
www.allitebooks.com

http://www.allitebooks.org

Mastering React Native

Leverage frontend development skills to build impressive iOS
and Android applications with React Native

Eric Masiello
Jacob Friedmann

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering React Native

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2017

Production reference: 1060117

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78588-578-5

www.packtpub.com

www.allitebooks.com

http://www.packtpub.com
http://www.allitebooks.org

Credits

Authors

Eric Masiello
Jacob Friedmann

Copy Editor

Safis Editing

Reviewers

Patrick Puritscher

Project Coordinator

Sheejal Shah

Commissioning Editor

Wilson Dsouza

Proofreader

Safis Editing

Acquisition Editor

Denim Pinto

Indexer

Rekha Nair

Content Development Editor

Divij Kotian

Graphics

Abhinash Sahu

Technical Editor

Rutuja Vaze

Production Coordinator

Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

Disclaimer
We are using the New York Times' API for illustrative purposes only. We do not
recommend you publish your application to the app store using this API without first
reading the Terms of Use (h t t p s ://d e v e l o p e r . n y t i m e s . c o m /t o u). For more information
please consult the NYT's terms and conditions.

www.allitebooks.com

https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
https://developer.nytimes.com/tou).%E2%80%9D
http://www.allitebooks.org

About the Authors
Eric Masiello is a lead software engineer for Vistaprint Digital. Formerly, Eric worked as a
principal frontend engineer for the Advisory Board Company and built mobile apps for the
Education Advisory Board. Eric has worked primarily as a frontend/UI developer for over
10 years and freelances as a website designer/developer at h t t p ://w w w . s y n b y d e s i g n . c o m .
He has taught frontend topics at General Assembly in Washington, D.C. and was a
technical reviewer for Mastering ReactJS, a video by Packt Publishing.

You can follow him here:

h t t p s ://w w w . l i n k e d i n . c o m /i n /e r i c m a s i e l l o

h t t p s ://t w i t t e r . c o m /e r i c m a s i e l l o

h t t p ://s y n b y d e s i g n . c o m

First and foremost, I must extend an enormous thank you to my beautiful, talented, and
always-inspiring wife, Hyun. If not for her support, this book would honestly not exist.
My deepest gratitude also goes out to my family: Mom, Dad, Brian, Juliana, Nicolas,
Umma, and my sisters Hannah, Min, and Carroll. I’m truly blessed to have such a
wonderful and supportive family. Shout out to all the inspiring people I’ve had the honor of
working with over the years. I’ve learned so much from all of you. Thanks to Keith,
Michael, Andrew, Scott, Shelley, Kelly, the inimitable Karthik, Jesse, Jaworski, Beth, Mat,
Anbu, Ashwin, Kevin, Ann, all my PIC/RCS homies, the EAB dev/UI team, the entire
ABC/EAB UX team, and finally my new Vistaprint Digital family. Thank you to all my
close friends who have balanced me, challenged me, shared a drink, or just a laugh: Bryan,
Alan, Chris, Kyril, Brandon, April, and the whole Expansion Broadcast + DC crew. Thank
you to everyone at Packt for bringing me along on this amazing (and sleepless) journey.
And finally, thanks to my coauthor Jacob for all the work he did in realizing this book and
for agreeing to even write a book with someone he had known for all of two weeks.

www.allitebooks.com

http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
http://www.synbydesign.com
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://www.linkedin.com/in/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
https://twitter.com/ericmasiello
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://synbydesign.com
http://www.allitebooks.org

Jacob Friedmann is a developer living in Seattle, WA. He has been working as a developer
professionally for 5 years and is currently a principal software engineer at AddThis, an
Oracle company. At AddThis, he works on large front and backend applications. He also
builds mobile applications using React Native, including Audicy (h t t p ://a u d i c y . i o),
which will soon be launched on the App Store. He has taught several classes, including
frontend web development and JavaScript development through General Assembly in
Washington D.C.

You can follow him here:

h t t p s ://w w w . l i n k e d i n . c o m /i n /j a c o b - f r i e d m a n n

h t t p s ://t w i t t e r . c o m /J a c o b D F r i e d m a n n

Writing a book (my first!) is hard, and I don’t think I would have been able to do it without
the support of my loving boyfriend, Matt. He weathered my frequent complaining in stride
and kept me focused when I needed it most. For that, I am incredibly grateful. Huge thanks
to all of my AddThis family who have always inspired me to keep learning and pushed me
to do my best work. To all of my friends and family, who were patient with me when I
became a recluse to finish this project, thank you. You are loved, and I promise not to do
this again for a while! Finally, to Eric for pulling me along on this adventure. I definitely
didn’t know what I was getting myself into when I agreed to this, but I can’t imagine
having a more dedicated and capable partner.

www.allitebooks.com

http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
http://audicy.io
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://www.linkedin.com/in/jacob-friedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
https://twitter.com/JacobDFriedmann
http://www.allitebooks.org

About the Reviewer
Patrick Puritscher began developing websites at the age of 14 by teaching himself the
necessary skills. Already using React.js, he started to develop with React Native, shortly
after watching the initial presentation. He is also active in the community with his open
source components and recently published an app for iOS, completely written with React
Native. After graduating with his bachelor’s degree, Patrick worked as the lead developer
for multiple internally used web apps and a website with several million visits each month.
It is his personal ambition to create software for people that makes their life easier, rather
than making it more difficult with poor UX. Patrick has just started with his master’s degree
in Business Informatics.

You can follow him on:

h t t p s ://t w i t t e r . c o m /w h o i s p u r i i

h t t p ://p a t r i c k p u r i t s c h e r . c o m

www.allitebooks.com

https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
https://twitter.com/whoispurii
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://patrickpuritscher.com
http://www.allitebooks.org

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
http://www.allitebooks.org

Customer Feedback
Thank you for purchasing this Packt book. We take our commitment to improving our
content and products to meet your needs seriously—that's why your feedback is so
valuable. Whatever your feelings about your purchase, please consider leaving a review on
this book's Amazon page. Not only will this help us, more importantly it will also help
others in the community to make an informed decision about the resources that they invest
in to learn. You can also review for us on a regular basis by joining our reviewers' club. If
you're interested in joining, or would like to learn more about the benefits we offer,
please contact us: customerreviews@packtpub.com.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Building a Foundation in React 7

Library versus framework 8
Motivation for React 8
Getting started in React 9
Describing components in JSX 11
The component 13
Component composition 14
Props and PropTypes 15

Accepting props 15
PropTypes 16
Passing props 20
Default props 21
Props.children 24

Event handlers 25
State 27
The component lifecycle 32

The update cycle 34
Unmounting the component 36

Alternate component forms 37
React.createClass 37
Functional components 39

Summary 40

Chapter 2: Saying HelloWorld in React Native 41

Understanding the mobile app development ecosystem 42
Adobe PhoneGap 43
Ionic 43
NativeScript 43
React Native 45

Extending React Native 46
Introducing style and layout in React Native 46

Understanding all the React Native tools 47
Xcode 48
Google Chrome 48

[ii]

Homebrew (also known as brew) 48
Node.js and npm 49

Watchman 49
Flow 49
React Native command-line interface (CLI) 50

Installing our tools 50
Installing Xcode 51
Installing Homebrew 51
Installing Node and npm 53

Installing Watchman and Flow 54
Installing the React Native CLI 54

Creating our first React Native app 56
React Native Packager 61

Understanding our HelloWorld app 62
Importing dependencies using ECMAScript 2015 63
Our HelloWorld component 64
HelloWorld style code 66
Registering the root component 66
Why import React? 67

Debugging a React Native app 68
Enabling the Chrome Debugger 68
Breakpoints 71

Summary 73

Chapter 3: Styling and Layout in React Native 74

Constructing and applying styles 74
Inline styles 75
Styles as objects in your React Native components 76
Stylesheet 78

Using Stylesheet.hairlineWidth 81
Applying component-specific style properties 83

Styling without inheritance 85
Understanding React Native's take on the box model and flexbox 86

Box model 87
Understanding Flexbox 91

Covering the other axis 97
Flex shrinking and growing 100

Setting flexBasis 100
Growing and shrinking flex items 100

Styling text with React Native 102
Text style properties 104

[iii]

Encapsulating text styles in reusable components 106
Styling images 109

Background images 110
Inspecting and debugging styles 111

Using the React Native Inspector 111
Adding media query behavior to React Native 113

Using Dimensions 113
Using onLayout per View 114

Summary 116

Chapter 4: Starting our Project with React Native Components 117

Native components 118
Text 119

Props 122
View 124

Props 126
Image 128

Props 132
Static methods 133

Touchable 133
Props 136

ListView 137
DataSource 138
renderRow 139
Props 139

Modal 143
Props 144

WebView 150
Props 151

TabBarIOS 153
Props 154
TabBarIOS.Item 155
Props 155

TextInput 158
Props 159

Other input components 163
Native APIs 164

ActionSheetIOS 164
Alert 167
Vibration 169
StatusBar 169

Summary 170

[iv]

Chapter 5: Flux and Redux 171

The Flux architecture 172
Motivation 172
Implementing Flux 174

Creating our view 175
Actions and action creators 179
Dispatcher 180
Stores 183
Rendering updated data 186

Getting started with Redux 190
Principles of Redux 190
Installing Redux 191
Implementing Redux 191

Refactoring the store 191
Reducer 191
Creating the store 194
Multiple reducers 195

Action creators 196
Subscribing to the store 197

React-Redux 199
Installing React-Redux 199
React context and providers 199
Container and presentational components 200

Middleware 204
Summary 206

Chapter 6: Integrating with the NYT API and Redux 207

Understanding the NYT API data 208
Wiring up our Redux data flow 211

Creating the Redux state tree 213
Wiring up Redux data to our app 216
Refactoring and reshaping 218

Refactoring the components 219
Reshaping the data 220

Introducing Reselect 222
Adding search 223

Wiring up the NYT API with asynchronous requests 227
Fixing iOS transport security 229
Adding pull to refresh and a loading spinner 231

Summary 234

Chapter 7: Navigation and Advanced APIs 235

Navigation landscape 236

[v]

NavigatorIOS 236
Navigator 237
NavigationExperimental 238
Choosing a navigator 238

Using Navigator 240
The Navigator component 242
Navigation bar 246

Advanced navigation with NavigationExperimental 251
Representing the navigation state 251
Managing the navigation state 253
The CardStack component 255
Navigation header 260
Tabbed navigation 262
Adding in the modal 268

Other advanced APIs 276
Offline messages with NetInfo 276
Opening the browser with linking 280
Saving bookmarks locally with AsyncStorage 283

Summary 291

Chapter 8: Animation and Gestures in React Native 292

Introducing LayoutAnimation and Animated 293
Building the basic Onboarding experience 293

Getting started 293
Adding LayoutAnimation 306

Adding a bit more animation 309
Understanding Animated 313

Refactoring our Onboarding experience 314
Adding Animated to our Onboarding experience 315
Interpolating Animated Values 318

Using PanResponder with the Animated API 322
Touching up PanResponder 325

Summary 326

Chapter 9: Refactoring for Android 327

Installing the necessary tools 328
Installing the Java Development Kit 328
Installing Android Studio 330

Configuring Android Studio 332
Configuring ANDROID_HOME and your PATH 334

[vi]

Verifying that the CPU/ABIs are installed 335
Starting the Android emulator 336

Adding Android support to RNNYT 337
Branching platform logic 339
Refactoring RNNYT for Android 341

Fixing Android vibration 343
Using DrawerLayoutAndroid 344
Customizing Android styling 347
Enabling LayoutAnimation 351

Summary 352

Chapter 10: Using and Writing Native Modules 353

Using native modules 354
Installing native modules 354
Using the library 355

Profile page 355
Adding the profile to the iOS home screen 358
Adding the profile to the Android home screen 362

Writing native modules 365
Native modules in iOS 366

Setting up the module 366
Exporting methods 372
Communicating with callbacks 378
Communicating with promises 381
Communicating with events 384
Exporting constants 387

Native modules in Android 388
Setting up the module 388
Exporting methods 394
Communicating with callbacks 395
Communicating with promises 396
Communicating with events 398
Exporting constants 399

Summary 402

Chapter 11: Preparing for Production 403

Testing 403
Unit testing 405
Component testing 408

Performance 411
Problematic ListView 412

Using Perf Monitor 412
Analyzing a Systrace 415
The React Perf Library 422

[vii]

shouldComponentUpdate and PureRenderMixin 424
Minimizing the impact of state changes 425
The ListView data source 427
Additional optimizations 428

Unresponsive touch and slow navigation 430
Mitigating unresponsive touch 431
Smoothing out animations with InteractionManager 434

Performance summary 436
Running on physical devices 436

Debugging on an iOS device 436
Testing your app on an iOS device using Release 438

Debugging on Android devices 438
Generating a signed APK 439

Deploying our application 439
Remove debugging code 440
iOS 441

Creating provisioning profiles 442
Registering an application in iTunes Connect 443
Adding icons and updating the launch screen 444
Creating an archive 445
Beta testing and release 448

Android 448
Signing the application 448
Testing the release build 449
Generating the APK 450
Beta-test and release 450

Summary 450

Chapter 12: React Native Tools and Resources 451

Evaluating React Native Editors, Plugins, and IDEs 451
Atom and Nuclide 452

Taking React Native beyond iOS and Android 458
Introducing React Native Web 458

Configuring React Native Web 459
React Native plugin for Universal Windows Platform 462

Configuring the React Native plugin for UWP 462
React Native macOS 463

Configuring React Native macOS 464
Summary 465
References 465

Index 467

Preface
React Native is a library for creating mobile applications using familiar web technologies
without sacrificing performance or the look and feel typically associated with fully native
applications. It is built on top of Facebook’s open source JavaScript library, React, and
indeed, iOS and Android applications created using the library are primarily written in
JavaScript. Because one does not need to learn new languages, ecosystems, and best
practices for each platform they work on, React Native is pushing the boundaries of what is
possible for React developers.

In this book, we will look at the fundamental concepts of React and React Native, as well as
the libraries and tools within the React Native ecosystem. We will also work towards the
more practical goal of creating a complete React Native application. Finally, we’ll dig into
useful and complex React Native concepts such as animation, navigation, native modules,
testing and performance analysis. Upon turning over the last page of this book, you’ll be
armed with the knowledge to create polished, sophisticated mobile applications using React
Native.

What this book covers
Chapter 1, Building a Foundation in React, In order to work effectively in React Native, you
must first understand React. This chapter explains the motivation behind React and teaches
you how to think in React.

Chapter 2, Saying Hello World in React Native, contains two primary topics. First, we’ll
review how React Native works and compare it to other popular mobile development
options. Then, we’ll switch gears and focus on configuring your computer to build your
first React Native project for iOS.

Chapter 3, Styling and Layout in React Native, React Native borrows many concepts from the
web development world, including some of the best parts of Cascading Style Sheets (CSS).
It also deliberately avoids some of CSS’s less desirable qualities. This chapter explains how
to style React Native apps and how to use Flexbox to layout components.

Chapter 4, Starting our Project with React Native Components, React Native includes many
powerful components and APIs. This chapter demonstrates how to use many of these as we
begin to build our news reader app, called Readly.

Preface

[2]

Chapter 5, Flux and Redux, ... The React community has largely eschewed the Model View
Controller pattern in favor of a unidirectional data flow pattern called Flux. In this chapter,
we’ll help you think in Flux and explain how to leverage a popular Flux implementation
known as Redux.

Chapter 6, Integrating with the NYT API and Redux, builds upon what we learned in this
chapter. In order to bring our Readly app to life, we’ll implement Redux and Redux
middleware as a means of managing our data and communicating with the New York
Times API.

Chapter 7, Navigation & Advanced APIs, Navigation in React Native has been a long journey
resulting in an abundance of navigation options. But which should you choose? This
chapter will make sense of these options. We’ll then apply experimental navigation
components along with other advanced React Native APIs to our project.

Chapter 8, Animation and Gestures in React Native, React Native offers two primary ways of
creating fluid animations. This chapter will explain how to apply each of these along with
touch gesture support to build out an on boarding experience for our Readly app.

Chapter 9, Refactoring for Android, React Native makes cross platform development simple.
However, configuring your computer to actually build for Android is a bit less than simple.
This chapter will walk you through, step by step, how to install and configure all the tools
necessary for Android development. We’ll then revisit our project, refactoring it to both
work and feel like a first class Android app.

Chapter 10, Using and Writing Native Modules, One of the most amazing parts of React
Native is that it doesn’t limit you to the components and APIs that come packaged with the
framework. If you want your app to do something else, you can either bridge custom native
code to React Native or include other third-party libraries. This chapter adds additional
capabilities to our project by exploring how to create custom native code written in
Objective C for iOS and Java for Android.

Chapter 11, Preparing for Production, Discovering the root cause of bug or performance
problem can be a real chore. In this chapter we’ll introduce Jest, a testing framework along
with other tools for uncovering pesky performance problems. Finally, we’ll show you how
to bundle your apps so you can ship them to the iOS and Android stores.

Preface

[3]

Chapter 12, React Native Tools & Resources, React Native is praised for its awesome
developer experience and cross platform support. But can we take React Native even
further? In this final chapter, we’ll show off some tools that can improve upon how you
build React Native apps. Then we’ll explore a few React Native projects that allow us to
extend platform support to the web, macOS, and even Windows.

What you need for this book
While we will add Android support to our project in later chapters, the majority of this
book focuses on iOS development. In order to develop for iOS, you must have access to an
Apple Mac computer capable of running Xcode 7 or later. Xcode is only necessary for
building and testing React Native apps. You’re welcome to edit your code in any editor or
IDE of your choosing.

In addition to Xcode, React Native requires a few other tools. These include Homebrew,
Node.js (6.5.0 or later), npm (3.10.3 or later), Watchman, the React Native CLI, and Google
Chrome for debugging. We’ll explain what all these tools are and how to install them in
Chapter 2, Saying Hello World in React Native.

In Chapter 9, Refactoring for Android, we’ll update our project so it can run on both
platforms. Android has its own set of software requirements including the Java
Development Kit (JDK 1.8 or later) and Android Studio. Once again, we’ll walk you
through how to install and configure these tools in Chapter 9, Refactoring for Android.

Finally, in Chapter 12, React Native Tools & Resources, we’ll evaluate software that can aid
your React Native workflow and allow you to build React Native apps for even more
platforms. All of these installations are completely optional. However, it’s worth noting that
the React Native plugin for Universal Windows Platform will require a computer or virtual
machine running Windows 10 and Visual Studio 2015 Community.

Who this book is for
It’s expected the reader possess a strong understanding of JavaScript and is familiar with
ECMAScript 2015 (ES2015 or ES6). Code samples in this book will heavily leverage ES2015
features such as classes, arrow functions, destructuring, and spreading. Familiarity with
React, mobile development, HTML, and CSS will aid in your understanding but are not a
requirement.

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample
 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button
moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Mastering-React-Native. We also have other code
bundles from our rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t

P u b l i s h i n g /. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

https://github.com/PacktPublishing/Mastering-React-Native
https://github.com/PacktPublishing/Mastering-React-Native
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Building a Foundation in React

There is a common trope within the frontend web development community that boils down
to new day, new framework. It is a comment on the velocity at which this profession is
changing and evolving. The rapid pace can be exhausting, but it is also exciting because of
what it represents. The domain of frontend developers seems to be ever expanding–from
simple web pages to web applications, mobile applications, and beyond–and with that, the
number of smart people contributing ideas and code to the collective knowledge bank is
also expanding.

With all of that said, any sane person must pick and choose which developments to tune
into. When React.js emerged on to the open source scene in May 2013 from the inner-
sanctum of Facebook, it would have been easy to brush this library off as just another
frontend library. That, however, would have been a mistake. It could be said that React was
the most significant and influential open source development in frontend technology in
recent memory. Its growth beyond the web and its application in the realm of mobile
development through React Native is both a testament to its popularity and a boon to its
potential utility.

React Native is a library for creating native mobile applications using familiar web
technologies that is built on top of React. What this means is that in order to understand
React Native, we must first explore React. In this chapter, we'll examine the fundamentals
of React. First, we'll talk briefly about the circumstances that led to React being created.
We'll also cover these React concepts:

JSX, a JavaScript/HTML hybrid that we use to describe React components
React components
Component composition
Component properties, or props
Handling events
Component state

Building a Foundation in React

[8]

The React component lifecycle
Alternate component forms

A note to the reader: this chapter focuses on React for the web, the original
purpose of the library. This provides important context for the remainder
of the book. If you already know React for the web, then it is probably safe
to skip this chapter and proceed to Chapter 2, Saying Hello World in React
Native.

Library versus framework
When people describe React, they often eschew the description of framework–a description
often used for something such as Backbone or Angular–in favor of library. The reason for
this more lightweight description is that React is not a complete solution for application
development. It is often relegated to only a view-layer solution, and that characterization is
mostly correct. React has some mechanisms for maintaining internal state, but it has no
opinion about or solutions for data flow and management, server communication, routing,
or other common frontend application concerns.

React, therefore, is often coupled with some other library or libraries to create a fully fleshed
out application. The most common pairing is with an application architecture that is also
the brainchild of the wizards at Facebook called Flux. Flux is not a library in and of itself; it
is a set of design patterns that have been implemented by many different libraries, which
will be discussed in more depth in Chapter 5, Flux and Redux.

Motivation for React
React and the community, libraries, and patterns that surround it are very much a reaction
(pun intended) to some of the most frustrating and prevalent issues that plague JavaScript
applications as they grow in size and complexity. JavaScript was not designed for creating
large applications; it was designed, famously, in just 10 days as a scripting language to add
a modicum of interactivity to lifeless web pages.

Chief among these concerns is the unpredictability that comes with shared mutable state.
Historically, passing around JavaScript objects that represent the application's state to
different views and controllers has been common practice. The ease with which those
objects can be mutated by a rogue view, wisdom notwithstanding, can lead to hard-to-
diagnose bugs, especially as applications and teams grow.

Building a Foundation in React

[9]

The foundational building block in a React application is the component, which is a
declarative description of some visual feature on the page, such as a form or a menu. The
declarative nature of components promotes predictability: given some set of external inputs
(properties), the output is well defined and deterministic.

React also aims to combat one of the hurdles to writing efficient applications: the Document
Object Model (DOM) is notoriously slow. If changes to the DOM are relatively infrequent,
this may not be a problem, but in a complex application the time it takes to alter and redraw
the DOM can add up. This is especially true for applications that take a declarative
approach as React does, which necessitates re-rendering whenever the application's state
changes.

The solution proposed by the React framework is to keep a representation of the DOM in
memory, called a virtual DOM, and make all alterations there. Once the alterations have
been made in memory, React can apply the minimum number of changes necessary to
reconcile the real DOM with the virtual DOM. This also can allow quickly successive
changes to be batched for greater efficiency. Taking this approach can lead to great gains in
performance that can be noticed by end users.

In addition to solving some of the common problems faced when creating JavaScript
applications, React components are modular and emphasize composition over inheritance,
which makes code immensely reusable and testable. Additionally, a React component often
has rendering logic, markup declaration, and even styles in the same file, which promotes
the portability of code and the ability to write shared libraries of components.

Perhaps the most compelling reason to use React and React Native is the astounding
amount of community adoption that has taken place in the last two years. People are
excited about this technology, and rightly so; it is a novel approach to developing frontend
applications that is, by most accounts, accelerating the development time on teams that
choose to adopt it. With React Native, the idealistic promise of learn once, write anywhere is
becoming more and more viable.

Getting started in React
To begin creating an interface in React, the first thing we need to do is break down the
interface into conceptual components. We start with a large component, for instance, a news
feed. We then say our large component is made up of, or composed of, other smaller
components. In the case of our news feed, these smaller components might be individual
news items. Each news item, in turn, might be composed of several even smaller
components, such as images, a description, and a byline.

Building a Foundation in React

[10]

This process should continue until the smallest components are bite-sized, reusable visual
units that can no longer be easily broken down into smaller pieces. Doing this exercise sets
us up well for writing our first code in React. Here is what this process might look like for
our hypothetical news reader application.

First, identify and give a name to the largest component we can find, in this case, a
NewsFeed:

Now, draw boxes around the next largest set of components, the NewsItem components:

Building a Foundation in React

[11]

Next, we can zoom in on a single NewsItem and identify the components that it is made of.
Here, we can see that there is an Image, a Title, a Description and a Byline:

We've now laid the groundwork to start creating a React application. We have identified six
components and their relationships: the NewsFeed, which is composed of NewsItem
components, which in turn are composed of Image, Title, Description, and Byline
components.

Describing components in JSX
In recent years, there have been many developments in JavaScript as a language itself. For
instance, the new ECMAScript 2015 (ES2015–sometimes called ES6) specification, which
defines the next version of JavaScript, is becoming increasingly solidified. If a developer
wishes to write in ES2015–and many do–they need to use a program to convert the newer
syntax into one that is compatible with the majority of browsers. Additionally, there are a
number of JavaScript-like syntaxes, such as CoffeeScript and TypeScript, that ultimately
have to be converted to browser-compatible JavaScript in order to function.

With all of these developments and alternate syntaxes, many developers have become
accustomed to transforming code into browser-compatible JavaScript instead of writing it
directly. When Facebook created React, they capitalized on this and created a syntax similar
to HTML that could be used to describe components. It's called JavaScript XML (JSX), and
it is a declarative markup language that is written in tandem with JavaScript to define a
component's layout.

Using JSX is not an absolute requirement for writing React, but without it, React becomes
verbose and cumbersome. Furthermore, since most developers will be using tools such as
Babel already to convert their ES2015 code into JavaScript, writing in JSX does not add
much burden because most of those tools come with support for JSX built in.

Building a Foundation in React

[12]

JSX looks almost exactly like HTML:

<h1>
 Hello World!
</h1>

It differs from HTML5 only slightly. HTML and JSX have a common ancestor language
called XML (Extensible Markup Language). HTML has since diverged in some ways from
strict XML that JSX has not. For instance, in the case of a tag such as the image tag (that is,
) HTML and JSX differ. The tag is called self-closing in that there is no
standalone closing tag like we might see with a <div> or a <p>. For a self-closing tag in
HTML, a forward slash before the end is optional:

HTML:

In JSX (and XML, for that matter), this forward slash is required:

JSX:

There are other differences between JSX and HTML that arise from JSX being written in the
context of JavaScript. The first is that class is a keyword in JavaScript, whereas that word
is used as an attribute of HTML elements to allow elements to be targeted by CSS for
styling. So, when we would use class in HTML, we instead have to use className in JSX:

HTML: <div class="news-item">
JSX: <div className="news-item">

A consolation prize for this small inconvenience is we get the benefit of being able to
interleave JavaScript into places in our markup where we typically wouldn't in normal
HTML. For instance, defining inline styles can use a JavaScript object, rather than cramming
all properties into a string.

HTML: <div styles="background: green; color: red;">
JSX: <div styles={{background: 'green', color: 'red'}}>

Notice here that there are two sets of curly braces on the style attribute's value. The outer set
of curly braces is used to show that the code contained is JavaScript. The inner set is a
JavaScript object literal containing the CSS style property names and their respective values.

Not only can attribute values be written in JavaScript, but so too can the content contained
between JSX tags. This way, we can use dynamic properties to render text content:

HTML: Hello World
JSX: {'Hello' + 'World!'}

Building a Foundation in React

[13]

As we'll see in coming section, there are more tags available to us than we would see in
normal HTML. In fact, our application-defined components themselves can be added into
JSX markup:

<NewsItem>
 Hello React!
</NewsItem>

Understanding JSX is paramount to starting to create React components; however, JSX
makes up only a part of a complete component.

The component
In React, we build applications using composable, modular components. These components
represent parts of our visual interface and are rendered as such. In their most simple form,
they are simply a description of how to render. We create a component by using ES2015
class syntax:

import React, { Component } from 'react';

class Title extends Component {

 render() {
 return (
 <h1>
 Hello World!
 </h1>
);
 }
}

Since the only requirement is that a render() method is defined, this is now a valid and
complete (albeit not especially useful) React component.

In a typical React application project, a component will be self-contained within a file. Files
that contain JSX, such as a component file, sometimes have a .jsx extension in web
projects; however, this practice is less common in React Native projects. This extension
helps tools such as Babel know how to transform them into browser-compatible JavaScript.
The entire contents of the file that defines and exports the Title component, Title.jsx,
might look like this:

import React, { Component } from 'react';
export default class Title extends Component {

www.allitebooks.com

http://www.allitebooks.org

Building a Foundation in React

[14]

 render() {
 return (
 <h1>
 Hello World!
 </h1>
);
 }
}

This simple component by itself is not very compelling. So far, everything we've seen in this
component could easily be created using only HTML. Rest assured, React provides several
ways of making this component more interesting and useful.

Component composition
As was mentioned earlier in this chapter, React favors composition over inheritance. What
does this mean? In essence, it means to build complex or derivative components, instead of
using something akin to object-oriented inheritance, we use composition to build up
complexity from simple building blocks.

Our Title component is pretty simple, but we can build up a more complex NewsItem
component from the Title component and other simple components:

import React, { Component } from 'react';

class NewsItem extends Component {

 render() {
 return (
 <div className="news-item">
 <Image />
 <Title />
 <Byline />
 <Description />
 </div>
);
 }

}

The JSX returned by the render method of a component is that component's declarative
definition. When that JSX includes other components, such as the <Image />, <Title />,
<Byline />, and <Description /> elements we see in the preceding code, it is said to be
composed of those components.

Building a Foundation in React

[15]

Composition has other uses besides making increasingly more complex components from
smaller, simpler building blocks. Composition can also be used to make derivative
components, a task that in an object-oriented programming world we might use inheritance
to achieve. For instance, imagine we want to make a component that is a WarningTitle.
This component might share many properties with a Title component, but also add bright
red border around it in order to draw a user's attention:

import React, { Component } from 'react';

class WarningTitle extends Component {

 render() {
 return (
 <div style={{ border: '1px solid red' }}>
 <Title />
 </div>
);
 }

}

Using the previous definition, we would then say that WarningTitle is composed
of Title because the latter is returned in the render() method of the former.

Props and PropTypes
The components that we've seen so far are completely static in that they take no external
input and always render exactly the same. This isn't especially interesting because the same
outcome can be achieved by writing plain old HTML. However, React provides a
mechanism for making components dynamic by using properties, or props.

Accepting props
Props are passed into a component in order to modify their base definition. Let's take
another look at our Title component:

import React, { Component } from 'react';

export default class Title extends Component {

 render() {
 return (

Building a Foundation in React

[16]

 <h1>
 Hello World!
 </h1>
);
 }

}

While the title of a single article might be Hello World!, this component needs to be more
dynamic if it is to be reused within all of our NewsItem components. For this, we'll use a
React input property, or prop, called titleText. React component methods have a this
context that gives access to properties that have been passed in:

import React, { Component } from 'react';

export default class Title extends Component {

 render() {
 return (
 <h1>
 {this.props.titleText}
 </h1>
);
 }

}

Once again, remember that curly brackets in JSX denotes JavaScript code. Here, we are
accessing the component's titleText prop in order to render it within the component's
markup:

<h1>
 {this.props.titleText}
</h1>

PropTypes
This by itself is sufficient code to start accepting a titleText property. However, as a best
practice, we should include in our component's definition a description of what properties
it is equipped to accept. While this may seem like over-engineering and unnecessary in
small projects maintained by a single developer, as the project and team grows, explicit
definition of properties is key in an untyped language such as JavaScript.

Building a Foundation in React

[17]

Defining PropTypes in a component is how we formally tell other developers what
properties a component accepts and what value types those properties should be.
PropTypes are the same across instances of a component and are thus statically attached to
the class:

import React, { Component, PropTypes } from 'react';

export default class Title extends Component {

 render() {
 return (
 <h1>
 {this.props.titleText}
 </h1>
);
 }

}

Title.propTypes = {
 titleText: PropTypes.string
};

Adding PropTypes to a component does not change anything functionally, but it will cause
annoying warning messages to be logged to the JavaScript console when they are disobeyed
(only when React is in development mode, mind you).

To use PropTypes, we'll need to add it to the React import:

import React, { Component, PropTypes } from 'react';

The PropTypes module comes with functions for validating different value types, such as
string, number, and func.

Here, what we are communicating is that this component takes one optional property called
titleText, and that property should be of type string:

Title.propTypes = {
 titleText: PropTypes.string
};

We could also make this a required property:

Title.propTypes: {
 titleText: PropTypes.string.isRequired
}

Building a Foundation in React

[18]

In addition to having string type props, we can also have other simple types, such as
booleans and numbers:

Title.propTypes = {
 titleText: PropTypes.string.isRequired,
 highlighted: PropTypes.bool,
 fontSize: PropTypes.number
};

Props can not only be used to define the text content, but can also be used to define
attributes of an element, for instance, inline style:

import React, { Component, PropTypes } from 'react';

export default class Title extends Component {

 render() {
 return (
 <h1
 style={{
 backgroundColor: this.props.highlighted ? 'yellow' : 'white',
fontSize: `${this.props.fontSize}px`
 }}
 >
 {this.props.titleText}
 </h1>

);
 }

}

Title.propTypes = {
 titleText: PropTypes.string.isRequired,
 highlighted: PropTypes.bool, fontSize: PropTypes.number
};

One thing to note with the preceding example is that CSS properties that have a dash in
them when written in traditional CSS use camel case in React inline style. This is because
keys in JavaScript objects cannot contain dashes.

React PropType specifications can also be used to validate more complex properties. For
instance, we could have a property that is either a string or a number using the oneOfType
function, which is as follows:

fontSize: PropTypes.oneOfType([
 PropTypes.string,

Building a Foundation in React

[19]

 PropTypes.number
])

Likewise, we can specify a set of specific values that a property is allowed to take by using
the oneOf method:

size: PropTypes.oneOf([
 'small',
 'medium',
 'large'
])

We can of course specify more complex data types, such as arrays and objects, but we can
also be more specific and describe the types of values in an array property or the shape that
an object property takes:

propTypes: {
 //Array that can contain anything
 simpleArray: PropTypes.array,

 //Object that can contain anything
 simpleObject: PropTypes.object,

 //Array that contains only Number values
 arrayOfNumbers: PropTypes.arrayOf(PropTypes.number),

 //Object that takes a specific "shape"
 complexObject: PropTypes.shape({
 id: PropTypes.number,
 name: PropTypes.string
 })
}

Now our Title component is getting interesting. It has gone from something that can be
easily recreated using just HTML to something more like a HTML template–still
declaratively defined, but dynamic in that it can take external properties.

Alternatively, PropTypes can be added to a React component as a static property using the
static keyword:

import React, { Component, PropTypes } from 'react';

export default class Title extends Component {

 static propTypes = {
 titleText: PropTypes.string.isRequired,
 highlighted: PropTypes.bool,

Building a Foundation in React

[20]

 fontSize: PropTypes.number
 }

 render() {
 return (
 <h1
 style={{
 backgroundColor: this.props.highlighted ? 'yellow' : 'white',
fontSize: `${this.props.fontSize}px`
 }}
 >
 {this.props.titleText}
 </h1>

);
 }

}

This syntax is cleaner, but is not officially part of the ECMAScript specification at this point.
While most transpiler programs will recognize this syntax, we'll avoid it in this book for
that reason.

Passing props
With a component defined that accepts props, the next step is for props to be passed into
this component. In the case of our Title component, the NewsItem component can pass
properties into the contained Title component. It does this using the attribute syntax of
XML:

import React, { Component } from 'react';
import Title from './Title';

export default class NewsItem extends Component {

 render() {
 return (
 <div className="news-item">
 <Image />
 <Title
 titleText="Hello World!"
 highlighted={true}
 fontSize={18}
 />
 <Byline />
 <Description />

Building a Foundation in React

[21]

 </div>
);
 }

}

Strings are the only value types that can be passed in as a prop directly:

titleText="Hello World!"

For other JavaScript data types, such as numbers, Booleans, and arrays, we must surround
the values in curly braces so that they are interpreted correctly as JavaScript:

fontSize={18}

For Boolean props, we can shorten their input to where the property name's presence is
interpreted as true and its absence is interpreted as false, much like in HTML:

<div className="news-item">
 <Image />
 <Title
 titleText="Hello World!"
 highlighted
 fontSize={18}
 />
 <Byline />
 <Description />
</div>

Default props
In a previous section, we specified, using PropTypes, that the titleText property of the
Title component is required, but the other two properties are optional. This raises an
interesting question: what will the value of those properties be if they are not specified?
Well, without any intervention from the component developer, those properties will
appropriately have the value undefined when no value is passed in. This could be
problematic in some situations.

For our fontSize property, a value of undefined could lead to some unpredictable and
potentially error-prone code because it is expecting a number. Luckily for us, React has a
mechanism for specifying default values for optional properties that have not been passed
in explicitly. This mechanism is a method on the component called defaultProps and we
can use it in Title, statically, like this:

import React, { Component, PropTypes } from 'react';

Building a Foundation in React

[22]

export default class Title extends Component {

 render() {
 return (
 <h1
 style={{
 backgroundColor: this.props.highlighted ? 'yellow' : 'white',
 fontSize: `${this.props.fontSize}px`
 }}
 >
 {this.props.titleText}
 </h1>

);
 }

}

Title.propTypes = {
 titleText: PropTypes.string.isRequired,
 highlighted: PropTypes.bool,
 fontSize: PropTypes.number
};
Title.defaultProps = {
 highlighted: false,
 fontSize: 18
};

defaultProps must be a JavaScript object where keys are property names and the values
are the default values to use in the case that no values were passed in for that particular
property. We can now define a Title component that isn't highlighted and has the default
font size of 18 pixels by simply writing the following:

<Title
 titleText="Hello World!"
/>

In context, our NewsItem component is now simplified to this:

import React, { Component } from 'react';
import Title from './Title';

export default class NewsItem extends Component {

 render() {
 return (
 <div className="news-item">
 <Image />

Building a Foundation in React

[23]

 <Title
 titleText="Hello World!"
 highlighted
 />
 <Byline />
 <Description />
 </div>
);
 }

}

Sometimes, a component will receive its props from several levels above. For instance,
maybe NewsFeed specifies the title of an individual NewsItem, rather than having
NewsItem provide it statically itself, as we have done in the previous examples.
Parameterizing this property allows the NewsItem component to be more generic and
reusable:

import React, { Component, PropTypes } from 'react';
import Title from './Title';

export default class NewsItem extends Component {

 render() {
 return (
 <div className="news-item">
 <Image />
 <Title
 titleText={this.props.titleText}
 highlighted
 />
 <Byline />
 <Description />
 </div>
);
 }

}

NewsItem.propTypes = {
 titleText: PropTypes.string.isRequired
};

Here, we have shown how the NewsItem component can accept a property, and in turn,
pass it down to the Title component.

Building a Foundation in React

[24]

Props.children
Every component has an optional special property that is called children. Normal
properties, as we have seen, are passed in using something similar to the HTML attribute
syntax:

<Title
 titleText="Hello World"
/>

You can also pass in text or other component elements by placing them in between an
opening and closing tag. We can refactor our Title component to accept children instead
of the titleText prop:

<Title>
 Hello World
</Title>

Now, the render() method of our Title component becomes this:

render() {
 return (
 <h1
 style={{
 backgroundColor: this.props.highlighted ? 'yellow' : 'white',
fontSize: `${this.props.fontSize}px`
 }}
 >
 {this.props.children}
 </h1>
);
}

Note that we could now also pass in other React elements into the Title as property by
also placing them in between the opening and closing tags:

<Title>
 Hello World!

</Title>

Building a Foundation in React

[25]

When validating the children prop, we can use a special PropTypes called node, which
means anything that can be rendered by React:

Title.propTypes = {
 children: PropTypes.node.isRequired,
 highlighted: PropTypes.bool,
 fontSize: PropTypes.number
};

Event handlers
In JavaScript development, we often think of our application as reacting to user events on
the page. For instance, we may listen for a submit button on the page to be clicked, and
when it is, validate a form. Functions that respond to these user events are sometimes
dubbed event handlers or event listeners.

In a simple JavaScript application, we register these event handlers by querying the DOM
for some element and adding an event listener function to run when the event of interest
occurs. Here is how we might do this:

document.querySelector('form').addEventListener('click', validateForm);

function validateForm() {
 alert('The form is valid!');
}

In the early days of JavaScript, we probably would have used HTML event attributes in
order to respond to user events on some element. The equivalent code for this inline
approach to event handling might look something like this:

<form onsubmit="validateForm()">
 ...
</form>

In React, the way we do event handling is more like the inline JavaScript of yesteryear.
Elements in React can optionally take event handler properties in order to respond to user
inputs. A React element is the portion of a component that is returned from the render
function. In other words, it is a description of what we want rendered on the screen,
generally written in JSX. Our form from the previous example written in JSX would only
have a couple of subtle differences:

<form onSubmit={validateForm}>

Building a Foundation in React

[26]

To show an example of event handling in context, let's return to our NewsItem example.
Let's imagine that we want our application to respond to a user clicking on the news item.
We can do this by creating an event listener function in the component and adding it to the
outer element in JSX:

import React, { Component, PropTypes } from 'react';
import Title from './Title';

export default class NewsItem extends Component {

 onClick() {
 alert(`You've clicked on ${this.props.titleText}`);
 }

 render() {
 return (
 <div
 className="news-item"
 onClick={this.onClick.bind(this)}
 >
 <Image />
 <Title
 highlighted
 >
 {this.props.titleText}
 </Title>
 <Byline />
 <Description />
 </div>
);
 }

}

NewsItem.propTypes = {
 titleText: PropTypes.string.isRequired
};

Take note that we are binding the render method's this context to the onClick method
when adding it as a click handler:

onClick={this.onClick.bind(this)}

Building a Foundation in React

[27]

We need to do this in order to ensure this has the same meaning in the onClick method as
it does in other component methods. This way, we can still access props and call other
component methods. However, the better way to bind the this context to the event handler
method is to do so within the component's constructor:

constructor(props) {
 super(props);
 this.onClick = this.onClick.bind(this);
}

Then there is no need to re-bind the event handler in the JSX, which can be simplified:

<div
 className="news-item"
 onClick={this.onClick}
>

This method is preferred not only because it reduces the amount of typing, but also because
React internally optimizes to make it more efficient.

Event listeners in React, much as they do without React, receive an optional argument that
is an object representing the user event. We can access this event object in order to suppress
default behavior, for instance, in a form submission, by using event.preventDefault().
We can also use the event object to, for example, see what document element was targeted
by the action or, in the case of a key press event, see which specific key was pressed by the
user. To get access to the event, we just need to add it as a parameter to our event listener
method:

onClick(event) {
 console.log('User event', event);
 alert(`You've clicked on${this.props.titleText}`);
}

State
Occasionally, a component will need to keep track of some internal state in addition to the
external, read-only, properties that are passed into it. State is necessarily internal to the
component and, generally, exclusively tied to some visual display option (for instance, is
the component visually expanded or collapsed).

Building a Foundation in React

[28]

Much in the same way that a component instance can access external properties via
this.props, a component instance can access its internal state using this.state. Using
internal state, we could optionally show parts of NewsItem only when that item is in an
expanded state:

render() {
 let body = null;

 if (this.state.expanded) {
 body = (
 <div>
 <Byline />
 <Description />
 </div>
);
 }

 return (
 <div
 className="news-item"
 onClick={this.onClick}
 >
 <Image />
 <Title
 highlighted
 >
 {this.props.titleText}
 </Title>
 {body}
 </div>
);
}

We can see now that the body variable will only be defined if the internal state is expanded.
Another thing we can see here is that a <div> element has been added around the
description and byline. The reason we do this is because JSX elements must have a
single root node in order to return them or store them in a variable. Alternatively, we could
have stored each element in its own variable:

render() {
 let byline = null;
 let description = null;

 if (this.state.expanded) {
 byline = <Byline />;
 description = <Description />;
 }

Building a Foundation in React

[29]

 return (
 <div
 className="news-item"
 onClick={this.onClick}
 >
 <Image />
 <Title
 highlighted
 >
 {this.props.titleText}
 </Title>
 {byline}
 {description}
 </div>
);
}

While this code is completely valid, we can make it even better by splitting out conditional
rendering into a separate method:

renderBody() {
 if (this.state.expanded) {
 return (
 <div>
 <Byline />
 <Description />
 </div>
);
 }
 return null;
}

Then, we can use this helper method within our main render() method in order to make
things a bit clearer:

render() {
 return (
 <div
 className="news-item"
 onClick={this.onClick}
 >
 <Image />
 <Title
 highlighted
 >
 {this.props.titleText}
 </Title>
 {this.renderBody()}

Building a Foundation in React

[30]

 </div>
);
 }

We've now seen how to use internal state to render things conditionally, but we have not
yet seen how that state is defined or how it is modified. In React, we can specify the initial
values of internal state by assigning them in the constructor of the component. The
component's initial state, much like its default properties, should be a JavaScript object:

constructor(props) {
 super(props);

 this.state = {
 expanded: false
 };

 this.onClick = this.onClick.bind(this);
}

This method describes the initial state of a component, but it does not provide us with any
means to update that state. In order to update the state of a component, we can use a
React component's setState method to assign, or reassign, any internal state value.

Typically, updating state happens as a response to some user input or user event. In the last
section, we learned how to define methods that respond to these user events, such as clicks,
and how to attach these event listeners to the appropriate React element. Let's modify our
onClick event handler to change the expanded state of our component instead of simply
alerting:

onClick() {
 this.setState({
 expanded: !this.state.expanded
 });
}

When we use setState in this way, React will notice that the internal state has changed,
and this will trigger a new rendering using the new internal state. For this reason, we
should never manipulate the state of a component directly:

//Do not do this
this.state.expanded = false;

Building a Foundation in React

[31]

If we change the internal state directly, React's rendering engine will not become aware of it
and the component we see on our page will differ from the one in JavaScript. The same goes
for props; they are external and should only be changed as a result of new values being
passed in through JSX:

//Also don't do this
this.props.titleText = 'Hello World!';

Now that we've demonstrated how to use internal state to display something
conditionally, how to initialize state by setting it in the constructor method, and how to
modify internal state in response to some user event using setState, let's look at all of this
in context in our NewsItem component:

import React, { Component, PropTypes } from 'react';
import Title from './Title';

export default class NewsItem extends Component {

 constructor(props) {
 super(props);

 this.state = {
 expanded: false
 };

 this.onClick = this.onClick.bind(this);
 }

 onClick() {
 this.setState({
 expanded: !this.state.expanded
 });
 }

 renderBody() {
 if (this.state.expanded) {
 return (
 <div>
 <Byline />
 <Description />
 </div>
);
 }
 return null;
 }

 render() {

Building a Foundation in React

[32]

 return (
 <div
 className="news-item"
 onClick={this.onClick}
 >
 <Image />
 <Title
 highlighted
 >
 {this.props.titleText}
 </Title>
 {this.renderBody()}
 </div>
);
 }

}

NewsItem.propTypes = {
 titleText: PropTypes.string.isRequired
};

Now we have a component for our news item that starts out collapsed (not expanded) and
not showing the description or byline, but when the user clicks on the news item, it expands
to show the two previously hidden elements.

The component lifecycle
Every React component that is rendered into the DOM goes through a series of steps before
and after rendering. As React component developers, we can hook into these steps, called
the component lifecycle, in order to perform tasks or check conditions specific to some
stage in that lifecycle:

Building a Foundation in React

[33]

Mounting the component

Before a component is mounted, which means placed into the DOM for the first time, React
will look at that component's class to see if it has a method called componentWillMount
defined. Should this method exist, React will invoke it. This method is a good place to do
things such as set up timers needed by the component or request data the component needs
from the server:

componentWillMount() {
 //Decrement an internal state counter every second
 setInterval(() => {
 this.setState({
 secondsLeft: this.state.secondsLeft - 1;
 });
 }, 1000);
}

www.allitebooks.com

http://www.allitebooks.org

Building a Foundation in React

[34]

The next step in the component's lifecycle is the first render. The render() method we've
seen before. React calls this method and then, the first time, converts the JSX element output
to HTML elements and places them in the DOM. In other words, it mounts the component.

Once mounting is complete, the next step in the lifecycle, an optional method called
componentDidMount, is called. This is often an integration point for non-React libraries.
With that said, a word of warning: it is generally not a good idea to use libraries that
manipulate the DOM alongside React. Remember that React works by keeping a virtual
representation of the DOM in memory in order to calculate change sets and apply them.
When other libraries are modifying the DOM, it can quickly become out of sync with what
React expects. This could, and more often than not, will, lead to errors when React tries to
reconcile changes:

componentDidMount() {
 //Integrate with an external library here
}

From here, the component is stable and its lifecycle dormant until one of two things
happens. The first thing that could happen is the component's parent could pass it new
props. The second is some event or interval triggers a change in internal state. These two
actions, of course, necessitate a re-render. Before a re-render happens, there are a few other
lifecycle methods that will be called.

The update cycle
The first method called during a property update cycle is componentWillReceiveProps.
Here, we not only know that the component is about to receive a new set of properties, but
we also can see what those properties are and how they compare to the old ones:

componentWillReceiveProps(nextProps) {
 //an object of new props
 console.log(nextProps);

 //The current (old) props
 console.log(this.props);
}

This lifecycle method is a good place to update state that is somehow derived from props
because it is the only update lifecycle method that is not called for both prop and state
changes.

Building a Foundation in React

[35]

This brings us to the next lifecycle method that is called when either props or state are
updated: shouldComponentUpdate. This method is unique among lifecycle methods in
that it is the only one that expects a return value. As you may be able to guess, the return
value expected is a Boolean. If the method returns true, the lifecycle continues as we expect
it. However, if shouldComponentUpdate returns false, the lifecycle is short-circuited
here and a re-render does not occur. Within this method, we can see not only the new
properties, but also the new state that will be rendered:

shouldComponentUpdate(nextProps, nextState) {
 if (this.props.uid !== nextProps.uid) {
 return true;
 }
 return false;
}

If a component does not define this method, it is always assumed to be true. React, though,
gives you the ability to override this behavior. This can become important in large
applications with many components and many layers of component nesting. Using
shouldComponentUpdate, we can fine-tune when a component re-renders in order to
enhance the performance of our application. This is important because, while React is good
at optimizing renders, rendering is still computationally expensive and excessive rendering
can slow down an application to the point where a user can feel stuttering.

If shouldComponentUpdate returns true (or is not defined by the component), the next
step in the lifecycle is componentWillUpdate, which is the last step before re-rendering.
Here, like in shouldComponentUpdate, we have access to both the new properties and the
new state:

componentWillUpdate(nextProps, nextState) {
 //Prepare for render!
}

At this point, React will call render on the component again, getting its new JSX
representation. It will compare this new JSX to the old JSX in the virtual DOM and create a
change set to apply to the real DOM. Once this process is complete, we arrive at the next
step of the lifecycle, which is componentDidUpdate. This method is very similar to
componentWillUpdate, except that it receives the previous properties and state as
arguments:

componentDidUpdate(prevProps, prevState) {
 //Here are the old props
 console.log(prevProps);

 //And here are the current (new) props

Building a Foundation in React

[36]

 console.log(this.props);
}

Now, we've completed the update lifecycle. At this point, once again the component
remains dormant until another change in properties or state occurs. This process continues
over and over again until the component is removed, or unmounted, from the DOM.

Unmounting the component
Just before a component is removed from the DOM, the final stage of the component's
lifecycle will be completed. Here, React calls the optional componentWillUnmount method,
which receives no arguments.

This method is a good place to clean up anything that the component created over the
course of its life. For instance, if the component started an interval upon mounting, here
would be a good place to stop that interval. In our componentWillMount example, we
showed starting a countdown interval that fired every second after the component
mounted. If we store that interval's ID in state, we can then stop the interval when the
component is being unmounted:

componentWillMount() {
 //Save the interval in state
 this.setState({
 tickInterval: setInterval(() => {
 this.setState({
 secondsLeft: this.state.secondsLeft - 1;
 });
 }, 1000);
 });
}

componentWillUnmount() {
 //Stop the countdown before unmounting
 clearInterval(this.state.tickInterval);
}

While we've gone through and demonstrated how each lifecycle method might be used
within a component, it is important to point out that we would very rarely need to use
every component lifecycle method in a single component. Remember that each one is
optional and need not be defined by the component unless some feature of its functionality
necessitates it. In fact, our NewsItem component does not need any of these lifecycle
methods to do exactly what we want.

Building a Foundation in React

[37]

Alternate component forms
In React, there are three ways to define a component. The way we've seen so far uses
ES2015 classes to define a component and its methods. This is currently the most common
method for defining React components and, in fact, the one you'll encounter most often in
documentation and in this book.

React.createClass
Before ES2015 and its class syntax became popular and brought into React, the way to
define a component was by using the React.createClass function. This function takes as
an argument a JavaScript object that describes the component and its methods. This
conceptually is very similar to the way we have seen so far, but has some syntactic
differences. To demonstrate, let's take a look at what our NewsItem component looks like
using this method:

React.createClass({

 propTypes: {
 titleText: PropTypes.string.isRequired
 },

 getInitialState() {
 return {
 expanded: false
 }
 },

 onClick() {
 this.setState({
 expanded: !this.state.expanded
 });
 },

 renderBody() {
 if (this.state.expanded)
 return (
 <div>
 <Byline />
 <Description />
 </div>;
);
 }
 return null;

Building a Foundation in React

[38]

 },

 render() {
 return (
 <div
 className="news-item"
 onClick={this.onClick}
 >
 <Image />
 <Title
 highlighted
 >
 {this.props.titleText}
 </Title>
 {this.renderBody()}
 </div>
);
 }

});

Other than the obvious syntactic differences, there are a few subtle differences in how we
define and use components with React.createClass that we should draw our attention
to. The first is instead of simply assigning the state in the class constructor, we define a
getInitialState method in the component, which returns the initial component state as
an object:

getInitialState() {
 return {
 expanded: false
 }
}

The next thing we might notice is that, previously, event handler functions were bound to
the component's this context either in the constructor or within the event attribute
assignment. When using the React.createClass syntax, we have no longer need to
explicitly bind the context:

<div
 className="news-item"
 onClick={this.onClick}
>

Building a Foundation in React

[39]

We may have also noticed that rather than defining the propTypes statically on the class,
we instead do it within the component object:

propTypes: {
 titleText: PropTypes.string.isRequired
}

This component does not need default properties, but if it did, we would also define those
inside the component object. We do this by defining a method similar to getInitialState
called getDefaultProps that also returns an object:

getDefaultProps() {
 return {
 someProp: 'some value'
 }
};

Functional components
For simple components that maintain no internal state, we can define them simply as
functions that take props as input and return JSX elements as output. These components are
not only succinct, but may in the future be more performant than components defined in
other ways. For these reasons, it is recommended that we use functional components
wherever possible.

Because of its simplicity and lack of internal state, our Title component from an earlier
section is a good candidate for being a functional component. Here is what that component
would look like with this alternate syntax:

const Title = (props) => (
 <h1
 style={{
 backgroundColor: props.highlighted ? 'yellow' : 'white',
 fontSize: `${props.fontSize}px`
 }}
 >
 {props.children}
 </h1>
);

Building a Foundation in React

[40]

Taking advantage of ES2015 arrow function syntax, our large traditionally defined
component has been simplified to a single function.

In addition to not having internal state, functional components don't have lifecycle
methods. They can, however, have defaultProps and propTypes that can be specified in
the same manner as class components:

Title.propTypes = {
 titleText: PropTypes.string.isRequired
};

Summary
The React library has created a new way to develop user interfaces for web applications
through creating declarative and composable components in the new, but familiar, JSX
syntax. Since its introduction, it has grown immensely in popularity. At Facebook's F8
developer conference in 2016, it was estimated that upwards of 250,000 developers were
using React in some way. This enthusiasm led the community to look for new places to use
their favorite library, and in early 2015, React Native was born.

In this chapter, we covered the fundamentals of React, from conception to implementation.
We learned how to take a user interface and structure it as components, the building blocks
of React applications. Starting with simple components, such as a static title, we then built
up to more complex components by adding props, event handlers, state, and lifecycle
methods. Finally, we looked at some alternate ways of representing React components and
discussed when each was appropriate.

In the next chapter, we will take this knowledge of React into the realm of native mobile
applications by building a Hello World application in React Native.

2
Saying HelloWorld in React

Native
Now that we've introduced you to the basics of programming in React, it's time to dig into
some of the underlying tools and technologies that make React Native work. This will
provide valuable context as you progress through the remainder of this book. We'll also
touch on some of the more popular mobile development alternatives to React Native. This
will help you understand where React Native fits into the broader mobile development
ecosystem and better inform your decision-making as to which technology best suites your
mobile requirements.

Once we've completed setting context, we'll switch gears and focus on configuring your
computer for running and debugging your very first React Native application using the iOS
Simulator. Since our immediate goal is to get you up and running quickly, we'll only focus
on configuring your environment for iOS. Chapter 9, Refactoring for Android, is entirely
dedicated to configuring your computer for Android development and refactoring your
app to run across both platforms. We will also save much of the React Native API specifics
for Chapter 4, Starting our Project with React Native Components and APIs.

In this chapter, we'll cover the following topics:

A review of a few popular mobile development options catered toward
JavaScript developers
A review of the various software and tools we'll use to build React Native
applications
Installing and configuring all the software needed to build our first React Native
app
Walk through basic strategies for debugging in React Native

Saying HelloWorld in React Native

[42]

Understanding the mobile app development
ecosystem
When it comes to building mobile applications, the two most popular approaches have
been, first, building a native application for each target platform (iOS, Android, and so on),
and second, writing a hybrid application by using web technologies (HTML, CSS, JavaScript)
and wrapping the app inside of a container WebView using a tool such as Adobe
PhoneGap. Each option has its pros and cons. Native applications often feel faster and more
responsive. They have built-in support for complex touch gestures and they look and feel
consistent with their platform. As a post from the Facebook blog states, the reason we build
native apps on these proprietary platforms is that right now, we can create better-feeling experiences
that are more consistent with the rest of the platform than we can on the web. (Source: h t t p s ://c o
d e . f a c e b o o k . c o m /p o s t s /1014532261909640/r e a c t - n a t i v e - b r i n g i n g - m o d e r n - w e b - t e c h n

i q u e s - t o - m o b i l e /) However, this comes at a cost. For one, the native technology stacks are
completely different from one another. Developing a native application for iOS typically
involves authoring your code in Objective-C or Swift. Android applications are often
written in Java. Additionally, the environment you write your code in is different. Xcode is
the de facto choice for iOS development, and Android development is typically done with
tools such as Eclipse or Android Studio. Juggling lots of tools and languages shouldn't be
anything new to seasoned frontend developers. However, couple these differences with
differing best practices, approaches to networking, and a limited number of sharable assets
across platforms and you've got quite a bit of work ahead of you just to get a cross-platform
app off the ground.

Hybrid applications are a very popular alternative, particularly for those with frontend
development experience. Hybrid apps are easier to scale because you only have to author
one codebase that can be deployed to multiple platforms. For a large swath of applications,
the hybrid approach makes sense, particularly if you or your team's skill set mostly aligns
with that of your traditional frontend developer: HTML, CSS, and JavaScript. However,
achieving the same level of responsiveness and gesture support as a native app can prove
deeply challenging.

In this section, I'll provide an overview of a few mobile development frameworks. This is
not intended to be comprehensive list. Other options, such as Titanium (h t t p s ://w w w . a p p c

e l e r a t o r . c o m /), Fuse (h t t p s ://w w w . f u s e t o o l s . c o m), and others may also be worth
exploring.

https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.appcelerator.com/
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com
https://www.fusetools.com

Saying HelloWorld in React Native

[43]

Adobe PhoneGap
Adobe PhoneGap is a very popular solution to hybrid development. It's built off the open
source Apache Cordova library and provides a Command Line Interface (CLI) for
packaging your web application built with HTML, CSS, and JavaScript inside of a native
container that can be installed and deployed to native app stores. The native container is a
WebView that removes any browser window decoration and runs your web application in
full screen. PhoneGap allows you to access different native APIs, such as the device's
camera, GPS, and accelerometer. Additionally, Cordova has a rich ecosystem of plugins that
provide a bridge to all sorts of phone features that can be interfaced directly within your
JavaScript code.

Ionic
Ionic is another hugely popular hybrid application framework. It comprises two major
pieces: Ionic Framework (h t t p ://i o n i c f r a m e w o r k . c o m /) and the Ionic CLI (h t t p ://i o n i c

f r a m e w o r k . c o m /d o c s /c l i /). Ionic Framework is a mobile framework that includes
common UI widgets appropriate for mobile interfaces such as action sheets, mobile
navigation, infinitely scrolling lists, and popovers. These components are built on top of
Google's Angular JS (h t t p s ://a n g u l a r j s . o r g /) framework using Angular directives. If
you're familiar with Angular, working with Ionic should be really straightforward. The
Ionic CLI is a tool for managing a lot of the tedious parts of mobile app development, such
as scaffolding, building, and deploying to phones. Ionic CLI also provides multiple
templates for beginning your project based on common UI patterns. Similar to PhoneGap,
Ionic is built on top of Cordova. This means you'll be able to leverage the same Cordova
plugins in your Ionic applications. Currently, Ionic is built using Angular 1.x. As of this
writing, Ionic 2 is available for preview and will pair with the newly released Angular 2
framework.

NativeScript
Telerik's open source NativeScript lets you build native apps for iOS and Android (they
also plan to add support for Windows Universal apps soon) with an approach similar to
React Native. Unlike the Cordova options, there is no WebView rendering HTML and CSS.
NativeScript relies on JavaScript running on the device with JavaScriptCore on iOS and V8
for Android.

http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
http://ionicframework.com/docs/cli/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/

Saying HelloWorld in React Native

[44]

Your JavaScript code communicates through NativeScript to the underlying platform
rendering real native views. NativeScript uses XML markup for declarative UIs that can
even be customized per platform either using separate XML files (that is, myView.ios.xml
and myView.android.xml) or using platform-specific tags within a view.

As the NativeScript site states, “NativeScript has a lot of cool features, such as
two-way data binding between JavaScript objects and native UI components, and
a CSS implementation for native apps.” (Source: h t t p ://d e v e l o p e r . t e l e r i k

. c o m /f e a t u r e d /n a t i v e s c r i p t - w o r k s /).

One important differentiator between NativeScript and alternative offerings is its ability to
directly access all native platform APIs through JavaScript. The Telerik site provides several
good examples of what this might look like in an application:

var alert = new UIAlertView();
alert.message = "Hello world!";
alert.addButtonWithTitle("OK");
alert.show();

(Source: h t t p ://d e v e l o p e r . t e l e r i k . c o m /f e a t u r e d /n a t i v e s c r i p t - w o r k s /)

In the preceding sample, UIAlertView is a native class in Objective-C. NativeScript allows
you to access these native APIs without needing to touch Objective-C or Java. The
NativeScript runtime injects into the global namespace of the platform's JavaScript virtual
machine all the meta information of the iOS or Android API. This allows you to successfully
execute something like the following in an Android environment:

var time = new android.text.format.Time();

(Source: h t t p ://d e v e l o p e r . t e l e r i k . c o m /f e a t u r e d /n a t i v e s c r i p t - w o r k s /)

NativeScript allows you to style your application using a subset of the CSS language. You
can place your CSS inline, in page-specific CSS files, or in application-wide CSS files. You
can also layout your views using the predefined layouts–AbsoluteLayout, DockLayout,
GridLayout, StackLayout, and WrapLayout. These web-like paradigms make
NativeScript a very enticing option for frontend developers looking to develop native
applications.

http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/

Saying HelloWorld in React Native

[45]

React Native
React Native is an open source project released by Facebook in March 2015. The goal of
React Native is to allow developers to write high-quality native applications for iOS and
Android using familiar web technologies. It uses the same declarative approach to
constructing user interfaces as React for the web. React Native also aims to reduce many
native development inefficiencies. Rather than deal with the slow process of write > compile
> deploy > debug, which can cripple development on larger native apps, React Native
allows you to simply refresh the app after making a change without the slow compile and
deploy steps, just like on the Web! This makes for a much improved developer experience.
And, unlike normal native development, React Native allows you to share far more code
across platforms. However, Facebook points out that React Native is not intended to be a
write once, run anywhere solution. They acknowledge that each platform has its own look,
feel, and capabilities. Instead, React Native allows you to leverage common technologies to
build across multiple platforms. They call this learn once, write anywhere.

React Native apps are authored very similarly to React for the Web. You write your
business logic in JavaScript and compose your views using JSX. Similar to NativeScript,
React Native does not rely on WebViews. React Native runs an embedded instance of
JavaScriptCore that communicates through the React Native bridge to platform-specific
native components that look and feel as they should on the platform. React Native also
exposes underlying platform APIs, allowing you to access the device's camera, GPS, and the
like all in JavaScript. However, unlike NativeScript, React Native has you compose your
application just like React–by creating a nested component tree structure.

React Native maintains its high performance by executing layout calculations and
JavaScript on separate threads, leaving the main thread focused on rendering native views,
handling gestures responses, and smooth animations. React components are themselves
pure, side-effect-free representations of the application state. UI updates are prompted by
changes to a component's props or state. React then goes through its usual update lifecycle
and asynchronously batches up the minimal updates necessary to send over the React
Native bridge. The bridge is how JavaScript then communicates to the native side and how
the native side messages back to JavaScript. However, you can think of the bridge as an
implementation detail that can be largely ignored in your day-to-day development. For the
most part, you can focus on writing your code in JavaScript using the React Native APIs
and let React Native take care of the ugly parts.

Saying HelloWorld in React Native

[46]

React Native comes bundled with support for many APIs you're used to seeing on the Web.
This include, among others, networking APIs for fetch, XMLHttpRequest, and WebSockets
along with geolocation and requestAnimationFrame. React Native has built-in support
for ECMAScript 2015 and parts of ECMAScript 2016. The React Native Packager (more on
this later) runs Babel, a tool for transpiling ES2015 and ES2016 into ECMAScript 5. This is
necessary as many older JavaScript runtimes only support parts of ES2015 at this point. But
thanks to Babel, this means you can leverage many of the new JavaScript language features
in your React Native apps.

If you're unfamiliar with Babel, you can experiment with it in the Babel
REPL available on their website at h t t p s ://b a b e l j s . i o /r e p l /.

Extending React Native
Being a JavaScript framework, you're automatically able to leverage a vast number of
JavaScript libraries such as Moment.js and Lodash. But every now and then you'll need to
do something that requires native code that isn't available in the React Native API. Through
React Native's Native Modules, you can extend the capabilities of React Native allowing
you to access platform APIs, reuse existing native code, or perhaps offload an expensive
task to the native side. A rich ecosystem of React Native plugins already exists, adding
support for things like Google's Material Design, barcode scanners, and an assortment of
user interface components. As a testament to how far React Native can be extended, during
Facebook's 2016 F8 conference, a React Native plugin for the Microsoft Windows Universal
Platform was announced. This opens up React Native development to both Windows and
Xbox. We'll touch more on this in Chapter 12, React Native Tools and Resources. We'll also
review how you can build your own Native Module in Chapter 10, Using and Writing
Native Modules.

Introducing style and layout in React Native
Before we wrap up our introduction to React Native, we must discuss style. Similar to
NativeScript, React Native borrows many ideas of styling for the Web. However, unlike
NativeScript, you don't author CSS selectors in a CSS file. Instead, you write JavaScript
objects that align with many familiar CSS properties. For example, in CSS, you might write
the following:

.container {
 width: 400px;
 height: 400px;

https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/
https://babeljs.io/repl/

Saying HelloWorld in React Native

[47]

 background-color: #222222;
}

.box {
 border-width: 2px;
 border-color: #cc0000;
}

However, in React Native, you would write the following in JavaScript:

const styles = StyleSheet.create({
 container: {
 width: 400,
 height: 400,
 backgroundColor: '#222222'
 },
 box: {
 borderWidth: 2,
 borderColor: '#cc0000'
 }
});

Note that instead of writing properties such as border-color, you instead write the camel
cased borderColor. This approach actually follows the same conventions used when
updating DOM style properties for the Web. Because these are JavaScript objects, you'll
need to add quotes around strings. Also, you must omit units such as px for numeric
values.

There are several reasons why the React Native team chose not to implement CSS as it exists
on the Web. CSS at scale is hard. It's not impossible. But it is hard. There are many
approaches for scaling large CSS libraries for the Web, such as OOCSS, BEM, and SMACSS.
Each has its own take but none can escape one of CSS's biggest hurdles: everything is
entirely global. CSS was never intended to be isolated from the global namespace. For many
developers, this seems counterintuitive since global variables are usually a bad practice.
Even tools such as Bootstrap and Zurb's Foundation rely heavily global SCSS variables.
Writing CSS in JavaScript allows you to isolate styles from the global name space.

There's one other major piece to React Native's approach to layout. React Native uses
flexbox as the default layout system. If you're familiar with flexbox for the web, it operates
very similarly. We'll go much deeper on style and layout in Chapter 3, Styling and Layout in
React Native. For now, let's get our environments configured to build our first React Native
application.

