
www.allitebooks.com

http://www.allitebooks.org

Mastering FreeSWITCH

Master the art of advanced VoIP and WebRTC
communication with the most dynamic application
server, FreeSWITCH

Anthony Minessale II

Giovanni Maruzzelli

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering FreeSWITCH

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2016

Production reference: 1260716

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-888-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Anthony Minessale II

Giovanni Maruzzelli

Reviewers
Ayobami Adewole

Brian West

Commissioning Editor
Amarabha Banerjee

Acquisition Editors
Neha Nagwekar

Rahul Nair

Content Development Editor
Kajal Thapar

Technical Editors
Pramod Kumavat

Mohita Vyas

Copy Editors
Dipti Mankame

Safis Editing

Project Coordinator
Shweta H. Birwatkar

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Anthony Minessale II is the primary author and founding member of the
FreeSWITCH Open Source Soft-Switch. Anthony has spent around 20 years working
with open source software. In 2001, Anthony spent a great deal of time contributing
code to the Asterisk PBX and has authored numerous features and fixes to that
project. In 2005, Anthony started coding a new idea for an open source voice
application. The FreeSWITCH project was officially open to the public on January 1
2006. In the years that followed, Anthony has been actively maintaining and leading
the software development of the FreeSWITCH project. Anthony also founded the
ClueCon Technology Conference in 2005, and he continues to oversee the production
of this annual event.

Anthony has been the author of several FreeSWITCH books, including FreeSWITCH
1.0.6, FreeSWITCH 1.2, FreeSWITCH Cookbook, and FreeSWITCH 1.6 Cookbook.

I'd like to thank my wife Jill and my kids, Eric and Abbi, who were
in grade school when this project started and are now grown up. I'd
also like to thank everyone who took the time to try FreeSWITCH
and submit feedback. I finally thank my coauthor Giovanni
Maruzzelli for working on this book.

www.allitebooks.com

http://www.allitebooks.org

Giovanni Maruzzelli (gmaruzz@OpenTelecom.IT) is heavily engaged with
FreeSWITCH. In it, he wrote a couple of endpoint modules, and he is specialized
in industrial grade deployments and solutions. He's the curator and coauthor of
FreeSWITCH 1.6 Cookbook (Packt Publishing, 2015).

He's a consultant in the telecommunications sector, developing software and
conducting training courses for FreeSWITCH, SIP, WebRTC, Kamailio, and OpenSIPS.

As an Internet technology pioneer, he was the cofounder of Italia Online in 1996,
which was the most popular Italian portal and consumer ISP. Also, he was the
architect of its Internet technologies (www.italiaonline.it). Back then, Giovanni
was the supervisor of Internet operations and the architect of the first engine
for paid access to www.ilsole24ore.com, the most-read financial newspaper in
Italy, and its databases (migrated from the mainframe). After that, he was the
CEO of the venture capital-funded company Matrice, developing telemail unified
messaging and multiple-language phone access to e-mail (text to speech). He was
also the CTO of the incubator-funded company Open4, an open source managed
applications provider. For 2 years, Giovanni worked in Serbia as an Internet and
telecommunications investment expert for IFC, an arm of the World Bank.

Since 2005, he has been based in Italy, and he serves ICT and telecommunication
companies worldwide.

I'd like to thank all people who made writing this book a challenging
journey for me, all who helped, all who supported, all who gave
me obstacles to overcome. This book has been brought to you by
the knowledge that was socially cumulated by humans through
the centuries, let's praise them. I finally want to thank my coauthor
Anthony Minessale II for being so patient and "Always See
Everything."

www.allitebooks.com

www.italiaonline.it
www.ilsole24ore.com
http://www.allitebooks.org

About the Reviewers

Ayobami Adewole is a software engineer and technical consultant with
experience spanning over 5 years. Ayobami has worked on mission critical
systems; these include solutions for customer relationship management, land
administration and geographical information systems, enterprise-level application
integrations, and unified communication and software applications for the education
and business sectors.

Ayobami is very passionate about VoIP technologies, and he continues to work
on cutting-edge PBX solutions built on FreeSWITCH. In his spare time, he enjoys
experimenting with new technologies. His blog is at http://ayobamiadewole.com.

My unending gratitude goes to my parents for instilling in me the
culture of discipline and hard work.

Brian West is a founding member of the FreeSWITCH team. He has been involved
in open source telephony since 2003. Brian was heavily involved in the Asterisk
open source PBX Project as a Bug Marshal and developer. In 2005, Brian joined the
initiative that eventually lead to the FreeSWITCH Open Source Soft-Switch. Today,
Brian serves as the general manager of the FreeSWITCH project and keeps the
software moving forward. Brian has countless skills as a developer, tester, manager,
and technologist, and he fills a vital role in the FreeSWITCH Community.

www.allitebooks.com

http://ayobamiadewole.com
http://www.allitebooks.org

Contributors

Moises Silva wrote the entire 6th chapter, PSTN and TDM.

The following people contributed substantially to this book:

•	 Darren Schreiber
•	 Benjamin Tietz
•	 Russell Treleaven
•	 Seven Du (Du Jinfang)
•	 Muhammad Naseer Bhatti
•	 Florent Krieg
•	 Michael Jerris
•	 Iwada Eja
•	 Martyn Davies
•	 Charles Bujold
•	 Christian Bergamaschi
•	 Alexandr Dubovikov
•	 Lorenzo Mangani
•	 Dan Christian Bogos

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and readPackt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface	 vii
Chapter 1: Typical Voice Uses for FreeSWITCH	 1

Understanding routing calls in FreeSWITCH	 2
Wholesale (provider to providers)	 3
Residential uses of FreeSWITCH	 4
Routing with federated VoIP	 5
Dialers/telemarketing	 6

FreeSWITCH Products and Services	 8
Business PBX services (hosted and on-premises)	 8
Call centers	 9
Value added services and games, prizes, and polls	 10
"Class 4" vs "Class 5" operations (and SBCs)	 11
WebRTC / web services / Internet-only services	 12
Mobile "over-the-top" SIP	 13

Development	 15
Strict on output, broad on input	 15
Very structured, very reusable techniques	 15
Polyglot by vocation and destiny	 15
Extreme scalability, from embedded to big irons	 16
Born internationalist	 16
Telcos internal integration ("FreeSWITCH is the Perl of VoIP")	 16
Rapid new services prototyping	 17

Accounting and billing	 18
Call Detail Records (CDRs)	 19
Mod_nibblebill / CGrateS	 20
Other billing options (open source - commercial)	 21

Summary	 21

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Deploying FreeSWITCH	 23
Network requirements	 23

Understanding QoS	 24
LANs, WANs, and peering	 25

Testing with SIPp	 27
Running scenarios	 27
Load testing	 30

Logging with FreeSWITCH	 30
Call Detail Records	 32
Monitoring	 34

SNMP	 34
SNMP and FreeSWITCH	 35
Installation and configuration (on Linux)	 35
Getting more information	 36

Monitoring tools	 37
Monitoring with Nagios	 38

Monitoring with Cacti	 41
HA deployment	 42

Storage, network, switches, power supply	 43
Virtualization	 44
Load balancing and integration with Kamailio and OpenSIPS	 47

In the Web world	 47
In the FreeSWITCH world	 48

DNS SRV records for geographical distribution and HA	 51
Summary	 52

Chapter 3: ITSP and Voice Codecs Optimization	 53
ITSPs – what they do	 54
Routes (to numbers)	 55
DIDs (aka DDIs) – numbers	 56
Quality of routes	 57

White, black, and grey	 57
Codecs and bandwidth	 58
Infrastructure capability	 59

Various important features	 60
Support, redundancy, high availability, and number portability	 61
Summary	 62

Chapter 4: VoIP Security	 63
Latest versions of it all	 63
Default configuration is a demo	 64
Change passwords	 64
Lock all that's not trusted	 64

Table of Contents

[iii]

Dropping root privileges (file permissions)	 65
Fail2ban on all services	 66

FreeSWITCH jail	 67
SIP(S) and (S|Z)RTP	 68

Encrypting SIP with TLS (SIPS)	 68
Encrypting (S)RTP via SDES (key exchange in SDP)	 69
Encrypting (S)RTP via ZRTP (key exchange in RTP)	 70
New frontiers of VoIP encryption (WebRTC, WebSockets, DTLS)	 71
Summary	 71

Chapter 5: Audio File and Streaming Formats,
Music on Hold, Recording Calls	 73

Traditional telephony codecs constrain audio	 74
HD audio frontiers are pushed by cellphones, right now	 76
FreeSWITCH audio, file, and stream formats	 77

Audio file formats	 77
MP3 and streaming	 78
Music on Hold	 79
Playing and recording audio files and streams	 80
Recording and modifying prompts and audio files	 81

Recording calls	 82
Tapping audio	 84
Summary	 85

Chapter 6: PSTN and TDM	 87
OpenZap	 88
FreeTDM	 89
I/O modules	 90
Signaling modules	 91

ISDN signaling modules	 91
Analog modules	 92
MFC-R2	 92
SS7	 92
Cellular GSM / CDMA (ftmod_gsm)	 93

FreeTDM installation	 93
Wanpipe drivers	 93
DAHDI drivers	 94
LibPRI	 95
Sangoma ISDN stack	 95
OpenR2	 95
LibWAT	 96

Analog modules	 96

Table of Contents

[iv]

Configuring FreeTDM	 97
Wanpipe	 98
DAHDI	 99
FreeTDM library configuration	 99
FreeSWITCH configuration	 102
Operation	 104

Outbound calls	 107
Inbound calls	 108

Debugging	 109
Checking the physical layer	 109
Enabling ISDN tracing	 111
Audio tracing	 112

Summary	 113
Chapter 7: WebRTC and Mod_Verto	 115

WebRTC	 115
Browsers are already out there, waitin'	 116
Web Real-Time Communication is coming	 116
Under the hood	 117
Encryption – security	 122
Beyond peer to peer – WebRTC to communication
networks and services	 123
WebRTC gateways and application servers	 124
Which architecture? Legacy on the Web, or Web on the Telco?	 125
FreeSWITCH accommodates them ALL	 126

What is Verto (module and jslib)?	 127
Configure mod_verto	 128
Test with Communicator	 130
Build Your Own Verto App	 130

Summary	 137
Chapter 8: Audio and Video Conferencing	 139

Conference basics	 141
Conference.conf.xml (profiles, DTMF interaction, and so on)	 142

Configuration sections logic	 143
Profile	 144
Caller-Controls group	 146
Conference invocation, dialplan, channel variables	 148
Outbound conference	 148

Moderating and managing conferences – API	 149
Video conference	 151

Video conference configuration	 151
Mux profile settings	 152

Video conference screen layouts	 153

Table of Contents

[v]

Screen sharing	 158
Screen sharing dialplan extension	 159

Managing video conferences	 160
Conference performances	 161
Summary	 163

Chapter 9: Faxing and T38	 165
What is Fax on PSTN?	 165

How it works	 166
What is Fax over IP?	 167

Enter T38	 168
T38 terminals and gateways	 169

Fax and FreeSWITCH	 169
The mod_spandsp configuration	 170
mod_spandsp usage	 171

Debugging faxes	 174
How to maximize reliability of fax traffic	 175
PDF to fax and fax to PDF	 176
Fax to mail	 176
HylaFax and FreeSWITCH	 177

ITSPs and Real World Fax Support	 178
Summary	 178

Chapter 10: Advanced IVR with Lua	 179
Installing IVR	 179
Structure of welcome.lua	 180
Incoming call processing	 181

Before answering	 182
First voice menu	 184
Second and third voice menus	 190
Fourth menu – asynch! Nonblocking! Fun with threads!	 191

After hangup	 196
Utility functions	 197
Summary	 200

Chapter 11: Write Your FreeSWITCH Module in C	 203
What is a FreeSWITCH module?	 203
Developing a module	 206
Mod_Example outline	 207
Mandatory functions	 208

Load function	 209
Runtime function	 210
Shutdown function	 211

Table of Contents

[vi]

Configuration using XML	 212
Reacting to channel state changes	 214
Receiving and firing events	 216
Dialplan application	 218
API command	 219
Summary	 220

Chapter 12: Tracing and Debugging VoIP	 223
What can go wrong?	 224

What else can go wrong? (NAT problems)	 225
Other things can go wrong too	 227

SIP, RTP, SDP, RTCP, OH MY!	 229
Tools	 229

Firewall	 230
FreeSWITCH as SIP self tracer	 231
Tcpdum – the mother of all packet captures	 232
ngrep – network grep	 234

tshark – pure packet power	 235
pcapsipdump	 236
sngrep – the holy grail	 236

Sipgrep, Ngrep on steroids for VoIP	 241
Wireshark – "the" packet overlord	 244
Audacity – audio Swiss army knife	 250
SoX – audio format converter	 252

Summary	 253
Chapter 13: Homer, Monitoring and Troubleshooting
Your Communication Platform	 255

What is Homer?	 256
Installing Homer and the Capture Server	 258
Feeding SIP signaling from FreeSWITCH to Homer	 260
Searching signaling with Homer	 260
Feeding SIP signaling, QoS, MOS and RTP/RTCP
stats from CaptAgent to Homer	 263
Correlating A-leg and B-leg	 265
Feeding logs and events to Homer	 268

Logs to Homer	 269
FreeSWITCH events to Homer	 271

Summary	 272
Index	 273

[vii]

Preface
Real Time Communication (RTC) is a huge sector, in perennial growth. It spans from
VoIP to FAXes, from VideoConferencing to CallCenters, from PBXes to WebRTC,
using many interworking technologies to connect the past with the future, legacy
applications to new users and markets, creating and developing new ways for saving
time and money, fostering collaboration, and enjoying leisure.

FreeSWITCH covers it all; it is the most reliable, scalable, and flexible open source
foundation, and is used to build services and products worldwide.

This book adopts a professional approach and attitude, making available a
wealth of cumulated actual industry experience in each aspect of FreeSWITCH
implementation.

Written for professionals, each chapter contains the knowledge needed to frame and
understand its domain, and a thorough explanation of FreeSWITCH wheels and
knobs, best practices, and real-world solutions.

What this book covers
Chapter 1, Typical Voice Uses for FreeSWITCH, gives an overview and analyzes each
sector where FreeSWITCH is in production.

Chapter 2, Deploying FreeSWITCH, shows best practices in FreeSWITCH installation
and management.

Chapter 3, ITSP and Voice Codecs Optimization, suggests what to look for when
choosing an Internet Telephony Service Provider, and how to get the best from DIDs,
terminations, T38, and voice traffic.

Chapter 4, VoIP Security, exposes specific measures and tools used to keep
FreeSWITCH protected from unwanted attention and hostile behavior.

Preface

[viii]

Chapter 5, Audio File and Streaming Formats, Music on Hold, Recording Calls, covers all
that is related to audio manipulation with FreeSWITCH, from prompts optimization
to call center barge in, from playing live streams to HD codecs.

Chapter 6, PSTN and TDM, happens to be the first published, thorough explanation
of all possible interactions between FreeSWITCH and Sangoma, Digium, and other
compatible hardware for interfacing traditional and legacy telephony networks.

Chapter 7, WebRTC and Mod_Verto, provides a detailed overview of what WebRTC
is and what techniques it entails, and then follows the development of a complete
FreeSWITCH implementation.

Chapter 8, Audio and Video Conferencing, delves into the intricacies of setting and
managing FreeSWITCH multiuser conferences both via SIP and WebRTC, with
chatting, screen sharing, moderation, and advanced techniques for videocomposing
the screen.

Chapter 9, Faxing and T38, explores all facsimile transmission aspects, and how to
reliably fax via VoIP, send office documents, and integrate with mail.

Chapter 10, Advanced IVR with Lua, proves that it is not your average code snippet or
more of the same example. Starting from the thoroughly described script techniques,
it will be possible to build your industry-grade applications.

Chapter 11, Write Your FreeSWITCH Module in C, describes exactly what is needed
to add or modify FreeSWITCH functionalities at the most fundamental level:
interfacing your custom hardware, or your legacy OSS, or whatever.

Chapter 12, Tracing and Debugging VoIP, shows the art of SIP packet tracing, using the
latest open source tools.

Chapter 13, Homer, Monitoring and Troubleshooting Your Communication Platform,
walks through the operation of the most advanced VoIP/WebRTC monitoring
and data warehousing solution: Homer. Once implemented, your support staff
will reach Nirvana!

What you need for this book
For implementing the same solutions described in this book, you will need
a (virtual) machine with Debian 8 (Jessie) 64 bit, and some Linux admin and
networking knowledge.

Preface

[ix]

Who this book is for
This book is for skilled professionals who want to jump right into the depths
of FreeSWITCH, such as system administrators, programmers, and telephony
technicians who want to augment their ability to create real-world VoIP and
WebRTC products and services.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Several built-in modules exist to assist in this, such as mod_lcr and mod_nibblebill,
but the real beauty of FreeSWITCH's handling of calls in a wholesale scenario is due
to four core building blocks."

A block of code is set as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE scenario SYSTEM "sipp.dtd">
<scenario name="FreeSWITCH: call extension 1001">
<!-- we send the intial INVITE -->
<send retrans="500" start_rtd="mer">
<![CDATA[

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE scenario SYSTEM "sipp.dtd">
<scenario name="FreeSWITCH: call extension 1001">
<!-- we send the intial INVITE -->
<send retrans="500" start_rtd="mer">
<![CDATA[

Preface

[x]

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xi]

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-FreeSWITCH. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Mastering-FreeSWITCH
https://github.com/PacktPublishing/Mastering-FreeSWITCH
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xii]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[1]

Typical Voice Uses for
FreeSWITCH

FreeSWITCH (FS) is one of the world's most robust Real Time Communication
(RTC) switching tools. It packs a rich feature set, and its modular approach allows it
to stay ahead of the curve as new technologies emerge in the marketplace.

With this strong foundation, FreeSWITCH has matured into a product which is in
use in a multitude of environments. However, FreeSWITCH can also be complex and
overwhelming because of its rich feature set.

This book unravels some of the ways FreeSWITCH can be utilized.

In this chapter, we will cover "traditional" Voice over IP usage. See other chapters for
video, conferences, RTC, and so on. We will also cover the following:

•	 Routing calls
•	 Products and services
•	 Development
•	 Billing

Typical Voice Uses for FreeSWITCH

[2]

Understanding routing calls in
FreeSWITCH
Routing calls is the very essence of FreeSWITCH. Moving calls around can assume
very different meanings and use very different techniques, depending on the
scenario and with which aims it is done. You don't use the same tools and interaction
level for an enterprise PBX, a telemarketing dialer, and a provider-to-providers
minutes exchange.

FreeSWITCH's remote console at startup

Chapter 1

[3]

Wholesale (provider to providers)
FreeSWITCH supports a multitude of useful features for call routing services.
When we describe call routing, we are referring to connecting Party A with Party
B. These routing scenarios are generally heavy on logic regarding cost analysis,
interconnections with other carriers, and user permissions. These routing scenarios
also typically exclude features the user directly interacts with (such as voicemail or
auto attendants).

FreeSWITCH can be utilized as a powerful wholesale routing engine. Several built-
in modules exist to assist in this, such as mod_lcr or mod_nibblebill, but the real
beauty of FreeSWITCH's handling of calls in a wholesale scenario is due to four core
building blocks:

•	 The ability to remain in the audio path or get out of the audio path, as needed
•	 The ability to transcode, which helps correct problems between pieces of

VoIP equipment which aren't compatible
•	 The ability to maintain information about caller and callee in variables, and

to manipulate those values as the call is progressing (such as tracking how
much money someone has left in their account, or what the per-minute rate
of the call is)

•	 The ability to bridge calls and handle failures and retries when calls don't
connect, using a variety of call progress monitoring and failure handling
routines which are built-in to FreeSWITCH

FreeSWITCH's flexible design aids in providing a tremendous amount of
customization and capabilities as well. Examples include the ability to add
transcoding support for codecs at any moment during the call in a way that will
automatically and inherently work with any other codecs which are installed, and
the ability to add custom handling for failures in a way that suits your environment.

Wholesale services typically represent high-volume customers who want to:

•	 Configure a client for making calls and associate monetary value with each
individual client ("current balance" or "amount spent" are examples)

•	 Allow a client to attach phones, PBXs, other switches, or ancillary equipment
•	 Track a client's usage of said service based on what they connected, where

they called, and how long they talked, and potentially apply discounts or
premium fees based on time-of-day, destination, or other variables

•	 Detect fraud, abuse, or lack of funds automatically, both at call start and
mid-call

Typical Voice Uses for FreeSWITCH

[4]

•	 Allow for prompts and menus to automatically add funds or "top-up" services
•	 Allow for reporting

FreeSWITCH is capable, out of the box, of providing all of these services with simple
dial plan configuration. Additionally, FreeSWITCH can be attached to a web, mobile,
or legacy user interface to allow for users to manage their account, services, and
monetary assets.

Residential uses of FreeSWITCH
FreeSWITCH stands as one of the best open source class 4 (and class 5) switch
options, and is often the undisputed champ in many different roles because of the
number of features offered by the many ready-made modules. It is definitely an
excellent choice for the Internet Telephony Service Provider (ITSP), but let's not
forget one of its simplest use cases: Residential service.

Some residential options include things like Network Address Translation (NAT)
when configuring end-user devices like Analog Telephone Adapters (ATA). This
can be challenging when working with disparate networks and client devices
residing on LANs behind residential gateways and firewalls.

FreeSWITCH has configurable options for its Session Initiation Protocol (SIP) stack
(called Sofia) especially designed to overcome these hurdles and provide a viable
solution for residential service.

Some reasons why FreeSWITCH makes a good choice for residential service are:

•	 It is easily embeddable in low power devices
•	 It has easy configuration of end-user devices for home networks
•	 It had standard voicemail services via mod_voicemail
•	 It has advanced voicemail options using an Interactive Voice Response

(IVR) enabled audio navigation system
•	 It has custom scripting options for things like Unified Communications

Chapter 1

[5]

Routing with federated VoIP
Federated VoIP is a distributed Voice over IP network composed of autonomous
systems.

Federated VoIP is to telephony what internet e-mail is to messaging. Particularly,
it allows for the free flow of traffic without depending on a central exchange (or
exchanges), just like e-mail does not depend on a central post office. It works by
exchanging mail messages directly between organizations' (or even personal) Mail
Servers that have the authority and capability of managing their own traffic.

Let's continue with the example of e-mail (of note, SIP was based on SMTP and
HTTP protocols, that is, the protocols that orchestrate mail and the Web). So, here's
the trick: no central authority is involved, it's all peer-to-peer exchange of messages
in a worldwide network that works with extreme overall reliability day in and day
out for billions of people and trillions of communication exchanges.

Exactly the same criteria can be applied to Voice over IP (SIP) and Instant Messaging
(SIMPLE or XMPP), basing all communication exchanges around the concept of a
personal address like an e-mail address, which is used both by SIP and IM, and often
exactly the same for both clients. The example address joe.bloggs@overthetop.
com could be used for all unified communications with Joe.

Initially, VoIP had been popularized as a better and cheaper way to manage
traditional telephony traffic and to connect to traditional voice carriers. Then it was
adopted by the carriers themselves because of its better suitability to modern digital
networks and compatibility between hardware providers. So, today's approach to
VoIP often brings an unnecessary prejudice about dependency from carriers.

Federated VoIP gets rid of this, having autonomous servers exchanging their
communications, finding each other via DNS (queries about destination address)
without the need for central authority and/or carriers, just like the e-mail system.
Around this core concept has grown an ecosystem of encryption, mapping, and
resolving traditional telephone numbers via DNS (ENUM) and other additional
services. It should be noted that there is no technical requirement for encryption in
Federated VoIP.

FreeSWITCH has all the features needed by Federated VoIP:

•	 Full encryption support: TLS and STCP for signaling, SRTP and ZRTP
for media

•	 DNS SRV query support
•	 ENUM mapping support
•	 NAT traversal support

Typical Voice Uses for FreeSWITCH

[6]

•	 Full codec support and transcoding
•	 IM support via SIP's SIMPLE (can be gatewayed by an XMPP server

like Jabberd)
•	 Presence support via SIMPLE (can be gatewayed by an XMPP server

like Jabberd)
•	 FreeSWITCH can act as an inbound and outbound gateway with PSTN

and cellular networks (for example, GSM, etc), offering ENUM termination
service to calling parties

FreeSWITCH is able to work as a complete, self-sufficient autonomous system or as
a part of a bigger composite system with one or more SIP proxies, like Kamailio or
OpenSIPS, taking care of routing, proxying, load balancing, and so on.

Dialers/telemarketing
The subject of dialers and telemarketing often makes system administrators and
telephony switch operators queasy with anxiety when they are considering the
limitations of their networks, hardware capability, and other system resource
implications with the onslaught of marketing campaigns directed to their customers.
This certainly does not stop FreeSWITCH from being a great choice when writing
dialer and telemarketing applications, and not all dialer and telemarketing systems
should have negative connotations.

FreeSWITCH is a natural front-runner when choosing a softswitch for writing
dialer and telemarketing applications because of the small learning curve needed
to develop applications in a variety of programming languages, and the excellent
community support.

A developer can create a custom dialer application in FreeSWITCH utilizing a core
switch database data in real-time to drive the logic. They can utilize modules like
mod_event_socket to connect to the switch and perform API functions like initiating
calls and managing IVRs for things like credit card payment, billing and collection,
or opt-in and opt-out campaign functionality.

Not all telemarketing and dialer applications are used for marketing. Some ways
FreeSWITCH is currently being utilized for dialers and telemarketing are:

•	 Delivering inclement weather school-closing notification recordings to
telephone lists

•	 Auto-dialing church congregation members to connect them to IVR
applications for surveys and volunteering

•	 Notifying political constituents of party meetings and gatherings

Chapter 1

[7]

•	 Live agent outbound calling for fundraising or event coordination

Some rows from FreeSWITCH's remote console help

Typical Voice Uses for FreeSWITCH

[8]

FreeSWITCH Products and Services
Another way to see what FreeSWITCH can do is to think in terms of what services it
will give its users. Here, too, different technologies and techniques are deployed to
cater to different kinds of users, looking for a different set of features.

Business PBX services (hosted and
on-premises)
FreeSWITCH's scalability and feature set lends itself naturally to being used as the
basis of an extremely powerful business PBX phone system. Successfully deployed
in both on-premises environments for small SOHO businesses while scalable to
hundreds of users, or utilized as the foundation for hosted PBX services hosting
hundreds of thousands of users, the system lends itself naturally to powering these
types of solutions.

Out of the box, FreeSWITCH includes basic PBX modules which provide powerful
functionalities. These modules include features such as:

•	 Ring groups (simultaneous and sequential)
•	 Call forwarding
•	 Presence
•	 Text to speech
•	 Call queues
•	 Caller ID blacklists
•	 Caller ID name delivery
•	 Privacy features / anonymous calling
•	 CDRs / Call logs
•	 Eavesdrop / whisper
•	 Voicemail
•	 Music on hold (w/ streaming sources)
•	 Usage limiting
•	 Call pickup / group pickup / call intercept

We could go on further, but this is a good general idea of the building blocks that
are provided. Most of these modules can be activated by adding four to six lines
of XML to a dial plan configuration file. The power of dial plan combined with
modules should not be underestimated - this is powerful stuff with very little
work to get it going!

Chapter 1

[9]

Additional components exist for expanding into:

•	 Chat
•	 Messaging / SMS
•	 HTTP services

Customer demands will sometimes lead to more complex requirements that might
not be handled by default modules. However, ready-made building blocks combined
with the ability to run your own custom scripts within FreeSWITCH allows for
providing quick time to market services even for the most demanding customer base.

Call centers
Any company doing substantial business in any market segment will attest that
support is a cornerstone of a business's success. A robust and comprehensive
telephony platform is crucial, and FreeSWITCH allows for a configurable, scalable
and maintainable solution suitable for call centers of any size.

There is no shortage of flexibility with FreeSWITCH. If your solution requires a
custom application, FreeSWITCH provides a host of development options for your
call control and routing. Although you are free to use any supported language
to "roll your own" solution, FreeSWITCH comes complete with robust call center
modules that are being utilized in production environments in literally thousands of
deployments all over the world.

Mod call center includes features like:

•	 Multi-tenant capability
•	 Multiple agent call-distribution strategies, such as :

°° Longest idle agent
°° Round robin agents
°° Agent with least talk time
°° Agent with fewest calls
°° Top-down tier position escalation

•	 Time-based scoring escalation strategies like:
°° Total time in system
°° Time in current queue

www.allitebooks.com

http://www.allitebooks.org

Typical Voice Uses for FreeSWITCH

[10]

•	 Caller configuration options:
°° Maximum wait time
°° Maximum wait time with no agent

•	 Tier rule configuration options:
°° Wait time
°° Skip tiers with no agents
°° Discarded abandoned callers
°° Resumed abandoned callers

•	 Recurring announcements with time frequency interval settings

With IVR trees easily integrated into your call center solution and full access
to databases for CRM and Knowledge Basis, your ability to create call center
applications is almost limitless.

If your requirements do not dictate the granularity of complex configuration options,
then there are other options available with an alternative FreeSWITCH module
called Mod FIFO. As the name implies, it serves as a first in, first out call-queuing
mechanism, with many features and strategies, music on hold, and announcements,
that's easy to integrate in custom or third-party applications.

Value added services and games, prizes, and
polls
Value Added Services (VAS) are services that offer something on top of pure voice
transport.

Some examples include:

•	 Real time translations (for example, three-way calls with an interpreter)
•	 Party lines (for example, multiple-way calls)
•	 Virtual meetings (for example, conferences with or without moderator)
•	 Cooperative Environments (for example, audio-video-screensharing-

whiteboarding)
•	 Fax-on-demand
•	 Call screening-whitelisting-blacklisting
•	 SMS feed subscriptions (news, traffic, special interests, and so on)

Chapter 1

[11]

Interactive entertainment and polling is a business that fits perfectly with the ease of
programming and integrated messaging capability of FreeSWITCH.

Here are some examples of what has been realized in this field:

•	 Radio and TV live talk shows that allow for the public to ask questions and
vote on issues, both through voice calls and via SMSs

•	 Voice menu trees that ask questions to customers, giving them prizes after a
number of correct answers (for example, product awareness and loyalty)

•	 Redeem-the-code types of campaigns, where customers or the public can
enter a code they found on your documentation or advertising to be awarded
a bonus, both via SMSs and voice calls with DTMF

•	 Incoming calls statistics (comparative ROI analysis on multiple channel
advertising campaigns, for example, what they call the most, the number
advertised on radio, TV, Internet, or the one in the press?)

"Class 4" vs "Class 5" operations (and SBCs)
FreeSWITCH is a softswitch. That is, it is a software that handles and interconnects
calls, like the manual switchboards where operators answered and distributed calls
by moving jacks and cables in old black and white movies.

Softswitches in telco jargon are often categorized as pertaining to a "class," and "Class
4" and "Class 5" are the only two classes you will hear about.

Because those are fuzzy terms, almost marketing terms, you will never find the exact
demarcation between Class 4 and Class 5 features and capabilities; a lot of them
overlap (anyway, it's mostly the same technology).

An arbitrary rule of thumb can be to use Class 4 when talking about large volume,
wholesale switching of call minutes between different carriers, ITSPs, CLECs, with
minimal meddling in the audio streams (apart from transcoding, if needed). The
term "Class 5" applies to audio or text-based services where end user interaction is in
focus and where sophisticated logic is required.

FreeSWITCH is widely used in both contexts.

A typical Class 4 usage would be to interconnect many providers of international
voice routes and sell voice minutes based on algorithms about least cost route and/
or route quality. Here, the sheer volume of signaling that can be managed per
second and the availability of very efficient ways to lookup which route to connect
to is of paramount importance. FreeSWITCH with "bypass media", mod_lcr, mod_
easyroute, some Lua scripting or custom C code is a perfect platform, easy to use
and modify on the fly, without service interruption.

Typical Voice Uses for FreeSWITCH

[12]

Typical Class 5 usages would be an enterprise or SOHO PBX, a call center system,
a fax server with mail2fax and fax2mail, an airport IVR to query flights' arrival
times, and so on. Here, FreeSWITCH offers prized features like audio quality (that
is, no glitches, distortions, and so on), programmability (how easy it is to implement
complex services and business logic), capability of interfacing different media (PSTN
to WebRTC, SIP to Skinny, TDM to Skype, SMS to XMPP, and so on) and different
audio formats (alaw, ulaw, High Definition Audio, Silk, Siren, G729, Opus, mp3,
wav, raw, and so on). Easy integration of Text To Speech and Automatic Speech
Recognition, manipulation of audio prompt libraries, and easy ways to gather and
interact with user pressed DTMFs are the highlights in FS Class 5 operation.

"SBC" is another very vague marketing buzzword. A Session Border Controller
(SBC) is a softswitch that sits on the edge of your own telecommunication network
and acts as a point of demarcation and interconnection with the external world.
Let's say an SBC is a softswitch with an emphasis on security, NAT traversal,
media proxying, network connectivity, manageability, audio transcoding, protocol
gatewaying (connecting with different protocols), and protocol adaptation (being
the compatibility layer between different "interpretations" of the same protocol).
FreeSWITCH excels in those areas, as we have seen before in the two "Classes", while
it sports specific SBC features like the most advanced NAT traversal, so smart that it
can connect endpoint (that is, user phones) behind residential ADSLs and firewalls,
or form a federation between the many international offices of a company, each SBC
sitting on different NATed LANs. Also, as security goes, FreeSWITCH is one of the
reference implementations for ZRTP media encryption, as well as TLS and SIPS.

WebRTC / web services / Internet-only
services
FreeSWITCH's unique modular approach made it an easy choice for extending
integration into WebRTC and other web-based services which need a bridge
between different types of technologies. As an example, web-based communications
are useful but are often hindered by their inability to connect to the rest of the
established world, causing adoption to be slow. As an example, users will be
reluctant to get rid of their desk phone when their browser-based replacement can't
call phone numbers but only other browsers. Best of all, WebRTC support follows
the same ease-of-installation and global compatibility standards that FreeSWITCH
has become known for in the VoIP world. Users can make calls where one side of
the conversation is WebRTC and the other is the PSTN, or WebRTC to SIP and so on.
FreeSWITCH does all the hard work of normalizing the audio and signaling services
between the two services and bridging any gaps that may exist when connecting
from one type of service to another.

Chapter 1

[13]

Mobile "over-the-top" SIP
As mobile services become more pervasive in the telecommunications industry,
mobile network operators have responded by increasing data speeds. In this process,
many service providers are now investigating "over-the-top" services which utilize
data communication services to transmit and receive voice and video. These services
often link to messaging or social applications and provide both real-time, semi real-
time, and recorded communication services via data connections. In many cases, the
user experience simulates phone technology even though it is not using traditional
telephony services provided by the underlying communications service provider. In
these cases, there is added complexity for handling such services.

Over-the-top services face a number of challenges, which include:

•	 The ability to adapt to rapidly changing network performance characteristics
•	 The ability to "hand off" calls as different networks which have better

qualities come into range (that is, moving from 3G to 4G or 3G to WiFi)
•	 Selecting appropriate codecs which match available capacity and bandwidth
•	 Having sufficient buffering and audio stream management strategies

to allow for quality communication while being resilient to issues in
network consistency

•	 Providing feedback to the user to allow her to understand what is happening
during these complex shifts

•	 The ability to track device configuration and usage information as customers
roam to various locations, change devices, and so on.

•	 The ability to adapt to networks which block or restrict some kind of traffic
•	 Integrating with various types of physical hardware on the user's device
•	 Being able to debug issues when it's unclear if they're caused by the device,

the mobile network, or the softswitch

Despite the various unique challenges over-the-top apps pose, the attractive
promise of cheaper phone calls integrated into social, e-mail, or other methods
of communication remains a popular target for many companies.

Typical Voice Uses for FreeSWITCH

[14]

With these goals and issues in mind, where does FreeSWITCH fit in? It should come
as no surprise that FreeSWITCH is a great match for solving these challenges. While
less discussed within the FreeSWITCH community, FreeSWITCH contains hidden
gems for features such as:

•	 Managing a jitter buffer manually, where you can account for non-standard
network environments

•	 Support for STUN, TURN, ICE, and alternate signaling ports and methods
(such as UDP and/or TCP), and the ability to bridge between endpoints
using different methods

•	 The ability to select codecs on the fly on a per-call basis, which is useful in
conjunction with a mechanism to detect current network conditions

•	 The ability to handle unexpected events gracefully (such as dropped calls)
where strategies can be taken to reconnect a caller automatically without
dropping both sides

•	 Rich statistics and RTCP feedback implementation providing real-time
information to both caller and callee about the quality of the transmission

These are just some of the building blocks that make FreeSWITCH unique when
attempting to solve these over-the-top problems. Make no mistake, over-the-top
applications are still a challenge. But FreeSWITCH gives you a huge head start in
tackling these problems.

Skype to SIP call, seen from FreeSWITCH's remote console

Chapter 1

[15]

Development
FreeSWITCH is often considered the perfect development tool, particularly in
enterprise, startup, and telco environments.

Strict on output, broad on input
The philosophy underlying FS architecture lends itself perfectly to interface legacy,
commercial, and proprietary hardware/software: FS output is very, very strict in its
adherence to the letter of the standards (SIP and related RFCs), so it's able to make
itself understood by whatever it's trying to communicate with, but it is also very,
very flexible for what it accepts as an input, for example, core developers embedded
into FS, all the quirks, and the workarounds, to let it accept the often non-standard
(or plain wrong) "interpretation" and "extensions" of SIP standards that have been
pushed on the market by the various generations of VoIP software and hardware
providers (often with the "unintended" side effect of locking in their customers).

Very structured, very reusable techniques
FS is built around mainstays of modern technology: XML, message queues, JSON,
RPC, and standard libraries. Developers don't have to learn new ad hoc "languages"
to fully exploit the power of FS: All of its configuration, dialplan, upstream and
downstream endpoints and gateways — all of its features and behaviors are
completely defined by XML standard documents that can also be created in real time
dynamically by tried and true XML generating applications and languages. Given a
basic knowledge of communication fundamentals, a wealth of pre-existing, in-house
knowledge of structured information management can be reused.

Polyglot by vocation and destiny
All kinds of programming languages can be used to interact with FS. This is due to
the fact that we're dealing with two main paradigms, XML and message queues (and
also XML exchanged back and forth via message queues). All computer languages,
both scripted and compiled ones, have very efficient, stable and performing ways to
interact with XML structured information, from C to Basic, from Perl to PHP, Python
to Lua, Erlang to C# to .NET, Java and all the others in between. Interacting with the
message queues governing and reporting FS behavior is done through a simple API
that is the same for all languages covered by SWIG: In each language you'll find
the same "objects" with the same "methods" (or "functions") and "attributes"
to interact with.

Typical Voice Uses for FreeSWITCH

[16]

Extreme scalability, from embedded to big
irons
Different tasks are best performed by different devices, with different price
points, power consumption, sets of hardware interfaces: From WRTG routers to
Raspberry PIs (for example, for residential CPE, or as WiFi VoIP, or as a portable
communication gizmo), from desktop PCs (as a personal or callcenter softphone) to
multisocket multicore massive servers (capable of delivering high call per second
origination and termination) and powerful DSP blades (for high capacity call
transcoding, Text To Speech generation, Automatic Speech Recognition and media
management). For all of those roles we can use the same FreeSWITCH software, that
behaves and is managed in the same way.

Born internationalist
Using the same foundation system library as the ubiquitous Apache Web Server, FS
runs at full efficiency on Linux, Windows, FreeBSD and Solaris, on Xen, AWS, KVM,
and VMWare. DevOps people often prefer to use their own deployed, stable, and
known operating systems and managing tools.

Telcos internal integration ("FreeSWITCH is
the Perl of VoIP")
Telcos, telecommunication companies, both the old Bells and the new CLECs or
VMOs, are a fascinating patchwork of legacy, proprietary, in-house developed,
partner-provided, stakeholder-imposed hardware and software. With all kinds of
database engines (Oracle, DB2, SQL Server, SAP, MySQL, PostgreSQL, and so on),
directory systems (LDAP, Active Directory), AAA mechanisms (Radius, Diameter,
and so on), SIP and SS7 equipment (some of which nobody knows how to operate
anymore, "so please don't touch it"), and many different functions and departments
barely interacting with each other, there can be huge return time for even the
smallest feature request or bug turnaround.

Chapter 1

[17]

In a complex environment like this, FS can be introduced as universal filter and glue,
allowing incompatible systems to communicate (as protocol translator and adapter),
transcoding to and from all audio formats (ulaw to mp3 to High Definition Opus,
Siren, Silk, etc), manipulating signaling and log generation for billing, accounting,
tracking, charting, debugging purposes (additional and optional SIP packet headers
injection and parsing, CDR generation, mediation, reconciliation, and so on), and
database interfacing (native, odbc, REST, SQL, NoSQL, and so on).

FreeSWITCH is accepted into telco environments because of its known stability
and "industrial grade" structure, and because it does not carry any "hobbyist" or
"hackerish" fame.

Starting from resolving specific problems with "ad hoc", Swiss army knife solutions,
FreeSWITCH can then expand its internal reach to prototype new features and
services, substitute unwieldy legacy systems (for example, IVRs, fax servers, and
so on), and quickly become the poster boy of Sales and Marketing departments for
quick implementation and flexibility, while gaining the Operations respect and love
for its stability, performances, and manageability.

Rapid new services prototyping
Standard, real programming languages give FreeSWITCH a fast pace of
implementation for any kind of features and services: What is simple stays simple,
and what is complex becomes possible, without crashes, instabilities, or performance
bottlenecks.

Programming languages bring with them all their wealth of libraries, both standard,
open source, commercial, and in-house developed. So, all kinds of objects, systems,
procedures are within reach, both bleeding edge external services and internal,
legacy, proprietary, prehistoric leftovers.

Real business logic can be crafted without compromises, accessing each call in real
time, at the desired abstraction level, from the most abstracted down to the detail of
the single SIP packet.

WebRTC will allow entire new classes of applications and services, using the
ubiquitous web browser as a communication endpoint, while FS modules exist for
managing any kind of content, from real-time broadcast to video, from conferencing
to queuing calls and managing call center operators.

Typical Voice Uses for FreeSWITCH

[18]

Click-to-Call, database interaction, SMS sending and receiving, website
complementing and synergy, full CMR integration, marketing campaigns, media
redemption analysis, dynamic real-time events, horizontal scalability via tried and
true load-balancing, cloud leveraging—all that and much more is what FreeSWITCH
can be used for to speed up the time to market and implement convergent media
multi-pronged strategies.

A debugging session, seen from FreeSWITCH's remote console

Accounting and billing
In telecommunications (and probably everywhere), accounting and billing are two
separate logical entities, although there are cases (for example, real-time prepaid
accounts) where they happen together and are strictly intertwined.

Chapter 1

[19]

Accounting is keeping a tab on who gets what, for example, what metered services
a user accessed, when the user accessed them, for how much time, and so on.
Particularly, in telephony, which calls were made to what numbers, for how long,
for each customer. This process involves generating and managing Call Detail
Records (CDRs) for each and every call, where all the above details and much more
are stored and can be retrieved. CDRs are also a precious source of debugging and
troubleshooting information, allowing for the identification of which problems
affected failed or low quality calls.

On the other hand, billing involves operating on the customer account, adding or
subtracting "credits" related to the cost of the services accessed, with costs calculated
based on unitary prices that can depend on multiple variables (from which prefix
to which prefix a call was made, how long it lasted, at which time of day it was
made, which route was chosen to connect it to the remote party, and so on). Also,
in the case of prepaid credits and calling cards, there is often a requirement to not
allow customers to access services after their credits expire, for example, if they
have 10USD on account and the call costs 2USD/min, then after 5 mins the call has
to be interrupted (perhaps with a message about how to top up the account). Cost
calculation is often referred to as "rating," while the gathering of CDRs and their
conversion into a uniform format ready to be rated is called "mediation."

Call Detail Records (CDRs)
FreeSWITCH has plenty of flexibility for CDR generation, in subtle and varied ways
so as to accommodate all kind of operations, and provide this foundation layer for
every business model.

Default CDRs are generated by FS's mod_cdr_csv as rows in files containing Comma
Separated Values (CSVs). We can choose to keep track of the caller side (A leg), the
callee side (B leg), or both (AB). For each leg we can have a row in the Master.csv,
one in the specific caller CSV file, and/or one row in the specific callee CSV file.

