the next push operation.

Networking

[164]

Azure authentication
The Azure platform provides various authentication mechanisms for Xamarin
mobile applications. Each authentication mechanism can be integrated into
existing mobile applications with a service backend through NuGet packages
and/or components.

Being a multi-tenant, cloud-based directory and identity management service,
Azure Active Directory (Azure AD) provides application developers an easy way
to create single sign-on experience on a large number of cloud SaaS applications.
It is also possible to incorporate an existing Windows Server Active Directory into
applications and leverage the existing on-premise identity stores. These features
make the Azure AD an ideal candidate for LOB applications.

Another authentication strategy for Azure Mobile Services is to configure an
existing authentication provider such as Facebook, Google, Twitter, or Microsoft
and secure the service requests using the Azure Mobile SDK. In order to register
an authentication provider, the first step would be to create a consumer app on the
target platform.

For instance, if we were to use Live ID for our authentication scenarios, we would
need to use the Live Connect App management site (https://account.live.com/
developers/applications/index). Similarly, for Twitter, we would need to create
a Twitter consumer application on the Twitter application management console
(https://apps.twitter.com/).

Live Connect app management site

https://account.live.com/developers/applications/index
https://account.live.com/developers/applications/index
https://apps.twitter.com/

Chapter 5

[165]

Once the application setup is in place, the Azure management console can be used to
update the mobile services configuration.

Mobile Services Identity Configuration

After the identity provider for the mobile services has been set up, the web
service project can be easily protected simply by adding the Authorize attribute.

[AuthorizeLevel(AuthorizationLevel.User)]
public class RegionController : TableController<Region>

On the client apps, the authentication is handled by simply using the
LoginAsync method on the Azure Mobile Services SDK client with the
correct authentication provider.

MobileService.LoginAsync(this, MobileServiceAuthenticationProvider.
MicrosoftAccount).ContinueWith((task) =>
{
 System.Diagnostics.Debug.WriteLine("Currently authenticated user's
ID is {0}", task.Result.UserId);
});

Networking

[166]

The result is the same authentication screen received using the Xamarin.
Auth component.

Brokered Authentication

Azure Cloud integration scenarios extend far beyond the ones described here.
The features that are included in this cloud-based development platform can
help developers enhance their Xamarin apps with ease and scalability.

Chapter 5

[167]

Summary
This chapter provided an overview of various network channels that can be used
in Xamarin applications to create connected applications.

Web services are definitely on the essentials list for modern mobile applications
because of the interoperability of the protocols in place for web services (both SOAP/
XML and REST/JSON). Unfortunately, XML services are a little harder to integrate
with Windows Phone 8.1 runtime (even though they are still supported by Windows
Phone Silverlight runtime) because the Windows Communication Foundation
client infrastructure is not included in Windows Phone runtime. However, the same
RESTful service proxies can be used by applications on each Xamarin target platform
and Windows Phone.

Cloud integration options such as mobile services and Azure Active Directory
were discussed with demonstration samples. Each of these technologies provides
additional connectivity and integration opportunities for Xamarin mobile apps.
SignalR is another web technology that grants additional communication capabilities
to mobile applications by means of bidirectional communication between the client
apps and the server.

Several common service and web implementation patterns were demonstrated using
the TravelTrace application scope that we will be using for various scenarios in the
remainder of this book. Each pattern described targets different quality identifiers
initially mentioned.

Finally, we discussed some of the platform-specific network options.

[169]

Platform Extras
This chapter concentrates on platform-specific APIs and features. It explains some of
the peripherals that can be employed in Xamarin applications. We will also discuss
native libraries and how to include them in cross platform Xamarin applications.
The following topics will be discussed:

• Content sharing
• Peripherals
• Location data
• Native libraries

Content sharing
Each Xamarin target platform implements a certain strategy to share formatted
content between the applications. Sharing implementations increases the visibility of
your applications by allowing users to open files from your application in any other
app. In addition, these types of implementations provide added value to the quality
of your cross platform projects from the nativity perspective.

The inter-application sharing occurs with the underlying runtime acting as a broker
between the sharing source and target applications. On iOS and Windows Store
applications, the sharing is facilitated in the form of abstract file elements. Android
applications, however, can take it one step further by sharing formatted data that
can be manipulated by the receiving application, which essentially allows the source
application to almost act as a data repository.

Platform Extras

[170]

On Windows Store, applications can actively share content such
as media elements, URIs, text content, and other types of data.
However, in this implementation strategy, that is, sharing contact
implementation, the source application has to initiate the sharing
process. The content sharing scenarios described in this book are about
target applications accessing the content via the source application.

On Windows Runtime, applications interact with each other or with the operating
system through the usage of so-called application contracts. With the help of
contracts, applications can immerse into the runtime and get one step closer to
become part of the runtime.

The same functionality is achieved by the implementation of the base
ContentProviders on Android and the implementation of document
provider extensions on the iOS platform.

File pickers and contracts (Windows Store
apps)
One of the most commonly used contracts is the File Open Picker contract on
Windows Runtime. In this contract implementation, the source application has to
implement the activation strategy for when it is called to provide file content for
the target application. When the target application requires a certain type of file,
the runtime lists all possible source applications that declares this type in their app
manifest (for example, on a Windows Phone, when you want to attach a document
on the mail client together along with a picture, the OneDrive application is
displayed as one of the possible sources).

Chapter 6

[171]

The user then selects the file that they want to use in the current application
and the provider app is responsible for either creating or providing the file to
the target application.

File picker contract in Windows Runtime

In this methodology, the file does not necessarily need to be an actual document
item, but it can be a conceptual one. For instance, if we were to implement
the File Open Picker in the TravelTrace app, we would not need to use actual
documents in the File Open Picker to provide content. The shared content items
could be the previous trips that the user kept track of and the selected trip could
provide a generated scrap book or a collage of images in an image format or as a
PDF document according to the type of document that is being requested by the
consumer app.

Platform Extras

[172]

Document Provider extensions (iOS)
The Document Provider extensions (introduced in iOS 8) allow applications, that
is, consuming applications) to access documents outside their application sandbox.
Document Provider extensions are twofold. The Document Picker View Controller
extension provides a UI implementation for the operating system to display
whenever the source application is selected as a document source in the document
picker view. However, the File Provider extension is responsible for providing the
document level operations.

In order to create a provider extension, we can use the existing project template in
Xamarin Studio.

The Document Picker extension project template

Chapter 6

[173]

Once the project is created, we are responsible for creating the view on the
storyboard and implementing DocumentPickerViewController so that the
available files are listed on the UI when our application is selected to provide
files. DocumentPickerViewController initially has two methods that require
our attention. The PrepareForPresentation method receives the picker mode
(Import, Open, ExportToService, or MoveToService) so the user interface can
be prepared according to the requested operation. The OpenDocument method is
implemented just for our convenience to demonstrate the fact that once the user
selects a document, we should prepare the corresponding file URL and pass it onto
the runtime using the DismissGrantingAccess method.

It is important to keep in mind that the URL provided from our Document Picker
extension should already point to an actual file, or we should go on to implement
the Document File Provider extension that will provide the files when either the
consuming app displays the document picker and the user selects the file or the
consuming app opens the file directly using the cached URL.

In the Document File Provider extension project, the crucial implementation
is located in the StartProvidingItemAtUrl method. This method uses the
FileCoordinator class provided to create the file at the target URL (for
example, generates the file or downloads it from a remote location).

public override void StartProvidingItemAtUrl (NSUrl url,
Action<NSError> completionHandler)
{
 NSError error, fileError = null;
 NSData fileData;

 // TODO: get the file data for file at <url> from model
 fileData = new NSData ();

 FileCoordinator.CoordinateWrite (url, 0, out error, (newUrl) =>
 fileData.Save (newUrl, 0, out fileError));

 if (error != null)
 completionHandler (error);
 else
 completionHandler (fileError);
}

Platform Extras

[174]

After the implementation of the extensions is complete, we have to prepare the
project metadata entries. Each project (both extensions and the container application)
needs to make use of the App Groups capability. This capability needs to be set up in
the Entitlements option list. Other settings involve the base document storage URL,
type of operations supported for the document picker, and so on. However, these
configuration values are inserted in the Info.plist option list.

Entitlements for Document Provider extensions

In order to add the extensions to the containing application, the only thing we need
to do is to add them as references to the main project. If you look at the project file of
the main project, you will notice that the references are added with the IsExtension
flag set to true.

ContentProvider and ContentResolver
(Android)
Content providers on Android platform act as data repositories. These repositories
are exposed to consuming applications through structured endpoint descriptions
(similar to REST endpoints on web services). Using the metadata provided,
providers' content is resolved by the consuming app through the implementation of
ContentResolvers. Using content providers, applications can expose well-known
data types such as contact list photos or calendar events, as well as custom data types
and formatted data.

Chapter 6

[175]

On the consumer side of this infrastructure, there are many content providers
already implemented by default on Android runtime, such as Contacts,
MediaStore, UserDictionary, and so on. These providers can be accessed
by implementing base classes such as ContentResolver and CursorAdapter.
CursorAdapter is used to feed the data that is retrieved by ContentResolver to a UI
list view control. The ContentProvider API operations can involve list queries and
CRUD operations on individual records.

Provider applications are responsible for registering an authority that is unique to
the application. The authority entry can be described as the base content URI for a
specific application. Either it can be added to the manifest file, or an attribute entry
could be used on the class that is implementing ContentProvider.

[ContentProvider(new string[] {
"com.xamarin.master.traveltrace.TripProvider" })]
public class TripDataProvider : ContentProvider

Another important piece of metadata that the content provider needs to provide
is the Mime-Type information. In order to facilitate the use of CursorAdapter on
consumer applications, the content provider needs to provide a Mime-Type for a
list of items (starting with vnd.android.cursor.dir) as well as for a single item
(starting with vnd.android.cursor.item).

Finally, the content provider needs to expose the data columns for the data that
is being made available to other applications. This is achieved by hiding the
InterfaceConstants nested class from the base abstract class.

public new static class InterfaceConsts
{
 public const string Id = "Id";
 public const string Name = "Name";
 public const string Description = "Description";
 public const string Date = "Date";
 public const string Location = "Location";
 public const string ContentPath = "ContentPath";
}

Another optional implementation would be to create a UriMatcher class that could
ease the implementation process for the query methods.

private UriMatcher GetUriMatcher()
{
 var matcher = new UriMatcher(UriMatcher.NoMatch);

Platform Extras

[176]

 // to get data...
 matcher.AddURI(Authority, _basePath, (int) QueryType.List);
 matcher.AddURI(Authority, _basePath + "/#", (int)
 QueryType.Single);

 return matcher;
}

The final implementation is related to the query, update, insert, and delete methods.
Each of these methods needs to return the ICursor implementations according to the
abstract class defined.

public override global::Android.Database.ICursor
Query(global::Android.Net.Uri uri, string[] projection, string
selection, string[] selectionArgs, string sortOrder)
{
 switch ((QueryType) m_UriMatcher.Match(uri))
 {
 case QueryType.List:
 // TODO:
 case QueryType.Single:
 // TODO:
 default:
 throw new Java.Lang.IllegalArgumentException("Unknown
 Uri: " + uri);
 }
}

Overall, while providing more flexibility for content sharing, Android makes it
a little more difficult for other applications to consume the data provided by the
source application. The data provided by a content provider implementation on a
Xamarin.Android application cannot be consumed by another without a specialized
implementation.

Peripherals
In this section, we will discuss several communication protocols that enable
applications to communicate with other platforms and other devices.

Chapter 6

[177]

Bluetooth
The Bluetooth communication protocol has become an invaluable feature on
mobile devices. Especially with the emerging technologies related to IoT (Internet
of Things), and various accessories we use in daily life, our dependency on the
Bluetooth stack on mobile platforms has increased.

While Xamarin.Android applications and Windows Runtime applications can
make use of both GATT (Bluetooth Low Energy) and RFCOMM (Bluetooth Serial),
iOS applications can only communicate through the Bluetooth LE protocol. The
main reason for this discrepancy is the fact that Android and Windows Runtime
implement the serial communication port according to shared specifications.
However, Apple implements a propriety communication stack using an encryption
system. This, unfortunately, limits the serial communication to between only Apple
produced/compliant accessories or devices.

For Xamarin.Android, Bluetooth APIs reside in the Android.Bluetooth
namespace. Using the provided classes, developers can enhance their applications
with features like:

• Scanning for discoverable Bluetooth devices (including LE protocol)
• Getting information on the local BT adapter and paired devices
• Creating Serial Communication Sockets using the RFCOMM protocol
• Acting both as a GATT client or a GATT server

Bluetooth protocols can be accessed only with the user permission manifest entry
for Bluetooth.

<manifest ... >
 <uses-permission android:name="android.permission.BLUETOOTH"
 />
 ...
</manifest>

On Windows Runtime, Bluetooth-related features are implemented in the Windows.
Devices.Bluetooth namespace. Similar to the feature-set in Android, Windows
Runtime Bluetooth stack requires the applications to declare the adapter access
requirement and the protocol to be used in the application manifest (for some specific
devices and protocols, the Bluetooth capability declaration has to be inserted manually
into the manifest). An important feature on this platform is that the Bluetooth
connectivity can be facilitated and kept alive by background tasks, enabling the
devices to continue their operations in the backgrounded or suspended states.

Platform Extras

[178]

For Xamarin.iOS, Bluetooth LE related implementations would need to use the
CoreBluetooth framework.

An important component that is currently in the Xamarin store for cross-platform
peripherals integration is the Monkey.Robotics project. While implementing the
basic APIs for Bluetooth LE and Wi-Fi, some other vendor-specific peripherals, such
as health monitoring devices and smart watches, can be used with this component.

Wi-Fi Direct
Wi-Fi Direct is another communication protocol that allows Wi-Fi enabled devices
to create peer-to-peer (P2P) networks and exchange information using the Wi-Fi
adapter without using a common provider network connection.

Out of the Xamarin target platforms that are described in this book, only the Android
platform supports this protocol. The Windows 10 platform will support Wi-Fi Direct;
however, this implementation will be targeting only Windows based devices.

On Android devices, with the introduction of Wi-Fi P2P, developers can
create applications that can communicate with higher speeds and through
much longer distances than with Bluetooth adapters. Wi-Fi P2P features were
introduced in Android 4.0 (API level 14) and they comply with the Wi-Fi
Alliance's Wi-Fi Direct standards.

In order to be able to use this feature, the application manifest should contain
permissions for ACCESS_WIFI_STATE, CHANGE_WIFI_STATE, and INTERNET.

Access to these services is provided with the WifiP2pManager, which is located
in the Android.Net.Wifi.P2P namespace. Using this manager, applications can
broadcast, create groups, request peers, and developers can create applications
that can communicate over P2P sockets via Wi-Fi Direct.

Near Field Communication
The Near Field Communication (NFC) protocol provides an easy alternative to
Bluetooth for pairing and advertising scenarios (for example, NFC tags). With NFC,
it is possible to create sockets and transfer data between mobile devices that are in
proximity to each other.

Unfortunately, the NFC protocol is another unsupported communication protocol
on iOS devices. (Reports suggest that iPhone 6 technically has the ability to use this
protocol; however, this API is not made available to developers.)

Chapter 6

[179]

The NFC stacks on Windows Phone and Android devices, however, implement
most of the same profiles. In essence, it is technically possible to communicate over
NFC across Windows and Android devices in proximity (by default, the tap and
send feature works as a cross-platform feature). In spite of the fact that Windows
devices use a propriety messaging scheme (Windows:), there are third-party
frameworks for NDEF. NDEF is a cross-platform messaging scheme that is
currently the default for Android.

Location data
Nowadays, geo-context (location awareness) is becoming more and more crucial for
applications, especially the ones running on mobile platforms. For instance, search
engines optimize results according to the location information they gather from the
client platform, social media and photo applications add geo-tags to posts and media
items, and there are many more use cases for the data about not how or on which
platform the application is running, but where.

On Xamarin platforms, the location information is provided making use of several
different sources. The most accurate of these sources is GPS (Global Position
System). This option consumes the most power and, generally, is only available for
foreground applications. Other options that can provide somewhat less accurate data
are network providers such as Wi-Fi or Cellular data. iBeacon is another technology
introduced by Apple and applicable to iOS 7+ devices. iBeacon-compatible devices
transmit location information using the Bluetooth LE protocol, and this transmission
is then used by the Bluetooth adapter on mobile phones and tablets.

On Xamarin target platforms, location information can be accessed both proactively
and through system events and triggers. In each platform, access to a location is
limited by the privacy settings and it is always up to the user whether a certain
(or every) application can access the location services.

Android location and Google Play services
In early versions of Android runtime, the android.location API was the
framework-designated module for adding location awareness to applications.
However, after the release of Google Play Services SDK (compatible with Android
v2.2, API level 8, or higher), location APIs provided by Google became the preferred
way to access location data on Android platform.

Platform Extras

[180]

LocationManager, a LocationServices implementation, is a system-wide
service and can be accessed through the application context in Xamarin.Android
applications. In order to get location information, the application has to subscribe
to the location updates with an implementation of ILocationListener.

m_LocationService = GetSystemService(LocationService) as
 LocationManager;

if (m_LocationService != null)
{
 if (m_LocationService.
 IsProviderEnabled(LocationManager.GpsProvider))
 {
 // Get updates in min every 5 seconds for every minimum 2m
 change
 m_LocationService.
 RequestLocationUpdates(LocationManager.
 GpsProvider, 5000, 2, m_LocationListener);
 }
 else if (m_LocationService.
 IsProviderEnabled(LocationManager.NetworkProvider))
 {
 // Get updates in min every 10 seconds for every minimum
 // 10m change
 m_LocationService.RequestLocationUpdates
 (LocationManager.NetworkProvider,
 10000, 10, m_LocationListener);
 }
}

In the location listener interface, there are several events that can be utilized. Other
than the location change information, developers are provided with the updates
related to different location provider status changes.

A simple location listener implementation used in the previous example would
resemble this:

public class LocationListener : Java.Lang.Object,
 ILocationListener
{
 public void OnLocationChanged(Location location)

Chapter 6

[181]

 {
 Trace.WriteLine(string.Format("Lat:{0}, Long {1}",
 location.Latitude, location.Longitude),
 "OnLocationChanged");
 }

 public void OnProviderDisabled(string provider)
 {
 Trace.WriteLine(string.Format("Location Provider '{0}' is
 disabled", provider), "OnProviderDisabled");
 }

 public void OnProviderEnabled(string provider)
 {
 Trace.WriteLine(string.Format("Location Provider '{0}' is
 enabled", provider), "OnProviderEnabled");
 }

 public void OnStatusChanged(string provider, Availability
 status, Bundle extras)
 {
 Trace.WriteLine(string.Format("Location Provider '{0}'
 status changed to {1}", provider, status),
 "OnStatusChanged");
 }
}

The listener interface can be implemented on the current Activity itself or any other
JavaObject class implementation. Using the backgrounding techniques defined in
Chapter 3, Asynchronous Programming, the listener interface can also be implemented
on a custom started service and the application can receive background updates on
the location changes through the service data directly (bound scenario) or through
information persisted by the service.

Platform Extras

[182]

Testing location information can be difficult on mobile applications. In
order to facilitate GPS data testing and diagnostics, Android Emulator in
Android SDK and Visual Studio Android Emulator are equipped with
location emulation functionality.

Emulating a car travelling on a route

Visual Studio Android Emulator also provides features to emulate the
usage of an automobile, or other means of transport, on a route or GPS
location changing according to the defined pins with defined intervals.

Chapter 6

[183]

On top of the location information, using the location provider status information,
location info can be gathered in a more efficient and reliable way (for example,
switching between GPS and network provided information according to connectivity
and requirement for accuracy). In order to get the optimal provider that is currently
available for the application scope, you can use the GetBestProvider method
with the desired criteria for accuracy (Coarse or Fine Location Info) and for power
consumption (high, medium, and low).

This intelligent switch between location data providers is the main advantage of
using the Fused Location Provider (Google Play Services SDK) and Google Location
Services over the default location API.

Google Play services Xamarin components

Xamarin binding libraries to Google Play Services SDK, which are available
as components for Xamarin.Android v4.8+ developers, provide an easy way
to integrate various services, including location APIs, into Xamarin.Android
applications. These components implement the Java Binding projects and take
care of the cumbersome implementation and compilation of the Google provided
Android libraries.

Platform Extras

[184]

After installing the Google Play services' location component, while trying
to build the Xamarin.Android application, you might receive a compilation
error similar to this:

"No resource found that matches the given name (at 'value' with value '@integer/
google_play_services_version')."

The reason for this error is the fact that the Xamarin component is dependent on
the Google Play Services SDK and the SDK modules are supposed to be installed
manually using the Android SDK Manager.

Android Google Play SDK

After installing the SDK module, the Xamarin.Android application can be built
without errors.

Once the setup and configuration is complete, the GoogleApiClient class can
be initialized and used in Xamarin applications. GoogleApiClient requires the
implementation of two interfaces to gather information about the client connection
status: GoogleApiClient.IConnectionCallbacks and GoogleApiClient.
IOnConnectionFailedListener.

Chapter 6

[185]

If the application you are implementing does not depend on continuous updates of
location data, but rather just the current location, you can use the GetLastLocation
method provided on the GoogleApiClient. This method provides a one-time
reading option.

m_GoogleClient = new GoogleApiClient.Builder(this)
 .AddApi(Gms.Location.LocationServices.API)
 .AddConnectionCallbacks(this)
 .AddOnConnectionFailedListener(this)
 .Build();

m_GoogleClient.Connect();

In order to receive real-time updates with the fused location provider, you must
implement the ILocationListener interface for the Google Location Services API.
This listener is different from the default one; it only contains a single event handler
implementation for location changes. The events related to the data providers do
not need to be implemented since the fused location provider itself is responsible for
smart switching between the location data providers.

Although the type of provider and provider status changes are not relevant for
us using the fused location provider, it is still possible to let the fused provider
know which type of accuracy and priority our application scope demands. For
this purpose, we can use the SetPriority method with the appropriate flag on
LocationRequest while subscribing to the location updates.

• High accuracy (100): Requests the finest location available
• Balanced power/accuracy (102) (default): Requests the block level accuracy

(~100m accuracy)
• Low power (104): Requests the city level accuracy (~10km accuracy)
• No power (105): Sets the location updates to use passive mode; waits for

location updates delivered to other client applications (also known as
piggybacking)

As well as the priority, a fused location provider lets developers set other important
delineations of location updates, such as minimum interval, smallest displacement,
and expiration time.

private async Task RequestLocationUpdates(GoogleApiClient
 apiClient)
{
 // Describe our location request

Platform Extras

[186]

 var locationRequest = new Gms.Location.LocationRequest()
 .SetInterval(5000) // Setting the interval to 5 seconds
 .SetSmallestDisplacement(5) // Setting the smallest update
 delta to 5 meters
 .SetPriority(Gms.Location.LocationRequest.
 PriorityHighAccuracy)
 // Setting the priority to Fine and High Power
 .SetExpirationDuration(20000); // Stopping the location
 updates after 20 seconds.

 // Request updates
 await Gms.Location.LocationServices.FusedLocationApi
 .RequestLocationUpdates(apiClient, locationRequest,
 m_LocationListener);
}

Unfortunately, Google Play services are only preinstalled on Android SDK emulator
and for the other emulators, the Google applications package has to be downloaded
and installed on the emulator image.

Location services on iOS
On the iOS platform, the location data is accessed through the CoreLocation library,
and similar to the android location API, location changes are sent to the subscribing
application with the help of event delegates. The CLLocationManager class makes it
a trivial task to get location data updates from the mobile device.

The Xamarin.iOS location data access implementation starts with creating the
required Info.plist entries, which will explain why the application requires access
to the user's location. In order to do this, we have to edit the Info.plist file, adding
one or both of the following entries:

Chapter 6

[187]

Info.plist entries for location info

In addition to the Info.plist entry, you should also keep in mind that starting with
iOS 8, applications have to explicitly ask for permission to use the location data. In
order to get consent from the user, the location manager exposes two methods: one
for authorizing the app for continuous local data updates and the other one just to be
used when the application is in the foreground.

_LocationManager = new CLLocationManager();

_LocationManager.RequestWhenInUseAuthorization();

_LocationManager.RequestAlwaysAuthorization();

Finally, we can subscribe to the LocationsUpdated event to receive the latest
location update information.

if (CLLocationManager.LocationServicesEnabled)
{
 _LocationManager.LocationsUpdated += (sender, eventArgs) =>
 {
 Debug.WriteLine(
 string.Format("Lat:{0}, Long {1}",

Platform Extras

[188]

 eventArgs.Locations[0].Coordinate.Latitude,
 eventArgs.Locations[0].Coordinate.Longitude),
 "OnLocationChanged");
 };

 // Every ~500m an update
 _LocationManager.StartMonitoringSignificantLocationChanges();

 // Every 10m send an update event
 _LocationManager.DistanceFilter = 10;
 _LocationManager.StartUpdatingLocation();
}

The location information can be further optimized for the application scope using the
exposed criteria properties and methods. It is also possible to retrieve other types of
information such as heading direction. However, it is important to first check if the
service is available and request updates according to the system status information.

if (CLLocationManager.HeadingAvailable)
{
 // update the heading
 _LocationManager.StartUpdatingHeading();
 _LocationManager.UpdatedHeading += (sender, eventArgs) =>
 {
 Debug.WriteLine("New Heading: X: {0} Y: {1} Z: {2}",
 eventArgs.NewHeading.X,
 eventArgs.NewHeading.Y,
 eventArgs.NewHeading.Z);
 };
}

Location data on Windows Runtime
On Windows Runtime (Windows Store apps), the Windows.Device.Geolocation
namespace is dedicated for tracking the device's location over time. The Geolocator
class replaces the main access points in the previous platforms and can give on-
demand data and information updates through events.

Similar to iOS access request, the application can request consent from the
application user with the RequestAccessAsync method and according to the
response, methods or events can be accessed through the Geolocator class.

var accessStatus = await Geolocator.RequestAccessAsync();
if(accessStatus == GeolocationAccessStatus.Allowed)

Chapter 6

[189]

{
 // Give update in every 5 meters
 Geolocator geolocator = new Geolocator {
 DesiredAccuracyInMeters = 5 };

 // Use StatusChanged event for Geolocator status change
 geolocator.StatusChanged += OnStatusChanged;

 // Use PositionChanged event for Geolocator status change
 geolocator.PositionChanged += (sender, eventArgs) =>
 {
 UpdateLocationData(eventArgs.Position);
 }

 // Get the current position
 Geoposition pos = await geolocator.GetGeopositionAsync();

 UpdateLocationData(pos);
}

Geofencing
A geofence is an abstract boundary that can be defined with location services so
that the application which created the geofence receives an update from the mobile
device whenever the user is entering or exiting this boundary. This eliminates
the need for polling for the location info and opens up different implementation
opportunities for mobile applications.

The use cases for geofences vary from simple reminders on certain locations to
virtual tours created by showing certain images or information according to the
current region.

All the Xamarin target platforms support the creation and usage of geofences. For
instance, in order to create a geofence on an iOS platform, we would need to use
CLCircularRegion and the location monitoring feature of the CoreLocation library.
There are two events of interest that are fired when the mobile device enters and
exists in the region.

var region = new CLCircularRegion(
new CLLocationCoordinate2D(43.8592, 018.4315), 600,
"Old Town");

Platform Extras

[190]

if (CLLocationManager.IsMonitoringAvailable(typeof
 (CLCircularRegion)))
{
 _LocationManager.DidStartMonitoringForRegion += (sender,
 eventArgs) =>
 {
 Debug.WriteLine(string.Format("Starting region monitoring
 for {0}",
 eventArgs.Region.Identifier));
 };

 _LocationManager.RegionEntered += (sender, eventArgs) =>
 {
 CreateLocalNotification("Welcome to Old Town",
 "Don't forget to take stroll down the Bascarsija and
 visit the historic national library!");
 };

 _LocationManager.RegionLeft += (sender, eventArgs) =>
 {
 Debug.WriteLine(string.Format("User left {0}",
 eventArgs.Region.Identifier));
 };

 _LocationManager.StartMonitoring(region);
}

This implementation creates a geofence around the described region (with a center
defined by the coordinates and a radius of 600 m) and sends out a notification when
the specified fence is entered, giving information about the location.

Old town geofence

Chapter 6

[191]

The same implementation on Android platform would use LocationServices
in conjunction with the GeofenceBuilder class to create IGeofence type boundaries
and add them to the watch list. One important difference on the Android platform
is that the events are handled through delegates and are generally implemented
by an intent service.

The implementation starts with creating GoogleApiClient like in the previous
examples, and once the API client is connected, we can go ahead and create the
geofence(s) and the intent service that is going to handle the callbacks.

public void OnConnected(Bundle connectionHint)
{
 var intent = new Intent(this,
 typeof(GeofenceListenerService));
 var pendingIntent = PendingIntent.GetService(this, 0, intent,
 PendingIntentFlags.UpdateCurrent);

 var geoFence =
 new GeofenceBuilder().SetRequestId("OldTown")
 .SetTransitionTypes(Geofence.GeofenceTransitionEnter |
 Geofence.GeofenceTransitionExit)
 .SetCircularRegion(43.8592, 018.4315, 600)
 .SetExpirationDuration(200000) // Expiration Duration
 is obligatory
 .Build();

 var geofenceRequest = (new
 GeofencingRequest.Builder()).AddGeofence(geoFence).Build();

 //
 // The async version can be used instead
 // await LocationServices.GeofencingApi.
 AddGeofencesAsync(m_GoogleClient,
 geofenceRequest, pendingIntent);
 LocationServices.GeofencingApi.AddGeofences(m_GoogleClient,
 geofenceRequest, pendingIntent);
}

Platform Extras

[192]

The intent service implementation for sending out a local toast notification on
location updates would look similar to this:

[Service(Exported = false)]
public class GeofenceListenerService : IntentService
{
 public GeofenceListenerService() :
 base("GeoFenceListenerService")
 {
 }

 protected override void OnHandleIntent(Intent intent)
 {
 var geofencingEvent = GeofencingEvent.FromIntent(intent);

 if (geofencingEvent.HasError)
 {
 int errorCode = geofencingEvent.ErrorCode;
 // TODO: Log Error
 }
 else
 {
 var requestId =
 geofencingEvent.TriggeringGeofences[0].RequestId;

 switch (geofencingEvent.GeofenceTransition)
 {
 case Geofence.GeofenceTransitionEnter:
 if (requestId == "OldTown")
 {
 Toast.MakeText(Application.Context,
 "Don't forget to take stroll down the
 Bascarsija and visit the historic
 national library!",
 ToastLength.Short);
 }
 break;
 case Geofence.GeofenceTransitionExit:
 Debug.WriteLine(string.Format("User left {0}",
 requestId));
 break;
 }
 }

 }
}

Chapter 6

[193]

The classes used by Windows Store apps for geofences are the GeofenceMonitor
and Geofence/GeoCircle descriptive classes. A simple Geofence class would
consist of a Geocircle class and the associated ID.

string fenceId = "OldTown";

// Define fence properties
BasicGeoposition position;
position.Latitude = 43.8592;
position.Longitude = 018.4315;
position.Altitude = 0.0;
double radius = 600; // in meters

Geocircle geocircle = new Geocircle(position, radius);

// Create the geofence
Geofence geofence = new Geofence(fenceId, geocircle);

Once the geofence is initialized, we can use the GeofenceMonitor class to add the
geofence and subscribe to the events.

