
www.allitebooks.com

http://www.allitebooks.org

Mastering Swift 3 - Linux

Learn to build fast and robust applications on the Linux
platform with Swift

Jon Hoffman

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Swift 3 - Linux

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2017

Production reference: 1281216

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-141-4

www.packtpub.com

www.allitebooks.com

http://www.packtpub.com
http://www.allitebooks.org

Credits

Author

Jon Hoffman

Copy Editor

Safis Editing

Reviewers

Andrea Prearo
Doug Sparling

Project Coordinator

Shweta H Birwatkar

Commissioning Editor

Ashwin Nair

Proofreader

Safis Editing

Acquisition Editor

Smeet Thakkar

Indexer

Aishwarya Gangawane

Content Development Editor

Sumeet Sawant

Graphics

Disha Haria

Technical Editor

Egan Lobo

Production Coordinator

Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author
Jon Hoffman has over 20 years of experience in the field of information technology. Over
these 20 years, Jon has worked in the areas of system administration, network
administration, network security, application development, and architecture. Currently, Jon
works as a senior software engineer for Syn-Tech Systems.

Jon has developed extensively for the iOS platform since 2008. This includes several apps
that he has published in the App Store, apps that he has written for third parties, and
numerous enterprise applications. What really drives Jon is the challenges that the field of
information technology provides and there is nothing more exhilarating to him than
overcoming a challenge.

You can follow Jon on his blogs: h t t p ://m a s t e r i n g s w i f t . b l o g s p o t . c o m and h t t p ://m y r o

b o t i c a d v e n t u r e . b l o g s p o t . c o m .

Some of Jon’s other interests are watching baseball (Go Sox) and basketball (Go Celtics). Jon
also really enjoys Tae Kwon Do where he and his oldest daughter Kailey earned their black
belts together early in 2014, Kim (his wife) earned her black belt in December 2014, and his
youngest daughter is currently working towards her black belt.

I would like to thank my wonderful wife, Kim, without whose support, encouragement,
patience, and understanding, this book would have never been written. I would also like to
thank my two wonderful daughters, Kailey and Kara, who have both been my inspiration
and driving force since the days they were born.

www.allitebooks.com

http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://masteringswift.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://myroboticadventure.blogspot.com
http://www.allitebooks.org

About the Reviewers
Andrea Prearo is a software engineer with over 15 years of experience.

He is originally from Italy, and after a decade of writing software in C/C++ and C#, he
moved to the Bay Area in 2011 to start developing mobile apps.

In the last few years, he has been focusing on Swift, Objective-C, iOS, and microservices,
with some short explorations of the Android platform.

Currently, he is a member of the iOS development team at Capital One, working on the
company’s flagship mobile banking app.

His interests include reading books, watching movies, and hiking. From time to time, he
also blogs about tech on Medium: h t t p s ://m e d i u m . c o m /@a n d r e a . p r e a r o .

I would like to thank my wonderful wife, Nicole, for her never-ending support in all my
endeavors.

Doug Sparling works as a technical architect and software developer for Andrews McMeel
Universal, a publishing and syndication company in Kansas City, MO. At AMU, he uses Go
for web services, Python for backend services, and Ruby on Rails and WordPress for
website development, and Objective-C, Swift, and Java for native iOS and Android
development. AMU’s sites include www.gocomics.com, www.uexpress.com,
www.puzzlesociety.com, and dilbert.com.

He also was the co-author of a Perl book, Instant Perl Modules for McGraw-Hill and a
reviewer for other Packt Publishing books, including Swift Data Structure and Algorithms,
jQuery 2.0 Animation Techniques: Beginner’s Guide, and WordPress Web Application
Development. Doug has also played various roles for Manning Publications as a reviewer,
technical development editor, and proofer, working on books such as Go in Action, The
Well-Grounded Rubyist 2nd Edition, iOS Development with Swift, and Programming for
Musicians and Digital Artists.

www.allitebooks.com

https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
http://www.gocomics.com
http://www.uexpress.com
http://www.puzzlesociety.com
http://dilbert.com
http://www.allitebooks.org

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Taking the First Steps with Swift 7

What is Swift? 7
Swift's features 9
Installing Swift 3 for Linux 10
Swift language syntax 12
Comments 12
Semicolons 15
Parentheses 15
Curly brackets 16
Assignment operators do not return a value 16
Spaces are optional in conditional and assignment statements 17

Hello World 17
Executing Swift code 19
Swift and the Swift REPL 20
Swift compiler 21
Using the Swift Package Manger 22
Editors for Swift 24
Summary 24

Chapter 2: Learning About Variables, Constants, Strings, and Operators 25

Constants and variables 26
Defining constants and variables 26
Type safety 27
Type inference 28
Explicit types 29
Numeric types 30

Integers 30
Floating point 33

The Boolean type 34
The String type 35
Optional variables 37
Enumerations 42

Operators 46
The assignment operator 46

www.allitebooks.com

http://www.allitebooks.org

[ii]

Comparison operators 46
Arithmetic operators 47
The remainder operator 47
Compound assignment operators 48
The ternary conditional operator 48
The logical NOT operator 49
The logical AND operator 49
The logical OR operator 49

Summary 50

Chapter 3: Using Swift Collections and the Tuple Type 51

Swift collection types 52
Mutability 52
Arrays 53

Creating and initializing arrays 53
Accessing the array elements 55
Counting the elements of an array 56
Is the array empty? 57
Appending to an array 57
Inserting a value into an array 57
Replacing elements in an array 58
Removing elements from an array 58
Adding two arrays 59
Reversing an array 59
Retrieving a subarray from an array 59
Making bulk changes to an array 60
Algorithms for arrays 60

Sort 61
Sorted 62
Filter 62
Map 63
forEach 63

Iterating over an array 64
Dictionaries 65

Creating and initializing dictionaries 65
Accessing dictionary values 66
Counting key or values in a dictionary 66
Is the dictionary empty? 67
Updating the value of a key 67
Adding a key-value pair 68
Removing a key-value pair 68

www.allitebooks.com

http://www.allitebooks.org

[iii]

Set 69
Initializing a set 69
Inserting items into a set 70
The number of items in a set 70
Checking whether a set contains an item 70
Iterating over a set 70
Removing items in a set 71
Set operations 71

Tuples 73
Summary 74

Chapter 4: Control Flow and Functions 75

What we have learned so far 75
Curly brackets 76
Parentheses 76

Control flow 77
Conditional statements 77

The if statement 77
Conditional code execution with the if…else statement 78

The for loop 79
Using the for…in loop 79

The while loop 81
Using the while loop 81
Using the repeat…while loop 82

The switch statement 83
Using case and where statements with conditional statements 87

Filtering with the where statement 87
Filtering with the for…case statement 88
Using the if…case statement 90

Control transfer statements 91
The continue statement 91
The break statement 92
The fallthrough statement 93
The guard statement 93

Functions 95
Using a single-parameter function 95
Using a multi-parameter function 97
Defining a parameter's default values 97
Returning multiple values from a function 99
Returning optional values 100
Adding external parameter names 101
Using variadic parameters 102

www.allitebooks.com

http://www.allitebooks.org

[iv]

Inout parameters 103
Nesting functions 104

Putting it all together 105
Summary 106

Chapter 5: Classes and Structures 107

What are classes and structures? 107
Similarities between classes and structures 108
Differences between classes and structures 108
Value versus reference types 108

Creating a class or structure 110
Properties 110
Stored properties 111
Computed properties 113
Property observers 116
Methods 117

Custom initializers 119
Internal and external parameter names 121
Failable initializers 122

Inheritance 125
Overriding methods and properties 128

Overriding methods 128
Overriding properties 131
Preventing overrides 131

Protocols 132
Protocol syntax 132

Property requirements 132
Method requirements 134

Extensions 136
Memory management 137

How ARC works 138
Strong reference cycles 140

Summary 144

Chapter 6: Using Protocols and Protocol Extensions 145

Protocols as types 146
Polymorphism with protocols 148
Type casting with protocols 149
Protocol extensions 151
Summary 159

[v]

Chapter 7: Protocol-Oriented Design 160

Requirements 160
Object-oriented design 161
Protocol-oriented design 166

Protocol inheritance 167
Protocol composition 168
Animal – protocol-oriented design 169
Using the where statement with protocols 171

Summary 172

Chapter 8: Writing Safer Code with Error Handling 173

Error handling prior to Swift 2.0 174
Native error handling 175

Representing errors 175
Throwing errors 176
Catching errors 178

Summary 183

Chapter 9: Custom Subscripting 184

Introducing subscripts 184
Subscripts with Swift arrays 185
Read and write custom subscripts 186
Read-only custom subscripts 187
Calculated subscripts 188
Subscript values 188
External names for subscripts 189
Multidimensional subscripts 189
When not to use a custom subscript 192
Summary 193

Chapter 10: Using Optional Types 194

Introducing optionals 194
The need for optional types in Swift 196

Defining an optional 197
Using optionals 198

Forced unwrapping optionals 198
Optional binding 198
Returning optionals from functions, methods, and subscripts 200
Using optionals as a parameter in a function or method 201
Optional types with tuples 202

Optional chaining 202

[vi]

The nil coalescing operator 204
Summary 205

Chapter 11: Working with Generics 206

An introduction to generics 206
Generic functions 207
Generic types 211
Associated types 215
Summary 218

Chapter 12: Working with Closures 219

An introduction to closures 219
Simple closures 220
Shorthand syntax for closures 223
Using closures with Swift's array algorithms 226
Changing functionality 230
Selecting a closure based on results 233
Creating strong reference cycles with closures 235
Summary 239

Chapter 13: Using C Libraries with Swift 240

Modules 241
Creating a custom module 242
Creating the Cpcap module 243
Using the Cpcap module 244
Linux man pages 249
Summary 251

Chapter 14: Concurrency and Parallelism in Swift 252

Concurrency and parallelism 253
GCD 254
Helper functions 255

Creating queues 256
Creating and using a concurrent queue 257
Creating and using a serial queue 259

async versus sync 260
Executing code on the main queue function 261
Using asyncAfter 261

Summary 262

Chapter 15: Swifts Core Libraries 263

Apple's URL loading system 264
URLSession 265

[vii]

URLSessionConfiguration 265
URLSessionTask 266
URL 266
URLRequest 266
HTTPURLResponse 266
REST web services 267
Making an HTTP GET request 267
Making an HTTP POST request 270

Formatter 272
DateFormatter 273
NumberFormatter 275
FileManager 276

Summary 278

Chapter 16: Swift on Single Board Computers 279

The BeagleBone Black 280
BeagleBone Black's expansion headers 283
Installing Swift 285
SwiftyBones3 285
Sources directory 286
SwiftyBuild 287
Blinking an LED with the SBDigitalGPIO type 287
TMP36 temperature sensor with the SBAnalog type 290
Autonomous robot 294
Summary 309

Chapter 17: Swift Formatting and Style Guide 310

What is a programming style guide? 310
Your style guide 311

Do not use semicolons at the end of statements 312
Do not use parentheses for conditional statements 312
Naming 312

Custom types 312
Functions and methods 313
Constants and variables 313
Indenting 314

Comments 314
Using the self keyword 315
Constants and variables 315
Optional types 316

Use optional binding 316

[viii]

Use optional chaining over optional binding for multiple unwrapping 317
Use type inference 317
Use shorthand declaration for collections 317
Use switch rather than multiple if statements 318
Don't leave commented-out code in your application 318

Summary 319

Chapter 18: Adopting Design Patterns in Swift 320

What are design patterns? 320
Creational patterns 322

The singleton design pattern 323
Understanding the problem 324
Understanding the solution 324
Implementing the singleton pattern 325

The builder design pattern 327
Understanding the problem 327
Understanding the solution 327
Implementing the builder pattern 327

Structural design patterns 333
The bridge pattern 333

Understanding the problem 333
Understanding the solution 334
Implementing the bridge pattern 334

The façade pattern 338
Understanding the problem 338
Understanding the solution 338
Implementing the façade pattern 339

The proxy design pattern 341
Understanding the problem 341
Understanding the solution 341
Implementing the proxy pattern 342

Behavioral design patterns 344
The command design pattern 345

Understanding the problem 345
Understanding the solution 345
Implementing the command pattern 346

The strategy pattern 348
Understanding the problem 348
Understanding the solution 349
Implementing the strategy pattern 349

Summary 351

Index 352

Preface
In December 2015, Apple released Swift as an open source project on its GitHub page. With
this release, Apple also released a version of Swift for Linux. Swift is a general-purpose
programming language that takes a modern approach to development.

What this book covers
Chapter 1, Taking the First Steps with Swift, gives a brief introduction to the Swift language.
We will also cover the basic Swift language syntax and discuss proper language styles.

Chapter 2, Learning About Variables, Constants, Strings, and Operators, shows how to use
variables and constants in Swift. We will also look at the various data types and how to use
operators in Swift.

Chapter 3, Using Swift Collections and the Tuple Type, looks at how we can use the Swift
collection types to store related data. These collection types are the dictionary, array and set
types.

Chapter 4, Control Flow and Functions, covers control flow and functions in Swift. It is
essential to understand the concepts in this chapter before going on. Every application that
we write, beyond the simple Hello World applications, will rely very heavily on the control
flow statements and functions.

Chapter 5, Classes and Structures, dedicates itself to Swift's classes and structures. We'll look
at what makes them similar and what makes them different. We'll also look at access
controls and object-oriented design. We'll close this chapter out by looking at memory
management in Swift.

Chapter 6, Using Protocols and Protocol Extensions, covers both protocols and protocol
extensions in detail since protocols are very important to the Swift language. Having a solid
understanding of them will help us write flexible and reusable code.

Chapter 7, Protocol-Oriented Design, covers the best practices of protocol-oriented Design
with Swift. It will be a brief overview of what is covered in my Swift 3 Protocol-Oriented
Programming book.

Chapter 8, Writing Safer Code with Error Handling, looks at Swift's error-handling features.
This feature is really important for writing safe code. While we are not required to use this
feature in our custom types however it does give us a uniform manner to handle and

Preface

[2]

respond to the error. Apple has also started to use this error handling in their frameworks.
It is recommended that we use error handling in our code.

Chapter 9, Custom Subscripting, discusses how we can use custom subscripts in our classes,
structures, and enumerations. Subscripts in Swift can be used to access elements in a
collection. We can also define custom subscripts for our classes, structures, and
enumerations.

Chapter 10, Using Optional Types, explains what optional types really are, what the various
ways to unwrap them are, and optional chaining. For a developer who is just learning Swift,
optional types can be one of the most confusing items to learn.

Chapter 11, Working with Generics, explains how Swift implements generics. Generics allow
us to write very flexible and reusable code that avoids duplication.

Chapter 12, Working with Closures, teaches us how to define and use closures in our code.
Closures in Swift are similar to blocks in Objective-C except that they have a much cleaner
and easier to use syntax. We will conclude this chapter with a section on how to avoid
strong reference cycles with closures.

Chapter 13, Using C Libraries with Swift, explains how we can link and use standard C
libraries with our Swift applications. This gives Swift developers access to all of the same
libraries that Linux C developers have access to.

Chapter 14, Concurrency and Parallelism in Swift, shows how to use Grand Central Dispatch
(GCD) to add concurrency and parallelism to our applications. Understanding and
knowing how to add concurrency and parallelism to our apps can significantly enhance the
user experience.

Chapter 15, Swift's Core Libraries, explains how to use the Swift core libraries, including
reading/writing files, network primitives, and JSON parsing.

Chapter 16, Swift on Single Board Computers, shows how we can use Swift to develop IoT
devices and robots using a single board computer.

Chapter 17, Swift Formatting and Style Guide, defines a style guide for the Swift language
that can be used as a template for enterprise developers who need to create a style guide,
since most enterprises have style guides for the various languages that they develop in.

Chapter 18, Adopting Design Patterns in Swift, shows you how to implement some of the
more common design patterns in Swift. A design pattern identifies a common software
development problem and provides a strategy for dealing with it.

Preface

[3]

What you need for this book
To follow along with the samples in this book, the reader will need a computer that has
Ubuntu 14.04, 15.10, 16.04, or 16.10 installed. To follow along with the samples in Chapter
16, Swift on Single Board Computers, the reader will need a BeagleBone Black or Green single
board computer and the additional components mentioned in the chapter.

Who this book is for
Swift is a modern, fast, and safe open source language created by Apple. This book is for
Linux developers who are interested in learning how to use Swift to quickly create exciting
applications for the desktop, server, and embedded Linux platforms. This book will be
written for developers who learn best by working with code, as every topic discussed will
be reinforced with code samples.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
change the value of the highTemperture variable without an error because it is a variable"

A block of code is set as follows:

var x = 3.14 // Double type
var y = "Hello" // String type
var z = true // Boolean type

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<head>
<script src="d3.js" charset="utf-8"></script>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width">
 <title>JS Bin</title>
</head>

Any command-line input or output is written as follows:

sudo mkdir swift

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /M a s t e r i n g - S w i f t - 3- L i n u x . We also have other code bundles from our rich catalog
of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /M a s t e r i n g S w i f t 3L i n u x _ C o l o r I m a g e s . p d f .

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/Mastering-Swift-3-Linux
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSwift3Linux_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Taking the First Steps with Swift
Ever since I was 12 years old and wrote my first program in the BASIC language,
programming has been a passion for me. Even as programming became my career, it
always remained more of a passion than a job, but over the past few years, that passion has
waned. I was unsure why I was losing that passion. I attempted to recapture it with some of
my side projects, but nothing really brought back the excitement that I used to have. Then,
something wonderful happened! Apple announced Swift, which is an exciting and
progressive language that has brought a lot of that passion back and made programming
fun for me again. Now that Apple has released Swift for Linux, I can use it for most of my
projects.

In this chapter, you will learn the following topics:

What is Swift?
Some of the features of Swift
How to get started with Swift
What are the basic syntaxes of the Swift language?

What is Swift?
Swift is Apple's new programming language that was introduced at the Worldwide
Developers Conference (WWDC) in 2014, alongside the integrated development
environment Xcode 6 and iOS 8. Swift was arguably the most significant announcement at
WWDC 2014, and very few people, including Apple insiders, were aware of the project's
existence prior to it being announced. In this initial release of Swift it could only be used to
develop applications for the Apple platforms.

Taking the First Steps with Swift

[8]

It was amazing, even by Apple's standards, that they were able to keep Swift a secret for as
long as they did, and no one suspected that they were going to announce a new
development language. At WWDC 2015, Apple made another big splash when they
announced Xcode 7 and Swift 2. Swift 2 was a major enhancement to the language. During
that conference, Chris Lattner said that a lot of enhancements were based directly on
feedback that Apple received from the development community. It was also announced at
WWDC 2015 that Apple would be releasing Swift as open source, and they would be
offering a port for Linux.

In December 2015, Apple officially released Swift as an open source project with the
swift.org site dedicated to the open source Swift community. The Swift repository is
located on Apple's github page (h t t p ://g i t h u b . c o m /a p p l e). The Swift evolution
repository (h t t p s ://g i t h u b . c o m /a p p l e /s w i f t - e v o l u t i o n) tracks the evolution of the
Swift language by documenting all of the proposed changes. You can also find a list of
proposals that were accepted and rejected in this repository. If you are interested in
understanding where Swift is heading, then you should check out this repository. It is
interesting to note that Swift 3 contains several enhancements that were proposed by the
community.

Swift 3 is a major enhancement to the language and is NOT source-compatible with
previous releases. It contains fundamental changes to the language itself and to the Swift
standard library. One of the main goals of Swift 3 is to be source-compatible across all
platforms, so the code that we write for one platform will be compatible with all other
platforms that Swift supports. This means that the code we develop for Mac OS will also
work on Linux.

Development on Swift was started in 2010 by Chris Lattner. He implemented much of the
basic language structure with only a few people being aware of its existence. It wasn't until
late 2011 that other developers began to really contribute to Swift, and in July 2013, it
became a major focus of the Apple Developer Tools group.

There are a lot of similarities between Swift and Objective-C. Swift adopts the readability of
Objective-C's named parameters and its dynamic object model. When we refer to Swift as
having a dynamic object model, we are referring to its ability to change at runtime. This
includes adding new (custom) types and changing/extending the existing types.

https://swift.org/
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution

Taking the First Steps with Swift

[9]

While there are a lot of similarities between Swift and Objective-C, there are also significant
differences between them as well. Swift's syntax and formatting are a lot closer to Python
than Objective-C, but Apple did keep the curly braces. I know that Python people would
disagree with me, and that is all right because we all have different opinions, but I like the
curly braces. Swift actually makes the curly braces required for control statements such as
if and while, which eliminates bugs, such as the goto fail in Apple's SSL library, which
Apple patched in 2014.

Swift's features
When Apple said that Swift is Objective-C without the C, they were really only telling us
half the story. Objective-C is a superset of C and provides object-oriented capabilities and a
dynamic runtime to the C language. This means that, with Objective-C, Apple needed to
maintain compatibility with C, which limited the enhancements it could make to the
Objective-C language. As an example, Apple could not change how the switch statement
functioned and still maintains the C compatibility.

Since Swift does not need to maintain the same C compatibility as Objective-C, Apple was
free to add any feature/enhancement to the language. This allowed Apple to include the
best features from many of today's most popular and modern languages, such as Objective-
C, Python, Java, Ruby, C#, and Haskell.

The following chart shows a list of some of the most exciting enhancements that Swift
includes:

Swift feature Description

Type inference Swift can automatically deduce the type of the variable or constant,
based on the initial value.

Generics Generics allow us to write the code only once to perform identical
tasks for different types of objects.

Collection mutability Swift does not have separate objects for mutable or nonmutable
containers. Instead, you define mutability by defining the container
as a constant or variable.

Closure syntax Closures are self-contained blocks of functionality that can be
passed around and used in our code.

Optionals Optionals define a variable that might not have a value.

Switch statement The Switch statement has been drastically improved. This is one of
my favorite improvements.

Taking the First Steps with Swift

[10]

Multiple return types Functions can have multiple return types using tuples.

Operator overloading Classes can provide their own implementation of existing
operators.

Enumerations with
Associated values

In Swift, we can do a lot more than just defining a group of related
values with enumerations.

Before we can look at the Swift language itself, we need to download and install it. Let's
look at how we can install Swift.

Installing Swift 3 for Linux
The following instructions were current when this book was written and works for both
Ubuntu 15.10 and Ubuntu 16.04 LTS. The most up-to-date installation instructions can be
found on the swift.org installation page: h t t p s ://s w i f t . o r g /g e t t i n g - s t a r t e d /#i n s t a l

l i n g - s w i f t .

The first step in installing Swift is to install clang and configure it. The following are the
commands:

 sudo apt-get update
 sudo apt-get install clang-3.6
 sudo update-alternatives -install /usr/bin/clang clang
 /usr/bin/clang-3.6 100
 sudo update-alternatives -install /usr/bin/clang++ clang++
 /usr/bin/clang++-3.6 100

If you forget to do the update-alternatives commands, you will receive an error:
invalid inferred toolchain error when you try to build a package. Forgetting to run
the update-alternatives commands is a very common error.

Now that we have the correct clang installed, we need to download Swift. You can
download the latest version from the swift.org download page. The link for this page is: h
t t p s ://s w i f t . o r g /d o w n l o a d /.

https://swift.org/
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/getting-started/#installing-swift
https://swift.org/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/

Taking the First Steps with Swift

[11]

Once you have downloaded Swift, you can install it in the location of your choice; however,
you will want to avoid installing it off the root directory because that may overwrite the
/usr directory. As a personal preference, I like to install Swift in the /opt directory. The
following instructions will show how I install Swift.

Anytime you see {swift version}, substitute it for the version information
of the Swift you are installing.

1. Go to the /opt directory:

 cd /opt

2. Create a directory to hold this and all future Swift versions:

 sudo mkdir swift

3. Change to the swift directory, and copy the downloaded swift file to this location:

 cd swift
 sudo cp -R ~/Downloads/swift-{swift version}.tar.gz ./

4. Gunzip and untar the swift file:

 tar -zxvf swift-{swift version}.tar.gz

5. The last command should have created a new directory that contains the Swift files. We
will now want to create a symbolic link to this directory indicating that it is our current
version of Swift:

 sudo ln -s /opt/swift-{swift version} swift-current

6. All of the files in the swift directory are owned by the root user. If you attempt to build
a Swift package with the package manager, while all of the files are owned by root, you will
receive a permission denied error. The easiest way to fix this is to change the ownership of
the Swift files to your user. If you want to give permission for multiple users to use Swift,
you can add write permissions for all users. Instructions for both options are listed here and
you only need to follow one of them:

 //Change ownership of the Swift files
 sudo chown -R {username}:{username} swift-{swift version}
 //Alternatively change write permission
 sudo chmod -R +x swift-{swift-version}

Taking the First Steps with Swift

[12]

7. Now, we need to add Swift to our path. To do this you will have to edit your
~/.profile file and add the following line to it:

 PATH=/opt/swift/swift-current/usr/bin:$PATH

8. You can either start a new terminal session to pick up the changes or run the following
command in your current session:

 . ~/.profile

To verify everything is good, run the swift -version command, which should output
your new version of Swift. When a new version of Swift is released, install it to the
/opt/swift directory and then change the swift-current symbolic link to point to this new
version.

Swift language syntax
The Swift language uses modern concepts and syntax to create very concise and readable
code. There is also a heavy emphasis on eliminating many common programming mistakes.
Before we look at the Swift language itself, let's take a look at some of the basic syntax of the
language.

Comments
When we write comments for Swift code, we can use the traditional double slash // for
single-line comments and the /* and */ for multi-line comments. If we want to use the
comments to also document our code, we need to use the triple slash ///.

When we write our code on a Linux computer, we do not have access to the Xcode IDE.
However, since the code we write for Linux can be compatible with Apple's platforms it is a
good habit to comment our code in such a manner that it will be recognized in the Xcode
IDE.

This book is about using Swift for Linux, therefore we try to avoid any
functionality that requires an Apple computer or an iPad. We do however
use Playgrounds and Xcode in this section to illustrate how comments can
be used for documentation on the Apple platform so we will understand
why the format is important.

Taking the First Steps with Swift

[13]

To document our code, we can use the following specific fields that Xcode recognizes:

Parameter: When we start a line with - parameter {param name}, Xcode
recognizes this as the description for a parameter
Return: When we start a line with - return:, Xcode recognizes this as the
description for the return value
Throws: When we start a line with - throws:, Xcode recognizes this as the
description for the errors that this method may throw

This example shows both single-line and multi-line comments and how to use the comment
fields:

Taking the First Steps with Swift

[14]

To write good comments, I would recommend using single-line comments within a
function to give quick one-line explanations of your code. We will then use multi-line
comments outside functions and classes to explain what the function and types do. The
preceding Playground shows a good use of comments. When we use proper code
comments, as we did in the preceding screenshot, we can take advantage of the
documentation feature within Xcode. If we hold down the option key and then click on the
function name anywhere in our code, Xcode will display a popup with a description of the
function.

The next screenshot shows what that popup looks like:

This screenshot shows the documentation feature of Xcode if we hold down the option key
and then click on the myAdd() method. We can see that the documentation contains six
fields. These fields are as follows:

Declaration: This is the function's declaration (that is, its signature)
Description: This is the description of the function as it appears in the comments

Taking the First Steps with Swift

[15]

Parameters: The parameter descriptions are prefixed with the - Parameters:
tag in the comment section
Throws: The throws description is prefixed with the - throws: tag and
describes what errors are thrown by the methods
Returns: The return description is prefixed with the - returns: tag in the
comment section
Declared In: This is the file that the function is declared in, so that we can easily
find it

Semicolons
You may have noticed, from the code samples so far, that we are not using semicolons at
the end of lines. Semicolons are optional in Swift; therefore, both lines in the following code
are valid in Swift:

print("Hello from Swift")
print("Hello from Swift");

For style purposes, it is strongly recommended that you do not use semicolons in your
Swift code. If you are really set on using semicolons in your code, then be consistent and
use them in every line of the code; however, Swift will not warn you if you forget them. I
will stress again that it is recommended that you do not use semicolons in Swift.

Parentheses
In Swift, parentheses around conditional statements are optional; for example, both if
statements in the following code are valid:

var x = 1

if x == 1 {
 print("x == 1")
}

if (x == 1) {
 print("x == 1")
}

www.allitebooks.com

http://www.allitebooks.org

Taking the First Steps with Swift

[16]

For style purposes, it is recommended that you do not include the parentheses in your code
unless you have multiple conditional statements on the same line. For readability purposes,
it is a good practice to put parentheses around the individual conditional statements that
are on the same line.

Curly brackets
In Swift, unlike most other languages, curly brackets are required after conditional or loop
statements. This is one of the safety features that is built into Swift. Arguably, there have
been numerous security bugs that might have been prevented if the developer had used
curly braces. These bugs could also have been prevented by other means, such as unit
testing and code reviews, but requiring developers to use curly braces, in my opinion, is a
good security standard.

The following code shows how to use curly brackets:

let x = 1

//Valid
if x == 1 {
 print("x == 1")
}

//Not Valid
if x == 1
 print("x == 1")

Assignment operators do not return a value
In most other languages, the following line of code is valid, but it is probably not what the
developer meant to do:

if (x = 1) {}

You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
purchased. If you purchased this book from elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Taking the First Steps with Swift

[17]

In Swift, this statement is invalid. Using an assignment operator (=) in a conditional
statement (if and while) will throw an error. This is another safety feature built into Swift.
It prevents the developer from forgetting the second equal to sign (=) in a comparison
statement.

Spaces are optional in conditional and
assignment statements
For both conditional (if and while) and assignment (=) statements, white spaces are
optional. Therefore, in the following code, both The i block and The j block code
blocks are valid:

//The i block
var i=1
if i==1 {
 print("HI")
}

//The j block
var j = 1
if j == 1 {
 print("HI")
}

For style purposes, I would recommend adding the white spaces (such as
The j block) for readability, but as long as you pick one style and are
consistent, either style should be acceptable.

Hello World
All good computer books that are written to teach a programming language have a section
that shows a user how to write a Hello World application. This book is no exception. In this
section, we will show you how to write a Hello World application with Swift.

Let's begin by creating a new file named main.swift. The main.swift file is a special file
in Swift and is the entry point for our application. It is the only file that can contain top-
level code. Top-level code is the code that is not part of a function or type (enumeration,
class, or structure). All of the code for our Hello World application is considered top-level
code.

Taking the First Steps with Swift

[18]

In Swift, to print a message to the console, we use the print() function. In its most basic
form, we would use the print function to print out a single message as shown in the
following code:

print("Hello World")

Usually, when we use the print() function, we want to print more than just static text. We
can include the value of variables and/or constants using a special sequence of characters,
\(), or by separating the values within the print() function with commas. The following
code shows how to do this:

var name = "Jon"
var language = "Swift"

var message1 = "Welcome to the wonderful world of "
var message2 = "\(name) Welcome to the wonderful world of \(language)!"

print(name, message1, language, "!")
print(message2)

In order to compile this code, it will need to be in a file name main.swift. You can use
any text editor, like emacs or VI, to create this file. Once the main.swift file is created, we
will need to build our Hello World application. Type the following line in the same
directory where the main.swift file is located:

 swiftc main.swift

Once the swift compiler finishes building the application, we will have an executable file
named main in our directory. We can run the file using the following command:

 ./main

If all goes well, you can see the following output:

 Jon Welcome to the wonderful world of Swift!
 Jon Welcome to the wonderful world of Swift!

We will look at the swift and swiftc commands later in this chapter.

Taking the First Steps with Swift

[19]

We can also define two parameters in the print function that change how the message is
displayed in the console. These parameters are the separator and terminator
parameters. The separator parameter defines a string that is used to separate the values of
the variable/constant in the print() function. By default, the print() function separates
each variable/constant with a space. The terminator parameter defines which character is
inserted at the end of the line. By default, the newline character is added at the end of the
line.

The following code shows how we could create a comma-separated list that does not have a
newline character at the end:

var name1 = "Jon"
var name2 = "Kim"
var name3 = "Kailey"
var name4 = "Kara"

print(name1, name2, name3, name4, separator:", ", terminator:"")

There is one other parameter that we can add to our print() function. This is the
toStream parameter. This parameter will let us redirect the output of the print()
function. In the following example, we redirect the output to a variable named line:

var name1 = "Jon"
var name2 = "Kim"
var name3 = "Kailey"
var name4 = "Kara"

var line = ""

print(name1, name2, name3, name4, separator:", ", terminator:"", to:&line)

The print() function was simply a useful tool for basic debugging, but now we can use
the new enhanced print() function a lot more.

Executing Swift code
In the next couple of sections, we will look at the various ways in which we can execute our
Swift code. We could easily write a complete book on these tools; however, in this section,
we will give a brief overview of each tool, so you will be aware of how to use them to
execute your code or build your applications. After reading these sections, you should be
able to build and execute the examples in this book, as well as your own applications.

Taking the First Steps with Swift

[20]

Swift and the Swift REPL
There are a couple of ways in which you can quickly experiment with Swift code. The first
is the Swift interactive Read Evaluate Print Loop (REPL). The REPL is a command line tool
that evaluates our code as we write it. Developers who are used to interpreting languages
will be comfortable using this tool.

To start the REPL, you will need to open a terminal prompt and enter the following
command:

 swift

You will be greeted with a prompt similar to the following:

 Welcome to Swift version 3.0 ({your-swift-version}). Type :help for
 assistance
 1>

From here, we can type in any Swift statement and hit Enter. The REPL will immediately
execute our code. The following is an example:

 1> var x = 10
 x: Int = 10
 2> x += 5
 3> print(x)
 15

To exit the REPL, type the following command:

 :quit

We can also quickly test a Swift source file using the swift command. To try this out,
create a file named Hello.swift, and put the following code in it:

print("Hello")

Now let's run the following command to execute this source file:

swift Hello.swift

You should see the message Hello printed to the console. The REPL and Swift commands
are extremely powerful tools, and you can do a lot more than just prototyping new code. If
you find these tools useful, I would recommend spending time learning about the various
advanced features.

Taking the First Steps with Swift

[21]

Swift compiler
When we run our code using the swift command, or the Swift REPL tool, we are running
the code as we would run a typical interpreted script such as a Bourne Again
SHell (BASH) or Python script. This is really nice if we want to use Swift as a scripting
language but if we want to build applications with Swift, we will need to compile our code
into an executable form. To do this, we can use the Swift compiler.

Let's see how we would use the Swift compiler to build the Hello World example that we
created earlier. If you recall from that example, we had to create a main.swift file. While
using a main.swift file is not required for an application that only contains a single source
file, it is required for applications that contain multiple source files. The Swift compiler will
look for the main.swift and use it as the entry point for the application, similar to how a C
compiler uses the main() function.

It is a good habit, when all of our code is contained in one file, to name
that file main.swift.

To build the Hello World application that we created earlier, we would need to run the
following command in the same directory that the main.swift file is in:

 swiftc main.swift

This command should only take a second or so to run. Once it is completed, we should have
an executable file named main. If your application contains multiple files, you can list them
one by one as follows:

 swiftc main.swift file1.swift file2.swift file3.swift

If you want to change the name of the output file, you can use the -o option as follows:

 swiftc main.swift file1.swift file2.swift -o myexecutable

There are a number of command line options that you can use with the swift compiler.
However, if you find that you are using a lot of command line options and making a
complex compiler statement, you may want to look at the Swift Package Manager.

Taking the First Steps with Swift

[22]

Using the Swift Package Manger
According to Apple, the Swift Package Manager is defined as:

A tool for managing the distribution of Swift code. It's integrated with the Swift build
system to automate the process of downloading, compiling, and linking dependencies.

The first part of the previous statement means that the Swift Package Manager can be used
to manage the distribution of modules. Some applications may have all their code
organized into a single module. More complex applications may separate their code into
different modules. As an example, if you were developing an application that
communicates with another device over Bluetooth, you may want to put the Bluetooth code
into a separate module, so you can reuse it in other applications.

The Swift Package Manager will manage module or application dependencies and will
automate the process of downloading, compiling, and linking these dependencies. This
allows us to concentrate on our code rather than figuring out how to write complex build
scripts to compile our applications or modules.

A package consists of the Swift source files and a manifest file called Package.swift. The
manifest file defines the package's name and contains instructions on how to build the
package. We can customize the manifest file to declare build targets or dependencies,
include or exclude source files, and specify build configurations for the module or
application.

Let's look at how we can use the Package Manager to create a simple application. Firstly, we
need to decide how we will name the application. For our example, we will use the name
PMExample. Let's create a directory with that name and then change to that directory:

 mkdir PMExample
 cd PMExample

Now, we need to build the framework that the Package Manager needs. To do this, we will
run the following command:

 swift package init

This command will create both the Sources and Tests directory. It will also create a
number of files including the Package.swift manifest file and also a file in the Sources
directory with the same name as your application. If you look at the Package.swift
manifest file, it should look as follows:

import PackageDescription
let package = Package(name: "PMExample")

Taking the First Steps with Swift

[23]

This is the most basic manifest file, and it simply defines the name for the package. We will
look at this manifest file in greater depth in Chapter 13, Using C Libraries with Swift.

Now, let's look at the PMExample.swift that was created for us in the Sources directory.
It should contain code similar to the following code:

struct PMExample {
 var text = "Hello, World!"
}

Let's add some code to this file, so it contains the following code:

struct PMExample {
 var text = "Hello, World!"
 func sayHello() {
 print(text)
 }
}

All we did in this example was add a method that prints Hello, World! to the console.

Don't worry if you do not understand this code yet. We are looking to get
you familiar with the Package Manager and the compiler, so you feel
comfortable compiling the code examples in this book.

Now let's add the main.swift file to the Sources directory. This will be the entry point to
our application. Add the following code to this file:

let example = PMExample()
example.sayHello()

Now, go back to the PMExample directory, and run the following command to build the
PMExample application.

 swift build

This will build the application. If all is well, we will have an executable application in the
PMExample/.build/debug directory named PMExample.

Note that, in the PMExample.swift file, all of the code was contained in the PMExample
structure, whereas the code in the main.swift file was top-level code. Remember what we
noted earlier: the main.swift file is the only file that can contain top-level code.

Taking the First Steps with Swift

[24]

We only scratched the surface of what the Package Manager can do in this section. We will
look at it further in Chapter 13, Using C Libraries with Swift.

When all of the source code is in one file, it will be much easier to use the swift compiler to
build your executable code; however, once your application grows past that single source
file, I would recommend looking at the Package Manager to manage your dependencies
and your builds.

Editors for Swift
You can use pretty much any text editor such as VI, Emacs, or gedit to write your Swift
code. It can be pretty painful at times to use these text editors to write code, especially when
you are accustomed to using standard IDEs, which come with code completion. If you want
to spend a little money, you could get an IDE (such as CLion) that comes with a Swift
plugin, but there is one free code editor that works really well with Swift. That editor is
Visual Studio Code from Microsoft.

Yes, Microsoft makes a free code editor that can run on Linux and can edit Swift files (are
you as surprised as I was?). I was pretty skeptical at first, but once I started using it, I
realized that it was the best Swift editor for Linux that I could find at the time I wrote this
book. To download Visual Studio Code, you can go to h t t p s ://c o d e . v i s u a l s t u d i o . c o m ,
and select the download link. Keep in mind that, when we use Visual Studio Code to write
applications in Swift, it is nothing more than a code editor. We cannot run or debug our
code from within Visual Studio Code.

Hopefully, as more developers use Swift on Linux, we will begin to see some good
developer tools emerge.

Summary
In this chapter, we showed you how to start and use Playgrounds to experiment with Swift
programming. We also covered the basic Swift language syntax and discussed proper
language styles. The chapter concluded with two Hello World examples.

In the next chapter, we will see how to use variables and constants in Swift. We will also
look at the various data types, and how to use operators in Swift.

https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com

2
Learning About Variables,

Constants, Strings, and
Operators

The first program that I ever wrote was written in the BASIC programming language, and it
was the typical Hello World application. This application was pretty exciting at first, but the
excitement of printing static text wore off pretty quickly. For my second application, I used
BASIC's input command to prompt the user for a name and then printed out a custom hello
message to the user with their name in it. At the age of 12, it was pretty cool to display
Hello Han Solo. This application led me to create numerous Mad Lib style applications that
prompted the user for various words and then put those words into a story that was
displayed after the user had entered all the required words. These applications introduced
me to, and taught me, the importance of variables. Every useful application that I created
since then has used variables.

In this chapter, we will cover the following topics:

What variables and constants are
The difference between explicit and inferred typing
Explaining numeric, string, and boolean types
Defining optional types
Explaining how enumerations work in Swift
Explaining how Swift's operators work

Learning About Variables, Constants, Strings, and Operators

[26]

Constants and variables
Constants and variables associate an identifier (such as myName or currentTemperature)
with a value of a particular type (such as String or Int), where the identifier can be used
to retrieve and set the value. The difference between a constant and variable is that a
variable can be updated or changed, whereas a constant cannot be changed once a value is
assigned to it.

Constants are good for defining values that you know will never change, such as the
freezing temperature of water or the speed of light. Constants are also good for defining a
value that we use many times throughout our application, such as a standard font size or a
character limit in a buffer. There will be numerous examples of constants throughout this
book.

Variables tend to be more common in software development than constants; however, this
is mainly because developers tend to prefer variables to constants. In Swift, we receive a
warning if we declare a variable that is never changed. We can make useful applications
without using constants (although it is a good practice to use them); however, it is almost
impossible to create a useful application without variables.

The use of constants is encouraged in Swift. If we do not expect or want
the value to change, we should declare it as a constant. This adds a very
important safety constraint to our code, thus ensuring that the value never
changes.

You can use almost any character in the identifier of a variable or constant (even Unicode
characters); however, there are a few rules that you must follow:

An identifier must not contain any whitespace
An identifier must not contain any mathematical symbols
An identifier must not contain any arrows
An identifier must not contain private use or invalid Unicode characters
An identifier must not contain line- or box-drawing characters
An identifier must not start with a number, but it can contain numbers
If you use a Swift keyword as an identifier, surround it with back ticks

Keywords are words that are used by the Swift programming language.
Some examples of keywords that you will see in this chapter are var and
let. You should avoid using Swift keywords as identifiers to avoid
confusion while reading your code.

Learning About Variables, Constants, Strings, and Operators

[27]

Defining constants and variables
Constants and variables must be defined prior to using them. To define a constant, you use
the keyword, let; to define a variable, you use the keyword, var. The following code
shows how to define both constants and variables:

// Constants
let freezingTemperatureOfWaterCelsius = 0
let speedOfLightKmSec = 300000

// Variables
var currentTemperature = 22
var currentSpeed = 55

We can declare multiple constants or variables in a single line by separating them with a
comma. For example, we could shrink the preceding four lines of a code down to two lines,
as shown here:

// Constants
let freezingTempertureOfWaterCelsius = 0, speedOfLightKmSec = 300000

// Variables
var currentTemperture = 22, currentSpeed = 55

We can change the value of a variable to another value of a compatible type; however, as
we noted earlier, we cannot change the value of a constant. Let's look at the following code.
Can you tell what is wrong with the code?

let speedOfLightKmSec = 300000
var highTemperture = 93

highTemperture = 95
speedOfLightKmSec = 29999

Did you figure out what was wrong with the code? Any physicist can tell you that we
cannot change the speed of light, and in our code, the speedOfLightKmSec variable is a
constant, so we cannot change it here either. When we try to change the
speedOfLightKmSec constant, an error is reported. We can change the value of the
highTemperture variable without an error because it is a variable. We mentioned the
difference between variables and constants a couple of times because it is a very important
concept to grasp, especially when we define mutable and immutable collection types later
in Chapter 3, Using Swift Collections and the Tuple Type.

Learning About Variables, Constants, Strings, and Operators

[28]

Type safety
Swift is a type-safe language. In a type-safe language, we must be clear about the types of
values we store in a variable. We will get an error if we attempt to assign a value to a
variable that is of a wrong type. The following code attempts to put a string value into a
variable that expects integer values; note that we will discuss the most popular types a little
later in this chapter:

var integerVar = 10
integerVar = "My String"

Swift performs a type check when it compiles the code; therefore, it will flag any
mismatched types with an error. So, the question is, How does Swift know that
integerVar is of the Int type? Swift uses type inference to figure out the appropriate type.
Let's take a look at what type inference is.

Type inference
Type inference allows us to omit the variable type when we define it. The compiler infers
the type based on the initial value. For example, in the C language, we would define an
integer as follows:

int myInt = 1

This tells the compiler that the myInt variable is of the Int type, and the initial value is the
number 1. In Swift, we would define the same integer as follows:

var myInt = 1

Swift infers that the variable type is an integer because the initial value is an integer. Let's
take a look at a couple of additional examples:

var x = 3.14 // Double type
var y = "Hello" // String type
var z = true // Boolean type

In the preceding example, the compiler will correctly infer that variable x is Double,
variable y is String, and variable z is Boolean based on the initial values.

Learning About Variables, Constants, Strings, and Operators

[29]

We can always check the variable type at runtime by using the type(of:) function. For
our example, we could print out the variable types to the console as follows:

print(type(of: x))
print(type(of: y))
print(type(of: z))

This would show the following output, which confirms our expectations about the inferred
variable types:

 Double
 String
 Bool

Explicit types
Type inference is a very nice feature in Swift and is one that you will probably get used to
very quickly. However, there are times when we would like to explicitly define a variable's
type. For example, in the preceding example, the variable is inferred to be Double, but what
if we wanted the variable type to be Float? We can explicitly define a variable type as
follows:

var pi : Float = 3.14

Notice the Float declaration (colon and the word Float) after the variable identifier. This
tells the compiler to define this variable to be of the Float type and gives it an initial value
of 3.14. When we define a variable in this manner, we need to ensure that the initial value
is of the same type as the variable itself. If we try to give a variable an initial value that is of
a different type than what we are defining it as, we will receive an error.

We will also need to explicitly define the variable type if we are not setting an initial value.
For example, the following line of code is invalid, because the compiler does not know what
type the x variable should be set to:

var x

If we use this code in our application, we will receive a Type annotation missing in
pattern error. If we are not setting an initial value for a variable, we are required to define
the type as follows:

var x: Int

Learning About Variables, Constants, Strings, and Operators

[30]

Now that we have seen how to explicitly define a variable type, let's take a look at some of
the most commonly used types.

Numeric types
Swift contains many of the standard numeric types that are suitable for storing various
integer and floating-point values.

Integers
An integer is a whole number and can be either signed (positive, negative, or zero) or
unsigned (positive or zero). Swift provides several integer types of different sizes. The
following chart shows the value ranges for the different integer types:

Type Minimum Maximum

Int8 −128 127

Int16 −32,768 32,767

Int32 −2,147,483,648 2,147,483,647

Int64 −9,223,372,036,854,775,808 9,223,372,036,854,775,807

Int −9,223,372,036,854,775,808 9,223,372,036,854,775,807

UInt8 0 255

UInt16 0 65,535

UInt32 0 4,294,967,295

UInt64 0 18,446,744,073,709,551,615

UInt 0 18,446,744,073,709,551,615

Unless there is a specific reason to define the size of an integer, I would
recommend using the standard Int or UInt type. This will save you from
the need to convert between different types of integers.

Learning About Variables, Constants, Strings, and Operators

[31]

In Swift, integers (as well as other numerical types) are actually named types and are
implemented in Swift's standard library using structures. This gives us a consistent
mechanism for memory management for all data types as well as properties that we can
access. The following code will retrieve the min and max values for numerous Int and UInt
types:

print("UInt8 max \(UInt8.max)")
print("UInt8 min \(UInt8.min)")

print("UInt16 max \(UInt16.max)")
print("UInt16 min \(UInt16.min)")

print("UInt32 max \(UInt32.max)")
print("UInt32 min \(UInt32.min)")

print("UInt64 max \(UInt64.max)")
print("UInt64 min \(UInt64.min)")

print("UInt max \(UInt.max)")
print("UInt min \(UInt.min)")

print("Int8 max \(Int8.max)")
print("Int8 min\(Int8.min)")

print("Int16 max \(Int16.max)")
print("Int16 min \(Int16.min)")

print("Int32 max \(Int32.max)")
print("Int32 min \(Int32.min)")

print("Int64 max \(Int64.max)")
print("Int64 min \(Int64.min)")

print("Int max \(Int.max)")
print("Int min \(Int.min)")

If you run the preceding code, you will get the following output:

 UInt8 max 255
 UInt8 min 0
 UInt16 max 65535
 UInt16 min 0
 UInt32 max 4294967295
 UInt32 min 0
 UInt64 max 18446744073709551615
 UInt64 min 0
 UInt max 18446744073709551615

Learning About Variables, Constants, Strings, and Operators

[32]

 UInt min 0
 Int8 max 127
 Int8 min-128
 Int16 max 32767
 Int16 min -32768
 Int32 max 2147483647
 Int32 min -2147483648
 Int64 max 9223372036854775807
 Int64 min -9223372036854775808
 Int max 9223372036854775807
 Int min -9223372036854775808

Integers can also be represented as binary, octal, and hexadecimal numbers. We just need to
add a prefix to the number to tell the compiler which base the number should be in. The
following chart shows the prefix for each numerical base:

Base Prefix

Decimal None

Binary 0b

Octal 0o

Hexadecimal 0x

The following code shows how the number 95 can be represented in each of the numerical
bases:

var a = 95
var b = 0b1011111
var c = 0o137
var d = 0x5f

Swift also allows us to insert arbitrary underscores in our numeric literals. This can improve
the readability of our code. As an example, if we are defining the speed of light, which is
constant, we can define it as follows:

let speedOfLightKmSec = 300_000

Swift will ignore these underscores; therefore, they do not affect the value of the numeric
literals in any way.

Learning About Variables, Constants, Strings, and Operators

[33]

Floating point
A floating-point number is a number with a decimal component. There are two standard
floating-point types in Swift: Float and Double. Float represents a 32-bit floating-point
number, whereas Double represents a 64-bit floating-point number. Swift also supports an
extended floating-point type, that is, Float80. The Float80 type is an 80-bit floating-point
number.

It is recommended that you use the Double type over the Float type unless there is a
specific reason to use the latter. The Double type has a precision of at least 15 decimal
digits, whereas the Float type can be as small as six decimal digits. Let's look at an
example of how this can affect our application without us knowing about it. The following
code adds two floating point numbers and sets the results into both a float and double
constant:

let f: Float = 0.111_111_111 + 0.222_222_222
let d: Double = 0.111_111_111 + 0.222_222_222

If we ran this code and printed out the results, the f constant would contain 0.333_333_3,
while the d constant would contain 0.333_333_333. The two decimal numbers that we are
adding together contain nine digits past the decimal point; however, the results in the
Float type only contain seven digits, while the results in the Double type contain all nine
digits.

The loss of precision can cause issues if we are working with currency or other numbers
that need accurate calculations. The floating-point accuracy is not an issue confined to Swift;
all languages that implement the IEEE 754 floating-point standard have similar issues. The
best practice is to use Double types for floating-point numbers, unless there is a specific
reason not to.

What if we have two variables, one an Int and the other a Double? Do you think we can
add them together as the following code depicts:

var a : Int = 3
var b : Double = 0.14
var c = a + b

If we put the preceding code into a Playground, we would receive the following error:
binary operator '+' cannot be applied to operands of type 'Int' and

'String'.