The format and contents of those rows are defined by templates that allow us to
record whatever mix of variables is suitable for our operation and business model,
from any kind of timers (total duration, duration after answer, billable duration, and
so on), to origination and destination numbers, time of day / day of week, individual
account ID, company account ID, and so on.

There are various templates ready made in the FS distribution, among them one
that generates CDRs in the same format generated by Asterisk (so to leverage legacy
billing systems), and another one that generates files containing rows of SQL inserts,
ready to be piped to a database client for further usage.

Typical Voice Uses for FreeSWITCH

[20]

Another possibility for CDR generation (instead of or in addition to CSV files)
is implementing mod_cdr_xml. Using XML allows for much more structured
information to be put in the records, and can be sent real live via POST or GET
to an HTTP server (which may itself enter rows into various database tables).

Mod_nibblebill / CGrateS
FreeSWITCH contains built-in modules to assist in real-time rating and credit
management. Unique to FreeSWITCH is the ability to provide these services real
time in a lightweight manner. With its multi-threaded design, billing and rating can
be done on each leg of a call easily with different rates for each party, in addition to
rates which might vary based on the selected carrier, time of day, number of calls
currently active, or other such data.

One such module within FreeSWITCH that assists in this process is mod_nibblebill.
A simple module at its core, nibblebill hooks into the heartbeat features FreeSWITCH
provides for every leg of a call. On each heartbeat, nibblebill provides quick
mathematical calculations about whether there are enough funds remaining to
continue the call and logs to a database that the call has continued and to immediately
deduct additional credit. This module is fairly lightweight for small to medium system
capacity and can be expanded in larger systems by using basic database technologies
already available. In addition, anyone who can program a database can program
an interface to manage adding, subtracting, and tracking monetary value from a
customer's account in conjunction with mod_nibblebill. This makes implementing
the basics of a billing system easy. You can find many more details about
mod_nibblebill in another Packt Publishing book, FreeSWITCH 1.2.

When combined with CDRs, you can also pair accounting and historical data with
each call. This allows for a complete picture of billed services to a customer.

Other real-time tools exist such as Carrier-Grade Rating System, CGRateS,
which links to FreeSWITCH and watches calls real time as they progress. Using
FreeSWITCH's powerful event system, CGRateS monitors and manages calls as
they happen and records data about the calls for reconciliation. CGRateS is an
independent, open-source project, but is linked closely to the FreeSWITCH system
for real-time handling of events happening on the switch, both as billing, anti-fraud,
LCR, and thousands other features. CGRateS project developers are available for
custom installation and implementation of complete solutions. On top of CGRateS
engine, VoIPtology has developed CGRBilling, a commercial packaged solution with
Web interface.

Chapter 1

[21]

Other billing options (open source -
commercial)
Many rating and billing systems exist out there, designed for the whole
telecommunication market, or specifically for FreeSWITCH. That's because the entire
telecom industry, since inception, has been the buyer and the research sponsor on
billing systems. You can say that many computer advancements as a whole where
targeted to advance telecom's billing systems.

Most of the industry relies on offline management of CDR files that are normalized,
inserted into a database, and then massaged following business rules to obtain the
single customer's bill for the period. With the advent of web interfaces that allow the
customer to verify their own account in almost real time, the management flow cycle
for CDRs has been shortened to be almost instantaneous, albeit still file-based. An
open source, mature, and industrial grade example of this approach is JBilling.

On the other side, real-time billing open source applications are, in addition to the
aforementioned CGRateS, ASTPP (complete solution, billing, rating, crm, lcr, and
so on), Vbilling (complete solution, integrated with switch management), Viking
(expanded from wholesale to cover retail too).

All of these open- source solutions are available with commercial support and
backing, and by the time you're reading this book, a billing solution will probably be
available for FusionPBX, the open source GUI for the management of FreeSWITCH.

Many pure commercial solutions and services are available, both as software install
and as cloud services. Please check FreeSWITCH online documentation for an
updated list.

Summary
In this chapter we have covered some of the many different use cases for
FreeSWITCH, and we have seen how the different technologies that compose
FS can be deployed using various techniques.

The key here has been the concept of toolset: FreeSWITCH is a focal point of
real-time communication technologies that span the entire field, from billing to
transcoding, from interactive voice attendant to least cost route management.

Typical Voice Uses for FreeSWITCH

[22]

Also, we've seen how there are many ways to harness this power, to make
FreeSWITCH cater to our own kind of users and business goals, using different
tools for different aims, from XML to scripting languages, from databases to
external services.

In the next chapters we will go deep into the rabbit hole, beginning with Chapter 2,
Deploying FreeSWITCH, about production deployment best practices, that will show
how to end up with a system that is reliable, manageable, robust, and performing.

[23]

Deploying FreeSWITCH
FreeSWITCH is deployed in production on a range of hardware platforms from
BeagleBoards and RaspBerryPIs, to big iron, telecom-grade servers. FS will happily
work as a little appliance on a customer's premises and will merrily chug millions
of calls in the datacenter. The trade-off between hardware cost, power consumption
and form factor depends on use case. Obviously, the more cores and CPUs you
throw at it, the more the RAM, and the faster the hard disks; the more concurrent
calls you can get.

Here we focus on best deployment practices to obtain the most reliable service from
your FreeSWITCH server. In this chapter, we will cover:

•	 Network requirements
•	 Testing
•	 Logging
•	 Monitoring
•	 HA (High Availability) Deployment

Network requirements
Quality of audio perceived by the user will first and foremost be affected by the
network performance. Delays, jitter, and loss of packets can severely degrade end
user experience, to an unacceptable level. There are several key components that can
enable FreeSWITCH to operate more securely and efficiently: MPLS or dedicated
peering connections can greatly enhance the network reliability, while Quality
of Service (QoS) packet tagging and differentiating settings between your local
LAN and the public WAN infrastructures will let you find the sweet point between
infrastructure costs and audio quality.

Deploying FreeSWITCH

[24]

Understanding QoS
QoS is a mechanism for guaranteeing that certain types of communication can be
ranked for importance of delivery to ensure quality. There are multiple types of QoS
that can be achieved in most network environments. Generally, QoS can be done
on the physical layer (for example, guaranteeing that all phones are connected on a
network that has its own cables, separate from any web browsing or data networks),
the virtual network layer (by creating a VLAN which splits all voice traffic from
data), and on the packet layer (by tagging individual VoIP packets for importance
and priority over others).

Properly planned out physically separated networks or networks where voice
operates on a VLAN and a dedicated network uplink on the WAN side have the
highest chance of success and improved quality. Simply put, if data and voice aren't
mixing, and you have sufficient bandwidth for times when everyone is on the phone
at the same time, you should have a reliable experience without much extra work
because every device has all the capacity it needs. Unfortunately, in today's world,
customers aren't often willing to invest in such scenarios.

While VLANs and separated networks are great concepts and should be
implemented where possible, they're not practical in many network setups. This
leaves packet-based QoS, often nicknamed as packet tagging or QoS tagging. In this
method, every IP packet that leaves FreeSWITCH can be tagged as to its priority
level. This priority level is supposed to be used by all associated network equipment
to guarantee timely or priority delivery. As an example, if a router is receiving
requests to service two different websites at the same time, but packets for one site
are marked as higher priority, and the Internet link is saturated, the high priority
packets will be sent before the low priority packets. The assumption is the lower
priority application can handle loss of packets while the higher priority application
cannot, or is more sensitive to such losses and will have a degraded experience for
the user.

Enabling QoS is a weakest link network design. Simply tagging packets as important
won't do anything unless all the equipment on the path looks at the tags and
processes them properly. This means your network gear at all sections of your
network must be of sufficient quality to support QoS properly. Assuming that's the
case, enabling QoS on the FreeSWITCH server is relatively easy if you're using Linux
and have the ability to setup IPTables.

Chapter 2

[25]

It's important to note that, very often, people who know SIP typically
run it on port 5060, mistakenly believing that setting up QoS tagging on
port 5060 will somehow result in improved call audio. This is not the case
because 5060 is used for signaling, not media. Instead, media is done
over a range of ports (on FreeSWITCH this defaults to 16384-32768). This
port range is defined in the switch.conf.xml file in the autoload_
configs/ directory. These are the ports which you should be tagging
with QoS if you're seeking improved audio quality.

In the following example, we provide the IPTables command which will tag audio
packets as high priority. # Mark RTP packets with EF:

iptables -t mangle -A OUTPUT -p udp -m udp --sport 16384:32768 -j DSCP
--set-dscp-class ef

This command will change the DSCP tag in the IP header to indicate a class of ef or
Expedited Forwarding.

Once this command is executed, all audio packets sent out from the network will be
tagged as high priority. If the network infrastructure supports this, those packets are
more likely to be sent (even on a saturated link) than other packets, leading to better
quality audio.

LANs, WANs, and peering
FreeSWITCH has some powerful configuration capabilities when being utilized in
an environment where multiple LAN, WAN, or other peering engagements exist.
Specifically, FreeSWITCH allows for multiple interfaces to be defined, in the form
of bindings. This allows you to send and receive data on a specific IP and port
combination, and treat all packets on that port and IP with specific settings
and handling.

A sample scenario of how to utilize FreeSWITCH's multi-interface capabilities to take
advantage of LAN, WAN, and peering arrangements is as follows.

In this scenario, we simulate a high-traffic office environment
with demanding call quality requirements.

Deploying FreeSWITCH

[26]

The specific objectives are as follows:

•	 Route all LAN traffic over a specific network card which is physically
connected to the corporate LAN and has physical guarantees of sufficient
bandwidth

•	 Route all WAN signaling traffic over a medium-quality network link to the
public Internet

•	 Route all WAN audio traffic over a high-quality network link to the
public Internet

•	 Route all traffic destined for our upstream VoIP provider's gateway over a
specific network card which links to an MPLS and connects directly to that
VoIP provider

The preceding scenario would have the following benefits:

•	 Calls from LAN phones to the PSTN would traverse only the MPLS link
and the corporate LAN, making the call more secure while guaranteeing call
quality over dedicated links

•	 Calls from LAN phones to non-PSTN numbers or that route via Internet
gateways or peers would traverse high quality network paths for audio and
standard quality links for signaling

•	 Calls from roaming WAN users which utilize the system remotely would
also have audio routed via high-quality links and signaling routed via
standard quality links

•	 As a side benefit, a security benefit would be that an attacker attempting to
DoS the WAN network might only know the signaling IP addresses, so any
DoS attack would have no impact on call quality for already established calls

To achieve this, you would set up:

•	 A network interface with a local IP address for your corporate LAN
•	 A network interface with a public IP address for signaling, which maps to

your medium quality network
•	 A network interface with a public IP address for audio, which maps to your

high quality network
•	 A network interface with an IP address for your MPLS and VoIP

carrier gateway

Chapter 2

[27]

In the end, you will end up with four IP addresses. You would attach those four
IP addresses to three SIP interfaces within FreeSWITCH. We'll call them corp,
Internet and voip_gateway for simplicity. Corp and voip_gateway would carry
signaling and audio on the same IP address, while Internet would actually consist
of two IP addresses, one for audio and one for signaling.

The preceding scenario would be set up in your FreeSWITCH SIP Profiles. This
would result in the highest quality possible for any type of common call traversing
this environment.

Testing with SIPp
Testing is an important task when you are working on a new service and you want
to check everything before deploying it in a production environment. For Session
Initiation Protocol (SIP) one key testing tool is definitely SIPp, open source software
that can be used for testing purposes. It is able to behave as SIP User Agent Client
(UAC) as well as User Agent Server (UAS) hence you can use it these ways:

•	 SIPp is used as UAC and calls FreeSWITCH (IVR, voice applications,
and more)

•	 SIPp is used as UAS and is the endpoint being called (by another
FreeSWITCH extension for instance)

•	 SIPp is used on both sides of a single call (the caller and the callee) to build
completely automated tests

Running scenarios
One of the strengths of SIPp is that it is highly customizable: the user writes scenario
files in XML format that details all communication steps. An XML scenario file
basically describes every SIP message the tool has to send and every response it is
supposed to get. Some variables are also available so you do not have to take care of
things like tags and call-id stuff. This flexibility in building scenarios means you
can simulate many different things: from a basic call to elaborated services such as
IVRs, voicemail calls (with user authentication and message recording), and so on.

Let's see a simple scenario with SIPp as UAC. In a vanilla FreeSWITCH setup,
call extension 1001 as user 1000. The scenario file would look like the following
(please note that SIP messages after first INVITE have been deleted to make the
XML content shorter):

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE scenario SYSTEM "sipp.dtd">
<scenario name="FreeSWITCH: call extension 1001">

Deploying FreeSWITCH

[28]

<!-- we send the intial INVITE -->
<send retrans="500" start_rtd="mer">
<![CDATA[

 INVITE sip:1001@203.0.113.100 SIP/2.0
 Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]
 From: 1000 <sip:1000@[local_ip]:[local_port]>;tag=[pid]
SIPpTag00[call_number]
 To: 1001 <sip:1001@203.0.113.100:[remote_port]>
 Call-ID: [call_id]
 CSeq: 1 INVITE
 Contact: sip:1000@[local_ip]:[local_port]
 Max-Forwards: 70
 Subject: Test_call
 Content-Type: application/sdp
 Content-Length: [len]

 v=0
 o=user1 53655765 2353687637 IN IP[local_ip_type] [local_ip]
 s=-
 c=IN IP[media_ip_type] [media_ip]
 t=0 0
 m=audio [media_port] RTP/AVP 0
 a=rtpmap:0 PCMU/8000

]]>
</send>
<!-- we expect to receive a trying -->
<recv response="100" optional="true" rss="true"/>
<!-- the FreeSWITCH server should ask us to auth your request -->
<recv response="407" auth="true" rss="true"/>
<!-- we ack the 407 message -->
<send crlf="true">
 [...]
</send>
<!-- we send again the INVITE with the auth field -->
<send retrans="500">
<![CDATA[
 [...]
 [authentication username=1000 password=1234]
 [...]
]]>
</send>
<!-- we expect to receive a trying -->

Chapter 2

[29]

<recv response="100"/>
<!-- we expect to receive a provisional 180, but it's not sure yet -->
<recv response="180" optional="true"/>
<!-- we expect to receive a provisional 183, but it's not sure too -->
<recv response="183" optional="true"/>
<!-- we expect 1001 to pick up the call -->
<recv response="200" rtd="mer" rss="true"/>
<!-- we ack the 200 OK SIP message (if the call has been picked up)
-->
<send crlf="true">
 [...]
</send>
<!-- we pause, but we could instead send media here by playing a pcap
file -->
<pause milliseconds="1000" crlf="true"/>
<!-- we hang up the call -->
<send retrans="500">
 [...]
</send>
<!-- FreeSWITCH should reply 200 OK -->
<recv response="200" crlf="true"/>
<!-- various scenario parameters -->
<ResponseTimeRepartition value="100, 200, 500, 1000, 1500, 2000, 5000,
10000"/>
<CallLengthRepartition value="10, 100, 500, 1000, 5000, 10000,
20000"/>
</scenario>

To run such a scenario is an easy task to accomplish, you only need to run the
sipp binary:

./sipp -sf call_1001.xml -i 192.168.1.10 -m 1 203.0.113.100

Here the parameter -sf specifies the scenario file, -i specifies the local IP address,
-m specifies the number of test calls to start (here, only one) and the last address
represents the FreeSWITCH server, but many other parameters are available. A
complete report is printed out at the end.

SIPp provides a command-line user interface that displays real-time information
about the scenario being run so the user can check if everything is running as
expected even if the tests are not finished. The command line interface can be used to
increase/decrease the frequency and the number of calls per second (cps) to start, if
more than one is set with the -m option.

www.allitebooks.com

http://www.allitebooks.org

Deploying FreeSWITCH

[30]

In addition to signaling, SIPp is able to handle media traffic/RTP packets, so
even voice QoS testing can be done with it, such as evaluating the MOS (Mean
Opinion Score) of a test call. To implement it in the previous scenario, the following
instruction could be introduced once the call is established:

<nop><action><exec play_pcap_audio="scenario/test.pcap"/></action></
nop>

If you want to use SIPp as a UAS (as per the last two use cases mentioned in the
introduction), meaning the SIPp instance receives a call made by your SIP server,
you will need to register SIPp to FreeSWITCH (pretending SIPp is a phone) to make
it reachable from a SIP server point of view. This can be done with a dedicated
scenario; several such examples are available on the Internet.

Load testing
SIPp is handy for load testing. Indeed, the tool is able to start as many concurrent
instances as the hardware can handle so it is very easy to simulate hundreds or
even thousands of simultaneous calls. For instance, two hosts can each run a SIPp
instance with a simple call scenario: one starts a call towards the FreeSWITCH server
that itself creates the leg towards the second host that finally picks up the call for x
seconds. Instances and calls of this scenario can be slowly increased, and the tester
can then find the limit of the hardware hosting FreeSWITCH when the results start
to deviate from the expectations (because of too many dropped packets for instance).
Moreover, it is possible to enable time trackers, an important SIPp feature during
load test because it displays how long the duration was between two (or more) steps
(for example between the moment when the call is initiated and the moment when it
is answered).

If you decide to run such tests, make sure the hosts running the SIPp instances are
not the bottleneck though.

Logging with FreeSWITCH
Logging is an integral part of any properly managed communication operation. The
capability of tracing the minimal details of protocol exchanges and the paths through
the internal software mechanisms can be invaluable for pinpointing the intermittent
problem of a customer.

There are two main media for logging in FreeSWITCH: the console, for example the
fs_cli application, and the log file. Both options use the same mechanism to show
or save information.

Chapter 2

[31]

By default, FreeSWITCH logs all information into one log file at the DEBUG level (the
highest detail, producing the most quantity of information). The log file is created
and managed by module mod_logfile, configured through logfile.conf.xml.
By default, that single log file is called freeswitch.log and is located in
freeswitch/log/.

The general format for the log lines is: call-uuid YYYY-MM-DD hh:mm:ss:nnnnnn
[LEVEL] source_file_name:line_numberfunction_name() <log data>.

Log levels go from EMERG (Level 0) to DEBUG (Level 7), each progressive level
enabling recording of more information than the preceding, to culminate with
DEBUG that allows for a tremendous quantity of information on the internals of each
FreeSWITCH function, useful both to FS core developers, but in some cases also to
determine what is going wrong with a call.

It is possible to generate multiple log files containing information at different levels,
and also files tracing the inner working of just one function. That can be managed by
creating different logging profiles in logfile.conf.xml.

Using profiles, you can build a mapping that will record ERROR, CRITICAL and ALERT
information for all modules (default) while specifying higher levels for specific
internal functions and the maximum DEBUG level for a particular module. The profile
also contains the name and place of the log file, while rotation can be specified as
activated by HUP signal and/or by reaching a configured size (defaults to 10 MB).

Debug loglevel is very verbose, and you don't want it to be activated all of the time,
because on a busy server it would quickly fill an inordinate amount of disk space
and because disk I/O operations would exact too much in terms of context switches
and wait states.

You would normally run FS with loglevel 3 or 4 (error or
warning), and you would notch up to loglevel 7 from FS console
only when needed, with:

fsctl loglevel [loglevel]

Don't forget to lower the loglevel, after gathering the information
you're looking for. To modify loglevel only for a particular channel
(uuid), from FS console you use:

uuid_loglevel [uuid] [loglevel]

While in dialplan you can use session_loglevel app:
<action application="session_loglevel"
data="loglevel "/>

Deploying FreeSWITCH

[32]

The FreeSWITCH logging system is much more flexible than this. Actually you
can specify in logfile.conf.xml a different loglevel for each single C source
file and/or for each single C function. This is almost never useful in a production
environment, but is very useful when debugging the source code itself (for example
to FreeSWITCH project developers). You can find full instructions and explanation
for this finer loglevel mapping in the comments embedded at the head of the vanilla
distributed console.conf.xml (console uses the same mapping method as logfile).

All of the aforementioned methods and techniques apply to console logging too,
configured by console.conf.xml. On console, the FreeSWITCH administrator
will see all the same information we've listed scrolling by, smartly colorized for an
intuitive interpretation. It is possible to change in real time and live, both the level of
console logging and the source of it, for example global, modules, or functions.

Another important tool related to logging and debugging FreeSWITCH operation
is the capability of mod_sofia to show (and optionally log to a specified level) all of
the SIP and SDP packets for a call, or for an interface (SIP profile), or globally. This is
extremely useful both at setup time and for debugging problems and malfunctions.
You can rely on it instead of going back and forth with ngrep and/or wireshark.

As a FreeSWITCH administrator you will deal with logging all the time, be it reading
the log output that scrolls on the FS console in real time as it happens, or by perusing
and analyzing the debug logfile to identify what problem lead to a failed call, or by
collecting durations, destinations, originator, and monetary costs of each and every
call from CDRs.

Logging is what gives FreeSWITCH administrators the information on which to base
most of their activity.

Call Detail Records
Each call will generate one or more Call Detail Record (CDR). CDRs are written
after the call ends, and contains all information needed for accounting and billing
that call. As an example, an outbound call (outbound is most critical for accounting
and billing) the CDR would contain information such as date/time, caller account,
caller device, destination, and duration. As an added bonus it can contain all kinds of
details about the call itself, such as codec used, outbound route or gateway, and/or
the status of the system.

So, in CDRs you can store and gather any kind of info you deem useful on a
per-call basis. A complete call is often composed of an A leg (caller) bridged to a
B leg (callee). In the FS console, the show calls command shows that each call is
composed of two channels (A leg and B leg). You can choose to write a CDR for
A leg, B leg, or both.

Chapter 2

[33]

There are two main kinds of CDRs FreeSWITCH is able to generate: Comma
Separated Value (CSV) files, and XML files. CSV files are easier for humans to read,
and can be parsed quite simply with regular expressions and spreadsheets. XML
CDRs are able to better describe complex information, and can be processed by
advanced XML and XSLT libraries.

From their respective configuration files (cdr_csv.conf.xml and xml_cdr.conf.
xml) you can define which call legs you want to write CDRs about. By default, like in
normal practice, only A legs generate CDRs.

CDRs are built following a template that can be constructed to contain any kind
of variable available in the channel, and in any format you may deem useful. For
example, there is a template that mimics the Asterisk CDR format, that you can use
for compatibility with legacy accounting and billing software, and another template
that would generates files with SQL insert rows, that can then be used to directly
populate a database.

CDRs will then be kept as traffic documentation, and/or further processed: inserted
in a database, for example, where each call will be given a cost, and that cost added
to the caller account bill.

XML or CSV — the best practice in any case is to have files written to the disc,
that can be used to reconcile accounting and billing in case of database or network
malfunction. Also, at the end of each individual call, all of the variables that were
associated with the leg (many more variables than you suspect!) can be automatically
dumped in the file, so allowing for later debug and troubleshooting.

An advanced technique that can be useful in special or corner cases: CDRs can
be generated real-time by a custom application that listens to FS events and do
whatever is needed to record, rate, and/or bill each single call while it happens,
interfacing whatever systems your operation and business model requires (AAA,
Radius, Diameter, Databases, The Spanish Inquisition, and more).

In a high volume environment, it is considered best practice to do the
further massaging of CDRs on a different machine to the FreeSWITCH
server. This is so you don't have the CPU and Disk load degrade the
performance and the audio quality delivered to customers.

Deploying FreeSWITCH

[34]

Monitoring
When deploying one or more FreeSWITCH servers in a production environment,
it is essential to set up some monitoring mechanisms. Monitoring is more than a
best-practice, it is a must-have to maintain a reliable, highly-available, powerful
VoIP softswitch. It is necessary in order to be quick to react in case of critical issues
and various emergencies. Setting up monitoring mechanisms is easy to say, but a
good question would be 'what should we monitor, and how?' You would probably
want to keep an eye on several aspects of a running server, for instance:

•	 Check if everything is fine at a system level, for example:
°° Is the FreeSWITCH service up and running?
°° Are all the IP ports that are supposed to be listening actually

listening?
°° Is my host too loaded or is it just fine?

•	 Check more specifically if the FreeSWITCH service is sane
•	 Check very specific aspects of the operation, for example:

°° Does my IVR behave like it should?
°° Are the conference rooms working?
°° Is the voicemail service working?
°° And so on…

SNMP
If you look for monitoring tools on the Internet, a lot of what you find will be related
to SNMP (Simple Network Management Protocol). SNMP is a widely used protocol
on networks all around the world that provides a simple way to retrieve the status
of a particular host. It exposes a lot of information local to the host, so that a remote
machine can gather it and then can show the data in a fancy way to administrators.
Usually, the remote machine is said to be a management host and it retrieves data
from lots of different hosts and devices. To be strict, SNMP is read/write and can
therefore also be used to set parameters on the managed host. It exists in three
versions, SNMPv3 being the last version but SNMPv2 still being largely used.

Chapter 2

[35]

SNMP and FreeSWITCH
You can visualize SNMP as a tree with a root node (.1) and branches, each of them
storing at different levels, information about the host, the network interfaces, the
processes running on it, and so on. The structure of the tree exposed by SNMP is
defined by MIB (Management Information Base), which are highly extensible
descriptions. For instance, if you want to know the hostname of an SNMP client,
it is provided at the following leaf (called OID, for object identifier) in SNMPv2:
.1.3.6.1.2.1.1.5 (or SNMPv2-MIB::sysName, because a MIB maps OIDs to human-
readable strings, like in DNS, network addresses are translated to names).

SNMP is defined in detail in RFC3418. FreeSWITCH has an SNMP module called
mod_snmp which exports a few very relevant internal attributes, such as:

•	 Service uptime
•	 Currently active sessions
•	 Peak sessions
•	 Current session attempts per second
•	 Peak sessions per second

These attributes are available at a specific OID (registered as FreeSWITCH at IANA):

.1.3.6.1.4.1.27880

Installation and configuration (on Linux)
On Debian 8 (Jessie), the preferred Linux distro for running FreeSWITCH, you must
first install all snmp related server, clients, and utilities. As root:

apt-get install snmp snmp-mibs-downloader snmpd

download-mibs

For FreeSWITCH and its mod_snmp to be able to connect to snmpd (SNMP daemon) as
a subagent, add the following instructions to the SNMPd configuration file (located
at /etc/snmp/snmpd.conf):

####

Run as an AgentX master agent

master agentx

Listen on default named socket /var/agentx/master

agentXPerms 0755 0755 freeswitch daemon

Deploying FreeSWITCH

[36]

Once started, the SNMP client will start to listen on dedicated ports (basically
161/udp). And after starting FreeSWITCH, if everything works as expected you
will see this in the main log file:

[NOTICE] switch_loadable_module.c:496 Adding Management interface 'mod_
snmp' OID[.1.3.6.1.4.1.27880.1000]

Now you are able to query FreeSWITCH stats over the SNMP interface. The quickest
way to test it is using a tool called snmpwalk or snmpget (the first will extract
everything it can from a branch, the latter will get you the value associated with a
leaf), but make sure you use the right version and the right community configured in
snmpd.conf:

#snmpwalk -v2c localhost .1.3.6.1.4.1.27880.1.2

SNMPv2-SMI::enterprises.27880.1.2.1.0 = Timeticks: (41794715) 4 days,
20:05:47.15

SNMPv2-SMI::enterprises.27880.1.2.2.0 = Counter32: 1

SNMPv2-SMI::enterprises.27880.1.2.3.0 = Gauge32: 0

SNMPv2-SMI::enterprises.27880.1.2.4.0 = Gauge32: 3000

SNMPv2-SMI::enterprises.27880.1.2.5.0 = Gauge32: 0

SNMPv2-SMI::enterprises.27880.1.2.6.0 = Gauge32: 0

SNMPv2-SMI::enterprises.27880.1.2.7.0 = Gauge32: 100

SNMPv2-SMI::enterprises.27880.1.2.8.0 = Gauge32: 1

SNMPv2-SMI::enterprises.27880.1.2.9.0 = Gauge32: 0

SNMPv2-SMI::enterprises.27880.1.2.10.0 = Gauge32: 1

SNMPv2-SMI::enterprises.27880.1.2.11.0 = Gauge32: 0

If FreeSWITCH's mod_snmp was unable to connect snmpd during startup
initialization, you will see this:

SNMPv2-SMI::enterprises.27880 = No Such Object available on this agent at
this OID

Getting more information
If the information provided by mod_snmp does not fit your needs, you may want to
look for another SNMP feature: the exec or extend instruction. Basically, it allows
you to export the result of any local script on the host to a specific OID.

Chapter 2

[37]

Imagine you have a gateway called gw1 defined on the FreeSWITCH external profile.
You want to be able to know at any time how many inbound/outbound calls are
going in and out of this specific gateway, a simple way to do it would be to create
a script check_gw1.sh on your system. This script would merely run the sofia
status gateways FreeSWITCH CLI command with a few system commands to
isolate the relevant part of the result:

#!/bin/bash

if ["$1" == "in"]; then

 /usr/local/freeswitch/bin/fs_cli -x 'sofia status gateways' | grep
gw1 | awk '{print $4}'

else

 /usr/local/freeswitch/bin/fs_cli -x 'sofia status gateways' | grep
gw1 | awk '{print $5}'

fi

Then, you have to extend both values:

extend gw1_in /etc/snmp/check_gw1.sh in

extend gw1_out /etc/snmp/check_gw1.sh out

And restart the SNMP daemon.

Now, you can test your export using snmpwalk again:

#snmpwalk -v2c localhost NET-SNMP-EXTEND-MIB::nsExtendOutputFull

NET-SNMP-EXTEND-MIB::nsExtendOutputFull."gw1_in" = STRING: 0/0

NET-SNMP-EXTEND-MIB::nsExtendOutputFull."gw1_out" = STRING: 0/0

At any time, from any authorized host, you are now able to query your FreeSWITCH
servers for those very specific variables: inbound/outbound failed and total calls for
gateway gw1. Of course this is a very simple example and there is no limit on what
kind of data you can return using SNMP.

Monitoring tools
Now that we have an insight into what SNMP is and what it is useful for, it is worth
mentioning the ecosystem of tools gravitating around monitoring to gain some clue
of what can be done and have some examples of concrete applications. Among the
most popular monitoring tools are Nagios and Cacti.

Deploying FreeSWITCH

[38]

Monitoring with Nagios
Nagios is a tool used to monitor hosts on a network in real-time or near real-time.
It gives an overview of a whole network and provides a simple way to check at a
glance if everything is fine on a specific host and the processes and services running
on it. Basically Nagios does two things:

•	 It starts monitoring tasks such as:
°° Ping hosts
°° Query hosts using SNMP
°° Run plugins (there are a lot available on the Internet)
°° Run custom scripts

•	 It provides a Web interface that gives a global overview of the infrastructure
status (and emphasizes issues, if any)

The statuses of the hosts and processes can be OK, WARNING, CRITICAL or UNKNOWN,
which offers a certain granularity in the way alarms are raised. Nagios also offers
a reporting tool providing graphs such as alert histograms, availability reports or
trends (here, since the 1st of January of the same year):

Chapter 2

[39]

Nagios can do a lot of things, and is hard to provide a formula to satisfy every
situation. However, when a new host is set up in a production environment, some
sensors seem to be essential like pinging the host (to check its availability at a
network level) or checking if the FreeSWITCH process is running.

Sometimes though, checking if the service is running and if the ports are indeed open
is not enough because it does not give a feature-level view of the service's status.
That's why more specific sensors can be implemented: a custom script that sends
SIP OPTION messages to one or all ports of the FreeSWITCH server and checks
the answered SIP message is as expected. Another test could be to call a forbidden
extension or an unknown destination and check if the SIP response code is good
(403, 404): this way it is easy to automatically check if the dialplan and features like
call restrictions are working. These examples can be implemented very easily using
tools like sipsak (available on Linux and Windows operating systems) or even using
custom Perl/Ruby/Python scripts built by the community.

One of the most popular among them is the Ruby NagiosSIPplugin (https://
github.com/ibc/nagios-sip-plugin) which can be used to send SIP OPTIONS
messages to check the availability of a SIP server. It returns one of the Nagios status
codes, depending on the message received from the server:

•	 OK: The SIP OPTIONS response code matches the one expected
•	 WARNING: A reply has been received but the code does not match
•	 CRITICAL: No relevant reply had been received (for instance, the server is not

available or not reachable so this can be a service or a network issue)

The plugin can be easily tested from the command line:

[root@telcodevsw]# ./nagios_sip_plugin.rb -t udp -s 203.0.113.1 -p 5060
-f "sip:friendlymonitoring@203.0.113.100" -r "sip:+33122334455@pstn" -T 3
-c 200

OK:status code = 200

[root@telcodev sw]# echo $?

0

https://github.com/ibc/nagios-sip-plugin
https://github.com/ibc/nagios-sip-plugin

Deploying FreeSWITCH

[40]

Several parameters can be specified such as transport protocol, server address, SIP
'From' and Request-URI fields, timeout delay, and the response code expected (other
parameters are available, you can check the help using -h). In the previous example
the FreeSWITCH server is behaving as expected and the plugin return code is 0
(which means OK for Nagios as specified in the API documentation). However, if you
test with an IP address where no FreeSWITCH instance is running or on a random
port where no SIP profile is listening, a return code 2 is expected, meaning CRITICAL
state:

[root@telcodev sw]# ./nagios_sip_plugin.rb -t udp -s 203.0.113.2-p 5060
-f "sip:friendlymonitoring@203.0.113.100" -r "sip:+33122334455@pstn" -T 3
-c 200

CRITICAL:Timeout receiving the response via UDP (Timeout::Error:
execution expired)

[root@telcodev sw]# echo $?

2

When the plugin is working it can be integrated into Nagios. To accomplish it, there
are two main steps:

1.	 Declare a new Nagios command in the configuration file, referring to the Ruby
NagiosSIP plugin previously downloaded:
define command {
 command_name check_sip_options
 command_line $USER1$/nagios_sip_plugin.rb -t $ARG1$ -s
$HOSTADDRESS$ -p 5060 -r "sip:$ARG2$" -f "sip:$ARG3$" -T 5 -c
$ARG4$
}

2.	 Declaring a new service referring to the new command:
define service {
 service_descriptionCheck SIP availability (SIP OPTIONS)
 check_commandcheck_sip_options!udp!+33122334455@pstn!
friendlymonitoring@203.0.113.100!200
check_period 24x7
notification_period 24x7
hostgroup_name freewitch_servers
contact_groups admins
use generic-service
}

This service definition applies to the group of servers freeswitch_servers and
inherits settings from a more generic template called generic-service here. A
service definition can be way longer.

Chapter 2

[41]

Another interesting Nagios add-on is check_mk, with its logwatch capability. It can
parse system log files as well as other specific log files and apply regexes on them to
find out if a message is present or not. This can be applied to a FreeSWITCH server
by parsing the execution logs to search for failed calls, then an alarm can be raised if
too many calls fail.

Monitoring with Cacti
Compared to Nagios which is designed to provide real-time alarms about the
network and the hosts it contains, Cacti is a tool used to store data over medium/long
periods and generate graphs about it. In the manner of Nagios, Cacti checks various
aspects of a system and provides a Web interface to display the results in graphs
generated with rrdtool. Cacti is a not a proper monitoring tool as it cannot be used
for real-time purposes, however it is still useful for data analysis over medium, long,
and even sometimes short periods (for instance, comparing usages between the day
before and the current day). Cacti is largely designed to work with SNMP but it also
enables administrators to gather data to graph using custom scripts.

Going back to the SNMP, we know we can export any data we like from the running
FreeSWITCH service. Hence, coupled with Cacti, it is easy to get reports like:

Deploying FreeSWITCH

[42]

Here, four different variables (exported thanks to FreeSWITCH's mod_snmp)
are displayed:

•	 Current number of sessions (SNMP OID: .1.3.6.1.4.1.27880.1.2.3)
•	 Peak number of sessions (SNMP OID: .1.3.6.1.4.1.27880.1.2.10)
•	 Peak number of sessions lasting five minutes (SNMP OID:

.1.3.6.1.4.1.27880.1.2.11)
•	 Max number of sessions allowed (SNMP OID: .1.3.6.1.4.1.27880.1.2.4)

It is also possible to extract more specific data (per gateway current calls, per SIP
profile active sessions, and so on) and export them in SNMP so that graphs can be
generated with these distinctions making it easy for the administrator to understand
uses and load distribution on FreeSWITCH servers.

HA deployment
"The contemporary form of Murphy's law goes back as far as 1952, as an
epigraph to a mountaineering book by John Sack, who described it as an "ancient
mountaineering adage": Anything that can possibly go wrong, does."

 – Wikipedia

Like mountaineers, we survive because we respect the environment where we live
and thrive: we know it is full of perils, and we know that ignoring those dangers can
be deadly (at least for our business/career).

People are used to the concept of communication as a utility, you take the phone and
you hear the line tone… Only in the case of major disasters will a user experience
an interruption in the working of her voice calls. Barring a hurricane and the like,
the telecommunication industry has an outstanding history of reliability, one of the
very few fields where we can experience those magic figures of 99.999% uptime (the
mythical five nines).

So, we have users with very high expectations when it comes to their capability to
place a call and be reached from outside, completely the opposite to, for example,
what they expect from their office PC operating system and applications, where
crashes and malfunctions are known daily nuisances.

Chapter 2

[43]

How can we cope with such expected reliability? We must plan for failures, not try to
avoid them. Failures will come, that's certitude; we can lower their frequency, but we
cannot avoid them. We need to ensure that each individual point-of-failure will not
result in a system failure, for example we need to have multiple paths for everything:
network connections, electrical power, disk storage, FreeSWITCH servers, and more.

As a bonus, when we design HA into our operation, we are almost there for
achieving horizontal scalability, for example our operation will not only be
unbreakable, but will grow linearly with the number of users, simply adding
more of the base elements that compose our solution.

Storage, network, switches, power supply
As a rule of thumb, you must double each individual path, so it cannot become a
single point of failure.

So, at wire level, you will have each machine with at least two different physical
network cards in different PCI slots (for example, avoid a single card containing
multiple adapters). You bond these two cards together as one virtual adapter for
the same IP address(es), and you bring both network cables to a different switch.
This way you also ensure physical connectivity in case of failure of a network card,
switch, or cable (many failures are not caused by failed hardware, but by human
errors like cutting a cable, or wrongful disconnections from patch panels).

You want to be connected by at least two routers bonded to at least two network
carriers (so you hopefully survive the thrashing of the cable down the road), and
then to two or more ITSPs.

Each physical machine will be built with double power supplies (PS are the most
easily broken pieces of hardware, because of the fan) and double system (boot)
hard disks in RAID 1 (mirroring) (hard disks will routinely break well before their
Medium Time Before Failure, MTBF).

Deploying FreeSWITCH

[44]

Storage (for common files, configurations, recorded prompts, voice mail, and
more) will be preferable to a redundant SAN with redundant fiber connections,
or alternatively (and way cheaper) to a Cluster Filesystem or an HA NFS server.
A minimal but reliable HA NFS server is composed of two machines in an active-
passive setup, accessed via a Virtual IP address that will be assigned by HeartBeat to
the active machine. Each machine will have some disk space (typically many entire
disks in raid 5 or 10) that mirrors the corresponding disk space on the other machine
via DRBD. This solution (NFS + HeartBeat + DRBD + double network cards and
switches) is well documented and effective. In case of a machine or filesystem failure,
the Virtual IP address will be moved by HeartBeat on the other machine, and clients
will continue to access the files that were mirrored real-time at block level by DRBD.
The devil is in the details, so be sure to follow each step of a tried and true industry
solution description (like the Linbit ones), not a page from a casual tech blog.

Virtualization
HA requires multiple machines, and more and more operations are using
virtualization because of consolidation and manageability considerations.
Let's have a look at FreeSWITCH virtualization best practices.

Real hardware machines (for example, non-virtual) running only FreeSWITCH on
top of a clean operating system and a known kernel revision are the best solution
for a reliable quality delivery. Voice and video operations are real-time operations.
Delays of more than 150 milliseconds are perceived by users and jitter (variations
in delay) will add complexity to delay management. Quality is all about constant
timing of the transmitted and received packets.

Original source of timing are the IRQs of the physical machine, derived by BIOS
from the motherboard's quartz oscillator. Those IRQs are the basis for the operating
systems' timers, which allow for nanosecond formal accuracy, and millisecond
actual accuracy. The vast majority of packets are 20 milliseconds long (while usage
of packet duration - for example ptime – of 10 or 30 ms is much rarer) so accuracy in
the millisecond range actually matters. Then the scheduler will decide at kernel level
which process will get CPU access, and so the possibility to check the timers.

So far, the critical aspects are the timers and the scheduler in the kernel (so the need
for a known kernel, preferably the same one on which FreeSWITCH is developed
and tested by the core team). In an actual, physical machine that's complex but
predictable and reliable. FreeSWITCH's core team goes to great lengths to ensure
constant timing by automatically using the most advanced time source available
from the kernel, and by deriving all internal timings from a single source.

Chapter 2

[45]

Virtual machines were not designed for real time traffic: although it can serve
millions of hits or queries, a web or database server is not time sensitive. As long as
they deliver throughput, the exact millisecond one item is delivered and in which
timing relation is with previous and later items is not important at all (in DB and
Web operations there is no previous or later, each item is usually unrelated to other
delivered items).

So virtualization builds an emulation of many virtual machines on top of one
hardware machine, each virtual machine simulating a hardware running its own
kernel, timers, scheduler, IRQs, BIOS, operating system, and more. This allows
for the maximum saturation of CPU and I/O usage, maximum exploitation of
the hardware, and minimization of power consumption and space filled in the
datacenter, by multiplexing in a random order, CPU and hardware access to the
various kernels, operating systems, and applications concurrently running on the
actual, physical machine. It's enough of a statistically fair distribution. That's not
good at all for real time communication quality.

Delivering decent real-time communication quality and traffic throughput from a
virtual machine is more a black magic art than a science, and you can find on mailing
lists, blog pages, and broscience, a quantity of incantations that can be of help.

You may succeed, and run a carrier class operation, but you need to be really careful
and dedicated. The orthodox verb on this matter is: don't. No matter if Xen, KVM,
Amazon EC2, or VMWare. Simply, don't do it for production systems with any
sizeable load (as opposed to development and prototyping, where quality under
load is not a concern, and virtualization is handy).

So, we're stuck with a correspondence of one FreeSWITCH server equal to one
hardware machine? Not exactly, not at all.

In growing levels of overhead, you can, run multiple profiles with the same FS
processes, run multiple FreeSWITCHes concurrently on the same operating system,
and use containers to create various virtual environments in which to run various
FreeSWITCHes.

The first two solutions will need to use separate IP ports for each profile or FS
instance, and will share the same environment, for example userspace. The third
solution, containers, allows for complete separation of execution environments, so
each container will have its own IP address with a full range of ports in exclusive
usage, and will be completely separated from other containers for security concerns.

Deploying FreeSWITCH

[46]

From the admin point of view or feel, a container is like a virtual machine. But is
actually a changeroot on steroids: there is one only kernel, one only scheduler, only
one set of IRQs, one only set of timers, no emulation, no indirection, no contentions.
All processes of all containers are just regular processes, and CPU and I/O access
is given to them by way of a quota system. If all quotas are set to the same value,
resources are distributed like all processes run on one only container, or in the native
(host) environment.

So, containers are the most efficient and performing virtualization technology,
because they take a completely different approach from traditional virtualization.
Containers are a security group of related processes, which appear as a separate
machine. This gives to each container direct access to timing, and performances
indistinguishable from native, bare metal operating systems.

The drawback of containers versus other virtualization technologies is that you
can run only Linux, and one only kernel revision (the one of the host, bare metal
operating system). All the rest is possible: your distro of choice, multiple concurrent
distros, multiple versions of the same distro, and more. You will choose the userland
you prefer (for FS, you typically choose between Debian and CentOS). Then you can
start, stop, backup, or migrate your container just as you would do with a traditional
virtual machine.

The most mature technology in this field used to be OpenVZ, a series of patches to
the regular Linux kernel and a set of tools to manage containers (for example that
will appear as VMs to you). For ease of installation OpenVZ is also distributed as
packages for RHEL-CentOS and for Debian. You'll add the repositories, and then add
the packages. After a reboot you'll be ready to build your new containers. OpenVZ
is the basis of Virtuozzo and Parallels Cloud Server, commercial virtualization
solutions offered by Parallels, complete with a GUI for management, and ability to
manage other kinds of VMs, like KVM.

LXC (Linux Container) is arguably the future of containers. It is actively developed
and present in both RHEL-CentOS and in Ubuntu-Debian, but is clearly Canonical-
Ubuntu the champion of LXC.