Saying HelloWorld in React Native

[48]

Understanding all the React Native tools
Like most modern development, there are a few tools required to build a React Native
application. Luckily, React Native is pretty easy to configure relative to many frameworks
out there. We'll get into installing all these tools shortly. First, let's review what all the tools
are how they fit into the bigger picture of developing a React Native app.

Xcode
In order to build an iOS application, you'll need Apple's Xcode IDE. React Native runs on
iOS 7 and above. This means that you'll need Xcode version 7.0 or higher. (We'll be using
Xcode 8 in this book.) Whether you love, hate, or are altogether indifferent about Xcode, we
won't actually be spending much time in it.

Initially, we'll just use Xcode to launch our app in the iOS Simulator. Also, because we'll
mostly be testing our app in the iOS Simulator, you don't need to worry about enrolling in
the Apple iOS Developer Program. However, if and when you wish to ship an app to the
App Store, you will need to register. Gustavo Ambrozio has a wonderful series on how to
configure everything required for submitting to the Apple App Store; for more information,
refer to h t t p s ://w w w . r a y w e n d e r l i c h . c o m /8003/h o w - t o - s u b m i t - y o u r - a p p - t o - a p p l e - f r o

m - n o - a c c o u n t - t o - a p p - s t o r e - p a r t - 1.

Google Chrome
Wait, Chrome? I thought we were making native mobile apps? Don't worry. We are. If you've
been developing web apps for some time, chances are you've had some time to play with
Chrome's amazing DevTools. Thankfully, the Facebook team feels the same way. You can
actually debug your React Native apps running on the iOS Simulator or your native device
in Google Chrome. It's pretty amazing and is from my experience one the biggest selling
points when showing off React Native to other developers.

Homebrew (also known as brew)
Homebrew is a package manager for macOS (formerly known as Mac OS X). We won't be
interfacing with this tool much at all in this book. It'll simply be used for installing some of
the other tools we'll need to get our environments up and running. Once everything is
configured, you can almost forget it exists. If you're curious, though, you can find out more
about Homebrew on its website, h t t p ://b r e w . s h /.

https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
https://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/

Saying HelloWorld in React Native

[49]

Node.js and npm
Node.js is a server-side JavaScript runtime environment. React Native ships with some tools
that are written for Node.js. Additionally, we will use Node's package manager, npm, to
install the React Native command-line tool along with other libraries in later chapters.

It's very likely you've encountered Node and npm in the past. Almost all modern frontend
tooling, such as Gulp, Babel, or Webpack, run on top of Node.

Watchman
Watchman is an open source tool created by Facebook (h t t p s ://f a c e b o o k . g i t h u b . i o /w a t

c h m a n /). React Native's packager uses Watchman to recursively watch for changes to our
source code files across one or more directory trees. Once it detects a change, it
automatically rebuilds the JavaScript bundle. This allows us to sidestep one of the slowest
and most painful parts of native development.

Much like several of our other tools, once Watchman is installed, you won't have to worry
about it. The React Native Package Manager handles running Watchman for us.

Flow
Unlike the other tools mentioned, Flow is entirely optional. Flow is yet another open source
tool created by the Facebook team (h t t p ://f l o w t y p e . o r g /). It's used to add type
annotations to our JavaScript code. JavaScript, as you likely already know, is a dynamically
typed language. This means you never need to declare a variable as an int or a string.
You just declare a variable and set a value. The type is implicitly set based on the value you
assigned. This makes JavaScript an incredibly powerful and dynamic language. But as the
saying goes, with great power comes great responsibility.

That said, many JavaScript developers are embracing type annotation tools such as Flow as
a way to guard against potential errors in their code. Once you've annotated your code with
types, you can run flow from the terminal to verify everything is as expected.

https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/
http://flowtype.org/

Saying HelloWorld in React Native

[50]

Following is a simple example from the Flow website:

// @flow
function foo(x) {
 return x * 10;
}
foo('Hello, world!');

The previously code will execute without error but it isn't likely going to return a result
that's particularly useful. Passing a string to foo will result in NaN (Not a Number). So
here's how we might try to guard against this using Flow:

// @flow
function foo(x: number): number {
 return x * 10;
}
foo('Hello world');

Note the number type annotations that were added to both the function's parameters and
the function's return value. Now, running flow will produce an error alerting you that the
argument 'Hello world' is incompatible with the expected type.

Flow can be configured for a project by creating a .flowconfig file in the root directory of
your project. The React Native CLI actually provides you an initial configuration when it
creates your project.

React Native command-line interface (CLI)
The React Native CLI is a small Node app that offers a simple init command used to
create new React Native applications. There really isn't much to it. As we'll see shortly, once
you run the CLI, it will create a standard React Native app with all the necessary files and
dependencies needed to build an app for iOS and Android.

Installing our tools
At this point, we have covered what each of the tools in our tool chain is responsible for
doing. So with that out of the way, let's begin installing each of them.

Saying HelloWorld in React Native

[51]

Installing Xcode
The first thing you'll need to do is ensure you have version 7 or later of Xcode installed.
However, I recommend you install Xcode 8 as that's what we'll be using throughout this
book. If you already have Xcode installed, verify the version by launching the program and
then clicking on Xcode | About Xcode. You should see an image similar to the following
screenshot:

If you don't have Xcode installed, you'll need to download it from the Apple App Store. To
do this, launch the App Store application and search for Xcode using the search bar in the
top right corner of the window. Once you find it, click on the Get button and then Install
App. You may need to enter your Apple credentials before downloading. The Xcode
installer is pretty large, so while we wait on that, you can start downloading the next set of
tools.

Installing Homebrew
The next series of tools must be installed through the terminal. You can use the macOS
Terminal app or another terminal of your choosing. You can search for Terminal (or any
other application) by using Command + Space on your keyboard. Then type Terminal and
launch it.

Saying HelloWorld in React Native

[52]

Once the terminal is open, visit h t t p ://b r e w . s h in your web browser. Copy and paste the
Install Homebrew command into your terminal and press Enter. You'll need to have
administrator privileges in order to install Homebrew and most other tools. You may have
to press Return a second time for the terminal to ask for your password. Type in your
account password, press Return, and wait for Homebrew to finish installing:

Once it's done installing, your terminal window should look like the following:

http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh
http://brew.sh

Saying HelloWorld in React Native

[53]

Installing Node and npm
Next on our list are Node and npm. As the React Native docs recommend, you can install
this through brew:

 brew install node

Node comes with npm, so you don't have to worry about installing that separately. I
recommend installing the latest version of Node and npm, version 6 and 3, respectively, at
the time of writing.

Once you've installed Node, you can run npm -v and node -v from the terminal. If you see
version numbers, you're good to go:

Saying HelloWorld in React Native

[54]

Installing Watchman and Flow
Next up are Watchman and Flow. Again, Flow is entirely optional. If you wish to
experiment with it, you're welcomed to install it. It won't hurt anything. If you'd rather skip
it for now, that's totally fine as well.

From the terminal, run brew install watchman:

And if you wish, run brew install flow.

Installing the React Native CLI
Okay! We're almost done with installing everything. There's just one more it we need: the
React Native CLI. Again, from the terminal, run npm install -g react-native-cli.
Using npm, this will globally (-g) install the React Native CLI that you'll use to scaffold
your React Native applications. However, don't be surprised if you see an error that looks
like the following:

Saying HelloWorld in React Native

[55]

This is pretty common permission error. One way to get around this is by prefacing the
command with sudo, which will required you type your password. However, we can fix
our permissions pretty easily so that sudo is unnecessary. Here are the steps:

Type in npm config get prefix.1.
If you see /usr/local, then simply run sudo chown -R $(whoami) $(npm2.
config get prefix)/{lib/node_modules,bin,share}.
You'll be prompted for your user password. Enter it and press Return, and your3.
permissions should be set.
If after running npm config get prefix you get a different response, check4.
out h t t p s ://d o c s . n p m j s . c o m /g e t t i n g - s t a r t e d /f i x i n g - n p m - p e r m i s s i o n s .
There are more detailed instructions and different options for how to fix npm
permissions.

https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions

Saying HelloWorld in React Native

[56]

Once you have your permissions buttoned up, rerun npm install -g react-native-
cli. Once it's done, you should see something like the following:

Finally, you're all set. Now let's create an app!

Creating our first React Native app
If you're fairly well versed in navigating the terminal, go ahead and cd into whichever
directory you plan to place your code. We'll be putting this project on our desktop. You can
always move it later if wish.Enter the following into the terminal:

 cd ~/Desktop

Then type the following:

 react-native init HelloWorld.

Saying HelloWorld in React Native

[57]

This uses the React Native CLI we installed earlier to create a directory called HelloWorld.
It then downloads all the necessary dependencies needed to create our first React Native
app. Downloading these assets should only take a few minutes if you're on a reasonably fast
Internet connection. Once it's done installing, you should see something like the following
in your terminal:

Now back in your terminal, run the following:

 cd HelloWord

Then type the following:

 open .

Saying HelloWorld in React Native

[58]

This will open up a new Finder window in your HelloWorld directory, as shown in the
following screenshot:

Saying HelloWorld in React Native

[59]

Open the ios folder and then open HelloWorld.xcodeproject in Xcode, as shown in the
following screenshot:

Once Xcode has completed indexing your project, you should see the message HelloWorld:
Ready at the top center of the window. Click the build and run play button in the top left.
This will launch your HelloWorld application in the selected simulator. In the preceding
screenshot, the default simulator is the iPhone 7 Plus. If you'd like to change it to a different
device, select a different simulator from the dropdown. Then click build and run.

You may be prompted with a message asking if you wish to Enable
Developer Mode on this Mac. Click on Enable and the app will continue
building.

Saying HelloWorld in React Native

[60]

It's possible that the simulator device may look humongous on your screen, particularly if
you picked one of the recent iPhones. To adjust this to something more reasonable, make
sure the iOS Simulator is in the foreground. From the menu, select Window | Scale | 33%.
Feel free to pick a different scale option that best suits your computer screen. Refer to the
following screenshot:

Assuming everything ran successfully, you should see the default React Native app, as
shown in the following screenshot:

Saying HelloWorld in React Native

[61]

Going forward, you actually don't even need to open Xcode to run React Native apps.
Instead, run the following command from the root directory of your project:

 react-native run-ios

This will launch the app directly in iOS simulator without needing to open Xcode.

React Native Packager
You may have noticed a separate terminal window spawn when running your HelloWorld
app. This is the React Native Packager. It's a program similar to Browserify and Webpack,
which are responsible for resolving dependencies, transpiling, and bundling the JavaScript,
JSX, and other assets to be run on the device or simulator.

Saying HelloWorld in React Native

[62]

Understanding our HelloWorld app
This is great. We've got the app running in our simulator. Sure, it required a little bit of
work to install the necessary tools, but the good news is that the only thing we'll need to do
from this point forward is run the react-native init AppName command whenever we
wish to create a new app. All our tools are installed and we're ready to start developing. But
before we get into the meat and potatoes of React Native, let's quickly take a look at what
exactly the React Native CLI provided us. Open up package.json in your text editor of
choice. I'm using Atom (h t t p s ://a t o m . i o /) as shown in the following screenshot:

I want to call your attention to dependencies section. Here, you should only see two items
listed: react and react-native. At the time of writing, React Native is at stable version 0.35.0.
Given the pace of updates to React Native, yours is likely newer. That's fine. Just keep your
version in mind when seeking out help with React Native questions. The last file I want to
call your attention to is index.ios.j from the following screenshot:

https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/

Saying HelloWorld in React Native

[63]

There are four major parts to this file. Let's walk through them one by one.

Importing dependencies using ECMAScript 2015
It's worth calling this out since we'll be doing this a lot. At the top of this file, you'll see two
ES2015 import statement. The syntax follows the pattern import something from
'somewhere';. Using the first import as an example, we are telling the React Native
Packager that we require the React object from the React package found in the
node_modules directory. When our application runs, the React Native Packager will
resolve this dependency automatically, making the React object available in this file. You'll
need to do this in every file you create that creates a React component.

Saying HelloWorld in React Native

[64]

Additionally, you'll see other variable(s) inside curly braces beside the import React
statement:

import React, { Component } from 'react';

If you're new to ES2015, this syntax probably looks a bit foreign to you. Somewhat
confusingly, it also looks similar to ES2015 destructuring. However, it's not the same. In this
example, React and Component are both exported values from the React package. React is
what's known as the default export. This is why it appears outside the curly braces.
Anything inside the curly braces is named exports (to which you can have many). If you
still find this a bit confusing, the Mozilla Developer Network has a great write-up on this
topic. For more information, refer to h t t p s ://d e v e l o p e r . m o z i l l a . o r g /e n - U S /d o c s /W e b /J

a v a S c r i p t /R e f e r e n c e /S t a t e m e n t s /i m p o r t .The second import statement is where we
bring in everything that's React Native-specific. Take a look at the following code:

import {
 AppRegistry,
 StyleSheet,
 Text,
 View
} from 'react-native';

This includes a handful of React Native Components and APIs we'll be using extensively
throughout this book. However, I'll save the deeper exploration of these topics for the
coming chapters.

Our HelloWorld component
The next part of our code is the component itself:

class HelloWorld extends Component {
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>
 Welcome to React Native!
 </Text>
 <Text style={styles.instructions}>
 To get started, edit index.ios.js
 </Text>
 <Text style={styles.instructions}>
 Press Cmd+R to reload,{'\n'}
 Cmd+D or shake for dev menu
 </Text>
 </View>

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import

Saying HelloWorld in React Native

[65]

);
 }
}

This component is what will actually be rendered in our application. Don't worry just yet
about what a View or a Text component is. We'll cover all that in Chapter 4, Starting our
Project with React Native Components and APIs. But for now, let's change the code to see how
quickly we can test our application in the simulator. Take a look at the following steps:

Change Welcome to React Native! to Welcome to my first React1.
Native application! and save the file.
Switch back to your simulator and press Command + R.2.

Your app will quickly refresh and you'll see your changes immediately. Pretty amazing!
The following screenshot will give you a clear idea about the new interface:

Saying HelloWorld in React Native

[66]

HelloWorld style code
The following block of code represents the style and layout code:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 welcome: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10,
 },
 instructions: {
 textAlign: 'center',
 color: '#333333',
 marginBottom: 5,
 },
});

Feel free to experiment with these properties and values. As we mentioned earlier, this
should all feel similar to CSS. If you're unfamiliar with flexbox, don't fret as we'll be
covering it in much greater depth in the next chapter.

Registering the root component
The last piece of code of note is as follows:

AppRegistry.registerComponent('HelloWorld', () => HelloWorld);

The preceding code tells React Native that for our application called 'HelloWorld', set the
root component to be HelloWorld. You only need to call
AppRegistry.registerComponent once per app. Every other component will be a child
component contained within HelloWorld.

Saying HelloWorld in React Native

[67]

Why import React?
You may have noticed that we never directly reference the React object we imported at the
top of our file. So why do we need it? Can we just delete it? Try changing the first import
statement to the following:

import { Component } from 'react';

Now press Command + R in the Simulator to see what happens:

Saying HelloWorld in React Native

[68]

Right at the top, you'll see the message Can't find variable: React. This seems odd seeing
that we're not actually using the React variable anywhere, no? Well, here's what is
happening. Remember how we said that the React Native Packager transpiles our ES2015
and ES2106 code into ES5? This is also true of JSX code. As you probably already know,
<Text>Hi there<Text> is not a valid JavaScript expression. The React Native Packager,
using Babel, transpiles the JSX code into something similar to the following:

return React.createElement(Text, null, 'Hi there');

Note that Babel automatically converts our JSX code into React.createElement
statements. This is why you must always make the React object available to your source
code whenever you write JSX.

Debugging a React Native app
While being able to write in a familiar language makes writing React Native apps relatively
easy for JavaScript veterans, there's another equally important part of the development
experience that we haven't touched upon–debugging. Earlier, we mentioned how Google
Chrome contains amazing JavaScript debugging tools. They are among the best out there
and are often why many frontend developers choose Chrome as their primary browser for
testing and development. Thankfully, the Facebook team has crafted React Native such that
we can debug our React Native JavaScript code in these familiar tools. When you debug
your React Native application, it runs in a proxy mode, whereby your application's JavaScript
is actually run inside of Chrome's V8 JavaScript engine instead of on the device or
simulator's JavaScriptCore engine. The React Native Packager will then broker
communication between the app and Chrome using web sockets.

Enabling the Chrome Debugger
As you may have noticed, our HelloWorld app actually provides some useful instructions
for us. For one, you can press Command + R to quickly reload your application after making
changes to your source code. Additionally, you can press Command + D to trigger the dev
menu. Let's try this out by following these steps:

Select your iOS Simulator and press Command + D.1.
An action sheet will appear providing you with a few options.2.
Click on Debug JS Remotely. This will launch a new tab in Chrome.3.

Saying HelloWorld in React Native

[69]

Take a look at the following screenshots:

Saying HelloWorld in React Native

[70]

If your app doesn't not respond to your keyboard presses, such as
Command + R, ensure the simulator is configured correctly. From the
simulator, select Hardware | Keyboard and make sure Connect Hardware
Keyboard is selected.

From Chrome, press Command + Option + J on your keyboard to open up the Chrome
DevTools console. With the developer tools open, let's experiment with some simple
debugging options in our HelloWorld app. Inside index.ios.js, add a console.log
statement. Take a look at the following code:

class HelloWorld extends Component {
 render() {
 console.log('Debugging from React Native');
 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>
 Welcome to React Native!
 </Text>
 <Text style={styles.instructions}>
 To get started, edit index.ios.js
 </Text>
 <Text style={styles.instructions}>
 Press Cmd+R to reload,{'\n'}
 Cmd+D or shake for dev menu
 </Text>
 </View>
);
 }
}

Now, select your iOS Simulator and press Command + R on your keyboard. This will
refresh the app in the simulator. Now, if you look in Chrome's console, you should see the
message Debugging from React Native. Take a look at the following screenshot:

Saying HelloWorld in React Native

[71]

Breakpoints
Strategically placing console log calls can be useful for monitoring the state of your
application. But what's often far more useful is setting breakpoints within Chrome's
DevTools. This will let you step line by line through your code to understand what exactly
is going on. To do this, follow these steps:Select the Sources tab in the Chrome DevTools:

Then press Command + P on your keyboard.1.
Search for the index.ios.js file. There may be two results that show up as2.
options. Try opening each of them until you find the one that matches our source
code.
Scroll down until you find your console.log statement you added. Then click3.
on the line number that appears to the left your code in the gray margin. This will
put a blue marker signifying a breakpoint has been set.

Saying HelloWorld in React Native

[72]

Now that we've set the breakpoint, let's test it to make sure our code actually hits it. To do
this, don't refresh the Chrome tab we're in. Instead, refresh the app inside the iOS
Simulator. Execution will now pause at our breakpoint and the app will appear as a blank
white screen, as shown in the following screenshot:

Saying HelloWorld in React Native

[73]

Here, we obviously don't have much of interest to step through. You can click on the
Resume (Play) button in Chrome's DevTools or press Command + \ on your keyboard and
the app will render as normal. You can remove your breakpoint by clicking on that same
blue marker we added earlier. Setting breakpoints throughout our app will become
increasingly useful as we begin to build more and more complex applications.

Summary
In this chapter, we covered a lot of ground. We talked about some of the different
approaches to building mobile applications and the inherit tradeoffs. We introduced what it
means to develop in React Native and how it ties together with the underlying tools and
technologies. And, far more importantly, we configured our computers for building and
debugging our very first React Native app. Now that we've covered the basics of React,
React Native, and debugging, in the next chapter, we'll dive deeper into how you can style
and lay out your application using flexbox.

3
Styling and Layout in React

Native
So far, we've covered the basics of React development. We understand how to work with
props and state and how to compose smaller, reusable components to form more complex
views. We've installed the necessary tools to get a React Native app off the ground and now
have a working Hello World app running in the iOS Simulator. The React Native API comes
with a large library of built-in components, which we'll explore in the next chapter. But
before we dive into the various component APIs, it's important we understand how to style
and layout these components, much like we would with CSS in the web world.

React Native's approach to style and layout is heavily inspired by the Web. Many of the
properties used to decorate your app will feel very familiar to CSS. For layout, rather than
relying on floats, the Facebook team has ported the powerful flexbox layout system to React
Native enabling us to make declarative, flexible layouts for our mobile apps. With all the
similarities to the Web, seasoned web developers might think they can skip past this
chapter. However, there are several notable differences between React Native and CSS that
are worth understanding before venturing on. We'll uncover these differences as we explore
the following topics:

How to construct and apply styles
Styling without inheritance
Flexbox and the box model
Styling text
Styling images
Debugging styles
Adding media-query-like behavior to your apps

Styling and Layout in React Native

[75]

Constructing and applying styles
Let's begin our exploration of component styling by first answering two key questions:
what should my style code look like and where does it go inside of my project?

Inline styles
Similar to HTML, styles in React Native can be applied inline by setting the value of the
style property, as shown in the following code:

<View style={{ backgroundColor: 'blue', flex: 1, justifyContent: 'center',
alignItems: 'center' }}>
 <Text style={{ color: '#fff', fontSize: 22 }}>Hello World</Text>
</View>

The output of the code will be as shown in the following screenshot:

Styling and Layout in React Native

[76]

You can think of a View much like a div and Text similar to a span or label. Those
differences aside, the style properties and values should feel pretty familiar. The color
property sets the text color just like in CSS. fontSize, backgroundColor,
justifyContent, and alignItems are by and large the camel case version of their CSS
equivalents.

Styles as objects in your React Native
components
As you may have noticed, style values are defined as JavaScript objects. You can define
them inline as we did in the previous section or you can define them outside of your
component and simply reference them, as shown in the following code:

const DemoComponent = () => (
 <View style={viewStyles}>
 <Text style={textStyles}>Hello World</Text>
 </View>
);

const viewStyles = {
 backgroundColor: 'blue',
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
};

const textStyles = {
 color: '#fff',
 fontSize: 22
};

This will produce an app that looks identical to the inline style example. However, now that
we've moved our style declarations outside of the component, our code is far more
readable.

In CSS, you can apply multiple CSS classes to an individual element:

<button class="btn btn-primary">Submit</button>

Styling and Layout in React Native

[77]

For those new to CSS, you might think that because you added btn-primary after btn, the
btn-primary rules would trump any conflicts with btn. In reality, conflict resolution in
CSS is controlled by specificity. In React Native, specificity rules operate differently and
arguably more predictably. In the following example, we'll use the built-in
TouchableHighlight component. Think of these as just buttons for React Native. Take a
look at the following code:

const DemoComponent = () => (
 <View style={viewStyles}>
 <TouchableHighlight style={[btn, btnPrimary]}>
 <Text>Submit</Text>
 </TouchableHighlight>
 </View>
);

const viewStyles = {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
};

const btn = {
 borderStyle: 'solid',
 borderColor: '#d5d5d5',
 borderWidth: 1,
 backgroundColor: '#eee',
 borderRadius: 3,
 padding: 3,
 paddingLeft: 5,
 paddingRight: 5
};

const btnPrimary = {
 backgroundColor: '#60b044',
 borderColor: '#5ca941'
};

Firstly, note that you combine multiple style definitions by wrapping the objects in an array.
The net result of this in React Native is effectively the same, as follows:

style={Object.assign(btn, btnPrimary)}

Styling and Layout in React Native

[78]

Object.assign will merge the two objects together, favoring later arguments. In our case,
the btn and btnPrimary objects will merge. If properties on btnPrimary exist that do not
exist on btn, they will be added. If properties exist on both, btnPrimary properties will
trump btn. In our example, this results in the following:

{
 borderStyle: 'solid',
 borderColor: '#5ca941',
 borderWidth: 1,
 backgroundColor: '#60b044',
 borderRadius: 3,
 padding: 3,
 paddingLeft: 5,
 paddingRight: 5
}

Styling and Layout in React Native

[79]

Stylesheet
You may have noticed in the previous chapter that the style code produced for us through
the React Native CLI looked a little bit different than what we've demoed thus far. In our
HelloWorld application, the style code looks like the following:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 welcome: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10,
 },
 instructions: {
 textAlign: 'center',
 color: '#333333',
 marginBottom: 5,
 },
});

For starters, everything is wrapped in a container object. This means we'll apply individual
style rules like so—styles.container, styles.welcome, and styles.instructions.
But more importantly, we've made our container an argument to StyleSheet.create().

The StyleSheet component comes from the top of our index.io.js file in the import
statement. The create() method does a few things for us. For one, it will validate all the
style properties passed to it. Therefore, see what happens if you run the following code:

const stylesWithError = StyleSheet.create({
 container: {
 flex: 1,
 madeUpStyleRule: 'thisWillFail'
 }
});

Styling and Layout in React Native

[80]

React Native would throw a big red error on screen letting you know you made a mistake.
Knowing this upfront can definitely come in handy when trying to debug style and layout.
Take a look at the following screenshot:

If you were to apply a similarly invented style without wrapping it in
StyleSheet.create(), you would probably only see a warning. Ultimately,
StyleSheet.create() will return an object allowing you to reference each individual
property name by an ID. This might not be immediately useful to us as developers, but it
potentially allows Facebook to optimize React Native's messaging of these style definitions
and updates across the bridge. The style object would only have to be sent once. Any
subsequent usage of that object can just send the ID over the bridge. As the Facebook
documentation notes, this isn't yet implemented but something they could optimize for in
the future.

Styling and Layout in React Native

[81]

Using Stylesheet.hairlineWidth
There's one other property of the StyleSheet object worth mentioning. While you'll
usually define widths using numeric values, the StyleSheet object also exposes a
hairlineWidth property. To demonstrate, let's use what we've learned thus far to create
four buttons. Two will be default buttons and two will be primary buttons. However, we'll
assign one gray button and one primary button to have a hairlineWidth border, as shown
in the following code snippet:

const buttonStyles = StyleSheet.create({
 core: {
 borderStyle: 'solid',
 borderColor: '#d5d5d5',
 borderWidth: 1,
 backgroundColor: '#eee',
 borderRadius: 3,
 padding: 3,
 paddingLeft: 5,
 paddingRight: 5
 },
 primary: {
 backgroundColor: '#60b044',
 borderColor: '#355f27'
 },
 hairlineBorder: {
 borderWidth: StyleSheet.hairlineWidth
 },
 spacer: {
 marginBottom: 10
 }
});

Now, we'll update the component with our four sample buttons:

<View style={viewStyles}>
 <TouchableHighlight
 style={[buttonStyles.core, buttonStyles.spacer]}
 >
 <Text>Default Normal</Text>
 </TouchableHighlight>
 <TouchableHighlight
 style={[buttonStyles.core, buttonStyles.hairlineBorder,
buttonStyles.spacer]}
 >
 <Text>Default Hairline</Text>
 </TouchableHighlight>
 <TouchableHighlight

Styling and Layout in React Native

[82]

 style={[buttonStyles.core, buttonStyles.primary, buttonStyles.spacer]}
 >
 <Text>Primary Normal</Text>
 </TouchableHighlight>
 <TouchableHighlight
 style={[buttonStyles.core, buttonStyles.primary,
buttonStyles.hairlineBorder]}
 >
 <Text>Primary Hairline</Text>
 </TouchableHighlight>
</View>

In order to create some whitespace between the buttons, I also added the
buttonStyles.spacer to the first three buttons. This adds a margin below these buttons
much like it would in CSS, as shown in the following screenshot:

Styling and Layout in React Native

[83]

You may need to look closely, but the second default and second primary buttons each have
a slightly thinner border width. If you were to use
console.log(StyleSheet.hairlineWidth), you would actually see a numeric value.
On this particular iOS simulated device, the value is 0.5. You could just as easily have set
the borderWidth to 0.5 in your style definition and get the same effect on that particular
device. However, React Native actually computes a relative hairlineWidth based on the
device's pixel ratio. This should produce more consistent results across devices of varying
pixel densities.

Applying component-specific style properties
Finally, some React Native components possess style properties that are specific to that
component. The way you apply them is not through the typical style property. Instead,
you'll need to set the property on the component itself as defined by the component's
specification. It's not feasible to review every single component's specific style properties
here. Instead, we'll just cover a few examples so that you can identify them as you develop
future React Native apps.

TouchableHighlight is a commonly used React Native component. We used it in our
earlier example as a stand-in for a button. TouchableHighlight has two additional style
properties–activeOpacity and underlayColor. activeOpacity sets the opacity level of
any child components with any numeric value between 0 and 1; 0 means transparent and 1
means fully opaque. underlayColor accepts a color value just like backgroundColor.
Both are used whenever the button is in an active state (meaning it's being pressed down).
However, in order to actually demonstrate this, we need to set an onPress handler. For
now, our onPress handler will point to an empty function. Take a look at the following
code snippet:

<TouchableHighlight;
 style={[buttonStyles.core, buttonStyles.hairlineBorder,
buttonStyles.spacer]}
 underlayColor="#efefef"
 activeOpacity={0.8}
 onPress={() => {}}
>
 <Text>Default Hairline</Text>
</TouchableHighlight>

www.allitebooks.com

http://www.allitebooks.org

Styling and Layout in React Native

[84]

Pressing the button, you'll can now see the active state. Let's do the same for our primary
button, but let's try out a different way of writing a hexadecimal (hex) color value. React
Native supports your standard hex color values in the standard six-digit style (for example,
#00ff00) and the shorthand three-digit style (for example, #0f0). Additionally, it supports
a new eight-digit and shorthand four-digit format. In the eight-digit format, the additional
two digits are used to represent opacity. 00 means transparent and off means fully opaque.
Any value between these represents some level of transparency. The four-digit style is just
like the three-digit version, except with the additional single digit representing the opacity
level.

React Native also supports many other color values common to web
development, including the rgb, rgba, hsl, and hsla, color keywords,
and the value 'transparent'.
Following are some examples:
'rgb(50, 255, 100)'
'rgba(0, 0, 0, 0.75)'
'hsl(360, 100%, 100%)'
'hsla(360, 100%, 100%, 0.9)'
aqua

Following is an example of the eight-digit hex color applied to our
primary button:
<TouchableHighlight
 style={[buttonStyles.core, buttonStyles.primary,
 buttonStyles.hairlineBorder]}
 underlayColor="#60b044cc"
 activeOpacity={0.9}
 onPress={() => {}}
 >
 <Text>Primary Hairline</Text>
</TouchableHighlight>

In the preceding example, we used the same hex color value as our
background, #60b044, but added cc at the end to reduce the opacity.

Once you've established styles for components, it would be tedious to copy and paste the
same style code into each instance. Thankfully, React allows us to create our own reusable
components that encapsulate styles.

Styling and Layout in React Native

[85]

Styling without inheritance
Much of how we think about using CSS on the Web is predicated upon the concept of
inheritance. We as web developers have built up many best practices that assume
inheritance from the html container all the way down the DOM tree. As an example in CSS,
we'll often define several styles on the html or body elements such as color, font-
family, or font-size. By default, these definitions will be inherited by the entire subtree,
making it easy to establish a baseline. With this basic example, this approach feels clean and
relatively straightforward. However, as your CSS grows, all these inherited styles and
conflicting rules can make styling larger applications unpredictable and difficult to scale.

React Native takes a different approach to styling. Rather than applying the same
inheritance model as CSS, React Native styles are almost entirely scoped to the elements
where they are applied. This encourages a different approach to styling your application.
Rather than relying on global styles, you're encouraged to create reusable components that
encapsulate styles. Using our previous example of the styled TouchableHighlight, we
can create a reusable Button component that wraps TouchableHighlight along with our
styles, as shown in the following code snippet:

<Button>
 <Text>Custom styled button</Text>
</Button>

Or, we can add additional properties to customize each instance, as shown in the following
code snippet:

<Button onPress={() => {}} style={buttonStyles.spacer}>
 <Text>Custom button with props</Text>
</Button>

The implementation of our Button component might look like the following:

const Button = ({ style, children, ...otherProps }) => (
 <TouchableHighlight
 style={[buttonStyles.core, buttonStyles.hairlineBorder, style]}
 {...otherProps}
 underlayColor="#efefef"
 activeOpacity={0.8}
 >
 {children}
 </TouchableHighlight>
);

Button.propTypes = {
 style: TouchableHighlight.propTypes.style,

Styling and Layout in React Native

[86]

 children: React.PropTypes.node
};

Here, we've created a functional component that accepts props. Those props are
destructured inside the function definition as style and children with any remaining props
placed inside otherProps. The style variable is then placed at the end of the array of styles,
allowing it to override them. Children are sandwiched inside the TouchableHighlight
allowing you to put any content inside the button. And otherProps is spread across the
TouchableHighlight to cover everything else you may want to add to it. We've also
added propType validation to ensure the style and children passed to Button match the
types we expect.

Adding propTypes is considered a best practice when authoring React or
React Native components. You can learn more about general prop
validation on the React docs at h t t p s ://f a c e b o o k . g i t h u b . i o /r e a c t /d o c

s /r e u s a b l e - c o m p o n e n t s . h t m l #p r o p - v a l i d a t i o n .
Additionally, because style is somewhat unique to React Native, you can
enforce that a prop adheres to the style rules of a particular component
(for example, TouchableHighlight.propTypes.style,
View.propTypes.style, or Text.propTypes.style)

Understanding React Native's take on the
box model and flexbox
While React Native supports web layout techniques such as relative and absolute
positioning, you probably don't want to design an entire app with these. For far too long,
the web has used hacky CSS float techniques to create columned layouts. Floats do the job,
but they were never intended for complex layouts. Nowadays, we have something far
better in the form of the flexbox layout module. And what's even better is that React Native
implements a form of flexbox that closely mirrors the API found in CSS. There are,
however, a few differences worth noting. We'll cover these along with the related box model-
like properties in this section.

https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation

Styling and Layout in React Native

[87]

Box model
Let's briefly start with the box model. Nowhere in the React Native documentation will you
see the term box model referenced. I only mention it as it is a relatable web paradigm with
numerous similarities to React Native. For starters, React Native allows you to style all the
properties that affect the box model on the Web–padding, width, height, border, and
margin. React Native's implementation of the box model is closest to CSS's box-sizing:
border-box.

The following represents the CSS equivalent baseline implementation of components inside of React Native:
div, span {
 box-sizing: border-box;
 position: relative;
 display: flex;
 flex-direction: column;
 align-items: stretch;
 flex-shrink: 0;
 align-content: flex-start;
 border: 0 solid black;
 margin: 0;
 padding: 0;
 min-width: 0;
}

Source: https://github.com/facebook/css-layout.

We can demonstrate how the box model works with some sample code. We'll do so inside
the iPhone 6 simulator, which has screen dimensions of 375 by 667 points.

Note that units in React Native are represented as points, not pixels. Points
are an abstract unit of measure. For more information on points versus
pixels, refer to
http://www.paintcodeapp.com/news/iphone-6-screens-demystified.

https://github.com/facebook/css-layout
http://www.paintcodeapp.com/news/iphone-6-screens-demystified

Styling and Layout in React Native

[88]

Take a look at the following code snippet:

const BoxModelDemo = () => (
 <View style={styles.main}>
 <Text style={styles.content}>Column 1</Text>
 <Text style={styles.content}>Column 2</Text>
 <Text style={styles.content}>Column 3</Text>
 </View>
);

const styles = StyleSheet.create({
 main: {
 flex: 1,
 paddingVertical: 20,
 flexDirection: 'row',
 flexWrap: 'wrap'
 },
 content: {
 padding: 20,
 margin: 0,
 backgroundColor: '#ef4c',
 width: 125,
 height: 125,
 borderWidth: 1,
 borderColor: 'red',
 textAlign: 'center'
 }
});

For the time being, ignore the flex properties. Our main container is set up to display its
children in a row. The three child content elements all share the same styling. Each of them
has a background, a border, padding, and zero margin. (Margins are by default set to zero. I
only explicitly set them to zero for demonstration purposes.) Additionally, each one has a
width of 125 points (125 × 3 = 375, which is the total width of the simulated device). Also
notice that even though we have a left and right border width of 1 point and left and right
padding of 20, each column still fits nicely on screen, occupying one-third of the total
width.

Styling and Layout in React Native

[89]

However, similar to the Web, adding left or right margins to these elements will cause them
to break to a new line. To demonstrate this, we'll replace margin: 0 with
marginHorizontal: 10, as shown in the following screenshots:

Without margin

Styling and Layout in React Native

[90]

With margin

As you can see, the single row has now broken into two due to the added margin.

React Native only allows you to set a single numeric value for margin,
padding, and borderWidth. Therefore, it is not possible to set varying
vertical and horizontal values with a single assignment like you can with
CSS. You can, of course, leverage properties such as marginTop,
paddingLeft, or borderRightWidth to set an individual dimension.
React Native also exposes vertical and horizontal shorthands for padding
and margin: paddingHorizontal, paddingVertical,
marginHorizontal, and marginVertical. No such horizontal or
vertical shorthand exists at the moment for borderWidth.

Styling and Layout in React Native

[91]

Understanding Flexbox
All components in React Native are flex containers and are positioned relatively. In CSS,
you would express the default stylesheet, as shown in the following code snippet:

* {
 display: flex;
 position: relative;
}

In React Native, there are no alternative display values. In fact, display isn't even a valid
style property. And, because everything is set as a relative position container, you can
assume that any element positioned as absolute will always be relative to its immediate
parent.

Flexbox can be thought of as relationship between the container and its immediate children.
The container can align items either horizontally or vertically. In CSS, the default flex-
direction is set to 'row'. You can change that value to 'column' and flex items will be
stacked vertically. In React Native, you express this with the style property
flexDirection. However, unlike the Web, the default direction is set to 'column' and
can be changed to 'row'. The flex container will then expand or contract the size of its
children to fit within it.

There are two properties that influence the alignment of flex items within the container
across the x and y axis. In the flexbox world, we refer to these as the main axis and cross axis.
The main axis is set by the flexDirection. That said, when the flexDirection is set to
'column' (or not set at all as this is the default value), the main axis corresponds to the y
axis. When flexDirection is set to 'row', the main axis is now the x axis. You align items
along the main axis through the justifyContent property. Whichever axis is not the main
axis is referred to as the cross axis. Items along the cross axis are aligned through
alignItems.

Styling and Layout in React Native

[92]

This graphic from the W3C's website helps illustrate these concepts visually for a flex 'row'
container:

Source: https://drafts.csswg.org/css-flexbox-1/#main-size-property.

Flexbox can be difficult to understand without some visual examples. Let's explore some
basic flexbox layouts to see how all these pieces fit together:

const FlexBoxLayout = () => (
 <View style={styles.container}>
 <View style={styles.item} />
 <View style={styles.item} />
 <View style={styles.item} />
 </View>
);

const styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'column',
 justifyContent: 'flex-start',
 alignItems: 'flex-start'
 },
 item: {
 backgroundColor: 'lightgoldenrodyellow',
 borderWidth: 1,
 borderColor: 'goldenrod',
 height: 150,
 width: 150
 }
});

https://drafts.csswg.org/css-flexbox-1/#main-size-property

Styling and Layout in React Native

[93]

The preceding example represents a very basic flex layout. Each item represents a flex
item and the container is our flex container. I have explicitly set the flexDirection,
justifyContent, and alignItems to their default values for illustrative purposes. I've
also explicitly set a width and height for each flex item otherwise they would not be
visible on screen since they contain no inner content. Take a look at the following
screenshot:

Styling and Layout in React Native

[94]

We can start by modifying the justifyContent property to some of its alternative values.
Setting the value to 'flex-end' will move the items to the end of the main axis (y axis).
And as you'd expect, setting it to 'center' will place the items right in the middle, as
shown in the following screenshots:

justifyContent: 'flex-end'

Styling and Layout in React Native

[95]

justifyContent: 'center'

Styling and Layout in React Native

[96]

The remaining two values, 'space-between' and 'space-around', require a bit more
explanation. First, let's examine the following two layouts in action:

justifyContent: 'space-between'

Styling and Layout in React Native

[97]

justifyContent: 'space-around'

'space-between' will take the first and last items inside the container and effectively stick
them to either end. Any space left over will be evenly distributed between each of the flex
items. 'space-around' calculates the available unused space (in our example that's the
vertical white space). It then even distributes the white space between items. Additionally,
it takes half the white space available and uses it to pad the first and last items from the
start and end. Looking at our 'space-around' in the preceding screenshot, this means that
the vertical white space that separates the top and bottom of the device from its nearest
flex item is exactly half the space separating each flex item.

Styling and Layout in React Native

[98]

Covering the other axis
To this point, we've only addressed how to align the position of our flex items across the
main axis. Again, because we set flexDirection: 'column', our main axis is the y axis.
Keeping that in mind, let's explore what options we have available to control items along
the cross axis.

Much like with main axis, the cross axis can be controlled by setting alignItems to 'flex-
start', 'center', 'flex-end', or 'stretch' on the container. Alternatively, the
individual flex items can override their cross axis position by setting the alignSelf
property. To demonstrate, we'll set each of the three flex items to different alignSelf
values, as shown in the following code snippet:

const FlexBoxLayout = () => (
 <View style={styles.container}>
 <View style={[styles.item, { alignSelf: 'flex-start' }]} />
 <View style={[styles.item, { alignSelf: 'center' }]} />
 <View style={[styles.item, { alignSelf: 'flex-end' }]} />
 </View>
);

Styling and Layout in React Native

[99]

In the case of flexDirection: 'column', if you omit the width property, or in the case of
flexDirection: 'row', if you omit the height property, you can make your flex item
span the entire cross axis by setting the value to 'stretch'. Take a look at the following
code snippet:

const FlexBoxLayout = () => (
 <View style={styles.container}>
 <View style={[styles.item, { alignSelf: 'flex-start' }]} />
 <View style={[styles.item, { alignSelf: 'stretch', width: undefined }]}
/>
 <View style={[styles.item, { alignSelf: 'flex-end' }]} />
 </View>
);

Styling and Layout in React Native

[100]

Flex shrinking and growing
Sizing elements with purely flexbox properties can be a bit confusing. I've seen many
developers fall into the trap of thinking flexGrow is the same as setting a percentage width.
Take a look at the following code:

[flex grow: .25] + [flex grow: .75] != [width: 25%] + [width: 75%]

This is simply untrue. Additionally, I've also seen developers blindly throw flex: 1 on
just about everything in the hope that it fixes whatever layout problem they are
encountering. As you've probably already concluded, flexbox isn't the most straightforward
topic, and sadly there are three other important flexbox properties we haven't even
touched on–flexGrow, flexShrink, and flexBasis. (Technically, there's even a fourth
called flex, but that's really just a shorthand property.)

Setting flexBasis
This property is simultaneously the most confusing and the simplest. flexBasis works
just like width and height. The key point is that it will set the size of the element that
corresponds with the main axis (flexDirection). If it's set to 'column', then flexBasis
sizes the height. If it's set to 'row', then it sets the width. But that's pretty much it. In the
CSS world, there are a few other considerations, but thankfully they aren't applicable in the
React Native world.

Growing and shrinking flex items
Let me paint a scenario. Imagine you have a column with three items in it. The column is
667 points tall. The three items within the column are each 50 points tall. This means that
there are 517 points of remaining space available with me so far?

So here's how flexGrow works. I'm going to leave one of the items alone so that it remains
50 points tall. The next one I'll set to flexGrow: 1 and the other to flexGrow: 2. The way
this calculation works is as follows: of the available free space (517 points), I will give twice
the amount of free space to the flexGrow: 2 item as the flexGrow: 1 item. The equation
looks something like the following:

total size = initial size + (remaining space * (flex grow factor/total number of flex grow factors))

Styling and Layout in React Native

[101]

In the case of the flexGrow: 2, the numerator is 2 and the denominator is 3 (2 + 1). So
plugging in our values, we end up with the following:

total height = 50 + (517 * (2/3))

This comes out to roughly 394.66. This then means that our item with flexGrow: 1 would
come out to roughly 222.33. Take a look at the following screenshot:

Styling and Layout in React Native

[102]

flexShrink works similarly to flexGrow. Again, it manages items along the main axis but
it instead handles how to size items when there is too little room. You can think of it as this–
how much space should I remove relative to my flex item siblings? flexShrink: 2 will take
away twice as much size from a sibling with a flexShrink: 1. An item set to
flexShrink: 0 will simply never shrink.

As mentioned earlier, flex is simply a shorthand for setting flexGrow,
flexShrink, and flexBasis. If flex is set to a positive number, it
sets flexGrow to that same value and sets flexShrink and flexBasis to
0. If flex is a negative value, it sets flexShrink to the inverse of that value
and flexGrow to 0, and leaves flexBasis unset.

Before we totally switch topics, I want to call out the most commonly used flexbox setting,
flex: 1. Let's go back to the earlier example where we had three items each set to 50
points tall. If we only defined a flexGrow (or flex) value for one of those three items, then
that one item will take up all the available space. That's why it's rather common to see
flexGrow: 1 or flex: 1 set on an item that you want to consume a large portion of the
screen. We'll be using flexbox a lot throughout this book, so it's important to have a
baseline understanding. If you still find yourself a bit perplexed, check out the online game
Flexbox Froggy. It's a fun interactive game that teaches you how to use flexbox; for more
information, refer to h t t p ://f l e x b o x f r o g g y . c o m /.

Styling text with React Native
While most of the rules around React Native styling are equally applicable to text, there is
one notable exception: nested Text elements actually inherit type styles from one another.
As an example, imagine in the HTML/CSS world you have a span element that contains
several words, one of which you'd like to appear bold. You could simply wrap that single
word with a strong element and achieve your goal. The inner strong element would
inherit the typographic styles of the parent span but make its own text bold. This same
concept applies in React Native. Take a look at the following code snippet:

const BasicType = () => (
 <Text style={styles.headline}>
 Welcome to <Text style={styles.bold}>React</Text> Native {'\n'}
 <Text style={styles.subheader}>This is <Text style={styles.bold}>so
cool!</Text></Text>
 </Text>
);

const styles = StyleSheet.create({

http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/
http://flexboxfroggy.com/

Styling and Layout in React Native

[103]

 headline: {
 fontFamily: 'Georgia',
 fontSize: 20
 },
 subheader: {
 color: 'blue'
 },
 bold: {
 fontWeight: 'bold'
 }
});

Styling and Layout in React Native

[104]

In this example, we've set some baseline styles that apply a fontFamily and fontSize to
an outer Text element. Within that, we have several nested Text elements that inherit
those styles but also possess their own additional styles. On iOS, React Native is actually
flattening all of these nested Text elements into a single NSAttributedString. This yields
a single rendered box rather than multiple nested boxes. This also means you'll only be able
to apply box styles such as padding and margin to the outer Text element. Child Text
elements will ignore these properties.

For performance reasons, the React Native team has applied an unusual
behavior to the Text component. In HTML, elements default to a
transparent background. As a result, nested HTML elements challenge the
compositing engine as each nested element may require blending with
other child elements. This can create performance issues with complex or
deeply nested trees, particularly on phones that typically do not possess
the same performance characteristics of a modern laptop or desktop
computer. For this reason, rather than defaulting to a transparent
background, Text components inherit the background color of their
container. Typically, this produces the exact same effect as having a
transparent background but without the performance hit. However, there
may be times where you'll need to explicitly set the backgroundColor of
a Text element to be 'transparent'. Source:
https://github.com/facebook/react-native/releases/tag/v0.6.0-rc.

Text style properties
React Native only allows you to set certain style properties on particular components. As an
example, you cannot set fontSize on a View component, only a Text component. Text
components also support many CSS-like text and font properties including color,
fontSize, fontFamily, fontStyle, fontWeight, lineHeight, and textAlign. Rather
than review every one of these, let's demonstrate how they behave with some simple
examples.

Here we have several nested Text elements with different styles applied. Take a look at the
following code:

const AdvancedType = () => (
 <View>
 <Text style={styles.text}>
 Fun styling <Text style={styles.bold}>text</Text> inside of <Text
style={styles.italic}>React Native.</Text>
 </Text>

https://github.com/facebook/react-native/releases/tag/v0.6.0-rc

Styling and Layout in React Native

[105]

 <Text style={[styles.text, styles.moreLineHeight, styles.right]}>
 I am right aligned and have more <Text
style={styles.code}>lineHeight</Text> than the text above.
 </Text>
 <Text style={[styles.text, styles.center, styles.thin]}>
 I am centered and very thin!
 </Text>
 </View>
);

const styles = StyleSheet.create({
 text: {
 fontSize: 22,
 marginBottom: 20
 },
 bold: {
 fontWeight: 'bold'
 },
 thin: {
 fontWeight: '200'
 },
 italic: {
 fontStyle: 'italic'
 },
 moreLineHeight: {
 lineHeight: 40
 },
 right: {
 textAlign: 'right'
 },
 center: {
 textAlign: 'center'
 },
 code: {
 fontFamily: 'Courier'
 }
});

Styling and Layout in React Native

[106]

Encapsulating text styles in reusable
components
The past few code samples haverequired that we repeat several style definitions. Similar to
what we did with our Button component earlier, we can encapsulate common text styles in
custom, reusable components. As an example, let's create three components–one for our
headline copy, one for normal copy, and one for bold copy. When we're done, we'll have
something like the following:

<View>
 <Headline>This is a header</Headline>
 <BodyCopy>This is my regular or <Bold>bold</Bold> text.</BodyCopy>
</View>

Styling and Layout in React Native

[107]

To get there, we need to create three custom components: Headline, BodyCopy, and Bold.
Each of these follow the same pattern–a functional component that pairs with a
StyleSheet. A rudimentary implementation may look like the following:

const Bold = ({ children }) => <Text
style={boldTextStyles.text}>{children}</Text>;

Bold.propTypes = {
 children: React.PropTypes.node.isRequired
};
const boldTextStyles = StyleSheet.create({
 text: {
 fontWeight: '600'
 }
});

const BodyCopy = ({ children }) => <Text
style={bodyCopyStyles.text}>{children}</Text>;

BodyCopy.propTypes = {
 children: React.PropTypes.node.isRequired
};
const bodyCopyStyles = StyleSheet.create({
 text: {
 fontFamily: 'Helvetica',
 fontSize: 18,
 color: '#333'
 }
});

const Headline = ({ children }) => <Bold><Text
style={headlineStyles.text}>{children}</Text></Bold>;

Headline.propTypes = {
 children: React.PropTypes.node.isRequired
};
const headlineStyles = StyleSheet.create({
 text: {
 fontFamily: 'Optima',
 fontSize: 30,
 color: '#333'
 }
});

Styling and Layout in React Native

[108]

Here, our Bold, BodyCopy, and Headline are really just styled versions of a Text
component. However, this basic implementation lacks the ability to pass additional styles or
other props aside from children. We can remedy this just like we did with Button. We'll
extract style and children and then use the ES2015 rest operator to extract any remaining
props. Here is how this looks when applied to our Bold component:

const Bold = ({ children, style, ...otherProps }) => <Text
style={[boldTextStyles.text, style]} {...otherProps}>{children}</Text>;

Bold.propTypes = {
 children: React.PropTypes.node.isRequired,
 style: Text.propTypes.style
};

Again, note how we spread otherProps across the Text element. This way, the consumer
of our Bold component can still control other Text properties such as onPress or
numberOfLines, as shown in the following code:

const Demo = () => (
 <View>
 <Bold
 onPress={() => console.log('Pressed!')}
 numberOfLines={2}
 style={styles.green}
 >Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec magna
ipsum, lobortis quis rhoncus ac, suscipit sed dolor.
 </Bold>
 </View>
);

const styles = StyleSheet.create({
 green: {
 color: 'green'
 }
});

Styling and Layout in React Native

[109]

Styling images
Images in React Native are somewhat unusual. The Image component has qualities of both
the inline HTML img element and background properties of CSS. We'll explore these
behaviors in this section to better your understanding of how to use images as both content
and as design accents within your applications.

Within your React Native project, you can reference either a local image resource or a
remote one. To reference an image contained within your project, use the following syntax:

<Image source={require('./images/pizza.jpg')} />

If you wish to reference an image located remotely on a server, you'll follow a similar but
slightly different pattern:

<Image
 source={{ uri:
'https://pixabay.com/static/uploads/photo/2014/11/08/17/05/pizza-522485_960
_720.jpg' }}
 style={{ width: 150, height: 300 }}
 />

There are two key differences when referencing a local image versus a remote one. For
starters, a local image is loaded through require. However, with a remote image, you must
pass the source property an object with an uri pointing to the remote resource.
Additionally, remote images require you specify both width and height. If you don't, the
image will render as 0 × 0 points. In contrast, an HTML img element with no width or
height specified will initially render as 0 × 0 pixels. Once the image has been downloaded,
the element will automatically resize to the same dimensions as the source image. While
this is convenient, it will cause your UI to jump around as it pushes content to
accommodate space for the image. The Facebook team has intentionally not implemented
this as they feel it leads to an overall improved user experience.

As stated earlier, the Image component shares some traits of CSS backgrounds. For starters,
you can set the resizeMode to 'stretch', 'contain', 'cover', 'repeat', or
'center'. Given the same source image, this is how each of these properties affects the
output:

Styling and Layout in React Native

[110]

Background images
Unlike an HTML img, the React Native Image component allows for nested content. When
used in this way, Image acts as a background to its child elements. Using our pizza
photograph in this way, we can make something that feels like a mobile restaurant menu
for a pizza shop. Here is an excerpt of what this code could look like:

<Image source={pizzaImage} style={styles.image}>
 <View style={styles.content}>
 {/* content goes here */}
 </View>
</Image>

Styling and Layout in React Native

[111]

Inspecting and debugging styles
Up to this point, we have reviewed much of what React Native offers to style and layout
your applications. One thing we've glossed over is how to debug your style rules in React
Native. In the Web world, we often refer to this as inspecting styles (a reference to
Chrome's DevTools that allow you to inspect any CSS properties applied to an element).
Unfortunately, this is one area where React Native currently falls a bit short. You cannot use
Chrome's inspector to edit or view each element's style properties. However, React Native
does offer a built-in inspector. It's very basic when compared to Chrome's inspector, but for
the moment it's one of the few tools available to developers.

Using the React Native Inspector
To give the React Native Inspector a run through, we'll need something to inspect. Fire up
any React Native app in the iOS Simulator and then press Command + D on your keyboard
just like you would to launch Debug JS Remotely, except this time click on Show
Inspector. You'll see a gray overlay across the bottom of the screen with the message Tap
something to inspect it. If you begin clicking around different parts of the app, you should

Styling and Layout in React Native

[112]

see three pieces of content update. Across the top, you'll see hierarchy of components listed
as a breadcrumb navigation. You can click on each item in the breadcrumb to inspect the
styles. In the following screenshot, you'll see any style properties set on the element such as
padding, border, and flex properties, and so forth. Additionally, you'll see what amounts
to our box model outlining the width, height, padding, and margin values. While this is
a read-only view, it can be helpful when trying to understand what styles are or are not
being applied to an element:

Styling and Layout in React Native

[113]

In Chapter 12, React Native Tools and Resources, we'll review a few software
packages that are designed for React Native development. Nuclide is a
custom package built for the Atom editor that includes a tool called
Nuclide React Native Inspector. While it too is read-only, it does provide
a much richer, more Chrome DevTools-like experience for debugging
React Native element styles.

Adding media query behavior to React
Native
In the current web world, we are accustomed to building sites that adjust their presentation
to best fit the screen space available. Most often, that's done by detecting the width or
height of the viewport and adjusting CSS rules accordingly. Doing this type of screen
detection has actually been possible for a long time through JavaScript. But the grand idea
of responsive design didn't become popular until browsers added support for media
queries through @media in CSS. Currently, React Native styles don't have an equivalent of
@media. However, there are a few useful hooks built into React Native for determining the
width and height of the device or individual components that can help us achieve similar,
if not cooler results.

Using Dimensions
React Native has its own version of window.innerHeight and window.innerWidth that
provides static values for width, height, and scale. These properties are made available
through the Dimensions object inside in the React Native library, as shown in the
following code snippet:

import {
 Dimensions
} from 'react-native';

const getDimensions = () => {
 const { width, height, scale } = Dimensions.get('window');
 console.log(`width: ${width}, height: ${height}, scale: ${scale}`);
};

Styling and Layout in React Native

[114]

In the preceding example, we've imported Dimensions from React Native and created a
function that can be called within our application. Calling Dimensions.get('window')
returns an object with three properties–width, height, and scale. If you were to call this
method from an iPhone 6 simulator, you'd see the following outputted to the console:

width: 375, height: 667, scale: 2

When running this same code with the iPhone 4s simulator, you'll see the following:

width: 320, height: 480, scale: 2

Knowing this, you can imagine a scenario where having these dimensions could inform
how you layout your views or size various components within your app. Unfortunately,
Dimensions does not update after the app is launched. That is to say, if you change the
orientation of your device from portrait to landscape and then query
Dimensions.get('window') again, you will see the exact same width and height values
as before. Therefore, Dimensions should not be used to detect orientation changes within
your app.

Using onLayout per View
If you're interested in detecting whenever the device has rotated from portrait to landscape
(or vice versa), there is another useful tool at your disposal. The View component
implements an onLayout event handler that is called whenever layout is calculated, either
on mount or on change. You can leverage this for detecting device rotation and then make
any modifications you'd like to your application's presentation.

The onLayout handler is passed an event object that holds lots of information. However,
for the purposes of achieving a responsive design, we'll only inspect the
event.nativeEvent.layout object. It contains four pieces of data–x, y, width, and
height. Keep in mind that these properties don't necessarily represent the state of your
entire viewport but just a single component within it. For example, you might have a View
stuffed at the bottom of your app acting as a footer. These four properties will reflect the
values of that particular View when its onLayout handler is executed. This may still be
useful in particular contexts. However, what we're probably more interested in is the width
and height of the entire viewport. So let's see how we can achieve this with a very simple
demo application:

class DemoOnLayout extends Component {
 constructor(props) {
 super(props);

Styling and Layout in React Native

[115]

 this.state = {
 width: 0,
 height: 0
 };

 this.onLayoutChange = this.onLayoutChange.bind(this);
 }

 onLayoutChange(event) {
 const { width, height } = event.nativeEvent.layout;
 this.setState({ width, height });
 }

 render() {
 return (
 <View onLayout={this.onLayoutChange} style={styles.container}>
 <Text style={styles.text}>Width: {this.state.width}, Height:
{this.state.height}</Text>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center'
 },
 text: {
 fontSize: 18
 }
});

Here we have a very simple app that only does one thing–display the width and height of
the View element. You'll note that because we're using state, we need to call constructor and
thus we need to define this component using component class syntax. But more to the
point, we've attached an onLayout handler to a method within our class called
onLayoutChange. Additionally, we've ensured that the View element with the onLayout
handler fills the entirety of the device by setting the style property flex: 1. By doing so,
we can approximate the same effect as @media for a viewport.

When DemoOnLayout first mounts, it triggers the onLayout handler and thus executes
onLayoutChange. Within onLayoutChange, we destructure the width and height
properties from event.nativeEvent.layout. Then, using ES2015 shorthand, we update
this.state with those values. This, in turn, triggers the render method to re-execute, and

Styling and Layout in React Native

[116]

the values displayed on screen are updated. Then, whenever you rotate the device,
onLayout will again call onLayoutChange and thus update the view all over again. Take a
look at the following screenshot:

Within the iOS Simulator, you can make it change orientation by going to
Hardware | Rotate Left or Hardware | Rotate Right. Alternatively, you
can use the keyboard commands Command + Left Arrow Key or Command
+ Right Arrow Key.

Summary
Styling is a big topic, and we've covered a lot of ground. We introduced how styling works
in React Native and how in many ways it's similar to CSS. We also discussed where React
Native and CSS differ, particularly with their approach to inheritance. To address this, we
demonstrated how to create reusable components that encapsulate styles. Then we
discussed all the different ways you can apply style properties, be it for Text or non-Text
components. Because flexbox is critical to layout in React Native, we did a deep dive on the
many facets of flexbox. And while debugging React Native styles is not as great a developer
experience as debugging business logic, we reviewed how you can diagnose some of those
pesky layout questions you're bound to encounter.

Although we did not touch on every single style or layout property found in React Native,
we've covered more than enough to put you on a solid footing. With this much deeper
understanding of layout and style, we'll next explore many of React Native's out-of-the-box
components for building rich mobile applications.

4
Starting our Project with React

Native Components
In much the same way in which React for the Web comes with a multitude of JSX elements
that represent native HTML elements (div and span), React Native comes with many
components representing native iOS and Android components built in. These components
are the building blocks of React Native applications and give you access to real, native
interfaces that look and feel appropriate to the platform on which they are running.

In addition to these React Native components, the React Native library gives access to many
native APIs, which allow us to perform other native tasks that don't comfortably fit into a
component. It is important to note that React Native does not expose every native interface
component and API. On occasion, we will have to create our own native modules. We'll
learn more about writing and using custom native modules in Chapter 10, Using and
Writing Native Modules.

In this chapter, we'll cover the following topics:

Begin to build an application, a New York Times news reading application
creatively named RNNYT (React Native – New York Times)
Integrate some of the most popular and interesting native components from
React Native
Enrich the app using some native APIs provided by React Native

Starting our Project with React Native Components

[118]

The list of React Native components, their respective props, and the native
APIs is extensive. We will not go over every single one, but we will go
through enough to give a clear idea of what topics are available and how
to interact with native components. If you wish to learn more about a
component that is not covered, take a look at the React Native
documentation.

Native components
Most React Native components are cross-platform; they work on both iOS and Android
operating systems. However, there are a few components that are restricted to one platform
or the other. The convention is to suffix platform-specific component names with the name
of the platform. For example, TabBarIOS is an iOS-only navigational component. The
dominant reason that this component and other platform-specific components are limited to
one platform has to do with the accepted user interface conventions on that platform. In this
case, a tabbed navigational interface is very common on iOS applications, but is not
considered a best practice on Android.

Before we dive in, let's set up our new project. We'll follow the same procedure outlined in
Chapter 2, Saying Hello World in React Native. In the terminal, we will run the following
command:

 react-native init RNNYT

Since our application is becoming more complex than the one discussed in Chapter 2,
Saying Hello World in React Native, we'll add some directories to our project to store all of our
new components. First, we'll create an src folder in the root of our project for all of our
JavaScript files. Within that folder, we will create a components folder for storing
components we'll create throughout this chapter. We'll also create a styles folder where
we'll store global styles, as shown in the following screenshot:

Starting our Project with React Native Components

[119]

Text
In a React Native application, text content cannot be placed just anywhere within JSX like in
React web applications. Instead, text content must reside within a Text component. This
was a deliberate choice made by the creators of React Native to make styling text more
efficient and predictable.

Since we are creating a news application, we can revisit some of the custom components we
made for the Web in Chapter 1, Building a Foundation in React, and ensure that they are
React Native-compatible. But first, in order to make the text throughout our RNNYT
application uniform, we'll create a component called AppText in a new file
called src/components/AppText.js, as shown in the following code snippet:

import React, { PropTypes } from 'react';
import { Text } from 'react-native';
import * as globalStyles from '../styles/global';

const AppText = ({ children, style, ...rest }) => (
 <Text style={[globalStyles.COMMON_STYLES.text, style]} {...rest}>
 {children}
 </Text>
);

AppText.propTypes = {

Starting our Project with React Native Components

[120]

 style: Text.propTypes.style,
 children: PropTypes.node
};

export default AppText;

First, we import React and PropTypes from the react module, just as we would in a
React web application:

import React, { PropTypes } from 'react';

Unlike native web components, such as h1 or p, React Native components must be
imported from the react-native library:

import { Text } from 'react-native';

Next, we'll create a file for global styles that can be imported throughout the application,
src/styles/global.js:

import { StyleSheet } from 'react-native';

export const BG_COLOR = '#343336';
export const BAR_COLOR = '#4e4d52';
export const TEXT_COLOR = '#e5dbda';
export const HEADER_TEXT_COLOR = '#fff';
export const MUTED_COLOR = '#8e8786';
export const LINK_COLOR = '#48e9d9';
export const ACCENT_COLORS = ['#d31d65', '#751c53', '#c248c0', '#7d6e8b',
'#bbc6f7'];

export const COMMON_STYLES = StyleSheet.create({
 text: {
 color: TEXT_COLOR,
 fontFamily: 'Helvetica Neue'
 }
});

We'll then import these styles in the AppText component's file:

import * as globalStyles from '../styles/global';

Starting our Project with React Native Components

[121]

The AppText component itself is a simple functional component that just wraps children
in a React Native Text component:

const AppText = ({ children, style, ...rest }) => (
 <Text style={[globalStyles.COMMON_STYLES.text, style]} {...rest}>
 {children}
 </Text>
);

To complete the component, we'll add prop type validation and export the component:

AppText.propTypes = {
 style: Text.propTypes.style,
 children: PropTypes.node
};

export default AppText;

Now that we have this AppText component, we can replace h1 in the Title component
from Chapter 1, Building a Foundation in React, and add some additional styles. We'll do this
in a new file, src/components/Title.js, as shown in the following code snippet:

import React, { PropTypes } from 'react';
import {
 StyleSheet,
 Text
} from 'react-native';
import AppText from './AppText';
import * as globalStyles from '../styles/global';

const Title = ({ style, children }) => (
 <AppText style={[styles.title, style]}>
 {children}
 </AppText>
);

Title.propTypes = {
 style: Text.propTypes.style,
 children: PropTypes.node
};

const styles = StyleSheet.create({
 title: {
 fontFamily: 'HelveticaNeue-CondensedBold',
 fontSize: 18,
 color: globalStyles.HEADER_TEXT_COLOR,
 backgroundColor: `${globalStyles.BG_COLOR}99`
 }

Starting our Project with React Native Components

[122]

});

export default Title;

We can use this same pattern of composition to create an additional SmallText component
that can be used to display deemphasized text. You'll notice that the contents of
src/components/SmallText.js are much the same as Title.js, just with different
styles:

import React, { PropTypes } from 'react';
import {
 StyleSheet,
 Text
} from 'react-native';
import AppText from './AppText';

const SmallText = ({ children, style, ...rest }) => (
 <AppText style={[styles.small, style]} {...rest}>
 {children}
 </AppText>
);

SmallText.propTypes = {
 children: PropTypes.node,
 style: Text.propTypes.style
};

const styles = StyleSheet.create({
 small: {
 fontSize: 11
 }
});

export default SmallText;

Props
As we see in the AppText component we created in the preceding code snippet, the Text
component accepts a style prop. Given that the Text component is the only component that
can have text content, it is also the only component whose style object can contain text-
related styles, such as fontSize or color, as mentioned in the last chapter. Take a look at
the following code snippet:

<Text
 style={{
 fontSize: 12,

Starting our Project with React Native Components

[123]

 color: 'red'
 }}
>
 Hello World!
</Text>

The Text component also has a prop numberOfLines (number) that allows you to specify
the number of lines to display before the text is truncated with an ellipsis:

<Text
 numberOfLines={4}
>
 This text will be truncated if it is greater than 4 lines long.
</Text>

On iOS, a Text component will by default use the user's preferences to scale font sizes. This
is generally a desirable feature, but it can be disabled by setting the allowFontScaling
(Boolean) prop to false:

<Text
 allowFontScaling={false}
>
 This font will not be scaled by user's preferences.
</Text>

Finally, if we wish to make some text within our application act as a link that can be
touched or pressed, and respond in some way, we can take advantage of a prop called
onPress (function). This prop is React Native's way of exposing and abstracting a simple
interaction from the more complex gesture recognition system. The function passed to this
prop is called when the user presses on the enclosed text. It could be used, for instance, to
navigate to another part of the application. Take a look at the following code snippet:

<Text
 onPress={navigateToSettings}
>
 Settings
</Text>

Starting our Project with React Native Components

[124]

View
The View component is perhaps the most basic and fundamental component provided by
React Native. The best analogy in React for the Web is a div element. It is a generic
container that is primarily only used for grouping or laying out children. In other words, it
has no real semantic or functional purpose other than styling and grouping. All components
(including the View component itself) can be nested within a View for creating complex
layouts.

It is also fundamental in that many of the properties and styles that View supports are also
supported by other components. In this section, we'll cover many of those properties, but
for other components, we'll only note how the accepted properties differ from those of
View.