Learning About Variables, Constants, Strings, and Operators

[34]

This error lets us know that we are trying to add two different types of number, which is
not allowed. To add an Int and a Double together, we need to convert the Int value into a
Double value. The following code shows how to this:

var a : Int = 3
var b : Double = 0.14
var c = Double(a) + b

Note how we use the Double() function to convert the Int value to a Double value. All
the numeric types in Swift have a conversion convenience initializer, similar to the
Double() function shown in the preceding code sample. For example, the following code
shows how you can convert an Int variable to Float and UInt16 variables:

var intVar = 32
var floatVar = Float(intVar)
var uint16Var = UInt16(intVar)

The Boolean type
Boolean values are often referred to as logical values because they can be either true or
false. Swift has a built-in Boolean type that accepts one of the two built-in Boolean
constants: true or false.

Boolean constants and variables can be defined as follows:

let swiftIsCool = true
let swiftIsHard = false

var itIsWarm = false
var itIsRaining = true

Boolean values are especially useful while working with conditional statements, such as if
and while. For example, what do you think this code would do?

let isSwiftCool = true
let isItRaining = false
if isSwiftCool {
 print("YEA, I cannot wait to learn it")
}
if isItRaining {
 print("Get a rain coat")
}

Learning About Variables, Constants, Strings, and Operators

[35]

If you answered that this code would print out YEA, I cannot wait to learn it, then
you are correct. Since isSwiftCool is set to true, the YEA, I cannot wait to learn
it message is printed out, but isItRaining is false; therefore, the Get a rain coat
message is not.

The String type
A string is an ordered collection of characters, such as Hello or Swift. In Swift, the String
type represents a string. We have seen several examples of strings already in this book, so
the following code should look familiar. This code shows how to define two strings:

var stringOne = "Hello"
var stringTwo = " World"

Since a string is an ordered collection of characters, we can iterate through each character of
a string. The following code shows how to do this:

var stringOne = "Hello"
for char in stringOne.characters {
 print(char)
}

There are two ways to add one string to another string. We can concatenate them or include
them inline. To concatenate two strings, we use the + or += operator. The following code
shows how to concatenate two strings. The first example appends stringB to the end of
stringA, and the results are put into a new stringC variable. The second example
appends stringB directly to the end of stringA, without creating a new string:

var stringC = stringA + stringB
stringA += stringB

To include a string inline with another string, we use a special sequence of characters \().
The following code shows how to include a string inline with another string:

var stringA = "Jon"
var stringB = "Hello \(stringA)"

In the previous example, stringB contained the message Hello Jon because Swift
replaced the \(stringA) sequence of characters with the value of stringA.

www.allitebooks.com

http://www.allitebooks.org

Learning About Variables, Constants, Strings, and Operators

[36]

In Swift, we define the mutability of variables and collections using the var and let
keywords. If we define a string as a variable using var, the string is mutable, meaning that
we can change and edit the value of the string. If we define a string as a constant using let,
the string is immutable, meaning that we cannot change or edit the value once it is set. The
following code shows the difference between a mutable and an immutable string:

var x = "Hello"
let y = "HI"
var z = "World"

//This is valid, x is mutable
x += z

//This is invalid, y is not mutable.
y += z

Strings in Swift have two methods that can convert the case of the string. These methods are
called lowercased() and uppercased(). The following example shows these methods:

var stringOne = "hElLo"
print("Lowercase String: " + stringOne.lowercased())
print("Uppercase String: " + stringOne.uppercased())

If we run this code, the results will be as follows:

 Lowercase String: hello
 Uppercase String: HELLO

Swift provides four ways to compare a string; these are string equality, prefix equality,
suffix equality, and isEmpty. The following example shows these methods:

var stringOne = "Hello Swift"
var stringTwo = ""
stringOne.isEmpty //false
stringTwo.isEmpty //true
stringOne == "hello swift" //false
stringOne == "Hello Swift" //true
stringOne.hasPrefix("Hello") //true
stringOne.hasSuffix("Hello") //false

We can replace all the occurrences of a target string with another string using the
stringByReplacingOccurrencesOfString()method. The following code shows this:

var stringOne = "one,to,three,four"
print(stringOne.replacingOccurrences(of: "to", with: "two"))

Learning About Variables, Constants, Strings, and Operators

[37]

The preceding example will print one,two,three,four on the screen because we are
replacing all the occurrences of to with two.

We can also retrieve substrings and individual characters from our strings. The following
shows how to do this:

var stringOne = "one,two,three,four"
print(stringOne.replacingOccurrences(of: "to", with: "two"))

var path = "/one/two/three/four"
//Create start and end indexes
let startIndex = path.index(path.startIndex, offsetBy: 4)
let endIndex = path.index(path.startIndex, offsetBy: 14)

let myRange = startIndex..<endIndex

path.substring(with: myRange) //returns the String /two/three

path.substring(to:startIndex) //returns the String /one
path.substring(from:endIndex) //returns the String /four

path.characters.last
path.characters.first

In the preceding example, we used the substring(with:) function to retrieve the
substring between a start and end indexes. The indexes are created with the index(_:
offsetBy:) function. The first property in the index(_: offsetBy:) function gives the
index of where we wish to start, and the offsetBy property tells us by how much we
should increase the index.

The substring(to:) function creates a substring from the beginning of the string till the
index. The substring(from:) function creates a substring from the index to the end of the
string. We then use the last property to get the last character of the string and the first
property to get the first character.

We can retrieve the number of characters in a string using the count property. The
following example shows how you can use this function:

var path = "/one/two/three/four"
var length = path.characters.count

This completes our whirlwind tour of strings. I know that we went through these properties
and functions very quickly, but we will be using strings extensively throughout this book
and so we will have a lot of time to get used to them.

Learning About Variables, Constants, Strings, and Operators

[38]

Optional variables
All of the variables we have looked at so far are considered to be non-optional variables.
This means that the variables are required to have a non-nil value; however, there are times
when we want or need our variables to contain nil values. This can occur if we return a
nil from a function whose operation has failed or if a value is not found.

In Swift, an optional variable is a variable to which we are able to assign nil (no value).
Optional variables and constants are defined using a question mark (?). The following code
shows how to define both an optional string variable and a non-optional string variable:

var optionalString: String?
var nonoptionalString: String

If we attempt to assign a nil to the nonoptionalString variable, we will receive an error.

Optional variables were added to the Swift language as a safety feature. They provide a
compile time check of our variables to check whether they contain a valid value. Unless our
code specifically defines a variable as optional, we can assume that the variable contains a
valid value, and we do not have to check for nil values. Since we are able to define a
variable before initiating it, this can give us a nil value in a non-optional variable;
however, the compiler checks for this and will give us a Variable'{name}' used
before being initialized error. To check whether an optional variable or a constant
contains a valid (non-nil) value, our first thought might be to use the != (not equals to)
operator to check whether the variable is not equal to nil, but there are also other ways.
These other ways are optional binding and optional chaining. Before we cover optional
binding and optional chaining, let's see how to use the not equals to (!=) operator and what
force unwrapping is.

To use force unwrapping, we must first make sure that the optional has a non-nil value and
then we can use the exclamation point to access that value. The following example shows
how we can do this:

var name: String?
name = "Jon"

if name != nil {
 var newString = "Hello " + name!
}

Learning About Variables, Constants, Strings, and Operators

[39]

In this example, we create an optional variable named name and assign it a value of Jon. We
then use the != operator to verify that this optional variable is not equal to nil. If it is not
equal to nil, we use the exclamation point to access its value. While this is a perfectly
viable option, it is recommended that we use the optional binding method discussed next
instead of force unwrapping.

Optional binding is used to check whether an optional variable or a constant has a non-nil
value, and if so, assign that value to a temporary variable. For optional binding, we use the
if let or if var keywords together. If we use if let, the temporary value is a constant
and cannot be changed, whereas the if var keywords puts the temporary value into a
variable that allows us to change the value. The following code illustrates how optional
binding is used:

var myOptional: String?
if let temp = myOptional {
 print(temp)
 print("Can not use temp outside of the if bracket")
} else {
 print("myOptional was nil")
}

In the preceding example, we use the if let keywords to check whether the myOptional
variable is nil. If it is not nil, we assign the value to the temp variable and execute the
code between the brackets. If the myOptional variable is nil, we execute the code in the
else bracket, which prints out the message, myOptional was nil. One thing to note is
that the temp variable is scoped only for the conditional block and cannot be used outside
of the conditional block.

It is perfectly acceptable with optional binding to assign the value to a variable of the same
name. The following code illustrates this:

if let myOptional = myOptional {
 print(myOptional)
} else {
 print("myOptional was nil")
}

Learning About Variables, Constants, Strings, and Operators

[40]

To illustrate the scope of the temporary variable, let's take a look at this code:

var myOptional: String?

myOptional = "Jon"
print("Outside: \(myOptional)")

if var myOptional = myOptional {
 myOptional = "test"
 print("Inside: \(myOptional)")
}

print("Outside: \(myOptional)")

In this example, the first line that is printed to the console is Outside: Optional(Jon)
because we are outside of the scope of the if var statement where the myOptional
variable is set to Jon. The second line that is printed to the console would be Inside:
test because we are within the scope of the if var statement where we assign the value
of test to the myOptional variable. Inside the inner scope, myOptional is unwrapped,
because of the optional binding, and, hence, not an optional anymore. The third printed line
is Outside: Optional(Jon), like the first one, because we are again outside of the scope
of if var, where the value of the is myOptional = "test" assignment is not visible.

We can also test multiple optional variables in one line by separating each optional check
with a comma. The following is an example:

if let myOptional1 = myOptional1, let myOptional2 = myOptional2, let
myOptional3 = myOptional3 {
 // only reach this if all three optionals
 // have non-nil values
}

Optional chaining allows us to call properties, methods, and subscripts on an optional that
might be nil. If any of the chained values return nil, the return value will be nil. The
following code gives an example of optional chaining using a fictitious car object. In this
example, if either car or tires are nil, the variable will be nil; otherwise, s will be equal
to the tireSize property:

var s = car?.tires?.tireSize

Learning About Variables, Constants, Strings, and Operators

[41]

The following code illustrates three ways to verify whether an optional contains a valid
value prior to using them:

//Optional Variable
var stringOne : String?
//--------stringOne is nil ---------------//
//Explicitly check for nil
if stringOne != nil {
 print(stringOne)
} else {
 print("Explicit Check: stringOne is nil")
}
//option binding
if let tmp = stringOne {
 print(tmp)
} else {
 print("Optional Binding: stringOne is nil")
}
//Optional chainging
var charCount1 = stringOne?.characters.count

//--------adding value to stringONe ---------------//
stringOne = "http://www.packtpub.com/all"

//--------stringOne is nil ---------------//
//Explicitly check for nil
if stringOne != nil {
 print(stringOne)
} else {
 print("Explicit Check: stringOne is nil")
}
//option binding
if let tmp = stringOne {
 print(tmp)
} else {
 print("Optional Binding: stringOne is nil")
}

//Optional chainging
var charCount2 = stringOne?.characters.count

In the preceding code, we begin by defining the optional string variable, stringOne. We
then explicitly check for nil using the != operator. If stringOne is not equal to nil, we
print the value of stringOne to the console. If stringOne is nil, we print the Explicit
Check: stringOne is nil message to the console. As we can see in the results console,
Explicit Check: stringOne is nil is printed to the console because we have not
assigned a value to stringOne yet.

Learning About Variables, Constants, Strings, and Operators

[42]

We then use optional binding to check whether stringOne is not nil. If stringOne is not
nil, the value of stringOne is put into the tmp temporary variable, and we print the value
of tmp to the console. If stringOne is nil, we print the Optional Binding: stringOne
is nil message to the console. As we can see in the results console, Optional Binding:
stringOneisnil is printed to the console because we have not assigned a value to
stringOne yet.

We use optional chaining to assign the value of the characters.count property of the
stringOne variable to the charCount1 variable if stringOne is not nil. As we can see,
the charCount1 variable is nil because we have not assigned a value to stringOne yet.

We then assign a value of h t t p ://w w w . p a c k t p u b . c o m /a l l to the stringOne variable and
rerun all three tests again. This time, stringOne has a non-nil value; therefore, the value of
charCount2 is printed to the console.

It would be tempting to say that I might need to set this variable to nil, so
let me define it as optional; however, that would be a mistake. The
mindset for optionals should be to only use them if there is a specific
reason for the variable to have a nil value.

We will discuss optionals further in Chapter 10, Using Optional Types.

Enumerations
Enumerations (otherwise known as enums) are a special data type that enables us to group
related types together and use them in a type-safe manner. Enumerations in Swift are not
tied to integer values as they are in other languages such as C or Java. In Swift, we are able
to define an enumeration with a type (string, character, integer, or floating-point) and then
define its actual value (known as the raw value). Enumerations also support features that
are traditionally supported only by classes such as computed properties and instance
methods. We will discuss these advanced features in depth in Chapter 5, Classes and
Structures. In this section, we will look at the traditional features of enumerations.

http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all
http://www.packtpub.com/all

Learning About Variables, Constants, Strings, and Operators

[43]

We will define an enumeration that contains a list of Planets as follows:

enum Planets {
 case Mercury
 case Venus
 case Earth
 case Mars
 case Jupiter
 case Saturn
 case Uranus
 case Neptune
}

The values defined in an enumeration are considered to be the member values (or simply the
members) of the enumeration. In most cases, you will see the member values defined in the
preceding example, because they are easy to read; however, there is a shorter version. This
shorter version lets us define multiple members in a single line, separated by commas, as
the following example shows:

enum Planets {
 case Mercury, Venus, Earth, Mars, Jupiter
 case Saturn, Uranus, Neptune
}

We can then use the Planets enumeration, like this:

var planetWeLiveOn = Planets.Earth
var furthestPlanet = Planets.Neptune

The types for the planetWeLiveOn and furthestPlanet variables are inferred when we
initialize the variable with one of the member values of the Planets enumeration. Once the
variable type is inferred, we can then assign a new value without the Planets prefix as
shown here:

planetWeLiveOn = .Mars

We can compare an enumeration value using the traditional equals (==) operator or a
switch statement. The following example shows how to use the equals operator and the
switch statement with an enum:

// Using the traditional == operator
if planetWeLiveOn == .Earth {
 print("Earth it is")
}
// Using the switch statement
switch planetWeLiveOn {
case .Mercury:

Learning About Variables, Constants, Strings, and Operators

[44]

 print("We live on Mercury, it is very hot!")
case .Venus:
 print("We live on Venus, it is very hot!")
case .Earth:
 print("We live on Earth, just right")
case .Mars:
 print("We live on Mars, a little cold")
default:
 print("Where do we live?")
}

Enumerations can come prepopulated with raw values, which are required to be of the
same type. The following example shows how to define an enumeration with string values:

enum Devices: String {
 case MusicPlayer = "iPod"
 case Phone = "iPhone"
 case Tablet = "iPad"
}
print("We are using an " + Devices.Tablet.rawValue)

The preceding example creates an enumeration with three types of device. We then use the
rawValue property to retrieve the raw value for the Tablet member of the Devices
enumeration. This example will print a message saying We are using an iPad.

Let's create another Planets enumeration but, this time, assign numbers to the members as
follows:

enum Planets: Int {
 case Mercury = 1
 case Venus
 case Earth
 case Mars
 case Jupiter
 case Saturn
 case Uranus
 case Neptune
}
print("Earth is planet number \(Planets.Earth.rawValue)")

The big difference between these last two enumeration examples is that in the second
example, we only assign a value to the first member (Mercury). If integers are used for the
raw values of an enumeration, we do not have to assign a value to each member. If no value
is present, the raw values will be auto-incremented.

Learning About Variables, Constants, Strings, and Operators

[45]

In Swift, enumeration can also have associated values. Associated values allow us to store
additional information along with member values. This additional information can vary
each time we use the member. It can also be of any type, and the types can be different for
each member. Let's take a look at how we might use associated types by defining a
Product enumeration, which contains two types of products:

enum Product {
 case Book(Double, Int, Int)
 case Puzzle(Double, Int)
}
var masterSwift = Product.Book(49.99, 2016, 310)
var worldPuzzle = Product.Puzzle(9.99, 200)

switch masterSwift {
case .Book(let price, let year, let pages):
 print("Mastering Swift was published in \(year) for the price of
 \(price) and has \(pages) pages")
case .Puzzle(let price, let pieces):
 print("Master Swift is a puzze with \(pieces) and sells for
 \(price)")
}

switch worldPuzzle {
case .Book(let price, let year, let pages):
 print("World Puzzle was published in \(year) for the price of
 \(price) and has \(pages) pages")
case .Puzzle(let price, let pieces):
 print("World Puzzle is a puzze with \(pieces) and sells for
 \(price)")
}

In the preceding example, we begin by defining a Product enumeration with two
members–Book and Puzzle. The Book member has an associated value of Double, Int,
and Int, and the Puzzle member has an associated value of Double, Int. We then create
two products: masterSwift and worldPuzzle. We assign the masterSwift variable a
value of Product.Book with the associated values of 49.99, 2016, 310. We then assign
the worldPuzzle variable a value of Product.Puzzle with the associated values of 9.99,
200.

Learning About Variables, Constants, Strings, and Operators

[46]

We can then check the Products enumeration using a switch statement, as we did in an
earlier example. We extract the associated values within the switch statement. In this
example, we extracted the associated values as constants with the let keyword, but you
can also extract the associated values as variables with the var keyword.

If you put the previous code into a Playground, the following results will be displayed:

 Master Swift was published in 2016 for the price of 49.99 and has
 310 pages
 World Puzzle is a puzzle with 200 and sells for 9.99

We have only scratched the surface of what enumerations can do in Swift. In Chapter 5,
Classes and Structures, we will look at some additional features on enumerations with Swift
and see why they are so powerful.

Operators
An operator is a symbol or combination of symbols that we can use to check, change, or
combine values. We have used operators in most of the examples so far in this book;
however, we did not specifically call them operators. In this section, we will show how to
use most of the basic operators that Swift supports.

Swift supports most standard C operators and also improves them to eliminate several
common coding errors. For example, the assignment operator does not return a value,
which prevents it from being used where we meant to use the equality operator (==).

Let's look at the operators in Swift.

The assignment operator
The assignment operator initializes or updates a variable.

Prototype:

varA = varB

Example:

let x = 1
var y = "Hello"
a = b

Learning About Variables, Constants, Strings, and Operators

[47]

Comparison operators
The comparison operator returns the true Boolean if the statement is true or the Boolean
false if the statement is not true.

Prototypes:

Equality: varA == varB
Not equal: varA != varB
Greater than: varA > varB
Less than: varA < varB
Greater than or equal to: varA >= varB
Less than or equal to: varA <= varB

Example:

2 == 1 //false, 2 does not equal 1
2 != 1 //true, 2 does not equal 1
2 > 1 //true, 2 is greater than 1
2 < 1 //false, 2 is not less than 1
2 >= 1 //true, 2 is greater or equal to 1
2 <= 1 //false, 2 is not less or equal to 1

Arithmetic operators
Arithmetic operators perform the four basic mathematical operations.

Prototypes:

Addition: varA + varB
Subtraction: varA - varB
Multiplication: varA * varB
Division: varA / varB

Example:

var x = 4 + 2 //x will equal 6
var x = 4 - 2 //x will equal 2
var x = 4 * 2 //x will equal 8
var x = 4 / 2 //x will equal 2
var x = "Hello " + "world" //x will equal "Hello World"

Learning About Variables, Constants, Strings, and Operators

[48]

The remainder operator
The remainder operator calculates the remainder if the first operand is divided by the
second operand.

Prototype:

varA % varB

Example:

var x = 10 % 3 //x will equal 1
var x = 10 % 2.6 //x will equal 2.2

Compound assignment operators
Compound assignment operators combine an arithmetic operator with an assignment
operator.

Prototypes:

varA += varB
varA -= varB
varA *= varB
varA /= varB

Example:

var x = 6
x += 2 //x is equal to 8
x -= 2 //x is equal to 4
x *= 2 //x is equal to 12
x /= 2 //x is equal to 3

The ternary conditional operator
The ternary conditional operator assigns a value to a variable based on the evaluation of a
comparison operator or Boolean value.

Prototype:

(boolValue ? valueA : valueB)

Learning About Variables, Constants, Strings, and Operators

[49]

Example:

var x = 2
var y = 3
var z = (y > x ? "Y is greater" : "X is greater") //z equals "Y is
greater"

The logical NOT operator
The logical NOT operator inverts a Boolean value.

Prototype:

varA = !varB

Example:

var x = true
var y = !x //y equals false

The logical AND operator
The logical AND operator returns true if both operands are true. Otherwise, it returns
false.

Prototype:

varA && varB

Example:

var x = true
var y = false
var z = x && y //z equals false

The logical OR operator
The logical OR operator returns true if either of the operands is true.

Prototype:

varA || varB

Learning About Variables, Constants, Strings, and Operators

[50]

Example:

var x = true
var y = false
var z = x || y //z equals true

For those who are familiar with the C language or similar languages, these operators should
look pretty familiar. For those who aren't that familiar with the C operators, rest assured
that you will use them enough and they will become second nature.

Summary
In this chapter, we covered a lot of different topics ranging from variables and constants to
data types and operators. The items in this chapter will be the foundation of every
application that you write; therefore, it is important to understand the concepts discussed
here.

In the next chapter, we will look at how we can use Swift collection types to store related
data. These collection types are the dictionary and array types. We will also look at how we
can use the Cocoa and Foundation data types in Swift.

3
Using Swift Collections and the

Tuple Type
Once I got past the basic Hello World beginner applications, I quickly began to realize the
shortcomings of variables, especially with the Mad Libs style applications that I was
starting to write. These applications requested that the user enter in numerous strings, and I
was creating a separate variable for each input field that the user entered. Having all of
these separate variables quickly became very cumbersome. I remember talking to a friend
about this and he asked me why I was not using arrays. At that time, I was not familiar with
arrays, so I asked him to show me what they were. Even though he had a TI-99/4A and I
had a Commodore Vic-20, the concept of arrays was the same. Even today, the arrays found
in modern development languages have the same basic concepts as the arrays I used on my
Commodore Vic-20. While it is definitely possible to create a useful application without
using collections, when used correctly, collections do make application development
significantly easier.

In this chapter, we will cover the following topics:

What an array is in Swift and how to use it
What a dictionary is in Swift and how we can use it
What a set is in Swift and how we can use it
What a tuple is in Swift and how we can use it

Using Swift Collections and the Tuple Type

[52]

Swift collection types
A collection groups multiple items into a single unit. Swift provides three native collection
types. These collection types are arrays, sets, and dictionaries. An array stores the data in an
ordered list, sets are an unordered collection of unique data, and dictionaries are an
unordered collection of key-value pairs. In an array, we access the data by the location
(index) in the array; in a set, we tend to iterate over the set; and dictionaries are usually
accessed using a unique key.

The data stored in a Swift collection is required to be of the same type. This means, as an
example, that we are unable to store a string value in an array of integers. Since Swift does
not allow us to mismatch data types in a collection, we can be certain of the data type when
we retrieve an element from a collection. This is another feature that on the surface might
seem like a shortcoming, but is actually a design feature that helps eliminate common
programming mistakes. We will see how to work around this feature using the AnyObject
and Any aliases in this chapter.

Mutability
For those who are familiar with Objective-C, you will know that there are different classes
for mutable and immutable collections. For example, to define a mutable array, we use the
NSMutableArray class, and to define an immutable array, we use the NSArray class. Swift
is a little different because it does not contain separate classes for mutable and immutable
collections. Instead, we define whether a collection is a constant (immutable) or a variable
(mutable) using the let and var keywords. This should seem familiar since, in Swift, we
define constants with the let keyword and variables with the var keyword.

It is good practice to create immutable collections unless there is a specific
need to change the objects within the collection. This allows the compiler
to optimize performance.

Let's begin our tour of collections by looking at the most common collection type–the array
type.

Using Swift Collections and the Tuple Type

[53]

Arrays
Arrays are a very common component of modern programming languages and can be
found in virtually all of them. In Swift, arrays are an ordered list of objects of the same type.

When an array is created, we must declare the type of data to be stored in it by explicit type
declaration or through type inference. Typically, we only explicitly declare the data type of
an array when we are creating an empty array. If we initialize an array with data, we
should let the compiler use type inference to infer the most appropriate data type for the
array.

Each object in an array is called an element. Each of these elements is stored in a set order
and can be accessed by its location (index) in the array.

Creating and initializing arrays
We can initialize an array with an array literal. An array literal is a set of values that
prepopulates the array. The following example shows how to define an immutable array of
integers using the let keyword:

let arrayOne = [1,2,3]

As we mentioned, if we need to create a mutable array, we will use the var keyword to
define the array. The following example shows how to define a mutable array:

var arrayTwo = [4,5,6]

In the preceding two examples, the compiler inferred the types of value stored in the array
by looking at the type of values stored in the array literal. If we need to create an empty
array, we will need to explicitly declare the type of values to store in the array. The
following example shows how to declare an empty mutable array that can be used to store
integers:

var arrayThree = [Int]()

Using Swift Collections and the Tuple Type

[54]

In the preceding examples, we created arrays with integer values, and the majority of the
array examples in this chapter will also use integer values; however, we can create arrays in
Swift with any type. The only rule is that, once an array is defined as containing a particular
type, all the elements in the array must be of that type. The following example shows how
we would create arrays of various data types:

var arrayOne = [String]()
var arrayTwo = [Double]()
var arrayThree = [MyObject]()

Swift does provide special type aliases for working with nonspecific types. These aliases are
AnyObject and Any. We can use these aliases to define arrays whose elements are of
different types, such as this:

var myArray: [Any] = [1,"Two"]

The AnyObject aliases can represent an instance of any class type while the Any aliases can
represent an instance of any type. We should use the Any and AnyObject aliases only when
there is an explicit need for this behavior. It is always better to be specific about the types of
data our collections contain.

We can also initialize an array to a certain size with all the elements of the array set to a
predefined value. This can be very useful if we want to create an array and prepopulate it
with the default values. The following example defines an array with seven elements, and
each element contains the number 3:

var arrayFour = [Int](repeating: 3, count: 7)

While the most common array is a one-dimensional array, we can also create
multidimensional arrays. A multidimensional array is really nothing more than an array of
arrays. For example, a two-dimensional array is an array of arrays, while a three-
dimensional array is an array of arrays of arrays. The following examples show the two
ways to create a two-dimensional array in Swift:

var multiArrayOne = [[1,2],[3,4],[5,6]]
var multiArrayTwo = [[Int]]()

Using Swift Collections and the Tuple Type

[55]

Accessing the array elements
We use the subscript syntax to retrieve values from an array. The subscript syntax for an
array is where a number appears between two square brackets and that number specifies
the location (index), within the array, of the element we wish to retrieve. The following
example shows how to retrieve elements from an array using the subscript syntax:

let arrayOne = [1,2,3,4,5,6]
print(arrayOne[0]) //Displays '1'
print(arrayOne[3]) //Displays '4'

In the preceding code, we begin by creating an array of integers that contains six numbers.
We then print out the value at index 0 and 3.

If we want to retrieve an individual value within a multidimensional array, we will need to
provide a subscript for each dimension of the array. If we do not provide a subscript for
each dimension, we will return an array rather than an individual value within the array.
The following example shows how we can define a two-dimensional array and retrieve an
individual value within the two dimensions:

var multiArray = [[1,2],[3,4],[5,6]]
var arr = multiArray[0] //arr contains the array [1,2]
var value = multiArray[0][1] //value contains 2

In the preceding code, we begin by defining a two-dimensional array. When we retrieve the
value at index 0 of the first dimension (multiArray[0]), we retrieve the array, [1,2].
When we retrieve the value at index 0 of the first dimension and index 1 of the second
dimension (multiArray[0][1]), we retrieve the integer, 2.

We can retrieve the first and last elements of an array using the first and last properties.
The first and last properties return an optional value since the values may be nil if the
array is empty. The following example shows how to use the first and last properties to
retrieve the first and last elements of both single-dimensional and multidimensional arrays:

let arrayOne = [1,2,3,4,5,6]
var first = arrayOne.first //first contains 1
var last = arrayOne.last //last contains 6

let multiArray = [[1,2],[3,4],[5,6]]
var arrFirst1 = multiArray[0].first //arrFirst1 contains 1
var arrFirst2 = multiArray.first //arrFirst2 contains[1,2]
var arrLast1 = multiArray[0].last //arrLast1 contains 2
var arrLast2 = multiArray.last //arrLast2 contains [5,6]

Using Swift Collections and the Tuple Type

[56]

Counting the elements of an array
At times, it is essential to know the number of elements in an array. To retrieve the number
of elements in an array, we use the read-only count property. The following example
shows how to use this property to retrieve the number of elements in both single-
dimensional and multidimensional arrays:

let arrayOne = [1,2,3]
let multiArrayOne = [[3,4],[5,6],[7,8]]
print(arrayOne.count) //Displays 3
print(multiArrayOne.count) //Displays 3 for the three arrays
print(multiArrayOne[0].count) //Displays 2 for the two elements

The value that is returned by the count property is the number of elements in the array and
not the largest valid index of the array. For non-empty arrays, the largest valid index is the
number of elements in the array minus one. This is because the first element of the array has
an index number of zero. As an example, if an array has two elements, the valid indexes are
0 and 1, while the count property would return 2. The following code illustrates this:

let arrayOne = [0,1]
print(arrayOne[0]) //Displays 0
print(arrayOne[1]) //Displays 1
print(arrayOne.count) //Displays 2

If we attempt to retrieve an element from an array, using the subscript syntax, the
application will throw an Array index out of range error. Therefore, if we are unsure
of the size of an array, it is good practice to verify that the index is not outside the range of
the array. The following examples illustrate this concept:

//This example will throw an array index out of range error
var arrayTwo = [1,2,3,4]
print(arrayTwo[6])

//This example will not throw an array index out of range error
var arrayOne = [1,2,3,4]
if (arrayOne.count > 6) {
 print(arrayOne[6])
}

In the preceding code, the first block of code would throw an array index out of
range error exception because we are attempting to access the value from the array
arrayTwo at index 6; however, there are only four elements in the array. The second
example would not throw the error because we are checking whether the arrayOne array
contains more than six elements before trying to access the element at the sixth index.

Using Swift Collections and the Tuple Type

[57]

Is the array empty?
To check whether an array is empty (does not contain any elements), we use the isEmpty
property. This property will return true if the array is empty, or false if it is not. The
following example shows how to check whether an array is empty or not:

var arrayOne = [1,2]
var arrayTwo = [Int]()
arrayOne.isEmpty //Returns false because the array is not empty
arrayTwo.isEmpty //Returns true because the array is empty

Appending to an array
A static array is somewhat useful, but having the ability to add elements dynamically is
what makes arrays really useful. To add an item to the end of an array, we can use the
append method. The following example shows how to append an item to the end of an
array:

var arrayOne = [1,2]
arrayOne.append(3) //arrayOne will now contain 1, 2, and 3

Swift also allows us to use the addition assignment operator (+=) to append an array to
another array. The following example shows how to use the addition assignment operator
to append an array to the end of another array:

var arrayOne = [1,2]
arrayOne += [3,4] //arrayOne will now contain 1, 2, 3, and 4

The way you append an element to the end of an array is really up to you. Personally, I
prefer the assignment operator because, to me, it is a bit easier to read, but we will be using
both in this book.

Inserting a value into an array
We can insert a value into an array using the insert method. The insert method will
move all the items, starting at the specified index, up one spot to make room for the new
element and then inserts the value into the specified index. The following example shows
how to use the insert method to insert a new value into an array:

var arrayOne = [1,2,3,4,5]
arrayOne.insert(10, at: 3) //arrayOne now contains 1, 2, 3, 10, 4, and 5

Using Swift Collections and the Tuple Type

[58]

You cannot insert a value that is outside the current range of the array.
Attempting to do so will throw an Index out of range exception. For
example, in the preceding code, if we attempt to insert a new integer at
index 10, we will receive an Index out of range exception error
because arrayOne only contains five elements. The exception to this is
that we are able to insert an item directly after the last element; therefore,
we can insert an item at index 6. However, it is recommended that we use
the append function to append an item to avoid errors.

Replacing elements in an array
We use the subscript syntax to replace elements in an array. Using the subscript, we pick
the element of the array we wish to update and then use the assignment operator to assign a
new value. The following example shows how we will replace a value in an array:

var arrayOne = [1,2,3]
arrayOne[1] = 10 //arrayOne now contains 1, 10, 3

You cannot update a value that is outside the current range of the array.
Attempting to do so will throw the same Index out of range exception
that was thrown when we tried to insert a value outside the range of the
array.

Removing elements from an array
There are three methods that we can use to remove one or all of the elements in an array.
These methods are removeLast(), remove(at:), and removeAll(). The following
example shows how to use the three methods to remove elements from the array:

var arrayOne = [1,2,3,4,5]
arrayOne.removeLast() //arrayOne now contains 1, 2, 3, and 4
arrayOne.remove(at:2) //arrayOne now contains 1, 2, and 4
arrayOne.removeAll() //arrayOne is now empty

The removeLast() and remove(at:) methods will also return the value of the element
that it is removing. Therefore, if we want to know the value of the item that was removed,
we can rewrite the remove(at:) and removedLast() lines to capture the value, as shown
in the following example:

var arrayOne = [1,2,3,4,5]
var removed1 = arrayOne.removeLast() //removed1 contains the value 5
var removed = arrayOne.remove(at:2) //removed contains the value 3

Using Swift Collections and the Tuple Type

[59]

Adding two arrays
To create a new array by adding two arrays together, we use the addition (+) operator. The
following example shows how to use the addition (+) operator to create a new array that
contains all the elements of two other arrays:

let arrayOne = [1,2]
let arrayTwo = [3,4]
var combine = arrayOne + arrayTwo //combine contains 1, 2, 3, and 4

In the preceding code, arrayOne and arrayTwo are left unchanged, while the combine
array contains the elements from arrayOne, followed by the elements from arrayTwo.

Reversing an array
We can create a new array from the original array with the elements in reverse order using
the reverse() method. The original array will remain unchanged by the reverse method.
The following example shows how to use the reverse() method:

var arrayOne = [1,2,3]
var reverse = arrayOne.reversed() //reverse contains 3, 2, and 1

In the preceding code, the elements of arrayOne are left unchanged, while the reverse
array will contain all the elements from arrayOne, but in the reverse order.

Retrieving a subarray from an array
We can retrieve a subarray from an existing array by using the subscript syntax with a
range operator. The following example shows how to retrieve a range of elements from an
existing array:

let arrayOne = [1,2,3,4,5]
var subArray = arrayOne[2...4] //subArray contains 3, 4, and 5

The ... operator (three periods) is known as a range operator. The range operator, in the
preceding code, says I want all the elements, 2 to 4, inclusively (including elements 2 and 4
as well as what is between them). There is another range operator, ..<, which is the same
as the ... range operator, but it excludes the last element. The following example shows
how to use the ..< operator:

let arrayOne = [1,2,3,4,5]
var subArray = arrayOne[2..<4] //subArray contains 3 and 4

Using Swift Collections and the Tuple Type

[60]

In the preceding example, subArray will contain two elements 3 and 4.

Making bulk changes to an array
We can use the subscript syntax with a range operator to change the values of multiple
elements. The following example shows how to use the subscript syntax to change a range
of elements:

var arrayOne = [1,2,3,4,5]
arrayOne[1...2] = [12,13]//arrayOne contains 1, 12, 13, 4, and 5

In the preceding code, the elements at index 1 and 2 will be changed to number 12 and 13.
After this, when the code runs, arrayOne will contain 1, 12, 13, 4, and 5.

The number of elements that you are changing in the range operator does not need to match
the number of values that you are passing in. Swift makes bulk changes by first removing
the elements defined by the range operator and then inserting the new values. The
following example demonstrates this concept:

var arrayOne = [1,2,3,4,5]
arrayOne[1...3] = [12,13]
//arrayOne now contains 1, 12, 13 and 5 (four elements)

In the preceding code, arrayOne starts with five elements. We then say that we want to
replace the range of elements 1 to 3 inclusively. This causes elements 1 through 3 (three
elements) to be removed from the array. We then add two elements (12 and 13) to the
array, starting at index 1. After this is complete, arrayOne will contain these four elements:
1, 12, 13, and 5. Let's see what happens if we try to add more elements than we remove:

var arrayOne = [1,2,3,4,5]
arrayOne[1...3] = [12,13,14,15]
//arrayOne now contains 1, 12, 13, 14, 15 and 5 (six elements)

In the preceding code, arrayOne starts with five elements. We then say that we want to
replace the range of elements 1 through 3 inclusively. This causes elements 1 to 3 (three
elements) to be removed from the array. We then add four elements (12, 13, 14, and 15) to
the array, starting at index 1. After this is complete, arrayOne will contain these six
elements: 1, 12, 13, 14, 15, and 5.

Using Swift Collections and the Tuple Type

[61]

Algorithms for arrays
Swift arrays have several methods that take a closure as the argument. These methods
transform the array in a way defined by the code in the closure. Closures are self-contained
blocks of code that can be passed around, and are similar to blocks in Objective-C and
lambdas in other languages. We will discuss closures in depth in Chapter 12, Working with
Closures. For now, we just want to get familiar with how the algorithms work in Swift.

Sort
The sort() algorithm sorts the array in place. This means that, when the sort() method is
used, the original array is replaced by the sorted one. The closure takes two arguments
(represented by $0 and $1), and should return a Boolean value that indicates whether the
first element should be placed before the second element. The following code shows how to
use the sort algorithm:

var arrayOne = [9,3,6,2,8,5]
arrayOne.sort(){ $0 < $1 }
//arrayOne contains 2, 3, 5, 6, 8, and 9

The preceding code will sort the array in increasing order. We can tell this because our rule
will return true if the first number ($0) is less than the second number ($1). Therefore,
when the sort algorithm begins, it compares the first two numbers (9 and 3) and returns
true if the first number (9) is less than the second number (3). In our case, the rule returns
false, so the numbers are reversed. The algorithm continues sorting, in this manner, until
all of the numbers are sorted in the correct order.

The preceding example sorted the array in numerically increasing order; if we wanted to
reverse the order, we would reverse the arguments in the closure. The following code
shows how to reverse the sort order:

var arrayOne = [9,3,6,2,8,5]
arrayOne.sort(){ $1 < $0 }
//arrayOne contains 9,8,6,5,3 and 2

When we run this code, arrayOne will contain the elements 9, 8, 6, 5, 3, and 2.

Using Swift Collections and the Tuple Type

[62]

Sorted
While the sort algorithm sorts the array in place (replaces the original array), the sorted
algorithm does not change the original array, it instead creates a new array with the sorted
elements from the original array. The following example shows how to use the sorted
algorithm:

var arrayOne = [9,3,6,2,8,5]
let sorted = arrayOne.sorted(){ $0 < $1 }
//sorted contains 2,3,5,6,8 and 9
//arrayOne contains 9,3,6,2,8 and 5

When we run this code, arrayOne will contain the original unsorted array (9, 3, 6, 2, 8, and
5) and the sorted array will contain the new sorted array (2, 3, 5, 6, 8, and 9).

Filter
The filter algorithm will return a new array by filtering the original array. This is one of the
most powerful array algorithms and may end up being the one we use the most. If we need
to retrieve a subset of an array, based on a set of rules, I recommend using this algorithm
rather than trying to write your own method to filter the array. The closure takes one
argument and it should return a Boolean true if the element should be included in the new
array, as shown in the following code:

var arrayOne = [1,2,3,4,5,6,7,8,9]
let filtered = arrayOne.filter{$0 > 3 && $0 < 7}
//filtered contains 4, 5, and 6

In the preceding code, the rule that we are passing to the algorithm returns true if the
number is greater than 3 or less than 7; therefore, any number that is greater than 3 or less
than 7 is included in the new filtered array.

Let's take a look at another example; this one shows how we can retrieve a subset of cities
that contain the letter o in their name from an array of cities:

var city = ["Boston", "London", "Chicago", "Atlanta"]
let filtered = city.filter{$0.range(of:"o") != nil}
//filtered contains "Boston", "London" and "Chicago"

In the preceding code, we use the range(of:) method to return true if the string contains
the letter o. If the method returns true, the string is included in the filtered array.

Using Swift Collections and the Tuple Type

[63]

Map
The map algorithm returns a new array that contains the results of applying the rules in the
closure to each element of the array. The following example shows how to use the map
algorithm to divide each number by 10:

var arrayOne = [10, 20, 30, 40]
let applied = arrayOne.map{ $0 / 10}
//applied contains 1,2,3 and 4

In the preceding code, the new array contains the numbers 1, 2, 3, and 4, which is the result
of dividing each element of the original array by 10.

The new array created by the map algorithm is not required to contain the same element
types as the original array; however, all the elements in the new array must be of the same
type. In the following example, the original array contains integer values, but the new array
created by the map algorithm contains string elements:

var arrayOne = [1, 2, 3, 4]
let applied = arrayOne.map{ "num:\($0)"}
//applied contains "num:1", "num:2", "num:3" and "num:4"

In the preceding code, we created an array of strings that appends the numbers from the
original array to the num: string.

forEach
We can use forEach to iterate over a sequence. The following example shows how we
would do this:

var arrayOne = [10, 20, 30, 40]
arrayOne.forEach{ print($0) }

This example will print the following results to the console:

10
20
30
40

While using the forEach method is very easy, it does have some limitations. The
recommended way to iterate over an array is to use the for-in loop, which we will see in
the next section.

Using Swift Collections and the Tuple Type

[64]

Iterating over an array
We can iterate over all elements of an array, in order, with a for-in loop. We will discuss
the for-in loop in greater detail in Chapter 4, Control Flow and Functions. The for-in loop
will execute one or more statements for each element of the array. The following example
shows how we would iterate over the elements of an array:

var arr = ["one", "two", "three"]
for item in arr {
 print(item)
}

In the preceding example, the for-in loop iterates over the arr array and executes the
print(item) line for each element in the array. If we run this code, it will display the
following results in the console:

one
two
three

There are times when we would like to iterate over an array, as we did in the preceding
example, but we would also like to know the index as well as the value of the element. To
do this, we can use the enumerated method, which returns a tuple (see the Tuples section
later in this chapter) for each item in the array that contains both index and value of the
element. The following example shows how to use the enumerate function:

var arr = ["one", "two", "three"]
for (index,value) in arr.enumerated() {
 print("\(index) \(value)")
}

The preceding code will display the following results in the console:

0 one
1 two
2 three

Now that we have introduced arrays in Swift, let's take a look at what a dictionary is.

Using Swift Collections and the Tuple Type

[65]

Dictionaries
While dictionaries are not as commonly used as arrays, they have an additional
functionality that makes them incredibly powerful. A dictionary is a container that stores
multiple key-value pairs, where all the keys are of the same type, and all the values are of
the same type. The key is used as a unique identifier for the value. A dictionary does not
guarantee the order in which the key-value pairs are stored since we look up the values by
the key, rather than by the index of the value.

Dictionaries are good for storing items that map to unique identifiers, where the unique
identifier should be used to retrieve the item. As an example, countries with their
abbreviations are a good example of items that can be stored in a dictionary. In the
following chart, we show countries with their abbreviations as key-value pairs:

Key Value

US United States

IN India

UK United Kingdom

Creating and initializing dictionaries
We can initialize a dictionary using a dictionary literal, similarly to how we initialized an
array with the array literal. The following example shows how to create a dictionary using
the key-value pairs in the preceding chart:

let countries = ["US":"UnitedStates","IN":"India","UK":"United Kingdom"]

The preceding code creates an immutable dictionary that contains each of the key-value
pairs in the preceding chart. Just like the array, to create a mutable dictionary we will use
the var keyword rather than let. The following example shows how to create a mutable
dictionary containing the countries:

var countries = ["US":"UnitedStates","IN":"India","UK":"United Kingdom"]

Using Swift Collections and the Tuple Type

[66]

In the preceding two examples, we created a dictionary where the key and value were both
strings. The compiler inferred that the key and value were strings because that was the type
of the keys and values used to imitate the dictionary. If we wanted to create an empty
dictionary, we would need to tell the compiler what the key and value types are. The
following examples create various dictionaries with different key-value types:

var dic1 = [String:String]()
var dic2 = [Int:String]()
var dic3 = [String:MyObject]()

If we want to use a custom object as the key in a dictionary, we will need
to make our custom object conform to the Hashable protocol from Swift's
standard library. We will discuss protocols and classes in Chapter 5,
Classes and Structures, but, for now, just understand that it is possible to
use custom objects as a key in a dictionary.

Accessing dictionary values
We use the subscript syntax to retrieve the value for a particular key. If the dictionary does
not contain the key we are looking for, the dictionary will return nil; therefore, the variable
returned from this lookup is an optional variable. The following example shows how to
retrieve a value from a dictionary using its key in the subscript syntax:

let countries = ["US":"United States", "IN":"India","UK":"United Kingdom"]
var name = countries["US"]

In the preceding code, the variable name will contain the string, United States.

Counting key or values in a dictionary
We use the count property of the dictionary to get the number of key-value pairs in the
dictionary. The following example shows how to use the count property to retrieve the
number of key-value pairs in the dictionary:

let countries = ["US":"United States", "IN":"India","UK":"United Kingdom"];
var cnt = countries.count //cnt contains 3

In the preceding code, the cnt variable will contain the number 3 since there are three key-
value pairs in the countries dictionary.

Using Swift Collections and the Tuple Type

[67]

Is the dictionary empty?
To test whether the dictionary contains any key-value pairs at all, we can use the isEmpty
property. The isEmpty property will return false if the dictionary contains one or more
key-value pairs and true if it is empty. The following example shows how to use the
isEmpty property to determine whether our dictionary contains any key-value pairs:

let countries = ["US":"United States", "IN":"India","UK":"United Kingdom"]
var empty = countries.isEmpty

In the preceding code, the isEmpty property is false as there are three key-value pairs in the
countries dictionary.

Updating the value of a key
To update the value of a key in a dictionary, we can use either the subscript syntax or the
updateValue(_ forKey:) method. The updateValue(_:, forKey:) method has an
additional feature that the subscript syntax doesn't–it returns the original value associated
with the key prior to changing the value. The following example shows how to use both the
subscript syntax and the updateValue(_:, forKey:) method to update the value of a
key:

var countries = ["US":"United States", "IN":"India","UK":"United Kingdom"]

countries["UK"] = "Great Britain"
//The value of UK is now set to "Great Britain"

var orig = countries.updateValue("Britain", forKey: "UK")
//The value of UK is now set to "Britain" and orig now contains "Great
Britain"

In the preceding code, we use the subscript syntax to change the value associated with the
key UK from United Kingdom to Great Britain. The original value of United Kingdom
was not saved prior to replacing it, so we are unable to see what the original value was. We
then used the updateValue(_:, forKey:) method to change the value associated with
the key UK from Great Britain to Britain. With the updateValue(_:, forKey:)
method, the original value of Great Britain is assigned to the orig variable, prior to
changing the value in the dictionary.

Using Swift Collections and the Tuple Type

[68]

Adding a key-value pair
To add a new key-value pair to a dictionary, we can use the subscript syntax or the same
updateValue(_:, forKey:) method that we used to update the value of a key. If we use
the updateValue(_:, forKey:) method and the key is not currently present in the
dictionary, the updateValue(_:, forKey:) method will add a new key-value pair and
return nil. The following example shows how to use the subscript syntax and also the
updateValue(+:, forKey:) method to add a new key-value pair to a dictionary:

var countries = ["US":"United States", "IN":"India","UK":"United Kingdom"]

countries["FR"] = "France" //The value of "FR" is set to "France"

var orig = countries.updateValue("Germany", forKey: "DE")
//The value of "DE" is set to "Germany" and orig is nil

In the preceding code, the countries dictionary starts with three key-value pairs and we
then add a fourth key-value pair (FR/France) to the dictionary using the subscript syntax.
We use the updateValue(_:, forKey:) method to add a fifth key-value pair
(DE/Germany) to the dictionary. The orig variable is set to nil because the countries
dictionary did not contain a value associated with the DE key.

Removing a key-value pair
There may be times when we need to remove values from a dictionary. We can do this with
the subscript syntax, the removeValue(forKey:) method, or the removeAll() method.
The removeValue(forKey:) method returns the value of the key prior to removing it. The
removeAll() method removes all the elements from the dictionary. The following example
shows how to use the subscript syntax, the removeValue(forKey:) method, and the
removeAll() method to remove key-value pairs from a dictionary:

var countries = ["US":"United States", "IN":"India","UK":"United Kingdom"];

countries["IN"] = nil //The "IN" key/value pair is removed

var orig = countries.removeValue(forKey:"UK")
//The "UK" key value pair is removed and orig contains "United Kingdom"

countries.removeAll() //Removes all key/value pairs from the countries
dictionary

Using Swift Collections and the Tuple Type

[69]

In the preceding code, the countries dictionary starts off with three key-value pairs. We
then set the value associated with the key IN to nil, which removes the key-value pair from
the dictionary. We use the removeValue(forKey:) method to remove the key associated
with the UK key. Prior to removing the value associated with the UK key, the
removeValue(forKey:) method saves the value in the orig variable. Finally, we use the
removeAll() method to remove all the remaining key-value pairs in the countries
dictionary.

Now let's look at the set type.

Set
The set type is a generic collection that is similar to the array type. While the array type is
an ordered collection that may contain duplicate items, the set type is an unordered
collection where each item must be unique.

Similar to the key in a dictionary, the type stored in an array must conform to the Hashable
protocol. This means that the type must provide a way to compute a hash value for itself.
All of Swift's basic types, such as String, Double, Int, and Bool, conform to the
Hashable protocol and can be used in a set by default.

Let's look at how we would use the set type.

Initializing a set
There are a couple of ways in which we can initialize a set. Just like the array and dictionary
types, Swift needs to know what type of data is going to be stored in it. This means that we
must either tell Swift the type of data to store in the set or initialize it with some data so that
it can infer the data type.

Just like the array and dictionary types, we use the var and let keywords to declare
whether the set is mutable or not:

//Initializes an empty Set of the String type
var mySet = Set<String>()

//Initializes a mutable set of the String type with initial values
var mySet = Set(["one", "two", "three"])

//Creates aimmutable set of the String type.
let mySet = Set(["one", "two", "three"])

Using Swift Collections and the Tuple Type

[70]

Inserting items into a set
We use the insert method to insert an item into a set. If we attempt to insert an item that is
already in the set, the item will be ignored and no error will be thrown. Here are some
examples on how to insert items into a set:

var mySet = Set<String>()
mySet.insert("One")
mySet.insert("Two")
mySet.insert("Three")

The number of items in a set
We can use the count property to determine the number of items in a Swift set. Here is an
example on how to use the count method:

var mySet = Set<String>()
mySet.insert("One")
mySet.insert("Two")
mySet.insert("Three")
print("\(mySet.count) items")

When executed, this code will print the message Three items to the console because the
set contains three items.

Checking whether a set contains an item
We can very easily check to see whether a set contains an item by using the contains()
method, as shown here:

var mySet = Set<String>()
mySet.insert("One")
mySet.insert("Two")
mySet.insert("Three")
var contain = mySet.contains("Two")

In the preceding example, the contain variable is set to true because the set does contain
the string "Two".