LXC can be leveraged also by installing Proxmox, a container and VMs management
system that offers a complete open source solution, very well engineered, giving ease
of use to all components of an HA virtualization platform: LXC, KVM, redundant
storage, VM migration, and more. Proxmox offers a web based solution to all
containers and storage administration, with redundancy and high availability. You
can buy a support contract and be entitled to privileged access to the best tested
repositories.

Chapter 2

[47]

Load balancing and integration with Kamailio
and OpenSIPS
You attain HA duplicating for (at least) your communication paths and your servers,
by building a resilient system without a single point of failure. You want to eliminate
the risk that a malfunction of an element can stop or degrade the functions of the
whole system.

In the Web world
In standard HA web operations you run multiple web servers behind a load balancer
that faces the clients. So, the flow is: client asks for a page to the web server at
http://www.example.com/ address. That server is actually not a real web server,
but a load balancer, that proxies the request to one of the real web servers, and then
proxies the answer from that web server back to the client.

The load balancer (proxy) is a light process, requiring little hardware to just move
bits back and forth. The real web servers are beefy machines where actual, heavy
lifting is done.

We have reached the goal of avoiding the risk of web service interruption (if one web
server goes down, the load balancer will sense it and send the incoming traffic to the
other web servers). Also, we achieved horizontal scalability: as traffic increases we
just add more web server machines, the load balancer will, ahem, balance the load
between them.

But we just shifted the single point of failure from a single web server to a single load
balancer. If the load balancer goes down, service is interrupted, clients will have
nobody to connect to and to receive answers from. Back to square one? Actually, no.

We've done the right thing shifting the single point of failure from a heavy and
complex environment (a web server requiring lots of RAM, CPU power, connections
to DBs, application logics, updates, and more) to a very light and lean entity (a load
balancer that needs no intelligence, requires almost nothing in resources, uses a static
configuration, kind of fire and forget service).

So, how do you duplicate your load balancer? You cannot load balance it (it would
only kick the can forward, for example, you end up with a single point of failure
located in the balancer of load balancers).

To duplicate the load balancer, you use a different strategy: you have a second
machine with the same resources, software, and configuration like the first one
(actually you can think of it as a copy of the first machine), running live side by side
with the first machine, using a different IP address.

Deploying FreeSWITCH

[48]

In normal operation, the first machine is on http://www.example.com/ IP address
and got all the traffic, in and out, while the second machine does nothing, just sitting
there humming idle (the second machine is on a different IP address, so no traffic
directed to http://www.example.com/ will reach it). Remember that load balancing
is a very light process, so it will be very cheap to have a second machine standing by
idle, as a spare.

When the first machine malfunctions (because of a software or hardware failure), we
shut it down, then change the IP address and identity of the second machine, and
traffic begins to flow in and out of the second machine, that is now answering at the
http://www.example.com/ Internet address.

The last touch to our solution is to make the procedure of malfunction sensing,
shutdown of failed machine, impersonation by second machine, and resumption of
traffic flow, an automated, very fast, repeatable and reliable flow. This is usually
done by accessory software called HeartBeat.

We reached our goal: we presented a unique address to our web users so to them a
failure in our system will be transparent, only a delay of an instant in the display of
the requested web page.

In the FreeSWITCH world
Building an HA FreeSWITCH service requires the same components as the previous
web example, with some added complexity due to the dual nature of SIP calls:
signaling and media (for example, audio).

SIP load balancer in our case will be provided by Kamailio or OpenSIPS open source
software (using its dispatcher module).

In SIP, the establishment, tearing down, and modifications of the call are carried
out by the exchanging of specific signaling network packets that describe who the
caller is, who they are looking for, how the call has to be established, how to encode
audio to be understandable by both sides, and also the actions of calling, ringing,
answering, hanging up, and more. Those signaling packets (the proper SIP packets)
are sent between known ports at known IP addresses, and define the communication
flow in its entirety.

But this is only a flow description, for example packets contain no audio, only
indications about how to exchange audio packets.

Audio is exchanged using a completely different protocol, auxiliary to SIP, called
RTP. Those audio packets will use completely different and previously unknown IP
ports (which ports to use is negotiated between caller and callee via SIP packets).

Chapter 2

[49]

Of those two packet exchanges only the RTP (audio) stream is time sensitive. SIP
signaling packets can be delayed by almost any amount of time without significant
communication disruption. Maybe your call will be answered one whole second
(1,000 milliseconds!) later, so what? On the contrary, a delay of more than 150
milliseconds is perceived as bothering, and can you imagine talking on the phone
with audio that comes and goes with one second gaps now and then? Other than
full gaps, other audio annoyances are delay, jitter, and packet loss in RTP, that can
dramatically lower the quality in the resulting sound reconstruction.

Those two flows (signaling and media) are completely independent, and this often
results in completely different paths taken by SIP packets and by RTP packets.

For example, caller and callee can have their SIP packets routed through a number of
SIP proxies in between, while RTP packets go directly from caller to callee and vice-
versa (that's very often what happens when calls are between phones connected to
the same LAN). Or RTP can be routed by a single proxy between caller and callee,
while SIP packets traverse a much more tortuous path (that's what often happens
when caller and callee are in different LANs). Or any other mix and match of
communication paths.

Let's see how we can build an HA FreeSWITCH service in the simplest (but real and
robust) of topologies: all machines (load balancers and FreeSWITCH servers) are
sitting on public IP addresses, directly reachable from the Internet. In our example
we'll have the active load balancer assigned by HeartBeat with the public IP address
corresponding to sip.example.com in addition to its own IP address (for example it
ends up with two IP addresses). In case of active lb failure, HeartBeat will reassign
sip.example.com IP address to the standby load balancer (again, in addition to its
own IP address). For example, the standby machine will become the active one and
traffic will begin to flow in and out of it.

SIP (signaling) packet will flow from caller to active load balancer. Load balancer
will route the packet to one of the FreeSWITCH servers (chosen randomly, or by
some algorithm).

All FreeSWITCH servers will be configured exactly the same way (they will only
differ by their IP address), and will have their own guts (the internal data structures
representing phones, calls, SIP details, and more) residing in a PostgreSQL database
(this FreeSWITCH setup is called PostgreSQL in the core).

This will allow all FreeSWITCHes to be completely interchangeable: they will all
know about where each registered phone is to be located (all registrar information
will be on the database). Whichever server that phone has originally registered on,
the registrar information will be common between all FreeSWITCHes.

Deploying FreeSWITCH

[50]

So, SIP signaling packets coming from the caller will be routed by the load balancer
to one of the multiple FreeSWITCHes. Each one of them will be able to connect the
call to one of the registered phones, or to provide special services to the caller (voice
mail, conferencing, and more).

FreeSWITCH answers to the incoming SIP signaling packets from the caller will first
go to the load balancer (to FS the call is coming from LB). Then the load balancer will
route to the caller the SIP signaling packet coming from FS.

SIP signaling path for a voicemail access will be: caller->LB->FS->LB->caller. For an
outgoing call (for example PSTN) would be: caller->LB->FS->ITSP->FS->LB->caller.
For an in-LAN call would be caller->LB->FS->callee->FS->LB->caller.

Audio (RTP) will instead always flow from the caller (and callee, if any) to FS,
and from FS to the caller (and callee, if any). If the call is just to the FS box (as in
voicemail access) audio packets will go directly back and forth between caller and
FS. If there is actually a callee (for example if the incoming call will generate an
outgoing leg toward another phone) audio packets will flow back and forth from
caller to FS, and from callee to FS. FS will internally route those audio (RTP) packets
between caller and callee, and between callee and caller, joining inside itself the two
legs in a complete, end-to-end call.

SIP signaling packets will be routed from load balancer to an FS server, and that FS
server will insert its own RTP port and IP address in the answer SIP packet part that
defines the audio (RTP) path. That SIP answer packet containing the RTP address
will go to the load balancer, and from it to the caller. The caller will then start
sending audio (RTP) packets directly to that FS server, and vice versa (SIP signaling
packets will continue to pass by the load balancer). In case of a two leg call, the four
streams (caller to FS, FS to caller, callee to FS, FS to callee) will be cross routed (for
example switched) inside FS itself.

Until now we left the database as our single point of failure. Fortunately, there are
proven technologies to achieve database HA, master-slave, clustering, and many
more. The most popular and simplest one is the active-passive configuration, similar
to the configuration we applied to the load balancers and very similar to the one
described earlier for DRBD NFS servers.

One machine is the active one and gets all traffic, while the other one is passive,
sitting idle replicating the active machine's data on itself (so to contain at each
moment an exact copy of the active machine's database data). The database is
accessed to the published IP address, assigned by HeartBeat to the active machine. In
case of failure, HeartBeat will reassign that official IP address to the standby machine,
thus making it the active one.

Chapter 2

[51]

This database HA topology has the advantage of being conceptually simple (you must
just ensure that the standby machine is able to replicate the active machine's data). The
main drawback is that the data replication process can fail or lag behind, and you end
up with a standby machine that does not contain an exact copy of the active machine's
data or that contains data that is not even consistent. The other big drawback is that for
serving a big database, a machine needs to be huge, powerful, full of RAM and with
multiple, big and fast disks. So, you will end up with a very costly big bad box just
sitting idle almost all the time, passive, waiting to take over the tasks in case of failure
of the active machine. A new solution to both those problems is being made available
for PostgreSQL: BDR (Bi-Directional Replication). BDR will allow the use of both
machines at the same time, each machine to be guaranteed to be consistent within
itself at any moment, and eventually consistent with the other machine. BDR also
allows for database replication between different datacenters, to achieve geographical
distribution and resiliency to datacenter failures.

We just described a very basic and easy to implement HA FreeSWITCH service
solution. The main drawback of this FreeSWITCH HA solution is the exposition on
the public Internet of the various FreeSWITCH servers' addresses, that will not be
shielded, for example, by DDOS attacks and other security dangers.

Kamailio and OpenSIPS (software we use to implement load balancer) are
particularly apt and proven in defending VOIP services from attacks, floods,
and DDOS.

A different topology, and indeed one that's often used by Telecom Carriers, would
be one that only exposes to the Internet the load balancers. LB will act as registrar
too, and will use rtpproxy processes to route audio in and out of the system. In
this topology, FreeSWITCH servers' addresses will be unreachable from the public
internet (an example would be private addresses), and all RTP audio will flow via
the rtpproxy processes.

DNS SRV records for geographical
distribution and HA
So, we achieved a system without a single point of failure, we attained High
Availability for our customer base. No calls will be dropped!

We got customers on both coasts of the USA, in Europe, and in Asia too. They
are all accessing our solution hosted in a New York datacenter. Our customers in
Philadelphia and London are getting perfect quality, while from Tokyo and San
Diego they lament occasional delays and latency. Small problems, nuances of a well
engineered, failure resistant service.

Deploying FreeSWITCH

[52]

Then a flood, a power outage or another disaster strikes the datacenter that hosts our
solution. The datacenter is no longer reachable from the Internet. Our entire service
is wiped out, our customer base will be completely unable to make or receive calls
until we find a different datacenter and we rebuild our solution from the most recent
offsite backup media.

Ugh!

SRV records in a Domain Name System are used to describe which IP addresses and
ports a service can be accessed from, and in which order those address/port couples
will be tried by clients. SRV records are often used to identify which SIP servers a
client needs to connect to in order to reach the destination desired.

The interesting property of SRV records is that, just like MX records for mail (SMTP)
service, a DNS server can return multiple records to a query. Each of those records
will have a weight associated with it, which will suggest to the client in which order
those records would have to be tried. If the one with the lowest weight will not work,
try the next higher weight, then the next, and so on. Two records can have the same
weight; they would be tried in a random order.

We can manipulate SRV records to optimize traffic patterns and delays and for
achieving datacenter disaster survival. Let's say we deploy our solution, load
balancers, FreeSWITCHes, Databases and NFS servers, all on both coasts, in New
York and in the San Francisco datacenter. We'll use a DNS server with a geolocation
feature to answer European and East Coast customers with a lower weight at the
New York datacenter address, while Asian and West Coast users will receive a set of
records with the lowest weight assigned to the San Francisco datacenter address.

This will ensure both our goals: each one will use the closest site, and in case the
closest site is unreachable or not answering, they will use the other one. Yay!

Summary
In this chapter we have seen how to deploy FreeSWITCH in an actual production
environment. We reviewed the best practices for best service. A reliable network, both
at LAN and WAN level, with QoS and MPLS. Functional and load testing services
with SIPp. Debug and CDR logging for keeping track of what happens. Monitoring
it all with Nagios and Cacti to alert us when things go wrong and analyze trends.
We have seen how to offer five nines telecom grade availability with HeartBeat
redundancy and Kamailio load balancing, and geographical distribution and disaster
recovery with DNS SRV records. We don't let our users and customers down.

[53]

ITSP and Voice Codecs
Optimization

This chapter reveals the most important things to consider when connecting voice
traffic to FreeSWITCH — what you want to check out in an Internet Telephony
Service Provider (ITSP) to get the best resulting quality and more bang for
your bucks.

In a fiercely competitive market, many operators are floating different products
and offers, targeted to the general public, to companies of a specific size, or to
vertical markets.

Here you'll find an explanation of what can actually make a difference for you and
your users and customers, apart from price points.

In this chapter, we will cover:

•	 ITSPs – what they do
•	 Routes (to numbers)
•	 DIDs (aka DDIs) — for example, numbers
•	 Quality
•	 Support
•	 Additional features (T38, Caller ID, Overlay)
•	 Integration APIs
•	 Codec gotchas
•	 High definition audio, stereo

ITSP and Voice Codecs Optimization

[54]

ITSPs – what they do
An Internet Telephony Service Provider brings to its customers SIP trunking
connections that allow for outbound and inbound calls to/from the Public Switched
Telephone Network (PSTN), to/from the Public Land Mobile Network (PLMN),
and to/from other SIP users.

ITSPs don't need to own a physical Internet backbone, nor the "last mile" of cables
going from the backbone to their customers' premises. ITSPs connect to the public
Internet and operate their own SIP servers and (optionally) their own gateways from
SIP to PSTN (from now on we'll write only PSTN, for brevity's sake, meaning both
PSTN and PLMN).

ITSP business is to sell minutes of PSTN communication to their SIP end users: Both
communication coming from PSTN (a caller from PSTN wants to reach a number
connected to the SIP device of an ITSP's customer) and communication going to
PSTN (ITSP's customer from his/her SIP device wants to call a number connected to
the PSTN).

In the real world, much SIP to SIP communication passes through PSTN: ITSPs'
customers still call phone numbers (for example, +12125551212, instead of SIP
addresses like sip:alice@atlanta.example.com). Because there is no established way
for mapping phone numbers to SIP addresses, even if phone numbers ultimately
lead to a SIP device (for example, to a customer of a different ITSP) the call will be
treated by the caller's ITSP as a PSTN-bound call. Barring an ITSP to ITSP direct
peering (or federation), and barring both ITSPs (or end customers) participating in
the same collective effort like e164.org (public ENUM directory resolving phone
numbers to SIP servers), SIP communication between customers of different ITSPs
will be routed through PSTN (they're just phone numbers):

SIP_caller_A=>ITSP_SIP_A=>PSTN_GW_A=>(((PSTN_CLOUD)))=>PSTN_GW_
B=>ITSP_SIP_B=>SIP_callee_B

An ITSP needs to be aware of its customers connecting to its SIP servers, so as to
allow users to make outbound calls, and to locate them when incoming calls are to be
terminated to their devices: ITSPs must manage SIP registration of their customers.
Some ITSPs manage registrations of all individual SIP devices of their customers,
while other ITSPs register just the PBX server of their customers. Such servers will
act as hubs for incoming/outgoing calls.

Chapter 3

[55]

Those are all of the basic ITSP functions: Managing SIP registrations of customers,
routing outbound SIP customers' calls to its own or third party-operated PSTN
gateways, peers with other ITSPs that offer routes to other countries' PSTN gateways,
routing incoming calls to its customers' SIP devices, optionally offering other ITSPs
routing to its own PSTN gateways. A more or less complex operation and accounting
system will allow for the management and billing of customers, and optionally for
billing of peers.

Around this common core, each ITSP builds its own offering, adding features that
allow customers to manage themselves through a web portal, to choose between
various price points that balance cost against the quality of call routes, to query a
least cost route (LCR) database, setup PBX features (voice mail, call transfers, follow
me), conference services, local geographical numbers in various parts of the country
or worldwide, fax inbound and outbound transmissions, text messaging gateways,
automatic software integration (API) with services provisioning and management
system, and so on.

Routes (to numbers)
The path from an ITSP to a destination phone number is called a (SIP) route. Often
the ITSP (and major carriers and Telcos alike) has many routes it can choose from to
connect the outbound call originated by its customer's SIP device. This exchange of
routes minutes is a very big and complex business, and, if we include the big Telcos,
is one of the major businesses on Earth.

As you can imagine, the ramifications of such a business depend on local regulations,
international agreements, geopolitical situations, business alliances, economic
development levels, and a thousand other factors.

In some countries and regions, origination (gathering and routing of outbound calls)
and/or termination (providing PSTN gateways to inbound calls) is a legal monopoly
of one or few companies; in other regions and countries, regulation requirements
can set the bar of entering the business in a way that floods the market with pop and
mom's shops or that makes it the exclusive preserve of companies worth billions.

Each ITSP chooses its own mix of different route providers, and there are many
"meta-ITSPs" specialized in aggregating and arbitrating traffic from many different
route providers and packaging it for other ITSPs that sell minutes to end customers.

ITSP and Voice Codecs Optimization

[56]

DIDs (aka DDIs) – numbers
DID stands for Direct Inward Dialing, while DDI means Direct Dial In, and both
acronyms refer to the same thing: A phone number that will lead incoming calls to a
device. In our case, a call to that number will be ringing a SIP device.

Normally a customer will port his/her pre-existing PSTN number(s) to his/her
ITSP (that is, the customer's number will not make the landline ring anymore,
but will ring the end customer's SIP device passing through the ITSP SIP network).
ITSPs often have a specific branch of their customer service assisting in the number
porting procedures.

DIDs are sought by customers for many reasons: As a primary way to get incoming
phone calls (for example, the main phone number of a person or a company, if they
have no previous number, or don't want to port it), or as a means to be present in
local, regional, or international markets, so as to allow the public to reach a company
for the cost of a local call, or to be compliant with regulations that require a company
to have a local phone number for customer support.

Also, for each country there are special kinds of numbers with special billing: They
can be called for free (for example, toll-free numbers, "800" numbers) from national
fixed lines or from both national fixed and national mobile lines, or conversely they
can cost a premium fee to be called, a premium that goes in part to the assignee of
the number (for example, for pay numbers, hot chatlines, special support lines, "900"
numbers, and so on).

In a way, DIDs are the opposite of SIP trunking. A DID provider gets phone numbers
assigned or reserved from the competent authorities, and routes inbound calls from
those numbers to the SIP devices of its customers.

DID providers can have an agreement with Telco companies to have the numbers
routed directly to their SIP servers. Alternatively, they can have special devices,
physical gateways, that accept from one side, telephone lines (one at time, or more
often T1 or E1 "trunks" composed of 30 voice channels multiplexed in one cable) or
cellular network "SIM interfaces", and transform the incoming PSTN or PMLN calls
into SIP calls which are then routed to the customer's SIP device.

Each DID is provided with a "capacity" measured in "channels", that is, how
many concurrent calls can be incoming on that number (and routed to the customer)
before the caller hears the busy signal. Capacity can be from one single voice channel
to hundreds.

DIDs have a worldwide market, and multiple local phone numbers from any
number of countries and regions can bring incoming calls to the same SIP device, SIP
call center, or SIP PBX.

Chapter 3

[57]

As for routes, DIDs in the same country or region are often offered by a multitude
of operators, from first tier big Telcos, to illegal and shady groups, to inexperienced
and temporary new companies, with very different inherent parameters of stability,
continuity, reliability, audio quality, and so on.

Each ITSP can provide DIDs, at least in a state, country or region, and there are many
different global DID providers able to offer regular, toll free and premium numbers
from a multitude of countries. Those global providers often buy DIDs from smaller
local providers and then resell to ITSPs (that sell to end customers).

Quality of routes
Routes manage the path of a customer's outbound calls, while DIDs bring inbound
traffic to the customer. They both take care of the transit of a SIP audio call from
caller to callee, and have many of the same challenges to their quality in common.

White, black, and grey
The technical barrier for providing termination services (routes to PSTN) and
origination services (DIDs that get calls from PSTN) is so low that in countries and
regions where VoIP is under monopoly, or where a cartel of big companies control
the market imposing hefty prices, the business opportunity is so compelling that
a plethora of independent operators, of widely differing reliability and regulation
compliance (or which are outright illegal) discreetly populate the scene.

Talking about routes and DIDs to and from these destinations, it is often referred to
by the term "grey" market. That's because one side (you, the end customer) is white
in the open, regulation abiding, while the other end is black in the dark, possibly
illegal, side of the business. And of course you have all the 50 shades in between.

A white route or DID will go to a first tier operator or to the monopolist, and will
have a robust price tag, but its audio quality, continuity, reliability and stability will
be mostly assured. A service you can count on.

On the opposite side, the various shades of grey will be offered to you with costs that
reflect quality and reliability, and some of them can stop working completely and
forever without warning.

Many ITSPs organize their offers using grey routes where quality is not of
paramount importance, backed up from second tier and first tier routes in case of
cheap route failures.

ITSP and Voice Codecs Optimization

[58]

Some ITSPs let customers choose a customized mix of routes of different qualities to
different destinations, and a custom procedure to react to failures (for example, try
another cheap route, escalate to second tier, and so on)

Codecs and bandwidth
Each voice call using G711 codecs (that is, native non-compressed telecom formats)
consumes around 80-100 Kbps for each direction, including network overhead
(for a possible total of around 200 Kbps). The G729 codec results in roughly 30 Kbps
usage per direction, and is currently the most adopted VoIP codec because of its
favorable balance between payload compression (low bandwidth usage) and audio
perceived quality.

Bandwidth utilization can vary greatly depending on various factors such as SIP
header compressions, network fragmentation, silence suppression, period of sample,
and other minor details.

The sample duration at which the audio is packetized at is mostly 20 milliseconds,
and, while this value is the most adopted because of its robustness in the face of
packet loss and delays, the ratio between overhead (headers contained in the packet)
and payload (actual encoded audio) is very unfavorable.

So, in situations where bandwidth is costly (for example, satellite communication,
developing countries, radio transmission, and so on) the sample duration is often
brought to 30, 40, or 60 msec, and/or other much more compressed codecs are used
(for example, G723, ilbc, Speex), sacrificing some audio quality.

The quality of a voice call is determined by the worst quality of its path (for example,
an ilbc originated call cannot get better because it's translated to your receiving G711;
on the contrary, each translation further degrades the audio quality of the call).

For the same reason, check thoroughly, your ability to actually enjoy the advantages
of a High Definition Audio Codec. If your call transits even for a moment on
the PSTN, any HD will be reduced to worse than G711 (because of translation
degradation). So high definition audio is mainly for calls to other SIP users. But even
if you use an HD codec and your ITSP accepts it, it will not necessarily (actually
almost never), be accepted as it is on the path from your ITSP to another ITSP, even
if that second ITSP claims to support the same one. You can have better luck calling
other customers of your same ITSP.

Chapter 3

[59]

A special case of high definition audio implementation would be if your ITSP
has a direct connection with 4G and LTE cellular network carriers. Many first tier
cellphone carriers are beginning to roll out high definition audio to their customers,
so ask your ITSP if it supports HD audio calls with them. Cellular networks, while
they have been known since the beginning for way lower audio quality relative
to PSTN, are about to invert this proportion and be the showcase for mass
HD audio adoption.

Infrastructure capability
A very important issue with ITSPs is their propensity to overbook their bandwidth, or
even worse, their capability to manage SIP signaling, for example, call establishment.

You can encounter a situation where your ITSP is growing so fast that it is not able to
deliver enough bandwidth to all of its customers, particularly during peak time.

But more often the problem arises from the sudden arrival of a specific new
customer, for example, a new call center, that moves all of its traffic into routes and
servers that until now provided much less throughput.

Worst of all is when a customer using predictive dialers or teleblasters comes online.
The bandwidth usage can be compatible with the ITSP setup, but the call attempted
per second (cps) can bring the ITSP's SIP servers to a crawl, because for each
successful cold call they try to connect to 20 numbers in old and ineffective lists. This
can hamper your ability to place and receive calls.

Another, sometimes overlooked, limitation (on the customer side, this time) that
can damage call quality and completion rate is the "Asymmetrical" world of ADSL.
Asymmetrical Data Subscriber Line's bandwidth is, um, asymmetrical, while VoIP
is completely symmetrical. So an ADSL can be pretty fast in downloading a video
at 2 Mbps, but its VoIP bandwidth (and the number of maximum concurrent audio
channels) will be defined by the upload speed, which is often dramatically lower
than the download speed.

Packet delay and, worse, jitter (a discontinuous variation in delay that cannot be
easily compensated) can negatively affect audio quality and is relative to the physical
distance between end points and to the propagation delay in the path between them.

So, you can be better served by an ITSP, which SIP servers are connected to your
SIP devices through a high speed or dedicated network (for example, MPLS), whose
infrastructure is directly connected to a first tier Internet backbone, and which has its
own datacenters near your region and near the region of your highest traffic.

ITSP and Voice Codecs Optimization

[60]

Various important features
Fax transmission has been designed and optimized to fully exploit the physical
characteristics of traditional PSTN analogical copper lines, and has been the bête
noire of VoIP for a long time. Even the best, uncompressed codecs (G711) are not
able to guarantee a high success rate of T30 (for example, fax) transmissions. That's
because of the hyperstrict timing requirements that were guaranteed by a real-time
analogical transmission, but are practically impossible for an asynchronous digital
transmission. We'll see this in a later section of this book, but the SIP solution to
this problem is a protocol enhancement called T38. T38 works around the timing
problems, but its implementation must be compatible end to end, and the eventual
gateway to PSTN connected fax machines must be of high quality.

So, if you need faxes (inbound and/or outbound), choose an ITSP with well–known,
good T38 support for routing this kind of traffic, and perform many tests before
committing to a contract.

Another important feature is 911 and emergency calls. You are probably required
by law to ensure you are compliant with your country regulation in the matter of
emergency calls (police, ambulance, firefighters, and the like) so, when in doubt,
check with a lawyer. Roughly speaking, retail ITSPs often provide this kind of
service as part of their standard offer, while wholesale providers almost never do.
There are specific "wholesale" providers that specialize in emergency call services,
and they can be used to complement the offer of "regular" wholesale providers.

One other thing to bear in mind is the Caller ID Name (CNAM) display and set
feature—the alphanumeric string that is displayed on the callee's device. While CNAM
information in SIP packets is part of the SIP standard, there is not (yet) a publicly
accessible database that maps names to numbers and vice versa. This information
is contained in proprietary databases maintained by major carriers, with bilateral
agreements for access. Many initiatives and commercial providers exist that allow the
querying of this information for a fee. If you are interested in this feature, be sure that
your ITSP uses these services, and optionally give you the possibility of porting or
setting your CNAM, and as always, run some actual tests before committing.

Messaging services, like SMS, MMS, and the like are starting to be deployed by
some ITSPs. Often they are provided via some RESTful web API that, via their site,
allows the use of some messaging provider service. The most SIP-compliant way to
interface with messaging is via SIMPLE, part of the extended SIP standard, and very
well supported by FreeSWITCH. If you can choose, choose SIMPLE.

Chapter 3

[61]

Then there are API and REST interfaces. It can be very useful, depending on
your specific needs, to integrate into your operation the management of your
ITSP services. Adding a DID, a branch office, moving numbers between different
departments, setting up redirection and follow me, integrating voicemail in a
workflow, and so on: All those and many other different settings and procedures can
be controlled automatically by your internal software, provided your ITSP gives you
a way to interact with them. Check out how complete its API is, and how its "style"
fits with your company programming practices.

Support, redundancy, high availability,
and number portability
In this last section we accumulate all the "oh so obvious" issues that can make your
life as an ITSP customer very unpleasant.

What is the support policy of your candidate ITSP? How long does it take to be
connected with a knowledgeable person? How knowledgeable is that person? What
about nights, weekends, holidays?

And also, what kind of monitoring and operation system do they have? Are they
able to immediately come up with the SIP trace of the call you have a problem with?
Or do they want you to provide the trace?

How are non-critical tickets serviced, like feature request or reconfiguration
of features?

How does your potential ITSP handle their own infrastructure failure? What kind of
High Availability architecture have they implemented? What if its datacenter got cut
out from you or destroyed? Do they have a parallel datacenter? Do they depend on
a single upstream provider for their connectivity? In case of an outage, you'll be glad
you asked those questions.

This is a pitfall of number portability. Be aware that usually, as per your country
regulation, your PSTN or mobile number is owned by you and you can port it to
whatever other carrier or provider you like. This may not be the same with your
ITSP-provided DIDs: They may just be leased to you, and you'll be unable to port
them to another ITSP.

ITSP and Voice Codecs Optimization

[62]

Also, porting numbers is not immediate, and, particularly for a large set of numbers,
can require substantial time, perhaps weeks.

Again, for large sets of numbers, and when moving a substantial quantity of traffic to
a new ITSP, try to be sure it is able to handle the new kid. Don't switch from zero to
one hundred! Ramp it up slowly, constantly checking vital data, and be prepared to
switch to a plan B if something turns out for the worse.

Summary
In this chapter we saw what to look for when making commercial choices about our
upstream and downstream providers.

What is the mission of an ITSP? What kind of services do they sell? What
technologies are involved in their operation? What should we be aware of? What
questions should we ask? What are the hints that tell the good from the bad ones,
and the features that define the one that is right for us?

We understood the differences between white and black routes to international
destinations, their different pricing, reliability, quality. Then we saw the same with
DID (DDI), the phone numbers we want people to call in order to reach us.

We closed the chapter with a reasoned laundry list of other features that can greatly
affect our experience as Service Provider Customers.

[63]

VoIP Security
VoIP and FreeSWITCH security is a multi-layered area. You need to take care of
all and each of those layers, because it is the weakest link that defines the strength
of the chain.

We will not touch here on the issues related to general computer security. We will
focus instead only on specific FreeSWITCH and VoIP best practices. Please note that
if you have root access to your server via the Internet with a password "12345678", all
the following specific measures will do little good.

In this chapter, we will cover:

•	 Best practices to secure and protect FreeSWITCH
•	 Fail2ban configuration
•	 Encryption of SIP signaling, fraud prevention
•	 Encryption of RTP audio, privacy, and confidentiality
•	 Certificates in WebRTC and WebSockets (DTLS, mod_verto)

Latest versions of it all
It's of paramount importance to update immediately not only FreeSWITCH,
but all your software and your devices' firmware to the latest versions, as soon as
they are released.

Specifically, pay attention to the new releases of phones' firmware; they close
security bugs and add security features. When a new version of a software or
firmware is released, the security bugs that are fixed become the "features" that
attackers are looking for in systems that have not been updated.

VoIP Security

[64]

Default configuration is a demo
The configuration installed when FreeSWITCH is built from source, or when the
"Vanilla" config package is installed, is a mega-demo of a lot of features, a complex
PBX with IVRs, conferences, registered phones, gateways, and so on. It is a demo,
and a field to explore and to learn what can be done. You don't need it all, probably.
Best practice would be to use only what you need and understand, and tailor it to
your needs and environment. After some time practicing in your lab, start from a
minimal configuration and build up from there.

Change passwords
In the standard "demo" installation, you have SIP users (for example, devices) named
from "1000" to "1019" that can register (from the local LAN, not from the bad Internet
outside) to FreeSWITCH with password "1234" defined in conf/vars.xml and then
make and receive calls. If you don't change that password, you will experience a 20
second delay before connecting calls, and a flurry of red error messages on the fs_cli
console and in the FS logs. Changing that password to something else will remove
the nagging, but you can do more. Best practice would be to go to conf/directory/
default and move all of its content away, then bring back the files you need one by
one, and edit all the security information they contain, particularly:

 <param name="password" value="$${default_password}"/>
 <param name="vm-password" value="1001"/>

Use absolute values here instead of $${var} variables, and make them unique to each
user, and not easily guessable.

Lock all that's not trusted
Running a VoIP server gives you many concerns: Service to your users must not
be disrupted by malicious attackers, your (paid) connection to ITSPs must not be
hijacked or otherwise exploited by third parties, and conversations of your legitimate
users must remain private and confidential. Consider all that's not from your own
LAN as hostile. This seemingly paranoid attitude will be your friend, and each time
you'll hear about breaches into someone else's telephony system you'll pat yourself
on the back.

•	 If you allow SIP devices to register to FreeSWITCH from outside your LAN,
use a VPN or TLS Certificate. Nothing else. Not even 16 character passwords.
They'll be almost in the clear. Beware: Allowing plain SIP registration from
outside your LAN is a highway to toll fraud.

Chapter 4

[65]

•	 Connect to your ITSP via VPN or TLS if possible, and in any case activate IP
authentication (ITSP will accept traffic only from your FreeSWITCH server at
your IP address).

•	 Set your firewall to open only the needed ports and to the needed addresses:
Probably only your DIDs' provider(s) for incoming traffic (often the same
company you use as ITSP for outbound traffic) and VPNs to your remote
users.

Dropping root privileges (file
permissions)
The more direct way to run FreeSWITCH is to run it as "root". Being root, the
all-powerful user, the Overlord of the server, a program running as root has no limits
whatsoever: No limits on how much memory it can allocate, which network port it
can listen to and send from, how many files it can open, which priority and nice level
it can escalate, which file and directories it can read and write.

While obviously very convenient for a casual test installation (no integration
problems: FreeSWITCH simply owns the machine and all its resources),
many users refrain from it.

To limit the reach and damage that a FreeSWITCH process can do after going
awry because of a bug (or a malicious exploitation of a bug), you had better run
FreeSWITCH as a user with the minimum possible privileges. A "system" kind of
user is the most logical choice: No password, no way to login, no affiliation to groups
but to "daemon".

This is how it is already implemented by ready-made packages distributed from
FreeSWITCH core developers for Debian, CentOS, and other platforms.

Let's see how to do it when compiling FreeSWITCH from source. Start by creating
the user:

useradd --system --home-dir /usr/local/freeswitch -G daemon freeswitch

Then we need to give the new user the ownership of all files related to FreeSWITCH
and set the right permissions (or our new user will not be able to access or execute
the files):

chown -R freeswitch:daemon /usr/local/freeswitch/

chmod -R 770 /usr/local/freeswitch/

chmod -R 750 /usr/local/freeswitch/bin/*

VoIP Security

[66]

Instead of using some mechanism like "sudo", FreeSWITCH would be better started
as root (or similarly privileged user) with -u and -g options. FS will switch to the
desired user and group immediately after initialization:

/usr/local/freeswitch/bin/freeswitch -u freeswitch -g daemon

Fail2ban on all services
Fail2ban is a tool designed to monitor systems' log files and to trigger actions in
case it detects traces of something suspicious. It is widely considered as an intrusion
prevention tool. Many log files from different programs can be monitored at once,
meaning that you can monitor as many different services as you want (including
FreeSWITCH, of course). Various kinds of reactions can be configured to be triggered.

The configuration of fail2ban relies on three different concepts: Filters, actions and
jails. A "filter" is a set of regular expressions used to identify suspicious behaviors
in the monitored log file. As log lines are generally specific to each service, you will
probably have one filter per service you want to protect (but it is not a rule). Then
you have the "action": They describe what to trigger in case a filter matches a line. It
can be for instance:

•	 Block the attacker IP address in the iptable's firewall (most popular
and useful)

•	 Send an alarm message or even an advanced e-mail complete with a whois
lookup of the attacker IP address

•	 Modify the host routing table

As for filters, you can create your own actions even though the default set is already
pretty useful. Finally, "jails" must be defined. A jail is a combination of a filter and
an action, with instructions about what log files to watch for this combination. For
instance, in a jail named ssh-iptables you can have the default filter sshd, with the
default action iptables (which adds a rule to iptables to block the relevant IP address,
in case of suspicious behavior) and the path to monitor /var/log/secure. The jail
is very important because it also contains other parameters needed to completely
harness the power of fail2ban:

•	 Number of occurrences before blocking (maxretry)
•	 The monitoring time window (findtime)
•	 The duration before unban (bantime)

This last parameter is particularly useful when a false positive is being blocked (that
is, a customer badly configured, a user trying to access ssh with a wrong password,
and so on).

Chapter 4

[67]

FreeSWITCH jail
We are going to configure fail2ban to detect abnormal behavior related to our
FreeSWITCH server. We assume fail2ban is successfully installed on the same host
running the FreeSWITCH service.

The first step is to configure your FreeSWITCH server to add to its log the
authentication failures. To do so, be sure your logfile reports lines at least at
"WARNING" level (you can set this from fs_cli with: "fsctl loglevel 4"). Then you
have to add to each of your SIP profiles the following line:

<param name="log-auth-failures" value="true"/>

Once this is done, we have to create a new fail2ban filter file (since version 0.8.12,
fail2ban already includes a filter for FreeSWITCH. The latest version can be
downloaded from: https://github.com/fail2ban/fail2ban/blob/master/
config/filter.d/freeswitch.conf)

[Definition]
failregex = ^\.\d+ \[WARNING\] sofia_reg\.c:\d+ SIP auth
(failure|challenge) \((REGISTER|INVITE)\) on sofia profile \'[^']+\'
for \[.*\] from ip <HOST>$
^\.\d+ \[WARNING\] sofia_reg\.c:\d+ Can't find user \[\d+@\d+\.\d+\.\
d+\.\d+\] from <HOST>$

In the example above, the two regular expressions define the following rules:

•	 Identify the IP address of an attacker trying to authenticate a registration or a
call without knowing the password (brute force)

•	 Identify the IP address of an attacker trying random users to setup calls

Additional regular expressions could be added, depending on your need. For a
server using ACLs to authenticate SIP requests, you could also add this line:

\[WARNING\] sofia_reg.c:\d+ IP <HOST> Rejected by register acl
\"domains\"

When the filter is set up, the last step is to configure the jail by editing jail.conf,
and adding:

[freeswitch]
enabled = true
filter = freeswitch
logpath = /usr/local/freeswitch/log/freeswitch.log
maxretry = 10
action = iptables-allports[name=freeswitch, protocol=all]

VoIP Security

[68]

Here action will add the IP address of the attacker in an iptables chain (named
fail2ban-freeswitch) and drop everything from it whatever destination port or
protocol.

Note that, if you want, you can block the IP address in iptables only for the service
targeted by the attack. For FreeSWITCH, you could, for instance, use the action
iptables (not iptables-allports) and add the parameter port with the value
5060,5080.

Restart fail2ban to activate the configuration. You can check that everything is
working as expected by either simulating an attack or simply waiting (you'll
see how little time will pass before someone will probe your SIP ports).

Fail2ban also provides a client within its framework to interact with the server; you
can use it for many monitoring purposes (for example, as a source for a Cacti graph).

SIP(S) and (S|Z)RTP
There are two completely separate flows to encrypt, they can even take different
Internet paths to arrive at the same destination: SIP protocol transmits signaling,
commands, and information about voice sessions, while RTP protocol transports
the digitized audio, the voice proper.

SIPS (SIP Secure) uses certificates exactly in the same way as HTTPS do for HTTP: to
encrypt SIP: It's about safeguarding signaling, like your registration passwords, and
information about who you connect to. Born on the web as SSL, in our case it is most
often called TLS (Transport Layer Security).

SIPS and TLS are NOT about encrypting voice. They protect only signaling: Digitized
voice still travels clearly, transported by RTP, and can easily be eavesdropped with a
network sniffer. For RTP (audio) encryption, look below at SRTP and ZRTP.

A completely secure and confidential solution would use TLS+SRTP or, better,
TLS+ZRTP.

Encrypting SIP with TLS (SIPS)
TLS, as SSL, depends on certificates issued by a Certification Authority that
guarantee the identity of the certificate bearer. You can buy a TLS certificate from the
same CAs that sell Web HTTPS certificates. You can then use that same certificate
with WebSockets, WebRTC and mod_verto too (and for the HTTPS website with the
same name as your SIP registrar, for example, https://pbx.freeswitch.org).

https://pbx.freeswitch.org

Chapter 4

[69]

Also, you can use free and valid certificates from https://letsencrypt.org/, (see
the automatic script in FreeSWITCH Confluence about verto_communicator demo
installation on Debian 8).

The tool you use to generate the various certificates involved is (aptly named)
gentls_cert:

/usr/local/freeswitch/bin/gentls_cert command -cn pbx.freeswitch.org -alt
DNS:pbx.freeswitch.org -org freeswitch.org

(Instead of pbx.freeswitch.org and freeswitch.org, use the FQDN your clients will
use as SIP registrar and SIP domain).You will use the same utility with the same
arguments, but a different command: First of all, setup will create your CA. Then
create_server will generate FreeSWITCH's agent certificate, and create_client
will generate the (optional) client certificate. You will find them all in /usr/local/
freeswitch/conf/ssl/ (maybe you'll need to copy into clients the cafile.pem too,
so that they have the entire chain up to the CA).

Then, edit /usr/local/freeswitch/conf/vars.xml and modify the following line
so that it reads true:

 <X-PRE-PROCESS cmd="set" data="internal_ssl_enable=true"/>

Restart FreeSWITCH and it's set. Then, configure the clients to use TLS and to
connect to FreeSWITCH's port 5061. That's it. Your signaling is encrypted. (Beware:
clients behind NATs or firewalls can have problems in receiving incoming calls. In
that case, use VPNs instead of TLS).

Encrypting (S)RTP via SDES (key
exchange in SDP)
SRTP in its oldest, simplest and most deployed implementation encrypts the (UDP)
audio stream using a key that was exchanged via SIP(S), in the SDP body of the
SIP packet.

This method, called SDES (SDP Security Descriptions), can be considered secure
under two conditions:

•	 Encrypted SIPS (for example, TLS) was used for exchanging keys in signaling
•	 All the SIP(S) proxies between caller and callee are trusted

https://letsencrypt.org/

VoIP Security

[70]

Because SIP(S) packets must be interpreted by proxies, the organizations that
own or manage each single proxy between caller and callee know the key and can
decrypt the audio. Also, someone can succeed in inserting him or herself into the
proxy chain, and acting as a man-in-the-middle (mitm), pretending to be one such
legitimate proxy, and then decrypt and/or tamper with the audio.

Many wrongly identify "SRTP" with "SRTP via SDES". SRTP is actually RTP
encrypted via keys, and there are many different methods to exchange those keys.

Anyway, anyone that has no access to the key is unable to decrypt the audio, and
there is a world of difference with plain, clear, unencrypted RTP, where audio can be
listened to simply by sniffing the network.

To activate support for SDES SRTP, add the variable sip_secure_media=true to the
call-origination string, to the dialplan extension, or to the session.

SDES offers can be spotted by a line like a=crypto in SDP body, and encryption
status of the call can be checked via the variable rtp_secure_audio_confirmed.

Activate support for SRTP via SDES (or simply "SRTP", for some vendors) in clients,
and audio will be encrypted.

Encrypting (S)RTP via ZRTP (key
exchange in RTP)
ZRTP is a method for the end-to-end exchange of encryption keys. Caller and callee
will directly exchange the keys that will be used to encrypt the audio stream, without
any third-party intervention. No proxy is involved; no information is exchanged in
SIP(S) or SDP: Key exchange is peer-to-peer via Diffie-Hellmann, in the RTP stream
itself, in its initial phase.

ZRTP is compiled by default in FreeSWITCH. If clients support ZRTP, the session
will be encrypted in the safest mode possible.

ZRTP is a young protocol, and is already implemented by some softphones (Blink,
CSipSimple, iCall, Jitsi, Linphone, Phoner, SFLPhone, Twinkle, Zfone, and Zoiper
has announced) but by almost no hardphone or ATA.

There are two ways to solve the lack of hardware devices implementing ZRTP.
If you're using a softphone that does not support ZRTP, you can install on the
client machine "Zfone", a software utility that will act as a "filter", encrypting and
decrypting on the fly from and to ZRTP the plain RTP traffic for your softphone.

Chapter 4

[71]

The other way is conceptually similar: You'll use FreeSWITCH as a filter. Arrive
from your device (phone, ATA, softphone) to FreeSWITCH with plain RTP (perhaps
through a VPN), and then FreeSWITCH will connect ZRTP to the callee. In this case
you'll have an end-to-end encryption from FS to callee, without any proxy or third
party being able to listen.

ZRTP is enabled globally in the default demo configuration, but you can enable and
disable it (globally or per-call) via ztp_secure_media=true.