Let's create a Byline component, in src/components/Byline.js, groups some of our
new text wrapper components into visual rows:

import React, { PropTypes } from 'react';
import {
 StyleSheet,
 View
} from 'react-native';
import SmallText from './SmallText';
import * as globalStyles from '../styles/global';

const Byline = ({ date, author, location }) => (
 <View>
 <View style={styles.row}>
 <SmallText>
 {date.toLocaleDateString()}
 </SmallText>
 <SmallText>
 {author}
 </SmallText>
 </View>

 {location ? (
 <View style={styles.row}>
 <SmallText style={styles.location}>
 {location}
 </SmallText>
 </View>
) : null}
 </View>
);

Starting our Project with React Native Components

[125]

Byline.propTypes = {
 date: PropTypes.instanceOf(Date).isRequired,
 author: PropTypes.string.isRequired,
 location: PropTypes.string
};

const styles = StyleSheet.create({
 row: {
 flexDirection: 'row',
 justifyContent: 'space-between',
 marginBottom: 5
 },
 location: {
 color: globalStyles.MUTED_COLOR
 }
});

export default Byline;

Here we are adding the View component to the react-native import:

import {
 StyleSheet,
 View
} from 'react-native';

We then use that component to group and lay out a visual row of SmallText components
showing a news article's author and date of publication:

<View style={styles.row}>
 <SmallText>
 {date.toLocaleDateString()}
 </SmallText>
 <SmallText>
 {author}
 </SmallText>
</View>

We create an optional second row to display the article's location using a ternary
expression:

{location ? (
 <View style={styles.row}>
 <SmallText style={styles.location}>
 {location}
 </SmallText>
 </View>
) : null}

Starting our Project with React Native Components

[126]

Finally, we use a third View component to group together these two rows:

<View>
 <View style={styles.row}>
 <SmallText>
 {date.toLocaleDateString()}
 </SmallText>
 <SmallText>
 {author}
 </SmallText>
 </View>

 {location ? (
 <View style={styles.row}>
 <SmallText style={styles.location}>
 {location}
 </SmallText>
 </View>
) : null}
</View>

Props
As we saw in Chapter 3, Styling and Layout in React Native, the View component accepts a
style prop that is either a single style object, a StyleSheet reference, or an array of style
objects, where the latter objects are merged into the former. Take a look at the following
code snippet:

<View
 style={[styles.base, { backgroundColor: 'green' }]}
>

There are a set of properties that describe whether and how to make a given component
accessible to various accessibility devices such as screen readers. First, there is an accessible
prop that accepts a Boolean. This prop indicates whether or not the View should be
considered accessible. If it is set to true, several other properties are looked at. For instance,
accessibilityLabel (string) indicates text that should be read by a screen reader when it
reaches this View. If not specified, the screen reader will default to the text contained inside
the View, as shown in the following code snippet:

<View
 accessible // Since this is a Boolean, it's presence is interpreted as
true
 accessibilityLabel="News item" // Screen reader text for this View
>

Starting our Project with React Native Components

[127]

A View also has a set of properties that can be used to make performance improvements.
Many of these are platform-specific. As an example, there is a shouldRasterizeIOS
(Boolean) property that tells iOS whether or not it should turn the contents of the view into
an image for faster animations under some circumstances. One optimization prop that is
cross-platform is the removeClippedSubviews (Boolean) property that tells React whether
or not it should remove (not render) any children that are not shown on screen. If there are
many such components, enabling this property could speed up rendering time
dramatically:

<View
 shouldRasterizeIOS // only recognized if running on iOS device
 removeClippedSubviews
>

Finally, there are a number of event listener props that allow us to respond to user
interaction or other application events. Two in the former category are
onAccessibilityTap (function) and onMagicTap (function), which are functions that
respond to accessibility device taps, but only if the accessible prop has been set to true. In
the latter group, the onLayout (function) property accepts a function that is invoked
whenever the layout of the View changes, as shown in the following code snippet:

<View
 onAccessibilityTap={(evt) => console.log('Accessibility tapped!')}
 onMagicTap={(evt) => console.log('Magic tapped!')}
 onLayout={(evt) => console.log('The layout has changed!')}
>

In the web world, we might expect a property such as onClick to be among the list of
accepted event listeners. Clearly, the notion of clicking is not present in a mobile application,
but there are other reasons why an analogous event listener is not an accepted property of
the View component.

In order to make applications look and feel native, the interface needs to both give the user
feedback when they interact and give them the ability to cancel that interaction. To enable
this, native environments have a rich and complex gesture architecture. We, as React Native
developers, can tap into that gesture architecture if we need to respond to intricate or
nonstandard gestures through a series of properties. The onStartShouldSetResponder
(function) prop is called at the start of a touch gesture and is used to determine whether or
not a View should become a responder to the gesture. If that function returns true, React
Native will call props such as onResponderMove (function), which is called when a user's
finger is moving across the View.

Starting our Project with React Native Components

[128]

This gesture responder system is necessarily complex since users can interact with mobile
devices in a multitude of ways. However, most interactions we care about are far simpler
than the complex gestures this system enables. For this reason, React Native provides some
abstractions for simple gestures in the form of touchable components that we will discuss
later in this chapter. For a more in depth discussion of the gesture responder architecture,
see Chapter 8, Animation and Gestures in React Native.

Image
Now that we've completed our Title and Byline components, our next challenge will be
to create a Thumbnail component that displays an image for the news item. We will do this
by using an Image component, which, as we saw in the previous chapter, is analogous to
the HTML img tag. Since our Thumbnail component will be relatively simple and won't
need lifecycle methods, we can once again use React's functional component syntax, as
shown in the following code snippet:

import React, { PropTypes } from 'react';
import {
 StyleSheet,
 Image
} from 'react-native';

const Thumbnail = ({ url }) => {
 return (
 <Image
 style={[styles.image]}
 source={{
 uri: url
 }}
 />
);
};

Thumbnail.propTypes = {
 url: PropTypes.string.isRequired
};

const styles = StyleSheet.create({
 image: {
 height: 100,
 justifyContent: 'flex-end'
 }
});

Starting our Project with React Native Components

[129]

export default Thumbnail;

In our application, we want to layer the title of the article on top of the thumbnail image. To
use images as backgrounds like this, we simply add the foreground components as
children:

import React, { PropTypes } from 'react';
import {
 StyleSheet,
 Image
} from 'react-native';
import Title from './Title';

const Thumbnail = ({ url, titleText }) => {
 return (
 <Image
 style={[styles.image]}
 source={{
 uri: url
 }}
 >
 <Title style={styles.title}>{titleText}</Title>
 </Image>
);
};

Thumbnail.propTypes = {
 url: PropTypes.string.isRequired,
 titleText: PropTypes.string
};

const styles = StyleSheet.create({
 image: {
 height: 100,
 justifyContent: 'flex-end'
 },
 title: {
 padding: 5
 }
});

export default Thumbnail;

Starting our Project with React Native Components

[130]

We also want to add a colored border to the bottom of the thumbnail. In order to do this, we
will need to wrap the component in a View and give the wrapper a border, as shown in the
following code snippet:

import React, { PropTypes } from 'react';
import {
 StyleSheet,
 Image,
 View
} from 'react-native';
import Title from './Title';

const Thumbnail = ({ url, titleText, accentColor, style }) => {
 const imageStyle = {
 backgroundColor: `${accentColor}77` // adds some transparency to the
color
 };

 return (
 <View style={[styles.container, { borderColor: accentColor }, style]}>
 <Image
 style={[styles.image]}
 source={{
 uri: url
 }}
 >
 <Title style={styles.title}>{titleText}</Title>
 </Image>
 </View>
);
};

Thumbnail.propTypes = {
 style: View.propTypes.style,
 url: PropTypes.string.isRequired,
 titleText: PropTypes.string,
 accentColor: PropTypes.string.isRequired
};

const styles = StyleSheet.create({
 container: {
 borderBottomWidth: 3,
 borderStyle: 'solid'
 },
 image: {
 height: 100,
 justifyContent: 'flex-end'
 },

Starting our Project with React Native Components

[131]

 title: {
 padding: 5
 }
});

export default Thumbnail;

Finally, in some circumstances, an article might not have an image. In that case, we'll simply
use a View that is the correct size. The following is the final component that we'll create in
src/components/Thumbnail.js:

import React, { PropTypes } from 'react';
import {
 StyleSheet,
 Image,
 View
} from 'react-native';
import Title from './Title';

const Thumbnail = ({ style, titleText, accentColor, url }) => {
 const imageStyle = {
 backgroundColor: `${accentColor}77` // adds some transparency to the
color
 };
 const TitleComponent = <Title style={styles.title}>{titleText}</Title>;

 return (
 <View style={[styles.container, { borderColor: accentColor }, style]}>
 {url.length > 0 ? (
 <Image
 style={[styles.image, imageStyle]}
 source={{
 uri: url
 }}
 >
 {TitleComponent}
 </Image>
) : (
 <View
 style={[styles.image, imageStyle]}
 >
 {TitleComponent}
 </View>
)}
 </View>
);
};

Starting our Project with React Native Components

[132]

Thumbnail.propTypes = {
 style: View.propTypes.style,
 url: PropTypes.string.isRequired,
 accentColor: PropTypes.string.isRequired,
 titleText: PropTypes.string
};

const styles = StyleSheet.create({
 container: {
 borderBottomWidth: 3,
 borderStyle: 'solid'
 },
 image: {
 height: 100,
 justifyContent: 'flex-end'
 },
 title: {
 padding: 5
 }
});

export default Thumbnail;

Props
In the previous chapter, we learned about the source (object) prop and how it is used to
choose what image is displayed within the Image component. We also looked at how the
Image component allows for some additional style types in its style (object) prop. While
these are enough to get us started, there are a number of other properties accepted by the
Image component that we can use to further customize it.

On iOS, you can define a prop defaultSource (object) that takes the same form as the
regular source property, but is used as a placeholder image until the main image has
loaded, as shown in the following code snippet:

<Image
 defaultSource={require('defaultImage.png')}
/>

iOS also gives you the ability to easily apply a blur filter to the image by using the
blurRadius (number) property:

<Image
 blurRadius={10}
/>

Starting our Project with React Native Components

[133]

There are also a number of event listener properties that the Image component exposes. The
onLoad (function) prop is called when the image is loaded successfully. On iOS, you can
also specify an onProgress (function) that will be called as the image download
progresses. This could be used to show a loading bar as the image is being downloaded:

<Image
 onLoad={this.hideProgressBar}
 onProgress={this.updateProgressBar}
/>

Static methods
In addition to properties, some React Native components provide static methods that can be
used to perform tasks that are tangentially related to the contents of the component. Image
is one such component.

There is a static method prefetch that allows you to preload a remote image (by its URL).
This can provide a better user experience by allowing you as a developer to anticipate when
an image is about to come into view and reducing the amount of time the user sees a blank
or placeholder image:

import { Image } from 'react-native';

Image.prefetch('http://example.com/large-image.jpg');

In addition to prefetch, there is also a getSize static method that will allow us to get the
dimensions of an image source before displaying it. Unlike prefetch, which is only for
remote images, getSize can be used for both local and remote images.

Touchable
When developing React applications for the Web, we can attach onClick listeners to almost
any native HTML element. In React Native, however, we typically limit the equivalent
press events to a series of components that we call touchable components. These
components are designed to simplify how we as developers interact with the gesture
system by solving two main issues that contribute to applications not feeling native. First,
they provide the user with some sort of visual feedback when interacting with the
application. Second, they provide the ability to cancel a gesture if the user scrolls away from
the original press.

Starting our Project with React Native Components

[134]

The base touchable component, TouchableWithoutFeedback, is actually one that is not
used often for reasons that may seem obvious from the preceding paragraph. This
component gives access to press events, but does not provide any visual feedback. A
developer could justify using this component if he/her were implementing his/her own
feedback system, but generally we will avoid using this component.

There is also a TouchableNativeFeedback component that provides a native feedback
experience on Android only. The TouchableHighlight component gives feedback on
both platforms by altering the View hierarchy. This can work in some cases, but in others
can cause unexpected layout changes. Finally, the component we'll use most often for
capturing and responding to press events is the TouchableOpacity component. This
component provides visual feedback by simply modifying the opacity of all of its children
when it is pressed.

To make use of this component, you simply need to wrap components that should be
pressable. For our application, let's say we want to respond in some way whenever each
NewsItem component is pressed. Here is how we might add a touchable component to
enable that behavior in src/components/NewsItem.js:

import React, { Component, PropTypes } from 'react';
import {
 View,
 TouchableOpacity,
 StyleSheet
} from 'react-native';
import Byline from './Byline';
import AppText from './AppText';
import Thumbnail from './Thumbnail';
import * as globalStyles from '../styles/global';

export default class NewsItem extends Component {

 render() {
 const {
 style,
 imageUrl,
 title,
 author,
 date,
 location,
 description,
 } = this.props;
 const accentColor = globalStyles.ACCENT_COLORS[
 this.props.index % globalStyles.ACCENT_COLORS.length
];

Starting our Project with React Native Components

[135]

 return (
 <TouchableOpacity
 style={style}
 >
 <View>
 <Thumbnail
 url={imageUrl}
 titleText={title}
 accentColor={accentColor}
 style={styles.thumbnail}
 />
 <View style={styles.content}>
 <Byline
 author={author}
 date={date}
 location={location}
 />
 <AppText>
 {description}
 </AppText>
 </View>
 </View>
 </TouchableOpacity>
);
 }
}

NewsItem.propTypes = {
 imageUrl: PropTypes.string,
 title: PropTypes.string.isRequired,
 description: PropTypes.string,
 date: PropTypes.instanceOf(Date).isRequired,
 author: PropTypes.string.isRequired,
 location: PropTypes.string,
 index: PropTypes.number.isRequired,
 onPress: PropTypes.func.isRequired,
 style: View.propTypes.style
};

const styles = StyleSheet.create({
 thumbnail: {
 marginBottom: 5
 },
 content: {
 paddingHorizontal: 5
 }
});

Starting our Project with React Native Components

[136]

Once again, all we've done is add the TouchableOpacity component to our React Native
import statement and then use it as the outermost element in the render method's return
statement. This by itself will cause the component to respond to touch visually by changing
the opacity of NewsItem when it is pressed, but we have not yet actually done anything in
response to that event.

Props
The most important props for a touchable component are, as you might expect, event
listener functions. The most basic and commonly used of these is the onPress (function)
prop. Using this property, we can define what to do when the user presses our component.
If, however, we want to get more specific about the timing of our response, touchable
components also have an onPressIn (function) prop, which is called as the user begins the
press, and an onPressOut (function) prop, which is called when the user is lifting his/her
finger at the end of a press:

<TouchableOpacity
 onPressIn={() => console.log('Press started')}
 onPressOut={() => console.log('Press ending')}
 onPress={() => console.log('Press complete')}
>

In addition to regular presses, we can also listen for long presses and respond differently.
Imagine we want to open a context menu of some sort when a user presses our NewsItem
component and holds. In order to do that, we would need to define the onLongPress
(function) prop, as shown in the following code snippet:

<TouchableOpacity
 onLongPress={this.openContextMenu}
>

We can also build in a delay between when the press occurs and when our listener function
is called by using the delayPressIn (number), delayPressOut (number), and
delayLongPress (number), which are all defined as a number of milliseconds, as shown in
the following code snippet:

<TouchableOpacity
 onLongPress={this.openContextMenu} // Called 1 second after long press
 delayLongPress={1000}
>

Starting our Project with React Native Components

[137]

Finally, touchable components have a prop called hitSlop (object) that allows us to define
how far away from our component a press event can start. This is useful if a component is
small and may be difficult for a user to easily target with his/her finger. Creating a larger
hitSlop can account for the impreciseness of our human user. Take a look at the following
code snippet:

<TouchableOpacity
 hitSlop={{
 top: 10, // distance from the top of the component that press can start
 left: 5,
 right: 5,
 bottom: 10
 }}
>

ListView
At this point, we've more or less created a single NewsItem component. The next step for us
is to create a NewsFeed component that will contain a list of NewsItems. The core of our
feed will be another React Native component called ListView. The ListView component
is unique among components we've talked about so far in that, instead of giving it
children components, we give it an array, or list, of JavaScript objects as well as a function
to render those individual objects. The internal workings of the component determine when
and where to display and use them.

Following is the basic outline of our new NewsFeed component in
src/components/NewsFeed.js:

import React, { PropTypes, Component } from 'react';
import {
 ListView,
 StyleSheet,
 View
} from 'react-native';
import * as globalStyles from '../styles/global';

export default class NewsFeed extends Component {

 render() {
 return (
 <View style={globalStyles.COMMON_STYLES.pageContainer}>
 <ListView />
 </View>
);

Starting our Project with React Native Components

[138]

 }

}

Next, let's define propTypes for the NewsFeed component. This is pretty straightforward
because we know that our ListView will need a list of news item objects. We'll also accept
a listStyle prop, which allows the nested ListView component to be styled:

NewsFeed.propTypes = {
 news: PropTypes.arrayOf(PropTypes.object),
 listStyles: View.propTypes.style
};

DataSource
In order to get these news item JavaScript objects into our ListView, we need to create a
DataSource. The DataSource includes not only the raw data, but also a method to
tell when that underlying data has changed, which helps ListView render more efficiently.
Typically, we will create the DataSource for our component's ListView within the
constructor:

constructor(props) {
 super(props);
 this.ds = new ListView.DataSource({
 rowHasChanged: (row1, row2) => row1.title !== row2.title
 });
 this.state = {
 dataSource: this.ds.cloneWithRows(props.news)
 };
}

First, we instantiate our DataSource of NewsFeed and give it a function, rowHasChanged,
that tells it how to compare two rows to tell if they have changed. In our function, we
simply compare the title; if a row's title has changed, then the entire row has changed,
so ListView should re-render it:

this.ds = new ListView.DataSource({
 rowHasChanged: (row1, row2) => row1.title !== row2.title
});

Starting our Project with React Native Components

[139]

On the next line, we give the new data source the raw data and store the result in our
component's state so that we can access it at render time:

this.state = {
 dataSource: this.ds.cloneWithRows(props.news)
};

renderRow
We also need to define within our component a method that tells ListView how to render
each individual row. In our NewsFeed component, this method is pretty simple:

renderRow(rowData, ...rest) {
 const index = parseInt(rest[1], 10);
 return (
 <NewsItem
 style={styles.newsItem}
 index={index}
 {...rowData}
 />
);
}

Notice that here we are using the JavaScript spread operator to set all of the entries of the
rowData object, a single news item, as props on the NewsItem. This is equivalent to doing
the following:

<NewsItem
 imageUrl={rowData.imageUrl}
 title={rowData.title}
 description={rowData.description}
 date={rowData.date}
 author={rowData.author}
 location={rowData.location}
/>

Props
Now that we've created a DataSource and a method for rendering rows, we need to add
them to the dataSource (object) and renderRow (function) props of the
ListView component, respectively. Additionally, we'll pass the listStyle prop to the
ListView component:

render() {

Starting our Project with React Native Components

[140]

 return (
 <View style={globalStyles.COMMON_STYLES.pageContainer}>
 <ListView
 dataSource={this.state.dataSource}
 renderRow={this.renderRow}
 style={this.props.listStyles}
 />
 </View>
);
}

We'll also add the enableEmptySections (Boolean) prop to ListView. This property says
that empty list sections should still be rendered:

<View style={globalStyles.COMMON_STYLES.pageContainer}>
 <ListView
 enableEmptySections
 dataSource={this.state.dataSource}
 renderRow={this.renderRow}
 style={this.props.listStyles}
 />
</View>

In addition to these required props, there are many others we can use to fine tune a
ListView. Not only can we tell ListView how to render its rows, we can also tell it how to
render a header, footer, and row separators through the renderHeader (function),
renderFooter (function), and renderSeparator (function) props. Each of these functions
should return a renderable React element.

Many of the props available for a ListView are related to tuning the component's
performance. These properties will be covered in more depth in Chapter 11, Preparing for
Production.

Let's take a look at our NewsFeed component so far:

import React, { PropTypes, Component } from 'react';
import {
 ListView,
 StyleSheet,
 View
} from 'react-native';
import * as globalStyles from '../styles/global';

export default class NewsFeed extends Component {

 constructor(props) {
 super(props);

Starting our Project with React Native Components

[141]

 this.ds = new ListView.DataSource({
 rowHasChanged: (row1, row2) => row1.title !== row2.title
 });
 this.state = {
 dataSource: this.ds.cloneWithRows(props.news)
 };
 }

 renderRow(rowData, ...rest) {
 const index = parseInt(rest[1], 10);
 return (
 <NewsItem
 style={styles.newsItem}
 index={index}
 {...rowData}
 />
);
 }

 render() {
 return (
 <View style={globalStyles.COMMON_STYLES.pageContainer}>
 <ListView
 enableEmptySections
 dataSource={this.state.dataSource}
 renderRow={this.renderRow}
 style={this.props.listStyles}
 />
 </View>
);
 }

}

NewsFeed.propTypes = {
 news: PropTypes.arrayOf(PropTypes.object),
 listStyles: View.propTypes.style
};

NewsFeed.defaultProps = {
 news: [
 {
 title: 'React Native',
 imageUrl: 'https://facebook.github.io/react/img/logo_og.png',
 description: 'Build Native Mobile Apps using JavaScript and React',
 date: new Date(),
 author: 'Facebook',
 location: 'Menlo Park, California',

Starting our Project with React Native Components

[142]

 url: 'https://facebook.github.io/react-native'
 },
 {
 title: 'Packt Publishing',
 imageUrl:
'https://www.packtpub.com/sites/default/files/packt_logo.png',
 description: 'Stay Relevant',
 date: new Date(),
 author: 'Packt Publishing',
 location: 'Birmingham, UK',
 url: 'https://www.packtpub.com/'
 }
]
};

const styles = StyleSheet.create({
 newsItem: {
 marginBottom: 20
 }
});

Notice that, since we have not yet brought real data into our application (we'll cover this in
Chapter 6, Integrating with the NYT API and Redux), we've created mock data and added it
as defaultProps on the NewsFeed component:

NewsFeed.defaultProps = {
 news: [
 {
 title: 'React Native',
 imageUrl: 'https://facebook.github.io/react/img/logo_og.png',
 description: 'Build Native Mobile Apps using JavaScript and React',
 date: new Date(),
 author: 'Facebook',
 location: 'Menlo Park, California',
 url: 'https://facebook.github.io/react-native'
 },
 {
 title: 'Packt Publishing',
 imageUrl:
'https://www.packtpub.com/sites/default/files/packt_logo.png',
 description: 'Stay Relevant',
 date: new Date(),
 author: 'Packt Publishing',
 location: 'Birmingham, UK',
 url: 'https://www.packtpub.com/'
 }
]
};

Starting our Project with React Native Components

[143]

Modal
Now that we have the ability to listen for user presses on our NewsItem component, let's
respond to that event by showing them the full news article. The first step in this process is
creating an area in our application where we can display the content. Normally, we would
use routing and navigation to go to a new part of our application, but since we haven't
learned about those things yet, we'll use a new component called a Modal.

The Modal component does a full-screen takeover to display its children on top of any other
content on the page. This sounds like it could be a good solution for showing our news
article. A visibility of Modal can be toggled, so we can include it within our NewsFeed
component, but only make it visible when a user presses on a news item:

import React, { PropTypes, Component } from 'react';
import {
 ListView,
 StyleSheet,
 View,
 Modal
} from 'react-native';
import * as globalStyles from '../styles/global';

export default class NewsFeed extends Component {

 constructor(props) {
 super(props);
 this.ds = new ListView.DataSource({
 rowHasChanged: (row1, row2) => row1.title !== row2.title
 });
 this.state = {
 dataSource: this.ds.cloneWithRows(props.news)
 };
 }

 renderModal() {
 return (
 <Modal>
 </Modal>
);
 }

 renderRow(rowData, ...rest) {
 const index = parseInt(rest[1], 10);
 return (
 <NewsItem
 style={styles.newsItem}

Starting our Project with React Native Components

[144]

 index={index}
 {...rowData}
 />
);
 }

 render() {
 return (
 <View style={globalStyles.COMMON_STYLES.pageContainer}>
 <ListView
 enableEmptySections
 dataSource={this.state.dataSource}
 renderRow={this.renderRow}
 style={this.props.listStyles}
 />
 {this.renderModal()}
 </View>
);
 }

}

Now we've added the Modal to the NewsFeed component and rendered it. Notice that this
time we split the rendering of the Modal into a helper method:

renderModal() {
 return (
 <Modal>
 </Modal>
);
}

We then called that helper method as part of the main render method:

{this.renderModal()}

Props
In order to toggle the modal open and close, we can use the visible prop of Modal
(Boolean). If this property is true, then the modal becomes visible to the user, and if it is
false, then it is hidden. In order to keep track of whether or not we want the modal to be
showing, we'll use the NewsFeed component's state. First, we'll need to initialize this state
in the component's constructor:

constructor(props) {
 super(props);

Starting our Project with React Native Components

[145]

 this.ds = new ListView.DataSource({
 rowHasChanged: (row1, row2) => row1.title !== row2.title
 });
 this.state = {
 dataSource: this.ds.cloneWithRows(props.news),
 modalVisible: false
 };
}

Since we initially want the modal to be hidden, we initialize a state value modalVisible to
false. The next thing we need to do is to add this state value as a prop on the Modal itself:

renderModal() {
 return (
 <Modal
 visible={this.state.modalVisible}
 >
 </Modal>
);
}

Finally, we need to change the state value when the user presses on the NewsItem. In order
to do that, we'll create an event listener function in the NewsFeed component:

onModalOpen() {
 this.setState({
 modalVisible: true
 });
}

Because we're using the ES2015 class syntax, we need to bind the this context to the event
listeners in the component's constructor:

constructor(props) {
 super(props);
 this.ds = new ListView.DataSource({
 rowHasChanged: (row1, row2) => row1.title !== row2.title
 });
 this.state = {
 dataSource: this.ds.cloneWithRows(props.news),
 modalVisible: false
 };

 this.onModalOpen = this.onModalOpen.bind(this);
}

Starting our Project with React Native Components

[146]

Next, we'll pass this handler down as an onPress prop to the NewsItem components in the
renderRow method:

renderRow(rowData, ...rest) {
 const index = parseInt(rest[1], 10);
 return (
 <NewsItem
 onPress={() => this.onModalOpen()}
 style={styles.newsItem}
 index={index}
 {...rowData}
 />
);
}

As it happens, a renderRow method of ListView also needs to be bound if we wish to
access the component's this context, so we'll add that to the constructor, as shown in the
following code:

constructor(props) {
 super(props);
 this.ds = new ListView.DataSource({
 rowHasChanged: (row1, row2) => row1.title !== row2.title
 });
 this.state = {
 dataSource: this.ds.cloneWithRows(props.news),
 modalVisible: false
 };

 this.renderRow = this.renderRow.bind(this);
 this.onModalOpen = this.onModalOpen.bind(this);
}

Finally, we need to make use of this new prop in the NewsItem component. We'll do this by
adding it to prop type validation and attaching it to that component's TouchableOpacity:

import React, { Component, PropTypes } from 'react';
import {
 View,
 TouchableOpacity,
 StyleSheet
} from 'react-native';
import Byline from './Byline';
import AppText from './AppText';
import Thumbnail from './Thumbnail';
import * as globalStyles from '../styles/global';

Starting our Project with React Native Components

[147]

export default class NewsItem extends Component {

 render() {
 const {
 style,
 imageUrl,
 title,
 author,
 date,
 location,
 description,
 onPress
 } = this.props;
 const accentColor = globalStyles.ACCENT_COLORS[
 this.props.index % globalStyles.ACCENT_COLORS.length
];
 return (
 <TouchableOpacity
 style={style}
 onPress={onPress}
 >
 <View>
 <Thumbnail
 url={imageUrl}
 titleText={title}
 accentColor={accentColor}
 style={styles.thumbnail}
 />
 <View style={styles.content}>
 <Byline
 author={author}
 date={date}
 location={location}
 />
 <AppText>
 {description}
 </AppText>
 </View>
 </View>
 </TouchableOpacity>
);
 }
}

NewsItem.propTypes = {
 imageUrl: PropTypes.string,
 title: PropTypes.string.isRequired,
 description: PropTypes.string,

Starting our Project with React Native Components

[148]

 date: PropTypes.instanceOf(Date).isRequired,
 author: PropTypes.string.isRequired,
 location: PropTypes.string,
 index: PropTypes.number.isRequired,
 onPress: PropTypes.func.isRequired,
 style: View.propTypes.style
};

const styles = StyleSheet.create({
 thumbnail: {
 marginBottom: 5
 },
 content: {
 paddingHorizontal: 5
 }
});

Now that we've created the ability to open the modal, we also need to create the ability to
close the modal. The first way we can do this is by defining the Modal prop
onRequestClose (function). This function is called when the user uses some native means
to attempt to close the modal, for instance, when the user hits the native back button on an
Android device. Since it is a required property on Android, the general best practice is to
define this property. In order to do that, we'll create a new event listener method within our
NewsFeed component:

onModalClose() {
 this.setState({
 modalVisible: false
 });
}

We'll then add the new event listener as a prop on our Modal:

renderModal() {
 return (
 <Modal
 visible={this.state.modalVisible}
 onRequestClose={this.onModalClose}
 >
 </Modal>
);
}

Starting our Project with React Native Components

[149]

Because this method is an event listener, we will also need to bind the this context once
again in our constructor:

constructor(props) {
 super(props);
 this.ds = new ListView.DataSource({
 rowHasChanged: (row1, row2) => row1.title !== row2.title
 });
 this.state = {
 dataSource: this.ds.cloneWithRows(props.news),
 modalVisible: false
 };

 this.renderRow = this.renderRow.bind(this);
 this.onModalClose = this.onModalClose.bind(this);
 this.onModalOpen = this.onModalOpen.bind(this);
}

It is generally a good idea to also provide the user with a button, or TouchableOpacity,
which allows them to close it without using some native means, so let's add that to our
Modal as well. The content that we want to show inside the Modal component is added as
children:

renderModal() {
 return (
 <Modal
 visible={this.state.modalVisible}
 onRequestClose={this.onModalClose}
 >
 <View style={styles.modalContent}>
 <TouchableOpacity
 onPress={this.onModalClose}
 style={styles.closeButton}
 >
 <SmallText>Close</SmallText>
 </TouchableOpacity>
 </View>
 </Modal>
);
}

For this, we'll need to add TouchableOpacity to the imports:

import {
 ListView,
 StyleSheet,
 View,

Starting our Project with React Native Components

[150]

 Modal,
 TouchableOpacity
} from 'react-native';

We'll also need to add some styles for the new Modal content:

const styles = StyleSheet.create({
 newsItem: {
 marginBottom: 20
 },
 modalContent: {
 flex: 1,
 justifyContent: 'center',
 paddingTop: 20,
 backgroundColor: globalStyles.BG_COLOR
 },
 closeButton: {
 paddingVertical: 5,
 paddingHorizontal: 10,
 flexDirection: 'row'
 }
});

By default, the Modal will instantly be visible when the visible prop is set to true. This
can be a jolting experience and is not especially desirable. To mitigate this, we can set an
animationType (string) prop on our modal to have it animate in from the bottom of the
application. We'll use the 'slide' animation, as shown in the following code:

<Modal
 animationType="slide"
 visible={this.state.modalVisible}
 onRequestClose={this.onModalClose}
>

WebView
We have now created a place to put the article, but we now need a means to show it. Rather
than pulling the text of the entire article into our application, which has questionable
legality, we will take the user to the original website where the article was posted by using a
WebView component. A WebView is simply a limited native browser that we can embed
within our application and control.

Starting our Project with React Native Components

[151]

The first thing we'll need to do is add a WebView inside of our NewsFeed component's
Modal:

renderModal() {
 return (
 <Modal
 animationType="slide"
 visible={this.state.modalVisible}
 onRequestClose={this.onModalClose}
 >
 <View style={styles.modalContent}>
 <TouchableOpacity
 onPress={this.onModalClose}
 style={styles.closeButton}
 >
 <SmallText>Close</SmallText>
 </TouchableOpacity>
 <WebView />
 </View>
 </Modal>
);
}

Props
In order to tell our WebView what to show, we'll need to define its source (object) prop.
Here, we can tell it to open some web page or any arbitrary HTML string that we pass in, as
shown in the following code:

<WebView
 source={{uri: 'http://example.com'}} // Open a webpage
/>

<WebView
 source={{html: '<html><head></head><body><h1>Hello
World!</h1></body></html>'}} // Open static HTML
/>

In our case, we want to render a web page from the article's URL. We'll assume that the
URL of the current article is stored in the NewsFeed component's state:

renderModal() {
 return (
 <Modal
 animationType="slide"
 visible={this.state.modalVisible}

Starting our Project with React Native Components

[152]

 onRequestClose={this.onModalClose}
 >
 <View style={styles.modalContent}>
 <TouchableOpacity
 onPress={this.onModalClose}
 style={styles.closeButton}
 >
 <SmallText>Close</SmallText>
 </TouchableOpacity>
 <WebView
 source={{ uri: this.state.modalUrl }}
 />
 </View>
 </Modal>
);
}

A WebView can be styled just like a regular View component, using the style (object) prop.
We can also tell the WebView to ensure the contents of the web page fit nicely inside of the
View by setting the scalesPageToFit (Boolean) prop:

<WebView
 scalesPageToFit
 source={{ uri: this.state.modalUrl }}
/>

In order for this to work, we will need to set the modalUrl in the NewsFeed state. We will
do this by adding it to the onModalOpen method, as shown in the following code:

onModalOpen(url) {
 this.setState({
 modalVisible: true,
 modalUrl: url
 });
}

Then, we need to pass in this argument from the NewsItem:

renderRow(rowData, ...rest) {
 const index = parseInt(rest[1], 10);
 return (
 <NewsItem
 onPress={() => this.onModalOpen(rowData.url)}
 style={styles.newsItem}
 index={index}
 {...rowData}
 />
);

Starting our Project with React Native Components

[153]

}

There are also a number of event listener props for the WebView component. The first group
is called at various times while a page is loading: onLoadStart (function) is called when
the site begins to load, onLoad (function) is called when the site is loaded successfully,
onError (function) is called when the site fails to load, and onLoadEnd (function) is called
when the load ends either way.

There is also a special onNavigationStateChange (function) prop that is called when the
user navigates within the web page by, for instance, by clicking a link on that page. We can
use this function to optionally show a back button or other navigational components. Take a
look at the following code:

<WebView
 onNavigationStateChange={(navState) => {
 if (navState.canGoBack) {
 this.showBackButton();
 }
 }}
/>

TabBarIOS
Now that we've created our NewsFeed, it is a good time to take this custom React Native
component and actually place it into an application. The first thing we'll do is create a
Home Screen for our application that will be displayed when the application is first
opened. We'll do this by creating a new component in our components directory called
HomeScreen. We're going to be making use of an iOS-only component (TabBarIOS) in the
HomeScreen, so we'll name the file HomeScreen.ios.js. The extension tells the React
Native packager that this component should only be included in the iOS version of the
application.

The HomeScreen will use a new React Native component called TabBarIOS to display our
NewsFeed component (under a Featured tab) as well as Search and Bookmarks
components under different tabs, as shown in the following screenshot:

Starting our Project with React Native Components

[154]

The TabBarIOS component is a simple navigational component that allows the user to
navigate to different parts of the application by pressing the icon associated with that area.
We'll begin to build our HomeScreen component by importing the component and adding
it to the render method, as shown in the following code snippet:

import React, { Component } from 'react';
import {
 TabBarIOS,
 Text
} from 'react-native';
import NewsFeed from './NewsFeed';
import * as globalStyles from '../styles/global';

export default class HomeScreen extends Component {

 render() {
 return (
 <TabBarIOS>
 </TabBarIOS>
);
 }
}

Notice we're also importing the Text and NewsFeed components because we'll be using
those as well.

Props
In order to style the TabBarIOS component, we can use the tintColor (string),
barTintColor (string), and translucent (Boolean) props:

render() {
 return (
 <TabBarIOS
 barTintColor={globalStyles.BAR_COLOR}
 tintColor={globalStyles.LINK_COLOR}
 translucent={false}
 >
 </TabBarIOS>
);
}

Starting our Project with React Native Components

[155]

TabBarIOS.Item
Each tab in our tab bar is created by using TabBarIOS.Item. Within these elements, we
place the components we wish to be rendered when that tab is selected. We're going to be
making three tabs, so we'll use three TabBarIOS.Item elements:

render() {
 return (
 <TabBarIOS>
 <TabBarIOS.Item>
 <NewsFeed />
 </TabBarIOS.Item>
 <TabBarIOS.Item>
 <Search />
 </TabBarIOS.Item>
 <TabBarIOS.Item>
 <Text>Bookmarks</Text>
 </TabBarIOS.Item>
 </TabBarIOS>
);
}

Now we've created three tabs. The first contains our newly created NewsFeed component
and the other two, for now, only contain some text that describes what we will eventually
put in them.

Props
In order to know which tab to display, we'll need to use the TabBarIOS.Item prop
selected (Boolean). First we'll store the name of the selected tab in state and initialize it as
the newsFeed tab in our constructor:

constructor(props) {
 super(props);
 this.state = {
 tab: 'newsFeed'
 };
}

Next, each tab will assign its selected prop based on the name that is stored in the state of
HomeScreen:

render() {
 return (
 <TabBarIOS>

Starting our Project with React Native Components

[156]

 <TabBarIOS.Item
 selected={this.state.tab === 'newsFeed'}
 >
 <NewsFeed />
 </TabBarIOS.Item>
 <TabBarIOS.Item
 selected={this.state.tab === 'search'}
 >
 <Search />
 </TabBarIOS.Item>
 <TabBarIOS.Item
 selected={this.state.tab === 'bookmarks'}
 >
 <Text>Bookmarks</Text>
 </TabBarIOS.Item>
 </TabBarIOS>
);
}

Now, when the HomeScreen is first loaded, the NewsFeed tab will properly be showing,
but we also need to give the user the ability to change the tab. We do this by using the
TabBarIOS.Item prop onPress (function). Each tab will simply update the component's
state when it is pressed. Take a look at the following code snippet:

render() {
 return (
 <TabBarIOS>
 <TabBarIOS.Item
 selected={this.state.tab === 'newsFeed'}
 onPress={() => this.setState({ tab: 'newsFeed' })}
 >
 <NewsFeed />
 </TabBarIOS.Item>
 <TabBarIOS.Item
 selected={this.state.tab === 'search'}
 onPress={() => this.setState({ tab: 'search' })}
 >
 <Search />
 </TabBarIOS.Item>
 <TabBarIOS.Item
 selected={this.state.tab === 'bookmarks'}
 onPress={() => this.setState({ tab: 'bookmarks' })}
 >
 <Text>Bookmarks</Text>
 </TabBarIOS.Item>
 </TabBarIOS>
);
}

Starting our Project with React Native Components

[157]

Finally, we need to tell TabBarIOS.Items what icons and labels to show. We can do this in
one of two ways. The first is we could use custom icon images and label text by using the
icon (object) and title (string) props, respectively. Alternatively, we can use one of the
built-in system icons by specifying the systemIcon (string) prop instead, which is what
we'll do on our HomeScreen. We're using the featured system icon for the news feed tab
because there is no built-in news system icon, as shown in the following code snippet:

render() {
 return (
 <TabBarIOS>
 <TabBarIOS.Item
 systemIcon={'featured'}
 selected={this.state.tab === 'newsFeed'}
 onPress={() => this.setState({ tab: 'newsFeed' })}
 >
 <NewsFeed />
 </TabBarIOS.Item>
 <TabBarIOS.Item
 systemIcon={'search'}
 selected={this.state.tab === 'search'}
 onPress={() => this.setState({ tab: 'search' })}
 >
 <Search />
 </TabBarIOS.Item>
 <TabBarIOS.Item
 systemIcon={'bookmarks'}
 selected={this.state.tab === 'bookmarks'}
 onPress={() => this.setState({ tab: 'bookmarks' })}
 >
 <Text>Bookmarks</Text>
 </TabBarIOS.Item>
 </TabBarIOS>
);
}

The TabBarIOS.Item also gives us the ability to show a badge (string or number) on it. A
badge is usually used to draw a user's attention to some part of the application. In our
application, if we wanted to notify the user that there were four new articles in the Featured
tab that they have yet to see, we could add a badge to that tab, as shown in the following
code snippet:

<TabBarIOS.Item
 badge={4}
 systemIcon={'featured'}
 selected={this.state.tab === 'newsFeed'}
 onPress={() => this.setState({ tab: 'newsFeed' })}

Starting our Project with React Native Components

[158]

>
 <NewsFeed />
</TabBarIOS.Item>

Take a look at the following screenshot:

Now that we have a complete HomeScreen component, the final step is to add this to our
project's entry point index.ios.js. We'll do that by removing most of what is there and
simply passing our HomeScreen to the AppRegistry:

import {
 AppRegistry
} from 'react-native';
import HomeScreen from './src/components/HomeScreen';

AppRegistry.registerComponent('RNNYT', () => HomeScreen);

And, just like that, we have a working application! Before we claim victory, let's add a few
more components.

TextInput
Let's begin to create what will become our Search component. As part of this component,
we will need a way to accept user input. The primary way we do this in React Native
applications is by using a TextInput component. This component is analogous to an
HTML input component with a type="text" attribute.

First, we'll create a new component, Search.js, in the components directory and import
the TextInput component:

import React, { Component } from 'react';
import {
 View,
 TextInput
} from 'react-native';

export default class Search extends Component {

 render() {

Starting our Project with React Native Components

[159]

 return (
 <View>
 <View>
 <TextInput />
 </View>
 </View>
);
 }
}

Props
Though it may not seem it, TextInput is actually one of the most sophisticated
components we'll look at in this chapter. Most of its sophistication comes from the sheer
number of props it exposes to the developer.

Similar to a Text or other components we have looked at, a TextInput can receive a style
(object) prop. In our Search component, we'll add some basic styles to the TextInput
element in order to make it visible in our application. We'll also add some basic styles to the
surrounding Views:

import React, { Component } from 'react';
import {
 View,
 TextInput,
 StyleSheet
} from 'react-native';
import * as globalStyles from '../styles/global';

export default class Search extends Component {

 render() {
 return (
 <View style={globalStyles.COMMON_STYLES.pageContainer}>
 <View style={styles.search}>
 <TextInput
 style={styles.input}
 />
 </View>
 </View>
);
 }
}

const styles = StyleSheet.create({
 input: {

Starting our Project with React Native Components

[160]

 height: 35,
 color: globalStyles.TEXT_COLOR,
 paddingHorizontal: 5,
 flex: 1
 },
 search: {
 borderColor: globalStyles.MUTED_COLOR,
 flexDirection: 'row',
 alignItems: 'center',
 borderRadius: 5,
 borderWidth: 1,
 marginTop: 10,
 marginBottom: 5
 }
});

In order to capture the user's input, we typically use the parent component's state (in this
case, the Search component). We will use the TextInput event listener prop
onChangeText (function), which is called every time the user taps a key, to update the
component's state:

render() {
 return (
 <View style={globalStyles.COMMON_STYLES.pageContainer}>
 <View style={styles.search}>
 <TextInput
 style={styles.input}
 onChangeText={text => this.setState({ searchText: text })}
 />
 </View>
 </View>
);
}

We then need to keep the TextInput value (string) prop in sync with the parent
component's state. The value prop is what the user sees displayed within the TextInput,
so it is important that this matches what the user has typed, as shown in the following code
snippet:

<TextInput
 style={styles.input}
 onChangeText={text => this.setState({ searchText: text })}
 value={this.state.searchText}
/>

Starting our Project with React Native Components

[161]

In order to use state, we also need to initialize it in the constructor:

constructor(props) {
 super(props);
 this.state = {
 searchText: ''
 };
}

We can add placeholder text, which appears before the user begins to input text and
prompts them as to what the text input expects, by using the placeholder (string) prop.
We can also style this placeholder text by using the placeholderTextColor (string) prop,
as shown in the following code snippet:

<TextInput
 style={styles.input}
 onChangeText={text => this.setState({ searchText: text })}
 value={this.state.searchText}
 placeholder={'Search'}
 placeholderTextColor={globalStyles.MUTED_COLOR}
/>

Now that we have a functioning Search component, we'll add this component
to HomeScreen:

import React, { Component } from 'react';
import {
 TabBarIOS,
 Text,
 Alert,
 Vibration,
 StatusBar
} from 'react-native';
import NewsFeed from './NewsFeed';
import Search from './Search';
import * as globalStyles from '../styles/global';

// Set the status bar for iOS to light
StatusBar.setBarStyle('light-content');

export default class HomeScreen extends Component {

 constructor(props) {
 super(props);
 this.state = {
 tab: 'newsFeed'
 };

Starting our Project with React Native Components

[162]

 }

 showBookmarkAlert() {
 Vibration.vibrate();
 Alert.alert(
 'Coming Soon!',
 'We're hard at work on this feature, check back in the near future.',
 [
 { text: 'OK', onPress: () => console.log('User pressed OK') }
]
);
 }

 render() {
 return (
 <TabBarIOS
 barTintColor={globalStyles.BAR_COLOR}
 tintColor={globalStyles.LINK_COLOR}
 translucent={false}
 >
 <TabBarIOS.Item
 systemIcon={'featured'}
 selected={this.state.tab === 'newsFeed'}
 onPress={() => this.setState({ tab: 'newsFeed' })}
 >
 <NewsFeed />
 </TabBarIOS.Item>
 <TabBarIOS.Item
 systemIcon={'search'}
 selected={this.state.tab === 'search'}
 onPress={() => this.setState({ tab: 'search' })}
 >
 <Search />
 </TabBarIOS.Item>
 <TabBarIOS.Item
 systemIcon={'bookmarks'}
 selected={this.state.tab === 'bookmarks'}
 onPress={() => this.showBookmarkAlert()}
 >
 <Text>Bookmarks</Text>
 </TabBarIOS.Item>
 </TabBarIOS>
);
 }
}

Starting our Project with React Native Components

[163]

One of the interesting and more useful props available to the TextInput component is the
ability to change the default keyboard the user sees when they focus on the input. For
instance, if TextInput is used to collect the user's phone number, we can set the
keyboardType (string) prop to "phone-pad":

<TextInput
 keyboardType="email-address" // Uses a keyboard optimized for email
address entry
/>

If TextInput is being used for secure information (that is a password), we can set the
secureTextEntry (Boolean) to true and the input will be obscured:

<TextInput
 secureTextEntry // Obscure password input
/>

If we wish to capture many lines of input, rather than just a few words, we can set the
multiline (Boolean) prop to true and use the numberOfLines (Number) prop to specify
exactly how many lines to allow, as shown in the following code snippet:

<TextInput
 multiline // Allow multiple lines of text input
 numberOfLines={3} // Limit the number of line to 3
/>

There is also a whole slew of event listener functions in addition to onChange, that allow us
to tap into different parts of the TextInput lifecycle. These include onFocus (function),
onBlur (function), onSelectionChange (function), and many more.

Other input components
In addition to the TextInput component, there are a number of other input components
that can be used to capture different types of user inputs. We won't be using them yet in our
application, but it behooves you to know what they are and when to use them.

A Slider component can be used to capture number within a finite range. For instance,
this could be used to select a percent satisfaction (a number between 0 and 1) on a user
feedback survey. Take a look at the following screenshot:

Starting our Project with React Native Components

[164]

The Switch component is used to capture a Boolean, on or off, choice. This type of input
could be used to opt out of push notifications within our application. Take a look at the
following screenshot:

The Picker component is an interesting one in that, though it is used for both platforms, its
appearance is completely different on iOS and Android. This component is analogous to an
HTML select component and is used for selecting from a list of discrete options. For
instance, this type of input would be used to select the country in which the user lives.

Native APIs
Some native functionality does not fit nicely into a component. For these things, React
Native also exposes several Native APIs that can be used in an application. Some of these
we've talked about already in previous chapters. For instance, in Chapter 3, Styling and
Layout in React Native, we introduced the StyleSheet API, which allows us to create
stylesheets for our components. Others we'll cover in depth in future chapters on animation,
fetching data, and performance optimization. Aside from these, there are a few that are of
interest to us and our application right now.

ActionSheetIOS
In iOS applications, we often show context menus in the form of action sheets. These
provide the user with nested options for a particular item on screen. In our application, we
will use the ActionSheetIOS API to show the user a context menu that allows them to
bookmark a NewsItem when they long press on the NewsItem itself, as shown in the
following screenshot:

Starting our Project with React Native Components

[165]

In order to do this, the first thing we'll need to do is create a listener for the long press
event, bind it to the this context in the constructor of the NewsItem, and attach it to the
TouchableOpacity element of NewsItem, as shown in the following code:

export default class NewsItem extends Component {

 constructor(props) {
 super(props);

 this.onLongPress = this.onLongPress.bind(this);
 }

 onLongPress() {
 // Open action sheet
 }

 render() {
 const {
 style,
 imageUrl,
 title,
 author,
 date,
 location,
 description,
 onPress
 } = this.props;
 const accentColor = globalStyles.ACCENT_COLORS[
 this.props.index % globalStyles.ACCENT_COLORS.length
];
 return (
 <TouchableOpacity
 style={style}
 onPress={onPress}
 onLongPress={this.onLongPress}
 >
 <View>
 <Thumbnail
 url={imageUrl}
 titleText={title}
 accentColor={accentColor}
 style={styles.thumbnail}
 />
 <View style={styles.content}>
 <Byline
 author={author}
 date={date}
 location={location}

Starting our Project with React Native Components

[166]

 />
 <AppText>
 {description}
 </AppText>
 </View>
 </View>
 </TouchableOpacity>
);
 }
}

Next, we need to import the ActionSheetIOS API and use its
showActionSheetWithOptions method to open the context menu:

import {
 View,
 TouchableOpacity,
 StyleSheet,
 ActionSheetIOS
} from 'react-native';

Here, we'll modify our newly created onLongPress method:

onLongPress() {
 ActionSheetIOS.showActionSheetWithOptions({
 options: ['Bookmark', 'Cancel'],
 cancelButtonIndex: 1,
 title: this.props.title
 }, buttonIndex => console.log('Button selected', buttonIndex));
}

As we can see, the showActionSheetWithOptions method takes two arguments. The first
argument is a JavaScript object with several entries:

{
 options: ['Bookmark', 'Cancel'],
 cancelButtonIndex: 1,
 title: this.props.title
}

The options value is an array of strings that will be displayed on the buttons that make up
the action sheet. Here, we are specifying that we want two buttons, the first says Bookmark
and the second Cancel:

options: ['Bookmark', 'Cancel']

Starting our Project with React Native Components

[167]

We can also tell the action sheet which button is used for canceling the interaction so that it
can treat it different visually. In the case of cancel buttons, iOS separates them from the
other buttons. Our cancel button is at index 1 in the array:

cancelButtonIndex: 1

Finally, we can optionally add a title to the action sheet that is displayed in order to give the
user some direction. In this case, the title of the article provides sufficient context:

title: this.props.title

The second argument the showActionSheetWithOptions method takes is a callback
function invoked when the user presses a button on the action sheet. The callback receives
one argument, the index of the button that was selected. Since we have not yet created the
ability to bookmark articles, we'll just log the selected index to the console:

(buttonIndex) => console.log('Button selected', buttonIndex)

The ActionSheetIOS API comes with another method,
showShareActionSheetWithOptions, which can be used to show the native sharing
menu of iOS. This allows users to share content from within an app to social media
platforms, such as Facebook or Twitter, to printers, text message, and much more.

Alert
The Alert API is a cross-platform API used to create a pop-up alert dialog. An alert's
function is to bring the user's attention to something urgent. Since we have yet to
implement the Bookmark tab of our application, let's use an alert to let the user know we
are working hard to get this feature finished:

Starting our Project with React Native Components

[168]

To implement this, we'll need to import the Alert API into our HomeScreen component:

import {
 TabBarIOS,
 Alert
} from 'react-native';

Next, we'll create a method within the HomeScreen component that will eventually be
responsible for opening the alert:

showBookmarkAlert() {
 // Show alert here
}

Finally, we'll call the showBookmarkAlert method when the bookmarks tab is selected,
instead of navigating to that tab:

<TabBarIOS.Item
 systemIcon={'bookmarks'}
 selected={this.state.tab === 'bookmarks'}
 onPress={() => this.showBookmarkAlert()}
>
 <Text>Bookmarks</Text>
</TabBarIOS.Item>

Now that we have the setup out of the way, we must implement the showBookmarkAlert
method and use the Alert API, as shown in the following code snippet:

showBookmarkAlert() {
 Alert.alert(
 'Coming Soon!',
 'We're hard at work on this feature, check back in the near future.',
 [
 { text: 'OK', onPress: () => console.log('User pressed OK') }
]
);
}

The first argument that Alert.alert takes is the string title of the alert. The second is a
string message, which is displayed below the title in a slightly smaller font size. The third
argument is an array of objects that represent the buttons shown at the bottom of the alert.
Each button has a text value that is displayed on the button and an onPress value, which is
a function called when the user selects the button. Since we aren't responding to the press in
any way, we'll simply log to the console.

Starting our Project with React Native Components

[169]

Vibration
If the alert wasn't enough to get the user's attention, React Native also allows us to access
the hardware and make the mobile device vibrate by using the Vibration API. This is a
very simple API and can be implemented in only a few lines of code. We'll use it to give the
user a jolt at the same time we show the alert from the previous section.

The first thing we need to do is add the Vibration API to the import statement of
HomeScreen:

import {
 TabBarIOS,
 Alert,
 Vibration
} from 'react-native';

Next, we'll simply call the API's vibrate method right before we open the alert:

showBookmarkAlert() {
 Vibration.vibrate();
 Alert.alert(
 'Coming Soon!',
 'We're hard at work on this feature, check back in the near future.',
 [
 { text: 'OK', onPress: () => console.log('User pressed OK') }
]
);
}

And that's all there is to it! Note that, since your computer cannot vibrate, this will have no
effect when running in the emulator.

StatusBar
The StatusBar API allows us to modify the operating system status bar displayed at the
top of the screen. We've styled our application to have a dark theme. Since the default color
of the status bar is also dark, it will probably be hard for users to read. We'll use the
StatusBar API on the HomeScreen to make the status bar display in a lighter color.

Starting our Project with React Native Components

[170]

First, we'll import the StatusBar API:

import {
 TabBarIOS,
 Text,
 Alert,
 Vibration,
 StatusBar
} from 'react-native';

Then we'll simply call the setBarStyle method, passing it the name of the theme we
would like to use:

// Set the status bar for iOS to light
StatusBar.setBarStyle('light-content');

Now the status bar stands out on the screen, as shown in the following screenshot:

Summary
React Native, like React for the Web, comes bundled with many components and APIs that
give us direct access to native interfaces and functionality. We can use these components
and APIs in combination to make more complex components of our own and, eventually,
an entire application.

We said this at the beginning of the chapter, but it bears repeating, this list of components,
props, and APIs is by no means comprehensive. Some of the components and APIs that
were left out will be introduced in later chapters, though some will not. To find a
comprehensive list, refer to the React Native documentation.

Before we take our RNNYT application to the next level, we'll first spend the next chapter
discussing data management strategies for React applications.

5
Flux and Redux

React, at it its core, is a user interface library. For an application of any sophistication, the
user interface, or the view-layer, only constitutes about half of our concerns. What remains is
what is often referred to as the data layer. This part of our application is responsible for
fetching, persisting, and mutating data, and communicating mutations to the view layer for
their display.

React itself, and, by proxy, React Native, has no opinions or prescriptions for handling data
within an application. In theory, React could be used with any number of libraries or
frameworks that provide a solution for data handling. In fact, when the library first came
out, this was common. There were integrations with basically all of the major frameworks at
the time (Backbone, Angular, Ember, and so on.) that used React in place of the framework's
traditional view-layer.

As React became more popular, developers began looking for a data handling solution
created with React in mind and shared some of the principles of the library itself. Around
this time, developers began to turn to Facebook's homegrown internal application
architecture called Flux.

Flux, in contrast to React, is not an implementation–it is an architecture. Much in the same
way Model-View-Controller is an architecture implemented by Backbone or Angular, Flux
provides a design pattern that must be implemented by an application or library developer.
Flux began as a set of blog posts and conference talks where Facebook team members
described the architecture and provided boilerplate implementation code suggesting how it
might be done. It has grown from that point to a rich and diverse ecosystem of
implementation libraries with slightly different abstractions and opinions, but all focusing
around the central themes of unidirectional dataflow and the reduction of shared mutable
state.

Flux and Redux

[172]

It may still be too early to say that there is a canonical Flux implementation, but much of the
community, especially those involved in React Native development, seems to be coalescing
around an implementation called Redux. Redux is not what some refer to as pure Flux, but
it draws from its founding principles, and creates some abstractions that make the library
arguably more useful in practice.

In this chapter, we'll cover the following:

An in-depth explanation of the Flux architecture in its pure form
Simple implementations of all the essential Flux components from scratch
An introduction to the Redux library, its components, and core concepts
Using Redux to create a simple application

For some applications, Flux or Redux (or any formal data layer) might be
considered over-engineering. In simple applications with few components
and relatively static data, it may be easier to store the entire application's
state inside of a top-level React component. When this approach starts to
feel too complicated, it is probably time to graduate to Flux or Redux.

The Flux architecture
The Flux application architecture is the new paradigm for handling data within
applications, developed as an alternative to traditional Model-View-Controller (MVC)
architectures or derivatives thereof. Before we delve into learning the architecture and using
it to build an application, let's discuss the motivations for creating Flux and why we are
using it in our React Native applications.

Motivation
When Facebook introduced Flux, they contended that MVC architectures do not scale. The
reason for this, their argument goes, is that large applications become less and less
predictable as they scale under these architectures. This lack of predictability stems from
opaque lines of communication between the various architecture components that often
lead to unintended consequences when they are not fully understood.

Flux and Redux

[173]

The motivation of Flux, therefore, is to increase predictability in large applications, enabling
developers to feel confident in making changes and to do so faster. There are two primary
mechanisms introduced by Flux to achieve that end:

Unidirectional dataflow
Removal of shared mutable state

In MVC architectures, it is common for data to flow back and forth through the controller
component: Data flows into the controller from views as the user interacts with the
application, and data flows out of the controller to the view as the underlying data model is
updated.

These multidirectional arrows can be hard to reason about, especially as your application
grows and more models and views are introduced. Flux enforces unidirectional dataflow in
order to combat this complexity. In other words, when we assemble the Flux architecture
diagram, each arrow points in only one direction.

Flux and Redux

[174]

There is an oft-repeated quote among JavaScript developers that is usually attributed to
Pete Hunt, who was heavily involved in the creation of React (though it probably predates
his use of it at the React.js Conference in 2015, and is also derived from similar
condemnations)–shared mutable state is the root of all evil. This is obviously a bit hyperbolic,
but it probably strikes a nerve if you've spent any amount of time developing large
JavaScript applications.

It is not uncommon for an application's state to be passed around from component to
component. In JavaScript, this is problematic because objects, most often used to represent
state, are mutable. Therefore, any component that receives a reference to the state object has
the ability to update it. As one might imagine, tracking down which component is making
the change is not always an easy task. The reality of shared mutable state is bugs that are
hard to find and permanently eliminate.

Flux approaches this problem by encapsulating all state mutations into a single class of
component: Stores. Some implementations take this even further by mandating that the
state itself be made up of so called immutable objects, or, as we'll see in Redux, using the
principles of functional programming. By centralizing all mutations, Flux provides
developers with a clear place to look when a bug is discovered.

Saying that MVC does not scale is a bold claim, and not one we will take sides on in this
book. Whether or not Flux is really an improvement over traditional MVC architectures is
almost certainly subjective. The argument can be, and has been, made that MVC can in fact
scale when implemented properly. However, there is still a very compelling reason to use
Flux when creating React and React Native applications–the community support.

The React community has dedicated much effort to making Flux implementations that
integrate with React extremely well. Using these implementations that have React in mind
help us to write apps that are easy to reason about and scale quickly and effectively.

Implementing Flux
In order to learn how Flux works in practice, we'll be creating a simple application and
implementing the Flux architecture within it. The app we'll be creating, Countly, is a tally
counter application that can be used to count people entering and leaving an event venue.

Flux and Redux

[175]

From a high level, we can think of Flux as a cyclical pattern. The cycle generally starts in the
view layer; in our case, these are React components. When a user interacts with our view,
they generate what Flux calls an action using an action creator. This action is passed to the
dispatcher, a singleton component that only allows one action to be processed at a
time. The dispatcher sends, or dispatches, the action to each of the application's stores. Each
store processes the action for itself and modifies its own internal state accordingly.

The store then broadcasts this change to subscribed views, which re-render in turn,
completing the cycle.

Creating our view
The first thing we'll need to do is create a new React Native project for Countly and create
the view that will display the tally to the user. To make the project, we'll need to run this
command:

 react-native init Countly

As we discussed in previous chapters, this creates all of the boilerplate React Native files
we'll need for our new app. In order to make our view, we'll work directly in the
index.ios.js file. The view is very simple. It shows the current tally as well as buttons to
increment, decrement, and zero-out the tally:

import React, { Component } from 'react';
import {
 AppRegistry,
 StyleSheet,
 Text,

Flux and Redux

[176]

 View,
 TouchableOpacity
} from 'react-native';

class Countly extends Component {

 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.appName}>
 Countly
 </Text>
 <Text style={styles.tally}>
 Tally: 0
 </Text>
 <TouchableOpacity style={styles.button}>
 <Text style={styles.buttonText}>
 +
 </Text>
 </TouchableOpacity>
 <TouchableOpacity style={styles.button}>
 <Text style={styles.buttonText}>
 -
 </Text>
 </TouchableOpacity>
 <TouchableOpacity style={styles.button}>
 <Text style={styles.buttonText}>
 0
 </Text>
 </TouchableOpacity>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF'
 },
 appName: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10
 },
 tally: {

Flux and Redux

[177]

 textAlign: 'center',
 color: '#333333',
 marginBottom: 20,
 fontSize: 25
 },
 button: {
 backgroundColor: 'blue',
 width: 100,
 marginBottom: 20,
 padding: 20
 },
 buttonText: {
 color: 'white',
 textAlign: 'center',
 fontSize: 20
 }
});

AppRegistry.registerComponent('Countly', () => Countly);

The first thing we do, as always, is import the React libraries and native components we
need in our view:

import React, { Component } from 'react';
import {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 TouchableOpacity
} from 'react-native';

Next, we create our Countly application component class, extending the React Component
class. Inside the Countly component's render() method, we return the Text elements
containing the tally, which is zero when the app first starts. We also return three
TouchableOpacity elements, which act as buttons allowing the user to increment,
decrement, and zero-out the count. For now, since we haven't defined the onPress
property, these buttons do nothing:

class Countly extends Component {

 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.appName}>
 Countly
 </Text>

Flux and Redux

[178]

 <Text style={styles.tally}>
 Tally: 0
 </Text>
 <TouchableOpacity style={styles.button}>
 <Text style={styles.buttonText}>
 +
 </Text>
 </TouchableOpacity>
 <TouchableOpacity style={styles.button}>
 <Text style={styles.buttonText}>
 -
 </Text>
 </TouchableOpacity>
 <TouchableOpacity style={styles.button}>
 <Text style={styles.buttonText}>
 0
 </Text>
 </TouchableOpacity>
 </View>
);
 }
}

We also create some basic styles to make our app palatable:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF'
 },
 appName: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10
 },
 tally: {
 textAlign: 'center',
 color: '#333333',
 marginBottom: 20,
 fontSize: 25
 },
 button: {
 backgroundColor: 'blue',
 width: 100,
 marginBottom: 20,
 padding: 20

Flux and Redux

[179]

 },
 buttonText: {
 color: 'white',
 textAlign: 'center',
 fontSize: 20
 }
});

Finally, we register the component using the AppRegistry API to initialize the application:

AppRegistry.registerComponent('Countly', () => Countly);

Now that we have our application's view assembled, we need to make the buttons respond
to the user's selection. To do this, we turn to actions and action creators.

Actions and action creators
In Flux, an action is a JavaScript object that has both a type and, optionally, a payload of
data. An action object is created as a result of user interaction (or some other event), and the
type of the action is most often a constant string that reflects the interaction's intent. In our
application, the action's type is enough information to deduce the effect on the application
state, so our action objects will be very minimal:

{
 type: 'INCREMENT'
}

Now that we know what the medium of communication looks like, we need to construct the
channel on which to send it. The first thing we need is a way for our view to create these
actions, and we do that by making reusable functions, cleverly called action creators. In
order to keep our app modular and organized, we'll put our action creators in a new file:
src/actions.js:

export const increment = () => {
 const action = {
 type: 'INCREMENT'
 };
};

export const decrement = () => {
 const action = {
 type: 'DECREMENT'
 };
};

export const zero = () => {

Flux and Redux

[180]

 const action = {
 type: 'ZERO'
 };
};

Note that these action creators are not yet complete; they create the action object, but do
nothing with it. We'll revisit this in the next section. For now, we need to wire these new
action creators into our view. We'll do this by first importing them into our index.ios.js
file:

import React, { Component } from 'react';
import {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 TouchableOpacity
} from 'react-native';

import { increment, decrement, zero } from './src/actions';

Next, we need to call the action creator functions when the appropriate button is pressed
by the user. We can easily do this by passing them as the onPress property for their
respective TouchableOpacity:

<TouchableOpacity onPress={increment} style={styles.button}>
 <Text style={styles.buttonText}>
 +
 </Text>
</TouchableOpacity>
<TouchableOpacity onPress={decrement} style={styles.button}>
 <Text style={styles.buttonText}>
 -
 </Text>
</TouchableOpacity>
<TouchableOpacity onPress={zero} style={styles.button}>
 <Text style={styles.buttonText}>
 0
 </Text>
</TouchableOpacity>

Now that we've connected the view to the action creators, we need to complete them by
building the next part of our data pipeline–the dispatcher.

Flux and Redux

[181]

Dispatcher
The dispatcher's role in a Flux application is to accept actions, one at a time, and hand them
off to the stores. Though Facebook does not provide specific implementation details for
much of Flux, they do have an open source dispatcher that developers tend to use when
constructing their own Flux code.

However, in our application, we'll build a simple dispatcher ourselves in order to see how it
works. The version found in Facebook's open source Flux repository is slightly more robust,
and if we were creating this application for a production deployment, it would probably be
a better choice.

The first thing we'll need to do is create a src/Dispatcher.js file and create the
Dispatcher class in it:

class Dispatcher {

 dispatch(action) {
 // TODO: Pass to Stores
 }

}

For now, our Dispatcher has one method, dispatch(), which accepts an action object
and will eventually pass that action along to stores. We can improve upon this a bit by
enforcing the requirement that only one action be processed at a time. To do this, we'll
define a property, isDispatching, that can be set at the beginning and end of our
dispatch() function. If, however, the Dispatcher is already in the middle of a dispatch
when the dispatch() method is called again, we'll throw an error:

class Dispatcher {

 constructor() {
 this.isDispatching = false;
 }

 dispatch(action) {
 if (this.isDispatching) {
 throw new Error('Cannot dispatch in the middle of a dispatch');
 }
 this.isDispatching = true;
 // TODO: Pass to Stores
 this.isDispatching = false;
 }

}

Flux and Redux

[182]

The one at a time rule of the dispatcher may seem odd at first glance. You may be asking
yourself, won't this slow down our application? Well, there is actually a very good reason
for this invariant to be in place. If an action is dispatched as the result of another action, we
are in danger of, at the very least, having cascading effects throughout our application that
are difficult to predict and follow. In the worst case, these may lead to circular cascading
effects that cause an infinite dispatching loop and break our application. It's far better for us
to disallow this behavior altogether.

Now that we have the skeleton for our dispatcher, we need to export it. Instead of exporting
the class, though, we will actually export an instance of the class. We do this in order to
create a singleton dispatcher that manages all the actions for our entire application:

export default new Dispatcher();

Finally, we need to draw a metaphorical line between the action creators and the
dispatcher. To do this, we'll first import the new dispatcher instance into our actions.js
file:

import Dispatcher from './Dispatcher';

Then, in each of the action creator functions, we'll send the action into the dispatcher's
dispatch() method:

export const increment = () => {
 const action = {
 type: 'INCREMENT'
 };
 Dispatcher.dispatch(action);
};

export const decrement = () => {
 const action = {
 type: 'DECREMENT'
 };
 Dispatcher.dispatch(action);
};

export const zero = () => {
 const action = {
 type: 'ZERO'
 };
 Dispatcher.dispatch(action);
};

Now, to complete the dispatcher, we must connect it to the final piece of our Flux
application–the store.

Flux and Redux

[183]

Stores
Stores have two responsibilities in a Flux application. First, as their name suggests, they are
responsible for storing the application's state. In a traditional Flux application, stores are
broken up by logical domain, each one responsible for a small part of the greater
application. For example, in a social media application, one store might be responsible for
the user's profile and another responsible for the user's posts.

Stores are also responsible for updating the application state as a result of actions received
from the dispatcher. As we discussed earlier, this encapsulation of state and mutation logic
helps reduce complexity by removing shared mutable state from all other parts of the
application.

For our Countly application, we only need one store for keeping track of the tally. We'll call
it TallyStore. In a new src/TallyStore.js file, the first thing we'll do is create a
variable to store the application state in and give it an initial value:

let tally = 0;

This tally variable is considered a private variable that is within the closure of the store,
but not exported for public consumption. Shielding this, and other variables and methods,
from the rest of the application is one way that we can reduce the opportunity to mutate
state outside this file.