Using Swift Collections and the Tuple Type

[71]

Iterating over a set
We can use the for statement to iterate over the items in a set. The following example
shows how we would iterate through the items in a set:

for item in mySet {
 print(item)
}

The preceding example would print out each item in the set to the console.

Removing items in a set
We can remove a single item or all the items in a set. To remove a single item, we would use
the remove() method; to remove all the items, use the removeAll() method. The
following example shows how to remove items from a set:

//The remove method will return and remove an item from a set
var item = mySet.remove("Two")

//The removeAll method will remove all items from a set
mySet.removeAll()

Set operations
Apple has provided four methods that we can use to construct a set from two other sets.
These operations can either be performed in place, on one of the sets, or used to create a
new set. These operations are:

union and fromUnion: These create a set with all the unique values from both
sets
subtracting and subtract: These create a set with values from the first set that
are not in the second set
intersection and fromIntersection: These create a set with values that are
common to both sets
symmetricDifference and fromSymmetricDifference: These create a new
set with values that are in either set but not in both sets

Using Swift Collections and the Tuple Type

[72]

Let's look at some examples and see the results we get from each of these operations. For all
the set operations examples, we will be using the following two sets:

var mySet1 = Set(["One", "Two", "Three", "abc"])
var mySet2 = Set(["abc","def","ghi", "One"])

The first example that we will look at uses union method. This method will take unique
values from both sets to make another set:

var newSetUnion = mySet1.union(mySet2)

The newSetUnion variable would contain the following values: "One", "Two", "Three",
"abc", "def", and "ghi". We can use the fromUnion method to perform the union
function in place without creating a new set:

mySet1.fromUnion(mySet2)

In this example, the mySet1 set will contain all of the unique values from the mySet1 and
mySet2 sets.

Now let's look at the subtract and subtracting methods. These methods will create a set
with the values from the first set that are not in the second set:

var newSetSubtract = mySet1.subtracting(mySet2)

In this example, the newSetSubtract variable would contain the values "Two" and
"Three" because those are the only two values that are not present in the second set.

We use the subtract method to perform the subtraction function in place without creating
a new set.

mySet1.subtract(mySet2)

In this example, the mySet1 set will contain the values "Two" and "Three" because those
are the only two values that are not in the mySet2 set.

Now let's look at the intersection methods. The intersection methods create a new set from
the values that are common between the two sets:

var newSetIntersect = mySet1.intersection(mySet2)

In this example, the newSetIntersect variable will contain the values "One" and "abc"
since they are the values that are common between the two sets.

Using Swift Collections and the Tuple Type

[73]

We can use the fromInterection() method to perform the intersection function in place
without creating a new set:

mySet1.fromIntersection(mySet2)

In this example, the mySet1 set will contain the values "One" and "abc" since they are the
values that are common between the two sets.

Finally, let's look at the symmetricDifference methods. These methods will create a new
set with the values that are in either set but not in both:

var newSetExclusiveOr = mySet1.symmetricDifference(mySet2)

In this example, the newSetExclusiveOr variable will contain the values "Two",
"Three", "def" and "ghi".

To perform the symmetricDifference methods in place, we use the
fromSymmetricDifference() method:

mySet1.fromSymmetricDifference(mySet2)

These four operations (the union, subtraction, intersection, and
symmetricDifference methods) add additional functionality that is not present with
arrays. Combined with faster lookup speeds as compared to an array, the set can be a very
useful alternative when the order of the collection is not important and the instances in the
collection must be unique.

Tuples
Tuples group multiple values into a single compound value. Unlike arrays and dictionaries,
the values in a tuple do not have to be of the same type. While we are including the tuple in
the chapter on collections, they really are not a collection; they are more like a type.

The following example shows how to define a tuple:

var team = ("Boston", "Red Sox", 97, 65, 59.9)

In the preceding example, we created an unnamed tuple that contains two strings, two
integers, and one double. We can decompose the values from this tuple into a set of
variables, as shown in the following example:

var team = ("Boston", "Red Sox", 97, 65, 59.9)
var (city, name, wins, loses, percent) = team

Using Swift Collections and the Tuple Type

[74]

In the preceding code, the city variable will contain Boston, the name variable will contain
Red Sox, the wins variable will contain 97, the loses variable will contain 65, and, finally,
the percent variable will contain 0.599.

We could also retrieve the values from a tuple by specifying the location of the value. The
following example shows how we would retrieve the values by their location:

var team = ("Boston", "Red Sox", 97, 65, 59.9)
var city = team.0
var name = team.1
var wins = team.2
var loses = team.3
var percent = team.4

To avoid this decomposing step, we can create named tuples. A named tuple associates a
name (key) with each element of the tuple. The following example shows how to create a
named tuple:

var team = (city:"Boston", name:"Red Sox", wins:97, loses:65, percent:59.9)

To access the values from a named tuple, we use the dot syntax. In the preceding code, we
will access the city element of the tuple like this: team.city. In the preceding code, the
team.city element will contain Boston, the team.name element will contain Red Sox, the
team.wins element will contain 97, the team.loses element will contain 65, and, finally,
the team.percent element will contain 59.9.

Tuples are incredibly useful and can be used for all sorts of purposes. I have found that they
are very useful for replacing classes and structures that are designed to simply store data
and do not contain any methods. We will learn more about classes and structures in
Chapter 5, Classes and Structures.

Summary
In this chapter, we covered Swift collections and the tuple type. Having a good
understanding of the native collection types of Swift is essential to architect and develop
applications in Swift since all but the most basic of applications use collections to store data
in memory.

4
Control Flow and Functions

While I was learning BASIC programming on my Vic-20, every month I would read several
of the early computer magazines such as Byte Magazine. I remember one particular review
that I read; it was for a game called Zork. While Zork was not a game that was available for
my Vic-20, the concept of the game fascinated me because I was really into Sci-Fi and
fantasy. I remember thinking how cool it would be to write a game like that, so I decided to
figure out how to do it. One of the biggest concepts that I had to grasp at that time was
controlling the flow of the application depending on the user's actions.

In this chapter, we will cover the following topics:

What are conditional statements and how to use them
What are loops and how to use them
What are control transfer statements and how to use them
How to create and use functions in Swift

What we have learned so far
Up to this point, we have been laying the foundation for writing applications with Swift.
While it is possible to write a very basic application with what we have learned so far, it
would be really difficult to write a useful application using only what we covered in the
first three chapters.

Starting with this chapter, we will begin to move away from the foundations of the Swift
language, and begin to learn the building blocks of application development with Swift. In
this chapter, we will go over control flow and functions. To become a master of the Swift
programming language, it is important that you fully understand and comprehend the
concepts discussed in this chapter and in Chapter 5, Classes and Structures.

Control Flow and Functions

[76]

Before we cover control flow and functions, let's take a look at how curly brackets and
parentheses are used in Swift.

Curly brackets
In Swift, unlike other C-like languages, curly brackets are required for conditional
statements and loops. In other C-like languages, if there is only one statement to execute for
a conditional statement or a loop, the curly brackets around that line are optional. This has
lead to numerous errors and bugs, such as Apple's goto fail bug; therefore, when Apple
was designing Swift, it was decided to require the use of curly brackets, even when there is
only one line of code to execute. Let's look at some code that illustrates this requirement.
This first example is not valid in Swift because it is missing the curly brackets; however, it
will be valid in most other languages:

if (x > y)
 x = 0

In Swift, you are required to have the curly brackets, as illustrated in the following example:

if (x > y) {
 x = 0
}

Parentheses
Unlike other C-like languages, the parentheses around conditional expressions in Swift are
optional. In the preceding example, we put parentheses around the conditional expression,
but they are not required. The following example would be valid in Swift, but not valid in
most C-like languages:

if x > y {
 x = 0
}

Control Flow and Functions

[77]

Control flow
Control flow, also known as flow of control, refers to the order in which statements,
instructions, or functions are executed within an application. Swift supports all of the
familiar control flow statements that are in C-like languages. These include loops (including
for and while), conditional statements (including if and switch) and the transfer of the
control statements (including break and continue). It is worthwhile to note that Swift 3
does not include the traditional C for loop; rather than the traditional do…while loop
Swift has the repeat…while loop.

In addition to the standard C control flow statements, Swift has also added additional
statements, such as the for...in loop, and enhanced some of the existing statements, such
as the switch statement.

Let's begin by looking at conditional statements in Swift.

Conditional statements
A conditional statement will check a condition and execute a block of code only if the
condition is true. Swift provides both the if and if...else conditional statements. Let's
take a look at how to use these conditional statements to execute blocks of code if a
specified condition is true.

The if statement
The if statement will check the conditional statement and if it is true it will execute the
block of code. The if statement takes the following format:

if condition {
 block of code
}

Now, let's look at how to use the if statement:

let teamOneScore = 7
let teamTwoScore = 6
if teamOneScore > teamTwoScore {
 print("Team One Won")
}

Control Flow and Functions

[78]

In the preceding example, we begin by setting the teamOneScore and teamTwoScore
constants. We then use the if statement to check whether the value of teamOneScore is
greater than the value of teamTwoScore. If the value is greater, we print Team One Won to
the console. If we run this code, we will indeed see that Team One Won is printed to the
console, but if the value of teamTwoScore was greater than the value of teamOneScore,
nothing is printed to the console. That would not be the best way to write an application
because we would want the user to know which team actually won. The if...else
statement can help us with this problem.

Conditional code execution with the if…else statement
The if...else statement will check a conditional statement and if it is true, it will execute
a block of code. If the conditional statement is not true, it will execute a separate block of
code. The if...else statement follows this format:

if condition {
 block of code if true
} else {
 block of code if not true
}

Let's modify the preceding example to use the if...else statement to tell the user which
team won:

var teamOneScore = 7
var teamTwoScore = 6
if teamOneScore > teamTwoScore {
 print("Team One Won")
} else {
 print("Team Two Won")
}

This new version will print out Team One Won, if the value of teamOneScore is greater
than the value of teamTwoScore; otherwise, it will print out the message, Team Two Won.
What do you think the code will do if the value of teamOneScore is equal to the value of
teamTwoScore? In the real world, we will have a tie, but in the preceding code, we will
print out Team Two Won; this would not be fair to team one. In cases such as this, we can
use multiple else...if statements and a plain else statement, as shown in the following
example:

var teamOneScore = 7
var teamTwoScore = 6
if teamOneScore > teamTwoScore {

Control Flow and Functions

[79]

 print("Team One Won")
} else if teamTwoScore > teamOneScore {
 print("Team Two Won")
} else {
 print("We have a tie")
}

In the preceding code, if the value of teamOneScore is greater than the value of
teamTwoScore, we print Team One Won to the console. We then have an else if
statement and since the if statement is preceded by the else statement the conditional
statement is checked only if the first if statement returns false. Finally, if both the if
statements are false, then we assume that the values are equal and print We have a tie to
the console.

A conditional statement checks the condition once, and if the condition is met it executes
the block of code. What if we wanted to continuously execute the block of code until a
condition is met? For this, we would use one of the looping statements that are in Swift.
Let's take a look at looping statements in Swift.

The for loop
The for loop variants are probably the most widely used looping statements. While Swift
does not offer the standard C-based for loop it does have the for...in loop. The standard
C-based for loop was removed from the Swift language starting in Swift 3 because it was
rarely used. You can read the full proposal to remove the for loop on the Swift evolution
site (h t t p s ://g i t h u b . c o m /a p p l e /s w i f t - e v o l u t i o n /b l o b /m a s t e r /p r o p o s a l s /0007- r e m o v

e - c - s t y l e - f o r - l o o p s . m d). The for...in statement will execute a block of code for each
item in a range, collection, or sequence.

Using the for…in loop
The for...in loop iterates over a collection of items or a range of numbers and executes a
block of code for each item in the collection or range. The format for the for...in
statement looks similar to this:

for variable in Collection/Range {
 block of code
}

https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md

Control Flow and Functions

[80]

As we can see in the preceding code, the for...in loop has two sections:

Variable: This variable will change each time the for...in loop executes and
hold the current item from the collection or range
Collection/Range: This is the collection or range to iterate through

Let's take a look at how to use the for...in loop to iterate through a range of numbers:

for index in 1...5 {
 print(index)
}

In the preceding example, we iterate over a range of numbers from 1 to 5 and print each of
the numbers to the console. This particular for...in statement uses the closed range
operator (...) to give the for...in loop a range to go through. Swift also provides a
second range operation called the half-open range operator (..<). The half-open range
operator iterates through a range of numbers, but does not include the last number. Let's
look at how to use the half-range operator:

for index in 1..<5 {
 print(index)
}

In the closed range operator example (...), we will see the numbers 1 through 5 printed to
the console. In the half-range operator example, the last number (5) will be excluded;
therefore, we will see the numbers 1 to 4 printed to the console.

Now, let's look at how to iterate over an array with the for...in loop:

var countries = ["USA","UK", "IN"]
for item in countries {
 print(item)
}

In the preceding example, we iterate through the countries array and print each element
to the console. As we can see, iterating through an array with the for...in loop is safer,
cleaner, and a lot easier than using the standard C-based for loop. Using the for...in
loop prevents us from making common mistakes, such as using the <= (less than or equal
to) operator rather than the less than (<) operator in our conditional statement.

Control Flow and Functions

[81]

Let's look at how to iterate over a dictionary with the for...in loop:

var dic = ["USA": "United States", "UK": "United Kingdom", "IN":"India"]

for (abbr, name) in dic {
 print("\(abbr) -- \(name)")
}

In the preceding example, we used the for...in loop to iterate through each key-value
pair of a dictionary. In this example, each item in the dictionary is returned as a (key,value)
tuple. We can decompose (key,value) tuple members as named constants within the body of
the for...in loop. One thing to note is that, since a dictionary does not guarantee the
order that items are stored in, the order that they are iterated over may not be the same as
the order they were inserted in.

Now, let's look at another type of loop, the while loop.

The while loop
The while loop executes a block of code until a condition is met. Swift provides two forms
of while loop; these are the while and repeat...while loops. In Swift 2.0, Apple
replaced the do...while loop with the repeat...while loop. The repeat...while loop
functions exactly as the do...while loop did. Apple now uses the do statement for error
handling.

We use while loops when the number of iterations to perform is not known and is usually
dependent on some business logic. A while loop is used when you want to run a loop zero
or more times, while a repeat...while loop is used when you want to run the loop one or
more times.

Using the while loop
The while loop starts by evaluating a conditional statement and then repeatedly executes a
block of code if the conditional statement is true. The format for the while statement is as
follows:

while condition {
 block of code
}

Control Flow and Functions

[82]

Let's look at how to use a while loop. In the following example, the while loop will
continue to loop if a randomly-generated number is less than 4. In this example, we are
using the random() function to generate a random number between 0 and 4:

var ran = 0
while ran < 4 {
ran = Int(random() % (5))
}

In the preceding example, we begin by initializing the ran variable to 0. The while loop
then checks the ran variable, and if its value is less than 4, a new random number, between
0 and 4, is generated. The while loop will continue to loop while the randomly-generated
number is less than 4. Once the randomly-generated number is equal to or greater than 4,
the while loop will exit.

In the preceding example, the while loop checks the conditional statement prior to
generating a new random number. What if we did not want to check the conditional
statement prior to generating a random number? We could generate a random number
when we first initialize the ran variable, but that would mean we would need to duplicate
the code that generates the random numbers, and duplicating code is never an ideal
solution. It would be preferable to use the repeat...while loop for such instances.

Using the repeat…while loop
The difference between the while and repeat...while loops is that while loops check
the conditional statement prior to executing the block of code the first time; therefore, all the
variables in the conditional statements need to be initialized prior to executing the while
loop. The repeat...while loop will run through the loop block prior to checking the
conditional statement for the first time; this means that we can initialize the variables in
the conditional block of code. Use of the repeat...while loop is preferred when the
conditional statement is dependent on the code in the loop block. The repeat...while
loop takes the following format:

repeat {
 block of code
} while condition

Control Flow and Functions

[83]

Let's take a look at this specific example by creating a repeat...while loop where we
initialize the variable we are checking, in the conditional while statement, within the loop
block:

var ran: Int
repeat {
 ran = Int(random() % (5))
} while ran < 4

In the preceding example, we define the ran variable as an Int, but we do not initialize it
until we enter the loop block and generate a random number. If we try to do this with the
while loop (leaving the ran variable uninitialized), we will receive a Variable used
before being initialized exception.

The switch statement
The switch statement takes a value, compares it to the several possible matches, and then
executes the appropriate block of code based on the first successful match. The switch
statement is an alternative to using the if...else statement when there could be several
possible matches. The switch statement takes the following format:

switch value {
 case match1 :
 block of code
 case match2 :
 block of code
 as many cases as needed
 default :
 block of code
}

Unlike the switch statements in most other languages, in Swift it does not fall through to
the next case statement; therefore, we do not need to use a break statement to prevent the
fall through. This is another safety feature that is built into Swift since one of the most
common programming mistakes, with the switch statement, made by beginner
programmers is to forget the break statement at the end of the case statement. Let's look at
how to use the switch statement:

var speed = 300000000
switch speed {
case 300000000:
 print("Speed of light")
case 340:
 print("Speed of sound")

Control Flow and Functions

[84]

default:
 print("Unknown speed")
}

In the preceding example, the switch statement takes the value of the speed variable and
compares it to the two case statements; if the value of speed matches either case, it will
print out what the speed is. If the switch statement does not find a match, it will print out
the Unknown speed message.

Every switch statement must have a match for all the possible values. This means that,
unless we are matching against an enumeration, each switch statement must have a
default case. Let's look at a case where we do not have a default case:

var num = 5
switch num {
case 1 :
 print("number is one")
case 2 :
 print("Number is two")
case 3 :
 print("Number is three")
}

If we put the preceding code into a Playground and attempt to compile the code, we will
receive a switch must be exhaustive, consider adding a default clause error.
This is a compile time error; therefore, we will not be notified until we attempt to compile
the code.

It is possible to include multiple items in a single case. To do this we would need to
separate the items with a comma. Let's look at how we would use the switch statement to
tell us if a character is a vowel or a consonant:

var char : Character = "e"
switch char {
case "a", "e", "i", "o", "u":
 print("letter is a vowel")
case "b", "c", "d", "f", "g", "h", "j", "k", "l", "m",
"n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z":
 print("letter is a consonant")
default:
 print("unknown letter")
}

We can see in the preceding example that each case has multiple items. Commas separate
these items and the switch statement will attempt to match the char variable to each item
listed in the case statement.

Control Flow and Functions

[85]

It is also possible to check the value of a switch statement to see whether it is included in a
range. To do this, we use a range operator in the case statement, as shown in the following
example:

var grade = 93
switch grade {
case 90...100:
 print("Grade is an A")
case 80...89:
 print("Grade is a B")
case 70...79:
 print("Grade is an C")
case 60...69:
 print("Grade is a D")
case 0...59:
 print("Grade is a F")
default:
 print("Unknown Grade")
}

In the preceding example, the switch statement takes the grade variable; compares it with
the grade ranges in each case statement, and prints out the appropriate grade.

In Swift, any case statement may contain an optional guard condition that can provide an
additional condition to validate. The guard condition is defined with the where keyword.
Let's say, in our preceding example, we had students who were receiving special assistance
in the class and we wanted to define a grade of D for them in the range of 55 to 69. The
following example shows how to do this:

var studentId = 4
var grade = 57
switch grade {
case 90...100:
 print("Grade is an A")
case 80...89:
 print("Grade is a B")
case 70...79:
 print("Grade is an C")
case 55...69 where studentId == 4:
 print("Grade is a D for student 4")
case 60...69:
 print("Grade is a D")
case 0...59:
 print("Grade is a F")
default:
 print("Unknown Grade")
}

www.allitebooks.com

http://www.allitebooks.org

Control Flow and Functions

[86]

One thing to keep in mind with the guard expression is that Swift will attempt to match the
value starting with the first case statement and works its way down, checking each case
statement in order. This means that, if we put the case statement with the guard
expression after the Grade F case statement, then the case statement with the guard
expression will never be reached. The following example illustrates this:

var studentId = 4
var grade = 57
switch grade {
case 90...100:
 print("Grade is an A")
case 80...89:
 print("Grade is a B")
case 70...79:
 print("Grade is an C")
case 60...69:
 print("Grade is a D")
case 0...59:
 print("Grade is a F")
//The following case statement would never be reached because the
//grades would always match one of the previous two
case 55...69 where studentId == 4:
 print("Grade is a D for student 4")
default:
 print("Unknown Grade")
}

A good rule of thumb is that, if you are using a guard condition, always
put the case statements with the guard condition before any similar case
statements without guard expressions.

Switch statements are also extremely useful for evaluating enumerations. Since an
enumeration has a finite number of values, if we provide a case statement for all the values
in the enumeration, we do not need to provide a default case. The following example shows
how we can use a switch statement to evaluate an enumeration:

enum Product {
 case Book(String, Double, Int)
 case Puzzle(String, Double)
}

var order = Product.Book("Mastering Swift 2", 49.99, 2015)

switch order {
case .Book(let name, let price, let year):

Control Flow and Functions

[87]

 print("You ordered the book \(name) for \(price)")
case .Puzzle(let name, let price):
 print("You ordered the Puzzle \(name) for \(price)")
}

In this example, we begin by defining an enumeration named Product with two values
each with the associated values. We then create an order variable of the product type and
use the switch statement to evaluate it. Notice that we did not put a default case at the end
of the switch statement. If we added additional values to the product enumeration at a
later time, we would need to either put a default case at the end of the switch statement or
add additional case statements to handle the additional values.

Using case and where statements with
conditional statements
As we saw in the last section, the case and where statements within a switch statement
can be very powerful. We are able to use these statements with other conditional statements
such as the if, for, and while statements. Using the case and where statements within
our conditional statements can make our code much smaller and easier to read. Let's look at
some examples, starting off with using the where statement to filter the results in a
for...in loop.

Filtering with the where statement
In this section, we will see how we can use the where statement to filter the results of a
for...in loop. For this example, we will take an array of integers and print out only the
even numbers; however, before we look at how we would filter the results with the where
statement, let's look at how we would do this without the where statement:

for number in 1...30 {
 if number % 2 == 0 {
 print(number)
 }
}

Control Flow and Functions

[88]

In this example, we use a for...in loop to cycle through the numbers 1 to 30. Within the
for...in loop, we use an if conditional statement to filter out the odd numbers. In this
simple example, the code is fairly easy to read, but let's see how we can use the where
statement to use fewer lines of code and make them easier to read:

for number in 1...30 where number % 2 == 0 {
 print(number)
}

We still have the same for...in loop as the previous example; however, now we put the
where statement at the end; in this particular example, we only loop through the even
numbers. Using the where statement shortens our example by two lines and also makes it
easier to read because the filter statement is on the same line as the for...in loop rather
than being embedded in the loop itself.

Now let's look at how we could filter with the for...case statement.

Filtering with the for…case statement
In this next example, we will use the for...case statement to filter through an array of
tuples and print out only the results that match our criteria. The for...case example is
very similar to using the where statement that we saw earlier where it is designed to
eliminate the need for an if statement within a loop to filter the results. In this example, we
will use the for...case statement to filter through a list of World Series winners and print
out the year(s) a particular team won the World Series:

var worldSeriesWinners = [
 ("Red Sox", 2004),
 ("White Sox", 2005),
 ("Cardinals", 2006),
 ("Red Sox", 2007),
 ("Phillies", 2008),
 ("Yankees", 2009),
 ("Giants", 2010),
 ("Cardinals", 2011),
 ("Giants", 2012),
 ("Red Sox", 2013),
 ("Giants", 2014),
 ("Royals", 2015)
]

for case let ("Red Sox", year) in worldSeriesWinners {
 print(year)
}

Control Flow and Functions

[89]

In this example, we create an array of tuples named worldSeriesWinners, where each
tuple in the array contains the name of the team and the year that they won the World
Series. We then use the for...case statement to filter through the array and only print out
the years that the Red Sox won the World Series. The filtering is done within the case
statement where ("Red Sox", year) says that we want all the results that have the string,
"Red Sox", in the first item of the tuple and the value of the second item into the year
constant. The for loop then loops through the results of the case statement, and we print
out the value of the year constant.

The for...case statement also makes it very easy to filter out the nil values in an array of
optionals. Let's take a look at an example of this:

let myNumbers: [Int?] = [1, 2, nil, 4, 5, nil, 6]

for case let .some(num) in myNumbers {
 print(num)
}

In this example, we create an array of optionals named myNumbers that may contain an
integer value or may contain nil. As we will see in Chapter 10, Using Optional Types, an
optional is defined as an enumeration internally, as shown in the following code:

enum Optional<Wrapped> {
 case none,
 case some(Wrapped)
}

If an optional is set to nil, it will have a value of none, but if it is not nil then it will have a
value of some with an associated type of the actual value. In our example, when we filter for
.some(num) , we are looking for any optional that has the value of .some(non-nil value).
As shorthand for .some(), we could use the question mark (?) symbol, as we will see in the
following example.

We can also combine for...case with a where statement to do additional filtering, as
shown in the following example:

let myNumbers: [Int?] = [1, 2, nil, 4, 5, nil, 6]

for case let num? in myNumbers where num > 3 {
 print(num)
}

Control Flow and Functions

[90]

This example is the same as the previous example except that we added the additional
filtering with the where statement. In the previous example, we looped through all of the
non-nil values, but in this example we loop through the non-nil values that are greater than
3. Let's see how we do this same filtering without the case or where statements:

for num in myNumbers {
 if let num = num {
 if num > 3 {
 print(num)
 }
 }
}

As we can see, using the for...case and where statements can greatly reduce the number
of lines needed. It also makes our code much easier to read because all of the filtering
statements are on the same line.

Let's look at one more filtering example. This time, we will look at the if...case
statement.

Using the if…case statement
Using the if...case statement is very similar to using the switch statement. The switch
statement is preferred when we have more than two cases we are trying to match, but there
are instances where the if...case statement is needed. One of these times is when we are
only looking for one or two possible matches, and we do not want to handle all of the
possible matches. Let's look at an example of this:

enum Identifier {
 case Name(String)
 case Number(Int)
 case NoIdentifier
}

var playerIdentifier = Identifier.Number(42)

if case let .Number(num) = playerIdentifier {
 print("Player's number is \(num)")
}

Control Flow and Functions

[91]

In this example, we create an enumeration named Identifier that contains three possible
values: Name, Number, and NoIdentifier. We create an instance of the Identifier
enumeration named playerIdentifier with a value of Number and an associated value
of 42. We then use the if-case statement to see if the playerIdentifier has a value for
Number, and if so, we print a message to the console.

Just like the for...case statement, we are able to do additional filtering with the where
statement. The following example uses the same Identifier enumeration as we used in
the previous example:

var playerIdentifier = Identifier.Number(2)

if case let .Number(num) = playerIdentifier, num == 2 {
 print("Player is either Xander Bogarts or Derek Jeter")
}

In this example, we still use the if...case statement to see if playerIdentifier has a
value of Number, but we added the where statement to see if the associated value is equal to
2; if so, we identify the player as either Xander Bogarts or Derek Jeter.

As we saw in our examples, using the case and where statements with our conditional
statements can reduce the number of lines needed to do certain types of filtering. It can also
make our code easier to read. Now let's take a look at control transfer statements.

Control transfer statements
Control transfer statements are used to transfer control to another part of the code. Swift
offers six control transfer statements; these are continue, break, fallthrough, guard,
throws, and return. We will look at the return statement in the Functions section later in
this chapter and will discuss the throws statement in Chapter 8, Writing Safer Code with
Error Handling. We will look at the remaining control transfer statements in this section.

The continue statement
The continue statement tells a loop to stop executing the code block and go to the next
iteration of the loop. The following example shows how to use a continue statement to
print out only odd numbers in a range:

for i in 1...10 {
 if i % 2 == 0 {
 continue
 }

Control Flow and Functions

[92]

 print("\(i) is odd")
}

In the preceding example, we loop through a range of 1 through 10. For each iteration of
the for...in loop, we use the remainder (%) operator to see whether the number is odd or
even. If the number is even, the continue statement tells the loop to immediately go to the
next iteration of the loop. If the number is odd, we print out the number is odd and then
move ahead. The output of the preceding code is as follows:

 1 is odd
 3 is odd
 5 is odd
 7 is odd
 9 is odd

Now, let's look at the break statement.

The break statement
The break statement immediately ends the execution of a code block within the control
flow. The following example shows how to break out of a for loop when we encounter the
first even number:

for i in 1...10 {
 if i % 2 == 0 {
 break
 }
 print("\(i) is odd")
}

In the preceding example, we loop through the range of 1 through 10. For each iteration of
the for loop, we use the remainder (%) operator to see whether the number is odd or even.
If the number is even, we use the break statement to immediately exit the loop. If the
number is odd, we print out that the number is odd and then go to the next iteration of the
loop. The preceding code has the following output:

 1 is odd

Control Flow and Functions

[93]

The fallthrough statement
In Swift, switch statements do not fall through like other languages; however, we can use
the fallthrough statement to force them to fall through. The fallthrough statement can
be very dangerous because once a match is found, the next case defaults to true and that
code block is executed. The following example illustrates this:

var name = "Jon"
var sport = "Baseball"
switch sport {
case "Baseball":
 print("\(name) plays Baseball")
 fallthrough
case "Basketball":
 print("\(name) plays Basketball")
 fallthrough
default:
 print("Unknown sport")
}

In the preceding example, since the first case, Baseball, matches the code and the
remaining code blocks also execute, the output looks similar to this:

 Jon plays Baseball
 Jon plays Basketball
 Unknown sport

The guard statement
In Swift and most modern languages, our conditional statements tend to focus on testing if
a condition is true. As an example, the following code tests to see whether the variable x is
greater than 10. If so, we perform some function; otherwise, we handle the error condition:

var x = 9
if x > 10 {
 // Functional code here
} else {
 // Do error condition
}

Control Flow and Functions

[94]

This type of code leads to having our functional code embedded within our checks and
with the error conditions tucked away at the end of our functions, but what if that is not
what we really want? Sometimes, it may be nice to take care of our error conditions at the
beginning of the function. I know, in our simple example, we could easily check if x is less
than or equal to 10 and if so perform the error condition, but not all the conditional
statements are that easy to rewrite, especially the items such as optional binding.

In Swift, we have the guard statement. The guard statement focuses on performing a
function if a condition is false; this allows us to trap errors and perform the error conditions
early in our functions. We could rewrite our previous example using the guard statement
like this:

var x = 9
guard x > 10 else {
 // Do error condition
 return
}
// Functional code here

In this new example, we check to see whether the variable x is greater than 10, and if not,
we perform our error condition. If the variable x is greater than 10, our code continues. You
will notice that we have a return statement embedded within the guard condition code.
The code within the guard statement must contain a transfer of control statement; this is
what prevents the rest of the code from executing. If we forget the transfer of control
statement, Swift will show a compile time error.

Let's look at some more examples of the guard statement. The following example shows
how we would use the guard statement to verify that an optional contains a valid value:

func guardFunction(str: String?) {
 guard let goodStr = str else {
 print("Input was nil")
 return
 }
 print("Input was \(goodStr)")
}

In this example, we create a function named guardFunction() that accepts an optional
containing a string or nil value. We then use the guard statement with optional binding to
verify that the string optional does not contain a nil. If it does contain nil, then the code
within the guard statement is executed and the return statement is used to exit the
function. The really nice thing about using the guard statement with optional binding is
that the new variable is in scope for the rest of the function rather than just within the scope
of the optional binding statement.

Control Flow and Functions

[95]

Now that we have seen how the control flow statements work in Swift, let's introduce
functions and classes in Swift.

Functions
In Swift, a function is a self-contained block of code that performs a specific task. Functions
are generally used to logically break our code into reusable named blocks. The function's
name is used to call the function.

When we define a function, we can also optionally define one or more parameters (also
known as arguments). Parameters are named values that are passed into the function by the
code that calls it. These parameters are generally used within the function to perform the
task of the function. We can also define default values for the parameters to simplify how
the function is called.

Every Swift function has a type associated with it. This type is referred to as the return type
and it defines the type of data returned from the function to the code that called it. If a value
is not returned from a function, the return type is Void.

Let's look at how to define functions in Swift.

Using a single-parameter function
The syntax used to define a function in Swift is very flexible. This flexibility makes it easy
for us to define simple C style functions, or more complex functions, with local and external
parameter names. Let's look at some examples of how to define functions. The following
example accepts one parameter and does not return any value back to the code that called it
(return type-Void):

func sayHello(name: String) -> Void {
let retString = "Hello " + name
 print(retString)
}

Control Flow and Functions

[96]

In the preceding example, we defined a function named sayHello that accepts one variable
that is named name. Inside the function, we print out a Hello greeting to the name of the
person. Once the code within the function gets executed, the function exits and control is
returned back to the code that called it. Rather than printing out the greeting, if we want to
return the greeting back to the code that called it, we can add a return type, as follows:

func sayHello2(name: String) ->String {
 let retString = "Hello " + name
 return retString
}

The -> string defines that the return type associated with the function is a string. This
means that the function must return a string variable back to the code that calls it. Inside the
function, we build a string constant with the greeting message and then use the return
keyword to return the string constant.

Calling a Swift function is very similar to how we call functions or methods in other
languages such as C or Java. The following example shows how to call the
sayHello(name:) function, which prints the greeting message to the screen from within
the function:

sayHello(name:"Jon")

Now, let's look at how to call the sayHello2(name:) function, which returns a value back
to the code that called it:

var message = sayHello2(name:"Jon")
print(message)

In the preceding example, we call the sayHello2(name:) function and put the value
returned in the message variable. If a function defines a return type, such as the
sayHello2(name:) function does, it must return a value of that type to the code that called
it. Therefore, every possible conditional path within the function must end by returning a
value of the specified type. This does not mean that the code that called the function has to
retrieve the returned value. As an example, both lines in the following examples are valid:

sayHello2(name:"Jon")
var message = sayHello2(name: "Jon")

If you do not specify a variable for the return value to go into, the value is dropped. When
you compile your code you will receive a warning if a function returns a value and you do
not put it into a variable or a constant. You can avoid the warning by using the underscore
as shown in this next example:

_ = sayHello2(name:"Jon")

Control Flow and Functions

[97]

The underscore tells the compiler that you are aware of the return value but you do not
want to use it. Let's look at how we would define multiple parameters for our functions.

Using a multi-parameter function
We are not limited to just one parameter with our functions, we can also define multiple
parameters. To create a multi-parameter function, we list the parameters in the parentheses
and separate the parameter definitions with commas. Let's look at how to define multiple
parameters in a function:

func sayHello(name: String, greeting: String) {
 print("\(greeting) \(name)")
}

In the preceding example, the function accepts two arguments: name and greeting. We
then print a greeting to the console using both the parameters.

Calling a multi-parameter function is a little different from calling a single-parameter
function. When calling a multi-parameter function, we separate the parameters with
commas. We also need to include the parameter name for all the parameters. The following
example shows how to call a multi-parameter function:

sayHello(name:"Jon", greeting:"Bonjour")

We do not need to supply an argument for each parameter of the function if we define
default values. Let's look at how to configure default values for our parameters.

Defining a parameter's default values
We can define default values for parameters by using the equal to operator (=) within the
function definition when we declare the variables. The following example shows how to
declare a function with parameter default values:

func sayHello(name: String, greeting: String = "Bonjour") {
 print("\(greeting) \(name)")
}

Control Flow and Functions

[98]

In the function declaration, we define one parameter without a default value (name:
String) and one parameter with a default value (greeting: String = "Bonjour").
When a parameter has a default value declared, we are able to call the function with or
without setting a value for that parameter. The following example shows how to call the
sayHello() function without setting the greeting parameter, and also how to call it with
setting the greeting parameter:

sayHello(name:"Jon")
sayHello(name:"Jon", greeting: "Hello")

In the sayHello(name:"Jon") line, the sayHello() function will print out the message
Bonjour Jon since it uses the default value for the greeting parameter. In the
sayHello(name:"Jon", greeting: "Hello") line, the sayHello() function will print
out the message Hello Jon since we override the default value for the greeting
parameter.

We can declare multiple parameters with default values and override only the ones we
want by using the parameter names. The following example shows how we would do this
by overriding one of the default values when we call it:

func sayHello4(name: String, name2: String = "Kim", greeting: String =
"Bonjour") {
 print"\(greeting) \(name) and \(name2)")
}

sayHello4(name:"Jon", greeting: "Hello")

In the preceding example, we declare one parameter without a default value (name:
String) and two parameters with default values (name2: String = "Kim", greeting:
String = "Bonjour"). We then call the function leaving the name2 parameter with its
default value, but override the default value of the greeting parameter.

The preceding example would print out the message, Hello Jon and Kim.

Control Flow and Functions

[99]

Returning multiple values from a function
There are a couple of ways to return multiple values from a Swift function. One of the most
common ways is to put the values into a collection type (array or dictionary) and return the
collection. The following example shows how to return a collection type from a Swift
function:

func getNames() -> [String] {
 let retArray = ["Jon", "Kim", "Kailey", "Kara"]
 return retArray
}

var names = getNames()

In the preceding example, we declare the getNames() function with no parameters and a
return type of [String]. The return type of [String] specifies the return type as an array
of String types.

One of the drawbacks to returning a collection type is that the values of the collection must
be of the same type, or we must declare our collection type to be of the Any type. In the
preceding example, our array could only return String types. If we needed to return
numbers with our strings, we could return an array of Any types and then use typecasting
to specify the object type. However, this would not be a very good design for our
application since it would be very prone to errors. A better way to return values of different
types would be to use a tuple type.

When we return a tuple from a function, it is recommended that we use a named tuple to
allow us to use the dot syntax to access the returned values. The following example shows
how to return a named tuple from a function and access the values from the named tuple
that is returned:

func getTeam() -> (team:String, wins:Int, percent:Double) {
 let retTuple = ("Red Sox", 99, 0.611)
 return retTuple
}

var t = getTeam()
print("\(t.team) had \(t.wins) wins")

Control Flow and Functions

[100]

In the preceding example, we define the getTeam() function, which returns a named tuple
that contains three values-String, Int, and Double. Within the function, we create the
tuple that we are going to return. Notice that we do not need to define the tuple that we are
going to return as a named tuple as long as the value types within the tuple match the value
types in the function definition. We can then call the function, as we would any other
function, and use the dot syntax to access the values of the tuple that is returned. In the
preceding example, the code would print out the following line:

 Red Sox had 99 wins

Returning optional values
In the previous sections, we returned non-nil values from our function; however, that is not
always what we need our code to do. What happens if we need to return a nil value from a
function? The following code would throw an expression does not conform to type
'NilLiteralConvertible' exception:

func getName() ->String {
 return nil
}

This code throws an exception because we define the return type as a string value; however,
we are attempting to return nil. If there is a reason to return nil, we need to define the
return type as an optional type to let the code calling it know that the value may be nil. To
define the return type as an optional type, we use the question mark (?) in the same way we
did when we defined a variable as an optional type. The following example shows how to
define an optional return type:

func getName() ->String? {
 return nil
}

The preceding code would not throw an exception.

We can also set a tuple as an optional type or any value within a tuple as an optional type.
The following example shows how we would return a tuple as an optional type:

func getTeam2(id: Int) -> (team:String, wins:Int, percent:Double)? {
 if id == 1 {
 return ("Red Sox", 99, 0.611)
 }
 return nil
}

Control Flow and Functions

[101]

In the following example, we could return a tuple as defined within our function definition
or a nil; either option is valid. If we needed an individual value within our tuple to be nil,
we would need to add an optional type within our tuple. The following example shows
how to return a nil within our tuple:

func getTeam() -> (team:String, wins:Int, percent:Double?) {
 let retTuple: (String, Int, Double?) = ("Red Sox", 99, nil)
 return retTuple
}

In the preceding example, we can set the percent value to either a Double value or nil.

Adding external parameter names
In the preceding examples in this section, the parameters were defined similarly to how we
would define the parameters in C code, where we define the parameter names and value
types. When we call the function, we also call the function similarly to how we would call
functions in C code, where we use the function name and specify the values we are passing
to the function within parenthesis. In Swift, we are not limited to this syntax; we can also
use external parameter names.

External parameter names are used when we call a function to indicate the purpose of each
parameter. If we want to use external parameter names with our functions, we need to
define an external parameter name for each parameter in addition to its local parameter
name. The external parameter name is added before the local parameter name in the
function definition. The external and local parameter names are separated by a space.

Let's look at how to use external parameter names. But before we do so, let's review how we
have previously defined functions. In the next two examples, we will define a function
without external parameter names and then we will redefine that function with external
parameter names:

func winPercentage(team: String, wins: Int, loses: Int) -> Double {
 return Double(wins) / Double(wins + loses)
}

In the preceding example, we define the winPercentage() function that accepts three
parameters. These parameters are team, wins, and loses. The team parameter is a String
type and the wins and loses parameters are Int types. The following line of code shows
how to call the winPercentage() function:

var per = winPercentage(team: "Red Sox", wins: 99, loses: 63)

Control Flow and Functions

[102]

Now, let's define the same function with external parameter names:

func winPercentage(BaseballTeam team: String, withWins wins: Int, andLoses
losses: Int) -> Double {
 return Double(wins) / Double(wins + losses)
}

In the preceding example, we redefine the winPercentage function with external
parameter names. In this redefinition, we have the same three parameters: team, wins, and
losses. The difference lies in how we define the parameters. When using external
parameters, we define each parameter with both an external parameter name and a local
parameter name separated by a space. In the preceding example, the first parameter has an
external parameter name of BaseballTeam, an internal parameter name of team, and a
type of String.

When we call a function with external parameter names, we need to include the external
parameter names in the function call. The following code shows how to call the function in
the preceding example:

var per = winPercentage(BaseballTeam:"Red Sox", withWins:99, andLoses:63)

While using external parameter names requires more typing, it does make your code easier
to read. In the preceding example, it is easy to see that the function is looking for the name
of a baseball team, the second parameter is the number of wins, and the last parameter is
the number of losses.

Using variadic parameters
A variadic parameter is one that accepts zero or more values of a specified type. Within the
function's definition, we define a variadic parameter by appending three periods(…) to the
parameter's type name. The values of a variadic parameter are made available to the
function as an array of the specified type. The following example shows how we would use
a variadic parameter with a function:

func sayHello(greeting: String, names: String...) {
 for name in names {
 print("\(greeting) \(name)")
 }
}

Control Flow and Functions

[103]

In the preceding example, the sayHello() function takes two parameters. The first
parameter is a String type, which is the greeting to use. The second parameter is a variadic
parameter of the String type; the names to send the greeting to. Within the function, a
variadic parameter is an array that contains the type specified; therefore, in our example,
the names parameter is an array of string values. In this example, we use a for...in loop
to access the values within the names parameter.

The following line of code shows how to call the sayHello() function with a variadic
parameter:

sayHello(greeting:"Hello", names: "Jon", "Kim")

The preceding line of code will print two greetings: Hello Jon and Hello Kim.

Inout parameters
If we want to change the value of a parameter and we want those changes to persist once
the function ends, we need to define the parameter as an inout parameter. Any changes
made to an inout parameter are passed back to the variable that was used in the function
call.

Two caveats to keep in mind when we use inout parameters are that these parameters
cannot have default values and they cannot be a variadic parameter.

Let's look at how to use the inout parameters to swap the values of two variables:

func reverse(first: inout String, second: inout String) {
 let tmp = first
 first = second
 second = tmp
}

This function will accept two parameters and swap the values of the variables that are used
in the function call. When we make the function call, we put an ampersand (&) in front of
the variable name indicating that the function can modify its value. The following example
shows how to call the reverse function:

var one = "One"
var two = "Two"
reverse(first: &one, second: &two)
print("one: \(one) two: \(two)")

Control Flow and Functions

[104]

In the preceding example, we set variableone to the value One and variable two to the value
Two. We then call the reverse function with the one and two variables. Once the swap
function returns, the variable named one will contain the value Two, while the variable
named two will contain the value One.

Nesting functions
All the functions that we have shown so far are examples of global functions. Global
functions are defined at a global scope within the class or file that they are in. Swift also
allows us to nest one function within another. Nested functions can only be called within
the enclosed function; however, the enclosed function can return a nested function that
allows it to be used outside the scope of the enclosed function. We will cover returning a
function in Chapter 12, Working with Closures.

Let's look at how to nest functions by creating a simple sort function that will take an array
of integers and sort it:

func sort(numbers: inout [Int]) {
 func reverse(first: inout Int, second: inout Int) {
 let tmp = first
 first = second
 second = tmp
 }
 var count = numbers.count
 while count > 0 {
 for var i in 1..<count {
 if numbers[i] < numbers[i-1] {
 reverse(first: &numbers[i], second: &numbers[i-1])
 }
 }
 count -= 1
 }
}

In the preceding code, we begin by creating a global function named sort that accepts an
inout parameter, that is, an array of Int. Within the sort function, the first thing we do is
define the nested function that is named reverse. A function needs to be defined in the
code prior to calling it, so it is good practice to put all the nested functions at the start of the
global function so that we know they are defined prior to calling them. The reverse
function simply swaps the two values that are passed in.

Control Flow and Functions

[105]

Within the body of the sort function, we implement the logic for the simple sort. Within
that logic, we compare two numbers in the array, and if the numbers need to be reversed,
we call the nested reverse function to swap the two numbers. This example shows how
we can effectively use a nested function to organize our code to make it easy to maintain
and read. Let's look at how to call the global sort function:

var nums: [Int] = [6,2,5,3,1]

sort(numbers: &nums)

for value in nums {
 print("--\(value)")
}

The preceding code creates an array of five integers and then passes the array to the sort
function. When the sort function returns the nums array, it contains a sorted array.

Nested functions, when used properly, can be very useful. However, it is
really easy to overuse them. Before creating a nested function, you might
want to ask yourself why you want to use a nested function and what
problem you are solving by using it.

Putting it all together
To reinforce what we learned in this chapter, let's look at one more example. For this
example, we will create a function that will test to see if a string value contains a valid IPv4
address or not. An IPv4 address is the address assigned to a computer that uses the Internet
Protocol (IP) to communicate. An IP address consists of four numeric values, ranging from
0-255, separated by a dot (period). An example of a valid IP address is 10.0.1.250:

func isValidIP(ipAddr: String?) -> Bool {

 guard let ipAddr = ipAddr else {
 return false
 }
 let octets = ipAddr.characters.split { $0 == "."}.map{String($0)}
 guard octets.count == 4 else {
 return false
 }
 func validOctet(octet: String) -> Bool {
 guard let num = Int(String(octet)),
 num >= 0 && num < 256 else {
 return false
 }

Control Flow and Functions

[106]

 return true
 }
 for octet in octets {
 guard validOctet(octet: octet) else {
 return false
 }
 }
 return true

}

Since the parameter for the isValidIp() function is an optional type, the first thing we do
is verify that the ipAddr parameter is not nil. To do this, we used a guard statement with
optional binding; if the optional binding fails, we return a Boolean false value because nil
is not a valid IP address.

If the ipAddr parameter contains a non-nil value, we then split the string into an array of
strings, at the dots. Since an IP address is supposed to contain four numbers separated by a
dot, we use the guard statement again to check whether the array contains four elements. If
it does not, we return false because we know that the ipAddr parameter did not contain a
valid IP address.

Next, we create a nested function named validOctet() that has one String parameter
named octet. This nested function will verify that the octet parameter contains a numeric
value between 0 and 255. If so, it will return a Boolean true value; otherwise, it will return
a false Boolean value.

Finally, we loop through values in the array that we created by splitting the original
ipAddr parameter at the dots and pass the values to the validOctet() nested function. If
all four values get verified by the validOctet() function, we have a valid IP address and
we return a Boolean true value; however, if any of the values fail the validOctet()
function, we return a Boolean false value.

Summary
In this chapter, we covered control flow and functions in Swift. It is essential to understand
the concepts in this chapter before going on. Every application that we write, beyond the
simple Hello World applications, will rely very heavily on control flow statements and
functions.

Control flow statements are used to make decisions within our application, and functions
will be used to group our code into the sections that are reusable and organized.

5
Classes and Structures

The first programming language that I learned was BASIC. It was a good language to begin
programming with, but once I traded in my Commodore Vic-20 for a PCjr (yes, I had a PCjr
and I really enjoyed it), I realized that there were other, more advanced languages out there,
and I spent a lot of time learning Pascal and C. It wasn't until I started college that I heard
the term object-oriented language. At that time, object-oriented languages were so new that
there were no real courses on them, but I was able to experiment a little with C++. After I
graduated, I left object-oriented programming behind, and it really wasn't until several
years later, when I started to experiment with C++ again, that I really discovered the power
and flexibility of object-oriented programming.

In this chapter, we will cover the following topics:

Creating and using classes and structures
Adding properties and property observers to classes and structures
Adding methods to classes and structures
Adding initializers to classes and structures
Using access controls
Creating a class hierarchy
Extending a class
Understanding memory management and ARC

What are classes and structures?
In Swift, classes and structures are very similar. If we really want to master Swift, it is very
important to understand what makes classes and structures so similar and also what sets
them apart because they are the building blocks of our applications. Apple describes classes
and structures as:

Classes and Structures

[108]

Classes and structures are general-purpose, flexible constructs that become the building
blocks of your program's code. You define properties and methods to add functionality to
your classes and structures by using the already familiar syntax of constants, variables,
and functions.

Let's begin by taking a quick look at some of the similarities between classes and structures.

Similarities between classes and structures
In Swift, classes and structures are more similar than they are in other languages, such as
Objective-C. The following is a list of some of the features that classes and structures share:

Properties: These are used to store information in our classes and structures
Methods: These provide functionality for our classes and structures
Initializers: These are used when initializing instances of our classes and
structures
Subscripts: These provide access to values using the subscript syntax
Extensions: These help in extending both classes and structures

Now, let's take a quick look at some of the differences between classes and structures.

Differences between classes and structures
While classes and structures are very similar, there are also several very important
differences. The following is a list of some of the differences between classes and structures
in Swift:

Type: A structure is a value type while a class is a reference type
Inheritance: A structure cannot inherit from other types while a class can
Deinitializers: Structures cannot have custom deinitializers while a class can

Throughout this chapter, we will be emphasizing the differences between classes and
structures to help us understand when to use each. Before we really delve into classes and
structures, let's take a look at the difference between value types (structures) and reference
types (classes). In order to understand when to use classes and structures and how to
properly use them, it is important to understand the difference between value and reference
types.

Classes and Structures

[109]

Value versus reference types
Structures are value types. This means that, when we pass instances of a structure within
our application, we pass a copy of the structure and not the original structure. Classes are
reference types, which means that, when we pass an instance of a class within our
application, we pass a reference to the original instance. It is very important to understand
this difference between value and reference types. We will give a very high-level view here,
and will provide additional details in the Memory management section at the end of this
chapter.

When we pass structures within our application, we are passing copies of the structures and
not the original structures. Since a function gets its own copy of the structure, it can change
it as needed, without affecting the original instance of the structure.

When we pass an instance of a class within our application, we are passing a reference to
the original instance of the class. Since we are passing the instance of the class to a function,
the function gets a reference to the original instance; therefore, any changes made within
the function will remain once the function exits.

To illustrate the difference between value and reference types, let's look at a real-world
object–a book. If we had a friend who wanted to read Mastering Swift 3 for Linux, we could
either buy them their own copy or share ours.