New frontiers of VoIP encryption
(WebRTC, WebSockets, DTLS)
FreeSWITCH has been at the forefront of development and implementation of
WebRTC and SIP over Secure WebSockets.

This is a script to obtain valid certificate from https://letsencrypt.org/; install it
in a FreeSWITCH standard setup, and start using WebRTC DTLS encrypted calls:

https://freeswitch.org/confluence/display/FREESWITCH/
Debian+8+Jessie#Debian8Jessie-Scriptinstallfreeswitchdemowithverto_
communicator

Summary
In this chapter we touched on the most important features that determine the
security of a production-grade FreeSWITCH installation. You had better assume that
everything and everyone can be hostile and mischievous; implement all the known
best practices in the industry, be up-to-date and aware of any threats and new
software versions. Lock it all, via firewalls, VPNs, certificates, and encryption.

Better grumpy and safe than sad and sorry (quote, the grumpy cat. Meow!).

https://letsencrypt.org/
https://freeswitch.org/confluence/display/FREESWITCH/Debian+8+Jessie#Debian8Jessie-Scriptinstallfreeswitchdemowithverto_communicatorSummary
https://freeswitch.org/confluence/display/FREESWITCH/Debian+8+Jessie#Debian8Jessie-Scriptinstallfreeswitchdemowithverto_communicatorSummary
https://freeswitch.org/confluence/display/FREESWITCH/Debian+8+Jessie#Debian8Jessie-Scriptinstallfreeswitchdemowithverto_communicatorSummary

[73]

Audio File and Streaming
Formats, Music on Hold,

Recording Calls
Audio, audio, audio… If you're in telephony, you know what telephony is all about.
End users' experience is determined by the quality of the sounds they are hearing,
and, no matter how perfect the signaling and routing, their satisfaction will come
from way down in the abstraction layers: their ears.

Creating and manipulating audio files and streams, for prompts, error messages,
voicemails, call recordings, quality monitoring, and to entertain while waiting
on the phone, is a sizeable part of any VoIP implementation.

FreeSWITCH gives us a lot of functions and primitives to deal with audio files and
associate chores, and we'll see what the best practices are in this area, from how to
combine audio fragments into meaningful phrases to how to stream live radio as
music on hold.

In this chapter, we will cover:

•	 Audio in VoIP, traditional and HD
•	 FreeSWITCH audio formats, MP3, streaming
•	 Music on Hold (MOH)
•	 Recording and playing files, streams, and prompts
•	 Recording calls
•	 Tapping audio

Audio File and Streaming Formats, Music on Hold, Recording Calls

[74]

Traditional telephony codecs constrain
audio
There are so many ways to compress and digitize audio to be sent through the wire.
A lot of codecs are available for use with FreeSWITCH, from ultra-wide band high
definition (the quality of an audio CD) to the ultra-low bandwidth utilization, and all
the variables involved can be confusing.

So, let's start with a bold simplifying assumption (we'll see complexity later): You
only need to be aware of two codecs — G711 (which is available in two flavors: Ulaw
and Alaw, also known as PCMU and PCMA) and G729.

G711 is the original, uncompressed format used since the beginning of time by
telecom companies worldwide. It was designed to carry speech so that it only
gets a very narrow audio band (300-3400 Hz), and to cut out the rest (humans can
hear from 20 to 20,000 Hz; that's why music on hold sounds so bad on the phone).
It samples that narrow speech band 8,000 times per second (8 khz sampling) in a
logarithmic way (mimicking human hearing for different frequencies) producing 8
bit samples. 8 bit times 8,000 makes a stream of 64 kb/sec. Its two flavors (Ulaw, or
μ-law, or pcmu, is used in the USA, and Alaw, or a-law or pcma, in the rest of the
world) are only slightly different, and you would know if you mistook one for the
other because it would sound understandable, but bad.

If your call is originated or terminated by PSTN, it will be converted to or from G711,
so its quality cannot be better than that (mono, 8 bit, 8 khz, narrowband), only worse
(there is no point in having an HD codec on one end and PSTN on the other end; you
will just burn CPU cycles transcoding between the two codecs, and the quality will
be lower than G711, because of the very process of transcoding).

G711, as the original PSTN format, can carry as audio (that is, inband) all traditional
telephony contents, from DTMF digits to fax transmissions (also, a good success rate
for faxing over SIP would require using T38 protocol on top of G711).

G711 is free from patents, and is supported by all software and devices out there.
It is your safest bet when you're looking for compatibility and interoperability. Its
usage does not load the CPU, because no compression is done. The drawback is that
it takes 64 kb/s of bandwidth (two audio directions plus overhead will be roughly
200 kb/s). G711 support is mandatory on WebRTC, and choosing it instead of higher
quality codecs lowers client-side processing power requirements considerably.

Chapter 5

[75]

G729 is the other all-important codec: It is a patented, non-free, pay-for, audio
codec that gives good quality/compression ratio for a payload similar to G711:
Narrowband, mono, 8 bit, 8 khz. Its perceived quality (that is, Mean Opinion
Score (MOS) what the end user experiences) is near G711, but it only uses 8 kb/sec
bandwidth in each direction.

This commercial codec (you need to buy licenses to use it because of patents (feel free
to check https://freeswitch.org/ page for FreeSWITCH G729 licenses)), is very
popular in legacy systems, commercial PBXs, interconnection with telecoms and ITSPs,
and is almost always supported (maybe at additional cost) by hardware phones.

G729 cannot transport faxes or DTMFs, only speech (no fax at all, while DTMFs can
be transmitted out of band via 2833 or INFO), and it requires the CPU to perform
compression and decompression in real time.

Codecs available in FreeSWITCH default installation

https://freeswitch.org/

Audio File and Streaming Formats, Music on Hold, Recording Calls

[76]

HD audio frontiers are pushed by
cellphones, right now
We've just seen that for regular, traditional telephony, we only need an audio source
that is mono, narrowband, 8 bit, 8 khz. That is considered good quality, toll-grade
quality.

It compares well with cellular phones' quality, which in the last decade has
drastically lowered our expectations. Cellular phones' codecs did not sound very
good; actually they were much worse than G711 or G729. But we're on the verge of a
revolution in the sound quality of telecommunication.

First it was Skype, who introduced us all to 16 khz, wideband audio. Ever tried to
listen to music via Skype? It sounds good. And speech too: You immediately hear
and feel, you're not on PSTN (and neither on cellphone).

But there is much more to come: 4G and LTE cellular networks are starting to
become available everywhere, with audio in ultra-wideband and high definition
(HD). The cellular network will once again change our expectations, but this time it
will raise the bar. And WebRTC is almost always using HD codecs (mostly OPUS, at
the moment), albeit support for G711 is still mandatory.

VoIP, and SIP-enabled devices, have been able to take up this challenge for a long
while now. You can actually say that fast local networks available in offices and
corporations allowed for the very development of HD audio itself, at first in SIP. And
now high quality audio is ready to break out from the corporate LAN and begin to
take over the majority of telecommunication.

You set the preference order for codecs in /usr/local/freeswitch/conf/vars.xml

Chapter 5

[77]

FreeSWITCH audio, file, and stream
formats
FreeSWITCH is able to interface automatically with a lot of codecs and file/stream
formats, and it can translate between them. This means that a CD-like source at 48
khz, 16 bit, stereo and wideband will be decoded, downsampled, truncated, mixed,
and then re-encoded to be sent in a G711 call.

Keeping with the general FreeSWITCH philosophy of do not reinvent the wheel, audio
files and streams are read and written using open source libraries: FreeSWITCH has
a specific API for audio formats; anyone can write a wrapper for a new sound format
library and that format will be available everywhere in FS that a sound format
is used (the same applies to codecs and to stream formats; just implement their
FreeSWITCH's API).

This ensures the most efficient and timely support for new file formats and codecs
(Brian West released FreeSWITCH's support for BroadVoice codec 40 minutes after it
was open sourced).

Audio file formats
Most audio file formats are supported in standard installation by mod_sndfile (from
.au to .aiff, .gsm to .raw) and the most popular of the formats is WAV.

There are various standard sets of prompts that can be automatically installed
in FreeSWITCH. They're all in WAV format, 16 bit, mono, and they differ in the
sampling frequencies: The whole sets are available in 8, 16, 32, 48 khz.

WAV sets of prompts provide the raw material that will be translated (encoded) by
codecs. Waveforms will be read from the files by FreeSWITCH and then encoded. To
save disk space and download time you will install only the sets with the sampling
frequencies you're going to use. After compiling and installing FS, you should input:

make sounds-install && make moh-install

This will install the 8 khz set of prompts and on-hold music. That's the basic set, the
most used one, the one that will be the base for all traditional telephony calls, both
using G711, G729, and a lot of other 8 khz codecs. If you're not planning on using HD
audio, that's the only set you'll need.

To install all the sets (8, 16, 32 and 48 khz) in one fell swoop, you should input:

make cd-sounds-install && make cd-moh-install

Audio File and Streaming Formats, Music on Hold, Recording Calls

[78]

When you need to play a file, FreeSWITCH will automatically choose the one that is
most convenient as a base for encoding. So, for Opus, Speex, Silk, and G722; FS will
read the corresponding sampled set.

Anyway, encoding has a CPU cost, particularly for compressed codecs. To avoid any
cost, mod_native_file comes to the rescue. This module, installed by default, will
allow FreeSWITCH to read from files already encoded, such as those ready-made in
G729, or Opus, or G722. This can be very useful where computational power is at a
premium, like in embedded devices.

You can use the program fs_encode to encode audio files in each one of the
codecs supported by FreeSWITCH and its modules

MP3 and streaming
Mod_shout (not installed by default) allows FreeSWITCH to play local and remote
MP3 files, and other streaming formats. To install, input the following:

cd /usr/src/freeswitch

make mod_shout-install

Chapter 5

[79]

This will automatically download the needed Lame and mpg123 libraries, build, and
then install the module. Then, from fs_cli:

How to load mod_shout from fs_cli

To have mod_shout automatically loaded at FreeSWITCH startup, add it into /usr/
local/freeswitch/conf/autoload_config/modules.conf.xml.

Once loaded in FS, mod_shout can be used to play and record local mp3 files, and to
interact with SHOUTcast and ICEcast servers (for example for listening to an Internet
radio, as music on hold, or to broadcast a call or a conference via ICEcast).

Music on Hold
In FreeSWITCH, MOH has a distinct and unique meaning: One directory of files
that will be broadcast in a loop as a stream to all listening sessions. For example, all
calls connected to the same music on hold name will hear the same broadcast, like
listening to the same radio.

www.allitebooks.com

http://www.allitebooks.org

Audio File and Streaming Formats, Music on Hold, Recording Calls

[80]

MOH features are made available by mod_local_stream, and configured in local_
stream.conf.xml.

Files can be in whatever format is supported by FS modules, for example mod_
sndfile, mod_shout, mod_file_native, and more. While it is possible to use local
MP3s as local stream files, it would be advisable to preconvert them in WAV (so as
not to waste CPU cycles in decoding that format). If you have built mod_shout you'll
find mpg123 as /usr/src/freeswitch.git/libs/mpg123-1.13.2/src/mpg123.

cd /home/music/directory

for i in *.mp3; do mpg321 -w "`basename "$i" .mp3`".wav "$i"; done

Also, you can use remote MP3s, or streams supported by mod_shout as MOH. Refer
to mod_shout confluence/wiki page for details and examples.

Playing and recording audio files and streams
Thanks to FreeSWITCH internal APIs, inspired by the Unix concept all is a file, you
use the same primitive to play files and streams (assuming they're supported by
some module).

From dialplan, to play a local file, a remote file, or a stream, input the following:

<action application="playback" data="sounds/soundfile.wav"/>

<action application="playback" data="http://example.com/ciao.mp3"/>

<action application="playback" data="shout://online.radiodifusion.
net:8024/" />

Chapter 5

[81]

For listening to a MOH defined in mod_local_stream configuration, input
the following:

<action application="playback" data="local_stream://default"/>

You can add an offset, in samples, at the end of the item definition, for example,
for a 2 second offset from the beginning, in a 8 khz sampled file, input the following:

<action application="playback" data="/tmp/test.wav@@16000"/>

Also, you can define one or more DTMFs to be used as terminator keys to interrupt
playback. The default is * (star). To disable terminator keys altogether, set the
variable to none.

<action application="set" data="playback_terminators=none"/>

Recording and modifying prompts and audio
files
You have two routes to custom prompts. You can have a commercial prompt
company professionally record a set of prompts for you. Google for "FreeSWITCH
Prompts" and you'll find various options for standard prompts, in English and
in many other languages. Custom prompts, with the name of your company, or
special messages, can be obtained for a reasonable cost, professionally recorded by
corporate-sounding voices.

Or you can record prompts yourself, both from your voice or from a Text to Speech
(TTS) software (from festival to smartphone's assistants).

To create an audio file from your voice, you call an extension that answers and then
records your message. Put in dialplan, to record a file of max 20 seconds length, with
200 set as the energy level of silence, and 3 seconds of silence as terminator (as well
as the default * key):

<extension name="Record File">
<condition field="destination_number" expression="^123456$">
<action application="playback" data="sounds/ivr-begin_recording.wav"/>
<action application="record" data="/tmp/${uuid}.wav 20 200 3"/>
</condition>
</extension>

Call 123456, record your prompt, press *, and you'll find a WAV file with the uuid of
the call as a name (so, you can call many times without overwriting it) in /tmp.

Audio File and Streaming Formats, Music on Hold, Recording Calls

[82]

You will definitely want to trim, clean, stretch, or otherwise modify this file. Enter
Audacity! Audacity is a professional and open source tool for editing audio files.

Editing an audio file with Audacity

It has tons of functions and features, but its basic usage is intuitive, while for
advanced effects you'll find plenty of documentation and help from the community.

Recording calls
Call recording is different from message (prompt) recording. You want to record
both the caller and the callee, that is, the entire conversation made by A-leg (caller)
and B-leg (callee).

You may want to end up with two files (one file will contain the caller's audio, the
other one the callee's speech), or one file that contains the two legs mixed together,
or (and this is an elegant and practical solution) one stereo file that will contain the
caller's audio on one channel (for example, the left channel), and the callee's on the
other (right) channel.

Chapter 5

[83]

Also, you may want this recording to happen automatically at each call, or to be
activated by the end user (or administrator) pressing a special feature key.

Here the dialplan application you want to use is record_session. By default
record_session will do the right thing (TM) and record a stereo file containing one
leg per channel.

<action application="record_session" data="/tmp/${uuid}.wav"/>

To modify the default behavior of record_session you should setup variables.
You can choose which direction (leg) to record (RECORD_WRITE_ONLY, RECORD_
READ_ONLY), you can add metadata to the resulting file (RECORD_TITLE, RECORD_
COPYRIGHT, RECORD_SOFTWARE, RECORD_ARTIST, RECORD_COMMENT, RECORD_DATE),
you can record a mono file with the two legs mixed (RECORD_STEREO=false), and so
on. (Refer to the confluence/wiki page of record_session for full documentation).

Calling record_session in dialplan will record each call, without user intervention
and without the optional stop record key.

For full user control on recording start and stop, we need to use bind_meta_app,
which will bind a keypress to the execution of an application. For starting/stopping
session recording when the A-leg (caller) presses *2 (star-2), add the following
extension to dialplan:

<extension name="Record_at_will">
<condition field="destination_number" expression="^(1212)$">
<action application="export" data="RECORD_STEREO=true"/>
<action application="export" data="RECORD_TOGGLE_ON_REPEAT=true"/>
<action application="bind_meta_app" data="2 a s record_session::/
tmp/${uuid}.wav"/>
<action application="bridge" data="user/$1@${domain_name}"/>
</condition>
</extension>

It will bind the key, set variables, and then originate and bridge the call to the user.
Then the caller can control the recording by pressing the *2 key sequence (in a
hardware phone you can program the REC button to send this to two DTMFs). See
bind_meta_app documentation for full options.

Audio File and Streaming Formats, Music on Hold, Recording Calls

[84]

Tapping audio
You may need to listen someone else's call. First of all be sure to be compliant with
international laws and regulations and those of your country: Rumors that the
Alphabet Soup is wiretapping the whole world will not shield you from a lawsuit or
a criminal investigation. If you're positive you have the right to listen, FreeSWITCH
has two dialplan applications to choose from: eavesdrop will allow you to listen
to an arbitrary call (defined as an uuid argument to the app), while userspy will
constantly eavesdrop on calls involving a specific user.

Using eavesdrop on a call (also known as call barging) requires knowing its uuid
(you may use all as uuid, but you'll end up listening to all existing calls mixed
together). One such technique is implemented in the standard dialplan. When a call
is processed, its uuid is added to a spymap db table, indexed on extension. You can
then dial a prefix + extension, and if there is a call involving that extension the uuid
will be retrieved and fed to the eavesdrop application:

<extension name="global" continue="true">
<condition>
<action application="db" data="insert/spymap/${caller_id_
number}/${uuid}"/>
</condition>
</extension>

<extension name="eavesdrop">
<condition field="destination_number" expression="^88(.*)$|^*0(.*)$">
<action application="answer"/>
<action application="eavesdrop" data="${db(select/spymap/$1$2)}"/> </
condition>
</extension>

You will dial 88 + extension or *0 + extension to listen to calls, and you may then talk
to the caller, callee, or both (pressing 2, 1 or 3), or just lurk there. Refer to eavesdrop
documentation for full options and variables.

The userspy is a way to automate the eavesdropping on a particular user. You will
need to compile mod_spy and load it into FreeSWITCH.

cd /usr/src/freeswitch

make mod_spy-install

Once loaded it adds the dialplan application userspy.

Chapter 5

[85]

Loading newly compiled mod_spy in a running FreeSWITCH

You will then add to the dialplan an extension where the action is like:

<action application="userspy" data="1000@192.168.1.1
${hash(select/${domain_name}-spymap/1000)}"/>

The two parameters are user@domain to listen to future calls, and an optional uuid
of an active call to immediately begin to barge in on. In between active calls, you'll be
listening to MOH.

Summary
In this chapter we have browsed through various audio-related items and
procedures of paramount importance in real life FreeSWITCH implementation.
Audio is the Alpha and Omega of telephony, and by taking good care of it you will
be the good guy in the VoIP world. FreeSWITCH gives you so many tools. We just
scratched the surface here, and using FS positions your project at the forefront of
telecommunication, ready to take on the challenge of HD audio. We demonstrated
how to deal with audio files, transcoding formats, recording prompts and messages,
and recording entire calls (both legs) to a stereo file. Lastly, we saw how to listen to,
and interact with, someone else's call.

There is so much more to explore about Audio in FreeSWITCH, but we hope we
gave you a glimpse, and the motivation to browse the official documentation.

[87]

PSTN and TDM
SIP dominates much of the telephony landscape in VoIP. The SIP protocol is also
probably the most covered in FreeSWITCH books, documentation, and tutorials.
Despite this apparent hegemony of the SIP protocol, there are a significant number
of protocols that are used in the PSTN (public switched telephony network) and in
other private and public telephony networks. Some of those protocols do not even
run over IP, but use rudimentary analog audio signals to setup a call. (Yikes! This
sounds almost as archaic as sending smoke signals!) One of the great powers of
FreeSWITCH comes from its flexibility to interconnect different telephony protocols,
from bleeding edge new media and signaling protocols such as WebRTC/Verto, to
protocols as old as FXO/FXS and MFC-R2. In a sense, FreeSWITCH is a powerful
translator that knows many different languages and is able to translate from one
language to another quickly. These different languages are the protocols, and there
are a great deal of both media and signaling protocols that FreeSWITCH understands
and can translate to and from.

In general terms, signaling protocols supported by FreeSWITCH beyond SIP can
be divided into two camps. The first camp is the "legacy", but there are still heavily
prevalent protocols such as SS7, ISDN PRI/BRI (Q.931/Q.921), FXO/FXS, and GSM
(2G). Although you may not come across them in some countries, other countries
or areas within a country still rely heavily on them. For example, the SS7 suite of
protocols are still pretty much the protocols running all the core telephony networks
and it's an extremely reliable protocol, but most people do not come into contact
with it because it's not heavily used for peripheral deployments. The second camp of
signaling protocols belongs to "newer" IP telephony protocols such as H.323, Skinny
(SCCP), and Jingle (Google Talk) (but they are still somewhat legacy when compared
to the latest protocols like Verto and WebRTC).

The material in this chapter will focus on the legacy protocols used to interconnect
with the PSTN.

PSTN and TDM

[88]

In order to help you to fully appreciate how all these protocols fit together, I'd like
to introduce briefly the FreeSWITCH concept of an "endpoint interface" or "endpoint
driver". For FreeSWITCH to know about a signaling protocol, an endpoint driver
must be loaded and configured by the FreeSWITCH process. Endpoint drivers allow
FreeSWITCH to know how to receive and place calls in a particular protocol. In other
words, an endpoint interface is a protocol plugin. This means each of the protocols
that were previously mentioned (for example, SS7, H.323, FXO/FXS) must live
within an endpoint driver that FreeSWITCH can configure and load. This leads us to
FreeTDM and mod_freetdm (which was many years ago called mod_openzap), the
Analog and TDM protocol plugin for FreeSWITCH.

OpenZap
Bear with me for a few paragraphs and you'll be wiser by understanding how the
OSS telephony revolution started and how FreeTDM came into existence and was
integrated in FreeSWITCH.

In the early days of the FreeSWITCH project, Anthony wrote the telephony library,
"OpenZap" and the endpoint driver, mod_openzap to interconnect FreeSWITCH
with analog and digital time domain multiplexing (TDM) networks, making use of
telephony hardware from vendors such as Sangoma, Digium, and Pika Technologies.
The OpenZap project was named after the older "Zapata Telephony"(ZapTel) project
by Jim Dixon, who was probably the first person to come up with an open source
driver to connect an ISDN telephony card and then a cheap voice modem to a
BSD/Linux computer. ZapTel was a revolutionary project in many ways (hence the
name "Zapata Telephony", after the Mexican revolutionary, Emiliano Zapata) and
provided a critical boost to the open source telephony movement (which, arguably,
really took off with the integration of ZapTel with the Asterisk PBX project).

Chapter 6

[89]

The ZapTel project consisted of several Linux kernel drivers that exposed ioctl
system calls to be able to control telephony hardware (both analog lines and ISDN
digital lines such as T1 and E1 ports). The intelligence to make phone calls, however,
was left to the application layer (hence the need for software, like Asterisk or
FreeSWITCH). The OpenZap project that Anthony started was one level higher of
abstraction, aiming to provide a generic and unified API (application programming
interface) for both the telephony hardware and the signaling protocols for analog
and TDM technologies. Anthony wrote the initial implementation and it worked
pretty well. This way, with a single FreeSWITCH endpoint driver (mod_openzap,
now called mod_freetdm), support for many analog and TDM protocols was
implemented.

FreeTDM
Sangoma Technologies is a Canadian company that has always been sponsoring
FreeSWITCH morally and financially. However, until 2009, the code contributions
were sparse. In 2008, the ZapTel project was renamed to DAHDI due to some
trademark issues. Around the same time, in 2009, Sangoma started heavily
reworking some areas of OpenZap so it could better be used as an API outside
of FreeSWITCH for other standalone applications. This rework changed the API
completely and improved other core areas within OpenZap. The heavy changes
along with the fact that the original ZapTel project was renamed led to the renaming
of the OpenZap project. It was decided between Sangoma and the FreeSWITCH
development team to rename OpenZap to FreeTDM.

The FreeTDM project is a software library. As a library it's independent from
FreeSWITCH and can be used in projects outside FreeSWITCH's scope. The library
provides a unified high level API for analog and TDM signaling and access to the
input/output configuration and control of telephony hardware like Sangoma and
Digium cards. FreeSWITCH then includes the mod_freetdm endpoint driver to
interconnect with all protocols supported by FreeTDM.

PSTN and TDM

[90]

FreeTDM, just like FreeSWITCH, follows a modular architecture to plug different
signaling and I/O modules (more plugins!). For example, FreeTDM supports several
different ISDN PRI/BRI stacks (each with different strengths and weaknesses).
FreeTDM has been designed to work with telephony hardware from multiple
vendors (and support for other vendors can be added by writing a plugin). The most
well-known and used vendors are Sangoma, Xorcom, and Digium.

I/O modules
The input/output (IO) modules are responsible for controlling the telephony
hardware. All FreeTDM modules are named with the prefix "ftmod" (as in FreeTDM
module). The IO modules take care of reading and writing raw data bytes and
executing low level control commands in the telephony hardware, but do nothing
else; they are a kind of dumb module with not much, if any, knowledge of signaling
protocols such as ISDN and SS7.

Wanpipe Module (ftmod_wanpipe)

Chapter 6

[91]

This is the IO module that is used to talk to Sangoma telephony cards.

ZapTel / DAHDI Module (ftmod_zt)

This is the IO module to talk to Zaptel and DAHDI-compatible telephony cards, such
as those distributed by Sangoma, Xorcom, and Digium.

The Sangoma line of cards can work with both the native ftmod_
wanpipe and with this DAHDI interface module.

Signaling modules
FreeTDM supports a wide range of analog and TDM protocols. Even for the same
protocol (for example, PRI) there are several modules that implement it, each with
different strengths and weaknesses. The following is a list of the most commonly
used modules.

ISDN signaling modules
ISDN is a protocol still widely used over T1/E1, and BRI telephone lines. FreeTDM
supports several ISDN stacks, most of them open source. This is the list of the
modules you may come across and a brief description of their use case.

Sangoma ISDN Module (ftmod_sangoma_isdn)

This module offers telco-grade signaling support for both PRI and BRI signaling;
however, it is only usable if you have Sangoma cards with the native Sangoma IO
module (ftmod_wanpipe). The module is open source, but relies on a closed source
binary library that can be downloaded for free from the Sangoma website (more
details about this later in this chapter). This stack is fully supported by Sangoma.

LibPRI Modules (ftmod_libpri)

This module offers integration with the open source libpri library to provide support
for PRI and BRI signaling. This module offers community-based support. In order to
get BRI support enabled you have to install a recent libpri version (it's best to install
the latest available from the Asterisk downloads website: http://www.asterisk.
org/downloads/libpri).

http://www.asterisk.org/downloads/libpri
http://www.asterisk.org/downloads/libpri

PSTN and TDM

[92]

Analog modules
Analog modules offer integration with FXO/FXS and E&M lines. We will have a
look at some of them here.

Analog Module (ftmod_analog)

This module offers generic FXS/FXO connectivity (these are the kind of landlines
most people have at home in North and South America). These are strictly analog
lines and use voltage changes to signal the start (and sometimes the end) of a call in
addition to audio signals for notifications such as "ringing"or "disconnected".

Analog E&M Module (ftmod_analog_em)

This module currently only works with hardware that supports the DAHDI I/O
module (ftmod_zt), and this includes Sangoma and Digium cards. Although this
module is called "analog", in reality it currently works with E1/T1 digital lines using
CASE&M signaling. In theory it should work with real analog E&M lines, if you find
a piece of hardware that can do analog E&M signaling that is compatible with the
ZapTel/DAHDI programming interface.

MFC-R2
The MFC-R2 protocol is still significantly used in countries like Mexico, Brazil, and
some South American countries. This protocol runs on E1 lines and it's used for the
same purposes PRI is used in North America. This is an older protocol though and
offers more basic functionality.

OpenR2 Module (ftmod_r2)

This is the only module in FreeTDM currently implementing the MFC-R2 protocol. It
requires the open source OpenR2 library (libopenr2.org) to be installed.

SS7
SS7 is really a suite of protocols, not a single protocol. In the scope of call control,
the ISUP protocol is the one responsible for setting up and tearing down calls in
an SS7 network.

SangomaSS7 (ftmod_sangoma_ss7)

The SangomaSS7 module is open source, but requires a closed source proprietary SS7
library licensed by Sangoma to be installed on the system. Although included with
FreeTDM, Sangoma does not officially support standalone SS7 implementations and
refers users to purchase the SangomaNSG (NetBorderSS7 Gateway) product, which
uses FreeSWITCH as a base.

Chapter 6

[93]

Cellular GSM / CDMA (ftmod_gsm)
You can connect to wireless networks using the ftmod_gsm module (which also
supports some CDMA hardware). You will need the libwat (wireless AT) library
and a supported hardware device like the SangomaW400 PCIe card.

FreeTDM installation
FreeTDM and its integration FreeSWITCH module, mod_freetdm, can be installed
from several sources. The recommendation is to install it along with FreeSWITCH
using the Linux distribution package installers.

Having said that, some FreeTDM modules may not be included in the packaged
versions (for example, ftmod_r2) or you may be using an OS for which FreeSWITCH
does not distribute binaries (for example, Arch Linux). In order to compile from
sources you need to have previously installed the required dependencies. During
build time the FreeTDM "configure" script will detect which libraries are available
in your system and build only the modules that have their dependencies satisfied.
The following is a list of dependencies you need to have installed on any of the listed
modules. The FreeTDM core does not really depend on any libraries (any that are
not shipped and built-in with it); it's only some of the signaling and IO modules that
have dependencies on a number of libraries or kernel drivers.

Naturally, you will need a C and C++ compiler to build most of the FreeTDM
software and its dependencies. Please refer to your Linux distribution instructions
to install gcc, the recommended compiler to use. You will also need the "autotools"
utilities. In Debian you can do:

apt-get install build-essential

Wanpipe drivers
You want to install the Sangoma Wanpipe driver suite and libraries whenever you
have a Sangoma card that you will use with FreeSWITCH. Even if you plan on using
the DAHDI IO module (ftmod_zt) with your Sangoma card instead of the native
ftmod_wanpipe, you still need the Sangoma Wanpipe suite installed.

It's also worth noting that if you are on Windows, your only
option at this point is Sangoma cards and Wanpipe, as none of
the other IO drivers are supported under Windows.

PSTN and TDM

[94]

You can download the latest Wanpipe from the Sangoma wiki: http://wiki.
sangoma.com/Wanpipe-Driver

You will need to install the kernel headers for your Linux distribution and the "flex"
package. In Debian you can do:

apt-get install linux-headers-$(uname -r)

apt-get install flex

Installing the Wanpipe drivers for FreeTDM is quite easy:

wget ftp://ftp.sangoma.com/linux/current_wanpipe/wanpipe-current.tgz

tar -xvzf wanpipe-current.tgz && cd wanpipe-*

make freetdm && make install

DAHDI drivers
The DAHDI drivers (previously called ZapTel), can be used with any telephony
hardware compatible with their interface. This includes devices from Sangoma,
Xorcom, and Digium. If you have any such hardware you'll want to install the
DAHDI drivers first. If you have Sangoma you can opt out from using DAHDI and
use just the native ftmod_wanpipe module. There is one case, however, where you
may want to use Sangoma with the DAHDI interface. That is when you want to use
E&M signaling. The DAHDI drivers implement some E&M logic in the kernel that
has not been implemented yet in the Wanpipe module and therefore you're better off
using the DAHDI interface in that particular case.

You can download the latest DAHDI version from the Asterisk project
website: http://www.asterisk.org/downloads/dahdi

Note that FreeTDM always compiles the DAHDI module ftmod_zt even if you don't
have the DAHDI drivers installed because FreeTDM includes its copy of the DAHDI
C headers.

It's recommended that you install libnewt headers to be able to use the dahdi_tool
utility to check for DAHDI span status.

apt-get install libnewt-dev

http://wiki.sangoma.com/Wanpipe-Driver
http://wiki.sangoma.com/Wanpipe-Driver
http://www.asterisk.org/downloads/dahdi

Chapter 6

[95]

You can then proceed to download and install the DAHDI drivers. Use the following
commands:

wget http://downloads.asterisk.org/pub/telephony/dahdi-linux-complete/
dahdi-linux-complete-current.tar.gz

tar -xvzf dahdi-linux-complete-current.tar.gz

cd dahdi-linux-complete-*

make && make install

LibPRI
If you plan on using the ISDN module ftmod_libpri, you'll need the latest libpri
version. You will find it in the Asterisk project website: http://www.asterisk.org/
downloads/libpri

wget http://downloads.asterisk.org/pub/telephony/libpri/libpri-1.4-
current.tar.gz

tar -xvzf libpri-1.4-current.tar.gz

cd libpri*

make && make install

Sangoma ISDN stack
If you plan on using ISDN PRI or BRI with a Sangoma card you can also use libpri,
but it's recommended you use the Sangoma ISDN stack instead as it's supported
by Sangoma. You can download Sangoma's ISDN stack from here: http://wiki.
sangoma.com/FreeTDM-Sangoma-ISDN-Library-Installation

Assuming you're on a 64-bit platform:

wget ftp://ftp.sangoma.com/linux/libsng_isdn/libsng_isdn-current.
x86_64.tgz

tar -xvzf libsng_isdn-current.x86_64.tgz

cd libsng_isdn*

make install

OpenR2
If you need MFC-R2 signaling support (ftmod_r2), then you'll need to install the
openr2 stack: https://libopenr2.org/

http://www.asterisk.org/downloads/libpri
http://www.asterisk.org/downloads/libpri
http://wiki.sangoma.com/FreeTDM-Sangoma-ISDN-Library-Installation
http://wiki.sangoma.com/FreeTDM-Sangoma-ISDN-Library-Installation
https://libopenr2.org/

PSTN and TDM

[96]

You need to have cmake installed to build it.

apt-get install cmake

wget https://github.com/moises-silva/openr2/archive/master.zip

unzip master.zip && cd openr2-master

mkdir -p build && cd build

cmake .. && make && make install

LibWAT
Using ftmod_gsm for GSM or CDMA signaling requires installing libwat. The
wireless AT library is available from Sangoma's FTP. You need to have cmake
installed to build it.

apt-get install cmake

wget ftp://ftp.sangoma.com/linux/libwat/libwat-2.1-current.tgz

tar -xvzf libwat*

cd libwat*

cd build/ && cmake ../ && make install

Analog modules
The analog modules do not depend on any libraries beyond FreeTDM itself and at
least one IO module.

Once you've installed all of your dependencies you can proceed to compile and
install FreeTDM itself. Assuming you already have a copy of the FreeSWITCH git
repository, you can do the following (assuming you installed freeswitch in /usr/
local/freeswitch):

cd libs/freetdm/

./configure -prefix=/usr/local/freeswitch

At the end of the execution of the configure script, you will see which FreeTDM
modules will be built. That list is built depending on the dependencies that are
installed and were detected by the configure script and by any command line options
provided to the configure script. The libpri module is an exception and requires
explicit specification even if the libpri library is installed. If you need the libpri
module you must specify it explicitly.

./configure -prefix=/usr/local/freeswitch -with-libpri

Chapter 6

[97]

Once the configure script finishes you can see the module summary as shown in the
following screenshot:

Now you can type make && make install to compile and install the modules.

After compilation you can now install the mod_freetdmFreeSWITCH module.

cd mod_freetdm/ && make install

At this point you're now ready to configure FreeTDM.

Configuring FreeTDM
Any system configuration is typically best built from the bottom up. This means
starting with configuring the lower layers and moving your way up as you go.
In order to interface with FreeTDM from FreeSWITCH you must configure
several different components:

•	 Hardware devices (for example, Wanpipe or DAHDI configuration)
•	 The FreeTDM library
•	 The FreeSWITCH mod_freetdm endpoint configuration

PSTN and TDM

[98]

Wanpipe
If you are using Wanpipe cards the first thing you want to do is configure your /
etc/wanpipeX.conf devices. There are several ways of creating the configuration
but the easiest one is to use the wancfg_fs script installed with Wanpipe. Just follow
the interactive prompts.

You can then start each device with wanrouter start. This starts all devices and
populates /dev/wanpipe/ with a device for each channel (for example, for a T1
it will create /dev/wanpipe1_if1 to /dev/wanpipe1_if24). A span and channel
number physically identifies each device. This is important to keep in mind, as it will
determine how each device is referenced in the FreeTDM configuration file later on.

For one T1ISDN configuration this is what wanpipe1.conf should look like:

Chapter 6

[99]

DAHDI
The DAHDI interface configuration is needed if you are using native DAHDI
hardware devices (for example, from Digium or Xorcom), or if you want to use your
Sangoma device in DAHDI mode. You have to configure the devices in /etc/dahdi/
system.conf. Please refer to the sample configuration file installed at /etc/dahdi/
system.conf.sample which comes with extensive documentation comments on
how to configure different type of devices.

For one T1 ISDN configuration this is what system.conf should look like:

FreeTDM library configuration
The freetdm.conf file follows an INI-like format. Here you'll declare your Wanpipe
or DAHDI devices (or any other hardware devices that are supported by FreeTDM).

The syntax rules for the files are:

•	 You can specify an optional [general] section for global configurations
•	 Span definitions are declared with [span <IO module type>]
•	 Any channel declaration must be inside a span section
•	 The channel declaration must appear below the parameters it intends to use

within that span
•	 Any lines starting with ";" or "#" will be ignored and treated as comments
•	 The ";" can be used for comments anywhere in the file (even inline comments)
•	 Both "=" and "=>" can be used to separate a parameter from its value

The first section in the file is for global definitions not related to a particular device.
This section is not mandatory and can be completely omitted and defaults will be
used for those settings. The defaults are safe and you only need to configure other
values for advanced use cases. Refer to the sample configuration file in conf/
freetdm.conf.sample for more information on other parameters. We will use some
of those parameters in the Debugging section later in this chapter. The following
sections in the file are span declarations with their parameters and channels
specifications.

PSTN and TDM

[100]

This is a pseudo-configuration to illustrate the general file format:

[general]
global_parameter => value

Span comment here
[span<io module>< span name>]
; Inline comment here
parameter1 =>value1 ; Comment at the end of the line
parameter2 =>value2
<signaling>-channel =><channel device format>

For every [span] section above, you must specify the IO module that will control that
span and the span name. These are some examples:

[spanwanpipetrunk1]

The span declaration above specifies a new span named trunk1 (you can pick any
name, no spaces allowed) that will be controlled by the "wanpipe" IO FreeTDM
module.

[spanzttrunk2]

The span declaration above specifies a new span named trunk2 that will be
controlled by the "zt" IO FreeTDM module (for example, DAHDI devices).

Inside a span declaration the following are common valid parameters:

•	 trunk_type: This sets the trunk type for this span (for example, E1, T1, FXO,
and FXS).

•	 group: This is just a group name that can be used later on to refer to multiple
trunks as a group.

•	 txgain and rxgain: Audio gain for transmission and reception. Any float
value is acceptable. Be aware that very big values can clip your audio. It's
safe to omit this parameter; just no gain will be applied. Typical values range
from -5.0 to 5.0.

In addition to these parameters, you must declare the channel devices for that span.
The channel declaration format depends on the IO module type controlling that
channel. The valid channel types are:

•	 b-channel: These are audio channels for ISDN and most non-analog trunks
•	 d-channel: These are data channels for ISDN and other non-analog trunks

Chapter 6

[101]

•	 fxo-channel: These specify one or more analog FXO channels
•	 fxs-channel: These specify one or more analog FXS channels
•	 em-channel: These specify E&M signaling channels

This is what the span declaration for a WanpipeT1PRI looks like:

[spanwanpipetrunk1]
trunk_type =>T1
b-channel => 1:1-23
d-channel => 1:24

The channel declaration follows the format :<channel range>. In this case
it declares that trunk1 uses audio channels 1 to 23 from span 1 and that the data
channel (HDLC for Q.931 PRI signaling) is on channel 24 of that same span (also
called port in other documentation).

For a DAHDIT1 device, the declaration changes slightly:

[spanzttrunk1]
trunk_type =>T1
b-channel => 1-23
d-channel => 24

The first change is the IO type in the span is "zt" instead of "wanpipe". The second
change is in the channel declaration. Because DAHDI uses an ever-increasing
channel count, there is no need to specify the span number in the channel
declaration. The second span for DAHDI would start at channel 25.

As you can see, most parameters are optional, the only mandatory parameters are
the trunk_type and you must include the channel definitions for that type of span
(for example, d-channel, b-channel). You can then start adding other parameters to
adjust to your environment, such as the tx and rx gains. For example, if you feel the
volume on your line is too low, you can increase the rxgain parameter:

[spanwanpipetrunk1]
trunk_type =>T1
rxgain =>3.5
b-channel => 1:1-23
d-channel => 1:24

Note that the rxgain parameter must be before the b-channel declaration otherwise
it won't take effect in the voice channels. Because the gain parameter only applies
to voice channels (b-channel, fxo-channel, and so on), it will be ignored for the
d-channel declaration automatically.

PSTN and TDM

[102]

FreeTDM configuration is as simple as that. Note we have not yet defined anything
related to higher-level call control signaling such as PRI configuration settings. Call
control signaling configuration is left to the application layer, in our case, that will be
done by FreeSWITCH.

FreeSWITCH configuration
The mod_freetdm configuration is done in a FreeSWITCH configuration XML file
located at $prefix/conf/autload_configs/freetdm.conf.xml. This file defines
what devices FreeSWITCH will use from the set of FreeTDM configured devices and
what signaling stacks will be set up for those devices. Most of the time those device
definitions will match one to one the definitions in freetdm.conf (the number of
devices defined in freetdm.conf will correspond to the number of devices defined
in freetdm.conf.xml). However, you can have some devices defined in freetdm.
conf but not in use in freetdm.conf.xml, but not the other way around.

The freetdm.conf.xml file is composed of a global <settings> XML section
followed by multiple span definitions. The span definitions are declared inside
an XML section for each signaling type. For example, analog spans are enclosed
in a section called <analog_spans> and Sangoma PRI spans are enclosed in the
<sangoma_pri_span> section. Please refer to the sample configuration file in the
FreeSWITCH source directory at libs/fretedm/conf/freetdm.conf.xml for
documentation in all the span types and their respective XML sections. Here we'll
cover the basic Sangoma PRI configuration.

Inside each section, you can declare individual spans, like this:

<sangoma_pri_spans>

</sangoma_pri_spans>

Note the "name" attribute for the first element. That name must match
one of the span names you used in the freetdm.conf file. This is how you
associate a particular physical device declared in freetdm.conf with the signaling
configuration you're creating in freetdm.conf.xml.

Chapter 6

[103]

All span signaling types accept the same format. What follows
inside the definition is a series of <param name= "p1" value= "val1" />
elements for each parameter. The parameter names depend on the signaling being
configured (in this case the valid parameters will be those defined for the Sangoma
PRI signaling module). Before we dig into the signaling-specific parameters, there
are a few parameters that are common to all signaling stacks.

<param name="dialplan" value="XML" />
<param name="context" value="default" />

You may have seen those two parameters already in SIP profile configurations
(sofia profiles). They determine where incoming calls will be routed to. All other
parameters inside a definition are specific to the signaling module you're
configuring, and most of them are pushed down directly to the FreeTDM library
to configure the signaling stack. Here is an example of a T1 PRI with a Sangoma
ISDN stack:

<sangoma_pri_spans>

<param name="signalling" value="cpe" />
<param name="switchtype" value="national" />
<param name="dialplan" value="XML" />
<param name="context" value="default" />

</sangoma_pri_spans>

You can keep adding more definitions as needed. There are a lot more
parameters that can be configured for the Sangoma ISDN stack, but those four
are the only ones that are mandatory. You can refer to the Sangoma ISDN stack
documentation for more information on other available parameters. The sample
configuration file shipped with FreeTDM also contains all of them with a brief
explanation of what each parameter does.

At this point you're ready to load the mod_freetdm module. However, you may
want to add mod_freetdm to $prefix/conf/autoload_configs/modules.conf.
xml in order to have it loaded automatically when you restart FreeSWITCH. Having
said that, you may want to load it manually while you get everything working at
first. Loading it manually gives you the benefit of quickly seeing any errors during
load time.

PSTN and TDM

[104]

Operation
First you must load the mod_freetdm module. You can do this using the load
command in fs_cli (the FreeSWITCH command line).

fs_cli> load mod_freetdm

You should see all spans getting started, with messages similar to this (note you may
not see some if you do not enable FreeSWITCH debugging):

From the FreeSWITCH command line (fs_cli) you can type ftdm to display the help.

Chapter 6

[105]

If instead of the preceding output you see something like -ERR ftdm Command not
found!, then it means your mod_freetdm module was not loaded.

You can then use the ftdm list command to check the status of each span:

A few important fields to look at are:

•	 physical_status: This tells you if the physical layer is OK or alarmed
•	 signaling_status: This tells you if the signaling is up
•	 context: This tells you where the calls will be routed to when coming into

this span

In the example above, there are two spans, and both have signaling status down, but
the physical status is up, so we know the problem is in the signaling configuration.