Since we've deemed that the tally variable will not be accessible from the outside, we
need to create a public getter function that allows other components to get the application's
current state:

class TallyStore {
 getTally() {
 return tally;
 }
}

const instance = new TallyStore();
export default instance;

Note that, since the value of the tally variable is a primitive number and is, therefore,
immutable, we can return it directly. If, however, our tally variable stored a mutable
JavaScript object, we would need to return a copy of the object rather than the object itself.
Doing so prevents developers of other components from accidentally mutating the
application state:

const tally = {
 count: 0

Flux and Redux

[184]

};

class TallyStore {
 getTally() {
 return Object.assign({}, tally);
 }
}

const instance = new TallyStore();
export default instance;

Next, we need to create some private mutation methods that can modify the application's
internal state:

var tally = {
 count: 0
};

const increment = () => {
 tally.count += 1;
};

const decrement = () => {
 tally.count -= 1;
};

const zero = () => {
 tally.count = 0;
};

class TallyStore {
 getTally() {
 return Object.assign({}, tally);
 }
}

const instance = new TallyStore();
export default instance;

Just like the private tally variable, these functions are private and they should not be used
outside of this file.

We now need to create a function that receives an action and calls the appropriate internal
function:

const handleAction = (action) => {
 switch (action.type) {
 case 'INCREMENT':

Flux and Redux

[185]

 increment();
 break;
 case 'DECREMENT':
 decrement();
 break;
 case 'ZERO':
 zero();
 break;
 default:
 // do nothing
 }
};

In order to connect the store to the dispatcher, we'll need to add some more code to our
dispatcher. When the dispatcher receives an action, it needs to hand it off to each store in
our application. To do this, the dispatcher will keep a registry of store action handlers and
will call each during the dispatch.

First, we'll create an empty array in the dispatcher's constructor to hold the individual
action handlers:

constructor() {
 this.isDispatching = false;
 this.actionHandlers = [];
}

Next, we'll create a register method that will allow stores to register their handleAction
methods with the dispatcher:

register(actionHandler) {
 this.actionHandlers.push(actionHandler);
}

We will also need to modify the dispatcher's dispatch() method to actually call the
registered action handlers:

dispatch(action) {
 if (this.isDispatching) {
 throw new Error('Cannot dispatch in the middle of a dispatch');
 }
 this.isDispatching = true;

 this.actionHandlers.forEach(handler => handler(action));

 this.isDispatching = false;
}

Flux and Redux

[186]

Finally, we'll need to register our tally store's action handler with the dispatcher in order for
it to receive dispatched actions. To do this, we'll need to first import the dispatcher instance:

import Dispatcher from './Dispatcher';

Then, we'll need to register the handleAction function:

const handleAction = (action) => {
 switch (action.type) {
 case 'INCREMENT':
 increment();
 break;
 case 'DECREMENT':
 decrement();
 break;
 case 'ZERO':
 zero();
 break;
 default:
 // do nothing
 }
 instance.emitChange();
};

Dispatcher.register(handleAction);

To complete the Flux data flow cycle, the last step involves getting the updated data from
the store back to the view.

Rendering updated data
Views that are connected to the stateful part of our application, the stores, are typically
called controller views, or sometimes containers. These views are special in that they fetch
data from stores and store them in their own internal state. Getting the initial data from the
store into the controller view's state is pretty straightforward, we'll just add it in the
constructor. First, we'll need to import the TallyStore into the index.ios.js file:

import React, { Component } from 'react';
import {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 TouchableOpacity
} from 'react-native';

Flux and Redux

[187]

import { increment, decrement, zero } from './src/actions';
import TallyStore from './src/TallyStore';

Here is the constructor of our Countly React component:

constructor(props) {
 super(props);
 this.state = {
 tally: TallyStore.getTally()
 };
}

This will work for getting initial data, but as soon as the store updates itself, the data in the
view's state will be stale and out of sync with the underlying store data. In order for the
view to stay in sync with the store, we need the controller view to be notified whenever the
stores it cares about change.

The way this is most often achieved is to make the store a simple event emitter that emits a
change event when its contents have been updated. A controller view can then subscribe to
the stores they are interested in. Event emitters are commonplace in JavaScript, in fact,
Node's standard library comes with one built in. As it happens, React Native also comes
with an EventEmitter that we will use to enhance our TallyStore.

We'll need to first import the EventEmitter module:

import EventEmitter from 'EventEmitter';
import Dispatcher from './Dispatcher';

Then, we need to merge its methods with the store's public API:

class TallyStore extends EventEmitter {
 getTally() {
 return Object.assign({}, tally);
 }
}

Next, we'll add some public functions to our store that allow controller views to subscribe
and unsubscribe to changes. These methods will abstract the underlying EventEmitter
methods:

class TallyStore extends EventEmitter {
 getTally() {
 return Object.assign({}, tally);
 }
 addChangeListener(callback) {
 this.addListener('CHANGE', callback);
 }

Flux and Redux

[188]

 removeChangeListener(callback) {
 this.removeListener('CHANGE', callback);
 }
 emitChange() {
 this.emit('CHANGE');
 }
}

Finally, we will emit the change event whenever the handleAction function is called:

const handleAction = (action) => {
 switch (action.type) {
 case 'INCREMENT':
 increment();
 break;
 case 'DECREMENT':
 decrement();
 break;
 case 'ZERO':
 zero();
 break;
 default:
 // do nothing
 }
 instance.emitChange();
};

Now that our store is prepared for subscribers, we will need to add the Countly controller
view as a subscriber to the tally store's changes. We do this in the componentDidMount
lifecycle method. Likewise, we'll have the view unsubscribe in its componentWillUnmount
lifecycle method. We'll also need to create a method on our view that will update its
internal state as a result of the change:

constructor(props) {
 super(props);
 this.state = {
 tally: TallyStore.getTally()
 };
 this.updateState = this.updateState.bind(this);
}

componentDidMount() {
 TallyStore.addChangeListener(this.updateState);
}

componentWillUnmount() {
 TallyStore.removeChangeListener(this.updateState);

Flux and Redux

[189]

}

updateState() {
 this.setState({
 tally: TallyStore.getTally()
 });
}

And now the final step–Using the real data in our render() method!

render() {
 return (
 <View style={styles.container}>
 <Text style={styles.appName}>
 Countly
 </Text>
 <Text style={styles.tally}>
 Tally: {this.state.tally.count}
 </Text>
 <TouchableOpacity onPress={increment} style={styles.button}>
 <Text style={styles.buttonText}>
 +
 </Text>
 </TouchableOpacity>
 <TouchableOpacity onPress={decrement} style={styles.button}>
 <Text style={styles.buttonText}>
 -
 </Text>
 </TouchableOpacity>
 <TouchableOpacity onPress={zero} style={styles.button}>
 <Text style={styles.buttonText}>
 0
 </Text>
 </TouchableOpacity>
 </View>
);
}

We've now created a complete application with both a view layer in React Native, and a
data layer in our Flux implementation. We could use our home-grown Flux implementation
in our production application, but it would probably be wise for us to instead turn to a
community-supported flavor of Flux called Redux.

Flux and Redux

[190]

Getting started with Redux
Redux is an implementation library for data handling in client applications that was
inspired, in large part, by Flux. It draws on the ideas of Flux and adds in immutability and
the principles of functional programming in an attempt to bring sanity to frontend
applications that, as a category, are growing in complexity on a regular basis.

While the motivations behind Redux are very much in line with those of Flux, the approach
that it takes is slightly different. To understand Redux, you must first understand the three
principles that guide the framework.

Principles of Redux
The first principle of Redux is that all application state is contained within a single store,
which is most often a JavaScript object. Remember that, in Flux, we could have many
disparate stores, each responsible for its own logical domain. Redux uses a single store
instead, but has reducer functions that are responsible for managing smaller parts of the
greater state.

There are many benefits to having a single store. Perhaps one of the more compelling is the
ability to easily serialize and then download the state for later use. Once we have a saved
copy of the application's state, we can later load the application under those exact
conditions, or rehydrate the state. This is helpful for development as well as for debugging
problem states.

The second principle of Redux is that the application's state is immutable. This means that
at no point should the object representing the state be modified in any way by any
component. In our implementation of Flux, we reduced and encapsulated the mutability of
state by only allowing the stores to mutate their own data. In Redux, we mandate that the
state is never mutated. Instead, we use reducer functions to create a new state object when
an action is dispatched, leaving the old state unmodified.

The third and final principle of the Redux framework is that all functions that compute the
new state (the so called reducer functions) must be pure functions. Pure functions are
functions that produce no side-effects and are deterministic–for a given set of inputs, the
output will always be the same. Side-effects include API calls, but they also include the
mutation of inputs. Because Redux reducers are pure, or side-effect free, the dispatcher
needed to coordinate action dispatching in Flux can be removed. Pure reducers with
deterministic results can also enable advanced debugging techniques, such as time-
travelling between states.

Flux and Redux

[191]

Installing Redux
In order to start using Redux in our application, we'll need to first install the package.
Redux, like other dependencies we've used so far, can be installed as a Node module using
npm. In our Countly React Native project directory, we'll run the install command, saving
the package and version information in the package.json file:

 npm install redux --save

Implementing Redux
We will now modify our Countly application so that it can use Redux. This will involve
refactoring some components and removing others. First, lets look at the core of the Redux
framework, the store.

Refactoring the store
Remembering that Redux only has a single store for all of the application state, the first
thing we'll do is change the name of our TallyStore.js file to simply store.js. Inside
the store file, we'll need to make two large changes:

Convert our handleAction function to a Redux reducer
Use the Redux createStore utility to initialize the store

Reducer
In Redux, a reducer is a pure function that takes the previous state and an action as input
and returns the new state. In our Flux application, the closest analogous function is the
handleAction function in the store:

const handleAction = (action) => {
 switch (action.type) {
 case 'INCREMENT':
 increment();
 break;
 case 'DECREMENT':
 decrement();
 break;
 case 'ZERO':
 zero();
 break;
 default:

Flux and Redux

[192]

 // do nothing
 }
 instance.emitChange();
};

In order to convert this function to a Redux reducer, we'll need to make a few changes.
First, we'll change the name of the function to something more appropriate, such as
countReducer:

const countReducer = (action) => {

We'll also need to change the function's signature. Every Redux reducer receives two
parameters–The current state and the dispatched action:

const countReducer = (state, action) => {

Next, we need to make this a pure function that returns the new state instead of mutating
some external state object. In order to do this, we'll have to get rid of the mutational
functions increment, decrement, and zero. In replacing them, we may be tempted to
modify the state according to the action type and then return it:

case 'INCREMENT':
 state.count = state.count + 1;
 return state;

This, however, would be wrong. Remember, the second principle of Redux states that the
application state must not be mutated. Therefore, we must create a new object and return
that instead:

case 'INCREMENT':
 return {
 count: state.count + 1
 };

We will also need to remove the line where we emit changes. We must remove it because
emitting a change is a side-effect that would cause our reducer function to be impure. We
can remove it because Redux has a built-in mechanism for emitting state changes that is
external to the reducer functions. Our new reducer now looks like this:

const countReducer = (state, action) => {
 switch (action.type) {
 case 'INCREMENT':
 return {
 count: state.count + 1
 };
 case 'DECREMENT':
 return {

Flux and Redux

[193]

 count: state.count - 1
 };
 case 'ZERO':
 return {
 count: 0
 };
 default:
 // Do nothing
 }
};

This is nearly complete, but there are a few more changes we'll need to make. A Redux
reducer is called every time an action is dispatched, even if that reducer doesn't need to
make any changes for that particular action. We need to handle this situation and return the
state unmodified if an unrecognized action makes its way into countReducer. We'll do this
by updating the default case in our switch statement:

default:
 return state;

Finally, when the reducer is first called, the state will not yet be defined, so we will need to
initialize it. We will do this by repurposing the tally object, calling it initialState, and
then using the ES2015 default argument syntax.

const initialState = {
 count: 0
};

const countReducer = (state = initialState, action) => {

We now have a complete Redux reducer.

const initialState = {
 count: 0
};

const countReducer = (state = initialState, action) => {
 switch (action.type) {
 case 'INCREMENT':
 return {
 count: state.count + 1
 };
 case 'DECREMENT':
 return {
 count: state.count - 1
 };
 case 'ZERO':

Flux and Redux

[194]

 return {
 count: 0
 };
 default:
 return state;
 }
};

Creating the store
In order to create a store from our reducer, we will use the Redux utility createStore.
This is a function that takes in a reducer and returns an object with several methods that
allow interaction with the store. Remember, since there is only a single store in Redux
applications, the createStore function should only ever be called once in an application.

The methods that the created store will have are as follows:

dispatch(action): This is used to dispatch an action directly to the store
(remember, there is no dispatcher in Redux).
getState(): This returns the current application state. It can be used by
controller views when the store is updated.
subscribe(listener): This is used to subscribe to store updates by controller
views.

We'll look at each of these methods in depth as we use them in other components. For now,
to complete our store, we simply need to import the createStore function from the Redux
package and also export our newly created store:

import { createStore } from 'redux';

const initialState = {
 count: 0
};

const countReducer = (state = initialState, action) => {
 switch (action.type) {
 case 'INCREMENT':
 return {
 count: state.count + 1
 };
 case 'DECREMENT':
 return {
 count: state.count - 1
 };
 case 'ZERO':

Flux and Redux

[195]

 return {
 count: 0
 };
 default:
 return state;
 }
}

export default createStore(countReducer);

Multiple reducers
Countly is a simple application, and thus does not need more than a single reducer. In any
useful application, the application's state will likely be much more complex. Rather than
writing a single large reducer function that handles all actions and all parts of the state, we
can use Redux's combineReducers function to create one large reducer from many smaller
reducers.

To do this, we will typically modularize the reducers, organizing them into separate files.
The name of each reducer will correspond to the key for the part of the state object it is
managing. Here is an example of a hypothetical, more complicated store:

import { combineReducers, createStore } from 'redux';

//count Reducer
import count from 'reducers/count';
//metadata Reducer
import metadata from 'reducers/metadata';

const reducer = combineReducers({
 count,
 metadata
});

export default createStore(reducer);

In this application, the state will be organized into two sections, one with a key of count,
which is managed by the count reducer, and one with a key of metadata managed by the
metadata reducer.

Flux and Redux

[196]

Action creators
When introducing Redux, we mentioned that there is no dispatcher like the one that we
used in our Flux implementation. This difference has implications on our action creators. In
Redux, rather than having action creators that both create an action object and dispatch it to
the dispatcher, our action creators will simply create the action and return it. The
component that creates the action will directly dispatch the action to the store.

Let's start by refactoring our action creators, contained in the actions.js file:

export const increment = () => {
 const action = {
 type: 'INCREMENT'
 };
 return action;
};

export const decrement = () => {
 const action = {
 type: 'DECREMENT'
 };
 return action;
};

export const zero = () => {
 const action = {
 type: 'ZERO'
 };
 return action;
};

We now need to refactor our controller view component in index.ios.js to take on the
responsibility of not only calling the action creators, but also dispatching the created action
to the store.

To do this, we'll need to import the store, in addition to the action creators:

import { increment, decrement, zero } from './src/actions';
import store from './src/store';

We'll then need to replace the onPress functions with new ones that create actions, and
also dispatch those actions to the store by calling the store's dispatch() method. For
simplicity, we'll do this by using anonymous ES2015 arrow functions:

render() {
 return (
 <View style={styles.container}>

Flux and Redux

[197]

 <Text style={styles.appName}>
 Countly
 </Text>
 <Text style={styles.tally}>
 Tally: {this.state.tally.count}
 </Text>
 <TouchableOpacity onPress={() => store.dispatch(increment())}
style={styles.button}>
 <Text style={styles.buttonText}>
 +
 </Text>
 </TouchableOpacity>
 <TouchableOpacity onPress={() => store.dispatch(decrement())}
style={styles.button}>
 <Text style={styles.buttonText}>
 -
 </Text>
 </TouchableOpacity>
 <TouchableOpacity onPress={() => store.dispatch(zero())}
style={styles.button}>
 <Text style={styles.buttonText}>
 0
 </Text>
 </TouchableOpacity>
 </View>
);
}

Subscribing to the store
The final stage of our Redux refactor is subscribing our controller view to changes to the
application state that happen in the store. The first thing we'll need to do is to up the way
we fetch the application state from the store by using the Redux store getState() method:

class Countly extends Component {
 constructor(props) {
 super(props);
 this.state = {
 tally: store.getState()
 };
 this.updateState = this.updateState.bind(this);
 }

 ...

 updateState() {
 this.setState({

Flux and Redux

[198]

 tally: store.getState()
 });
 }

Next, we'll need to replace the subscribing and unsubscribing methods of our
EventEmitter based store with the corresponding Redux store calls. The subscribe portion
is a direct translation because, as we noted earlier, a Redux Store has a subscribe method
that behaves similarly to the addEventListener method we used in Flux. However, there
is no unsubscribe method. Instead, subscribe returns a function that, when called,
unsubscribes the listener from the store. We'll need to store this unsubscribe function in
the component's state so that it can be called on unmount:

componentDidMount() {
 this.setState({
 unsubscribe: store.subscribe(this.updateState)
 });
}

componentWillUnmount() {
 this.state.unsubscribe();
}

Finally, setting state is generally discouraged in the componentDidMount lifecycle method,
so we'll move the subscription to the constructor:

constructor(props) {
 super(props);
 this.updateState = this.updateState.bind(this);
 this.state = {
 tally: store.getState(),
 unsubscribe: store.subscribe(this.updateState)
 };
}

We now have a complete Redux application, but we're not going to stop there. Next, we'll
look at how we can use the React-Redux package to integrate with Redux using less code.

Flux and Redux

[199]

React-Redux
As we've now seen, we can create an entire Redux application using only the Redux
package. However, most people using Redux in React applications use the React-Redux
package as well. The React-Redux package provides both some convenient abstractions that
make interacting with the store directly less of a concern for the application developer, and
an easy way of separating presentational components from container components (what
we've been calling controller views).

Installing React-Redux
Just as we did with the Redux package itself, we'll use npm to install React-Redux and save
the dependency in our package.json:

 npm install react-redux --save

React context and providers
In addition to props, there is another way parent elements can pass values down to
children elements in React that we have not discussed up to this point. It is called context,
and it works in much the same way as props, except that it does not have to be explicitly
passed down. Instead, if an element provides its children with context, any child, no
matter how far down the tree, can have access to it.

The React context API is considered experimental and is subject to change, which is why we
have not explored it in any depth thus far, but some libraries use it to create what are called
provider components. These provider components wrap an entire application, and provide
context to any other React component in the application that cares to tune in.

React-Redux uses this pattern to provide the store as context to any container (controller
view) component that needs access to the application state. In order to take advantage of
this, we'll need to import the Provider component from React-Redux and give it to the
store as a prop:

import React, { Component } from 'react';
import {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 TouchableOpacity
} from 'react-native';

Flux and Redux

[200]

import { Provider } from 'react-redux';

import store from './src/store';

class Countly extends Component {

 render() {
 return (
 <Provider store={store}>
 ...
 </Provider>
);
 }
}

AppRegistry.registerComponent('Countly', () => Countly);

Container and presentational components
In Redux, we generally call the controller view components, those that are aware of the
store and action creators, container components. Those that do not need this information
and are only concerned with presentation are called presentational components. React-
Redux provides a simple utility for efficiently separating these concerns called connect. In
order to demonstrate how this works, we'll abstract out a presentational component called
Counter from the Countly application, and then use connect to wrap it into a container
component.

First, we'll create a new file called src/Counter.js and move the bulk of our Countly
component's render function to this new presentational component.

import React, { PropTypes } from 'react';
import {
 StyleSheet,
 View,
 Text,
 TouchableOpacity
} from 'react-native';

const Counter = props => (
 <View style={styles.container}>
 <Text style={styles.appName}>
 Countly
 </Text>
 <Text style={styles.tally}>
 Tally: {props.count}
 </Text>

Flux and Redux

[201]

 <TouchableOpacity onPress={props.increment} style={styles.button}>
 <Text style={styles.buttonText}>
 +
 </Text>
 </TouchableOpacity>
 <TouchableOpacity onPress={props.decrement} style={styles.button}>
 <Text style={styles.buttonText}>
 -
 </Text>
 </TouchableOpacity>
 <TouchableOpacity onPress={props.zero} style={styles.button}>
 <Text style={styles.buttonText}>
 0
 </Text>
 </TouchableOpacity>
 </View>
);

Counter.propTypes = {
 count: PropTypes.number,
 increment: PropTypes.func,
 decrement: PropTypes.func,
 zero: PropTypes.func
};

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF'
 },
 appName: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10
 },
 tally: {
 textAlign: 'center',
 color: '#333333',
 marginBottom: 20,
 fontSize: 25
 },
 button: {
 backgroundColor: 'blue',
 width: 100,
 marginBottom: 20,
 padding: 20

Flux and Redux

[202]

 },
 buttonText: {
 color: 'white',
 textAlign: 'center',
 fontSize: 20
 }
});
export default Counter;

Note that this is now a simple, functional component with no reference to the store or any
action creators. It is solely concerned with the presentation of the props passed in by its
parent. We can see that the new component expects four props in particular:

Counter.propTypes = {
 count: PropTypes.number,
 increment: PropTypes.func,
 decrement: PropTypes.func,
 zero: PropTypes.func
};

In order to get these props into our new presentational component, we'll return to
index.ios.js and use connect to create a container component from the Counter
component. We'll need to import the Counter component as well as the connect function:

import React from 'react';
import {
 AppRegistry
} from 'react-native';
import { Provider, connect } from 'react-redux';

import store from './src/store';
import Counter from './src/Counter';
import { increment, decrement, zero } from './src/actions';

The connect method takes several arguments, but most often we'll only need the first two.
The first argument is a function that maps the application state to a JavaScript object that is
passed into the presentational component as props. For our Counter component, that
function would look like this:

const mapStateToProps = state => ({
 count: state.count
});

Flux and Redux

[203]

The second argument that the connect function needs is a function that maps the store's
dispatch() method to props. This is how we pass in action creators to our presentational
component:

const mapDispatchToProps = dispatch => ({
 increment: () => dispatch(increment()),
 decrement: () => dispatch(decrement()),
 zero: () => dispatch(zero())
});

Now that we have these two functions, we can call connect. The return value of connect
is a new function that, when passed a presentational component, returns a wrapped
container component with all of the connections to the store and action creators wired up:

const CounterContainer = connect(
 mapStateToProps,
 mapDispatchToProps
)(Counter);

We can actually make this even simpler. If the second argument is an object instead of a
function, connect will assume that each entry is an action creator and will wrap them in
dispatch automatically. This allows us to pass our imported actions directly rather than
having to create a mapping function:

import * as actions from './src/actions';

const CounterContainer = connect(
 mapStateToProps,
 actions
)(Counter);

We can now use the CounterContainer in the Countly application component's
render() method and remove all the logic that previously connected it to the store. Here is
the completed index.ios.js file:

import React from 'react';
import {
 AppRegistry
} from 'react-native';
import { Provider, connect } from 'react-redux';

import store from './src/store';
import Counter from './src/Counter';
import * as actions from './src/actions';

const mapStateToProps = state => ({
 count: state.count

Flux and Redux

[204]

});

const CounterContainer = connect(
 mapStateToProps,
 actions
)(Counter);

const Countly = () => (
 <Provider store={store}>
 <CounterContainer />
 </Provider>
);

AppRegistry.registerComponent('Countly', () => Countly);

Middleware
Redux by itself is optimized for a synchronous workflow. Actions are dispatched
synchronously and the view layer is updated accordingly. In real applications, we know
that some things cannot be done synchronously. Common activities, such as fetching data
from a server, are done asynchronously. To accommodate asynchronous actions, as well as
other custom actions, Redux provides a middleware architecture.

In Redux, middleware is injected between the dispatching of an action and its arrival at the
reducer. The Redux-promise middleware is one middleware option that can be used to
handle asynchronous action creators that return a JavaScript promise as the action's
payload. Here is an example of what an asynchronous action creator might look like:

const loadCounts = async () => {
 const response = await fetch('http://example.com/counts');
 const counts = await response.json();
 return {
 type: 'RECEIVE_COUNTS',
 payload: {
 news: json
 }
 };
};

Flux and Redux

[205]

Here, we are using the proposed ES2017 async, await syntax to create the promise. The
middleware will resolve the promise and then dispatch the action to the store upon
completion. In order to make this work, we need to set up the middleware in the store. If
we needed asynchronous actions in our Countly application, we could add them to the
project by first installing the package:

 npm install redux-promise --save

We then need to add it to store.js by using the applyMiddleware function from the
Redux library:

import { createStore, applyMiddleware } from 'redux';
import promise from 'redux-promise;

const initialState = {
 count: 0
};

const countReducer = (state = initialState, action) => {
 switch (action.type) {
 case 'INCREMENT':
 return {
 count: state.count + 1
 };
 case 'DECREMENT':
 return {
 count: state.count - 1
 };
 case 'ZERO':
 return {
 count: 0
 };
 default:
 return state;
 }
};

const middleware = applyMiddleware(promise);

export default createStore(countReducer, middleware);

Here we simply pass our newly applied middleware to the createStore function, and
now our application is prepared to handle asynchronous actions.

Middleware is commonly used for asynchronous processing, but it can also be used for
things such as logging and optimistic updating.

Flux and Redux

[206]

Summary
Redux is an implementation library for handling data in client applications that is based on
an architecture called Flux, pioneered by Facebook. Redux is the most common way of
handling data in a React Native application as its motivation, goals, and principles are
closely aligned with those of React itself. Now that we know what Redux is and how to use
it in a React Native application, lets use it to enhance our New York Times feed reader
application.

6
Integrating with the NYT API

and Redux
With a solid background of Flux and Redux, it's time to apply these concepts to the RNNYT
application we started in Chapter 4, Starting our Project with React Native Components. In this
chapter, we'll apply Redux and related Redux technologies to a React Native application.
We'll start off with a simple, synchronous implementation using mock NYT API data that
flows through our application using Redux and some helper libraries. Later on in the
chapter, we'll reconfigure our app to talk directly to the NYT API using the fetch API and
Redux middleware to support a real-world, asynchronous flow.

In this chapter, we'll cover the following:

Review how to make requests to the NYT API, and understand the shape of that
data
Install dependencies for using Redux with React Native
Refactor our app to use Redux with mock NYT data and synchronous actions
Implement selectors using Reselect
Review Redux asynchronous data flow and utilize the fetch API and the Redux-
promise middleware to talk directly with the NYT API
Add pull to refresh support

Integrating with the NYT API and Redux

[208]

Understanding the NYT API data
Before going too far into the detail of our Redux refactoring endeavor, let's first review the
data we'll ultimately be consuming from the NYT API. The NYT API offers a few options,
including books, movie reviews, event listings, and so forth. We'll be using the Top
Stories (V2) API. It provides a list of articles in both JSON and JSONP format across a
variety of sections, including world, national, opinion, and so forth. But given that this is a
book about technology, we're going to use the technology section. To make a request to the
NYT API technology section, you'll need to form an http get request:

https://api.nytimes.com/svc/topstories/v2/technology.json?api-key=your-
api-key

The portion of the URI following v2/ is where you specify both the section and the format.
In our case, we're interested in technology in JSON format, thus technology.json.
Additionally, you must append your API key in the query string. You can register for an
API key by going to h t t p ://d e v e l o p e r . n y t i m e s . c o m /s i g n u p . Once you have your key,
you can give the NYT API a test run in your browser. Refer to the following screenshot:

I recommend visiting the Chrome Web Store and installing Postman. It's a
great tool for testing out RESTful interfaces.

http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup
http://developer.nytimes.com/signup

Integrating with the NYT API and Redux

[209]

Next, let's take a look at some sample data from the NYT Top Stories V2 API. I've placed
...to denote areas where I've truncated the payload:

{
 "status": "OK",
 "copyright": "Copyright (c) All Rights Reserved.",
 "section": "technology",
 "last_updated": "2016-05-21T07:22:06-05:00",
 "num_results": 30,
 "results": [
 {
 "section": "Technology",
 "subsection": "",
 "title": "Title of the article",
 "abstract": "Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Integrating with the NYT API and Redux

[210]

Pellentesque dictum.",
 "url":
"http://www.nytimes.com/2016/05/20/technology/url-to-article.html",
 "byline": "By FIRSTNAME LASTNAME",
 "item_type": "Article",
 "updated_date": "2016-05-19T20:38:45-5:00",
 "created_date": "2016-05-19T20:38:46-5:00",
 "published_date": "2016-05-20T00:00:00-5:00",
 "material_type_facet": "News",
 "kicker": "",
 "des_facet": [
 "Description Facet 1",
 "Description Facet 2"
],
 "org_facet": [
 "Packt Publishing",
 "Another Company Name"
],
 "per_facet": [
 "Masiello, Eric",
 "Friedman, Jacob"
],
 "geo_facet": [
 "China"
],
 "multimedia": [
 {
 "url": "https://static01.nyt.com/images/2016/05/20/image.jpg",
 "format": "Standard Thumbnail",
 "height": 75,
 "width": 75,
 "type": "image",
 "subtype": "photo",
 "caption": "Caption text",
 "copyright": "Photographer-Name/Copyright-Holder"
 },
 ...
]
 }
 ...
]
}

There's quite a bit here, but we're only really concerned with a few key pieces of data. At
the top of the response, there's a property called results. This contains a list of objects
representing the top stories. Within each of the top story objects, we'll utilize the abstract
byline, published_date, title, and url properties for our app. We'll also want to

Integrating with the NYT API and Redux

[211]

expose a location and display an image with each article. The location is available via the
geo_facet property, and the image can be extracted from multimedia. geo_facet and
multimedia will require a little bit more massaging than the other properties since the
actual values exist within nested lists. But before we start transforming any data, let's
configure our app to work with Redux.

Wiring up our Redux data flow
Now that we've had a look at what this data will look like, let's start writing some code.
From the terminal, navigate to the root directory of RNNYT and run the following:

 npm install redux react-redux redux-logger --save

We already discussed redux and react-redux at length in Chapter 5, Flux and Redux. redux-
logger is a popular Redux middleware useful for observing changes to your app's Redux
state tree from your browser's console. You may find it useful as you work through this
chapter or future chapters.

Integrating with the NYT API and Redux

[212]

Next, let's reorganize our files and folders to match one of the more conventional project
structures seen in Redux applications. Create the following directories within your src
directory:

actions

config

containers

reducers

util

Each folder will house different parts of our application.

We've opted to organize our code by role. That is to say, we'll be grouping
all our action creators in the actions folder, containers in the
containers folder, and so forth. This is a pretty common way of
organizing Redux projects, and is what you'll likely encounter in other
React and Redux tutorials. Since our app will end up being relatively
small, this structure will suit us fine. However, a common criticism
levelled against a role-based file structure is that, as your app grows, the
organization doesn't scale because it requires you to dip in and out of
many folders just to set up a new feature.
An alternative way to organize your code is by domain or feature. This
might give you a folder structure that looks like this:
global/
 Button.js
 PrimaryButton.js
news/
 components/
 NewsFeed.js
 NewsItem.js
 Search.js
 actions.js
 actionTypes.js
 index.js
 reducers.js
 selectors.js
createStore.js
index.js

This is just a hypothetical example of how you might organize your code.
The key takeaway is that everything related to the news feature exists
under the news directory. If you were to create an entirely new feature,

Integrating with the NYT API and Redux

[213]

say onboarding (as we'll do in Chapter 8, Animation and Gestures in React
Native), you would create a new directory called onboarding that
maintains all of its components, containers, reducers, actions, and so on.
However, when organizing by role, all the onboarding components would
be commingled with news and other components under a generic
components folder.

Creating the Redux state tree
When creating a Redux application, I find it useful to start by creating a single Redux state
tree and then growing the code from there. We can define the shape of our state tree by
answering the question, what data will I need to expose to my application? Since this is an
application for displaying news, a news property containing a list of news articles would be
an obvious choice. Looking beyond the primary news tab, we also have Search and
Bookmarks tabs. We're going to save Bookmarks for a later chapter, but we will flesh out
Search in this chapter. Search will require the same news data from our state tree, but it will
also need to know what the user is searching for so it can filter the results. Since our app
will do the filtering in JavaScript, we can track the value of the search filter with another
property we'll call searchTerm. With that, let's create a file inside src called
createStore.js with the following code:

import { createStore, applyMiddleware, combineReducers } from 'redux';
import createLogger from 'redux-logger';
import newsFeedReducer from './reducers/newsFeedReducer';
import searchTermReducer from './reducers/searchTermReducer';

const logger = createLogger();

export default (initialState = {}) => (
 createStore(
 combineReducers({
 news: newsFeedReducer,
 searchTerm: searchTermReducer
 }),
 initialState,
 applyMiddleware(logger)
)
);

Integrating with the NYT API and Redux

[214]

We import the required libraries at the top of the file, including two files we have yet to
define–newsFeedReducer and searchTermReducer. We'll create both of these shortly. For
the time being, let's just pretend they exist. On line six, we call createLogger() to create
our logger middleware (you may optionally pass in a configuration, but we'll stick with the
default). Then we export an anonymous function that we'll use in another part of our
application shortly. The anonymous function allows us to pass in an initial state to hydrate
our application. When executed, this function creates the store with the two state properties
we discussed earlier–news and searchTerm and then applies the logger middleware.

The next thing we need to do is create our action creators. But before we do that, let's create
our action types. Inside the actions directory, create a file called actionTypes.js with
these two values:

export const LOAD_NEWS = 'LOAD_NEWS';
export const SEARCH_NEWS = 'SEARCH_NEWS';

These two values represent the only two actions that our app needs at the moment. To keep
things simple for now, our initial pass at transforming our app into a Redux application will
utilize an entirely synchronous data flow. That is to say, we won't make any Ajax requests
to the actual NYT API. Instead we'll use hardcoded mock data. Later, once we've got
everything working, we'll update our code to actually call the NYT API. With that said,
create a file in your src directory called mockData.json. Since we don't need every
property from the NYT API, our mock data will only include the properties we're using:

{
 "results": [
 {
 "title": "React Native",
 "abstract": "Build Native Mobile Apps using JavaScript and React",
 "url": "https://facebook.github.io/react-native",
 "byline": "By Facebook",
 "published_date": "2016-05-20T00:00:00-5:00",
 "geo_facet": [
 "Menlo Park, California"
],
 "multimedia": [
 {
 "url": "https://facebook.github.io/react/img/logo_og.png",
 "format": "thumbLarge"
 }
]
 },
 {
 "title": "Packt Publishing",
 "abstract": "Stay Relevant",

Integrating with the NYT API and Redux

[215]

 "url": "https://www.packtpub.com/",
 "byline": "By Packt Publishing",
 "published_date": "2016-05-20T00:00:00-5:00",
 "geo_facet": [
 "Birmingham, UK"
],
 "multimedia": [
 {
 "url":
"https://www.packtpub.com/sites/default/files/packt_logo.png",
 "format": "thumbLarge"
 }
]
 }
]
}

Next, create a file named newsActions.js inside the actions directory:

import { LOAD_NEWS, SEARCH_NEWS } from './actionTypes';
import mockData from '../mockData.json';

export const loadNews = () => ({
 type: LOAD_NEWS,
 payload: mockData
});

export const searchNews = searchTerm => ({
 type: SEARCH_NEWS,
 payload: searchTerm
});

There are only two actions–loadNews and searchNews. For now, loadNews just returns
our static mock data. searchNews simply takes whatever search term we pass it as a
parameter and forwards it along to the reducers as the payload.

Speaking of reducers, let's create those next. Inside the reducers directory, create two
files–newsFeedReducer.js and searchTermReducer.js. As far as reducers go, these two
are pretty straightforward. newsFeedReducer imports the LOAD_NEWS action. If the action
type matches, we simply return the results array from the action payload. Take a look at the
following code:

import { LOAD_NEWS } from '../actions/actionTypes';

export default (state = [], action = {}) => {
 switch (action.type) {
 case LOAD_NEWS:

Integrating with the NYT API and Redux

[216]

 return action.payload.results || [];
 default:
 return state;
 }
};

searchTermReducer operates in much the same way. In this case, however, the
searchTerm contained within our state tree is just a string, so we'll return the entire
payload:

import { SEARCH_NEWS } from '../actions/actionTypes';

export default (state = '', action = {}) => {
 switch (action.type) {
 case SEARCH_NEWS:
 return action.payload;
 default:
 return state;
 }
};

Wiring up Redux data to our app
At this point, we have an entirely synchronous data flow configured using Redux. Now all
we need to do is hook it up to our views. As we discussed in the previous chapter, this is
where containers come in. In this chapter, we're going to create two containers–one for our
NewsFeed and one for Search. Let's start by creating the NewsFeedContainer. Create a
file called NewsFeedContainer.js inside the containers directory:

import { connect } from 'react-redux';
import { bindActionCreators } from 'redux';
import { loadNews } from '../actions/newsActions';
import NewsFeed from '../components/NewsFeed';

const mapStateToProps = state => ({
 news: state.news
});

const mapDispatchToProps = dispatch => (
 bindActionCreators({
 loadNews
 }, dispatch)
);

export default connect(mapStateToProps, mapDispatchToProps)(NewsFeed);

Integrating with the NYT API and Redux

[217]

Here we have a pretty standard container. The mapStateToProps method exposes our
state tree's news property as a prop to NewsFeed called news. Additionally, we expose the
loadNews action creator as a prop via mapDispatchToProps.

Next, create a file inside src called App.js. The App component will become our new root
view. It will wrap the HomeScreen component and expose the Redux state tree to our app
via the Provider component:

import React from 'react';
import { Provider } from 'react-redux';
import HomeScreen from './components/HomeScreen';
import createStore from './createStore';

const store = createStore();

export default () => (
 <Provider store={store}>
 <HomeScreen />
 </Provider>
);

We need to make a few more modifications to bring everything together. Inside
HomeScreen.ios.js, find this line of code:

import NewsFeed from './NewsFeed';

Replace it with this:

import NewsFeedContainer from '../containers/NewsFeedContainer';

Also, replace the <NewsFeed /> element with <NewsFeedContainer /> inside the
render method.

Inside NewsFeed, we need to call the loadNews action creator in order for our data to begin
flowing through our app. Add these three methods to the NewsFeed component:

componentWillMount() {
 this.refresh();
}

componentWillReceiveProps(nextProps) {
 this.setState({
 dataSource: this.state.dataSource.cloneWithRows(nextProps.news)
 });
}

refresh() {

Integrating with the NYT API and Redux

[218]

 if (this.props.loadNews) {
 this.props.loadNews();
 }
}

Additionally, inside the constructor, add the following line of code:

this.refresh = this.refresh.bind(this);

Then update propTypes:

NewsFeed.propTypes = {
 news: PropTypes.arrayOf(PropTypes.object),
 listStyles: View.propTypes.style,
 loadNews: PropTypes.func
};

Now, when the NewsFeed component mounts, it will automatically call refresh, which
executes the loadNews action creator if it's available. Additionally, whenever new props are
passed into NewsFeed, it will update dataSource to match the newly passed-in news prop.

Finally, update index.ios.js so that it imports the App component instead of the
HomeScreen component:

import {
 AppRegistry
} from 'react-native';
import App from './src/App';

AppRegistry.registerComponent('RNNYT', () => App);

Now, if you were to run the app inside the simulator, you might expect everything to just
start working. However, what you'll actually see is a big red error message. So what gives?

Refactoring and reshaping
In the last section, we refactored our application to use Redux to handle our data flow.
When we first began building this application in Chapter 4, Starting our Project with React
Native Components, we relied on the defaultProps of NewsFeed to provide mock data to
our application. But our app no longer relies on defaultProps because we're now passing
news from the Redux state tree via the NewsFeedContainer.

Integrating with the NYT API and Redux

[219]

But more importantly, the shape of the data we're passing to NewsFeed no longer matches
what we originally designed. For example, instead of a description, we have an abstract.
Instead of an author, we have a byline. This leaves us with two options. We can update our
components to match the data format offered by the NYT API, or we can transform, or
reshape, the data we get from the NYT API to match what our components expect. The path
we'll follow involves a bit of both.

Refactoring the components
For starters, let's simplify things a bit. Our data is now sourced from mockData.json (and
soon from the NYT API). So with that, we can remove NewsFeed defaultProps.

In NewsItem.js, we'll make one adjustment to the propTypes. Instead of date being a
JavaScript Date object, we'll just expect it to be a string. Everything else can stay the same:

NewsItem.propTypes = {
 imageUrl: PropTypes.string,
 title: PropTypes.string.isRequired,
 description: PropTypes.string,
 date: PropTypes.string.isRequired,
 author: PropTypes.string.isRequired,
 location: PropTypes.string,
 index: PropTypes.number.isRequired,
 onPress: PropTypes.func.isRequired,
 style: View.propTypes.style
};

Since the Byline component is ultimately the one that uses the date prop, we should
update it as well:

Byline.propTypes = {
 date: PropTypes.string.isRequired,
 author: PropTypes.string.isRequired,
 location: PropTypes.string
};

Finally, inside the ByLine render method, replace {date.toLocaleDateString()} with
just {date}.

Integrating with the NYT API and Redux

[220]

Reshaping the data
At this point, we've done all the necessary refactoring of our components, and can begin
transforming the data. There are a few different approaches we can take. We could create
some custom middleware that sits between the action creators and reducers, and watches
for the LOAD_NEWS action. When the middleware sees this action, it could take the raw data
from the NYT payload, transform it, and then simply pass it along to the Redux state tree
already fully transformed and ready for consumption by our app. Or, we can let the raw
data remain unaltered in the state tree and instead transform it in transit from the state tree
to our components. Either approach would work, but for this app, we're going to take the
latter approach.

Create a file called dataTransformations.js inside the util directory. What we need to
do is create a suite of functions that will take the raw NYT data as input and transform it
into an array of objects that match the shape expected by the NewsItem component:

import moment from 'moment';

const getMultimediaUrlByFormat = (multimedia, format) => {
 if (!multimedia) {
 return '';
 }
 const matchingFormat = multimedia.find(media => media.format === format);
 if (!matchingFormat) {
 return '';
 }
 return matchingFormat.url;
};

export const reshapeNewsData = news => (
 news.map(({ abstract, byline, geo_facet, multimedia, published_date,
title, url }) => ({
 description: abstract || '',
 author: byline ? byline.replace('By ', '') : '',
 location: geo_facet.length > 0 ? geo_facet[0] : '',
 imageUrl: getMultimediaUrlByFormat(multimedia, 'thumbLarge'),
 date: moment(published_date).format('MMM Do YYYY'),
 title,
 url
 }))
);

Integrating with the NYT API and Redux

[221]

This module exposes the function reshapeNewsData. All it does is take the raw news, map
over the objects in the array, and return a new array of objects with the properties expected
by our components. reshapeNewsData uses an additional helper function,
getMultimediaUrlByFormat, which is used to extract the imageUrl of the multimedia
property with thumbLarge as the format. Additionally, we'll use the moment library to
format the date we get from the API into a more human digestible format.

Now, to actually utilize this method, open up NewsFeedContainer.js. At the top of the
file, add the following:

import { reshapeNewsData } from '../util/dataTransformations';

Then, update mapStateToProps to utilize our transformation utility:

const mapStateToProps = state => ({
 news: reshapeNewsData(state.news)
});

Finally, if you refresh the app in the simulator, you'll see our mock news displaying as
intended!

Adding a searchable news feed

With our NewsFeed component fully wired up to a synchronous Redux data flow, we're
ready to expand upon our application's features. Currently, the Search component doesn't
do much other than display a TextInput. We'd like it to initially display nothing, but then,
as the user beings to type into the TextInput, we'll filter the news list, returning only the
results that contain the search string in either the description, title, or author values. As we
stated earlier, we'll store whatever the user searches for in the state tree as searchTerm.
The Search component will then be passed a collection of matching news items via the
SearchContainer. Search will, in turn, pass that collection down to a child NewsFeed
element to render the matching results. Taking a step back, this means that the Search
component's content is derived from two parts of our Redux state tree: news and
searchTerm.

Integrating with the NYT API and Redux

[222]

Introducing Reselect
Redux has amassed a large following over the past year or so. As such, the community of
JavaScript libraries supporting Redux has also grown. One popular library, Reselect, is
designed to compute derived data from a Redux store using a concept known as selectors.
Selectors are methods that take one or more parts of a Redux state as input and from these
compute an output that's appropriate for your components. Reselect is designed for
efficiency. It will only compute new output if the input values have changed. This makes
Reselect a perfect candidate for exactly what we're trying to accomplish with our Search
component.

Before shifting into the Search component, let's look back at some of our existing code.
Right now, NewsFeedContainer contains the following function:

const mapStateToProps = state => ({
 news: reshapeNewsData(state.news)
});

Whenever state is updated, reshapeNewsData is executed. While this certainly gets the job
done, this operation could be costly. Since reselect memoizes its selectors, we could
utilize it instead and not have to worry about needlessly executing reshapeNewsData
when our data hasn't even changed.

Let's install reselect and refactor our existing code to use memoized selectors of
reselect:

npm install reselect --save

Next, create a new directory named selectors within your src directory. In there, add the
file newsSelectors.js with the following content:

import { createSelector } from 'reselect';
import { reshapeNewsData } from '../util/dataTransformations';

const newsSelector = state => state.news;

const reshapeNewsSelector = createSelector(
 [newsSelector],
 reshapeNewsData
);

export const allNewsSelector = createSelector(
 [reshapeNewsSelector],
 newsItems => newsItems
);

Integrating with the NYT API and Redux

[223]

Reselect works off two types of selectors—basic input selectors and memoized
selectors. Input selectors simply read data from the Redux state. It's important that these
input selectors do not in any way transform the data. They are then used as inputs to the
more advanced memoized selectors, which are created using createSelector. In
newsSelectors.js we have one input selector called newsSelector that simply returns
the news portion of our Redux state tree. From there, we create two memoized
selectors–reshapeNewsSelector and allNewsSelector. Memoized selectors take two
arguments. The first is an array of inputs or memoized selectors. The values returned from
each of these selectors are passed as arguments to the result function. This result function is
responsible for the actual data transformation. In the case of reshapeNewsSelector, there
is only one input selector-newsSelector. The input newsSelector simply returns
state.news. Therefore, state.news is passed into reshapeNewsData as input. We then
use reshapeNewsSelector as an input selector to allNewsSelector. The transformed
output of reshapeNewsSelector becomes input to the result function of
allNewsSelector. The result function of allNewsSelector simply returns the entire
transformed list without modification (newsItems => newsItems). Having these two
memoized selectors probably feels redundant at the moment. However, later on we'll reuse
reshapeNewsSelector, making it more useful as a standalone memoized selector.

The only thing that remains is to update NewsFeedContainer. Remove the line of code
where we import reshapeNewsData, and replace it with the following:

import { allNewsSelector } from '../selectors/newsSelectors';

Then, update mapStateToProps to the following (note that we pass it all of state, not just
state.news):

const mapStateToProps = state => ({
 news: allNewsSelector(state)
});

Perfect. Now everything should be back to a working state using reselect. This sets us up
nicely for the next part–adding search to our application.

Adding search
We already have all the Redux state setup that's necessary for search. All that's left to do is
to create a SearchContainer, update the Search component to display the filtered news,
and create the necessary selector for filtering the data. Let's begin by creating a function that
filters the news.

Integrating with the NYT API and Redux

[224]

Open up dataTransformations.js and add the following function:

export const filterNewsBySearchTerm = (newsItems, searchTerm) => {
 // returns an empty list if you haven't typed anything
 if (searchTerm.length === 0) {
 return [];
 }
 return newsItems.filter(({ description, author, title }) => (
 description.toLowerCase().indexOf(searchTerm) > -1 ||
 author.toLowerCase().indexOf(searchTerm) > -1 ||
 title.toLowerCase().indexOf(searchTerm) > -1
));
};

Similar to reshapeNewsData, filterNewsBySearchTerm will be used by a selector. It will
take the pre-transformed data as input, along with the search term. If the search term is
empty, filterNewsBySearchTerm returns an empty list. Otherwise, it filters the news by
looking for a string match in the description, author, or title.

Next, inside newsSelectors.js, replace the dataTransformations import statement
with the following:

import { reshapeNewsData, filterNewsBySearchTerm } from
'../util/dataTransformations';

Then add these selectors to the end of the file:

const searchTermSelector = state => state.searchTerm;

const caseInsensitiveSearchTermSelector = createSelector(
 searchTermSelector,
 searchTerm => searchTerm.toLowerCase()
);

export const searchNewsSelector = createSelector(
 [reshapeNewsSelector, caseInsensitiveSearchTermSelector],
 filterNewsBySearchTerm
);

searchTermSelector is a basic input selector responsible for simply returning the current
value of searchTerm from the Redux state tree. caseInsensitiveSearchTermSelector
takes searchTermSelector as an input and transforms it to a lowercase string for case-
insensitive searching. Finally, searchNewsSelector takes two inputs–our previous
reshapeNewsSelector and caseInsensitiveSearchTermSelector. These are passed
as arguments to the filterNewsBySearchTerm function. The returning value from
filterNewsBySearchTerm will ultimately be the data exposed to the SearchContainer.

Integrating with the NYT API and Redux

[225]

Speaking of SearchContainer, let's create that next. Inside the containers directory,
create SearchContainer.js:

import { connect } from 'react-redux';
import { bindActionCreators } from 'redux';
import { searchNews } from '../actions/newsActions';
import Search from '../components/Search';
import { searchNewsSelector } from '../selectors/newsSelectors';

const mapStateToProps = state => ({
 filteredNews: searchNewsSelector(state)
});

const mapDispatchToProps = dispatch => (
 bindActionCreators({
 searchNews
 }, dispatch)
);

export default connect(mapStateToProps, mapDispatchToProps)(Search);

SearchContainer operates much the same as NewsFeedContainer. However, in this case
we'll expose two props to the Search component–filteredNews and the action creator
searchNews.

Next, we'll update Search. Open up Search.js and import PropTypes from React, along
with the NewsFeed component. Then, update the Search component to match the
following while keeping the existing styles intact:

import React, { Component, PropTypes } from 'react';
import {
 View,
 TextInput,
 StyleSheet
} from 'react-native';
import NewsFeed from './NewsFeed';
import * as globalStyles from '../styles/global';

export default class Search extends Component {

 constructor(props) {
 super(props);
 this.state = {
 searchText: ''
 };
 this.searchNews = this.searchNews.bind(this);
 }

Integrating with the NYT API and Redux

[226]

 searchNews(text) {
 this.setState({ searchText: text });
 this.props.searchNews(text);
 }

 render() {
 return (
 <View style={globalStyles.COMMON_STYLES.pageContainer}>
 <View style={styles.search}>
 <TextInput
 style={styles.input}
 onChangeText={this.searchNews}
 value={this.state.searchText}
 placeholder={'Search'}
 placeholderTextColor={globalStyles.MUTED_COLOR}
 />
 </View>
 <NewsFeed news={this.props.filteredNews} listStyles={{}} />
 </View>
);
 }
}

Search.propTypes = {
 filteredNews: PropTypes.arrayOf(PropTypes.object),
 searchNews: PropTypes.func.isRequired
};

We've created a method called searchNews to replace the inline onChangeText handler of
TextInput. On top of updating the component's internal state, it will pass the search text
along to the Redux state tree via the searchNews action creator. Additionally, the
NewsFeed component will accept filteredNews passed down by the SearchContainer
as its news.

Finally, to bring it all together, open up HomeScreen.ios.js and
import SearchContainer in lieu of the Search component:

import SearchContainer from '../containers/SearchContainer';

Then, replace <Search /> with <SearchContainer />. With that final change, you now
have a functioning search tab!

Integrating with the NYT API and Redux

[227]

Wiring up the NYT API with asynchronous
requests
The final piece of our Redux workflow requires that we actually hook up our app to the real
NYT API. If you haven't done so already, you'll need to register for the NYT API. Visit h t t p

://d e v e l o p e r . n y t i m e s . c o m / and register for an NYT API key. Once you have your API
key, create a file inside the config directory called nytApiKey.js:

const NYT_API_KEY = 'YOUR_API_KEY_GOES_HERE';
export default NYT_API_KEY;

Up to this point, we've used an entirely synchronous Redux workflow. However, with the
help of middleware, we can return actions from action creators that, instead of data, contain
promises. fetch is a JavaScript polyfill provided by React Native for managing Ajax
requests as promises. fetch, combined with the Redux-promise middleware, will easily
allow us to request data from the NYT API without needing to heavily refactor our code.

Begin by installing the Redux-promise middleware:

 npm install redux-promise --save

Next, open newsActions.js. Remove mockData and instead import your API key:

import NYT_API_KEY from '../config/nytApiKey';

Then, replace the loadNews action creator with the following:

export const loadNews = () => {
 const req =
fetch(`https://api.nytimes.com/svc/topstories/v2/technology.json?api-key=${
NYT_API_KEY}`);
 return {
 type: LOAD_NEWS,
 payload: req.then(response => response.json())
 };
};

http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/
http://developer.nytimes.com/

Integrating with the NYT API and Redux

[228]

The updated loadNews action creator begins by creating a promise called req. req is then
set as the payload of the returned Redux action. The Redux-promise middleware will
intercept this action and resolve the promise automatically before it ever hits the reducers.
Take a look at the following diagram:

Integrating with the NYT API and Redux

[229]

The previous diagram illustrates how the Redux-promise middleware works. Actions are
dispatched from our action creators. All actions are then passed through any middleware
we have installed. Once the action reaches the Redux-promise middleware, it will inspect its
payload property to see if it's a promise. If it's not, it will just forward the action along to
the next middleware, and then ultimately out to the reducers. If the payload property is a
promise, Redux-promise stops the action from moving forward and instead waits for the
promise to resolve. If the promise resolves successfully, Redux-promise will take the
original action and replace the old promise payload with the actual data returned from the
promise. Then it simply re-dispatches the updated action. The action will flow through the
middleware chain again. However, when the action hits the Redux-promise middleware
this time, the payload is no longer a promise, and thus simply passes through the
middleware and off to the reducers.

Now all that's left is to make our store aware of the Redux–promise middleware. In
createStore.js, add the following import statement:

import promiseMiddleware from 'redux-promise';

Then, update the applyMiddleware call, adding promiseMiddleware as a parameter, as
shown in the following code snippet:

export default (initialState = {}) => (
 createStore(
 combineReducers({
 news: newsFeedReducer,
 searchTerm: searchTermReducer
 }),
 initialState,
 applyMiddleware(logger, promiseMiddleware)
)
);

Now, if you refresh your app one more time, you'll see live data from the NYT API that is
fully searchable!

Redux-promise is just one of many middleware libraries out there for
adding asynchronous support to Redux. It works great as an introductory
tool because it's so simple. However, if your application requires more
advanced behavior, you may want to explore other Redux middleware,
such as Redux Thunk or Redux Saga.
Refer to the following links:
https://github.com/gaearon/redux-thunk
h t t p s ://g i t h u b . c o m /y e l o u a f i /r e d u x - s a g a

https://github.com/gaearon/redux-thunk
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga

Integrating with the NYT API and Redux

[230]

Fixing iOS transport security
While our NewsFeed and Search are displaying live data as expected, if you click on any of
the NewItem elements to expose the Modal, you'll likely encounter an error. As of version
0.28, the React Native CLI is a bit less promiscuous with iOS security. Apple very much
wants all connections within the apps running on its platform to be secure. In our case,
we're trying to load a webpage from the NY Times over an insecure HTTP request. We can
easily create an exception for our app by modifying the Info.plist file found inside the
ios/RNNYT directory. Open up Info.plist and locate NSAppTransportSecurity.
Currently, there's an exception being made only for localhost. Update Info.plist to add a
nytimes.com exception, as shown in the following code:

<key>NSAppTransportSecurity</key>
 <!--See
http://ste.vn/2015/06/10/configuring-app-transport-security-ios-9-osx-10-11
/ -->
 <dict>
 <key>NSExceptionDomains</key>
 <dict>
 <key>localhost</key>
 <dict>
 <key>NSTemporaryExceptionAllowsInsecureHTTPLoads</key>
 <true/>
 </dict>
 <key>nytimes.com</key>
 <dict>
 <key>NSIncludesSubdomains</key>
 <true/>
 <key>NSTemporaryExceptionAllowsInsecureHTTPLoads</key>
 <true/>
 </dict>
 </dict>
 </dict>

If you're currently running your app in the simulator, you'll need to stop it and redeploy it
for the changes to take effect. If you run into any issues, check your console. It's very easy to
accidentally include too many or too few <dict></dict> tags within Info.plist.

Integrating with the NYT API and Redux

[231]

Adding pull to refresh and a loading spinner
Just as a final touch, let's improve the user experience by adding pull to refresh and a
loading spinner to the NewsFeed. Thankfully React Native makes this super easy. Inside
NewsFeed.js, import RefreshControl and ActivityIndicator, as shown in the
following code snippet:

import {
 ListView,
 StyleSheet,
 View,
 Modal,
 TouchableOpacity,
 WebView,
 RefreshControl,
 ActivityIndicator
} from 'react-native';

Next, we'll need to add two new properties to the state of NewsFeed--refreshing and
initialLoading. refreshing will be used by RefreshControl to track whether
NewsFeed is still loading after a pull to refresh. initialLoading will be used to display a
loading icon (ActivityIndicator) while we're waiting for the data to initially load. Take
a look at the following code snippet:

this.state = {
 dataSource: this.ds.cloneWithRows(props.news),
 initialLoading: true,
 modalVisible: false,
 refreshing: false
};

Whenever we've received data back from the NYT API, we'll need to set initialLoading
to false:

componentWillReceiveProps(nextProps) {
 this.setState({
 dataSource: this.state.dataSource.cloneWithRows(nextProps.news),
 initialLoading: false
 });
}

We only want to show the ActivityIndicator if we're loading the NewsFeed from the
primary tab. We can control this via a prop.

Integrating with the NYT API and Redux

[232]

Update propTypes of NewsFeed to add the showLoadingSpinner prop and add a
defaultProp, setting it to true:

NewsFeed.propTypes = {
 news: PropTypes.arrayOf(PropTypes.object),
 listStyles: View.propTypes.style,
 loadNews: PropTypes.func,
 showLoadingSpinner: PropTypes.bool
};

NewsFeed.defaultProps = {
 showLoadingSpinner: true
};

Next, update the render method:

render() {
 const {
 listStyles = globalStyles.COMMON_STYLES.pageContainer,
 showLoadingSpinner
 } = this.props;
 const { initialLoading, refreshing, dataSource } = this.state;

 return (
 (initialLoading && showLoadingSpinner
 ? (
 <View style={[listStyles, styles.loadingContainer]}>
 <ActivityIndicator
 animating
 size="small"
 {...this.props}
 />
 </View>
) : (
 <View style={styles.container}>
 <ListView
 refreshControl={
 <RefreshControl
 refreshing={refreshing}
 onRefresh={this.refresh}
 />
 }
 enableEmptySections
 dataSource={dataSource}
 renderRow={this.renderRow}
 style={listStyles}
 />
 {this.renderModal()}

Integrating with the NYT API and Redux

[233]

 </View>
)
)
);
}

Next, add the container and loadingContainer styles to the StyleSheet:

const styles = StyleSheet.create({
 newsItem: {
 marginBottom: 20
 },
 container: {
 flex: 1
 },
 loadingContainer: {
 alignItems: 'center',
 justifyContent: 'center'
 },
 modalContent: {
 flex: 1,
 justifyContent: 'center',
 paddingTop: 20,
 backgroundColor: globalStyles.BG_COLOR
 },
 closeButton: {
 paddingVertical: 5,
 paddingHorizontal: 10,
 flexDirection: 'row'
 }
});

Finally, update the Search component so that it sets showLoadingSpinner for the
NewsFeed to false:

<NewsFeed
 news={this.props.filteredNews}
 listStyles={{}}
 showLoadingSpinner={false}
/>

Pull to refresh is also pretty straightforward. The RefreshControl invokes our
component's refresh method, which calls the loadNews action creator. The NYT Top
Stories API doesn't update too frequently, so don't be alarmed if the data doesn't seem to
change after pulling to refresh. But otherwise, you're all done!

Integrating with the NYT API and Redux

[234]

Summary
In this chapter, we applied our knowledge of Redux to our RNNYT app. We also tackled
real-world scenarios, such as reshaping/transforming data, creating derived data with
Reselect, and resolving asynchronous actions using middleware. We even improved the
user experience by adding a loading icon and pull to refresh capability. With all this in
place, users can now navigate to the Search tab to seek out specific news items. Currently,
all navigation within the app is handled by the TabBarIOS component. In the next chapter,
we'll expand upon our app's navigation capabilities by reviewing some of React Native's
navigation APIs.

7
Navigation and Advanced APIs

The React Native framework is certainly young and many of its APIs are still evolving and
settling in (we're not even upto version 1.0.0!), but nothing demonstrates this quite as well
as navigation. Even though we've built a simple application without using a navigation
API, navigating between scenes is pretty fundamental to a mobile application, especially as
it grows. Because it is so fundamental and, to be frank, complex, it has gone through several
drafts. At the time of writing, there are still multiple supported navigation APIs that a React
Native developer has to choose from.

In this chapter, we will untangle navigation libraries by looking at the differences and use
cases for each. We will also implement some formal navigation into our news reader
application. Finally, we will look at a few other advanced React Native APIs that can be
used to take our relatively simple application to the next level.

Specifically, we'll cover:

The React Native navigation landscape, from a high level
Implementing the Navigator API
Implementing the NavigationExperimental API
Using advanced React Native APIs such as AsyncStorage and NetInfo

Navigation and Advanced APIs

[236]

Navigation landscape
React Native was first released with two competing navigation APIs. Facebook was
internally experimenting with two different approaches to navigation when it was time to
open source the library, so, rather than choose one over the other, both were included. As
time went on, it was discovered that there were some pain points with those initial APIs
and use cases, so a new navigation API that was more versatile and extensible was crafted.
In addition to these official APIs, other community members, who wanted to create
navigation APIs that reflected those used in React for the Web, created a number of projects
on top of the React Native modules.

This is where we are today, with so many navigation options it could make your head spin.
Fear not, for we will delve into each of these and give you the information you need to pick
the best navigation strategy for your project.

NavigatorIOS
The NavigatorIOS component is built on top of the native iOS navigational components.
This means that all navigational animations are run on the main, native thread and do not
require input from JavaScript. For this reason, NavigatorIOS will typically have the best
performance characteristics of all the navigation options, at least for now.

Though it is true that NavigatorIOS currently has an advantage in the
performance department, there is active work being done in React Native
to offload more animations in more parts of the framework to native
threads. This will likely lead to a narrowing of this performance gap, to
the point where it is irrelevant in the near future.

There are some fairly obvious drawbacks to the NavigatorIOS API. The first of these is
right there in the name: iOS. This component and navigation strategy is not cross-platform
compatible, so if your application will target both iOS and Android, this is a non-starter.
There has also been some indication that NavigatorIOS will not be developed further by
the core React Native team.

For these reasons and more, it would be best to steer clear of this component for most use
cases. One could imagine a simple iOS-only application developed to be used for a short
period of time where NavigatorIOS would suffice, but even then, justifying it would be a
stretch.

Navigation and Advanced APIs

[237]

Navigator
The Navigator component is the other original React Native navigation API. It was
designed to be a JavaScript implementation of basically the same API as NavigatorIOS.
The obvious advantage that this component has over NavigatorIOS is that it works on
both iOS and Android. Until recently, this was the recommended solution for navigation in
React Native applications.

In addition to the fact that it can be less performant than native alternatives, again, this is
poised to change, there are other reasons why we might consider other navigation APIs.
The Navigator component was designed to have an API similar to NavigatorIOS and,
because of this, does not fit perfectly into the React and Redux paradigm.

For starters, API of the Navigator for changing scenes is imperative. In order to navigate,
we have to pass around a reference to the component to other components. This is contrary
to the React philosophy of declaratively defined UI components and can feel awkward
lumped into an application built with this philosophy.

Second, the Navigator and NavigatorIOS components store all of the application's
navigation state internally. In a Redux application, we learned that all application states
should be stored in the store. With the navigation state confined to the Navigator
component, the store is no longer the source of truth for what is happening in the
application.

Finally, while the Navigator and NavigatorIOS components support simple forms of
push and pop navigation, they do not support more advanced navigational structures such
as tabbed or drawer navigation. In an application that has these more advanced patterns,
using Navigator forces you to store navigational state not in just one component, but in
multiple (that is, TabBarIOS).

These drawbacks are not especially apparent if the application is very simple. However, as
our applications grow larger and the navigation state becomes more complex, they become
a little painful. At some point, the React Native team determined that there must be a better
way.

Navigation and Advanced APIs

[238]

NavigationExperimental
NavigationExperimental is the cutting-edge navigational API that the React Native team
has indicated is the future of navigation for the library. As its name suggests, it is neither
complete nor stable. This means that we must use it with caution, realizing it will likely
change over time. Though the API may change in some ways, what likely won't change is
the approach NavigationExperimental takes and how this approach differs from the
other available options.

NavigationExperimental was designed with two primary and related goals in mind.
First, the components are not stateful, such as Navigator and NavigatorIOS; second, its
API is declarative unlike the imperative API of the other navigators. The first goal is
intended at making NavigationExperimental work well with Flux or Redux
architectures that require the application state be kept outside the React components. The
second goal is aimed to make NavigationExperimental feel more natural in React, which
is largely defined by declarative component definitions.

A result of achieving these goals is an API that is much more flexible and customizable than
other available options. This flexibility comes with a steeper learning curve, which makes
NavigationExperimental less intuitive than other forms of navigation. Also, where the
other navigators are primarily a single React component, NavigationExperimental is a
collection of components and utilities that are used in tandem.

Choosing a navigator
As much as we'd like to give a definitive answer to the question: What navigation API should
I use in my new app? At the moment, there is no obvious choice. Instead, there are pros and
cons to each that must be weighed in the context of the application itself.

The case for NavigatorIOS is hard to make and gets harder by the day. The strongest
argument against it is that it precludes cross-platform applications or would require two
implementations of navigation. In the past, the superior animation performance of this
native-built component might have been a reason to use it, but this difference is now
negligible in most scenarios and that trend will continue as React Native offloads more
types of animation to native threads. However, if this performance boost is deemed
important to your application, there are external libraries that implement a similar API
using all native components on both platforms and may be worth investigating.

Navigation and Advanced APIs

[239]

For simple applications, such as an application for which even Flux or Redux would be
considered over-engineering or an application that has a simple navigational structure, it is
still probably a good idea to use the Navigator API. Navigator is cross-platform-
compatible, relatively easy to use, and perhaps most importantly stable. There are
drawbacks, but for simple applications, these can largely be overlooked.

For big applications with complex state and navigational structures, it is worth learning and
implementing NavigationExperimental, especially if starting from scratch. Yes, this will
likely mean at least some refactoring when upgrading React Native until the API
completely stabilizes. On the bright side, there has been some indication that these changes
will not be large from here on out and that stability is not far off. The declarative nature of
NavigationExperimental allows for rich navigational structures that can be managed
independently of the components used to display the interface.

Finally, there is another option. In all of the commotion over the official navigational APIs,
numerous external libraries have also emerged. These libraries are generally built on top of
React Native navigational libraries and seek to either make the implementation process
simpler, make navigation in mobile applications more similar to web navigational patterns
that most React developers are familiar with, or create stabilized APIs with similar
principles to NavigationExperimental. These libraries are too numerous to examine in
any depth, nor is there a clear leader among the pack. However, they may be worth further
investigation before deciding on a navigation solution for a new application.

In this chapter, we will first use Navigator to add a simple introduction screen to our news
reader application. Then, we will refactor the application to have the navigational state
managed separately from the navigational components by implementing
NavigationExperimental.

Navigation and Advanced APIs

[240]

Using Navigator
In this section, we're going to add a simple introduction screen to our application that is
presented to the user before the news feed. When they tap the screen, it will navigate to the
home screen that we currently have in the application, as shown in the following
screenshot:

The first thing we'll do is create a simple new component for this intro screen in a new
src/components/IntroScreen.js file:

import React, { PropTypes } from 'react';
import {
 View,
 TouchableOpacity,
 StatusBar,
 StyleSheet
} from 'react-native';
import Title from './Title';
import AppText from './AppText';
import * as globalStyles from '../styles/global';

// Set the status bar for iOS to light

Navigation and Advanced APIs

[241]

StatusBar.setBarStyle('light-content');

const IntroScreen = ({ onPress }) => (
 <View style={[globalStyles.COMMON_STYLES.pageContainer,
styles.container]}>
 <TouchableOpacity
 onPress={onPress}
 >
 <Title>React Native News Reader</Title>
 <AppText>
 Start Reading
 </AppText>
 </TouchableOpacity>
 </View>
);

IntroScreen.propTypes = {
 onPress: PropTypes.func.isRequired
};

const styles = StyleSheet.create({
 container: {
 marginBottom: 0,
 justifyContent: 'center',
 alignItems: 'center'
 }
});

export default IntroScreen;

IntroScreen is a straightforward component that simply displays some text and performs
an action when the text is pressed:

<TouchableOpacity
 onPress={onPress}
>
 <Title>React Native News Reader</Title>
 <AppText>
 Start Reading
 </AppText>
</TouchableOpacity>

Navigation and Advanced APIs

[242]

The Navigator component
Now we have two independent screens, the IntroScreen and the HomeScreen, and we
need the ability to navigate between them. If we look into the application's entry point, the
App.js file, we see that currently the HomeScreen component is at the top level of our
application, as shown in the following code snippet:

export default () => (
 <Provider store={store}>
 <HomeScreen />
 </Provider>
);

This raises an important issue: when we introduce formal navigation into a project, the
navigation component is typically the top-level component (or near it) for the entire
application. The navigator is responsible for determining at the highest level what
components are displayed to the user, so it makes intuitive sense that it should manage
individual screens as its children.