GeofenceMonitor.Current.GeofenceStateChanged +=
 OnGeofenceStateChanged;
GeofenceMonitor.Current.StatusChanged += OnGeofenceStatusChanged;

It is also possible to use the geofence status change events as triggers for a
background task so that the registering application does not need to be in the
foreground or even in the running state.

Native libraries
In spite of the fact that the Xamarin framework and .NET core implementations
on Xamarin.Android and Xamarin.iOS platforms provide a vast amount of
features, in some cases it is unavoidable to include native code in cross-platform
implementations. Fortunately, it is possible to bind or link native libraries on both
of these platforms.

Managed callable wrappers (Android)
As mentioned in previous chapters, managed callable wrappers are generated
managed code libraries which provide a way to interact with the Java Runtime
over the JNI bridge to execute code from certain Java libraries.

Platform Extras

[194]

Java libraries are often packaged in Java archive files (JAR files) and it is possible,
using the compiled Java library project, to create a binding library which can be
included in Xamarin.Android applications.

In order to demonstrate this usage, we will be creating a MCW for a simple JSON
parsing library. The first step of creating our binding library would be to use the
built-in project template to create our binding project.

Binding library project

Once the binding project is created, we can copy the JAR into the created Jars folder
in the binding project. After the copying is completed, an important step would be to
check the Build Action configuration for the JAR resource. The copied JAVA library
files can be used in two ways:

• InputJar: This is a Java library archive that is going to be used to generate the
managed wrapper.

Chapter 6

[195]

• ReferenceJar: This is a Java library archive that is only going to be used as a
reference and not to generate a wrapper.

Binding library structure and build action

After setting the Build Action field to InputJar (this simple library does not have
any dependencies), we can build the library project. Once the build is successful,
you can see the generated managed files in the <Project Directory>\obj\Debug\
generated\src directory.

namespace Org.Json.Simple.Parser {

 // Metadata.xml XPath class reference:
 path="/api/package[@name='org.json.
 simple.parser']/class[@name='JSONParser']"
 [global::Android.Runtime.Register (
 "org/json/simple/parser/JSONParser",
 DoNotGenerateAcw=true)]
 public partial class JSONParser : global::Java.Lang.Object {
 ...

Looking at the main parser file, you will notice that the definition for a class consists
of an Android runtime registration and a class deriving from a Java object. Metadata
about the class or class members also has a metadata comment, which defines the
path of the item in the Java library package.

Platform Extras

[196]

If we wanted to change the name of a namespace (by default, they are generated
from the package names defined in the api.xml file), or the name of any members
of a class or the class itself, we could make use of the Metadata.xml file that is
located in the bindings project. The Metadata.xml file contains transforms on the
api.xml document that is generated from the jar files. This API description document
contains the class definitions and components in a format similar to that of GAPI that
is used by mono compiler. With the transforms included in the Metadata.xml, we can
redefine the managed names designated for the generated C# items.

For instance, in order to change the namespace, we would use a description
similar to this:

<attr path="/api/package[@name='org.json.simple']"
name="managedName">Json.Simple</attr>

For changing the class names, the syntax is quite similar:

<attr path="/api/package
 [@name='org.json.simple']/class
 [@name='JSONParser']" name="managedName">JsonParser</attr>

Finally, the generated class declaration would look similar to this:

namespace Json.Simple.Parser {

 // Metadata.xml XPath class reference:
 path="/api/package[@name='org.json.simple.
 parser']/class[@name='JSONParser']"
 [global::Android.Runtime.Register
 ("org/json/simple/parser/JSONParser", DoNotGenerateAcw=true)]
 public partial class JsonParser : global::Java.Lang.Object {

Linking versus binding (iOS)
While dealing with native code on the Xamarin.iOS platform, there are several
options developers can use.

If we were dealing with simple static utility libraries on C or Objective-C, it is
possible to create so-called fat binaries and then link them at the compile time.
Later in Xamarin runtime (remember there is no Xamarin runtime in iOS, everything
is compiled into static code), methods from the native library can be invoked using
the P/Invoke functionality in the Xamarin framework.

Chapter 6

[197]

The other option, which enables users to create a stronger "bridge" (at the cost of
performance) with native libraries, is to create bindings to Objective-C classes and
methods. Using this approach, similar to managed callable wrappers in Android
runtime, we would need to create a C# wrapper over the Objective-C framework
library and use the managed wrapper to access the native implementation. Even
though this approach creates a more intuitive and manageable access point to native
code, since the managed wrapper is, in essence, a high-level implementation and the
mono compiler actually generates the P/Invoke and Imports for accessing native
functionality, it is inherently a little more costly than native linking.

Both implementations require the creation of the fat binary as a starting point.
A fat binary is the colloquial term used to describe binary packages that contain
native binary compilations for all possible CPU architectures (i386 for the Simulator
and ARMv7/ARM64 for the devices). In order to create the universal binary that
is suitable for use in all iOS development targets, one needs to make use of the
command-line utility in Mac OS X.

lipo -create -output libFatBinary.a libThinBinary-i386.a libThinBinary-
arm64.a libThinBinary-armv7.a

After the universal binary is created, you can now copy the universal package
into a project folder in the Xamarin.iOS application, set the build action to None,
and instruct the mtouch compiler to link the binary in compile time. For build
instructions, you would need to use the build arguments section in project
properties and gcc flags.

-gcc_flags "-L${ProjectDir} -lFatBinary -force_load ${ProjectDir}/
libFatBinary.a

Additional parameters might need to be included according to the frameworks being
used or if the binary includes C++ code (for example, the –cxx flag for C++ code).

The other option is to create a LinkWith declaration (in most cases, this is created
automatically) in an Objective-C binding project. The code is as follows:

[assembly: LinkWith ("libFatBinary.a",
LinkTarget.ArmV7|LinkTarget.ArmV7s|LinkTarget.Simulator|LinkTarget.
Simulator64|LinkTarget.Arm64,
ForceLoad = true,
Frameworks = "CoreFoundation CoreData CoreLocation",
LinkerFlags = "-lz -lsqlite3",
IsCxx = true)]

Platform Extras

[198]

In an Objective-C binding project, you must first familiarize yourself with the types,
methods, and other constructs in the native library to be able to start implementing
the responding managed types in the binding library.

Objective Sharpie is a useful tool for creating managed wrappers for
Objective-C libraries. Initially, an internal tool used by the Xamarin
team, it soon was released to public. Even though the implementation
is not complete and it is not fully supported as an official product, it
can help accelerate the implementation against native libraries.

Summary
In this chapter, we talked about some platform-specific features related to inter-app
communications, peripherals, and location data.

Using platform-specific features can make your applications more attractive to
platform users by providing scenarios that they are familiar with and increase the
native look and feel of your applications.

Platform-specific features related to different communication protocols, such as
Bluetooth, NFC, and Wi-Direct, can be employed for various scenarios. However,
most of the protocols and profiles described here target Android and Windows
Phone. Xamarin.iOS applications can only benefit from the Bluetooth LE profile.

Location awareness is another platform-specific implementation that all mobile
applications can benefit from. By adding a location context to the business logic
of applications, developers can create a more personalized experience for users.

Finally, if needed, Xamarin provides important features for binding and linking
native libraries for Android and iOS platforms, which transform a complex porting
task into merely imports.

In the next chapter, we will discuss the user interface components on different
platforms and how they correlate with each other.

[199]

View Elements
In this chapter, you will find introductory information about User Experience (UX)
design concepts and explanations on the differences and similarities of design
principles on Xamarin platforms. Correlation between the UI elements will be
illustrated and useful design patterns will be demonstrated with real-life examples
to create a consistent user experience across platforms without compromising the
native look-and-feel. This chapter is divided into the following sections:

• Design philosophy
• Design elements
• User interaction

Design philosophy
One of the biggest pitfalls while designing an application for cross-platform use is to
impose the design patterns from one OS to the other one. In the mobile world, each
platform and users of those platforms have certain expectations from an application.
These expectations can be as insignificant as an icon on a common feature access
button (for example, the share button on iOS and Android), or as important as the
layout of a view (for example, tab buttons on the bottom and top of a view on iOS
and Windows Phone, respectively). In this paradigm, the designer's responsibility
becomes much more complex, since the design, while creating a brand for the
application, would need to be inviting and appealing for the users of the platform.

View Elements

[200]

User expectations
Mobile platform users are creatures of habit. One of the key deciding factors of the
adoption rate of a mobile application is how easy it is to use and how discoverable
the features are for the platform users. It is important to remember that when users
become acquainted with a specific platform, they will expect certain patterns and
behaviors while interacting with that device. Trying to change these habits and
forcing the users into usage patterns that they are not accustomed to might be costly.

Platform imperatives
Both iOS and Windows Runtime have well-defined design guidelines that were
refined over the years with the help of Microsoft's and Apple's experience on various
software platforms. Android, being an open source development platform, has been
searching for an identity since the early versions and it was a general implementation
principle to design first on iOS and port the design to Android. However, with the
release of Material Design guidelines by Google, the Android platform and app
developers finally seem to have found a scheme to adhere to and create a unified
experience on the Android platform across different applications.

With the emergence of minimalism and flat design patterns in software design,
Microsoft was the pioneer to release the Microsoft design language (the Modern UI,
codenamed Metro). Modern UI design heavily depended on typograph and geometry.
The motto of this design pattern is "content over chrome", and application developers
were encouraged to use the content itself to provide the interactivity and remove any
unnecessary ornaments that are not crucial to the content or the functionality.

Panorama View from Windows Phone 7

Chapter 7

[201]

With the release of iOS 7, Apple joined the minimalist movement with an overhaul
of their user interface, which is described by Jonathan Ive (Senior VP of Design)
as bringing order to complexity. Translucency, typography, and layering were the
highlighted features of this new design. It was a major change of Apple's design
direction which, at the time, was famous for its skeuomorphic designs on various
applications and platforms.

iOS 7 Home Page and an Android dialog

Google's take on flat design principles, Material Design (codenamed Quantum
Paper), tries to address the same type of design concerns by reducing the design
elements to their very basics and recreating interactive surfaces with strong
typography resembling paper and ink in essence.

View Elements

[202]

Hardware dependency
Similar to web applications, on Xamarin target platforms, especially on
Windows and Android, the hardware that the Xamarin application is going to
be running or displayed on varies greatly. An application designed for a specific
platform can be used on a low-end touchscreen device with a mediocre resolution
or on a high-end phablet with an HD display on landscape or portrait rotations.
This hardware dependency should be one of the main concerns while designing
the UI for mobile applications.

For instance, pre-Android 3.0 phones used to have hardware buttons that helped
with the navigation throughout the application and the OS itself. These buttons
consisted of a back, menu, search, and home buttons. Even though the hardware
buttons were replaced with the bottom system navigation bar (software buttons)
on later devices, this trait is followed by Windows Phone devices that still have the
back, Windows, and search hardware buttons. On iOS, the navigation hierarchy
implementation is completely up to the application and generally handled by the
back button placed on the top navigation bar.

Design metrics on Android
For varying resolutions, in order to create an adaptive user interface, each platform
uses different methodologies. However, in each platform, the important metric unit
is the pixel density. Pixel density can be defined as the number of pixels that can
fit into an inch in length. According to the pixel density (PPI or pixels per inch),
independent from the total physical width and height of the screen, developers can
create consistent views across various mobile devices. In other words, total screen
resolution (pixel density multiplied by screen dimensions) is a declining trait that is
taken into consideration while designing cross device/platform applications.

On the Android platform, to create a uniform experience on different pixel
densities, developers and designers are encouraged to use density-independent
pixels (dp) unit for expressing various dimensions and measurements of UI controls.
Density-independent pixels are calculated by considering the 160 pixel density
as a norm and calculating the display size in normalized pixel values.

Chapter 7

[203]

Check out the following table for more information on Android density-independent
pixels:

Screen Density Density Bucket Screen Resolution
(pixels)

Screen Resolution (dp)

120 LDPI 360 x 480 480 x 640

160 MDPI 480 x 640 480 x 640

240 HDPI 720 x 960 480 x 640

320 XHDPI 960 x 1280 480 x 640

Android Density-Independent pixels (dp)

In order to demonstrate the scaling and density independent pixels, we can compare
the following views on different devices. Using the pixels to design the content
would be visualized differently on different devices:

Using pixels to design the UI

However, if we were to use the same design elements with dp as the measurement
unit, the UI would be much more uniform.

Using dp to design the UI

Similar to dp, another density-independent measure unit on Android is "sp",
or scalable pixels. The main difference between dp and sp is that sp is scaled
according to the user's font settings and generally associated with text content,
while dp is managed by the operating system and the user generally does not
have any control over it.

View Elements

[204]

For media resources (for example, images) and layouts, the Android solution
structure supports creating specialized design elements. Icons and other graphics
can be provided in alternative sizes and resolutions using the correct density
bucket identifier as a suffix to the drawable folder (for example, drawable-xhdpi
for extra high density). Similarly, if needed, multiple alternative layouts can be
provided according to the screen size groups in the layouts folder (for example,
layout-xlarge or layout-xlarge-land for portrait and landscape displays on
an extra-large screen).

Design metrics on iOS
In the iOS ecosystem, there are only a handful of devices and screen resolutions.
On this platform, the identifier on display scaling is the point (pt) notation. A point
is displayed as one physical pixel on a non-retina display. On retina display and
higher configurations (iPhone 6 Plus), the scaling factor is calculated as 2x and 3x,
respectively, while the point measurements are kept as they are.

iPhone 6 Plus has the scale factor of 3 and screen resolution of 414 x 736
points. This would translate to 1242 x 2208 pixel resolution. However,
the physical supported resolution on this device is 1080 x 1920. For this
reason, images rendered (or rasterized) with the 3x scale factor are then
down-sampled with a ratio of 1:1.15 on this device.

Design metrics on Windows Runtime
On Windows Runtime, the scaling of the application view is taken care of by the
scaling algorithms that normalize the size of controls, fonts, and other UI elements.
This normalization process occurs on the runtime and developers generally do
not need to deal with it. When designing Windows Runtime applications, the
measurement unit is pixels. However, the pixels are referred to as effective pixels.
Effective pixels are the normalized size unit of the operating system.

Effective Pixels on Windows Runtime

Chapter 7

[205]

A common example for the effective pixels is to consider a font of size 24px. Text
visualized with this font is displayed the same way on a phone 5-10 cm away from
the user and on a surface hub couple of meters away.

Design elements
In order to create a consistent layout across platforms, while conforming to the
platform requirements, developers and designers need to familiarize themselves
with each platform and draw parallels between the layouts and UI controls on these
platforms. We will discuss this in the next chapter within the scope of Xamarin.
Forms. The existence of parallels between these platforms makes the foundation of
the Xamarin.Forms framework.

The basic layout
The main layout elements in all three platforms are very similar to each other.
However, the placement of these elements differs greatly according to the platform.

The User Interface Layout

View Elements

[206]

On each platform, the status bar displaying the system information is located at the
top of the screen (marked as "1" in the preceding screenshot). This section is one of
the constant elements that should be kept in mind when designing applications for
Xamarin target platforms.

On Windows 10 operating system, the system bar can be expanded
on user's initiative to give detailed information about the system.
This expansion causes the elements to be hidden on the application
canvas. However, this does not cause elements to offset, and the
expansion occurs on a different layer of the screen.

On all three platforms, the second element is generally the navigation bar (marked
as "2" on the screenshot). This element is only used to display information about the
current view on Windows Phone. However, on iOS and especially on Android, the
navigation bar has additional functions. The navigation bar on iOS applications can
be used for hierarchical navigational items. However, on the Android platform, the
so-called app-bar contains the context-related commands and navigation items. The
context menu presenting the additional context-related commands that do not fit
on the main app-bar (navigation panel on the right-hand side) and the Navigation
Drawer that reveals the left navigation panel are the functional and structural
elements of the main app-bar on Android applications. Having application and
content-related buttons or links on the title area on Windows Phone applications has
been discouraged. However, on Windows 10, similar to the Navigation Drawer on
the Android platform, developers can implement an application-level switch.

On Windows platform, context-related application commands and the additional
items that are displayed inside a context menu are generally located at the bottom
of the screen on the application bar (marked as "5"). Even though the application bar
can be created on the top of the screen, this is generally a use case for applications
that use the peer-to-peer/horizontal navigation patterns (refer to the next
section, Navigation).

The system navigation bar (marked as "4") is located at the bottom of the screen on
the Android platform. This bar contains three buttons, namely Back, Home, and
History. These buttons used to be hardware buttons prior to Android 4.0.

Instead of the bottom app-bar on Windows Phone and the system navigation bar on
Android, on iOS this area is generally occupied by the tab bar (marked as "3"). The
tab bar provides the main navigation functionality in iOS applications and should
be available on each screen of the application (similar to the peer-to-peer navigation
app-bar on Windows Phone).

Chapter 7

[207]

Navigation
In application design, the navigation strategy should be one of the first decision
items. According to the requirements of the application or the elements to focus on,
developers can adopt different navigations strategies.

While building the navigation tree and preparing the flowchart for the application,
you can make use of two types of traverses: hierarchical (vertical) and peer-to-peer
(horizontal). Horizontal navigation occurs when the user wants to navigate between
pages that are on the same level of the navigation tree. Hierarchical navigation can
be on either direction on the vertical path. As a rule of thumb, as the user navigates
deeper, the number of similarly typed objects on the screen decreases and the details
about a single object increases. In other words, it is rare to see list views in the lower
nodes of a sub-tree in an app navigation hierarchy.

Navigation Hierarchy

On top of the traditional navigation methods, jump links among the pages on
various levels and sub-trees can also be used to provide easy access to these nodes
(for example, a Home link navigating from the bottom of the hierarchy back to the
main page).

In order to demonstrate the navigation design, we will be creating an interface
for the TravelTrace application that was used as an example for functional
implementations in the previous chapters.

View Elements

[208]

Horizontal navigation
Navigation between peers or siblings can provide an easy way to switch context
between the items on the top level. In this case, peers would be representing the
main features of an application that should generally be accessible to the user at
all times. On this level, the navigation can be implemented with tabbed controls
or application-level navigation providers such as the Navigation Drawer on the
Android platform. The homepage should have clear design and focus; it should
make a statement about what your app is tailored to do.

For instance, if we were to use our travel application to demonstrate the
top-level peers, we would first need to decide on the main features that the
application has to offer.

Possible features of this travel companion application could be:

• Get detailed information on nearby attractions
• Allow users to plan their trips
• Create and share travel memorabilia (photos, notes, tips, and so on)

Identifying features of the application could be:

• Creating a social medium to share and re-use travel experience
• Assisting the user before and during travels and cultural visits

Overall, we want to emphasize the social aspect and also provide personal assistance
for users during their visits. In the light of this "decision", we can start designing the
initial concept for our application.

Chapter 7

[209]

Home Screen Sample

On the Windows Phone platform, the home screen can be either implemented
as a hub or a pivot view. Although each view has similar navigational properties,
pivot control is generally used to display segregated groups of content that carry
similar traits.

View Elements

[210]

Hence, it is generally preferable to use a hub view as a homepage to make different
top level sections of the application available and sub-nodes easily discoverable.

Hub View (Windows Phone)

When considering Windows Phone and HubView, the only possible way of
navigating between the top-level items in the hierarchy is a swipe gesture,
while it is possible to tap on the tab bar buttons on the other platforms.

Another type of horizontal navigation can occur when navigating through different
categories or filtered views of content items. On the Android platform, the main
app-bar can host a filter dropdown to select the proper category to display content
items. On iOS, the navigation bar, or a secondary bottom tool bar, can be used
to create a button to display a picker (aka spinner) to select the proper sibling on
the navigation tree. Another possible horizontal navigation provider control on
iOS would be the SegmentedView control, which can be used to display different
perspectives of the same type of content (for example, previous trips as opposed to
future plans or recent guides and recent albums).

Chapter 7

[211]

SegmentedView control on iOS

On the Windows platform, it is generally a better idea to choose a master/detail
type of implementation for use-cases with more than "several" categories where the
possible categories are always visible and displayed side-by-side with the content
area. It is also possible to use a drop-down menu on a fly-out attached to one of the
command bar buttons. If the number of categories is limited, the PivotView control
can be employed in the view implementation.

Command bar flyout on Windows Phone

It is also possible, on all platforms, to include in-content selection controls that help
the user navigate between the categories (dropdowns, pickers, spinners, hyperlinks,
buttons, and so on).

View Elements

[212]

For instance, a catalog view for our travel application that allows users to
browse the uploaded content freely would need to categorize the country
items on different continents.

Main App Bar Filter on Android

Finally, the Next/Previous buttons used on the top navigation bar and the main
app-bar on iOS and Android, respectively, together with the swipe left/right
gestures on Windows Phone, can create a pleasant experience when navigating
between the siblings and/or collection items. This type of navigation is generally
used at the bottom of the hierarchical navigation tree or at the bottom of a sub-tree.

Vertical navigation
Elements that have a parent-child relationship (for example, the parent page can
be the country view and the child views can be the city details) can use the vertical
traversal of the navigation tree. The simplest and most common way of vertical
traversal is navigating to the details view of a content element when the user clicks
on the item.

A common mistake related to the details concept is to make it a two-step process
where the user first needs to select the item and then click on a details command
button. In modern applications, it is crucial to make the UI intuitive by means of
using the content elements themselves as interaction elements.

Chapter 7

[213]

Once the user is in the details view, backward navigation to ascend in the navigation
tree is implemented either with a back button on the main app-bar (on Android)
and the navigation bar (on iOS), or by using the hardware back button (on
Windows Phone) and the soft back button on the system bar (on Android). It is not
recommended to use an additional back button on the Windows Phone platform
since the design real estate is already limited and the same functionality can be
implemented with the hardware button, as opposed to its desktop counterpart
where there is no hardware button and the design canvas is relatively generous.

Semantic Zoom on Windows Phone

On the Windows Phone platform, another way of creating a different perspective
on the content elements without having to implement a secondary view is to use the
SemanticZoom control. The SemanticZoom control provides two views of the same list
of content elements where the first one is generally a categorized view with a smaller
number of elements and the second one is the full list view with additional details on
content items. The navigation between the two views is generally implemented with
pinch-in and pinch-out gestures (see the Gestures section for details).

View Elements

[214]

Jump navigation
Jump or cross navigation occurs when the application navigates between different
nodes without conforming to the navigation hierarchy (for example, it is possible to
navigate to the details view of an item that is on the third-level from the hub page
that is on the top level of a Windows Phone application).

This type of navigation is generally used with very particular features that do not
relate to the general outline of the application. The navigation commands can be
included on the navigation bar or as hyperlinks embedded into the content. It is
also common to use the command bars to create item related navigation links.

Navigation Drawer on Android

Another possible way to create navigation access points for switching the context
in an easy way is to use the Navigation Drawer type functionality on Android. A
similar experience can be achieved with the persistent tab bar on iOS. As mentioned
before, comparable functionality was added to the Windows Phone platform with
the release of Windows 10.

Content elements
Each Xamarin target platform puts forward certain strategies and guidelines
to visualize the content. Although developers are given the freedom to create
appealing and innovative design blocks, especially on the Android and Windows
Phone platforms, there are strict guidelines to adhere to. We can group these content
blocks and controls in several categories.

Chapter 7

[215]

Collection views
Collection views provide an efficient way to display collection-based content
elements. In most implementation use cases, collection elements are interactive
and display attributes of the content items with text and image controls. It is also
common to add item-related commands or flags on the content items themselves in
the shape of tokens (for example, the command to add an item to favorites, display a
status icon, and so on).

UITableView (iOS)
On the iOS platform, UITableView provides a flexible way to display collection
data on a customizable layout. On a table view, each cell can be customized to
display a batch of attributes from the content items and developers are free to
make use of the inbuilt events and commands to implement additional command
logic (for example, row actions).

Grouped table view & table view with details

View Elements

[216]

Another out-of-the-box feature of the UITableView and the associated controller
(UITableViewSource) is the so-called indexing of the content elements. Indexing
works in a similar way as the jump lists on the Windows platform and provides an
easy way to catalog the content items and enables the user to easily jump into the
correct section or the group.

A search display controller can also be associated with a UITableView, creating a
standard iOS search experience on a collection of items.

Some of the possible artefacts that can be included in a table view cell by default are
as follows:

Checkmark Signifies that the row is selected

Disclosure indicator Signifies that another table is associated with
the row

Detail disclosure indicator
Identifies that the user can click to
 see details about the current row
(for example, Popover)

Row reorder Identifies that the row can be dragged to re-
order

Row insert Adds a new row to the table

Delete view/hide Reveals or hides the delete button for the
current row

Delete button Deletes the row

Table view artifacts

UICollectionView (iOS)
UICollectionView is used to create a grid-like layout on the iOS platform.
Collection views are also customizable using the in-built properties and base-classes.
Collection views are more flexible in nature compared to the table views which are
inherently bound by the table structure and contained cells.

Chapter 7

[217]

Collection views are also made up of cells that can be displayed in numerous layouts.
The default layout can be customized using a UICollectionViewFlowLayout. The
flow layout can define parameters such as the minimum line spacing between the
rows, the minimum interim spacing between the items, item sizes, and section insets
(margins assigned to the sections in the collection).

The following code sample creates a simple flow layout structure:

UICollectionViewFlowLayout flowLayout =
 new UICollectionViewFlowLayout();
flowLayout.MinimumLineSpacing = 20f;
flowLayout.MinimumInteritemSpacing = 4f;
flowLayout.SectionInset = new UIEdgeInset(4f, 4f, 4f, 4f);
flowLayout.ItemSize = new SizeF(20f, 20f);
myCollectionView.CollectionViewLayout = flowLayout;

Another option for customizing the layout of a collection view is to inherit the
UICollectionViewLayout class and implement a custom layout. In the custom
layout implementation, the class is responsible for providing the layout attributes
such as the size and the location of the cells according to the collection size and
available layout area.

UICollectionViewController is used to normalize the data that is to be presented
and act as a delegate for the collection and item level events such as cell selection and
context menus.

Additionally, the SupplementaryView and DecorationView classes provide
additional customizations by giving section related details and UI customizations
on the collection view layer.

ListView (Android)
Listview is one of the most overused components on the Android Platform. While
it can be used to display a relatively small list of menu items, with adapters it can
also be used to visualize data from other applications and services. It is possible
to compare the ListView control to the UITableView control on the iOS platform
and the data provider interfaces. Adapters on Android can be compared to
UITableViewSource on iOS.

By default, ListView has 12 built-in views that can be accessed through the
Android.Resource.Layout class. These layouts vary from simple single line of text
to expandable grouped category views. Each layout uses several control references
such as Text1, Text2, and Icon, which should be populated by the adapter assigning
the values to the content fields. Implementing a custom layout is also possible by
creating an AXML markup file and later referencing the markup in the adapter.

View Elements

[218]

A sample custom layout implementation could look like the following:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:background="@drawable/CustomSelector"
 android:padding="8dp">
 <LinearLayout
 android:id="@+id/Text"
 android:orientation="vertical"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:paddingLeft="10dip">
 <TextView
 android:id="@+id/Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="20dip" />
 <TextView
 android:id="@+id/Description"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="14dip" />
 </LinearLayout>
 <ImageView
 android:id="@+id/Image"
 android:layout_width="48dp"
 android:layout_height="48dp"
 android:padding="5dp"
 android:src="@drawable/icon"
 android:layout_alignParentRight="true" />
</RelativeLayout>

We can also extend the style by adding visual state selectors (see the background
color assignment in the previous sample).

The custom visual state selector implementation could be defined as the following:

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_pressed="false"
 android:state_selected="false"

Chapter 7

[219]

 android:drawable="@color/blue" />
 <item android:state_pressed="true"
 android:state_selected="false"
 android:drawable="@color/red" />
</selector>

Finally, the list adapter implementation would look like:

 public class CountriesDataAdapter : BaseAdapter<Country>
 {
 private List<Country> m_Items;

 private Activity m_Context;

 public CountriesDataAdapter(Activity context, List<Country>
items)
 {
 m_Context = context;
 m_Items = items;
 }

 public override long GetItemId(int position)
 {
 return position;
 }

 public override View GetView(int position, View convertView,
ViewGroup parent)
 {
 var item = m_Items[position];

 View view = convertView ??
m_Context.LayoutInflater
.Inflate(Resource.Layout.CustomRowView, null);

 view.FindViewById<TextView>(Resource.Id.Title).Text =
item.Name;
 view.FindViewById<TextView>(Resource.Id.Description).Text
= string.Format("In {0} region of {1}", item.Region.Name, item.Region.
Continent);
 view.FindViewById<ImageView>(Resource.Id.Image).
SetImageResource(Resource.Drawable.Icon);

View Elements

[220]

 return view;
 }

 public override int Count
 {
 get { return m_Items.Count; }
 }

 public override Country this[int position]
 {
 get { return m_Items[position]; }
 }
 }

The preceding code should generate a view similar to the following screenshot:

List View with custom layout

Chapter 7

[221]

GridView (Android)
Other than the ListView control, on the Android platform, collections can be
visualized in ViewGroup. View groups are used to bundle different visual trees and
display the items in a scrollable view element. The most common implementation of
the ViewGroup is the GridView widget. GridView is a scrollable grid control where
content items are again provided with a ListAdapter implementation.

GridView is generally used with a homogenous set of content items. These
content items consist of a set of text content and a related image item. Content
items are generally referred to as tiles and they can also include several content
related commands.