If we bought our friend their own copy of the book, then any notes they made within the
book would remain in their copy of the book and would not be reflected in our copy. This is
how pass by value works with structures and variables. Any changes that are made to the
structure or variable within the function are not reflected in the original instance of the
structure or variable.

If we share our copy of the book, then any notes they make within the book will stay in the
book when they return it to us. This is how pass by reference works. Any changes that are
made to the instance of the class remains when the function exits.

To read more about value versus reference types, see the Memory management section at the
end of this chapter.

Classes and Structures

[110]

Creating a class or structure
We use the same syntax to define classes and structures. The only difference is we define a
class using the class keyword, and a structure by using the struct keyword. Let's look at
the syntax used to create both classes and structures:

class MyClass {
 // MyClass definition
}

struct MyStruct {
 // MyStruct definition
}

In the preceding code, we define a new class named MyClass and a new structure named
MyStruct. This effectively creates two new Swift types named MyClass and MyStruct.
When we name a new type, we want to use the standard naming convention set by Swift
where the name is in camel case, with the first letter being uppercase. Any method or
property defined within the class or structure should also be named using camel case with
the first letter being lowercase.

Empty classes and structures are not that useful, so let's look at how we can add properties
to our classes and structures.

Properties
Properties associate values with a class or a structure. There are two types of properties,
which are as follows:

Stored properties: They store variable or constant values as part of an instance of
a class or structure. Stored properties can also have property observers, which
can monitor the property for changes and respond with custom actions when the
value of the property changes.
Computed properties: They do not store a value by themselves, but retrieve and
possibly set other properties. The value returned by a computed property can
also be calculated when it is requested.

Classes and Structures

[111]

Stored properties
A stored property is a variable or constant that is stored as part of an instance of a class or
structure. These are defined with the var and let keywords. Let's look at how we will use
stored properties in classes and structures. In the following code, we will create a structure
named MyStruct and a class named MyClass. The structure and the class both contain two
stored properties, c and v. The stored property c is a constant because it is defined with the
let keyword, and v is a variable because it is defined with the var keyword. Let's take a
look at the following code:

struct MyStruct {
 let c = 5
 var v = ""
}

class MyClass {
 let c = 5
 var v = ""
}

As we can see from the example, the syntax to define a stored property is the same for both
classes and properties. Let's look at how we would create an instance of both the structure
and class. The following code creates an instance of the MyStruct structure named
myStruct and an instance of the MyClass class named myClass:

var myStruct = MyStruct()
var myClass = MyClass()

One of the differences between a structure and a class is that, by default, a structure creates
an initializer that lets us populate the stored properties when we create an instance of the
structure. Therefore, we could also create an instance of MyStruct like this:

var myStruct = MyStruct(v: "Hello")

In the preceding example, the initializer is used to set the variable v, and the c constant will
contain the number 5 that is set in the struct itself. If, for example, we did not give the
constant an initial value, as shown in the following example, the default initializer would be
used to set the constant as well:

struct MyStruct {
 let c: Int
 var v = ""
}

Classes and Structures

[112]

The following example shows how the initializer for this new struct would work:

var myStruct = MyStruct(c: 10, v: "Hello")

This allows us to define a constant, where we set the value when we initialize the class or
structure at runtime rather than hard-coding the value of the constant in our code.

The order in which the parameters appear in the initializer is the order that we defined
them in. In the previous example, we defined the c constant first; therefore, it is the first
parameter in the initializer. We defined the v parameter second; therefore it is the second
parameter in the initializer.

To set or read a stored property, we use the standard dot syntax. Let's look at how we
would set and read stored properties in Swift:

var x = myClass.c
myClass.v = "Howdy"

Before we move on to computed properties, let's create both a structure and class that will
represent an employee. We will be using and expanding these throughout this chapter to
show how classes and structures are similar and how they differ:

struct EmployeeStruct {
 var firstName = ""
 var lastName = ""
 var salaryYear = 0.0
}

public class EmployeeClass {
 var firstName = ""
 var lastName = ""
 var salaryYear = 0.0
}

The employee structure is named EmployeeStruct and the employee class is named
EmployeeClass. Both the class and structure have three stored properties: firstName,
lastName, and salaryYear.

Classes and Structures

[113]

Within our structure and class, we can now access these properties by using the name of the
property and the self keyword. Every instance of a structure or class has a property
named self. This property refers to the instance itself; therefore, we can use it to access the
properties within the instance. The following examples show how we can access the
properties using the self keyword:

self.firstName = "Jon"
self.lastName = "Hoffman"

Computed properties
Computed properties are properties that do not have backend variables that are used to
store the values associated with the property. The values of a computed property are
usually computed when code requests it. You can think of a computed property as a
function disguised as a property. Let's take a look at how we would define a read-only
computed property:

var salaryWeek: Double {
get{
 return self.salaryYear/52
 }
}

To create a read-only computed property, we begin by defining it as if it were a normal
variable with the var keyword, followed by the variable name, colon, and the variable type.
What comes next is different; we add a curly bracket at the end of the declaration and then
define a getter method that is called when the value of our computed property is
requested. In this example, the getter method divides the current value of the
salaryYear property by 52 to get the employee's weekly salary.

We can simplify the definition of the read-only computed property by removing the get
keyword. We would rewrite the salaryWeek function like this:

var salaryWeek: Double {
 return self.salaryYear/52
}

Classes and Structures

[114]

Computed properties are not limited to being read-only, we can also write to them. To
enable the salaryWeek property to be writeable, we would need to add a setter method.
The following example shows how we would add a setter method that will set the
salaryYear property, based on the value being passed into the salaryWeek property:

var salaryWeek: Double {
 get {
 return self.salaryYear/52
 }
 set (newSalaryWeek){
 self.salaryYear = newSalaryWeek*52
 }
}

We can simplify the setter definition by not defining a name for the new value. In this case,
the value would be assigned to a default variable name, newValue. The salaryWeek
computed property could be rewritten like this:

var salaryWeek: Double {
 get{
 return self.salaryYear/52
 }
 set{
 self.salaryYear = newValue*52
 }
}

The salaryWeek computed property, as written in the preceding example, could be added
to either the EmployeeClass class or the EmployeeStruct structure without any
modifications. Let's see how we would do this by adding the salaryWeek property to our
EmployeeClass class:

public class EmployeeClass {
 var firstName = ""
 var lastName = ""
 var salaryYear = 0.0
 var salaryWeek: Double {
 get{
 return self.salaryYear/52
 }
 set (newSalaryWeek){
 self.salaryYear = newSalaryWeek*52
 }
 }
}

Classes and Structures

[115]

Now, let's look at how we would add the salaryWeek computed property to the
EmployeeStruct structure:

struct EmployeeStruct {
 var firstName = ""
 var lastName = ""
 var salaryYear = 0.0
 var salaryWeek: Double {
 get{
 return self.salaryYear/52
 }
 set (newSalaryWeek){
 self.salaryYear = newSalaryWeek*52
 }
 }
}

As we can see, the class and structure definitions are the same so far, except for the initial
class or struct keywords that are used to define them.

We read and write to a computed property exactly as we would a stored property. Code
that is external to the class or structure should not be aware that the property is a computed
property. Let's see this in action by creating an instance of the EmployeeStruct structure:

var f = EmployeeStruct(firstName: "Jon", lastName: "Hoffman", salaryYear:
39000)

print(f.salaryWeek) //prints 750.00 to the console
f.salaryWeek = 1000
print(f.salaryWeek) //prints 1000.00 to the console
print(f.salaryYear) //prints 52000.00 to the console

The preceding example starts off by creating an instance of the EmployStruct structure
with the salaryYear value being set to 39,000. Next, we print the value of the
salaryWeek property to the console. This value is currently 750.00. We then set the
salaryWeek property to 1000.00 and print out both the salaryWeek and salaryYear
properties to the console. The values of the salaryWeek and salaryYear properties are
now 1000.00 and 52000 respectively. As we can see, in this example, setting either the
salaryWeek or salaryYear property changes the values returned by both.

Classes and Structures

[116]

Computed properties can be very useful for offering different views of the same data. For
example, if we had a value that represented the length of something, we could store the
length in centimeters and then use computed properties that calculate the values for meters,
millimeters, and kilometers.

Now, let's take a look at property observers.

Property observers
Property observers are called every time the value of the property is set. We can add
property observers to any non-lazy stored property. We can also add property observers to
any inherited stored or computed property by overriding the property in the subclass. We
will cover this in the Overriding properties section a little later in this chapter.

There are two property observers that we can set in Swift–willSet and didSet. The
willSet observer is called right before the property is set, and the didSet observer is
called right after the property is set.

One thing to note about property observers is that they are not called when the value is set
during initialization. Let's look at how we would add a property observer to the salary
property of our EmployeeClass class and EmployeeStruct structure:

var salaryYear: Double = 0.0 {
 willSet(newSalary) {
 print("About to set salaryYear to \(newSalary)")
 }
 didSet {
 if salaryWeek > oldValue {
 print("\(firstName) got a raise")
 }
 else {
 print("\(firstName) did not get a raise")
 }
 }
}

When we add a property observer to a stored property, we need to include the type of the
value being stored within the definition of the property. In the preceding example, we did
not need to define our salaryYear property as a Double type; however, when we add
property observers the definition is required.

Classes and Structures

[117]

After the property definition, we define a willSet observer that simply prints out the new
value that the salaryYear property will be set to. We also define a didSet observer that
will check whether the new value is greater than the old value. If so, it will print out that the
employee got a raise; otherwise, it will print out that the employee did not get a raise.

As with the getter in computed properties, we do not need to define the name for the new
value for the willSet observer. If we do not define a name, the new value is put in a
constant named newValue. The following example shows how we would rewrite the
previous willSet observer without defining a name for the new value:

willSet {
 print("About to set salaryYear to \(newValue)")
}

As we have seen, properties are mainly used to store information associated with a class or
structure, and methods are mainly used to add the business logic to a class or structure.
Let's look at how we would add methods to a class or structure.

Methods
Methods are functions that are associated with a class or structure. A method, like a
function, will encapsulate the code for a specific task or functionality that is associated with
the class or structure. Let's look at how we would define a method in classes and structures.
The following code will return the full name of the employee by using the firstName and
lastName properties:

func getFullName() -> String {
 return firstName + " " + lastName
}

We define this method exactly as we would define any function. A method is simply a
function that is associated with a specific class or structure, and everything that we learned
about functions in the previous chapters applies to methods. The getFullName() function
can be added directly to the EmployeeClass class or EmployeeStruct structure without
any modification.

To access a method, we use the same dot syntax we used to access properties. The following
code shows how we would access the getFullName() method of a class and a structure:

var e = EmployeeClass()
var f = EmployeeStruct(firstName: "Jon", lastName: "Hoffman", salaryYear:
50000)

Classes and Structures

[118]

e.firstName = "Jon"
e.lastName = "Hoffman"
e.salaryYear = 50000.00

print(e.getFullName()) //Jon Hoffman is printed to the console
print(f.getFullName()) //Jon Hoffman is printed to the console

In the preceding example, we initialize an instance of both the EmployeeClass class and
EmployeeStruct structure. We populate the structure and class with the same information
and then use the getFullName() method to print the full name of the employee to the
console. In both cases, Jon Hoffman is printed to the console.

There is a difference in how we define methods for classes and structures, which need to
update property values. Let's look at how we would define a method that gives an
employee a raise within the EmployeeClass class:

func giveRaise(amount: Double) {
 self.salaryYear += amount
}

If we add the preceding code to our EmployeeClass, it works as expected; when we call
the method with an amount, the employee gets a raise. However, if we try to add this
method as it is written to the EmployeeStruct structure, we receive the Left side of
mutating operator isn't mutable: 'self is immutable' error. By default, we are
not allowed to update property values within a method of a structure. If we want to modify
a property, we can opt into mutating behavior for that method by adding the mutating
keyword before the func keyword of the method declaration. Therefore, the following code
would be the correct way to define the giveRaise() method for the EmployeeStruct
structure:

mutating func giveRase(amount: Double) {
 self.salaryYear += amount
}

In the preceding examples, we used the self property. Every instance of a type has a
property called self, which is the instance itself. We use the self property to refer to the
current instance of the type within the instance itself, so when we write self.salaryYear,
we ask for the value of the salaryYear property of the current instance.

Classes and Structures

[119]

The self property can be used to distinguish between a local variable and an instance
variable that have the same name. Let's look at an example that illustrates this:

func compareFirstName(firstName: String) -> Bool {
 return self.firstName == firstName
}

In the preceding example, the method accepts an argument with the name, firstName.
There is also a property that has this name. We use the self property to specify that we
want the instance property with the name, firstName, and not the local variable with this
name.

Other than the mutating keyword being required for methods that change the value of the
structure's properties, methods can be defined and used exactly as functions are defined
and used. Therefore, everything we learned about functions in the previous chapter can be
applied to methods.

There are times when we want to initialize properties or perform some business logic when
a class or structure is first initialized. For this, we will use an initializer.

Custom initializers
Initializers are called when we initialize a new instance of a particular type (a class or
structure). Initialization is the process of preparing an instance for use. The initialization
process can include setting initial values for stored properties, verifying external resources
are available, or setting up the UI properly. Initializers are generally used to ensure that the
instance of the class or structure is properly initialized prior to first use.

Initializers are special methods that are used to create a new instance of a type. We define
an initializer exactly as we would define other methods, but we must use the init keyword
as the name of the initializer to tell the compiler that this method is an initializer. In its
simplest form, the initializer does not accept any arguments. Let's look at the syntax used to
write a simple initializer:

init() {
 //Perform initialization here
}

Classes and Structures

[120]

This format works for both classes and structures. By default, all classes and structures have
an empty default initializer that we can override if we choose to. We saw these default
initializers when we used the EmployeeClass class and EmployeeStruct structure in the
previous section. Structures also have an additional default initializer, which we saw with
the EmployeeStruct structure, that accepts a value for each stored property and initializes
them with those values. Let's look at how we would add custom initializers to our
EmployeeClass class and EmployeeStruct structure. In the following code, we create
three custom initializers that will work for both the EmployeeClass class and the
EmployeeStruct structure:

init() {
 self.firstName = ""
 self.lastName = ""
 self.salaryYear = 0.0
}
init(firstName: String, lastName: String) {
 self.firstName = firstName
 self.lastName = lastName
 self.salaryYear = 0.0
}
init(firstName: String, lastName: String, salaryYear: Double) {
 self.firstName = firstName
 self.lastName = lastName
 self.salaryYear = salaryYear
}

The first initializer, init(), when used, will set all of the stored properties to their default
values. The second initializer, init(firstName: String, lastName: String), when
used, will populate the firstName and lastName properties with the values of the
arguments. The third initializer, init(firstName: String, lastName: String,
salaryYear: Double), will populate all the properties with the values of the arguments.

In the previous example, we can see that in Swift an initializer does not have a return value.
This means that we do not have to define the return type for the initializer or have a return
statement within the initializer. Let's look at how we would use these initializers:

var g = EmployeeClass()
var h = EmployeeStruct(firstName: "Me", lastName: "Moe")
var i = EmployeeClass(firstName: "Me", lastName: "Moe", salaryYear: 45000)

The variable g uses the init() initializer to create an instance of the EmployeeClass class;
therefore, all the properties of this EmployeeClass instance contain their default values.

Classes and Structures

[121]

The h variable uses the init(firstName: String, lastName: String) initializer to
create an instance of the EmployeeStruct structure; therefore, the firstName property of
the structure is set to Me and the lastName property is set to Moe, which are the two
arguments passed into the initializer. The salaryYear property is still set to the default
value of 0.0.

The i variable uses the init(firstName: String, lastName: String, salaryYear:
Double) initializer to create an instance of the EmployeeClass class; therefore, the
firstName property is set to Me, the lastName property is set to Moe, and the salaryYear
is set to 45000.

Since all the initializers are identified with the init keyword, the parameters and
parameter types are used to identify which initializer to use. Therefore, Swift provides
automatic external names for all of these parameters. In the previous example, we can see
that, when we use an initializer that has parameters, we include the parameter names. Let's
take a look at internal and external parameter names with initializers.

Internal and external parameter names
Just like functions, the parameters associated with an initializer can have separate internal
and external names. Unlike functions, if we do not supply external parameter names for our
parameters, Swift will automatically generate them for us. In the previous examples, we did
not include external parameter names in the definition of the initializers, so Swift created
them for us using the internal parameter name as the external parameter name.

If we wanted to supply our own parameter names, we would do so by putting the external
function name before the internal function name, exactly as we do with any normal
function. Let's look at how we would define our own external parameter names by
redefining one of the initializers within our EmployeeClass class:

init(employeeWithFirstName firstName: String, lastName: String, andSalary
salaryYear: Double) {
 self.firstName = firstName
 self.lastName = lastName
 self.salaryYear = salaryYear
}

Classes and Structures

[122]

In the preceding example, we created the init(employeeWithFirstName firstName:
String, lastName lastName: String, andSalary salaryYear: Double)

initializer. This initializer will create an instance of the EmployeeClass class and populate
the instance properties with the value of the arguments. In this example, each of the
parameters has both external and internal property names. Let's look at how we would use
this initializer, with the external property names, to create an instance of the
EmployeeClass class:

var i = EmployeeClass(employeeWithFirstName: "Me", lastName: "Moe",
andSalary: 45000)

Notice that we are now using the external parameter names as we defined in our initializer.
Using external parameter names can help make our code more readable and differentiate
between different initializers.

So, what will happen if our initializer fails? For example, what if our class relies on a
specific resource, such as a web service that is not currently available? This is where failable
initializers come in.

Failable initializers
A failable initializer is an initializer that may fail to initialize the resources needed for a class
or a structure, thereby rendering the instance unusable. When using a failable initializer, the
result of the initializer is an optional type, containing either a valid instance of the type or
nil.

An initializer can be made failable by adding a question mark (?) after the init keyword.
Let's look at how we would create a failable initializer that will not allow a new employee to
be initialized with a salary below $20,000 a year:

init?(firstName: String, lastName: String, salaryYear: Double) {
 self.firstName = firstName
 self.lastName = lastName
 self.salaryYear = salaryYear
 if self.salaryYear < 20000 {
 return nil
 }
}

Classes and Structures

[123]

In the previous example, we did not include a return statement within the initializer
because Swift does not need to return the initialized instance; however, in a failable
initializer, if the initialization fails, we will return nil. If the initializer successfully
initializes the instance, we do not need to return anything. Therefore, in our example, if the
yearly salary that is passed in is below $20,000 a year, we return nil, indicating that the
initialization failed; otherwise, nothing will be returned. Let's look at how we would use a
failable initializer to create an instance of a class or structure:

if let f = EmployeeClass(firstName: "Jon", lastName: "Hoffman",
 salaryYear: 29000) {
 print(f.getFullName())
} else {
 print("Failed to initialize")
}

In the previous example, we initialize the instance of the EmployeeClass class with a
yearly salary greater than $20,000; therefore, the instance gets initialized correctly and the
full name of Jon Hoffman is printed to the console. Now let's try to initialize an instance of
the EmployeeClass class with a yearly salary less than $20,000 to see how it fails:

if let f = EmployeeClass(firstName: "Jon", lastName: "Hoffman", salaryYear:
19000) {
 print(f.getFullName())
 print(f.compareFirstName(firstName: "Jon"))
} else {
 print("Failed to initialize")
}

In the example, the yearly salary that we are attempting to initialize for our employee is less
than $20,000; therefore, the initialization fails and a Failed to initialize message is
printed to the console.

There are times when we want to restrict access to certain parts of our code. This enables us
to hide implementation details and only expose the interfaces we want to expose. This
feature is handled with named access controls.

Access controls allow us to restrict the access to, and visibility of, parts of our code. This
allows us to hide implementation details and only expose the interfaces we want the
external code to access. We can assign specific access levels to both classes and structures.
We can also assign specific access levels to properties, methods, and initializers that belong
to our classes and structures.

Classes and Structures

[124]

In Swift, there are four access levels:

Public: This is the most visible access control level. It allows us to use the
property, method, class, and so on anywhere we want to import the module.
Basically, anything can use an item that has an access control level set to public.
This level is primarily used by frameworks to expose the framework's public API.
Internal: This is the default access level. This access level allows us to use the
property, method, class, and so on in the defining source as well as the module
that the source is in (the application or framework). If this level is used in a
framework, it lets other parts of the framework use the item but code outside the
framework will be unable to access it.
Private: This is the least visible access control level. It only allows us to use the
property, method, class, and so on in the source file that defines it.

Fileprivate: This access control allows access to the properties and methods from
any code within the same source file that the item is defined in.

If we are writing code that will be self-contained within a single application and there is no
need for it to be made available outside the application, then we can largely ignore access
controls. The default access level of internal already matches this requirement. We may,
however, want to hide parts of the implementation, which can be done by setting the access
level to private, but that should be an exception and not the rule.

When we are developing frameworks, access controls really become useful. We need to
mark public-facing interfaces as public, so other modules such as applications that import
the framework can use them. We would then use the internal and private access control
levels to mark the interfaces that we want to use internally to the framework and the source
file, respectively.

To define access levels, we place the name of the level before the definition of the entity. The
following code shows examples of how we would add access levels to several entities:

private struct EmployeeStruct {}
public class EmployeeClass {}
internal class EmployeeClass2 {}
public var firstName = "Jon"
internal var lastName = "Hoffman"
private var salaryYear = 0.0
public func getFullName() -> String {}
private func giveRaise(amount: Double) {}

Classes and Structures

[125]

There are some limitations with access controls, but these limitations are there to ensure
that access levels in Swift follow a simple guiding principle–no entity can be defined in terms
of another entity that has a lower (more restrictive) access level. What this means is that we
cannot assign a higher (less restrictive) access level to an entity when it relies on another
entity that has a lower (more restrictive) access level.

As shown in the following examples:

We cannot mark a method as being public when one of the arguments or the
return type has an access level of private because external code would not have
access to the private type
We cannot set the access level of a method or property to public when the class or
structure has an access level of private because external code would not be able to
access the constructor when the class is private

Inheritance
The concept of inheritance is a basic object-oriented development concept. Inheritance
allows a class to be defined as having a certain set of characteristics and then other classes
can be derived from that class. The derived class inherits all of the features of the class it is
inheriting from (unless the derived class overrides those characteristics) and then usually
adds additional characteristics of its own.

With inheritance, we can create what is known as a class hierarchy. In a class hierarchy, the
class at the top of the hierarchy is known as the base class and the derived classes are
known as subclasses. We are not limited to only creating subclasses from a base class; we
can also create subclasses from other subclasses. The class that a subclass is derived from is
known as the parent or superclass. In Swift, a class can have only one parent class. This is
known as single inheritance.

Inheritance is one of the fundamental differences that separate classes
from structures. Classes can be derived from a parent or superclass, but a
structure cannot.

Subclasses can call and access the properties, methods, and subscripts of their superclass.
They can also override the properties, methods, and subscripts of their superclass.
Subclasses can add property observers to properties that they inherit from a superclass, so
they can be notified when the values of the properties change. Let's look at an example that
illustrates how inheritance works in Swift.

Classes and Structures

[126]

We will start off by defining a base class named Plant. The Plant class will have two
properties, height and age. It will also have one method, growHeight(). The height
property will represent the height of the plant, the age property will represent the age of
the plant, and the growHeight() method will be used to increase the height of the plant.
Here is how we would define the Plant class:

class Plant {
 var height = 0.0
 var age = 0
 func growHeight(inches: Double) {
 self.height += inches;
 }
}

Now that we have our Plant base class, let's see how we can define a subclass of it. We will
name this subclass Tree. The Tree class will inherit the age and height properties of the
Plant class and add one additional property named limbs. It will also inherit the
growHeight() method of the Plant class and add two additional methods: limbGrow(),
where a new limb is grown, and limbFall(), where one of the limbs falls off the tree. Let's
have a look at the following code:

class Tree: Plant {
 private var limbs = 0
 func limbGrow() {
 self.limbs += 1
 }
 func limbFall() {
 self.limbs -= 1
 }
}

We indicate that a class has a superclass by adding a colon and the name of the superclass
to the end of the class definition. In the Tree example, we indicated that the Tree class has
a superclass named Plant.

Now, let's look at how we could use the Tree class that inherited the age and height
properties from the Plant class:

var tree = Tree()
tree.age = 5
tree.height = 4
tree.limbGrow()
tree.limbGrow()

Classes and Structures

[127]

The preceding example begins by creating an instance of the Tree class. We then set the
age and height properties to 5 and 4, respectively, and add two limbs to the tree by calling
the limbGrow() method twice.

We now have a base class named Plant that has a subclass named Tree. This means that
the super (or parent) class of Tree is the Plant class. This also means that one of the
subclasses (or child classes) of Plant is named Tree. There are, however, lots of different
kinds of trees in the world. Let's create two subclasses from the Tree class. These subclasses
will be the PineTree class and the OakTree class:

class PineTree: Tree {
 var needles = 0
}

class OakTree: Tree {
 var leaves = 0
}

The following diagram shows the class hierarchy that we just created:

It is important to keep in mind that, in Swift, a class can have multiple subclasses; however,
a class can have only one superclass. There are times when a subclass needs to provide its
own implementation of a method or property that it inherited from its superclass. This is
known as overriding.

Classes and Structures

[128]

Overriding methods and properties
To override a method, property, or subscript, we need to prefix the definition with the
override keyword. This tells the compiler that we intend to override something in the
superclass and that we did not make a duplicate definition by mistake. The override
keyword does prompt the Swift compiler to verify that the superclass (or one of its parents)
has a matching declaration that can be overridden. If it cannot find a matching declaration
in one of the superclasses, an error will be thrown.

Overriding methods
Let's look at how we would override a method. We will start by adding a getDetails()
method to the Plant class that we will then override in the child classes. The following
code shows how the new Plant class looks with the getDetails() method added:

class Plant {
 var height = 0.0
 var age = 0
 func growHeight(inches: Double) {
 self.height += inches;
 }
 func getDetails() -> String {
 return "Plant Details"
 }
}

Now let's see how we would override the getDetails() method in the Tree class:

class Tree: Plant {
 private var limbs = 0
 func limbGrow() {
 self.limbs += 1
 }
 func limbFall() {
 self.limbs -= 1
 }
 override func getDetails() -> String {
 return "Tree Details"
 }
}

Classes and Structures

[129]

The thing to note here is that we do not use the override keyword in the Plant class
because it is the first class to implement this method; however, we do include it in the Tree
class since we are overriding the getDetails() method from the Plant class. Now, let's
see what happens if we call the getDetails() method from an instance of the Plant and
Tree classes:

var plant = Plant()
var tree = Tree()
print("Plant: \(plant.getDetails())")
print("Tree: \(tree.getDetails())")

The previous example would print the following two lines to the console:

 Plant: Plant Details
 Tree: Tree Details

As we can see, the getDetails() method in the Tree subclass overrides the
getDetails() method of its parent Plant class.

Inside the Tree class, we can still call the getDetails() method (or any overridden
method, property, or subscript) of its superclass by using the super prefix. Let's see how
we would call the getDetails() method of the Plant class from an instance of the Tree
class. We will begin by replacing the getDetails() method in the Plant class with the
following method, which will generate a string containing the values of the height and
age properties. Let's take a look at the following code:

func getDetails() -> String {
 return "Height: \(height) age: \(age)"
}

In the preceding code, we are changing the getDetails() method to return a string that
contains the height and age of the plant. Now, let's replace the getDetails() method for
the Tree class with the following method:

override func getDetails() -> String {
 let details = super.getDetails()
 return "\(details) limbs: \(limbs)"
}

Classes and Structures

[130]

In the preceding example, we begin by calling the getDetails() method of the superclass
(the Plant class in this case) to get a string containing the tree's height and age. We then
build a new string object that contains the results of the getDetails() method from the
superclass, adds the number of limbs to it, and then returns it. Let's look at what happens if
we call the getDetails() method of the Tree class:

var tree = Tree()
tree.age = 5
tree.height = 4
tree.limbGrow()
tree.limbGrow()
print(tree.getDetails())

If we run the preceding code, the following line would be printed to the console:

 Height: 4.0 age: 5 limbs: 2

As we can see, the string that is returned contains the height and age information from the
Plant class and the limbs information from the Tree class.

We can also chain the overridden methods. Let's see what happens if we add the following
method to the OakTree class:

override func getDetails() -> String {
 let details = super.getDetails()
 return "\(details) Leaves: \(leaves)"
}

When we call the getDetails() method of an instance of the OakTree class, it calls the
getDetails() method of its superclass (the Tree class). The getDetails() method of the
Tree class also calls the getDetails() method of its superclass (the Plant class). The
getDetails() method of the Tree class will finally create a string instance that contains
the height and age from the Plant class, the limbs from the Tree class, and the leaves
from the OakTree class. Let's look at an example of this:

var tree = OakTree()
tree.age = 5
tree.height = 4
tree.leaves = 50
tree.limbGrow()
tree.limbGrow()
print(tree.getDetails())

If we run the preceding code, we see the following line printed to the console:

 Height: 4.0 age: 5 limbs: 2 Leaves: 50

Classes and Structures

[131]

Overriding properties
We can provide custom getter and setter to override any inherited property. When we
override a property, we must provide the name and the type of property we are overriding,
so the compiler can verify that one of the classes in the class hierarchy has a matching
property to override. While overriding, properties are not as common as overriding
methods; it is good for us to know how to do this when we need.

Let's see how we would override a property by adding the following method to our Plant
class:

var description: String {
 get {
 return "Base class is Plant."
 }
}

The description property is a basic read-only property. This property returns the string,
Base class is Plant. Now let's override this property by adding the following property
to the Tree class:

override var description: String {
 return "\(super.description) I am a Tree class."
}

When we override a property, we use the same override keyword that we use when we
override a method. The override keyword tells the compiler that we want to override a
property, so the compiler can verify that another class in the class hierarchy contains a
matching property to override. We then implement the property as we would any other
property. Calling the description property of the tree would result in the Base class
is Plant. I am a Tree class. string being returned.

There are times when we want to prevent a subclass from overriding the properties and
methods. There are also times when we want to prevent an entire class from being
subclassed. Let's see how we do this.

Preventing overrides
To prevent overrides or subclassing, we use the final keyword. To use the final
keyword, we add it before the item's definition. Examples are final func, final var,
and final class.

Any attempt to override an item marked final will throw a compile-time error.

Classes and Structures

[132]

Protocols
There are times when we would like to describe the implementation (methods, properties,
and other requirements) of a class without actually providing the implementation. For this,
we use protocols.

Protocols define a blueprint of methods, properties, and other requirements for a class or a
structure. A class or a structure can then provide an implementation that conforms to those
requirements. The class or structure that provides the implementation is said to conform to
the protocol.

Protocol syntax
The syntax to define a protocol is very similar to how we define a class or a structure. The
following example shows the syntax used to define a protocol:

protocol MyProtocol {
 //protocol definition here
}

We state that a class or structure conforms to a particular protocol by placing the name of
the protocol after the class or structure's name, separated by a colon. Here is an example of
how we would state that a class conforms to the MyProtocol protocol:

class myClass: MyProtocol {
 //class implementation here
}

A class or a structure can conform to multiple protocols. We list the protocols that the class
or structure conforms to by separating them with commas. The following example shows
how we would state that our class conforms to multiple protocols:

class MyClass: MyProtocol, AnotherProtocol, ThirdProtocol {
 // class implementation here
}

When we need a class to inherit from a superclass and implement a protocol, we list the
superclass first, followed by the protocols. The following example illustrates this:

Class MyClass: MySuperClass, MyProtocol, MyProtocol2 {
 // Class implementation here
}

Classes and Structures

[133]

Property requirements
A protocol can require that the conforming class or structure provide certain properties
with a specified name and type. The protocol does not say if the property should be a stored
or computed property because the implementation details are left up to the conforming
class or structure.

When defining a property within a protocol, we must specify whether the property is a
read-only or a read/write property by using the get and set keywords. Let's look at how
we would define properties within a protocol by creating a FullName protocol:

protocol FullName {
 var firstName: String {get set}
 var lastName: String {get set}
}

The FullName protocol defines two properties, which any class or structure that conforms
to the protocol must implement. These are the firstName and lastName properties. Both
these properties in the FullName protocol are read/write properties. If we wanted to specify
that the property is read-only, we would define it with only the get keyword, like this:

 var readOnly: String {get}

Let's see how we would create a Scientist class that conforms to this protocol:

class Scientist: FullName {
 var firstName = ""
 var lastName = ""
}

If we had forgotten to include either the firstName or lastName property, we would have
received a Scientist does not conform to protocol 'FullName' error message.
We also need to make sure that the type of the property is the same. For example, if we
changed the lastName definition in the Scientist class to var lastName = 42, we
would also receive a Scientist does not conform to protocol 'FullName' error
message because the protocol specifies that we must have a lastName property of the
string type.

Classes and Structures

[134]

Method requirements
A protocol can require that the conforming class or structure provide certain methods. We
define a method within a protocol exactly as we do within a normal class or structure,
except without the curly braces or method body. Let's add a getFullName() method to our
FullName protocol and Scientist class.

The following example shows how the FullName protocol would look with the
getFullName() method added:

protocol FullName {
 var firstName: String {get set}
 var lastName: String {get set}

 func getFullName() -> String
}

Now, we will need to add a getFullName() method to our Scientist class so that it will
properly conform to the FullName protocol:

class Scientist: FullName {
 var firstName = ""
 var lastName = ""
 var field = ""

 func getFullName() -> String {
 return "\(firstName) \(lastName) studies \(field)"
 }
}

Structures can conform to Swift protocols exactly as classes do. The following example
shows how we can create a FootballPlayer structure that conforms to the FullName
protocol:

struct FootballPlayer: FullName {
 var firstName = ""
 var lastName = ""
 var number = 0
 func getFullName() -> String {
 return "\(firstName) \(lastName) has the number \(number)"
 }
}

Classes and Structures

[135]

When a class or structure conforms to a Swift protocol, we can be sure that it has
implemented the required properties and methods. This can be very useful when we want
to ensure that certain properties or methods are implemented over various classes, as our
preceding examples show.

Protocols are also very useful when we want to decouple our code from requiring specific
classes or structures. The following code shows how we would decouple our code using the
FullName protocol, the Scientist class, and the FootballPlayer structure that we have
already built:

var scientist = Scientist()
scientist.firstName = "Kara"
scientist.lastName = "Hoffman"
scientist.field = "Physics"

var player = FootballPlayer();
player.firstName = "Dan"
player.lastName = "Marino"
player.number = 13

var person: FullName
person = scientist
print(person.getFullName())
person = player
print(player.getFullName())

In the preceding code, we begin by creating an instance of the Scientist class and the
FootballPlayer structure. We then create a person variable that is of the FullName
(protocol) type and set it to the scientist instance that we just created. We then call the
getFullName() method to retrieve our description. This will print out the Kara Hoffman
studies Physics message to the console.

We then set the person variable equal to the player instance and call the getFullName()
method again. This will print out the Dan Marino has the number 13 message to the
console.

As we can see, the person variable does not care what the actual implementation class or
structure is. Since we defined the person variable to be of the FullName type, we can set
the person variable to an instance of any class or structure that conforms to the FullName
protocol.

We will read more about protocols in Chapter 6, Using Protocols and Protocol Extensions and
also in Chapter 7, Protocol-Oriented Design.

Classes and Structures

[136]

Extensions
With extensions, we can add new properties, methods, initializers, and subscripts, or make
an existing class or structure conform to a protocol. One thing to note is that extensions
cannot override the existing functionality.

To define an extension, we use the extension keyword, followed by the type that we are
extending. The following example shows how we would create an extension that extends
the string class:

extension String {
 //add new functionality here
}

Let's see how extensions work by adding a reverse() method and a firstLetter
property to Swift's standard string class:

extension String {
 var firstLetter: Character? {
 get {
 return self.characters.first
 }
 }

 func reverse() -> String {
 var reverse = ""
 for letter in self.characters {
 reverse = "\(letter)" + reverse
 }
 return reverse
 }
}

When we extend an existing class or structure, we define properties, methods, initializers,
and subscripts in exactly the same way as we would normally define them in a standard
class or structure. In the string extension example, we see that we define the reverse()
method and the firstLetter property exactly as we would define them in a normal class.

We would then use these properties, methods, initializers and subscripts, added by the
extensions, exactly as we would use them normally. Here is an example of how we would
use the reverse() method that we just added to the String type:

var test = "abc"
print(test.reverse())

Classes and Structures

[137]

Extensions are very useful for adding additional functionality to classes and structures from
external frameworks, even for Apple's frameworks, as demonstrated in the examples. It is
preferred to use extensions to add additional functionality to classes from external
frameworks rather than subclassing because it allows us to use the classes provided by the
frameworks throughout our code.

Memory management
As I mentioned at the start of this chapter, structures are value types and classes are
reference types. What this means is that, when we pass an instance of a structure within our
application, such as a parameter of a method, we create a new instance of the structure in
the memory. This new instance of the structure is only valid while the application is in the
scope where the structure was created. Once the structure goes out of scope, the new
instance of the structure is destroyed and the memory is released. This makes memory
management of structures pretty easy and somewhat painless.

Classes, on the other hand, are of the reference type. This means that we allocate the
memory for the instance of the class only once when it is initially created. When we want to
pass an instance of the class within our application, as either a function argument or by
assigning it to a variable, we really pass a reference to where the instance is stored in the
memory. Since the instance of a class may be referenced in multiple scopes (unlike a
structure), it cannot be automatically destroyed, and memory is not released when it goes
out of scope if it is referenced in another scope. Therefore, Swift needs some form of
memory management to track and release the memory used by instances of classes when
the class is no longer needed. Swift uses Automatic Reference Counting (ARC) to track and
manage memory usage.

With ARC, for the most part, memory management in Swift simply works. ARC will
automatically track the references to instances of classes, and when an instance is no longer
needed (no references pointing to it), ARC will automatically destroy the instance and
release the memory. There are a few instances where ARC requires additional information
about relationships to properly manage the memory. Before we look at the instances where
ARC needs help, let's look at how ARC works.

Classes and Structures

[138]

How ARC works
Whenever we create a new instance of a class, ARC allocates the memory needed to store
that class. This ensures that there is enough memory to store the information associated
with that instance of the class, and also locks the memory so that nothing overwrites it.
When the instance of the class is no longer needed, ARC will release the memory allocated
for the class so that it can be used for other purposes. This ensures that we are not tying up
memory that is no longer needed.

If ARC were to release the memory for an instance of a class that we still needed, it would
not be possible to retrieve the class information from memory. If we did try to access the
instance of the class after the memory was released, our application might crash. To ensure
memory is not released for an instance of a class that is still needed, ARC counts how many
times the instance is referenced (how many active properties, variables, or constants are
pointing to the instance of the class). Once the reference count for an instance of a class
equals zero (nothing is referencing the instance), the memory is marked for release.

All of the previous examples run properly, but the following examples will not. When we
run sample code, ARC does not release objects that we create; this is by design so that we
can see how the application runs and also the state of the objects at each step. Let's look at
an example of how ARC works.

We begin by creating a MyClass class with the following code:

class MyClass {
 var name = ""
 init(name: String) {
 self.name = name
 print("Initializing class with name \(self.name)")
 }
 deinit {
 print("Releasing class with name \(self.name)")
 }
}

This class is very similar to our previous MyClass class, except that we add a deinitializer
that is called just before an instance of the class is destroyed and removed from memory.
This deinitializer prints out a message to the console that lets us know that the instance of
the class is about to be removed.

Classes and Structures

[139]

Now, let's look at the code that shows how ARC creates and destroys instances of a class:

 var class1ref1: MyClass? = MyClass(name: "One")
 var class2ref1: MyClass? = MyClass(name: "Two")
 var class2ref2: MyClass? = class2ref1
 print("Setting class1ref1 to nil")
 class1ref1 = nil
 print("Setting class2ref1 to nil")
 class2ref1 = nil
 print("Setting class2ref2 to nil")
 class2ref2 = nil

In the example, we begin by creating two instances of the MyClass class named
class1ref1 (which stands for class 1 reference 1) and class2ref1 (which stands for class
2 reference 1). We then create a second reference to class2ref1 named class2ref2. Now,
in order to see how ARC works, we need to begin setting the references to nil. We start out
by setting class1ref1 to nil. Since there is only one reference to class1ref1, the
deinitializer will be called. Once the deinitializer completes its task, in our case, it prints a
message to the console letting us know that the instance of the class has been destroyed and
the memory has been released.

We then set the class2ref1 to nil, but a second reference to this class (class2ref2)
prevents ARC from destroying the instance so that the deinitializer is not called. Finally, we
set class2ref2 to nil, which allows ARC to destroy this instance of the MyClass class.

If we run this code, we will see the following output, which illustrates how ARC works:

 Initializing class with name One
 Initializing class with name Two
 Setting class1ref1 to nil
 Releasing class with name One
 Setting class2ref1 to nil
 Setting class2ref2 to nil
 Releasing class with name Two

From the example, it seems that ARC handles memory management very well. However, it
is possible to write code that will prevent ARC from working properly.

Classes and Structures

[140]

Strong reference cycles
A strong reference cycle is where the instances of two classes hold a strong reference to each
other, preventing ARC from releasing either instance. Strong reference cycles are a lot easier
to understand with an example, so let's create one. In this project, we start off by creating
two classes named MyClass1 and MyClass2 with the following code:

class MyClass1 {
 var name = ""
 var class2: MyClass2?

 init(name: String) {
 self.name = name
 print("Initializing class with name \(self.name)")
 }
 deinit {
 print("Releaseing class with name \(self.name)")
 }
}

class MyClass2 {
 var name = ""
 var class1: MyClass1?

 init(name: String) {
 self.name = name
 print("Initializing class2 with name \(self.name)")
 }
 deinit {
 print("Releaseing class2 with name \(self.name)")
 }

}

As we can see from the code, MyClass1 contains an instance of MyClass2; therefore, the
instance of MyClass2 cannot be released until MyClass1 is destroyed. We can also see from
the code that MyClass2 contains an instance of MyClass1; therefore, the instance of
MyClass1 cannot be released until MyClass2 is destroyed. This creates a cycle of
dependency in which neither instance can be destroyed until the other one is destroyed.
Let's see how this works by running the following code:

var class1: MyClass1? = MyClass1(name: "Class1")
var class2: MyClass2? = MyClass2(name: "Class2")
//class1 and class2 each have a reference count of 1
class1?.class2 = class2
//Class2 now has a reference count of 2

Classes and Structures

[141]

class2?.class1 = class1
//class1 now has a reference count of 2
print("Setting classes to nil")
class2 = nil
//class2 now has a reference count of 1, not destroyed
class1 = nil
//class1 now has a reference count of 1, not destroyed

As we can see from the comments in the example, the reference counter for each instance
never reaches zero; therefore, ARC cannot destroy the instances, thereby creating a memory
leak. A memory leak is where an application continues to use memory but does not
properly release it. This can eventually cause an application to crash.

To resolve a strong reference cycle, we need to prevent one of the classes from keeping a
strong hold on the instance of the other class, thereby allowing ARC to destroy them both.
Swift provides two ways of doing this, by letting us define the properties as either a weak
reference or an unowned reference.

The difference between a weak reference and an unowned reference is that the instance
which a weak reference refers to can be nil, whereas the instance that an unowned reference
is referring to cannot be nil. This means that when we use a weak reference, the property
must be an optional property since it can be nil. Let's see how we would use unowned and
weak references to resolve a strong reference cycle. Let's start by looking at the unowned
reference technique.

We begin by creating two more classes, MyClass3 and MyClass4:

class MyClass3 {
 var name = ""
 unowned let class4: MyClass4

 init(name: String, class4: MyClass4) {
 self.name = name
 self.class4 = class4
 print("Initializing class3 with name \(self.name)")
 }
 deinit {
 print("Releasing class3 with name \(self.name)")
 }
}

class MyClass4{
 var name = ""
 var class3: MyClass3?

 init(name: String) {

Classes and Structures

[142]

 self.name = name
 print("Initializing class4 with name \(self.name)")
 }
 deinit {
 print("Releasing class4 with name \(self.name)")
 }
}

The MyClass4 class looks pretty similar to the MyClass1 and MyClass2 classes in the
preceding example. What is different here is the MyClass3 class. In the MyClass3 class, we
set the class4 property to unowned, which means it cannot be nil and it does not keep a
strong reference to the MyClass4 instance that it is referring to. Since the class4 property
cannot be nil, we also need to set it when the class is initialized.

Now, let's see how we can initialize and deinitialize the instances of these classes with the
following code:

var class4 = MyClass4(name: "Class4")
var class3: MyClass3? = MyClass3(name: "class3", class4: class4)
class4.class3 = class3
print("Classes going out of scope")

In the preceding code, we create an instance of the MyClass4 class and then use that
instance to create an instance of the MyClass3 class. We then set the class3 property of the
MyClass4 instance to the MyClass3 instance we just created. This creates a reference cycle
of dependency between the two classes again, but this time, the MyClass3 instance does not
keep a strong hold on the MyClass4 instance, allowing ARC to release both instances when
they are no longer needed.

If we run this code, we see the following output, showing that both the MyClass3 and
MyClass4 instances are released and the memory is freed:

 Initializing class4 with name Class4
 Initializing class3 with name class3
 Classes going out of scope.
 Releasing class4 with name Class4
 Releasing class3 with name class3

Now let's look at how we would use a weak reference to prevent a strong reference cycle.
We begin by creating two new classes:

class MyClass5 {
 var name = ""
 var class6: MyClass6?
 init(name: String) {
 self.name = name

Classes and Structures

[143]

 print("Initializing class5 with name \(self.name)")
 }
 deinit {
 print("Releasing class5 with name \(self.name)")
 }
}

class MyClass6 {
 var name = ""
 weak var class5: MyClass5?
 init(name: String) {
 self.name = name
 print("Initializing class6 with name \(self.name)")
 }
 deinit {
 print("Releasing class6 with name \(self.name)")
 }
}

The MyClass5 and MyClass6 classes look very similar to the MyClass1 and MyClass2
classes we created earlier to show how a strong reference cycle works. The big difference is
that we define the class5 property in the MyClass6 class as a weak reference.

Now, let's see how we can initialize and deinitialize instances of these classes with the
following code:

var class5: MyClass5? = MyClass5(name: "Class5")
var class6: MyClass6? = MyClass6(name: "Class6")
class5?.class6 = class6
class6?.class5 = class5
print("Classes going out of scope ")

In the preceding code, we create instances of the MyClass5 and MyClass6 classes and then
set the properties of those classes to point to the instance of the other class. Once again, this
creates a cycle of dependency, but since we set the class5 property of the MyClass6 class
to weak, it does not create a strong reference, allowing both instances to be released.

If we run the code, we will see the following output, showing that both the MyClass5 and
MyClass6 instances are released and the memory is freed:

 Initializing class5 with name Class5
 Initializing class6 with name Class6
 Classes going out of scope.
 Releasing class5 with name Class5
 Releasing class6 with name Class6

Classes and Structures

[144]

It is recommended that we avoid creating circular dependencies, as shown in this section,
but there are times when we need them. For those times, remember that ARC does need
some help to release them.

Summary
As this chapter ends, we end the introduction to the Swift programming language. At this
point, we have enough knowledge of the Swift language to begin writing our own
applications; however, there is still much to learn.

In the following chapters, we will look in greater depth at some of the concepts that we
already discussed, such as optionals and subscripts. We will also show how we perform
common tasks with Swift, such as parsing common file formats and handling concurrency.
Finally, some chapters will help us write better code such as a sample Swift style guide, and
a chapter on design patterns.

6
Using Protocols and Protocol

Extensions
While watching the presentations from WWDC 2015 about protocol extensions and
Protocol-Oriented Programming (POP), I will admit that I was very sceptical. I have
worked with Object-Oriented Programming (OOP) for so long that I was unsure if this
new programming paradigm would solve all of the problems that Apple was claiming it
would. Since I am not one to let my skepticism get in the way of trying something new, I set
up a new project that mirrored the one I was currently working on, but wrote the code
using Apple's recommendations for protocol-oriented programming. I also used protocol
extensions extensively in the code. I can honestly say that I was amazed by how much
cleaner the new project was compared to the original one. I believe that protocol extensions
are going to be one of those defining features that set one programming language apart
from the rest. I also believe that many major languages will soon have similar features.

In this chapter, you will learn:

How protocols are used as a type
How to implement polymorphism in Swift using protocols
How to use protocol extensions
Why we would want to use protocol extensions

While protocol extensions are basically syntactic sugar they are, in my opinion, one of the
most important additions to the Swift programming language. With protocol extensions, we
are able to provide method and property implementations to any type that conforms to a
protocol. To really understand how useful protocols and protocol extensions are, let's get a
better understanding of protocols.

Using Protocols and Protocol Extensions

[146]

While classes, structures, and enumerations can all conform to protocols in
Swift, in this chapter we will be focusing on classes and structures.
Enumerations are used when we need to represent a finite number of
cases and, while there are valid use cases for having an enumerations
conform to a protocol, they are very rare in my experience. Just remember
that, anywhere that we refer to a class or structures, we can also use an
enumeration.

Let's begin exploring protocols by seeing how they are full-fledged types in Swift.

Protocols as types
Even though no functionality is implemented in a protocol, they are still considered a full-
fledged type in the Swift programming language and can be used like any other type. What
this means is we can use protocols as a parameter type or as a return type in a function. We
can also use them as the type for variables, constants, and collections. Let's take a look at
some examples. For these few examples, we will use the PersonProtocol protocol:

protocol PersonProtocol {
 var firstName: String {get set}
 var lastName: String {get set}
 var birthDate: NSDate {get set}
 var profession: String {get}
 init (firstName: String, lastName: String, birthDate: NSDate)
}

In this first example, we will see how we would use protocols as a parameter type or return
type in functions, methods, or initializers:

 func updatePerson(person: PersonProtocol) -> PersonProtocol {
 // Code to update person goes here
 return person
 }

In this example, the updatePerson() function accepts one parameter of the
PersonProtocol protocol type and then returns a value of the PersonProtocol protocol
type. Now let's see how we can use protocols as a type for constants, variables, or
properties:

var myPerson: PersonProtocol

Using Protocols and Protocol Extensions

[147]

In this example, we create a variable of the PersonProtocol protocol type that is named
myPerson. We can also use protocols as the item type to store in collections such as arrays,
dictionaries, or sets:

var people: [PersonProtocol] = []

In this final example, we create an array of PersonProtocol protocol types. As we can see
from these three examples, even though the PersonProtocol protocol does not implement
any functionality, we can still use protocols when we need to specify a type. We cannot,
however, create an instance of a protocol. This is because no functionality is implemented in
a protocol. As an example, if we tried to create an instance of the PersonProtocol
protocol, we would receive the error: protocol type 'PersonProtocol' cannot
be instantiated error, as shown in the following example:

var test = PersonProtocol(firstName: "Jon", lastName: "Hoffman", birthDate:
bDateProgrammer)

We can use the instance of any class or structure that conforms to our protocol anywhere
that the protocol type is required. As an example, if we defined a variable to be of the
PersonProtocol protocol type, we could then populate that variable with any class or
structure that conforms to the PersonProtocol protocol. For this example, let's assume
that we have two types named SwiftProgrammer and FootballPlayer, which conform
to the PersonProtocol protocol:

var myPerson: PersonProtocol

myPerson = SwiftProgrammer(firstName: "Jon", lastName: "Hoffman",
birthDate: bDateProgrammer)
print("\(myPerson.firstName) \(myPerson.lastName)")

myPerson = FootballPlayer(firstName: "Dan", lastName: "Marino", birthDate:
bDatePlayer)
print("\(myPerson.firstName) \(myPerson.lastName)")

In this example, we start off by creating the myPerson variable of the PersonProtocol
protocol type. We then set the variable with an instance of the SwiftProgrammer type and
print out the first and last names. Next, we set the myPerson variable to an instance of the
FootballPlayer type and print out the first and last names again. One thing to note is that
Swift does not care if the instance is a class or structure. It only matters that the type
conforms to the PersonProtocol protocol type. Therefore, this code would be perfectly
valid if the SwiftProgrammer type were a structure and the FootballPlayer type were a
class.