Therefore, our next step is to create a new Nav component and add it to the App.js file in
place of the HomeScreen component. The Nav component will then display IntroScreen
and HomeScreen when appropriate. The first step is to import the Navigator,
HomeScreen, and the new IntroScreen modules, along with some other components that
we will be using, into a new src/components/Nav.js file:

import React, { Component } from 'react';
import { Navigator, TouchableOpacity, StyleSheet } from 'react-native';

import HomeScreen from './HomeScreen';
import IntroScreen from './IntroScreen';

import Title from './Title';
import SmallText from './SmallText';

import * as globalStyles from '../styles/global';

Navigation and Advanced APIs

[243]

The Navigator component uses route objects to describe what screens to show. Route
objects are largely up to us as implementers to design. For our application we have two
routes: one for the IntroScreen and another for the HomeScreen. We will define these
routes at the top of the Nav.js file:

const HOME_ROUTE = { title: 'RNNYT' };
const INTRO_ROUTE = { title: 'Welcome' };

We will now create the Nav component class and, in its render method, simply return a
Navigator component with two props. The initialState property tells the Navigator
which route to display when the App component is first rendered. The renderScene
property takes a function that tells the Navigator how to render a scene from currently
active route objects, as shown in the following code snippet:

export default class Nav extends Component {

 render() {
 return (
 <Navigator
 initialRoute={INTRO_ROUTE}
 renderScene={this.renderScene}
 />
);
 }

}

Here we define the renderScene method that tells our Navigator how to render the
routes into React components. Take a look at the following code snippet:

renderScene(route, navigator) {
 if (route === INTRO_ROUTE) {
 return (
 <IntroScreen
 onPress={() => navigator.push(HOME_ROUTE)}
 />
);
 }
 return <HomeScreen />;
}

Navigation and Advanced APIs

[244]

Notice that the renderScene function gets not only the current route as an argument, but
also a reference to the Navigator component itself. This is necessary because new scenes
are navigated to by using an imperative API of the Navigator. We make use of this by
passing the IntroScene component an onPress function property. This function passes
the HomeScreen route to the push method of the Navigator:

onPress={() => navigator.push(HOME_ROUTE)}

The Navigator manages its state as a stack data structure where scenes can be pushed and
popped. Pushing scenes goes forward and popping goes back to the previous scene on the
stack. In addition to these operations, the Navigator can also reset the entire stack, replace
the current top scene, and more. In our simple, linear navigational structure, we only need a
small subset of these methods.

If our application has many scenes, we can imagine the renderScene method getting large
if we were to follow the same approach outlined in the previous section. To make scene
rendering more generic, we'll include a component to render and props to pass to it within
the route objects:

const HOME_ROUTE = {
 title: 'RNNYT',
 component: HomeScreen
};
const INTRO_ROUTE = {
 title: 'Welcome',
 component: IntroScreen,
 props: {
 nextScene: HOME_ROUTE
 }
};

We can now refactor the renderScene method to use these new routes:

renderScene(route, navigator) {
 return (
 <route.component
 {...route.props}
 />
);
}

Navigation and Advanced APIs

[245]

Now, however, we've lost the ability to navigate to the next scene because we are not
passing an onPress property to the IntroScreen. To remedy this, a common solution is to
pass a reference to the navigator to all the scene components. This is where Navigator
starts to become a bit messy, but for our application it is still not too bad. First, we'll pass
the navigator reference to all the components rendered:

renderScene(route, navigator) {
 return (
 <route.component
 {...route.props}
 navigator={navigator}
 />
);
}

And then we will refactor the IntroScreen component to use the reference directly, along
with its new nextScene prop:

const IntroScreen = ({ navigator, nextScene }) => (
 <View style={[globalStyles.COMMON_STYLES.pageContainer,
styles.container]}>
 <TouchableOpacity
 onPress={() => navigator.push(nextScene)}
 >
 <Title>React Native News Reader</Title>
 <AppText>
 Start Reading
 </AppText>
 </TouchableOpacity>
 </View>
);

IntroScreen.propTypes = {
 navigator: PropTypes.shape({
 push: PropTypes.func
 }).isRequired,
 nextScene: PropTypes.objectOf(PropTypes.any)
};

This is all that is required for simple navigation. However, if we look at the earlier
screenshot, one thing is missing: a navigation bar.

Navigation and Advanced APIs

[246]

Navigation bar
We now have the ability to navigate forward-push onto the navigation stack, but what if we
want to go back? A common way to handle this in mobile applications is to use a top
navigation bar that displays a title, Back button, or other menu buttons, as shown in the
following screenshot:

The Navigator API has a Navigator.NavigationBar component, which can be passed
into the Navigator as a prop for this purpose. We'll first create a method for rendering a
NavigationBar in the Nav component (src/components/Nav.js):

renderNavigationBar() {
 return (
 <Navigator.NavigationBar
 style={styles.navbar}
 />
);
}

We will need to add some styles to NavigationBar to make it match the look and feel of
our application, so at the bottom of the Nav.js file we'll add a StyleSheet:

const styles = StyleSheet.create({
 navbar: {
 backgroundColor: globalStyles.MUTED_COLOR
 }
});

Additionally, we'll need to update the pageContainer style in the global styles file
(src/styles/global.js) to add some margin to the top of our screens and get out of the
way of the new NavigationBar:

pageContainer: {
 backgroundColor: BG_COLOR,

Navigation and Advanced APIs

[247]

 flex: 1,
 marginTop: 50,
 paddingTop: 20,
 marginBottom: 48,
 marginHorizontal: 0,
 paddingHorizontal: 10
}

Next, we need to tell the NavigationBar what to render on the left-hand side, right-hand
side, and for the title. We do this by passing the NavigationBar component a property
called routeMapper. This object has three keys LeftButton, RightButton, and Title.
The value for each of these keys is a function that receives the current route and returns the
appropriate component, as shown in the following code snippet:

renderNavigationBar() {
 return (
 <Navigator.NavigationBar
 routeMapper={{
 LeftButton: this.renderLeftButton,
 RightButton: () => null,
 Title: this.renderTitle
 }}
 style={styles.navbar}
 />
);
}

For our application, we will never show a button on the right-hand side of the
NavigationBar, so that function will simply return null no matter what the current route
is:

RightButton: () => null

For the left-hand side, we want to show a Back button, but only when there is more than
one route on the Navigator's internal navigation stack. Luckily for us, routeMapper
functions receive, in addition to the current route, a reference to the navigator as well as the
current route's index. Since the first route on the stack has index 0, we only want to render
a Back button when the index is not 0, as shown in the following code snippet:

renderLeftButton(route, navigator, index) {
 if (index === 0) {
 return null;
 }
 return (
 <TouchableOpacity
 style={styles.leftButton}

Navigation and Advanced APIs

[248]

 onPress={() => navigator.pop()}
 >
 <SmallText>Back</SmallText>
 </TouchableOpacity>
);
}

Here, we use another of the Navigator's methods: pop. This method pops a scene from the
Navigator component's internal stack. In other words, this allows the user to go back. Take
a look at the following code snippet:

onPress={() => navigator.pop()}

Finally, we'll use the title stored in the route to render a Title component in the center of
the NavigationBar:

renderTitle(route) {
 return (
 <Title style={styles.title}>
 {route.title}
 </Title>
);
}

We'll also need to add styles for both the left button and the title:

const styles = StyleSheet.create({
 navbar: {
 backgroundColor: globalStyles.MUTED_COLOR
 },
 leftButton: {
 padding: 12
 },
 title: {
 padding: 8,
 backgroundColor: globalStyles.MUTED_COLOR
 }
});

Now that we have a completed renderNavigationBar method, we need to use it to create
a NavigationBar for our Navigator component:

render() {
 return (
 <Navigator
 initialRoute={INTRO_ROUTE}
 renderScene={this.renderScene}
 navigationBar={this.renderNavigationBar()}

Navigation and Advanced APIs

[249]

 />
);
}

We've now completed our Nav component, which will act as the manager for navigation in
our application. Here it is in full:

import React, { Component } from 'react';
import { Navigator, TouchableOpacity, StyleSheet } from 'react-native';

import HomeScreen from './HomeScreen';
import IntroScreen from './IntroScreen';

import Title from './Title';
import SmallText from './SmallText';

import * as globalStyles from '../styles/global';

const HOME_ROUTE = {
 title: 'RNNYT',
 component: HomeScreen
};
const INTRO_ROUTE = {
 title: 'Welcome',
 component: IntroScreen,
 props: {
 nextScene: HOME_ROUTE
 }
};

export default class Nav extends Component {

 renderScene(route, navigator) {
 return (
 <route.component
 {...route.props}
 navigator={navigator}
 />
);
 }

 renderLeftButton(route, navigator, index) {
 if (index === 0) {
 return null;
 }
 return (
 <TouchableOpacity
 style={styles.leftButton}

Navigation and Advanced APIs

[250]

 onPress={() => navigator.pop()}
 >
 <SmallText>Back</SmallText>
 </TouchableOpacity>
);
 }

 renderTitle(route) {
 return (
 <Title style={styles.title}>
 {route.title}
 </Title>
);
 }

 renderNavigationBar() {
 return (
 <Navigator.NavigationBar
 routeMapper={{
 LeftButton: this.renderLeftButton,
 RightButton: () => null,
 Title: this.renderTitle
 }}
 style={styles.navbar}
 />
);
 }

 render() {
 return (
 <Navigator
 initialRoute={INTRO_ROUTE}
 renderScene={this.renderScene}
 navigationBar={this.renderNavigationBar()}
 />
);
 }

}

const styles = StyleSheet.create({
 navbar: {
 backgroundColor: globalStyles.MUTED_COLOR
 },
 leftButton: {
 padding: 12
 },
 title: {

Navigation and Advanced APIs

[251]

 padding: 8,
 backgroundColor: globalStyles.MUTED_COLOR
 }
});

Navigator works well in this scenario and might continue to work well in a simple linear
navigation structure. However, the navigation in our application is not as simple as we've
made it out to be and, thus, we may decide to look for other alternatives.

Advanced navigation with
NavigationExperimental
While the navigation we implemented in the previous section is rather simple, the
navigational structure of our entire application is actually less so. Not only do we navigate
between the intro and home screens, but we also navigate between tabs and show modals
for individual articles. With this in mind, where do we go to find out exactly where a user is
in the application?

The answer to this question currently is that there is no one place to look. The navigational
state is stored within the Navigator component, the HomeScreen component, and within
the NewsFeed components. As our application gets larger, this opaque and disparate
method of storing navigational state will become increasingly painful.

Our goal in this section is to use the components and utilities of the
NavigationExperimental API to extract this navigational state from components and
insert it into our Redux store. In doing so we'll need to remove Navigator and refactor
HomeScreen and NewsFeed to once again attain declarative view definitions.

Representing the navigation state
When using the Navigator, all of the navigational state is contained and managed within
that React component. When using NavigationExperimental, we take control of the
navigational state and therefore need to decide how it should be represented. Some of the
representation is dictated by the NavigationExperimental API, but some is up to the
application developer.

Navigation and Advanced APIs

[252]

We'll start by looking at the navigational state object for the very simple, two-scene example
from the previous section:

{
 index: 0,
 routes: [
 { key: 'intro' }
]
}

The routes array is the navigation stack where each object in the array represents a scene
on the stack. The index points to the scene in the routes stack that is currently visible.
When the application first loads, there is a single scene on the stack (the intro screen), which
is located at index 0. When the user navigates to the next scene (the home screen), a
navigational push operation is performed by pushing a scene object into the routes array
and incrementing the index:

{
 index: 1,
 routes: [
 { key: 'intro' },
 { key: 'home' }
]
}

The shape we are using for the state so far is one mandated by the
NavigationExperimental API. The navigational state must have an index and routes
array. Each route object within the array must also have a unique key string. It is common
practice to append a timestamp or some other random number to the route's name in order
to ensure that it is unique. However, in our application there are only two scenes and they
will not appear on the stack more than once, so this is not necessary.

The rest of the data inside of the route objects is up to us as application developers to
decide on. Adhering to the pattern established in the Navigator section, we'll also include
a title as well as the scene's React component:

{
 index: 1,
 routes: [
 { key: 'intro', title: 'Welcome', component: IntroScreen },
 { key: 'home', title: 'RNNYT', component: HomeScreen }
]
}

Navigation and Advanced APIs

[253]

This state representation is adequate for replacing the Navigator in our application. The
next step is to create a Redux reducer to manage this state and Redux actions to manipulate
it.

Managing the navigation state
First, we'll need to make some actions that can be used to manipulate the navigation state in
our application. These actions will mimic the two Navigator methods from the previous
section: push (to advance to a scene) and pop (to go back). We'll create a new
src/actions/navigationActions.js file and create our actions in there:

import {
 NAVIGATION_PUSH,
 NAVIGATION_POP
} from './actionTypes';

export const push = key => ({
 type: NAVIGATION_PUSH,
 payload: key
});

export const pop = () => ({
 type: NAVIGATION_POP
});

For the push action, we specify the scene to add to the navigation stack by using the unique
route key, which is added to the action's payload:

export const push = key => ({
 type: NAVIGATION_PUSH,
 payload: key
});

We'll also need to add these new action types to the actionTypes.js file:

export const LOAD_NEWS = 'LOAD_NEWS';
export const SEARCH_NEWS = 'SEARCH_NEWS';

export const NAVIGATION_PUSH = 'NAVIGATION_PUSH';
export const NAVIGATION_POP = 'NAVIGATION_POP';

Navigation and Advanced APIs

[254]

Next, we need to create the reducer that listens for these actions. In a new
src/reducers/navigationReducer.js file, we'll start by creating an initial application
state object based on the preceding discussion:

import HomeScreen from '../components/HomeScreen';
import IntroScreen from '../components/IntroScreen';

const routes = {
 home: {
 key: 'home',
 title: 'RNNYT',
 component: HomeScreen
 },
 intro: {
 key: 'intro',
 title: 'Welcome',
 component: IntroScreen
 }
};
const initialState = {
 index: 0,
 routes: [
 routes.intro
]
};

Here, we've created a map of route objects and initialized the navigation state with only the
intro route on the stack. Next, we'll define the reduce method to produce a new navigation
state object when a NAVIGATION_PUSH or NAVIGATION_POP action is dispatched. To do this
we'll use a utility from the NavigationExperimental library called StateUtils:

import { NavigationExperimental } from 'react-native';
import {
 NAVIGATION_PUSH,
 NAVIGATION_POP
} from '../actions/actionTypes';
import HomeScreen from '../components/HomeScreen';
import IntroScreen from '../components/IntroScreen';

const { StateUtils } = NavigationExperimental;

The StateUtils module comes with several functions for working with navigation state
objects. It has both push and pop functions, in addition to many that we can use directly to
modify the navigation state of our application in the ways described in the previous section;
this is shown in the following code snippet:

export default (state = initialState, action = {}) => {

Navigation and Advanced APIs

[255]

 if (action.type === NAVIGATION_PUSH) {
 return StateUtils.push(state, routes[action.payload]);
 } else if (action.type === NAVIGATION_POP) {
 return StateUtils.pop(state);
 }
 return state;
};

Finally, we must register this new reducer in the Redux store. This means updating
createStore.js:

import { createStore, applyMiddleware, combineReducers } from 'redux';
import createLogger from 'redux-logger';
import newsFeedReducer from './reducers/newsFeedReducer';
import navigationReducer from './reducers/navigationReducer';
import searchTermReducer from './reducers/searchTermReducer';
import promiseMiddleware from 'redux-promise';

const logger = createLogger();

export default (initialState = {}) => {
 return createStore(combineReducers({
 news: newsFeedReducer,
 searchTerm: searchTermReducer,
 navigation: navigationReducer
 }),
 initialState,
 applyMiddleware(logger, promiseMiddleware)
);
};

Now that we have the ability to manage the navigational state on our own, we must create
a container component to use this information.

The CardStack component
The first step to incorporating the new navigation store into our application is to refactor
the Nav component from the previous section. Rather than using the stateful Navigator
component, we'll instead make this a simple presentational component using the
NavigationExperimental API. Within the refactored Nav component, we will be using a
NavigationExperimental component called the CardStack.

Navigation and Advanced APIs

[256]

As was mentioned before, the NavigationExperimental API actually includes several
components. The core component of the NavigationExperimental API is called
NavigationTransitioner. NavigationTransitioner is an extremely powerful and
flexible component that can be used with many different navigational patterns. As we have
heard before, this power and flexibility comes with a steep learning curve. Luckily, the
CardStack is a wrapper around this component that simplifies implementation of the most
common stack-based navigational patterns.

Let's start by removing the Navigator-based functionality from the current Nav component
and importing CardStack from NavigationExperimental:

import React, { Component, PropTypes } from 'react';
import {
 StyleSheet,
 NavigationExperimental
} from 'react-native';

import * as globalStyles from '../styles/global';

const { CardStack } = NavigationExperimental;

export default class Nav extends Component {

}

Nav.propTypes = {
 push: PropTypes.func.isRequired,
 pop: PropTypes.func.isRequired,
 navigation: PropTypes.objectOf(PropTypes.any)
};

const styles = StyleSheet.create({
});

Notice that we have added propTypes to the new Nav component. It will now receive the
navigation state object, which will eventually come from the Redux store, and two action
creator functions: push and pop:

Nav.propTypes = {
 push: PropTypes.func.isRequired,
 pop: PropTypes.func.isRequired,
 navigation: PropTypes.objectOf(PropTypes.any)
};

Navigation and Advanced APIs

[257]

The first method we'll add to the refactored Nav component is the render method. This
method will simply return a CardStack component:

render() {
 return (
 <CardStack
 onNavigateBack={this.props.pop}
 navigationState={this.props.navigation}
 renderScene={this.renderScene}
 style={styles.cardStack}
 />
);
}

We pass the pop action to the onNavigationBack prop and pass along the navigation
state to the navigationState prop. We also add some simple styles, so we'll need to add
to the StyleSheet in this file:

const styles = StyleSheet.create({
 cardStack: {
 flex: 1
 }
});

We also need to create the renderScene method that gets passed into the CardStack. It
will resemble the one created in the last section, but it will access the route from the
sceneProps argument passed in from CardStack and it will use the push and pop
methods from the component's props. Since the new renderScene method will need access
to props, we'll need to bind this context in the Nav component's constructor:

constructor(props, context) {
 super(props, context);

 this.renderScene = this.renderScene.bind(this);
}

renderScene(sceneProps) {
 const route = sceneProps.scene.route;
 return (
 <route.component
 {...route.props}
 push={this.props.push}
 pop={this.props.pop}
 />
);
}

Navigation and Advanced APIs

[258]

Here we will pass the push and pop actions to each scene rendered by the Nav. This means
we'll have to update the way the IntroScreen navigates. It will now need to call this
passed in push prop with the key of the next scene ('home'):

const IntroScreen = ({ push }) => (
 <View style={[globalStyles.COMMON_STYLES.pageContainer,
styles.container]}>
 <TouchableOpacity
 onPress={() => push('home')}
 >
 <Title>React Native News Reader</Title>
 <AppText>
 Start Reading
 </AppText>
 </TouchableOpacity>
 </View>
);

IntroScreen.propTypes = {
 push: PropTypes.func.isRequired
};

Now that we have refactored the Nav component to use the CardStack component, which
does not keep track of the navigational state internally, we need to create a container
component that connects the Nav component to the Redux store and the application's
navigational state. We will do this in a new file, src/containers/NavContainer.js:

import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';

import { push, pop } from '../actions/navigationActions';

import Nav from '../components/Nav';

const mapStateToProps = state => ({
 navigation: state.navigation
});

const mapDispatchToProps = dispatch => (
 bindActionCreators({
 push,
 pop
 }, dispatch)
);

export default connect(
 mapStateToProps,

Navigation and Advanced APIs

[259]

 mapDispatchToProps
)(Nav);

This looks very similar to other container components we've created in previous chapters.
First we import the Redux utilities needed, the push and pop action creator functions, and
the presentational Nav component:

import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';

import { push, pop } from '../actions/navigationActions';

import Nav from '../components/Nav';

We then create a mapStateToProps function that can extract the relevant parts of the
application state, in this case the navigation state, as shown in the following code snippet:

const mapStateToProps = state => ({
 navigation: state.navigation
});

Finally, we create the mapDispatchToProps function for attaching action creators to the
Redux store and export the connected presentational component:

const mapDispatchToProps = dispatch => (
 bindActionCreators({
 push,
 pop
 }, dispatch)
);

export default connect(
 mapStateToProps,
 mapDispatchToProps
)(Nav);

Now that we have created NavContainer, we can replace the Nav component in App.js
with the new container component:

import React from 'react';
import { Provider } from 'react-redux';
import NavContainer from './containers/NavContainer';
import createStore from './createStore';

const store = createStore();

export default () => (

Navigation and Advanced APIs

[260]

 <Provider store={store}>
 <NavContainer />
 </Provider>
);

If we run the app now, we will be able to navigate, but the top navigational bar is now
missing once again.

Navigation header
The NavigationExperimental Header component is probably the most straightforward
part of the API. If you are trying to implement the simple, typical navigation header that we
used in the previous section, much of that is done for you via default values. The Header is
of course extensible, but for our purposes we will mostly take advantage of these default
values, as shown in the following code snippet.

First, in the Nav.js file we need to extract the Header component from the
NavigationExperimental module:

const { Header, CardStack } = NavigationExperimental;

We'll then create a simple renderNavigationBar method that returns a Header
component. This method will also need to be bound to the this context in the constructor:

constructor(props, context) {
 super(props, context);

 this.renderScene = this.renderScene.bind(this);
 this.renderNavigationBar = this.renderNavigationBar.bind(this);
}

renderNavigationBar(sceneProps) {
 return (
 <Header
 style={styles.navigationBar}
 onNavigateBack={this.props.pop}
 {...sceneProps}
 />
);
}

Navigation and Advanced APIs

[261]

Here we basically pass on all of the sceneProps to the Header component, which it can
use to decide whether or not to render a back button and also to display the title. We will
also pass some simple styles that need to be added to the StyleSheet:

const styles = StyleSheet.create({
 cardStack: {
 flex: 1
 },
 navigationBar: {
 backgroundColor: globalStyles.MUTED_COLOR
 }
});

Additionally, we'll need to modify the page container styles in global.js to accommodate
the new navigation header:

pageContainer: {
 backgroundColor: BG_COLOR,
 flex: 1,
 marginTop: 0,
 paddingTop: 5,
 marginBottom: 48,
 marginHorizontal: 0,
 paddingHorizontal: 10
}

Finally, back in Nav.js, we'll pass this new method to the renderHeader prop of the
CardStack:

render() {
 return (
 <CardStack
 onNavigateBack={this.props.pop}
 navigationState={this.props.navigation}
 renderScene={this.renderScene}
 renderHeader={this.renderNavigationBar}
 style={styles.cardStack}
 />
);
}

Navigation and Advanced APIs

[262]

Tabbed navigation
We've successfully replaced Navigator with NavigationExperimental, but we have not
solved the other parts of our navigation state: the tabs on the HomeScreen and the modal in
the NewsFeed. Once again, our goal here is to manage all navigation state in Redux. First,
let's look at how tabbed navigation can be modeled:

{
 index: 0,
 routes: [
 { key: 'newsFeed' },
 { key: 'search' },
 { key: 'bookmarks' }
]
}

This looks very similar to the previous example of navigational state, but this time it starts
out with all three potential routes in the routes array. Instead of adding and removing
route objects from the routes array, we will simply change the index to navigate to
another scene. For instance, if we want to navigate to the search scene, we change the index
to 1 (the index of that scene's route object in the routes array):

{
 index: 1,
 routes: [
 { key: 'newsFeed' },
 { key: 'search' },
 { key: 'bookmarks' }
]
}

The question now is, where should this live in the Redux store? Perhaps the tabbed
navigation could have its own reducer. This is possible, but conceptually we think about
tabs as being nested within the HomeScreen. It just so happens that our navigation state can
actually be a recursive structure where each route object can itself be a navigational root.
We can then embed the tabbed navigation within the home route like this:

{
 key: 'home',
 title: 'RNNYT',
 component: HomeScreen,
 index: 0,
 routes: [
 { key: 'newsFeed' },
 { key: 'search' },
 { key: 'bookmarks' }

Navigation and Advanced APIs

[263]

]
}

The first thing we'll need to do to make use of this pattern is to create a new action for
tabbed navigation in the navigationActions.js file:

import {
 NAVIGATION_PUSH,
 NAVIGATION_POP,
 NAVIGATION_TAB
} from './actionTypes';

export const tab = key => ({
 type: NAVIGATION_TAB,
 payload: key
});

This action creator function takes the key string of the tab as an argument. We will also
need to add this new action type to the actionTypes.js file:

export const NAVIGATION_PUSH = 'NAVIGATION_PUSH';
export const NAVIGATION_POP = 'NAVIGATION_POP';
export const NAVIGATION_TAB = 'NAVIGATION_TAB';

Now, we need to update the navigation reducer. First, in navigationReducer.js, we'll
add the tabbed navigation state to the home route as discussed in the previous section:

const routes = {
 home: {
 key: 'home',
 title: 'RNNYT',
 component: HomeScreen,
 index: 0,
 routes: [
 { key: 'newsFeed' },
 { key: 'search' },
 { key: 'bookmarks' }
]
 },
 intro: {
 key: 'intro',
 title: 'Welcome',
 component: IntroScreen
 }
};

Navigation and Advanced APIs

[264]

We'll also need the NAVIGATION_TAB action type to be added to the imports of
navigationReducer.js:

import { NavigationExperimental } from 'react-native';
import {
 NAVIGATION_PUSH,
 NAVIGATION_POP,
 NAVIGATION_TAB
} from '../actions/actionTypes';
import HomeScreen from '../components/HomeScreen';
import IntroScreen from '../components/IntroScreen';

Next, we'll update the reduce function to listen to the NAVIGATION_TAB action and update
the state accordingly:

export default (state = initialState, action = {}) => {
 if (action.type === NAVNow we can refactor the HomeScreenIGATION_PUSH) {
 return StateUtils.push(state, routes[action.payload]);
 } else if (action.type === NAVIGATION_POP) {
 return StateUtils.pop(state);
 } else if (action.type === NAVIGATION_TAB) {
 const homeState = StateUtils.get(state, 'home');
 const updatedHomeState = StateUtils.jumpTo(homeState, action.payload);
 return StateUtils.replaceAt(state, 'home', updatedHomeState);
 }
 return state;
};

First, we extract the 'home' scene route object using StateUtils:

const homeState = StateUtils.get(state, 'home');

Then, we update the index of the nested tabbed navigation by using the StateUtils
jumpTo method, which simply updates the index to the appropriate number based on the
key passed in. The payload of the action, remember, is the key to which we are
navigating:

const updatedHomeState = StateUtils.jumpTo(homeState, action.payload);

Finally, we replace the HomeScene within the parent navigational state using the
StateUtilsreplaceAt method and return the result:

return StateUtils.replaceAt(state, 'home', updatedHomeState);

Navigation and Advanced APIs

[265]

Now that we have the tabbed navigation represented in the Redux store, we need to
refactor the HomeScreen to use it instead of managing the state internally. We'll do this by
creating a container component that wraps the HomeScreen and connects it to the Redux
store in a new file, src/containers/HomeScreenContainer.js:

import { NavigationExperimental } from 'react-native';
import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';

import HomeScreen from '../components/HomeScreen';

import { tab } from '../actions/navigationActions';

const { StateUtils } = NavigationExperimental;

const mapStateToProps = (state) => {
 const homeState = StateUtils.get(state.navigation, 'home');
 return {
 selectedTab: homeState ? homeState.routes[homeState.index].key :
'newsFeed'
 };
};

const mapDispatchToProps = dispatch => (
 bindActionCreators({
 tab
 }, dispatch)
);

export default connect(
 mapStateToProps,
 mapDispatchToProps
)(HomeScreen);

In this container, we give HomeScreen access to the currently active tab in the navigational
state. We do this by first extracting the home route object, once again using StateUtils:

const homeState = StateUtils.get(state.navigation, 'home');

We then get the key of the active sub-route, falling back to newsFeed if the home route
can't be found, as shown in the following code snippet:

return {
selectedTab: homeState ? homeState.routes[homeState.index].key : 'newsFeed'
};

Navigation and Advanced APIs

[266]

We also give the HomeScreen access to the new tab action creator:

const mapDispatchToProps = (dispatch) => {
 return bindActionCreators({
 tab
 }, dispatch);
};

Now we can refactor the HomeScreen component to use props instead of an internal state:

import React, { Component, PropTypes } from 'react';
import {
 TabBarIOS,
 Text,
 Alert,
 Vibration,
 StatusBar
} from 'react-native';
import NewsFeedContainer from '../containers/NewsFeedContainer';
import SearchContainer from '../containers/SearchContainer';
import * as globalStyles from '../styles/global';

// Set the status bar for iOS to light
StatusBar.setBarStyle('light-content');

export default class HomeScreen extends Component {

 showBookmarkAlert() {
 Vibration.vibrate();
 Alert.alert(
 'Coming Soon!',
 'We're hard at work on this feature, check back in the near future.',
 [
 { text: 'OK', onPress: () => console.log('User pressed OK') }
]
);
 }

 render() {
 const { selectedTab, tab } = this.props;

 return (
 <TabBarIOS
 barTintColor={globalStyles.BAR_COLOR}
 tintColor={globalStyles.LINK_COLOR}
 translucent={false}
 >
 <TabBarIOS.Item

Navigation and Advanced APIs

[267]

 systemIcon={'featured'}
 selected={selectedTab === 'newsFeed'}
 onPress={() => tab('newsFeed')}
 >
 <NewsFeedContainer />
 </TabBarIOS.Item>
 <TabBarIOS.Item
 systemIcon={'search'}
 selected={selectedTab === 'search'}
 onPress={() => tab('search')}
 >
 <SearchContainer />
 </TabBarIOS.Item>
 <TabBarIOS.Item
 systemIcon={'bookmarks'}
 selected={selectedTab === 'bookmarks'}
 onPress={() => this.showBookmarkAlert()}
 >
 <Text>Bookmarks</Text>
 </TabBarIOS.Item>
 </TabBarIOS>
);
 }
}

HomeScreen.propTypes = {
 selectedTab: PropTypes.string,
 tab: PropTypes.func.isRequired
};

We use props.selectedTab to identify which tab is currently active:

selected={selectedTab === 'newsFeed'}

Then, we use the props.tab function to navigate to the tab in place of setting an internal
state:

onPress={() => tab('newsFeed')}

Finally, we need to use the HomeScreenContainer component in place of the, now
stateless, HomeScreen component in the route object in the navigationReducer.js file:

import { NavigationExperimental } from 'react-native';
import {
 NAVIGATION_PUSH,
 NAVIGATION_POP,
 NAVIGATION_TAB,
} from '../actions/actionTypes';

Navigation and Advanced APIs

[268]

import HomeScreenContainer from '../containers/HomeScreenContainer';
import IntroScreen from '../components/IntroScreen';

const { StateUtils } = NavigationExperimental;

const routes = {
 home: {
 key: 'home',
 title: 'RNNYT',
 component: HomeScreenContainer,
 index: 0,
 routes: [
 { key: 'newsFeed' },
 { key: 'search' },
 { key: 'bookmarks' }
]
 },
 intro: {
 key: 'intro',
 title: 'Welcome',
 component: IntroScreen
 }
};

Adding in the modal
The last piece of the navigational puzzle is the modal used to display a news article in a
WebView. Currently, the NewsFeed component manages the modal internally in its state.
Just like the tabs, we are going to move this to internal state in the navigation portion of the
Redux store.

One approach we could take is to nest a new navigational stack inside of the newsFeed
route object. Then, we could use another CardStack component in the news feed that
displays the feed scene in addition to the modal scene. This would work, but is probably
over-engineering for this simple use case. Instead, we'll simply have a modal key in the
newsFeed route object. The value of the modal key will be the URL the modal is open to or
undefined if it isn't open.

Here is the modal state initially:

{
 key: 'home',
 title: 'RNNYT',
 component: HomeScreenContainer,
 index: 0,

Navigation and Advanced APIs

[269]

 routes: [
 { key: 'newsFeed', modal: undefined },
 { key: 'search' },
 { key: 'bookmarks' }
]
}

And here it is when we navigate to a news item modal:

{
 key: 'home',
 title: 'RNNYT',
 component: HomeScreenContainer,
 index: 0,
 routes: [
 { key: 'newsFeed', modal: 'http://example.com' },
 { key: 'search' },
 { key: 'bookmarks' }
]
}

To get this working, we'll need to add some new actions to the navigationActions.js
file, one for opening the modal and another for closing it:

import {
 NAVIGATION_PUSH,
 NAVIGATION_POP,
 NAVIGATION_TAB,
 NAVIGATION_OPEN_MODAL,
 NAVIGATION_CLOSE_MODAL
} from './actionTypes';

export const openModal = url => ({
 type: NAVIGATION_OPEN_MODAL,
 payload: url
});

export const closeModal = () => ({
 type: NAVIGATION_CLOSE_MODAL
});

Notice that the openModal action creator function passes along the URL that needs to be
opened. Once again, we'll need to add these new action types to the actionTypes.js file:

export const NAVIGATION_OPEN_MODAL = 'NAVIGATION_OPEN_MODAL';
export const NAVIGATION_CLOSE_MODAL = 'NAVIGATION_CLOSE_MODAL';

Navigation and Advanced APIs

[270]

Next, we need to update the navigation reducer to handle these new action types. First,
we'll import the new actions in the navgationReducer.js file:

import { NavigationExperimental } from 'react-native';
import {
 NAVIGATION_PUSH,
 NAVIGATION_POP,
 NAVIGATION_TAB,
 NAVIGATION_OPEN_MODAL,
 NAVIGATION_CLOSE_MODAL
} from '../actions/actionTypes';
import HomeScreenContainer from '../containers/HomeScreenContainer';
import IntroScreen from '../components/IntroScreen';

And here is the updated reducer:

export default (state = initialState, action = {}) => {
 if (action.type === NAVIGATION_PUSH) {
 return StateUtils.push(state, routes[action.payload]);
 } else if (action.type === NAVIGATION_POP) {
 return StateUtils.pop(state);
 } else if (action.type === NAVIGATION_TAB) {
 const homeState = StateUtils.get(state, 'home');
 const updatedHomeState = StateUtils.jumpTo(homeState, action.payload);
 return StateUtils.replaceAt(state, 'home', updatedHomeState);
 } else if (action.type === NAVIGATION_OPEN_MODAL) {
 const homeState = StateUtils.get(state, 'home');
 const openTabState = homeState.routes[homeState.index];
 const updatedTabState = { ...openTabState, modal: action.payload };
 const updatedHomeState = StateUtils.replaceAt(homeState,
openTabState.key, updatedTabState);
 return StateUtils.replaceAt(state, 'home', updatedHomeState);
 } else if (action.type === NAVIGATION_CLOSE_MODAL) {
 const homeState = StateUtils.get(state, 'home');
 const openTabState = homeState.routes[homeState.index];
 const updatedTabState = { ...openTabState, modal: undefined };
 const updatedHomeState = StateUtils.replaceAt(homeState,
openTabState.key, updatedTabState);
 return StateUtils.replaceAt(state, 'home', updatedHomeState);
 }
 return state;
};

Navigation and Advanced APIs

[271]

The first step for both of these new action types is to extract the state of the currently open
tab route object, which is nested two levels deep in our navigation state:

const homeState = StateUtils.get(state, 'home');
const openTabState = homeState.routes[homeState.index];

To open the modal, we use payload of the action (the URL) and store it in the modal key:

const updatedTabState = { ...openTabState, modal: action.payload };

To close the modal, we simply set it back to undefined:

const updatedTabState = { ...openTabState, modal: undefined };

Finally, we replace the current open tab route with the updated version and return the
result:

const updatedHomeState = StateUtils.replaceAt(homeState, openTabState.key,
updatedTabState);
return StateUtils.replaceAt(state, 'home', updatedHomeState);

The NewsFeed component already has a container, so all we need to do is attach this new
state and the new action creators to it, and then refactor the component to use them. Here is
the updated container:

import { NavigationExperimental } from 'react-native';
import { connect } from 'react-redux';
import { bindActionCreators } from 'redux';
import { loadNews } from '../actions/newsActions';
import { openModal, closeModal } from '../actions/navigationActions';
import NewsFeed from '../components/NewsFeed';
import { allNewsSelector } from '../selectors/newsSelectors';

const { StateUtils } = NavigationExperimental;

const mapStateToProps = (state) => {
 const homeState = StateUtils.get(state.navigation, 'home');
 const newsFeedState = homeState && StateUtils.get(homeState, 'newsFeed');
 const modal = newsFeedState && newsFeedState.modal;
 return {
 news: allNewsSelector(state),
 modal: modal || undefined
 };
};

const mapDispatchToProps = dispatch => (
 bindActionCreators({
 loadNews,

Navigation and Advanced APIs

[272]

 onModalOpen: openModal,
 onModalClose: closeModal
 }, dispatch)
);

export default connect(mapStateToProps, mapDispatchToProps)(NewsFeed);

We need to extract the modal value from the navigation state in the mapStateToProps
function of the NewsFeedContainer:

const mapStateToProps = (state) => {
 const homeState = StateUtils.get(state.navigation, 'home');
 const newsFeedState = homeState && StateUtils.get(homeState, 'newsFeed');
 const modal = newsFeedState && newsFeedState.modal;
 return {
 news: allNewsSelector(state),
 modal: modal || undefined
 };
};

We also need to add the open and close modal action creators to the mapDispatchToProps
function:

const mapDispatchToProps = dispatch => (
 bindActionCreators({
 loadNews,
 onModalOpen: openModal,
 onModalClose: closeModal
 }, dispatch)
);

Finally, we'll refactor the NewsFeed component itself to use these new props. First, we'll
update the rendering of individual news items to use the new openModal prop:

renderRow(rowData, ...rest) {
 const index = parseInt(rest[1], 10);
 return (
 <NewsItem
 onPress={() => this.props.onModalOpen(rowData.url)}
 style={styles.newsItem}
 index={index}
 {...rowData}
 />
);
}

Navigation and Advanced APIs

[273]

Then, we'll update the renderModal() method to also use the new props:

renderModal() {
 return (
 <Modal
 animationType="slide"
 visible={this.props.modal !== undefined}
 onRequestClose={this.props.onModalClose}
 >
 <View style={styles.modalContent}>
 <TouchableOpacity
 onPress={this.props.onModalClose}
 style={styles.closeButton}
 >
 <SmallText>Close</SmallText>
 </TouchableOpacity>
 <WebView
 scalesPageToFit
 source={{ uri: this.props.modal }}
 />
 </View>
 </Modal>
);
}

To complete the NewsFeed refactor, we'll also need to add some new propTypes for the
newly added action creators and modal state:

NewsFeed.propTypes = {
 news: PropTypes.arrayOf(PropTypes.object),
 listStyles: View.propTypes.style,
 loadNews: PropTypes.func,
 showLoadingSpinner: PropTypes.bool,
 modal: PropTypes.string,
 onModalOpen: PropTypes.func.isRequired,
 onModalClose: PropTypes.func.isRequired
};

We're almost done, but there is one last update we need to make. The newsFeed tab is not
the only one to use a NewsFeed component (and thus a modal). The search tab also
contains a NewsFeed and thus also needs the ability to open and close a modal. Luckily, the
way we've designed the navigational reducer will support modals on any tab, so all we
need to do is make a few small modifications to the SearchContainer and the Search
components.

Navigation and Advanced APIs

[274]

First, we'll update the SearchContainer to have access to the modal action creators and
modal state, as we did for the NewsFeed container:

import { NavigationExperimental } from 'react-native';
import { connect } from 'react-redux';
import { bindActionCreators } from 'redux';
import { searchNews } from '../actions/newsActions';
import { openModal, closeModal } from '../actions/navigationActions';
import Search from '../components/Search';
import { searchNewsSelector } from '../selectors/newsSelectors';

const { StateUtils } = NavigationExperimental;

const mapStateToProps = (state) => {
 const homeState = StateUtils.get(state.navigation, 'home');
 const searchState = homeState && StateUtils.get(homeState, 'search');
 const modal = searchState && searchState.modal;
 return {
 filteredNews: searchNewsSelector(state),
 modal: modal || undefined
 };
};

const mapDispatchToProps = dispatch => (
 bindActionCreators({
 searchNews,
 onModalOpen: openModal,
 onModalClose: closeModal
 }, dispatch)
);

export default connect(mapStateToProps, mapDispatchToProps)(Search);

We'll then use these new props in the Search component:

import React, { Component, PropTypes } from 'react';
import {
 View,
 TextInput,
 StyleSheet
} from 'react-native';
import NewsFeed from './NewsFeed';
import * as globalStyles from '../styles/global';

export default class Search extends Component {

 constructor(props) {
 super(props);

Navigation and Advanced APIs

[275]

 this.state = {
 searchText: ''
 };
 this.searchNews = this.searchNews.bind(this);
 }

 searchNews(text) {
 this.setState({ searchText: text });
 this.props.searchNews(text);
 }

 render() {
 return (
 <View style={globalStyles.COMMON_STYLES.pageContainer}>
 <View style={styles.search}>
 <TextInput
 style={styles.input}
 onChangeText={this.searchNews}
 value={this.state.searchText}
 placeholder={'Search'}
 placeholderTextColor={globalStyles.MUTED_COLOR}
 />
 </View>
 <NewsFeed
 news={this.props.filteredNews}
 listStyles={{}}
 showLoadingSpinner={false}
 modal={this.props.modal}
 onModalClose={this.props.onModalClose}
 onModalOpen={this.props.onModalOpen}
 />
 </View>
);
 }
}

Search.propTypes = {
 filteredNews: PropTypes.arrayOf(PropTypes.object),
 searchNews: PropTypes.func.isRequired,
 modal: PropTypes.string,
 onModalOpen: PropTypes.func.isRequired,
 onModalClose: PropTypes.func.isRequired
};

const styles = StyleSheet.create({
 input: {
 height: 35,
 color: globalStyles.TEXT_COLOR,

Navigation and Advanced APIs

[276]

 paddingHorizontal: 5,
 flex: 1
 },
 search: {
 borderColor: globalStyles.MUTED_COLOR,
 flexDirection: 'row',
 alignItems: 'center',
 borderRadius: 5,
 borderWidth: 1,
 marginTop: 10,
 marginBottom: 5
 }
});

With this, we have now completely refactored the navigation of our application. We can
now go to one place, the Redux store, to identify the state of navigation. Furthermore, that
navigational state can be accessed by any container component in our application.

Other advanced APIs
In the final section of this chapter, we'll delve into a few other React Native advanced APIs
and see how they can help us to make our application more sophisticated and user-friendly.
We cannot hope to cover every available advanced API, but this feature-based approach
should help to illuminate what is possible with React Native.

Offline messages with NetInfo
Our news reader application relies, in large part, on a connection to the Internet. It needs
this connection to interact with the New York Times HTTP API and get the latest news
articles. If the device our application is running on does not have a connection to the
Internet, it would be helpful for us to know this so that we can inform our users.

React Native has an API called NetInfo that allows us to do just that. NetInfo can tell us
what the connectivity status is currently and also allows us to be informed whenever that
connectivity status changes. We will use this API in the NewsFeed component to display a
No Connection message when an Internet connection is unavailable.

Navigation and Advanced APIs

[277]

The first step is to import the NetInfo module into the NewsFeed.js file. We'll also import
the AppText component so we can use it to display the message:

import React, { PropTypes, Component } from 'react';
import {
 ListView,
 StyleSheet,
 View,
 Modal,
 TouchableOpacity,
 WebView,
 RefreshControl,
 ActivityIndicator,
 NetInfo
} from 'react-native';
import NewsItem from './NewsItem';
import SmallText from './SmallText';
import AppText from './AppText';
import * as globalStyles from '../styles/global';

Next, we'll initialize the component's initial state to assume that there is an Internet
connection, as shown in the following code snippet:

constructor(props) {
 super(props);
 this.ds = new ListView.DataSource({
 rowHasChanged: (row1, row2) => row1.title !== row2.title
 });
 this.state = {
 dataSource: this.ds.cloneWithRows(props.news),
 initialLoading: true,
 modalVisible: false,
 refreshing: false,
 connected: true
 };

 this.renderRow = this.renderRow.bind(this);
 this.onModalClose = this.onModalClose.bind(this);
 this.onModalOpen = this.onModalOpen.bind(this);
 this.refresh = this.refresh.bind(this);
}

We'll also create a method to handle changes in connectivity, binding it to this in the
constructor:

constructor(props) {
 super(props);
 this.ds = new ListView.DataSource({

Navigation and Advanced APIs

[278]

 rowHasChanged: (row1, row2) => row1.title !== row2.title
 });
 this.state = {
 dataSource: this.ds.cloneWithRows(props.news),
 initialLoading: true,
 modalVisible: false,
 refreshing: false,
 connected: true
 };

 this.renderRow = this.renderRow.bind(this);
 this.onModalClose = this.onModalClose.bind(this);
 this.onModalOpen = this.onModalOpen.bind(this);
 this.refresh = this.refresh.bind(this);
 this.handleConnectivityChange = this.handleConnectivityChange.bind(this);
}
...
handleConnectivityChange(isConnected) {
 this.setState({
 connected: isConnected
 });
 if (isConnected) {
 this.refresh();
 }
}

In this method, we are updating the value in state and refreshing the articles if the
connection has been restored. Next, we'll need to register this handler with NetInfo when
the component is mounted:

componentWillMount() {
 NetInfo.isConnected.addEventListener('change',
this.handleConnectivityChange);
 this.refresh();
}

And we'll need to remove the listener when the component is unmounted:

componentWillUnmount() {
 NetInfo.isConnected.removeEventListener('change',
this.handleConnectivityChange);
}

Finally, we'll update the render method to show the user a message informing them that
there is not currently a network connection, as shown in the following code snippet:

render() {
 const {

Navigation and Advanced APIs

[279]

 listStyles = globalStyles.COMMON_STYLES.pageContainer,
 showLoadingSpinner
 } = this.props;
 const { initialLoading, refreshing, dataSource } = this.state;

 if (!this.state.connected) {
 return (
 <View style={[globalStyles.COMMON_STYLES.pageContainer,
styles.loadingContainer]}>
 <AppText>
 No Connection
 </AppText>
 </View>
);
 }

 return (
 (initialLoading && showLoadingSpinner
 ? (
 <View style={[listStyles, styles.loadingContainer]}>
 <ActivityIndicator
 animating
 size="small"
 {...this.props}
 />
 </View>
) : (
 <View style={styles.container}>
 <ListView
 refreshControl={
 <RefreshControl
 refreshing={refreshing}
 onRefresh={this.refresh}
 />
 }
 enableEmptySections
 dataSource={dataSource}
 renderRow={this.renderRow}
 style={listStyles}
 />
 {this.renderModal()}
 </View>
)
)
);
}

Navigation and Advanced APIs

[280]

Now, to test this new feature, we can shut off our computer's network connection and we
should see the new message display, as shown in the following screenshot:

Opening the browser with linking
Currently, when the user wants to read a news article, we display it within our application
using a WebView component. This approach works in many situations, but we may want to
give the user an option to open it in their device's browser application.

Navigation and Advanced APIs

[281]

The React Native Linking API allows us to open HTTP web URLs as well as any other
URL that an installed application can handle. For instance, mailto links can be opened in
the native mail client using the Linking API, as can custom URLs that have been registered
to specific applications.

In this section, we will use the Linking API to provide an Open in Browser link that will
allow the user to read the same article in a full browser experience. We will start this
process by first importing the Linking API module in the NewsFeed.js file:

import React, { PropTypes, Component } from 'react';
import {
 ListView,
 StyleSheet,
 View,
 Modal,
 TouchableOpacity,
 WebView,
 RefreshControl,
 ActivityIndicator,
 NetInfo,
 Linking
} from 'react-native';
import NewsItem from './NewsItem';
import SmallText from './SmallText';
import AppText from './AppText';
import * as globalStyles from '../styles/global';

The Linking API has a static method, openURL, which can be used to open any URL that
can be handled by an installed application. In our case, this is the browser. We'll next add a
new button to our modal that uses this static method:

renderModal() {
 return (
 <Modal
 animationType="slide"
 visible={this.props.modal !== undefined}
 onRequestClose={this.props.onModalClose}
 >
 <View style={styles.modalContent}>
 <View style={styles.modalButtons}>
 <TouchableOpacity
 onPress={this.props.onModalClose}
 >
 <SmallText>Close</SmallText>
 </TouchableOpacity>
 <TouchableOpacity
 onPress={() => Linking.openURL(this.props.modal)}

Navigation and Advanced APIs

[282]

 >
 <SmallText>Open in Browser</SmallText>
 </TouchableOpacity>
 </View>
 <WebView
 scalesPageToFit
 source={{ uri: this.props.modal }}
 />
 </View>
 </Modal>
);
}

In order to make this display properly, we'll also need to adjust the styles, wrapping the
two buttons in a flex row, as shown in the following code:

const styles = StyleSheet.create({
 newsItem: {
 marginBottom: 20
 },
 container: {
 flex: 1
 },
 loadingContainer: {
 alignItems: 'center',
 justifyContent: 'center'
 },
 modalContent: {
 flex: 1,
 justifyContent: 'center',
 paddingTop: 20,
 backgroundColor: globalStyles.BG_COLOR
 },
 modalButtons: {
 paddingVertical: 5,
 paddingHorizontal: 10,
 flexDirection: 'row',
 justifyContent: 'space-between'
 }
});

Navigation and Advanced APIs

[283]

Now the modal should display a new Open in Browser button on the right-hand side that
opens a native browser when clicked, as shown in the following screenshot:

Saving bookmarks locally with AsyncStorage
For some time now, we have had a tab set aside for bookmarked articles. It is now time
to implement that feature. To do this, we will be using a React Native API called
AsyncStorage. This API can be thought of as analogous to LocalStorage in the web
world. It is a small key-value store that allows us to persist pieces of information about our
user on their device that will remain even when the app is closed and reopened.

Navigation and Advanced APIs

[284]

In this section, we'll store a list of URLs for articles that the user has bookmarked in
AsyncStorage and load them when the application is opened. We'll start this process by
creating an action creator function, addBookmark, in a new
src/actions/bookmarkActions.js file:

import { BOOKMARK } from './actionTypes';

export const addBookmark = (url) => {
 return {
 type: BOOKMARK,
 payload: url
 };
};

In Redux, reducers cannot have any side-effects such as saving things in a database or, in
this case, AsyncStorage. Whenever we need to perform such actions, the place to do it is in
the action creator. With that in mind, in this same file we'll import the AsyncStorage
module:

import { AsyncStorage } from 'react-native';

AsyncStorage keys and values must both be strings, so we will set the bookmarks key to a
JSONstringified array containing the bookmarked URL:

export function bookmark(url) {
 AsyncStorage.setItem('bookmarks', JSON.stringify([url]));
 return {
 type: BOOKMARK,
 payload: url
 }
}

What if this is not the first bookmarked URL? In that case we will want to append the new
URL to the array rather than creating a new one. For this reason, we must first read the
value of the bookmarks key and then either append the new URL to the list or create a new
list. Refer to the following code snippet:

export const addBookmark = (url) => {
 AsyncStorage.getItem('bookmarks').then((bookmarks) => {
 if (bookmarks) {
 const bookmarkArray = JSON.parse(bookmarks);
 return AsyncStorage.setItem('bookmarks',
JSON.stringify([...bookmarkArray, url]));
 }
 return AsyncStorage.setItem('bookmarks', JSON.stringify([url]));
 });

Navigation and Advanced APIs

[285]

 return {
 type: BOOKMARK,
 payload: url
 };
};

Reading and writing to AsyncStorage is, as one might expect, an asynchronous operation.
The getItem and setItem methods both return promises, which allows us to use the
.then syntax. We also need to create an additional action creator that loads bookmarks
from storage, as shown in the following code snippet:

import { AsyncStorage } from 'react-native';
import { BOOKMARK, LOADED_BOOKMARKS } from './actionTypes';

export const loadBookmarks = () => ({
 type: LOADED_BOOKMARKS,
 payload: AsyncStorage.getItem('bookmarks').then((bookmarks) => {
 if (bookmarks) {
 return JSON.parse(bookmarks);
 }
 return [];
 })
});

Here, we are getting the bookmarks item, parsing the serialized JSON if it exists, and
returning an empty array if it does not. Note that the promise middleware will be
responsible for resolving this payload. We'll of course need to also add these new action
types to the actionTypes.js file:

export const BOOKMARK = 'BOOKMARK';
export const LOADED_BOOKMARKS = 'LOADED_BOOKMARKS';

Next, we'll create a src/reducers/bookmarkReducer.js file that manages the
bookmarks section of the Redux store. In this file, we'll initialize the state as an empty array
and update it when it is loaded, or a new URL is added:

import { BOOKMARK, LOADED_BOOKMARKS } from '../actions/actionTypes';

export default (state = [], action = {}) => {
 switch (action.type) {
 case LOADED_BOOKMARKS:
 return action.payload;
 case BOOKMARK:
 return [...state, action.payload];
 default:
 return state;
 }

Navigation and Advanced APIs

[286]

};

We then need to register this reducer in the createStore.js file:

import { createStore, applyMiddleware, combineReducers } from 'redux';
import createLogger from 'redux-logger';
import newsFeedReducer from './reducers/newsFeedReducer';
import navigationReducer from './reducers/navigationReducer';
import searchTermReducer from './reducers/searchTermReducer';
import bookmarkReducer from './reducers/bookmarkReducer';
import promiseMiddleware from 'redux-promise';

const logger = createLogger();

export default (initialState = {}) => {
 return createStore(combineReducers({
 news: newsFeedReducer,
 searchTerm: searchTermReducer,
 navigation: navigationReducer,
 bookmarks: bookmarkReducer
 }),
 initialState,
 applyMiddleware(logger, promiseMiddleware)
);
};

Lastly, we're going to create a new selector that returns only news items that are in the
user's bookmarks. First, in the newsSelector.js file, we'll add a new
bookmarksSelector:

const bookmarksSelector = state => state.bookmarks;

Next, we'll create a combined selector that uses both the bookmarksSelector and the
allNewsSelector to return a filtered list of only bookmarked news items. We'll call this
new selector bookmarkedNewsSelector:

export const bookmarkedNewsSelector = createSelector(
 [allNewsSelector, bookmarksSelector],
 (newsItems, bookmarks) => newsItems.filter(newsItem =>
bookmarks.indexOf(newsItem.url) > -1)
);

Navigation and Advanced APIs

[287]

Now that we have the bookmark state management portion complete, we'll need to attach
this to our React components. First, we'll attach the bookmark action. Remember, we
created a long press handler in the NewsItem component that presents the user with a
Bookmark option. We'll need to get this action into that component. To do so, we'll first
connect it to NewsFeedContainer as well as SearchContainer:

import { addBookmark } from '../actions/bookmarkActions';

const mapDispatchToProps = dispatch => (
 bindActionCreators({
 load: loadNews,
 onModalOpen: openModal,
 onModalClose: closeModal,
 addBookmark
 }, dispatch)
);

We'll then have the NewsFeed component, in NewsFeed.js, pass the prop in turn down to
each NewsItem component it renders:

renderRow(rowData, ...rest) {
 const index = parseInt(rest[1], 10);
 return (
 <NewsItem
 onPress={() => this.props.onModalOpen(rowData.url)}
 onBookmark={() => this.props.addBookmark(rowData.url)}
 style={styles.newsItem}
 index={index}
 {...rowData}
 />
);
}

Also, we'll add the addBookmark function to propTypes and NewsFeed:

NewsFeed.propTypes = {
 news: PropTypes.arrayOf(PropTypes.object),
 listStyles: View.propTypes.style,
 load: PropTypes.func,
 showLoadingSpinner: PropTypes.bool,
 modal: PropTypes.string,
 onModalOpen: PropTypes.func.isRequired,
 onModalClose: PropTypes.func.isRequired,
 addBookmark: PropTypes.func.isRequired
};

Navigation and Advanced APIs

[288]

Next, we'll call this prop in the NewsItem component, in NewsItem.js, if the Bookmark
button is pressed:

onLongPress() {
 ActionSheetIOS.showActionSheetWithOptions({
 options: ['Bookmark', 'Cancel'],
 cancelButtonIndex: 1,
 title: this.props.title
 }, (buttonIndex) => {
 if (buttonIndex === 0) {
 this.props.onBookmark();
 }
 });
}

...

NewsItem.propTypes = {
 imageUrl: PropTypes.string,
 title: PropTypes.string.isRequired,
 description: PropTypes.string,
 date: PropTypes.string.isRequired,
 author: PropTypes.string.isRequired,
 location: PropTypes.string,
 index: PropTypes.number.isRequired,
 onPress: PropTypes.func.isRequired,
 style: View.propTypes.style,
 onBookmark: PropTypes.func.isRequired
};

The next step for our bookmark feature is to actually display the bookmarked articles in the
bookmarks tab. To do this, we'll create a new container component that is essentially the
same as NewsFeedContainer. The only difference with this container component is that it
will use our newly created bookmarkedNewsSelector instead of the allNewsSelector.
We'll also refactor the loadNews prop to be called, more generically, load in this container
as well as NewsFeedContainer. This allows us to load the bookmarks when the
BookmarkContainer component comes on screen. Here is the new container in
src/containers/BookmarksContainer.js:

import { NavigationExperimental } from 'react-native';
import { connect } from 'react-redux';
import { bindActionCreators } from 'redux';
import { openModal, closeModal } from '../actions/navigationActions';
import { loadBookmarks, addBookmark } from '../actions/bookmarkActions';
import NewsFeed from '../components/NewsFeed';
import { bookmarkedNewsSelector } from '../selectors/newsSelectors';

Navigation and Advanced APIs

[289]

const { StateUtils } = NavigationExperimental;

const mapStateToProps = (state) => {
 const homeState = StateUtils.get(state.navigation, 'home');
 const bookmarksState = homeState && StateUtils.get(homeState,
'bookmarks');
 const modal = bookmarksState && bookmarksState.modal;
 return {
 news: bookmarkedNewsSelector(state),
 modal: modal || undefined
 };
};

const mapDispatchToProps = dispatch => (
 bindActionCreators({
 load: loadBookmarks,
 onModalOpen: openModal,
 onModalClose: closeModal,
 addBookmark
 }, dispatch)
);

export default connect(mapStateToProps, mapDispatchToProps)(NewsFeed);

And the updated NewsFeedContainer:

import { NavigationExperimental } from 'react-native';
import { connect } from 'react-redux';
import { bindActionCreators } from 'redux';
import { loadNews } from '../actions/newsActions';
import { openModal, closeModal } from '../actions/navigationActions';
import { addBookmark } from '../actions/bookmarkActions';
import NewsFeed from '../components/NewsFeed';
import { allNewsSelector } from '../selectors/newsSelectors';

const { StateUtils } = NavigationExperimental;

const mapStateToProps = (state) => {
 const homeState = StateUtils.get(state.navigation, 'home');
 const newsFeedState = homeState && StateUtils.get(homeState, 'newsFeed');
 const modal = newsFeedState && newsFeedState.modal;
 return {
 news: allNewsSelector(state),
 modal: modal || undefined
 };
};

const mapDispatchToProps = dispatch => (

Navigation and Advanced APIs

[290]

 bindActionCreators({
 load: loadNews,
 onModalOpen: openModal,
 onModalClose: closeModal,
 addBookmark
 }, dispatch)
);

export default connect(mapStateToProps, mapDispatchToProps)(NewsFeed);

We'll also need to alter the NewsFeed component for this updated name:

refresh() {
 if (this.props.load) {
 this.props.load();
 }
}

...

NewsFeed.propTypes = {
 news: PropTypes.arrayOf(PropTypes.object),
 listStyles: View.propTypes.style,
 load: PropTypes.func,
 showLoadingSpinner: PropTypes.bool,
 modal: PropTypes.string,
 onModalOpen: PropTypes.func.isRequired,
 onModalClose: PropTypes.func.isRequired,
 addBookmark: PropTypes.func.isRequired
};

The last step is to ensure that the HomeScreen component actually navigates to our new
container instead of showing the alert message it has up until this point. We can do that
simply by importing the new container in the HomeScreen.ios.js file and then
refactoring the Bookmarks tab:

import React, { PropTypes } from 'react';
import {
 TabBarIOS,
 StatusBar
} from 'react-native';
import NewsFeedContainer from '../containers/NewsFeedContainer';
import SearchContainer from '../containers/SearchContainer';
import BookmarksContainer from '../containers/BookmarksContainer';
import * as globalStyles from '../styles/global';

...

Navigation and Advanced APIs

[291]

<TabBarIOS.Item
 systemIcon={'bookmarks'}
 selected={this.props.selectedTab === 'bookmarks'}
 onPress={() => this.props.tab('bookmarks')}
>
 <BookmarksContainer />
</TabBarIOS.Item>

We now have a fully functioning bookmark tab.

It should be noted that AsyncStorage is best used for simple keys and
values. If you are storing complex data (even our bookmarks are pushing
it), it is recommended that you use some sort of library that builds on top
of AsyncStorage rather than interacting with it directly.

Summary
While navigation is a core concept for almost every mobile application, the waters are still a
bit murky in the world of React Native. For simple applications, the Navigator API
provides an easy, ready-to-use component for managing scenes. For applications that are
more sophisticated, the new NavigationExperimental API is worth learning and
applying. The statelessness of NavigationExperimental and its declarative API make it a
much more natural fit for a React application.

In addition to navigational APIs, the React Native library comes with many other native
APIs that can be used to make complex and interesting applications. In this chapter, we
looked at using the NetInfo API to check for Internet connectivity, the Linking API to
open articles in the native browser, and the AsyncStorage API to persist data locally on
the device. While these APIs showcase some of the exciting things that can be done with
React Native, the list here is not exhaustive. As React Native becomes more mature, even
more native APIs are likely to become available.

In the next chapter, we'll enhance our application even more by immersing ourselves
in React Native animation APIs and its gesture recognition system.

8
Animation and Gestures in

React Native
Because React Native utilizes truly native mobile technology, it allows us to create
applications that not only look native but also feel native. Native applications are capable of
fast, 60-fps animations, and can respond to complex touch gestures such as swipe and
pinch. To that end, React Native offers two complementary animation APIs–Animated and
LayoutAnimation. PanResponder is another React Native API for handling advanced
single-touch gestures or simple multi-touch gestures that can be easily paired with the
Animated API.

In this chapter, we'll learn more about these APIs by building an onboarding experience for
RNNYT. We'll break this process down into the following:

Building a basic onboarding view without any animations
Upgrading the onboarding experience using the LayoutAnimation API
Further upgrading onboarding with more complex animations using the
Animated API
Allowing users to swipe through the onboarding views using the PanResponder
API

Animation and Gestures in React Native

[293]

Introducing LayoutAnimation and Animated
Before we delve too deeply into either animation API, let's first set out why you would use
one API as opposed to the other. LayoutAnimation has a far simpler API than Animated.
As a result, it's less configurable. LayoutAnimation will animate a component upon a
render cycle, such as when you call setState. Animated allows you, at a much more
granular level, to configure how an animation or sequences of animations is executed.
Additionally, the Animated API can tie animations to user gestures, allowing users, for
example, to drag an element across the screen.

Building the basic Onboarding experience
Before we dazzle our users with lots of animations, let's focus on leveraging what we've
learned so far to build a basic onboarding experience. The view will have four onboarding
panels, followed by a completion state. Each of the four panels will have its own message, a
placeholder image (in lieu of final product photos), and a unique background color. At a
high level, we'll create a root Onboarding component that manages transitioning between
the different states. Additionally, we'll build a few supporting Onboarding components,
and two buttons for navigating us forward and backward through the onboarding
experience. Lastly, we'll create an onboarding configuration to house all the information
about each onboarding state.

Getting started
First, let's build our barebones view. Inside your RNNYT app, add the following files inside
the src/components directory:

Onboarding.js

OnboardingButtons.js

OnboardingPanel.js

Button.js

LinkButton.js

Animation and Gestures in React Native

[294]

Let's begin with a visual to understand how this experience will operate. This represents the
initial onboarding state:

At the top, you see our onboarding message. After that is a placeholder image. The
background color is configured for each state. We'll use a Button component as the Next
button and a LinkButton for the Previous button. Based on whether you're at the
beginning or end of the onboarding panels, we'll enable or disable the appropriate button.

Animation and Gestures in React Native

[295]

Let's wire up our main app to include the root Onboarding component.

React Native actually ships with a ViewPagerAndroid component that is
similar to what we'll be building in this chapter. It is, however, Android
only. But, more importantly, it also doesn't teach you how to write custom
animations in React Native.

The first thing we'll need to do is add Onboarding to our navigation flow. Inside
navigationReducer.js, start by importing the Onboarding component:

import Onboarding from '../components/Onboarding';

Then, update routes to match the following:

const routes = {
 home: {
 key: 'home',
 component: HomeScreenContainer,
 index: 0,
 routes: [
 { key: 'newsFeed', modal: undefined },
 { key: 'search' },
 { key: 'bookmarks' }
]
 },
 intro: {
 key: 'intro',
 component: IntroScreen
 },
 onboarding: {
 key: 'onboarding',
 component: Onboarding
 }
};

While it was fun to experiment with NavigationExperimental in the previous chapter,
our app doesn't really need a Header since all your time will be spent on the home route.
Because of this, I've removed all the title properties from our route objects. The next thing
we should do is remove the Header from Nav.

Inside Nav.js, update the render method to match the following:

render() {
 return (
 <CardStack
 onNavigateBack={this.props.pop}
 navigationState={this.props.navigation}

Animation and Gestures in React Native

[296]

 renderScene={this.renderScene}
 style={styles.cardStack}
 />
);
}

With the renderHeader property removed, we can also remove all references to Header,
renderNavigationBar, the navigationBar style, and globalStyles from this
component.

With the navigation header gone, we'll need to make a minor adjustment to our
pageContainer style in style/global.js:

pageContainer: {
 backgroundColor: BG_COLOR,
 flex: 1,
 marginTop: 0,
 paddingTop: 20,
 marginBottom: 48,
 marginHorizontal: 0,
 paddingHorizontal: 10
},

Finally, inside IntoScreen.js, update the push call of TouchableOpacity so it routes
you to onboarding instead:

const IntroScreen = ({ push }) => (
 <View style={[globalStyles.COMMON_STYLES.pageContainer,
styles.container]}>
 <TouchableOpacity
 onPress={() => push('onboarding')}
 >
 <Title>React Native News Reader</Title>
 <AppText>
 Start Reading
 </AppText>
 </TouchableOpacity>
 </View>
);

Now that RNNYT can route its way to our Onboarding component, let's begin fleshing it
out. Open up Onboarding.js and drop in these imports at the top:

import React, { Component } from 'react';
import {
 StyleSheet,
 View

Animation and Gestures in React Native

[297]

} from 'react-native';
import OnboardingButtons from './OnboardingButtons';
import OnboardingPanel from './OnboardingPanel';

We haven't built OnboardingButtons or OnboardingPanel yet, but we can start by
stubbing out the structure of Onboarding as shown in the following code snippet:

export default class Onboarding extends Component {
 render() {
 return (
 <View style={styles.container}>
 <View style={styles.container}>
 <View style={styles.panelContainer}>
 {/* active <OnboardingPanel /> goes here */}
 </View>
 <OnboardingButtons />
 </View>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1
 },
 panelContainer: {
 flex: 1,
 flexDirection: 'row'
 }
});

You may have noticed I've included two identical View elements with the
same styles. Currently, these are completely redundant. However, I've
opted to include both to save us time on refactoring later in the chapter.

The Onboarding component's primary role is to control which onboarding panel is active.
To do this, we'll add state to our component, and create a few methods that will be used
to increment and decrement the currentIndex. Add these methods to Onboarding:

constructor(props) {
 super(props);
 this.moveNext = this.moveNext.bind(this);
 this.movePrevious = this.movePrevious.bind(this);
 this.transitionToNextPanel = this.transitionToNextPanel.bind(this);
 this.state = {

Animation and Gestures in React Native

[298]

 currentIndex: 0
 };
}

movePrevious() {
 this.transitionToNextPanel(this.state.currentIndex - 1);
}

moveNext() {
 this.transitionToNextPanel(this.state.currentIndex + 1);
}

transitionToNextPanel(nextIndex) {
 this.setState({
 currentIndex: nextIndex
 });
}

Since currentIndex is controlling a portion of our app's navigation, I
would normally advocate that it resides within the Redux state. However,
to keep the example simple, I've opted to use the component state in this
chapter.