Tiles are conceptually similar to the live tile blocks of Modern UI design of Windows
applications. They are made up of primary and secondary content. The primary
content fills the entire cell (for example, album cover in a photo gallery application),
while the secondary is represented by icons or text. The primary action is, in most
cases, a vertical descending navigation command (navigating to the details view).
Context actions related to the content item are generally considered to be the
secondary content on a tile.

If the amount of actions on a content item or the content is not homogenous,
it is advised to consider using cards rather than tiles in a grid view.

CardView (Android)
The CardView control was introduced in Android 5.0, and it can be described as a
self contained content unit. The term self-contained here would refer to the fact that
cards generally include multiple actions and various content-related items. Users
generally do not need to resort to secondary actions (select and then use the context
menu) to interact with these content items.

A standard card layout

View Elements

[222]

Cards are generally used when there is neither the need nor the possibility for
direct comparison between the collection elements and the content consists of
various types of data. Cards can be interactive through the use of action buttons or,
in some cases, in-content input controls. They can be expandable and generally have
a fixed width.

CardView is implemented as a FrameLayout widget and can be used in association
with a ListView or GridView to represent content elements.

ListView and ListBox (Windows Phone)
ListView and ListBox are the main collection visualization controls on the
Windows Phone platform. ListView is a more specialized implementation of
ListBox, and it is primarily used for displaying text-based content. Its counterpart
ListBox is highly customizable and can be adopted to display content composed of
multiple data types.

Both of these containers can be used for item-level context actions. However,
ListBox, similar to CardViews on the Android platform, is used to create interactive
content elements that might include actions and input controls.

Two-way data binding is available for both of these controls and items can be styled
and customized using behaviors, item templates, and/or control styles. Orientation
is vertical by default for both controls, but this can be set to horizontal if the content
items are desired to be displayed on a horizontal line.

In case there is the need for more customization on the template level and how the
items are laid out, developers can also use the ItemsControl, which is the base
implementation for most of the collection views on the Windows Phone platform.

In order to customize how the items are displayed on a ListView, we would first
need to create the DataTemplate that will be the template used for ListViewItems.

A sample DataTemplate declaration could look like the following:

<DataTemplate x:Key="SampleItemTemplate">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Border Margin="0,10,0,0">
 <Image Source="{Binding ImageUrl}" Height="80" Width="80" />
 </Border>
 <StackPanel Grid.Column="1" Margin="15,0,0,0">
 <TextBlock Text="{Binding Title}"

Chapter 7

[223]

 Style="{ThemeResource ListViewItemTextBlockStyle}" />
 <TextBlock Text="{Binding Subtitle}"
 Style="{ThemeResource ListViewItemSubheaderTextBlockStyle}" />
 </StackPanel>
 </Grid>
</DataTemplate>

Once our template is ready, we can assign the template to our ListView together
with the collection data source, which is a list of simple SampleItem objects with
the properties described in the DataTemplate.

The code is as follows:

<Grid>
 <ListView
 ItemTemplate="{StaticResource SampleItemTemplate}"
 ItemsSource="{Binding MyItems}" />
</Grid>

Now, the content items are displayed in the ListView in a two-column style with an
image, title, and description text.

GridView (Windows Phone)
GridView is another implementation of the ItemsControl on the Windows Phone
platform, which allows the developers to create collection views in a flow layout.
GridView should generally be preferred over ListBox or ListView when dealing
with media elements.

ListView versus GridView

View Elements

[224]

Similar to the previously defined elements, GridView supports two-way data
binding and can be customized using standard methodologies.

Virtualizing panels (Windows Phone)
It is important to realize the fact that mobile platforms are not as performant as
desktop or tablet devices. Especially when dealing with big sets of data, even though
applications can perform well visually on a desktop workstation, memory resources
might cause the UI to flicker, lag, or even block on a mobile device. In order to
decrease the memory usage and improve performance by means of loading only the
needed data, Windows Runtime provides the virtualizing panel controls (for example,
VirtualizingStackPanel). ItemsControl, which is the base for most of the collection
view controls described here, supports both data and UI virtualizations.

UI Virtualization on Windows Runtime

UI virtualization deals with the controls being rendered on the application
viewport. The application list view bound to a large number of items, in this case,
does not need to render and keep the controls in the runtime memory but only deal
with the ones that are in the viewport. In this paradigm, controls that are removed
from the screen with a scrolling action need to be destroyed and redrawn if the user
scrolls back.

Data virtualization deals with paged data sources. For instance, with a "virtualizable"
data source (a collection that implements ISupportIncrementalLoading), only the
data needed for the current viewport is loaded into the application and additional
batches are requested from the data source when the UI control needs to display
additional items. Random access virtualization lets developers retrieve a subset of
data on any random ordinal. For this type of data virtualization, the data source
needs to implement INotifyCollectionChanged and IObservableVector.

Chapter 7

[225]

Modal views
Modal views are temporary view components that can provide an interactive
interface to get the user's input on a certain task or decide on the execution path of
a workflow. It is also common to use alert dialogs to inform the user about critical
information that is crucial for the execution of the application.

Popover and alerts (iOS)
The iOS platform provides various modal dialogs to display, edit, and manipulate
data in different scenarios. Each of these dialog types look different but the common
denominator is the fact that they always get the focus and are displayed on the
highest layer on the screen, while the content under the dialog is hidden with a
translucent overlay layer.

Action sheets are one of the most-frequently used modal dialogs. This dialog type is
generally used to give the user an option before starting a task or cancelling the task.
It is generally displayed as a list of buttons; the last of which is generally the "cancel"
button, at the bottom of the screen.

Action sheet display on iOS

Action sheets can be initialized using a UIAlertController and specifying
the UIAlertControllerStyleActionSheet. If the screen size permits (on a
horizontally regular environment), action sheets are displayed as a popover.

View Elements

[226]

Alert dialogs are another type of modal dialogs on iOS. Alerts are generally used to
inform or ask consent from the user about an issue that affects the execution of the
application. Unlike action sheets, alert dialogs can contain descriptive text, a title,
and even a text input field.

Alert dialog with input field and with only description and title

Alert dialogs can be invoked with UIAlertController, using the
UIAlertControllerStyleAlert. Alert dialogs should avoid any kind of redundant,
informal, and negative content. If the title provides enough information for the user
to continue with the execution, description text could be omitted.

Popovers are another type of temporary context views on the iOS platform.
However, popovers only are displayed on a horizontally regular environment
(in both portrait and landscape in iPad, and only in landscape rotation in iPhone 6
Plus). In horizontally compact environments, they are displayed as full screen
modal dialogs.

In order to initialize a popover, UIPopoverPresentationController can be used.

Modal dialogs are another type of temporary view display used on iOS. Modal
dialogs can be used in scenarios where a self-contained and compact view is needed
to execute a very particular task or workflow.

Modal dialog with page sheet style

Chapter 7

[227]

Modal dialogs can be created using the UIPresentationController with various
modal presentation styles (full screen, page sheet, form sheet, and current context).
However, the presentation styles associated with modal dialogs behave almost the
same on horizontally compact environments (all iPhone models except iPhone 6 Plus
in landscape orientation).

Flyout, popups, and menus (Windows Phone)
Flyouts are the main modal dialogs on the Windows Phone platform. They can be
used in various scenarios, including showing a context menu, showing additional
details of an item, or getting consent from the user. The common behavior of
different types of flyouts is that they are always displayed with the highest z-index
on screen and the elements underneath are disabled with a translucent overlay.
Flyouts have, by default, a light-dismiss mechanism. In other words, they can be
dismissed if the user taps anywhere outside the flyout control's borders.

Flyouts are generally associated with another control on the current view either
by using the attached properties or using the ShowAt function of the Flyout class.
The Content property of the Flyout class is used to assign a UIElement to display
on screen.

 var flyout = new Flyout();
 var stackPanel = new StackPanel { Orientation = Orientation.
Vertical, Margin = new Thickness(5)};
 var textBlock = new TextBlock { Text = "Flyout Text Content",
FontSize = 20 };
 var textInput = new TextBox { PlaceholderText = "Input Value",
FontSize = 18 };
 var button = new Button { Content = "Apply", FontSize = 18 };
 stackPanel.Children.Add(textBlock);
 stackPanel.Children.Add(textInput);
 stackPanel.Children.Add(button);
 flyout.Content = stackPanel;
 flyout.ShowAt(TextBlock);

View Elements

[228]

The preceding sample code would create a flyout which has text content, an input
field, and a button as its content:

Simple flyout menu on Windows Phone

In spite of the fact that flyouts are always attached to a UIElement
(either using XAML or through code) and the dialog should be displayed
in the vicinity of the associated element, on Windows Phone, flyouts
behave like message dialogs displaying on the top of the screen.

In Windows Runtime, it is possible to use the derived types of flyouts for specific
scenarios. MenuFlyout, TimePickerFlyout, and DateTimePickerFlyout are
examples for these implementations.

Menu Flyout Usage

Chapter 7

[229]

Other than flyouts, popup control can also be used to display a temporary view or
details of a content item. Popups are generally stand-alone controls and can directly
be included in the view XAML. They can optionally use light-dismiss and can be
shown or hidden using the IsOpen property.

For alert dialogs or critical input requirements, the MessageDialog class provides
developers a familiar implementation tool. MessageDialog is a simple dialog used
to display text content and numerous UI commands. The UICommand class represents
a button and the associated action (if any) and is used to display actions on the
dialog and provide a result to the dialog once selected by the user. The following
implementation creates a message dialog with a text field and two commands:

MessageDialog dialog = new MessageDialog("You are about to delete an
important item", "Important Deletion");
dialog.Commands.Add(new UICommand("Sure"));
dialog.Commands.Add(new UICommand("Not Really"));
dialog.ShowAsync();

This would be shown on the UI similar to how flyouts are visualized:

MessageDialog example on Windows Phone

Dialogs (Android)
Dialogs on Android can be implemented as simple as an alert dialog or a full screen
dialog that retrieves the required form data to continue the current task. Dialogs
behave the same way as modal dialog implementations on other platforms; they
interrupt the current task and are displayed on top of the underlying layer.
The content underneath is hidden with a translucent grey overlay layer.

View Elements

[230]

Simple alert dialogs, like their parallel implementations on other platforms, consist
of a title, a descriptive content, and confirmation actions. They are invoked on critical
scenarios where the user's input is crucial to continue with the execution.

Android Alert Dialog

It is important to be careful to avoid any ambiguity in the descriptive content and the
action button contents.

Another popular dialog used in Android applications are the context menu
dialogs. This type of dialog does not require any confirmation once the item from
the list is selected. They also have the light dismiss behavior. If the dialogs have
additional information about the selection item and maybe additional actions,
they are referred to as simple dialogs. The selection on these dialogs do not
require confirmation either.

Android Dialogs

Chapter 7

[231]

If the dialog implementation requires the user to explicitly confirm the choice made,
these dialogs are generally referred to as confirmation dialogs. It is common to have
a "cancel" button at the bottom of the dialog screen so the previous selected option
can be kept.

Text views
On all three platforms, with the emergence of the minimalist design inclinations,
typography and text content items became the focus of UX design. Each platform
has well-defined guidelines on font sizes and typefaces for different scenarios.
More importantly, each of these platforms has specialized ways to display and
edit rich text formats.

• Windows: On the Windows Phone platform, Run elements are used to
define specific sections of text that have a certain formatting applied to. Run
elements can then be included in TextBlock elements or RichTextBlock
controls. In addition to the Runs, RichTextBlocks can be used in conjunction
with HTML-like styling elements (for example, bold, span, italics, and
so on). Using the RichTextBlocks and RichTextBlockOverflow as a
container, any shape and style text displays can be supported in Windows
Phone applications.

• Android: On the Android platform, text formatting is achieved using the
so-called spans. There are numerous pre-styled span implementations such
as RelativeSizeSpan, ForegroundColorSpan, and ClickableSpan. These
span implementations are used to set certain sections of a SpannableString
with the described styles. There is a SpannableStringBuilder class
that can be used to create the styled paragraphs/text content. Once
the SpannableString is complete, it can be used as content for the
TextView control.

• iOS: On the iOS platform, text-related features and controls are
introduced by the Core Text library. The UITextView control is the
visualization element in this library. Text formatting is achieved
by using the NSMutableAttributedText class. For attributed text
content, different text ranges can be set to use certain attributes such as
NSUnderlineStyleAttribute, NSBackgroundColorAttribute, and so on.
When displaying attributed text blocks a NSTextContainer can be used to
describe a shape as line fragments in which the text should be displayed.

View Elements

[232]

Web views
Web view controls are used to display rich HTML content on Xamarin target
platforms. These web view controls build their own navigation stack independent
from the application runtime. On Android and Windows phone, it is also possible to
inject JavaScript into the HTML content that is being displayed on the control.

On all the platforms, it is possible to load not only remote, but also local web
applications from the application resources.

Feedback
One of the pillars of modern application design is keeping the user informed at all
times about the actions being executed by the application and the progress of these
tasks. Even if the application is dealing with a blocking call (the execution cannot
continue before finishing the task), displaying a progress ring creates the illusion
that the application is still responsive.

Progress indicators can be categorized into two groups: indeterminate
and determinate.

Indeterminate progress
Indeterminate tasks and the associated progress indicators are related to the
operations where the application cannot provide neither an estimated completion
time nor progress information. These operations might depend on completion of
multiple sub-procedures and might be related to the whole application or only a
single UI element.

With indeterminate processes, we first need to decide on how crucial the process
is for the application. If the application cannot continue without completing the
current process, this would be an application-level blocking call. In cases of blocking
calls (involving single step or multiple steps), it is a good idea to use a progress ring
on the main content area. A good example for this scenario would be a main client
trying to retrieve e-mail messages from the server without knowing how many items
there are on the server. If there are multiple steps involved in this process, you can
additionally show an information text near or over the progress ring.

Chapter 7

[233]

This implementation on Android can be achieved with the ProgressDialog class.
Instantiating this control provides a modal dialog with the possibility to include a
descriptive text. It is important to set the indeterminate flag to true before displaying
it on the UI.

Progress rings on Android, iOS and Windows Phone

On iOS, the same visualization is achieved with the UIActivityIndicatorView.
You can modify the behavior to animate and change the color.

On Windows Phone, the ProgressRing class provides the same type
of functionality.

In indeterminate scenarios where the process being executed does not stop
the user from continuing with application interaction, it is better to give a more
subtle indication about the process and the controls involved in the execution.
This can be achieved by using a progress ring or a bar in the vicinity of or over the
control where the process started. On iOS, the only distinction between the progress
bar and the ring is the process being determinate or indeterminate. However, on
Android and Windows Phone, a progress bar can also act as an indeterminate task
indicator. On the Windows Phone platform, it is also general practice to display an
indeterminate progress bar on top of the screen if the process is an application level
task, but the interaction with the application can continue without waiting for the
result of this process.

Determinate progress
Determinate tasks and associated indicators are related to processes where the
application can provide a current state information to the user. A determinate
progress indicator of choice on Xamarin target platforms is the progress bar.
Progress bars, while providing a visual indication of the current completion state of
the process, can also include a label giving a text description of the current state of
the task.

View Elements

[234]

It is important to also provide a cancellation method (for example, a cancel button
near the progress bar) if the process is relatively long.

Android determinate progress bar displays

On the Android platform, in addition to the progress indication, a buffering
percentage can also be displayed on the progress bar.

User interaction
Another important element in cross-platform development projects is the set
of user interaction patterns for the application. Users already using the application
on other platforms would want to find the same interaction patterns on clients
running on another platform. This decision process gets even more complicated with
platform specific interaction patterns, since the application should provide a familiar
interface for platform users. It is important to achieve a balanced compromise
between platform nativity and application identity in such scenarios and find the
optimum solution.

A good example for branding by means of using an interaction pattern, would be
the "pull-to-refresh" interactive pattern used in iOS applications. Most application
providers dealing with information feeds (for example, Facebook, Twitter, and so on)
used this implementation in their iOS applications. Even though this is not a native
interaction pattern on Android and Windows Phone, a similar approach quickly
became popular on these platforms; hence, most developers and users are now
adopting this use-case on various platforms.

Chapter 7

[235]

Interactive controls
In most cases, applications built for Xamarin target platforms would require input
and other interactive controls to collect necessary information from the user. By
interactive, we are referring to almost all the UI controls that can be used in a
Xamarin application. In this case, even a simple filter dropdown control to select a
different view perspective would be an interaction control, requesting information
from the user display appropriate data or perspective.

Text input
Text input fields are one of the most used type of input fields. Text fields can be
implemented as a single line of text or as a multiline. An important aspect of text
fields is the fact that as soon as a text input field gets selected on a touch-enabled
device, the virtual keyboard appears on the screen. It is generally a good idea to
keep this in mind while designing the user interface and implementing it later on.

On iOS, while the UITextField provides an input mechanism for single line of text
requirements, UITextView can be used to create editable rich text content. Both of
these controls provide options such as capitalization and correction.

UITextView Edit and Read-only Views

View Elements

[236]

Additionally, UITextView provides detectors that can transform Internet addresses
to links, addresses to map links, phone numbers into deep-links to make a phone
call, and date/time values to calendar event items.

Android text input fields are similar to the ones on iOS platform. The key difference
is that on Android, instead of two different controls, only the EditText control
exists for multiline and single line text inputs. This is achieved by settings the
InputType property of the control (or inputType attribute in AXML). Other input
scopes, besides the text format, can be set such as postal address, capitalized
words, autocorrect, and capitalized sentence beginnings. Note that these scope
parameters are bit-wise combinations. Another specialized control that provides
auto suggestions is the AutoCompleteTextView, to which developers can assign an
ArrayAdapter as a source for suggestions.

On Windows Phone, TextBox is the most commonly used text input control. It can
be highly customized to meet the previously mentioned requirements. Moreover, the
input scope field lets developers control the virtual keyboard displayed for entering
the value. For instance, setting the scope to be a telephone number would display a
keyboard with only digits. AutoSuggestBox, PasswordBox, and RichEditBox are
other controls that can be used for more specialized scenarios.

Dropdown selection
Dropdown elements can be used, on each platform, utilizing the specialized controls.
While the UIPickerView is used on iOS, the same implementation is achieved
on Android by so-called spinners. Spinners, very much like other content-driven
controls, are populated with a SpinnerAdapter.

Dropdown controls on iOS, Android and Windows Phone

Chapter 7

[237]

In addition to the spinner control, simple menu dialogs can also be used for users'
input. Windows Runtime provides additional specialized controls, the ComboBox
and ListView, for different selection use cases.

Option selection
Similar to the radio or check boxes on HTML forms, each platform provides options
related UI elements. On Android, specialized controls for this scenario are Checkbox,
RadioButton, and ToggleButton. Starting with Android 4.0 (API 14), Switch control
can also be used. Other than the visual difference between these controls, the
behavior is the same. On iOS, the main toggle control for Boolean data types is the
Switch. Similar to Android, Windows Phone offers checkbox, radio button, and
toggle switch control with option selections and Boolean types.

There are many other controls on each platform, and each
provides a specific use case for different UI interaction scenarios.
UX guides for Windows Runtime and Material Design are great
resources for the respective platforms. Even though the Apple
human interface design documents do not provide extensive UX
guidelines as the other platforms, they are great resources to learn
about user control use cases.

Gestures
When developing for Xamarin target platforms, you should always keep
in mind that the devices that are going to run the application will most
probably have a touchscreen.

View Elements

[238]

Touchscreen devices, apart from the classic pointer-like gestures (for example, tap,
double tap, scroll, and so on), also provide various interaction gestures that help
developers create an interface that can interact with the user in a more natural way.

Tap
In most scenarios, the tap gesture is analogous to
a single click with a pointer device. It is primarily
used to select a control.

Long Press
Long press or tap and hold is used to access a
context menu on Windows Phone. It is used for item
selection on Android.

Double-Tap
Double tap is generally used for scaling up /
zooming-in on a control.

Swipe Down

Swipe down or pan down is used on vertical scroll
scenarios. Also, list controls support swipe down for
selection on Windows. It is also common to be used
with "Pull to Refresh" implementations.

Swipe Right
Similar to swipe down, swipe right is used on
vertical scroll scenarios and sibling navigation
scenarios. It is called "flick" if the gesture is fast.

Swipe Left
This is same as other pan gestures. It can also be
used to delete a list item on iOS and Windows
Phone 10.

Swipe Up
This is another panning gesture. It can additionally
be used to reveal a bottom sheet on Android
applications.

Tap & Drag
This is generally used as an active gesture to interact
with draggable components.

Pinch Out
This is used in active canvas application patterns.
It is used to zoom in on a view. On Windows,
semantic zoom control makes use of this.

Pinch In
This is similar to the Pinch-Out gesture and is used
to zoom out of an active content area of application
screen (for example, zoom in on a photo).

Rotate
This is another gesture used on active canvas
applications (for example, a map client). It is used to
rotate the current view-port.

Common Gestures

Chapter 7

[239]

While some of these gestures are already implemented by out-of-box controls on
Xamarin platforms, there might be scenarios where you need to use them to create
a new interaction use case in your application. For these type of requirements,
specialized implementations can be found on respective frameworks.

On the iOS platform, the starting point for gesture recognizer implementation is
the abstract class UIGestureRecognizer. There are numerous implementations of
gesture recognizer in the UIKit and they can be combined and used with delegate
implementations.

On Android, the GestureDetector class and the IOnGestureListener interface
can be used to provide implementations for various gesture events and user actions.
Classic interaction events such as pan gestures and tap actions can already be
accessed through the OnTouchEvent method of any Activity implementation.

On the Windows Phone platform, most of the default controls provide interaction
with pointer or touch events for classic manipulation scenarios. However, for more
complicated gestures, the GestureRecognizer class available in the Windows.
UI.Input namespace can be used.

Summary
This chapter presented an overview of the design philosophy of, and patterns on,
Xamarin target platforms. The design elements section outlined the main controls
and layouts that are at the disposal of designers and developers while providing
various content display strategies. There were additional sections about interactive
and modern user interface design.

Even though each platform provides its own UI design patterns and guidelines,
the main focus of the design effort in a cross-platform application is to find an
optimal compromise between native look-and-feel and application brand design.

In the next chapter, we will discuss the Xamarin.Forms framework and make use of
the correlation between the design elements that are outlined here.

[241]

Xamarin.Forms
Xamarin.Forms is an extension module to Xamarin compiler technologies; an
abstraction layer on top of the native UI components on target platforms. This
chapter will focus on the various features and extensibility options of Xamarin.Forms
that help developers create cross-platform application user interfaces that can then
be compiled into Xamarin projects, increasing the code-sharing quality markers,
and making cross-platform application development projects more manageable
and unified. This chapter is divided into the following sections:

• Under the hood
• Components
• Extending forms
• Patterns and best practices

Under the hood
As previously mentioned, Xamarin, being a cross-platform development framework,
provides developers the toolset to create applications that depend on and use
the same code base. The shared amount of code is directly proportional to the
manageability in these types of implementation.

Xamarin.Forms adds an abstraction layer on top of the mono runtime on Android
and the pre-compiler .NET stack on iOS platforms. This abstraction layer's sole
responsibility is to provide the Xamarin compilers with the necessary instructions to
normalize the code or markup for GUI elements to render native controls in Xamarin
apps. Since the platform language for Xamarin is C#, Extensible Application Markup
Language (XAML) is the design markup language of choice. Xamarin.Forms provides
the same abstraction as a runtime library for Windows Store applications.

Xamarin.Forms

[242]

The abstraction layer provided by Xamarin.Forms makes use of the similar UI
elements and layout patterns which were illustrated in the previous chapter (see
Chapter 7, View Elements). In this context, Xamarin.Forms only provides controls
and views that are common to all three platforms and omits platform-specific UI
elements. It is important to understand that Xamarin.Forms is not a replacement for
a native user interface implementation, but more of a foundation to build upon while
creating cross-platform applications.

Figure 1: Xamarin.Forms abstraction layer

Xamarin.Forms not only provides a uniform native UI development framework,
but also additional features that are generally associated with loosely-coupled
UI development, such as data binding, dependency injection, and messenger
infrastructure. To a certain extent, these features render third-party MVVM
libraries used in various mobile application projects obsolete.

Anatomy of Xamarin.Forms
Xamarin.Forms libraries are distributed through NuGet packages and can be freely
included in cross-platform development projects.

Chapter 8

[243]

Whilst the NuGet package for iOS does not present any dependencies, the
Android and Windows Phone versions depend on several support libraries (that is,
WPToolKit for Windows Phone; and several design and compatibility packages
for Android).

The Xamarin.Forms.Core library contains the UI elements and the necessary
XAML declarations together with additional features related to data binding and
similar operations. This assembly can be included in portable class library projects
that provide the view implementation to platform-specific projects. Native client
projects, in return, should reference Xamarin.Forms.Core and the platform-specific
assemblies of Xamarin.Forms (for example, Xamarin.Forms.Platform.iOS). Xamarin.
Forms platform libraries contain the so-called renderer implementations that are
responsible for rendering Xamarin.Form elements using native controls. In other
words, these platform assemblies provide the mapping between native elements
and their Xamarin. Forms counterparts.

Project structure
In order to create a Xamarin.Forms application project targeting iOS, Android, and/
or Windows Phone 8, it is sufficient to use one of the project templates located in the
Cross-Platform section. While the portable library project template makes use of a
PCL to create the Xamarin.Forms application boilerplate, the shared project template
creates a shared project with file references linked to the native client app projects.

Figure 2: Xamarin.Forms project templates

Xamarin.Forms

[244]

Project templates can be found in the Mobile Apps section in
older versions of Xamarin.

Once the project is initialized, by selecting the Blank App (Xamarin.Forms Portable)
project template, the created solution will include four projects, one project carrying
the same name as the entered project name and three platform-specific projects with
the platform suffixes.

Figure 3: Xamarin.Forms solution main view and project scopes

One caveat of using this project template for Xamarin.Forms is the fact that other
platforms that are actually supported by this framework (for example, Windows
Phone 8.1 and Windows 10) are not included in this multi-project template. These
projects can be created manually, and the NuGet package for Xamarin.Forms can be
added using the NuGet package manager. It is also important to mention that the
NuGet package referenced in the project template might not be the latest version of
Xamarin.Forms and therefore can be updated using the NuGet package manager.

Chapter 8

[245]

Figure 4: The latest NuGet package for Xamarin.Forms

If you take a look at the generated code in the portable library, App.cs,
and the platform-specific projects, the implementation pattern immediately
becomes apparent.

Xamarin.Forms

[246]

The Xamarin.Forms implementation contains the application class implementation
as the root node. This application is initialized and invoked by the generated code in
the app delegates in platform-specific projects (similar to the following code excerpt
from the Xamarin.Forms iOS application sample):

[Register("AppDelegate")]
public partial class AppDelegate : global::Xamarin.Forms.Platform.iOS.
FormsApplicationDelegate
{
 public override bool FinishedLaunching(UIApplication app,
NSDictionary options)
 {
 global::Xamarin.Forms.Forms.Init();
 LoadApplication(new App());

 return base.FinishedLaunching(app, options);
 }
}

The initialization code for the app in the template boilerplate creates a content
page with a single label in a StackLayout element and designates this view as
the main page:

public App()
{
 // The root page of your application
 MainPage = new ContentPage
 {
 Content = new StackLayout
 {
 VerticalOptions = LayoutOptions.Center,
 Children = {
 new Label {
 XAlign = TextAlignment.Center,
 Text = "Welcome to Xamarin Forms!"
 }
 }
 }
 };
}

As you can see, the Xamarin.Forms application structure is made up of controls
wrapped in different layout configurations that are presented through various
page types.

Chapter 8

[247]

Components
Xamarin.Forms components can be categorized into three main groups according to
their position in the view hierarchy and their usage.

Pages
Conceptually, pages are navigational elements. They provide a general hierarchical
organization of the view elements whilst also acting as a container for the layouts.
There are various page types that can be inherited and implemented or designed
using XAML markups.

Tabbed page
When discussing the top-level navigation pages in the previous chapter, we
mentioned several controls that can provide horizontal navigation throughout
top-level pages. Using Xamarin.Forms, TabbedPage allows developers to create
these horizontal navigational view elements. TabbedPage generates a tabbed action
bar and associated activities on Android. On Windows Phone, the generated view
contains a pivot control. Finally on iOS, generated view contains a tab bar and
associated views.

TabbedPage contains the navigation pages as its children (that is, the Children
property accepts different page implementations), and the page titles of the child
elements are used as navigation links.

Implementing the tabbed view example from the previous chapter for our
TravelTrace application would look similar to the following snippet:

var tabbedPage = new TabbedPage();

tabbedPage.Children.Add(new ContentPage
{
 Title = "Recent",
 Content = new StackLayout
 {
 VerticalOptions = LayoutOptions.Center,
 Children = {
 new Label {
 HorizontalTextAlignment = TextAlignment.Center,

Xamarin.Forms

[248]

 Text = "Recent uploads page"
 }
 }
 }
});

// ...
// TODO: Add the other tab nav items

MainPage = tabbedPage;

The same implementation can be done using XAML and creating a
TabbedPage implementation:

<TabbedPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Xamarin.Master.TravelTrace.Views.MainTabView">
 <ContentPage Title="Recent" Icon="social.png">
 <StackLayout VerticalOptions="Center">
 <Label Text="Recent uploads page"
 HorizontalTextAlignment="Center"></Label>
 </StackLayout>
 </ContentPage>
 <ContentPage Title="Local" Icon="map.png">
 <StackLayout VerticalOptions="Center">
 <Label Text="Local landmarks page"
 HorizontalTextAlignment="Center"></Label>
 </StackLayout>
 </ContentPage>
 <ContentPage Title="Friends" Icon="people.png">
 <StackLayout VerticalOptions="Center">
 <Label Text="Friends related page"
 HorizontalTextAlignment="Center"></Label>
 </StackLayout>
 </ContentPage>
</TabbedPage>

Chapter 8

[249]

Assigning the newly created MainTabView class instance to MainPage in App.cs
would result in the same view as the code implementation:

Figure 5: TabbedPage view

It is important here to mention that the Icon property provided for individual peers
in a TabbedPage implementation only applies to the iOS platform. Icons in tab and
pivot views are not supported by Xamarin and it is not an accepted design approach
for Android and Windows Phone.

The MasterDetail page
The example with the tabbed view satisfies the horizontal navigation requirements
of our design, but we also need a navigation drawer and associated main menu
navigation items for our Android applications.