Using Protocols and Protocol Extensions

[148]

As we saw earlier, we can use our PersonProtocol protocol as the type for an array. This
means that we can populate the array with instances of any type that conforms to the
PersonProtocol protocol. Once again, it does not matter if the type is a class or a structure
as long as it conforms to the PersonProtocol protocol. Here is an example of this:

var programmer = SwiftProgrammer(firstName: "Jon", lastName: "Hoffman",
birthDate: bDateProgrammer)

var player = FootballPlayer(firstName: "Dan", lastName: "Marino",
birthDate: bDatePlayer)

var people: [PersonProtocol] = []
people.append(programmer)
people.append(player)

In this example, we create an instance of the SwiftProgrammer type and an instance of the
FootballPlayer type. We then add both instances to the people array.

Polymorphism with protocols
What we were seeing in the previous examples is a form of polymorphism. The word
polymorphism comes from the Greek roots Poly, meaning many, and morphe, meaning
form. In programming languages, polymorphism is a single interface to multiple types
(many forms). In the previous example, the single interface was the PersonProtocol
protocol and the multiple types were any type that conforms to that protocol.

Polymorphism gives us the ability to interact with multiple types in a uniform manner. To
illustrate this, we can extend our previous example where we created an array of the
PersonProtocol types and loop through the array. We can then access each item in the
array using the properties and methods define in the PersonProtocol protocol, regardless
of the actual type. Let's see an example of this:

for person in people {
 print("\(person.firstName) \(person.lastName):
 \(person.profession)")
}

If we ran this example, the output would look similar to this:

 Jon Hoffman: Swift Programmer
 Dan Marino: Football Player

Using Protocols and Protocol Extensions

[149]

We have mentioned a few times in this chapter that, when we define the type of a variable,
constant, collection type, and so on to be a protocol type, we can then use the instance of
any type that conforms to that protocol. This is a very important concept to understand and
is one of the many things that make protocols and protocol extensions so powerful.

When we use a protocol to access instances, as shown in the previous example, we are
limited to using only properties and methods that are defined in the protocol. If we want to
use properties or methods that are specific to the individual types, we would need to cast
the instance to that type.

Type casting with protocols
Type casting is a way to check the type of an instance and/or to treat the instance as a
specified type. In Swift, we use the is keyword to check if an instance is a specific type and
the as keyword to treat the instance as a specific type.

To start with, let's see how we would check the instance type using the is keyword. The
following example shows how this is done:

for person in people {
 if person is SwiftProgrammer {
 print("\(person.firstName) is a Swift Programmer")
}
}

In this example, we use the if conditional statement to check whether each element in the
people array is an instance of the SwiftProgrammer type; if so, we print that the person is
a Swift programmer to the console. While this is a good method to check whether we have
an instance of a specific class or structure, it is not very efficient if we wanted to check for
multiple types. It is a lot more efficient to use the switch statement, as shown in the next
example:

for person in people {
 switch (person) {
 case is SwiftProgrammer:
 print("\(person.firstName) is a Swift Programmer")
 case is FootballPlayer:
 print("\(person.firstName) is a Football Player")
 default:
 print("\(person.firstName) is an unknown type")
 }
}

Using Protocols and Protocol Extensions

[150]

In the previous example, we showed how to use the switch statement to check the instance
type for each element of the array. To do this check, we use the is keyword in each of the
case statements in an attempt to match the instance type.

In Chapter 4, Control Flow and Functions, we saw how to filter conditional statements with
the where statement. We can also use the where statement with the is keyword to filter the
array, as shown in the following example:

for person in people where person is SwiftProgrammer {
 print("\(person.firstName) is a Swift Programmer")

}

Now let's look at how we can cast an instance of a class or structure to a specific type. To do
this, we can use the as keyword. Since the cast can fail if the instance is not of the specified
type, the as keyword comes in two forms: as? and as!. With the as? form, if the casting
fails, it returns a nil; with the as! form, if the casting fails, we get a runtime error.
Therefore, it is recommended we use the as? form unless we are absolutely sure of the
instance type or we perform a check of the instance type prior to doing the cast.

Let's look at how we would use the as? keyword to cast an instance of a class or structure
to a specified type:

for person in people {
 if let p = person as? SwiftProgrammer {
 print("\(person.firstName) is a Swift Programmer")
 }
}

Since the as? keyword returns an optional, we can use optional binding to perform the cast,
as shown in this example. If we are sure of the instance type, we can use the as! keyword.
The following example shows how to use the as! keyword when we filter the results of the
array to only return instances of the SwiftProgrammer type:

for person in people where person is SwiftProgrammer {
 let p = person as! SwiftProgrammer
}

Now that we have covered the basics of protocols let's delve into one of the most exciting
features of Swift: protocol extensions.

Using Protocols and Protocol Extensions

[151]

Protocol extensions
Protocol extensions allow us to extend a protocol to provide method and property
implementations to conforming types. They also allow us to provide common
implementations to all confirming types, eliminating the need to provide an
implementation in each individual type or the need to create a class hierarchy. While
protocol extensions may not seem too exciting, once you see how powerful they really are,
they will transform the way you think about and write code.

Let's begin by looking at how we would use protocol extensions with a very simplistic
example. We will start off by defining a protocol called DogProtocol as follows:

protocol DogProtocol {
 var name: String {get set}
 var color: String {get set}
}

With this protocol, we are saying that any type that conforms to the DogProtocol protocol,
must have the two properties of the String type, with names of: name and color. Now
let's define the three types that conform to this protocol. We will name these types
JackRussel, WhiteLab, and Mutt as follows:

struct JackRussel: DogProtocol {
 var name: String
 var color: String
}

class WhiteLab: DogProtocol {
 var name: String
 var color: String
 init(name: String, color: String) {
 self.name = name
 self.color = color
 }
}

struct Mutt: DogProtocol {
 var name: String
 var color: String
}

Using Protocols and Protocol Extensions

[152]

We purposely created the JackRussel and Mutt types as structures and the WhiteLab
type as a class to show the differences between how the two types are set up. We also
wanted to illustrate how they are treated the same way when it comes to protocols and
protocol extensions. The biggest difference that we can see in this example is that structure
types provide a default initiator, but in the class, we must provide the initiator to populate
the properties.

Now let's say that we want to provide a method named speak to each type that conforms to
the DogProtocol protocol. Prior to protocol extensions, we would start off by adding the
method definition to the protocol, as shown in the following code:

protocol DogProtocol {
 var name: String {get set}
 var color: String {get set}
 func speak() -> String
}

Once the method is defined in the protocol, we would then need to provide an
implementation of the method in every type that conforms to the protocol. Depending on
the number of types that conformed to this protocol, this could take a bit of time to
implement. The following code sample shows how we might implement this method:

struct JackRussel: DogProtocol {
 var name: String
 var color: String
 func speak() -> String {
 return "Woof Woof"
 }
}

class WhiteLab: DogProtocol {
 var name: String
 var color: String
 init(name: String, color: String) {
 self.name = name
 self.color = color
 }
 func speak() -> String {
 return "Woof Woof"
 }

}

struct Mutt: DogProtocol {
 var name: String
 var color: String

Using Protocols and Protocol Extensions

[153]

 func speak() -> String {
 return "Woof Woof"
 }

}

While this method works, it is not very efficient because whenever we update the protocol,
we would need to update all the types that conform to it and we may be duplicating a lot of
code, as shown in this example. Another concern is that if we need to change the default
behavior of the speak() method, we would have to go in each implementation and change
the speak() method. This is where protocol extensions come in.

With protocol extensions, we could take the speak() method definition out of the protocol
itself. We can then define it, with the default behavior, in protocol extension. The following
code shows how we would define the protocol and the protocol extension:

protocol DogProtocol {
 var name: String {get set}
 var color: String {get set}
}

extension DogProtocol {
 func speak() -> String {
 return "Woof Woof"
 }
}

We begin by defining DogProtocol with the original two properties. We then create a
protocol extension that extends DogProtocol and contains the default implementation of
the speak() method. With this code, there is no need to provide an implementation of the
speak() method in each of the types that conform to DogProtocol because they
automatically receive the implementation as part of the protocol. Let's see how this works
by setting our three types that conform to DogProtocol back to their original
implementations; they should receive the speak() method from the protocol extension:

struct JackRussel: DogProtocol {
 var name: String
 var color: String
}
class WhiteLab: DogProtocol {
 var name: String
 var color: String
 init(name: String, color: String) {
 self.name = name
 self.color = color
 }

Using Protocols and Protocol Extensions

[154]

}

struct Mutt: DogProtocol {
 var name: String
 var color: String
}

We can now use each of the types as shown in the following code:

let dash = JackRussel(name: "Dash", color: "Brown and White")
let lily = WhiteLab(name: "Lily", color: "White")
let buddy = Mutt(name: "Buddy", color: "Brown")
let dSpeak = dash.speak() // returns "woof woof"
let lSpeak = lily.speak() // returns "woof woof"
let bSpeak = buddy.speak() // returns "woof woof"

As we can see in this example, by adding the speak() method to the DogProtocol
protocol extension, we are automatically adding that method to all the types that conform
to DogProtocol. The speak() method in the DogProtocol protocol extension can be
considered a default implementation of the speak() method because we are able to
override it in the type implementations. As an example, we could override the speak()
method in the Mutt structure, as shown in the following code:

struct Mutt: DogProtocol {
 var name: String
 var color: String
 func speak() -> String {
 return "I am hungry"
 }
}

When we call the speak() method for an instance of the Mutt type, it will return the string,
I am hungry.

Now that we have seen how to use protocols and protocol extensions, let's look at a more
real-world example. In numerous apps across multiple platforms (iOS, Android, and
Windows), I have had the requirement to validate user input as it is entered. This validation
can be done very easily with regular expressions; however, we do not want various regular
expressions littered throughout our code. It is very easy to solve this problem by creating
different classes or structures that contains the validation code; however, we would have to
organize these classes to make them easy to use and maintain. Prior to protocol extensions
in Swift, I would use protocols to define the validation requirements and then create a
structure that would conform to the protocol for each validation that I needed. Let's take a
look at this pre-protocol extension method.

Using Protocols and Protocol Extensions

[155]

A regular expression is a sequence of characters that define a particular
pattern. This pattern can then be used to search a string to see whether the
string matches the pattern or contains a match for the pattern. Most major
programming languages contain a regular expression parser, and if you
are not familiar with regular expressions, it may be worthwhile to learn
more about them.

The following code shows the TextValidating protocol, which defines the requirements
for any type that we want to use for text validation:

protocol TextValidating {
 var regExMatchingString: String {get}
 var regExFindMatchString: String {get}
 var validationMessage: String {get}
 func validateString(str: String) -> Bool
 func getMatchingString(str: String) -> String?
}

The Swift API Design Guidelines (h t t p s ://s w i f t . o r g /d o c u m e n t a t i o n /a

p i - d e s i g n - g u i d e l i n e s /) state that protocols that describe what
something is should be named like a noun while protocols that describe a
capability should be named with one of these suffixes: able, ible or ing.
With this in mind we will name our text validation protocol
TextValidating.

In this protocol, we define three properties and two methods that any type that conforms to
TextValidating must implement. The three properties are:

regExMatchingString: This is a regular expression string used to verify that
the input string contains only valid characters.
regExFindMatchString: This is a regular expression string used to retrieve a
new string from the input string containing only valid characters. This regular
expression is generally used when we need to validate the input in real time, as
the user enters information, because it will find the longest matching prefix of the
input string.
validationMessage: This is the error message to display if the input string
contains non-valid characters.

The two methods for this protocol are as follows:

validateString: This method will return true if the input string contains only
valid characters. The regExMatchingString property will be used in this
method to perform the match.

https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/

Using Protocols and Protocol Extensions

[156]

getMatchingString: This method will return a new string that contains only
valid characters. This method is generally used when we need to validate the
input in real time as the user enters information because it will find the longest
matching prefix of the input string. We will use the regExFindMatchString
property in this method to retrieve the new string.

Now let's see how we would create a structure that conforms to this protocol. The following
structure would be used to verify that the input string contains only alpha characters:

class AlphaValidation1: TextValidating {
 static let sharedInstance = AlphaValidation1()
 private init(){}
 let regExFindMatchString = "^[a-zA-Z]{0,10}"
 let validationMessage = "Can only contain Alpha characters"
 var regExMatchingString: String { get {
 return regExFindMatchString + "$"
 }
 }
 func validateString(str: String) -> Bool {
 if let _ = str.range(of:regExMatchingString, options:
 .regularExpression) {
 return true
 } else {
 return false
 }
 }
 func getMatchingString(str: String) -> String? {
 if let newMatch = str.range(of:regExFindMatchString, options:
 .regularExpression) {
 return str.substring(with:newMatch)
 } else {
 return nil
 }
 }
}

In this implementation, the regExFindMatchString and validationMessage properties
are stored properties, and the regExMatchingString property is a computed property.
We also implement the validateString() and getMatchingString() methods within
the structure.

Using Protocols and Protocol Extensions

[157]

Normally, we would have several different types that conform to
TextValidating protocol where each one would validate a different type of input. As we
can see from the AlphaValidation1 structure, there is a bit of code involved with each
validation type. A lot of the code would also be duplicated in each type. The code for both
methods (validateString() and getMatchingString()) and the
regExMatchingString property would be duplicated in every validation class. This is not
ideal, but if we wanted to avoid creating a class hierarchy with a super class that contains
the duplicate code (I personally prefer using value types over classes), we would have no
other choice. Now let's see how we would implement this using protocol extensions.

With protocol extensions, we need to think about the code a little differently. The big
difference is, we neither need, nor want, to define everything in the protocol. With standard
protocols or when we use a class hierarchy, all the methods and properties that you want to
access using the generic superclass or protocol interface would have to be defined within
the superclass or protocol. With protocol extensions, it is preferable for us not to define a
property or method in the protocol if we are going to be defining it within the protocol
extension. Therefore, when we rewrite our text validation types with protocol extensions,
TextValidating would be greatly simplified and would look similar to this:

protocol TextValidating {
 var regExFindMatchString: String {get}
 var validationMessage: String {get}
}

In the original TextValidating protocol, we defined three properties and two methods.
As we can see in this new protocol, we are only defining two properties. Now that we have
our TextValidating protocol defined, let's create the protocol extension for it:

extension TextValidating {
 var regExMatchingString: String { get {
 return regExFindMatchString + "$"
 }
 }
 func validateString(str: String) -> Bool {
 if let _ = str.range(of:regExMatchingString, options:
 .regularExpression) {
 return true
 } else {
 return false
 }
 }
 func getMatchingString(str: String) -> String? {
 if let newMatch = str.range(of:regExFindMatchString, options:
 .regularExpression) {
 return str.substring(with: newMatch)

Using Protocols and Protocol Extensions

[158]

 } else {
 return nil
 }
 }
}

In the TextValidating protocol extension, we define the two methods and the third
property that were defined in the original TextValidating, but were not defined in the
new one. Now that we have created our protocol and protocol extension, we are able to
define our text validation types. In the following code, we define three structures that we
will use to validate text when a user types it in:

struct AlphaValidation: TextValidating {
 static let sharedInstance = AlphaValidation()
 private init(){}
 let regExFindMatchString = "^[a-zA-Z]{0,10}"
 let validationMessage = "Can only contain Alpha characters"
}

struct AlphaNumericValidation: TextValidating {
 static let sharedInstance = AlphaNumericValidation()
 private init(){}
 let regExFindMatchString = "^[a-zA-Z0-9]{0,15}"
 let validationMessage = "Can only contain Alpha Numeric characters"
}

struct DisplayNameValidation: TextValidating {
 static let sharedInstance = DisplayNameValidation()
 private init(){}
 let regExFindMatchString = "^[\\s?[a-zA-Z0-9\\-_\\s]]{0,15}"
 let validationMessage = "Display Name can contain only contain
 Alphanumeric Characters"
}

In each text validation structure, we create a static constant and a private initiator so that we
can use the structure as a singleton. For more information on the singleton pattern, please
see The Singleton design pattern section of Chapter 17, Adopting Design Patterns in Swift.

After we define the singleton pattern, all we do in each type is set the values for the
regExFindMatchString and validationMessage properties. Now, we have virtually no
duplicate code. The only code that is duplicated is the code for the singleton pattern and
that is not something we would want to put in the protocol extension because we would not
want to force that pattern on all the conforming types.

Using Protocols and Protocol Extensions

[159]

To use the text validation structures, we would use the validateString() method to see
if a string instance matched the regular expression and the getMatchingString() method
to return a new string with the invalid characters removed from the original string instance.
The following example shows how we would use these methods:

var myString1 = "abcxyz"
var myString2 = "abc123"

let validation = AlphaValidation.sharedInstance

let valid1 = validation.validateString(str: myString1)
let newString1 = validation.getMatchingString(str: myString1)

let valid2 = validation.validateString(str: myString2)
let newString2 = validation.getMatchingString(str: myString2)

In this example the valid2 constant would be true because the value of myString1
matches the regular expression defined in the AlphaValidation type while the valid2
constant would be false because the value of myString2 does not match. The newString1
constant would contain the same value as the myString1 constant because the original
string matched the regular expression while newString2 would contain abc because the
remainder of the characters do not match the regular expression.

Summary
In this chapter, we saw that protocols are treated as full-fledged types by Swift. We also saw
how polymorphism can be implemented in Swift with protocols. We concluded this chapter
with an in-depth look at protocol extensions and how we would use them in Swift.

Protocols and protocol extensions are the backbone of Apple's new protocol-oriented
programming paradigm. This new model for programming has the potential to change the
way we write and think about code. While we did not specifically cover protocol-oriented
programming in this chapter, understanding the topics in this chapter gives us the solid
understanding of protocols and protocol extensions needed to learn about this new
programming model.

7
Protocol-Oriented Design

When Apple announced Swift 2 at the World Wide Developers Conference (WWDC) in
2016, they also declared that Swift was the world's first Protocol-Oriented Programming
(POP) language. By its name we might assume that POP is all about the protocol; however
that would be a wrong assumption. POP is about so much more than just the protocol; it is
actually a new way of not only writing applications but also thinking about programming.

In this chapter we will learn:

The difference between OOP and POP design
What is protocol-oriented design?
What is protocol composition?
What is protocol inheritance?

Within days after Dave Abrahams did his presentation on POP at the WWDC 2016, there
were numerous tutorials on the Internet about POP that took a very object-oriented
approach to it. By this statement I mean the approach taken by these tutorials focused on
replacing the superclass with protocols and protocol extensions. While protocols and
protocol extensions are arguably two of the more important concepts of POP, these tutorials
seem to be missing some very important concepts.

In this chapter, we will be comparing a protocol-oriented design with an object-oriented
design to highlight some of the conceptual differences between the two. We will see how
we can use protocols and protocol extensions to replace superclasses but we will also see
how we can use POP to create a cleaner and easier-to-maintain code base. To do this we will
look at how we would define animal types for a video game in both an object-oriented and
also a protocol-oriented way, to appreciate the advantages of both. Let's start off by defining
the requirements for our animals.

Protocol-Oriented Design

[161]

Requirements
When we develop applications we usually have a set of requirements that we need to
develop towards. With that in mind, let's define the requirements for the animal types that
we will be creating in this chapter:

We will have three categories of animal: sea, land, and air.
Animals may be members of multiple categories. For example an alligator can be
a member of both the land and sea categories.
Animals may be able to attack and/or move when they are on a tile that matches
the categories they are in.
Animals will start off with a certain number of hit points and if those hit points
reach 0 or less then they will die.
For our example here we will define two animals (Lion and Alligator) but we
know that the number of animal types will grow as we develop the game.

We will start off by looking at how we would design our animal types with an object-
oriented approach.

Object-oriented design
Before we start writing code, let's create a very basic class diagram that shows how we
would design the Animal class hierarchy. I usually start off by doing a very basic diagram
that simply shows the classes themselves without much detail. This helps me picture the
class hierarchy in my mind. The following diagram shows the class hierarchy for our object-
oriented design:

https://1.bp.blogspot.com/-uhsuYNHKjPU/VsEIOMkhfwI/AAAAAAAADcY/AKX0y1SSN8E/s1600/oopDiagram.png

Protocol-Oriented Design

[162]

This diagram shows that we have one superclass named Animal and two subclasses named
Alligator and Lion. We may think that, with the three categories (land, air, and sea), we
would want to create a larger class hierarchy where the middle layer would contain the
classes for the land, air, and sea animals. This would allow us to separate the code for each
category; however it is not possible with our requirements. The reason this is not possible is
that any of the animal types can be members of multiple categories and with a class
hierarchy each class can have one and only one superclass. This means that our Animal
superclass will need to contain the code required for each of the three categories. Lets take a
look at the code for the Animal superclass.

We will start the Animal superclass off by defining ten properties. These properties will
define what type of animal it is and what type of attacks/movement it can do. We also
define a property that will keep track of the hit points for the animal. The animal dies when
its hit points reach zero.

We defined these as private variables because we need to set them in the subclass; however
we do not want external entities to change them. The preference is for these to be constants;
however a subclass can not set/change the value of a constant defined in a superclass. In
order for this to work the subclass needs to be defined in the same physical file as the
superclass. You can refer to Apple's page on access controls for more details at h t t p s ://d e v
e l o p e r . a p p l e . c o m /l i b r a r y /i o s /d o c u m e n t a t i o n /S w i f t /C o n c e p t u a l /S w i f t _ P r o g r a m m i n

g _ L a n g u a g e /A c c e s s C o n t r o l . h t m l .

When we are writing applications for the iOS or Mac OS platforms using
Xcode, managing access controls is pretty easy because the Xcode IDE can
tell us what properties/methods we have access to. This becomes
significantly harder to do when we are developing on the Linux platform
using a text editor.

class Animal
{
 private var landAnimal = false
 private var landAttack = false
 private var landMovement = false

 private var seaAnimal = false
 private var seaAttack = false
 private var seaMovement = false

 private var airAnimal = false
 private var airAttack = false
 private var airMovement = false

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html

Protocol-Oriented Design

[163]

 private var hitPoints = 0
}

Next, we will define an initializer that will set the properties. We will set all of the
properties to false by default and the hit points to 0. It will be up to the subclasses to set
the appropriate properties that apply for that particular type:

init()
{
 landAnimal = false
 landAttack = false
 landMovement = false
 airAnimal = false
 airAttack = false
 airMovement = false
 seaAnimal = false
 seaAttack = false
 seaMovement = false
 hitPoints = 0
}

Since our properties are private we need to create some getter methods so we can retrieve
the values of the properties. We will also create a couple of additional methods that will
verify whether the animal is alive and also a method that will deduct hit points when the
animal takes a hit:

func isLandAnimal() -> Bool { return landAnimal }
func canLandAttack() -> Bool { return landAttack }
func canLandMove() -> Bool { return landMovement }
func isSeaAnimal() -> Bool { return seaAnimal }
func canSeaAttack() -> Bool { return seaAttack }
func canSeaMove() -> Bool { return seaMovement }
func isAirAnimal() -> Bool { return airAnimal }
func canAirAttack() -> Bool { return airAttack }
func canAirMove() -> Bool { return airMovement }

func doLandAttack() {}
func doLandMovement() {}
func doSeaAttack() {}
func doSeaMovement() {}
func doAirAttack() {}
func doAirMovement() {}

func takeHit(amount: Int) { hitPoints -= amount }
func hitPointsRemaining() -> Int { return hitPoints }
func isAlive() -> Bool { return hitPoints > 0 ? true : false }
}

Protocol-Oriented Design

[164]

One big disadvantage to this design, as we noted earlier, is that all of the subclasses need to
be in the same physical file as the Animal superclass. Given how large the classes can be,
we may do not want all of these types in the same file. To avoid this we could set the
properties to internal or public but that would not prevent the values from being changed
by other instances of other types. This is a major drawback in an object-oriented design.

We can now create the Alligator and Lion classes as subclasses of the Animal class:

class Lion: Animal {

 override init() {
 super.init()
 landAnimal = true
 landAttack = true
 landMovement = true
 hitPoints = 20
 }

 override func doLandAttack() { print("Lion Attack") }
 override func doLandMovement() { print("Lion Move") }
}

class Alligator: Animal {

 override init() {
 super.init()
 landAnimal = true
 landAttack = true
 landMovement = true

 seaAnimal = true
 seaAttack = true
 seaMovement = true
 hitPoints = 35
 }

 override func doLandAttack() { print("Alligator Land Attack") }
 override func doLandMovement() { print("Alligator Land Move") }
 override func doSeaAttack() { print("Alligator Sea Attack") }
 override func doSeaMovement() { print("Alligator Sea Move") }

}

Protocol-Oriented Design

[165]

As we can see, these classes override the functionality needed for each animal. The Lion
class contains the functionality for a land animal and the Alligator class contains the
functionality for both a land and sea animal. Since both classes have the same Animal
superclass we can use polymorphism to access them through the interface provided by the
Animal superclass:

var animals = [Animal]()

var an1 = Alligator()
var an2 = Alligator()
var an3 = Lion()

animals.append(an1)
animals.append(an2)
animals.append(an3)

for (index, animal) in animals.enumerated() {
 if animal.isAirAnimal() {
 print("Animal at \(index) is Air")
}
if animal.isLandAnimal() {
 print("Animal at \(index) is Land")
}
if animal.isSeaAnimal() {
 print("Animal at \(index) is Sea")
}
}

The way we designed the animal types here would definitely work but there are several
drawbacks to this design. The first drawback is the large monolithic Animal superclass.
Those familiar with designing characters for video games will probably realize how much
functionality is actually missing from the Animal superclass and its subclasses. This is on
purpose so we can focus on the design and not all of the functionality. For those who are
not familiar with designing characters for video games, trust me when I say that this class
will get a lot bigger when we add all of the functionality needed.

Another drawback is not being able to define constants in the superclass that the subclasses
can set. We could define various initiators for the superclass that would correctly set the
constants for the different animal categories; however these initiators could become pretty
complex and hard to maintain as we add additional animals. The builder pattern could help
us with the initiation but, as we are about to see, a protocol-oriented design would be even
better.

Protocol-Oriented Design

[166]

One final drawback that I am going to point out is the use of flags (landAnimal,
seaAnimal and airAnimal properties) to define the type of animal. If we accidently set
these flags wrong then the animal will not behave correctly. As an example, if we set the
seaAnimal flag rather than the landAnimal flag in the Lion class then the lion would not
be able to move or attack on land. Trust me, it is very easy, even for the most experienced
developers, to set flags wrongly.

Now let's look at how we would define this same functionality in a protocol-oriented way.

Protocol-oriented design
Just like with the object-oriented design, we will start off with a type diagram that shows
the types needed and the relationships between them. The following diagram shows our
protocol-oriented design:

As we can see, our POP design is quite a bit different from our OOP design. In this design
we use three techniques that make POP significantly different from OOP. These techniques
are protocol inheritance, protocol composition, and protocol extensions. It is important to
understand these concepts so, before we go into our design, let's look at what protocol
inheritance and protocol composition are. We looked at protocol extensions in the last
chapter.

https://3.bp.blogspot.com/-9H0ftsfYDiQ/VsEIONxjzdI/AAAAAAAADcg/2U6U3nBURZ8/s1600/popDiagram.png

Protocol-Oriented Design

[167]

Protocol inheritance
Protocol inheritance is where one protocol can inherit the requirements from one or more
other protocols. This is similar to class inheritance in OOP but instead of inheriting
functionality we are inheriting requirements. We can also inherit requirements from
multiple protocols whereas a class, in Swift, can have one (and only one) superclass. Let's
look at a quick example of protocol inheritance. Let's start off by defining protocols named
Name, Age, Fur, and Hair:

protocol Name {
 var firstName: String {get set}
 var lastName: String {get set}
}

protocol Age {
 var age: Double {get set}
}

protocol Fur {
 var furColor: String {get set}
}

protocol Hair {
 var hairColoe: String {get set}
}

Each of the four protocols has different requirements. There is one thing that I would like to
point out. If you find yourself creating protocols with single requirements as shown in this
example you probably want to reconsider your overall design. Protocols should not be this
granular because we end up with too many protocols and they become hard to manage.

Now let's see how we can use these protocols and protocol inheritance to create other
protocols. We will define two more protocols named Person and Dog:

protocol Person: Name, Age, Hair {
 var height: Double {get set}
}

protocol Dog: Name, Age, Fur {
 var breed: String {get set}
}

Protocol-Oriented Design

[168]

Any type that conforms to the Person protocol will need to fulfill the requirements of the
Name, Age, and Hair protocols as well as the requirements defined in the Person protocol
itself. Any type that conforms to the Dog protocol will need to fulfill the requirements of the
Name, Age, and Fur protocols as well as the requirements defined in the Dog protocol itself.

Protocol inheritance is extremely powerful because we are able to define several smaller
protocols and mix/match them to create larger protocols. Definitely be careful not to create
protocols that are too granular.

Protocol composition
Protocol composition allows types to conform to more than one protocol. This is one of the
many advantages that POP has over OOP. With OOP a class can have only one superclass.
This can lead to very large monolithic superclasses as we saw in the Object-oriented design
section of this chapter. With POP we are encouraged to create multiple smaller protocols
with very specific requirements. Let's look at how protocol composition works.

To our example from the Protocol inheritance section, let's add another protocol named
Occupation:

protocol Occupation {
 var occupationName: String {get set}
 var yearlySalary: Double {get set}
 var experienceYears: Double {get set}
}

Now let's create a new type name Programmer that will conform to both the Person and
Occupation protocols:

struct Programmer: Person, Occupation {
 var firstName: String
 var lastName: String
 var age: Double
 var hairColoe: String
 var height: Double
 var occupationName: String
 var yearlySalary: Double
 var experienceYears: Double
}

Protocol-Oriented Design

[169]

In this example the Programmer structure conforms to all of the requirements from the
Person and Occupation protocols. Keep in mind that the Person protocol is a composite
of the requirements from the Name, Age, Hair, and Person protocols, therefore the
Programmer type actually conforms to all of those protocols plus the Occupation protocol.

Once again, I want to warn you not to make your protocols too granular. Protocol
inheritance and composition are really powerful features but can also cause problems if
used wrongly.

Animal – protocol-oriented design
Now let's begin rewriting the animal types in a protocol-oriented way. We will start off by
defining our Animal protocol:

protocol Animal {
 var hitPoints: Int {get set}
}

In the Animal protocol, the only item that we are defining is the hitPoints property. This
protocol would also contain any additional items that are common to all animals. To be
consistent with our OOP design, we only need to add the hitPoints property to this
protocol.

Next, we need to add an Animal protocol extension that will contain the functionality that
is common for all types that conform to the protocol. Our Animal protocol extension would
contain the following code:

extension Animal {
 mutating func takeHit(amount: Int) { hitPoints -= amount }
 func hitPointsRemaining() -> Int { return hitPoints }
 func isAlive() -> Bool { return hitPoints > 0 ? true : false }
}

The Animal protocol extension contains the same takeHit(), hitPointsRemaining(),
and isAlive() methods that we saw in the Animals superclass from the OOP example.
Any type that conforms to the Animal protocol will automatically receive these three
methods.

Now let's define our LandAnimal, SeaAnimal, and AirAnimal protocols. These protocols
will define the requirements for land, sea, and air animals respectively:

protocol LandAnimal: Animal {
 var landAttack: Bool {get}

Protocol-Oriented Design

[170]

 var landMovement: Bool {get}
 func doLandAttack()
 func doLandMovement()
}

protocol SeaAnimal: Animal {
 var seaAttack: Bool {get}
 var seaMovement: Bool {get}
 func doSeaAttack()
 func doSeaMovement()
}

protocol AirAnimal: Animal {
 var airAttack: Bool {get}
 var airMovement: Bool {get}
 func doAirAttack()
 func doAirMovement()
}

Unlike the Animal superclass in the OOP example, these three protocols only contain the
functionality needed for their particular type of animal. Each of these protocols only
contains four lines of code while the Animal superclass, from the OOP example, contains
significantly more. This makes our protocol design much easier to read and manage. The
protocol design is also much safer because the functionality for the various animal types is
isolated in its own protocol rather than being embedded in a giant superclass. We also
avoid the use of flags to define the animal category and instead define the category of the
animal by what protocols they are conforming too.

Now let's look at how we would create our Lion and Alligator types using the protocol-
oriented design:

struct Lion: LandAnimal {
 var hitPoints = 20
 let landAttack = true
 let landMovement = true

 func doLandAttack() { print("Lion Attack") }
 func doLandMovement() { print("Lion Move") }
}

struct Alligator: LandAnimal, SeaAnimal {
 var hitPoints = 35
 let landAttack = true
 let landMovement = true
 let seaAttack = true
 let seaMovement = true
 func doLandAttack() { print("Alligator Land Attack") }

Protocol-Oriented Design

[171]

 func doLandMovement() { print("Alligator Land Move") }
 func doSeaAttack() { print("Alligator Sea Attack") }
 func doSeaMovement() { print("Alligator Sea Move") }
}

Notice that we specify that the Lion type conforms to the LandAnimal protocol while the
Alligator type conforms to both the LandAnimal and SeaAnimal protocols. As we saw
earlier, having a single type that conforms to multiple protocols is called protocol
composition and is what allows us to use smaller protocols rather than one giant
monolithic superclass as we did in the OOP example.

Both the Lion and Alligator types originate from the Animal protocol; therefore we can
still use polymorphism as we did in the OOP example where we use the Animal type to
store instances of the Lion and Alligator types. Let's see how this works:

var animals = [Animal]()

var an1 = Alligator()
var an2 = Alligator()
var an3 = Lion()

animals.append(an1)
animals.append(an2)
animals.append(an3)

for (index, animal) in animals.enumerated() {
 if let animal = animal as? AirAnimal {
 print("Animal at \(index) is Air")
 }
 if let animal = animal as? LandAnimal {
 print("Animal at \(index) is Land")
 }
 if let animal = animal as? SeaAnimal {
 print("Animal at \(index) is Sea")
 }
}

In this example, we create an array that will contain animal types named animals. We then
create two instances of the Alligator type and one instance of the Lion type and add all
three instances to the animals array. Finally, we use a for...in loop to loop through the
array and print out the animal type based on the protocol that the instance conform too.

Protocol-Oriented Design

[172]

Using the where statement with protocols
When we use a protocol-oriented design, as we just saw, we are able to use the where
statement to filter instances of our types. For example, if we only want to get the instances
that conform to the SeaAnimal protocol we can create a for loop such as this:

for (index, animal) in animals.enumerated() where animal is SeaAnimal {
 print("Only Sea Animal: \(index)")
}

This will retrieve only those animals that conform to the SeaAnimal protocol. This is a lot
safer than just checking the flags because, as we pointed out earlier, it is really easy to set
the wrong flag in our code, which would introduce all sorts of weird behavior.

Summary
When we read through this chapter and see some of the advantages that POP has over
OOP, we might concluded that POP is clearly superior to OOP. However, this assumption
would not be entirely correct.

OOP has been around since the 1970s and is a tried and tested programming paradigm.
POP is the new kid on the block and was designed to correct some of the issues with OOP. I
have personally used the POP paradigm in a couple of projects and I am very excited about
its possibilities.

OOP and POP have similar philosophies, such as creating custom types that model real-
world objects and polymorphism to use a single interface to interact with multiple types.
The difference lies in how these philosophies are implemented.

To me, the code base in a project that uses POP is much safer, easier to read, and easier to
maintain as compared to a project that uses OOP. This does not mean that I am going to
stop using OOP all together. I can still see plenty of need for class hierarchies and
inheritance.

Remember, when we are designing our application we should always use the right tool for
the job. We would not want to use a chain saw to cut a piece of 2 x 4 lumber, but we also
would not want to use a skilsaw to cut down a tree. Therefore, the winner is the
programmer who can choose from different programming paradigms rather than being
limited to one.

If you would like to read more about POP, you can read my book Swift 3 Protocol-Oriented
Programming – Second Edition.

8
Writing Safer Code with Error

Handling
When I first started writing applications with Objective-C, one of the most noticeable
deficiencies was the lack of exception handling. Most modern programming languages,
such as Java and C#, use try...catch blocks or something similar to handle exceptions.
While Objective-C did have the try...catch block, it wasn't used within the Cocoa
frameworks themselves, and it never felt like a true part of the language. I have significant
experience with C, so I was able to understand how Apple frameworks received and
responded to errors, and, to be honest, in some cases, I actually preferred this method, even
though I had grown accustomed to exception handling with Java and C#. When Swift was
first introduced, I was hoping that Apple would put true error handling into the language
so we would have the option of using it; however, it was not in the initial release of Swift.
When Swift 2 was released, Apple added additional error handling to Swift. While this
error handling may look similar to exception handling in Java and C#, there are some very
significant differences.

We will cover the following topics in this chapter:

How we handled errors before Swift 2
How to use the do...catch block in Swift
How to represent errors

Writing Safer Code with Error Handling

[174]

Error handling prior to Swift 2.0
Error handling is the process of responding to, and recovering from, error conditions
within our applications. Prior to Swift 2.0, error reporting followed the same pattern as
Objective-C; however, with Swift, we have the added benefit of using optional return
values, where returning a nil would indicate an error within the function.

In the simplest form of error handling, the return value from the function indicates whether
it was successful or not. This return value could be something as simple as a Boolean
true/false value or something more complex, such as an enumeration, whose values would
indicate what actually went wrong if the function was unsuccessful. If we needed to report
additional information about the error that occurred, we could add an NSError out
parameter of the NSErrorPointer type, but this wasn't the easiest of approaches, and these
errors tended to be ignored by developers. The following example illustrates how errors
were generally handled prior to Swift 2.0. (Note: this code does not work in Swift 3.0):

var str = "Hello World"
var error: NSError

var results = str.writeToFile(path, atomically: true, encoding:
NSUTF8StringEncoding, error: &error)

if results {
 // successful code here
} else {
 println("Error writing filer: \(error)")
}

While handling errors in this manner works well, and can be modified to suit most needs, it
definitely is not the perfect solution. There are a couple of issues with this solution, the
biggest being that it is easy for developers to ignore both the error value that is returned
and the error itself. While most experienced developers will be very careful to check for
errors, sometimes it is hard for novice developers to understand what and when to check,
especially if the function does not contain an NSError parameter.

In addition to using NSError, we could also raise and catch exceptions using the
NSException class; however, very few developers actually use this method. Even within
the Cocoa and Cocoa Touch frameworks, this method of exception handling was rarely
used.

While using the NSError class and returning values to handle errors does work well, there
were many people, including myself, who were disappointed that Apple did not include
additional error handling when Swift was originally released. Native error handling was
finally introduced in Swift starting with Swift 2.0.

Writing Safer Code with Error Handling

[175]

Native error handling
Languages such as Java and C# generally refer to the error handling process as exception
handling; within the Swift documentation, Apple refers to this process as error handling.
While, externally, Java and C# exception handling may look very similar to Swift's error
handling, there are some significant differences that those familiar with exception handling
in the other languages will notice throughout this chapter.

Representing errors
Before we can really understand how error handling works in Swift, we must first see how
we would represent an error. In Swift, errors are represented by values of types that
conform to the Error protocol. Swift's enumerations are very well suited to modeling error
conditions because, generally, we have a finite number of error conditions to represent.

Let's look at how we would use an enumeration to represent an error. For this, we will
define a fictitious error named MyError with three error conditions: Minor, Bad, and
Terrible:

enum MyError: Error {
 case Minor
 case Bad
 case Terrible
}

In this example, we define that the MyError enumeration conforms to the Error protocol.
We then define the three error conditions: Minor, Bad, and Terrible.We can also use
associated values with our error conditions to allow us to add additional details about the
error condition. Let's say that we wanted to add a description to the Terrible error
condition. We would do it like this:

enum MyError: Error {
 case Minor
 case Bad
 case Terrible (description: String)
}

Those who are familiar with exception handling in Java and C# can see that representing
errors in Swift is a lot cleaner and easier because we do not need to create a lot of boilerplate
code or a full class. With Swift, we simply define an enumeration with our error conditions.
Another advantage that we have is that it is very easy to define multiple error conditions
and group them together so all the related error conditions are of one type.

Writing Safer Code with Error Handling

[176]

Now let's see how we would model errors in Swift. For this example, let's look at how we
would assign numbers to players in a baseball team. In a baseball team, every new player
who is called up is assigned a unique number for that team. This number must also be
within a certain range. In this case, we would have three error conditions: number is too
large, number is too small, or number is not unique. The following example shows how we
might represent these error conditions:

enum PlayerNumberError: Error {
 case NumberTooHigh(description: String)
 case NumberTooLow(description: String)
 case NumberAlreadyAssigned
}

With the PlayerNumberError type, we define three very specific error conditions that tell
us exactly what is wrong. These error conditions are also grouped together in one type,
since they are all related to assigning players numbers.

This method of defining errors allows us to define very specific errors that let our code
know exactly what went wrong if an error condition occurs, and, as we see in our example,
it also lets us group our errors so that all of the related errors can be defined in the same
type.

Now that we know how to represent errors, let's look at how we would throw errors.

Throwing errors
When an error occurs in a function, the code that called the function must be made aware of
it, this is called throwing the error. When a function throws an error, it assumes that the
code that called the function, or some code further up the chain, will catch, and recover
appropriately from, the error.

To throw an error from a function, we use the throws keyword. This keyword lets the code
that called it know that an error may be thrown from the function. Unlike exception
handling in other languages, we do not list the specific error types that may be thrown.

Since we do not list the specific error types that may be thrown from a
function within the function's definition, it would be good practice to list
them in the documentation and comments for the function so that other
developers who use our function know what error types to catch.

Soon, we will look at how we would throw errors but first, let's add a fourth error to the
PlayerNumberError type that we defined earlier. This error condition is thrown if we are
trying to retrieve a player by his or her number, but no player has assigned that number.

Writing Safer Code with Error Handling

[177]

The new PlayerNumberError type will now look similar to this:

enum PlayerNumberError: Error {
 case NumberTooHigh(description: String)
 case NumberTooLow(description: String)
 case NumberAlreadyAssigned
 case NumberDoesNotExist
}

To demonstrate how to throw errors, we will begin by creating a BaseballTeam structure
that will contain a list of players for a given team. These players will be stored in a
dictionary object named players. We will use the player's numbers as the key, since we
know that each player must have a unique number. The BaseballPlayer type, which will
be used to represent a single player, will be a typealias for a tuple type, and is defined
like this:

typealias BaseballPlayer = (firstName: String, lastName: String, number:
Int)

In this BaseballTeam structure, we will have two methods. The first one will be named
addPlayer(). This method will have one parameter of the BaseballPlayer type and will
attempt to add the player to the team. This method can also throw one of three error
conditions: NumberTooHigh, NumberTooLow, or NumberAlreadyExists. Here is how we
would write this method:

mutating func addPlayer(player: BaseballPlayer) throws {

 guard player.number < maxNumber else {
 throw PlayerNumberError.NumberTooHigh(description: "Max
 number is \(maxNumber)")
 }

 guard player.number > minNumber else {
 throw PlayerNumberError.NumberTooLow(description: "Min
 number is \(minNumber)")
 }

 guard players[player.number] == nil else {
 throw PlayerNumberError.NumberAlreadyAssigned
 }
 players[player.number] = player
 }

Writing Safer Code with Error Handling

[178]

In the method's definition, we see that the throws keyword is added. The throws keyword
lets any code that calls this method know that it may throw an error, and that the errors
must be handled. We then use the three guard statements. These guard statements are
used to verify that the number is not too large, not too small, and is unique in the players
dictionary. If any of the conditions are not met, we throw the appropriate error using the
throw keyword. If we make it through all three checks, the player is added to the players
dictionary.

The second method that we will be adding to the BaseballTeam struct is the
getPlayerByNumber() method. This method will attempt to retrieve the baseball player
that is assigned a given number. If no player is assigned that number, this method will
throw a PlayerNumberError.NumberDoesNotExist error. The getPlayerByNumber()
method will look similar to this:

func getPlayerByNumber(number: Int) throws -> BaseballPlayer {
 if let player = players[number] {
 return player
 }
else {
 throw PlayerNumberError.NumberDoesNotExist
 }
}

In this method definition, we see that it can throw an error because we use the throws
keyword within the definition. When we use the throws keyword, it must be placed before
the return type in the method definition.

Within the method, we attempt to retrieve the baseball player with the number that is
passed into the method. If we are able to retrieve the player, we return it; otherwise, we
throw the PlayerNumberError.NumberDoesNotExist error. Notice that if we throw an
error from a method that has a return type, we do not need to return a value.

Now let's see how we would catch an error with Swift.

Catching errors
When an error is thrown from a function, we can catch it in the code that called the
function; this is done using the do...catch block. The do...catch block takes the
following syntax:

do {
 try [Some function that throws]
 [Any additional code]

Writing Safer Code with Error Handling

[179]

} catch [pattern] {
 [Code if function threw error]
}

If an error is thrown, it is propagated out until it is handled by a catch clause. The catch
clause consists of the catch keyword, followed by a pattern to match the error against. If
the error matches the pattern, the code within the catch block is executed. If, for some
reason, the error is never caught, we will receive a runtime error and our application will
probably crash.

Let's look at how we would use the do...catch block by calling both the
getPlayerByNumber() and addPlayer() methods of the BaseballTeam structure. Let's
look at the getPlayerByNumber() method first, since it only throws one error condition:

do {
 let player = try myTeam.getPlayerByNumber(number: 34)
 print("Player is \(player.firstName) \(player.lastName)")
} catch PlayerNumberError.NumberDoesNotExist {
 print("No player has that number")
}

Within this example, the do...catch block calls the getPlayerByNumber() method of
the BaseballTeam structure. This method will throw the
PlayerNumberError.NumberDoesNotExist error condition if no player on the team has
been assigned this number; therefore, we attempt to match that error in our catch
statement.

Any time an error is thrown within a do...catch block, the remainder of the code within
the block is skipped and the code within the catch block, which matches the error, is
executed. Therefore, in our example, if the PlayerNumberError.NumberDoesNotExist
error is thrown by the getPlayerByNumber() method, then the print() function is never
reached.

We do not have to include a pattern after the catch statement. If a pattern is not included
after the catch statement, or if we put in an underscore, the catch statement will match all
error conditions. For example, either one of the following two catch statements will catch
all errors:

do {
 // our statements
} catch {
 // our error conditions
}

Writing Safer Code with Error Handling

[180]

do {
 // our statements
} catch _ {
 // our error conditions
}

If we want to capture the error, we can use the let keyword, as shown in the following
example:

do {
 // our statements
} catch let error {
 print("Error: \(error)")
}

Now let's look at how we could use the catch statement, similar to a switch statement, to
catch different error conditions. For this, we will call the addPlayer() method of our
BaseballTeam struct:

do {
 try myTeam.addPlayer(player:("David", "Ortiz", 34))
} catch PlayerNumberError.NumberTooHigh(let description) {
 print("Error: \(description)")
} catch PlayerNumberError.NumberTooLow(let description) {
 print("Error: \(description)")
} catch PlayerNumberError.NumberAlreadyAssigned {
 print("Error: Number already assigned")
}

In this example, we have three catch statements. Each catch statement has a different
pattern to match; therefore, they will each match a different error condition. If we recall, the
PlayerNumberError.NumberTooHigh and PlayerNumberError.NumberTooLow error
conditions have associated values. To retrieve the associated value, we use the let
statement within the parentheses, as shown in the example.

It is always good practice to make your last catch statement an empty catch so that it will
catch any error that did not match any of the patterns in the previous catch statements.
Therefore, the previous example should be rewritten to look like this:

do {
 try myTeam.addPlayer(player:("David", "Ortiz", 34))
} catch PlayerNumberError.NumberTooHigh(let description) {
 print("Error: \(description)")
} catch PlayerNumberError.NumberTooLow(let description) {
 print("Error: \(description)")
} catch PlayerNumberError.NumberAlreadyAssigned {

Writing Safer Code with Error Handling

[181]

 print("Error: Number already assigned")
} catch {
 print("Error: Unknown Error")
}

We can also let the errors propagate out rather than immediately catching them. To do this,
we just need to add the throws keyword to the function definition. For instance, in the
following example, rather than catching the error, we could let it propagate out to the code
that called the function like this:

func myFunc() throws {
 try myTeam.addPlayer(player:("David", "Ortiz", 34))
}

If we are certain that an error will not be thrown, we can call the function using a forced-try
expression, which is written as try!. The forced-try expression disables error propagation
and wraps the function call in a runtime assertion that no error will be thrown from this
call. If an error is thrown, we will get a runtime error, so be very careful when using this
expression.

When I am working with exceptions in languages such as Java and C#, I see a lot of empty
catch blocks. This is where we need to catch the exception because one might be thrown;
however, we do not want to do anything with it. In Swift, the code would look something
like this:

do {
 let player = try myTeam.getPlayerByNumber(number: 34)
 print("Player is \(player.firstName) \(player.lastName)")
} catch {}

Seeing code like this is one of the things that I dislike about exception handling. Well, the
Swift developers have an answer for this: The try? keyword. The try? keyword attempts
to perform an operation that may throw an error. If the operation succeeds, the results are
returned in the form of an optional; however, if the operation fails with an error being
thrown, the operation returns a nil and the error is discarded.

Since the results of the try? keyword are returned in the form of an optional, we would
normally want to use this keyword with optional binding. We could rewrite the previous
example like this:

if let player = try? myTeam.getPlayerByNumber(number: 34) {
 print("Player is \(player.firstName) \(player.lastName)")
}

As we can see, the try? keyword makes our code much cleaner and easier to read.

Writing Safer Code with Error Handling

[182]

If we need to perform some cleanup action, regardless of whether we had any errors or not,
we can use the defer statement. We use the defer statement to execute a block of code just
before code execution leaves the current scope. The following example shows how we
would use the defer statement:

func deferFunction() {
 print("Function started")
 var str: String?
 defer {
 print("In defer block")
 if let s = str {
 print("str is \(s)")
 }
 }
 str = "Jon"
 print("Function finished")
}

If we called this function, the first line that is printed to the console would be Function
started. The execution of the code would skip over the defer block and Function
finished would be printed to the console next. Finally, the defer block of code would be
executed just before we leave the function's scope, and we would see the message, In
defer block. The following is the output from this function:

 Function started
 Function finished
 In defer block
 str is Jon

The defer block will always be called before execution leaves the current scope, even if an
error is thrown. The defer block is very useful when we need to perform some cleanup
functions prior to leaving a function.