PSTN and TDM

[106]

Each type of signaling has a set of commands not shown in the ftdm help output.
You can type ftdm <signaling_module> to see the help of that particular signaling
type as shown in the following screenshot:

The Sangoma ISDN stack commands can show you much more detailed information
about the signaling status. For example, to see very detailed layer 1 signaling status
on trunk1 you can use ftdm sangoma_isdn l1_stats trunk1.

Your output will be as shown in the following screenshot:

Chapter 6

[107]

Outbound calls
Once you have your FreeTDM spans up and running you can start to originate or
receive calls. Routing calls from the SIP network to the PSTN network is a common
use case for FreeTDM (FreeSWITCH then becomes a PSTN gateway). You should
be already familiar with the "bridge" FreeSWITCH application that is used to bridge
channels. You can use this same application to bridge to FreeTDM channels. The
bridging syntax is as follows:

<action application="bridge" data="freetdm/<span number/name|group
name>/<channel number|huntingselector>[/destination number]" />

With the exception of FXS analog spans, pretty much all types of spans require you
to provide the destination number to dial. Here is an example of how to dial using
our configured trunk1 span.

<actionapplication="bridge" data="freetdm/trunk1/1/${destination_
number}" />

The action above will use channel 1 of trunk1 to dial to the number specified by the
destination_number channel variable. In most circumstances however you don't
want to specify a specific channel number, but rather let the system select the first
available channel using a hunting strategy. Let's pick the first available channel in
trunk1 starting from the bottom up.

<action application="bridge" data="freetdm/trunk1/a/${destination_
number}" />

We replaced the channel number 1 for the letter a (available) to indicate we want any
available channel starting from the first channel defined in the span and working our
way up until one available channel is found. You could use upper case A to start your
search for an available channel from top to bottom.

There are other hunting strategies, each identified by a letter:

•	 a: Start hunting from the bottom
•	 A: Start hunting from the top
•	 r: Round robin from the bottom
•	 R: Round robin from the top

You can use also span groups to hunt for an available channel across spans. This
is useful when you have many spans and you want a group of them for outbound
dialing, failing over in case one of the spans goes into an alarmed state (the hunting
strategy skips alarmed spans as unavailable).

PSTN and TDM

[108]

First, you must configure a group in freetdm.conf for every span.

[spanwanpipetrunk1]
group => outbound
b-channel => 1:1-23
d-channel => 1:24

[spanwanpipetrunk1]
group => outbound
b-channel => 2:1-23
d-channel => 2:24

Now you can use the outbound group to select any channel either on trunk1 or
trunk2 spans.

<action application="bridge" data="freetdm/outbound/a/${destination_
number}" />

We replace the span name for a group name. This means that span names and group
names share the same name space when dialing. It's recommended to avoid picking
the same names for your groups and spans.

When making a call you can also override some parameters (depending on the
signaling stack). For ISDN, for example, you can set a few variables in the channel to
override protocol values. For example:

<action application="export" data="freetdm_outbound_ton=reserved" />
<action application="bridge" data="freetdm/outbound/a/${destination_
number}" />

The preceding export action will set the outbound type of number for this
particular call.

Inbound calls
For inbound calls you can follow the usual FreeSWITCH routing and send them an
IVR, Conference, the SIP network, FreeTDM spans, or any other supported endpoint.

It's worth noting that you will also see many inbound channel variables prefixed
with freetdm_ that you can use for routing, billing, or any other purpose you see fit.
The following screenshot is an example of the list of variables you will see (some of
them will depend on the signaling type and on whether the values were provided by
the other end of the call).

Chapter 6

[109]

Debugging
Things always go wrong. With so many moving parts and different complex
protocols and configurations it's expected mistakes will be made at some point.
You may provide invalid configuration, the software may have a bug, the remote
equipment may be misbehaving, and so on. You need to be prepared to deal with
all those problems. Debugging a problem is often a matter of working your way up,
verifying that each hardware or software layer is working as expected, until you find
the layer that is not doing its job. The first layer to check is the physical layer. For
T1/E1 lines, verify there are no alarms and the port is in the Connected status (for
Sangoma cards) or OK for DAHDI (use the DAHDI tool application).

Checking the physical layer
Run the following command:

wanpipemon -iw1g1 -c Ta

PSTN and TDM

[110]

This command will check physical alarms on span number 1 (you can just increase
the first number for span 2, for example, w2g1).

This very detailed output shows alarms in the framer (the hardware responsible for
splitting T1/E1 frames) and the LIU (the line interface unit-the hardware responsible
for receiving the analog signals from the wire).

You can find more detailed information in Sangoma documentation:
http://wiki.sangoma.com/Wanpipemon-T1-E1-physical-
Line-alarms

If you are using DAHDI hardware, you cannot get that detailed view, but you can
still see traditional alarms (red, yellow, blue, and so on) using the "dahdi_tool"
command.

Chapter 6

[111]

Enabling ISDN tracing
If your physical layer doesn't show any errors, the next step is to try to troubleshoot
the signaling protocol layer. If you are using ISDN this means Q.921 and Q.931
debugging.

To verify your Q.921 layer is working you can enable Sangoma Q.921 tracing with
ftdm sangoma_isdn trace q921 trunk1 (note the trunk name at the end, you
need to adjust this to your own trunk name):

You should be seeing those "Receive Ready" frames coming and going. If you don't
see them coming (FRAME INCOMING) then the other end has a problem. Those
frames are sent/received every 10 seconds approximately. When your signaling
status is not "Up" in the output of ftdm list it's usually because of physical alarms
or a problem in the ISDN configuration that prevents Q.921 from bringing the link
up (for example, both sides configured as net or cpe).

PSTN and TDM

[112]

For call problems (for example, your link is up but calls fail) you want to enable
Q.931 tracing using ftdm sangoma_isdn trace q931 trunk1. Then place a call.
If no calls are being placed you won't see anything. Q.931 takes care of sending and
receiving calls.

You will see all Q.931 messages. This is a SETUP message used to prepare an
outbound call as shown in the following screenshot:

The response coming back from the other end is shown in the following screenshot:

These messages should allow you to determine what the problem is or at least share
them with your service provider.

Audio tracing
Another useful debugging feature is tracing the raw audio at the FreeTDM layer.
With this type of tracing you can determine if bad audio comes right from the
physical layer or is something that FreeSWITCH is somehow introducing. Whenever
you have a no audio situation this command might prove useful. Try typing ftdm
trace as shown in the following screenshot:

Chapter 6

[113]

The command takes a <path> argument, a , and optionally
a channel ID. The path argument is a directory that will be used to store the
recordings. If no channel is specified then all channels in the span will be recorded.
For each channel, two recording files will be saved, one for incoming audio, the other
for outgoing audio as shown in the following screenshot:

The audio tracing is permanent until explicitly disabled, so if you place multiple calls
all the audio is stored in the same files. You can stop the trace with ftdm notrace as
shown in the following screenshot:

Once disabled, you can open the files in audacity (http://www.audacityteam.
org/). Because this is unformatted raw audio taken from the line, you have to import
the files using the format of your channel. If you are using a T1 line, the format is
ulaw at 8kHz sampling rate. If you are using an E1 line, then the format is alaw at
8kHz sampling rate.

More information about configuring and debugging FreeTDM in
FreeSWITCH can be found in the confluence wiki:
https://freeswitch.org/confluence/display/FREESWITCH/
FreeTDM

Summary
In this chapter we saw all that's related to interfacing FreeSWITCH directly to PSTN,
both for originating and for terminating calls.

First of all we made a tribute to one of Jim Dixon's great contributions to Open
Source - Open Hardware Telecommunication, the Zapata Telephony project.

We found out how to configure the FreeTDM library and module for FreeSWITCH
usage, how to interact with DAHDI drivers, and how to install Sangoma libraries
(Sangoma being a major corporate sponsor of FreeTDM).

https://freeswitch.org/confluence/display/FREESWITCH/FreeTDM
https://freeswitch.org/confluence/display/FREESWITCH/FreeTDM

PSTN and TDM

[114]

We covered all of the many different current and legacy protocols for PRI, FXO/FXS,
trunking, and so on.

We then delved into practical usage in the FreeSWITCH operation, both dialplan and
debugging troubleshooting levels.

That's really all you may possibly want to know about PSTN and TDM.

[115]

WebRTC and Mod_Verto
WebRTC is all the rage these days. And with a cause! Maybe you end up buying
this book just to know how you can release your existing services to hundreds of
millions of browsers out there, or maybe you want to start coding the next killer
app from scratch.

Anyway, you're on the right path; read on. You'll find both the needed theory and
real world implementation examples.

In this chapter we will cover:

•	 What WebRTC is and how it works
•	 Encryption and NAT traversing (STUN, TURN, etc)
•	 Signaling and media
•	 Interconnection with PSTN and SIP networks
•	 FreeSWITCH as a WebRTC server, gateway, and application server
•	 SIP signaling clients with JavaScript (SIP.js)
•	 Verto signaling clients with JavaScript (mod_verto, verto.js)

WebRTC
Finally something new! How refreshing it is to be learning and experimenting
again, especially if you're an old hand! After at least ten years of linear evolution,
here we are with a quantum leap, the black swan that truly disrupts the
communication sector.

WebRTC and Mod_Verto

[116]

Browsers are already out there, waitin'
With an installed base of hundreds of millions, and soon to be in the billions
ballpark, browsers (both on PCs and on smart phones) are now complete
communication terminals, audio/video endpoints that do not need any additional
software, plugins, hardware, or whatever. Browsers now incorporate, per default
and in a standard way, all the software needed to interact with loudspeakers,
microphones, headsets, cameras, screens, etc.

Browsers are the new endpoints, the CPEs, the phones. They have an API, they're
updated automatically, and are compatible with your system. You don't have to
procure, configure, support, or upgrade them. They're ready for your new service;
they just work, and are waiting for your business.

Web Real-Time Communication is coming
There are two completely separated flows in communication: Signaling and media.
Signaling is a flow of information that defines who is calling whom, taking what paths,
and which technology is used to transmit which content. Media is the actual digitized
content of the communication, for example, audio, video, screen-sharing, etc.

Media and signaling often take completely unrelated paths to go from caller to
callee, for example, their IP packets traverse different gateways and routers. Also,
the two flows are managed by separate software (or by different parts of the same
application) using different protocols.

WebRTC defines how a browser accesses its own media capture, how it sends and
receives media from a peer through the network and how it renders the media
stream that it receives. It represents this using the same Session Description
Protocol (SDP) as SIP does.

Chapter 7

[117]

So, WebRTC is all about media, and doesn't prescribe a signaling system. This is a
design decision, embedded in the standard definition. Popular signaling systems
include SIP, XMPP, and proprietary or custom protocols. Also, WebRTC is all about
encryption. All WebRTC media streams are mandatorily encrypted.

Chrome, Firefox, and Opera (together they account for more than 70 percent of the
browsers in use) already implement the standard; Edge is announcing the first steps
in supporting WebRTC basic features, while only Safari is still holding its cards
(Skype and FaceTime on WebRTC with proprietary signaling? Wink wink).

Under the hood
More or less, WebRTC works like this:

1.	 Browser connects to a web server and loads a webpage with some JavaScript
in it.

2.	 JavaScript in the webpage takes control of the browser's media interfaces
(microphone, camera, speakers, and so on), resulting in an API media object.

3.	 The WebRTC Api Media object will contain the capabilities of all devices and
codecs available, for example, definition, sample rate, and so on, and it will
permit the user to choose their own capabilities preferences (for example, use
QVGA video to minimize CPU and bandwidth).

WebRTC and Mod_Verto

[118]

4.	 Webpage will interface with the browser's user, getting some input for
signing in the webserver's communication service (if any).

5.	 JavaScript will use whatever signaling method (SIP, XMPP, proprietary,
custom) over encrypted secure websocket (wss://) for signing in the
communication service, finding peers, originating and receiving calls.

6.	 Once signed up in the service, a call can be made and received. Signaling
will give the protocol address of the peer (for example, sip:gmaruzz@
opentelecom.it).
These points are represented in the following image:

Chapter 7

[119]

7.	 Now is the moment to find out actual IP addresses. JavaScript will generate
a WebRTC API object for finding its own IP addresses, transports and ports
(ICE candidates) to be offered to peer for exchanging media (JavaScript
WebRTC API will use ICE, STUN, TURN, and will send to peer its own
local LAN address, its own public IP address, and maybe the IP address of a
TURN server it can use).

8.	 Then, WebRTC Net API will exchange ICE candidates with the peer, until
they both find the most "rational" triplets of IP address, port and transport
(udp, dtls, and so on), for each stream (for example, audio, video, screen
share, and so on).

WebRTC and Mod_Verto

[120]

9.	 Once they get the best addresses, the signaling will establish the call.
These points are represented in the following image:

10.	 Once signaling communication with the peer is established, media
capabilities are exchanged in SDP format (exactly as in SIP), and the two
peers agree on media formats (sample rates, codecs, and so on).

11.	 When media formats are agreed, JavaScript WebRTC Transport API will use
secure (encrypted) websockets (wss://) as transport for media and data.

12.	 JavaScript WebRTC Media API will be used to render the media streams
received (for example, render video, play sound, capture microphone,
and so on).

13.	 Additionally or in alternative to media, peers can establish one or more data
channels, through which they bidirectionally exchange raw or structured
data (file transfers, augmented reality, stock tickers, and so on).

Chapter 7

[121]

14.	 At hangup, signaling will tear down the call, and JavaScript WebRTC Media
API will be used to shut down streams and renderings.
These points are represented in the following image:

WebRTC and Mod_Verto

[122]

This is a high level, but complete, view of how a WebRTC system works:

Encryption – security
Please note that in normal operation everything is encrypted, uses real PKI
certificates from real Certification Authorities, actual DNS names, SSL, TLS, HTTPS,
WSS, DTLS-SRTP. This is how it is supposed to work. In WebRTC, security is not an
afterthought: It is mandatory.

To make signaling work without encryption (for example, for debugging
signaling protocols) is not so easy, but it is possible. Browsers will often raise
security exceptions, and will ask for permission each time they access a camera or
microphone. Some hiccups will happen, but it is doable. Signaling is not part of
WebRTC standard, as you know.

On the contrary, it is not possible to have the media or data streams leave the
browser in the clear, without encryption.

Chapter 7

[123]

The use of plain RTP to transmit media is explicitly forbidden by the standard. Media
is transmitted by SRTP (Secure RTP), where encryption keys are pre-exchanged via
DTLS (Datagram Transport Layer Security, a version of TLS for Datagrams), basically a
secure version of UDP.

Beyond peer to peer – WebRTC to
communication networks and services
WebRTC is a technique for browsers to send media to each other via Internet, peer to
peer, perhaps with the help of a relay server (TURN), if they can't reach each other
directly.

That's it.

No directories, no means to find another person, and also no way to "call" that
person if we know "where" to call her.

No way to transfer calls, to react to a busy user or to a user that does not pickup, and
so on.

Let's say WebRTC is a half-built phone: It has the handset, complete with working
microphone and speaker, from which it comes out, the wiring left loose. You can
cross join that wiring with the wiring of another half-built phone, and they can talk
to each other.

Then, if you want to talk to another device, you must find it and then join the
wires anew.

No dial pad, no Telecom Central Office, no interconnection between Local Carriers,
and with International Carriers. No PBX. No way to call your grandma, and no
possibilities to navigate the IVR at Federal Express' Customer Care.

We need to integrate the media capabilities and the ubiquity of WebRTC with the
world of telecommunication services that constitute the planet's nervous system.

Enter the "WebRTC Gateway" and the "WebRTC Application Server"; in our case
both are embodied by FreeSWITCH

WebRTC and Mod_Verto

[124]

WebRTC gateways and application servers
The problem to be solved is: We can implement some kind of signaling plane, even
implement a complete SIP signaling stack in JavaScript (there are some very good
ones in open source, we'll see later), but then both at the network and at the media
plane, WebRTC is only "kind of" compatible with the existing telecommunication
world; it uses techniques and concepts that are "similar", and protocols that are
mostly an "evolution " of those implemented in usual Voice over IP.

At the network plane, WebRTC uses the ICE protocol to traverse NAT via STUN
and TURN servers. ICE has been developed as Internet standard to be the ultimate
tool to solve all NAT problems, but has not yet been implemented in either telco
infrastructure, nor in most VoIP clients. Also, ICE candidates (the various different
addresses the browser thinks they would be reachable at) need to be passed in SDP
and negotiated between peers, in the same way codecs are negotiated. Being able to
pass through corporate firewalls (UDP blocked, TCP open only on ports 80 and 443,
and perhaps through protocol-aware proxies) is an absolute necessity for serious
WebRTC deployment.

At media plane, WebRTC specific codecs (V8 for video and Opus for audio) are
incompatible with the telco world, with audio G711 as the only common denominator.

Chapter 7

[125]

Worse yet, all media are encrypted as SRTP with DTLS key exchange, and that's
unheard of in today's telco infrastructure.

So, we need to create the signaling plane, and then convert the network transport,
convert the codecs, manage the ICE candidates selection in SDP, and allow access
to the wealth of ready-made services (PSTN calls, IVRs, PBXs, conference rooms,
etc), and then complement the legacy services with special features and new
interconnected services enabled by the unique capabilities of WebRTC endpoints.

Yeah, that's a job for FreeSWITCH.

Which architecture? Legacy on the Web, or
Web on the Telco?
Real-time communication via the Web: From the building blocks we just saw, we can
implement it in many ways.

We have one degree of freedom: Signaling. I mean, media will be anyway agreed
upon via SDP, transmitted via websockets as SRTP packets, and encrypted via DTLS
key exchange.

We still have the task of choosing how we find the peer to exchange media with. So,
this is an exercise in directory, location, registration, routing, presence, status, etc.
You get the idea.

So, at the end of the day you need to come out with a JavaScript library to implement
your signaling on the browsers, commanding their underlying mechanisms (Comet,
Websockets, WebRTC Data Channel) to find your beloved communication peer.

WebRTC and Mod_Verto

[126]

Actually it boils down to different possibilities:

•	 SIP
•	 XMPP (eg: jabber)
•	 In-house signaling implementation
•	 VERTO (open source)

SIP and XMPP make today's world spin around. SIP is mostly known for carrying
the majority of telephone and VoIP signaling traffic. The biggest implementations
of instant messaging and chatting are based on XMPP. And there is more: Those
two signaling protocols are often used together, although each one of them has
extensions that provide the other one's functionality.

Both SIP and XMPP have been designed to be expandable and modular, and SIP
particularly is an abstract protocol, for the management of "sessions" (where a
"session" can be whatever has a beginning and an end in time, as a voice or video
call, a screen share, a whiteboard, a collaboration platform, a payment, a message,
and so on).

Both have robust JavaScript implementations available (for SIP check SIP.js, JsSIP,
SIPML, while for XMPP check Strophe, stanza.io, jingle.js).

If your company has considerable investments and/or expertise in those protocols,
then it makes sense to expand their usage on the web too.

If you're running Skype, or similar services, you may find it an attractive option to
maintain your proprietary, closed-signaling protocol and implement it in JavaScript,
so you can expand your service reach to browsers and exploit those common
transport and media technologies.

VERTO is our open source signaling proposal, designed from the ground up to be
familiar to Web application developers, and allowing for a high degree of integration
between FreeSWITCH-provided services and browsers. It is implemented on the
FreeSWITCH side by a module (mod_verto) that talks JSON with the JavaScript
library (verto.js) on the browser side.

FreeSWITCH accommodates them ALL
FreeSWITCH implements all of WebRTC low-level protocols, codecs, and
requirements. It's got encryption, SRTP, DTLS, RTP, websocket and secure
websocket transports (ws:// and wss://). Having got it all, it is able to serve SIP
endpoints over WebRTC via mod_sofia (they'll be just other SIP phones, exactly like
the rest of soft and hard SIP phones), and it interacts with XMPP via mod_jingle.

Chapter 7

[127]

Crucially, FreeSWITCH has been designed since its inception to be able to manage
and message high-definition media, both audio and video. Support for OPUS
audio codec (8 up to 48 khz, enough for actual audio-cd quality) started years ago
as a pioneering feature, and has evolved over the years to be so robust and self-
healing as to sustain a loss of more than 40% (yep, as in FORTY PERCENT) packets
and maintain understandability. WebRTC's V8 video codec is routinely carrying
our mixed video conferences in FullHD (as in 1920x1080 pixel), and we're looking
forward to investing in fiber and in some facial cream to look good in 4K.

That's why FreeSWITCH can be the pivot of your next big WebRTC project: its
architecture was designed from the start to be a multimedia powerhouse.

There is lot of experience out there using FreeSWITCH in expanding the reach
of existing SIP services having the browsers acting as SIP phones via JavaScript
libraries, without modifying in any way the service logic and implementation. You
just add SIP extensions that happen to be browsers.

We covered SIP based services in other parts of this book (and you can find an
implementation example using browsers and SIP.js in the 1.6 Cookbook), so for
the remainder of this chapter we'll write about VERTO, a FreeSWITCH proposal
especially dedicated to Web development.

What is Verto (module and jslib)?
Verto is a FreeSWITCH module (mod_verto) that allows for JSON interaction
with FreeSWITCH, via secure websockets (wss). All the power and complexity of
FreeSWITCH can be harnessed via Verto: Session management, call control, text
messaging, and user data exchange and synchronization. Take a note for yourself:
"User data exchange and synchronization". We'll be back to this later.

Verto is like Event Socket Layer (ESL) on steroids: Anything you can do in ESL
(subscribe, send and receive messages in FS core message pumps/queues) you can
do in Verto, but Verto is actually much more and can do much more. Verto is also
made for high-level control of WebRTC!

WebRTC and Mod_Verto

[128]

Verto has an accompanying JavaScript library, verto.js. Using verto.js a web
developer can videoconference and enable a website and/or add a collaboration
platform to a CRM system in few lines of a code that he understands, in a logic
that's familiar to web developers, without forcing references to foreign knowledge
domains like SIP.

Also, Verto allows for the simplest way to extend your existing SIP services to
WebRTC browsers.

The added benefit of "user data exchange and synchronization" (see, I'm back to it)
is not to be taken lightly: You can create data structures (for example, in JSON) and
have them synchronized on the server and all clients, with each modification made
by the client or server to be automatically, immediately and transparently reflected
on all other clients.

Imagine a dynamic list of conference participants, or a chat, or a stock ticker, or a
multiuser ping pong game, and so on.

Configure mod_verto
Mod_verto is installed by default by standard FreeSWITCH implementation. Let's
have a look at its configuration file, verto.conf.xml.

The most important parameter here, and the only one I had to modify from the stock
configuration file, is ext-rtp-ip. If your server is behind a NAT (that is, it sits on
a private network and exchanges packets with the public Internet via some sort of
port forwarding by a router or firewall), you must set this parameter to the public IP
address the clients are reaching for.

Chapter 7

[129]

Other very important parameters are the codec strings. Those two parameters
determine the absolute string that will be used in SDP media negotiation. The list in
the string will represent all the media formats to be proposed and accepted. WebRTC
has mandatory (so, assured) support for vp8 video codec, while mandatory audio
codecs are opus and pcmu/pcma (eg, g711). Pcmu and pcma are much less CPU
hungry than opus. So, if you are willing to settle for less quality (g711 is "old PSTN"
audio quality), you can use "pcmu,pcma,vp8" as your strings, and have both clients
and server use far less CPU power for audio processing.

This can make a real difference and very much sense in certain setups, for example,
if you must cope with low-power devices. Also, if you route/bridge calls to/from
PSTN, they will have no use for opus high definition audio; much better to directly
offer the original g711 stream than decode/recode it in opus.

WebRTC and Mod_Verto

[130]

Test with Communicator
Once configured, you want to test your mod_verto install. What better moment
than now to get to know the awesomeness of Verto Communicator, a JavaScript
videoconference and collaboration advanced client, developed by Italo Rossi, Jonatas
Oliveira and Stefan Yohansson from Brazil, Joao Mesquita from Argentina, and our
core devs Ken Rice and Brian West from Tennessee and Oklahoma?

If it's not already done, copy the Verto Communicator distribution directory (/usr/
src/freeswitch.git/html5/verto/verto_communicator/dist/) into a directory
served by your web server in SSL (be sure you got all the SSL certificates right).

To see it in all its splendor, be sure to call from two different clients, one as
simple participant, the other as moderator (see the next chapter on Videocalls and
Conferencing), and you'll be presented with controls to manage the conference
layout, for giving floors, for screen sharing, for creating banners with name and title
for each participant, for real-time chatting, and much more. It is simply astonishing
what can be done with JavaScript and mod_verto.

Build Your Own Verto App
Now for something completely different: The simplest possible demo of a working
Verto client, complete with audio and video call, and real-time chat.

Code for this example is extremely readable, short, and allows for studying exactly
how it works. The JavaScript debug console of your browser is your friend. It uses
the bootstrap framework to have nice looking buttons and fonts.

Index.html actually contains very little: Apart from CSS and interface compatibility
for each browser, it just sets up the values that will be passed to JavaScript for
establishing the Verto call. Then it contains a "video" HTML tag with an ID that will
be used by JavaScript as input-output for WebRTC, and two text areas that will be
the input and the output of our chat. Then it includes JavaScript libraries, and our
JavaScript application code, high.js.

Chapter 7

[131]

High.js (our application JavaScript code) is where all the action is. At page load it
does the show/hide of all page elements that will then be manipulated.

WebRTC and Mod_Verto

[132]

Current call is NULL, and last step at page load is to call the init function.

Chapter 7

[133]

The init() will create a new Verto object, using values hardcoded in the HTML file
for login, password, server, etc. As last argument, it assigns to the Verto object the
callbacks we'll see later. Then set up the management of "enter" into textareas (eg,
they're treated like clicks on "forward" button) and the passing to the future "current
call" of keypress that represents DTMFs (su user can interact with IVRs). Last Init
instruction is a call to the setupchat() function (we're still at initial page load time).

The setupchat() clears the chat textareas, then creates the chatsend function,
that will call the message Verto JavaScript method of the current call object with
arguments as the chat ID (we'll see later where the ID comes from) and the input
typed by the user.

Then a series of functions define the behavior of buttons, for example, the "Call
Conference" button when clicked (if the textarea #cidname has been filled with the
caller name) will call the docall() function.

WebRTC and Mod_Verto

[134]

The docall() function does nothing during a call, else it creates a call Verto
object using the Newcall Verto method, the arguments gathered until now, and
a lot of hardcoded defaults (for example: use mono audio, use video, use default
microphone/webcam).

If the Verto call created by docall() is successfully connected to our Verto server,
it will then begin to be managed by the callbacks associated with the Verto object
(remember when we created the Verto object?).

Callbacks are of three types: onMessage, onEvent, and onDialogState.

•	 OnMessage callbacks are activated when FreeSWITCH sends a message to
the Verto client: in our case we choose to react to the "info" message (that
will contain what to display as chat output) and to the "pvtEvent" message
(where we look for data describing conference joining and leaving)

•	 OnEvent callback foes nothing, we just show it was called.
•	 OnDialogState signals the establishment and tearing down of the call.

Chapter 7

[135]

WebRTC and Mod_Verto

[136]

And that's all, folks! If the call is correctly established (connect to server, server
verifies login auth, server and client agree on media types), then the "video" tag will
be substituted for a live stream, the chat textareas will react in realtime to inputs,
our client is able to fully participate in an audio-video conference with real-time text
chatting and dtmf keyboard management (for example, "press 0 to mute/unmute
yourself").

And now, go and test by yourself, debug, add features, hack already, for Pete's sake!

Chapter 7

[137]

Summary
In this chapter we delved into WebRTC design, what infrastructure it requires, and
what is similar and what is different from known VoIP.

We understood that WebRTC is only about media, and leave the signaling to the
implementor.

Also, we get the specifics of WebRTC, its way of traversing NAT, its omnipresent
encryption, and its peer to peer nature.

We witnessed going beyond peer to peer, connecting with the telecommunication
world of services that need gateways for transport, protocol, and media translations.

FreeSWITCH is the perfect fit, as a WebRTC server, WebRTC gateway, and also as an
application server.

And then we saw how to implement Verto, a signaling born on WebRTC, a JSON
web protocol designed to exploit the additional features of WebRTC and of
FreeSWITCH, like real time data structure synchronization, session rehydration,
event systems, and so on.

[139]

Audio and Video
Conferencing

Let's start with two concepts here: audio conferencing is huge and video
conferencing is HUGE. Actually, conferencing (audio and/or video) is one of the
drivers of our industry, and sure, it's a big part of what businesses look for in a
telecommunications system.

FreeSWITCH has always been the best platform for conferencing, starting many
years ago as a hugely scalable audio conferencing bridge to becoming, with version
1.6, a multimedia powerhouse serving PSTN, SIP, and WebRTC users.

In this chapter, we will cover:

•	 Conference concepts
•	 Audio conferencing
•	 Profiles, DTMF commands interaction, PINs, and so on
•	 Managing audio conferences
•	 Video conferencing
•	 Video conference layouts
•	 Screen sharing
•	 Managing video conferences
•	 Conference performances
•	 Conference concepts

Audio and Video Conferencing

[140]

Conferencing is about taking stuff from different sources, doing something with that
stuff, and distributing the result to different recipients. That process must allow for
real-time change of all factors: which sources send you stuff, what kind of stuff you
get, what to do with it, which recipients you distribute it to, and so on. Wow.

Also, it needs simple ways for participants to interact with it (for example, enter an
access PIN code, increase and decrease the volume, mute/unmute themselves, and
so on) and for moderator(s) to manage the conversation (for example, give the floor
to a presenter, switch the microphone to another presenter, mute/unmute all or one
participant, broadcast music and messages, record the conversation, originate an
outbound call that gives the recipient the option to join the conference, and so on).

Conferencing used to be about switching, mixing, and regulating the volumes of
the audio streams. Those operations on audio end up being simple math applied to
a series of unrelated bytes (on top of standard transcoding). High Definition (HD)
audio increases CPU load on transcoding, but the inner workings are still the same:

User User User

COMMANDS

MIXING
AND

EFFECTS

Transcode Transcode Transcode Transcode Transcode Transcode

Video added an entire new world of processing: video streams are not a series
of unrelated values; they're organized by frames (for example, a description of
what is to be shown on the screen). You do not join two video wires to obtain the
superimposition of the two images, and you do not lower their electrical signals to
do fading.

Chapter 8

[141]

Video processing is very complex and computationally demanding. You can imagine
what it means CPU-wise to have a picture in a picture, multiple attendants' live
faces on the bottom row, each one with a name caption, and the background shared
between the presenter's face and its shared screen.

Conferencing is arguably the most inherently complex service you can offer to your
users and one of the most value-added ones.

FreeSWITCH has it all and with sane default configurations. That's the perfect
platform for deploying your service.

Conference basics
Let's start simply. Add this snippet to dialplan:

After a comment, we create an extension that answers incoming calls to 3100-3199
(inclusive), then connect the caller to the conference named [destination_number]-
[domain_name]. If the conference does not exist yet, it will be started using settings
from profile "default". (For example, if you call extension 3110 on a server where
the domain is 172.31.3.216, the conference name will be "3110-172.31.3.216". If
the FreeSWITCH domain was set to biloxi.com, the conference name would be
"3110-biloxi.com".)

Audio and Video Conferencing

[142]

The second extension is identical to the first one, but will answer calls to
31001-31011-31021... up to 31991 (for example, they're all ending with "1"),
and the caller will be connected to a conference named in the same way as the
first example (taking into account only the first four numbers in "expression"),
and will be given a "moderator" role.

So, calling 3188 will connect you as a participant to the conference room named
"3188-biloxi.com", while calling 31881 will connect you as a moderator to the same
conference.

As participant, with stock configuration files you'll be able to mute/unmute yourself
by pressing 0 on the keypad, leave the conference by pressing #, isolate yourself
(for example, deaf mute) by pressing *, up-down your listening volume by pressing
6 and 4, and so on.

As a moderator, without special conference configuration you gain only the badge
(quote: Al Capone, The Untouchables), that is, you're not different from a normal
participant. You actually have all the power over the conference (meaning that you
can kick people out, give the floor, mute, play messages, end the conference, and so
on), but you have no means to exercise it. We'll see it better later, in the "managing"
sections. Now, suffice to say a conference can be configured to play music on hold
to all participants until the moderator arrives, making them wait for him. Also, a
conference can be configured to have a different set of DTMF commands for the
moderator (the command set can be tailored to let him exercise his power).

Conference.conf.xml (profiles, DTMF
interaction, and so on)
All the magic in the previous example comes from the many settings loaded
automatically by conferences.

You cannot define the individual conference rooms in conference.conf.xml. In
that file, you define named groups of settings. Then, from dialplan, you send a call
to an individual conference room, and you specify which settings group will apply.
If the conference room does not exist, it will be created on the fly, as shown in the
following screenshot:

Chapter 8

[143]

Configuration sections logic
The profiles section contains each specifically named profile. As we saw before,
when you start (or join) a conference you can optionally add @profilename after the
conference name. If you don't, the conference will get its settings from the "default"
profile. So, you had better create at least that "default" profile.

Inside profiles you can specify dozens of disparate conference features, behaviors,
and quirks. FreeSWITCH provides sane values to all parameters you don't
explicitly set.

The caller-controls section contains each specifically named group of DTMF
controls.

Audio and Video Conferencing

[144]

In each profile you can define a caller-controls parameter. If you don't, that
profile will be assigned the caller-controls group "default" (again, create it). Or, you
can assign the magic caller-controls group "none", and participants will be assigned
no DTMF controls.

Each profile can also contain a moderator-controls parameter. Moderators of
conferences started with that profile will be assigned that named group of controls. If
not specified, moderators will get the same controls group as normal participants.

Pay attention: moderator-controls are not additional commands on top of caller-
controls. If you set moderator-controls, they need to be specified in full, they will
be the only DTMF controls moderators will get (if you don't set moderator-controls
at all, moderators will get caller-controls, like all other participants).

Profile
There are actually many parameters you can set inside a profile.

Parameters of type flags will be overridden by the ones passed as arguments in
dial strings and channel variables. All other parameters (that is, not flags) are usually
set once, when the conference starts, and apply to the whole of the conference and to
all participants.

•	 Conference-flags: A pipe- ("|") delimited list of conference modifiers that
apply to the whole of a single conference. You can make members keep
music on hold until a moderator arrives (wait-mod), have the conference
emit a real-time JSON describing what happens, like a presence, and IM
system (livearray-json-status), so you can have interactive graphic
interfaces telling you who is talking now, or choose not to use an energy
threshold to determine which incoming audio stream must be mixed in and
instead go straight to mixing all incoming streams, whatever their energy
(audio-always).

•	 Member-flags: A pipe- ("|") delimited list of participant modifiers. Can
define that callers will enter the conference with their microphone muted
(mute); to be heard, they'll have to unmute themselves, or be unmuted by the
moderator. Another useful flag is mute-detect, which will play a message to
the user that is detected to be talking while being muted (so he knows no one
can hear).

•	 Caller-controls: The name of the group of commands defined in the section
caller-controls that will be assigned to all participants.

•	 Moderator-controls: The name of the group defined in the section caller-
controls that will be assigned to moderators.

Chapter 8

[145]

•	 Sounds: A good number of parameters deal with sounds that give an
acoustic feedback when something has happened, or a command has been
executed (for example, "volume is now minus 1", or "you are the only person
in this conference"). You can define none, some, or all of them. If the value of
a "sound parameter" is not defined, nothing will be played, nothing special
will happen, and things will continue as normal (for example, you press 4,
your listening volume is actually lowered, but no announcement of the new
volume level is read to you). You can define sounds as relative or absolute
file paths. Relative file paths would be prepended by the sound_prefix
channel variable of the first call (the one that starts the conference). You can
override that by setting "sound-prefix" parameter in profile, as shown in the
following screenshot:

Audio and Video Conferencing

[146]

•	 Others:
°° auto-record: To have conferences automatically recorded

in an audio file, you can set the file path (for example, /tmp/
myconf.wav) or use variable substitution to have a unique
filename for each conference (for example, /tmp/${conference_
name}_${strftime(%Y-%m-%d-%H-%M-%S)}.wav).

°° channels: How many audio channels, "1" for mono, "2" for stereo.
°° energy-level: Defines the threshold volume the incoming audio

stream must have to be mixed in (so, it avoids mixing in streams
where there is only background noise. The participant will have to
speak louder to be mixed in).

°° pin and moderator_pin: If specified, will be requested to
participants and moderators to be allowed in (both are immutable
for the whole conference duration, which cannot be modified after
conference starts).

°° ivr-dtmf-timeout: Maximum time between two digits in DTMF
controls; allows the participant keypad presses like "1" and "11" to
execute different commands.

Caller-Controls group
A group defined inside the caller-controls section contains a named set of
DTMFs-to-actions mappings. For example, what happens if you press on your
keypad.

Chapter 8

[147]

Those groups are just lists, and can be used to define participants' and/or moderators'
mapping, inside the profiles section, as shown in the following screenshot:

Most control actions are self-descriptive, like "vol talk up", and similarly, "energy"
actions are for moving and resetting the audio volume threshold that is taken as a
sign of activity, to activate mixing.

"execute_application" is way more flexible! It allows for the usage of any dialplan
tool (for example, playback, execute_extension, log, lua, socket. Check them all!).
On top of that, we can use one of those "applications" (provided by mod_dptools)
to execute API commands in response to keypad presses. In our example, we use
the set dptools application to create a variable (api_result) that we don't use, but its
assignment is the perfect excuse for executing a FreeSWITCH API call on the right
side, complete with arguments. This way you can command the full power of fs_cli
in your phone keypad. In our example, if we press "55" on the keypad, we obtain the
same result as in typing "conference 3110-172.31.3.216 tmute non-moderator" into
fs_cli: all non-moderator participants in our conference will be muted. If we press
"55" again, they'll be unmuted.

Audio and Video Conferencing

[148]

Conference invocation, dialplan, channel variables
"conference" is a dialplan application provided by mod_dptools. Canonical
invocation is shown in the following screenshot:

As shown in the preceding screenshot, the parts in square brackets are optional, but
their order MUST be respected, so if you want a non-bridging conference with no
participants' pin, using a default profile and "mute" flag, the invocation will be as
shown in the following screenshot (note the "++"):

While in the same conference, bridging the caller with internal extension 1000 would
be as shown in the following screenshot:

Outbound conference
An "outbound conference" is similar to a bridging conference, but instead of having
the dialstring(s) part of its own invocation, an outbound conference will originate
all of the call legs that were set by the "conference_set_auto_outcall" dialplan
application. Also, before invoking the outbound conference, you can set other
specific channel variables that give you full control of how the origination will take
place, which caller_id will be used, which no answer timeout, what file will be
played to the recipient, and so on. Check out the online documentation for all of the
"conference_auto_outcall_*" channel variables.

Chapter 8

[149]

Moderating and managing conferences – API
A conference is managed by its own moderators, and by FreeSWITCH server
admin(s), via moderator_controls and API calls.

API calls are much more powerful than moderator controls; actually, anything that
can be done in/by FreeSWITCH, can be done via API calls.

There are so many ways to invoke FreeSWITCH APIs: from fs_cli prompt, from
command line (again, via fs_cli), via Event Socket (ESL), via HTTP, and via
moderator_controls.

As our dear Michael Collins explained many years ago in the mailing list, yes you
can build a conference management system that will work completely via the phone
keypad: as we saw before in the caller-controls section, we're able to access the full
power of FreeSWITCH API. It is just uncomfortable, particularly if you need to select
one particular participant among many as the target of a command.

Conference API calls have the generic format: conference confname command [arg1
arg2...argN].

A couple of API calls from fs_cli are as shown in the following screenshot:

The same API calls, but from Linux command line, as shown in the following
screenshot:

Audio and Video Conferencing

[150]

Using the same API calls from Verto Communicator (I'm connected as a moderator):

The most useful conference API commands:

•	 tmute (toggle mute/unmute)
•	 play (play an audio file)
•	 record (record conference to an audio file or stream)
•	 energy (volume threshold to be mixed in)
•	 floor (toggle floor status)
•	 hup and kick (kick a user out of the conference
•	 hup (do it without playing the kick audio file)
•	 list (list participants)
•	 volume_in and volume_out (adjust audio level of streams coming from and

going to participants).

Check all conference API commands invocations and arguments in the online
documentation, or by typing conference help in fs_cli.

Chapter 8

[151]

Video conference
"There's only two ways of doing things. The right way and FreeSWITCH's way.
And they're both the same." (adapted quote, John Turturro, Mac, 1992)

In a breakthrough at ClueCon 2015 in Chicago Illinois, FreeSWITCH's creator
Anthony Minessale II announced support for video transcoding, mixing,
manipulation, and Multipoint Control Unit (MCU) functionality.

FreeSWITCH now has the most advanced and mature video conferencing features:

•	 Multiple video codecs support and transcoding
•	 Multiple video layouts
•	 Screen splits
•	 Picture in picture
•	 Screen sharing
•	 Video superimposing (captions, logos, and so on)
•	 Video mixing
•	 Video effects and real-time manipulation

Video conference configuration
Video conferences in FreeSWITCH are just normal conferences with "something more".

They're defined and invoked exactly the same way as an audio-only conference as
far as conference.conf.xml and dialplan. Actually, an audio-only conference is a
video conference where no participants happen to request or send a video stream.
Also, if participants are video capable, and call into the normal audio conferences
we described in the previous section, they will be in a passthrough mode video
conference.

So, you need to thoroughly read all of the previous sections about audio conference
configuration, because here you'll find only the additional, video-related, configs.

The big difference is between three different kinds of video conference
(parameter video-mode, defined in conference-flags or inside profile,
see preceding section):

•	 passthrough
•	 transcode
•	 mux

Audio and Video Conferencing

[152]

Setting video-mode to passthrough (that's default if you don't set it at all) will
direct FreeSWITCH to act in a video-follow-audio way: the input video stream is
automatically chosen by FS based on who is talking at the moment, and is re-sent
as-is (no transcoding nor any manipulation) to all those participants that are able to
accept it.

Setting video-mode to mux allows FreeSWITCH to do all kind of video processing,
transcoding, and effects: you can have different clients seeing each other using
different codecs, can have picture-in-pictures, can have many clients present
concurrently in different areas of the screen, logos superimposed to a presenter
overlapping attendees, and so on.

Setting video-mode to transcode allows for clients with different codecs to see
each other, and smooth switch from one to another; other features are the same as
passthrough.

Mux profile settings
Almost all video-related profile settings apply only when conference is in mux video-
mode, for obvious reasons (other modes will not process video; they pass it along
and transcode).

Most important of the lot are:

•	 video-canvas-size: Defines, in pixels, the size of the canvas on which the
video will be "painted" after all processing (scaling, mixing, and so on), for
example, 1920x1080.

•	 video-fps: Defines how many frames per second will be painted, for
example, 15.

•	 video-codec-bandwidth: Defines the max value for the resulting video
stream and will internally modify codec parameters to match. Can be
expressed in kb, mb (kilobit and megabit per second), in KB and MB
(kilobytes and megabytes per second), or the magic word "auto". For
example, 1MB.

•	 video-layout-name: Defines the name of the layout or of the group of
layouts we want to impose on the canvas, from the file conference_
layouts.conf.xml (see below). By the way, if you set this parameter to
anything, the conference will be automatically in video-mode=mux. If
you set it to an individual layout name, the value will be (not surprisingly)
the name of the layout you want. The other option is to set it to
group:groupname (note the mandatory prefix group:, complete with colon).
For example, mylayoutname or group:mygroupname.

Chapter 8

[153]

Video conference screen layouts
When a conference has been defined as video-mode mux, it can aggregate, mix,
transform, inject, superimpose, and apply to input streams, all the useful video
effects that enhance the attendees' experience and sponsors' branding.

Screen layouts define how the resulting output video stream will be composed: the
canvas is divided into one or more regions (boxes), and each region (box) will convey
content from one of the input streams. Not all input streams are required to be on
screen at once (you can show only the presenter and five attendees, or all attendees
and no presenter, or two animations and a music video).

Screen layouts can be associated with criteria to assign video-floor (for example,
which input stream is displayed), and each layout defines in which of its regions
(boxes) the video-floor blessed stream will be displayed.

Layouts are abstract representations, directly proportional to the canvas size, and
adapt to both 4:3 and 16:9 form factors.

Layouts have a conventional dimension of 360x360, and all coordinates are relative
to those conventional lengths.

Layout regions (or boxes) are defined by the xml tag "image" that can have many
attributes. The most important are:

•	 x and y: The box-origin, the upper left corner of the box, relative to the upper
left corner of the layout. If the box originates from the canvas's upper-left
corner, x=0 and y=0, the upper-left corner of the box is exactly at the center
of the canvas, x=180 and y=180. If the box's origin is at half the upper canvas
border, x=0 and y=180.