MasterDetailPage provides a structure in which the master page selection menu
can initiate a navigation request on the detail page. Moreover, if the content of the
Detail page is encapsulated in a NavigationPage, the generated view is added to
the navigation stack so that the previously displayed pages can easily be pulled into
the master view using the event methods. In order to include an additional layer of
navigation and a global menu, we can now use the MasterDetailPage class to create
the desired navigation structure.

Xamarin.Forms

[250]

The first step of the implementation is to create our master view. The master view
in this case will include a simple list view with menu and a profile display as the list
header. When the list view content items are selected, we can either bubble up the
event to the MasterDetailPage or pass the parent page as a parameter to the menu
page we are implementing.

public NavigationMenuView(Page root)
{
 Icon = "toggle.png";

 InitializeComponent();

 ListViewMenu.ItemsSource = m_MenuItems =
 new List<Tuple<string, string, string>
 {
 new Tuple<string, string, string>("Profile",
 "profile", "profileicon.png"),
 new Tuple<string, string, string>("Map", "map",
 "mapicon.png"),
 new Tuple<string, string, string>("Settings",
 "settings", "settingsicon.png")
 };

 ListViewMenu.SelectedItem = m_MenuItems[0];

 ListViewMenu.ItemSelected += async (sender, e) =>
 {
 if(ListViewMenu.SelectedItem == null)
 return;

 // TODO: Implement the navigation strategy
 Debug.WriteLine("Item selected {0}",
 ((Tuple<string, string, string>)e.SelectedItem).Item2);
 };
}

In this implementation, we are using a Tuple with three parameters for the label,
tag, and icon of the menu item. It would, of course, be better to implement a class
to contain these data values.

Now we can construct our MasterDetailPage by setting the Master and
Detail properties:

var masterDetailPage = new MasterDetailPage();

// Can select any of the behaviors:
// Default, Popover, Split, SplitOnLandscape, SplitOnPortrait

Chapter 8

[251]

masterDetailPage.MasterBehavior = MasterBehavior.Popover;
masterDetailPage.Master = new NavigationMenuView(masterDetailPage);
masterDetailPage.Detail = new NavigationPage(new ContentPage
{
 Title = "Detail Page",
 Content = new StackLayout
 {
 VerticalOptions = LayoutOptions.Center,
 Children = {
 new Label {
 HorizontalTextAlignment = TextAlignment.Center,
 Text = "Here is the Detail"
 }
 }
 }
});

MainPage = masterDetailPage;

MasterBehavior can be adjusted according to the platform. In this example, we will
be using the popover behavior, which displays a flyout and a toggle button in the
main app bar on Android and creates a navigation command icon to open the flyout
on other platforms.

Figure 6: Navigation flyout on Android and Windows Phone

Xamarin.Forms

[252]

When using MasterDetailPage, it is important to anticipate the outcome of the
design decisions made in Xamarin.Forms markups so that final applications for
the target platforms still follow the design guidelines.

NavigationPage
NavigationPage is the most abstract implementation of the Page class. The main
purpose of using NavigationPage is to create a navigational stack in the application
context. This navigational context is supported natively on Windows Phone.
However, other platforms do not create a stack for previously viewed pages.
Using NavigationPage, one can utilize the items in the navigational history
and manipulate the stack using push and pop methods.

CarouselPage
CarouselPage is another horizontal navigation implementation that the user can
use to navigate through the peer pages using swipe or flick gestures. CarouselPage
is very similar to the panorama view and pivot controls from the Windows Phone 7
platform, except for the fact that CarouselPage has strict snap points (that is, when
the free scrolling view snaps to the borders of a control or a page) and it does not
have an endless loop of items, in contrast with pivot control, but instead has more
linear navigation. Behaviorally, it resembles and uses a similar navigation strategy
as the FlipView control from Windows Runtime.

In order to initiate a carousel-type navigation structure, either XAML or code-behind
can be used. A simple carousel view with three content page implementations would
look as follows:

<CarouselPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Xamarin.Master.TravelTrace.Views.GuidesView">
 <ContentPage Title="First Peer">
 <StackLayout HeightRequest="50" VerticalOptions="Center"
 BackgroundColor="Silver">
 <Label Text="Content for the First Peer"
 HorizontalTextAlignment="Center"></Label>
 </StackLayout>
 </ContentPage>
 <ContentPage Title="Second Per">
 <StackLayout HeightRequest="50" VerticalOptions="Center"
 BackgroundColor="Gray">
 <Label Text="Content for the Second Peer"
 HorizontalTextAlignment="Center"></Label>
 </StackLayout>
 </ContentPage>

Chapter 8

[253]

 <ContentPage Title="Third Peer">
 <StackLayout HeightRequest="50" VerticalOptions="Center"
 BackgroundColor="Silver">
 <Label Text="Content for the Third Peer"
 HorizontalTextAlignment="Center"></Label>
 </StackLayout>
 </ContentPage>
</CarouselPage>

The resulting view would be a container for touch-initiated horizontal navigation
between peers.

Figure 7: Carousel view

ContentPage
ContentPage is a simple page implementation used generally in cooperation with
previously described page structures. It can be described as the actual content
presenter. Child views in other navigation implementations are generally made
up of ContentPage implementations.

In order to set the content to be visualized on the user interface, you can use the
Content property, which accepts a list of view objects. Layout elements are generally
used as the direct children of ContentPage and other user controls are appended to
this visual tree.

Xamarin.Forms

[254]

Layouts
Layouts are structural design elements that allow developers to organize the UI
controls using various strategies. We can classify layouts into two groups according
to their class inheritance hierarchy: single view and multiple view.

Figure 8: Layout classes

Single view layouts are direct descendants of the base layout implementation and
they are capable of displaying only a single view item (they can also be a branch of
a visual tree). Examples of this category are ContentView, Frame, and ScrollView.
ContentView and Frame elements are rarely used and can be helpful while dealing
with fewer content elements and/or an application with an active screen pattern
(for example, a drawing application would use a single canvas implementation with
absolute positioning; drawn geometry items would be the children of the canvas).

ScrollView, on the other hand, is one of the most popular controls and can be
used together with another layout element, such as StackLayout. When used with
StackLayout, if the calculated height of StackLayout is greater than the client area,
the parent control, ScrollView, makes it possible to change the viewport of the
child control. Even though it is not very common, ScrollView can still be used with
simple controls such as Label or Image.

Chapter 8

[255]

For instance, if we were to implement the primary content of the TabbedPage created
in the previous section, we can use a ScrollView to display the StackLayout that is
displaying the recently uploaded items from the TravelTrace server. The markup for
this implementation would look similar to the following snippet:

 <ScrollView>
 <StackLayout x:Name="StackLayout">
 <Grid Padding="10" ColumnSpacing="4">…</Grid>
 <Grid Padding="10" ColumnSpacing="4">…</Grid>
 <!-- Omitted for clarity -->
 </StackLayout>
 </ScrollView>

It would be displayed almost like a scrolling ListView:.

Figure 9: ScrollView visualizations

Under normal circumstances, when dealing with a long list of
data items, ListView should be the main control to be used. This
implementation is only for demonstration purposes.

The multi-page layouts category consists of AbsoluteLayout, Grid,
RelativeLayout, and, as seen in the previous example, StackLayout. Each layout is
used for a specific scenario for various design-related requirements.

Xamarin.Forms

[256]

Grid, similar to the Grid in Windows Presentation Foundation, is used to organize
child elements in a grid structure. The initial step of creating a grid is to define
ColumnDefinitions and RowDefinitions, which describe the cells that are going
to be used to render the elements. After this step, view elements can be added to the
grid using the attached properties of Grid, such as Grid.Row, Grid.Column, Grid.
RowSpan, and Grid.ColumnSpan.

Using the example cells from the previous implementation, we could have a classic
cell view with two lines of text and an image on the right-most section of the cell:

<Grid Padding="10" ColumnSpacing="4">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="40" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="60" />
 </Grid.ColumnDefinitions>
 <Image Grid.RowSpan="2" Grid.Column="1" Source="mapicon.png"
 HeightRequest="40" WidthRequest="40"/>
 <Label Grid.Row="0" Grid.Column="0" Text="Item Title"
 FontSize="16"/>
 <Label Grid.Row="1" Grid.Column="0" Text="{Binding
 LongTextPlaceholder}" FontSize="14" />
</Grid>

AbsoluteLayout provides a rendering mechanism in which the child elements are
organized in floating rectangles. Placement geometry (that is, the LayoutBounds
property) defines the X and Y coordinates of the element and the size of the
bounding rectangle. The LayoutBounds property can accept device units or
proportional units. The notion used for proportional units is similar to the "%"
system used in HTML layouts. These values have to be in the range of 0-1 to
designate an element on the screen area. The AbsoluteLayoutFlags enumeration
can be used to define the bounding rectangle values that follow the proportional unit
system or otherwise (for example, PositionProportional, HeightProportional,
SizeProportional, or All).

RelativeLayout is conceptually similar to relative layouts on the Android and
Windows 10 platforms. It also uses a similar constraint mechanism as iOS auto-
layout implementation. In a relative layout, elements can be positioned in a
bounding rectangle similar to an absolute layout. However, values for this bounding
rectangle are defined in reference to the parent element (RelativeToParent) or
another control in the visual tree (RelativeToView). Developers are also allowed
to use constant values without referencing another control.

Chapter 8

[257]

In relative layouts, if the arrangement is being created in code-behind, constraints are
defined using a lambda expression or anonymous functions. For instance, in order
to add an image element to the center of the page of size (100,100), we would use the
RelativeToParent constraint:

relativeLayout.Children.Add(image,
 Constraint.RelativeToParent(parent => parent.Width/2 - 50),
 Constraint.RelativeToParent(parent => parent.Height/2 - 50),
 Constraint.Constant(100), Constraint.Constant(100));

If we were to insert a label 10 units underneath the image in the center, it would look
as follows:

relativeLayout.Children.Add(label,
 Constraint.RelativeToParent(parent => parent.Width/2 - 100),
 Constraint.RelativeToView(image, (parent, view) =>
 {
 // Here view is referring to the other relative control
 return view.Y + view.Height + 10;
 }),
 Constraint.Constant(200),
 Constraint.Constant(100));

The outcome would be as follows:

 .

Figure 10: Relative layouts

Xamarin.Forms

[258]

A similar implementation using the markup extensions in XAML can be employed.
Even though the constraint expression options are limited by factor and constant
values (that is, using relative layout, factor multiplies the value of the selected
property and constant is used for offset values), it can prove useful in
data-bound scenarios.

<RelativeLayout x:Name="relativeLayout">
 <Image x:Name="Image" Source="icon.png" HeightRequest="100"
 WidthRequest="100"
 RelativeLayout.XConstraint=
 "{ConstraintExpression Type=RelativeToParent,
 Property=Width,
 Factor=0.5,
 Constant=-50}"
 RelativeLayout.YConstraint=
 "{ConstraintExpression Type=RelativeToParent,
 Property=Height,
 Factor=0.5,
 Constant=-50}" />
 <Label Text="Hello Relative Layout!" HeightRequest="100"
 WidthRequest="200" HorizontalTextAlignment="Center"
 RelativeLayout.XConstraint=
 "{ConstraintExpression Type=RelativeToParent,
 Property=Width,
 Factor=0.5,
 Constant=-100}"
 RelativeLayout.YConstraint=
 "{ConstraintExpression Type=RelativeToView,
 ElementName=Image,
 Property=Y,
 Constant=110}"/>
</RelativeLayout>

Finally, StackLayout, similar to StackPanel on the Windows platform and
LinearLayout on the Android platform, provides a flow layout where child views
(that is, controls) are arranged automatically according to the orientation set and the
calculated or requested dimensions of elements.

Views
User interface controls in Xamarin.Forms are referred to as views. Views are
abstractions of controls or widgets in Xamarin target platforms, and each of
them is rendered with a native control on the respective platform.

Chapter 8

[259]

For text-related scenarios, there are three controls: Editor, Entry, and Label.
The Editor and Entry views provide multi-line and single-line editing capabilities
to the user interface respectively. On the other hand, the label view can be used in
either scenario as a read-only control.

For dropdown-related scenarios, the Picker view can be used. More specialized
implementations of pickers are TimePicker and DatePicker. Stepper and Slider
are other views that can provide a constraint value, such as an integer within a
certain range. For option scenarios, the only available control is the Switch view.
The Switch view renders a Switch control on Android and iOS and a ToggleButton
on Windows.

For process feedback implementation, there are two views available, namely
ProgressBar and ActivityIndicator. ProgressBar provides a determinate
progress indicator, and ActivityIndicator is rendered as an indeterminate
progress ring on target platforms.

For web resource-related scenarios, WebView can be utilized. In a similar fashion to
embedded web view native controls on target platforms, WebView can be used to
display either a local (that is, a web element constructed from application resources
or a text value) or a remote web page. It provides access to the navigation stack and
navigation events of the displayed web document.

For collection views, there are two main controls in Xamarin.Forms: ListView and
TableView. ListView, undoubtedly, is the most specialized control to display a
collection of content items. It supports data binding scenarios together with more
specialized actions such as pull-to-refresh, context-related commands, and selections.
TableView, on the other hand, is used for scenarios where the content items are more
heterogeneous and instead of a data-bound source, fixed UI element declarations are
required. It can be used for a menu display of selections, configuration values, or as
an input form.

Both ListView and TableView consist of cells. Cells are visual templates used to
render content elements in these collection views. While TableView is generally
associated with default templates such as SwitchCell and EntryCell, which
are used to create form elements in a table, ListView generally uses a templated
implementation of ViewCell. For simpler implementation scenarios, built-in cell
implementations, such as TextCell and ImageCell, can also be used with the
ListView control.

Xamarin.Forms

[260]

For TableView collection control, the iOS platform currently does not
support the HasUnevenRows property and automatic layout of the
cells. This is a known platform limitation that was recently fixed for
the ListView control. Developers are expected to either define a fixed
RowHeight for TableView or define a Height value for each cell.

In order to demonstrate the ListView utilization, we can make use of the previous
implementation in which we used StackLayout together with ScrollView. In the
previous scenario, we created hard-coded UI elements that were defined as Grid
items. In this implementation, let us assume that we have a data source that can be
set as the data provider for the ListView:

RecentUploadsList.ItemsSource = new List<Tuple<string, string,
string>>
{
 new Tuple<string, string, string>("Sarajevo trip on 04.10",
 longText, "profileicon.png"),
 new Tuple<string, string, string>("Istanbul trip on 23.09",
 longText, "mapicon.png"),
 new Tuple<string, string, string>("Rome trip on 12.09",
 longText, "settingsicon.png"),
 new Tuple<string, string, string>("Sarajevo trip on 04.10",
 longText, "profileicon.png"),
 new Tuple<string, string, string>("Istanbul trip on 23.09",
 longText, "mapicon.png"),
 new Tuple<string, string, string>("Rome trip on 12.09",
 longText, "settingsicon.png"),
 new Tuple<string, string, string>("Sarajevo trip on 04.10",
 longText, "profileicon.png"),
 new Tuple<string, string, string>("Istanbul trip on 23.09",
 longText, "mapicon.png"),
 new Tuple<string, string, string>("Rome trip on 12.09",
 longText, "settingsicon.png")
};

In this provider, we are using a three value Tuple that provides the display name,
description, and image values for the content entries.

Tuple values are accessed using Item1, Item2… properties.

Chapter 8

[261]

ListView can contain three visual templates defining the respective sections of the
collection view: HeaderTemplate, FooterTemplate, and ItemTemplate. A header
and footer can also be set directly using a view element:

<ListView BackgroundColor="Gray" SeparatorColor="Black"
 HasUnevenRows="true" x:Name="RecentUploadsList" >
 <ListView.Header>
 <Label TranslationX="10" Text="Recent Uploads"></Label>
 </ListView.Header>
 <!--<ListView.ItemTemplate> TODO: Insert DataTemplate </ListView.
ItemTemplate>-->
</ListView>

ItemTemplate defines how the content elements are to be rendered in the collection
view. If ItemTemplate is not defined, the list renderer will try to convert the
content elements to a string and display them as TextCells. Re-using the grid
implementation from the previous example(s), we can define DataTemplate for
the ItemTemplate property of ListView:

<ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <Grid Padding="10" ColumnSpacing="4">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="40" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="60" />
 </Grid.ColumnDefinitions>
 <Image Grid.RowSpan="2" Grid.Column="1"
 Source="{Binding Item3}"
 HeightRequest="40" WidthRequest="60"/>
 <Label Grid.Row="0" Grid.Column="0"
 Text="{Binding Item1}" FontSize="16" />
 <Label Grid.Row="1" Grid.Column="0"
 Text="{Binding Item2}" FontSize="14" />
 </Grid>
 </ViewCell>
 </DataTemplate>
</ListView.ItemTemplate>

Xamarin.Forms

[262]

This implementation will be displayed in a scroll-enabled list container similar to the
following screenshots:

Figure 11: ListView with item source

In order to implement context-related functions, the item data template, view cell,
can be edited to include context menu elements. It is also possible to modify view
cell in the code-behind file.

The following XAML snippet can be used to create two context menu actions:
Favourite and Remove:

<ViewCell.ContextActions>
 <MenuItem Text="Favourite" Clicked="OnFavouriteClicked"
 CommandParameter="{Binding .}">
 </MenuItem>
 <MenuItem Text="Remove" IsDestructive="True"
 Clicked="OnRemoveClicked" CommandParameter="{Binding .}">
 </MenuItem>
</ViewCell.ContextActions>

Chapter 8

[263]

Notice that the Remove command is marked as destructive. The IsDestructive flag
is used to create the slide-to-delete behavior on iOS. On other platforms, destructive
actions are rendered similar to other commands.

Figure 12: Context menu actions

ListView also has a flag called IsPullToRefreshEnabled. This property can be
used to support the pull-to-refresh behavior. RefreshCommand can be used to bind
the action required to refresh the list.

Extending forms
Even though the Xamarin.Forms framework provides an extensive set of
customizable UI elements, in certain scenarios you might want to change
how a certain control looks or behaves. Moreover, at times, providing an
application-wide customization scheme can provide consistency and decrease
redundancy. XAML markup infrastructure used in Xamarin.Forms provides
various custom implementation scenarios.

Xamarin.Forms

[264]

Styles
When implementing certain UI patterns, view elements have to be declared
independent of each other, and yet they have to carry the same design attributes,
such as typography, layout properties, colors, and so on. Styles can be used in this
situation to organize and re-use the element attributes.

Using ListView, the only view container defined would be the item data template,
and the content items loaded from the data source will be rendered using the
same template. However, if the view requirement is to use Grid, StackLayout,
or TableView, each view item would have to be defined separately.

For instance, it might become quite cumbersome to create a settings view for
Xamarin.Forms applications using the TableView control. In this implementation, if
we cannot use the standard cell views, such as EntryCell or SwitchCell, because of
requirements, the markup becomes even more redundant with each control having
to declare similar fonts and colors that make up the theme of the application.

Figure 13: TableView used for a settings view

Custom cell views in this implementation were used to create a description element
for each setting. If we look at the markup file, you can see the repeating styles for
each text element:

<TableView Intent="Settings" HasUnevenRows="True">
 <TableRoot>

Chapter 8

[265]

 <TableSection Title="Location">
 <ViewCell>
 <StackLayout Orientation="Vertical" Padding="10">
 <StackLayout Orientation="Horizontal">
 <Label TextColor="White" FontSize="24"
 VerticalTextAlignment="Center"
 HorizontalOptions="StartAndExpand"
 Text="Use Location" />
 <Switch IsToggled="True"></Switch>
 </StackLayout>
 <Label TextColor="Silver" FontSize="20"
 VerticalTextAlignment="Center"
 HorizontalOptions="StartAndExpand"
 Text="Use location to tag photos and notes.
 Location can be used for notifications as
 well">
 </Label>
 </StackLayout>
 </ViewCell>
 <ViewCell>
 <StackLayout Orientation="Vertical" Padding="10">
 <StackLayout Orientation="Horizontal">
 <Label TextColor="White" FontSize="24"
 VerticalTextAlignment="Center"
 HorizontalOptions="StartAndExpand"
 Text="Create Geofences" />
 <Switch IsToggled="True"></Switch>
 </StackLayout>
 <Label TextColor="Silver" FontSize="20"
 VerticalTextAlignment="Center"
 HorizontalOptions="StartAndExpand"
 Text="Create geofences to give notifications
 about landmarks.">
 </Label>
 </StackLayout>
 </ViewCell>
 </TableSection>
 <!-- Additional sections were removed for simplicity -->
 </TableRoot>
</TableView>

Xamarin.Forms

[266]

In this example, each label is defining at least TextColor, FontSize,
VerticalTextAlignment, and HorizontalOptions. There is one pattern for setting
labels and another one for description elements. Vertical and horizontal alignment
options, however, apply to all text elements.

Initially, we can simplify the markup by creating an implicit style that will apply to
all Label elements. Implicit styles do not define a resource key, hence they apply to
all targeted controls, such as TargetType:

<ContentPage.Resources>
 <ResourceDictionary>
 <Style TargetType="Label">
 <Setter Property="HorizontalOptions"
 Value="StartAndExpand" />
 <Setter Property="VerticalTextAlignment" Value="Center" />
 </Style>
 </ResourceDictionary>
</ContentPage.Resources>

We can now create additional styles to set item labels and descriptions:

<Style x:Key="SettingLabel" TargetType="Label">
 <Setter Property="FontSize" Value="24"></Setter>
 <Setter Property="TextColor" Value="White"></Setter>
</Style>
<Style x:Key="SettingDescription" TargetType="Label">
 <Setter Property="FontSize" Value="20"></Setter>
 <Setter Property="TextColor" Value="Silver"></Setter>
</Style>

However, this does not work as we expected it to. The outcome demonstrates that
the implicit styles were overridden by more specific style descriptions. It is important
to realize that there is no implicit cascading between the styles defined for the same
target controls. XAML is not HTML/CSS.

Figure 14: Implicit style is overridden with assigned styles

Chapter 8

[267]

In order to create a cascading scheme, we need to base the SettingLabel and
SettingDescription styles on the initial implicit style. For this purpose, we
need to define a key for our base style and reference this base in the derived
style declarations:

<ContentPage.Resources>
 <ResourceDictionary>
 <Style x:Key="BaseLabelStyle" TargetType="Label">
 <Setter Property="HorizontalOptions"
 Value="StartAndExpand" />
 <Setter Property="VerticalTextAlignment" Value="Center" />
 </Style>
 <Style x:Key="SettingLabel" BaseResourceKey="BaseLabelStyle"
 TargetType="Label">
 <Setter Property="FontSize" Value="24"></Setter>
 <Setter Property="TextColor" Value="White"></Setter>
 </Style>
 <Style x:Key="SettingDescription" BasedOn="{StaticResource
 BaseLabelStyle}" TargetType="Label">
 <Setter Property="FontSize" Value="20"></Setter>
 <Setter Property="TextColor" Value="Silver"></Setter>
 </Style>
 </ResourceDictionary>
</ContentPage.Resources>

Notice that the SettingDescription style uses the BasedOn declaration (similar
to the WPF implementation), while SettingLabel uses the BaseResourceKey
property. Both of these references can be used in Xamarin.Forms implementations.

Triggers and behaviors
At times, implementation requires style-related or behavioral changes of controls in
accordance with changes of the same or any other control's properties or data, as well
as certain events (for example, disabling a certain control according to the data input
value changes). Under normal circumstances, implementations utilize data bindings
where the data change event is routed to the presenter and the presenter changes the
view, providing a trivial solution. However, if the UI event should trigger another UI
change, the cost of data binding would be an overhead. Instead, the Xamarin.Forms
markup offers triggers and behaviors that add complexity to intrinsic controls.

Xamarin.Forms

[268]

For instance, the settings view that we previously created for our application
requires certain business rules. The first setting value, UserLocation, is a dependency
of the UseGeofences setting. In other words, technically it is not possible to create
geofences without using location services. For this specific scenario, we could create
a data binding from the IsToggled value:

<Switch x:Name="SwitchUseGeofences" IsToggled="True"
 IsEnabled="{Binding Source={x:Reference
SwitchUserLocation}, Path=IsToggled}">

The preceding implementation works as expected since the IsToggled and
IsEnabled values are both using Boolean as the value type. If we were to change
any other property of the target UI element, we would have to implement a value
converter. Moreover, multiple property changes would require multiple bindings.

Triggers provide an easy solution for this type of scenario. There are four types of
trigger that can be used to initiate either a setter action or a custom implementation
of a trigger action. Property triggers are used to create a visual state on a user control
according to the value of a property of the same control. Data triggers are used in a
similar fashion but in this case, the cause for the trigger is defined by data binding.
Event triggers are bound to user control events and multi triggers can encompass
and invoke an action that is dependent on multiple conditions.

The same scenario from the previous example can, in this case, be implemented with
a DataTrigger. Iterating on the scenario, the implementation can set the enabled and
text color properties on the associated description label:

<ViewCell>
 <StackLayout Orientation="Vertical" Padding="10">
 <StackLayout Orientation="Horizontal">
 <Label Text="Create Geofences" Style="{StaticResource
SettingLabel}" />
 <Switch x:Name="SwitchUseGeofences" IsToggled="True"
 IsEnabled="{Binding Source={x:Reference
SwitchUserLocation}, Path=IsToggled}">
 <Switch.Triggers>
 <DataTrigger TargetType="Switch" Binding="{Binding
Source={x:Reference SwitchUserLocation}, Path=IsToggled}"
Value="True">
 <Setter Property="IsEnabled" Value="False"></Setter>
 </DataTrigger>
 </Switch.Triggers>
 </Switch>
 </StackLayout>

Chapter 8

[269]

 <Label Text="Create geofences to give notifications about
landmarks."
 Style="{StaticResource SettingDescription}">
 <Label.Triggers>
 <DataTrigger TargetType="Label" Binding="{Binding
Source={x:Reference SwitchUserLocation}, Path=IsToggled}"
Value="False">
 <Setter Property="IsEnabled" Value="False"></Setter>
 <Setter Property="TextColor" Value="Transparent"></Setter>
 </DataTrigger>
 </Label.Triggers>
 </Label>
 </StackLayout>
</ViewCell>

Let us also implement a notification when the main control is disabled, warning
the user about other settings being disabled. For this implementation, we will
need an event trigger and a trigger action implementation. A trigger action
implementation consists of implementing the TriggerAction<T> class and the
virtual Invoke method: (see the Dependency injection section for the implementation
of INotificationService)

public class WarningTriggerAction : TriggerAction<Switch>
{
 public string Message { get; set; }
 protected override void Invoke(Switch sender)
 {
 if(!sender.IsToggled)
 DependencyService.Get<INotificationService>()
 .Notify(Message);
 }
}

Then, we will need to declare the namespace containing the implementation in the
root node of the page's markup:

xmlns:components="clr-namespace:Xamarin.Master.TravelTrace
 .Components;assembly=Xamarin.Master.TravelTrace"

And finally, we can add the event trigger to the main setting control:

<Switch x:Name="SwitchUserLocation" IsToggled="True">
 <Switch.Triggers>
 <EventTrigger Event="Toggled">

Xamarin.Forms

[270]

 <components:WarningTriggerAction Message=
 "Disabling this setting will disable other values" />
 </EventTrigger>
 </Switch.Triggers>
</Switch>

Figure 15: Notification triggered using EventTrigger

If we want this trigger to be applied to multiple controls (for example, the
notification settings section in the example), we can create a new style for
the main setting values and add the trigger to the style declaration:

<Style x:Key="SectionToggleSwitch" TargetType="Switch">
 <Style.Triggers>
 <EventTrigger Event="Toggled">
 <components:WarningTriggerAction Message=
 "Disabling this setting will disable other values" />
 </EventTrigger>
 </Style.Triggers>
</Style>

Chapter 8

[271]

The same type of result could have been achieved with a behavior implementation
for the Switch control. Behaviors are a more generic type of extension mechanism
that allow developers to extend existing user controls without having to create
derivatives of these controls.

For instance, if we were to use the same scenario (that is, when the switch control is
toggled off, a notification window should be shown to the user), we would need to
implement the base class, Behavior, with a type argument for Switch view:

public class SectionSwitchAlertBehavior : Behavior<Switch>
{
 public string Message { get; set; }

 protected override void OnAttachedTo(Switch control)
 {
 control.Toggled += ControlOnToggled;

 base.OnAttachedTo(control);
 }

 protected override void OnDetachingFrom(Switch control)
 {
 control.Toggled -= ControlOnToggled;

 base.OnDetachingFrom(control);
 }
 private void ControlOnToggled(object sender,
 ToggledEventArgs toggledEventArgs)
 {
 if (!toggledEventArgs.Value &&
 !string.IsNullOrWhiteSpace(Message))
 {
 DependencyService.Get<INotificationService>()
 .Notify(Message);
 }
 }
}

In a custom behavior implementation class, an OnAttachedTo method is used
as the initialization function where the control can be customized. Similarly,
OnDetachingFrom is used to clean up the customizations and any existing event
handlers that might have been attached to the control. Even though it's technically
possible, it is not advisable to modify the binding context using behaviors.

Xamarin.Forms

[272]

The custom behavior can be included either in styles targeting the same type of
control or with in-place markup elements added to the specific control:

<Style x:Key="SectionToggleSwitch" TargetType="Switch">
 <Style.Behaviors>
 <components:SectionSwitchAlertBehavior Message=
 "Disabling this setting will disable other values" />
 </Style.Behaviors>
</Style>

Custom renderers
Xamarin.Forms provides the developers with a uniform markup and implementation
framework to create native UI views for all Xamarin target platforms. The
abstractions of provided UI elements are then used by the framework to render
native controls. Similar to the Xamarin.Forms solution anatomy, each view/control
in the Xamarin.Forms platform is a composite implementation. While the behaviors
for the abstracted control logic are implemented and can be derived in portable
class libraries, the renderers associated with each control for various platforms are
implemented by platform-specific libraries.

Figure 16: Custom renderer implementation

In order to customize a control, one must first create a derived class for the
abstracted control. After this implementation, the custom control can be referenced
with a clr-namespace declaration (similar to TriggerAction and Behaviors) and
can be used in the view markup.

Chapter 8

[273]

At this stage, the custom implementation of the control would use the default
renderer for the base class. In order to change the way that native controls are
rendered on a specific platform, we would need to provide a custom renderer
implementation and register it using the ExportRenderer attribute on the
same platform.