Let's next create our Button component. Open up Button.js and add the following code:

import React, { PropTypes } from 'react';
import {
 TouchableOpacity,
 View,
 Text,
 StyleSheet
} from 'react-native';

const BORDER_COLOR = '#fff';
const BG_COLOR = 'transparent';
const TEXT_COLOR = '#fff';
const DISABLED_COLOR = `${TEXT_COLOR}5`;

const Button = ({ style, active, onPress, children, ...rest }) => (
 <TouchableOpacity
 activeOpacity={active ? 0.7 : 1}
 onPress={active ? onPress : null}
 {...rest}
 style={[styles.button, style, !active ? styles.disabledButton : {}]}
 >
 <Text style={[styles.text, !active ? styles.disabledText : {}]}>
 {children}
 </Text>

Animation and Gestures in React Native

[299]

 </TouchableOpacity>
);

Button.propTypes = {
 active: PropTypes.bool,
 style: View.propTypes.style,
 onPress: PropTypes.func,
 children: PropTypes.node
};

Button.defaultProps = {
 active: true
};

Before we add our styles, let's break down what's going on in this component. Again, we're
leveraging JavaScript destructuring to extract the properties we're interested in. Everything
else is put into an object called rest. The button can be disabled by setting the active prop
to false. When false, we set the onPress handler to null, and add additional styles to
the TouchableOpacity and Text elements to make the component look disabled. Next,
add these styles and export the Button:

const styles = StyleSheet.create({
 button: {
 borderStyle: 'solid',
 borderColor: BORDER_COLOR,
 borderWidth: StyleSheet.hairlineWidth,
 backgroundColor: BG_COLOR,
 borderRadius: 5,
 paddingVertical: 8,
 paddingHorizontal: 15
 },
 disabledButton: {
 borderColor: DISABLED_COLOR
 },
 text: {
 color: TEXT_COLOR,
 fontWeight: 'bold'
 },
 disabledText: {
 color: DISABLED_COLOR
 }
});

export default Button;

Animation and Gestures in React Native

[300]

Next, we'll create a LinkButton that simply wraps around our existing Button
component, but also adds some additional styles:

import React, { PropTypes } from 'react';
import {
 View,
 StyleSheet
} from 'react-native';

import Button from './Button';

const LinkButton = ({ style, children, ...rest }) => (
 <Button
 {...rest}
 style={[styles.button, style]}
 >
 {children}
 </Button>
);

LinkButton.propTypes = {
 style: View.propTypes.style,
 children: PropTypes.node
};

const styles = StyleSheet.create({
 button: {
 borderWidth: 0
 }
});

export default LinkButton;

There's a new color style we'll need for a few components. Let's add it to
style/global.js so that it's accessible to every component:

export const LIGHT_OVERLAY_COLOR = '#fff2';

With the color set and our buttons built, let's next build the component, which will house
the Previous and Next buttons. Add the following to OnboardingButtons.js:

import React, { PropTypes } from 'react';
import {
 View,
 StyleSheet
} from 'react-native';
import Button from './Button';
import LinkButton from './LinkButton';

Animation and Gestures in React Native

[301]

import { LIGHT_OVERLAY_COLOR } from '../styles/global';

const OnboardingButtons = ({
 totalItems,
 currentIndex,
 movePrevious,
 moveNext
}) => (
 <View style={styles.container}>
 <LinkButton onPress={movePrevious} active={currentIndex > 0}>
 Previous
 </LinkButton>
 <Button
 onPress={moveNext}
 active={currentIndex < totalItems - 1}
 >
 Next
 </Button>
 </View>
);

OnboardingButtons.propTypes = {
 totalItems: PropTypes.number.isRequired,
 currentIndex: PropTypes.number.isRequired,
 movePrevious: PropTypes.func.isRequired,
 moveNext: PropTypes.func.isRequired
};

const styles = StyleSheet.create({
 container: {
 flex: 0.25,
 flexDirection: 'row',
 alignItems: 'center',
 paddingHorizontal: 20,
 justifyContent: 'space-between',
 paddingVertical: 20,
 position: 'absolute',
 backgroundColor: LIGHT_OVERLAY_COLOR,
 bottom: 0,
 left: 0,
 right: 0
 }
});

export default OnboardingButtons;

Animation and Gestures in React Native

[302]

We'll need our buttons in a row and docked to the bottom of the view. To achieve this,
we've used absolute positioning and flexbox set to 'row' and 'space-between',
respectively. In order for our buttons to affect the parent Onboarding view, Onboarding
needs to pass down a few props. For starters, it'll need to pass two functions-
movePrevious and moveNext. These functions will update the parent Onboarding view's
state.currentIndex. Also, in order for OnboardingButtons to know if we're currently
on the first or last onboarding panel, we need to tell OnboardingButtons how many
panels there are in total, totalItems, and which one is currently selected, currentIndex.
With these pieces of information, we can set the active property of the Previous and Next
buttons.

A few of our onboarding components will need to know the dimensions of our device. We
can centralize this into a single file. Create a file called device.js in the config directory:

import { Dimensions } from 'react-native';

export const {
 width: DEVICE_WIDTH,
 height: DEVICE_HEIGHT
} = Dimensions.get('window');

device.js simply exports two constants-DEVICE_WIDTH and DEVICE_HEIGHT.
DEVICE_WIDTH will be used to build the onboarding panel.

The onboarding panel will contain an image, text, and a custom background color. As you'd
guess, we'll build that next. Add the following to OnboardingPanel.js:

import React, { PropTypes } from 'react';
import {
 View,
 Image,
 StyleSheet
} from 'react-native';
import AppText from './AppText';
import { LIGHT_OVERLAY_COLOR } from '../styles/global';

import {
 DEVICE_HEIGHT,
 DEVICE_WIDTH
} from '../config/device';

const MINIMUM_IMAGE_HEIGHT = 460;
const IMAGE_SIZE = 300;

const OnboardingPanel = ({ backgroundColor, message, uri, style }) => (
 <View

Animation and Gestures in React Native

[303]

 style={[styles.panel, { backgroundColor }, style]}
 >
 <View style={styles.content}>
 <AppText>{message}</AppText>
 </View>
 <View style={styles.container}>
 <Image
 source={{ uri }}
 style={{ width: IMAGE_SIZE, height: IMAGE_SIZE }}
 />
 </View>
 </View>
);

OnboardingPanel.propTypes = {
 message: PropTypes.string.isRequired,
 backgroundColor: PropTypes.string.isRequired,
 uri: PropTypes.string.isRequired,
 style: View.propTypes.style
};

export default OnboardingPanel;

The styles for this component will require a bit of extra engineering. We need to constrain
the height of the content View based on the available vertical screen real estate. To do this,
we'll call a function that calculates this maximum height for us (styles in JavaScript FTW).
Refer to the following code:

const calcTextContainerMaxHeight = (deviceHeight, minImageHeight) => {
 if ((deviceHeight - minImageHeight) < (deviceHeight * 0.25)) {
 return deviceHeight - minImageHeight;
 }
 return undefined;
};

const styles = StyleSheet.create({
 container: {
 flex: 1
 },
 panel: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 overflow: 'hidden',
 width: DEVICE_WIDTH
 },
 content: {
 flex: 0.25,

Animation and Gestures in React Native

[304]

 justifyContent: 'flex-end',
 alignItems: 'center',
 alignSelf: 'stretch',
 padding: 20,
 marginBottom: 10,
 backgroundColor: LIGHT_OVERLAY_COLOR,
 maxHeight: calcTextContainerMaxHeight(DEVICE_HEIGHT,
MINIMUM_IMAGE_HEIGHT)
 }
});

Ideally, we'd like the content area to flex to 0.25. But, just to be safe, we'll call
calcTextContainerMaxHeight to verify whether we have enough space to do so. If
there's not enough space, we return a fixed maximum height.

Next, we're going to create a configuration file that houses the actual onboarding content.
Add a file named onboarding.js to the config directory. We'll populate the uri and
message with dummy content. Then we'll use ACCENT_COLORS from global styles to set a
different background color for each content configuration:

import {
 ACCENT_COLORS,
 MUTED_COLOR,
 TEXT_COLOR
} from '../styles/global';

const placeholderImage = 'https://placeholdit.imgix.net/' +
 '~text?txtsize=24' +
 `&bg=${MUTED_COLOR.replace('#', '')}` +
 `&txtclr=${TEXT_COLOR.replace('#', '')}` +
 '&w=350&h=350&txttrack=0&txt=Placeholder+Image+';

const content = [
 'Welcome to RNNYT!',
 'With this app, you can learn all about the news!',
 'And you get to experiment with React Native!',
 'And aren't animations fun?!'
];

export default content.map((message, i) => ({
 message,
 color: '#fff',
 backgroundColor: ACCENT_COLORS[i % ACCENT_COLORS.length],
 uri: `${placeholderImage}${i + 1}`
}));

Animation and Gestures in React Native

[305]

With our content ready and our components created, we're ready to piece everything
together inside Onboarding. To do this, we'll need to import our onboarding
configuration:

import onboardingContent from '../config/onboarding';

Because onboardingContent is just an array of objects, we can select the appropriate item
by using the value of state.currentIndex. The resulting object can be passed down as
props to the OnboardingPanel. Also, because we already created the methods necessary to
increment and decrement state.currentIndex, we can pass these along
with totalItems (onboardingContent.length) and currentIndex to
OnboardingButtons:

render() {
 return (
 <View style={styles.container}>
 <View style={styles.container}>
 <View style={styles.panelContainer}>
 <OnboardingPanel {...onboardingContent[this.state.currentIndex]}
/>
 </View>
 <OnboardingButtons
 totalItems={onboardingContent.length}
 currentIndex={this.state.currentIndex}
 movePrevious={this.movePrevious}
 moveNext={this.moveNext}
 />
 </View>
 </View>
);
}

If you refresh your app in the simulator, you'll now be able to navigate our basic
onboarding experience. Take a look at the following screenshot:

Animation and Gestures in React Native

[306]

Adding LayoutAnimation
With our basic onboarding experience built, let's explore React Native's LayoutAnimation
API to apply some simple transitions as you navigate from onboarding screen to
onboarding screen.

LayoutAnimation is a highly performant animation API for animating the entirety of a
component and its children whenever the animated component is created or its state is
updated. LayoutAnimation executes the animation upon the next render cycle, animating
the component from its current state to its next state. Two common ways of utilizing
LayoutAnimation are right before calling setState or inside the
componentWillReceiveProps method. Before triggering the next render cycle, you
simply need to call LayoutAnimation.configureNext, passing it the appropriate
animation configuration:

LayoutAnimation.configureNext(animationConfiguration,
callbackCompletionMethod);

Animation and Gestures in React Native

[307]

this.setState({ stateToChange: newStateValue });

Like many things, animation is one of those topics that is best understood through
experimentation rather than documentation. With that said, let's explore how we can
integrate LayoutAnimation into our onboarding experience.

To demonstrate how this works, we're going to call LayoutAnimation.configureNext
inside our transitionToNextPanel method. Since moveNext and movePrevious both
use this method, this is a perfect place to configure our animation. First, let's import
LayoutAnimation at the top of Onboarding.js:

import {
 StyleSheet,
 View,
 LayoutAnimation
} from 'react-native';

Additionally, update transitionToNextPanel to match the following:

transitionToNextPanel(nextIndex) {
 LayoutAnimation.configureNext(LayoutAnimation.Presets.easeInEaseOut);
 this.setState({
 currentIndex: nextIndex
 });
}

This effectively tells the component, on its next render cycle, to animate using the
preconfigured easeInEaseOut animation. However, this isn't quite enough for our
animations to work yet. Currently, we only render one OnboardingPanel and just update
its props with the currently selected onboardingContent. To get a nice, sliding transition,
we should instead render all the panels and simply set the width of the invisible panels to
0. Firstly, add a style to the Onboarding style sheet:

hidden: {
 width: 0
}

Then update the render method so it renders all four OnboardingPanel elements and
applies the hidden style to the inactive panels:

<View style={styles.panelContainer}>
 {onboardingContent.map((panel, i) => (
 <OnboardingPanel
 key={i}
 {...panel}
 style={i !== this.state.currentIndex ? styles.hidden : undefined}

Animation and Gestures in React Native

[308]

 />
))}
</View>

If you refresh your app and click either the Next or Previous button, you'll see each panel
nicely transition into view. If you'd like to experiment, try out these two other
preconfigured animations–linear and spring. All of the LayoutAnimation.Presets.* are
simply that, packaged animations presets. Alternatively, you can create a customized
configuration to control how elements should animate when they are created, deleted, or
updated. You can also fine tune other values specific to each type of animation such as
duration or, in the case of spring, springDamping. As an example, let's change
LayoutAnimation.configureNext to use a very slow spring animation:

LayoutAnimation.configureNext({
 duration: 3000,
 update: {
 springDamping: 0.2,
 type: LayoutAnimation.Types.spring,
 property: LayoutAnimation.Properties.scaleXY
 }
});

Here, we've updated our component to use the spring animation, which animates the
property LayoutAnimation.Properties.scaleXY. We've configured springDamping to
create an exaggerated bounce effect. Lastly, we've set the duration to last 3000 milliseconds.
When you test this animation, you'll find a rather exaggerated spring transition. Feel free to
experiment with different configuration options until you settle on something you like. For
me, I'll just stick with the original
LayoutAnimation.configureNext(LayoutAnimation.Presets.easeInEaseOut).

From my experience, using LayoutAnimation on Text elements can
produce unexpected results. Even in our example, the Text doesn't always
transition in lock step with the rest of the view. I have found that you can
achieve more predictable results by wrapping each Text element in a
View. This has been noted by others as well
https://github.com/facebook/react-native/issues/6502.

https://github.com/facebook/react-native/issues/6502

Animation and Gestures in React Native

[309]

Adding a bit more animation
Before we wrap up this section on LayoutAnimation, let's add in one more bit of
animation to close out our onboarding experience. Once the user has reached the final
panel, we want them to click on a Done button. This will slide up one final panel before
automatically transitioning them off the actual application. To do this, we'll need to add one
more piece of state to our app. Update your constructor to the following:

constructor(props) {
 super(props);
 this.moveNext = this.moveNext.bind(this);
 this.movePrevious = this.movePrevious.bind(this);
this.transitionToNextPanel = this.transitionToNextPanel.bind(this);
 this.moveFinal = this.moveFinal.bind(this);
 this.state = {
 currentIndex: 0,
 isDone: false
 };
}

The moveFinal method will use LayoutAnimation to spring open the final panel. After
two seconds, Onboarding will automatically redirect you to the home (news) route. Since
Onboarding is a descendent of NavigationContainer, it already has access to the push
action creator:

moveFinal() {
 LayoutAnimation.configureNext({
 duration: 1250,
 update: {
 springDamping: 0.4,
 type: LayoutAnimation.Types.spring
 }
 });
 this.setState({ isDone: true });
 setTimeout(() => {
 this.props.push('home');
 }, 2000);
}

Animation and Gestures in React Native

[310]

Let's be good React citizens and add prop validation to Onboarding:

import React, { Component, PropTypes } from 'react';

// omitted for clarity

Onboarding.propTypes = {
 push: PropTypes.func.isRequired
};

Sweet. Now we need to configure OnboardingButtons to dynamically hide and show the
Done button, and call moveFinal. First, update the element inside Onboarding. Refer to
the following code snippet:

<OnboardingButtons
 totalItems={onboardingContent.length}
 currentIndex={this.state.currentIndex}
 movePrevious={this.movePrevious}
 moveNext={this.moveNext}
 moveFinal={this.moveFinal}
/>

Now update OnboardingButtons to follow suit:

const OnboardingButtons = ({
 totalItems,
 currentIndex,
 movePrevious,
 moveNext,
 moveFinal
}) => (
 <View style={styles.container}>
 <LinkButton onPress={movePrevious} active={currentIndex > 0}>
 Previous
 </LinkButton>
 {currentIndex === totalItems - 1 ? (
 <Button onPress={moveFinal}>
 Done
 </Button>
) : (
 <Button
 onPress={moveNext}
 active={currentIndex < totalItems - 1}
 >
 Next
 </Button>
)}
 </View>

Animation and Gestures in React Native

[311]

);

OnboardingButtons.propTypes = {
 totalItems: PropTypes.number.isRequired,
 currentIndex: PropTypes.number.isRequired,
 movePrevious: PropTypes.func.isRequired,
 moveNext: PropTypes.func.isRequired,
 moveFinal: PropTypes.func.isRequired
};

When the user clicks Done, we'd like the onboarding panels to vertically collapse and a
view saying Let's read the news! to appear. To manage this collapsible behavior, we'll
create a CollapsibleView component.

Create a file in src/components called CollapsibleView.js:

import React, { PropTypes } from 'react';
import {
 StyleSheet,
 View
} from 'react-native';

const CollapsibleView = ({ children, style, hide }) => (
 <View style={[styles.container, hide ? styles.hidden : {}]}>
 <View style={[styles.absoluteContainer, style]}>
 {children}
 </View>
 </View>
);

CollapsibleView.propTypes = {
 style: View.propTypes.style,
 hide: PropTypes.bool.isRequired,
 children: PropTypes.node
};

const styles = StyleSheet.create({
 container: {
 flex: 1
 },
 absoluteContainer: {
 position: 'absolute',
 left: 0,
 right: 0,
 top: 0,
 bottom: 0
 },
 hidden: {

Animation and Gestures in React Native

[312]

 height: 0,
 flex: 0
 }
});

export default CollapsibleView;

This component nests two View elements and can toggle their height when passed the hide
prop as a Boolean. Optionally, you can pass additional style properties that are applied to
the inner View element.

Now back in Onboarding.js, add these imports:

import AppText from './AppText';
import CollapsibleView from './CollapsibleView';
import { ACCENT_COLORS } from '../styles/global';

We're going to add two CollapsibleView elements. The first one will wrap around the
onboarding panels. The second will simply contain our final message to our users before
transitioning them off to the news. Each will set the hide property based on the isDone
state. Once again, update the render method with the following:

render() {
 return (
 <View style={styles.container}>
 <CollapsibleView
 style={[
 styles.container
]}
 hide={this.state.isDone}
 >
 <View style={styles.panelContainer}>
 {onboardingContent.map((panel, i) => (
 <OnboardingPanel
 key={i}
 {...panel}
 style={i !== this.state.currentIndex ? styles.hidden :
undefined}
 />
))}
 </View>
 <OnboardingButtons
 totalItems={onboardingContent.length}
 currentIndex={this.state.currentIndex}
 movePrevious={this.movePrevious}
 moveNext={this.moveNext}
 moveFinal={this.moveFinal}

Animation and Gestures in React Native

[313]

 />
 </CollapsibleView>
 <CollapsibleView hide={!this.state.isDone}
style={styles.doneContainer}>
 <AppText style={styles.doneText}>Let's read the news!</AppText>
 </CollapsibleView>
 </View>
);
}

And, finally, add these styles to the StyleSheet in Onboarding.js:

 doneContainer: {
 overflow: 'hidden',
 backgroundColor: ACCENT_COLORS[0],
 justifyContent: 'center',
 alignItems: 'center'
 },
 doneText: {
 fontSize: 20
 }

Give the app one more run through. You'll now be able to click Next through each of the
onboarding panels. Once you click Done, the message Let's read the news! will appear
before transitioning you off to the news.

Understanding Animated
LayoutAnimation is great for transitioning views between states using simple animation
logic. However, LayoutAnimation is limited in that it doesn't allow you to sequence more
complex animations or potentially tie an animation to a user gesture. This is where the
Animated API fills the gap. Internally, the Animated API leverages
requestAnimationFrame to synchronize animations to 60 frames per second. It then
updates the state via setNativeProps as a means of avoiding React's diffing algorithm,
thus keeping the animations performant and smooth.

In order to use the Animated API, you need two things. First, you'll need an Animated.*
component–Animated.Image, Animated.View, or Animated.Text. These special
Animated.* components possess special bindings that tie them to the second thing you'll
need an: Animated.Value or an Animated.ValueXY. These values are used to track
animation changes across either a single-dimension Animated.Value or a two-dimension
Animated.ValueXY. Unlike LayoutAnimation, you can create multiple Animated.Value
objects to control many elements independently rather than being forced to animate

Animation and Gestures in React Native

[314]

everything together. Like earlier, this will become much clearer by walking you through an
example so you can see it for yourself. So let's do exactly that.

Refactoring our Onboarding experience
With the groundwork for animation in place, we'll refactor our existing Onboarding
component to leverage the Animated API. Before diving right into the code, let's diagram
what it is we'll be building in this refactoring effort.

Previously, each onboarding panel was in one of two states–expanded or collapsed. The
way we managed that was by comparing the item's index to state.currentIndex. If the
onboarding panel's index did not match state.currentIndex, we applied width: 0 to it
via the hidden style. Otherwise, the panel was expanded, filling up the entire screen. In our
new implementation, our panels work on a continuous horizontal scroll. Only one panel
(the one that matches state.currentIndex) will be within the phone's visible viewport.
Other panels will either be scrolled off to the left or to the right. Take a look at the following
diagram:

Animation and Gestures in React Native

[315]

In the previous diagram, the app's state.currentIndex is set to 1, meaning we're looking
at the second onboarding panel. On our first pass at applying the Animated API, we'll
simply leverage the Previous and Next buttons to scroll each panel in and out of view. Once
the panel has slid into view, we'll update state.currentIndex to match the state of our
view. Later, we'll allow the user to drag the panels left or right in lieu of pressing a button.
In order to set up this new implementation, let's do a bit of refactoring within our render
method.

Adding Animated to our Onboarding experience
Before we forget, let's import the Animated object at the top of Onboarding.js:

import {
 StyleSheet,
 View,
 LayoutAnimation,
 Animated
} from 'react-native';

Like I said earlier, in order for Animated to do anything, we need two things–an
Animated.* component and an Animated.Value. In our case, we're going to use the
transform style property translateX to shift the position of our parent <View
style={styles.panelContainer} /> relative to the value stored in an
Animated.Value. Put another way, if our Animated.Value is set to -375, then our panel
container will have a translateX value of -375. These two values will track one to one. In
order to wire this up, we'll need to make a few adjustments to our code.

For starters, in order to make the onboarding panel span four times the width of the device
(see the previous diagram), we need to know how wide the device is. Import the
DEVICE_WIDTH from device.js:

import { DEVICE_WIDTH } from '../config/device';

Next, inside the constructor, create a new property on state called pan, as an
Animated.Value that's initialized to 0. Note that we'll be using an Animated.Value and
not an Animated.ValueXY since we are only animating across a single dimension. Refer to
the following code snippet:

this.state = {
 currentIndex: 0,
 isDone: false,
 pan: new Animated.Value(0)
};

Animation and Gestures in React Native

[316]

The next part is interesting. We no longer need to collapse the width of the hidden panels.
This is because the parent panel container will simply pan left and right such that only the
active panel is within view. The others will be off screen. In order to achieve this, we'll make
the panel container span four times the width of the device. Additionally, because the
parent panel is now what actually animates, we need to swap it out with an
Animated.View and apply translateX to it:

<Animated.View
 style={[
 styles.panelContainer,
 { width: DEVICE_WIDTH * onboardingContent.length },
 {
 transform: [{
 translateX: this.state.pan
 }]
 }
]}
>
 {onboardingContent.map((panel, i) => (
 <OnboardingPanel key={i} {...panel} />
))}
</Animated.View>

Now comes the fun part! We've got all the parts in place, we just need to make them
actually do something. Let's drop in our animation code and then afterwards I'll explain
what it's actually doing. Update the transitionToNextPanel method to the following:

transitionToNextPanel(nextIndex) {
 Animated.timing(this.state.pan, {
 toValue: nextIndex * DEVICE_WIDTH * -1,
 duration: 300
 }).start(() => {
 this.setState({
 currentIndex: nextIndex
 });
 });
}

When you refresh the app, clicking Previous and Next will nicely slide each panel in from
the appropriate side.

Animation and Gestures in React Native

[317]

That was a good bit of code, so let's break down what's happening. Firstly, we defined a
new property on state called pan as a new Animated.Value and initialized it to 0. For
the sake of illustration, let's assume we're using an iPhone 6, which has a DEVICE_WIDTH of
375. We want to transform the translateX property such that, when
state.currentIndex is equal to 0, translateX is also 0. This means our first panel is
visible. In order to show the next panel, state.currentIndex equals 1, we'll need to pull
our onboarding panel container to the left. To achieve this, we need the translateX
property to equal -375. To see the third panel, translateX needs to equal -750 (-375 *
2). To execute the animation itself, we'll use one of the many Animated animation
methods, called timing. Animated.timing works by specifying the Animated.Value you
wish to update (in our case, this.state.pan), a configuration specifying what you'd like
the value to transition to (toValue), and how long the animation should take (duration).
In our case, we'll calculate the toValue each time, based on the nextIndex. This will give
us our desired translateX values of 0, -375, -750, and -1125. Calling start is what
actually executes Animated.timing. You can optionally pass start a callback method. In
our case, once the animation has completed, we'll update this.state.currentIndex to
equal the nextIndex value. This way everything stays nicely in sync. The final piece of the
animation equation is binding our this.state.pan value to translateX. This is achieved
by adding a style object to the Animated.View that dynamically sets translateX to the
value of this.state.pan.

In our code, we utilized Animated.timing, but there are two other
animation options. Animated.spring creates a more bounce-like effect.
For this, you only need to specify the toValue, but it also allows you to
further configure it by setting the friction, tension, velocity, and
bounciness. Animated.decay is used to slow an animation down from an
initial velocity. This could be useful for simulating flicking an object so
that it gradually slows down after release.
The Animated API also enables you to group animations in interesting
ways. So far, we've only used a single Animated.timing that tracks
against the Animated.Value. If you create multiple Animated.Value
objects, you will be able to sequence one animation after another, run them
in parallel, or create delays between each animation.
Take the following example:
Animated.stagger(200, [
 Animated.timing(this.state.animatedValue1, {
 toValue,
 duration: 500
 }),
 Animated.timing(this.state.animatedValue2, {

Animation and Gestures in React Native

[318]

 toValue,
 duration: 500]
 }),
]).start()

Here we've grouped two timing methods. Animated.stagger accepts
two values–the first is the delay between each animation and the second is
an ordered list of animations to execute. Alternatively, you could group
the values using Animated.sequence or Animated.parallel. Both
work similarly to Animated.stagger except they only accept a list of
animations, no delay is necessary. Animated.parallel will fire off all
animations at once. Animated.sequence will fire off one animation after
the previous one has completed.

Interpolating Animated Values
Sometimes you may want to animate any range of numbers. Those numbers might not map
exactly one to one with the value stored in an Animated.Value. For example, say pressing
a button increments an Animated.Value by one on each press. Let's also say you have a
View currently sized to 10 by 10 points. When you increment the value, the View will jump
in size to 200 by 200 points. This is clearly not a one-to-one mapping. But, you can create
this relationship between inputs and outputs via interpolation.

To illustrate this idea, let's create another component that will display the overall progress
of the user's onboarding tour. There are four onboarding panels, so each time you pivot to
the next, the progress bar will fill up another 25%.

OnboardingProgress will need two props–a reference to the Animated.Value (pan) of
Onboarding, so it can interpolate progress, and the total number of panels, totalItems, so
it can calculate how much progress has been made. We'll start by building out an inanimate
version to establish structure and some styling inside OnboardingProgress.js:

import React, { PropTypes } from 'react';
import {
 View,
 Animated,
 StyleSheet
} from 'react-native';
import { DEVICE_WIDTH } from '../config/device';

const BAR_WIDTH = 250;
const COMPLETION_BAR_BORDER_COLOR = '#fff';
const COMPLETION_BAR_BG_COLOR = 'transparent';

Animation and Gestures in React Native

[319]

const COMPLETION_BAR_STATUS_BG_COLOR = '#fff6';

const OnboardingProgress = ({ totalItems, pan }) => (
 <View style={styles.container}>
 <View style={styles.bar}>
 <Animated.View style={styles.status} />
 </View>
 </View>
);

OnboardingProgress.propTypes = {
 totalItems: PropTypes.number.isRequired,
 pan: PropTypes.instanceOf(Animated.Value)
};

const styles = StyleSheet.create({
 container: {
 flexDirection: 'row',
 justifyContent: 'center',
 alignItems: 'center',
 position: 'absolute',
 bottom: 100,
 left: 0,
 right: 0
 },
 bar: {
 borderRadius: 6,
 height: 10,
 borderWidth: 1,
 borderColor: COMPLETION_BAR_BORDER_COLOR,
 backgroundColor: COMPLETION_BAR_BG_COLOR,
 marginHorizontal: 20,
 width: BAR_WIDTH,
 overflow: 'hidden',
 flexDirection: 'row'
 },
 status: {
 backgroundColor: COMPLETION_BAR_STATUS_BG_COLOR,
 height: 8
 }
});

export default OnboardingProgress;

Animation and Gestures in React Native

[320]

The progress bar will be absolutely positioned just above the button bar. The bar itself is
hardcoded to 250 points wide. Animated.View doesn't yet have a defined width. Since
we're starting on the first onboarding screen, we need it to be 25% complete, thus 62.5
points wide. When we transition to the second panel, it will animate to 125 points, and so
on. The Animated.Value starts at 0. When it moves to the second panel, it transitions to
-375. When it moves to the third panel it will be set to -750. You can think of this
relationship as mapping inputs to outputs. Our input values are 0, -375, -750, and
-1125. The output values are 62.5 (25%), 125 (50%), 187.5 (75%), and 250 (100%).
We'll create this relationship with the interpolate method of our Animated.Value.

We'll add a function that creates this mapping dynamically, based on the number of
onboarding screens, the width of our progress bar, and the overall device width. Update the
Animated.View with the following:

<Animated.View
 style={[
 styles.status,
 computeCompletionBarWidth(totalItems, BAR_WIDTH, DEVICE_WIDTH, pan)
]}
/>

Then, add the computeCompletionBarWidth function to the OnboardingProgress
component:

const computeCompletionBarWidth = (itemCount, barWidth, deviceWidth, pan)
=> {
 const inputRange = [];
 const outputRange = [];
 for (let i = itemCount - 1; i >= 0; i -= 1) {
 inputRange.push(deviceWidth * i * -1);
 outputRange.push(barWidth * ((i + 1) / itemCount));
 }

 if (outputRange.length < 2) {
 inputRange.push(inputRange[inputRange.length - 1]);
 outputRange.push(outputRange[outputRange.length - 1]);
 }

 return {
 width: pan.interpolate({
 inputRange,
 outputRange
 })
 };
};

Animation and Gestures in React Native

[321]

This function will create input and output ranges, and return a style object that sets the
width based on the interpolated mapping. The if block is there to ensure inputRange and
outputRange have two or more values. If they don't, React Native will throw an error.

Now all that's left is adding OnboardingProgress to Onboarding:

import OnboardingProgress from './OnboardingProgress';

Then add the component between the Animated.View and OnboardingButtons:

<OnboardingProgress
 totalItems={onboardingContent.length}
 pan={this.state.pan}
/>

Now, when you run the app, you'll see the progress bar move as we transition from screen
to screen. Take a look at the following screenshot:

Animation and Gestures in React Native

[322]

Using PanResponder with the Animated API
To round out our animation chapter, we'll explore one more very powerful way to leverage
animation. PanResponder is a React Native API for tracking simple gestures. We can use
PanResponder to track the user dragging their finger across the screen as a way to
transition from panel to panel. As usual, we'll begin by importing PanResponder at the top
of our file:

import {
 StyleSheet,
 View,
 LayoutAnimation,
 Animated,
 PanResponder
} from 'react-native';

PanResponder needs to track the value of state.pan as it updates. We'll do this by
adding a componentWillMount lifecycle method. Here, we'll listen to changes in
state.pan by utilizing the addListener method. We'll also add a
componentWillUnmount method to remove the listener once the component is
unmounted:

componentWillMount() {
 this.dragPosition = 0;
 this.panListener = this.state.pan.addListener((value) => {
 this.dragPosition = value.value;
 });
}

componentWillUnmount() {
 this.state.pan.removeListener(this.panListener);
}

As state.pan updates, the addListener callback is called with the updated value. We'll
then store that value on the property dragPosition (this will come in handy a little later
on). Now, in order to use PanResponder, we'll use PanResponder.create to create a
number of PanResponder-specific lifecycle methods. The resulting object containing all
these lifecycle methods will be stored on another property of Onboarding. Doing so will
allow us to easily apply all of these methods to the element in which we want to track the
user gesture.

Animation and Gestures in React Native

[323]

Before we create the actual implementation, let's review the relevant PanResponder
lifecycle methods we'll be using. The first one is called onMoveShouldSetPanResponder.
This method simply needs to return true in order for the remaining methods to execute.
onPanResponderGrant is the next in the series. It will only be called once per drag. It will
initialize our Animated.Value and an offset value that corresponds to wherever the user's
finger is at that moment. onPanResponderMove will follow suit after
onPanResponderGrant. Unlike onPanResponderGrant, onPanResponderMove is called
continuously as the drag event occurs. Each callback of onPanResponderMove receives two
arguments, a synthetic touch event represented as a nativeEvent object, along with a
gestureState. Each object has useful properties related to the touch event. In particular,
gestureState carries a property called dx that stores the accumulated drag distance
across the x axis since the touch gesture started. Once the user has lifted their finger from
the device, PanResponder calls the onPanResponderRelease callback. It too receives the
same nativeEvent and gestureState objects as arguments. This method is where we'll
place all our business logic to simply answer the necessary questions: What do we want our
view to do now that the user has finished touching the screen? Did they drag far enough?
Did they drag fast enough? Did they release the touch event on the correct side of the
screen? These are all questions we can answer and respond to in the
onPanResponderRelease callback.

For these basics of how lifecycle operates for PanResponder, let's add them to our code and
then we can review what it's actually doing. Add the following to the
componentWillMount method:

this.panResponder = PanResponder.create({
 onMoveShouldSetPanResponder: () => true,
 onPanResponderGrant: () => {
 this.state.pan.setOffset(this.dragPosition);
 this.state.pan.setValue(0);
 },

 onPanResponderMove: (e, gestureState) => {
 this.state.pan.setValue(gestureState.dx);
 },

 onPanResponderRelease: (e) => {
 const movedLeft = e.nativeEvent.pageX < (DEVICE_WIDTH / 2);
 this.state.pan.flattenOffset();
 this.transitionToNextPanel(movedLeft
 ? this.state.currentIndex + 1
 : this.state.currentIndex - 1
);
 }
});

Animation and Gestures in React Native

[324]

As stated earlier, onMoveShouldSetPanResponder simply needs to return true. The
onPanResponderGrant callback is then called only once per touch event. We're using it to
update the offset with the current value of dragPosition and initialize state.pan to 0.
Then, as long as the user continues to touch the screen, onPanResponderMove continually
updates this.state.pan with the accumulated drag distance stored in
gestureState.dx. Once the user releases their finger from the screen, the
onPanResponderRelease callback will be called. Here, we need to determine which way
the user has dragged. We can capture the point at which the user released their finger from
the screen along the x axis by accessing e.nativeEvent.pageX. In our simple
implementation, we'll assume that, if the value is less than half the device's width, that
means the user dragged to the left. Otherwise, the user must have dragged to the right.
Now that we know which way the user has dragged, we'll call flattenOffset. This will
merge the offset value with the base value and reset our offset. And, finally, we'll call our
existing method, transitionToNextPanel, with one of two values. If we swiped to the
left, we need to increment state.currentIndex by one. If we swiped right, we'll
decrement it by one. Now, the last piece of the puzzle is to apply these methods to our
Animated.View. Refer to the following code snippet:

<Animated.View
 {...this.panResponder.panHandlers}
 style={[
 styles.panelContainer,
 { width: DEVICE_WIDTH * onboardingContent.length },
 {
 transform: [{
 translateX: this.state.pan
 }]
 }
]}
>
 /* Contents omitted for clarity */
</Animated.View>

This will take all the lifecycle methods we created and apply them to the Animated.View.
Refresh your simulator and give it a spin by dragging across the screen.

Animation and Gestures in React Native

[325]

Touching up PanResponder
If you spent a few moments playing around with the app, you may have noticed one or two
flaws in our design. For starters, the user is able to swipe right on the first onboarding panel
and swipe left on the final one. Either case will put the app into an undesired state. To avoid
this, we need to add some additional logic to the onPanResponderRelease method to
detect if the user is trying to swipe outside the permitted bounds:

onPanResponderRelease: (e) => {
 const movedLeft = e.nativeEvent.pageX < (DEVICE_WIDTH / 2);
 let updateState = false;
 let toValue = movedLeft
 ? DEVICE_WIDTH * (this.state.currentIndex + 1) * -1
 : DEVICE_WIDTH * (this.state.currentIndex - 1) * -1;

 if (toValue > 0) {
 toValue = 0;
 } else if (toValue < ((DEVICE_WIDTH * onboardingContent.length) -
DEVICE_WIDTH) * -1) {
 toValue = ((DEVICE_WIDTH * onboardingContent.length) - DEVICE_WIDTH) *
-1;
 } else {
 updateState = true;
 }

 this.state.pan.flattenOffset();

 if (updateState) {
 this.transitionToNextPanel(movedLeft
 ? this.state.currentIndex + 1
 : this.state.currentIndex - 1
);
 } else {
 Animated.spring(this.state.pan, {
 velocity: 0.5,
 tensions: 0.2,
 friction: 2,
 toValue
 }).start();
 }
}

Animation and Gestures in React Native

[326]

We've added two variables updateState and toValue. updateState will track whether
or not we should execute the call to transitionToNextPanel. In order to know this, we
need to calculate what the next state would be. This is where toValue comes in. 0 is the
largest value possible. If toValue is greater than 0, we force the next state to 0. If the value
is less than -1125, we force it to -1125. Otherwise, we call transitionToNextPanel. If
we don't call transitionToNextPanel, we'll use Animated.spring to spring back to
toValue.

The only piece that's left is a little bit of design polish. In the event the user tries to swipe
outside the bounds of our panel list, the background color in the outlying area should
match that of the active panel. We can achieve this by setting the backgroundColor of our
main content area to match the active panel:

<CollapsibleView
 style={[
 styles.container,
 { backgroundColor:
onboardingContent[this.state.currentIndex].backgroundColor }
]}
 hide={this.state.isDone}
>
...

And there we have it. We've fixed our bugs and implemented a pretty impressive
onboarding experience!

Summary
In this chapter we have experimented with many forms of animation. LayoutAnimation is
great for composing simple animations, particularly when animating the size and layout of
multiple elements at once. In contrast, the Animated API allows for much finer-tuned,
precise animations. Additionally, you can pair the Animated API with PanResponder to
animate elements in response to user touch interactions.

With the majority of our app built, it's time we explored a new domain of React Native. In
the next chapter, we'll configure our environments for testing on an Android emulator, and
refactor our RNNYT app to work across iOS and Android.

9
Refactoring for Android

With a solid footing in the React Native ecosystem, we've been able to build a very credible
iOS application. But, as we stated back in Chapter 2, Saying Hello World in React Native,
React Native is about more than just iOS. React Native allows us to easily build apps for
both iOS and Android platforms. What you're about to learn is just how easy that is to
accomplish.

The goal of this chapter is twofold. Firstly, similar to Chapter 2, Saying Hello World in React
Native, where we configured our environments for building and testing on the iOS
simulator, we'll need to do the same for Android. Once we've configured our computers for
React Native Android development, we'll update our RNNYT app so that it can run on both
platforms. What you will discover as we work through this process is that most of our code
runs out of the box without any modification. There are just a few components and styles
we'll need to refactor to make the experience feel native to each platform.

With that said, here's the rundown of what we'll be doing in this chapter:

Installing and configuring all the necessary software required to run React Native
apps in an Android emulator
Reviewing how to branch our code such that we can tailor solutions to each
specific platform
Creating a customized Android HomeScreen component
Refactoring our remaining components and styles to work across iOS and
Android

Refactoring for Android

[328]

Installing the necessary tools
If you have spent any time reading the official React Native documentation, you may have
found it to be great in some areas and less great in others. Up until relatively recently, I
personally found the React Native Android setup documentation to be challenging.
Thankfully, as of version 0.25.0, the React Native community has really stepped up. If you
head over to the React Native Getting Started page (h t t p s ://f a c e b o o k . g i t h u b . i o /r e a c t

- n a t i v e /d o c s /g e t t i n g - s t a r t e d . h t m l), you'll find excellent documentation that walks
you through the process. The Android setup section of this chapter will closely follow the
directions outlined on the official React Native setup docs. When appropriate, I'll add a bit
more context, but feel free to refer to the React Native docs as they'll always be the most
current.

Many of the tools required for Android development were already addressed in Chapter 2,
Saying Hello World in React Native. In this chapter, the main parts you'll need to focus on are
installing the Java Development Kit (JDK), Android Studio, and configuring some
environment variables. Later, we'll use the Android emulator that comes as an optional
install with Android Studio. Alternatively, GenyMotion also allows you to emulate many
popular Android devices and offers a more robust suite of tools, which are particularly
tailored towards automated testing. However, these advanced features are not available
with the free offering from GenyMotion, but may be worth exploring depending on your
needs. Since we're already planning on installing Android Studio, we'll just stick with its
emulator.

Installing the Java Development Kit
The JDK is a suite of software tools required for developing Java applications. Android
Studio requires JDK 1.8 or higher to be installed. It's possible you already have a version of
the JDK installed on your machine. Let's check by running the following command from
your terminal:

 javac -version

If you see a version that meets our requirements, you can skip ahead in the chapter to the
Installing Android Studio section. If not, we'll walk through how to install it. Refer to the
following screenshot:

https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html

Refactoring for Android

[329]

To install JDK 1.8, visit h t t p ://w w w . o r a c l e . c o m /t e c h n e t w o r k /j a v a /j a v a s e /d o w n l o a d s /j

d k 8- d o w n l o a d s - 2133151. h t m l in your web browser. Scroll down the page a short way and
you'll find a few download options. Select the radio button to accept the license agreement
and then click the link that corresponds with Mac OS X (macOS). Refer to the following
screenshot:

Note: The previous screenshot may be out of date by the time you read
this. Feel free to grab the latest version available from the download site.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Refactoring for Android

[330]

After you've run the installer, verify the JDK version with javac -version. Don't worry if
it doesn't match exactly with the screenshot. So long as it matches 1.8.x, you've got what's
needed. Refer to the following screenshot:

Installing Android Studio
Android Studio is an integrated development environment tailored for Android
development. After we've completed the initial setup process, you won't actually need to
run Android Studio for any day-to-day React Native development. For the purposes of this
chapter, we're really just installing it for all the software and tools that are bundled with it.

The React Native documentation recommends installing Android Studio 2.0 or greater. You
can download it from h t t p ://d e v e l o p e r . a n d r o i d . c o m /s d k /i n d e x . h t m l . Once it has
completed downloading, open the DMG and drag Android Studio into your
Applications folder. The first time you run it, Android Studio may ask you if you'd like
to import your previous settings. I chose the default I do not have a previous version of
Studio… option, but choose whichever is appropriate for you. After making your selection,
Android Studio will walk you through the setup wizard. When you get to the step titled
Install Type, select Custom.

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Refactoring for Android

[331]

Select whichever UI theme you prefer. When you get to the step entitled SDK Components
Setup, make sure both Performance and Android Virtual Device are checked. The
Performance piece is used for speeding up emulation. The second is the Android emulator
we'll use for testing. Refer to the following screenshot:

Once you click Next, you can complete the wizard with the default selections. The next step
will download everything we've configured up to this point. Once it's complete, click
Finish.

Refactoring for Android

[332]

Configuring Android Studio
Okay, part one is done. Now we're onto part two. From the Android Studio welcome
screen, select SDK Manager from the Configure menu in the lower-right corner, as shown
in the following screenshot:

Refactoring for Android

[333]

Here, we'll need to install a few more items. With the SDK Platforms tab selected, select
Show Package Details in the lower-right corner. Under Android 6.0 (Marshmallow),
ensure the following items are checked:

Google APIs
Intel x86 Atom System Image
Intel x86 Atom_64 System Image
Google APIs Intel x86 Atom System Image
Google APIs Intel x86 Atom_64 System Image

Refactoring for Android

[334]

Next, select the SDK Tools tab and select Show Package Details again from the lower-right
corner. In the main view, under Android SDK Build Tools, ensure Android SDK Build-
Tools 23.0.1 is selected. Then click OK. Refer to the following screenshot:

You'll then be asked to confirm you'd like to install these tools. Click OK, accept the terms
and conditions, and complete the installation process.

Configuring ANDROID_HOME and your PATH
Once the download completes, you'll have all the necessary tools installed. The last thing
you need to do is define the ANDROID_HOME environment variable. This is needed to tell
your system where it can find the Android SDK. Additionally, we'll add the Android tools
path to our PATH so we can use commands such as android avd and adb devices. To begin,
run the following from the Terminal:

 open ~/.bash_profile

Refactoring for Android

[335]

If you see the error .bash_profile does not exist, you'll need to
create one. To do that, simply type:

 touch ~/.bash_profile.

Add the following lines to your bash_profile:

 export ANDROID_HOME=~/Library/Android/sdk
 PATH="~/Library/Android/sdk/tools:~/Library/Android/sdk/platform-
tools:${PATH}"
 export PATH

Save the file and close it. Back in the Terminal, type:

 source ~/.bash_profile

This will ensure the contents of the .bash_profile have been executed. To verify, type:

 echo $ANDROID_HOME

You should see something similar to /Users/your-username/Library/Android/sdk.

Verifying that the CPU/ABIs are installed
Setting up all the necessary Android development dependencies is a bit of a chore.
Personally, I've run into issues where everything required to run the Android emulator still
isn't installed. To verify that you have everything, run the following from your Terminal:

 android

This will open the Android SDK Manager. Scroll down to Android 6.0 (API 23). Looking in
the rightmost column, ensure that SDK Platform, Intel x86 Atom 64 System Image, and
Intel x86 Atom System Image are installed. If not, don't fret. Check the three boxes and
click the Install 3 packages… button.

Refactoring for Android

[336]

Starting the Android emulator
Running the Android emulator is a bit different from how we run the iOS simulator.
Initially, we'll need to create an Android Virtual Device (AVD) by running the following
command:

 android avd

This will launch the AVD Manager. Select Device Definitions. You're welcome to create an
AVD from whichever device you'd like. I chose the Nexus S device. Once you've found one
you like, click Create AVD on the right.

You'll need to fill in a few of the form fields before you're able to proceed. Select a Target,
CPU/ABI, Skin, Front Camera, and Back Camera option. For Skin, be sure to select a Skin
with dynamic hardware controls. This will expose buttons such as the Menu and Home
buttons to you. Then click OK. Refer to the following screenshot:

Refactoring for Android

[337]

Click on the Android Virtual Devices tab and you'll now see your new AVD listed. Select
your device and click Start…. Refer to the following screenshot:

Once the AVD has launched, you're all set to run your React Native app in Android.

Instead of first launching the AVD Manager, you can use emulator to
launch your emulator directly by name by using the following command:

 emulator -avd AVD_for_Nexus_S_by_Google

The value avd_for_Nexus_S_by_Google needs to match the name of
your AVD in the AVD Manager.

Adding Android support to RNNYT
With all the necessary tools installed, we can actually begin to experiment with some code
in an Android emulator. Open up our RNNYT project and make sure you have your
Android emulator running.

Refactoring for Android

[338]

From your project's root directory, launch RNNYT in the Android emulator by running the
command:

 react-native run-android

With any luck, you'll see the Welcome to React Native screen.

Running adb devices will display a list of all attached Android devices.
This list will include emulators and any physical hardware connected,
with developer options enabled.

Before we dive into any refactoring, let's briefly orient ourselves to the Android emulator.
The keyboard shortcut Command + R won't work for us anymore. If you want to refresh the
screen, you'll need to either double tap the R key on your keyboard or launch the menu.
There're a few ways to do this. The most obvious way is to click the Menu button visible
under the section labeled Hardware Buttons. If keyboard shortcuts are more your thing,
you can do the same by pressing Command + M on your keyboard. Refer to the following
screenshot:

Refactoring for Android

[339]

From there, you can trigger the remote debugger, hot reloading, manual reloading, and
other debugging tools.

Branching platform logic
As you've most likely noticed by now, React Native allows you to optionally add a
.ios.js or .android.js extension to any file name. If you omit the platform-specific
extension, React Native assumes that the file is universal and will be used by either platform.
This is probably best explained with some examples. Imagine our project includes the
following files:

Home.js

MyComponent.js

MyComponent.android.js

Among other things, Home.js includes the following code:

 import MyComponent from './MyComponent';

If the code is run on Android, it will use MyComponent.android.js. However, when the
code runs on iOS, the packager is unable to find MyComponent.ios.js and will fall back to
MyComponent.js.

Now look at our next example:

Home.js

MyComponent.js

MyComponent.ios.js

MyComponent.android.js

Here, iOS would ignore MyComponent.js and utilize MyComponent.ios.js. And, once
again, Android would use MyComponent.android.js. Admittedly, this is a contrived
example since MyComponent.js would effectively go unused. However, it illustrates the
point that platform-specific files will always be favored over non-platform-specific files. If
your code is meant to be universal, just use the traditional .js extension. There is one
exception to all of this. The root project files index.ios.js and index.android.js must
maintain their platform extensions. Even if the contents of each of these files are identical,
you cannot create a universal index.js file.

Refactoring for Android

[340]

This capability illustrates one of the ways you can tailor your code to a specific platform.
But what if you don't want to branch an entire file? What if you only need to branch a small
piece of logic within a file? Thankfully, React Native supports that too. In this case, both
platforms can use the same JavaScript file, but utilize the Platform API to branch the code:

import { Platform } from 'react-native';

if (Platform.OS === 'android') {
 // Do something specific for Android
} else if (Platform.OS === 'ios') {
 // Handle iOS
}

The Platform API also includes a few other useful methods and properties.
Platform.Version exposes the underlying Android version. Sadly, this only works for
Android. Platform.Version on iOS will simply return undefined. Finally,
Platform.select is a method you can use to toggle platform-specific code. Here's an
example:

const backgroundStyle = Platform.select({
 ios: {
 backgroundColor: 'green'
 },
 android: {
 backgroundColor: 'red'
 }
});

const styles = StyleSheet.create({
 container: {
 flex: 1,
 padding: 20,
 ...backgroundStyle
 }
});

Here, Platform.select expects an object with keys that match the platform. Those keys
can map to any value. In the previous code sample, the keys map to an object that defines
platform-specific background colors. It then uses the spread operator to merge the
background color with the rest of the styles inside the container.

Refactoring for Android

[341]

Refactoring RNNYT for Android
Thankfully, we've already moved as much code as possible outside of index.ios.js.
Therefore, we can duplicate the contents of index.ios.js into index.android.js. Take
a look at the following code snippet:

import {
 AppRegistry
} from 'react-native';
import App from './src/App';

AppRegistry.registerComponent('RNNYT', () => App);

If you happen to refresh your app in the Android emulator, you'll probably see the error
Requiring unknown module "../components/HomeScreen". Given our discussion of
platform-specific file extensions, this shouldn't come as any surprise. The HomeScreen
component is housed inside HomeScreen.ios.js. Let's create a different version of
HomeScreen that's customized for Android inside HomeScreen.android.js. Just to recap,
HomeScreen is responsible for toggling between our three primary
components– NewsFeedContainer, SearchContainer, and BookmarksContainer. We
accomplished this with the iOS specific component TabBarIOS. For Android, we'll need to
do something else. But, before we get into that, let's just get a basic component running that
simply renders the NewsFeedContainer. Even though this component doesn't need to be a
class-based component yet, we'll set it up as such since we'll be adding methods to it
shortly. Take a look at the following code snippet:

// HomeScreen.android.js
import React, { Component, PropTypes } from 'react';
import NewsFeedContainer from '../containers/NewsFeedContainer';

export default class HomeScreen extends Component {
 render() {
 return <NewsFeedContainer />;
 }
}

HomeScreen.propTypes = {
 selectedTab: PropTypes.string,
 tab: PropTypes.func.isRequired
};

Refactoring for Android

[342]

Aside from some styling issues within the NewsFeed, this simplified version of
HomeScreen gets us back in the game. The list of news items will render and allow us to
press on them to see the detailed article. However, we added an onLongPress event
handler inside of NewsItem, which uses the ActionSheetIOS API. For Android, we'll use
the ToastAndroid and Vibration APIs to inform users they've bookmarked a news
article.

Import ToastAndroid, Platform, and Vibration at the top of NewsItem.js:

import {
 View,
 TouchableOpacity,
 StyleSheet,
 ActionSheetIOS,
 ToastAndroid,
 Platform,
 Vibration
} from 'react-native';

Then, inside the onLongPress method, we'll utilize Platform.select to branch the logic
between Android and iOS solutions:

onLongPress() {
 const platformMsgFn = Platform.select({
 android: () => {
 ToastAndroid.show(
 `"${this.props.title}" has been bookmarked!`,
 ToastAndroid.LONG
);
 Vibration.vibrate();
 this.props.onBookmark();
 },
 ios: () => (
 ActionSheetIOS.showActionSheetWithOptions({
 options: ['Bookmark', 'Cancel'],
 cancelButtonIndex: 1,
 title: this.props.title
 }, (buttonIndex) => {
 if (buttonIndex === 0) {
 this.props.onBookmark();
 }
 })
)
 });

 platformMsgFn();
}

Refactoring for Android

[343]

I've refactored this code using Platform.select to return an anonymous function based
on the platform. The resulting function is stored as platformMsgFn and is then executed.
In the case of Android, the anonymous function executes ToastAndroid.show, passing it a
message and a constant specifying how long the toast should remain visible (this can be
either ToastAndroid.SHORT or ToastAndroid.LONG). Next, we call
Vibration.vibrate and save our bookmark using the onBookmark action creator.

Fixing Android vibration
If you run the app inside the Android emulator and attempt to long press one of the news
articles, you'll be greeted with a very unfriendly error Requires VIBRATE permissions.
What's that about? you ask. Well, Android requires that we give it explicit permissions to
utilize vibration notifications. Thankfully, this is pretty simple. Open up
android/app/src/main/AndroidManifest.xml. Within the manifest tag, add the
following:

<uses-permission android:name="android.permission.VIBRATE"/>

We'll need to rebuild the app in order for the permission to take effect. From your Terminal,
simply rerun:

 react-native run-android

Now, if you try to bookmark an article, you'll see everything works as expected (the
vibration itself will only work with actual hardware). Refer to the following screenshot:

Refactoring for Android

[344]

With that behind us, let's get back to our Android HomeScreen component. React Native
offers two components for Android that solve our navigation dilemma. One option is
ToolbarAndroid. This component locks a fixed header at the top of your app that can
contain a logo, a navigation icon (for example, a hamburger menu), a title, and a subtitle.
This would work; however, I've found this component doesn't offer many options for
styling. Instead, we're going to use the fairly vanilla DrawerLayoutAndroid. This
component adds an off-screen drawer that can be toggled by swiping your finger (or, in the
case of the emulator, your mouse cursor) to the right from the left edge of the device. The
drawer typically contains navigation items, but could also display a logo or any other
information.

Using DrawerLayoutAndroid
What I like about DrawerLayoutAndroid is that there isn't a lot to it. As stated earlier, it's
just a component that can slide in from off-screen to display our navigation options. Beyond
that, we control all the logic to display the selected view. Thankfully, this won't be too
challenging. To begin, add these imports to HomeScreen.android.js:

import {
 DrawerLayoutAndroid,
 View,
 StyleSheet
} from 'react-native';
import SearchContainer from '../containers/SearchContainer';
import BookmarksContainer from '../containers/BookmarksContainer';
import AppText from './AppText';
import * as globalStyles from '../styles/global';

Let's also configure some styles that we'll need shortly:

const styles = StyleSheet.create({
 container: {
 backgroundColor: globalStyles.BG_COLOR,
 flex: 1
 },
 drawer: {
 backgroundColor: globalStyles.BG_COLOR,
 flex: 1,
 padding: 10
 },
 drawerItem: {
 fontSize: 20,
 marginBottom: 5
 },
 menuButton: {

Refactoring for Android

[345]

 marginHorizontal: 10,
 marginTop: 10,
 color: globalStyles.LINK_COLOR
 }
});

Next, add this navigation configuration before the HomeScreen component:

const navConfig = {
 order: ['newsFeed', 'search', 'bookmarks'],
 newsFeed: {
 title: 'News',
 view: <NewsFeedContainer />,
 tab: 'newsFeed'
 },
 search: {
 title: 'Search',
 view: <SearchContainer />,
 tab: 'search'
 },
 bookmarks: {
 title: 'Bookmarks',
 view: <BookmarksContainer />,
 tab: 'bookmarks'
 }
};

This configuration will be used to dynamically set the active view.

Within the render method, we're going to wrap the active container element with
DrawerLayoutAndroid. DrawerLayoutAndroid accepts several props. We're just going to
focus on a few key ones. renderNavigationView is a prop that expects a function that
returns the drawer's view contents. The drawerWidth prop sets the width of the drawer,
and drawerPosition configures the drawer to slide in from either the left or right side.
Finally, drawerBackgroundColor acts as an overlay sitting between the open drawer and
the remainder of the application. We'll start by filling in the completed render method and
then we'll add in the missing pieces afterward:

render() {
 return (
 <DrawerLayoutAndroid
 drawerWidth={310}
 drawerPosition={DrawerLayoutAndroid.positions.Left}
 drawerBackgroundColor="rgba(0,0,0,0.5)"
 renderNavigationView={this.renderDrawer}
 >
 <View style={styles.container}>

Refactoring for Android

[346]

 <AppText
 style={styles.menuButton}
 onPress={this.showNav}
 >Menu</AppText>
 {navConfig[this.props.selectedTab].view}
 </View>
 </DrawerLayoutAndroid>
);
}

Inside DrawerLayoutAndroid, we've added an AppText element. At the moment, it has an
onPress handler pointing to a yet-to-be-defined method. Once it's implemented, it will
provide an alternative means of opening the drawer for users unfamiliar with Android's
drawer swipe gesture. The renderNavigationView prop is calling out to a method we'll
define next:

constructor(props) {
 super(props);
 this.renderDrawer = this.renderDrawer.bind(this);
}

renderDrawer() {
 return (
 <View style={styles.drawer}>
 {navConfig.order.map(key => (
 <AppText
 key={key}
 style={styles.drawerItem}
 onPress={() => this.props.tab(navConfig[key].tab)}
 >
 {navConfig[key].title}
 </AppText>
))}
 </View>
);
}

renderDrawer does exactly that it returns a View that contains our three navigation
options, News, Search, and Bookmarks. Pressing on any of them will call the tab action
creator. Once the active tab is updated in the Redux state, the correct container will render
inside the DrawerLayoutAndroid:

{navConfig[this.props.selectedTab].view}

Refactoring for Android

[347]

This gets us a lot closer to where we'd like to be. However, we still have a few problems.
For one, the Menu button doesn't do anything. Also, you need to manually swipe away the
drawer after selecting News, Search, or Bookmarks. Thankfully, DrawerLayoutAndroid
has openDrawer and closeDrawer methods. We just need some way of hooking them into
our DrawerLayoutAndroid element so we can execute them. This is one of those cases
where we'll want to use a React ref (reference). If you've used ref in React before, you
may have seen something like <Component ref="myRefName" />. Here, the ref is set to
a string and can be referenced in other parts of the component with
this.refs.myRefName. However, the string value approach is considered legacy. So, we'll
use the ref callback value. Add the following ref callback:

<DrawerLayoutAndroid
 ref={(c) => { this.drawer = c; }}
 //...

Once the DrawerLayoutAndroid element has mounted, the ref callback will execute,
saving the component c to this.drawer. Next, update the onPress handler inside
renderDrawer to close the drawer after the user selects an option:

onPress={() => {
 this.props.tab(navConfig[key].tab);
 this.drawer.closeDrawer();
}}

Now we can write that showNav method we've been neglecting, allowing us to open the
drawer by clicking the Menu button:

showNav() {
 this.drawer.openDrawer();
}

Since showNav references this, we'll need to bind it in the constructor:

this.showNav = this.showNav.bind(this);

Customizing Android styling
Functionally, our app is working well on Android. Visually, however, it could use some
tuning. When we defined many of our global styles back in earlier chapters, we were only
taking iOS into account. We'll need to tweak a few things to make the design work nicely on
both platforms.

Refactoring for Android

[348]

Let's start by fixing our global styles. Through my own experimentation, I've found that,
when it comes to styling view container elements, Android tends to work better with
margin and iOS with padding. With that said, we're going to create two new style files in
the src/styles directory platform.android.js and platform.ios.js.

We'll start with platform.ios.js. Inside this file, we'll place all the styles that are specific
to iOS:

export default {
 PAGE_CONTAINER_STYLE: {
 paddingTop: 20,
 paddingHorizontal: 10,
 marginBottom: 48
 },
 TEXT_STYLE: {
 fontFamily: 'Helvetica Neue'
 }
};

Now we'll do the same for Android inside platform.android.js:

export default {
 PAGE_CONTAINER_STYLE: {
 marginTop: 10,
 marginHorizontal: 10
 },
 TEXT_STYLE: {
 fontFamily: 'sans-serif'
 }
};

Next, open up global.js and import the platform module at the top, then destructure the
values into PAGE_CONTAINER_STYLE and TEXT_STYLE:

import platformStyles from './platform';

const { PAGE_CONTAINER_STYLE, TEXT_STYLE } = platformStyles;

Thanks to our use of platform file extensions, our code will automatically use the correct
styles. Now we just need to apply them. To do this, update COMMON_STYLES:

export const COMMON_STYLES = StyleSheet.create({
 pageContainer: {
 backgroundColor: BG_COLOR,
 flex: 1,
 ...PAGE_CONTAINER_STYLE
 },

Refactoring for Android

[349]

 text: {
 color: TEXT_COLOR,
 ...TEXT_STYLE
 }
});

Take a look at the following screenshot:

With everything looking nice on our primary news feed, let's switch over to the Search
component. I feel there's a bit too much margin above the search box on Android. Plus,
there's this unsightly dark line that Android adds by default to TextInputs. Let's touch up
the Search component by importing Platform at the top of Search.js, and update the
search style's marginTop to the following:

marginTop: Platform.OS === 'ios' ? 10 : 0,

While we're at it, let's update the input style so Android adds some paddingBottom:

paddingBottom: Platform.OS === 'android' ? 8 : 0

Refactoring for Android

[350]

TextInput has several props that are platform specific allowing us to tune the styling and
user experience. In order to remove the underline visible on Android, set the
underlineColorAndroid prop to transparent. We can also change the Android
keyboard's return key text by setting the returnKeyLabel prop. Thankfully, iOS will just
ignore these so we don't need to add any platform branching logic. On the iOS side, we can
change the keyboard's default theme to dark, using the keyboardAppearance prop, to
match our app's aesthetic:

<TextInput
 style={styles.input}
 onChangeText={this.searchNews}
 value={this.state.searchText}
 placeholder="Search"
 placeholderTextColor={globalStyles.MUTED_COLOR}
 underlineColorAndroid="transparent"
 returnKeyLabel="Search"
 keyboardAppearance="dark"
/>

In the process of fixing up our global styles, we actually introduced a bug into our
IntroScreen. If you visit the IntroScreen now on Android, you'll find an unsightly
white border around the top, left, and right sides. This was introduced from the margin
values we applied globally. There's also one other minor issue. We call the iOS-only
setBarStyle method of StatusBar. We can fix the latter issue by once again importing
Platform from React Native and then wrapping our call to setBarStyle with a simple if
statement:

if (Platform.OS === 'ios') {
 StatusBar.setBarStyle('light-content');
}

And, finally, since neither platform actually needs a margin applied to the IntroScreen,
we'll override the global pageContainer styles to reset the affected margin properties:

container: {
 marginTop: 0,
 marginBottom: 0,
 marginHorizontal: 0,
 justifyContent: 'center',
 alignItems: 'center'
}

Refactoring for Android

[351]

Enabling LayoutAnimation
There's one final edit we need to make to our Onboarding component. If you click through
the onboarding experience, you'll notice everything animates as expected until you reach
the final transition. Pressing Done is intended to trigger an animation using
LayoutAnimation (as opposed to using the Animated API). As is, LayoutAnimation
doesn't throw any errors, but it also doesn't animate whatsoever. It just appears.

In order to use LayoutAnimation on Android, we need to explicitly opt into experimental
layout animation by using the UIManager. UIManager is yet another API we'll import from
the React Native library.

Inside of Onboarding.js, import the UIManager:

import {
 StyleSheet,
 View,
 LayoutAnimation,
 Animated,
 PanResponder,
 UIManager
} from 'react-native';

You'll need to exercise caution since the setLayoutAnimationEnabledExperimental
method isn't available on iOS. That said, we need to first verify if the method is present. If
so, we'll call it inside the Onboarding constructor:

constructor(props) {
 super(props);
 this.moveNext = this.moveNext.bind(this);
 this.movePrevious = this.movePrevious.bind(this);
 this.transitionToNextPanel = this.transitionToNextPanel.bind(this);
 this.moveFinal = this.moveFinal.bind(this);
 this.state = {
 currentIndex: 0,
 isDone: false,
 pan: new Animated.Value(0)
 };
 if (UIManager.setLayoutAnimationEnabledExperimental) {
 UIManager.setLayoutAnimationEnabledExperimental(true);
 }
}

With this change in place, the Onboarding component will behave exactly as it does on
iOS.

Refactoring for Android

[352]

Summary
This chapter focused on making our app run in a way that feels native to each platform.
While there are minor differences between React Native on iOS and Android, the required
updates were minimal and were added mostly to cater for the platform's unique interface
patterns. React Native's Android API offers several other Android-specific components and
APIs that are worth exploring. For example, the Android operating system is designed to
work with a back button. BackAndroid lets you create event listeners within your React
Native app to add custom behavior when users click the Android back button. There are
also additional Android UI components you may wish to experiment with, including
DatePickerAndroid, ProgressBarAndroid, TimePickerAndroid, and
ToolbarAndroid.

With our cross-platform app complete, it's now time to step outside of our JavaScript-only
comfort zone and into native modules. In the next chapter, we'll explore how to create React
Native bindings that expose customized platform native code to our JavaScript code.

10
Using and Writing Native

Modules

The React Native library has grown over time to encompass the majority of the native
application programming interfaces that we need to build sophisticated applications for
mobile devices. As we've seen, we can access numerous native user interface components
that are available on all devices, such as list views, images, and text, as well as platform-
specific UI components, such as the tab bar on iOS. We've also used some of the many
available native APIs, such as those used for alerting and animation.

There will be, however, occasions where the components and APIs that exist in the React
Native library are not sufficient. Luckily, React Native provides an extensible framework
for writing custom native modules in platform-specific code and making them available in
our application's JavaScript. The ability to create native modules is one of the most
powerful parts of the React Native library because it means that there is no application that
can't be created, no matter how complicated or what native APIs it needs.

Currently, custom native modules are needed to do complex things such as playing videos
and audio, or using an OAuth provider for authenticating users. To add this functionality to
our application, we have two options: find an open source module that fulfills our
requirements and bring it into the project as a dependency or we can build our own.

In this chapter, we will:

Start building a profile page for our RNNYT application
Learn how to incorporate open source native modules into our application
Learn how to build our own native modules for both iOS and Android

Using and Writing Native Modules

[354]

A couple of disclaimers are necessary before we get started. Native
modules are written in a platform's native language, which means
Objective-C on iOS (Swift is also possible with some additional work, but
we will use Objective-C in this book) and Java on Android. A full
introduction to those platforms and languages is outside the scope of this
book, so a basic understanding of these languages is a prerequisite for this
chapter. Also, it is worth mentioning that the modules developed in this
chapter are not robust modules that should be used in production
applications. Instead, they are simple modules used for a narrow use case
to demonstrate the process and mechanisms of building one.

Using native modules
In React Native, we manage dependencies to our project in much the same way as other
web or Node applications, that is, using npm, the Node Package Manager. Many of the
dependencies we use will contain only React Native JavaScript code, but some will have
native code as well. The installation process for dependencies containing native code differs
slightly from that of pure JS dependencies.

Installing native modules
In order to build out our new profile page and to make our application a bit more
aesthetically pleasing, we'll use an icon library called react-native-vector-icons. The
first thing we will need to do is simply install the library with npm like we would any other
dependency:

 npm install --save react-native-vector-icons

This library contains native modules, so we are not done yet. Most libraries that contain
native modules will provide one or more additional install steps. The end goal of the
installation is to link the native code from the dependency to the platform-specific code of
the main project. This can be done in one of a few ways.

The first installation option that most native module libraries will provide is a manual
installation. This method is cumbersome and involves updating several project
configuration files as well as native code files.

Using and Writing Native Modules

[355]

The second option that may be offered is to use a platform-specific package manager in
addition to npm. On iOS, this probably means CocoaPods, and on Android, Gradle. These
tools work well for the job and, compared to the manual option, is much less painful.
However, it also adds two additional package managers and configurations to the project.

If these two options don't sound exactly ideal, you're in luck. A tool was developed to
reduce some of the friction involved in using native dependencies called rnmp (react native
package manager). Because it is much easier, most libraries are moving toward this option.
In fact, it is so common and useful that rnpm was eventually merged into the React Native
command line client library, which means it should already be installed.