•	 scale: Canvas being assumed to be equal to 360, how much the box is
relative to canvas; for example, if the box takes all the canvas, scale is 360.
If the box takes half the canvas, the box is 180.

•	 hscale: Horizontal scale, transformation of one dimension on the box stream.
•	 zoom: Act on the box stream, that can have a different aspect ratios than the

box (those differences are normally filled by side bands).
•	 floor: If set to "true", the box will dynamically show the video floor owner

(for example, will switch to who is getting video focus).

Audio and Video Conferencing

[154]

•	 reservation-id: A tagname that specifies who will be in this box. That
tagname is assigned to a conference participant with a vid-res-id API
command:

A simple example is shown in the screenshot taken from FreeSWITCH Confluence
conference documentation page:

2x1 layout, with captions:

Chapter 8

[155]

The following screenshot shows a canvas of 640x480 pixels, using the 2x1-zoom, with
me and my screen shared while I'm writing this. You can see that through video
manipulation, we succeeded in filling the entire canvas, with no black sidebands:

Audio and Video Conferencing

[156]

The next screenshot shows the same thing, but with a canvas of 1024x768 pixels (that
is, higher resolution):

Chapter 8

[157]

Same again, at 1920x1080, full screen:

Audio and Video Conferencing

[158]

And a screenshot from a YouTube broadcast of our weekly conference call, 720
pixels, with a desktop share, attendees' live streams, avatars, captions, and logos
(yes, you can stream to YouTube directly from a FreeSWITCH video conference):

Screen sharing
Screen sharing is of paramount importance in video conferences. It allows for
playing presentation' slides, sifting through documents, showing pictures, websites,
and so on.

Screen sharing is possible because in a video stream with desktop (or window),
live content is sent as input to the server and is then distributed to attendees. Many
SIP softphones are able to originate that screen share stream. The problem is those
streams are often proprietary (working only with their own specific server), non-
compatible (working only with a specific server protocol), they're for payable add-
ons, and so on.

Chapter 8

[159]

Because it is so important for business communication, it is also an open avenue for
vendor lock-in.

WebRTC has changed it all. Browsers are able to originate streams of the entire
desktop or a specific application window, in addition to the stream they can generate
from the webcam. Verto Communicator takes that stream and builds a second,
parallel call to FreeSWITCH (the original one being the call of the person that wants
to screen share, for example, me), and that screen-sharing video stream then becomes
a legitimate conference attendee, an input as any other, that can be mixed in.

Screen sharing dialplan extension
Verto Communicator generates the additional call to the same extension as the
original call, with a "-screen" suffix. You need to add that extension to dialplan for
the screen-sharing stream to reach the conference. If the original call was to extension
3000, the additional screen-sharing call will be to 3000-screen.

Actions defined inside the two extensions need to point to the same conference name
for the screen to be visible in the same conference the caller is in. It can be hardcoded
(for example, myconferencename), or can be calculated dynamically to yield the
same result:

Please note that in the second case, the match is done on, for example, 3000-screen,
but the capture is done only on the first four digits that compose the extension's
destination number. In both cases we later use $1, the variable that contains the
captured substring, to build the conference name to connect to.

Audio and Video Conferencing

[160]

Managing video conferences
Video related management commands follow the same format we saw before, in the
"Moderating and Managing Conferences, API" section.

Most useful video conference API commands:

•	 tvmute (toggle video mute/unmute)
•	 play (play a video file)
•	 record (record conference to a video file)
•	 vid-banner (put a caption on participants' video)
•	 vid-logo-img (put an image on participants' video)
•	 vid-res-id (assign the reservation-id to a participant, who will be

displayed in a specific box - see previous layouts section), put an image on
participants' video).

Check all conference API commands invocations and arguments in the online
documentation or by typing conference help in fs_cli.

Most of those commands can be given dynamically from the moderator interface
of Verto Communicator. In the following picture, we see a conference with two
participants (from my desktop and my laptop), one screen-sharing (the window with
the ncmpcpp clock), and a video clip (Big Buck Bunny, Blender Foundation):

Chapter 8

[161]

In this picture, one participant was given the "presenter" reservation-id, then layout
presenter-overlap-small-top-right was applied to the conference, and the presenter
became a small picture-in-picture while the same video clip of Big Buck Bunny
(Blender Foundation, Creative Commons Attribution License, from YouTube,
https://www.youtube.com/watch?v=YE7VzlLtp-4) continues to play, as shown in
the following screenshot:

Conference performances
You can have video mixing or you can have little CPU load. You can't have
them both.

And when I'm talking about CPU load I really mean it. For MCU style conferences,
get a machine with the most cores and CPUs you can afford. That's the rule of the
game. Ask Industrial Light and Magic about video effects and CPU cycles.

That said, let's see how to be Magicians On the Cheap (TM).

https://www.youtube.com/watch?v=YE7VzlLtp-4

Audio and Video Conferencing

[162]

You can achieve very good results without sacrificing much, if you don't need
fancy effects:

•	 pcmu or pcma (for example, g711) audio, one channel (mono), 8khz (support
is mandatory in WebRTC and ubiquitous in SIP)

•	 video-mode passthrough
•	 (be sure no layout is mentioned in conference profile, if one is mentioned, the

conference is automatically started in mux video-mode)
With those settings, you'll have an incredibly low CPU load: you're actually just
switching between different video inputs, choosing one, and retransmitting it
as-is to all participants. As for audio, you get input streams that are not compressed,
almost a direct representation of a PSTN-sounding audio. Mixing them is a matter of
summing their bytes.

You cannot put captions on video, you cannot inject video clips (or at least not using
the play API), and you cannot have picture-in-pictures or multiple participants
sharing the screen at the same time. Also, you do not have High Definition, CD
quality audio (anyway, are your presenters using studio grade microphones?).

But you can have High Definition video (you're not mixing streams, just passing
them along), screen sharing, and switch back and forth between one or more
presenters, and one or more screen shares. You can have the presenter's voice talking
over screen share.

Also, you can "inject" a video clip in the conference by playing it in a desktop
window, and sharing that window.

You define video-mode as passthrough inside the conference profile in
conference.conf.xml, while audio codecs must be defined in both vars.xml and
verto.conf.xml.

If you only have lemons, you can make delicious lemonade!

Chapter 8

[163]

Summary
In this chapter, we first had an overview of how audio and video conferencing
works, then we saw how FreeSWITCH can be configured as a conferencing server.

We defined our conferences' profiles as setting groups that can be assigned to
conferences when they start. In the same configuration file that contains the
conferences' profiles we define caller-controls sections. Caller-controls are groups
of DTMF-command mappings that are assigned to a conference inside profiles, and
define how participants and moderators can interact using the dialpad.

We saw how to create a dialplan extension pointing to a conference, setting its
channel variables. Also, we learned how to add participants having the conference to
originate outbound calls to prospective attendees.

Management of conferences, who has the floor, who is kicked out, muting and
unmuting participants, and the like, is best done with API calls. We saw how to
use API via command line and via graphical interfaces, the best one being Verto
Communicator.

We then introduced video conferencing, with its own additional settings.

Video-mode can be passthrough or mux, with mux being the all-powerful mode.
We saw how to implement video mixing and effects in mux mode, such as multiple
people being on the screen concurrently, logos and captions superimpositions,
and how to set the screen layout by defining regions in which video streams
are displayed.

We then delved into screen-sharing techniques, and management APIs specific to
video conferences.

We closed the chapter with some hints on how to provide high quality video
conferences on a shoestring.

[165]

Faxing and T38
Faxing is here to stay. Let's admit it: however much we VoIP practitioners hate fax,
however much frustration we feel, most of us must deal with fax transmission. Fax is
a way to transmit images via voice circuits that were not designed to work on packet
networks, and is inherently difficult to implement reliably over VoIP.

T38 is a standard that mediates between SIP and fax to achieve a reliable
transmission, trying to overcoming network induced problems. FreeSWITCH
implements world-class T38 (and T30, traditional fax) support, and is widely
used to serve from occasional to very high traffic fax communication.

In this chapter, we will cover:

•	 How traditional fax works on PSTN
•	 How fax works on VoIP
•	 How to configure and operate FreeSWITCH for faxing
•	 Tips, tricks, and caveats to achieve workflow integration, max success rate,

and fax Nirvana

What is Fax on PSTN?
Fax is scanning an image at one end of the communication, and sending the result to
the other end, where it will be transformed back into an image.

However impossible it might seem, faxing was invented and patented before voice
telephony. The first commercial faxing service was introduced in 1865 between Paris
and Lyon. The first desktop fax machine for end users was introduced in 1948, while
the 80s saw mass market distribution of compact fax machines very similar and
completely compatible with today's models.

Faxing and T38

[166]

Every office still has a fax machine, or a fax server. Modern faxing is governed
by the International Telecommunication Union (ITU) standard T30, which is
ubiquitous, very reliable (that is, 99% or better completion rates between fax
machines connected to PSTN), and is required by law for many legal document
transmissions in many countries.

How it works
On a standard PSTN-transmitting fax machine, an image is scanned, the result is
converted into TIFF digital image format (multipage), and the resulting data is sent
via a voice call to a receiving fax machine, where it will be stored (in memory or as a
file) and/or immediately printed.

The emphasis here is on voice: TIFF data is transmitted via a voice call through
PSTN (a call between the two modems inside the fax machines, the sending
and the receiving ones):

s
c
a
n

T.30 on Voice T.30 on Voice

P
R
I
N
T

PSTN
(Voice Call)

A voice call on PSTN (actually, on PSTN any call is a voice call) has some specific
features: it is a direct electric circuit, established end to end from caller to recipient,
completely synchronous, where analog electrical signals are sent on two wires
(contemporary PSTN techniques are able to perfectly simulate that original
technology). Born to transmit speech (for example, electrical signals like those that go
from the microphone to the loudspeakers in a public address, or PA, system) PSTN
has later been used by modems to transmit digital data (for example, information
codified in binary format). Initially using two audio tones (called mark and space)
to represent 1 and 0, modems have then evolved to adopt very complex audio and
electrical techniques for transmitting data at higher speed.

Modem transmitting techniques (used by fax machines) rely on specific electric
characteristics of the PSTN circuit, particularly continuity (zero loss, zero jitter,
and synchronicity). The T30 protocol (the fax transmission protocol spoken by fax
machines) uses underlying modem protocols (for example, V17 for 14400 baud/sec
data transmission) as transport.

Chapter 9

[167]

What is Fax over IP?
Fax over IP (FoIP) is not the scanning of an image and transmission of the results to
a remote end via the Internet. That would be e-mailing (the resulting TIFF file), or
FTPing it, or sending the file via HTTP PUT. Or whatever. No, that would be very
easy; the Internet was born for it, but that is not faxing.

Fax over IP is actually to interact via the Internet with a remote, regular (T30, PSTN)
fax machine. The problem is, to exactly reproduce the characteristics of a PSTN
electrical circuit via a packet network is almost impossible. Packets get delayed,
they arrive out-of-order (for example, the third packet arrives after the fifth), they
get lost (for example, the fourth and seventh packets do not arrive at all), delays are
not constant as a transmission proceeds (for example, jitter), and so on. All of this is
not a problem for file transfer protocols like HTTP, and is a minor nuisance for voice
transmission (both software correction and the human ear are very adaptable), but it
will doom any T30 fax machine to fail.

The closest simulation of PSTN characteristics in a VoIP network can be obtained
by using G711 (ulaw or alaw, also known as PCMU or PCMA) codec over a
network without packet loss and jitter, for example, a well-managed LAN. That's
because G711 is a raw codec, uncompressed and unmassaged, that almost faithfully
reproduces the audio speech frequencies used by PSTN. And a good LAN would
not lose packets or let them arrive out-of-order, thus respecting the very strict timing
requirements of T30 fax protocol, as enshrined in fax machines' chipsets.

So, you can have a good (but not stellar) fax completion rate if you let two fax
machines interact inside your LAN via G711 VoIP voice calls. Using G711, you may
even have some success faxing via the Internet (depending on network quality,
traffic conditions, remote end connection, phase of the moon, and so on).

What about if you want to reliably send and receive faxes for real (to/from someone
else's fax machine)? You can't do that via pure T30 fax protocol over a voice call.

Two additional protocols were devised to help faxing via VoIP networks and the
Internet: T37 and T38. T37 is a store and forward protocol, in some way similar
to e-mail, that's perfect for IP networks. Unfortunately, the allure of faxing is its
synchronicity, that is, you want the paper to get printed on the other end while you
are sending the fax, and that would be missed in T37. In store-and-forward, a server
would accept the entire fax from the scanner (or from a local fax machine via T30),
and send it as a file to a remote server, which would then transmit it via T30 to its
local receiving fax machine. Enough about T37; nobody is using it.

Faxing and T38

[168]

Enter T38
T38 is your bread and butter in Fax over IP, and is the only solution that actually
works. Forget about anything else. It is not as 100% reliable as faxing over PSTN,
but when well implemented can come close. Let's look at it:

s
c
a
n

T30

P
R
I
N
T

GW GW

T30
1 SIP INVITE G711�

2 SIP RE-INVITE T38�
INTERNET

An end-to-end traditional fax transmission via VoIP and T38 would comprise:

1.	 Document is scanned to a TIFF fax format by fax machine.
2.	 Fax machine transmits via voice call and T30 protocol to the gateway.
3.	 As soon as it receives the first tones from the fax machine (before getting any

actual data), the gateway originates (for example, INVITE) a G711 SIP voice
VoIP call to the remote end.

4.	 As soon as the SIP call is established (before any actual data exchange)
Gateway tries to upgrade the SIP call from G711 to T38 (for example,
RE-INVITE the remote end using a different SDP).

5.	 If the remote end supports T38 (because it is a T38 gateway or, more rarely,
because it is a smart network fax machine) they agree to a data exchange
with much more relaxed timing and constraints, with some buffering
and redundancy, and other facilities to overcome WAN fax transmission
problems.

6.	 If the remote end does not support T38 (for example, it is a plain dumb fax
machine), the call goes on as T30 on G711, hoping for the best.

7.	 If T38 was agreed, before any data is exchanged, the remote gateway would
establish a T30 voice call with the receiving end fax machine.

8.	 When the call chain is established (originating fax machine <=> originating
gateway <=> terminating gateway <=> receiving fax machine), the
originating gateway will signal to the originating fax machine that
transmission can start, and the stream of data would flow in real time from
the caller fax machine, through gateways, to the recipient fax machine.

Chapter 9

[169]

9.	 The document is printed by the terminating fax machine while it is being
transmitted by the originating fax machine.

T38 acts as an error correcting, packet reordering, buffering filter, that connects the
originating and terminating T30 fax streams.

T38 most often does not use the media transports used by voice calls (RTP), but a
protocol unique to itself, UDPTL (if you're interested, both T30, T38, and UDPTL can
be interpreted and visualized by the Wireshark open source packet analyzer).

T38 terminals and gateways
There is an important difference between a T38 terminal and a T38 gateway. A
terminal would not connect to T30, for example, is free from the very strict timing
and constraints of real-time fax machine interfacing, and so is a much simpler piece
of software. Smart network fax machines could be T38 terminals. T38 fax servers can
be a terminal when transmitting or receiving to/from another T38 terminal (a smart
network fax machine, or another fax server).

When conversion to/from PSTN fax machines (T30) is involved, that's a job for T38
gateways, with all real-time related features.

Fax and FreeSWITCH
Receiving and sending a fax in FreeSWITCH is excruciatingly simple, consisting of
two applications:

•	 rxfax (/path/where/to/write/TIFF)
•	 txfax (/path/where/to/read/TIFF)

That's it. Isn't that a beauty? Thanks to the world-class work of Steve Underwood,
the recognized Godfather of Digital Signal Processing, SpanDSP library is integrated
into FreeSWITCH and, amid many other goodies, provides complete T30 and T38 fax
communication support.

FreeSWITCH sends and receives TIFF files. You must do all the
necessary conversions (to/from PDF, and so on).

Faxing and T38

[170]

All the finer details of fax communication are determined by a mod_spandsp
configuration file (overridable runtime for each application invocation) and by
information contained in the TIFF file itself (for example, resolution, size, color or
b/w, and so on). Again, mod_spandsp configuration (overridable) determines if and
how a T38 call upgrade will be attempted, and T38 terminal or gateway behavior
to/from T30 and TDM (PSTN).

The mod_spandsp configuration
mod_spandsp is compiled by default and is part of the basic packages selection
when installing from repositories; we can go straight to configuration. In the conf/
autoload_configs directory we find spandsp.conf.xml. Relevant fax items are
shown in the following screenshot:

Most of them you will probably override with dialplan or script commands, but let's
start with some sane defaults:

•	 use-ecm: Best set this to false; some fax machines and oh-so-many T38
implementations do not work well with Error Correction Mode.

•	 verbose: During development, best set this to true. It will print an
astonishing amount of information in debug log; you'll be able to follow the
flow of protocol handshaking, the details of exchanged capabilities, and so
on. Then, you disable it in production.

•	 disable-v17: Leave this set to false; if v17 (for example, 14,400 kbps)
negotiation fails, it will fall back to 9,600 kbps. It is possible that in your
specific case (for a multitude of factors), you will have a much higher rate of
success if you disable v17 (set disable-v17 to true), and go directly with 9600,
without negotiation.

Chapter 9

[171]

•	 ident: This should be set to the telephone number you want to appear on the
remote page header. To disable, put it to _undef_ (note the underscores).

•	 header: This should be set to the text you want to appear on the remote page
header. For example, MyCompany, www.mycompany.com. To disable, put it to
undef (note the underscores).

•	 spool-dir: The filesystem directory where you want your incoming
(received) fax files to be written into. For example, /usr/local/
freeswitch/received-faxes.

•	 file-prefix: This one concurs to form a filename when the filename is not
given as an argument.

•	 rx-tx: Leave the values of rx-tx re-invite packets to their default, that is, do
not set them.

mod_spandsp usage
We saw it before: receiving and sending a fax are simple operations in FreeSWITCH.
Let's see them in the proper context, with errors and results checking and so on.

To receive faxes (from dialplan):

<extension name="fax_receive">
<condition field="destination_number" expression="^9978$">
<action application="answer" />
<action application="playback" data="silence_stream://2000"/>
<action application="set" data="fax_enable_t38_request=true"/>
<action application="set" data="fax_enable_t38=true"/>
<action application="rxfax" data="/tmp/FAX-${uuid}.tif"/>
<action application="hangup"/>
</condition>
</extension>

1.	 We create an extension that will be reached by dialing 9978.
2.	 Answer the incoming call.
3.	 Play two seconds of silence (to allow for media to establish, remote fax to

begin sending tones, and communication to stabilize).
4.	 Set the two variables that will allow for T38 (for example, we will answer

positively to a T38 re-invite initiated by the remote party, and we will also
actively re-invite to T38. If the remote party supports T38, we're sure we
use it).

5.	 Start the rxfax application, with, as argument, a path composed including a
variable (in this case the UUID of the incoming call).

Faxing and T38

[172]

6.	 After rxfax completion (successful or not), we hang up.

If we had passed an empty argument to rxfax (<action
application="rxfax" data=""/>), the default argument would
kick in. The received filename and path would have been constructed
from variables in spandsp configuration: spool-dir/file-
prefix-progressivenumber-timestamp.tif.

For detecting incoming faxes (from dialplan):

Let's use the same extension (for example, the same DID) for fax and voice calls. We
want to automatically check if the incoming call is a fax transmission. If it's a fax,
receive it. If it's not, connect the voice call to the user:

1.	 When a call is incoming to extension 2010.
2.	 Answer it.
3.	 Set a ringtone.
4.	 Start fax detection. Listen for a maximum of six seconds. If it's a fax, transfer

the call to extension 9198 of XML dialplan (in default dialplan, 9198 is rxfax
extension).

5.	 If the call was not transferred to 9198 (fax was not detected) bridge it (that is,
transfer it) to registered user 1010 (while sending the ringtone to the caller).

For sending faxes (from a Lua script):

Chapter 9

[173]

The first two lines are of most importance:

•	 We set the codecs in a non-negotiable way to G711 (ulaw or alaw, also known
as PCMU and PCMA), the only codecs that can support fax transmission, and
also the only codecs from which we can re-invite to T38

•	 To avoid possible problems with tone misinterpretation at call start, we
set ignore_early_media; txfax will only start after the remote party has
answered the call (for example, not while ringing or whatever) and audio
will only be analyzed after that

•	 Then we set all fax-related variables
•	 Eventually, we send the fax tiff file

For checking results:

As we know, faxing on VoIP is tricky, and has nowhere near the reliability that
faxing over PSTN offers. Yes, you can reach a very high success rate, but will
probably never reach 100%, if nothing else, because the remote fax machine is out of
paper, or was switched off mid-transmission.

After both sending and receiving faxes, FreeSWITCH fills a lot of channel variables.
You use those variables to understand what happened, and in case of sending, to
decide if and how to retry (for example, changing speed, ecm, or T38 variables).
Variables you may want to check (see Confluence documentation for less useful vars):

•	 fax_success gives 0 on error, 1 on success
•	 fax_result_text gives info on what error has happened
•	 fax_document_total_pages gives how many pages were supposed to be

transferred
•	 fax_document_transferred_pages gives how many pages were actually

transferred
•	 fax_transfer_rate gives after negotiation, which speed was used for

transmission
•	 fax_ecm_used gives after negotiation, if ecm was actually used
•	 fax_image_resolution

•	 fax_image_size

Faxing and T38

[174]

Debugging faxes
When first testing your installation, or when something is fishy with a transmission
that does not want to go through, you want to debug the various negotiations and
the transmission itself.

As we saw before, there are many negotiations potentially involved:

•	 SIP negotiation of the initial G711 call (initial INVITE)
•	 SIP negotiation of T38 (RE-INVITE)
•	 T30 negotiation (happens both in pure G711 T30 transmission and for T38

transmission)
•	 T38 negotiation

WireShark will be able to analyze it all at protocol level, on the wire, and display it
nicely for you. But, for the sake of really understanding what's going on, you want
to see things as seen from FreeSWITCH's vantage point. For example, you want to
see dialplan, scripts, applications, protocols, codecs, and so on, interact dynamically
in real time during your fax communication. When testing a new installation, you
debug on the same machine. In a busy production system, you may want to debug
on another machine with the same settings as the production machine:

From fs_cli:

•	 Enable SIP packets visualization: sofia global siptrace on
•	 Enable debug output: fsctl loglevel 7
•	 Enable debug output: console loglevel 7
•	 Enable fax_verbose=true as channel variable, in the bridge/originate

string, or in spandsp.conf.xml

Chapter 9

[175]

You will then see it all, much more information than you would have thought is
possible, and if you're not able to spot the problem yourself, copy and paste from
the terminal to a pastebin, and reach out for help at FreeSWITCH community
support or a professional.

How to maximize reliability of fax traffic
To transmit a fax after a previous failure, you retry by changing parameters. It
seems a trivial solution, but is just the best practice, and the only path to a higher
completion rate.

Fax transmission depends on oh-so-many external items, such as the model of the
remote fax machine, software implementation of intermediate gateways, network
delay, jitter, packet loss, local PSTN termination systems, and so on. Each item
interacts with all others to influence fax transmission (fax being a transmission
protocol that was not designed for packet networks).

So, you try to send a fax, and if you fail, you try again in a different way, trying
to devise the progression that would maximize success rate with the minimum of
attempts. This is a possible list (you must check the permutations that work best in
your own situation):

•	 originate_fax_enable_t38=true, originate_fax_enable_t38_
request=true, originate_fax_use_ecm=false, originate_fax_disable_
v17=false

•	 originate_fax_enable_t38=true, originate_fax_enable_t38_
request=true, originate_fax_use_ecm=false, originate_fax_disable_
v17=true

•	 originate_fax_enable_t38=true, originate_fax_enable_t38_
request=false, originate_fax_use_ecm=false, originate_fax_
disable_v17=true

All attempts disable ecm and answer to T38 re-invites. The first attempt transmits at
v17 speed (14,400 bauds) and actively re-invites T38. The second attempt is the same,
but at lower speed (9,600). The third attempt is the same as second, but does not
actively re-invite T38.

Faxing and T38

[176]

PDF to fax and fax to PDF
FreeSWITCH only deals with correctly formatted TIFF files; anything else will not
work. No PDFs, nor JPGs, not even TIFF files slightly wrongly built.

A TIFF file contains in itself all information needed by mod_spandsp, such as
resolution, paper size, how many pages it is composed of, and so on.

The best way is to start from a PDF file (easily exported or printed by any desktop
program) and use the open source GhostScript software to convert it into a suitable
(perhaps multipage) TIFF file.

So, install GhostScript (available on all platforms, it can be scripted on headless
servers and does not need a desktop) and follow the examples listed at http://www.
soft-switch.org/spandsp_faq/ar01s14.html, a page written by the very Steve
Underwood.

As reported on the webpage, high volume PDF to TIFF conversion can be heavy on
CPU. For a trafficked server it is better to do conversions on another machine.

PDF to TIFF, for the most standard format, would be as follows:

gs -q -sDEVICE=tiffg3 -r204x98 -dBATCH -dPDFFitPage -dNOPAUSE \

-sOutputFile=out.tif in.pdf

TIFF to PDF conversion is provided by the aptly named tiff2pdf utility made
available on all platforms by libtiff open source library.

You can explore all its possible options with tiff2pdf -h, while to convert a TIFF
produced by FreeSWITCH's rxfax into a PDF file with A4 page size and Received
Fax title:

tiff2pdf -o out.pdf -p A4 -t "Received Fax" -F in.tif

Fax to mail
Once a fax has been successfully received, and perhaps converted to PDF, you
may want to send it via e-mail. In doing so, you must pay attention to some small
details, such as if the PDF or TIFF file is attached to the outgoing mail following all
standards, and if it's correctly visualized by all mail clients on all platforms.

http://www.soft-switch.org/spandsp_faq/ar01s14.html
http://www.soft-switch.org/spandsp_faq/ar01s14.html

Chapter 9

[177]

As an example, Heirloom mailx (http://heirloom.sourceforge.net/mailx.html)
works well when used like this:

echo -e "This is the mail text" | mailx -s "this is mail subject"\ -S
from="sender@mycompany.com" -a "fax.pdf" \

-c "cc@yourcompany.com" -b "bcc@yourcompany.com" \ "receiver@yourcompany.
com"

HylaFax and FreeSWITCH
Since time immemorial, faxes on Unix systems have meant HylaFax. HylaFax
interacts with local TTYs (for example, serial AT modems) for sending and receiving
faxes on PSTN. Over the years, this has grown into an ecosystem of software
applications, both on server and client sides, for managing enterprise size fax
management and service providing.

You can find HylaFax at http://www.hylafax.org/content/Main_Page.
HylaFax+, a derivative slightly more skewed toward VoIP, is at http://hylafax.
sourceforge.net/.

HylaFax was designed to interact with modems, and modems do not work with
VoIP. But companies were invested in HylaFax, had an internal workflow based
on it, and were unwilling to switch over to other untested and unintegrated
transmission methods.

How to reap the advantages and cost reduction of VoIP, and still operate through
HylaFax? Yeah, simulating modems. mod_spandsp can provide softmodems for
HylaFax to use. See the section modem-settings in spandsp.conf.xml:

http://heirloom.sourceforge.net/mailx.html
http://www.hylafax.org/content/Main_Page
http://hylafax.sourceforge.net/
http://hylafax.sourceforge.net/

Faxing and T38

[178]

But the latest and greatest in FreeSWITCH-HylaFax setup bypasses entirely the
simulation of modems entirely, and interfaces HylaFax directly with FreeSWITCH,
via Event Socket interface.

GOfax.IP is written in GO, supports both T30 and T38, and has been lauded by
FreeSWITCH community. Check it out at https://github.com/gonicus/gofaxip.

ITSPs and Real World Fax Support
T38 is your best bet for fax communication through VoIP networks. But, not every
VoIP connection has been created equal, nor are all VoIP providers one and the
same. Completion rate can be poor, or interoperability wobbly.

You must make careful enquiries about T38 support when shopping for an ITSP or
VoIP provider. Ask around, learn which are the proven operators in your region, and
do your your research.

It is not unusual for a medium company to use an ITSP specifically for faxes,
while using another one for voice traffic. This setup can also double as failover; for
example, if one ITSP is down, you will redirect all traffic to the other one.

Summary
In this chapter, we first had an overview of how fax works in both traditional
PSTN and VoIP. Then we described a T38 protocol, which makes faxing available
on packet networks.

We delved into FreeSWITCH mod_spandsp, the module in charge of faxing (and
other Digital Signal Processing features). We've seen how to configure the module,
and how to receive, detect, and send faxes.

We then looked at the most common fax-related processing, like conversion from
and to PDF, and mail attachment. We closed the chapter with hints on how to
integrate FreeSWITCH's fax capabilities with workflows and ITSPs.

https://github.com/gonicus/gofaxip

[179]

Advanced IVR with Lua
And now for something completely different!

In both of our cookbook and FreeSWITCH book you can find different examples and
snippets of basic and intermediate Lua FreeSWITCH scripting. I will not repeat that.

What follows in this chapter is a moderately complex IVR application that makes use
of different Lua FreeSWITCH techniques: logging, nesting, multiple files, setting and
getting channel variables, accounting, asynchronous execution, web access, database
access, error handling, post-hangup execution, functions, and so on.

Because this is not a basic snippet, and because it must strike a balance between
comprehensibility and number of pages, I ask you to be patient and to bear with
me while I describe the various steps.

I promise you will find reusable techniques, common patterns, and perhaps
some inspiration.

Installing IVR
The complete application is made up of various files:

•	 welcome.lua: This is the main script
•	 utils.lua: This contains the utility functions provided to all other scripts
•	 LuaRunWeb.lua: This script is spawned by a function in welcome.lua for

non-blocking web access
•	 LuaRunMoh.lua: This script is spawned by welcome.lua for non-blocking

audio playback to the caller.
•	 welcome.xml: This is the dialplan entry

Advanced IVR with Lua

[180]

Because we will often reference different parts of the scripts you really must
download the code from www.packtpub.com.

Then, copy all LUA files into the script directory of FreeSWITCH (default: /usr/
local/freeswitch/scripts/), and put the XML file into the default subdirectory
of FreeSWITCH dialplan (/usr/local/freeswitch/conf/dialplan/default/).

You will then load mod_flite into FreeSWITCH, because this script needs Text To
Speech (TTS). If you have compiled from sources, go to /usr/src/freeswitch.git
and type (pay attention to dash-underscore differences):

makemod_flite-install

Then you can load mod_flite from fs_cli, or add mod_flite to /usr/
local/freeswitch/conf/autoload_configs/modules.conf.xml and restart
FreeSWITCH.

Also, you need to load mod_curl, which is already compiled by default, and
remember to add it to modules.conf.xml.

That's all you need to get started.

Structure of welcome.lua
The welcome.lua nucleus was originally written as a TTS menu demo by Meftah
Tayeb, a blind Algerian tech enthusiast, who by sheer willpower and strength
became a very active FreeSWITCH community member, and then a respected
engineer for Algeria Telecom, and now is continuing his career in a private business.

We'll read it in detail in next section, but let's start with an outline of how its different
sections fit together:

•	 line 1: Use include, and all its functions and variables
•	 line 3 to 21: A function that will be called later
•	 line 23: Here we check if we are answering the call or we are after hangup
•	 line 25 to 51: This block will be executed as api_hangup_hook, after call

hangup
•	 line 53 to 268: This block is executed when the call comes in

•	 line 54 to 78: Set and get some session (for example, channel) variables
•	 line 80: Incoming call is answered
•	 line 83: First voice menu

°° line 87 to 166: Processing DTMFs pressed in the first voice menu

www.packtpub.com

Chapter 10

[181]

•	 line 170: Second voice menu
°° line 174 to 185: processing DTMFs pressed in the second voice menu

•	 line 189: Third voice menu
°° line 193 to 207: Processing DTMFs pressed in the third voice menu

•	 line 211: Fourth voice menu
°° line 215 to 261: Processing DTMFs pressed the in fourth voice menu

•	 line 265 to 268: Some logging before hangup

Incoming call processing
At line 23 in the code we checked if the env array exists or is nil.

If env exists, the script is being executed as API hangup_hook, the call has been
already hung up, there is no session (the call does not exist anymore), but all channel
variables have been saved into env. We'll look into it in the next section.

If env does not exist then we know the script is called in normal mode, for example,
there is an incoming call and a dialplan extension (in our case 2910, in welcome.xml)
is calling the script:

Advanced IVR with Lua

[182]

Before answering
We are at line 54 right now. The code in the preceding screenshot begins by
setting an input callback function. That would be a function that process DTMFs
entered by the caller when there is no other DTMF processor in execution
(for example, when we are directly playing an audio file, and not while we're
playAndGetDigits a menu, see the following (voice menu processing).

Then we set a hangup hook function. Note that this is very different from
api_hangup_hook (we'll see that in the After hangup section, later). A hangup hook
function is executed when there is a hangup on the call before the call/channel is
destroyed and ceases to exist. A hangup hook function is indeed executed during
the very same script run that set it, and has access to all session methods, channel
variables, and more.

We'll see the content of the two functions we just set up, and how/what they do, later.

session:setVariable is the standard way to set a channel variable. In this case we
set two channel variables (tts_engine and tts_voice) that affect the behavior of
the module mod_flite. Very often you can affect the behavior of module-provided
features by setting the appropriate channel variable(s) that override the module's
configuration file content.

Also, we set session:set_tts_params("flite", "rms"), which will affect which
TTS engine (flite) and voice (rms, voice by Richard Marshall Stallman, the GNU
founder) the session:speak() function will use later.

Then we create some local variables (scope limited variables, as opposed to normally
global variables). They get their value assigned from session:getVariable, the
standard way to access the value of a channel variable.

One of the quirk in Lua is that if you use a NIL (or nil) value in a string
concatenation (the .. operator), you get a fatal error, and the script aborts. And if
you session:getVariable a non-existing channel or session variable, you will get a
NIL value. So you must always check and manage cases where a variable could
contain NIL.

assert(io.open(log_filename, "a")) is a typical Lua construct for dealing with
the operating system (the filesystem, in this case). It tries to create a filehandle
(by opening or creating a file) to which it subsequently appends content. If it fails
to create the filehandle (the directory does not exist, the directory is not writable,
or the file exists but is not writable by the script), the script aborts. If it succeeds,
we assign the filehandle to a local variable that will later be used as a target for
writing (appending).

Chapter 10

[183]

stamp() is a logging function we included from utils.lua file; we'll see it later, and
we give it the filehandle to write to via a logfile local variable.

Then we create and assign a value to a couple of channel variables. We will need
those channel variables when the script is re-executed as api_hangup_hook.

With session:setVariable("api_hangup_hook", "luawelcome.lua") we
designate what FreeSWITCH API will do after the call hangup. The value we assign
to api_hangup_hookchannel variable is exactly what we would type in the console
or fs_cli command line. In this case we use the lua command to execute the
welcome.lua script in the default FreeSWITCH scripts' directory. In this particular
case the script file to be executed after hangup and call/session/channels/variables
are destroyed is the same one we are reading right now. There's more on API
hangup hook later in the chapter.

Eventually, on the last line in the previous screenshot, we session:answer() the
call, and (hopefully) establish the audio bidirectional communication:

Advanced IVR with Lua

[184]

First voice menu
Code in the preceding screenshot begins at line 81. In the first line, we stamp() we
have answered in the logfile (we'll see later how the stamp() function works and
what it does).

Then we see a line with ::FIRST_MENU::. That's the Lua way to create a label,
a marked position in code that we can jump to using a goto statement. Yes, I
know there is a lot of bad press for goto, at least since the BASIC era. I would
probably agree with it, if I had read it. But in the case of Lua IVRs, it is a nice way
to separate voice menus without adding too much complexity. Sure, you can do it
by transferring from a script with one voice menu to a different extension that calls
a different script (or the same script with different arguments) leading to a different
voice menu. Or you can nest loops into loops. You know, there is more than one way
in programming.

We then stamp() that we've just arrived after the label, and are about to enter the
first voice menu.

while (session:ready() == true) do (followed by end at the end of the code
you want to conditionally execute) is a nice way to bail out of a loop when a call is
hung up. You must always check the call was not hung up before doing anything
that takes time to execute, or wait for user's input. If you wait for the user to press 1
when the call is already hung up, you'll wait a lot. For a similar reason, you'll want to
check for hangup before doing a time-consuming call to a database, or web server, or
a lengthy I/O.

In our case, we use while (session:ready() == true) do as a guard for not
entering the first voice menu (even when coming from other voice menus via goto)
in case the call is not up, and to create an infinite while loop that terminates only
when the caller hangs up or is transferred away.

session:playAndGetDigits() is the workhorse function of voice menus. It's
got it all, and the kitchen sink. You'll want to consult its official documentation in
Confluence I'll try here to convey the feeling.

The caller input in the case of success will be stored in the local digits script variable.

Its arguments are min_digits, max_digits, max_attempts, timeout, terminators,
prompt_audio_file, input_error_audio_file, digit_regex, variable_name,
digit_timeout, and transfer_on_failure.

Chapter 10

[185]

If you want a fixed number of digits, give min_digits the same value as max_digits.
If they're not the same, the caller must input one of the DTMFs in the terminators
string to let FreeSWITCH understand that they're done before having entered all
of max_digits (or wait for timeout). max_replays is how many times prompt_
audio_file will be replayed because of non allowed digits or timeouts. timeout is 3
seconds (3000 milliseconds). If you want to manage input errors yourself in a different
way than playing input_error_audio_file and coming back playing prompt_
audio_file (for example, maybe you want to read additional instructions, or go to a
different menu, or transfer to an extension), then set max_replays to 1. digit_regex
is a regular expression that defines which ones are the acceptable DTMFs. The last
three arguments are optional, and define the channel variable name that will be
created and assigned a string value made of gathered valid DTMFs, the inter-digit
timeout when more than one DTMF is expected (3456), and to which extension the
call will be transferred if there are more than max_replays errors.

In our case, we want just one DTMF, we try three times to get the correct input, the
only terminator char is # (but we don't use it, we have min and max digits at the
same value, 1), we use the TTS construct say:text to synthesize audio from text
instead of providing the names of prompt_audio_file and input_error_audio_
file, we accept numbers from 1 to 9 as valid input, we create (and set) a channel
variable named digits, and we explicitly set the inter-digit timeout (not used) to 3
seconds. That would in any case be its default value (it defaults to the timeout value).
The last argument is the operator named extension we defined in our dialplan, to
which the call will be transferred in case of final failure to gather input. If we omitted
this last optional argument, the while (session:ready() == true) do would
re-enter the session:playAndGetDigits line again and again, restarting anew
after reaching the max_replays (3) number of tries. The only way out would be
to hang up.

If input has not been gathered by session:playAndGetDigits, after max_replays
the local script variable digits will be empty (not in our case, because we transfer to
the operator in case of final failure) and the script will proceed to the next line.

We then check its value.

If the digit is 1 we jump (goto) to label ::SECOND_MENU::.

If it's 2, we use the construct session:execute() to run a dialplan application; in
our case, we use the transfer app to exit the script and re-enter the default dialplan at
extension 5000.

Advanced IVR with Lua

[186]

If it's 3 we use session:streamFile to play an audio file (classical guitar music,
recorded at low volume). After playing the music, the script continues to the next
step; here, we don't jump away as in the previous two cases.

The code in the preceding screenshot starts at line 99.

If the digit is 4, we session:execute() the dialplan application bridge.
In this case, the bridge app will originate an outbound SIP call to the remote
FreeSWITCH.org conference server, and if this newly originated call is successfully
connected to the server, the same bridge app will join it to our original incoming
call (the incoming call that spawned this script). This will hopefully result in a
bidirectional audio stream between the original call (A leg in this context) and the
newly originated call (B leg). This bidirectional connection between two remote end
parties is what end users understand as a call, while for us VoIP gurus, it's
two calls bridged together.

Chapter 10

[187]

If the digit is 5, we break out from the while session:ready() loop. In our case,
this brings us to the end of the script. Arriving at the end of the script is the standard
way to exit a LuaIVR script in FreeSWITCH. When a Lua script ends, the default
action taken is to hang up the call. If you want instead to continue with the next
dialplan action, then you must session:setAutoHangup(false). In our case, we
have not set it, so the call is hung up.

If the digit is 6, we make a couple of HTTP transfers via FreeSWITCH's internal curl,
then combine those transfers results into a text that will be read to the caller by TTS.
Let's see the details.

First, we create a local freeswitch.API() object and name it api. This object is a
direct connection to the FreeSWITCH console command line (fs_cli). We can use it
to get the result of the command we send.

Then, because an HTTP transfer can take time (for example, until curl timeout, or
HTTP server timeout), and because an api call is blocking (for example, script wait
for command result), before executing it we use our isready() function to check
if call is up. isready() is just a glorified session:ready(), we'll see later about
it. We'll see later how to have a non-blocking HTTP transfer. We api:execute() a
curl command, exactly as if we were typing on fs_cli. In our case, we are getting
the UTC hours and minutes in two local script variables.

isnil() checks if the variable is equal to NIL (for whatever reason). Because Lua
scripts aborts if a NIL value is concatenated to form a string, we use the isnil()
function to check the variable's value, and handle it nicely if the variable is NIL. We'll
see later how this isnil() function works.

Advanced IVR with Lua

[188]

Eventually, session:speak() will use TTS to read the caller a string concatenated
with the curl results:

Chapter 10

[189]

The code in the preceding screenshot starts at line 124.

If the digit is 7 we'll create a FreeSWITCH internal DB handle for querying the
SQLite database FreeSWITCH uses as default persistence for voicemail metadata
(for example, just for the information about voicemails; actual audio messages are by
default stored as .wav files on the filesystem).

We pass the filename of the SQLite database we want to open or create to
freeswitch.Dbh(). We can prepend the filename with an absolute directory path
(for example, sqlite:///tmp/test). If we do not prepend it, the filename will be
in the default FreeSWITCH core SQLite directory (if you compiled from source, it
is /usr/local/freeswitch/db). Pay attention; if the db file is not there, it will not
report an error. Instead, the db file will be created empty—if the directory exists,
and is writable.

Then we check if our DB handle was not able to connect to the file,
dbh:connected()==false, in which case we pass nil to the isnil() function
(because in Lua, false is different to nil) to nicely handle connection failure.

If all is good, we dbh:query() the database handle and get a row of results in a local
script variable. In our case, we ask for the caller ID number of a voicemail message.
We then read it by TTS.

If the digit is 8 we again create an internal FreeSWITCH DB handle, this time
to query a remote PostgreSQL database server. It works exactly as in the previous,
7, case.

FreeSWITCH can create internal DB handles for SQLite, PostgreSQL, and for
ODBC connections. DB handles are pooled and managed in a very efficient way
by FreeSWITCH, and are the recommended way to interact with databases.

If the digit is 9, we do an asynchronous, non-blocking HTTP transfer. We'll see
this later.

Advanced IVR with Lua

[190]

Second and third voice menus
The code in the following screenshot starts at line 170.

Chapter 10

[191]

The second and third menus are actually just a demo of how to use previous
techniques to jump in and out of different voice trees. The only interesting thing
is that with option 1 of the third menu, we bridge the call to Lenny, a beautiful
honeypot/torturer for telemarketers, where an IVR will keep a telemarketer busy
by simulating an old and chatty person. We first set effective_caller_id_name
and effective_caller_id_number, because Lenny's server only accepts non-
anonymous incoming calls. Then, we bridge to the SIP URI, prepending the setting
of a channel variable to dialstring.

By the way, you definitely want to check Lenny's recorded sessions on YouTube at
https://www.youtube.com/playlist?list=PLduL71_GKzHHk4hLga0nOGWrXlhl-
i_3g.

Fourth menu – asynch! Nonblocking! Fun
with threads!
The code in the following screenshot starts at line 211.

https://www.youtube.com/playlist?list=PLduL71_GKzHHk4hLga0nOGWrXlhl-i_3g
https://www.youtube.com/playlist?list=PLduL71_GKzHHk4hLga0nOGWrXlhl-i_3g

Advanced IVR with Lua

[192]

There are times when you want that something more. Normally just does not cut
anymore.

Enter threads! In the fourth menu, by pressing 1, we can observe two usages of
threads: the first one lets you play music or announcements to the caller while you
do something else (originate another call leg, check the Web, query a database, or
whatever). The second thread lets you check the Web while being shielded from
the blocking and hangup aspects of Lua scripting. For example, the call is actually
destroyed in FreeSWITCH immediately after hangup, while your Web checks (or db
query, or whatever) continue unabated.