Custom renderers provide a powerful way to customize how the common view
implementations with Xamarin.Forms should look on platform-specific views.

Patterns and best practices
In this section, we will discuss several implementation patterns and tools that
developers generally resort to while developing Xamarin.Forms applications.
Messaging and dependency injection features will be discussed further in
Chapter 9, Reusable UI Patterns.

Messaging infrastructure
In an ideal implementation of the Model-View-ViewModel (MVVM) or Model-
View-Presenter (MVP) pattern, each screen is self-contained; the screen modules for
the view, model, and the mitigation components communicate with each other using
various communication channels.

However, in complex applications, there is sometimes the need for a communication
channel between these self-contained elements, since the result of an action on one
of the screens should be propagated to other unrelated section(s) of the application
with a shared interest in the result of this very action. As a solution to this problem,
in MVVM frameworks such as MVVMCross, Prism, or MVVM Light, it is common to
see an implementation of the Event Aggregator pattern providing a loosely coupled,
multicast-enabled publisher/subscriber messaging infrastructure. Event Aggregator
can be described as the eventing hub, which receives multiple types of strongly typed
messages and delivers these messages to multiple subscribers.

In Xamarin.Forms, the Event Aggregator is called the MessagingCenter. It exposes
three groups of methods: Subscribe, Unsubscribe, and Send. The Subscribe and
Unsubscribe methods are used by the event observers, and the Send method is used
by the publisher.

Xamarin.Forms

[274]

In this paradigm, the subscriber is responsible for providing the instance and/or the
type of the sender together with the expected type of the message (that is, a simple
text parameter defining the message). The message type or name is an identifier
for the message and together with the message signature (the sender type and the
arguments type), it makes up the decision criteria for the subscribers. Finally, the last
provided parameter is the callback delegate, which can have the sender, and possibly
the event arguments, as parameters:

MessagingCenter.Subscribe<MyViewModel, MyMessageContract>(this,
"MyMessageName",
 (sender, data) =>
 {
 // TODO: Use the provided data and the sender
 });

// or
//MessagingCenter.Subscribe(this, "MyMessageName", (sender) => { },
myViewModelInstance);

The publisher is responsible for providing the message with the same message name
and signature. On the publisher's side, the message signature is made up of the
message name and the message argument parameter:

MessagingCenter.Send(this, "MyMessageName", new MyMessageContract
{
 // TODO: Pass on the required data.
});

MessagingCenter can prove to be very utile, providing simple solutions/
workarounds for architectural problems (especially scenarios where a Separation of
Concerns is in question) in Xamarin.Forms applications, and creating a decoupled
communication channel between components.

Dependency injection
As previously mentioned, one of the biggest drawbacks of using Portable Class
Libraries (PCLs) to implement common cross-platform libraries is the fact that the
platform-specific features cannot be accessed directly since the platform-dependent
modules cannot be referenced by these libraries.

Chapter 8

[275]

One of the most effective and elegant solutions to this problem is using
dependency injection (aka IoC - Inversion of Control). Using dependency
injection, platform-specific functionality should be abstracted into segregated
interfaces, and these interfaces can later be used to access the implementation
modules injected with the provided dependency containers.

DependencyService in Xamarin.Forms allows applications to use platform-specific
implementation through the abstraction interfaces.

In a common scenario, the first step would be to define the abstraction
(in the common portable forms library) that is going to be used by the
common application layer.

For a demonstration, let us implement a module that uses the native messaging
methods to display a notification for the user:

public interface INotificationService
{
 void Notify(string message);
}

Now we can implement this interface in platform-specific projects. In the Xamarin.
Android project, we can implement this using a toast notification:

[assembly:Xamarin.Forms.Dependency(typeof(NotificationService))]
namespace Xamarin.Master.TravelTrace.Droid.Modules
{
 public class NotificationService : INotificationService
 {
 public void Notify(string message)
 {
 var toast = Toast.MakeText(Application.Context,
 message, ToastLength.Long);
 toast.Show();
 }
 }
}

Xamarin.Forms

[276]

For the iOS platform, we can create a local notification message and present
it using the shared application infrastructure. However, local notifications for
foreground applications are automatically dismissed (only at the UI level can one
still implement an event delegate for a notification received event and display
an alert instead). Hence, we will use the UIAlertController class and present it
using the current window:

[assembly: Xamarin.Forms.Dependency(typeof(NotificationService))]
namespace Xamarin.Master.TravelTrace.iOS.Modules
{
 public class NotificationService : INotificationService
 {
 public void Notify(string message)
 {
 //
 // This will not fire for the foreground application
 //UILocalNotification localNotification = new
 // UILocalNotification();
 // localNotification.FireDate =
 // NSDate.Now.AddSeconds(2);
 //localNotification.AlertBody = message;
 //localNotification.TimeZone =
 // NSTimeZone.SystemTimeZone;
 // UIApplication.SharedApplication
 // .PresentLocalNotificationNow(localNotification);
 // UIApplication.SharedApplication
 // .ScheduleLocalNotification(localNotification);

 //Create Alert
 var okAlertController = UIAlertController.Create
 ("Notification", message,
 UIAlertControllerStyle.Alert);

 //Add Action
 okAlertController.AddAction(UIAlertAction.Create("OK",
 UIAlertActionStyle.Default, null));

 if (UIApplication.SharedApplication.KeyWindow != null)
 UIApplication.SharedApplication.KeyWindow
 .RootViewController.PresentViewController(
 okAlertController, true, null);
 }
 }
}

Chapter 8

[277]

And finally, for the Windows Phone platform, we can only use the local toast
notifications with the currently running applications on Windows Phone 8.1 and
Windows 10 mobile. For other versions, similar to the iOS scenario, local toast
notifications are not allowed for foreground applications. For this reason, we can
implement a simpler notification dialog using the MessageBox class:

[assembly: Xamarin.Forms.Dependency(typeof(NotificationService))]
namespace Xamarin.Master.TravelTrace.WinPhone.Modules
{
 public class NotificationService : INotificationService
 {
 public void Notify(string message)
 {
 MessageBox.Show(message);
 }
 }
}

In order to use the INotificationService interface in the portable class library that
implements the Xamarin.Forms application, we need to resolve the interface to create
an instance of one of the platform-appropriate implementations:

DependencyService.Get<INotificationService>().Notify("Hello Xamarin.
Forms!");

It is important to note that in this sample implementation, the Dependency assembly
attribute was used to register the platform-dependent implementation classes.
It is also possible to use the Register method of DependencyService to create
dependency containers:

Xamarin.Forms.DependencyService.Register<INotificationService,
NotificationService>();

The Register method has to be invoked after the initialization of Xamarin.Forms
(that is, the Forms.Init method) and before any dependent module is loaded.

Shared project versus portable project
Xamarin.Forms extensions introduce two types of multi-project solution templates.
Each template contains platform-specific projects as well as a common project to
implement platform-agnostic components for these native applications.

Xamarin.Forms

[278]

In the previous examples we were using the PCL project template, which creates
three platform-specific projects, each referencing a cross-platform portable
class library. Platform-specific projects delegate the application initialization to
the portable class library that initializes Xamarin.Forms and renders the pages
implemented using Xamarin.Forms.

The second project template creates a shared project that is included and compiled
into the platform-specific projects. In this scenario, since we are technically not
dealing with a platform-agnostic implementation (that is, implementations in the
shared project are directly compiled into the referencing projects), developers are
free to use platform-specific features, given that the compilation conditions are used
for appropriate platforms.

The easiest way to demonstrate the difference between the two approaches would
be to re-implement the notification service from the previous section without
dependency injection. In the previous example, we needed to create an abstraction
of the notification feature to be used in common views and inject the implementation
from platform-specific projects in the runtime. In the case of a shared project, we can
implement the same feature using conditional compilation:

public class NotificationService
{
 public void Notify(string message)
 {
 if (!string.IsNullOrWhiteSpace(message))
#if __IOS__
 var okAlertController = UIAlertController.Create("Notification",
message, UIAlertControllerStyle.Alert);

 okAlertController.AddAction(UIAlertAction.Create("OK",
UIAlertActionStyle.Default, null));

 if (UIApplication.SharedApplication.KeyWindow != null)
 UIApplication.SharedApplication.KeyWindow.RootViewController
 .PresentViewController(okAlertController, true, null);
#elif __ANDROID__
 var toast = Toast.MakeText(Application.Context, message,
ToastLength.Long);
 toast.Show();
#elif WINDOWS_PHONE
 MessageBox.Show(message);
#endif
 }
}

Chapter 8

[279]

In this case, each platform compilation uses a specific section of the function. We can
also use other types of abstraction and partial classes or methods to create elegant
implementations according to the requirements of the scenario.

Platform-specific fine-tuning
In spite of, or even because of, the fact that Xamarin.Forms tries to provide a
uniform implementation layer and then translates this layer into native controls,
at times developers are faced with the challenge of implementing retouches for
specific platforms. These modifications vary from small changes, such as font size
(because of device- and platform-dependent pixel measures) or background color,
to more systematic problems, such as not having the auto-layout implementation for
TableViews on the iOS platform. There are various ways to deal with this type of
situation, and the Device class is generally the access point to these solutions.

When dealing with common typographic controls, such as a Label or an Entry field,
the simplest way to comply with the design or accessibility requirements of a specific
device is to use the built-in styles available in the Device.Styles class. There are
several style elements, such as BodyStyle, SubtitleStyle, and CaptionStyle, that
can be used to solve common implementation problems. The style elements in this
class are calculated for the current platform/device in the runtime, hence they have
to be referenced by a DynamicResource XAML markup extension when dealing with
markup rather than code.

A simple label using the TitleStyle can be implemented as follows:

var mylabel = new Label
{
 Text = "Text for my Title",
 Style = Device.Styles.TitleStyle
};

It can also be declared in the markup file as follows:

<Label x:Name="MyLabel" Text="Text for my Title"
Style="{DynamicResource TitleStyle}" />

Xamarin.Forms

[280]

Another useful platform-specific typography-related utility is the NamedSize
enumeration. The NamedSize enumeration can be used with the Device.
GetNamedSize method to choose the most suitable font size in the target platform for
a text field. The enumeration provides four built-in options for different scenarios:

var mylabel = new Label {Text = "Text for my Title"};

// A Large font size, for titles or other important text elements
mylabel.FontSize = Device.GetNamedSize(NamedSize.Large, typeof
(Label));

A built-in converter can also be used to include the font size in XAML markup:

<Label x:Name="MyLabel" Text="Text for my Title" FontSize="Large" />

For more general implementation requirements, Device.Idiom and Device.OS
provide valuable target platform information related to the type of device (desktop,
phone, tablet, and so on) and the operating system of the device (Android, iOS,
Windows, or Windows Phone) respectively.

Currently, Windows Phone 8.1 and Windows Phone
Silverlight versions cannot be differentiated using the
Device.OS property. Conditional compilation can be
used as a replacement for this distinction.

Additionally, the Device.OnPlatform function and its XAML extension counterpart
can help developers implement platform-specific styles. The OnPlatform function
uses three values for each platform and returns the appropriate value according to
the Device.OS property.

Visualizing a label using the OnPlatform function would look similar to the
following snippet:

var mylabel = new Label {Text = "Text for my Title"};
mylabel.FontSize = Device.OnPlatform<double>(
 Android: 24, WinPhone: 24, iOS: 18);

Or, using the XAML markup extension, it would look like this:

<Label x:Name="MyLabel" Text="Text for my Title">
 <Label.FontSize>
 <OnPlatform x:TypeArguments="x:Double" Android="24" WinPhone="24"
iOS="16"/>
 </Label.FontSize>
</Label>

Chapter 8

[281]

The Device.OnPlatform function has another overload that can be used to execute
certain actions according to current operating system.

Summary
Briefly, Xamarin.Forms provides the toolset to increase code-sharing between
platform-specific projects and provide developers with a uniform experience when
developing UI components for these projects. The Xamarin.Forms framework, in
general, proves to be indispensable, especially for cross-platform implementation
where platform-dependent feature requirements are minimal.

This uniform abstraction layer is responsible for rendering the platform-specific UI
controls and creating native experience for the users. This layer can also be extended
using various features and patterns, some of which were discussed in this chapter.

We will be focusing on more re-usable view elements and implementation patterns
in the next chapter. Xamarin.Forms will again be referenced in this context.

[283]

Reusable UI Patterns
In this chapter, we will discuss strategies and patterns for reusing visual assets
(that is, text and media resources) in cross platform projects. Furthermore,
reusable assets will be iteratively explained from the localization perspective.
Finally, some advanced software architectural topics about Model-View-Controller
and Model-View-ViewModel patterns will be analyzed and demonstrated.
This chapter is divided into the following sections:

• Visual assets
• Localization
• Architectural patterns

Visual assets
We can classify any resource included in the project at compile time and used by
the user interface as a visual asset. Visual assets can vary from simple text elements
to media items (for example images, animations, videos, and so on) to be used for
creating the visual elements of the user interface. Each Xamarin target platform
provides different mechanisms to store and dispatch these assets.

On Android and iOS, resources and their localized representations are kept in
the designated Resources folder and substructures. On Windows Phone (both
Silverlight and Windows Runtime), resources can be managed by using embedded
resource files (that is, resw or resx).

Reusable UI Patterns

[284]

Text resources
Each Xamarin target platform uses various strategies to filter out static text resources,
such as the content of a message dialog or a label, from the View implementation.
Doing this helps developers separate human readable resources from code base,
creating a project structure in line with the separation of concerns principle.

Xamarin.Android
On the Android platform, text resources can be stored in the strings.xml file and
retrieved through code or used in declarative markups (that is, AXML files). The
XML file containing the string resources can be found or created in the Resources\
values directory. There is no relevance between the filenames and how the resources
are retrieved later on.

The resource XML file has a simple format, where each string is defined as an XML
node with an associated name as an attribute:

<resources>
 <string name="ApplicationName">Fibonnaci Calculator</string>
 <string name="SingleCalculation">Single Calculation</string>
 <string name="RangeCalculation">Range Calculation</string>
 <string name="GCCollect">GC Collect</string>
</resources>

The string values can later be used in markup, and also in Android declarative
attributes, using the @string/<ResourceName> notation:

<Button
 android:text="@string/SingleCalculation"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 local:MvxBind="Click NavigateToSingleCalculationCommand" />
<Button
 android:text="@string/RangeCalculation"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 local:MvxBind="Click NavigateToRangeCalculationCommand" />

Chapter 9

[285]

In order to add an activity label for a view, the ApplicationName string can be
included directly with the @string notation:

[Activity(Label = "@string/ApplicationName")]

On top of the classic string resources, a collection of string resources and quantity
strings can also be included in the resource XML file(s). Quantity strings are resource
strings with a definition for different countable references for various scenarios with
the correct pluralization rule.

For instance, for an application with English as the default language, the plural
quantity strings would look similar to the following (for example, a singular word
for one, a plural form for others):

<plurals name="CalculationsCompleted">
 <item quantity="one">%d calculation was completed.</item>
 <item quantity="other">%d calculations were completed.</item>
</plurals>

Whereas for the Turkish language, it would look similar to the following (the same
rule applies to all countable words):

<plurals name="CalculationsCompleted">
 <item quantity="other">%d islem tamamlandi.</item>
</plurals>

Examples of this usage can be extended to Slavic languages (for example Russian,
Polish, and Czech), where languages have different use cases for a small number of
items or for numbers ending with certain digits. Possible switch values for quantities
are zero, one, two, few, many, and other. The application of these switches follows
the rules defined for language plurals in the unicode common locale data repository
(see http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/
language_plural_rules.html for more information). For instance, English does
not require a specific handling for few items or zero items, so any rule defined for
these cases will be ignored by the runtime.

http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/language_plural_rules.html
http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/language_plural_rules.html

Reusable UI Patterns

[286]

Once the resource XML file(s) are modified, you can see that the Resource.
Designer.cs file is (re)generated with each compilation. This file contains the
associated ID values for different types of resources and can be used for retrieving
the resource items with the Resources utility class.

Figure 1: Generated resource constants

Using the Resources utility, text resources can be retrieved in the following ways:

// Getting a single text value
var singleStringValue =
 Resources.GetText(Resource.String.ApplicationName);
// Getting a string array
var stringArrayValue =
 Resources.GetTextArray(Resource.Array.MyStringArray);
// Getting a pluralized version for 2 items
var quantity =
 Resources.GetQuantityString
 (Resource.Plurals.CalculationsCompleted, 2, 2);

Additionally, other primitive data types (for example, integers, Booleans, and so on),
as well as units or structs used in style definitions (for example, dimension and
color) can be included in resource XML files.

Chapter 9

[287]

Xamarin.iOS
On the iOS platform, the simplest way to separate the text resources from the rest of
the project would be to create .strings files (for example, Localizable.strings),
which follow a simple JSON-like pattern with key/value pairs:

"GCCollect" = "GC Collect";
"RangeCalculation" = "Range Calculation";
"SingleCalculation"= "Single Calculation";

These string values, compiled into bundle resources, can, later on, be accessed using
the NSBundle.MainBundle.LocalizedString method:

var localizedString = NSBundle.MainBundle.LocalizedString
 ("RangeCalculation", "");

Localized string values can be used as labels for UI controls, creating a
loosely-coupled relationship between the static text content and the actual runtime
components. This process is referred to as internationalization in the iOS ecosystem.
Internationalized controls and elements can easily be localized for different
languages. Strings files can be created in the Resources folder or can be placed in
the Base.lproj folder inside the Resources directory, which constitutes the base
localization project folder for iOS projects (the default/fallback resources).

For storyboards, the internationalization process can be a little more complicated.
Each UI element in a storyboard is assigned a unique identifier called the Object
ID in Xcode, while it is referred to as the Localization ID in Xamarin Storyboard
Designer. In order to assign text content to a specific item on the storyboard,
developers are required to create string files for each storyboard (for example, for a
storyboard called Main.storyboard, you will need to create a Main.strings file)
and use the localization ID of the specific control and the name of the text attribute:

/* Class = "UIViewController"; title = "Single Calculation";
ObjectID = "138"; */
"138.title" = "Single Calculation";
/* Class = "UILabel"; text = "Ordinal"; ObjectID = "153"; */
"153.text" = "Ordinal";
/* Class = "UIButton"; normalTitle = "Calculate"; ObjectID =
"156"; */
"156.normalTitle" = "Calculate";

As one can see, the attribute names and casings are clearly different from the actual
type properties of UI controls (for example, text for UILabel, normalTitle for
UIButton). The iOS internationalization guidelines can provide details on the
storyboard attributes.

Reusable UI Patterns

[288]

Another way to create the base internationalization file for a storyboard is
to use Xcode to generate the string file. In order to modify the Xamarin.iOS
project with Xcode, the Open With context menu item can be used to select
Xcode Interface Builder for a storyboard and the main project window to
access the project properties.

Figure 2: Xcode Interface Builder

In the Xcode interface, the localization settings are located on the project settings
page. If the base localization folder was created beforehand, the Base Localization
option will already be checked in the project settings localization section.

Figure 3: Xcode project configuration

Chapter 9

[289]

Any additional language selection generates a language specific .lproj folder
and the .strings file for the targeted storyboards and strings files. Once the
Xcode window is closed, these changes will be reflected in the Xamarin.iOS
project structure.

Windows Phone
In Windows Phone (Silverlight) projects, resources are managed through traditional
resx files (a legacy of the .NET framework). The default language resources are
generated with the project template and stored in the AppResources.resx file,
located under the Resources folder.

Figure 4: Windows Phone resources

Additional types of content that can be embedded in the resources file are images,
icons, audio, and other types of files. These files can be accessed through code
and also in markup, using the generated AppResources class. Another generated
class, LocalizedStrings, provides access to the resources stored in the embedded
resource file(s):

<StackPanel>
 <Button x:Name="SingleCalculation"
 Content="{Binding LocalizedResources.
 SingleCalculation, Source={StaticResource
 LocalizedStrings}}"
 Style="{StaticResource NavigationButtons}"></Button>
 <Button x:Name="RangeCalculation"
 Content="{Binding LocalizedResources.RangeCalculation,
 Source={StaticResource LocalizedStrings}}"
 Style="{StaticResource NavigationButtons}"></Button>
 <Button x:Name="GCCollect"

Reusable UI Patterns

[290]

 Content="{Binding LocalizedResources.GCCollect,
 Source={StaticResource LocalizedStrings}}"
 Style="{StaticResource NavigationButtons}"></Button>
</StackPanel>

In Windows Phone 8.1 (that is, Windows Runtime) and Windows 10, the applications
use a resw file (called PRIResource, referring to the compilation method). Even
though the format of resx and resw files is identical, resw files can only contain
primitive values (that is, string values or values that can be expressed as strings).
Using resw files, developers can assign style or other attribute values directly to user
controls using the Uid value of the controls, similar to the internationalization of
storyboards on iOS.

Figure 5: Windows Runtime PRI resources

In addition to the targeted resources, developers are still free to use simple resource
strings. These resources can be accessed using the ResourceLoader class and the
GetString method.

Image resources
Mobile application projects can contain media assets from external sources as well
as the application bundle. In each target platform, media assets can be included in
different ways.

Chapter 9

[291]

While iOS and Windows Phone do not dictate a certain location in the project tree
for media assets, in Android projects, developers are obliged to include image
documents in the drawable folder of the Resources directory.

Figure 6: Project structures

Similar to the text resource structure on the iOS platform, it is advisable to place
language-neutral image elements (for the default language) in the Base.lproj
location if you are planning to localize them in later iterations. Also, asset catalogs
can be employed to simplify the management of images and their pixel-perfect
alternatives for different resolutions (see the Adaptive visual assets section).

Adaptive visual assets
Adaptive UI patterns for applications targeting Xamarin platforms force
developers, at times, to include variations of media assets for different resolutions
and pixel densities. Even though the image resources are scaled according to the
aforementioned adaptive UI metrics, the scaled images do not always result in
visually pleasing displays (for example, an image resized to double the original size,
to have the same physical screen dimensions on different devices, does not appear as
it should).

Reusable UI Patterns

[292]

The Android platform uses the device compatibility configuration qualifiers for both
image and text resource folders (that is, drawables and values), as well as other
types of resources, such as layouts. In such projects, compatibility qualifiers are
concatenated to the resource folder as a suffix (for example, the drawables-xhdpi
folder can be used to provide images specific to extra high density device displays
of approximately 320 dpi) and various default resources are added to this folder.
Compatibility configuration not only deals with pixel density, but also provides
selectors for mobile network related switches (that is, MCC (mobile country code)
and MNC (mobile network code)), language, and region (see the Localization
section), layout direction (that is, left to right or right to left), various screen
size-related options, screen orientation, UI mode (related to the platform
displaying the application—a car, desk, television, appliance, or watch),
night mode (that is, day or night), input type-related configurations, and
finally the platform API level/version.

On the iOS platform, image assets can be individually suffixed to provide
different versions of the same image for different resolutions and device idioms
(that is, iPhone, iPod, and iPad). Device idiom values (that is, device modifiers)
are used with the tilde (~) character and can identify resources for iPhone and iPod
using the ~iphone suffix and resources for iPad using the ~ipad suffix. The @2x
suffix, which should appear before the device modifier, is used to identify high
resolution image variants.

Before the introduction of Windows Phone 8.1, the Windows Phone operating system
only supported four variations: WVGA (480 x 800, only used by WP 7.1), WXGA
(768 x 1280), 720p (720 x 1280), and 1080p (1080 x 1920). The only way to differentiate
between these resolutions was to use the App.Current.Host.ScaleFactor device
configuration property (for example, a scale factor of 100 refers to WVGA and 150
refers to HD). Windows Store apps (including Windows Phone 8.1) provide an
automated scaling mechanism similar to that of iOS and Android. On the Windows
Phone 8.1 platform, each resource file and/or folder can be suffixed with various
qualifiers to support multiple display scales, languages and regions, contrasts, and
similar, to tailor a customized look and feel for different device configurations. If the
qualifiers are applied to a specific file, each qualifier/value pair should be separated by
an underscore and added between the filename and the extension (that is, filename.
qualifiername-value_otherqualifier-value.fileextension). If the qualifiers
are applied to complete folders, for each qualifier/value, a subfolder should be created
(that is, resourcefolder/qualifier-value/otherqualifier-value/).

Chapter 9

[293]

For instance, see the following project path:

Images/en-US/config-designer/myImage.scale-140_layoutdir-LTR.png

This can be accessed with the Images/myImage.png resource path.

Reusable assets
Managing media assets in cross platform projects, especially if you are providing
variations for different device configurations, can become quite a hurdle. In order
to reuse these assets for multiple platforms, linked file references can be utilized
(Add | Existing Item | Add as Link).

Figure 7: Add resource as link

Using this strategy, image documents can be included in a common location for
all platform-specific projects (for example, the common portable library), and only
linked file references can be added to platform-specific projects.

Reusable UI Patterns

[294]

This way, image documents are not copied to multiple locations, but only compiled
into different platform-specific projects.

Figure 8: Linked resources for normal and high definition in Windows Phone and Android projects

Text resources in a cross-platform project do not differ greatly between platforms,
especially if the resources in question are simple string values, rather than targeted
attributes for UI controls (for example, text content specified for a label or a button
on a storyboard). Another observation is that most of the text resource values are
handled as key/value pairs in XML format (for Windows Phone and Android) or
with simple JavaScript-like notation (in iOS). Elaborating on these assumptions,
we can create an automated process that evaluates a common resource file and
creates/generates the resource strings for the target platforms.

Considering the fact that we will use either a shared project library or a portable
class library that will contain the shared code for the platform specific projects,
this common project would be the most appropriate location to store the common
resource strings. We can use this project to create the common resource package in
the resx format.

Chapter 9

[295]

These embedded resource files, as previously mentioned, are simple XML files in
which the string resources pairs are stored in <data> nodes with the name attribute
as the key and the <value> text node as the value (the rest of the file contains the
XSD schema and metadata values for code generation).

Figure 9: Resx file XML structure

Android string resources have a similar structure with less complexity and different
node names (that is, resource values are represented with <string> text nodes with
the attribute name). Conversion between the two XML files is fairly simple with an
XSL transformation in Visual Studio.

XSL is an abbreviation for Extensible Stylesheet Language and is
used for transforming XML documents from one format to another.
XSLT files may utilize templates, XPath queries, and other XSL
functions to process XML document content. More information can
be found at http://www.w3schools.com/xsl/default.asp.

http://www.w3schools.com/xsl/default.asp

Reusable UI Patterns

[296]

To transform the resource file into the Android format, we will create an XSLT file
in the same folder as the AppResources.resx file in the common project. In order
to create the Android XML resource file, we need to select each <data> element
from the <root> node and create <string> nodes with appropriate text content
and attributes inside the <resources> root node:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-
 prefixes="msxsl">
 <xsl:output method="xml" indent="yes"/>
 <xsl:template match="/">
 <resources>
 <xsl:for-each select="/root/data">
 <string>
 <xsl:attribute name="name">
 <xsl:value-of select="@name"/>
 </xsl:attribute>
 <xsl:value-of select="value"/>
 </string>
 </xsl:for-each>
 </resources>
 </xsl:template>
</xsl:stylesheet>

Now, after this step, we can use the XML menu to debug the XSLT file using the
resx file:

Figure 10: XSL Transformation debug session in Visual Studio

Chapter 9

[297]

After confirming that the transformation works as expected, we can now automate
this process to regenerate the strings file every time the common project is rebuilt.
For this automation, we can use a third-party XML transformation command line
application and add the console command as a pre-build event command line
argument using the project settings. Another option would be to use the out-of-box
MSBuild task XslTransformation to add a BeforeBuild target.

In order to add new build targets, the csproj file needs to be
modified in Visual Studio. For this purpose, the common project first
needs to be unloaded using Unload Project from the project context
menu, and the project file can be edited using the Edit <Project File
Name> option from the same context menu.

The XslTransformation task is a simple build task with three basic parameters for
the XML file that needs to be transformed (that is, XmlInputPath), the XSL file to be
used for the transformation (that is, XslInputPath), and finally the output path (that
is, OutputPaths):

<Target Name="BeforeBuild">
 <XslTransformation
 XslInputPath="Resources\AndroidTransform.xslt"
 XmlInputPaths="Resources\AppResources.resx"
 OutputPaths="..\Xamarin.Master.Fibonacci.
 Android\Resources\values\strings.xml" />
</Target>

With this modification, every time the common project is built (with a default setup,
the common project should be built before the Android project), the strings.xml
file will be generated and placed into the values folder in the Android project.

The same transformation approach is applicable to the iOS localized strings
files. In an iOS-specific transformation, the output should be set to text and the
transformation style sheet should create the key/value pairs. In order to create the
lines of text for each data element in the embedded resource file, the concat function
can be utilized:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-
 prefixes="msxsl">
 <xsl:output method="text" encoding="utf-8" indent="no" omit-xml-
 declaration="no"/>

Reusable UI Patterns

[298]

 <xsl:template match="/">
 <xsl:for-each select="/root/data">
 <xsl:value-of select="concat('"', @name, '" =
 "', value, '";', '
')" />
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

In this stylesheet, it is important to note that text elements (symbols), such as double
quotes and carriage return (that is, line feed and end of line), are HTML encoded.

Once the transformation result is confirmed, we can add another
XslTransformation task to the project file as a BeforeBuild target to create the
localized strings file:

<XslTransformation
 XslInputPath="Resources\IOSTransform.xslt"
 XmlInputPaths="Resources\AppResources.resx"
 OutputPaths="..\Xamarin.Master.Fibonacci
 .iOS\Resources\Base.lproj\Localizable.strings" />

Using the same implementation, the translation values containing the resx
files can be transformed and used to generate localized resources for the
target platforms. In addition to XSL transformations, T4 templates can also
be used to generate the text resource files. Since certain build tasks (including
XslTransformation) are not yet supported by xBuild and Xamarin Studio, T4
templates can provide an alternative if your main development environment is
Mac OS and main development IDE is Xamarin Studio. With T4 templates, it is
also possible to iterate through each file in the common resources and generate
matching localization files in platform-specific projects.

The next section will summarize the localization strategies on Xamarin
target platforms.

Chapter 9

[299]

Localization
Localization and globalization are the two fundamental concepts of mobile
applications. In the previous sections, we discussed different ways of separating
visual content from the rest of the application. This process, in essence, prepares
the mobile application to be localized and is generally a part of the globalization
phase. Globalized applications should function the same way, independent of
the culture or locale they are being executed on. During localization, developers
are supposed to create language-specific resources and integrate them into the
globalized applications.