The defer statement is very useful when we want to make sure we perform all the
necessary cleanup, even if an error is thrown. For example, if we successfully opened a file
to write to, we will always want to make sure we close that file, even if we have an error
during the write operation. We could then put the file-closed functionality in a defer block
to make sure that the file is always closed prior to leaving the current scope.

Writing Safer Code with Error Handling

[183]

Summary
In this chapter, we looked at Swift's error handling features. This feature is really important
for writing safe code. While we are not required to use this feature in our custom types, it
does give us a uniform manner to handle and respond to errors. Apple has also started to
use this error handling in their frameworks. It is recommended that we use error handling
in our code.

9
Custom Subscripting

Custom subscripts were added to Objective-C in 2012. At the time, Chris Lattner was already
two years into developing Swift, and, like other good features, subscripts were added to the
Swift language. I have not used custom subscripts in many other languages; however, I do
find myself using subscripts extensively when I am developing in Swift. The syntax for
using subscripts in Swift seems like a more natural part of the language, possibly because
they were part of the language when it was released and not added in later. Once you start
using subscripts in Swift, you may find them indispensible.

In this chapter, you will learn the following topics:

What custom subscripts are
How to add custom subscripts to classes, structures, or enumerations
How to create read/write and read-only subscripts
How to use external names without custom subscripts
How to use multidimensional subscripts

Introducing subscripts
Subscripts, in the Swift language, are used as shortcuts for accessing elements of a
collection, list, or sequence. We can use them in our custom types to set or retrieve the
values by index rather than using getter and setter methods. Subscripts, if used
correctly, can significantly enhance the usability and readability of our custom types.

We can define multiple subscripts for a single type. When a type has multiple subscripts,
the appropriate subscript will be chosen, based on the type of index passed into the
subscript. We can also set external parameter names for our subscripts, which can help
distinguish between subscripts that have the same type.

Custom Subscripting

[185]

We use custom subscripts just like we use subscripts for arrays and dictionaries. For
example, to access an element in an array, we will use the anArray[index] syntax, and to
access an element of a dictionary, we will use the same syntax aDictionary[key]. When
we define a custom subscript for our custom types, we also access them with the same
syntax, ourType[key].

When creating custom subscripts, we should try to make them feel as if they are a natural
part of the class, structure, or enumeration. As mentioned earlier, subscripts can
significantly enhance the usability and readability of our code, but if we try to overuse
them, they will not feel natural and will be hard to use.

In this chapter, we will look at several examples of how we can create and use custom
subscripts. We will also show an example of how not to use a subscript. Before we show
how to use custom subscripts, let's review how subscripts are used with Swift arrays to see
how subscripts are used within the Swift language itself. We should use subscripts in a
similar manner to how Apple uses them within the language to make our custom subscripts
easy to understand and use.

Subscripts with Swift arrays
The following example shows how to use subscripts to access and change the values of an
array:

var arrayOne = [1,2,3,4,5,6]
print(arrayOne[3]) //Displays '4'
arrayOne[3] = 10
print(arrayOne[3]) //Displays '10'

In the preceding example, we create an array of integers and then use the subscript syntax
to display and change the item of element number 3 in the array. Subscripts are mainly
used to get or retrieve information from a collection. We generally do not use subscripts
when specific logic needs to be applied to determine which item to select. For example, we
will not use subscripts to append an item to the end of the array or to retrieve the number of
items in the array. To append an item to the end of an array, or to get the number of items
in an array, we will use functions or properties like this:

arrayOne.append(7) //append 7 to the end of the array
arrayOne.count //returns the number of items in an array

Custom Subscripting

[186]

Subscripts in our custom types should follow the same standard set by the Swift language
itself, so other developers that use our types are not confused by the implementation. The
key to knowing when to use subscripts, and when not to, is to understand how the
subscript will be used.

Read and write custom subscripts
Let's see how to define a subscript that is used to read and write to a backend array.
Reading and writing to a backend storage class is one of the most common uses for custom
subscripts but, as we will see in this chapter, we do not need to have a backend storage
class. The following code shows how to use a subscript to read and write to an array:

class MyNames {
 private var names:[String] = ["Jon", "Kim", "Kailey", "Kara"]
 subscript(index: Int) -> String {
 get {
 return names[index]
 }
 set {
 names[index] = newValue
 }
 }
}

As we can see, the syntax is similar to how we can define properties within a class using the
get and set keywords. The difference is that we declare the subscript using the
subscript keyword. We then specify one or more inputs and the return type.

We can now use the custom subscript, just like we used subscripts with arrays and
dictionaries. The following code shows how to use the subscript in the preceding example:

var nam = MyNames()
print(nam[0]) //Displays 'Jon'
nam[0] = "Buddy"
print(nam[0]) //Displays 'Buddy'

In the preceding code, we create an instance of the MyNames class. We then display the
original name at index 0, change the name at index 0, and redisplay it. In this example, we
use the subscript that we defined in the MyNames class to retrieve and set elements of the
names array within the MyNames class.

Custom Subscripting

[187]

While we could just make the names array property available for external code to read and
write directly to, this would lock our code into using an array to store the data. If we ever
want to change the backend storage mechanism to a dictionary object, or even an SQLite
database, we will be unable to do so because all of the external code would also have to be
changed. Subscripts are very good at hiding how we store information within our custom
types; therefore, external code that uses these custom types does not rely on the specific
storage implementations.

We would also be unable to verify that the external code was inserting valid information
into the array if we gave direct access to it. With subscripts, we can add validation to our
setters to verify that the data being passed in is correct before adding it to the array. This
can be very useful, whether we are creating a framework or a library.

Read-only custom subscripts
We can also make the subscript read-only by either not declaring a setter method within
the subscript or by not implicitly declaring a getter or setter method. The following
code shows how to declare a read-only property by not declaring a setter method:

//No getter/setters implicitly declared
subscript(index: Int) ->String {
 return names[index]
}

The following example shows how to declare a read-only property by only declaring a
getter method:

//Declaring only a getter
subscript(index: Int) ->String {
 get {
 return names[index]
 }
}

In the first example, we do not define either a getter or setter method; therefore, Swift
sets the subscript as read-only and the code acts as if it was in a getter definition. In the
second example, we specifically set the code in a getter definition. Both examples are valid
read-only subscripts.

Custom Subscripting

[188]

Calculated subscripts
While the preceding example is very similar to using the stored properties in a class or
structure, we can also use subscripts in a similar manner to computed properties. Let's see
how to do this:

struct MathTable {
 var num: Int
 subscript(index: Int) -> Int {
 return num * index
 }
}

In the previous example, we used an array as the backend storage mechanism for the
subscript. In this example, we use the value of the subscript to calculate the return value.
We will use this subscript as follows:

var table = MathTable(num: 5)
print(table[4])

This example will display the calculated value of 5 (the number defined in the initialization)
times 4 (the subscript value), which is equal to 20.

Subscript values
In the preceding subscript examples, all of the subscripts accepted integers as the value for
the subscript. However, we are not limited to integers. In the following example, we could
use a String type as the value for the subscript. The subscript will also return a String
type:

struct Hello {
 subscript (name: String) ->String {
 return "Hello \(name)"
 }
}

In this example, the subscript takes a string as the value within the subscript and returns a
message, saying Hello. Let's see how to use this subscript:

var hello = Hello()
print(hello["Jon"])

This example will display the message, Hello Jon, to the console.

Custom Subscripting

[189]

External names for subscripts
As we mentioned earlier in this chapter, we can have multiple subscript signatures for our
custom types. The appropriate subscript will be chosen, based on the type of index passed
into it. There are times when we may wish to define multiple subscripts that have the same
type. For this, we could use external names, similar to how we define external names for the
parameters of a function.

Let's rewrite the original MathTable structure to include two subscripts that each accept an
integer as the subscript type; however, one will perform a multiplication operation, and the
other will perform an addition operation:

struct MathTable {
 var num: Int
 subscript(multiply index: Int) -> Int {
 return num * index
 }
 subscript(addition index: Int) -> Int {
 return num + index
 }
}

As we can see, in this example we define two subscripts and each subscript is an integer
type. The difference between the two subscripts is the external name within the definition.
In the first subscript, we define an external name of multiply because we multiply the
value of the subscript by the num property within this subscript. In the second subscript, we
define an external name of addition because we add the value of the subscript to the num
property within the subscript.

Let's see how to use these two subscripts:

var table = MathTable(num: 5)
print(table[multiply: 4]) //Displays 20 because 5*4=20
print(table[addition: 4]) //Displays 9 because 5+4=9

If we run this example, we will see that the correct subscript is used, based on the external
name within the subscript.

Using external names within our subscript is very useful if we need multiple subscripts of
the same type; however, I would not recommend using external names unless they are
needed to distinguish between multiple subscripts.

Custom Subscripting

[190]

Multidimensional subscripts
While the most common subscripts are the ones that take a single parameter, subscripts are
not limited to single parameters. They can take any number of input parameters, and these
parameters can be of any type.

Let's see how we could use a multidimensional subscript to implement a Tic-Tac-Toe board.
A Tic-Tac-Toe board looks similar to this:

The board can be represented by a two-dimensional array where each dimension has three
elements. Each player will then take a turn placing their pieces (typically, x or o) on the
board until one player has three pieces in a row or the board is full.

Let's see how we could implement a Tic-Tac-Toe board using a multidimensional array and
multidimensional subscripts:

struct TicTacToe {
 var board = [["","",""],["","",""],["","",""]]
 subscript(x: Int, y: Int) -> String {
 get {
 return board[x][y]
 }
 set {
 board[x][y] = newValue
 }
 }
}

Custom Subscripting

[191]

We start the Tic-Tac-Toe structure by defining a 3×3 array that will represent the game
board. We then define a subscript that can be used to set and retrieve player pieces on the
board. The subscript will accept two integer values. Multiple parameters are defined by
putting the parameters between parentheses. In our example, we are defining the subscript
with the parameters, (x: Int, y: Int). We can then use the x and y variable names
within our subscripts to access the values that are passed in.

Let's see how to use this subscript to set the user's pieces on the board:

var board = TicTacToe()
board[1,1] = "x"
board[0,0] = "o"

If we run this code, we will see that we added the player x piece to the center square and
the player o piece to the upper left square, so our game board will look similar to this:

We are not limited to using only one type in our multidimensional subscripts, so we can use
multiple types. For example, we could have a subscript of the (x: Int, y:Double, z:
String) type.

We can also add external names for our multidimensional subscript types to help identify
what values are used and to distinguish between the subscripts that have the same types.
Let's take a look at how to use multiple types and external names with subscripts by
creating a subscript that will return an array of string instances, based on the values of the
subscript:

struct SayHello {
 subscript(messageText message:String, messageName name:String, number
number:Int) -> [String]{
 var retArray: [String] = []
 for _ in 0..<number {
 retArray.append("\(message) \(name)")
 }

Custom Subscripting

[192]

 return retArray
 }
}

In the SayHello structure, we define our subscript like this:

subscript(messageText message:String,messageName name:String, number
number:Int) -> [String]

This defines a subscript with three elements. Each element has an external name (message,
name, and number) and an internal name (message, name, and number). The first two
elements are of the String type and the last one is an Int type. We use the first two
elements to create a message for the user that will repeat the number of times defined by the
last (number) element. We will use this subscript as follows:

var message = SayHello()
var ret = message[messageText:"Bonjour",messageName:"Jon",number:5]

If we run this code, we will see that the ret variable contains an array of five strings, where
each string equals Bonjour Jon.

When not to use a custom subscript
As we have seen in this chapter, creating custom subscripts can really enhance our code;
however, we should avoid overusing them or using them in a way that is not consistent
with the standard subscript usage. The way to avoid overusing subscripts is to examine
how subscripts are used in Swift's standard libraries.

Let's take a look at the following example:

class MyNames {
 private var names:[String] = ["Jon", "Kim", "Kailey", "Kara"]
 var number: Int {
 get {
 return names.count
 }
 }
 subscript(add name: String) -> String {
 names.append(name)
 return name
 }
 subscript(index: Int) -> String {
 get {
 return names[index]
 }

Custom Subscripting

[193]

 set {
 names[index] = newValue
 }
 }
}

In the preceding example, within the MyNames class, we define an array of names that is
used within our application. As an example, let's say that, within our application, we
display this list of names and allow users to add names to it. Within the MyNames class, we
then define the following subscript, which allows us to append a new name to the array:

subscript(add name: String) -> String {
 names.append(name)
 return name
}

This would be a poor use of subscripts because its usage is not consistent with how
subscripts are used within the Swift language. This might cause confusion when the class is
used in the future. It would be more appropriate to rewrite this subscript as a function such
as this:

func append(name: String) {
 names.append(name)
}

Remember, when you are using custom subscripts make sure that you are using them
appropriately. As a general rule we should use subscripts in our custom types similarly to
how they are used in the Swift language itself.

Summary
As we saw in this chapter, adding support for subscripts to our custom types can greatly
enhance their readability and usability. We saw that subscripts can be used to add an
abstraction layer between our backend storage class and external code. Subscripts can also
be used, in a similar manner to computed properties, where the subscript is used to
calculate a value. As we noted, the key with subscripts is to use them appropriately and in a
manner that is consistent with subscripts in the Swift language.

10
Using Optional Types

When I first started using Swift, the concept that I had the most trouble learning was
optional types. Coming from an Objective-C, C, Java, and Python background, I was able to
relate most of Swift's features to how things worked in one of the other languages that I
knew, but optionals were different. There really was nothing like optionals in the other
languages that I used, so it took a lot of reading to fully understand them. While we covered
optionals in Chapter 2, Learning About Variables, Constants, Strings, and Operators, which
gave a brief overview of what optionals are, we really need to cover them in more detail to
fully understand what optionals are, how to properly use them, and why they are so
important in the Swift language.

In this chapter, we will cover the following topics:

An introduction to optional types
The need for optional types in Swift
Unwrapping an optional
Optional binding
Optional chaining

Introducing optionals
When we declare variables in Swift, they are, by default, non-optional, which means that
they must contain a valid, non-nil value. If we try to set a non-optional variable to nil, it will
result in a Nil cannot be assigned to type '{type}' error, where {type} is the
type of the variable.

Using Optional Types

[195]

For example, the following code will throw an error when we attempt to set the message
variable to nil because message is a non-optional type:

var message: String = "My String"
message = nil

It is very important to understand that nil in Swift is very different from nil in Objective-C
or other C-based languages. In these languages, nil is a pointer to a non-existent object;
however, in Swift, nil is the absence of a value. This concept is very important in fully
understanding optionals in Swift.

A variable defined as an optional can contain a valid value or it can indicate the absence of a
value. We indicate an absence of a value by assigning it a special nil value. Optionals of any
type can be set to nil, whereas in Objective-C only objects can be set to nil.

To really understand the concept behind optionals, let's look at a line of code that defines an
optional:

var myString: String?

The question mark (?) at the end indicates that the myString variable is an optional. When
we look at this code, it would be wrong to read it as if the myString variable is a String
type that is optional. We should actually read this line of code as the myString variable is
an optional type, which may contain a String type or no value. The subtle difference
between the two lines actually makes a big difference in understanding how optionals
work.

Optionals are a special type in Swift. When we defined the myString variable, we actually
defined it as an optional type. To understand this, let's look at some more code:

var myString1: String?
var myString2: Optional<String>

These two declarations are equivalent. Both lines declare an optional type that may contain
a String type or have no value. In Swift, we can think of the absence of a value as being set
to nil, but always remember that this is different than setting something to nil in Objective-
C. In this book, when we refer to nil, we are referring to how Swift uses nil and not to how
Objective-C uses nil.

Using Optional Types

[196]

The optional type is an enumeration with two possible values, None and Some(T), where T
is the associated value of the appropriate type. If we set the optional to nil, then it will
have a value of None, and if we set a value, then the optional will have a value of Some with
an associated value of the appropriate type. In Chapter 2, Learning About Variables,
Constants, Strings, and Operators, we explained that an enumeration in Swift may have
associated values. Associated values allow us to store additional information along with the
enumeration's member values.

Internally, an optional is defined as follows:

enum Optional<T> {
 case None
 case Some(T)
}

Here, T is the type to associate with the optional. The T symbol is used to define a generic.
We can read more about generics in Chapter 11, Working with Generics. For now, just
remember that the T symbol represents any type.

The need for optional types in Swift
Now, the burning question is why does Swift need optionals? To understand this question,
we should examine what problems optionals are designed to solve.

In most languages, it is possible to create a variable without giving it an initialized value.
For example, in Objective-C, both of these lines of code are valid:

int i;
MyObject *m;

Now, let's say that the MyObject class has the following method:

-(int)myMethodWithValue:(int)i {
 return i*2;
}

This method takes the value passed in from the i parameter, multiplies it by 2, and returns
the results. Let's try to call this method using the following code:

MyObject *m;
NSLog(@"Value: %d",[m myMethodWithValue:5]);

Using Optional Types

[197]

Our first thought might be that this code would display Value: 10, since we are passing
the value of 5 to a method that doubles the value passed in; however, this would be
incorrect. In reality, this code would display Value: 0 because we did not initialize the m
object prior to using it.

When we forget to initialize an object or set a value for a variable, we can get unexpected
results at runtime, as we just demonstrated. The unexpected results can be, at times, very
difficult to track down.

With optionals, Swift is able to detect problems such as this at compile time and alert us
before it becomes a runtime issue. If we expect a variable or object to always contain a value
prior to using it, we will declare the variable as a non-optional (this is the default
declaration). Then we would receive an error if we try to use it prior to initializing it. Let's
look at an example of this. The following code would display an error because we are
attempting to use a non-optional variable prior to initializing it:

var myString: String
print(myString)

If a variable is declared as an optional, it is good programming practice to verify that it
contains a valid value before attempting to use it. We should only declare a variable as an
optional if there is a valid reason for the variable to contain no value. This is the reason
Swift declares variables as non-optional by default.

Now that we (hopefully) have a better understanding of what optionals are and what types
of problems they are designed to solve, let's look at how to use them.

Defining an optional
Typically, to define an optional type, we put a question mark after the type in the variable
declaration. Keep in mind that the type we define in the variable's declaration is actually the
associated value in the optional enumeration. The following code shows us how we would
typically declare an optional:

var myOptional: String?

This code declares an optional variable that might contain a string or no value (nil). When a
variable is declared like this, by default, it is set to no value.

Using Optional Types

[198]

Using optionals
There are a number of ways that we can use optionals within our code. The key to using
optionals is to always verify that they contain a valid value prior to accessing them. We use
the term unwrapping to refer to the process of retrieving a value from an optional.

Forced unwrapping optionals
To unwrap or retrieve the value of an optional, we place an exclamation mark (!) after the
variable name. Forced unwrapping, in this manner, can be very dangerous and should be
used only if we are certain that the value is not nil.

When we use the exclamation mark to unwrap an optional, we are telling the compiler that
we know the optional contains a value, and to go ahead and give it to us. Let's look at how
to do this:

var myString1: String?
myString1 = "test"
var test: String = myString1!

This code will work as we expect it to, where the test variable will contain the test string;
however, if the line that set the myString1 optional to test was removed, we would
receive a runtime error when we run the application. Note that the compiler will not alert
us of an issue because we are using the exclamation point to unwrap the optional; therefore,
the compiler assumes that we know what we are doing and will happily compile the code
for us. We should verify that the myString1 optional contains a valid value prior to
unwrapping it. The following example is one way to do this:

var myString1: String?
myString1 = "test"
if myString1 != nil {
 var test:String = myString1!
}

Now, if the line that sets the myString1 optional to test was removed, we would not
receive a runtime error because we are only unwrapping the myString optional, if it
contains a valid (non-nil) value.

Unwrapping optionals, as we just described, is not the most optimal way, and it is not
recommended that we unwrap optionals in this manner. We can combine the verification
and unwrapping into one step called optional binding.

Using Optional Types

[199]

Optional binding
Optional binding is the recommended way to unwrap an optional. With optional binding,
we perform a check to see whether the optional contains a valid value and, if so, unwrap it
into a temporary variable or constant. This is all performed in one step.

Optional binding is performed with the if or while conditional statements. It takes the
following format, if we want to put the value of the optional in a constant:

if let constantName = optional {
 statements
}

If we need to put the value in a variable, instead of a constant, we can use the var keyword
instead of the let keyword, as shown in the following example:

if var variableName = optional {
 statements
}

The following example shows how to perform optional binding:

var myString3: String?
myString3 = "Space"
if let tempVar = myString3 {
 print(tempVar)
} else {
 print("No value")
}

In the example, we define the myString3 variable as an optional type. If the myString3
optional contains a valid value, then we set the new variable named tempvar to the value
of the myString3 optional and print the value to the console. If the myString3 optional
does not contain a value, then we print No value to the console.

We are able to use optional binding to unwrap multiple optionals within the same optional
binding line. For example, if we had three optionals named optional1, optional2, and
optional3, we could use the following code to attempt to unwrap all the three at once:

if let tmp1 = optional1, let tmp2 = optional2, let tmp3 = optional3 {
}

Using Optional Types

[200]

If any of the three optionals are nil and fail to unwrap, the whole optional binding
statement fails.

It is perfectly acceptable with optional binding to assign the value to a variable of the same
name. The following code illustrates this:

if let myOptional = myOptional {
 print(myOptional)
} else {
 print("myOptional was nil")
}

One thing to note is that the temp variable is scoped only for the conditional block and
cannot be used outside the conditional block. To illustrate the scope of the temporary
variable, let's take a look at the following code:

var myOptional: String?
myOptional = "test"
if var tmp = myOptional {
 print("Inside: \(tmp)")
}
// This next line will cause a compile time error
print("Outside: \(tmp)")

This code would not compile because the tmp variable is only valid within the conditional
block and we are attempting to use it outside of the conditional block.

Using optional binding is a lot cleaner and easier than manually verifying that the optional
has a value and then using forced unwrapping to retrieve the value of the optional.

Returning optionals from functions, methods, and
subscripts
We can set the return type of a function or a method to an optional type. This allows us to
return a nil (no value) from the function or method. To set the return type to an optional
type, we will insert a question mark after the name of the type in the function or method
declaration.

The following example shows us how we will return an optional from a function or
method:

func getName(index: Int) -> String? {
 let names = ["Jon", "Kim", "Kailey", "Kara"]
 if index >= names.count || index < 0 {
 return nil

Using Optional Types

[201]

 }
else {
 return names[index]
 }
}

In the example, we defined the return type as an optional that can be either a string value or
no value. Inside the function, we will return the name if the index is within the bounds of
the array, or nil if it is outside the bounds of the array.

The following code shows how to call this function where the return value is an optional:

var name = getName(index: 2)
var name2 = getName(index: 5)

In the previous code, the name variable will contain Kailey, while the name2 variable will
contain nil (no value). Note that we do not have to define the variable as an optional (with
a question mark) as Swift knows it is an optional type because the return type, defined by
the function, is an optional.

We can also define a subscript that returns an optional type. We define a subscript as an
optional in exactly the same way that we defined functions. Here is an example template of
a subscript that returns an optional:

subscript(index: Int) -> String? {
 //some statements
}

With this definition, we are able to return a nil (no value) from our subscript.

Using optionals as a parameter in a function or method
We can also accept an optional as a parameter to a function or a method. This allows us to
have the option of passing a nil (no value) into a function or method if required. The
following example shows how to define an optional parameter for a function:

func optionalParam(myString: String?) {
 if let temp = myString {
 print("Contains value \(temp)")
 }
 else {
 print("Does not contain value")
 }
}

Using Optional Types

[202]

To define a parameter as an optional type, we use the question mark within the parameter
definition. In this example, we use optional binding to check whether the optional contains
a value or not. If it contains a value, we print Contains value to the console; otherwise,
we print Does not contain value.

Optional types with tuples
We can define a whole tuple or any of the elements within a tuple as an optional. It is
especially useful to use optionals with tuples when we return a tuple from a function or
method. This allows us to return part (or all) of the tuples as nil. The following example
shows how to define a tuple as an optional, and also how to define individual elements of a
tuple as an optional type:

var tuple1: (one: String, two: Int)?
var tuple2: (one: String, two: Int?)

The first line defines the whole tuple as an optional type. The second line defines the second
value within the tuple as an optional, while the first value is a non-optional.

Optional chaining
Optional binding allows us to unwrap one optional at a time, but what would happen if we
had optional types embedded within other optional types? This would force us to have
optional binding statements embedded within other optional binding statements. There is a
better way to handle this by using optional chaining. Before we look at optional chaining,
let's see how this would work with optional binding:

class Collar {
 var color: String
 init(color: String) {
 self.color = color
 }
}

class Pet {
 var name: String
 var collar: Collar?
 init(name: String) {
 self.name = name
 }
}

class Person {

Using Optional Types

[203]

 var name: String
 var pet: Pet?
 init(name: String) {
 self.name = name
 }
}

In this example, we begin by defining a Collar class, which has one property defined. This
property is named color, which is of the type String. We can see that the color property
is not an optional; therefore, we can safely assume that it will always have a valid value.

Next, we define a Pet class that has two properties defined. These properties are named
name and collar. The name property is of the String type, and the collar property is an
optional that may contain an instance of the Collar type or no value.

Finally, we define the Person class that also has two properties. These properties are
named name and pet. The name property is of the String type and the pet property is an
optional that may contain an instance of the Pet type or no value.

For the examples that follow, let's use the following code to initialize the classes:

var jon = Person(name: "Jon")
var buddy = Pet(name: "Buddy")
jon.pet = buddy
var collar = Collar(color: "red")
buddy.collar = collar

Now, let's say that we want to get the color of the collar for a person's pet; however, the
person may not have a pet (the pet property is nil) or the pet may not have a collar (the
collar property is nil). We could use optional binding to drill down through each layer, as
shown in the following example:

if let tmpPet = jon.pet, let tmpCollar = tmpPet.collar {
 print("The color of the collar is \(tmpCollar.color)")
 }
else {
 print("Cannot retrieve color")
}

While this example is perfectly valid, and would print out the message The color of the
collar is red, the code is rather messy and hard to follow.

Using Optional Types

[204]

Optional chaining allows us to drill down through multiple optional type layers of
properties, methods, and subscripts in one line of code. These layers can be chained
together, and if any layer returns a nil, the entire chain gracefully fails and returns nil. If
none of the values return nil, the last value of the chain is returned. Since the results of
optional chaining may be a nil value, the results are always returned as an optional type,
even if the final value we are retrieving is a non-optional type.

To specify optional chaining, we will place a question mark (?) after each of the optional
values within the chain. The following example shows how to use optional chaining to
make the preceding example much cleaner and easier to read:

if let color = jon.pet?.collar?.color {
 print("The color of the collar is \(color)")
} else {
 print("Cannot retrieve color")
}

In this example, we put a question mark after the pet and collar properties to signify that
they are of the optional type, and if either value is nil, the whole chain will return nil.
This code would also print out the message The color of the collar is red;
however, it is much easier to read than the preceding example that used optional binding.

The nil coalescing operator
The nil coalescing operator is similar to the ternary operator that we discussed in Chapter
2, Learning About Variables, Constants, Strings, and Operators of this book. The ternary
operator assigns a value to a variable, based on the evaluation of a comparison operator or a
Boolean value. The nil coalescing operator unwraps an optional, and if it contains a value, it
will return that value, or a default value if the optional is nil.

Let's look at a prototype for the nil coalescing operator:

optionalA ?? defaultValue

In this example, we demonstrate the nil coalescing operator when the optional contains a nil
and also when it contains a value:

var defaultName = "Jon"

var optionalA: String?
var optionalB: String?

optionalB = "Buddy"

Using Optional Types

[205]

var nameA = optionalA ?? defaultName
var nameB = optionalB ?? defaultName

In this example, we begin by initializing our defaultName variable to Jon. We then define
two optionals that are named optionalA and optionalB. The optionalA variable will be
set to nil while the optionalB variable is set to Buddy.

The nil coalescing operator is used in the final two lines. Since the optionalA variable
contains a nil, the nameA variable will be set to the value of the defaultName variable,
which is Jon. The nameB variable will be set to the value of the optionalB variable since it
contains a value.

Summary
While the concept of optional types, as used in the Swift language, might seem a little
foreign at first, the more you use them, the more they will make sense. One of the biggest
advantages with optional types is we get additional compile time checks that alert us if we
forget to initialize non-optionals prior to using them.

The one thing to take away from this chapter is the concept of what optionals are. To
reinforce this concept, let's review a couple of paragraphs from this chapter.

It is very important to understand that nil in Swift is very different than nil in Objective-C
or other C-based languages. In Objective-C, nil is a pointer to a non-existent object;
however, in Swift, nil is an absence of a value. Knowing this concept is very important in
fully understanding optionals in Swift.

A variable defined as an optional can contain a valid value or it can have no value. We set a
variable to a valueless state by assigning it Swift's special nil value. Optionals of any type
can be set to nil, whereas in Objective-C, only objects can be set to nil.

The optional type is an enumeration with two possible values-None and Some (T), where T
is the associated value of the appropriate type. If we set the optional to nil, it will have a
value of None, and if we set a value, the optional will have a value of Some with an
associated value of the appropriate type. In Chapter 2, Learning about Variables, Constants,
Strings, and Operators, we explained that an enum in Swift may have associated values.
Associated values allow us to store additional information along with the enum's member
value.

11
Working with Generics

My first experience with generics was back in 2004, when they were first introduced in the
Java programming language. I can still remember picking up my copy of The Java
Programming Language, Fourth Edition, which covered Java 5, and reading about Java's
implementation of generics. Since then, I have used generics in a number of projects, not
only in Java but in other languages as well. If you are familiar with generics in other
languages, such as Java, the syntax that Swift uses will be familiar to you. Generics allow us
to write very flexible and reusable code; however, just as with subscripts, we need to make
sure that we use them properly and do not overuse them.

In this chapter, we will cover the following topics:

An introduction to generics
Creating and using generic functions
Creating and using generic classes
Using associated types with protocols

An introduction to generics
The concept of generics has been around for a while, so it should not be a new concept for
developers coming from languages such as Java or C#. Swift's implementation of generics is
very similar to that of these languages. For those developers coming from other languages,
such as Objective-C, which do not have generics, they might seem a bit foreign at first, but
once you start using them you will realize how powerful they are.

Working with Generics

[207]

Generics allow us to write very flexible and reusable code that avoids duplication. With a
type-safe language, such as Swift, we often need to write functions or types that are valid
for multiple types. For example, we might need to write a function that swaps the values of
two variables; however, we may use this function to swap two String types, two Int
types, and two Double types. Without generics, we would need to write three separate
functions; however, with generics, we can write one generic function to provide the swap
functionality for multiple types. Generics allow us to tell a function or type: I know Swift is a
type-safe language, but I do not know the type that will be needed yet. I will give you a placeholder
for now and will let you know what type to enforce later.

In Swift, we have the ability to define both generic functions and generic types. Let's look at
generic functions first.

Generic functions
Let's begin by examining the problem that generics try to solve, and then we will see how
generics solve this problem. Let's say that we wanted to create functions that swap the
values of two variables (as described in the first part of this chapter); however, for our
application, we need to swap two Int types, two Double types, and two String types.
Without generics, this would require us to write three separate functions. The following
code shows what these functions could look like:

func swapInts (a: inout Int,b: inout Int) {
 let tmp = a
 a = b
 b = tmp
}

func swapDoubles(a: inout Double,b: inout Double) {
 let tmp = a
 a = b
 b = tmp
}

func swapStrings(a: inout String, b: inout String) {
 let tmp = a
 a = b
 b = tmp
}

Working with Generics

[208]

With these three functions, we can swap the original values of two Int types, two Double
types, and two String types. Now, let's say, as we develop our application further, we find
out that we also need to swap the values of two UInt32 types, two Float types, or even a
couple of custom types. We might easily end up with eight or nine swap functions. The
worst part is that each of these functions contains duplicate code. The only difference
between these functions is that the parameter types change. While this solution does work,
generics offer a much more elegant and simple solution that eliminates all of the duplicate
code. Let's see how we would condense all three of the preceding functions into a single
generic function:

func swap<T>(a: inout T, b: inout T) {
 let tmp = a
 a = b
 b = tmp
}

Let's look at how we defined the swap() function. The function itself looks pretty similar to
a normal function, except for the capital T. The capital T, as used in the swap() function, is
a placeholder type, and tells Swift that we will be defining the type later. When a type is
defined, it will be used to replace all the placeholders.

To define a generic function, we include the placeholder type between two angular brackets
(<T>) after the function's name. We can then use that placeholder type in place of any type
definition within the parameter definitions, the return type, or the function itself. The
important thing to keep in mind is once the placeholder is defined as a type, all the other
placeholders assume that type. Therefore, any variable or constant defined with that
placeholder must conform to that type.

There is nothing special about the capital T; we could use any valid identifier in place of T.
The following definitions are perfectly valid:

func swap<G>(a: inout G, b: inout G) {
 //Statements
}

func swap<xyz>(a: inout xyz, b: inout xyz) {
 //Statements
}

Working with Generics

[209]

In most documentation, generic placeholders are defined with either T (for type) or E (for
element). For standard purposes, we will use T to define generic placeholders in this book.
It is also good practice to use T to define a generic placeholder within our code so that the
placeholder is easily recognized when we are looking at the code at a later time.

If we need to use multiple generic types, we can create multiple placeholders by separating
them with commas. The following example shows how to define multiple placeholders for
a single function:

func testGeneric<T,E>(a:T, b:E) {
}

In this example, we are defining two generic placeholders, T and E. In this case, we can set
the T placeholder to one type and the E placeholder to a different type.

Let's look at how to call a generic function. The following code will swap two integers using
the swap<T>(inout a: T, inout b: T) function:

var a = 5
var b = 10
swap(a: &a, b: &b)

print("a: \(a) b: \(b)")

If we run this code, the a: 10 b: 5 line will be printed to the console. We can see that we
do not have to do anything special to call a generic function. The function infers the type
from the first parameter and then sets all the remaining placeholders to that type. Now, if
we need to swap the values of two strings, we will call the same function like this:

var c = "My String 1"
var d = "My String 2"
swap(a: &c, b: &d)
print("c: \(c) d: \(d)")

We can see that we call the function in exactly the same way as we called it when we
wanted to swap two integers. One thing that we cannot do is pass two different types into
the swap() function because we defined only one generic placeholder. If we attempt to run
the following code, we will receive an error:

var a = 5
var c = "My String 1"
swap(a: &a, b: &c)

Working with Generics

[210]

The error that we will receive is cannot invoke 'swap' with an argument list of
type '(inout Int, b: inout String, which tells us that we are attempting to use a
string value with an integer value when the function wants only one type. The reason the
function is looking for an integer value is that the first parameter that we pass into the
function is an integer value; therefore, all the generic types in the function became Int
types.

Now, let's say we have the following function that has multiple generic types defined:

func testGeneric<T,E>(a:T, b:E) {
 print("\(a) \(b)")
}

This function would accept parameters of different types; however, we would be unable to
swap the values because the types are different. There are also other limitations on generics.
For example, we may think that the following generic function would be valid; however,
we would receive an error if we tried to implement it:

func genericEqual<T>(a: T, b: T) -> Bool{
 return a == b
}

The error that we receive is binary operator '==' cannot be applied to two 'T'
operands. Since the type of the arguments is unknown at the time the code is compiled,
Swift does not know if it is able to use the equal operator on the types; therefore, the error is
thrown. We might think that this is a limit that will make generics hard to use; however, we
have a way to tell Swift that we expect that the type, represented by the placeholder, will
have certain functionality. This is done with type constraints.

A type constraint specifies that a generic type must inherit from a specific class or conform
to a particular protocol. This allows us to use the methods or properties defined by the
parent class or protocol within the generic function. Let's look at how to use type
constraints by rewriting the genericEqual() function to use the comparable protocol:

func testGenericComparable<T: Comparable>(a: T, b: T) -> Bool{
 return a >= b
}

To specify the type constraint, we put the class or protocol constraint after the generic
placeholder, where the generic placeholder and the constraint are separated by a colon. This
new function works as we might expect, and it will compare the values of the two
parameters and return true if they are equal or false if they are not.

Working with Generics

[211]

We can declare multiple constraints just as we declare multiple generic types. The following
example shows how to declare two generic types with different constraints:

func testFunction<T: MyClass, E: MyProtocol>(a: T, b: E) {
}

In this function, the type defined by the T placeholder must inherit from the MyClass class,
and the type defined by the E placeholder must implement the MyProtocol protocol. Now
that we have looked at generic functions, let's take a look at generic types.

Generic types
We have already had a general introduction to how generic types work when we looked at
Swift arrays and dictionaries. A generic type is a class, structure, or enumeration that can
work with any type, just like the way the Swift arrays and dictionaries work. As we recall,
Swift arrays and dictionaries are written so that they can contain any type. The catch is that
we cannot mix and match different types within an array or dictionary. When we create an
instance of our generic type, we define the type that the instance will work with. After we
define that type, we cannot change the type for that instance.

To demonstrate how to create a generic type, let's create a simple List class. This class will
use a Swift array as the backend storage for the list, and will let us add items to the list or
retrieve values from the list.

Let's begin by seeing how to define our generic list type:

class List<T> {
}

The preceding code defines the generic list type. We can see that we use the <T> tag to
define a generic placeholder, just like we did when we defined a generic function. This T
placeholder can then be used anywhere within the type instead of a concrete type
definition.

To create an instance of this type, we need to define the type of items that our list will hold.
The following examples show how to create instances of the generic list type for various
types:

var stringList = List<String>()
var intList = List<Int>()
var customList = List<MyObject>()

Working with Generics

[212]

The preceding example creates three instances of the List class. The stringList instance
can be used with String types, the intList instance can be used with Int types, and the
customList instance can be used with instances of the MyObject type.

We are not limited to only using generics with classes. We can also define structures and
enumerations as generics. The following examples show how to define a generic structure
and a generic enumeration:

struct GenericStruct<T> {
}

enum GenericEnum<T> {
}

The next step in our List class is to add the backend storage array. The items that are
stored in this array need to be of the same type as we define when we initiate the class;
therefore, we will use the T placeholder for the array's definition. The following code shows
the List class with an array named items. The items array will be defined using the T
placeholder, so it will hold the same types as we defined for the class:

class List<T> {
 var items = [T]()
}

This code defines our generic list type and uses T as the type placeholder. We can then use
the T placeholder anywhere in the class to define the type of an item. That item will then be
of the same type that we defined when we created the instance of the List class. Therefore,
if we create an instance of the list type such as this var stringList = List<String>(),
the items array will be an array of string instances. If we created an instance of the list type
like this var intList = List<Int>(), the item array will be an array of integer
instances.

Now we will need to add the add() method that will be used to add an item to the list. We
will use the T placeholder within the method declaration to define that the item parameter
will be of the same type as we declared when we initiated the class. Therefore, if we create
an instance of the list type to use the String type, we would be required to use the String
type as the parameter for the add() method. However, if we create an instance of the list
type to use the Int type, we would be required to use the Int type as the parameter for the
add() method.

Working with Generics

[213]

Here is the code for the add() function:

func add(item: T) {
 items.append(item)
}

To create a standalone generic function, we add the <T> declaration after the function name
to declare that it is a generic function; however, when we use a generic method within a
generic type, we do not need the <T> declaration. Instead, all we need to do is to use the
type that we defined in the class declaration. If we wanted to introduce another generic
type, we could define it with the method declaration.

Now, let's add the getItemAtIndex() method that will return the item from the backend
array at the specified index:

func getItemAtIndex(index: Int) -> T? {
 if items.count > index {
 return items[index]
 } else {
 return nil
 }
}

The getItemAtIndex() method accepts one argument that is the index of the item we
want to retrieve. We then use the T placeholder to specify that our return type is an optional
that might be of type T or might be nil. If the backend storage array contains an item at the
specified index, we will return that item; otherwise, we return nil.

Now, let's look at our entire generic list class:

class List<T> {
 var items = [T]()
 func add(item: T) {
 items.append(item)
 }
 func getItemAtIndex(index: Int) -> T? {
 if items.count > index {
 return items[index]
 } else {
 return nil
 }
 }
}

Working with Generics

[214]

As we can see, we initially define the generic T placeholder type in the class declaration. We
then use this placeholder type within our class. In our List class, we use this placeholder in
three places. We use it as the type for our items array, as the parameter type for our add()
method, and as the associated value for the optional return type in the getItemAtIndex()
method.

Now, let's look at how to use the List class. When we use a generic type, we define the
type to be used within the class between angle brackets, such as: <type>. The following
code shows how to use the List class to store String types:

var list = List<String>()
list.add(item: "Hello")
list.add(item: "World")
print(list.getItemAtIndex(index: 1)!)

In this code, we start off by creating an instance of the list type called list and set it to
store String types. We then use the add() method twice to store two items in the list
instance. Finally, we use the getItemAtIndex() method to retrieve the item at index
number 1, which will display Optional(World) to the console.

We can also define our generic types with multiple placeholder types, similar to how we
use multiple placeholders in our generic methods. To use multiple placeholder types, we
would separate them with commas. The following example shows how to define multiple
placeholder types:

class MyClass<T,E>{

}

We then create an instance of the MyClass type that uses the String and Int types, like
this:

var mc = MyClass<String, Int>()

We can also use type constraints with generic types. Once again, using a type constraint for
a generic type is exactly the same as using one with a generic function. The following code
shows how to use a type constraint to ensure that the generic type conforms to the
comparable protocol:

class MyClass<T: Comparable>{}

So far in this chapter, we have seen how to use placeholder types with functions and types.
At times, it can be useful to declare one or more placeholder types in a protocol. These types
are known as associated types.

Working with Generics

[215]

Associated types
An associated type declares a placeholder name that can be used instead of a type within a
protocol. The actual type to be used is not specified until the protocol is adopted. While
creating generic functions and types, we used a very similar syntax. Defining associated
types for a protocol, however, is very different. We specify an associated type using the
associatedtype keyword.

Let's see how to use associated types when we define a protocol. In this example, we will
define the QueueProtocol protocol that will define the capabilities that need to be
implemented by the queue that implements it:

protocol QueueProtocol {
 associatedtype QueueType
 mutating func add(item: QueueType)
 mutating func getItem() -> QueueType?
 func count() -> Int
}

In this protocol, we define one associated type named QueueType. We then use this
associated type twice within the protocol–once as the parameter type for the add() method
and once when we define the return type of the getItem() method as an optional type that
might return the associated type of QueueType or a nil.

Any type that implements the QueueProtocol protocol must be able to specify the type to
use for the QueueType placeholder, and must also ensure that only items of that type are
used where the protocol uses the QueueType placeholder.

Let's look at how to implement QueueProtocol in a non-generic class called IntQueue.
This class will implement the QueueProtocol protocol using the Int type:

class IntQueue: QueueProtocol {
 var items = [Int]()
 func add(item: Int) {
 items.append(item)
 }
 func getItem() -> Int? {
 if items.count > 0 {
 return items.remove(at: 0)
 }
 else {
 return nil
 }
 }
 func count() -> Int {

Working with Generics

[216]

 return items.count
 }
}

In the IntQueue class, we begin by defining our backend storage mechanism to be an array
of Int types. We then implement each of the methods defined in the QueueProtocol
protocol, replacing the QueueType placeholder defined in the protocol with the Int type. In
the add() method, the parameter type is defined to be an Int type, and in the getItem()
method, the return type is defined to be an optional that might return an Int type or no
value.

We use the IntQueue class as we would use any other class. The following code shows this:

var intQ = IntQueue()
intQ.add(item: 2)
intQ.add(item: 4)
print(intQ.getItem()!)
intQ.add(item: 6)

We begin by creating an instance of the IntQueue class named intQ. We then call the
add() method twice to add two values of the Int type to the intQ instance. We then
retrieve the first item in the intQ instance by calling the getItem() method. This line will
print the number Optional(2) to the console. The final line of code adds another integer
type to the intQ instance.

In the preceding example, we implemented the QueueProtocol protocol in a non-generic
way. This means that we replaced the placeholder types with an actual type (QueueType
was replaced by the Int type). We can also implement the QueueProtocol protocol with a
generic type. Let's see how to implement the QueueProtocol protocol in a generic type
called GenericQueue:

class GenericQueue<T>: QueueProtocol {
 var items = [T]()
 func add(item: T) {
 items.append(item)
 }
 func getItem() -> T? {
 if items.count > 0 {
 return items.remove(at: 0)
 } else {
 return nil
 }
 }
 func count() -> Int {
 return items.count

Working with Generics

[217]

 }
}

As we can see, the GenericQueue implementation is very similar to the IntQueue
implementation, except that we define the type to use as the generic placeholder T. We can
then use the GenericQueue class as we would use any generic class. Let's take a look at
how to use the GenericQueue class:

var intQ2 = GenericQueue<Int>()
intQ2.add(item: 2)
intQ2.add(item: 4)
print(intQ2.getItem()!)
intQ2.add(item: 6)

We begin by creating an instance of the GenericQueue class that will use the Int type. This
instance is named intQ2. Next, we call the add() method twice to add two Int types to the
intQ2 instance. We then retrieve the first Int type that was added using the getItem()
method and print the value to the console. This line will print the number 2 to the console.

One of the things that we should avoid is using generics when we should be using
protocols. This is, in my opinion, one of the most common misuses of generics in other
languages. Let's take a look at an example so that we know what to avoid.

Let's say that we define a protocol called WidgetProtocol, which is as follows:

protocol WidgetProtocol {
 //Code
}

Now, let's say that we want to create a custom type (or function) that will use various
implementations of the WidgetProtocol protocol. I have seen a couple of instances where
developers have used generics with a type constraint to create custom types such as this:

class MyClass<T: WidgetProtocol> {
 var myProp: T?
 func myFunc(myVar: T) {
 //Code
 }
}

Working with Generics

[218]

While this is a perfectly valid use of generics, it is recommended that we avoid
implementations such as this. It is a lot cleaner and easier to read if we use
WidgetProtocol without generics. For example, we can write a non-generic version of the
MyClass type like this:

class MyClass {
 var myProp: WidgetProtocol?
 func myFunc(myVar: WidgetProtocol) {
 }
}

The second, non-generic version of the MyClass type is a lot easier to read and understand;
therefore, this should be the preferable way to implement the class. However, there is
nothing preventing us from using either implementation of the MyClass type.

Summary
Generic types can be incredibly useful, and they are also the basis of the Swift standard
collection types (array and dictionary); however, as mentioned in the introduction to this
chapter, we have to be careful to use them correctly.

We have seen a couple of examples in this chapter that show how generics can make our
lives easier. The swap() function that was shown at the beginning of the chapter is a good
use of a generic function because it allows us to swap the two values of any type we choose
while only implementing the swap code once.

The generic list type is also a good example of how to make custom collection types that can
be used to hold any type. The way we implemented the generic list type in this chapter is
similar to how Swift implements the array and dictionary with generics.

12
Working with Closures

Today, most major programming languages have functionalities similar to what closures
offer. Some of these implementations are really hard to use (Objective-C blocks), while
others are easy (Java lambdas and C# delegates). I found that the functionality that closures
provide is especially useful when developing frameworks. I have also used them
extensively when communicating with remote services over a network connection. While
blocks in Objective-C are incredibly useful (and I have used them quite a bit), their syntax
used to declare a block was absolutely horrible. Luckily, when Apple was developing the
Swift language, they made the syntax of closures much easier to use and understand.

In this chapter, we will cover the following topics:

An introduction to closures
Defining a closure
Using a closure
Several useful examples of closures
How to avoid strong reference cycles with closures

An introduction to closures
Closures are self-contained blocks of code that can be passed around and used throughout
our application. We can think of an Int type as a type that stores an integer, and a String
type as a type that stores a string. In this context, a closure can be thought of as a type that
contains a block of code. What this means is that we can assign closures to a variable, pass
them as arguments to functions, and also return them from functions.

Working with Closures

[220]

Closures have the ability to capture and store references to any variable or constant from
the context in which they were defined. This is known as closing over the variables or
constants, and the best thing is, for the most part, Swift will handle the memory
management for us. The only exception is when we create a strong reference cycle, and we
will look at how to resolve this in the Creating strong reference cycles with closures section of
this chapter.

Closures in Swift are similar to blocks in Objective-C; however, closures in Swift are a lot
easier to use and understand. Let's look at the syntax used to define a closure in Swift:

{
(parameters) -> return-type in
 statements
}

As we can see, the syntax used to create a closure looks very similar to the syntax we use to
create functions in Swift, and, actually, in Swift, global and nested functions are closures.
The biggest difference in the format between closures and functions is the in keyword. The
in keyword is used in place of curly brackets to separate the definition of the closure's
parameter and return types from the body of the closure.

There are many uses for closures, and we will go over a number of them later in this
chapter, but first we need to understand the basics of closures. Let's start by looking at some
very basic uses for closures, so that we can get a better understanding of what they are, how
to define them, and how to use them.

Simple closures
We will begin by creating a very simple closure that does not accept any arguments and
does not return a value. All it does is print Hello World to the console. Let's take a look at
the following code:

let clos1 = {
 () -> Void in
 print("Hello World")
}

In this example, we create a closure and assign it to the constant clos1. Since there are no
parameters defined between the parentheses, this closure will not accept any parameters.
Also, the return type is defined as Void; therefore, this closure will not return any value.
The body of the closure contains one line that prints Hello World to the console.

Working with Closures

[221]

There are many ways to use closures; in this example, all we want to do is execute it. We
execute this closure like this:

clos1()

When we execute the closure, we will see that Hello World is printed to the console. At
this point, closures may not seem that useful, but as we get further along in this chapter, we
will see how useful and powerful they can be.

Let's look at another example of a simple closure. This closure will accept one string
parameter named name, but will once again not return a value. Within the body of the
closure, we will print out a greeting to the name passed into the closure through the name
parameter. Here is the code for this second closure:

let clos2 = {
 (name: String) -> Void in
 print("Hello \(name)")
}

The big difference between clos2, as defined in this example, and the previous clos1
closure is that we define a single string parameter between the parentheses. As we can see,
we define parameters for closures just like we define parameters for functions.

We can execute this closure in the same way in which we executed clos1. The following
code shows how this is done:

clos2("Jon")

This example, when executed, will print the message Hello Jon to the console. Let's look
at another way we can use the clos2 closure.

Our original definition of closures stated that closures are self-contained blocks of code that
can be passed around and used throughout our application code. What this tells us is that
we can pass our closure from the context that it was created in to other parts of our code.
Let's look at how to pass our clos2 closure into a function. We will define a function that
accepts our clos2 closure like this:

func testClosure(handler:(String)->Void) {
 handler("Dasher")
}

Working with Closures

[222]

We define the function just like we would any other function; however, in our parameter
list, we define a parameter named handler, and the type defined for the handler parameter
is (String)->Void. If we look closely, we can see that the (String)->Void definition of
the handler parameter matches the parameter and return types that we defined for clos2
closure. This means that we can pass the clos2 closure into the function. Let's look at how
to do this:

testClosure(handler: clos2)

We call the testClosure() function just like any other function and the closure that is
being passed in looks like any other variable. Since the clos2 closure executed in the
testClosure() function, we will see the message, Hello Dasher, printed to the console
when this code is executed.

As we will see a little later in this chapter, the ability to pass closures to functions is what
makes closures so exciting and powerful.