If the digit is 1, we begin by creating an API connection with FreeSWITCH. Then we
set to zero a channel variable named from_luarun_end_moh".

At this point, we execute the luarun api. luarun starts a separate Lua interpreter
in its own thread, passing to it all arguments. So, the first argument to luarun will
be the name of the script to run, and the arguments that follow (if any) will be
arguments to that script.

Let's check in the preceding screenshot how that script, LuaRunMoh.lua, works:

Chapter 10

[193]

After including the utils.lua file, we set which audio file will be played. Then the
first three script arguments are assigned to local variables. We then open a logfile
with the same name as the main script logfile plus an added suffix.

At this point, we get to the session from the call_uuid string we were passed as
argument. That's the power of uuids! session = freeswitch.Session(call_
uuid) give us a valid session object!

If session:ready() and call is still up, we check the channel variable from_luarun_
end_moh. If it's 0 then we proceed to play the audio file to the caller. After a brief
pause, if the variable has not changed, we play it again forever, in a loop.

Going back to the fourth menu in previous picture, we just backgrounded music on
hold (MOH) to the caller. We then call the LuaRunWeb() function twice (we'll see its
contents later) to check a value via the Web. Those two HTTP transfers (they could
be db queries) will be executed even if the call has been hung up, because they run in
an external thread of execution.

Those HTTP transfers incur a 15 second delay each, so you can test what happens if
you hang up the call. You can see the CGI content in the following screenshot; it just
sends 11 after a 15 seconds delay:

After the second HTTP transfer we set the from_luarun_end_moh variable to 1
(this variable controls if MOH continues to loop after finishing the current play).

Then we interrupt the current playing by issuing a FreeSWITCH API break to the
call leg api:executeString("uuid_break "..call_uuid). This will immediately
stop the audio stream.

Eventually we read the user the information we received via HTTP.

For your reference, if instead of 1 we pressed 2 at the fourth menu, we go to a
non-threaded version of the same steps (without MOH, obviously). You can check
there what happens if you hang up (hint: blocking). Pressing 3 brings you back to
the first menu.

Advanced IVR with Lua

[194]

Let's check how the function we use to start an HTTP transfer in a different thread,
LuaRunWeb(), works in the following screenshot:

First we create a local API object, then we set a from_luarun_end_query channel
variable to 0.

Then we run api:execute luarun, and pass to it the script name LuaRunWeb.lua
and other arguments for that script.

Because we need to have normal strings without spaces or special characters,
to pass to the script as arguments, we URL-encode the last argument (the HTTP
query) so we can use any complex URL. We'll see fs_urlencode() later, in the
Utility functions section.

luarun returns immediately because LuaRunWeb.lua is spawned in its own new
thread. So, while LuaRunWeb.lua is running, we spin in a loop, checking if it has
finished. This loop spinning is interruptible both by hangup and by setting from_
luarun_end_query to 1. We set a default return value CURL ERROR NO_SESSION
to be returned if the caller hangs up before LuaRunWeb.lua returns the value
grabbed from HTTP. And now, let's have a look at LuaRunWeb.lua in the
following screenshot:

Chapter 10

[195]

We begin by including the utils.lua file. Then the first three script arguments are
assigned to local variables.

The fourth argument is the URL we passed urlencoded, and we urldecode it before
assigning it.

We then open a logfile with same name as the main script logfile plus an added
suffix. After creating a local FreeSWITCH API object, we execute the (blocking) curl
API command on the URL and gather the transfer result into a local variable. In our
case, this will take 15 seconds because of the delay in CGI.

We then check if the string we get passed as the second script argument call_uuid
still represents an existing FreeSWITCH session (that is, whether the call leg was not
already hung up and destroyed).

Advanced IVR with Lua

[196]

If call_uuid is still valid, we create a session object from it and set two channel
variables: curl_response_data to what we get from HTTP, and from_luarun_end_
query to 1.

This will break the spinning loop in the LuaRunWeb() function, and that function will
proceed to grab the HTTP transfer from the curl_response_data channel variable,
and return it to the main script. Wheeeeee!

After hangup
Let's go to the actual beginning of our main script, welcome.lua, in the following
screenshot:

After including the utils.lua and LuaRunWeb() function, we check the env object.

If env is a valid object, the script has been called a API Hangup Hook.

Chapter 10

[197]

The call leg has already been destroyed, so the session object is not valid any more.
But we have in env a copy of all channel variables. In addition to all those variables,
we have also the definitive values and the only reliable source of valid accounting
timers available via FreeSWITCH scripting (you have all of them via ESL, but that's
another chapter).

We repeat: if you want to do accounting from scripting, API Hangup Hook is the
only way to have ready-made accurate durations for all call phases.

We use env:getHeader() to assign some of those values to local variables, then we
print it on FreeSWITCH's console as a warning message.

Then we reopen the same filename that was opened, written, and closed the first
time this script was run (answering the incoming call), and append to it our logging.
This technique is useful for keeping all logging neatly organized by call_ids.

Then we get a local variable with env:serialize() value, so actually we dump
in urlencoded format all the contents of env, and then print it both on the
FreeSWITCH console and in the logfile.

Utility functions
We've used a lot of self-written functions. It's time to have a look at them. Let's open
the top half of the utils.lua file, in the preceding screenshot.

The first three functions serve mainly to build the fourth function, stamp(), that we
use throughout our scripts to do structured logging.

shell() is an example of a typical Lua interaction with an operating system. It
executes a command, and returns the output as a string. We use it in stamp() to
obtain the result of the command date.

trim() uses Lua native string manipulation, and is equivalent to the chomp()
command in Perl, and many similar others in different languages: it deletes the
trailing newline in a string, if it exists, and returns the string without the newline.

whichline() comes from the debug package. It returns the current line number in
the script, for example, like __line__ in C.

stamp() is our logging workhorse; it takes the string we want to log (our log
message), a string (returned by whichline()) representing where we are in the
script file, an open filehandle to append to, the uuid string identifying the call we're
logging about, and the call's callerid string as arguments. The function pretty
prints all its arguments to the file, adding the current datetime.

Advanced IVR with Lua

[198]

fs_urlencode() and fs_urldecode() use the FreeSWITCH API to encode and
decode a string as per the URL W3C standard. We use it in LuaRunWeb() to pass
URLs and HTTP transfer results back and forth.

Chapter 10

[199]

Let's look now at the bottom half of utils.luafile in the following screenshot:

Advanced IVR with Lua

[200]

The first two functions, isready() and isnil(), help us manage situations where
we expect a condition vital for the continuation of the script to be true, specifically
the call to be up (not already hung up) and a variable to be non-nil.

isready() will print in the logfile at which line the session was found to be already
hung up, and then aborts the script execution with an error.

isnil() shields us from a quirk of Lua's that I found most disagreeable: if you try
to concatenate a variable that has a nil value, the script aborts. isnil() gives us an
orderly script shutdown, printing a log line and playing the caller a we're sorry, there
is an error, please call again TTS audio stream.

The last two functions have much more active roles.

input_callback() is the DTMF interpreter we set very early in our welcome.lua
incoming call processing section. When there is not another DTMF processor active
(for example, when we are not executing a PlayAndGetDigits() menu), input_
callback will listen to keypresses from the caller, and act accordingly. In our case,
we react to * and #, breaking out from blocking operations. For example, if the caller
presses star or pound while listening to an audio file playing, the playback will be
interrupted immediately, and the script proceeds to the next step.

myHangupHook() is a function that is called during incoming call processing when
the call is hung up, as the last step before the session is destroyed. At this stage,
no accounting timers and values are available yet (that you get in the post hangup
API hook), but you still have the session, and you can do other kinds of useful last
moment things.

Summary
In this chapter we delved right into the middle of a moderately complex LuaIVR.

We saw an example of how to implement different Lua FreeSWITCH techniques:
logging, nesting, multiple files, setting and getting channel variables, accounting,
asynchronous execution, web access, database access, error handling, post-hangup
execution, functions, and more.

First, we introduced how to create interactive voice menus with
PlayAndGetDigits(), the workhorse of FreeSWITCH LuaIVR scripting.

At the same time we showed TTS usage with say(), which is very useful both for
prototyping and for reading arbitrary messages to the caller.

Then we originated a new call leg and connected the incoming call to the outbound
leg, bridging them in an end-to-end call.

Chapter 10

[201]

We used the basic curl() API function to access the Web, and used the power of
FreeSWITCH's Dbh to access both local and remote databases.

We switched back and forth between different menus using the despised gotoLua
construct.

Then we showed you some techniques to try, techniques that allow nonblocking and
asynchronous concurrent execution of various tasks, such as playing music to the
caller while accessing the Web or a database, or while connecting outbound calls.

We closed the chapter with a description of the utility functions we used that you
can customize and recycle.

[203]

Write Your FreeSWITCH
Module in C

Modules are where you add functionalities to FreeSWITCH.

Is not very easy to write or modify a module, but neither is rocket science (by the
way, as in real life, it always depends on what kind of rocket you want to build).
And you can always find professional help by contacting the core FreeSWITCH
developers.

This chapter will lay down all of the basic techniques needed to develop a
new module:

•	 Reading XML configuration
•	 Adding a dialplan application
•	 Adding an API command
•	 Adding an event hook
•	 Adding a channel state change hook
•	 Firing an event

What is a FreeSWITCH module?
FreeSWITCH proper, the core FreeSWITCH, is a switching and mixing fabric with
some message queues and a lot of very abstract APIs that define concepts and
actions. The only possible interaction with the core is via those APIs and message
queues; there is no access whatsoever to internal data, structure, functions, and so
on. Everything is completely opaque and protected; there is no way to harm the
stability and performance of core. From the outside, core is a blackbox able to accept
commands and return results via APIs.

Write Your FreeSWITCH Module in C

[204]

All functionalities are implemented in modules.

A FreeSWITCH module is a shared library to be loaded by core. A module provides
additional features, APIs, and implementations. Usually, a module is the low-level
plumbing needed to interact with the real world.

In core you have the concepts of channel, session, call, message, codec, and many
others. These are just concepts, well thought-out and articulated abstractions useful
to describe real-time communication entities at their interoperability plane.

Chapter 11

[205]

In modules you have actual implementations of a, let's say, SIP channel, or voicemail
system, or G711 codec. Modules make the bytes go around.

Modules are roughly categorized by the features that they bring to FreeSWITCH,
and as such they are organized into src/mod/* subdirectories, for example,
endpoints (modules that implement actual communication protocols or devices, such
as SIP, TDM cards, Skype, and many more) are under src/mod/endpoints, formats
(the ability to read data from a specific kind of file) are under src/mod/formats, and
so on and so on (to quote Zizek).

Core
switch_apr
switch_ivr

switch_core_io
switch_core_media

switch_core_rtp
switch_core_channel

...

Endpoint

Say

Timer

DB

Event Consumer

Embeded Language
Format

Logger

FSAPI

Application

Chatplan

Dialplan

ASR/TTS

XML Interface
Codec

OPUS CELT iSAC SILK
iLBC

VP8/VP9

H264

G.729

G.726

G.723

G.722

G.711

WebRTC

Skype

PortAudio

H323

TDM

SIP

Google Talk

Chinese

French

English

posix

timerfd

soft

PostgreSQL

ODBC

SQLite

Zero MQ

Erlang Event

Event Socket

Python

Java
Perl

JavascriptLuartsp://rtmp://
http://

.PCMA
.PCMU

.G729

.mp4

.mp3

.au

.wav

Logfile

Console

version

status

Originate

...

record

bridge

playback

echo

answer

asterisk

ENUM

inline

Lua

XML

MRCP

Sphinx

Flite

HTTP
Database

Lua

Write Your FreeSWITCH Module in C

[206]

In each of those subdirectories you find all that's needed to compile a module, its
source file(s), its makefiles, and all ancillary stuff.

Developing a module
As we commoners always do, and which sets us apart from Jedis such as Anthony
Minessale II, we start developing our new FreeSWITCH module by copying from a
working one.

You can start by copying the one I'm presenting here, mod_example. I have started
copying mod_skel, removing complex things from it, then I added simple things.
I like simple things.

You copy the entire directory and rename it, you delete Makefile.in and Makefile
(for example, you only leave and edit Makefile.am) and you rename all occurrences
of the same name in each of the files contained in that directory. In my case, mod_
skel.c was renamed mod_example, and all instances of skel were modified to
example inside all other files. At the end of this process, if you grep in the new
directory, you don't find any more mention of skel (the original module name).

You then go in the main FreeSWITCH sources directory, edit modules.conf file, and
add a line for your new module. After that, from that same main sources directory,
you issue make mod_yourmodulename-install, and hopefully the Makefile will be
created and your module will be compiled and installed. In my case, that command
was as follows (notice the difference between a dash and an underscore):

make mod_example-install

Copy the config file, example.conf.xml, into conf/autoload_configs/. Then
from FreeSWITCH's console, or fs_cli, type this command:

> load mod_example

To unload it, use the aptly named command:

> unload mod_example

Hopefully, you'll be greeted by Successfully Loaded (the errors are expected, we'll
talk about them later), and then by a Runtime! line, repeated each 5 seconds, until
you type the following:

> example

Chapter 11

[207]

Mod_Example outline
mod_example has been written to be, huh, an example, so I tried to stuff in it many
useful features, in the simplest way. You can use it as a base, adding and subtracting
features:

mod_example.c code layout:

•	 Declarations:
°° The module's mandatory three functions (example_load, example_

runtime, example_shutdown)
°° Module definition
°° A data structure (globals) we'll use to keep state and configuration
°° The function (example_on_state_change) we'll execute when

channel state changes
°° The table (example_state_handler) describing which function to

execute at which state change

•	 Implementations:

°° The function (example_on_state_change) we'll execute when
channel state changes

°° The function (do_config) we use to read values from config file and
initialize the globals data structure

Write Your FreeSWITCH Module in C

[208]

°° The function (example_api) we use to implement an API command
°° The function (example_event_handler) we use to implement

reactions to events
°° The function (example_app) we use to implement a dialplan

application
°° Modules' mandatory three functions (example_load, example_

runtime, example_shutdown)

Mandatory functions
Each FreeSWITCH module must at least declare three functions, LOAD, RUNTIME,
and SHUTDOWN:

The LOAD and SHUTDOWN functions must be implemented, and are called at startup
and when unloading the module. In LOAD you create and initialize the module's
data structures, get values from the configuration file, and get your module ready
for work. In SHUTDOWN you do any housekeeping needed to happily forget about
your module, and in particular you release any resources you may have locked or
allocated during module initialization and lifespan.

RUNTIME function implementation is not mandatory. For example, you must declare
it, but you can avoid implementing it. If you implement it, the RUNTIME function
will be executed in its own thread after the LOAD function has finished execution, for
example, when the module has been successfully loaded by FreeSWITCH.

RUNTIME is often (not always) implemented as a looping function that will continue
to run until module unloads.

Chapter 11

[209]

Load function
Let's see what's inside our implementation of the LOAD function.

After declaring an api_interface and an app_interface pointer (we'll use
them later) we allocate an interface structure from the memory pool that was
given to us, and let module_interface point to it. Being allocated from an
automatically managed memory pool, there will be no need to free the interface
structure when unloading.

do_config()implements the important task of reading values from the XML config
file and initializing the globals data structure where we decided to store module
state and configuration. We'll look into this function later.

Write Your FreeSWITCH Module in C

[210]

We then set two integer members of the globals data structure, looping and print,
to 1 (structure names and members are just a convention; they can be whatever you
like). We use them to control the RUNTIME function behavior.

Then we register with FreeSWITCH core both an API and an APP function,
example_api and example_app, with their names, invocation, help description,
and arguments. They will then become available respectively as an API command
(you'll be able to invoke it from the console, fs_cli, and ESL connection) and as a
dialplan application (you'll be able to invoke it as an action tag). We'll see these two
functions later.

switch_event_bind will subscribe our example_event_handler function to all
kinds of events, while switch_core_add_state_handler will register that function
with FreeSWITCH core.

Eventually we return with success, telling FreeSWITCH core this module loading
phase is finished, and can proceed further.

Runtime function
If the module's RUNTIME function has been implemented, it will be executed into a
new thread as soon as the LOAD function returns successfully. It is often implemented
as a loop that runs until the module is unloaded. You can also use a nice feature of
FreeSWITCH core related to this kind of function: if the function returns anything
different from SWITCH_STATUS_TERM, core will execute it again (if the module is still
present, for example, if it was not unloaded).

Chapter 11

[211]

In our implementation, example_runtime runs in a loop until the looping member
of globals struct tests as true. In each loop, it sleeps for 5 seconds, then tests the
print member of globals, and if true it prints a log line.

If looping tests false, the function exits and returns SWITCH_STATUS_TERM because
we chose not to use the runtime function restart feature of FreeSWITCH core.

Shutdown function
In the shutdown function you must clean it all and restore the situation as it was
before the module loaded. You free allocated memory and other resources, and
unregister all interfaces from FreeSWITCH core.

In our implementation, example_shutdown as its first step sets looping to false
so the runtime function will exit at the next loop. Then it unregisters the event
subscription and handler from FreeSWITCH core.

Write Your FreeSWITCH Module in C

[212]

We use switch_safe_free to free the memory we allocated to store a string read
from configuration (see later). When we unload the module, or when FreeSWITCH
shuts down, we can see example_shutdown is executed.

Configuration using XML
FreeSWITCH uses XML to represent its configuration, because XML lends itself
perfectly (and directly) to a tree representation in which you can add and delete
branches and leaves and easily locate sections, parameters, and values. Optimized
XML routines are able to parse, create an in-memory representation, and manipulate
that representation.

So, you'd better stop whining and learn to love XML.

There are many advanced facilities to help parse FreeSWITCH's configuration files;
check syntax; associate settings, parameters, names, descriptions, allowed values'
ranges; and many more.

Chapter 11

[213]

In our implementation we keep it simple to the max (we love kisses), and only use
the most basic XML related functions.

Write Your FreeSWITCH Module in C

[214]

We create our XML pointers, then we raze the globals data structure we'll use to
store state and configuration (you'd better do this razing, or you'll end up with stale
values if you unload then reload the module).

switch_xml_open_cfg() will read our XML configuration file and insert (or
substitute, if already present) its parsed content as a branch into the in memory XML
configuration tree.

Then we are able to begin querying the configuration, looping into sections,
subsections, parameters, and so on. We put two values into the globals data
structure. One we convert to an integer and assign directly to a structure member.
The other we want to store as a string, and so we use switch_strdup() to safely
allocate memory to the globals pointer member and duplicate the string. Memory
will be freed by the SHUTDOWN module's function.

Reacting to channel state changes
FreeSWITCH channels are always, deterministically, in one specific state of a finite
state machine. There are rules for going from one state to another, and you can ask
FreeSWITCH core to alert your module whenever a channel changes state.

There are 12 states a channel can be in (init, routing, execute, hangup, exchange_
media, soft_execute, consume_media, hibernate, reset, park, reporting,
destroy), plus the state none, which a channel is supposed to never assume.

State changes are important moments, particularly for billing and accounting (start
of media flows, hangup), but you may want to trigger some procedures in other
cases too, for example, when a channel is parked.

Chapter 11

[215]

Write Your FreeSWITCH Module in C

[216]

Our implementation first declares which state changes we want to deal with (LOAD
function will register this table with FreeSWITCH core), INIT, and HANGUP.

Then it defines the function we'll use to react to those changes (you can have
different functions for each state). Inside the function, you must deal with all
state changes.

We use one only function for all state changes, example_on_state_change(). It gets
the channel object from the session object has been passed to it, then reads and sets a
variable on that channel, checks the state we're in, prints a log line, then calls it a day
and returns successfully.

Receiving and firing events
Events are FreeSWITCH's nervous system. They carry around information,
commands, and feedback.

Tapping into the event flow will give your module a complete and real-time view of
what's happening in each of the many components and subsystems of FreeSWITCH,
from channels to reporting.

Firing events enables your module to actively participate in this flow, making
information available that other modules can act upon in real time, or sending API
commands as if typed in the console.

Events come in various types and subcategories. Each module can subscribe to ALL
events or only to a certain subset, and then further filter to which event to react to
based on the content of the event's oh so many fields:

Chapter 11

[217]

In our implementation, we subscribed to ALL events during the LOAD function.

Then, in the example_event_handler(), function we filter the events flow based
on event_id (the specific kind of event), and if the event is suitable, then we get a
particular header (for example, field) from it, and print a log line.

We'll describe how to fire events later, see the API command section in this chapter.

Write Your FreeSWITCH Module in C

[218]

Dialplan application
Modules can add applications to those available to be called in dialplan.

Applications in dialplan are invoked as actions and can have arguments in the data
string. An example of application and arguments is the bridge app, which takes the
dialstring as the argument to be used to originate the call leg to be bridged to:

In our implementation, we registered a dialplan app with FreeSWITCH core during
the LOAD function. Here, we'll have a look at how we implemented the actual
application's inner workings.

We get the channel object from the session object we were passed.

Then we check if the arg string we were passed is empty (zero length). If it's empty,
we assign a default value to how many loops we'll execute. If it's not empty,
we convert it into a number, assigning a default in case of error, and enforcing
value boundaries.

For each loop we then print a log line that pretty much displays all the entities
we used.

Chapter 11

[219]

From dialplan, you invoke this application as follows:

<action application="example" data="7"/>

API command
API commands are the way to interact in real time with FreeSWITCH. You can use
API commands to originate a call, to answer, to gather statistics, to write accounting
data, to shutdown the entire system, and more.

API commands are commands you can type while you're connected to
FreeSWITCH's console, or via fs_cli. You can send API commands by firing events,
both from a module and via an ESL TCP connection.

Modules can add new such functionalities; actually, pretty much all API commands
come from modules:

Write Your FreeSWITCH Module in C

[220]

We registered our API command during the LOAD function, as per the dialplan
application.

example_api() is the function that implements the API command. We use it as a
demonstration of how to send an event from a module.

First, you create the event pointer, then you give it an earthly existence with switch_
event_create(), passing the event-specific kind as an argument.

At this point you have an empty event, a skeleton event with only the standard
minimal headers (fields). You can flesh it out adding additional arbitrary headers,
with names and values as you deem fit.

You can add a body to the event too, such as an attachment (like the SDP in SIP, if
you like those apple to orange comparisons), but usually you don't.

Then you can use the DUMP_EVENT macro to print the event in the log (to see in the
console what the result would be), or fire it.

Don't forget to destroy the event to release the memory associated with it.

Eventually, our implementation toggles the value of the print member in the
globals data structure, which is read by the RUNTIME function, and determines if a
line will be printed each 5 seconds.

We give the console user a feedback, then exit with success.

Wow, so much ado for nothing!

Summary
In this chapter, we gave you a complete and detailed view of the module
development process.

We described the approach we take (copying an existing, working module, and then
modifying it) and then guided you through the various sections of the new module's
source code.

We saw how to implement the load, runtime, and shutdown functions that are the
foundation of every module. In those functions we initialized our data structures and
registered hooks and callbacks in FreeSWITCH core.

Chapter 11

[221]

Then we implemented all functionalities with simple and straightforward code that
will serve you well as a base for building your own modules.

If your new module does something that could be useful to others, don't forget to
contribute it back to the FreeSWITCH project, for mainline inclusion. Many useful
modules were born this way!

[223]

Tracing and Debugging VoIP
Troubleshooting is a big part of working with FreeSWITCH and VoIP. There are so
many moving parts, and so many of them are outside your control, that you will
soon become fluent in debugging failed calls.

Usually you have a patchwork LAN where your users hook different phone models,
then your FreeSWITCH server, then one or more ITSPs and/or DID providers.
Interspersed, you have firewalls, routers, ADSLs, T1/E1s... And you often have
direct control only of your FreeSWITCH server! Ouch!

This chapter will give you first the big picture, how it works and why it breaks, and
then will introduce you to the latest and best tools for troubleshooting VoIP.

We're very lucky that FreeSWITCH is so reliable, predictable and well-documented.
But the ecosystem of VoIP extends far into uncharted territory.

For a comprehensive view of the problem, I would recommend VoIP Deployment for
Dummies, Wiley— it's not for dummies at all, and (even though it was published
in 2009) will give you a complete general course 400 pages long (covering topics
including SIP, LAN metrics, dealing with ITSPs, and many more).

In this chapter, we will cover:

•	 Signaling and media
•	 Why they break
•	 Network trace, capture and analysis tools
•	 Audio analysis and manipulation tools

Tracing and Debugging VoIP

[224]

What can go wrong?
There are two completely separate flows in telecommunication: Signaling and media.
They often take completely unrelated paths from caller to callee that is, their IP
packets traverse different gateways and routers. Also, the two flows are managed
by separate software (or by different parts of the same application) using different
protocols. Signaling and media have nothing to do with each other; each one can
work or fail independently from the other flow. But you need both to work correctly
for your user to have a complete communication session.

Signaling is a flow of information that defines who is calling whom, taking which
paths, and which technology is used to transmit which content. The most used
signaling protocol in telecommunication is SIP. It defines the caller's IP address
and port, the callee's IP address and port, and the IP addresses and ports of all
intermediate servers that the signaling is sent through, and it also announces
the various phases of call (begin, ring, hangup, busy, and so on). SIP uses SDP
(transmitted as part of SIP packets) to define the kind of content (audio, video, file
or desktop sharing, and so on), the codecs to use, the IP addresses and ports of the
next "media server", for each communication direction (that is, from caller to callee,
or from callee to caller). You can think of SDP as an integral part of SIP, although
technically it is a separate protocol.

SIGNALING

MEDIA
GW
A

GW
B

GW
1

GW
2

TEL 1 TEL 2

Media proper is exchanged mostly via RTP protocol, through paths defined by SDP
in SIP. RTP packets contain, for the most part, audio or video streams in binary
encoded samples.

Chapter 12

[225]

So, we have at least four flows (signaling from caller to callee, media from caller
to callee, signaling from callee to caller, media from callee to caller, and possibly
additional media streams) that go through various possible intermediate servers.

Any one of those flows can fail independently of others. So it's pretty usual to
have failures where you have one way audio, or where you cannot hang up, and,
obviously, you can have failures where you cannot initiate calls, but you can receive
them, or vice versa. Firewalls, especially "smart", "dynamic" firewalls, can block IP
packets in subtle ways, selectively by protocol, after a time period, intermittently,
and so on.

What else can go wrong? (NAT problems)
Reality is actually much much more complex than that. We described how each step
in each path is represented by an IP address and port. That would be good and easy,
but most of those addresses are "fake": They are a particular kind of address that
resides only in the private Local Area Networks of users, and are not recognized in
the public Internet. This comes from the very success of the Internet: From a finite
pool, available IP Internet addresses were assigned at an ever-increasing pace to
users, and, after a while, the entire pool would have end up assigned: No more
Internet expansion.

To avoid that "end of the Internet", a technique was invented where, instead of
each device having its own address, each Internet "entity" would be given only one
address to face the public Internet (as the only contact point). All other (internal)
addresses of the "entity" (such as an individual with three devices, or a corporation
with tens of thousands devices) are translated back and forth to/from that one public
Internet address.

This is called Network Address Translation (NAT), and is usually performed
automatically by routers, firewalls, ADSL modems or other "edge" devices that sit
between the public Internet and the private LAN of the "entity".

NAT does a lot of magic, associating the origin's IP address/port and the
destination's IP address/port in a table, so it can route (translate) packets from the
Internet back and forth to the right device in the local network. This NAT method
is transparent for, say, web browsing (because only the physical packet is to be
translated) but it is a nightmare for VoIP, and can go wrong in an almost endless
number of ways.

Tracing and Debugging VoIP

[226]

The problems that NAT causes for VoIP come from the very distinction between
SIP and SDP, and, at the end of the day, between signaling and media: SIP IP
physical packets are translated automatically by NAT (in same way as HTTP/WEB
IP packets), and so they materially reach their intended destinations. But those SIP
packets contain text that describes the media origination addresses and ports (in
SDP), and each device will write its own "idea" of its own media address there, often
an internal LAN address non-reachable via the Internet. Those media addresses and
ports contained in SDP are pure text (that is, they are not part of the physical packet),
and are not automatically translated by NAT. They're like words in a web page: They
are parts of the content and will be delivered by NAT "as is", but they're not part of
the physical packet.

Additional, smarter translation is necessary to change SDP media addresses/ports to
public Internet addresses/ports (in accordance with NAT tables), and this function
can be performed by the client software (for example, the phone itself), or by the
PBX, or by the server, or by a "smart" NAT (for example, ADSL routers with ALG).
Any one of these possible "translators" can go wrong, particularly ALG devices.

So, anything can happen to those SDP addresses/ports described by the text
contained within the SIP packets: They can stay as private addresses and no media
will flow between the parties (private addresses are unreachable from the Internet),
and they can be modified by client software in many ways, ways that can match or
not match an open path (address/port couple) in the NAT between LAN and the
Internet. Yes, that's a nightmare, and this description is way simplified.

"VoIP is FUN!"

Chapter 12

[227]

Other things can go wrong too
Until now, we've reviewed how VoIP packets can take wrong paths. Those are all
network problems, and make up a fair part of the problems you will encounter.

But let's assume packets will find the correct path and will reach their destination and
will contain reachable media addresses. Now the problem becomes: Is the content
delivered by those packets working as expected in the end user environment?

You can have lags and delay, echo (especially from PSTN adapters), distortion,
clipping, or altogether no sound and no call because of incompatible codecs, or you
can encounter timing issues that make your call (or your audio, or your video) fail.
Especially with WebRTC, with Skype, with anything that's not entirely managed by
FreeSWITCH, you need to be aware of their internal working, and, most of all, of
timing problems that arise from too much loading, IRQs-sharing, VM simulation
and overhead, and so on, and which can cause failures in timing sync, making the
stream fail.

Tracing and Debugging VoIP

[228]

And you have to take into account the transducers, the physical path taken by audio
from analog to digital and vice versa. Will the soundcard, or the microphone, or that
specific hardware phone model work well with the rest of the environment? Will
that feature, or button function, be correctly translated from that hardware phone to
FreeSWITCH to that other hardware phone? Will that computer be powerful enough
to decode and display that video sent via SIP? Will the browser version be able to
properly render WebRTC streams?

You will need bandwidth, a lot more bandwidth, if you're to run video and HD
audio on your network. And bandwidth problems are easier to show off in your
LAN than in your Internet pipe. That's because, for a while at least, you will rarely
route videos and HD audio to the Internet (and if you do, you will surely check you
have a pipe big enough).

All in all, you need to develop a holistic approach to debugging and troubleshooting
your FreeSWITCH installation, and related communication infrastructure.
Everything is interacting and affecting everything else, the micro with the macro.
At the end of the day, users will judge you by the audio and video quality and
reliability, and that depends on oh so many coggles and wheels.

"VoIP is A LOT of FUN!"

Chapter 12

[229]

SIP, RTP, SDP, RTCP, OH MY!
To troubleshoot VoIP you need to understand at least a little bit of SIP and related
protocols. That's the sad truth. You will get nothing from packet-capture and
analysis if you don't understand the basics of the protocols.

You can certainly send the file containing the captured packets to someone who's
more SIP conversant. If you want to take that option, read the following section
about the tools you can use to generate a pcap file with all the relevant info.

The other option is to learn it yourself before problems occur, using sipgrep and
sngrep (they make for a colorful, easy and complete toolset) to visualize protocol
packets, and one of the many books/tutorials out there as reference. Do test calls
and watch what happens. You'll see that there are regularities and meanings, and
after a while you'll know most patterns and what to look for. You'll be ready when
the time comes.

Tools
Telecommunication can be seen as being comprised of the two elements of signaling
and media, and so can the tools to debug and troubleshoot it.

But this comes with a caveat: Anything that runs in a server, or through wires, is just
packets of data. So, for media too, we will have to get the stream of data describing
our audio (or video, or fax), then convert it into a playable format, and hear what the
end user experience was.

Bottom line: Packet capture, analysis, conversion, editing, archiving, slicing and
dicing is the bread and butter of diagnosing VoIP for all that concerns codecs,
routing, networking, infrastructure, and the like, while media replaying (say,
listening or watching captured RTP packets) has in itself a lesser role. But actual
end user experience can only be understood via media replaying (are there audio
artifacts? Low volume? Echo? Noise? Clipping?). Understanding end user experience
"in their own words" is fundamental for a smooth support assistance ("then, since
I started talking about that meeting, suddenly I was hearing noise and an echo", not "240
milliseconds after that Re-Invite, jitter started shooting").

Many tools out there can do almost anything: They have features added on a
continuous basis, have command line switches for almost any low case *AND*
capital letter, and their man pages are longer to read than a Nordic Saga.

We'll focus here on the most typical, specialized, and popular, usages for each tool,
with a "toolbox" approach.

Tracing and Debugging VoIP

[230]

Firewall
Firewalls are the evil stars of VoIP debugging: They block packets. We want packets
to flow. If they block them, the packets do not flow.

Maybe they block packets right away. Maybe after a while (30 seconds, anyone?).
Maybe in just one direction. Or intermittently.

Maybe there is no separate firewall on the customer's premises, nor on their pbx, but
a firewall is running on their ADSL router. Or on their client machines.

Firewalls: They are out there, they are between us, they are inside us.

From a security and network-management standpoint, packet-filtering (firewalling)
is the best line of defense, and an invaluable and flexible tool.

But when you're troubleshooting a new installation, or sudden lack of audio, or one
way audio, or an inability to hang up a call (or to call altogether), then disable all the
firewalls involved and recheck.

If it works out, then you know it is a problem of misconfigured firewall rules, and
you can focus on fixing it, or call the security personnel in charge of it.

On a Linux machine, to disable all firewall rules, as root do:

1.	 Create a shell script (iptables_flush.sh) and copy-paste the following
lines:
#!/bin/sh

echo "Flushing iptables rules..."

sleep 1

iptables -F

iptables -X

iptables -t nat -F

iptables -t nat -X

iptables -t mangle -F

iptables -t mangle -X

iptables -P INPUT ACCEPT

iptables -P FORWARD ACCEPT

iptables -P OUTPUT ACCEPT

2.	 Make the file executable:
chmod +x iptables_flush.sh

Chapter 12

[231]

3.	 Run the script:
./iptables_flush.sh

NB: Please pay attention to creating the script and then execute it
all at once! DON'T execute it line by line: You can lock yourself out
from the machine, requiring a manual hardware reboot.

FreeSWITCH as SIP self tracer

Tracing and Debugging VoIP

[232]

The first line of inquiry will be from fs_cli, the command line interface to
FreeSWITCH; you can enable SIP packet display per single profile (sofia profile
internal siptrace on) or per all profiles at once (sofia global sip trace on).

This can be useful both as a quick way to check for a problem, and as a way of
obtaining added information recorded permanently on logfile.

For having a complete picture of each call, complete with FS debug info and SIP
packets, input the following:

<param name="uuid" value="true"/>

In /usr/local/freeswitch/conf/autoload_configs/logfile.conf.xml, set
siptrace:

<param name="sip-trace" value="yes"/>

Inside profile definition in /usr/local/freeswitch/conf/sip_profiles/
internal.xml and /usr/local/freeswitch/conf/sip_profiles/external.xml
and:

<param name="tracelevel" value="DEBUG"/>

Inside the global setting in sofia.conf.xml. When you run fsctl loglevel 7
you'll have complete info on logfile.

You can find a tool for call_uuid-SIP packet correlation at https://github.
com/2600hz/community-scripts/blob/master/FreeSWITCH/sipify.sh,
invaluable for finding out exactly what's happening.

Tcpdum – the mother of all packet captures
tcpdump is a utility that writes out all the stuff that passes by a network interface
(for example, eth0, the first Ethernet card). It writes it all in a format that can then be
easily parsed out and analyzed by other software.

tcpdump (that's not limited to tcp, as the name would suggest) is a command line
utility with little dependencies (usually just libpcap and libssl) that you can easily
install on any remote machine you're debugging (it's packaged ready to install on
almost any operating system, and it's called "windump" on Windows).

https://github.com/2600hz/community-scripts/blob/master/FreeSWITCH/sipify.sh
https://github.com/2600hz/community-scripts/blob/master/FreeSWITCH/sipify.sh

Chapter 12

[233]

tcpdump is able to get all that touches the network interface (and also stuff that's
not directed to the local machine, but simply transits through the wire). Capturing
all network traffic passing by is called "promiscuous mode". Today, with switched
networks, it is seldom useful, because the packets that touch the network interface
are almost always those from and to the local machine. But in old Ethernet networks
(with "hubs" instead of "switches") it can be very useful. In modern switched
networks, advanced switches have a special port on them where all traffic passes by
(not only the one directed at the attached machine), and if you can connect to that
special port you'll enjoy the promiscuous sweetness of being able to dump traffic
between any third machines. For being promiscuous, leave out the -p parameter.

In its most simple invocation, you connect the traffic you want to dump via ssh to the
machine and input the following:

tcpdump -w trace.pcap -p -nq -s 0 -i eth0

This will write into the trace.cap file anything that passes by the interface eth0, in
the most efficient and complete way. On a testing server, where there is no traffic
apart from your testing, this invocation is appropriate; you'll get it all, including
things that you didn't know you wanted. On a busy server, let's say with an almost
saturated Gigabit Ethernet card, this will blow your hard disk(s) in minutes).

You may want to discriminate what to write in the file, and tcpdump has its own
way to specify just that. The following invocation will dump traffic that "has to do
with" ports 5060 and 5080 (both to and from local and remote ports):

tcpdump -w trace.pcap -p -nq -s 0 -i eth0 port 5060 or port 5080

Those two ports happen to be the standard SIP port (5060), so it will probably be the
public SIP port you use to connect to your ITSP, and both the internal (5060 used by
your internal phones) and external (5080 used for receiving incoming calls) ports
used by default by FreeSWITCH profiles. That is to say, this invocation will dump
all the signaling SIP traffic that goes back and forth from your FreeSWITCH server in
default configuration, and will produce very little, but complete, pcap files (it's only
signaling, no media).

If you want to add the media dump to the previous invocation and still try to
capture only VoIP traffic (for example, no HTTP, SMTP, or whatever else), run it like
this (we're adding the default range FreeSWITCH uses for media, and restricting
dump to UDP only):

tcpdump -w trace.pcap -p -nq -s 0 -i eth0 udp and port 5060 or port 5080
or portrange 16384-32768

Tracing and Debugging VoIP

[234]

The following invocation will save into file all the traffic (signaling AND media)
between the local machine (that is, FreeSWITCH) and two remote addresses, for
example, the addresses of your ITSP's SIP server and Media server:

tcpdump -w trace.pcap -p -nq -s 0 -i eth0 host 167.233.44.34 or host
167.233.44.36

Another neat trick is to capture all traffic between a registered user (phone) and our
FreeSWITCH server. Let's assume our phone is registered as user 1010. From fs_cli
we get the phone's IP (address), then we exit fs_cli and start tcpdump:

tcpdump -w trace.pcap -p -nq -s 0 -i eth0 host 192.168.1.203

Infinite tcpdump options are possible, but here you've got the most important ones.

ngrep – network grep
ngrep is based on the same libpcap like tcpdump, and so can use the same packet
filters and read/write pcap files. It is almost certainly available as a package for your
operating system.

Chapter 12

[235]

What ngrep brings to your toolbox is the popular grep's regular expression matching
with the packets' payload. The invocation takes the format ngrep [options]
[regex] [filter]. Remember: regex before filter. Also, remember regex is applied
to the entire packet content, not to the single lines that comprise it. It captures and
displays packets in real time, so you can monitor a machine looking for something to
happen:

ngrep -qt -W byline "393472665618" port 5060

The first example will display all packets on port 5060 (respecting their newline
characters) that contain 393472665618.

ngrep -qt -W byline "^INVITE|^BYE|^CANCEL" port 5060

The second invocation will display all packets for methods that initiate or terminate
a call leg. If you don't put the caret anchoring the match to the beginning of the line,
almost all SIP packets would match because of the "Allow" header, which contains
all the methods supported by the packet sender.

ngrep -qt -W byline "CSeq: [0-9]* INVITE" port 5060

This third invocation will display in real time all INVITE methods and all INVITE
related responses (for example, 100, 180, 183, 407, 487, 200, and so on).

tshark – pure packet power
tshark is Wireshark in a terminal, that is, you can run it remotely on the server via
ssh, without a remote desktop. It can do an awful lot of things, like Wireshark itself,
but why you would want to use it?

On the one hand, you can use it to write pcap files using the same filter grammar used
by tcpdump (they both use libpcap as a capturing backend). This is very efficient, but
why not use tcpdump? Pcap style capture filter is defined by the f option.

On the other hand, it's got the r option. With it you can define "Display (Read)
Filters", which are less efficient than pcap filters, but allow you to drill down to the
subtle nuances of the protocols. Then, you can dump the packets in a pcap file for
later inspection and analysis (for example with Wireshark), or you can see the results
in real time, both for packets and as comprehensive statistics, printed on terminal.
Use the "z" option for getting statistics.

Tracing and Debugging VoIP

[236]

(T|Wire) shark (Display|Read) filters can pinpoint, isolate, evaluate, aggregate (and
so on) any known field in protocols, and if you invest time in understanding their
logic, they'll repay you with sheer power (and wow factor with collegues). The main
docs are at http://www.wireshark.org/docs/dfref/; look for sip, sdp, rtp, rtcp,
t38, and so on.

Filter in real time on RTCP packets displaying any packet loss or
jitter over 30ms:

tshark -i eth0 -o "rtcp.heuristic_rtcp: TRUE" -R 'rtcp.ssrc.fraction>= 1
or rtcp.ssrc.jitter>= 30' -V

Capture SIP, RTP, ICMP, DNS, RTCP, and T38 traffic in a ring buffer
capturing 100 50MB files continuously:

tshark -i eth0 -o "rtp.heuristic_rtp: TRUE" -w trace.pcap -b
filesize:51200 -b files:100 -R 'sip or rtp or icmp or dns or rtcp or t38'

Display STUN packets in real time:

tshark -Y stun

pcapsipdump
pcapsipdump is like tcpdump, and can use the same filters, but it listens to the
network interface(s) and writes one pcap file for each SIP session (call). Generated
pcap files can contain RTP (media) flow or only signaling (SIP+SDP).

It is easy to compile, and you can find the latest version at http://pcapsipdump.
sourceforge.net.

It's incredibly useful to keep your SIP traffic monitored while looking for intermittent
problems reported by users. If you have a busy server, dump it on a
big and fast hard disk, and don't forget to delete the files you don't need anymore.

sngrep – the holy grail
This maybe the latest tool to come out from the ingenious people in the open source
VoIP community, and, with sipgrep, they're my preferred packet utilities. Hands
down. Wholeheartedly.

http://pcapsipdump.sourceforge.net
http://pcapsipdump.sourceforge.net

Chapter 12

[237]

This single tool allows for both the capturing and visualizing of live (and in real
time) SIP dialogs for each call, and visualizes live flow graphs, drilling down to the
details. Also, you can select more than one call (for example, A leg and B leg of a
bridged call) and see them both in one comprehensive flow.

It is based on libpcap, so it accepts all the standard filters like tcpdump and can write
pcap files (it can also load standard pcap files). It supports IPv6, and, if compiled
with openssl, is able to read and display TLS-secured SIPS (given the keyfile). If
compiled with pcre, it gives you the complete "perl" regular expressions.

And you can do all of this server side, in a terminal, via ssh, without downloading or
streaming pcaps to your desktop, actually without any software on your side, just an
ssh terminal.

Sngrep justifies filling an HD monitor with a maximized xterm (you still chat and
browse in that second monitor, don't you?).

At the time of writing this, sngrep is too new to be included in distros, but it is very
easy to download and compile from sources, and installable packages are available
for Debian/Ubuntu/CentOS/RedHat/OSX. Have a look at http://github.com/
irontec/sngrep for latest version.

You start sngrep from the command line, similar to tcpdump:

sngrep -d eth0 -O trace.pcap host 192.168.0.50 port 5061

This will filter and display all SIP packets to/from port 5061 and host 192.168.0.50
and write them in trace.pcap file.

http://github.com/irontec/sngrep
http://github.com/irontec/sngrep

Tracing and Debugging VoIP

[238]

At the start you'll find yourself in the call list window, where the dialogs will be listed.
On a busy server, you'll see that it immediately begins to populate. In this window
any dialog that satisfies the command line filter will appear, not only call legs, but
registrations, pinging options, and so on. If you only want to visualize dialogs starting
with the method INVITE (that is, call legs), use the -c command line argument.

sngrep dialog list window, two dialogs selected, and pressing F7

You can filter the list by general criteria with F7, or you can search for specific
dialogs with F3. You can choose which "columns" to show in the list, in which order,
and save the layout as default.