Locale and culture
Locale can be defined as the umbrella term that includes all regional configurations
on a specific device (or a specific application in some cases). The locale not only
represents the user interface language, but also the formats used to display dates,
times, numbers, and currency values.

As part of the globalization effort, in Xamarin target platforms, developers
first need to identify which languages are going to be supported as part of the
localization effort. A mobile application, after it is published and installed by the
user, should manifest the supported languages so that the user interface can be
rendered either with the locale that is dictated by the operating system
(if supported) or the default/fallback language of the application.

The supported languages manifest is a calculated value according to the
resources provided (Android) or a pre-declared manifest or project entry
(iOS and Windows Phone).

Reusable UI Patterns

[300]

Windows Phone
In Windows Phone Silverlight application projects, resources for different languages
can be provided using resource packages according to the naming conventions. The
provided packages should then be referenced in the WMAppManifest.xml file. The
easiest way to include additional language support for a Windows Phone application
is to use the project properties to identify the supported cultures.

Figure 11: Project Properties for Windows Phone Silverlight application

Once the project configuration modifications are saved, Visual Studio automatically
creates the associated resx files (for example, AppResources.bs.resx for Bosnian,
AppResources.tr-TR.resx for Turkish) and updates the application manifest.
The default language can be modified from the package manifest (that is, package.
appxmanifest) or the application manifest (WMAppManifest.xml) designers.

Chapter 9

[301]

Windows Store applications (that is, Windows Phone 8.1) are globalized using
folders named after the supported languages containing the resw resource files.
For instance, in order to create an application that targets the same cultures as the
previous example, we would need to create a folder structure and culture-specific
resource files similar to the following:

Figure 12: Windows Store apps supported cultures and app bundle

Once the application package is created, you will notice that instead of a single
application package, an application bundle is created and each supported culture
has an associated store app package in the bundle.

Application bundles are used in Windows Store applications to reduce
the size of the application packages that users are going to download
for specific CPU architecture (ARM, x86, or x64), display hardware
(image and other media assets, optimized for different resolutions),
or locale. The packaging strategy can be selected while creating
application packages, but if bundling is declined, developers are
required to create a different upload package for each CPU architecture
they are planning to support with their applications.

Reusable UI Patterns

[302]

Xamarin.iOS
As previously explained, for Xamarin.iOS, once the additional languages are selected
for the project in the Xcode development environment, generated localization
folders and files are automatically added to the Xamarin.iOS project. The generated
storyboard string files initially contain the possible localizable fields and the assigned
values from the storyboard. Other string bundle resource files are copied with the
same values from the Base.lproj folder.

Figure 13: Localized Xamarin.iOS project

When using text resource files for localization, the LocalizedString function for the
MainBundle property either returns the value that matches the current user language
selection or the default value defined in the Base.lproj directory.

When using Visual Studio for creating and editing the
strings files, it is a good idea to map the strings
extension to JavaScript editor using the Options dialog
and the Text Editor | File Extension section.

Chapter 9

[303]

In order to load a language-specific resource that does not match the current
preferred language(s) configuration, you will need to use the localization bundle
path and retrieve the localized resources using the same function on this bundle:

var path = NSBundle.MainBundle.PathForResource("tr", "lproj");
NSBundle languageBundle = NSBundle.FromPath(path);
var localizedString = languageBundle.LocalizedString
 ("RangeCalculation", "");

The native development language directory (that is, Base.lproj), as well as the
language-specific folders, can also be used to store other types of bundle resources,
such as image resources, storyboards, XIB files, or even language-specific Info.plist
files. (The InfoPlist.strings file in a language directory can be used to override
values from the application's Info.plist file, such as the application name.)

It is crucial to add the supported languages to the info manifest. For localization,
there are two relevant keys. The first relevant item is the Localization native
development region (that is, CFBundleDevelopmentRegion) and the second key is
the Localizations (that is, CFBundleLocalizations). While the native development
region defines the language associated with the Base.lproj location, the
localizations entries provide information about the other supported localizations.

Xamarin.Android
Localization in Xamarin.Android projects, similar to the folder structure of
Windows Phone 8.1 projects, is achieved using a specific folder structure with the
language code suffixed into the localized resource items (for example, drawable-tr
or values-en).

Figure 14: Android localization folder structure

Reusable UI Patterns

[304]

An appropriate resource is selected in the runtime using a simple elimination
algorithm that selects the correct resource file according to the locale, display
density, display size, touch support, and other criteria.

Xamarin.Forms
The Xamarin.Forms portable class library project template provides the ideal
environment for text resource sharing. In this setup, with a process similar to
Windows Phone Silverlight projects, resx files can be used to create resource
bundles that can be used to localize the cross-platform views created with
Xamarin.Forms framework.

Figure 15: Localized Xamarin.Forms resources

Once the embedded resource files and their translation counterparts are
added to the common PCL project, the resource entries can be accessed using the
generated static class. In order for the generated class to be accessible from the
platform specific implementations, the Custom Tool property of the resource file
must be set to PublicResXFileCodeGenerator and the Build Action property to
Embedded Resource.

With Xamarin Studio or Visual Studio, the file properties
window can be used to set to the correct access modifier for the
resource accessors. In Visual Studio, the resource editor can also
be used to correct the access modifier of resource items (that is,
select Access Modifier | Public using the resource designer).

Chapter 9

[305]

In the Windows Phone runtime, the correct resource files are loaded according to the
current thread culture, so the preceding implementation would automatically choose
the appropriate embedded resource. However, supported languages should still be
configured using the application manifest. In Xamarin.iOS, the correct resources are
loaded according to the users' language preferences (not the current UI language)
and supported languages should be included in the Info.plist file using the
CFLocalizations entry. For the Android platform, UI language selection is
taken as the identifier for the resources.

The following implementation would localize the tabbed page implementation from
the previous chapter:

var tabbedPage = new TabbedPage();

tabbedPage.Children.Add(new ContentPage
{
 Title = TextResources.TabItemRecent,
 Content = new StackLayout
 {
 // Omitted for clarity
 },
 Icon = "social.png"
});

In the preceding example, the highlighted line of code sets the accessor properties to
specific resource elements. When using XAML for the same implementation, we can
resort to statically bound properties using the TextResources generated class:

<TabbedPage
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Xamarin.Master.TravelTrace.Views.MainTabView"
 xmlns:resources="clr-namespace:Xamarin.Master.
 TravelTrace.Resources;assembly=Xamarin.Master.TravelTrace">
 <ContentPage
 Title="{x:Static resources:TextResources.TabItemRecent}"
 Icon="social.png">

It is important to include the CLR namespace containing the generated
resource accessor.

Reusable UI Patterns

[306]

Architectural patterns
The user interface of an application can be described as the packaging over the sum of
all the moving parts underneath. As applications get more complex, the responsibilities
of the user interface increase and it gets harder to package the product underneath.
Leaving aside the static parts of the UI (that is, assets described in the previous sections
of this chapter), it is the most volatile part of an application. In order to counteract the
entropy that builds up throughout the application's lifetime, solve recurring problem
patterns, and re-use modules, developers often utilize certain design patterns in their
development efforts. Especially in cross-platform projects, the importance of these
architectural design patterns have been proven to be irrefutable.

For demonstration purposes, let's use a simple form-submit scenario. In this
implementation, the users will be greeted with a form they will have to fill in. Once
all the required text fields are populated by the user, he/she will submit the content
using the submit button. The data is then validated and stored. The user should then
be informed about the submission with a read-only screen where he/she can see the
submitted and stored data.

Figure 16: The classic n-tier scenario

In an n-tier implementation, the presentation tier would be responsible for
visualizing the data and would hold an instance of the API façade. The API façade
would implement the business logic to validate the information and submit it to the
data tier instance. The data tier would be solely responsible for communicating with
the persistence store (possibly through the service layer).

Chapter 9

[307]

The event subscriptions (that is, text field changed or submit button clicked) would
be implemented in the presentation layer. On successful submission, the presentation
layer would pass on the current API object to a new presentation container and
visualize the submitted data. Even though this approach provides a clear separation
between the tiers, there are still strong ties between the layers in the hierarchy
(that is, the presentation layer holds a strongly typed reference of the API and the
API either reuses or creates a new instance of the data model). The application tier
also creates an unnecessarily large and complex structure that should provide the
required methods for all the containers and related scenarios in the presentation
layer. The presentation layer still has the most responsibility in terms of event-driven
implementation. If we transpose this implementation onto a Xamarin cross-platform
project, we would be able to reuse the complete application tier and the data tier
across platforms. However, it would still require quite a bit of re-implementation
for the presentation layer for other platform projects, as this layer is responsible
for using the API. Another downside of this pattern is the fact that, other than the
façade, it isn't easy to unit test the implementation (that is, there are multiple event
subscriptions on the presentation layer).

MVP (model-view-presenter) and MVVM (model-view-viewmodel), both
derivatives of MVC (model-view-controller), try to answer some of these issues
for classic n-tier implementations. Both of these patterns inherently use a passive
presentation layer and delegate the main responsibility to the supervising or
mediating component; the main reason for this is the fact that unit testing the view
is generally impractical, hence it should be devoid of logic as much as possible. The
presenter communicates with the data tier actively and is responsible for how the
view should be visualized. In this paradigm, the only way the view communicates
with the mediator is through routed events (separation of concerns). It is also
important to note that in these architectural implementations, the application is
divided into self-sufficient triads (that is, model, view, and presenter) which make
up different use-cases and views in the application. Façades are generally used only
in the model component.

MVC
The MVC pattern was initially introduced into Smalltalk, and later on popularized
with its (excessive) use in web applications and frameworks. In classic MVC
implementation, the Model not only provides access to a data store but also
implements any required business logic. The Model can be described as the core
implementation of the problem domain, independent of the user interface.

Reusable UI Patterns

[308]

The Controller generally represents the logic stripped out of the View; it can send
commands to the Model as well as the View, and receive the routed events from
the View. Changes in state (that is, in the Model), are reflected on the View with
or without the intervention of the Controller (classic MVC allows active or implicit
interactions between the Model and the View).

iOS app architecture
In iOS applications, the main development language hitherto has been Objective-C.
The Cocoa and Cocoa Touch frameworks used for Mac OS and iOS application
development, respectively, were also developed mainly in Objective-C. Considering
the strong ties between Objective-C and SmallTalk, it is no surprise the main
development pattern adopted and enforced by the iOS development kit is MVC.

In the Cocoa version of MVC implementation, direct communication between
the View and Model is completely abandoned (and prohibited) because of the
technical requirements of the mobile application development environment, and
in order to increase the reusability of model and view components. In this pattern,
the Controller (also called the mediator at times) is given the main responsibility to
control the flow of data between the View and the Model. From this aspect, Cocoa's
implementation of MVC undeniably resembles the MVP pattern:

Figure 17: Cocoa MVC

In this implementation schema, developers are encouraged to decouple the
components of the triad from each other and implement the communication
between them only through the defined abstractions.

Chapter 9

[309]

The separation between the View and the Controller is generally achieved with
commands, outlets, and bindings. Commands provide actionable composites that
can be passed from one layer to another, and outlets are extensions of certain UI
elements so that the controller can subscribe to events and control how the UI is
presented according to state.

When view elements are designed using XIBs or storyboards (that is, storyboards
are used to generate the XIBs at compile time), the outlets are defined as access
points for the View-Controller. View-Controllers do not have a direct dependency
on the View, nor does the View have any knowledge of the Controller. This setup
complies with the separation of concerns principle and provides a loosely coupled
structure as advised.

If we were to implement the scenario from the previous example, we would be
exposing two outlets for the text input fields in the submit form and an outlet for the
submit button. These outlets would, in return, be used by the Controller assigned
to the View for subscribing to certain events, to validate and submit the data. The
View-Controller (that is, UIController) is also responsible for changing how the
controls are displayed (for example, validation can change the color of the text input
field) and communicating user actions such as the submission of data to the Model.
Navigating to another view is also the responsibility of the Controller in this case.

Figure 18: MVC demonstration on an iOS form

Reusable UI Patterns

[310]

Segue navigation between views is another possible navigation strategy when the
Controller for the new View exists in the calling Controller, or the same UI controller
is used for both of the views (that is, the same Controller could have been used for
both submit and read-only views in the preceding example).

MVVM
MVVM (Model-View-ViewModel), a derivative of the MVP pattern, provides well-
established boundaries between the UI, business logic, and data. After its emergence,
it almost immediately became the main implementation pattern for WPF (Windows
Presentation Foundation) applications. The data binding features provided by the
WPF framework make up the foundation of this mediation pattern.

Data binding is the terminology used to describe the
mechanism which connects data visualization elements from
the UI layer (that is, the controls) to other controls or data
objects from other tiers. The synchronization between the two
actors of the binding is maintained through various events (for
example, the INotifyPropertyChanged interface is used to
propagate value change events).

In this pattern, the ViewModel is the main actor, whose responsibility is to control
the data flow between the View and the Model. The outlets, in this architecture, are
exposed by the ViewModel and used by the View implementation (as opposed to the
iOS MVC architecture). The ViewModel provides these outlets in the form of data
elements that can be associated to attributes or states of the UI controls, and also as
generic commands that can be used by the View controls to respond to user input.

Windows Runtime
Windows Phone applications, as well as Windows Store applications, natively
support data binding for UI controls. This feature makes Windows Phone
applications ideal candidates for this architecture. However, architectural elements
should still be implemented by developers according to the requirements of
specific projects. There are multiple (open-source or commercial) libraries that
can be included as NuGet packages in development projects, including Prism (a
cross-platform MVVM library, which was initially a pet project of the Microsoft
patterns and practices team, but is now being maintained by the community) and
MVVMCross (a cross-platform open source MVVM framework).

Chapter 9

[311]

At the core of the MVVM pattern and data binding, we can locate the
implementation of a bindable base class. A bindable base provides the
implementation of the INotifyPropertyChanged interface and makes it easier to
identify and implement the data elements that will take part in data binding. This
interface is used to route value changed events from data items and their properties
to UI elements.

A simple bindable base implementation would look similar to:

public abstract class BindableBase : INotifyPropertyChanged
{
 protected virtual void SetProperty<T>(ref T property, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (Equals(property, value)) return;

 property = value;

 OnPropertyChanged(propertyName);
 }

 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void OnPropertyChanged([CallerMemberName]
 string propertyName = null)
 {
 var handler = PropertyChanged;
 if (handler != null) handler(this, new
 PropertyChangedEventArgs(propertyName));
 }
}

The implementation of this class can be used with model data items so that any
change can be reflected on the UI:

public class ModelData : BindableBase
{
 private string m_Property1BackingField = string.Empty;

 public string Property1
 {
 get
 {

Reusable UI Patterns

[312]

 return m_Property1BackingField;
 }
 set
 {
 SetProperty(ref m_Property1BackingField, value);
 }
 }
}

Now the ModelData class can already be used as the ViewModel and its bindings
provided to Property1:

public MainPage()
{
 this.InitializeComponent();

 this.DataContext = new ModelData {Property1 = "Hello MVVM"};
}

The data binding to an input control on the main page would look similar to this:

<TextBox Text="{Binding Property1, Mode=TwoWay}">

In this binding scenario, we set the binding mode to TwoWay. This binding type
means that any change on this property value, either on the ViewModel or on the
user interface (that is, on user input), would be propagated to the UI element,
or vice versa.

Data bindings can be maintained using different modes. The
OneTime binding is used to update the target property using
the source property when the data source changes. This type of
binding is generally used by read-only controls. The OneWay
binding is used only to update the target property when the source
property value changes, whereas the TwoWay mode is for duplex
synchronization. Finally, OneWayToSource is used only to update
the source property if there are any changes on the target property.

Data bindings are not limited to values from and to ViewModel properties.
Bindable properties of user controls can also be bridged in this pattern. Moreover,
bindable properties of user controls include behavioral and style attributes (for
example, the IsEnabled property of a TextBox user controls). Additional bindable
properties can be provided to intrinsic or derived user controls using attached
and/or dependency properties.

Chapter 9

[313]

Command binding is another concept which provides a decoupled way to associate
user action controls (for example, Button) with executable elements on the data
context (that is, the ViewModel). In order for a user control to be bound to a
command, the user control should implement a bindable command attribute and
the ViewModel should provide an ICommand implementation of a specific action.
The ICommand interface is a simple interface containing a CanExecute property, an
associated CanExecuteChanged event (which is generally bound to the IsEnabled
property of the user control), and the Execute method.

A simple command implementation that will validate the data model from
the previous example and then execute would look similar to the following
implementation (note that MVVM frameworks generally provide a generic
Command class, which accepts delegates and/or lambdas for Execute and
CanExecute methods):

public class SubmitCommand : ICommand
{
 private readonly ModelData m_DataContext;

 public SubmitCommand(ModelData dataContext)
 {
 m_DataContext = dataContext;

 m_DataContext.PropertyChanged += (sender, args) =>
 {
 if(args.PropertyName == "Property1" &&
 CanExecuteChanged !=null)
 CanExecuteChanged(this, null);
 };
 }

 public bool CanExecute(object parameter)
 {
 return m_DataContext.Property1.Length > 5;
 }

 public void Execute(object parameter) {
 // TODO:
 }

 public event EventHandler CanExecuteChanged;
}

Reusable UI Patterns

[314]

With this implementation (either public or a nested class of the data model defined
previously), we can initialize and expose the command when a new ModelData
class is initialized:

public ModelData()
{
 Submit = new SubmitCommand(this);
}

public ICommand Submit { get; set; }

Finally, the binding for this command in XAML markup would look similar to:

<Button Content="Submit" Command="{Binding Submit}"></Button>

If we were to use the MVVM pattern to implement the previous form submission
scenario, we can observe the implementation of both data and command
bindings. We could implement a ViewModel class that is responsible for loading
and submitting a bindable data item. The view would have the bindings to the
ViewModel properties and commands, as well as bindings to the data item itself.

Figure 19: MVVM implementation of the form submission scenario

Chapter 9

[315]

In this design, SubmitCommand is used both to submit the user input to the Model
and to validate the form itself (using the CanExecute method). The IsReadOnly
property of the ViewModel is bound to the IsReadOnly properties of the text fields
and the Visibility property of the submit button (in read-only mode, instead
of the submit button, the submitted label should be displayed), possibly with an
IValueConverter (an interface used in two-way conversions between bound
properties in data-binding scenarios).

Value converters implement the IValueConverter interface to
apply custom logic to the binding process. They are generally used
as adapters for the CLR type of the target property and the source
property (for example, if the data model property type was a string
defining a certain color, we would need to convert/parse this value to
SolidColorBrush or similar to assign it to visual elements' properties).

Besides the loose coupling and modularity achieved by using MVVM, the
pseudo-finite automaton provided by the ViewModel allows developers to
easily recreate different data states used by the view and implement unit
tests without much hassle.

MVVM on Xamarin.iOS and Xamarin.Android
In Xamarin projects, in order to create a uniform structure between the applications
for different platforms and maximize code sharing, it is a widely accepted
implementation principle to use the MVVM pattern solution-wide. Since data
bindings and commanding pattern implementations are not natively supported
on iOS and Android, using an MVVM framework that supports cross-platform
development with Xamarin can be a solution.

It is important to mention that iOS and Cocoa have the concept of
key-value observing, and a binding-like implementation can be applied
to some extent.

On Xamarin.iOS and Xamarin.Android, bindings are generally provided through the
extensions to UIViewController (on iOS) and Activities (on Android). In iOS, this
implementation strategy transforms the View and Controller from MVC architecture
into mere View implementations, while the ViewModel, conceptually, replaces the
Model implementation. Bindings to the ViewModel are initialized in the application
lifecycle events of the UIViewControllers and Activities.

Reusable UI Patterns

[316]

MVVM with Xamarin.Forms
The data binding feature of Xamarin.Forms is an implementation/port of the WPF
data bindings, so XAML bindings are supported for both data and commands. The
main difference between Xamarin.Forms and Windows Runtime is that in Windows
Store applications, binding context for a user control or a container is configured
using the DataContext property, whereas in Xamarin.Forms, the BindingContext
property is used for the same purpose. Xamarin.Forms additionally provides generic
command implementation classes (namely, Command and Command<T>) which
allow developers to expose commands without having to implement the
ICommand interface in nested classes for the ViewModels.

Summary
In cross-platform projects, with or without Xamarin.Forms, it is advisable to
maintain the View elements as thin and devoid of static and/or sharable elements
as possible. As discussed in this chapter, each Xamarin target platform supports
resource and asset management in particular ways. These methodologies can be
expanded to share static resources between the platform-specific projects by using
linked resources and/or using special build techniques.

Architectural patterns, imposed by the platform or otherwise, can also be
employed either at the beginning of the project or as the project matures through
iterations. MVC and MVVM, as well as MVP, patterns help reduce the sharable
logic components on the View, creating a more loosely-coupled project structure
(see quality identifiers in Chapter 1, Developing with Xamarin).

After having covered different aspects of the Xamarin framework and UI-related
concepts, in the next part of the book, we will discuss Application Lifecycle
Management (ALM)-related topics to create an efficient development pipeline
for individuals or teams dealing with Xamarin projects.

[317]

ALM – Developers and QA
This chapter provides an introduction to Application Lifecycle Management (ALM)
and continuous integration methodologies on Xamarin cross-platform applications.
As the part of the ALM process that is most relevant for developers, unit test
strategies will be discussed and demonstrated, as well as automated UI testing.
This chapter is divided into the following sections:

• Development pipeline
• Troubleshooting
• Unit testing
• UI testing

Development pipeline
The development pipeline can be described as the virtual production line that
steers a project from a mere bundle of business requirements to the consumers.
Stakeholders that are part of this pipeline include, but are not limited to, business
proxies, developers, the QA team, the release and configuration team, and finally
the consumers themselves. Each stakeholder in this production line assumes
different responsibilities, and they should all function in harmony. Hence, having
an efficient, healthy, and preferably automated pipeline that is going to provide the
communication and transfer of deliverables between units is vital for the success
of a project.

ALM – Developers and QA

[318]

In the Agile project management framework, the development pipeline is
cyclical rather than a linear delivery queue. In the application life cycle,
requirements are inserted continuously into a backlog. The backlog leads to a
planning and development phase, which is followed by testing and QA. Once the
production-ready application is released, consumers can be made part of this cycle
using live application telemetry instrumentation.

Figure 1: Application life cycle management

In Xamarin cross-platform application projects, development teams are blessed
with various tools and frameworks that can ease the execution of ALM strategies.
From sketching and mock-up tools available for early prototyping and design to
source control and project management tools that make up the backbone of ALM,
Xamarin projects can utilize various tools to automate and systematically analyze
project timeline.

The following sections of this chapter concentrate mainly on the lines of defense that
protect the health and stability of a Xamarin cross-platform project in the timeline
between the assignment of tasks to developers to the point at which the task or bug
is completed/resolved and checked into a source control repository.

Chapter 10

[319]

Troubleshooting and diagnostics
SDKs associated with Xamarin target platforms and development IDEs are equipped
with comprehensive analytic tools. Utilizing these tools, developers can identify
issues causing app freezes, crashes, slow response time, and other resource-related
problems (for example, excessive battery usage).

Xamarin.iOS applications are analyzed using the XCode Instruments toolset. In this
toolset, there are a number of profiling templates, each used to analyze a certain
perspective of application execution (such as the allocations template that was used
in Chapter 2, Memory Management, for memory profiling). Instrument templates can
be executed on an application running on the iOS simulator or on an actual device.

Figure 2: XCode Instruments

Similarly, Android applications can be analyzed using the device monitor
provided by the Android SDK. Using Android Monitor, memory profile,
CPU/GPU utilization, and network usage can also be analyzed, and
application-provided diagnostic information can be gathered. Android
Debug Bridge (ADB) is a command-line tool that allows various manual
or automated device-related operations.

ALM – Developers and QA

[320]

For Windows Phone applications, Visual Studio provides a number of analysis
tools for profiling CPU usage, energy consumption, memory usage, and XAML
UI responsiveness. XAML diagnostic sessions in particular can provide valuable
information on problematic sections of view implementation and pinpoint possible
visual and performance issues:

Figure 3: Visual Studio XAML analyses

Finally, Xamarin Profiler, as a maturing application (currently in preview release),
can help analyze memory allocations and execution time. Xamarin Profiler can be
used with iOS and Android applications.

Chapter 10

[321]

Unit testing
The test-driven development (TDD) pattern dictates that the business requirements
and the granular use-cases defined by these requirements should be initially reflected
on unit test fixtures. This allows a mobile application to grow/evolve within the
defined borders of these assertive unit test models. Whether following a TDD
strategy or implementing tests to ensure the stability of the development pipeline,
unit tests are fundamental components of a development project.

Figure 4: Unit test project templates

Xamarin Studio and Visual Studio both provide a number of test project templates
targeting different areas of a cross-platform project. In Xamarin cross-platform
projects, unit tests can be categorized into two groups: platform-agnostic and
platform-specific testing.

ALM – Developers and QA

[322]

Platform-agnostic unit tests
Platform-agnostic components, such as portable class libraries containing shared
logic for Xamarin applications, can be tested using the common unit test projects
targeting the .NET framework. Visual Studio Test Tools or the NUnit test framework
can be used according to the development environment of choice. It is also important
to note that shared projects used to create shared logic containers for Xamarin
projects cannot be tested with .NET unit test fixtures. For shared projects and the
referencing platform-specific projects, platform-specific unit test fixtures should
be prepared.

When following an MVVM pattern, view models are the focus of unit test fixtures
since, as previously explained, view models can be perceived as a finite state
machine where the bindable properties are used to create a certain state on which the
commands are executed, simulating a specific use-case to be tested. This approach
is the most convenient way to test the UI behavior of a Xamarin application without
having to implement and configure automated UI tests.

While implementing unit tests for such projects, a mocking framework is generally
used to replace the platform-dependent sections of the business logic. Loosely
coupling these dependent components (see Chapter 8, Xamarin.Forms) makes it
easier for developers to inject mocked interface implementations and increases
the testability of these modules. The most popular mocking frameworks for
unit testing are Moq and RhinoMocks.

Both Moq and RhinoMocks utilize reflection and, more specifically, the
Reflection.Emit namespace, which is used to generate types, methods,
events, and other artifacts in the runtime. Aforementioned iOS restrictions
on code generation make these libraries inapplicable for platform-specific
testing, but they can still be included in unit test fixtures targeting the
.NET framework. For platform-specific implementation, the True Fakes
library provides compile time code generation and mocking features.

Depending on the implementation specifics (such as namespaces used, network
communication, multithreading, and so on), in some scenarios it is imperative to
test the common logic implementation on specific platforms as well. For instance,
some multithreading and parallel task implementations give different results on
Windows Runtime, Xamarin.Android, and Xamarin.iOS. These variations generally
occur because of the underlying platform's mechanism or slight differences between
the .NET and Mono implementation logic. In order to ensure the integrity of these
components, common unit test fixtures can be added as linked/referenced files to
platform-specific test projects and executed on the test harness.

Chapter 10

[323]

Platform-specific unit tests
In a Xamarin project, platform-dependent features cannot be unit tested using the
conventional unit test runners available in Visual Studio Test Suite and NUnit
frameworks. Platform-dependent tests are executed on empty platform-specific
projects that serve as a harness for unit tests for that specific platform.

Windows Runtime application projects can be tested using the Visual Studio Test
Suite. However, for Android and iOS, the NUnit testing framework should be
used, since Visual Studio Test Tools are not available for the Xamarin.Android and
Xamarin.iOS platforms.

. .

Figure 5: Test harnesses

The unit test runner for Windows Phone (Silverlight) and Windows Phone 8.1
applications uses a test harness integrated with the Visual Studio test explorer.
The unit tests can be executed and debugged from within Visual Studio.

Xamarin.Android and Xamarin.iOS test project templates use NUnitLite
implementation for the respective platforms. In order to run these tests, the test
application should be deployed on the simulator (or the testing device) and the
application has to be manually executed.

ALM – Developers and QA

[324]

It is possible to automate the unit tests on Android and iOS platforms
through instrumentation; however, these methods will be discussed in
the next chapter.

In each Xamarin target platform, the initial application lifetime event is used to add
the necessary unit tests:

[Activity(Label = "Xamarin.Master.Fibonacci.Android.Tests",
MainLauncher = true, Icon = "@drawable/icon")]
public class MainActivity : TestSuiteActivity
{
 protected override void OnCreate(Bundle bundle)
 {
 // tests can be inside the main assembly
 //AddTest(Assembly.GetExecutingAssembly());
 // or in any reference assemblies
 AddTest(typeof(Fibonacci.Android.Tests.TestsSample).Assembly);

 // Once you called base.OnCreate(), you cannot add more
assemblies.
 base.OnCreate(bundle);
 }
}

In the Xamarin.Android implementation, the MainActivity class derives from the
TestSuiteActivity, which implements the necessary infrastructure to run the unit
tests and the UI elements to visualize the test results. On the Xamarin.iOS platform,
the test application uses the default UIApplicationDelegate, and generally, the
FinishedLaunching event delegate is used to create the ViewController for the
unit test run fixture:

public override bool FinishedLaunching(UIApplication application,
NSDictionary launchOptions)
{
 // Override point for customization after application launch.
 // If not required for your application you can safely delete this
method

 var window = new UIWindow(UIScreen.MainScreen.Bounds);
 var touchRunner = new TouchRunner(window);

 touchRunner.Add(System.Reflection.Assembly.
GetExecutingAssembly());

Chapter 10

[325]

 window.RootViewController = new UINavigationController(touchRunn
er.GetViewController());

 window.MakeKeyAndVisible();

 return true;
}

The main shortcoming of executing unit tests this way is the fact that it is not easy to
generate a code coverage report and archive the test results.

Neither of these testing methods provide the ability to test the UI layer. They
are simply used to test platform-dependent implementations. In order to test the
interactive layer, platform-specific or cross-platform (Xamarin.Forms) coded UI tests
need to be implemented.

UI testing
In general terms, the code coverage of the unit tests directly correlates with the
amount of shared code which amounts to, at the very least, 70-80 percent of the code
base in a mundane Xamarin project. As explained in the previous chapters, one of
the main driving factors of architectural patterns was to decrease the amount of logic
and code in the view layer so that the testability of the project utilizing conventional
unit tests reaches a satisfactory level. Coded UI (or automated UI acceptance) tests
are used to test the uppermost layer of the cross-platform solution: the views.