As the final piece to the closure puzzle, let's look at how to return a value from a closure.
The following example shows this:

let clos3 = {
 (name: String) -> String in
 return "Hello \(name)"
}

The definition of the clos3 closure looks very similar to how we defined the clos2 closure.
The difference is that we changed the Void return type to a String type. Then, in the body
of the closure, instead of printing the message to the console, we used the return statement
to return the message. We can now execute the clos3 closure just like the previous two
closures, or pass the closure to a function like we did with the clos2 closure. The following
example shows how to execute clos3 closure:

var message = clos3("Buddy")

After this line of code is executed, the message variable will contain the Hello Buddy
string.

The previous three examples of closures demonstrate the format and how to define a typical
closure. Those who are familiar with Objective-C can see that the format of closures in Swift
is a lot cleaner and easier to use. The syntax for creating closures that we have shown so far
in this chapter is pretty short; however, we can shorten it even more. In this next section, we
will look at how to do this.

Working with Closures

[223]

Shorthand syntax for closures
In this section, we will look at a couple of ways to shorten the definition of closures.

Using the shorthand syntax for closures is really a matter of personal
preference. There are a lot of developers that like to make their code as
small and compact as possible and they take great pride in doing so.
However, at times, this can make code hard to read and understand for
other developers.

The first shorthand syntax for closures that we are going to look at is one of the most
popular and is the syntax we saw when we were using algorithms with arrays in Chapter
3, Using Swift Collections and the Tuple Type. This format is mainly used when we want to
send a really small (usually one line) closure to a function, like we did with the algorithms
for arrays. Before we look at this shorthand syntax, we need to write a function that will
accept a closure as a parameter:

func testFunction(num: Int, handler:()->Void) {
 for _ in 0..<num {
handler()
 }
}

This function accepts two parameters-the first parameter is an integer named num, and the
second parameter is a closure named handler that does not have any parameters and does
not return any value. Within the function, we create a for loop that will use the num integer
to define how many times it loops. Within the for loop, we call the handler closure that
was passed into the function.

Now lets create a closure and pass it to the testFunction() like this:

let clos = {
 () -> Void in
 print("Hello from standard syntax")
}
testFunction(num: 5,handler: clos)

This code is very easy to read and understand; however, it does take five lines of code.
Now, let's look at how to shorten this code by writing the closure inline within the function
call:

testFunction(num: 5,handler: {print("Hello from Shorthand closure")})

Working with Closures

[224]

In this example, we created the closure inline within the function call using the same syntax
that we used with the algorithms for arrays. The closure is placed in between two curly
brackets ({}), which means the code to create our closure is {print("Hello from
Shorthand closure")}. When this code is executed, it will print out the message, Hello
from Shorthand closure, five times on the screen.

In Chapter 3, Using Swift Collections and the Tuple Type, we saw that we were able to pass
parameters to the array algorithms using the $0, $1, $2, and so on parameters. Let's look at
how to use parameters with this shorthand syntax. We will begin by creating a new
function that will accept a closure with a single parameter. We will name this function
testFunction2. The following example shows what the new testFunction2 function
does:

func testFunction2(num: Int, handler:(String)->Void) {
 for _ in 0..<num {
 handler("Me")
 }
}

In testFunction2, we define our closure like this: (name: String)->Void. This
definition means that the closure accepts one parameter and does not return any value.
Now, let's see how to use the same shorthand syntax to call this function:

testFunction2(num: 5,handler: {print("Hello from \($0)")})

The difference between this closure definition and the previous one is $0. The $0 parameter
is shorthand for the first parameter passed into the function. If we execute this code, it
prints out the message, Hello from Me, five times.

Using the dollar sign ($) followed by a number with inline closures allows us to define the
closure without having to create a parameter list in the definition. The number after the
dollar sign defines the position of the parameter in the parameter list. Let's examine this
format a bit more, because we are not limited to only using the dollar sign ($) and number
shorthand format with inline closures. This shorthand syntax can also be used to shorten
the closure definition by allowing us to leave the parameter names off. The following
example demonstrates this:

let clos5: (String, String) ->Void = {
 print("\($0) \($1)")
}

Working with Closures

[225]

In this example, our closure has two string parameters defined; however, we do not give
them names. The parameters are defined like this: (String, String). We can then access
the parameters within the body of the closure using $0 and $1. Also, note that closure
definition is after the colon (:), using the same syntax that we use to define a variable type,
rather than inside the curly brackets. When we use anonymous arguments, this is how we
would define the closure. It will not be valid to define the closure such as this:

let clos5b = {
 (String, String) -> Void in
 print("\($0) \($1)")
}

In this example, we will receive the Anonymous closure arguments cannot be used
inside a closure that has explicit arguments error.

We will use the clos5 closure like this:

clos5("Hello","Kara")

Since Hello is the first string in the parameter list, it is accessed with $0, and as Kara is the
second string in the parameter list, it is accessed with $1. When we execute this code, we
will see the message Hello Kara printed to the console.

This next example is used when the closure doesn't return any value. Rather than defining
the return type as Void, we can use parentheses, as the following example shows:

let clos6: () -> () = {
 print("Howdy")
}

In this example, we define the closure as () -> (). This tells Swift that the closure does
not accept any parameters and also does not return a value. We will execute this closure like
this:

clos6()

As a personal preference, I am not very fond of this shorthand syntax. I
think the code is much easier to read when the void keyword is used
rather than the parentheses.

We have one more shorthand closure example to demonstrate before we begin showing
some really useful examples of closures. In this last example, we will demonstrate how we
can return a value from the closure without the need to include the return keyword.

Working with Closures

[226]

If the entire closure body consists of only a single statement, then we can omit the return
keyword, and the results of the statement will be returned. Let's take a look at an example
of this:

let clos7 = {
 (first: Int, second: Int) -> Int in
 first + second
}

In this example, the closure accepts two parameters of the Int type and will return an Int
type. The only statement within the body of the closure adds the first parameter to the
second parameter. However, if you notice, we do not include the return keyword before
the addition statement. Swift will see that this is a single statement closure and will
automatically return the results, just as if we put the return keyword before the addition
statement. We do need to make sure the result type of our statement matches the return
type of the closure. We would use this closure like this:

var result = clos7(1,2)

All of the examples that were shown in the previous two sections were designed to show
how to define and use closures. On their own, these examples did not really show off the
power of closures and they did not show how incredibly useful closures are. The remainder
of this chapter is written to demonstrate the power and usefulness of closures in Swift.

Using closures with Swift's array algorithms
In Chapter 3, Using Swift Collections and the Tuple Type, we looked at several built-in
algorithms that we could use with Swift's arrays. In that chapter, we briefly saw how to add
simple rules to each of these algorithms with very basic closures. Now that we have a better
understanding of closures, let's see how we can expand on these algorithms using more
advanced closures.

In this section, we will primarily be using the map algorithm for consistency purposes;
however, we can use the basic ideas demonstrated with any of the algorithms. We will start
by defining an array to use:

let guests = ["Jon", "Kim", "Kailey", "Kara"]

This array contains a list of names and the array is named guests. This array will be used
for all the examples in this section, except for the very last ones.

Working with Closures

[227]

Now that we have our guests array, let's add a closure that will print a greeting to each of
the names in the guests array:

guests.map({
 (name: String) -> Void in
 print("Hello \(name)")
})

Since the map algorithm applies the closure to each item of the array, this example will
print out a greeting for each name within the guests array. After the first section in this
chapter, we should have a pretty good understanding of how this closure works. Using the
shorthand syntax that we saw in the last section, we could reduce the preceding example
down to the following single line of code:

guests.map({print("Hello \($0)")})

This is one of the few times, in my opinion, where the shorthand syntax may be easier to
read than the standard syntax.

Now, let's say that rather than printing the greeting to the console, we wanted to return a
new array that contained the greetings. For this, we would have returned a string type from
our closure, as shown in the following example:

var messages = guests.map({
 (name:String) -> String in
 return "Welcome \(name)"
})

When this code is executed, the messages array will contain a greeting to each of the names
in the guests array while the guests array will remain unchanged.

The preceding examples in this section showed how to add a closure to the map algorithm
inline. This would be good if we only had one closure that we wanted to use with the map
algorithm, but what if we had more than one closure that we wanted to use, or if we
wanted to use the closure multiple times or reuse them with different arrays? For this, we
could assign the closure to a constant or variable and then pass in the closure, using its
constant or variable name, as needed. Let's see how to do this. We will begin by defining
two closures. One of the closures will print a greeting for each name in the guests array,
and the other closure will print a goodbye message for each name in the guests array:

let greetGuest = {
 (name:String) -> Void in
 print("Hello guest named \(name)")
}

Working with Closures

[228]

let sayGoodbye = {
 (name:String) -> Void in
 print("Goodbye \(name)")
}

Now that we have two closures, we can use them with the map algorithm as needed. The
following code shows how to use these closures interchangeably with the guests array:

guests.map(greetGuest)
guests.map(sayGoodbye)

Whenever we use the greetGuest closure with the guests array, the greetings message is
printed to the console, and whenever we use the sayGoodbye closure with the guests
array, the goodbye message is printed to the console. If we had another array named
guests2, we could use the same closures for that array, as shown in the following example:

guests.map(greetGuest)
guests2.map(greetGuest)
guests.map(sayGoodbye)
guests2.map(sayGoodbye)

All of the examples in this section so far have either printed a message to the console or
returned a new array from the closure. We are not limited to such basic functionality in our
closures. For example, we can filter the array within our closure, as shown in the following
example:

let greetGuest2 = {
 (name:String) -> Void in
 if (name.hasPrefix("K")) {
 print("\(name) is on the guest list")
 } else {
 print("\(name) was not invited")
 }
}

In this example, we print out a different message depending on whether the name starts
with the letter K or not.

Working with Closures

[229]

As we mentioned earlier in the chapter, closures have the ability to capture and store
references to any variable or constant from the context in which they were defined. Let's
look at an example of this. Let's say that we have a function that contains the highest
temperature for the last seven days at a given location, and this function accepts a closure as
a parameter. This function will execute the closure on the array of temperature. The
function can be written like this:

func temperatures(calculate:(Int)->Void) {
 let tempArray = [72,74,76,68,70,72,66]
 tempArray.map(calculate)

}

This function accepts a closure defined as (Int)->Void. We then use the map algorithm to
execute this closure for each item of the tempArray array. The key to using a closure
correctly in this situation is to understand that the temperatures function does not know
or care what goes on inside the calculate closure. Also, be aware that the closure is also
unable to update or change the items within the function's context, which means that the
closure cannot change any other variable within the temperatures function; however, it can
update variables in the context that it was created in.

Let's look at the function that we will create the closure in. We will name this function
testFunction. Let's take a look at the following code:

func testFunction() {
 var total = 0
 var count = 0
 let addTemps = {
 (num: Int) -> Void in
 total += num
 count += 1
 }
 temperatures(calculate: addTemps)
 print("Total: \(total)")
 print("Count: \(count)")
 print("Average: \(total/count)")
}

Working with Closures

[230]

In this function, we begin by defining two variables named total and count, where both
variables are of the Int type. We then create a closure named addTemps that will be used to
add all of the temperatures from the temperatures function together. The addTemps
closure will also count how many temperatures there are in the array. To do this, the
addTemps closure calculates the sum of each item in the array and keeps the total in the
total variable that was defined at the beginning of the function. The addTemps closure
also keeps track of the number of items in the array by incrementing the count variable for
each item. Notice that neither the total nor count variables are defined within the closure;
however, we are able to use them within the closure because they were defined in the same
context as the closure.

We then call the temperatures function and pass it the addTemps closure. Finally, we
print the total, count, and average temperature to the console. We would execute the
testFunction like this:

testFunction()

When the testFunction is executed, we see the following output to the console:

 Total: 498
 Count: 7
 Average: 71

As we can see from the output, the addTemps closure is able to update and use items that
are defined within the context that it was created in, even when the closure is used in a
different context.

Now that we have looked at using closures with the array map algorithm, let's look at using
closures by themselves. We will also look at the ways we can clean up our code to make it
easier to read and use.

Changing functionality
Closures also give us the ability to change the functionality of classes on the fly. We saw in
Chapter 11, Working with Generics, that generics give us the ability to write functions that
are valid for multiple types. With closures, we are able to write functions and classes whose
functionality can change, based on the closure that is passed into it as a parameter. In this
section, we will show how to write a function whose functionality can be changed with a
closure.

Working with Closures

[231]

Let's begin by defining a class that will be used to demonstrate how to swap out
functionality. We will name this class TestClass:

class TestClass {
 typealias getNumClosure = ((Int, Int) -> Int)
 var numOne = 5
 var numTwo = 8
 var results = 0
 func getNum(handler: getNumClosure) -> Int {
 results = handler(numOne,numTwo)
 return results

 }
}

We begin this class by defining a type alias for our closure that is named getNumClosure.
Any closure that is defined as a getNumClosure closure will take two integers and return
an integer. Within this closure, we assume that it does something with the integers that we
pass in to get the value to return, but it really doesn't have to. To be honest, this class
doesn't really care what the closure does as long as it conforms to the getNumClosure type.
Next, we define three integers that are named numOne, NumTwo, and results.

We also define a method named getNum(). This method accepts a closure that confirms the
getNumClosure type as its only parameter. Within the getNum() method, we execute the
closure by passing in the numOne and numTwo class variables, and the integer that is
returned is put into the results class variable.

Now, let's look at several closures that conform to the getNumClosure type that we can use
with the getNum() method:

var max: TestClass.getNumClosure = {
 if $0 > $1 {
 return $0
 } else {
 return $1
 }
}

var min: TestClass.getNumClosure = {
 if $0 < $1 {
 return $0
 } else {
 return $1
 }
}

Working with Closures

[232]

var multiply: TestClass.getNumClosure = {
 return $0 * $1
}

var second: TestClass.getNumClosure = {
 return $1
}

var answer: TestClass.getNumClosure = {
 var tmp = $0 + $1
 return 42
}

In this code, we define five closures that conform to the getNumClosure type:

max: This returns the maximum value of the two integers that are passed in
min: This returns the minimum value of the two integers that are passed in
multiply: This multiplies both the values that are passed in and returns the
product
second: This returns the second parameter that was passed in
answer: This returns the answer to life, the universe, and everything

In the answer closure, we have an extra line that looks like it does not have a purpose: var
tmp = $0 + $1. We do this purposely because the following code is not valid:

var answer: TestClass.getNumClosure = {
 return 42
}

This class gives us the error: contextual type for closure argument list
expects 2 arguments, which cannot be implicitly ignored error. As we can
see by the error, Swift does not think that our closure accepts any parameters unless we use
$0 and $1 within the body of the closure. In the closure named second, Swifts assumes that
there are two parameters because $1 specifies the second parameter.

Working with Closures

[233]

We can now pass each one of these closures to the getNum method of our TestClass to
change the functionality of the function to suit our needs. The following code illustrates
this:

var myClass = TestClass()

myClass.getNum(handler: max)
myClass.getNum(handler: min)
myClass.getNum(handler: multiply)
myClass.getNum(handler: second)
myClass.getNum(handler: answer)

When this code is run, the following results will be returned from each closure:

max: results = 8
min: results = 5
multiply: results = 40
second: results = 8
answer: results = 42

The last example we are going to show you in this chapter is one that is used a lot in
frameworks, especially the ones that have a functionality that is designed to be run
asynchronously.

Selecting a closure based on results
In the final example, we will pass two closures to a method, and then, depending on some
logic, one, or possibly both, of the closures will be executed. Generally, one of the closures is
called if the method was successfully executed and the other closure is called if the method
failed.

Let's start off by creating a class that will contain a method that will accept two closures and
then execute one of the closures based on the defined logic. We will name this class
TestClass. Here is the code for the TestClass class:

class TestClass {
 typealias ResultsClosure = ((String) -> Void)

 func isGreater(numOne: Int, numTwo:Int, successHandler:
ResultsClosure, failureHandler: ResultsClosure) {
 if numOne > numTwo {
 successHandler("\(numOne) is greater than \(numTwo)")

Working with Closures

[234]

 }
 else {
 failureHandler("\(numOne) is not greater than \(numTwo)")
 }

 }
}

We begin this class by creating a type alias that defines the closure that we will use for both
the successful and failure closures. We will name this type alias ResultsClosure. This
example also illustrates why we would use a type alias, rather than retyping the closure
definition. It saves us a lot of typing and also prevents us from making mistakes. In this
example, if we did not use a type alias, we would need to retype the closure definition four
times, and if we needed to change the closure definition, we would need to change it in four
spots. With the type alias, we only need to type the closure definition once and then use the
alias throughout the remaining code.

We then create a method named isGreater that takes two integers as the first two
parameters and then two closures as the next two parameters. The first closure is named
successHandler, and the second closure is named failureHandler. Within the
isGreater method, we check whether the first integer parameter is greater than the second
one. If the first integer is greater, the successHandler closure is executed; otherwise, the
failureHandler closure is executed.

Now, let's create two of our closures. The code for these two closures is as follows:

var success: TestClass.ResultsClosure = {
 print("Success: \($0)")
}

var failure: TestClass.ResultsClosure = {
 print("Failure: \($0)")
}

Note that both closures are defined as the TestClass.ResultsClosure type. In each
closure, we simply print a message to the console to let us know which closure was
executed. Normally, we would put some functionality in the closure.

We will then call the method with both the closures such as this:

var test = TestClass()
test.isGreater(numOne: 8, numTwo: 6, successHandler:success,
failureHandler:failure)

Working with Closures

[235]

Note that in the method call, we are sending both the success closure and the failure
closure. In this example, we will see the message, Success: 8 is greater than 6. If we
reversed the numbers, we would see the message, Failure: 6 is not greater than
8. This use case is really good when we call asynchronous methods, such as loading data
from a web service. If the web service call was successful, the success closure is called;
otherwise, the failure closure is called.

One big advantage of using closures such as this is that the UI does not freeze while we
wait for the web service call to complete. This also involves a concurrency piece, which we
will be covering in Chapter 14, Concurrency and Parallelism in Swift, later in this book. As an
example, try to retrieve data from a web service such as this:

var data = myWebClass.myWebServiceCall(someParameter)

Our UI would freeze while we wait for the response to come back, or we would have to
make the call in a separate thread so that the UI would not hang. With closures, we pass the
closures to the networking framework and rely on the framework to execute the
appropriate closure when it is done. This does rely on the framework to implement
concurrency correctly to make the calls asynchronously, but a decent framework should
handle that for us.

Creating strong reference cycles with
closures
Earlier in this chapter, we said, the best thing is, for the most part, Swift will handle the
memory management for us. The for the most part section of the quote means that if
everything is written in a standard way, Swift will handle the memory management of the
closures for us. However, there are times where memory management fails us. Memory
management will work correctly for all of the examples that we have seen in this chapter so
far. It is possible to create a strong reference cycle that prevents Swift's memory
management from working correctly. Let's look at what happens if we create a strong
reference cycle with closures.

A strong reference cycle may happen if we assign a closure to a property of a class instance
and within that closure, we capture the instance of the class. This capture occurs because we
access a property of that particular instance using self, such as self.someProperty, or
we assign self to a variable or constant, such as let c = self. By capturing a property of
the instance, we are actually capturing the instance itself, thereby creating a strong reference
cycle where the memory manager will not know when to release the instance. As a result,
the memory will not be freed correctly.

Working with Closures

[236]

Let's begin by creating a class that has a closure and an instance of the String type as its
two properties. We will also create a type alias for the closure type in this class and define a
deinit() method that prints a message to the console. The deinit() method is called
when the class gets released and the memory is freed. We will know when the class gets
released when the message from the deinit() method is printed to the console. This class
will be named TestClassOne. Let's take a look at the following code:

class TestClassOne {
 typealias nameClosure = (() -> String)
 var name = "Jon"
 lazy var myClosure: nameClosure = {
 return self.name
 }
 deinit {
 print("TestClassOne deinitialized")
 }
}

Now, let's create a second class that will contain a method that accepts a closure that is of
the nameClosure type that was defined in the TestClassOne class. This class will also
have a deinit() method, so we can also see when it gets released. We will name this class
TestClassTwo. Let's take a look at the following code:

class TestClassTwo {
 func closureExample(handler: TestClassOne.nameClosure) {
 print(handler())
 }
 deinit {
 print("TestClassTwo deinitialized")
 }
}

Now, let's see this code in action by creating instances of each class and then trying to
manually release the instance by setting them to nil:

var testClassOne: TestClassOne? = TestClassOne()
var testClassTwo: TestClassTwo? = TestClassTwo()

testClassTwo?.closureExample(handler:testClassOne!.myClosure)
testClassOne = nil
print("testClassOne is gone")
testClassTwo = nil
print("testClassTwo is gone")

Working with Closures

[237]

What we do in this code is create two optionals that may contain an instance of our two test
classes or nil. We need to create these variables as optionals because we will be setting them
to nil later in the code so that we can see whether the instances are released properly.

We then call the closureExample() method of the TestClassTwo instance and pass it the
myClosure property from the TestClassOne instance. We now try to release the
TestClassOne and TestClassTwo instances by setting them to nil. Keep in mind that
when an instance of a class is released, it attempts to call the deinit() method of the class,
if it exists. In our case, both classes have a deinit() method that prints a message to the
console, so we know when the instances are actually released.

If we run this project, we will see the following messages printed to the console:

 testClassOne is gone
 TestClassTwo deinitialized
 testClassTwo is gone

As we can see, we do attempt to release the TestClassOne instances, but the deinit()
method of the class is never called, indicating that it was not actually released; however, the
TestClassTwo instance was properly released because the deinit() method of that class
was called.

To see how this is supposed to work without the strong reference cycle, change the
myClosure closure to return a string type that is defined within the closure itself, as shown
in the following code:

lazy var myClosure: nameClosure = {
 return "Just Me"
}

Now, if we run the project, we should see the following output:

 TestClassOne deinitialized
 testClassOne is gone
 TestClassTwo deinitialized
 testClassTwo is gone

This shows that the deinit() methods from both the TestClassOne and TestClassTwo
instances were properly called, indicating that they were both released properly.

Working with Closures

[238]

In the first example, we capture an instance of the TestClassOne class within the closure
because we accessed a property of the TestClassOne class using self.name. This created
a strong reference from the closure to the instance of the TestClassOne class, preventing
memory management from releasing the instance.

Swift does provide a very easy and elegant way to resolve strong reference cycles in
closures. We simply need to tell Swift not to create a strong reference by creating a capture
list. A capture list defines the rules to use when capturing reference types within a closure.
We can declare each reference to be a weak or unowned reference rather than a strong
reference.

A weak keyword is used when there is the possibility that the reference will become nil
during its lifetime; therefore, the type must be an optional. The unowned keyword is used
when there is not a possibility of the reference becoming nil.

We define the capture list by pairing the weak or unowned keywords with a reference to a
class instance. These pairings are written within square brackets ([]). Therefore, if we
update the myClosure closure and define an unowned reference to self, we should
eliminate the strong reference cycle. The following code shows what the new myClosure
closure will look similar to:

lazy var myClosure: nameClosure = {
 [unowned self] in
 return self.name
}

Notice the new line-[unowned self] in. This line says that we do not want to create a
strong reference to the instance of self. If we run the project now, we should see the
following output:

 TestClassOne deinitialized
 testClassOne is gone
 TestClassTwo deinitialized
 testClassTwo is gone

This shows that both the TestClassOne and TestClassTwo instances were properly
released.

Working with Closures

[239]

Summary
In this chapter, we saw that we can define a closure just like we can define an Int or
String type. We can assign closures to a variable, pass them as an argument to functions,
and also return them from functions.

Closures capture a store references to any constants or variables from the context in which
the closure was defined. We have to be careful with this functionality to make sure that we
do not create a strong reference cycle, which would lead to memory leaks in our
applications.

Swift closures are very similar to blocks in Objective-C, but they have a much cleaner and
eloquent syntax. This makes them a lot easier to use and understand.

Having a good understanding of closures is vital to mastering the Swift programming
language and will make it easier to develop great applications that are easy to maintain.
They are also essential for creating first class frameworks that are both easy to use and
maintain.

The three use cases that we saw in this chapter are by no means the only three useful uses
for closures. I can promise you that the more you use closures in Swift, the more uses you
will find for them. Closures are definitely one of the most powerful and useful features of
the Swift language, and Apple did a great job by implementing them in the language.

13
Using C Libraries with Swift

A large majority of my early development work was done in the C programming language,
using the various C libraries that came with the system I was currently working on. These
libraries provided a wealth of functionality that made my development life easier. To be
honest, when I was using the C language as my primary development language, it was rare
to write an application without linking to either a third-party library or using a system
library. When Swift was initially released for the Linux platform, one of my first questions
was how useful would it be without the ability to access these libraries because they
provide so much functionality for the developer. Luckily, Apple has provided us with an
easy way to link these libraries to our Swift applications.

In this chapter, you will learn the following:

How to use C libraries with your Swift projects
How to create system modules
How to use the modules with your application
How to use man pages

Swift developers coming from Apple's iOS and OS X environments are use to using Apple's
frameworks that provide most of the functionality that they need. These frameworks
provide the ability to build incredible GUI interfaces, access Bluetooth devices, and a wealth
of other functionality.

It would be nice if Apple were able to provide similar frameworks for the Linux platform;
however, that is not really feasible. The reason it is not feasible is that the Linux platform
offers a wide variety of options for just about everything. It would be virtually impossible
for Apple to provide frameworks that were compatible with all of these options, therefore
Apple made it possible for Swift developers to link Linux's native C libraries to their Swift
applications. This gives Swift developers access to all of the same libraries and functionality
that Linux C developers have access to.

Using C Libraries with Swift

[241]

In this chapter, we will see how we can link native C libraries to our Swift application to
give us access to functionality that is not provided by the Swift standard or core libraries.
To do this, we will need to use the Swift Package Manager to manage our application's
dependencies and builds. If you are not familiar with the Swift Package Manager, you can
refer back to Chapter 1, Taking the First Step with Swift. To add C libraries to a Swift project,
we need to begin by creating a module that defines the libraries.

Modules
A module in Swift is code that is distributed as a single unit that can then be imported into
other modules using Swift's import keyword. Frameworks and applications are examples
of modules. In this chapter, we are going to look at a special kind of module that can be
used to map the C libraries we wish to import.

The Linux port of Swift comes with a predefined module named Glibc that contains most
of the Linux standard library; however, there are numerous headers that have not been
imported within this module. This module is similar to the Darwin module on Apple
platforms. Let's start off by looking at the Glibc module, and then we will look at defining
our own module to import a third-party C library.

To see what headers are defined in the Glibc module, we can look at the
glibc.modulemap file that is located in the usr/lib/swift/linux/x86_64/ directory of
our Swift installation. Don't worry if you do not fully understand the format of this file at
this time; we will explain the format later in this chapter when we look at creating our own
module. Right now, we just need to know that if we import the Glibc module into our code
we will be including all of the headers that are defined in this file.

Let's look at an example that will show us how to import the Glibc module. In this
example, we will create an extension to the array type that will randomly select an element
from the array. We will use the random() function provided by the system to generate the
random number for this extension. The following code shows the Array extension:

import Glibc

extension Array {

 func getRandomElement() -> Element {
 let index = Int(random() % self.count)
 return self[index]
 }
}

Using C Libraries with Swift

[242]

This example starts off with a single import statement that imports the Glibc framework.
This import statement allows us to use the system libraries that are defined in the Glibc
framework. If we tried to build the code without importing the Glibc framework, we
would receive the following error:

/main.swift:6:19: error: use of unresolved identifier 'random'
let index = Int(random() % self.count)

What this error tells us is that the compiler does not know anything about the random()
function. If we look at the man page for the random() function (you can access the man
pages using the following command: man random), we see that we need to import the
stdlib.h header if we want to use this function. If we then look at the headers that are
imported in the Glibc framework, we will see that the Glibc framework does include the
stdlib.h header. By importing the Glibc framework, we are essentially importing all of
the header files defined within it; therefore, we are importing the stdlib.h header that
defines the random() function. This allows us to use the random() function within our
code.

If you are new to developing applications and utilities in the Linux environment, you will
want to get familiar with Linux man pages to retrieve information about the system
libraries and the functionality they provide. These man pages will give you a wealth of
knowledge about the functions that you are using. We will discuss Linux man pages later in
this chapter.

Earlier, we mentioned that the Glibc framework contains most of the Linux standard
library, so what do we do if we want include headers that are not in the Glibc framework?
These headers could be part of the Linux standard library that are not currently defined in
the Glibc framework or libraries that are not part of the Linux standard library itself. Let's
see how we can create custom modules that we can use to add other headers or third-party
libraries to our applications. We will then see how we can use the functionality they
provide within our application.

Creating a custom module
To create a custom module, we will begin by creating a directory to put all of its files in.
This will be the module's main directory. Within this directory, we will need two files. The
first is a file named Package.swift, and the second is named module.modulemap.

Using C Libraries with Swift

[243]

Within the module.modulemap file we will define the headers we want to import and the
libraries that we wish to link to. The following sample shows how the module.modulemap
file is formatted:

module CMyModule [system] {
 header "/usr/include/mylibheader.h"
 link "mylib"
 export *
}

The first line defines the name of the module. This name is what we will import in our Swift
files. In this sample, the module's name is CMyModule. The next line defines the full path to
the header file that we want to import. The third line is optional and tells the compiler that
the functionality defined in the header can be found in the mylib library, so we will need to
link it. If we do not need an external library, we can omit this line. The last line says to
export all of the functionality.

The Swift Package Manager uses git and git tags to manage the packages and modules;
therefore, once we have created both files, we will need to create a Git repository for the
module. To do this, we run the following commands in the main directory for the module:

git init
git add .
git commit -m "Initial Import"
git tag 0.1.0

Before we explain how to use a module, let's go ahead and create the module needed for
our examples.

Creating the Cpcap module
For our first example, we will be creating a utility that will list the default network device
on the system the application is running on using the pcap library. For this utility, we will
use the pcap_lookupdev() function from the pcap library. The man page for the
pcap_lookupdev() function shows that we will need to import the pcap/pcap.h header
file.

If you cannot pull up the pcap_lookupdev man page on your system, you might not have
libpcap-dev installed. To install it using apt-get, run the following command:

 sudo apt-get install libpcap-dev

Using C Libraries with Swift

[244]

To create the module, let's start off by creating the directory and files that we need:

 mkdir Cpcap
 cd Cpcap
 touch Package.swift
 touch module.modulemap

Now we will need to define the pcap headers in the module.modulemap file. To do this, we
put the following code into module.modulemap file:

module Cpcap [system] {
module libpcap {
 header "/usr/include/pcap.h"
 link "pcap"
 export *
 }
}

Next, we need to add the following code to the Package.swift file to define our module:

import PackageDescription
let package = Package(
 name: "Cpcap"
)

Now we need to create the Git repository for the module by running the following
commands in the module's main directory:

 git init
 git add .
 git commit -m "Initial Import"
 git tag 0.1.0

Our module has now been created and is ready to use.

Using the Cpcap module
Now that the module has been created, let's look at how we would use it in a project. The
first thing we will need to do is to create a new project. The following commands will set up
a new project named pcapProject:

 mkdir pcapProject
 cd pcapProject
 swift package init

Using C Libraries with Swift

[245]

Now that the directory structure for our project has been created, we need to tell the
compiler to use the newly created Cpcap module. To do this, we will need to add a
dependency to the Package.swift file. The following code will define our application and
also its dependency on the Cpcap module:

import PackageDescription
let package = Package(
 name: "pcapProject",
 dependencies: [.Package(url: "../Cpcap", majorVersion: 0, minor: 1)]
)

We add the dependency using the dependencies line. The url within the dependencies
line defines the path to the module. This can be the filesystem path, as shown in our
example, or an Internet URL to a GitHub repository. We can also define multiple
dependencies by separating the packages with a comma, as shown here:

import PackageDescription
let package = Package(

 name: "exampleApp",
 dependencies: [.Package(url: "../modOne", majorVersion: 0, minor: 1),
 dependencies: [.Package(url: "../modTwo", majorVersion: 0, minor: 1)]
)

We can also define the minimum major and minor version numbers for the module. The
major and minor version numbers for our module were defined using the git tag
command.

We are now ready to use the libraries defined in the module within our application. The
following code shows the main.swift file that uses the pcap_lookupdev() function. This
file should be created in the Sources directory:

import Cpcap
import Glibc
var errbuf = UnsafeMutablePointer<Int8>.allocate(capacity:
Int(PCAP_ERRBUF_SIZE))

let dev = pcap_lookupdev(errbuf)

if let dev = dev {
 let devName = String(cString:dev)
 print("found \(devName)")
} else {
 print("Could not get dev")
}

Using C Libraries with Swift

[246]

In this code, we start off by importing both the Glibc and Cpcap modules. The Cpcap
module is the module that we created earlier in this chapter, while the Glibc module
contains most of the Linux standard library. When then declare an
UnsafeMutablePointer of the Int8 type.

The UnsafeMutablePointer type is a pointer to pointee objects. This type provides no
automated memory management; therefore, we must allocate and free memory
appropriately. Swift, whenever possible, avoids giving us direct access to memory with
pointers, while C and C libraries use pointers to memory extensively. The
UnsafeMutablePointer type allows us to use C libraries where we need to access
memory with pointers. You will be using the UnsafeMutablePointer type a lot when
working with C libraries.

Next, we call the pcap_lookupdev() function to retrieve the default pcap network device
for our system. We then use optional binding to make sure we did not receive a nil value
from the pcap_lookupdev() function.

The pcap_lookupdev() function returns a pointer to a NUL-terminated arrays of
characters, which is also known as a C string; therefore, we use the String(cString:)
initiator to convert this C string to a Swift string. Once we convert the device name to a
Swift string, we then print it out.

We can now build our project by running the following command from the project's root
directory, which contains the Package.swift file:

 swift build

If we do not receive any errors, we will have an executable file named pcapProject (the
same name as the project) in the .build/debug/ directory. When can now run that file,
and we should see some output similar to this:

 Found eth0

This was a pretty good first example, and one that was pretty easy to understand, since the
function we used returned a C string. For our next example, we will see how we can access
the data from a linked list that is returned from a C function. It is very common, especially
for system-level C libraries, to return a pointer to a linked list; therefore, it is important to
understand how we would access the data stored in these lists.

http://en.wikipedia.org/wiki/Null-terminated_string
http://en.wikipedia.org/wiki/Null-terminated_string

Using C Libraries with Swift

[247]

For this example, we will also use the pcap_findalldevs() function from the pcap
library. If you look at the man page for the pcap_findalldevs() function (man
pcap_findalldevs), you will see that this function constructs a list of network devices
that can be opened with pcap_create() and pcap_activate() or with
pcap_open_live().

The list that is returned is a linked list of the pcap_if_t type. The man page also gives us a
list of properties in the pcap_if_t type. For our example, we are only interested in the
next property (which points to the next item in the list) and the name property (which
contains the name of the device).

Let's start off by creating a new project named pcapAllDevs using the following
commands:

 mkdir pcapAllDevs
 cd pcapAllDevs
 swift package init

Now we need to link the Cpcap module that we created earlier in this chapter to this new
project. We do this by updating the projects Package.swift file to look such as this:

import PackageDescription
let package = Package(
 name: "pcapAllDevs",
 dependencies: [.Package(url: "../Cpcap", majorVersion: 0, minor: 1)]
)

Being able to link multiple projects to the same module is what makes modules so useful.
This gives us the ability to configure a module once so that it includes everything we need
for a certain type of project, and then link to that module whenever we need to. Now let's
create the main.swift file in the Sources directory and put the following code in it:

import Cpcap
import Glibc

var errbuf = UnsafeMutablePointer<Int8>.allocate(
capacity:Int(PCAP_ERRBUF_SIZE))
var devs = UnsafeMutablePointer<UnsafeMutablePointer<pcap_if_t>?>.
allocate(capacity:1)

if (pcap_findalldevs(devs,errbuf) >= 0) {
 if var nDev = devs.pointee {
 var cont = true

 while (cont) {
 var devName = String(cString: nDev.pointee.name)

Using C Libraries with Swift

[248]

 print("Dev Name: \(devName)")
 if (nDev.pointee.next != nil) {
 nDev = nDev.pointee.next
 } else {
 cont = false
 }
 }
 }

 pcap_freealldevs(devs.pointee)
} else {
 print("Could not get devices")
}

This example starts off exactly like the last example: by importing the Cpcap and Glibc
modules. We also create the errbuf variable of the UnsafeMutablePointer<Int8> type,
just like in the last example.

Next, we create the devs variable of the
UnsafeMutablePointer<UnsafeMutablePointer<pcap_if_t>?> type. This variable
will contain the pointer to the first element in the linked list when the
pcap_findalldevs() function returns. If the pcap_findalldevs() function fails, then
the UnsafeMutablePointer will be nil, which is the reason we make it an optional.

On the pcap_findalldevs man page, we see that the pcap_findalldevs() function
returns 0 if it was successful, or -1 if it failed; therefore, when we call the function, we check
the return value to see if it was successful or not. If you are not familiar with Linux/Unix
man pages, I cannot stress enough that you should get familiar with them. If you have any
questions about how to use a particular function, the first place you should check is the man
page.

We then use optional binding to retrieve the first element in the list and set the cont
variable to true. The cont variable is used to tell the while loop when we have reached the
end of the list and to exit the loop.

In the next line, the nDev.pointee.name code is used to retrieve the name element of the
current pcap_if_t item pointed to by the nDevUnsafeMutablePointer. Since the name
element is a C string, we use the String(cString:) initiator to convert it to a Swift string.
We then print the device name to the console.

Using C Libraries with Swift

[249]

In the pcap_if_t structure, the next property points to the next element in the list. If we
are at the end of the list, the next property is nil; therefore, in the next line we check to see
if the next property is nil. If it is not nil, we set the nDev pointer to the next element in the
list. If the next property is nil, we set the cont variable to false to stop the while loop.

Once we have looped through all of the elements in the list, we use the pcap_freealldevs
function to free all of the elements of the list. If you look at the man page for the
pcap_findalldevs function, you will see that the pcap_freealldevs function is
mentioned as the function that will free all of the elements in the linked list. Keep in mind
that the description of the UnsafeMutablePointer type tells us that there is no automated
memory management for this type; therefore, we must allocate and free memory
appropriately.

To build this project you would issue the following command from the project's root
directory where the Package.swift file is located:

 swift build

Linux man pages
In this chapter, we have made several reference to man pages. Man pages, which is short for
manual pages, are how software is documented on Unix and Unix-like systems. You can
find a wealth of information about applications, system calls, libraries, and even various
abstract concepts. Understanding how to use man pages is an important concept for any
Linux developer; therefore, let's look at how to use them by looking at the man page for the
pcap_findalldevs() function. We will need to open a terminal prompt and use the
following command:

 man pcap_findalldevs

Using C Libraries with Swift

[250]

Once you run this command, you should see something similar to the following screenshot:

To scroll through the page, you will use the up and down arrow keys, and to exit the page,
simply press the q key. If you need help, press the h key. There are a number of other
commands, but that will be enough to get you started. A man page may contain several
sections, but almost all of them start with the NAME, SYNOPSIS, and DESCRIPTION sections.
If you scroll through the page you will see that the pcap_findalldevs man page also
includes RETURN and SEE ALSO sections.

The NAME section generally gives a list of what is covered by this man page, with a brief
description. You can see that that this man page covers both the pcap_findalldevs and
the pcap_freealldevs functions. It also tells us that these functions will get a list of
capture devices and frees the list.

Using C Libraries with Swift

[251]

The SYNOPSIS section shows us how to use the functions and also what we need to use
them. For the pcap_findalldevs and the pcap_freealldevs functions, this man page
tells us that we need to include the pcap/pcap.h header. If you recall, we included that
header in our Cpcap module at the beginning of this chapter. This section also shows us
how to use the pcap_findalldevs and the pcap_freealldevs functions. The hardest
part of being a Swift Linux developer is converting these function calls from the C language
to the Swift language.

The next section is the DESCRIPTION section. This section gives a detailed description of the
functions. For this particular man page, it also tells us what elements make up the
pcap_if_t structure, which is returned by the pcap_findalldevs function. If this was the
first time you have used a function, I would recommend taking the time to read the
description section in its entirety, because it usually contains useful information about the
function.

The RETURN section gives us information about what is returned from the function. This is
the section that told us that a 0 was returned if the function was successful, or a -1 if the
function failed.

The SEE ALSO section gives us a list of other man pages related to this one.

If you are going to be working with C libraries with your Swift projects, the man pages are
going to be one of your main resources.

Summary
In this chapter, we saw how we to create a custom module to import C libraries and headers
into our Swift projects. Understanding how to use C libraries in our Swift projects gives us
the ability to include any Linux and third-party C libraries in our Swift projects.

We also saw how to use the Linux man pages to get information about C functions. If you
have a question about a C function, the first place you should look is the man pages.

14
Concurrency and Parallelism in

Swift
When I first started learning Objective-C, I already had a good understanding of
concurrency and multitasking with my background in other languages, such as C and Java.
This background made it very easy for me to create multithreaded applications using
threads in Objective-C. Then, Apple changed everything when they released Grand Central
Dispatch (GCD) with OS X 10.6 and iOS 4. At first, I went into denial: there was no way
GCD could manage my application's threads better than I could. Then I entered the anger
phase: GCD was hard to use and understand. Next was the bargaining phase: maybe I can
use GCD with my threading code, so I could still control how the threading worked. Then
there was the depression phase: maybe GCD does handle threading better than I can.
Finally, I entered the wow phase: this GCD thing is really easy to use and works amazingly
well. After using GCD on Apple platforms for so long, I was very happy to hear that Apple
was bringing it to the Linux platform with Swift.

In this chapter, we will cover the following topics:

Basics of concurrency and parallelism
How to use GCD to create and manage concurrent dispatch queues
How to use GCD to create and manage serial dispatch queues
How to use various GCD functions to add tasks to the dispatch queues

Concurrency and Parallelism in Swift

[253]

Concurrency and parallelism
Concurrency is the concept of multiple tasks starting, running, and completing within the
same time period. This does not necessarily mean that the tasks are executing
simultaneously. In fact, in order for tasks to be run simultaneously, our application needs to
be running on a multicore or multiprocessor system. Concurrency allows us to share the
processor or cores with multiple tasks; however, a single core can only execute one task at a
given time.

Parallelism is the concept of two or more tasks running simultaneously. Since each core of
our processor can only execute one task at a time, the number of tasks executing
simultaneously is limited to the number of cores within our processors and the number of
processors that we have. As an example, if we have a four-core processor, then we are
limited to running four tasks simultaneously. Today's processors can execute tasks so
quickly that it may appear that larger tasks are executing simultaneously. However, within
the system, the larger tasks are actually taking turns executing subtasks on the cores.

In order to understand the difference between concurrency and parallelism, let's look at
how a juggler juggles balls. If you watch a juggler, it seems they are catching and throwing
multiple balls at any given time; however, a closer look reveals that they are, in fact, only
catching and throwing one ball at a time. The other balls are in the air waiting to be caught
and thrown. If we want to be able to catch and throw multiple balls simultaneously, we
need to have multiple jugglers.

This example is really good because we can think of jugglers as the cores of a processer. A
system with a single core processor (one juggler), regardless of how it seems, can only
execute one task (catching and throwing one ball) at a time. If we want to execute more than
one task at a time, we need to use a multicore processor (more than one juggler).

Back in the old days, when all processors were single-core, the only way to have a system
that executed tasks simultaneously was to have multiple processors in the system. This also
required specialized software to take advantage of the multiple processors. In today's
world, just about every device has a processor that has multiple cores.

Traditionally, the way applications added concurrency was to create multiple threads;
however, this model does not scale well to an arbitrary number of cores. The biggest
problem with using threads was that our applications ran on a variety of systems (and
processors), and in order to optimize our code, we needed to know how many
cores/processors could be efficiently used at a given time, which is usually not known at the
time of development.

Concurrency and Parallelism in Swift

[254]

In order to solve this problem, many operating systems, including iOS and OS X, started
relying on asynchronous functions. These functions are often used to initiate tasks that
could possibly take a long time to complete, such as making an HTTP request or writing
data to disk. An asynchronous function typically starts the long-running task and then
returns prior to the task completion. Usually, this task runs in the background and uses a
callback function (such as a closure in Swift) when the task completes.

These asynchronous functions work well for the tasks that the OS provides them for, but
what if we need to create our own asynchronous functions and do not want to manage the
threads ourselves? For this, Apple provides GCD with Swift 3 on the Linux platform. GCD
is a low-level C-based API that allows specific tasks to be queued up for execution and
schedules the execution on any of the available processor cores. Let's look at GCD and how
we can use it.

GCD
Prior to Swift 3, using GCD felt like writing low-level C code. The API was a little
cumbersome and sometimes hard to understand because it did not use any of the Swift
language design features. This all changed with Swift 3, because Apple took up the task of
rewriting the API so it would meet the Swift 3 API guidelines.

GCD provides what is known as dispatch queues to manage submitted tasks. The queues
manage these submitted tasks and execute them in a first-in, first-out (FIFO) order. This
ensures that the tasks are started in the order they were submitted.

A task is simply some work that our application needs to perform. As examples, we can
create tasks that perform simple calculations, read/write data to disk, make an HTTP
request, or anything else that our application needs to do. We define these tasks by placing
the code inside either a function or a closure and adding it to a dispatch queue.

GCD provides three types of queue:

Serial queues: Tasks in a serial queue (also known as a private queue) are
executed one at a time in the order they were submitted. Each task is started only
after the preceding task is completed. Serial queues are often used to synchronize
access to specific resources because we are guaranteed that no two tasks in a
serial queue will ever run simultaneously. Therefore, if the only way to access the
specific resource is through the tasks in the serial queue, then no two tasks will
attempt to access the resource at the same time or out of order.

Concurrency and Parallelism in Swift

[255]

Concurrent queues: Tasks in a concurrent queue (also known as a global
dispatch queue) execute concurrently; however, the tasks are still started in the
order that they were added to the queue. The exact number of tasks that can be
executing at any given instance is variable and is dependent on the system's
current conditions and resources. The decision on when to start a task is up to
GCD and is not something that we can control within our application.
Main dispatch queue: The main dispatch queue is a globally available serial
queue that executes tasks on the application's main thread. Since tasks put into
the main dispatch queue run on the main thread, it is usually called from a
background queue when some background processing has finished and the user
interface needs to be updated.

Dispatch queues offer a number of advantages over traditional threads. The first and
foremost advantage is that, with dispatch queues, the system handles the creation and
management of threads rather than the application itself. The system can scale the number
of threads dynamically based on the overall available resources of the system and the
current system conditions. This means that dispatch queues can manage the threads with
greater efficiency than we could.

Another advantage of dispatch queues is that we are able to control the order in which our
tasks are started. With serial queues, not only do we control the order in which tasks are
started, but also ensure that one task does not start before the preceding one is complete.
With traditional threads, this can be very cumbersome and brittle to implement, but with
dispatch queues, as we will see later in this chapter, it is quite easy.

Helper functions
Before we look at how to use dispatch queues, let's create a couple of helper functions that
will help us demonstrate how the various types of queue work. The first function will
simply perform some basic calculations and then return a value. Here is the code for this
function, which is named doCalc():

func doCalc() {
 var x=100
 var y = x*x
 _ = y/x
}

Concurrency and Parallelism in Swift

[256]

The other function, which is named performCalculation(), accepts two parameters. One
is an integer named iterations, and the other is a string named tag. The
performCalculation() function calls the doCalc() function repeatedly until it calls the
function the same number of times as defined by the iterations parameter. We also use the
CFAbsoluteTimeGetCurrent() function to calculate the elapsed time it took to perform
all of the iterations and then print the elapsed time with the tag string to the console. This
will let us know when the function completes and how long it took to complete it. Here is
the code for this function:

func performCalculation(_ iterations: Int, tag: String) {
 let start = CFAbsoluteTimeGetCurrent()
 for _ in 0 ..< iterations {
 doCalc()
 }
 let end = CFAbsoluteTimeGetCurrent()
 print("time for \(tag): \(end-start)")
}

You will need to import the Foundation and Glibc libraries.

These functions will be used together to keep our queues busy, so we can see how they
work. Let's begin by looking at how we would create a dispatch queue.

Creating queues
We use the DispatchQueue initializer to create a new dispatch queue. The following code
shows how to create a new dispatch queue:

let concurrentQueue = DispatchQueue(label: "cqueue.hoffman.jon",
attributes: .concurrent)
let serialQueue = DispatchQueue(label: "squeue.hoffman.jon")

The first line creates a concurrent queue with the label of cqueue.hoffman.jon, while the
second line creates a serial queue with the label of squeue.hoffman.jon. You will need to
import the Dispatch library to use the dispatch queues.

The DispatchQueue initializer takes the following parameters:

label: This is a string label that is attached to the queue to uniquely identify it in
debugging tools, such as instruments and crash reports. It is recommended that
we use a reverse DNS naming convention. This parameter is optional and can be
nil.

Concurrency and Parallelism in Swift

[257]

attributes: This specifies the type of queue to make. This can be
DISPATCH_QUEUE_SERIAL, DISPATCH_QUEUE_CONCURRENT, or nil. If this
parameter is nil, a serial queue is created.

Some programming languages use the reverse DNS naming convention to
name certain components. This convention is based on a registered
domain name that is reversed. As an example, if we worked for company
that had a mycompany.com domain name with a product called widget,
the reverse DNS name will be com.mycompany.widget.

Creating and using a concurrent queue
A concurrent queue will start the tasks in the FIFO order; however, the tasks will execute
concurrently and therefore they may finish in any order. Let's see how to create and use a
concurrent queue. The following line creates the concurrent queue that we will be using for
this section:

let cqueue = DispatchQueue(label: "cqueue.hoffman.jon", attributes:
.concurrent)

This line will create a new dispatch queue that we will name cqueue. This queue has a label
of cqueue.hoffman.jon. Now let's see how we would use our concurrent queue by using
the performCalculation() function to perform some calculations:

let c = { performCalculation(1000, tag: "async1")}
cqueue.async(execute: c)

In the preceding code, we created a closure, which represents our task, that simply calls the
performCalculation() function, requesting that it runs through 1000 iterations of the
doCalc() function. Finally, we use the async(execute:) method of our queue to execute
it. This code will execute the task in a concurrent dispatch queue, which is separate from the
main thread.

While the preceding example works perfectly, we can actually shorten the code a little bit.
The next example shows that we do not need to create a separate closure as we did in the
preceding example; we can also submit the task to execute like this:

cqueue.async {
 performCalculation(1000, tag: "async1")
}

Concurrency and Parallelism in Swift

[258]

This shorthand version is how we usually submit small code blocks to our queues. If we
have larger tasks, or tasks that we need to submit multiple times, we will generally want to
create a closure and submit the closure to the queue, as we showed in the first example.