Chapter 12

[239]

From this window you can press enter on a dialog to see its flow, the individual
messages that comprise the SIP transactions. Also, you can select (pressing space bar)
more than one dialog, and when you hit Enter you'll see their collective flows (for
example, a bridged call).

Flow of two legs of a bridged call, colored by transactions

Tracing and Debugging VoIP

[240]

With UP and DOWN arrows you browse through messages that are visualized in the
right pane. Pressing F2 will show the flow with SDP in the graph. Pressing Enter on a
message will show it raw; this is useful to copy and paste from terminal. With space
bar you can select two messages (for example, an Invite and a re-Invite); pressing
Enter will show them side by side, with differences highlighted.

Flow of two legs of a bridged call, colored by transactions, showing SDP in graph

Chapter 12

[241]

Pressing F7 in the call flow window will change the coloring of messages, for
example, from transactions to CSeq, or CallId.

Flow of two legs of a bridged call, colored by Cseq

Sipgrep, Ngrep on steroids for VoIP
The fine people that brought Homer into this world (Homer being an open source
SIP capture and monitoring system, database-centered, carrier-grade, http://www.
sipcapture.org), see next chapter gave us a new sipgrep.

The previous sipgrep incarnation was a Perl script, wrapping, parsing and coloring
the output of ngrep. This new incarnation is a self-standing tool written in C, starting
from a ngrep codebase and adding the smorgasbord of VoIP options.

http://www.sipcapture.org
http://www.sipcapture.org

Tracing and Debugging VoIP

[242]

It's a relatively new tool, so you probably won't find it prepackaged by your distro
(that version may be too old). Go straight to http://github.com/sipcapture/
sipgrep; there is easy info on how to build and install it.

Start sipgrep with the -f or -t option to visualize dialogs where From: or To:
matches an expression, and add -G option if you want a report with statistics:

sipgrep looking for To: in dialogs, and preparing stats

In this example, we started sipgrep with the option for statistics, then made a call from
a SIP client to a callee that matched the -t option we gave to sipgrep. We generated
from Linphone an A leg incoming to the server, and FreeSWITCH generated an
outbound B leg to the callee, then FS bridged the two legs in a complete call.

http://github.com/sipcapture/sipgrep
http://github.com/sipcapture/sipgrep

Chapter 12

[243]

Sipgrep visualized all the packets related to the two dialogs (legs), with nice
colorization. Then, at the call end, after hangup, we hit Ctrl + C to interrupt sipgrep,
which gave us its report on both dialogs that were part of the call.

sipgrep statistics results

Tracing and Debugging VoIP

[244]

The -M option will disable multiline matches, while -m will disable dialog matching
(that is, it will match only specific messages, not entire dialogs).

Another intriguing feature of sipgrep is activated with -J option: It will
automatically send a packet-of-death (a combination able to crash the remote
software) to any "friendly scanner" probing/flooding your SIP server (use -j to
customize the user agent of the scanner).

It can read and write pcap files, of course, and has nice features for managing file
sizes, rotation, time duration, among many other things.

Wireshark – "the" packet overlord
Wireshark is "the" network packet analyzer. It can analyze LAN performances, HTTP
and NFS, USB traffic, BlueTooth, WiFi signals. It's got everything and the kitchen
sink. There are books about it, and specific books about its use in VoIP.

Wireshark can be installed on most operating systems, and can then act as a real-time
network analyzer (for example, by capturing packets from the network interface, or
by receiving a stream by a capture utility) or can read pcap files.

To use tcpdump on a server (server has 192.168.1.125 ip address), and receive the
capture in real time with our desktop Wireshark, using the -U (unbuffered) tcpdump
option, we first create a named pipe (and we exclude port 22 from capture because
we're using ssh to stream it):

$ mkfifo /tmp/sharkfin

$ wireshark -k -i /tmp/sharkfin&

$ ssh root@192.168.1.125 "tcpdump -U -w - -p -nq -s 0 -i eth0 'not tcp
port 22'"> /tmp/sharkfin

Chapter 12

[245]

Remote tcpdump to local wireshark

Or you can install wireshark on a remote server, execute it there, capturing locally,
and display it remotely on your desktop (via VNC, ssh -X, etc). Installing Wireshark
on a Linux server does not install or run on the desktop; only just enough X stuff to
permit remote display. It does not add load to your server.

Perform ssh -X on FreeSWITCH server and execute wireshark there. Press OK, and you're good to go

Tracing and Debugging VoIP

[246]

OK, so you're capturing now. Make a call or two, then open menu Telephony |
VoIP Calls.

Select the call legs you want to analyze (you can select two legs to analyze the flow of a complete bridged call).

(from Telephony | VoIP Calls menu, selecting two legs of a call)

Chapter 12

[247]

Then you select Flow, and a graph will appear with our whole (two-legged) call.

 Graph of a two legged call

It can seem intimidating at first. Actually, it's not.

Linphone is calling a PSTN number via FreeSWITCH. FreeSWITCH uses an ITSP
as PSTN gateway. Columns: final 202 is Linphone client, final 125 is FreeSWITCH
server, final 144 is our telephony provider (ITSP) SIP signaling server, final 88 is our
ITSP's RTP (media) server.

Tracing and Debugging VoIP

[248]

There are back and forth INVITE between Linphone and FreeSWITCH, and then
between FreeSWITCH and ITSP, until with "200 OK" the call leg from FS to ITSP is
up, and then with the second "200 OK" the call leg from Linphone to FS is up, and
the two legs are bridged by FS.

RTP is flowing between FS and ITSP, and between Linphone and FS. FS is "mixing"
(bridging) the two RTP flows, and Linphone can receive and send audio to/from the
remote PSTN phone.

The call is terminated by a "BYE" from Linphone, that is relayed by FS to the ITSP
(ITSP will tear down the PSTN connection on his side).

If you click on an element in the graph (let's say the first "200 OK"), the
corresponding packet(s) in the main window are selected. You can then inspect
them. In our case we're showing both the message headers (for example, the SIP
part) and the message body (for example, the SDP content).

 Visualizing a SIP packet, and its SDP body

Chapter 12

[249]

From "VoIP Calls", after selecting the legs you can click on "Player", and if you have
captured RTP too (that is, not only signaling, but media too) you'll be able to hear the
audio streams that were exchanged.

You have four streams, for a bridged call: From Linphone to FS, from FS to
Linphone, from FS to ITSP, from ITSP to FS. Select one or two of those streams, and
click Play. If you selected two streams, one will be on the right audio channel, other
one on the left (you'd better use stereo headphones, or listen to one stream at time).

 Audio streams from a bridged call

Tracing and Debugging VoIP

[250]

You can have advanced statistics on RTP by selecting one or more streams from
Telephony | RTP | Show All Streams, and then Telephony | RTP | Streams
Analysis.

 RTP All Streams window

Also, from here you can save the decoded audio as .raw or .au format. Order the
"All Streams" window for "packet"; clicking on the column name, will help you
identify the streams with most packets, such as those of the longest duration. Select
the RTP stream of one call leg and click "Find Reverse", then "Analyze", then "Save
Payload", then save as ".au""both" channels. Repeat for the other leg. You now have
two copies of the complete call, from the point of view of each leg. They're probably
more or less the same, if the call was successful (for example, if both caller and callee
had bidirectional audio). Now, repeat the procedure, but first save the stream from
Linphone to FS, and then the stream from ITSP to FS (watch the addresses!), saving
for each leg only "forward".

Audacity – audio Swiss army knife
Let's say with wireshark you saved your two legs (combination of two directions
for each leg in .au format) as LegAboth and LegBboth, and then saved only the
stream going from the endpoint (Linphone or ITSP) to FreeSWITCH as LegAfwd and
LegBfwd.

Chapter 12

[251]

You can now finely analyze them with Audacity. Audacity is a complete tool for
analyzing, editing, and modifying audio files. It is open source, and runs on any
operating system.

Open the LegAboth file, then, from the menu File | Import | Audio, open LegBboth
file. You'll see they're very similar, and also that the speakers were speaking in turns.
That's expected. They've both got incoming and outgoing audio.

 Complete audio from both directions, two legs of a call

Now open LegAfwd and then import LegBfwd.

Tracing and Debugging VoIP

[252]

You'll see only the audio sent from the endpoints to FreeSWITCH. The combination
of both makes the complete call (assuming FreeSWITCH has correctly bridged the
two legs, and there are no network problems in the RTP paths between endpoints
and FreeSWITCH).

 Audio from forward direction of two legs of a call

SoX – audio format converter
When talking about Audacity, it is almost natural to mention SoX too, because often
you'll need to convert from one audio format to another, change sampling rate,
combine channels into mono, and so on. With these, SoX is your friend.

If you know what codec will be used by your calls, then convert all your IVR
prompts and music to that format, so FreeSWITCH will not waste CPU processing
doing the conversion in real time for each call.

Sometimes MP3 support for SoX is packaged apart from SoX main program, for
example, in Debian 8 Jessie you need to install libsox-fmt-mp3 on top of it.

Chapter 12

[253]

If you know you'll receive an incoming call from an ITSP via G711 a-law (in US
would be u-law), you want to convert your stereo MP3 music and your prompts
into mono PCMA at 8khz sampling. FreeSWITCH's mod_native_file, compiled and
installed by default, will use them directly, without conversion.

sox -V music.mp3 -r 8000 -c 1 -t al -w music.pcma

But you would also often need the converse, for example, to let people "hear" from
web or email files recorded by FreeSWITCH callers. They prefer receiving MP3:

sox -V /usr/local/freeswitch/recordings/2015-05-17/test.wav test.mp3

Summary
In this chapter we first had a 10 thousand mile overview of how VoIP works and
why it is complex to diagnose (separation between media and signaling, firewalls,
and NATs).

Then we looked at the various ways our flows can be interrupted, mostly due to
internal LAN addresses wrongly sent as Internet reachable addresses, mismatching
in configurations, packet-filtering and security devices not allowing network traffic.

A big part of the chapter was devoted to illustrating the practical usage of the best
and latest network-tracing tools, both for capturing and visualizing VoIP packets.

Now you have all the tools and insights of the pros; now's the time to accumulate
experience!

[255]

Homer, Monitoring and
Troubleshooting Your

Communication Platform
Homer is your NSA, your friendly GCHQ, where all of your signaling, statistics, and
metadata belongs. If something happened anywhere in your realm, something you
want to know, you ask the blind poet Homer about it. He'll immediately recount
the whole story, from beginning to end. Think about it as data-warehousing for
Real-Time Communication (RTC), like a time machine able to pinpoint for you any
moment in the past from any location in your network.

Homer is invaluable in any VoIP installation of a sizable dimension, and is your only
way (OK, your only open source way) to give your customer base the support they
deserve (and pay for).

In this chapter, we will cover:

•	 Homer installation
•	 Setting Capture Agents to feed data to Homer
•	 Querying for Call Signaling
•	 Feeding and checking Media Quality Reports
•	 Correlating call legs, logs and events

Homer, Monitoring and Troubleshooting Your Communication Platform

[256]

What is Homer?
Homer is the user interface part of the open source SIPCAPTURE stack.
SIPCAPTURE as a whole provides a real-time modular monitoring and
troubleshooting framework comprised of Capture Agents and Capture Servers.

User Interface (Homer proper) interrogates the Capture Server. The Capture Server
stores the data sent to it by one or more Capture Agents. A Capture Agent gets data
by listening to the network (like ngrep or tcpdump) or from the file system (like the
tail Unix utility) or interacting with the OS, then in real time it repackages those data
and sends it to the Capture Server.

Homer is a Php-JS-Angular-D3 browser application that runs out of a web server.
Homer queries a database (MySQL or PostgreSQL), and displays the data back to
you, in a tabular or graphical (charts) arrangement.

A Capture Server is a SIP proxy (OpenSIPS or Kamailio) using a special module for
receiving and massaging HEP packets, instead or in addition to SIP packets, and
then storing the data contained in those HEP packets in a DB.

A Capture Agent can be a stand-alone dedicated program, or a feature in a more
complex application, able to get data and transmit it to a Capture Server using
HEP/EEP.

The HEP Extensible Encapsulation Protocol (EEP) provides a method to duplicate
an IP datagram sent to a collector by encapsulating the original packet and its
relative headers within a new IP packet transmitted over UDP/TCP/SCTP for
remote collection. The format was initially designed by Alexandr Dubovikov
and Roland Hänel at QSC AG, joined by Lorenzo Mangani and QXIP Research &
Development.

The Capture Agent feature has been integrated into most popular open source RTC
servers and tools, including:

•	 FreeSWITCH
•	 RTPEngine
•	 OpenSIPS
•	 Kamailio
•	 Asterisk
•	 SnGrep
•	 SipGrep

Chapter 13

[257]

If you happen to use a recent release of one of the supported applications, activating
the integrated HEP/EEP Agent is as simple as editing a few lines of configuration.
The main advantage of native agents is having direct access to the guts of your RTC
servers, and their ability to capture and forward packets from inside, so you'll get
unencrypted data straight out the core, even in the case of TLS or WSS!

A stand-alone Capture Agent comes in handy when you do not want (or cannot)
modify in any way the settings of your communication platform, or when you
operate using closed source, legacy, or outdated systems.

Project CaptAgent (part of the SIPCAPTURE stack) can be installed on a host or
device connected on your network, and will take care of passively sniffing and
filtering data from its network interfaces and sending it to the Capture Server.

Other stand-alone Capture Agents available in the SIPCAPTURE stack are HEPipe.
js and HEPpipe-ESL.js. The first one is a generic tool for monitoring log files in real
time, and sending lines to the Capture Server(s), automatically extracting a session
correlation-ID for each line. HEPipe-ESL is an extension of the same framework
connecting directly to the FreeSWITCH Event-Socket, subscribing to various kinds
of events correlated to SIP sessions and sending them a Capture Server. Forthcoming
versions will extend to use AMQ for additional flexibility and ability to provide
dedicated logging queues into Homer.

Homer, Monitoring and Troubleshooting Your Communication Platform

[258]

SIPCAPTURE stack is completed by HEP/EEP bindings, libraries, examples,
and code snippets for most programming languages, enabling a quick route for
developers interested in adopting the encapsulation format in homegrown or
custom applications.

So, the money quote: You set up some Capture Agents in your servers and/or on
your network, they send signaling and logs to the Capture Server(s), the Capture
Server(s) do some massaging, then store that info in a database, and you use Homer
to query that database.

SIPCAPTURE stack is extremely scalable and solid, used by first tier telecom
and cable carriers worldwide, and commercially backed by its core developers at
QXIP.NET.

Installing Homer and the Capture Server
Each SIPCAPTURE stack element is open source and available from GitHub,
accompanied by full installation instructions and an active Wiki containing several
useful examples.

Because there are a lot of different moving parts that need to fit together, to get
acquainted with the stack, it is much easier to help yourself with one of the different
ready-made offerings from SIPCAPTURE.

In a basic or testing installation, all elements can co-exist on the same host or
system: Capture Server, database, web server, user interface. For large setups, each
component can be installed (and scaled) separately.

At the moment of writing, SIPCAPTURE project provides Docker images (one single
container, and one multi-container) and a Puppet recipe producing a complete
system with all core elements preconfigured.

For those (like this humble writer) who are a little bit more traditionalist, there is an
automated shell script that installs it all from pre-built packages on both Debian and
CentOS (RHEL).

Let's use the installer script method. It's important to start with a clean, minimal and
fresh OS installation. The script will take care to install and modify all that it needs,
but assumes it is being executed on a basic and empty, just-installed machine. A
virtual machine will do, no problem.

Chapter 13

[259]

So, fire that Debian Jessie or CentOS 7 VM, ssh in it, install the little prerequisites
(wget, curl, git, flex, bison, libpcap-dev, and a few others: Check the beginning
of the installer script for latest info), download and execute the script.

cd /usr/src

wget https://cdn.rawgit.com/sipcapture/homer-installer/master/homer_
installer.sh

bash ./homer_installer.sh

During (semi) automated installation, please resist the temptation to customize the
results with your own passwords, usernames, and the like. Yes, I know the script is
asking you to choose, but… Just hit Enter, always, to accept the default choice. It is
the easiest and safest option, and always works. Let's shoot for instant gratification;
you'll do your tweaking in future installs.

The most complex part, at the time of writing, is the creation of the SSL certificate
request for the Homer website (which will then be automatically self-signed from
an internal dummy Certification Authority), but you have probably been there
before. Just remember to use as FQDN (Fully Qualified Domain Name) something
like homer.dummy.com. You then insert the same name with the corresponding
Homer server IP address into your browser machine's hosts file (last time I checked
Windows had it, too), and you're gold to connect.

Default browser login and password are admin and test123.

Homer, Monitoring and Troubleshooting Your Communication Platform

[260]

Feeding SIP signaling from FreeSWITCH
to Homer
If you followed the previous installation instructions, you're now logged into an
empty Homer, as we have no Capture Agents sending data to the Capture Server.
No data rows have been written to database.

Reach for your nearby FreeSWITCH (you do have a FS server, don't you?) and start
editing its configuration.

Modify autoload_configs/sofia.conf.xml to read (uncomment the line and
substitute your Capture Server address):

<param name="capture-server" value="udp:192.168.10.202:9060;hep=3;cap
ture_id=200"/>

Then, inside your SIP profiles (for example, sip_profiles/internal.xml and
more) settings section, edit or add this line to read:

<param name="sip-capture" value="yes"/>

Reload mod_sofia, or restart FreeSWITCH altogether, and you're ready to roll.

Searching signaling with Homer
After you configured and started the Capture Agent inside FreeSWITCH,
make a call.

Then, log into your Homer, set the Time Range to Today, select calls as transaction
kind, and click search.

Chapter 13

[261]

You'll be greeted by a tabular view of the SIP signaling comprised in your call. If you
get no results, check the homer_data database if sip_capture_call_2016* table has
been created for today. If not, execute as root /opt/homer_rotate.

I

Homer, Monitoring and Troubleshooting Your Communication Platform

[262]

If you click on the Method name, a popup springs up showing the whole message,
with nice coloring.

If you click on the CallID field, you can peruse the entire end-to-end Call-Flow, in
sngrep/wireshark style.

Chapter 13

[263]

Clicking on a method inside the Call-Flow popup shows a new popup with that
whole message.

Feeding SIP signaling, QoS, MOS and
RTP/RTCP stats from CaptAgent to
Homer
At the moment of writing, all media-related reports (RTP, RTCP, Quality of Service,
Medium Opinion Score, and so on) have not yet been added to the Capture Agent
integrated as features in FreeSWITCH.

We'll take the opportunity to see the usage of CaptAgent, the universal stand-alone
Agent for the SIPCAPTURE stack.

Let's start building the latest version:

cd /usr/src

git clone https://github.com/sipcapture/captagent.git captagent

cd captagent

./build.sh

./configure

make && make install

Homer, Monitoring and Troubleshooting Your Communication Platform

[264]

Now head to /usr/local/captagent/etc/captagent/ and feel the pain!
Configuration is complex, and distributed in many files. Be tenacious; you'll be
rewarded. Start by checking all paths in captagent.xml. Then, edit captureplans/
sip_capture_plan.cfg and uncomment the entire if(sip_has_sdp()) block.

Enable true RTCP in socket_pcap.xml. Then edit transport_hep.xml and insert
the IP address and port of Capture Server.

Leave all the rest to default values. CaptAgent is now configured and ready to feed
the Capture Server.

Before starting CaptAgent, let's temporarily disable the Capture Agent feature
integrated into FreeSWITCH, so we don't send double signaling into Homer.
From fs_cli (or console) input:

> sofia global capture off

Let's run CaptAgent, and then do the same call as before, again.

/usr/local/captagent/bin/captagent

Search for calls in Homer, and click on the CallID of the new call. Then, in the
Call-Flow popup, click on QoS Reports tab.

Here you have all the info on media and user experience, both as average and max
packet loss, jitter, and MOS-estimation (MOS is the perceived audio quality as
judged by users).

Also, on the right side, you have a graphic with the time series of those values.
The panel is completed by the codecs used in the call (the SDP contents that were
agreed upon).

Chapter 13

[265]

Correlating A-leg and B-leg
As we have seen many times in this book, because FreeSWITCH is a B2BUA (Back
to Back User Agent), when a user makes a call via FS, FS actually originates a
completely independent new call (to callee), and bridges the two calls' audio streams.
The streams then flow from caller to FreeSWITCH to callee (and back). In this
context, the first call (from caller to FS) is named "A-leg", while the second (from FS
to callee) is named "B-leg".

From the point of view of the user, what she experiences as a call is what for us VoIP
geeks is two calls, or a bridged call, or A-leg and B-leg.

It's obviously very useful to be able to visualize and debug a complete bridged call,
made by the two legs. This gives us the complete picture of what was experienced by
the end user.

We have at least two sides to configure: We need FreeSWITCH to introduce into SIP
packets a correlation ID that will tag two calls as two legs of a bridged call, and we
need to instruct the Capture Server to use that Correlation ID.

In FreeSWITCH, we edit dialplan/default.xml and add it to the beginning of the
file, just inside the context section:

<extension name="x-cid" continue="true">
<condition >
<action application="set"><![CDATA[sip_h_X-cid=${sip_call_id}]]></
action>
</condition>
</extension>

With this extension, we set the channel variable sip_h_X-cid on the incoming
(from the caller) call. We assign to that variable the value of the call CallID. This
variable will be acted upon by FreeSWITCH into adding an X-Header to the INVITE
SIP packets of the outbound call (the B-leg) that will be originated and bridged to
the caller. For example, the newly originated B-leg call (from FS to callee) INVITE
packets will contain an X-cid header that will bring along the CallID of the incoming
(from the caller to FS) call. This X-cid header will be the tag which correlates A-leg
and B-leg.

Then, we must configure the Capture Server to use that X-cid SIP Header. On the
Homer machine, edit /var/www/html/api/preferences.php to read:

define('BLEGCID', "x-cid"); /* options: x-cid, b2b */

Homer, Monitoring and Troubleshooting Your Communication Platform

[266]

Then, edit /etc/kamailio/kamailio.cfg and add:

modparam("sipcapture", "callid_aleg_header", "X-cid")

to the section where SIPCAPTURE parameters are set. To be on the safe side, restart
both Kamailio and Apache2, and you're good. Try a test call again, and then bridge it
(that is, call the 5000 FreeSWITCH default IVR, then press 1 on dialpad to be bridged
to the FreeSWITCH Conference).

Log into Homer, do a search, and this time you will see two different calls (A-leg
and B-leg) with two different CallID. But beware! The CallID_AL field of the B-leg
INVITE is populated with A-leg CallID.

Chapter 13

[267]

Click on that CallID_AL (our correlation ID, the X-cid we inserted) and the complete
Call-Flow to the bridged two legs will pop up.

In the picture example, you can see on the left the incoming call (A-leg) from
Linphone to FreeSWITCH 5,000 extension (default IVR), then on Linphone we
press 1 to be connected to a remote Weekly Conference Call. A new call (B-leg) is
originated on the right.

Homer, Monitoring and Troubleshooting Your Communication Platform

[268]

You can then click on the QoS Reports tab of Call-Flow to display combined media
reports of A-leg and B-leg.

Feeding logs and events to Homer
Now that a basic flows and B2BUA correlation is done, maybe you want to add
something else to complement your session investigations and take them to the
next level. How about sending the Capture Server all sorts of info you deem related
to a call, so it'll be instantly available, in the same Call-Flow popup? OK, I know
you want it. As an example, let's set FreeSWITCH to provide two different sets of
call-related data, one from dialplan, and one from CDRs (Call Detail Records, the
accounting info written at the end of a call).

Chapter 13

[269]

Logs to Homer
On the FreeSWITCH machine, edit the file autoload_configs/cdr_csv.conf.xml,
and modify the example template (or the template you are using, if different from
example), adding the SIP CallID as first field:

<template name="example">"${sip_call_id}","${caller_
id_name}","${caller_id_number}","${destination_
number}","${context}","${start_stamp}","${answer_stamp}","${end_stam
p}","${duration}","${billsec}","${hangup_cause}","${uuid}","${bleg_
uuid}","${accountcode}","${read_codec}","${write_codec}"</template>

From fs_cli or console, activate the changes by reload mod_cdr-csv.

Edit dialplan/default.xml and, inside the extension x-cid we added before, add
the following action, which will print a line into standard logfile with a lot of info,
the SIP CallID, and a tag (tohomer).

<action application="log" data="INFO 'tohomer ${sip_call_id}
${sip_full_from} ${sip_full_via} ${sip_full_from} ${Channel-Name}
${Caller-Context} ${FreeSWITCH-Switchname} ${toll_allow} ${callgroup}
${endpoint_disposition}'"/>

From fs_cli or console, activate the changes by reloadxml.

FreeSWITCH will now provide all the info we wanted, each set correlated with the
call SIP CallID. Obviously, we have FS to dump all kind of variables and arbitrary
values of our choice. We need a way to transmit this information to the Capture
Server.

Enter HEPipe.js. It is a Node.js program that allows for the monitoring of files (like
tail does), match lines on regular expressions, encapsulate them in HEP format, and
send the matching lines to the Capture Server.

Homer, Monitoring and Troubleshooting Your Communication Platform

[270]

Download and install HEPipe.js on the FreeSWITCH machine from https://
github.com/sipcapture/hepipe.js (npm install), then edit config.js and be sure
to set your Capture Server IP address and port, with the correct regular expressions,
and the location of your logfiles. If you followed our examples, you can copy from
the image.

In the pattern field you match the CallID between parentheses. Run HEPipe.js
with nodejs hepipe.js. It will monitor the files in real time, as lines are added to
them. If an added line matches the regex, that line will be sent to Capture Server, and
will be correlated to the call identified by CallID.

https://github.com/sipcapture/hepipe.js
https://github.com/sipcapture/hepipe.js

Chapter 13

[271]

In Homer you then click on the Logs tab of the Call-Flow popup to peruse all the info.

You can use this same technique to monitor any kind of file, not only
FreeSWITCH-generated files.

FreeSWITCH events to Homer
HEPipe is a generic tool, and has been modified to uniquely interface with the
FreeSWITCH event system.

HEPipe-ESL.js (https://github.com/sipcapture/hepipe.js/tree/master/
esl) will connect to the ESL TCP socket, subscribe to all events (you'd better modify
it to only subscribe to the events you're interested in), filter/extract/correlate key
details based on the event type, and send them to the Capture Server. Also, when
the call ends, HEPipe-esl.js will create a QoS media report leveraging the internal
media session details released by FreeSWITCH.

As per previous examples, modify the HEP_SERVER and HEP_PORT values inside
HEPipe-esl.js to reflect those of your Capture Server, then execute with nodejs
hepipe-esl.js (or using run forever once you decide to make it permanent).

Make a test call, then check the Logs tab of the Call-Flow popup.

https://github.com/sipcapture/hepipe.js/tree/master/esl
https://github.com/sipcapture/hepipe.js/tree/master/esl

Homer, Monitoring and Troubleshooting Your Communication Platform

[272]

This time you'll find plenty of info, too much actually, but this is just a demo.
Received log rows can be filtered in real time using Strings or Regex directly
from the Logs tab.

Summary
In this chapter we gave you a good hint of what Homer can do for your organization
with minimal setup and configuration effort. Homer is able to store and display in
real time millions of minutes' worth of call signaling, correlate call legs, webRTC
signaling, media statistics and reports. It can be the deck of your communication
support team, letting them immediately pinpoint any customer complaint. We
followed through from installation of the user interface (Homer proper) to the care
and feeding of the Capture Server, and the setup of Capture Agents. Building on
our examples, you can customize your entire platform network for end-to-end
centralized monitoring and troubleshooting.

[273]

Index
Symbols
(S)RTP

encrypting, via SDES 69, 70
encrypting, via ZRTP 70

(S|Z)RTP 68

A
accounting 19
A-leg

correlating 265-268
analog modules 92, 96, 97
Analog Telephone Adapters (ATA) 4
API interfaces 61
Asterisk

download link 91
Audacity 250, 251
audio

tapping 84, 85

B
Back to Back User Agent (B2BUA) 265
Bi-Directional Replication (BDR) 51
billing

about 18
options 21

B-leg
correlating 265-268

C
Call Detail Records

(CDRs) 19, 20, 32, 33, 268
Caller ID Name (CNAM) 60

calls
recording 82, 83

calls per second (cps) 29
call_uuid-SIP packet correlation, tool

reference 232
Capture Server

installing 258, 259
Carrier-Grade Rating System (CGRateS) 20
Comma Separated Value (CSV) 33
Conference.conf.xml

about 142
Caller-Controls group 146, 147
channel variables 148
conference invocation 148
dialplan 148
outbound conference 148
profile 144-146
sections logic 143

conferencing
about 140
basics 141, 142
managing 149, 150
moderating 149, 150

D
DAHDI drivers

about 94
reference 94

debugging
about 109
audio tracing 112, 113
ISDN tracing, enabling 111, 112
physical layer, checking 109, 110

dialplan 218
Direct Inward Dialing (DID) 56

[274]

DNS SRV records
for geographical distribution 51
for HA 51

E
events

feeding, to Homer 268
Event Socket Layer (ESL) 127
Extensible Encapsulation Protocol (EEP) 256

F
Fail2ban 66
Fax, and FreeSWITCH

about 169
faxes, debugging 174, 175
fax to mail 176
fax traffic, reliability maximizing 175
HylaFax 177
mod_spandsp configuration 170, 171
mod_spandsp usage 171-173
PDF to fax and fax to PDF 176

faxing 165
Fax on PSTN

about 165
working 166

Fax over IP (FoIP)
about 167
Enter T38 168
T38 terminals and gateways 169

fax transmission 60
federated VoIP 5, 6
firewall 230
FreeSWITCH

about 23, 126
as, SIP self tracer 232
audio file formats 77, 78
audio files, modifying 81, 82
audio files, playing 80
audio files, recording 80-82
Business PBX services 8, 9
call centers 9, 10
Call Detail Record (CDR) 32, 33
Class 4, versus Class 5 operations 11, 12
communicator, testing with 130
deploying 23
Dialers/Telemarketing 6-8

events, feeding to Homer 271
Internet-only services 12
logging with 30-32
mobile over-the-top SIP 13, 14
monitoring 34
MP3, and streaming 78, 79
Music on Hold 79, 80
network requirements 23
prompts, modifying 81, 82
prompts, recording 81, 82
residential uses 4
routing, with federated VoIP 5
streams, playing 80
streams, recording 80
testing, with SIPp 27
Value Added Services (VAS) 10, 11
verto app, building 130-136
WebRTC 12
web services 12
wholesale (provider to providers) 3

FreeSWITCH, best practices
default configuration 64
latest versions 63
locking all that's not trusted 64, 65
passwords, changing 64

FreeSWITCH jail 67, 68
FreeSWITCH module

about 203-205
API command 219, 220
channel state changes, reacting to 214-216
developing 206
dialplan application 218
firing events 216
functions 208
Load function 209, 210
receiving events 216
Runtime function 210, 211
Shutdown function 211
XML, configuration 212-214

FreeSWITCH, development
about 15
internationalist 16
new services prototyping 17, 18
Polyglot, by vocation and destiny 15
scalability 16
strict on output, broad on input 15
techniques 15

[275]

Telcos internal integration 16
FreeTDM

about 89
configuring 97
inbound calls 108
outbound calls 107, 108
reference 113

FreeTDM installation
about 93
DAHDI drivers 94, 95
LibPRI 95
LibWAT 96
OpenR2 95
Sangoma ISDN stack 95
Wanpipe drivers 93

FS. See FreeSWITCH
ftmod_gsm module 93
Fully Qualified Domain Name (FQDN) 259

G
group parameter 100
gw1 37

H
HA deployment

about 42
DNS SRV records, for geographical

distribution 51
integration, with Kamailio 47
integration, with OpenSIPS 47
load balancing, with Kamailio 47
load balancing, with OpenSIPS 47
network 43
power supply 43
storage 43
switches 43
virtualization 44-46

HD audio frontiers 76
HEPipe-ESL.js

URL 271
HEPipe.js

URL 270
High Definition (HD) audio 140
Homer

about 256, 257
installing 258, 259

HylaFax
and FreeSWITCH 177, 178

I
incoming call processing

about 181
after hangup 196, 197
before answering 182
first voice menu 184-189
fourth voice menu 191-196
second and third voice menu 191

input/output (IO) modules 90
integration, with Kamailio

FreeSWITCH world 48-50
Web world 47

integration, with OpenSIPS
FreeSWITCH world 48-51
Web world 47, 48

International Telecommunication Union
(ITU) 166

ISDN signaling modules 91
ITSPs (Internet Telephony Service
Providers)

and Real World Fax Support 178
features 60
working 54

IVR
installing 179, 180

L
least cost route (LCR) 55
LibPRI

about 95
reference 95

LibWAT 96
Linux Container (LXC) 46
load balancing, with Kamailio

FreeSWITCH world 48-50
Web world 47

load balancing, with OpenSIPS
FreeSWITCH world 48, 49
Web world 47, 48

logs
feeding, to Homer 268-271

luarun api 192

[276]

M
Management Information Base (MIB) 35
Mean Opinion Score (MOS) 30
media 224
messaging services 60
MFC-R2 protocol 92
mod_example outline 207, 208
mod_nibblebill 20
mod_snmp 35
mod_spandsp

configuration 170, 171
faxes, debugging 174, 175
usage 171-173

mod_verto
configuring 128, 129

monitoring
about 34
Simple Network Management Protocol

(SNMP) 34
with Cacti 41, 42
with Nagios 38-41

monitoring tools 37
MOS

feeding, from CaptAgent to
Homer 263, 264

Multipoint Control Unit (MCU) 151

N
NagiosSIPplugin

URL 39
Network Address

Translation (NAT) 4, 225, 226
network requirements

about 23
LAN 25, 26
peering 25-27
Quality of Service (QoS) 24, 25
WAN 25, 26

ngrep 234, 235

O
object identifier (OID) 35
OpenR2

about 95
URL 96

OpenZap 88, 89

P
pcapsipdump

about 236
reference 236

PCMA 167
PCMU 167
profile, Conference.conf.xml

about 144
Caller-controls 144
Conference-flags 144
Member-flags 144
Moderator-controls 144
Sounds 145

PSTN 165, 166
public address (PA) 166
Public Land Mobile Network (PLMN) 54
Public Switched Telephone Network

(PSTN) 54

Q
Quality of Service (QoS)

about 23
feeding, from CaptAgent to

Homer 263, 264

R
Real-Time Communication (RTC) 255
REST interfaces 61
root privileges

dropping 65
routes 55
routes, quality

about 57
bandwidth 58
codecs 58
infrastructure capability 59
white, black and grey 57

routing calls 2
RTCP 229
RTP 229
RTP/RTCP stats

feeding, from CaptAgent to
Homer 263, 264

[277]

rxgain parameter 100

S
Sangoma ISDN stack

about 95
reference 95

screen sharing
about 158, 159
dialplan extension 159

SDES
(S)RTP, encrypting via 69, 70

SDP 229
Session Border Controller (SBC) 12
Session Description Protocol (SDP) 116
Session Initiation Protocol (SIP) 27
Session Initiation Protocol (SIP) stack 4
signaling

about 224
searching, with Homer 260-263

signaling modules
about 91
analog modules 92
cellular GSM / CDMA (ftmod_gsm) 93
ISDN 91
MFC-R2 protocol 92
SS7 92

Simple Network Management Protocol
(SNMP)

about 34
and FreeSWITCH 35
configuration, on Linux 35, 36
installation, on Linux 35, 36

SIP
about 229
encrypting, with TLS (SIPS) 68, 69

SIPCAPTURE 257
sipgrep

about 241-244
URL 241

SIPp, testing with
load testing 30
scenarios, running 27-30

SIP signaling
feeding, from CaptAgent to

Homer 263, 264
feeding, from FreeSWITCH to Homer 260

SIPS (SIP Secure) 68
sngrep

about 237-241
reference 237

Sofia 4
SoX 252
SS7 92
system configuration, FreeTDM

about 97
DAHDI 99
FreeSWITCH configuration 102, 103
FreeTDM library configuration 99-101
operation 104-106
Wanpipe 98

T
T38

about 165, 168
gateways 169
terminals 169

tcpdump 233, 234
Text to Speech (TTS) 81
time domain multiplexing (TDM) 88
TLS (SIPS)

SIP, encrypting with 68, 69
tools, for troubleshooting

about 229
Audacity 250
firewall 230
FreeSWITCH, as SIP self tracer 232
ngrep 234, 235
pcapsipdump 236
sngrep 236-241
SoX 252
tcpdump 232-234
tshark 235
wireshark 244

traditional telephony codecs
constrain audio 74

troubleshooting
about 223
media 225
NAT 225, 226
signaling 224
VoIP packets 227, 228

trunk_type parameters 100

[278]

tshark 235
txgain parameter 100

U
User Agent Client (UAC) 27
User Agent Server (UAS) 27
utility functions

about 197
fs_urldecode() 198
fs_urlencode() 198
input_callback() 200
isnil() 200
isready() 200
myHangupHook() 200
shell() 197
stamp() 197
trim() 197
whichline() 197

V
Value Added Services (VAS) 10
Verto 127
video conference

about 151
configuration 151, 152
managing 160, 161
mux profile settings 152
performances 161
screen layouts 153-158

Voice Response (IVR) 4
VoIP encryption

new frontiers 71

W
Wanpipe drivers

about 93
reference 94

WebRTC
about 115-117
browsers 116
encryption 122, 123
FreeSWITCH 127
gateways and application servers 124, 125
legacy on Web 125, 126
mod_verto, configuring 128
to communication networks

and services 123
under the hood 117-119

welcome.lua
structure 180, 181

wireshark 244-250

Z
ZRTP

(S)RTP, encrypting via 70

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	Contributors
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Typical Voice Uses for FreeSWITCH
	Understanding routing calls in FreeSWITCH
	Wholesale (provider to providers)
	Residential uses of FreeSWITCH
	Routing with federated VoIP
	Dialers/telemarketing

	FreeSWITCH Products and Services
	Business PBX services (hosted and
on-premises)
	Call centers
	Value added services and games, prizes, and polls
	"Class 4" vs "Class 5" operations (and SBCs)
	WebRTC / web services / Internet-only services
	Mobile "over-the-top" SIP

	Development
	Strict on output, broad on input
	Very structured, very reusable techniques
	Polyglot by vocation and destiny
	Extreme scalability, from embedded to big irons
	Born internationalist
	Telcos internal integration ("FreeSWITCH is the Perl of VoIP")
	Rapid new services prototyping

	Accounting and billing
	Call Detail Records (CDRs)
	Mod_nibblebill / CGrateS
	Other billing options (open source - commercial)

	Summary

	Chapter 2: Deploying FreeSWITCH
	Network requirements
	Understanding QoS
	LANs, WANs, and peering

	Testing with SIPp
	Running scenarios
	Load testing

	Logging with FreeSWITCH
	Call Detail Records
	Monitoring
	SNMP
	SNMP and FreeSWITCH
	Installation and configuration (on Linux)
	Getting more information

	Monitoring tools
	Monitoring with Nagios
	Monitoring with Cacti

	HA deployment
	Storage, network, switches, power supply
	Virtualization
	Load balancing and integration with Kamailio and OpenSIPS
	In the Web world
	In the FreeSWITCH world

	DNS SRV records for geographical distribution and HA

	Summary

	Chapter 3: ITSP and Voice Codecs Optimization
	ITSPs – what they do
	Routes (to numbers)
	DIDs (aka DDIs) – numbers
	Quality of routes
	White, black, and grey
	Codecs and bandwidth
	Infrastructure capability

	Various important features
	Support, redundancy, high availability, and number portability
	Summary

	Chapter 4: VoIP Security
	Latest versions of it all
	Default configuration is a demo
	Change passwords
	Lock all that's not trusted
	Dropping root privileges (file permissions)
	Fail2ban on all services
	FreeSWITCH jail
	SIP(S) and (S|Z)RTP

	Encrypting SIP with TLS (SIPS)
	Encrypting (S)RTP via SDES (key exchange in SDP)
	Encrypting (S)RTP via ZRTP (key exchange in RTP)
	New frontiers of VoIP encryption (WebRTC, WebSockets, DTLS)
	Summary

	Chapter 5: Audio File and Streaming Formats, Music on Hold, Recording Calls
	Traditional telephony codecs constrain audio
	HD audio frontiers are pushed by cellphones, right now
	FreeSWITCH audio, file, and stream formats
	Audio file formats
	MP3 and streaming
	Music on Hold
	Playing and recording audio files and streams
	Recording and modifying prompts and audio files

	Recording calls
	Tapping audio
	Summary

	Chapter 6: PSTN and TDM
	OpenZap
	FreeTDM
	I/O modules
	Signaling modules
	ISDN signaling modules
	Analog modules
	MFC-R2
	SS7
	Cellular GSM / CDMA (ftmod_gsm)

	FreeTDM installation
	Wanpipe drivers
	DAHDI drivers
	LibPRI
	Sangoma ISDN stack
	OpenR2
	LibWAT

	Analog modules

	Configuring FreeTDM
	Wanpipe
	DAHDI
	FreeTDM library configuration
	FreeSWITCH configuration
	Operation

	Outbound calls
	Inbound calls

	Debugging
	Checking the physical layer
	Enabling ISDN tracing
	Audio tracing

	Summary

	Chapter 7: WebRTC and Mod_Verto
	WebRTC
	Browsers are already out there, waitin'
	Web Real-Time Communication is coming
	Under the hood
	Encryption – security
	Beyond peer to peer – WebRTC to communication networks and services
	WebRTC gateways and application servers
	Which architecture? Legacy on the Web, or Web on the Telco?
	FreeSWITCH accommodates them ALL
	What is Verto (module and jslib)?
	Configure mod_verto
	Test with Communicator
	Build Your Own Verto App

	Summary

	Chapter 8: Audio and Video Conferencing
	Conference basics
	Conference.conf.xml (profiles, DTMF interaction, and so on)
	Configuration sections logic
	Profile
	Caller-Controls group
	Conference invocation, dialplan, channel variables
	Outbound conference

	Moderating and managing conferences – API

	Video conference
	Video conference configuration
	Mux profile settings

	Video conference screen layouts
	Screen sharing
	Screen sharing dialplan extension

	Managing video conferences

	Conference performances
	Summary

	Chapter 9: Faxing and T38
	What is Fax on PSTN?
	How it works

	What is Fax over IP?
	Enter T38
	T38 terminals and gateways

	Fax and FreeSWITCH
	The mod_spandsp configuration
	mod_spandsp usage
	Debugging faxes

	How to maximize reliability of fax traffic
	PDF to fax and fax to PDF
	Fax to mail
	HylaFax and FreeSWITCH

	ITSPs and Real World Fax Support
	Summary

	Chapter 10: Advanced IVR with Lua
	Installing IVR
	Structure of welcome.lua
	Incoming call processing
	Before answering
	First voice menu
	Second and third voice menus
	Fourth menu – asynch! Nonblocking! Fun with threads!

	After hangup
	Utility functions
	Summary

	Chapter 11: Write Your FreeSWITCH Module in C
	What is a FreeSWITCH module?
	Developing a module
	Mod_Example outline
	Mandatory functions
	Load function
	Runtime function
	Shutdown function

	Configuration using XML
	Reacting to channel state changes
	Receiving and firing events
	Dialplan application
	API command
	Summary

	Chapter 12: Tracing and Debugging VoIP
	What can go wrong?
	What else can go wrong? (NAT problems)
	Other things can go wrong too

	SIP, RTP, SDP, RTCP, OH MY!
	Tools
	Firewall
	FreeSWITCH as SIP self tracer
	Tcpdum – the mother of all packet captures
	ngrep – network grep
	tshark – pure packet power

	pcapsipdump
	sngrep – the holy grail
	Sipgrep, Ngrep on steroids for VoIP

	Wireshark – "the" packet overlord
	Audacity – audio Swiss army knife
	SoX – audio format converter

	Summary

	Chapter 13: Homer, Monitoring and Troubleshooting your Communication Platform
	What is Homer?
	Installing Homer and the Capture Server
	Feeding SIP signaling from FreeSWITCH to Homer
	Searching signaling with Homer
	Feeding SIP signaling, QoS, MOS and RTP/RTCP stats from CaptAgent to Homer
	Correlating A-leg and B-leg
	Feeding logs and events to Homer
	Logs to Homer
	FreeSWITCH events to Homer

	Summary

	Index