Now we can use the React Native command line client to link the native files from the
react-native-vector-icons library to our project:

 react-native link react-native-vector-icons

We've now downloaded the dependency using npm and then linked the native code files, so
we are all set to begin using icons in our project. We could also combine those two steps
into a single command:

 react-native install react-native-vector-icons

Using the library
The react-native-vector-icons library gives us a few components that we can use
within our project. The Icon component can be used to simply display icons anywhere in
our project. We will also use the Icon.TabBarItemIOS component that comes with the
library that can be used in place of the React Native component TabBarIOS.Item and gives
us access to a more robust collection of icons.

Profile page
The first thing we need to do is make a Profile component that can be used to display the
profile page. We'll put this new component in a file called src/components/Profile.js:

import React, { Component } from 'react';
import {
 View,
 StyleSheet
} from 'react-native';
import Title from './Title';
import AppText from './AppText';

Using and Writing Native Modules

[356]

import * as globalStyles from '../styles/global';

export default class Profile extends Component {

 render() {
 return (
 <View style={[globalStyles.COMMON_STYLES.pageContainer,
styles.container]}>
 <Title>Username</Title>
 <AppText>Your Name</AppText>
 </View>
);
 }

}

const styles = StyleSheet.create({
 container: {
 justifyContent: 'center',
 alignItems: 'center'
 }
});

So far, this looks very similar to other components we've made. First import React, react-
native and other application modules we need:

import React, { Component } from 'react';
import {
 View,
 StyleSheet
} from 'react-native';
import Title from './Title';
import AppText from './AppText';
import * as globalStyles from '../styles/global';

We then create a class for the Profile component and define its render() method. Note
that this component in its current state could easily be a functional component, but we're
making it a class so that we can add more sophisticated behavior later on:

export default class Profile extends Component {

 render() {
 return (
 <View style={[globalStyles.COMMON_STYLES.pageContainer,
styles.container]}>
 <Title>Username</Title>
 <AppText>Your Name</AppText>
 </View>

Using and Writing Native Modules

[357]

);
 }

}

Finally, we add some styles in a StyleSheet to make the page look better:

const styles = StyleSheet.create({
 container: {
 justifyContent: 'center',
 alignItems: 'center'
 }
});

Now, we're going to use the react-native-vector-icons library to add an avatar image
as a placeholder for the user's profile picture. The first step here is to import the Icon
component. When we import this component, we have to specify which icon font library we
want to use. For our project, we'll use the EvilIcons icon font library:

import React, { Component } from 'react';
import {
 View,
 StyleSheet
} from 'react-native';
import Icon from 'react-native-vector-icons/EvilIcons';
import Title from './Title';
import AppText from './AppText';
import * as globalStyles from '../styles/global';

Next, we'll add some additional styles to the components StyleSheet for the avatar icon:

const styles = StyleSheet.create({
 container: {
 justifyContent: 'center',
 alignItems: 'center'
 },
 avatarIcon: {
 color: globalStyles.HEADER_TEXT_COLOR,
 fontSize: 200
 }
});

Finally, we'll add an Icon in the Profile component's render() method. We'll use the
new styles and choose the icon named user:

render() {
 return (
 <View style={[globalStyles.COMMON_STYLES.pageContainer,

Using and Writing Native Modules

[358]

styles.container]}>
 <Icon
 name="user"
 style={styles.avatarIcon}
 />
 <Title>Username</Title>
 <AppText>Your Name</AppText>
 </View>
);
}

Now that we have a working profile page, we need to make it accessible from within the
application. We'll do this by adding it in the HomeScreen.ios.js and
HomeScreen.android.js files.

Adding the profile to the iOS home screen
On our iOS home screen, we'll need to add an additional tab for the profile page. We'll also
swap out the React Native TabBarIOS.Item components with the Icon.TabBarItemIOS
component from the icon library:

import React, { PropTypes } from 'react';
import {
 TabBarIOS,
 StatusBar
} from 'react-native';
import Icon from 'react-native-vector-icons/EvilIcons';
import NewsFeedContainer from '../containers/NewsFeedContainer';
import SearchContainer from '../containers/SearchContainer';
import BookmarksContainer from '../containers/BookmarksContainer';
import Profile from './Profile';
import * as globalStyles from '../styles/global';

//Set the status bar for iOS to light
StatusBar.setBarStyle('light-content');

const HomeScreen = ({ selectedTab, tab }) => (
 <TabBarIOS
 barTintColor={globalStyles.BAR_COLOR}
 tintColor={globalStyles.LINK_COLOR}
 translucent={false}
 >
 <Icon.TabBarItemIOS
 iconName={'star'}
 title={'News'}
 selected={selectedTab === 'newsFeed'}

Using and Writing Native Modules

[359]

 onPress={() => tab('newsFeed')}
 >
 <NewsFeedContainer/>
 </Icon.TabBarItemIOS>
 <Icon.TabBarItemIOS
 iconName={'search'}
 title={'Search'}
 selected={selectedTab === 'search'}
 onPress={() => tab('search')}
 >
 <SearchContainer/>
 </Icon.TabBarItemIOS>
 <Icon.TabBarItemIOS
 iconName={'paperclip'}
 title={'Bookmarks'}
 selected={selectedTab === 'bookmarks'}
 onPress={() => tab('bookmarks')}
 >
 <BookmarksContainer />
 </Icon.TabBarItemIOS>
 <Icon.TabBarItemIOS
 iconName={'user'}
 title={'Profile'}
 selected={selectedTab === 'profile'}
 onPress={() => tab('profile')}
 >
 <Profile />
 </Icon.TabBarItemIOS>
 </TabBarIOS>
);

HomeScreen.propTypes = {
 selectedTab: PropTypes.string,
 tab: PropTypes.func.isRequired
};

export default HomeScreen;

First, we add an import statement for our new Profile component as well as one for the
Icon component:

import React, { PropTypes } from 'react';
import {
 TabBarIOS,
 StatusBar
} from 'react-native';
import Icon from 'react-native-vector-icons/EvilIcons';
import NewsFeedContainer from '../containers/NewsFeedContainer';

Using and Writing Native Modules

[360]

import SearchContainer from '../containers/SearchContainer';
import BookmarksContainer from '../containers/BookmarksContainer';
import Profile from './Profile';
import * as globalStyles from '../styles/global';

Next, we'll change each of the tab bar items to use Icon.TabBarItemIOS. This component
needs two new props, one called iconName, which tells the component which icon to
render, and one called title, which specifies the text that should be shown below the tab:

<Icon.TabBarItemIOS
 iconName={'star'}
 title={'News'}
 selected={selectedTab === 'newsFeed'}
 onPress={() => tab('newsFeed')}
>
 <NewsFeedContainer />
</Icon.TabBarItemIOS>

Notice that we've changed the name of the first tab to use the more appropriate News title.
We can do this because now that we aren't using system icons, we have complete control
over the text displayed.

Finally, we need to add a new tab for the profile page that follows the same pattern as our
other tabs. For this tab, we'll use the same user icon that we used for the avatar:

<Icon.TabBarItemIOS
 iconName={'user'}
 title={'Profile'}
 selected={selectedTab === 'profile'}
 onPress={() => tab('profile')}
>
 <Profile />
</Icon.TabBarItemIOS>

In order to make it selectable, we'll also need to add a new profile tab to the available routes
in the navigationReducer.js file:

const routes = {
 home: {
 key: 'home',
 component: HomeScreenContainer,
 index: 0,
 routes: [
 { key: 'newsFeed', modal: undefined },
 { key: 'search' },
 { key: 'bookmarks' },
 { key: 'profile' }

Using and Writing Native Modules

[361]

]
 },
 intro: {
 key: 'intro',
 component: IntroScreen
 },
 onboarding: {
 key: 'onboarding',
 component: Onboarding
 }
};

We should now be able to open the application in iOS and see our new, much more
attractive, tab bar icons as well as the profile page as shown in the following screenshot:

Using and Writing Native Modules

[362]

Adding the profile to the Android home screen
We will also need to update our Android home screen, which uses a drawer layout instead
of a tab bar to account for the new profile page:

import React, { Component, PropTypes } from 'react';
import {
 DrawerLayoutAndroid,
 View,
 StyleSheet
} from 'react-native';
import NewsFeedContainer from '../containers/NewsFeedContainer';
import SearchContainer from '../containers/SearchContainer';
import BookmarksContainer from '../containers/BookmarksContainer';
import Profile from './Profile';
import AppText from './AppText';
import * as globalStyles from '../styles/global';

const navConfig = {
 order: ['newsFeed', 'search', 'bookmarks', 'profile'],
 newsFeed: {
 title: 'News',
 view: <NewsFeedContainer />,
 tab: 'newsFeed'
 },
 search: {
 title: 'Search',
 view: <SearchContainer />,
 tab: 'search'
 },
 bookmarks: {
 title: 'Bookmarks',
 view: <BookmarksContainer />,
 tab: 'bookmarks'
 },
 profile: {
 title: 'Profile',
 view: <Profile />,
 tab: 'profile'
 }
};

export default class HomeScreen extends Component {
 constructor(props) {
 super(props);
 this.renderDrawer = this.renderDrawer.bind(this);
 this.showNav = this.showNav.bind(this);
 }

Using and Writing Native Modules

[363]

 showNav() {
 this.drawer.openDrawer();
 }

 renderDrawer() {
 return (
 <View style={styles.drawer}>
 {navConfig.order.map(key => (
 <AppText
 key={key}
 style={styles.drawerItem}
 onPress={() => {
 this.props.tab(navConfig[key].tab);
 this.drawer.closeDrawer();
 }}
 >
 {navConfig[key].title}
 </AppText>
))}
 </View>
);
 }

 render() {
 return (
 <DrawerLayoutAndroid
 ref={(c) => { this.drawer = c; }}
 drawerWidth={310}
 drawerPosition={DrawerLayoutAndroid.positions.Left}
 drawerBackgroundColor="rgba(0,0,0,0.5)"
 renderNavigationView={this.renderDrawer}
 >
 <View style={styles.container}>
 <AppText
 style={styles.menuButton}
 onPress={this.showNav}
 >Menu</AppText>
 {navConfig[this.props.selectedTab].view}
 </View>
 </DrawerLayoutAndroid>
);
 }
}

HomeScreen.propTypes = {
 selectedTab: PropTypes.string,
 tab: PropTypes.func.isRequired
};

Using and Writing Native Modules

[364]

const styles = StyleSheet.create({
 container: {
 backgroundColor: globalStyles.BG_COLOR,
 flex: 1
 },
 drawer: {
 backgroundColor: globalStyles.BG_COLOR,
 flex: 1,
 padding: 10
 },
 drawerItem: {
 fontSize: 20,
 marginBottom: 5
 },
 menuButton: {
 marginHorizontal: 10,
 marginTop: 10,
 color: globalStyles.LINK_COLOR
 }
});

We first import the Profile component:

import React, { Component, PropTypes } from 'react';
import {
 DrawerLayoutAndroid,
 View,
 StyleSheet
} from 'react-native';
import NewsFeedContainer from '../containers/NewsFeedContainer';
import SearchContainer from '../containers/SearchContainer';
import BookmarksContainer from '../containers/BookmarksContainer';
import Profile from './Profile';
import AppText from './AppText';
import * as globalStyles from '../styles/global';

We then need to add the profile to the navConfig object in order to add it to the drawer's
menu:

const navConfig = {
 order: ['newsFeed', 'search', 'bookmarks', 'profile'],
 newsFeed: {
 title: 'News',
 view: <NewsFeedContainer />,
 tab: 'newsFeed'
 },
 search: {
 title: 'Search',

Using and Writing Native Modules

[365]

 view: <SearchContainer />,
 tab: 'search'
 },
 bookmarks: {
 title: 'Bookmarks',
 view: <BookmarksContainer />,
 tab: 'bookmarks'
 },
 profile: {
 title: 'Profile',
 view: <Profile />,
 tab: 'profile'
 }
};

Note that we have to add a new profile key to this object in addition to the string
'profile' to the array describing the order of the menu options. Once we've added these
things, our Android application should have the new profile page in its drawer menu:

We've now successfully incorporated an open source native module into both the iOS and
Android versions of our application. Next, we'll develop our profile page further and write
our own native modules.

Writing native modules
If we cannot find an open source module to meet our application's needs, we may need to
write our own. For instance, we might need to write our own native module if we require
some very specific behavior or if we have code from previously developed native
applications that we want to incorporate into a React Native project.

Using and Writing Native Modules

[366]

We are going to create native modules-one for iOS and one for Android-that allow the user
to select an image from their device's media library when the avatar icon is pressed on the
profile page. As we develop these modules, we'll look at exposing both native methods and
constants. We will also look at several different methods of communicating between
JavaScript and native code, including callbacks, promises, and events.

Native modules in iOS
As we mentioned at the beginning of this chapter, in order to follow along in this section,
you will need some basic Objective-C knowledge. When writing native modules for iOS, we
will also work in Xcode because this will automatically add our native files to the project.
This chapter also won't go into much detail about using Xcode, but luckily we do not need
many of its features. To open the project in Xcode, find the RNNYT.xcodeproj file within
the ios directory and double-click on it; this should open in Xcode by default.

In Objective-C, each module needs two files. The first is the header file and has a .h
extension. The header file describes the general interface of the module (how other
Objective-C code can interact with the module). The second is an implementation file,
which uses a .m extension and implements the interface described in the header file. We are
creating a native module that lets us interact with the device's image library, so we'll name
the module ImageLibraryManager and create two files for the module within the
ios/RNNYT directory: ImageLibraryManager.h and ImageLibraryManager.m.

Setting up the module
To add new files, right-click on the RNNYT folder in the left sidebar and click on New
File…, as shown in the following screenshot:

Using and Writing Native Modules

[367]

Select the Header File file type, as shown in the next screenshot:

Using and Writing Native Modules

[368]

Finally, give the file a name and ensure it is in the appropriate folder in the filesystem.

Xcode project structure and filesystem location are actually independent,
but for our sanity, we will keep them the same.

Using and Writing Native Modules

[369]

Repeat this process for the implementation file, choosing Objective-C File as the file type.
Then, give the file the appropriate name and select the Empty File template, as shown in
the following screenshot:

Once again, ensure we are placing this file within the ios/RNNYT/ directory on the
filesystem, as shown in the next screenshot:

Using and Writing Native Modules

[370]

Xcode will have probably filled in some boilerplate code into the header file that we created,
but we'll start replacing that content:

#import "RCTBridgeModule.h"

@interface ImageLibraryManager : NSObject <RCTBridgeModule>
@end

Our header file imports the RCTBridgeModule (React Bridge Module) interface:

#import "RCTBridgeModule.h"

We then describe the interface for the ImageLibraryManager as a class that extends from
the NSObject base class and implements the React Native Bridge protocol. All React Native
native modules for iOS need to implement this protocol:

@interface ImageLibraryManager : NSObject <RCTBridgeModule>
@end

We also need to replace the code in the ImageLibraryManager.m implementation file:

#import "ImageLibraryManager.h"

@implementation ImageLibraryManager

RCT_EXPORT_MODULE();

@end

Here we need to first import the header file:

#import "ImageLibraryManager.h"

Next, we need to create the implementation of the class described in the header file. In order
for this class to function properly as a React Native module, we also need to add the
RCT_EXPORT_MODULE macro:

@implementation ImageLibraryManager

RCT_EXPORT_MODULE();

@end

Using and Writing Native Modules

[371]

Finally, as of iOS 10, if an application will access the user's media library, it needs to
provide an explanation for this in the Info.plist file. To do this, select the Info.plist file on
the left-hand side in Xcode. Then, add this new value by selecting Privacy – Photo Library
Usage Description and providing a brief explanation, as shown in the following screenshot:

We've now added all of the boilerplate necessary to start writing a native module. With this
code, we've created a module that can be accessed in JavaScript. To access it, in the
Profile.js file, we have to import NativeModules from the react-native package,
which will now contain our new module:

import React, { Component } from 'react';
import {
 View,
 StyleSheet,
 NativeModules
} from 'react-native';
import Icon from 'react-native-vector-icons/EvilIcons';
import Title from './Title';
import AppText from './AppText';
import * as globalStyles from '../styles/global';

const { ImageLibraryManager } = NativeModules;

Currently, the ImageLibraryManager module exists, but has no functionality within it.
Throughout the rest of this section, we'll start adding both constant properties and methods
to the module to make it more useful.

Using and Writing Native Modules

[372]

Exporting methods
Just like we can export an entire module by using the RCT_EXPORT_MODULE macro, we can
export a method of that module by using the RCT_EXPORT_METHOD macro. We pass the
method we wish to export as an argument to this macro. Since we are creating this module
to allow the user to select an image from their image library, we'll call the method
selectImage:

RCT_EXPORT_METHOD(selectImage)
{
 // Code here
}

We'll also import the RCTLog so that we can test calling the newly exposed method:

#import "ImageLibraryManager.h"

#import "RCTLog.h"

@implementation ImageLibraryManager

RCT_EXPORT_MODULE();

RCT_EXPORT_METHOD(selectImage)
{
 RCTLogInfo(@"Selecting image...");
}

@end

Finally, we can now call this method from JavaScript when the user presses on the avatar
icon:

import React, { Component } from 'react';
import {
 View,
 StyleSheet,
 TouchableOpacity,
 NativeModules
} from 'react-native';
import Icon from 'react-native-vector-icons/EvilIcons';
import Title from './Title';
import AppText from './AppText';
import * as globalStyles from '../styles/global';

const { ImageLibraryManager } = NativeModules;

Using and Writing Native Modules

[373]

export default class Profile extends Component {

 render() {
 return (
 <View style={[globalStyles.COMMON_STYLES.pageContainer,
styles.container]}>
 <TouchableOpacity
 onPress={() => ImageLibraryManager.selectImage()}
 >
 <Icon
 name="user"
 style={styles.avatarIcon}
 />
 </TouchableOpacity>
 <Title>Username</Title>
 <AppText>Your Name</AppText>
 </View>
);
 }

}

const styles = StyleSheet.create({
 container: {
 justifyContent: 'center',
 alignItems: 'center'
 },
 avatarIcon: {
 color: globalStyles.HEADER_TEXT_COLOR,
 fontSize: 200
 }
});

We first import the TouchableOpacity component to add a press listener to the avatar
icon:

import React, { Component } from 'react';
import {
 View,
 StyleSheet,
 TouchableOpacity,
 NativeModules
} from 'react-native';
import Icon from 'react-native-vector-icons/EvilIcons';
import Title from './Title';
import AppText from './AppText';
import * as globalStyles from '../styles/global';

Using and Writing Native Modules

[374]

We then wrap the Icon component in the TouchableOpacity and here we can call the
new selectImage method when it is pressed:

<TouchableOpacity
 onPress={() => ImageLibraryManager.selectImage()}
>
 <Icon
 name="user"
 style={styles.avatarIcon}
 />
</TouchableOpacity>

Now, when we rebuild the project and press the avatar, we should see the message
Selecting image… in the Chrome console. Another important note when working with
native modules is that, whenever the native code changes, you will have to rebuild for that
platform (in this case react-native run-ios); a JavaScript refresh is not sufficient.

We now need to implement the native behavior. We'll be making use of a native iOS class
UIImagePickerController and thus will need to import UIKit in the header file:

#import "RCTBridgeModule.h"
#import <UIKit/UIKit.h>

@interface ImageLibraryManager : NSObject <RCTBridgeModule>
@end

We can now complete the implementation of this module's selectImage method in the
implementation file:

#import "ImageLibraryManager.h"

#import "RCTLog.h"

@import MobileCoreServices;

@implementation ImageLibraryManager

RCT_EXPORT_MODULE();

RCT_EXPORT_METHOD(selectImage)
{
 RCTLogInfo(@"Selecting image...");

 UIImagePickerController *picker = [[UIImagePickerController alloc]
init];
 picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
 picker.mediaTypes = @[(NSString *)kUTTypeImage];

Using and Writing Native Modules

[375]

 picker.modalPresentationStyle = UIModalPresentationCurrentContext;
 picker.delegate = self;
 UIViewController *root = [[[[UIApplication sharedApplication] delegate]
window] rootViewController];
 [root presentViewController:picker animated:YES completion:nil];
}

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 NSString *fileName = [[[NSUUID UUID] UUIDString]
stringByAppendingString:@".jpg"];
 NSString *path = [[NSTemporaryDirectory()stringByStandardizingPath]
stringByAppendingPathComponent:fileName];
 UIImage *image = [info
objectForKey:UIImagePickerControllerOriginalImage];
 NSData *data = UIImageJPEGRepresentation(image, 0);
 [data writeToFile:path atomically:YES];
 NSURL *fileURL = [NSURL fileURLWithPath:path];
 NSString *filePath = [fileURL absoluteString];

 RCTLog(@"%@", filePath);

 [picker dismissViewControllerAnimated:YES completion:nil];
}

@end

There is a lot happening here, so let's break it down. The first thing we do in the
selectImage method is create a new UIImagePickerController instance:

UIImagePickerController *picker = [[UIImagePickerController alloc] init];

Next we set some properties on the picker to tell the image picker how to display it and
what types of media can be selected:

picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
picker.mediaTypes = @[(NSString *)kUTTypeImage];
picker.modalPresentationStyle = UIModalPresentationCurrentContext;

Using and Writing Native Modules

[376]

The kUTTypeImage constant comes from the MobileCoreServices library, so that will
have to be imported:

@import MobileCoreServices;

Next, we set the delegate for the picker instance. In Objective-C, a delegate is an instance
of a class that implements a specific protocol. This allows certain functionality (for instance,
what to do when the image is selected) to be delegated to another object of our choosing.
For this example, we'll make the ImageLibraryManager instance itself (self) the delegate:

picker.delegate = self;

We then find the root view controller that is currently active:

UIViewController *root = [[[[UIApplication sharedApplication] delegate]
window] rootViewController];

We'll use that view controller to open up our image picker instance:

[root presentViewController:picker animated:YES completion:nil];

That completes the selectImage method. However, for the delegation portion to actually
work, we need to do two things. First, we need to update the header file to ensure that our
ImageLibraryManager class implements the appropriate protocols, in addition to the
RCTBridgeModule that it previously implemented:

#import "RCTBridgeModule.h"
#import <UIKit/UIKit.h>

@interface ImageLibraryManager : NSObject <RCTBridgeModule,
UINavigationControllerDelegate, UIImagePickerControllerDelegate>
@end

As we can see, two protocols are needed to be a delegate for the
UIImagePickerController: UINavigationControllerDelegate and
UIImagePickerControllerDelegate.

Second, we need to add the implementation of these protocols, which is a method that is
called when the image picking has been completed by the user, named
imagePickerController:didFinishPickingMediaWithInfo:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 NSString *fileName = [[[NSUUID UUID] UUIDString]
stringByAppendingString:@".jpg"];

Using and Writing Native Modules

[377]

 NSString *path = [[NSTemporaryDirectory()stringByStandardizingPath]
stringByAppendingPathComponent:fileName];
 UIImage *image = [info
objectForKey:UIImagePickerControllerOriginalImage];
 NSData *data = UIImageJPEGRepresentation(image, 0);
 [data writeToFile:path atomically:YES];
 NSURL *fileURL = [NSURL fileURLWithPath:path];
 NSString *filePath = [fileURL absoluteString];

 RCTLog(@"%@", filePath);

 [picker dismissViewControllerAnimated:YES completion:nil];
}

We first have to do a number of things to extract the selected image and get a temporary file
path to it:

NSString *fileName = [[[NSUUID UUID] UUIDString]
stringByAppendingString:@".jpg"];
NSString *path = [[NSTemporaryDirectory()stringByStandardizingPath]
stringByAppendingPathComponent:fileName];
UIImage *image = [info objectForKey:UIImagePickerControllerOriginalImage];
NSData *data = UIImageJPEGRepresentation(image, 0);
[data writeToFile:path atomically:YES];
NSURL *fileURL = [NSURL fileURLWithPath:path];
NSString *filePath = [fileURL absoluteString];

For now, we'll log the extracted file path so that we can see what is happening in the
Chrome JavaScript console:

RCTLog(@"%@", filePath);

Finally, we close the image picker so that the user is returned to the profile page:

[picker dismissViewControllerAnimated:YES completion:nil];

Now, when we rebuild our iOS application, we can open the image picker by pressing on
the profile page's avatar icon. When we select the image, the image picker will close and
we'll see the file path logged in the console.

We now have a working native module. However, we don't yet have a way to communicate
the result of the image selection back to our JavaScript. There are a few ways that we could
potentially tackle this and we will examine each.

Using and Writing Native Modules

[378]

Communicating with callbacks
In JavaScript, callback functions are a common and traditional way to handle
communication for asynchronous tasks. At a high level, a callback function is one that is
called when an asynchronous task completes and is often passed the result of that
asynchronous task. We can use callback functions when calling native module methods,
which are necessarily asynchronous.

The first step here is to add a callback function as a parameter to the exposed native
method. We use React Native's RCTResponseSenderBlock type to represent the callback
function in Objective-C:

RCT_EXPORT_METHOD(selectImage:(RCTResponseSenderBlock)callback)

We aren't actually going to call the callback function until the user selects the image,
which happens in the delegate method, so we need to store the callback function in an
instance variable that can be accessed in either method. First, we'll declare the property on
the class:

@interface ImageLibraryManager ()

@property (nonatomic, strong) RCTResponseSenderBlock callback;

@end

Next, in the selectImage method, we'll assign the callback function passed to the
instance variable:

RCTLogInfo(@"Selecting image...");
self.callback = callback;

Finally, we'll call the callback function when we have the selected image's temporary file
path:

RCTLog(@"%@", filePath);
self.callback(@[filePath]);

The RCTResponseSenderBlock callback takes an array of arguments that will be passed to
the JavaScript callback function. When accepting arguments from JavaScript or calling
JavaScript callback functions, we need to ensure that the data we pass in is serializable as
JSON data (so that it can be interpreted by both languages). An NSString value, such as the
filePath, is serializable, so this should work without issue.

Using and Writing Native Modules

[379]

The final step is to actually pass in a callback function from the Profile.js JavaScript file.
We'll first reorganize the component by adding an onSelectImage method and binding
the this context in the component's constructor:

constructor(props) {
 super(props);
 this.state = {};
 this.onSelectImage = this.onSelectImage.bind(this);
}

onSelectImage() {
 ImageLibraryManager.selectImage();
}

We'll call this new function when the avatar icon is pressed:

<TouchableOpacity
 onPress={this.onSelectImagePromise}
>
 <Icon
 name="user"
 style={styles.avatarIcon}
 />
</TouchableOpacity>

Now, let's pass in a callback function to the selectImage native method. Our callback
will add the selected URL to the state of the component:

onSelectImage() {
 ImageLibraryManager.selectImage((url) => {
 this.setState({
 profileImageUrl: url
 });
 });
}

Finally, we'll use this URL to display the selected image in place of the avatar icon when it
has been selected. To do this, we'll first need to add the Image component to our import
statements:

import React, { Component } from 'react';
import {
 View,
 StyleSheet,
 TouchableOpacity,
 NativeModules,
 Image

Using and Writing Native Modules

[380]

} from 'react-native';
import Icon from 'react-native-vector-icons/EvilIcons';
import Title from './Title';
import AppText from './AppText';
import * as globalStyles from '../styles/global';

We'll also add some styles for the profile image to the StyleSheet:

const styles = StyleSheet.create({
 container: {
 justifyContent: 'center',
 alignItems: 'center'
 },
 avatarIcon: {
 color: globalStyles.HEADER_TEXT_COLOR,
 fontSize: 200
 },
 profileImage: {
 width: 150,
 height: 150,
 borderRadius: 75
 }
});

Then, we'll create a helper function that is responsible for rendering the profile image if it
has been selected:

renderProfileImage() {
 if (this.state.profileImageUrl) {
 return (
 <Image
 source={{ uri: this.state.profileImageUrl }}
 style={styles.profileImage}
 />
);
 }
 return (
 <Icon
 name="user"
 style={styles.avatarIcon}
 />
);
}

Using and Writing Native Modules

[381]

Finally, we need to update the main render() method to use the new helper function
instead of rendering the Icon component directly:

render() {
 return (
 <View style={[globalStyles.COMMON_STYLES.pageContainer,
styles.container]}>
 <TouchableOpacity
 onPress={this.onSelectImage}
 >
 {this.renderProfileImage()}
 </TouchableOpacity>
 <Title>Username</Title>
 <AppText>Your Name</AppText>
 </View>
);
}

We should now be able to select an image from the image library and see it appear within
the profile page in place of the avatar icon. This is now a complete and functional
integration with a native module, but in the next two sections, we'll examine two other
communication methods that can be used as an alternative to callback functions.

It is important to point out at this point that we are not persisting this
image selection in any way. If we wanted to make this a fully functioning
profile, we'd need some way to store the user's selection, which is outside
of the scope of this chapter.

Communicating with promises
Just like callbacks, promises in JavaScript are used to handle responses to asynchronous
tasks. We can write a second JavaScript method that uses the promise syntax instead of
passing in a callback function. Then, we'll update our native module to respond to callbacks
or promises.

First, we'll define an onSelectImagePromise method in the Profile.js file's Profile
component class that functionally behaves the same as onSelectImage, but uses the
promise syntax instead of a callback function:

onSelectImagePromise() {
 ImageLibraryManager.selectImagePromise().then((url) => {
 this.setState({
 profileImageUrl: url
 });
 });

Using and Writing Native Modules

[382]

}

We will also need to bind the this context in the constructor:

constructor(props) {
 super(props);
 this.state = {};
 this.onSelectImage = this.onSelectImage.bind(this);
 this.onSelectImagePromise = this.onSelectImagePromise.bind(this);
}

Now, let's use the following function when the avatar icon is pressed instead of the original
callback-based method:

<TouchableOpacity
 onPress={this.onSelectImagePromise}
>
 {this.renderProfileImage()}
</TouchableOpacity>

The JavaScript code is now ready to communicate through promises in lieu of a callback
function, but we need to also update the native code within the ImageLibraryManager.m
file. We'll add a new selectImagePromise method to the native module that takes
the resolve and reject parameters instead of the callback. React Native will notice that
the final two parameters of this method are promise related and will allow us to
communicate back to JavaScript by using them:

RCT_EXPORT_METHOD(selectImagePromise:(RCTPromiseResolveBlock)resolve
 rejecter:(RCTPromiseRejectBlock)reject)
{
 RCTLogInfo(@"Selecting image...");
 self.resolve = resolve;
 self.reject = reject;

 [self openPicker];
}

Just like the callback, we need to store the resolve and reject functions in instance
variables so that they can be accessed after the user has selected the image. We create the
instance variables in the private interface:

@interface ImageLibraryManager ()

@property (nonatomic, strong) RCTResponseSenderBlock callback;
@property (nonatomic, strong) RCTPromiseResolveBlock resolve;
@property (nonatomic, strong) RCTPromiseRejectBlock reject;

Using and Writing Native Modules

[383]

@end

And then we assign them in the selectImagePromise method:

self.resolve = resolve;
self.reject = reject;

Because the selectImage and selectImagePromise methods share much of the same
code, we've broken out that functionality into a helper function called openPicker:

- (void)openPicker
{
 UIImagePickerController *picker = [[UIImagePickerController alloc]
init];
 picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
 picker.mediaTypes = @[(NSString *)kUTTypeImage];
 picker.modalPresentationStyle = UIModalPresentationCurrentContext;
 picker.delegate = self;
 UIViewController *root = [[[[UIApplication sharedApplication] delegate]
window] rootViewController];
 [root presentViewController:picker animated:YES completion:nil];
}

Then we can call it in both of the exported methods:

[self openPicker];

Finally, in the delegate imagePickerController method, we need to determine which
communication method to use. We'll do this by checking which instance variable is not nil:

RCTLog(@"%@", filePath);

if (self.callback != nil) {
 self.callback(@[filePath]);
} else if (self.resolve != nil) {
 self.resolve(filePath);
}

Once we rebuild, our application should now communicate using a promise instead of a
callback function. We didn't make use of the reject parameter in the native module, but
in a real application, this would be called in the event of an error.

Using and Writing Native Modules

[384]

Communicating with events
The final way that we can communicate from a native module to JavaScript is by using
events. Events can be triggered at any time by a native module and can be listened to by
any number of JavaScript components. These features make the use case for events slightly
different than that for callbacks or promises.

Events are especially useful when an action is not initiated by JavaScript, but instead
initiated by the native code. An example of this might be a user gesture that happens in a
custom native module. Events are also a useful paradigm when more than one JavaScript
component needs to be aware of the action.

For our application, we'll add events to the beginning and end of the image selection
process and allow JavaScript components to listen to these events should they choose to. To
do this, we'll first need to make our ImageLibraryManager class extend the
RCTEventEmitter class instead of the NSObject class. The RCTEventEmitter class comes
with methods for sending events over the React Native bridge:

#import "RCTBridgeModule.h"
#import "RCTEventEmitter.h"
#import <UIKit/UIKit.h>

@interface ImageLibraryManager : RCTEventEmitter <RCTBridgeModule,
UINavigationControllerDelegate, UIImagePickerControllerDelegate>
@end

Extending the RCTEventEmitter class requires us to implement the supportedEvents
method that returns an array of event name strings. We'll add this method to the
ImageLibraryManager.m implementation file:

- (NSArray<NSString *> *)supportedEvents {
 return @[@"ImageSelectionStarted", @"ImageSelectionEnded"];
}

Here we've added two supported event—one called @"ImageSelectionStarted" and
another called @"ImageSelectionEnded". Now, we'll send an event at the beginning of
the openPicker function that indicates the image selection process has started:

- (void)openPicker
{
 [self sendEventWithName:@"ImageSelectionStarted" body:nil];
 UIImagePickerController *picker = [[UIImagePickerController alloc] init];
 ...
}

Using and Writing Native Modules

[385]

Likewise, we'll send an event when the selection completes in the
imagePickerController method, this time sending along the selected URL in the body of
the event:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 ...

 [self sendEventWithName:@"ImageSelectionEnded" body:filePath];
 [picker dismissViewControllerAnimated:YES completion:nil];
}

When we rebuild, our native module is now sending events. However, no JavaScript
components are listening to these events. To start listening to these events (or any native
events), we'll need to import from the react-native package the NativeEventEmitter
module into Profile.js:

import React, { Component } from 'react';
import {
 View,
 StyleSheet,
 TouchableOpacity,
 NativeModules,
 Image,
 NativeEventEmitter
} from 'react-native';
import Icon from 'react-native-vector-icons/EvilIcons';
import Title from './Title';
import AppText from './AppText';
import * as globalStyles from '../styles/global';

We will subscribe to the image library manager's events when the component mounts, so
we'll need to add a lifecycle method to the component:

componentWillMount() {
 const imageLibraryEvents = new NativeEventEmitter(ImageLibraryManager);
 this.setState({
 startEventSubscription: imageLibraryEvents.addListener(
 "ImageSelectionStarted",
 () => console.log('Image Selection Started')
),
 endEventSubscription: imageLibraryEvents.addListener(
 "ImageSelectionEnded",
 url => console.log('Image Selection Ended', url)
)
 });

Using and Writing Native Modules

[386]

}

We start by creating a new NativeEventEmitter object for the ImageLibraryManager
native module:

const imageLibraryEvents = new NativeEventEmitter(ImageLibraryManager);

When we add a listener, we need to specify both the event we want to listen to (that is,
"ImageSelectionStarted") and a callback function to run when the event is triggered.
For the start event, our callback function is simply logging to the console:

imageLibraryEvents.addListener(
 "ImageSelectionStarted",
 () => console.log('Image Selection Started')
)

The addListener function returns a subscription object that can be used to remove the
listener at a later point in time. We'll store this subscription in the component's state so that
we can ultimately remove it when the component is unmounted:

this.setState({
 startEventSubscription: imageLibraryEvents.addListener(
 "ImageSelectionStarted",
 () => console.log('Image Selection Started')
),
 endEventSubscription: imageLibraryEvents.addListener(
 "ImageSelectionEnded",
 url => console.log('Image Selection Ended', url)
)
});

Finally, we'll add a componentWillUnmount lifecycle method to remove the subscriptions
when the component is removed from the application:

componentWillUnmount() {
 this.state.startEventSubscription.remove();
 this.state.endEventSubscription.remove();
}

Now when we run the application, we will see event messages in the JavaScript console in
Chrome in addition to the console messages we left earlier. Though we aren't using these to
do anything other than login at this point, they could easily be used to replace the callback
and promise methods.

Using and Writing Native Modules

[387]

Exporting constants
In addition to exporting methods, we can also export constants from our native modules.
For our example, we'll make the names of the events being triggering constants instead of
hard-coded strings. In order to export constants, the native module must define a
constantsToExport method that returns a dictionary of constants.

The first thing we'll do in our ImageLibraryManager example is define a couple of string
constants at the top of the implementation file:

static NSString *const StartEvent = @"ImageSelectionStarted";
static NSString *const EndEvent = @"ImageSelectionEnded";

We'll then refactor the event triggering methods to use these constants instead of the hard-
coded strings:

[self sendEventWithName:StartEvent body:nil];

Finally, we'll define the constantsToExport method that allows these constants to be
exported as part of the React Native native module:

- (NSDictionary *)constantsToExport
{
 return @{ @"startEvent": StartEvent, @"endEvent": EndEvent };
}

With the constants exported, they can now be accessed as top-level keys on the JavaScript
ImageLibraryManager object:

ImageLibraryManager.startEvent
// 'ImageSelectionStarted'

In our Profile component, we'll replace the hard-coded event names used when adding
the event listeners:

componentWillMount() {
 const imageLibraryEvents = new NativeEventEmitter(ImageLibraryManager);
 this.setState({
 startEventSubscription: imageLibraryEvents.addListener(
 ImageLibraryManager.startEvent,
 () => console.log('Image Selection Started')
),
 endEventSubscription: imageLibraryEvents.addListener(
 ImageLibraryManager.endEvent,
 url => console.log('Image Selection Ended', url)
)
 });

Using and Writing Native Modules

[388]

}

We now have a complete native module that exports both methods and constants and
communicates with JavaScript through callback functions, promises, and events. However,
our Android application is now broken because the native module is only defined in iOS.
The next step will be to create parity on Android by porting the module to that platform.

Native modules in Android
Just like native modules for iOS are written in their native language, Objective-C, native
modules for Android are written in the native Android language, Java. Once again, this
chapter will not go into great detail about Java and the Android ecosystem at large, but will
just focus on the interface between native Android code and React Native JavaScript code.

We will also use Android Studio to develop our Android native module as it provides the
best Java development experience. Like Objective-C, Java is an object-oriented language. To
create our native module, we'll be creating a new class that has the same name as the one
used in the previous section. It will be contained in the ImageLibraryManager.java file.
We will also need to create an ImageLibraryManagerPackage.java class that will be
used to register the module.

Our goal in this section is to build an Android native module that has the exact same API as
the iOS module. This will ensure that our JavaScript code in Profile.js does not have to
be updated at all and can run the same on both platforms.

Setting up the module
To open our project in Android Studio, first open the Android Studio application and then
open the android directory of the RNNYT application. When you do this, you should see
two modules on the left-hand-side Project tab. We will be working in the app module, so
let's first expand it and find the com.rnnyt package inside the src/java folder.

Using and Writing Native Modules

[389]

Currently, there should only be two classes within this package, MainActivity and
MainApplication, as shown in the following screenshot:

To add our new module class, right-click on the com.rnnyt package, and then click on New
and then Java Class, as shown in the following screenshot:

Using and Writing Native Modules

[390]

In the resulting dialog, type in the name of our new class, ImageLibraryManager, as shown
in the following screenshot:

Repeat this process for the other ImageLibraryManagerPackage class.

When we create the classes, Android Studio will provide us with some boilerplate. We'll
start in the ImageLibraryManager class:

package com.rnnyt;

public class ImageLibraryManager {
}

In order to turn this empty class into a React Native native module, we must do a few
things. First, all native modules must extend the ReactContextBaseJavaModule class:

package com.rnnyt;

import com.facebook.react.bridge.ReactContextBaseJavaModule;

public class ImageLibraryManager extends ReactContextBaseJavaModule {
}

The ReactContextBaseJavaModule class is abstract and requires us to implement a
method called getName, which defines the name by which the module is accessed in
JavaScript. We'll make ours consistent with the class name:

package com.rnnyt;

import com.facebook.react.bridge.ReactContextBaseJavaModule;

public class ImageLibraryManager extends ReactContextBaseJavaModule {

 @Override
 public String getName() {
 return "ImageLibraryManager";

Using and Writing Native Modules

[391]

 }

}

The abstract class also requires us to add a constructor that calls the super class constructor:

package com.rnnyt;

import com.facebook.react.bridge.ReactApplicationContext;
import com.facebook.react.bridge.ReactContextBaseJavaModule;

public class ImageLibraryManager extends ReactContextBaseJavaModule {

 public ImageLibraryManager(ReactApplicationContext reactContext) {
 super(reactContext);
 }

 @Override
 public String getName() {
 return "ImageLibraryManager";
 }

}

We now need to register the module and we'll do so by editing the
ImageLibraryManagerPackage class. This class needs to implement the ReactPackage
interface:

package com.rnnyt;

import com.facebook.react.ReactPackage;

public class ImageLibraryManagerPackage implements ReactPackage {
}

The ReactPackage interface requires us to implement several methods:

package com.rnnyt;

import com.facebook.react.ReactPackage;
import com.facebook.react.bridge.JavaScriptModule;
import com.facebook.react.bridge.NativeModule;
import com.facebook.react.bridge.ReactApplicationContext;
import com.facebook.react.uimanager.ViewManager;

import java.util.List;

public class ImageLibraryManagerPackage implements ReactPackage {

Using and Writing Native Modules

[392]

 @Override
 public List<NativeModule> createNativeModules(ReactApplicationContext
reactContext) {
 return null;
 }

 @Override
 public List<Class<? extends JavaScriptModule>> createJSModules() {
 return null;
 }

 @Override
 public List<ViewManager> createViewManagers(ReactApplicationContext
reactContext) {
 return null;
 }
}

Our only goal for this package is to register a native module so that we can return empty
lists for the createViewManagers and createJSModules methods:

package com.rnnyt;

import com.facebook.react.ReactPackage;
import com.facebook.react.bridge.JavaScriptModule;
import com.facebook.react.bridge.NativeModule;
import com.facebook.react.bridge.ReactApplicationContext;
import com.facebook.react.uimanager.ViewManager;

import java.util.Collections;
import java.util.List;

public class ImageLibraryManagerPackage implements ReactPackage {
 @Override
 public List<NativeModule> createNativeModules(ReactApplicationContext
reactContext) {
 return null;
 }

 @Override
 public List<Class<? extends JavaScriptModule>> createJSModules() {
 return Collections.emptyList();
 }

 @Override
 public List<ViewManager> createViewManagers(ReactApplicationContext
reactContext) {
 return Collections.emptyList();

Using and Writing Native Modules

[393]

 }
}

However, for the createNativeModules method, we will need to return a list containing
an instance of our ImageLibraryManager class:

package com.rnnyt;

import com.facebook.react.ReactPackage;
import com.facebook.react.bridge.JavaScriptModule;
import com.facebook.react.bridge.NativeModule;
import com.facebook.react.bridge.ReactApplicationContext;
import com.facebook.react.uimanager.ViewManager;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class ImageLibraryManagerPackage implements ReactPackage {
 @Override
 public List<NativeModule> createNativeModules(ReactApplicationContext
reactContext) {
 List<NativeModule> nativeModules = new ArrayList<>();
 nativeModules.add(new ImageLibraryManager(reactContext));
 return nativeModules;
 }

 @Override
 public List<Class<? extends JavaScriptModule>> createJSModules() {
 return Collections.emptyList();
 }

 @Override
 public List<ViewManager> createViewManagers(ReactApplicationContext
reactContext) {
 return Collections.emptyList();
 }
}

Our final step in the registration process is to update the MainApplication class to add an
instance of our ImageLibraryManagerPackage to the list of application packages:

@Override
protected List<ReactPackage> getPackages() {
 return Arrays.<ReactPackage>asList(
 new MainReactPackage(),
 new ImageLibraryManagerPackage()
);

Using and Writing Native Modules

[394]

}

We have now gone through the setup process for an Android native module. This process
could be repeated anytime we need to construct a native module. We are now ready to start
developing the image picker for Android.

Exporting methods
To export a method in an Android module, we simply add an @ReactMethod annotation to
any public method within the module class, ImageLibraryManager. We're going to start
with the selectImage method that allows a user to select an image from their image
library:

@ReactMethod
public void selectImage() {
 Activity currentActivity = getCurrentActivity();

 Intent libraryIntent = new Intent(Intent.ACTION_PICK,
android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);

 currentActivity.startActivityForResult(libraryIntent, 1);
}

In this method, we start by getting the currently visible Android Activity:

Activity currentActivity = getCurrentActivity();

Next, we create an Intent instance that indicates we want to open the media library in
order to select an image:

Intent libraryIntent = new Intent(Intent.ACTION_PICK,
android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);

Finally, we send this intent to the current Activity to open the media library:

currentActivity.startActivityForResult(libraryIntent, 1);

Now that we've opened the Activity media library, we need our class to be able to listen
to when the image selection has been completed. To do this, we need our class to
implement the ActivityEventListener interface:

public class ImageLibraryManager extends ReactContextBaseJavaModule
implements ActivityEventListener {

Using and Writing Native Modules

[395]

This interface requires us to implement two methods. The first, onActivityResult, is the
method we are primarily concerned with; it will be called when the image selection has
completed. Here we will extract the image URL that was selected. The second,
onNewIntent, we won't use, so we'll leave this method empty:

@Override
public void onActivityResult(Activity activity, int requestCode, int
resultCode, Intent data) {
 String filePath = data.getDataString();
}

@Override
public void onNewIntent(Intent intent) {

}

Finally, now that the ImageLibraryManager class implements the
ActivityEventListener interface, we need to update the constructor to set the instance
as an activity listener. This is similar to the iOS delegate pattern that we used in the
previous section:

public ImageLibraryManager(ReactApplicationContext reactContext) {
 super(reactContext);
 reactContext.addActivityEventListener(this);
}

We now have the basic method set up for our Android native module. The next step is to
communicate the result of this selection back to JavaScript.

Communicating with callbacks
Like we saw in the iOS module, the first strategy we can use to communicate with
JavaScript is by accepting a callback function into the native method. The first step in this
process is to add a Callback as a parameter to the selectImage method. The Callback
class is contained in the com.facebook.react.bridge package:

@ReactMethod
public void selectImage(Callback callback) {

Using and Writing Native Modules

[396]

We will call the callback function when the user has finished selecting the image, so once
again, we will need to store the callback in an instance variable. In Android classes, instance
variables are typically prefixed with the m character. First, we create the field at the top of
the class:

private Callback mCallback;

Then we assign the value within the selectImage method:

@ReactMethod
public void selectImage(Callback callback) {
 mCallback = callback;

Now we can invoke that callback function when the selection has completed:

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data)
{
 String filePath = data.getDataString();
 mCallback.invoke(filePath);
}

The arguments passed to invoke need to be JSON serializable as they will be passed to the
JavaScript callback. Now, we have a selectImage method in our Android native module
that conforms exactly to the API of its iOS counterpart.

Communicating with promises
We can also use promises in the Android native module to communicate back to JavaScript.
In Objective-C, to use a promise, you must add two parameters to the method: a resolver
and a rejector. In Java, you only need a single parameter: a
com.facebook.react.bridge.Promise. We'll create a new method
selectImagePromise method that has this promise parameter:

@ReactMethod
public void selectImagePromise(Promise promise) {

}

Using and Writing Native Modules

[397]

Just like we stored the callback function in an instance variable, we will also store the
promise in a new instance variable called mPromise:

private Promise mPromise;

...

@ReactMethod
public void pickImagePromise(Promise promise) {
 mPromise = promise;
}

Since the rest of the behavior for selectImagePromise is the same as the callback version,
selectImage, we'll abstract that logic into an openPicker helper function:

@ReactMethod
public void selectImage(Callback callback) {
 mCallback = callback;
 openPicker();
}

@ReactMethod
public void selectImagePromise(Promise promise) {
 mPromise = promise;
 openPicker();
}

private void openPicker() {
 Activity currentActivity = getCurrentActivity();

 Intent libraryIntent = new Intent(Intent.ACTION_PICK,
android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);

 currentActivity.startActivityForResult(libraryIntent, 1);
}

Finally, in the onActivityResult method, we need to check if the promise or callback
instance variables have been set before calling them:

@Override
public void onActivityResult(Activity activity, int requestCode, int
resultCode, Intent data) {
 String filePath = data.getDataString();

 if (mCallback != null) {
 mCallback.invoke(filePath);
 } else if (mPromise != null) {
 mPromise.resolve(filePath);

Using and Writing Native Modules

[398]

 }
}

Since our JavaScript Profile component uses this selectImagePromise method in its
current form, we are close to being able to use this Android native module. However, our
module isn't quite at parity yet as there is one more method of communication remains.

Communicating with events
The final way to communicate back to JavaScript is by sending events through the device
event emitter. We use the ReactContext to emit these events, so the first thing we need to
do is store a reference to the context in an instance variable:

private Callback mCallback;
private Promise mPromise;
private ReactContext mReactContext;

public ImageLibraryManager(ReactApplicationContext reactContext) {
 super(reactContext);

 reactContext.addActivityEventListener(this);

 mReactContext = reactContext;
}

We'll emit the start event in the openPicker method using the stored context:

private void openPicker() {
 mReactContext
 .getJSModule(DeviceEventManagerModule.RCTDeviceEventEmitter.class)
 .emit("ImageSelectionStarted", null);

 Activity currentActivity = getCurrentActivity();

 Intent libraryIntent = new Intent(Intent.ACTION_PICK,
 android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);

 currentActivity.startActivityForResult(libraryIntent, 1);
}

Using and Writing Native Modules

[399]

In this line of code, we get the device event emitter from the react context and then use it to
emit an event. The first argument passed to emit is the name of the event and the second is
a data object. Since there is no additional data that we need to send for this event, we have
left the second argument null:

mReactContext
.getJSModule(DeviceEventManagerModule.RCTDeviceEventEmitter.class)
.emit("ImageSelectionStarted", null);

We also need to emit an event after the image selection has completed. This time we will
send the image's filePath along with the event:

@Override
public void onActivityResult(Activity activity, int requestCode, int
resultCode, Intent data) {
 String filePath = data.getDataString();

 if (mCallback != null) {
 mCallback.invoke(filePath);
 } else if (mPromise != null) {
 mPromise.resolve(filePath);
 }

 mReactContext
 .getJSModule(DeviceEventManagerModule.RCTDeviceEventEmitter.class)
 .emit("ImageSelectionEnded", filePath);
}

Our native Android module will now emit an event just before the image library opens and
another right when it ends.

Exporting constants
Before these will start working again in our React Native application, we will have to also
export the names of the events as constants. In order to do this, we'll first create constants
within the Java class:

private static final String START_EVENT = "ImageSelectionStarted";
private static final String END_EVENT = "ImageSelectionEnded";

Using and Writing Native Modules

[400]

We can now replace hard-coded strings in the class with these constants:

mReactContext
.getJSModule(DeviceEventManagerModule.RCTDeviceEventEmitter.class)
.emit(START_EVENT, null);
...
mReactContext
.getJSModule(DeviceEventManagerModule.RCTDeviceEventEmitter.class)
.emit(END_EVENT, filePath);

Finally, we can export these constants to JavaScript by implementing a method called
getConstants that returns a map of constants:

@Nullable
@Override
public Map<String, Object> getConstants() {
 Map<String, Object> constants = new HashMap<>();
 constants.put("startEvent", START_EVENT);
 constants.put("endEvent", END_EVENT);
 return constants;
}

We've now completed our Android native module. Not only does it behave in the same
way as the iOS module, but it also has the same application programming interface. This
means that, in JavaScript, we can write code that is not platform aware. Let's take a look at
the ImageLibraryManager in its entirety:

package com.rnnyt;

import android.app.Activity;
import android.content.Intent;

import com.facebook.react.bridge.ActivityEventListener;
import com.facebook.react.bridge.Callback;
import com.facebook.react.bridge.Promise;
import com.facebook.react.bridge.ReactApplicationContext;
import com.facebook.react.bridge.ReactContext;
import com.facebook.react.bridge.ReactContextBaseJavaModule;
import com.facebook.react.bridge.ReactMethod;
import com.facebook.react.modules.core.DeviceEventManagerModule;

import java.util.HashMap;
import java.util.Map;

import javax.annotation.Nullable;

public class ImageLibraryManager extends ReactContextBaseJavaModule
implements ActivityEventListener {

Using and Writing Native Modules

[401]

 private static final String START_EVENT = "ImageSelectionStarted";
 private static final String END_EVENT = "ImageSelectionEnded";

 private Callback mCallback;
 private Promise mPromise;
 private ReactContext mReactContext;

 public ImageLibraryManager(ReactApplicationContext reactContext) {
 super(reactContext);

 reactContext.addActivityEventListener(this);

 mReactContext = reactContext;
 }

 @Override
 public String getName() {
 return "ImageLibraryManager";
 }

 @Nullable
 @Override
 public Map<String, Object> getConstants() {
 Map<String, Object> constants = new HashMap<>();
 constants.put("startEvent", START_EVENT);
 constants.put("endEvent", END_EVENT);
 return constants;
 }

 @ReactMethod
 public void selectImage(Callback callback) {
 mCallback = callback;
 openPicker();
 }

 @ReactMethod
 public void selectImagePromise(Promise promise) {
 mPromise = promise;
 openPicker();
 }

 private void openPicker() {
 mReactContext
 .getJSModule(DeviceEventManagerModule.RCTDeviceEventEmitter.class)
 .emit(START_EVENT, null);

 Activity currentActivity = getCurrentActivity();

Using and Writing Native Modules

[402]

 Intent libraryIntent = new Intent(Intent.ACTION_PICK,
 android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);

 currentActivity.startActivityForResult(libraryIntent, 1);
 }

 @Override
 public void onActivityResult(Activity activity, int requestCode, int
resultCode, Intent data) {
 String filePath = data.getDataString();
 if (mCallback != null) {
 mCallback.invoke(filePath);
 } else if (mPromise != null) {
 mPromise.resolve(filePath);
 }

 mReactContext
 .getJSModule(DeviceEventManagerModule.RCTDeviceEventEmitter.class)
 .emit(END_EVENT, filePath);
 }

 @Override
 public void onNewIntent(Intent intent) {

 }
}

Summary
Though React Native gives us access to many native visual components and APIs, there are
some situations where we need direct access to the native code. To do this, we can either
find an open source module that has been written to solve our problem or we can write our
own. Writing native modules requires knowledge of the native ecosystem and language.

It is important to note that the native module we developed in this chapter is not
production ready. If we were writing this module for production, we would need to add
sufficient error handling and configuration options. Luckily, there are open source
alternatives that we can use to select images and videos from the native media library.

In the next chapter, we'll take our application and begin preparing it for production.
Specifically, we'll look at testing React Native applications, running them on real devices,
performance optimizations, and deploying them to app stores.

11
Preparing for Production

Now that we have a completely functional, cross-platform application written using React
Native, we need to start thinking about getting it into the hands of users. Our ultimate goal
is to get an application into each platform's App Store, but there are several steps along the
way. In this chapter, we'll take our application from feature-complete to production-ready.
While most of the high-level steps mirror those for a completely native application, the
details we'll focus on are those that are specific to React Native.

Through the context of the RNNYT application, this chapter will cover a plethora of
practical matters including:

Unit and component-testing React Native JavaScript code using Jest
Performance analysis and optimization of React Native applications
Running on a physical device
Deploying React Native applications to the Apple App Store and the Google Play
Store

Testing
In software development, there are several different kinds of testing. Each variety of testing
serves a different purpose. Unit testing is used to ensure the accuracy of a single unit of
computation. Component testing is a method of testing that ensures that the individual
units work in concert when combined into a component, for instance, a React Native UI
component.

Preparing for Production

[404]

In the React community, the primary tool for application testing is a library called Jest. Jest
is an open source testing library, also created by Facebook, that builds on the functionality
of a popular testing framework called Jasmine. Jest adds functionality to Jasmine to both
make testing of JavaScript applications more robust and to add methods for testing React
(and React Native) components.

Using Jest is so common among React Native developers, in fact, that it is now
automatically installed and configured when an application is initialized (using react-
native init). Looking in the package.json file for our RNNYT project will reveal Jest
configuration that we do not need to change, but is helpful to know about. First, we see that
jest is installed as a devDependency in addition to a few other Jest-related Node modules.
Refer to the following code snippet:

"devDependencies": {
 "babel-jest": "16.0.0",
 "babel-preset-react-native": "1.9.0",
 "eslint-config-ericmasiello": "^0.5.0",
 "jest": "16.0.1",
 "jest-react-native": "16.0.0",
 "react-test-renderer": "15.3.2"
}

In the scripts section, we see that the test script simply runs jest, which will discover
and run all test files throughout our project:

"scripts": {
 "start": "node node_modules/react-native/local-cli/cli.js start",
 "lint": "eslint . .eslintrc.js --ext [js,jsx] --cache",
 "test": "jest"
}

This means that, whenever we want to run our Jest test suite, we can simply type into the
terminal:

 npm test

Finally, we notice a section in the package.json file specifically for configuring Jest; it tells
the test suite to use a jest-react-native preset for compiling and running tests:

"jest": {
 "preset": "jest-react-native"
}

Preparing for Production

[405]

By default, Jest will not be able to load platform-specific files that we've used in our
application (those ending in .ios.js or .android.js), so we'll add an array to the Jest
configuration of acceptable moduleFileExtensions:

"jest": {
 "preset": "jest-react-native",
 "moduleFileExtensions": [
 "js",
 "json",
 "es6",
 "ios.js",
 "android.js"
]
}

Jest works by scanning project directories for folders with the name __tests__ and
running each file inside those folders as a test suite or part of a test suite. You'll notice that
the root of our project already has a __tests__ folder and inside are two test files,
index.android.js and index.ios.js. If we were to run npm test from the terminal,
these tests would fail. We'll delete these two files and create tests that are specific to our
application in their stead.

Unit testing
To learn about the basics of Jest, we're going to start off by writing a test for a utility
function that is simply JavaScript (as opposed to a React Native component). To do this,
we'll create a new test suite file dataTransformations.test.js inside a new
__tests__/src/util/ directory (notice we are replicating the main project's directory
structure within the __tests__ directory).

In this test suite, we're going to write one simple test for the reshapeNewsData function.
This test will take mock data, shaped like that from the NYT API, pass it through the
function, and compare the result to an expected result. The test data is rather large, so rather
than putting it directly into our test file, we'll create a testData.json file in the same
directory and place it there:

[{
 "section": "U.S.",
 "subsection": "Technology",
 "title": "React Native Expands to New Platforms",
 "abstract": "React Native, the framework for building mobile applications
with web technologies, is expanding to new platforms.",
 "url": "http://example.com/react-native-expands",

Preparing for Production

[406]

 "byline": "By JACOB FRIEDMANN",
 "item_type": "Article",
 "updated_date": "2016-09-10T11:48:04-04:00",
 "created_date": "2016-09-10T11:48:03-04:00",
 "published_date": "2016-09-10T05:00:00-04:00",
 "material_type_facet": "",
 "kicker": "",
 "des_facet": [
 "React Native",
 "Mobile Applications"
],
 "org_facet": [
 "Facebook"
],
 "per_facet": [],
 "geo_facet": [],
 "multimedia": [
 {
 "url": "https://example.com/image.jpg",
 "format": "thumbLarge",
 "height": 150,
 "width": 150,
 "type": "image",
 "subtype": "photo"
 }
]
}]

In order to read this file, we'll use the Node fs module from within the
dataTransformations.test.js file. We'll also import the function being tested,
reshapeNewsData:

import { reshapeNewsData } from '../../../src/util/dataTransformations';
import fs from 'fs';

const testData = JSON.parse(fs.readFileSync(__dirname + '/testData.json'));

We create Jest tests by using a series of globally defined functions, such as describe, it,
and expect, that allow us to write tests that almost read like English. If you've used
Jasmine, the testing library that Jest is built on top of, these functions will look familiar.
Refer to the following code snippet:

describe('dataTransformations util', () => {

 describe('reshapeNewsData function', () => {

 it('should correctly transform NYT news objects', () => {

Preparing for Production

[407]

 const transformedData = reshapeNewsData(testData);

 expect(transformedData).toEqual([
 {
 description: 'React Native, the framework for building mobile
applications with web technologies, is expanding to new platforms.',
 author: 'JACOB FRIEDMANN',
 location: '',
 imageUrl: 'https://example.com/image.jpg',
 date: 'Sep 10th 2016',
 title: 'React Native Expands to New Platforms',
 url: 'http://example.com/react-native-expands'
 }
]);
 });

 });

});

Here we use the describe function to organize our test suite by creating a group and then
a subgroup of tests. Not only does this help to organize the test file, but it will also make the
output more readable. Refer to the following code snippet:

describe('dataTransformations util', () => {

 describe('reshapeNewsData function', () => {

 });

});

The global it function defines a single test. The string passed to it is a description of what
the test is meant to assert, as shown in the following code snippet:

it('should correctly transform NYT news objects', () => {
});

Finally, we will run the function we're testing on the mock test data and then use the global
expect function to assert that the output is what we, for lack of a better term, expect it to be:

const transformedData = reshapeNewsData(testData);

expect(transformedData).toEqual([
 {
 description: 'React Native, the framework for building mobile
applications with web technologies, is expanding to new platforms.',

Preparing for Production

[408]

 author: 'JACOB FRIEDMANN',
 location: '',
 imageUrl: 'https://example.com/image.jpg',
 date: 'Sep 10th 2016',
 title: 'React Native Expands to New Platforms',
 url: 'http://example.com/react-native-expands'
 }
]);

Now that we have a complete, albeit simple, test suite, we can run it from the terminal:

npm test
> RNNYT@0.0.1 test /Users/jacobfriedmann/Code/RNNYT
> jest

PASS src/util/__tests__/dataTransformations.test.js
 dataTransformations util
 reshapeNewsData function

 should correctly transform NYT news objects (7ms)
Test Summary
 Ran all tests.
 1 test passed (1 total in 1 test suite, run time 2.13s)

Component testing
Next, we'll create a component test for a React Native component that we developed for this
project. We're going to test the NewsItem component using what Jest calls snapshot testing.
Snapshot testing first creates a base snapshot of a component, given some props. This
snapshot is a string representation of the rendered component. Jest then compares future
snapshots to the base snapshot; if the snapshots are equal, the test passes. The underlying
assumption in these tests is that the component starts in a valid state and future changes to
the code base should leave the rendered output of the component unchanged.

To get started, we'll first create a new test suite file NewsItem.test.js in a folder called
__tests__/src/components. Following is the snapshot that we will create in this file:

import 'react-native';
import React from 'react';
import NewsItem from '../../../src/components/NewsItem';
import renderer from 'react-test-renderer';

const noop = () => {};

const testData = {
 description: 'React Native, the framework for building mobile

Preparing for Production

[409]

applications with web technologies, is expanding to new platforms.',
 author: 'JACOB FRIEDMANN',
 location: '',
 imageUrl: 'https://example.com/image.jpg',
 date: 'Sep 10th 2016',
 title: 'React Native Expands to New Platforms',
 url: 'http://example.com/react-native-expands',
 onPress: noop,
 onBookmark: noop
};

describe('NewsItem component', () => {

 it('should render correctly', () => {
 const renderedComponent = renderer.create(
 <NewsItem
 index={0}
 {...testData}
 />
).toJSON();
 expect(renderedComponent).toMatchSnapshot();
 });

});

First, we'll need to import our component, React, React Native, and the Jest React renderer,
which gives Jest the ability to create the component snapshots:

import 'react-native';
import React from 'react';
import NewsItem from '../NewsItem';
import renderer from 'react-test-renderer';

The react-native package must be imported prior to the react-test-
renderer package in order to function properly.

We will also need some test data to use as props for the NewsItem component.
Additionally, we define a noop (a function that does nothing) constant that can be used for
function type props in the component:

const noop = () => {};

const testData = {
 description: 'React Native, the framework for building mobile
applications with web technologies, is expanding to new platforms.',

Preparing for Production

[410]

 author: 'JACOB FRIEDMANN',
 location: '',
 imageUrl: 'https://example.com/image.jpg',
 date: 'Sep 10th 2016',
 title: 'React Native Expands to New Platforms',
 url: 'http://example.com/react-native-expands',
 onPress: noop,
 onBookmark: noop
};

Now we'll use the global describe and it functions to set the stage for our new test:

describe('NewsItem component', () => {

 it('should render correctly', () => {
 });

});

The test itself is relatively simple. First we render the component with the mock props to a
JSON string and then we check to make sure the rendered string matches the base
snapshot:

const renderedComponent = renderer.create(
 <NewsItem
 index={0}
 {...testData}
 />
).toJSON();
expect(renderedComponent).toMatchSnapshot();

The first time this test runs, it will generate the base snapshot in a __snapshots__
directory and automatically pass. On subsequent runs, it will compare the generated
snapshot to the one created on the first run. If we were ever to change how the component
is rendered, the test would fail. If, however, this change is intentional, we can update the
base snapshot by running the following command (u for update):

 npm test -- -u

Now that we have a simple component snapshot test, we could expand on it by creating
other tests within the suite that pass different props into the component. A robust test suite
would include these tests for each component in the project.

Preparing for Production

[411]

Performance
When we refer to the performance of a mobile application, especially one that is not written
in the native language, what we are most often talking about is framerate. It is generally
accepted that the human eye can process up to 60 still frames per second (fps). When a
series of images is displayed at or above this upper limit, we perceive it as motion instead of
discreet images. With this in mind, our goal when optimizing the performance of an
application is to ensure that the framerate never or rarely dips below 60 fps.

The practical implications of this requirement are that any blocking computation must
complete within 16.67 milliseconds (1,000 milliseconds per 60 fps). Whenever we do
something computationally expensive, for instance, rendering a new scene with many child
components, there is a risk that the task will not complete in the allotted time. When this
happens, we will drop a frame and the user will experience jitteriness or unresponsiveness as
a result.

In React Native, this picture is further complicated by the fact that there are two threads
behind UI rendering. First, there is the main UI thread. This thread is running the native
code that is part of the React Native core library and is directly responsible for rendering UI
components. The second thread, on iOS, is the JavaScriptCore (JSC) thread that runs all of
the code that we write in JavaScript. The JSC thread does not itself render UI elements, but
it is often responsible for driving rendering by telling the main thread what components to
render and what properties they should have.

In this chapter, we will look at performance analysis and optimization
from the point of view of a React Native iOS application. However, these
techniques and optimizations will work on either platform.

Both of these two threads have their own framerate that could potentially impact the
perceived performance of the application. Generally speaking, drops in framerate in React
Native applications can usually be attributed to one of two things:

Occasionally, we write JavaScript that is not performant, causing the JSC thread's
framerate to drop. This, in turn, causes the main thread to appear to drop frames
as it awaits instruction from the slow JSC thread.
While the languages themselves, JavaScript and Objective-C/Java, are
independently very fast and capable of maintaining the framerate,
communication between them over the React Native Bridge is not especially
rapid. If this communication happens too often, carrying too much data, or at
inopportune times, it can significantly impact the performance of both threads.

Preparing for Production

[412]

Performance optimization in React Native comes down to first using a suite of tools
provided by the framework to locate performance bottlenecks and then using optimization
techniques from the world of React and React Native to mitigate them.

In this section, we'll imagine that we have been away from our RNNYT application for
some time and, upon returning, we realize that there are some serious performance issues
with the application introduced by other developers. We'll put the aforementioned tools
and techniques to use and try to restore the application's framerate to its former glory.

If you wish to follow along, this chapter comes with two bundles of code:
application preoptimizations (where we start from) and application post
optimization (where we are going).

Problematic ListView
The first thing we noticed when using the application is that the news feed, which was once
smooth as we scrolled through articles displayed in a React Native ListView component, is
now jittery. It turns out ListViews, especially ones that contain many rows, are a common
source of performance problems in React Native applications. Let us first verify that what
we think we're seeing (a drop in the framerate as we scroll) is indeed occurring.

Using Perf Monitor
The first tool we'll look at is the React Native Perf Monitor. This tool can be used within the
application to monitor key metrics during runtime. It can be used to get a high-level view of
the overall application performance as well as to narrow down the source of performance
problems.

To open Perf Monitor, first open the developer menu by pressing command + D in the
simulator or, if on a real device, shaking it. In the menu, select the Show Perf Monitor
option, as shown in the following screenshot:

Preparing for Production

[413]

Once we do this, we should see the small Perf Monitor modal on screen. It generally sits in
the upper left-hand corner of the screen, but it can be dragged to any location where it is
least obstructive, as shown in the following screenshot:

Inside this modal, we see several different metrics that help us get a feel for how the
application is performing. Let's examine these one by one.