Xamarin.UITests and Xamarin Test Cloud
The main UI testing framework used for Xamarin projects is the Xamarin.UITests
testing framework. This testing component can be used on various platform-
specific projects, varying from native mobile applications to Xamarin.Forms
implementations, except for the Windows Phone platform and applications.
Xamarin.UITests is an implementation based on the Calabash framework, which is
an automated UI acceptance testing framework targeting mobile applications.

Xamarin.UITests is introduced to the Xamarin.iOS or Xamarin.Android applications
using the publicly available NuGet packages. The included framework components
are used to provide an entry point to the native applications. The entry point is the
Xamarin Test Cloud Agent, which is embedded into the native application during
the compilation. The cloud agent is similar to a local server that allows either the
Xamarin Test Cloud or the test runner to communicate with the app infrastructure
and simulate user interaction with the application.

ALM – Developers and QA

[326]

Xamarin Test Cloud is a subscription-based service allowing Xamarin
applications to be tested on real mobile devices using UI tests
implemented via Xamarin.UITests. Xamarin Test Cloud not only provides
a powerful testing infrastructure for Xamarin.iOS and Xamarin.Android
applications with an abundant amount of mobile devices but can also be
integrated into Continuous Integration workflows.

After installing the appropriate NuGet package, the UI tests can be initialized
for a specific application on a specific device. In order to initialize the interaction
adapter for the application, the app package and the device should be configured.
On Android, the APK package path and the device serial can be used for
the initialization:

IApp app = ConfigureApp.Android.ApkFile("<APK Path>/MyApplication.
apk")
 .DeviceSerial("<DeviceID>")
 .StartApp();

For an iOS application, the procedure is similar:

IApp app = ConfigureApp.iOS.AppBundle("<App Bundle Path>/
MyApplication.app")
 .DeviceIdentifier("<DeviceID of Simulator")
 .StartApp();

Once the App handle has been created, each test written using NUnit should first
create the pre-conditions for the tests, simulate the interaction, and finally test
the outcome.

The IApp interface provides a set of methods to select elements on the visual tree
and simulate certain interactions, such as text entry and tapping. On top of the
main testing functionality, screenshots can be taken to document test steps and
possible bugs.

Chapter 10

[327]

Both Visual Studio and Xamarin Studio provide project templates for Xamarin.
UITests.

Xamarin Test Recorder
Xamarin Test Recorder is an application that can ease the creation of automated
UI tests. It is currently in its preview version and is only available for the
Mac OS platform.

Figure 6: Xamarin Test Recorder

Using this application, developers can select the application in need of testing and
the device/simulator that is going to run the application. Once the recording session
starts, each interaction on the screen is recorded as execution steps on a separate
screen, and these steps can be used to generate the preparation or testing steps for
the Xamarin.UITests implementation.

Coded UI tests (Windows Phone)
Coded UI tests are used for automated UI testing on the Windows Phone platform.
Coded UI Tests for Windows Phone and Windows Store applications are not any
different than their counterparts for other .NET platforms such as Windows Forms,
WPF, or ASP.Net. It is also important to note that only XAML applications support
Coded UI tests.

ALM – Developers and QA

[328]

Coded UI tests are generated on a simulator and written on an Automation ID
premise. The Automation ID property is an automatically generated or manually
configured identifier for Windows Phone applications (only in XAML) and the
UI controls used in the application. Coded UI tests depend on the UIMap created
for each control on a specific screen using the Automation IDs. While creating the
UIMap, a crosshair tool can be used to select the application and the controls on the
simulator screen to define the interactive elements:

Figure 7:- Generating coded UI accessors and tests

Once the UIMap has been created and the designer files have been generated,
gestures and the generated XAML accessors can be used to create testing
pre-conditions and assertions.

Chapter 10

[329]

For Coded UI tests, multiple scenario-specific input values can be used and tested
on a single assertion. Using the DataRow attribute, unit tests can be expanded to test
multiple data-driven scenarios. The code snippet below uses multiple input values to
test different incorrect input values:

[DataRow(0,"Zero Value")]
[DataRow(-2, "Negative Value")]
[TestMethod]
public void FibonnaciCalculateTest_IncorrectOrdinal(int ordinalInput)
{
 // TODO: Check if bad values are handled correctly
}

Automated tests can run on available simulators and/or a real device. They
can also be included in CI build workflows and made part of the automated
development pipeline.

Calabash
Calabash is an automated UI acceptance testing framework used to execute
Cucumber tests. Cucumber tests provide an assertion strategy similar to coded UI
tests, only broader and behavior oriented. The Cucumber test framework supports
tests written in the Gherkin language (a human-readable programming grammar
description for behavior definitions). Calabash makes up the necessary infrastructure
to execute these tests on various platforms and application runtimes.

A simple declaration of the feature and the scenario that is previously tested on
Coded UI using the data-driven model would look similar to the excerpt below. Only
two of the possible test scenarios are declared in this feature for demonstration; the
feature can be extended:

Feature: Calculate Single Fibonacci number.
Ordinal entry should greater than 0.

Scenario: Ordinal is lower than 0.
 Given I use the native keyboard to enter "-2" into text field
Ordinal
 And I touch the "Calculate" button
 Then I see the text "Ordinal cannot be a negative number."

Scenario: Ordinal is 0.
 Given I use the native keyboard to enter "0" into text field
Ordinal
 And I touch the "Calculate" button
 Then I see the text "Cannot calculate the number for the 0th
ordinal."

ALM – Developers and QA

[330]

Calabash test execution is possible on Xamarin target platforms since the Ruby
API exposed by the Calabash framework has a bidirectional communication line
with the Xamarin Test Cloud Agent embedded in Xamarin applications with
NuGet packages.

Calabash/Cucumber tests can be executed on Xamarin Test Cloud on real devices
since the communication between the application runtime and Calabash framework
is maintained by Xamarin Test Cloud Agent, the same as Xamarin.UI tests.

Summary
Xamarin projects can benefit from a properly established development pipeline and
the use of ALM principles. This type of approach makes it easier for teams to share
responsibilities and work out business requirements in an iterative manner.

In the ALM timeline, the development phase is the main domain in which most
of the concrete implementation takes place. In order for the development team
to provide quality code that can survive the ALM cycle, it is highly advised
to analyze and test native applications using the available tooling in Xamarin
development IDEs.

While the common codebase for a target platform in a Xamarin project
can be treated and tested as a .NET implementation using the conventional
unit tests, platform-specific implementations require more particular handling.
Platform-specific parts of the application need to be tested on empty shell
applications, called test harnesses, on the respective platform simulators
or devices.

To test views, available frameworks such as Coded UI tests (for Windows Phone)
and Xamarin.UITests (for Xamarin.Android and Xamarin.iOS) can be utilized
to increase the test code coverage and create a stable foundation for the
delivery pipeline.

Most tests and analysis tools discussed in this chapter can be integrated into
automated continuous integration processes. The infrastructure used for source
control and continuous integration build and testing processes will be the topic of
the next chapter.

[331]

ALM – Project and Release
Management

This chapter explains the essentials of version control and automated continuous
integration workflows. Source control options, as well as automated build strategies,
will be demonstrated for Xamarin projects. Additional topics such as live telemetry
collection and beta application distribution hubs will also be covered. This chapter is
divided into the following sections:

• Source control
• Continuous integration
• Automated testing
• Beta deployment
• Live telemetry

Source control
Regardless of working as a team or as an individual, source control or version
control remains a fundamental element of a software project development pipeline.
Source code repository is the term used to describe the code management storage
that deals with the versioning and consolidation of the code base. Additional
features of source code repositories may include, but are not limited to, branching,
reviews, shelves, and similar productivity-related capabilities. However, these
items apply to any type of software development project and are out of the scope
of this book.

For Xamarin projects, developers can utilize several types of repositories. The
selection of a repository generally depends on the environment setup of choice
(that is, operating system, development IDE, and so on).

ALM – Project and Release Management

[332]

TFVC
Team Foundation Version Control (TFVC) is the name given to the native repository
provided by Team Foundation Server and its cloud-based counterpart Visual Studio
Team Services (formerly, Visual Studio Online). TFVC is a centralized version control
system where the version history is kept in a centralized server repository and the
clients have only one version (that is, the workspace version) of each file.

TFVC provides a very familiar source code management toolset for Xamarin
developers accustomed to the Microsoft development stack. For Xamarin developers
using Windows and Visual Studio, TFVC is an ideal choice since it has native
integration to Visual Studio. Source code management is implemented on the premise
of "check-in" and "check-out" actions. Each code check-in can additionally include
references to project metadata artifacts such as tasks, features, and bugs. Associating
change sets (that is, a bundle of source code files to be checked-in) and project
metadata provides an ideal development pipeline for developers working in a team.

For developers using Xamarin Studio on Windows or Mac OS, the only available
option to use TFVC is to install Team Explorer Everywhere. Team Explorer
Everywhere is an Eclipse plugin, which can be installed on Mac OS and employed
to check in and check out source code items. Developers using Xamarin Studio on
Windows can still install and use the free editions of Visual Studio to access
TFS servers.

Git
Git, unlike TFVC, is a distributed version control system where each developer has
a clone of the entire source repository, and each clone is managed locally until the
changes are published to the central server. Developers are also free to create private
local branches and switch from one branch to another without much hassle. Branches
can be merged, published, or closed according to the requirements.

Xamarin Studio has native support for Git and developer commands such as
pull, clone, commit, and push can be executed within the IDE. This native
support makes Git repositories ideal candidates for developers using a
Mac-based development environment.

Visual Studio also supports Git repositories and the classic Pull-Commit-Push flow.
In addition to Visual Studio support, with recent updates to Visual Studio Team
Services it is possible to create team projects using a Git repository. The selection
of the Version Control type does not interfere with other project related options or
the build setup. However, it is currently not possible to use the project management
related features (for example, associating change sets with task items) using a
Git repository.

Chapter 11

[333]

Figure 1: Team Foundation Server with Git

It is also possible to set up a team project that utilizes multiple types of repositories.
These repositories can be accessed using only the latest version of Visual Studio
(that is, Visual Studio 2015 Update 1) at the moment.

The next section provides additional integration options for scenarios involving TFS
and Git repositories.

TFS/Git scenarios
In certain scenarios, developers can choose, or are obliged to use, Git repositories
together with a centralized TFVC repository (for example, developers with a Mac
OS development setup do not have direct integration with TFVC). In this kind of a
situation, there are several available utilities and implementation patterns that can
help teams prepare their development infrastructure.

ALM – Project and Release Management

[334]

Git bridge
One of the integration paths that can be employed is the Git-TF tool maintained on
CodePlex by Microsoft. The Git-TF tool is a platform agnostic tool written in Java. It
utilizes TFVC APIs to enable developers to use a TFS repository together with a local
Git repository.

In this integration path, either a single member or several members of a Xamarin
development team can use a local or shared Git repository synchronized with the
central repository using the Git-TF tool.

For a setup in which the individual developer uses a local Git repository in sync with
TFVC, the TFS repository first needs to be cloned to the local machine:

git tf clone http://myserver:8080/tfs $/TeamProjectA/Main

After cloning, development can continue on the local machine using the Git
repository. Local commit executions will not be reflected on the central repository.
In the meantime, the central repository can be merged with the local repository
using the pull command of Git-TF:

git tf pull --rebase

Once the development task is complete, the code can be checked in to TFS using the
checkin command (instead of git push):

git tf checkin --associate=123,124 –-message="Additional items for Task
123"

Git-TF provides the option to associate/resolve work items on TFS and include
check-in comments similar to a standard code check-in.

Figure 2: Git with TFVC repository

Chapter 11

[335]

Another possibility would be to configure a shared Git repository for several team
members so that each developer can clone it to their local environment and use it
as a branch. In this setup, code merging and synchronization between the central
repository (TFVC) and the shared Git repository would have to be handled by
an administrator.

Similarly, the Git-TFS tool maintained on GitHub is an open-source project written
in .NET and provides a bidirectional integration between TFS and Git repositories.
However, this tool currently does not have a version available for Mac OS. Git-TFS
provides support for some advanced TFS scenarios related to workspace handling
and shelvesets.

NuGet packages
As previously discussed, NuGet packages are one of the code sharing strategies in
cross-platform projects using Xamarin. NuGet packages can also be utilized to create
the bridge between TFVC and Git, possibly by providing PCL libraries for Xamarin
target platforms.

For instance, we can consider a scenario where shared projects between Windows
Store applications and Xamarin.iOS are implemented on a Windows-based
development environment, whereas Xamarin.iOS development team members
use a Mac OS development setup with Xamarin Studio. The team project in this
example can include a TFVC repository (for shared code and Windows Store
app implementation) and a Git repository (for Xamarin.iOS development). The
synchronization between the two servers can be handled through NuGet packages.

ALM – Project and Release Management

[336]

NuGet packages can be built and deployed with Continuous Integration (CI) build
processes using out-of-the-box TFS build task definitions, making the NuGet process
part of the development pipeline and continuous integration.

Figure 3: Automated build for NuGet packages

For NuGet package distribution, on top of the commercially available products
(for example, the Artifactory server), Visual Studio Team Services can also be
used to create NuGet source feeds and publish them privately for members of
the development team.

Subversion (SVN)
Subversion is another source control repository type, generally referred to as SVN
or Apache Subversion. Subversion repositories can be readily created in Mac OS
developer environments using XCode development tools. Xamarin Studio has native
support for SVN (version 1.6 or higher). Subversion can be an easy solution for
individual Xamarin developers who prefer a Mac-based development environment.
Even though there are publicly available Visual Studio extensions and integration
tools for the Windows environment enabling the use of SVN, natively supported Git
and TFVC are generally preferred over SVN.

Chapter 11

[337]

Continuous integration
Continuous integration (CI) is the name for the software practice involving the
aforementioned source control management strategies, together with automated
build/deploy and testing phases. Nowadays, CI generally refers to the automated
build/deploy and testing phases of Application Lifecycle Management (ALM).

For Xamarin projects, software engineers are free to use a vast number of CI
management tools, available both commercially and with freemium licensing (that is,
limited features for free usage).

Visual Studio Team Services
Visual Studio Team Services (VSTS) is the cloud-based version of Team Foundation
Server and provides convenient features for Xamarin developers. Currently available
as a freemium subscription-based service, teams are free to manage a limited number
projects with a limited number of team members.

In VSTS team projects, both Git and TFVC development repositories can be
managed, planned, automatically built, tested, and possibly deployed (see the
Beta deployment section for VSTS integration).

Figure 4: TFS automated Xamarin builds

ALM – Project and Release Management

[338]

Out-of-the-box build templates that include Xamarin.iOS and Xamarin.Android
projects can be executed on hosted build agents. While the latter build template can
be executed with a shared hosted build agent, Xamarin.iOS needs a specialized build
host with Xamarin.iOS capabilities to be associated with the team project.

Figure 5: VSTS hosted Android build agent

For the Xamarin.Android build template, developers are required to insert Xamarin
license details. However the build agent does not occupy a license seat except for the
duration of the build. The build definition template includes an activation step where
the build agent is registered as an occupant of the Xamarin license, and another step
after the build is complete to remove the license.

In VSTS, Xamarin Test Cloud can also be integrated to execute automated acceptance
tests using the default build template.

Chapter 11

[339]

TeamCity
TeamCity (JetBrains) is another CI server, which provides automated builds and
a great number of integration scenarios for various platforms. TeamCity can be
downloaded and installed locally on multiple operating systems (including OS X
and Windows) and is available as a freemium product (with limited free build agent
installations and build configurations).

For Xamarin development teams, the biggest advantage of TeamCity is the fact
that it can be installed on Mac OS. Once the build server is configured (it can be on
the same machine as the server running the TeamCity server), builds for Xamarin.
Android and Xamarin.iOS can be triggered on various actions, such as repository
changes and schedules.

Figure 6: TeamCity with Xamarin projects

Additional possible integration scenarios and build steps in terms of Xamarin
projects involve the Calabash instrumentation of application packages and Xamarin
Test Cloud submission.

ALM – Project and Release Management

[340]

Other
Xamarin development teams have the luxury to be able to use many other online/
cloud-based SaaS (Software-as-a-Service) providers, available for both internal and
open source development. The most popular of these services is GitHub, which
provides both private and public repositories as a subscription-based service. CI
build providers such as AppVeyor and Travis CI have native integration with
GitHub and can be readily used for various platform-specific build configurations.

Finally, Jenkins is another CI server which is available for free and commercial
installations. Jenkins can be integrated with various repositories and can be
configured to build and test Xamarin projects.

Automated testing
Automated testing, in other words running the unit tests or coded UI tests
established as part of the development effort, is a fundamental part of the
continuous integration cycle in most development projects.

To prepare a test fixture for a Xamarin project, developers can use various
frameworks such as Visual Studio testing suite, nUnit, and xUnit. Moreover,
Xamarin development teams have the freedom to choose from the available list
of source control repositories and CI platforms. Fortunately, each of these aspects
of a CI pipeline can be integrated without much hassle, due to the fact that the
aforementioned testing frameworks provide test adapters for various configurations
(except for the native Visual Studio testing framework).

For instance, let us consider a Xamarin project hosted on the TFVC repository on
Visual Studio Team Services, where the unit test fixture is written utilizing the xUnit
framework. As a first step, in order for the TFS build agent to facilitate the xUnit
adapter to run the unit test fixture, the test adapter has to be installed as a NuGet
package for the solution.

Chapter 11

[341]

Figure 7: xUnit test adapter

After the adapter package is deployed to the source control repository, the team
build can now include the testing step using the custom adapter.

In Visual Studio team builds, if the custom adapter is not defined, the tests are run
using the default adapter. The build step, in this case, would report that no tests
could be found.

Figure 8: xUnit test adapter setup

ALM – Project and Release Management

[342]

In this configuration, the packages folder of the solution for NuGet packages was
used as the source directory (for example, $(Build.SourcesDirectory)\Xamarin.
Master.Fibonacci\packages\<path>). It is also possible to use the binaries
folder of the test project to access the adapter binary. It is also important to note that
the MSBuild task prior to the Visual Studio Test task for the test projects is essential
before executing the actual test fixture.

Beta deployment
Beta testing is an essential part of a Xamarin development pipeline. Using beta
testing distribution hubs such as HockeyApp, Crashlytics, or Testflight, application
packages can be delivered to beta users/testers. For Windows Phone 8.1 and
Android, the distribution of application packages using simple networking methods
is also possible (for example, using shared network locations, download links,
and so on).

HockeyApp
HockeyApp stands out as the only beta distribution hub that supports all Xamarin
target platforms, including Windows Runtime, and has integration capabilities for
various CI configurations.

Initially a beta testing platform for iOS and Android, the Stuttgart-based company
expanded their SDK to support Microsoft mobile development platforms.
HockeyApp was ultimately acquired by Microsoft. However, it continues to
support various mobile platforms, including Mac OS.

Figure 9: HockeyApp app dashboard

Chapter 11

[343]

Application packages for the HockeyApp distribution hub can be uploaded directly
from the web interface. Team members and/or beta testers should download the
HockeyApp application to their mobile devices to be able to download the latest
packages from the server.

In addition to manual release, HockeyApp provides two public APIs: one for
clients and one for developers. The Client API is used to communicate with the
server to deliver application runtime-related analytics, while the Developer API
provides developers with the necessary functionality to upload and distribute
application packages.

For Visual Studio Team Services (Visual Studio Online) and Jenkins, there are
integration modules that make it possible to publish applications as part of CI builds.

Figure 10: HockeyApp TFS build step

HockeyApp suite also includes crash analytics features that can be integrated into
bug tracking systems such as Visual Studio Team Services, Assembla, BaseCamp,
BitBucket, and so on.

HockeyApp offers free and enterprise licensing options.

ALM – Project and Release Management

[344]

Crashlytics
Crashlytics is another beta analysis platform, which provides distribution and crash
reporting features for Xamarin.iOS and Xamarin.Android applications.

Crashlytics provides integration with other collaboration tools such as
PivotalTracker, JIRA, GitHub, and BitBucket. It also offers a public API, providing
service hooks for various integration scenarios.

Crashlytics was recently purchased by Twitter and continues to support the two
Xamarin target platform applications. Crashlytics is currently part of the Twitter
fabric development platform and is offered as a free service.

TestFlight
TestFlight, started as a beta testing platform for iOS and Android applications,
immediately cancelled support for Android applications after their acquisition by
Apple. It is now part of the Apple Developer Program and is only accessible through
iTunes Connect.

Submissions to TestFlight are no different from actual Apple Store application
packages. The final distributable package (.ipa) should be prepared for submission
and uploaded using the Application Loader to Apple servers (see Chapter 12,
ALM – App Stores and Publishing, for further information).

Unfortunately, this process cannot currently be automated as there are no build
integration options and no public API.

Package distribution
In contrast to iOS devices, both Android and Windows Phone devices can install and
run application packages that are distributed via the Internet or mobile storage.

For Windows Phone 8 and 8.1, the testing device should be configured as a
developer device using the Windows Phone SDK. In order for a developer to
unlock Windows Phone devices, a Windows developer account is necessary
(this is a free subscription):

Chapter 11

[345]

Figure 11: Windows Phone developer unlock

After the registration step, developers can install application packages either
using the SDK tools or, if there is hardware support, using an SD card and the
default store application.

For Android platform, there are available freeware tools that can be used to install
.apk packages. The default package manager can also be used to install custom
application packages shared as a network resource.

Live telemetry
Live telemetry is the term used to define the analytical information collected from
applications being used by their target audience or beta testers. These analytic values
are invaluable for feature rich mobile applications to identify how the customers are
actually engaging with these applications on different hardware configurations, since
Xamarin applications may be targeting devices running iOS, Android, or Windows
Phone with various hardware configurations and peripherals.

ALM – Project and Release Management

[346]

With telemetry, development teams can gather information about user input patterns
in different scenarios, application utilization flows, and platform impediments/
strengths. While statistical information such as this is essential for UX design, values
such as crash/exception details, network connectivity, memory consumption, and
other diagnostic data on real-world usage scenarios can be useful as health indicators
for the application.

There are numerous telemetry providers and frameworks for Xamarin target
platforms. These frameworks can be included in Xamarin applications through
binding packages (for example, Google Analytics for Android applications), and
telemetry platforms targeting Xamarin applications, such as Xamarin Insights and/
or Microsoft Application Insights, can be included in Xamarin implementations.

Xamarin Insights
Xamarin Insights is the analytics and crash reporting platform built specifically for
Xamarin target platforms. Xamarin Insights implementations can be used in each
Xamarin platform project including Xamarin.Forms applications and Windows
Runtime. This is a subscription-based service and live telemetry can be seen on the
web-based dashboard.

In order to start using Xamarin Insights in a cross-platform application solution,
Xamarin Insights NuGet package(s) should be included in platform-specific projects.
After the framework client assemblies are introduced, Xamarin.Insights runtime can
be initialized using the subscription key.

For instance, if we were to include and initialize the Xamarin Insights module in a
Xamarin.Android application using MVVMCross implementation, the initialization
can be included in the application setup:

public class Setup : MvxAndroidSetup
{
 public Setup(Context applicationContext) :
base(applicationContext)
 {
 Insights.Initialize("<API Key>", applicationContext);

 // Identifying the specific user, and follow the usage pattern
in the rest of the execution
 var traits = new Dictionary<string, string> {
 {Insights.Traits.Email, "john.smith@contoso.com"},
 {Insights.Traits.Name, "John Smith"}
 };
 Insights.Identify("john.smith@contoso.com ", traits);
 }
}

Chapter 11

[347]

In this implementation, the Identify method is an optional call. It is used to identify
user-specific traits rather than general usage patterns.

No matter which platform is running the Xamarin Insights content, the
application should be enabled to use the Internet connection (that is,
application manifest). It is also advised to enable permissions such as
BATTERY_STATS, READ_LOGS, ACCESS_WIFI_STATE, and so on, on a
Xamarin.Android application to collect additional information. Similarly,
on Windows Phone 8, ID_CAP_IDENTIFY_DEVICE capability must be
added to identify the specific device while recording telemetry.

Once the Xamarin Insights context is initialized, additional reporting calls can be
executed on shared libraries (for example, ViewModel implementations).

Application Insights
Application Insights is another subscription based service/platform that can be used
with Xamarin applications. This cloud-based suite was initially released by Microsoft
for web applications, but it slowly made its way into mobile applications. The
application insights NuGet package(s) can be used with Xamarin.Android (API level
15 and higher) and Xamarin.iOS (version 6 and higher) applications. Application
Insights, with a limited feature set, can be used on an unlimited number of devices
with a limited amount of data processing for free.

Application Insights usage scenarios are, in essence, very similar to Xamarin
Insights. The initial step is to use the platform-specific initializer to start the
telemetry session. Once the telemetry context is created, an instance of a
TelemetryClient can be used to either start automatic diagnostic recording
or send manual data to the insights server:

var telemetryClient = new TelemetryClient();

 // User Action Event
 telemetryClient.TrackEvent("Calculation Completed");

 // Send a metric:
 telemetryClient.TrackMetric("Calculation Range", (ordinal2 -
ordinal1));

 // Nominal values by which you can filter events:
 var nominalValues = new Dictionary<string,string> { {"calculation",
"rangeCalculation"}};

ALM – Project and Release Management

[348]

 // Metrics associated with an event:
 var metrics = new Dictionary<string,int>
 {
 {"ordinal1", ordinal1},
 {"ordinal2", ordinal2}
 };

 telemetryClient.TrackEvent("Calculation Completed", nominalValues,
metrics);

Together with crash analytics provided by HockeyApp, usage statics and
server-side data (if any) with Application Insights for mobile application,
live telemetry can provide valuable insights about Xamarin applications.

Application Insights is slowly being transitioned out in favor of
HockeyApp. This transition was first announced in November 2015
during the Connect() conference. As of April 2016, Microsoft will stop
accepting new submissions for Xamarin applications as well as Windows
Store and Windows Phone apps. In June 2016, the application insights
data for mobile apps is completely being migrated to the HockeyApp.

Summary
Overall, tools available for the .NET platform can be easily utilized to manage and
streamline the development pipeline tasks. On top of the Microsoft-based offerings,
there are a number of service providers with the freemium subscription model. This
can create great opportunities for individual/independent developers.

For source control, the most logical choices are Git and TFVC. While TFVC is
an ideal solution for developers with a Windows-based development environment
setup, Git provide native integration to Xamarin Studio on both Windows and Mac
OS environments.

Independent from the repository choice, Visual Studio Team Services or other
CI platforms such as TeamCity can be employed to create automated testing and
build workflows.

Finally, beta testing and collected telemetry are fundamental elements for Xamarin
projects. With real use-cases and analytical data on usage patterns, developers can
fine-tune their applications and avoid problems before the actual release.

In the final chapter, we will be discussing the preparation steps for store submission
and distribution options for Xamarin applications.

[349]

ALM – App Stores and
Publishing

This chapter explains the processes related to app package preparation and
release, which constitutes the last step of the application lifecycle. General
information about application packages and bundles is followed by information
about different release channels and release management tools. The chapter is
divided into the following sections:

• Release packages
• Distribution options
• Line of business apps

Release packages
On each Xamarin target platform, release packages differ in several ways from
the development packages prepared during the development and testing phases.
Release packages are optimized to take up less space and consume less resources in
the runtime (both processing time and memory resources). They also do not contain
symbol files or inter-process communication channels (such as Java Debug Wire
Protocol (JDWP)) required for just-in-time (JIT) debugging. It is also important to
mention that Xamarin.iOS and Xamarin.Android projects, once built for release, are
virtually no different from applications built with native development tools.

In order to prepare the application for release, developers need to take several
preparation steps before actually building the application. These steps differ
slightly on each platform.

ALM – App Stores and Publishing

[350]

Xamarin.Android app package (.apk)
Developers preparing Xamarin.Android application release packages should follow
a certain checklist to create an optimized package for release.

Disabling debugging
The initial step of preparing a Xamarin.Android application for release is to disable
the debugging channel, called Java Debug Wire Protocol, used by Xamarin tools
or adb to communicate with the Java Virtual Machine (JVM). If not disabled, this
channel can pose a security risk.

JDWP can be disabled by using either the application manifest or the AssemblyInfo.
cs file. In order to disable debugging using the application manifest, the
android:debuggable attribute needs to be set to false on the application node:

<application android:label="Fibonnaci Calculator"
 android:debuggable="false"
 android:icon="@drawable/Icon">
</application>

The entry in the AssemblyInfo.cs looks similar:

[assembly: Application(Debuggable = false, BackupAgent = typeof(Prefer
encesBackupService))]

Note that debug builds contain certain permissions, such as
storage access and Internet usage, automatically enabled. Once the
application is built with a release configuration, it is a good idea
to run the application through another round of regression testing
and, if necessary, modify the explicit permission declarations in
the application manifest.

Linking
During the development phase, application deployments generally contain
the whole set of Xamarin.Android runtime assemblies (no linking). Linking is the
process where only the required components are introduced into the application
package to reduce the application package's size. A static analysis algorithm
(that is, ahead-of-time compilation) is used during the linking process, in which
the dependencies are identified and included in the bundle.

Chapter 12

[351]

There are three available options that define which assemblies will be put through
the process of linking:

• None: This is the default configuration value for debug builds. No linking
is performed.

• Sdk Assemblies Only: Only Xamarin.Android runtime assemblies
are linked.

• Sdk and User Assemblies: Both Xamarin.Android runtime assemblies
and the application libraries are statically analyzed for code reach.

Figure 1: Linker options

In order to ensure that certain types and namespaces are included in the final
package, even though they are not statically reachable, a simple public class
declaration with public methods using the required types as parameters can
create the necessary code reachability (see LinkerPleaseInclude.cs):

public class LinkerPleaseInclude
{
 public void Include(Activity act)
 {
 act.Title = act.Title + "";
 }
}

ALM – App Stores and Publishing

[352]

Linking certain types and methods can also be achieved using a link description
file. In order to create a link description file, an XML file with the build action set to
LinkDescription should be created in the Xamarin.Android project. The file
schema for LinkDescription uses a simple declarative structure:

<?xml version="1.0" encoding="utf-8" ?>
<linker>
 <assembly fullname="Mono.Android">
 <type fullname="Android.App.Activity" >
 <method name="get_Title" />
 <method name="set_Title" />
 </type>
 </assembly>
</linker>

Once the application is built and the package is exported, comparing the size of
the signed apk packages for None, Sdk, and All assemblies shows a noticeable
reduction in size:

Figure 2: Android linker results

Just like the release build, after the linking step, it is highly advised to run another
setup regression test to see if the application features are functioning as expected.