The first number on the left is the total RAM (Random Access Memory) being used by the
application. This is an important number to watch because, if it becomes too large, the
operating system will take things into its own hands and kill our application. A snapshot of
this number can be used to know generally if your application is consuming too much
memory. Even more important is to ensure that this number does not increase without
bounds over time, which would be a sign of a memory leak.

Preparing for Production

[414]

The next number, labeled JSC, is the amount of memory allocated to the JavaScriptCore
thread specifically. This number is included within the total RAM number, but is useful to
us because it is directly within our control as React Native developers.

Next, there are two numbers under the Views label. The bottom number is the total number
of native views currently on the heap (in memory). The top number is the subset of those
total views that are actually visible on the screen for the user to see.

Finally, probably the two most important numbers are the ones labeled UI and JS on the far
right. These numbers represent the framerate for the previous second for the main UI
thread and the JavaScript thread, respectively. The numbers are also overlaid onto a graph
of these framerates over time, which can help us to identify dips in framerate as they relate
to specific interactions (that is, scrolling).

If you click or press on the Perf Monitor modal, it will expand to reveal more metrics. These
are also helpful, but we will rely on them less often when doing performance analysis, as
shown in the following screenshot:

If your Perf Monitor is missing metrics for JavaScript, namely the JSC
memory allocation and the JS framerate, it is probably because you are
debugging the application remotely. When debugging remotely, the
JavaScript actually runs in your Chrome browser's V8 JavaScript engine
instead of the JavaScriptCore engine inside the device or simulator. In
order to see JavaScript performance metrics, we need to disable remote
debugging in the developer menu and allow the JavaScript to run in the
JavaScriptCore engine.

Preparing for Production

[415]

With the Perf Monitor open, let's scroll down the news feed. What we see when we do this
is that, as we expected, the JavaScript framerate plummets every time we scroll up and
down. Refer to the following screenshot:

Now we know that we aren't crazy and there is indeed a performance issue in the
application. We also know that the issue is originating in the JavaScript thread. However,
this by itself is not enough to tell us where to look for problems. For this, we'll need some
more information.

Analyzing a Systrace
Next we'll use the Systrace tool that also ships with React Native and to dive deeper. The
Systrace tool monitors the execution of marked functions such as React's calls to render
components and other lifecycle functions, as well as common functions in native code. This
information can be visualized in what some call a flame graph, which shows function
execution over time by thread.

Once again, the Systrace tool relies on the fact that the JavaScript code is
running within the JavaScriptCore engine and not Chrome's V8. This
means we must first disable remote JavaScript debugging in the developer
menu before starting to trace; otherwise, we will not see JavaScript
execution, though we will see other threads.

Preparing for Production

[416]

To start tracing, we'll open the Developer menu and select Start Systrace, as shown in the
following screenshot:

Once we start tracing, we'll scroll down the news feed again. We don't need to do it for very
long to collect useful information, so after a few seconds open the Developer menu and
select Stop Systrace. When we do this, we'll likely see a modal warning that the Systrace
could not be converted to HTML and recommending we install a tool called trace2html.
Refer to the following screenshot:

Preparing for Production

[417]

At the time of this writing, trace2html is broken, so installing it with Homebrew would be
fruitless. However, we're in luck because Chrome provides us with a simple utility to
visualize the JSON file created and stored in the /tmp directory.

The first step is to open the Chrome browser and navigate in the address bar to
chrome://tracing. When we arrive at this page, we'll see a mostly empty dashboard. In
the upper left-hand corner, there is a button labeled Load, as shown in the following
screenshot:

Preparing for Production

[418]

We'll use this to load the JSON file stored in the /tmp folder into the tracing utility, and
when we do, several things show up in the dashboard, as shown in the following
screenshot:

There is a lot going on here, so let's try to break it down. On the left-hand side, we can see
that activity is grouped by the thread that it is running on. The top thread is likely
com.facebook.react.JavaScript, which, as it happens, is the JavaScript thread we know is
misbehaving. If we scroll down or collapse that thread, we can see below it several other
threads including the main UI thread, which is simply labeled main. Refer to the following
screenshot:

Preparing for Production

[419]

The top x-axis is displaying the time. We can see that the bulk of the activity is happening
within about a second. We can probably assume that this is when we were actually doing
the scrolling. Each horizontal band in the graph represents a function call. From this zoom
level, it is impossible to make any sense of the graph, so we'll need to zoom in using the w
key (or the zoom tool). Take a look at the following screenshot:

Preparing for Production

[420]

Functions are placed below the functions that call them. Each flame or stack of functions
here is a top-level function call (in this case RCTJSCExecutor
executeBlockOnJavaScriptQueue) cascading down into many other functions. What
matters then for rendering performance is that the top-level bands do not exceed 16.6
milliseconds, at least not often, the time limit mandated by a 60 fps framerate.

Looking at this, even naively, we can see by the repeated shapes that there is some sort of
repetitive event happening. We can measure one of these events using the measurement
tool to see how long each event is taking. When we can do this, we can see that even one of
the smaller stacks has a duration of over 60 milliseconds, which would cause at least three
dropped frames. Refer to the following screenshot:

Preparing for Production

[421]

It is still difficult to tell what is happening here, but when we zoom in a little further, the
picture becomes a little clearer, as shown in the following screenshot:

What we see when we zoom in is that React is doing a bunch of repetitive rendering of
components as we're scrolling. Near the top of this section, we can see the NewsFeed
component being updated. If we follow this down, the smaller stacks are the individual
NewsItems being updated. As we can see, all of this component updating and rerendering
is expensive, but is it necessary?

The content and appearance of the news feed are not obviously changing as we scroll down.
If this is the case, then we are wasting a lot of time rendering views that are not changing.
We need to determine if all this rendering is necessary or if we are wasting precious time.

Preparing for Production

[422]

The React Perf Library
Next, we're going to turn to a tool from the world of React proper. The React Perf library
will measure all component renders and tell us which of those renders were wasted. Wasted
renders are renders that occurred even though the output (UI) did not change. We can
improve the performance of a React application by reducing the number of wasted renders.

To get started with the React Perf library, we'll first need to install the library as a
dependency for our project using npm by using the following command:

 npm install --save react-addons-perf

The easiest way to work with the Perf library is to expose it as a global variable. To do this,
we'll import it into the App.js file and store it in the window global namespace:

import React from 'react';
import Perf from 'react-addons-perf';
import { Provider } from 'react-redux';
import HomeScreen from './components/HomeScreen';
import createStore from './createStore';

window.Perf = Perf;

Now, we'll enable remote debugging in the Developer menu so that we can access the Perf
library from the Chrome JavaScript console. Oddly, when we first try to access the global
Perf variable we created, we notice that it isn't defined. This is because the application
code is actually running in a service worker thread inside Chrome, rather than
on the Chrome tab's main thread. To get access to the scope of the service worker, we can
switch to the debuggerWorker.js thread in the upper left-hand corner. Take a look at the
following screenshot:

Preparing for Production

[423]

We are now ready to start monitoring rendering performance. To do this, we'll type the
following command into the Chrome console:

 Perf.start()

Then, we'll once again scroll down the news feed and, when finished, will type the
following into the Chrome console:

 Perf.stop()
 Perf.printWasted()

This second command will print out a big colorful table into the console, describing the
rendering activity that took place during monitoring, as shown in the following screenshot:

By default, the table will be sorted by whichever class of components (labeled in the second
column Owner > Component) wasted the most time needlessly rerendering. We can see
that there are many offenders, but at the top of the list is the NewsItem component, wasting
nearly two whole seconds (!) of time on rendering when nothing has changed.

If you are perceptive, you will have also noticed that redux-logger was logging a new
action as we scrolled down with a type FEED_PROGRESS. It seems pretty likely that this is
the root cause of the rerendering, but it doesn't explain why components are rerendering
when they don't have to. Now that we've closed in on the problem using our performance
tool suite, let's look at how we can start to remedy this situation.

Preparing for Production

[424]

shouldComponentUpdate and PureRenderMixin
Way back in Chapter 1, Building a Foundation in React, we talked about the various lifecycle
functions that each component has. One of these lifecycle functions is
shouldComponentUpdate, which is called before rendering to determine whether or not a
new render is necessary. By default, if this method is not overridden, it will always return
true, meaning that the component will always rerender when its parent rerenders.

In the case of the NewsItem component, which we know is rerendering needlessly, we can
improve upon this by implementing our own shouldComponentUpdate method.
However, if we know that the component's render method is a pure function of the inputs
(props and state), we can take advantage of a class called PureComponent. This gives us
a relatively simple implementation of shouldComponentUpdate that can be used within
any of our components that are pure (and hopefully most are).

To get started, we'll need to import PureComponent into the NewsItem component in place
of the standard Component class:

import React, { PureComponent, PropTypes } from 'react';
import {
 View,
 TouchableOpacity,
 StyleSheet,
 ActionSheetIOS,
 ToastAndroid,
 Platform,
 Vibration
} from 'react-native';

Next, we'll make the NewsItem component class extend from the PureComponent class:

export default class NewsItem extends PureComponent {

And that's it! The shouldComponentUpdate method of PureComponent simply checks to
see if the props and state inputs have changed and returns true, meaning the component
should update if, and only if, they have. This alone should be enough to make a dent in our
performance problem. To verify, let's take another look at the React Perf libraries wasted-
time table after this change.

Preparing for Production

[425]

The PureComponent uses shallow equality to determine whether or not
the props and state have changed. This is a compromise between strict
equality, which would not recognize two objects as being equal even if all
of their keys and values are equivalent, and deep equality, which would
crawl down the object tree ensuring that all leaves are equivalent. Deep
equality is potentially expensive and strict equality is not very useful
when reducers generate new objects (as they should). Shallow equality
meets somewhere in the middle by checking the top-level values of an
object for strict equality.

Take a look at the following screenshot:

Wow! This is a huge improvement. We could probably stop now and call it a day, but let's
go a bit further and think about why all of these components are trying to render in the first
place.

Minimizing the impact of state changes
As we noticed earlier, there is a new action being fired as we scroll down the news feed.
This action is being used to update a new progress bar at the top of the News Feed and
nothing else. Refer to the following screenshot:

Preparing for Production

[426]

If we look at the following code, we can see that the progress comes from the store into the
news feed container, which mean the news feed, a large component with many children, is
receiving new props many times during the scroll. We can minimize the impact of these
changes by making the progress bar itself a container component so that it alone receives
new props during the scroll process.

To do this, we make a simple UI presentational component for the progress bar in a file
called src/components/ProgressBar.ios.js:

import React from 'react';
import {
 ProgressViewIOS
} from 'react-native';
import * as globalStyles from '../styles/global';

const ProgressBar = props => (
 <ProgressViewIOS
 progress={props.progress}
 progressTintColor={globalStyles.HEADER_TEXT_COLOR}
 />
);

ProgressBar.propTypes = {
 progress: React.PropTypes.number.isRequired
};

export default ProgressBar;

And then we create a container component that is attached to the store in a file
called src/containers/ProgressBarCointainer.js:

import { connect } from 'react-redux';
import ProgressBar from '../components/ProgressBar';

const mapStateToProps = state => ({
 progress: state.progress
});

export default connect(mapStateToProps, {})(ProgressBar);

We then replace the ProgressViewIOS from the NewsFeed component with the new
container component ProgressBarContainer:

<View style={styles.container}>
 {isIOS && <ProgressBarContainer />}
 <ListView
 refreshControl={

Preparing for Production

[427]

 <RefreshControl
 refreshing={refreshing}
 onRefresh={this.refresh}
 />
 }
 enableEmptySections
 dataSource={dataSource}
 renderRow={this.renderRow}
 style={[listStyles, styles.list]}
 onChangeVisibleRows={this.onProgress}
 />
 {this.renderModal()}
</View>

With the impact of the progress changes minimized into this single, small container
component, we are ready to take another Perf measurement. The following is the result:

Once again, this relatively small change has had a pretty big impact. It is hard to imagine
we can improve upon this, but we will try.

The ListView data source
As we discussed in a previous chapter, when we create a ListView, we give it a function to
determine whether or not a row has changed. In many respects, this function is similar to
shouldComponentUpdate in that it is used to determine whether or not a row of the list
should be rerendered. If we take a look at the ListView in the NewsFeed component, we'll
notice that something is awry. Take a look at the following code:

this.ds = new ListView.DataSource({
 rowHasChanged: (row1, row2) => true
});

Preparing for Production

[428]

This function has changed since we last saw it. In this state, whenever it is called, the row
will be rerendered because it always returns true to the question: Has this row changed? It
is restored to the same form in the following:

this.ds = new ListView.DataSource({
 rowHasChanged: (row1, row2) => row1.title !== row2.title
});

With this corrected, we'll once again look at the wasted-time table:

We see another pretty large improvement and can now claim victory over wasted renders.
Before we reexamine the Systrace and framerate, let's look at a few more optimizations that
can be made.

Additional optimizations
With any ListView, we can optimize the initial rendering cost by using several properties
in concert. The first one we'll add is initialListSize. This property tells ListView how
many rows to render when it first appears. The default value is 10 rows, but if we know
that the number of initially visible rows is fewer than that, we can reduce the initial
rendering cost. It looks like three rows will be showing at a time, so we'll make this value 4
for good measure. Take a look at the following code snippet:

<ListView
 refreshControl={
 <RefreshControl
 refreshing={refreshing}
 onRefresh={this.refresh}
 />
 }
 enableEmptySections
 dataSource={dataSource}
 renderRow={this.renderRow}
 style={[listStyles, styles.list]}
 onChangeVisibleRows={this.onProgress}
 initialListSize={4}
/>

Preparing for Production

[429]

Similarly, we can use the pageSize property to tell ListView how many rows it should
render per event loop. This ensures that rendering the rows in their entirety is not a
blocking task that could potentially drag down the framerate. This is 1 by default, which for
our application makes sense, so we will not change it.

Next, we could use the scrollRenderAheadDistance property to tell the ListView how
many pixels before it reaches a row it should begin to render that row. This ensures we
don't render rows that are off-screen if the user isn't moving towards them. Once again, the
default (1,000 pixels) is adequate for our application.

In certain places, we can ask for views to be rasterized into bitmaps. This is most useful
when a complex view is being animated or when there are several opaque views layered on
top of one another. In our application, we can add this to the Image inside our Thumbnail
component that has text layered on top of it. We need to be careful when doing this to
monitor memory usage as rasterized Views are stored in memory and can get big. Refer to
the following code snippet:

<Image
 style={[styles.image, imageStyle]}
 source={{
 uri: url
 }}
 shouldRasterizeIOS
>
 {TitleComponent}
</Image>

Logging to the console is also an expensive operation in React Native
applications. Generally, this will be stripped out of production code, but it
is also useful for us to turn logging off when doing performance testing to
ensure that it is not skewing the result. We can reduce the amount of
logging by turning off the redux-logger middleware in the store.

Preparing for Production

[430]

Running Systrace again, we can see that our work has really paid off. The timeline is much
sparser, and in fact, it is more empty than not and the stacks are all much smaller than 16.67
milliseconds:

If we were to look at the Perf Monitor, we would see that we can barely make a dent in the
framerate by scrolling as fast as we can.

Unresponsive touch and slow navigation
There are two other, somewhat related, common categories of performance problem in
React Native applications: components that are slow to give feedback after being touched
and navigational transitions that are either slow to start or clunky as they animate.

A problem has been introduced into our application that belongs to one of these categories,
but at the outset we are not sure which. Now, when we click on an article in the news feed,
for a brief time it seems as if nothing is happening. Eventually, the modal appears and the
article loads, but by that time we've already annoyed our user.

Preparing for Production

[431]

Mitigating unresponsive touch
The first thing we'll attempt is to make the touch interaction faster and more responsive.
React Native's touchable components (TouchableOpacity and TouchableHighlight)
block animation until the function passed as their onPress property returns. This means
that, if the onPress function is doing something computationally expensive, it could
impact the feedback experience seen by the user.

A common solution for this problem is to do any expensive computation in the onPress
function asynchronously. The onPress prop of the NewsItem in the NewsFeed component
only calls an action, but perhaps some cascading effects are causing the delay. We'll use the
requestAnimationFrame function to ensure that the action happens asynchronously and
doesn't block touch animations:

<NewsItem
 onPress={() => {
 requestAnimationFrame(() =>
this.props.onModalOpen(rowData.url));
 }}
 onBookmark={() => this.props.addBookmark(rowData.url)}
 style={styles.newsItem}
 index={index}
 {...rowData}
/>

A common source of bugs and memory leaks in React applications is the
use of timer functions such as requestAnimationFrame (also
setTimeout, setImmediate, and setInterval). Each of these
asynchronous functions might need to be cleaned up in some way when
the component unmounts.

Preparing for Production

[432]

We have done some good work here, but has it made an impact? When we go back to test
the performance of clicking on a news item again, we might see that the press animation is a
little smoother, but there is still something keeping the modal animation from starting. To
get a little more context, we can run Systrace and see what is going on. Take a look at the
following screenshot:

Looking at the result, there is a pretty clear problem. It appears as if there is a nearly full-
second, blocking JavaScript call to the SmallText component's render method. Looking
more closely at that component's render method reveals that someone added a function (to
apply fallColors) that looks mightily expensive. Take a look at the following code
snippet:

const fallColors = unformattedText => unformattedText.split('').map((c) =>
{
 const randomColors = [];
 let rand1 = 200;
 let rand2 = 100;
 let rand3 = 0;
 for (let i = 0; i < 5000000; i += 1) {

Preparing for Production

[433]

 randomColors.push(Math.floor(Math.random() * 255));
 }
 for (let j = 0; j < randomColors.length; j += 1) {
 if (randomColors[j] >= 200) {
 rand1 = randomColors[j];
 }
 }
 for (let k = 0; k < randomColors.length; k += 1) {
 if (randomColors[k] < 200 && randomColors[k] >= 100) {
 rand2 = randomColors[k];
 }
 }
 for (let l = 0; l < randomColors.length; l += 1) {
 if (randomColors[l] < 100) {
 rand3 = randomColors[l];
 }
 }
 const paddedHex1 = (`0${rand1.toString(16)}`).slice(-2);
 const paddedHex2 = (`0${rand2.toString(16)}`).slice(-2);
 const paddedHex3 = (`0${rand3.toString(16)}`).slice(-2);
 const randColor = `#${paddedHex1}${paddedHex2}${paddedHex3}`;
 return (
 <Text
 key={c}
 style={{
 color: randColor
 }}
 >
 {c}
 </Text>
);
});

Of course, we can and should fix this function to make it more efficient, but let's also look at
ways of mitigating the expense if we can't do this.

To get more precise data about which function calls are impacting
performance the most, we could use the CPU Profiler tool. However, the
Profiler is difficult to assemble and, at the time of writing, broken for
iOS10. In most scenarios, Systrace will be enough to diagnose or narrow
down the potential causes of performance issues.

Preparing for Production

[434]

Smoothing out animations with InteractionManager
Navigational animation issues are most typically related to the influx of React rendering
that happens when a component is mounted. When navigating, often we are mounting an
entire new scene with dozens or perhaps hundreds of child components. This process is
expensive and can get in the way of smooth transition animations.

To mitigate this expense, React Native has a module called InterationManager that
allows us to defer expensive rendering until after a navigational interaction is complete. We
have now identified that the source of our issue is an expensive render in one component,
SmallText. We'll use the InteractionManager within that component to render a
simplified version of the component until after the navigation is complete.

First, we'll need to import the InteractionManager module. We'll also need to convert
this component into a class-based component so that the InteractionManager can take
advantage of the lifecycle methods, so we'll need to import Component from the React
package as well:

import React, { Component, PropTypes } from 'react';
import {
 StyleSheet,
 Text,
 InteractionManager
} from 'react-native';
import AppText from './AppText';

Next, we'll create a constructor component that initializes some internal state. We'll create a
flag in the component's state that tells us whether or not to render the expensive portions
and initialize it as false, as shown in the following code snippet:

class SmallText extends Component {
 constructor(props) {
 super(props);

 this.state = {
 doExpensiveRender: false
 };
 }

 render() {
 const { children, useFallColors, style, ...rest } = this.props;
 let childrenFormatted = children;
 if (useFallColors) {
 childrenFormatted = fallColors(children);
 }
 return (

Preparing for Production

[435]

 <AppText style={[styles.small, style]} {...rest}>
 {childrenFormatted}
 </AppText>
);
 }
}

Now, we'll modify the render method to only apply fallColors if the
doExpensiveRender flag is true:

render() {
 const { children, useFallColors, style, ...rest } = this.props;
 let childrenFormatted = children;
 if (useFallColors && this.state.doExpensiveRender) {
 childrenFormatted = fallColors(children);
 }
 return (
 <AppText style={[styles.small, style]} {...rest}>
 {childrenFormatted}
 </AppText>
);
}

Finally, we'll use the interaction manager to allow the expensive render after interaction
animations have completed. To do this, we'll use the componentDidMount lifecycle
method:

componentDidMount() {
 InteractionManager.runAfterInteractions(() => {
 this.setState({
 doExpensiveRender: true
 });
 });
}

Preparing for Production

[436]

Now, if we rerun our application, we'll be able to click on an article and see the modal open
instantly. About a second later, fallColors will once again adorn the Close text, as shown
in the following screenshot:

Performance summary
Though there are some common pitfalls and a number of typical solutions that we've
discussed in this chapter, it is important to note that these solutions are not an exact
prescription for creating a performant application. Every application is different and those
circumstances effect how we apply optimizations.

The key takeaways from this section are knowing the categories of performance issues,
general strategies for addressing them, and the tools that are available to help. It should be
mentioned that each platform also has a set of native profiling tools that are enormously
helpful especially if you find yourself writing a significant number of native modules.

Running on physical devices
Up to this point, we've been running our application strictly on simulated hardware. It is
important that we take it one step further and run on actual mobile devices to be sure the
application performs in the way that we expect. In this section, we'll discuss running React
Native applications on both iOS and Android devices.

Debugging on an iOS device
Before submitting your app to the App Store, it's highly recommended that you first test
your app on physical hardware. In fact, the more devices you can test on, the better.
Simulators are great for rapid development testing, but they don't give you an honest sense
of how the app feels in your hands. Are the touch targets large enough? Are the animations

Preparing for Production

[437]

smooth on lower end hardware? Does the app feel responsive? These are all questions that
are best answered with actual device testing.

Not long ago, Apple required that developers pay $99/year to join the Apple Developer
Program in order test iOS apps on hardware. While you still need to pay to submit to the
App Store, there is thankfully no longer a paywall for testing on devices. That said, there
are a few steps required before deploying your React Native app to a personal iOS device.

The very first thing you'll need to do is ensure you're registered as an Apple developer at h t

t p s ://d e v e l o p e r . a p p l e . c o m /. Again, you don't need to pay the $99 if all you intend to do
is test on your personal devices. Once you're registered, open up Xcode, go to Xcode |
Preferences, and add your account credentials under the Accounts tab. Next, open up your
React Native project's Xcode project file found under the ios directory. Then, follow these
steps:

Ensure your app (for example, RNNYT) is set as the target.1.
Select the General tab.2.
Under Signing, select [Your Name] (Personal Team) from the Team drop-down3.
menu.
Now change the target to the Tests app (for example, RNNYTTests) and follow4.
steps 2 and 3 again.
Connect your personal device to your computer through a USB and ensure it's on5.
the same Wi-Fi network as your computer.
From the Xcode menu, select Product | Destination and then select your device.6.
Click on Build and Run (the Play button). This will start the React Native7.
Packager if it's not already running.

If this is your first time deploying this app to your device, you'll likely encounter an error
from Xcode, which states: Could not launch [App Name]. Verify the Developer
App Certificate for your account is trusted on your device... If you
continue reading this error, it gives you specific instructions for trusting your Developer
App Certificate on your device. Once you've completed these steps, click on Build and Run
again from Xcode and the app will launch on your device. If you wish to debug the app,
simply shake the device and the Developer menu will appear. From there, you're able to do
all the usual debugging you're accustomed to from the iOS Simulator.

https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/

Preparing for Production

[438]

Testing your app on an iOS device using Release
This approach works great for testing, but you're unfortunately still tethered to your
computer since the React Native Packager must be running on the same Wi-Fi connection as
your device. Shaking your device also opens the Developer menu, which in the real world
you'll want disabled. By building your app for Release, you'll be able to run your React
Native app completely decoupled from your computer and the React Native Packager. The
Release scheme will run all your JavaScript locally on the device and will automatically
disable the Developer menu.

To configure the Release scheme from Xcode, run these steps:

Select Product | Scheme | Edit Scheme.1.
Ensure Run is selected on the left-hand side.2.
Set the Build Configuration drop-down menu to Release.3.
With your iOS device connected, verify it's set as the Destination.4.
Click on Build and Run.5.

Once the app appears on your phone, you can close your laptop and give the app a test in
the real world.

Debugging on Android devices
If you intend to release your app to the Android store, it's not enough to test on iOS
hardware. You'll also want to test on Android hardware. In fact, since many variations of
Android hardware exist, testing on as many devices as possible is encouraged.

The first step for testing on Android hardware is to enable Developer mode on the device
itself:

Open Settings | About | Software Information | More.1.
Tap Build number seven times to enable Developer options.2.

If you go back to Settings, you'll now see the Developer options listed.

Preparing for Production

[439]

Now to actually test your React Native app on your developer-enabled hardware, follow
these steps:

Connect your Android device to your computer through a USB connection.1.
Run adb devices from the terminal to verify only your phone is listed. If you see2.
other devices, be sure to terminate any running Android emulators running on
your computer.
Run react-native run-android to install and run the app.3.

Clicking on the menu button on your Android device will toggle the Developer menu. Note
that in order for you to continue debugging on Android, you'll need to keep the device
connected over USB and the React Native Packager will need to be running.

If you run into any issues while trying to debug your app on an Android
device, consult the React Native docs as they have extensive
documentation; for more information, refer to h t t p s ://f a c e b o o k . g i t h u b

. i o /r e a c t - n a t i v e /d o c s /r u n n i n g - o n - d e v i c e - a n d r o i d . h t m l .

Generating a signed APK
If you wish to test your app on Android hardware in a more realistic setting, you'll need to
generate an APK. An APK, or Android application package, is the actual binary you'll
distribute to the Android Play Store. While there are a few steps involved in this, the React
Native docs are extremely thorough and easy to follow, even for a non-Android developer.
So rather than reinvent the wheel, I recommend you follow their instructions on h t t p s ://f

a c e b o o k . g i t h u b . i o /r e a c t - n a t i v e /d o c s /s i g n e d - a p k - a n d r o i d . h t m l .

Deploying our application
Now that we have a fully featured, well-tested, and performant application, it is time to get
it into the hands of our users. In this section, we'll briefly go through the steps involved in
getting an application into a mobile app store, focusing on the parts of the process that are
specific to React Native.

https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/running-on-device-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html

Preparing for Production

[440]

Remove debugging code
No matter where we plan on distributing our application, we will want to ensure that we
remove any code that is specific to debugging from our production application build. Some
of this, including things such as React PropTypes, will be done for us in the React library,
but occasionally we will need to do it ourselves.

One example of code that can be removed from the production build is redux-logger.
This tool is very helpful when we're developing an application, but it has no business in a
production application. Not only is it superfluous extra weight for our JavaScript asset, but
it also impacts performance. In React Native JavaScript applications, we get access to a
global Boolean variable __DEV__ that can be used to determine what environment the code
is running in. We can use this variable in our createStore.js file to ensure redux-
logger is not shipped to production:

import { createStore, applyMiddleware, combineReducers } from 'redux';
import createLogger from 'redux-logger';
import promiseMiddleware from 'redux-promise';
import newsFeedReducer from './reducers/newsFeedReducer';
import searchTermReducer from './reducers/searchTermReducer';
import navigationReducer from './reducers/navigationReducer';
import bookmarkReducer from './reducers/bookmarkReducer';
import newsFeedProgressReducer from './reducers/newsFeedProgressReducer';

const logger = createLogger();
const middleWare = global.__DEV__ ? [logger, promiseMiddleware] :
[promiseMiddleware];

export default (initialState = {}) => (
 createStore(
 combineReducers({
 news: newsFeedReducer,
 searchTerm: searchTermReducer,
 navigation: navigationReducer,
 bookmarks: bookmarkReducer,
 progress: newsFeedProgressReducer
 }),
 initialState,
 applyMiddleware(...middleWare)
)
);

Preparing for Production

[441]

Likewise, we can use it to decide whether or not to expose the React Perf library in
App.js:

import React from 'react';
import Perf from 'react-addons-perf';
import { Provider } from 'react-redux';
import NavContainer from './containers/NavContainer';
import createStore from './createStore';

if (global.__DEV__) {
 window.Perf = Perf;
}

const store = createStore();

export default () => (
 <Provider store={store}>
 <NavContainer />
 </Provider>
);

iOS
The iOS deployment process is notoriously lengthy. We will go through each of the steps
involved from a high level and focus on parts of the process where React Native
applications diverge from that of a completely native mobile application.

In order to release an application to the iOS App Store, you must be a
registered Apple developer. Registration costs $99/year for an individual.

Preparing for Production

[442]

Creating provisioning profiles
In order to distribute an iOS application, you must obtain a provisioning profile for that
application. To do this, navigate in a browser to h t t p s ://d e v e l o p e r . a p p l e . c o m and log
in. From here, navigate to Certificates, Identifiers & Profiles. Refer to the following
screenshot:

From here, select Provisioning Profiles | Distribution in the side navigation:

https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com

Preparing for Production

[443]

We're going to create two new profiles: one that will be used for beta testing and another
that will be used for distributing to the App Store. For the first, select the Ad Hoc profile
type. Complete the process by selecting your application ID and selecting or creating a
certificate. We'll call this first profile RNNYT Beta.

The site will then prompt you to download the profile. Do this and then repeat the process
for an App Store profile. Once both have been downloaded, clicking on them should open
them in Xcode, making Xcode aware of your new profiles.

Registering an application in iTunes Connect
Not only do we need to register our application on the Apple developer site, but we also
must register the application with iTunes Connect in order to upload it to the App Store. To
do this, navigate in the browser to h t t p s ://i t u n e s c o n n e c t . a p p l e . c o m . Log in here with
your Apple developer ID and navigate to My Apps.

Once there, add a new application:

Fill out the form to create an application. Most importantly, ensure that the bundle ID
matches that in XCode and that on the Apple developer website.

https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com

Preparing for Production

[444]

Adding icons and updating the launch screen
Before we can submit the application to the App Store, we'll need to update the launch
screen and add icons for our application. Both of these tasks can be done from within
XCode.

By clicking on the LaunchScreen.xib file in the XCode sidebar, we can visually edit the
appearance of the launch screen. Apple generally recommends that this screen look similar
to the first screen of your application. Take a look at the following screenshot:

Similarly, we can add App icons by clicking on Images.xcassets | AppIcon. We will need to
add images of several different sizes and resolutions. See the Apple documentation for
exact icon dimensions. Refer to the following screenshot:

Preparing for Production

[445]

Creating an archive
Now that we have provisioning profiles and a completed application with a launch screen
and app icons, we are ready to create the archive that we will deliver to Apple. Before we
do, let's discuss how this works as it relates to React Native.

Normally, when we build our application during the development process, we use the
XCode Debug configuration. This configuration relies on our local React Native
development server to load the JavaScript asset. It also enables debugging features such
as the Developer menu, performance monitoring, and remote debugging in Chrome.

When we create the archive for our application, we use the Release configuration. This
configuration creates a static JavaScript bundle and includes it as an asset of the application.
It also disables the aforementioned debugging features and sets the global JavaScript
__DEV__ variable to false. All this is handled for us by how React Native sets up our
project, but it is helpful to know.

Preparing for Production

[446]

To create an archive, we must first select the Generic iOS Device option from the device
drop-down, as shown in the following screenshot:

Next, in XCode, select from the top menu Product | Archive.

If this is not the first time we are creating an archive for upload, we will
need to also increase the version and build number under build settings.

Preparing for Production

[447]

Take a look at the following screenshot:

Once the Archive is complete, we should see a list of archives and a button labeled Upload
to App Store…, as shown in the following screenshot:

Assuming we have correctly configured our application on the Apple developer website
and iTunes Connect and attached the appropriate launch icons and app icons, our archive
should upload successfully.

Preparing for Production

[448]

Beta testing and release
From here, the rest of the process will happen on iTunes Connect. Plenty of documentation
exists on this topic as it is, so we won't go into too much depth. TestFlight can be used to
allow internal and external testers to beta-test our application before officially submitting it
to the store. This is helpful because, in order to complete the submission process, our
application will have to go through the Apple review process, which can take some time.

Android
The process for preparing a React Native application for the Google Play store is analogous
to that of iOS, except that we can do all of it from the command line and don't need
Android Studio.

Signing the application
The first thing we need to do is sign our application with a private key. This is used to
ensure the authenticity of the application when it is downloaded by an Android device
from the store. The first thing we will need to do is generate a private key for the
application with the keytool command:

$ keytool -genkey -v -keystore rnnyt-release-key.keystore -alias rnnyt-key-
alias -keyalg RSA -keysize 2048 -validity 10000

This command will generate the rnnyt-release-key.keystore file. Which we can use
to sign our application.

This file is private and should not be committed to your repository. To do
this, we'll add android/app/rnnyt-release-key.keystore to our
.gitignore file. Also, we need to keep track of this file as it will be
needed to make future changes to our application in the Google Play store.

Place the newly generated keystore file in the android/app directory within the project.
We then need to edit our user-level Gradle configuration to use the new keystore file. To
do this, we'll need to create or edit the file ~/.gradle/gradle.properties:

 RNNYT_RELEASE_STORE_FILE=rnnyt-release-key.keystore
 RNNYT_RELEASE_KEY_ALIAS=rnnyt-key-alias
 RNNYT_RELEASE_STORE_PASSWORD=*YOUR_PASSWORD*
 RNNYT_RELEASE_KEY_PASSWORD=*YOUR_PASSWORD*

Preparing for Production

[449]

Finally, we need to add these new key variables to the android/app/build.gradle
configuration file. There are multiple build.gradle files in the project, so ensure you are
editing the right one:

...
defaultConfig {
 applicationId "com.rnnyt"
 minSdkVersion 16
 targetSdkVersion 22
 versionCode 1
 versionName "1.0"
 ndk {
 abiFilters "armeabi-v7a", "x86"
 }
}
signingConfigs {
 release {
 storeFile file(RNNYT_RELEASE_STORE_FILE)
 storePassword RNNYT_RELEASE_STORE_PASSWORD
 keyAlias RNNYT_RELEASE_KEY_ALIAS
 keyPassword RNNYT_RELEASE_KEY_PASSWORD
 }
}
splits {
...

Now that we have the ability to sign our application, we are ready to test the release build.

Testing the release build
Before we upload an application to the Google Play store, we will want to ensure that the
application continues to behave appropriately when it is built with a release configuration.
To this, we simply need to add an argument to the run-android command:

 react-native run-android --variant=release

Like the iOS release build, this will strip out development code and package the JavaScript
with the applications. Once we're sure that the application works as expected when built for
release, we can generate the file that we will upload to the Play Store: the APK.

Preparing for Production

[450]

Generating the APK
For Android, the deliverable for an application is the APK file. In order to create this, we
will use the gradle build tool from the android directory:

 cd android && ./gradlew assembleRelease

Once this completes, we will have an APK file for our project located in the directory
android/app/build/outputs/apk/app-release.apk.

Beta-test and release
To release our application, we will need to navigate in the browser to the Google Play store
developer console at h t t p s ://p l a y . g o o g l e . c o m /a p p s /p u b l i s h /s i g n u p . Here we can
register for an account; this, like iOS, is not free (though much cheaper). Once in the
console, it is easy to add a new application APK for alpha, beta, or production. Here we can
also add metadata and assets (such as icons) to the Google Play store.

Summary
When we finish with the functionality of an application, there are still several steps before
our friends, family, and customers can begin to download it from the App Store. Any
production application is well tested for correctness and performance characteristics.
Luckily for us, the React Native ecosystem has many tools, continuously developing and
maturing, that can aid us in this process.

What draws frontend developers to React Native is that it is a framework that empowers
them to make native applications with the skills they already possess. What, hopefully,
keeps them there is the fact that with proper tuning it can match the performance and feel
of full native applications for most use cases. The steps outlined in this chapter are
important for realizing that promise.

In the next, and final, chapter, we'll take a look at other resources that can help you on your
continued journey to master React Native.

https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup
https://play.google.com/apps/publish/signup

12
React Native Tools and

Resources
As we bring this book to a close, it's time to acknowledge how much we've accomplished.
We've learned about numerous React Native APIs and how to configure our environments
for building React Native apps for both iOS and Android. And more importantly, we've
used this knowledge to build a fully featured, cross-platform app that uses several
advanced techniques for modeling data, communicating with a remote server, animating
views, and even bridging code to the underlying platform. Phew!

But we developers are never satisfied are we? Sadly, no. So let's spend this final chapter
learning how to further improve upon the development experience and how to continue
leveling up as React Native developers. Specifically, we'll look at:

Tools that improve upon the React Native development experience
Ways to build React Native apps for platforms other than iOS and Android
Great online resources for React Native development

Evaluating React Native Editors, Plugins,
and IDEs
I'm hard pressed to think of another topic that developers are more passionate about than
their preferred code editor. Of the many options, two popular editors today are GitHub's
Atom and Microsoft's Visual Studio Code (not be confused with the Visual Studio 2015).
Both are cross-platform editors for Windows, macOS, and Linux and are easily extended
with additional features. In this section, I'll detail my personal experience with these tools
and where I have found they complement the React Native development experience.

React Native Tools and Resources

[452]

Atom and Nuclide
Facebook has created a package for Atom known as Nuclide that provides a first-class
development environment for React Native It features a built-in debugger similar to Chrome's
DevTools, a React Native Inspector (think the Elements tab in Chrome DevTools), and
support for the static type checker Flow.

Download Atom from https://atom.io/ and Nuclide from
https://nuclide.io/.

To install the Nuclide package, click on the Atom menu and then on Preferences…, and
then select Packages. Search for Nuclide and click on Install. Once installed, you can
actually start and stop the React Native Packager directly from Atom (though you need to
launch the simulator/emulator separately) and set breakpoints in Atom itself rather than
using Chrome's DevTools. Take a look at the following screenshot:

https://atom.io/%20and%20Nuclide%20from%20https://nuclide.io/
https://atom.io/%20and%20Nuclide%20from%20https://nuclide.io/

React Native Tools and Resources

[453]

If you plan to use Flow, Nuclide will identify errors and display them inline. Take the
following example, I've annotated the function timesTen such that it expects a number as a
parameter and should return a number. However, you can see that there's some errors in
the usage. Refer to the following code snippet:

/* @flow */

function timesTen(x: number): number {
 var result = x * 10;
 return 'I am not a number';
}

timesTen("Hello, world!");

Thankfully, the Flow integration will call out these errors in Atom for you. Refer to the
following screenshot:

React Native Tools and Resources

[454]

Flow integration of Nuclide exposes two other useful features. You'll see annotated
autocompletion as you type. And, if you hold the Command key and click on a variable or
function name, Nuclide will jump straight to the source definition, even if it's defined in a
separate file. Refer to the following screenshot:

Visual Studio CodeVisual Studio Code is a first class editor for JavaScript authors. Out of
the box, it's packaged with a built in debugger that can be used to debug Node applications.
Additionally, VS Code comes with an integrated terminal and a git tool that nicely shows
visual diffs.

Download Visual Studio Code from h t t p s ://c o d e . v i s u a l s t u d i o . c o m /.

The React Native Tools extensions for VS Code add some useful capabilities to the editor.
For starters, you'll be able to execute the React Native: Run-iOS and React Native:
Run Android commands directly from VS Code without needing to reach for a terminal, as
shown in the following screenshot:

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

React Native Tools and Resources

[455]

And, while a bit more involved than Atom to configure, you can use VS Code as a React
Native debugger. Take a look at the following screenshot:

The React Native Tools extension also provides IntelliSense for much of the React Native
API, as shown in the following screenshot:

React Native Tools and Resources

[456]

When reading through the VS Code documentation, I found it (unsurprisingly) more
directed toward Windows users. So, if Windows is your thing, you may feel more at home
with VS Code. As a macOS user, I slightly prefer Atom/Nuclide over VS Code. VS Code
comes with more useful features out-of-the-box but that can easily be addressed by
installing a few Atom packages. Plus, I found Flow support for Nuclide really useful. But
don't let me dissuade you from VS Code. Both are solid editors with great React Native
support. And they're both free so no harm in trying both.

Before totally switching gears, there is one more editor worth mentioning. Deco is an
Integrated Development Environment (IDE) built specifically for React Native
development. Starting up a new React Native project is super quick since Deco keeps a local
copy of everything you'd get when running react-native init. Deco also makes
creating new stateful and stateless components super easy.

Download Deco from h t t p s ://w w w . d e c o s o f t w a r e . c o m /.

Once you create a new component using Deco, it gives you a nicely prefilled template
including a place to add propTypes and defaultProps (something I often forget to do).
Refer to the following screenshot:

https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/
https://www.decosoftware.com/

React Native Tools and Resources

[457]

From there, you can drag and drop components from the sidebar directly into your code.
Deco will auto-populate many of the props for you as well as adding the necessary import
statements. Take a look at the following code snippet:

<Image
 style={{
 width: 300,
 height: 200,
 }}
 resizeMode={"contain"}
 source={{uri:'https://unsplash.it/600/400/?random'}}/>

The other nice feature Deco adds is the ability to easily launch your app from the toolbar in
any installed iOS simulator or Android AVD. You don't even need to first manually open
the AVD, Deco will do it all for you. Refer to the following screenshot:

React Native Tools and Resources

[458]

Currently, creating a new project with Deco starts you off with an outdated version of React
Native (version 0.27.2 currently). If you're not concerned with using the latest version, Deco
is a great way to get a React Native app up quickly. However, if you require more advanced
tooling, I suggest you look at Atom with Nuclide or Visual Studio Code with the React
Native Tools extension.

Taking React Native beyond iOS and
Android
The development experience is one of the most highly touted features by React Native
proponents. But, as we well know by now, React Native is more than just a great
development experience. It's also about building cross-platform applications with a
common language and, often, reusable code and components. Out of the box, the Facebook
team has provided tremendous support for iOS and Android. And thanks to the
community, React Native has expanded to include other promising platforms. In this
section, I'll take you through a few of these React Native projects. I won't go into great
technical depth, but I'll provide a high-level overview and show how to get each running.

Introducing React Native Web
React Native Web is an interesting one. It treats many React Native components you've
learned about, such as View, Text, and TextInput, as higher-level abstractions that map to
HTML elements, such as div, span, and input, thus allowing you to build a web app that
runs in a browser from your React Native code. Now, if you're like me, your initial reaction
might be–But why? We already have React for the web. It's called … React! However, where
React Native Web shines over React is in its ability to share components between your
mobile app and the Web because you're still working with the same basic React Native
APIs.

Learn more about React Native Web at h t t p s ://g i t h u b . c o m /n e c o l a s /r e

a c t - n a t i v e - w e b .

https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web
https://github.com/necolas/react-native-web

React Native Tools and Resources

[459]

Configuring React Native Web
React Native Web can be installed into your existing React Native project just like any other
npm dependency:

 npm install --save react react-native-web

Depending on the version of React Native and React Native Web you've
installed, you may encounter conflicting peer dependencies for React. This
may require manually adjusting which version of React Native or React
Native Web is installed. Sometimes, just deleting the node_modules
folder and rerunning npm install does the trick.

From there, you'll need some additional tools to build the web bundle. In this example,
we'll use webpack and some related tooling:

npm install webpack babel-loader babel-preset-react babel-preset-es2015
babel-preset-stage-1 webpack-validator webpack-merge --save
npm install webpack-dev-server --save-dev

Next, create a webpack.config.js file in the root of the project:

const webpack = require('webpack');
const validator = require('webpack-validator');
const merge = require('webpack-merge');
const target = process.env.npm_lifecycle_event;
let config = {};

const commonConfig = {
 entry: {
 main: './index.web.js'
 },
 output: {
 filename: 'app.js'
 },
 resolve: {
 alias: {
 'react-native': 'react-native-web'
 }
 },
 module: {
 loaders: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
 loader: 'babel',
 query: {

React Native Tools and Resources

[460]

 presets: ['react', 'es2015', 'stage-1']
 }
 }
]
 }
};

switch(target) {
 case 'web:prod':
 config = merge(commonConfig, {
 devtool: 'source-map',
 plugins: [
 new webpack.DefinePlugin({
 'process.env.NODE_ENV': JSON.stringify('production')
 })
]
 });
 break;
 default:
 config = merge(commonConfig, {
 devtool: 'eval-source-map'
 });
 break;
}

module.exports = validator(config);

Add the following two entries to the scripts section of package.json:

"web:dev": "webpack-dev-server --inline --hot",
"web:prod": "webpack -p"

Next, create an index.html file in the root of the project:

<!DOCTYPE html>
<html>
<head>
 <title>RNNYT</title>
 <meta charset="utf-8" />
 <meta content="initial-scale=1,width=device-width" name="viewport" />
</head>
<body>
 <div id="app"></div>
 <script type="text/javascript" src="/app.js"></script>
</body>
</html>

React Native Tools and Resources

[461]

And, finally, add an index.web.js file to the root of the project:

import React, { Component } from 'react';
import {
 View,
 Text,
 StyleSheet,
 AppRegistry
} from 'react-native';

class App extends Component {
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.text}>Hello World!</Text>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#efefef',
 alignItems: 'center',
 justifyContent: 'center'
 },
 text: {
 fontSize: 18
 }
});

AppRegistry.registerComponent('RNNYT', () => App);
AppRegistry.runApplication('RNNYT', { rootTag:
document.getElementById('app') });

To run the development build, we'll run webpack-dev-server by executing the following
command:

 npm run web:dev

web:prod can be substituted to create a production ready build.

React Native Tools and Resources

[462]

While developing, you can add React Native Web specific code much like you can with iOS
and Android by using Platform.OS === 'web' or by creating custom *.web.js
components.

React Native Web still feels pretty early days. Not every component and API is supported,
and the HTML that's generated looks a bit rough for my taste. While developing with React
Native Web, I think it helps to keep the right mindset. That is, think of this as I'm building a
React Native mobile app, not a website. Otherwise, you may find yourself reaching for web-
specific solutions that aren't appropriate for the technology.

React Native plugin for Universal Windows
Platform
Announced at the Facebook F8 conference in April, 2016, the React Native plugin for
Universal Windows Platform (UWP) lets you author React Native apps for Windows 10
desktop, Windows 10 mobile, and Xbox One.

Learn more about the React Native plugin for UWP at h t t p s ://g i t h u b . c o

m /R e a c t W i n d o w s /r e a c t - n a t i v e - w i n d o w s .

You'll need to be running Windows 10 in order to build UWP apps. You'll also need to
follow the React Native documentation to configure your Windows environment for
building React Native apps. If you're not concerned with building Android on Windows,
you can skip installing Android Studio. The plugin itself also has a few additional
requirements. You'll need to be running at least npm 3.x and to install Visual Studio 2015
Community (not be confused with Visual Studio Code). Thankfully, the Community
version is free to use. The UWP plugin docs also tell you to install the Windows 10 SDK
Build 10586. However, I found it's easier to do that from within Visual Studio once we've
created the app so that we can save that part for later.

Configuring the React Native plugin for UWP
I won't walk you through every step of the installation. The UWP plugin docs detail the
process well enough. Once you've satisfied the requirements, start by creating a new React
Native project as normal:

 react-native init RNWindows
 cd RNWindows

https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows
https://github.com/ReactWindows/react-native-windows

React Native Tools and Resources

[463]

Next, install and initialize the UWP plugin:

 npm install --save-dev rnpm-plugin-windows
 react-native windows

Running react-native windows will actually create a windows directory inside your
project containing a Visual Studio solution file. If this is your first time installing the plugin,
I recommend opening the solution (.sln) file with Visual Studio 2015. Visual Studio will
then ask you to download several dependencies including the latest Windows 10 SDK.
Once Visual Studio has installed all the dependencies, you can run the app either from
within Visual Studio or by running the following command:

 react-native run-windows

Take a look at the following screenshot:

React Native Tools and Resources

[464]

React Native macOS
Much as the name implies, React Native allows you to create macOS desktop applications
using React Native. This project works a little differently than the React Native Web and the
React Native plugin for UWP. As best I can tell, since React Native macOS requires its own
custom CLI for creating and packaging applications, you are not able to build a macOS and
mobile app from the same project.

Learn more about React Native macOS at h t t p s ://g i t h u b . c o m /p t m t /r e a

c t - n a t i v e - m a c o s .

Configuring React Native macOS
Much like you did with the React Native CLI, begin by installing the custom CLI globally
by using the following command:

 npm install react-native-macos-cli -g

Then, use it to create a new React Native macOS app by running the following command:

 react-native-macos init RNDesktopApp
 cd RNDesktopApp

This will set you up with all required dependencies along with an entry point file,
index.macos.js. There is no CLI command to spin up the app, so you'll need to open the
Xcode project and manually run it. Run the following command:

 open macos/RNDesktopApp.xcodeproj

The documentation is pretty limited, but there is a nice UIExplorer app that can be
downloaded and run to give you a good feel for what's available. While on some level it's
unfortunate your macOS app cannot live alongside your iOS and Android code, I cannot
think of a use case that would call for this. That said, I was delighted with how easy it was
to get this project up-and-running.

https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos
https://github.com/ptmt/react-native-macos

React Native Tools and Resources

[465]

Summary
I think it's fair to say that React Native is moving quickly. With a new version released
roughly every two weeks, I've lost count of how many versions have passed by in the
course of writing this book. I'm willing to bet React Native has probably bumped up a
version or two from the time you started reading this book until now. So, as much as I'd
love to wrap up by saying you now know everything possible about React Native, sadly
that isn't the case.

References
Let me leave you with a few valuable resources to continue your journey of learning and
building apps with React Native:

React Native AppleTV is a fork of React Native for building apps for Apple's
tvOS. For more information, refer to h t t p s ://g i t h u b . c o m /d o u g l o w d e r /r e a c t - n

a t i v e - a p p l e t v . (Note that preliminary tvOS support has appeared in early
versions of React Native 0.36.)
React Native Ubuntu is another fork of React Native for developing React Native
apps on Ubuntu for Desktop Ubuntu and Ubuntu Touch. For more information,
refer to h t t p s ://g i t h u b . c o m /C a n o n i c a l L t d /r e a c t - n a t i v e

JS.Coach is a collection of the community's favorite components and plugins for
all things React, React Native, Webpack, and related tools. For more information,
refer to h t t p s ://j s . c o a c h /r e a c t - n a t i v e

Exponent is described as Rails for React Native. It supports additional system
functionality and UI components beyond what's provided by React Native. It will
also let you build your apps without needing to touch Xcode or Android Studio.
For more information, refer to h t t p s ://g e t e x p o n e n t . c o m /

React Native Elements is a cross-platform UI toolkit for React Native. You can
think of it as Bootstrap for React Native. For more information, refer to h t t p s
://g i t h u b . c o m /r e a c t - n a t i v e - c o m m u n i t y /r e a c t - n a t i v e - e l e m e n t s

The Use React Native site is how I keep up with React Native releases and news
in the React Native space. For more information, refer to h t t p ://w w w . r e a c t n a t i
v e . c o m /

https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://github.com/CanonicalLtd/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://js.coach/react-native
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://getexponent.com/
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
https://github.com/react-native-community/react-native-elements
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/
http://www.reactnative.com/

React Native Tools and Resources

[466]

React Native Radio is fantastic podcast hosted by Nader Dabit and a panel of
hosts who interview other developers contributing to the React Native
community. For more information, refer to h t t p s ://d e v c h a t . t v /r e a c t - n a t i v e -
r a d i o

React Native Newsletter is an occasional newsletter curated by a team of React
Native enthusiasts. For more information, refer to h t t p ://r e a c t n a t i v e . c c /

And, finally, Dotan J. Nahum maintains an amazing resource titled Awesome
React Native that includes articles, tutorials, videos, and well-tested components
you can use in your next project. For more information, refer to h t t p s ://g i t h u b .
c o m /j o n d o t /a w e s o m e - r e a c t - n a t i v e

https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
https://devchat.tv/react-native-radio
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
http://reactnative.cc/
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native

Index

A
action creators 179
action sheets 164
alternate forms, component
 functional components 39, 40
 React.createClass 37, 39
Android device
 generating 439
 reference 439
Android Studio
 configuring 332, 333, 334
 installing 330
 reference 330
Android support, adding to RNNYT
 about 338
 platform logic, branching 339, 340
 refactoring 341, 343
Android Virtual Device (AVD) 336
Android
 about 448
 APK, generating 450
 beta test and release 450
 release build, testing 449
Angular JS
 reference 43
Animated API
 about 293, 313
 adding, to Onboarding experience 315, 317, 318
 Onboarding experience, refactoring 314
 used, with PanResponder 322, 323
Animated values
 interpolating 318, 320
Apple developer
 reference 437
application deployment
 about 439

 Android 448
 debugging code, removing 440
 iOS deployment process 441
architecture, Flux
 motivation 172, 174
 stores 183
asynchronous requests
 NYT API, wiring up with 227, 228
Atom
 about 452
 reference 62, 452
Awesome React Native
 reference 466

B
Babel 46
Babel REPL
 reference 46
badge 157
basic input selectors 223
box model 87, 88, 90
Browserify 61

C
Chrome Debugger
 breakpoints 71, 72
 enabling 68, 70
collapsed state 314
Command Line Interface (CLI) 43
component life cycle
 about 32, 34
 component, unmounting 36
 update cycle 35
 update lifecycle 34
component testing 403, 408
component
 about 13

[468]

 alternate forms 37
 composition 14, 15
 describing, in JSX 11, 12, 13

D
Deco
 about 456
 reference link 456
DevTools 48
dispatcher 175
Document Object Model (DOM) 9

E
ECMAScript 2015
 used, for importing dependencies 63
event handlers 25, 26, 27
event listeners 25
expanded state 314
Extensible Markup Language (XML) 12

F
Facebook
 reference 49
flame graph 415
Flexbox Froggy
 reference 102
flexbox
 about 74, 91, 92, 93, 94, 96
 flex items, growing 100
 flex items, shrinking 100
 flexBasis setting 100
 growing 100
 other axis, covering 98
 shrinking 100
Flow
 about 453
 installing 54
 reference 49
Flux
 about 8, 171
 action creators 179, 180
 actions 179
 architecture 172
 dispatcher 181, 182
 implementing 174

 updated data, rendering 186
 view, creating 175, 179
Fuse
 reference 42

G
general prop validation
 reference 86
Getting Started page
 reference 328
Google Chrome 48
Google Play store developer console
 reference 450

H
HelloWorld app
 about 62
 component 64
 root component, registering 66
 style code 66
Home Screen 153
Homebrew (brew)
 installing 51
 reference 52

I
Image component
 about 128, 130
 props 132, 133
 static methods 133
images
 background images 110
 styling 109
Integrated Development Environment (IDE)
 about 456
 evaluating 451
IntelliSense 455
InteractionManager
 used, for smoothing out animations 434
Ionic CLI
 reference 43
Ionic Framework
 reference 43
iOS deployment process
 application, signing 448

[469]

 applications, creating in iTunes Connect 443
 archive, creating 445
 beta testing 448
 icons, adding 444
 launch screen, adding 444
 provisioning profiles, creating 442
 release 448
iOS device
 app, testing with Release 438
 debugging 436

J
Jasmine 404
Java Development Kit (JDK)
 about 328
 installing 328
 reference 329
JavaScript XML (JSX)
 about 11
 components, describing 11, 12
JavaScriptCore (JSC) 411
Jest 404

L
LayoutAnimation
 about 293
 adding 306
 information, adding 309, 310
 reference 308
library, native modules
 profile page, creating 355
 profile, adding to Android home screen 362
 profile, adding to IOS home screen 358
 using 355
library
 versus framework 8
linear animation 308
ListView component
 about 137
 DataSource 138, 139
 props 139
 renderRow 139

M
macOS (Mac OS X) 48
media query behavior
 adding, to React Native 113
 adding, with dimensions 113, 114
 adding, with onLayout per View 114
memoized selectors 223
middleware
 setting up 204, 205
mobile app development ecosystem
 about 42
 Adobe PhoneGap 43
 Ionic 43
 NativeScript 43
 React Native 45
 reference 42
Modal component
 about 143
 props 144, 145, 146, 149
Model-View-Controller (MVC) 172
Mozilla Developer Network
 reference 64

N
Native APIs
 about 164
 ActionSheetIOS API 164, 166, 167
 Alert API 167, 168
 StatusBar API 169
 Vibration API 169
native modules, in Android
 about 388
 communicating, with callbacks 395, 396
 communicating, with events 398, 399
 communicating, with promises 396, 397
 constants, exporting 399, 400
 methods, exporting 394, 395
 setting up 388, 389, 390
native modules, in iOS
 about 366
 communicating, with callbacks 378, 379, 381
 communicating, with events 384, 385
 communicating, with promises 381
 constants, exporting 387

[470]

 methods, exporting 372, 376
 setting up 366, 368, 369, 370, 371
native modules
 in Android 388
 in iOS 366
 installing 354, 355
 library, using 355
 using 354
 writing 365, 366
NativeScript
 about 43
 reference 44
news system icon 157
Node.js 49
Node
 installing 53
Not a Number (NaN) 50
npm
 about 49
 installing 53
 permission, reference 55
Nuclide 452
Nuclide React Native Inspector 113
NYT API data
 about 208
 login link 208
 reference 208
NYT API
 iOS transport security, fixing 230
 loading spinner, adding 231, 232
 pull to refresh, adding 231, 232
 reference 227
 wiring, up with asynchronous requests 227, 228,

229

O
Onboarding experience
 building 293, 294, 295, 300, 302, 305

P
PanResponder
 touching up 325, 326
 using, with Animated API 322, 323
Perf Monitor 412
performance, mobile application

 about 411
 problematic ListView 412
 slow navigation 430
 summary 436
 unresponsive touch 430
physical devices
 Android devices, debugging 438
 iOS, debugging on 436
 running 436
plugins
 evaluating 451
Postman 208
press events 133
problematic ListView
 about 412
 additional optimizations 428
 ListView data source 427
 Perf Monitor, using 412
 PureRenderMixin 424
 React Perf Library 422
 shouldComponentUpdate 424
 state changes impact, minimizing 425
 Systrace, analyzing 415
props
 about 15
 accepting 15
 children 24, 25
 default props 21
 passing 20
PropTypes 15, 16, 17, 18
pure functions 190

R
radio button 329
Rails for React Native 465
RAM (Random Access Memory) 413
React Native app
 Chrome Debugger, enabling 68
 creating 56, 57, 58, 59, 61
 debugging 68
React Native command line interface (CLI)
 about 50
 installing 54
React Native components
 about 118

[471]

 image 128, 130
 ListView 137
 Modal 143
 other input components 163
 TabBarIOS 153
 Text component 119
 text, placing 121
 TextInput 158
 touchable 133
 View 124
 WebView 150
React Native Editors
 evaluating 451
React Native Inspector
 using 111
React Native macOS
 about 464
 configuring 464
React Native Packager 46, 61
React Native plugin
 configuring, for Universal Windows Platform

(UWP) 462
React Native Web
 configuring 459, 461
 reference 458
React Native
 about 45
 box model 86
 exploring, beyond Android 458
 exploring, beyond iOS 458
 extending 46
 flexbox 86
 importing 67
 media query behavior, adding 113
 reference 465
 style 46, 47
 tools 48
 used, for styling text 102
React-Redux
 about 199
 container components 200, 203
 context 199
 installing 199
 presentational components 200, 203
 providers 199

React
 motivation 8
 using 9, 10, 11
reducer functions 190
Redux data flow
 state tree 214
 wiring 212
Redux Saga
 reference 229
Redux Thunk 229
redux-logger 211
Redux
 about 172, 190
 action creators 196
 components, refactoring 219
 data flow, wiring 211
 data, reshaping 220, 221
 data, wiring to app 216, 217
 implementing 191
 installing 191
 multiple reducers 195
 principles 190
 React-Redux 199
 reducer 191
 refactoring 218
 reshaping 218
 search option, adding 223, 224, 226
 state tree, creating 213
 store, creating 194
 store, refactoring 191
 store, subscribing 197
requisite tools
 about 330, 334
 Android emulator 337
 Android emulator, starting 336
 ANDROID_HOME, configuring 334
 CPU/ABIs installation, verifying 335
 installing 328
 Java Development Kit, installing 328
 PATH, configuring 334
Reselect 222
responsive design 113
RNNYT (React Native - New York Times)
 about 117, 293
 Android support, adding 337

[472]

RNNYT for Android, refactoring
 about 341, 342
 Android styling, customizing 348, 350
 Android vibration, fixing 343, 344
 DrawerLayoutAndroid, using 344, 347
 LayoutAnimation, enabling 351
RNPM (React Native Package Manager) 355

S
selectors 222
self-closing 12
snapshot testing 408
spring animation 308
state
 tracking 27, 28, 31
styles
 applying 75
 component-specific style properties, applying 83,

84

 constructing 75
 debugging 111
 defining, as objects in React Native components

76, 77, 78
 inline styles 75
 inspecting 111
stylesheet
 about 79, 80
 Stylesheet.hairlineWidth, using 81, 83
styling
 without inheritance 85
Systrace tool 415

T
TabBarIOS component
 about 153, 154
 props 155, 159, 161, 163
 TabBarIOS.Item 155
testing
 component testing 404
 unit testing 403
Text component
 about 119
 props 122
text
 style properties 104

 styles, encapsulating in reusable components
106, 107, 108

 styling, with Reactive Native 102
TextInput component 158
Titanium
 reference 42
tools, React Native
 Google Chrome 48
 Homebrew 48
 installing 50
 Node.js 49
 npm 49
 Xcode 48
Touchable component
 about 133, 134
 props 136, 137

U
UIExplorer app 464
unit testing 403, 405
Universal Windows Platform (UWP)
 React Native plugin, configuring 462
 reference 462
unresponsive touch
 mitigating 431
Use React Native
 reference 465

V
View component
 about 124
 props 126, 128
Visual Studio Code
 download link 454

W
Watchman
 about 49
 Flow 49
 installing 54
 React Native command line interface (CLI) 50
Webpack 61
WebView component
 about 150, 151
 props 151

X
Xcode

 about 366
 installing 51
 reference 48

	Cover
	Copyright
	Credits
	Disclaimer
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Building a Foundation in React
	Library versus framework
	Motivation for React
	Getting started in React
	Describing components in JSX
	The component
	Component composition
	Props and PropTypes
	Accepting props
	PropTypes
	Passing props
	Default props
	Props.children

	Event handlers
	State
	The component lifecycle
	The update cycle
	Unmounting the component

	Alternate component forms
	React.createClass
	Functional components

	Summary

	Chapter 2: Saying HelloWorld in React Native
	Understanding the mobile app development ecosystem
	Adobe PhoneGap
	Ionic
	NativeScript
	React Native
	Extending React Native
	Introducing style and layout in React Native

	Understanding all the React Native tools
	Xcode
	Google Chrome
	Homebrew (also known as brew)
	Node.js and npm

	Watchman
	Flow
	React Native command-line interface (CLI)

	Installing our tools
	Installing Xcode
	Installing Homebrew
	Installing Node and npm

	Installing Watchman and Flow
	Installing the React Native CLI

	Creating our first React Native app
	React Native Packager

	Understanding our HelloWorld app
	[Importing dependencies using ECMAScript 2015]
	Importing dependencies using ECMAScript 2015
	Our HelloWorld component
	HelloWorld style code
	Registering the root component
	Why import React?

	Debugging a React Native app
	Enabling the Chrome Debugger
	Breakpoints

	Summary

	Chapter 3: Styling and Layout in React Native
	Constructing and applying styles
	Inline styles
	Styles as objects in your React Native components
	Stylesheet
	Using Stylesheet.hairlineWidth

	Applying component-specific style properties

	Styling without inheritance
	Understanding React Native's take on the box model and flexbox
	Box model

	Understanding Flexbox
	Covering the other axis
	Flex shrinking and growing
	Setting flexBasis
	Growing and shrinking flex items

	Styling text with React Native
	Text style properties
	Encapsulating text styles in reusable components

	Styling images
	Background images

	Inspecting and debugging styles
	Using the React Native Inspector

	Adding media query behavior to React Native
	Using Dimensions
	Using onLayout per View

	Summary

	Chapter 4: Starting our Project with React Native Components
	Native components
	Text
	Props

	View
	Props

	Image
	Props
	Static methods

	Touchable
	Props

	ListView
	DataSource
	renderRow
	Props

	Modal
	Props

	WebView
	Props

	TabBarIOS
	Props
	TabBarIOS.Item
	Props

	TextInput
	Props

	Other input components

	Native APIs
	ActionSheetIOS
	Alert
	Vibration
	StatusBar

	Summary

	Chapter 5: Flux and Redux
	The Flux architecture
	Motivation
	Implementing Flux
	Creating our view
	Actions and action creators
	Dispatcher
	Stores
	Rendering updated data

	Getting started with Redux
	Principles of Redux
	Installing Redux
	Implementing Redux
	Refactoring the store
	Reducer
	Creating the store
	Multiple reducers

	Action creators
	Subscribing to the store

	React-Redux
	Installing React-Redux
	React context and providers
	Container and presentational components

	Middleware

	Summary

	Chapter 6: Integrating with the NYT API and Redux
	Understanding the NYT API data
	Wiring up our Redux data flow
	Creating the Redux state tree
	Wiring up Redux data to our app
	Refactoring and reshaping
	Refactoring the components
	Reshaping the data

	Introducing Reselect
	Adding search

	Wiring up the NYT API with asynchronous requests
	Fixing iOS transport security
	Adding pull to refresh and a loading spinner

	Summary

	Chapter 7: Navigation and Advanced APIs
	Navigation landscape
	NavigatorIOS
	Navigator
	NavigationExperimental
	Choosing a navigator

	Using Navigator
	The Navigator component
	Navigation bar

	Advanced navigation with NavigationExperimental
	Representing the navigation state
	Managing the navigation state
	The CardStack component
	Navigation header
	Tabbed navigation
	Adding in the modal

	Other advanced APIs
	Offline messages with NetInfo
	Opening the browser with linking
	Saving bookmarks locally with AsyncStorage

	Summary

	Chapter 8: Animation and Gestures in React Native
	Introducing LayoutAnimation and Animated
	Building the basic Onboarding experience
	Getting started

	Adding LayoutAnimation
	Adding a bit more animation

	Understanding Animated
	Refactoring our Onboarding experience
	Adding Animated to our Onboarding experience
	Interpolating Animated Values

	Using PanResponder with the Animated API
	Touching up PanResponder

	Summary

	Chapter 9: Refactoring for Android
	Installing the necessary tools
	Installing the Java Development Kit
	Installing Android Studio
	Configuring Android Studio

	Configuring ANDROID_HOME and your PATH
	Verifying that the CPU/ABIs are installed
	Starting the Android emulator

	Adding Android support to RNNYT
	Branching platform logic
	Refactoring RNNYT for Android
	Fixing Android vibration
	Using DrawerLayoutAndroid
	Customizing Android styling
	Enabling LayoutAnimation

	Summary

	Chapter 10: Using and Writing Native Modules
	Using native modules
	Installing native modules
	Using the library
	Profile page
	Adding the profile to the iOS home screen
	Adding the profile to the Android home screen

	Writing native modules
	Native modules in iOS
	Setting up the module
	Exporting methods
	Communicating with callbacks
	Communicating with promises
	Communicating with events
	Exporting constants

	Native modules in Android
	Setting up the module
	Exporting methods
	Communicating with callbacks
	Communicating with promises
	Communicating with events
	Exporting constants

	Summary

	Chapter 11: Preparing for Production
	Testing
	Unit testing
	Component testing

	Performance
	Problematic ListView
	Using Perf Monitor
	Analyzing a Systrace
	The React Perf Library
	shouldComponentUpdate and PureRenderMixin
	Minimizing the impact of state changes
	The ListView data source
	Additional optimizations

	Unresponsive touch and slow navigation
	Mitigating unresponsive touch
	Smoothing out animations with InteractionManager

	Performance summary

	Running on physical devices
	Debugging on an iOS device
	Testing your app on an iOS device using Release

	Debugging on Android devices
	Generating a signed APK

	Deploying our application
	Remove debugging code
	iOS
	Creating provisioning profiles
	Registering an application in iTunes Connect
	Adding icons and updating the launch screen
	Creating an archive
	Beta testing and release

	Android
	Signing the application
	Testing the release build
	Generating the APK
	Beta-test and release

	Summary

	Chapter 12: React Native Tools and Resources
	Evaluating React Native Editors, Plugins, and IDEs
	Atom and Nuclide

	Taking React Native beyond iOS and Android
	Introducing React Native Web
	Configuring React Native Web

	React Native plugin for Universal Windows Platform
	Configuring the React Native plugin for UWP

	React Native macOS
	Configuring React Native macOS

	Summary
	References

	Index