Chapter 12

[353]

Packing options
Important application package-related configuration values can be found in
the Packaging section of the Android Options tab of the Project Properties page.
In spite of the fact that most of the configuration values are disabled by default in
a normal release build, they might be used for optimizing the release package in
certain scenarios. Use Shared Runtime and Use Fast Deployment are, under normal
circumstances, intended for debug builds and are used to increase the productivity
of developers.

• Bundle assemblies into native code: This option instructs the mono
compiler to bundle the application assemblies into a native shared library
as a security measure (only available with an Enterprise license).

• Generate one package (.apk) per selected ABI: Each selected Application
Binary Interface (ABI) will cause the compiler to generate a separate
package. For instance, if armeabi-v7a and x86 CPU architectures are selected,
two application packages will be generated.

• AOT Compilation (experimental): Ahead-of-time compilation converts the
application assemblies into native code to decrease the initialization time for
the application while increasing the application package size (only available
with Business or Enterprise licenses).

• Enable Multi-Dex: In order to work around the DEX method count limit, the
Multi-Dex feature was introduced in the Android Lollipop (API 21) release
and a retroactive support library was released for API levels 4 through 20.
This option enables the use of multiple DEX files.

Android application packages contain an executable bytecode file
called the Dalvik Executable file (DEX). This file contains the compiled
code used in the application runtime and has a limit of 64*210 (65536)
methods referenced (including Android framework methods, library
methods, and custom code introduced by the application).

• Enable ProGuard: ProGuard is another option that can help reduce the size
of the application and the DEX declarations. For applications developed with
a native toolset, ProGuard can also obfuscate the application code, but this
option is currently not available for Xamarin.Android applications.

ALM – App Stores and Publishing

[354]

Packaging
Once the preparation steps are complete, Xamarin.Android application packages
can be created either with Visual Studio or Xamarin Studio. Xamarin Studio offers
the option of archiving the builds so that they can be easily signed and pushed to
available channels.

The application package can be archived using the Archive for Publishing
option in the project context menu. (Similarly, the View Archives button can
be used to access previous archives.) In the archives view, the selected application
package can be signed and ready for store submission or ad-hoc (see Distribution
options) distribution.

Figure 3: Xamarin Studio package archives

Packages created with the Export Android Package option using Visual Studio are
signed with the debug key. These packages should not, and in most cases cannot, be
distributed through normal channels. In order to create the release-ready package,
the unsigned package from the build directory should be located and the package
should be signed using the jarsigner utility from Java SDK.

Chapter 12

[355]

Xamarin.iOS app bundle (.ipa)
Before any iOS application can be published to the App Store, there are several
configuration values that need to be configured and revised. More importantly, the
build process should be configured as a release build and the package should be
signed with a proper identity before it can be submitted through iTunes Connect.

Build options
For a release build (ad-hoc or app-store), once the active build configuration is
set, some of the values are automatically adjusted to the developers' convenience.
For instance, options related to debugging such as Enable Profiling and Enable
incremental builds are automatically disabled. These options, together with the
Enable Debugging option, produce larger application packages that are not valid
for store submission.

Other than the debugging options, the supported CPU architectures must be carefully
configured. While it is possible to combine the selections (such as ARMv7 + ARM64,
as seen in the figure below), each architecture targets a certain iPhone or iPad model.
ARMv6 was the initial CPU architecture that was used in iPhone 3G. This architecture
is no longer supported by iOS compilers. Starting with iPhone 3GS, up until iPhone 5,
including iPads, the CPU architecture used was ARMv7. ARMv7s and ARM64 were
used in iPhone 5 and iPhone 5s respectively. iPhone 6 uses ARMv8, which is another
64-bit processor (that is, the build requirement would be ARM64).

Figure 4: iOS build configuration

ALM – App Stores and Publishing

[356]

Low Level Virtual Machine (LLVM) is the name of the set of tools/libraries
designed for the compile-time optimization of programs written in various
programming languages. It was released under an open source license. During the
development phase, Xamarin tools only utilize mono compiler (mtouch). Mono
compiler produces less optimized but more "accessible" binaries that make them
possible to debug and diagnose. However, for release builds using LLVM, it can
generate much more optimized results.

While LLVM provides both package size and runtime enhancements, the Thumb-2
instruction set is simply an executable size improvement. ARMv7 and ARMv7s
processors use this compact instruction set. It can provide a significant reduction in
the package size at the expense of slower execution time.

Linking
Linking works in a similar way as in Xamarin.Android platform. In addition to
arbitrary class creation with public methods to avoid certain classes being linked
out, on Xamarin.iOS, Preserve attribute can be used on class declarations to
inform the compiler about the necessity of a certain class and its members
(such as [Preserve(AllMembers = true)]).

Provisioning profile
Provisioning profiles are used to set up the entitlements and package
signing information for iOS applications. In order to create a publishing-ready
iOS package, users first need to create the application metadata on Apple's iOS
provisioning portal.

On the provisioning portal, developers should first choose a unique application
name and a bundle ID. These will be used to identify the application once it is
published. Additionally, the App Services that are required by the application
should be selected.

Other than the App ID, a distribution profile should be created for the
application. In order to create the distribution profile, one would need to select the
Provision->Distribution node on the application portal navigation tree. Using the +
button, a new distribution profile can be created. In the distribution profile wizard,
the user need to select the distribution type (that is, App Store or Ad Hoc), select
the App ID that was previously created, possible deployment devices, and a signing
certificate (a signing certificate can be requested from Apple's Members Center).

Chapter 12

[357]

Once the App ID and provisioning profile are created, the application metadata should
be set up in the Xamarin.iOS project settings in the iOS Application Settings section
(Info.plist and Entitlements.plist files can also be directly configured).

Finally, the Archive for Publishing button can be used to create the release package.
Once the build is complete, the new package will be shown in the archives window.
Selecting the correct application and using the Sign and Distribute option will open
the publishing wizard where the previously configured provisioning profile can be
selected and applied to the current build package.

Windows Phone app package (.appx)
Windows Phone and Windows Store application packages are prepared using
the available toolset for Windows app developers in Visual Studio. In the release
preparation phase, Windows Phone applications do not require or interact with any
Xamarin components.

Distribution options
Just like the beta builds, there are different distribution options for the release
versions of Xamarin applications. Public app stores are the easiest and the most
convenient way to distribute mobile applications, targeting the general public.
On the other hand, private application distribution channels may be needed for
enterprise application distribution scenarios.

App store(s)
For Xamarin.iOS and Windows Phone applications, the only official distribution
stores are application stores maintained by Apple and Microsoft respectively. Each
of these application stores has a well-defined submission flow involving both content
validation (that is, whether the application meet the content guidelines) and technical
validation (that is, does the application meets the quality criteria). It is highly advisable
to read the appropriate application certification guidelines before submitting the
release-ready package to either of these stores. In order to distribute applications using
iTunes Connect tools and Apple App Store, developers need to apply for a developer
account and pay an annual subscription fee. Windows App Store requires a developer
account subscription, which at the moment is free of charge.

On the other hand, Android developers have a big pool of options as public app
distribution channels. The most popular stores are the Google Play and Amazon App
stores. Both of these stores allow developers to publish both paid and free applications.

ALM – App Stores and Publishing

[358]

The Google Play store serves as the official app store for the Android operating
system. It was originally called the Android Market and later on merged with two
other Google products, namely Google Music and Google eBookstore. The Google
Play store requires developers to sign up with a small subscription fee before they
can distribute applications. Security and quality testing is one of the most essential
steps of the app certification process, which makes this store the most trusted among
Android users.

On the other hand, the Amazon App store was initially created for Amazon Kindle
Fire devices specifically, and yet it became the second biggest store for Android
applications. Developers can sign up for a free developer account, and the revenue
share model is the same as other popular stores (that is, 70% developer/30% store).

Other than the two biggest stores, there are other application stores for Android
applications. The most intriguing app store provider is the F-Droid store, which
focuses on free and open source software (FOSS) for the Android operating system.
This store attracts many users since the store policy dictates that there is no tracking,
advertising, or dependencies in distributed applications.

Ad-hoc
Ad-hoc distribution is the name given to the process by which application packages
are distributed to users for testing or private use through various communication
channels (such as shared storage, online sharing, e-mail, and so on).

This type of distribution was mentioned in the beta testing part of the previous
chapter, but at times, applications built only for internal use can be distributed
in this manner.

The ad-hoc distribution concept can be divided into two categories: signed and
unsigned distribution. The official way of distributing application packages over the
air is to digitally sign the application packages with a trusted certificate (that is, the
signing identity should be created using the official channels such as signing certificate
providers). Once the application package is digitally signed with a certificate from
a trusted provider, the app can be sideloaded to mobile devices. Sideloading is the
process of installing an app without using a public or private store.

If the application is signed by a self-signed certificate, the application publisher
would simply be unidentifiable. In this type of scenario, either the owner of the
device should allow applications to be installed from unknown sources (on Android
and Windows 10 mobile devices) or the device should be developer unlocked (on
Windows Phone) or jailbroken (on iOS). While unlocking a device is an official
process on Windows Phone devices, jailbreaking violates the end-user license
agreement for iOS.

Chapter 12

[359]

Line of Business apps
Line of Business applications, or LOB apps, is a term generally used synonymously
with enterprise applications. These applications are either developed in-house,
or outsourced for the specific needs of a company. In other words, LOB apps can
be categorized as business rather than consumer applications. They are generally
domain-specific and target a small group with a specific need.

Private channel distribution (Android)
One way of distributing LOB applications built for Android platform is to use the
Google Play private channels. Applications distributed through these channels are
restricted to users of a specific domain. In order to use private channels, one needs
to have a subscription to either Google Play for Work, Google Apps for Business,
Education, or Government.

While app pricing and other distribution settings may still apply to these private
apps, the testing and validation steps are skipped in the store submission process.
App submissions can either be done by the owner of the channel or the permissions
can be delegated to another user in the same domain.

Apple Developer Enterprise Program
The Apple Developer Enterprise Program is Apple's initiative to support companies
to develop and distribute in-house applications. This program is only available
for companies that exist as a legal entity (the D-U-N-S number is required). Once
the organization is enrolled in the Enterprise Program, development and release
management team members can be assigned roles, as well as digital certificates and
provisioning profiles. However, these provisioning profiles cannot contain the App
Store distribution method (that is, the only available provisioning profiles are
in-house and ad-hoc).

Figure 5: Provisioning profile for Apple Developer Enterprise Program

ALM – App Stores and Publishing

[360]

The applications built under the enterprise program can be distributed through
native or third-party Mobile Device Management (MDM) solutions, as well as
ad-hoc packages.

Windows Phone private distribution
Windows Phone applications can be developed and distributed for in-house
utilization, using the application signing certificate purchased from Symantec
(Symantec is currently the only provider of this type of certificate). Using the mobile
signing certificate, application packages can signed and distributed through MDMs
or sideloaded into company devices.

Most MDM providers, such as Microsoft Intune, come equipped with a company
store application that can be used to provide applications for company devices.
Device management systems also make it possible to install the company
applications directly for domain users.

It is also possible to install the signing certificate on devices, which will benefit
from in-house applications and distribute applications through custom company
hub applications.

Summary
In this chapter, we briefly went over the package preparation process for Xamarin.
Android and Xamarin.iOS applications (and also Windows Phone). As you can see,
preparing the release package is a little more complicated then pressing the Debug
button on the development IDE of choice. However, each of these platforms have
well-defined application certification guidelines and online resources.

Once the release packages are prepared, it is up to the developer to choose between
different distribution options, including but not limited to, the public and private
stores that can be used to publish the release packages. Public store applications
can be delivered to the general public, while private distribution channels or ad-hoc
deployments, involving sideloading and MDMs, can be used for LOB applications.

[361]

Index
A
action sheets 225
activity lifecycle (Android)

about 27
active/running 28
Backgrounded state 28, 29
Paused state 28
restarted 29
Stopped state 29

alert dialogs 226
Android

design metrics 202, 203
Android Callable Wrappers (ACW) 4
Android Debug Bridge (ADB) 319
Android Device Monitor 35
Android Virtual Devices (AVD) 13
Apple Developer Enterprise Program 359
Apple Notification Push

Service (APNS) 156
Application Binary Interface (ABI) 353
Application Component lifecycle

about 27
activity lifecycle (Android) 27
application lifecycle (iOS) 29, 30

application data
about 89
installation directory 90
local storage 93
temporary storage 98

Application Insights 347, 348
application lifecycle (iOS)

about 29, 30
state-related methods 30

Application Lifecycle Management (ALM)
about 317, 337

development pipeline 317, 318
diagnostics 319, 320
troubleshooting 319, 320

App Transport Security (ATS) 123
architectural patterns

about 306, 307
model-view-controller (MVC) pattern 307
Model-View-ViewModel (MVVM)

pattern 310
asynchronous methods

about 56
cancellation 57, 58
continuation 57
progress 59, 60
task batches 60-62

asynchronous programming 53
automated testing 340-342

B
background tasks

about 82
on Android 85
on iOS 83
 services (Android only) 84

backup
about 110
Android Backup API 110-114
ubiquitous storage, iOS 114-120

best practices, patterns
about 39, 64, 104
application preferences 104-106
async pattern conversions 65, 67
cross-domain objects 47-49
cyclic references (cycles) 49-51
disposable objects 39, 40

[362]

exception handling 74-76
file picker 106-109
initialization pattern 77-80
lapsed listener problem 40-44
multi-threading, with tasks 67-73
semaphores 80-82
weak references 45, 46

beta deployment
about 342
Crashlytics 344
HockeyApp 342, 343
package distribution 344, 345
TestFlight 344

binding library 6
Boehm garbage collector (iOS only) 32
bundle 92

C
Calabash 329, 330
Cloud integration

Azure authentication 164-166
Azure Mobile Services 157-162
Azure offline data 162, 163
defining 157

Coded UI tests (Windows Phone) 327-329
collection views

about 215
CardView (Android) 221, 222
GridView (Android) 221
GridView (Windows Phone) 223, 224
ListView and ListBox

(Windows Phone) 222, 223
ListView (Android) 217-220
UICollectionView (iOS) 216
UITableView (iOS) 215, 216
virtualizing panels (Windows Phone) 224

components, Xamarin.Forms
layouts 254-258
pages 247
views 258-263

connected apps
defining 121, 122

content elements
about 214
collection views 215
modal views 225

text views 231
web views 232

content sharing
about 169, 170
ContentProvider (Android) 174-176
ContentResolver (Android) 174-176
Document Provider

extensions (iOS) 172-174
File picker contract

(Windows Store apps) 170, 171
Continuous Integration (CI)

about 336, 337
TeamCity 339
Visual Studio Team

Services (VSTS) 337, 338
Crashlytics 344
cross-platform projects, with Xamarin

about 1, 2
Xamarin as platform 2
Xamarin as product 3

D
data

defining 87
data bindings

OneTime 312
OneWay 312
OneWayToSource 312
TwoWay 312

data, in mobile applications
about 87
app data 88
external data 89
local files 89
state 88

design elements
about 205
basic layout 205
content elements 214
feedback 232
navigation 207

design metrics
on Android 202, 203
on iOS 204
on Windows Runtime 204

[363]

design patterns
and best practices 138, 273
async conversions 138, 139
data model abstraction 140-144
defining 138
dependency injection 274-277
messaging infrastructure 273, 274
platform-specific fine-tuning 279, 280
service cache 144-147
shared project, versus

portable project 278, 279
design philosophy

about 199
hardware dependency 202
platform imperatives 200, 201
user expectations 200

development environment
right development OS, selecting 7
setting up 6
Visual Studio setup and

configuration 10-12
Xamarin Studio setup and

configuration 8, 9
development pipeline 318
distribution options

about 357
ad-hoc distribution 358
app store(s) 357, 358

E
elements, OData

reference 133
emulator options

about 13
emulators for Android 13-15
iOS emulation 15

Event-based Asynchronous
Pattern (EAP) 65

Extensible Application Markup
Language (XAML) 241

F
feedback

about 232
determinate progress 233
indeterminate progress 232, 233

FileCreationMode 95
first-in-first-out (FIFO) 56
forms

custom renderers 272
extending 263
styles 264-267
triggers and behaviors 267-271

G
garbage collection (GC) 31
garbage collection (GC),

on Xamarin projects
about 32
Boehm garbage collector (iOS Only) 32
SGen garbage collector 32

geofence 189
Git 332, 333
Google Cloud Messaging (GCM) 156
GPS (Global Position System) 179

H
hardware dependency

about 202
design metrics, on Android 202, 203
design metrics, on iOS 204
design metrics, on Windows Runtime 204

HockeyApp 342, 343

I
installation directory

about 90
Android 90-92
iOS 92

instruments 37
interaction gestures

double-tap 238
long press 238
pinch in 238
pinch out 238
rotate 238
swipe down 238
swipe left 238
swipe right 238
swipe up 238
tap 238

[364]

tap & drag 238
interactive controls

about 235
dropdown selection 236
option selection 237-239
text input 235, 236

Internal Storage 93, 94
iOS

design metrics 204
iOS, background tasks

about 83
background-safe tasks 83
background transfers 84
DidEnterBackground tasks 83

IoT (Internet of Things) 177

J
Java Debug Wire Protocol (JDWP) 349
Java Virtual Machine (JVM) 350
just-in-time (JIT) 349

L
Line of Business (LOB) apps

about 359
Apple Developer Enterprise Program 359
private channel distribution (Android) 359
Windows Phone private distribution 360

linking process, Xamarin.Android app
package (.apk)

about 350
none option 351
Sdk and User Assemblies option 351
Sdk Assemblies Only option 351

Live Connect App management site
URL 164

live telemetry
about 345, 346
Application Insights 347, 348
Xamarin Insights 346, 347

local filesystem 99-101
localization

about 299
culture 299
in Windows Phone 300, 301
in Xamarin.Android 303, 304
in Xamarin.Forms 304, 305

in Xamarin.iOS 302, 303
locale 299

Localization ID 287
local storage

about 93
Android 93-95
Internal Storage 93
iOS 96-98
Shared Preferences 93

location data
about 179
Android location 179-181
geofencing 189-193
Google Play services 183-186
location services, on iOS 186-188
on Windows Runtime 188

Low Level Virtual Machine (LLVM) 356

M
Mac build host 12
Managed Callable Wrappers (MCW) 4
memory management 27
mobile country code (MCC) 292
Mobile Device Management (MDM) 360
mobile network code (MNC) 292
modal views

about 225
dialogs (Android) 229, 230
flyout (Windows Phone) 227-229
menus (Windows Phone) 227-229
popover and alerts (iOS) 225-227
popups (Windows Phone) 227-229

model-view-controller (MVC) pattern
about 307
Controller 308
iOS app architecture 308, 309
Model 307
View 308

Model-View-Presenter (MVP) 273
Model-View-ViewModel (MVVM) pattern

about 310
on Xamarin.Android 315
on Xamarin.iOS 315
Windows Runtime 310-315
with Xamarin.Forms 316

mono runtime 3

[365]

Monotouch Profiler (iOS only) 38
multithreading, on Xamarin

about 53
concurrency model, on iOS 56
single thread model 54, 55
Task-based Asynchronous

Pattern (TAP) 55

N
native libraries

about 193
linking, versus binding (iOS) 196-198
managed callable wrappers

(Android) 193-195
navigation

about 207
horizontal navigation 208-212
jump navigation 214
vertical navigation 212, 213

Near Field Communication (NFC)
protocol 178

NuGet packages
about 21
reference 22

O
OAuth 134, 135
OData 133, 134

P
package distribution 344, 345
packing options

AOT Compilation 353
Bundle assemblies into native code 353
Enable Multi-Dex 353
Enable ProGuard 353
Generate one package (.apk) per

selected ABI 353
pages, Xamarin.Forms

CarouselPage 252
ContentPage 253
MasterDetail page 249-252
NavigationPage 252
Tabbed page 247-249

parallel execution 62-64

patterns
best practices 39, 64

peer-to-peer (P2P) networks 178
peripherals

about 176
Bluetooth 177
Near Field Communication (NFC) 178
Wi-Fi Direct 178

permission levels, of file
Append 95
EnableWriteAheadLogging 95
MultiProcess 95
Private 95
WorldReadable/WorldWritable 95

platform-specific concepts
about 33
Automatic Reference Counting (ARC) 33
object reference types 33

Portable Class Libraries (PCLs) 274

Q
quality, in cross-development

about 23
abstraction 23
loose-coupling 24
nativity 24
reusability 23

R
release packages

about 349
Windows Phone app package (.appx) 357
Xamarin.Android app package (.apk) 350
Xamarin.iOS app bundle (.ipa) 355

Representational State Transfer (REST) 129

S
services (Android only)

about 84, 85
bound service 84
started service 84

SGen garbage collector 32
Shared Preferences 93
SignalR

defining 136-138

[366]

events, defining 138
implementing 137

source control
about 331
Git 332, 333
Subversion (SVN) 336
Team Foundation Version

Control (TFVC) 332
TFS/Git scenarios 333

SQLite 101-104
state-related methods,

application lifecycle (iOS)
DidEnterBackground 31
FinishedLaunching 30
OnActivated 30
OnResignActivation 30
WillEnterForeground 31
WillFinishLaunching 30
WillTerminate 31

Subversion (SVN) 336

T
target platforms

about 3
Windows Runtime apps 6
Xamarin on Android 4
Xamarin on iOS 5, 6

Task-based Asynchronous Pattern (TAP) 55
Task Parallel Library (TPL) 56
TeamCity 339
Team Foundation

Version Control (TFVC) 332
test-driven development (TDD) pattern 321
TestFlight 344
text resources, visual assets

about 284
Windows Phone 289, 290
Xamarin.Android 284-286
Xamarin.iOS 287, 288

text views
displaying, on Android platform 231
displaying, on iOS platform 231
displaying, on Windows platform 231

TFS/Git scenarios
about 333
Git bridge 334, 335

NuGet packages 335, 336
troubleshooting

about 34
Device Monitor (Android only) 35
instruments (iOS only) 37, 38
Monotouch Profiler (iOS only) 38
Xamarin Profiler 34, 35

Twitter
URL 164

U
UIController 309
UI testing

about 325
Calabash 329, 330
Coded UI tests (Windows Phone) 327-329
Xamarin Test Cloud 325, 326
Xamarin Test Recorder 327
Xamarin.UITests 325

unit testing
about 321
platform-agnostic unit tests 322
platform-specific unit tests 323-325

User Experience (UX) 199
user interaction

about 234
gestures 237
interactive controls 235

V
View-Controller 309
visual assets

about 283
adaptive visual assets 291, 292
image resources 291
reusable assets 293-298
text resources 284

Visual Studio Team
Services (VSTS) 337, 338

W
Web Service Description

Language (WSDL) 125
web services

defining 122

[367]

messaging 123, 124
OAuth 134, 135
OData 133, 134
RESTful services 129-133
SOAP/XML services 124-128
transport 123

Windows Communication
Foundation (WCF) 124

Windows Notification Services (WNS) 156
Windows Phone app package (.appx) 357
Windows Presentation

Foundation (WPF) 310
Windows Runtime

design metrics 204

X
Xamarin

about 1
cross-platform projects, with 1

Xamarin.Android app package (.apk)
about 350
debugging, disabling 350
linking 350-352
packaging 354
packing options 353

Xamarin Component Store
reference 23

Xamarin.Forms
about 241
anatomy 242, 243
components 247
defining 241, 242
project structure 243-246

Xamarin Insights 346, 347
Xamarin.iOS app bundle (.ipa)

about 355
build options 355, 356
linking 356
provisioning profile 356

Xamarin platforms
background downloads 151-155
defining 148
NSUrlConnection/NSUrlSession

(iOS Only) 149-151
permissions 148, 149
push notifications 155-157

Xamarin Profiler
about 34, 35
allocations instrument 35
Time Profiler 35

Xamarin solution structure
about 15
components 23
NuGet packages 21
portable class libraries 16, 17
shared projects 18, 19
Xamarin.Forms 20

Xamarin Test Cloud 326
Xamarin Test Recorder 327
Xamarin.UITests 325
Xcode Instruments 38
XSL

about 295
reference link 295

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Developing with Xamarin
	Cross-platform projects with Xamarin
	Xamarin as a platform
	Xamarin as a product

	Target platforms
	Xamarin on Android
	Xamarin on iOS
	Windows Runtime apps

	Setting up the development environment
	Choosing the right development OS
	Xamarin Studio setup and configuration
	Visual Studio setup and configuration

	Emulator options
	Emulators for Android
	iOS emulation

	A typical Xamarin solution structure
	Portable class libraries
	Shared projects
	Xamarin.Forms
	NuGet packages
	Components

	Quality in cross-development
	Reusability
	Abstraction
	Loose-coupling
	Nativity

	Summary

	Chapter 2: Memory Management
	Application Component lifecycle
	Activity lifecycle (Android)
	Active/Running
	Paused
	Backgrounded
	Stopped
	Restarted

	Application lifecycle (iOS)

	Garbage collection
	GC on Xamarin projects
	SGen garbage collector
	Boehm garbage collector (iOS only)

	Platform-specific concepts
	Object reference types
	Automatic Reference Counting (ARC)

	Troubleshooting and diagnosis
	Xamarin Profiler
	Allocations instrument
	Time Profiler

	Device Monitor (Android only)
	Instruments (iOS only)
	Monotouch Profiler (iOS only)

	Patterns and best practices
	Disposable objects
	The lapsed listener problem
	Weak references
	Cross-domain objects
	Cyclic references (cycles)

	Summary

	Chapter 3: Asynchronous Programming
	Multithreading on Xamarin
	Single thread model
	Task-based Asynchronous Pattern
	Concurrency model on iOS

	Asynchronous methods
	Continuation
	Cancellation
	Progress
	Task batches

	Parallel execution
	Patterns and best practices
	Async pattern conversions
	Multi-threading with tasks
	Exception handling
	Initialization pattern
	Semaphores

	Background tasks
	Background tasks on iOS
	Services (Android only)

	Summary

	Chapter 4: Local Data Management
	Data in mobile applications
	State
	App data
	Local files
	External data

	Application data
	Installation directory
	Android
	iOS

	Local storage
	Android
	iOS

	Temporary storage

	Local filesystem
	SQLite
	Patterns and best practices
	Application preferences
	File picker

	Backup/Roaming
	Android and Backup API
	iOS and ubiquitous storage

	Summary

	Chapter 5: Networking
	Connected apps
	Web services
	Transport
	Messaging
	SOAP/XML services
	RESTful services
	OData and OAuth
	OData
	OAuth

	SignalR
	Patterns and best practices
	Async conversions
	Data model abstraction
	Service cache

	Platform-specific concepts
	Permissions
	NSUrlConnection/NSUrlSession (iOS Only)
	Background downloads
	Push notifications

	Cloud integration
	Azure Mobile Services
	Azure offline data
	Azure authentication

	Summary

	Chapter 6: Platform Extras
	Content sharing
	File pickers and contracts (Windows Store apps)
	Document Provider extensions (iOS)
	ContentProvider and ContentResolver (Android)

	Peripherals
	Bluetooth
	Wi-Fi Direct
	Near Field Communication

	Location data
	Android location and Google Play services
	Location services on iOS
	Location data on Windows Runtime
	Geofencing

	Native libraries
	Managed callable wrappers (Android)
	Linking versus binding (iOS)

	Summary

	Chapter 7: View Elements
	Design philosophy
	User expectations
	Platform imperatives
	Hardware dependency
	Design metrics on Android
	Design metrics on iOS
	Design metrics on Windows Runtime

	Design elements
	The basic layout
	Navigation
	Horizontal navigation
	Vertical navigation
	Jump navigation

	Content elements
	Collection views
	Modal views
	Text views
	Web views

	Feedback
	Indeterminate progress
	Determinate progress

	User interaction
	Interactive controls
	Text input
	Dropdown selection
	Option selection

	Gestures

	Summary

	Chapter 8: Xamarin.Forms
	Under the hood
	Anatomy of Xamarin.Forms
	Project structure

	Components
	Pages
	Tabbed page
	The MasterDetail page
	NavigationPage
	CarouselPage
	ContentPage

	Layouts
	Views

	Extending forms
	Styles
	Triggers and behaviors
	Custom renderers

	Patterns and best practices
	Messaging infrastructure
	Dependency injection
	Shared project versus portable project
	Platform-specific fine-tuning

	Summary

	Chapter 9: Reusable UI Patterns
	Visual assets
	Text resources
	Xamarin.Android
	Xamarin.iOS
	Windows Phone

	Image resources
	Adaptive visual assets
	Reusable assets

	Localization
	Locale and culture
	Windows Phone
	Xamarin.iOS
	Xamarin.Android
	Xamarin.Forms

	Architectural patterns
	MVC
	iOS app architecture

	MVVM
	Windows Runtime
	MVVM on Xamarin.iOS and Xamarin.Android
	MVVM with Xamarin.Forms

	Summary

	Chapter 10: ALM – Developers and QA
	Development pipeline
	Troubleshooting and diagnostics
	Unit testing
	Platform-agnostic unit tests
	Platform-specific unit tests

	UI testing
	Xamarin.UITests and Xamarin Test Cloud
	Xamarin Test Recorder
	Coded UI tests (Windows Phone)
	Calabash

	Summary

	Chapter 11: ALM – Project and Release Management
	Source control
	TFVC
	Git
	TFS/Git scenarios
	Git bridge
	NuGet packages

	Subversion (SVN)

	Continuous integration
	Visual Studio Team Services
	TeamCity
	Other

	Automated testing
	Beta deployment
	HockeyApp
	Crashlytics
	TestFlight
	Package distribution

	Live telemetry
	Xamarin Insights
	Application Insights

	Summary

	Chapter 12: ALM – App Stores and Publishing
	Release packages
	Xamarin.Android app package (.apk)
	Disabling debugging
	Linking
	Packing options
	Packaging

	Xamarin.iOS app bundle (.ipa)
	Build options
	Linking
	Provisioning profile

	Windows Phone app package (.appx)

	Distribution options
	App store(s)
	Ad-hoc

	Line of Business apps
	Private channel distribution (Android)
	Apple Developer Enterprise Program
	Windows Phone private distribution

	Summary

	Index