Let's see how the concurrent queue actually works by adding several items to the queue
and looking at the order and time in which they return. The following code will add three
tasks to the queue. Each task will call the performCalculation() function with various
iteration counts. Remember that the performCalculation() function will execute the
calculation routine continuously until it is executed the number of times defined by the
iteration count passed in. Therefore, the larger the iteration count we pass into the
performCalculation() function, the longer it should take to execute. Let's take a look at
the following code:

cqueue.async {
 performCalculation(10000000, tag: "async1")
}

cqueue.async {
 performCalculation(1000, tag: "async2")
}

cqueue.async {
 performCalculation(100000, tag: "async3")
}

Since we are running the tasks in a dispatch queue, the application may exit prior to the
tasks finishing. To prevent the application from exiting, you can put in the following code,
which will cause the application to wait for the user to press Enter before exiting:

print("press enter to exit")
let _ = readLine(strippingNewline: true)

Notice that each of the functions is called with a different value in the tag parameter. Since
the performCalculation() function prints out the tag variable with the elapsed time, we
can see the order in which the tasks complete and the time it took to execute. If we execute
the preceding code, we should see results similar to this:

 time for async2: 0.000200986862182617
 time for async3: 0.00800204277038574
 time for async1: 0.461670994758606

The elapsed time will vary from one run to the next, and from system to
system.

Concurrency and Parallelism in Swift

[259]

Since the queues function in the FIFO order, the task that had the tag of async1 was
executed first. However, as we can see from the results, it was the last task to finish. Since
this is a concurrent queue, if it is possible (if the system has the available resources), the
blocks of code will execute concurrently. This is why the tasks with the async2 and
async3 tags completed prior to the task that had the async1 tag, even though the
execution of the async1 task began before the other two.

Now, let's see how a serial queue executes tasks.

Creating and using a serial queue
A serial queue functions a little differently from a concurrent queue. A serial queue will
only execute one task at a time and will wait for one task to complete before starting the
next one. This queue, like the concurrent dispatch queue, follows a FIFO order. The
following line of code will create a serial queue that we will be using for this section:

let squeue = DispatchQueue(label: "squeue.hoffman.jon")

Now let's see how we would use the serial queue by using the performCalculation()
function to perform some calculations:

let s = { performCalculation(1000, tag: "sync1")}
squeue.async (execute: s)

In the preceding code, we created a closure, which represents our task, that simply calls the
performCalculation() function, requesting that it runs through 1000 iterations of the
doCalc() function. Finally, we use the async(execute:) method of our queue to execute
it. This code will execute the task in a serial dispatch queue, which is separate from the
main thread. As we can see from this code, we use the serial queue exactly like we use the
concurrent queue.

We could shorten this code a little bit, just like we did with the concurrent queue. The next
example shows how we would do this with a serial queue:

squeue.async {
 performCalculation(1000, tag: "sync2")
}

Let's see how the serial queues works by adding several items to the queue and looking at
the order in which they complete. The following code will add three tasks, which will call
the performCalculation() function with various iteration counts, to the queue:

squeue.async {
 performCalculation(100000, tag: "sync1")
}

Concurrency and Parallelism in Swift

[260]

squeue.async {
 performCalculation(1000, tag: "sync2")
}

squeue.async {
 performCalculation(100000, tag: "sync3")
}

Just like with the concurrent queue example, we call the performCalculation() function
with various iteration counts and different values in the tag parameter. Since the
performCalculation() function prints out the tag string with the elapsed time, we can
see the order that the tasks complete in and the time it takes to execute. If we execute this
code, we should see results similar to this:

 time for sync1: 0.00648999214172363
 time for sync2: 0.00009602308273315
 time for sync3: 0.00515800714492798

The elapsed time will vary from one run to the next, and from system to
system.

Unlike with concurrent queues, we can see that the tasks were completed in the same order
that they were submitted in, even though the sync2 and sync3 tasks took considerably less
time to complete. This demonstrates that a serial queue only executes one task at a time and
that the queue waits for each task to be completed before starting the next one.

In the previous examples, we used the async method to execute the code blocks. We could
also use the sync method.

async versus sync
In the previous examples we used the async method to execute the code blocks. When we
use the async method, the call will not block the current thread. This means that the
method returns and the code block is executed asynchronously.

Rather than using the async method, we could use the sync method to execute the code
blocks. The sync method will block the current thread, which means it will not return until
the execution of the code has completed. Generally, we use the async method, but there are
use cases where the sync method is useful. This is usually when we have a separate thread
and we want that thread to wait for some work to finish.

Concurrency and Parallelism in Swift

[261]

Executing code on the main queue function
The DispatchQueue.main.async(execute:) function will execute code on the
application's main queue. We generally use this function when we want to update our code
from another thread or queue.

The main queue is automatically created for the main thread when the application starts.
This main queue is a serial queue; therefore, items in this queue are executed one at a time,
in the order in which they were submitted. We will generally want to avoid using this
queue unless we need to update the user interface from a background thread.

The following code example shows how to use this function:

DispatchQueue.main.async {
//perform task on the main thread.
}

There will be times when we need to execute tasks after a delay. If we were using a
threading model, we would need to create a new thread, perform some sort of delay or
sleep function, and execute our task. With GCD, we can use the asyncAfter method.

Using asyncAfter
The asyncAfter function will execute a block of code asynchronously after a given delay.
This is very useful when we need to pause the execution of our code. The following code
sample shows how to use the asyncAfter function:

let queue2 = DispatchQueue(label: "squeue.hoffman.jon")
let delayInSeconds = 2.0
let pTime = DispatchTime.now() + Double(Int64(delayInSeconds *
Double(1000000))) / Double(1000000)
queue2.asyncAfter(deadline: pTime) {
 print("Times Up")")
}

In this code, we begin by creating a serial dispatch queue. We then create an instance of the
DispatchTime type and calculate the time to execute the block of code based on the current
time. We then use the asyncAfter function to execute the code block after the delay.

Concurrency and Parallelism in Swift

[262]

Summary
Before we consider adding concurrency to our application, we should make sure that we
understand why we are adding it and ask ourselves whether it is necessary. While
concurrency can make our application more responsive by offloading work from our main
application thread to a background thread, it also adds extra complexity to our code and
overhead to our application. I have even seen numerous applications, in various languages,
which actually run better after we have pulled out some of the concurrency code. This is
because the concurrency was not well thought out or planned. With this in mind, it is
always a good idea to think and talk about concurrency while we are discussing the
application's expected behavior.

At the start of this chapter, we had a discussion about running tasks concurrently compared
to running tasks in parallel. We also discussed the hardware limitation that limits how
many tasks can run in parallel on a given device. Having a good understanding of those
concepts is very important for understanding how and when to add concurrency to our
projects.

While we are able to use native threads with Swift, as we do with C applications, I would
recommend taking looking at GCD instead.

15
Swifts Core Libraries

I was really excited when Apple announced that they were going to release a version of
Swift for Linux. This meant I could use Swift for my Linux and embedded development, as
well as my Mac OS and iOS development. When Apple first released Swift 2.2 for Linux I
was very excited, but I was also a little disappointed because I could not read/write files,
access network services, or use libdispatch (GCD) on Linux like I could on Apple's
platforms. With the release of Swift 3, Apple has corrected this with the release of the
Swift's core libraries.

In this chapter, you will learn about the following topics:

What are the Swift core libraries
How to use Apple's URL loading system
How to use the Formatter classes
How to use the FileManager class

The Swift core libraries are written to provide a rich set of APIs that are consistent across
the various platforms that Swift supports. By using these libraries, developers will be able
to write code that will be portable to all platforms that Swift supports. These libraries
provide a higher level of functionality than the Swift standard library.

Swifts Core Libraries

[264]

The core libraries provide functionality in a number of areas, such as the following:

Networking
Unit testing
Scheduling and execution of work (libdispatch)
Property lists, JSON parsing, and XML parsing
Support for dates, times, and calendar calculations
Abstraction of OS-specific behavior
Interaction with the filesystem
User preferences

We are unable to cover all of the core libraries in this single chapter; however, we will look
at some of the more useful one. We will start off by looking at Apple's URL loading system,
which is used for network development.

Apple's URL loading system
Apple's URL loading system is a framework of classes available to interact with URLs. We
can use these classes to communicate with services that use standard Internet protocols. The
classes that we will be using in this section to connect to and retrieve information from
REST services are as follows:

URLSession: This is the main session object.
URLSessionConfiguration: This is used to configure the behavior of the
URLSession object.
URLSessionTask: This is a base class to handle the data being retrieved from the
URL. Apple provides three concrete subclasses of the URLSessionTask class.
URL: This is an object that represents the URL to connect to.
URLRequest: This class contains information about the request that we are
making and is used by the URLSessionTask service to make the request.
HTTPURLResponse: This class contains the response to our request.

Now, let's look at each of these classes a little more in depth so that we have a basic
understanding of what each does.

Swifts Core Libraries

[265]

URLSession
An URLSession object provides an API for interacting with various protocols, such as
HTTP and HTTPS. The session object, which is an instance of the URLSession, manages
this interaction. These session objects are highly configurable, which allows us to control
how our requests are made and how we handle the data that is returned.

Like most networking API, URLSession is asynchronous. This means that we have to
provide a way to return the response from the service back to the code that needs it. The
most popular way to return the results from a session is to pass a completion handler block
(closure) to the session. This completion handler is then called when the service successfully
responds or we receive an error. All of the examples in this chapter use completion handlers
to process the data that is returned from the services.

URLSessionConfiguration
The URLSessionConfiguration class defines the behavior and policies to use when using
the URLSession object to connect to a URL. When using the URLSession object, we usually
create an URLSessionConfiguration instance first because an instance of this class is
required when we create an instance of the URLSession class.

The URLSessionConfiguration class defines three session types:

Default session configuration: Manages the upload and download tasks with
default configurations
Ephemeral session configuration: This configuration behaves similarly to the
default session configuration, except that it does not cache anything to disk
Background session configuration: This session allows for uploads and
downloads to be performed, even when the app is running in the background

It is important to note that we should make sure that we configure the
URLSessionConfiguration object appropriately before we use it to create an instance of
the URLSession class. When the session object is created, it creates a copy of the
configuration object that we provide. Any changes made to the configuration object once
the session object is created are ignored by the session. If we need to make changes to the
configuration, we must create another instance of the URLSession class.

Swifts Core Libraries

[266]

URLSessionTask
The URLSession service uses an instance of the URLSessionTask class to make the call to
the service that we are connecting to. The URLSessionTask class is a base class, and Apple
has provided three concrete subclasses that we can use:

URLSessionDataTask: This returns the response, in memory, directly to the
application as one or more Data objects. This is the task that we generally use
most often.
URLSessionDownloadTask: This writes the response directly to a temporary file.
URLSessionUploadTask: This is used for making requests that require a request
body, such as a POST or PUT request.

It is important to note that a task will not send the request to the service until we call the
resume() method.

URL
The URL object represents the URL that we are going to connect to. The URL class is not
limited to URLs that represent remote servers, but it can also be used to represent a local file
on disk. In this chapter, we will be using the URL class exclusively to represent the URL of
the remote service that we are connecting to.

URLRequest
We use the URLRequest class to encapsulate our URL and the request properties. It is
important to understand that the URLRequest class is used to encapsulate the necessary
information to make our request, but it does not make the actual request. To make the
request, we use instances of the URLSession and URLSessionTask classes.

HTTPURLResponse
The HTTPURLResponse class is a subclass of the URLResponse class that encapsulates the
metadata associated with the response to a URL request. The HTTPURLResponse class
provides methods for accessing specific information associated with an HTTP response.
Specifically, this class allows us to access the HTTP header fields and the response status
codes.

Swifts Core Libraries

[267]

We briefly covered a number of classes in this section and it may not be clear how they all
actually fit together; however, once you see the examples a little further in this chapter, it
will become much clearer. Before we go into our examples, let's take a quick look at the type
of service that we will be connecting to.

REST web services
REST has become one of the most important technologies for stateless communications
between devices. Due to the lightweight and stateless nature of the REST-based services, its
importance is likely to continue to grow as more devices are connected to the Internet.

REST is an architecture style for designing networked applications. The idea behind REST is
that instead of using complex mechanisms, such as Simple Object Access Protocol (SOAP)
or Common Object Request Broker Architecture (CORBA), to communicate between
devices, we use simple HTTP requests. While, in theory, REST is not dependent on the
Internet protocols, it is almost always implemented using them. Therefore, when we are
accessing REST services, we are almost always interacting with web servers in the same
way that our web browsers interact with these servers.

REST web services use the HTTP POST, GET, PUT, or DELETE methods. If we think about a
standard Create/Read/Update/Delete (CRUD) application, we would use a POST request to
create or update data, a GET request to read data, and a DELETE request to delete data.

When we type a URL into our browser's address bar and hit Enter, we are generally making
a GET request to the server and asking it to send us the web page associated with that URL.
When we fill out a web form and click the submit button, we are generally making a POST
request to the server. We then include the parameters from the web form in the body of our
POST request.

Now, let's look at how to make an HTTP GET request using Apple's networking API.

Making an HTTP GET request
In this example, we will make a GET request to Apple's iTunes search API to get a list of
items related to the search term Jimmy Buffett. Since we are retrieving data from the
service, by REST standards, we should use a GET request to retrieve the data.

While the REST standard is to use GET requests to retrieve data from a service, there is
nothing stopping a developer of a web service from using a GET request to create or update
a data object. It is not recommended to use a GET request in this manner, but just be aware
that there are services out there that do not adhere to the REST standards.

Swifts Core Libraries

[268]

The following code makes a request to Apple's iTunes search API and then prints the
results to the console:

public typealias dataFromURLCompletionClosure = (URLResponse?, Data?) ->
Void
public func sendGetRequest (
 _ handler: @escaping dataFromURLCompletionClosure) {

 let sessionConfiguration = URLSessionConfiguration.default;
 let urlString =
 "https://itunes.apple.com/search?term=jimmy+buffett"
 if let encodeString =
 urlString.addingPercentEncoding(
 withAllowedCharacters: CharacterSet.urlQueryAllowed),
 let url = URL(string: encodeString) {
 var request = URLRequest(url:url)
 request.httpMethod = "GET"
 let urlSession = URLSession(
 configuration:sessionConfiguration, delegate: nil,
 delegateQueue: nil)

 let sessionTask = urlSession.dataTask(with: request) {
 (data, response, error) in
 handler(response, data)
 }
 sessionTask.resume()
 }
}

We start off by creating a type alias named DataFromURLCompletionClosure. The
DataFromURLCompletionClosure type will be used for both the GET and POST examples
of this chapter. If you are not familiar with using a typealias object to define a closure
type, please refer to Chapter 12, Working with Closures, for more information.

We then create a function named sendGetRequest() that will be used to make the GET
request to Apple's iTunes API. This function accepts one argument named handler, which is
a closure that conforms to the DataFromURLCompletionClosure type. The handler
closure will be used to return the results from the request.

Starting with Swift 3, the default for closure arguments to functions is not escaping, which
means that, by default, the closures argument cannot escape the function body. A closure is
considered to escape a function when that closure, which is passed as an argument to the
function, is called after the function returns. Since the closure will be called after the
function returns, we use the @escaping attribute before the parameter type to indicate it is
allowed to escape.

Swifts Core Libraries

[269]

Within our sendGetRequest() method, we begin by creating an instance of the
URLSessionConfiguration class using the default settings. If we need to, we can modify
the session configuration properties after we create it, but in this example, the default
configuration is what we want.

After we create our session configuration, we create the URL string. This is the URL of the
service we are connecting to. With a GET request, we put our parameters in the URL itself.
In this specific example, h t t p s ://i t u n e s . a p p l e . c o m /s e a r c h is the URL of the web service.
We then follow the web service URL with a question mark (?), which indicates that the rest
of the URL string consists of parameters for the web service.

The parameters take the form of key/value pairs, which means that each parameter has a
key and a value. The key and value of a parameter, in a URL, are separated by an equals
sign (=). In our example, the key is term and the value is jimmy+buffett. Next, we run the
URL string that we just created through the addingPercentEncoding() method to make
sure our URL string is encoded properly. We use the CharacterSet.urlQueryAllowed
character set with this method to ensure we have a valid URL string.

Next, we use the URL string that we just built to create an URL instance named url. Since
we are making a GET request, this URL instance will represent both the location of the web
service and the parameters that we are sending to it.

We create an instance of the URLRequest class using the URL instance that we just created.
In this example, we set the HTTPMethod property; however, we can also set other properties
such as the timeout interval or add items to our HTTP header.

Now, we use the sessionConfiguration constant that we created at the beginning of the
sendGetRequest() function to create an instance of the URLSession class. The
URLSession class provides the API that we will use to connect to Apple's iTunes search
API. In this example, we use the dataTask(with:) method of the URLSession instance to
return an instance of the URLSessionDataTask type named sessionTask.

The sessionTask instance is what makes the request to the iTunes search API. When we
receive the response from the service, we use the handler callback to return both the
URLResponse object and the Data object. The URLResponse contains information about the
response, and the Data instance contains the body of the response.

Finally, we call the resume() method of the URLSessionDataTask instance to make the
request to the web service. Remember, as we mentioned earlier, a URLSessionTask
instance will not send the request to the service until we call the resume() method.

https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search
https://itunes.apple.com/search

Swifts Core Libraries

[270]

Now, let's look at how we would call the sendGetRequest() function. The first thing we
need to do is to create a closure that will be passed to the sendGetRequest() function and
called when the response from the web service is received. In this example, we will simply
print the response to the console. Here is the code:

let printResultsClosure: dataFromURLCompletionClosure = {
 if let data = $1 {
 let sString = String(data: data,
 encoding: String.Encoding(rawValue:
 String.Encoding.utf8.rawValue))
 print(sString)
 } else {
 print("Data is nil")
 }
}

We define this closure, named printResultsClosure, to be an instance of the
dataFromURLCompletionClosure type. Within the closure, we unwrap the first
parameter and set the value to a constant named data. If the first parameter is not nil, we
convert the data constant to an instance of the String class, which is then printed to the
console.

Now, let's call the sendGetRequest() method with the following code:

let aConnect = HttpConnect()
aConnect.sendGetRequest(printResultsClosure)

This code creates an instance of the HttpConnect class and then calls the
sendGetRequest() method, passing the printResultsClosure closure as the only
parameter. If we run this code while we are connected to the Internet, we will receive a
JSON response that contains a list of items related to Jimmy Buffett on iTunes.

Now that we have seen how to make a simple HTTP GET request, let's look at how we
would make an HTTP POST request to a web service.

Making an HTTP POST request
Since Apple's iTunes, APIs use GET requests to retrieve data. In this section, we will use the
free http://httpbin.org service to show you how to make a POST request. The POST
service that http://httpbin.org provides can be found at http://httpbin.org/post.
This service will echo back the parameters that it receives so that we can verify that our
request was made properly.

http://httpbin.org
http://httpbin.org
http://httpbin.org/post

Swifts Core Libraries

[271]

When we make a POST request, we generally have some data that we want to send or post
to the server. This data takes the form of key/value pairs. These pairs are separated by an
ampersand (&) symbol, and each key is separated from its value by an equals sign (=). As an
example, let's say that we want to submit the following data to our service:

firstname: Jon
lastname: Hoffman
age: 47 years

The body of the POST request would take the following format:

firstname=Jon&lastname=Hoffman&age=47

Once we have the data in the proper format, we will then use the dataUsingEncoding()
method, as we did with the GET request, to properly encode the POST data.

Since the data going to the server is in the key/value format, the most appropriate way to
store this data, prior to sending it to the service, is with a Dictionary object. With this in
mind, we will need to create a method that will take a Dictionary object and return a
String object that can be used for the POST request. The following code will do that:

private func dictionaryToQueryString(_ dict: [String : String]) -> String {
 var parts = [String]()
 for (key, value) in dict {
 let part : String = key + "=" + value
 parts.append(part);
 }
 return parts.joined(separator: "&")
}

This function loops through each key/value pair of the Dictionary object and creates a
String object that contains the key and the value separated by the equals sign (=). We then
use the joinWithSeperator() function to join each item in the array, separated by the
specified sting. In our case, we want to separate each string with the ampersand symbol (&).
We then return this newly created string to the code that called it.

Now, let's create the sendPostRequest() function that will send the POST request to the
http://httpbin.org post service. We will see a lot of similarities between this
sendPostRequest() function and the sendGetRequest() function, which we showed
you in the Making an HTTP GET request section. Let's take a look at the following code:

public typealias dataFromURLCompletionClosure = (URLResponse?, Data?) ->
Void

public func sendPostRequest(_ handler: @escaping
dataFromURLCompletionClosure) {

http://httpbin.org

Swifts Core Libraries

[272]

 let sessionConfiguration =
 URLSessionConfiguration.default
 let urlString = "http://httpbin.org/post"
 if let encodeString =
 urlString.addingPercentEncoding(
 withAllowedCharacters: CharacterSet.urlQueryAllowed),
 let url = URL(string: encodeString) {
 var request = URLRequest(url:url)
 request.httpMethod = "POST"
 let params = dictionaryToQueryString(["One":"1 and 1",
 "Two":"2 and 2"])
 request.httpBody = params.data(
 using: String.Encoding.utf8, allowLossyConversion: true)
 let urlSession = URLSession(
 configuration:sessionConfiguration, delegate: nil,
 delegateQueue: nil)
 let sessionTask = urlSession.dataTask(with: request) {
 (data, response, error) in handler(response, data)
 }
 sessionTask.resume()
 }
}

This code is very similar to the sendGetRequest() function that we saw earlier in this
section. The two main differences are that the httpMethod of the URLRequest is set to
POST rather than GET and how we set the parameters. In this function we set the httpBody
property of the URLRequest instance to the parameters we are submitting.

Now that we have seen how to use the URL loading system, let's look at how we can use
Formatters.

Formatter
Formatter is an abstract class that declares an interface for an object that creates, converts or
validates a human-readable form of some data. The types that subclass the Formatter class
are generally used when we want to take a particular object, such as an instance of the Date
class, and present the value in a form that the user of our application can understand.

Swifts Core Libraries

[273]

Apple has provided several concrete implementations of the Formatter class and in this
section we will look at two of them. It is important to remember that the formatters that
Apple provides will provide the proper format for the default locale of the device the
application is running on.

We will start off by looking at the DateFormatter type.

DateFormatter
The DateFormatter class is a subclass of the Formatter abstract class that can be used to
convert a Date object into a human readable string. It can also be used to convert a String
representation of a date into a Date object. We will look at both of these use cases in this
section. Let's begin by seeing how we could covert a Date object into a human readable
string.

The DateFormatter type has five predefined styles that we can use when we are
converting a Date object to a human readable string. The following chart shows what the
five styles look like for an en-US locale:

DateFormatter style Date Time

.none No format No format

.short 12/25/16 6:00 AM

.medium Dec 25, 2016 6:00:00 AM

.long December 25, 2016 6:00:00 AM EST

.full Sunday December 25, 2016 6:00:00 AM EST

The following code shows how we would use the predefined DateFormatter styles:

let now = Date()

let formatter = DateFormatter()
formatter.dateStyle = .medium
formatter.timeStyle = .medium

let dateStr = formatter.string(from: now)
 print(dateStr)

We use the string(from:) method to convert the now date to a human-readable string. In
this example, for the en-US locale, the dateStr constant would contain text similar to Oct
22, 2016, 4:57 PM“.

Swifts Core Libraries

[274]

There are numerous times when the predefined styles do not meet our needs. For those
times, we can define our own styles using a custom format string. This string is a series of
characters that the DateFormatter type knows are stand-ins for the values we want to
show. The DateFormatter instance will replace these stand-ins with the appropriate
values. The following table shows some of the formatting values that we can use to format
our Date objects:

Stand-in format Description Example output

Yy Two-digit year 16, 14, 04

Yyyy Four-digit year 2016, 2014, 2004

MM Two-digit month 06, 08, 12

MMM Three-letter month Jul, Aug, Dec

MMMM Full month name July, August

Dd Two-digit day 10, 11, 30

EEE Three-letter day Mon, Sat, Sun

EEEE Full day Monday, Sunday

A Period of day AM, PM

Hh Two-digit hour 02, 03, 04

HH Two-digit hour for 24-hour clock 11, 14, 16

Mm Two-digit minute 30, 35, 45

Ss Two-digit seconds 30, 35, 45

The following code shows how we would use these custom formatters:

let now = Date()
let formatter2 = DateFormatter()
formatter2.dateFormat = "YYYY-MM-dd HH:mm:ss"

let dateStr2 = formatter2.string(from: now)
 print(dateStr2)

We use the string(from:) method to convert the now date to a human-readable string. In
this example, for the en-US locale, the dateStr2 constant would contain text similar to
2016-08-19 19:03:23.

Swifts Core Libraries

[275]

Now let's look at how we would take a formatted date string and convert it into a Date
object. We will use the same format string that we used in our last example:

formatter2.dateFormat = "YYYY-MM-dd HH:mm:ss"

let dateStr3 = "2016-08-19 16:32:02"
let date = formatter2.date(from: dateStr3)
 print(date)

In this example , we took the human-readable date string and converted it into a Date
object using the date(from:) method. If the format of the human-readable date string
does not match the format specified in the DateFormatter instance, the conversion will fail
and return nil.

Now let's take a look at the NumberFormatter type.

NumberFormatter
The NumberFormatter class is a subclass of the Formatter abstract class, which can be
used to convert a number into a human-readable string with a specified format. This
formatter is especially useful when we want to display a currency string, especially since it
will convert the string to the proper currency of the locale.

Let's begin by looking at how we would convert a number into a currency string:

let formatter1 = NumberFormatter()
formatter1.numberStyle = .currency
let num1 = formatter1.string(from: 23.99)

In the previous code, we define our number style to be .currency, which tells our
formatter that we want to convert our number to a currency string. We then use the
string(from:) method to convert the number to a string. In this example, for the en-US
locale, the num1 constant would contain the string $23.99.

Now let's see how we can spell out a number using the NumberFormatter type. The
following code will take a number and spell out the number:

let formatter3 = NumberFormatter()
formatter3.numberStyle = .spellOut
let num3 = formatter3.string(from: 2015)

Swifts Core Libraries

[276]

In this example, we set the numberStyle property to the .spellout style. This style will
spell out the number. For this example, the num3 constant will contain the string two
thousand fifteen.

Now let's look at how we can manipulate the filesystem using the FileManager class.

FileManager
The filesystem is a complex topic, and how we manipulate it within our applications is
generally specific to the operating system that our application is running on. This can be an
issue when we are trying to port code from one operating system to another. Apple has
addressed this issue by putting the FileManager object in the core libraries. The
FileManager object lets us examine and make changes to the filesystem in a uniform
manner across all the operating systems that Swift supports.

The FileManager class provides us with a shared instance that we can use. This instance
should be suitable for most of our filesystem-related tasks. We can access this shared
instance using the default property.

When we use the FileManager object, we can provide paths as either an instance of the
URL or String types. In this section all of our paths will be String types for consistency
purposes.

Let's start off by seeing how we could list the contents of a directory using the
FileManager object. The following code shows how to do this:

let fileManager = FileManager.default

do {
 let path = "/home/hoffmanjon/"
 let dirContents = try fileManager.contentsOfDirectory(atPath: path)
 for item in dirContents {
 print(item);
 }
} catch let error {
 print("Failed reading contents of directory: \(error)")
}

Replace the /home/hoffmanjon path with the path to your home
directory

Swifts Core Libraries

[277]

We start off by getting the shared instance of the FileManager object using the default
property. We will use this same shared instance for all of our examples in this section rather
than redefining it for each example. Next, we define our path and use it with the
contentsOfDirectory(atPath:) method. This method returns an array of String types
that contains the names of the items in the path. We use a for loop to list these items.

Next, let's look at how we would create a directory using the file manager. The following
code shows how to do this:

do {
 let path = "/hoffman/hoffmanjon/masteringswift/test/dir"
 try fileManager.createDirectory(atPath: path,
 withIntermediateDirectories: true)
} catch let error {
 print("Failed creating directory, \(error) ")
}

In this example, we use the createDirectory(atPath:
withIntermediateDirectories:) method to create the directory. When we set the
withIntermediateDirectories parameter to true, this method will create any parent
directories that are missing. The operation will fail if any parent directories are missing
when this parameter is set to false. The file manager also has a method that will let us move
an item. Let's see how to do this:

do {
 let pathOrig = "/home/hoffmanjon/masteringswift2/"
 let pathNew = "/home/hoffmanjon/masteringswift3/"
 try fileManager.moveItem(atPath: pathOrig, toPath: pathNew)
} catch let error {
 print("Failed moving directory, \(error) ")
}

To move an item, we use the moveItem(atPath: toPath:) method. Just like the copy
example we just saw, the move method can be used for both files and directories. If the path
specifies a directory, then the entire directory structure below that path will be moved. Now
let's see how we can delete an item from the filesystem:

do {
 let path = "/home/hoffmanjon/masteringswift/"
 try fileManager.removeItem(atPath: path)
} catch let error {
 print("Failed Removing directory, \(error) ")
}

Swifts Core Libraries

[278]

In this example, we use the removeItem(atPath:) method to remove the item from the
filesystem. A word of warning: once you delete something, it is gone and there is no getting
it back.

Next, let's look at how we can read permission for items in our filesystem. For this, we will
need to create a file named test.file that our path will point to:

let path = "/home/hoffmanjon/masteringswift3/test.file"
if fileManager.fileExists(atPath: path) {
 let isReadable = fileManager.isReadableFile(atPath: path)
 let isWriteable = fileManager.isWritableFile(atPath: path)
 let isExecutable = fileManager.isExecutableFile(atPath: path)
 print("can read \(isReadable)")
 print("can write \(isWriteable)")
 print("can execute \(isExecutable)")
}

In this example, we used three different methods to read the filesystem permissions for the
filesystem item. These methods are as follows:

isReadableFile(atPath:): true if the file is readable
isWritableFile(atPath:): true if the file is writable
isExecutableFile(atPath:): true if the file is executable

In this section, we covered a number of filesystem-related functions. There are some
additional functions that were not covered because they have not been implemented in the
Linux version of Swift as of Swift 3.0.1 Preview 3, but should be implemented soon. Two
methods that are very useful are the copyItem(atPath: toPath:) and the
isDeletableFile(atPath:) functions.

Summary
In this chapter, we looked at some of the libraries that make up the Swift core libraries.
While these libraries are only a small portion of the libraries that make up the Swift core
libraries, they are arguably some of the most useful libraries. To explore the other libraries,
you can refer to Apple's GitHub page:
https://github.com/apple/swift-corelibs-foundation.

https://github.com/apple/swift-corelibs-foundation

16
Swift on Single Board

Computers
This is probably my favorite chapter to write. I am not only a software developer, but I am
also very familiar with hardware and one of my favorite hobbies is building robots. I have
been building robots for a couple of years now and I have used several different single
board computers as the brains. These single board computers have included the BeagleBone
Black, Next Thing C.H.I.P, Raspberry Pi and several Arduino models. When I first started
using the single board computers for my robotics projects, I used an assortment of
languages such as JavaScript, Python and C, but when it was announced that iachieved.it
built the Swift language for the ARM platform I started experimenting using Swift for these
projects. I think that you will find, as I did, that Swift is an excellent language for any type
of project on the single board computers, but it is especially good for robotics projects.

In this chapter, we will cover the following topics:

What is a single board computer
How to get Swift on the BeagleBone Black
What are expansion headers on Single board computers
How to use Swift to interact with external sensors and devices
How to use Swift to build an autonomous robot

A single board computer (SBC) is a complete computer built on a single circuit board that
includes the microprocessor(s), RAM and I/O. These computers have several purposes
including educational purposes, as well as serving as controllers for embedded systems or
as development environments.

Swift on Single Board Computers

[280]

The main difference between personal computers and SBCs is that SBCs do not rely on
expansion slots for peripherals. Most SBCs do, however include USB ports that allow us to
add peripherals such as mice, keyboards, and Bluetooth adapters.

A single board configuration can greatly reduce the cost of a system by eliminating the need
for items such as connectors and bus circuitry that are needed for communication between
different components. It can also greatly reduces the overall size of the system because all of
the components are integrated together.

Some examples of SBCs are the BeagleBone Black, Raspberry Pi and the Next Thing C.H.I.P.
In this chapter, we will be looking at how we can use Swift on my favorite SBC, which is the
BeagleBone Black. While we may be focusing on the BeagleBone Black, I have also used
Swift on the Raspberry Pi and the Next Thing C.H.I.P. Lets start off by examining the
BeagleBone Black so we understand what we can do with it.

This book is about Swift development. While we talk about the hardware
in this chapter, the primary emphasis is on the software development side.
If you do not have a basic understanding of electronics and how to
connect components we would recommend additional reading on these
subjects prior to performing the projects in this chapter.

The BeagleBone Black
The BeagleBone Black, which was originally released in April of 2013, is a credit card size
single board computer that features the Sitara AM335x Cortex-A8 processor running at
1GHZ with 512 Meg of RAM and 4 GB of eMMC memory. The current version of the
BeagleBone Black is the Rev C version that was released in May of 2014.

The BeagleBone Black is a true open-source computing platform where both the hardware
and software are open-source. All design material for the BeagleBone Black is easily
accessible from the Beagleboard's Wiki page (h t t p ://e l i n u x . o r g /B e a g l e b o a r d :B e a g l e B o

n e B l a c k). This material allows you to build your own board either by using the design as is
or by making modifications to the design. You can also choose to purchase the board, as I
did, from outlets like Amazon.

The latest supported Linux image for the BeagleBone Black, as of the writing of this book, is
Debian 8.4. This is the image that is used for all development in this chapter. You can find
the latest images on the BeagleBoard.org site (h t t p s ://b e a g l e b o a r d . o r g /l a t e s t - i m a g e s).

http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images
https://beagleboard.org/latest-images

Swift on Single Board Computers

[281]

The BeagleBone Black features two expansion headers that provide extensive I/O
capabilities. These expansion headers are used to interact with items such as motors, LEDs,
buttons and other sensors. The I/O capabilities are where, in my opinion, the BeagleBone
Black really excels, because you can connect so many different items to it at once. In this
chapter we will see how we can use Swift to interact with various external sensors and also
how to build a very basic autonomous robot.

The following two images of the BeagleBone Black highlight some of its main hardware
features. The first image is the top view and the second image is the bottom view.

Top view:

Swift on Single Board Computers

[282]

Bottom view:

The BeagleBone black can be powered by the 5V DC Connector on the top of the board or
by the USB Client on the bottom of the board. I generally power the board by the USB client
and for my robotic projects I use external battery packs that are made to charge phones. The
following image shows the types of battery packs I use.

Swift on Single Board Computers

[283]

The Micro SD card can be used as a system drive that the device can boot off of. The USB
host allows you to add additional peripherals like keyboards, mice, and Bluetooth adapters.

As I mentioned earlier, the expansion headers are what sets the BeagleBone Black apart
from other SBCs, like the Raspberry Pi, because it contains more pins and it also contains
multiple analog and PWM pins with the GPIO pins. Let's take a closer look at these
expansion headers.

BeagleBone Black's expansion headers
The BeagleBone Black comes with two expansion headers labeled P8 and P9. These
expansion headers are used to connect external devices and sensors to the BeagleBone
Black. These devices and sensors can be items such as temperature sensors to read the
current temperature, motors to move a robot around the room or a GPS sensor that will tell
the computer where it is in the world. With these external devices, we can interact with or
monitor the outside world.

Swift on Single Board Computers

[284]

The expansion headers proved a wealth of I/O capabilities. The different pins on the
expansion headers provide different types of I/O. In this introductory chapter, we will be
focusing on the digital GPIO and analog pins. We will also see how the expansion headers
can provide power and ground for the external devices.

The following charts show the various pins and the functionality they provide:

The pins with the light green background are General Purpose Input Output (GPIO) that
function as the digital I/O. The pins with the light blue background are the analog pins and
the ones with the yellow background are the PWM pins. As you probably noticed, some of
the pins can be configured for different types.

We will be looking at the functionality of the pins as we go through this chapter and you
can refer back to this image to see what the various pins do and where a particular pin is
located. To use Swift as our development language, the first thing we need to do is to install
it.

Swift on Single Board Computers

[285]

Installing Swift
The Swift port for the ARM platform is built and maintained on the iachieved.it site (h t t p

://d e v . i a c h i e v e d . i t /i a c h i e v e d i t /s w i f t /). iAchieved.it LLC is a group of independent
software developers and one of the projects the group works on is this Swift port. At the
time this book is being written, the installation process for Swift 3 is a manual process, but
hopefully we will eventually be able to install it using the apt-get package manager. Since
the installation process is changing, the current installation process is documented on the
SwiftyBones 3 GitHub page here: h t t p s ://g i t h u b . c o m /h o f f m a n j o n /S w i f t y B o n e s 3. This
page will be updated as the installation process changes.

SwiftyBones3
SwiftyBones3 is a Swift 3 framework for interacting with the GPIO, PWM and analog pins
on the BeagleBone Black. This framework makes it very easy to interact with these pins and
is the framework we will be working with in this chapter. While SwiftyBones is written for
the BeagleBone Black, if you are using another board like the Raspberry Pi you can use the
very good SwiftyGPIO framework: https://github.com/uraimo/SwiftyGPIO.

The reason that we have chosen to use the SwiftyBones framework over the SwiftyGPIO is
that the SwiftyBones framework offers support for the analog and PWM pins as well as the
GPIO pins. The analog and PWM pins are very useful when interacting with various
sensors. SwiftyBones also comes with a build script that will help you build projects with
multiple files since the Swift package manager is not installed, at this time, with the ARM
version of Swift.

The instructions for installing SwiftyBones are on the SwiftyBones GitHub page h t t p s ://g i

t h u b . c o m /h o f f m a n j o n /S w i f t y B o n e s 3.

The SwiftyBones packages contains four directories which are:

Images: Images needed for this README like the SwiftyBones logo
Sources: The SwiftyBones source files
swiftybuild: The swiftybuild script to help you compile your Swift projects
Examples: Example projects to help you get started with SwiftyBones

http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
http://dev.iachieved.it/iachievedit/swift/
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/uraimo/SwiftyGPIO
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3
https://github.com/hoffmanjon/SwiftyBones3

Swift on Single Board Computers

[286]

The Images directory can be ignored because it contains the images needed for the
Readme.md file. The Examples directory contains some very good examples of how to use
the SwiftyBones framework. The Sources directory contains the source files for the
SwiftyBones framework that you will want to include with your project. Let's take a look at
the files and directories in the Sources directory.

Sources directory
The Sources directory contains the Swift source files that make up the SwiftyBones
framework and the SwiftyBones components framework. The four files that make up the
SwiftyBones framework are:

SwiftyBonesCommon.swift: This file contains common code that is required for
interacting with PWM, analog and digital GPIO pins
SwiftyBonesDigitalGPIO.swift: This file contains the code for interacting
with the digital GPIO pins
SwiftyBonesAnalog.swift: This file contains the code for interacting with the
Analog IN pins
SwiftyBonesPWM.swift: This file contains the code for interacting with the
PWM pins

SwiftyBones is designed to be modular, so you only need to include the files that contain
the functionality you need. The only file that is required for all projects that uses the
SwiftyBones framework is the SwiftyBonesCommon.swift file, because the other files rely
on it. This means, as an example, if we are only going to use the GPIO pins in a particular
project then we only need to include the SwiftyBonesCommon.swift and
SwiftyBonesDigitalGPIO.swift files in the project. If we are going to use the GPIO and
analog pins in a project, as we do with the autonomous robot later in this chapter, then we
need to include the SwiftyBonesCommon.swift, SwiftyBonesAnalog.swift, and
SwiftyBonesDigitalGPIO.swift files

The SwiftyBones_Components directory, located in the Sources directory, contains a
collection of types that make it easy to interact with specific components. These types
encapsulate the logic needed to interact with specific sensors. For example, if we wanted to
use the tmp36 temperature sensor then we would include the SBTmp36.swiftand
ComponentsCommon.swift files from the component library with the necessary
SwiftyBones source files. Then, within our code, we could create an instance of the SBTmp36
type and read current temperature in either Celsius or Fahrenheit using the
getTempCelsius() or getTempFahrenheit() methods from the SBTmp36 type.

Swift on Single Board Computers

[287]

SwiftyBones also comes with a script that makes it easy to compile projects with multiple
source files. Before we start creating our projects lets look at what this script does and how
it can help us.

SwiftyBuild
SwiftyBones is built in a modular way with multiple files, which means we will need to
compile all necessary files within our project. It would very quickly become annoying
compiling our projects like this:

 swiftc -o myexec main.swift tempSensor.swift
 SwiftyBonesCommon.swift SwiftyBonesDigitalGPIO.swift

With this in mind, SwiftyBones comes with a script that would search the current directory
and all subdirectories for any files that has the .swiftextension. This script will then build
a swift compiler command that compiles all of the swift files that it found into a single
executable. The script is named swiftybuild.sh. This script takes a single optional
command line argument that would be the name of the executable file if everything
successfully compiles. You would use this script like this:

 ./swiftybuild.sh
 or
 ./swiftybuild.sh myexec

The output from the first command would be an executable file named main if everything
compiled successfully. The second command would generate an executable named myexec
if everything compiled successfully.

Now lets see how we can use SwiftyBones in some sample projects. Lets start off by seeing
how we can blink an LED using the SBDigitalGPIO type.

Blinking an LED with the SBDigitalGPIO type
Before we do any programming we will need to collect the hardware components needed
for this project and connect them together. For this project you will need the following
components:

100 ohm resistor
3mm or 5mm LED
Breadboard

Swift on Single Board Computers

[288]

Jumper wire
BeagleBone Black

The following fritzing diagram shows how we would wire the components for this project:

We will start off by using a black jumper wire to connect pin 1 of the P9 expansion header,
which is ground, to the ground rail on the breadboard. Then, use a red jumper wire to
connect pin 3 of the P9 expansion header, which is 3.3V, to the power rail on the
breadboard. When we wire electronic components, we use red wires to indicate power and
black wires to indicate ground.

For this circuit we will want to connect the cathode end of the LED (the shorter leg of the
LED) to the ground rail and the anode end of the LED to one end of the 100 ohm resistor.
We then run a third jumper wire from pin 12 of the P9 expansion header, which has an ID
of GPIO60, to the other end of the resistor. We don't actually use the power rail in this
example but it is good practice to connect both the power and ground rails of the
breadboard when stating a project.

Swift on Single Board Computers

[289]

Make sure you have the circuit connected as shown in the fritzing images
prior to powering up the BeagleBone Black. An incorrectly wired circuit
can damage your BeagleBone Black. Trust me when I say that it is always
a good idea to double-check your wiring before powering everything up.

Once the circuit is correctly wired, we can power on the BeagleBone Black and begin
writing the application that will blink the LED. We will begin by creating a new directory
that will contain the source code for our application. We will start off by copying the
SwiftyBonesCommon.swift and SwiftyBonesDigitalGPIO.swift files into the newly
created directory. If we want to use the swiftybuild.sh script, we would also need to
copy that script to directory as well.

We will now create a file named main.swift in the newly created directory and put the
following code in it:

import Glibc

if let led = SBDigitalGPIO(id: "gpio60", direction: .OUT){
 while(true) {
 if let oldValue = led.getValue() {
 var newValue = (oldValue == DigitalGPIOValue.HIGH) ?
 DigitalGPIOValue.LOW : DigitalGPIOValue.HIGH
 led.setValue(value: newValue)
 usleep(150000)
 }
 }
} else {
 print("Error init pin")
}

As with all code in this chapter, we start off by importing the Glibc module. We then
create an instance of the SBDigitalGPIO type, using the
SBDigitalGPIO(id:direction:) initializer, and assign it to the led constant. Since the
initializer is a failable initializer, we use optional binding to ensure the instance is not nil.
The SBDigitalGPIO initializer takes the ID of the pin we wish to connect to and the
direction of the pin. The direction we are using, for this example, is .OUT because we will
need to read from and write to the pin. We would use .IN if we only needed to read the
value.

We use the getValue() method to read the current value of the pin. This will return an
optional which is either nil or a DigitalGPIOValue value. The DigitalGPIOValue value
can be either .HIGH or .LOW depending on if the pin is at a high state or a low state.

Swift on Single Board Computers

[290]

We then use the ternary operator to reverse the value by checking to see if the current value
of the pin is .HIGH and if so we set the newValue variable to .LOW otherwise we set it to
.HIGH. We then use the newValue variable with the setValue(value:) method to set the
new value for the led pin. This blinks the LED on and off. Finally, we use the usleep()
function to pause before looping back.

The digital GPIO pins on the BeagleBone Black can be in a high state which is 3.3V or a low
state which is 0V. These pins are really good for turning things on and off, or detecting if
something is on or off similar to what we did for the LED in this example. The
SBDigitalGPIO type is designed to make it very easy to interact with the digital GPIO
pins.

The SBDigitalGPIO type is included in the SwiftyBonesDitialGPIO.swift file and has
two initializers. In the last example we saw the most common initializer but we can also use
the SBDigitalGPIO(header:pin:direction:) initializer. In this initializer we would set
the expansion header (.P8 or .P9) and the pin number instead of using the GPIO ID. As we
saw in this example we use the getValue() and setValue(value:) methods to read
from and write to the pin.

Using the digital GPIO is the most common way to interact with sensors and other devices
but there are times when we need to read a range of values, like when we use a distance
sensor. For this we can use the analog pins. Let's see how we would use an analog pin with
the SBAnalog type.

TMP36 temperature sensor with the
SBAnalog type
For this project we will read the analog input from a TMP36 temperature sensor and
calculate the current temperature based on the voltage. For this project we will need the
following components:

TMP36 temperature sensor
Breadboard
Jumper wire
BeagleBone Black

Swift on Single Board Computers

[291]

The following fritzing diagram shows how we would wire the components for this project:

As with the previous example, we will start off by using a black jumper wire to connect pin
1 of the P9 expansion header, which is ground, to the ground rail on the breadboard. Next,
use a red jumper wire to connect pin 3 of the P9 expansion header, which is 3.3V, to the
power rail on the breadboard.

Swift on Single Board Computers

[292]

The TMP36 temperature sensor has three legs, one for voltage in, one for ground and one
for voltage out. The following image shows these three legs:

In our example we will connect the Vout pin on the TMP36 sensor to the AIN1 pin on the
BeagleBone Black which is pin 40 on the P9 expansion header. We also need to connect
power and ground to the sensor as shown in the wiring diagram.

Once again, make sure you have the circuit connected as shown in the
fritzing images prior to powering up the Beaglebone Black. An incorrectly
wired circuit can damage your BeagleBone Black.

Once the circuit is correctly wired, we can power on the BeagleBone Black and begin
writing the application to read the temperature. Just like the previous project we will want
to create a new directory that will contain the source files for our project. For this project we
will need to include the SwiftyBonesCommon.swift and SwiftyBoneAnalog.swift
files.

Swift on Single Board Computers

[293]

After we create the directory for our project and copy the SwiftyBones files to it we will
create a file named main.swift file and put the following code into it:

import Glibc

if let tmp36 = SBAnalog(id: "AIN1") {
 while(true) {
 if let value = tmp36.getValue() {
 let milliVolts = (value / 4096.0) * 1800.0
 let celsius = (milliVolts - 500.0) / 10.0
 let fahrenheit = (celsius * 9.0 / 5.0) + 32.0

 print("celsius: \(celsius)")
 print("Fahrenheit: \(fahrenheit)")

 usleep(150000)
 }
 }
}

In this code we begin by creating an instance of the SBAnalog type, using the
SBAnalog(id:) initializer, and assign that instance to the tmp36 variable. This initializer
takes the ID of the pin we wish to connect to. We then use the getValue() method of the
SBAnalog type to read the value from the TMP36 temperature sensor and calculate the
temperature.

Since the Analog IN pins on the BeagleBone Black are input only pins, there is no
setValue() method with the SBAnalog type.

As with the SBDigitalGPIO type, the SBAnalog type has a second initializer that accepts
the expansion header and pin number rather than the Analog ID. We would use this
initializer like this:

SBAnalog(header: .P9, pin: 40)

The analog pins are very useful when we have a sensor like the TMP36 temperature sensor
or a distance sensor that has a range of values.

Now that we have seen how to use the SBDigitalGPIO and SBAnalog types, let's use these
to do something pretty cool like building a very basic autonomous robot.

Swift on Single Board Computers

[294]

Autonomous robot
An autonomous robot is a robot that performs a task with no human intervention. The
autonomous robot that we are going to create in this section will be an obstacle avoidance
robot that will move around a room and detect when an object is in front of it and turn.

For this project we will need the following components:

Two DC motors and wheels: We are using the smart car motors that you can find
on Amazon or eBay pretty cheaply. If you search for smart car motor, you will find
the yellow motors and wheels as shown in the parts image:

Swift on Single Board Computers

[295]

Motor controller: We are using the L9110s H-Bridge controller.

Range finders: We are using the MaxSonar EZ1 Range finder.

Swift on Single Board Computers

[296]

BeagleBone Board: We are using the BeagleBone Black, but the BeagleBone
Green should work with little to no modifications.
Battery holder: We are using a 9V battery, but a 4xAA battery holder will work
just as well.
Resistors: Two 1K resistors and two 3.3K resistors for the MaxSonar range finder.
If you are using different range finders, you may not need these.
One swivel castor wheel: The robot will only have two wheels, therefore we use
the castor wheel to balance the robot.
Miscellaneous: Jumper wires, breadboards, and body for the robot.
3mm screws and nuts: These are used to attach the component holders to the
chassis.

By doing a search on Amazon, we can find many different robot chassis
and frames. Most of these will work great for your robot projects and
some even come with motors and/or motor controllers. When you first
start building robots, it is a good idea to get chassis where the parts are
designed to work together. For the robot in this chapter, the chassis was
printed using a 3D printer. The downloadable code for this book contains
the STL files so you can print your own parts.

When building robots, it is usually a good idea to break the whole project into smaller
projects or blocks. We then get each of these smaller projects working before moving on to
the next one. This keeps us from getting overwhelmed with everything we want our robots
to do. If I am building a robot that has motors and wheels I usually try to get these working
first. The following image shows how the motors and wheels are connected to the bottom of
the lower chassis:

Swift on Single Board Computers

[297]

The lower tray is designed so we can connect the smart car motors directly to the tray. We
also attached the swivel castor wheel for balancing.

When we designed the chassis for this robot we put in a number of 3mm slots in the trays.
This allows us to connect additional parts to the robot. Once you start building robots,
having the ability to add additional components is important because we always think of
new things for our robot to do.

Swift on Single Board Computers

[298]

The next image, which shows the top of the lower chassis, shows how we would attach the
L9110s holder (with the L9110s motor controller) to the lower tray:

When we designed the L9110s holder, we put two 3mm holes on either side of the holder.
This allows us to connect the holder to the lower tray using 3mm screws and nuts.

We connect a DC motor to the motor controller using two wires. In the previous projects the
red and black wires represented positive and ground connections, however, with DC
motors is does not matter which way you connect the wires. Connecting one wire to
positive voltage and the other to ground will spin the motor in one direction. If you reverse
the connections the motor will spin in the opposite direction. The red and black wires were
used because that is what comes with the motors.

Swift on Single Board Computers

[299]

The following diagram shows how we would connect the BeagleBone Black to the L9110s
motor controller and the motor controller to the DC motors:

In this image we can see that we connected the DC motors directly to the L9110s motor
controller. We are also connecting pins 10, 12, 14 and 16 of the P8 expansion header to the
L9110s motor controller. We will explain how these pins are used to control the motors
when we look at the code for the robot.

We also connect the battery directly to the L9110s motor controller. The image shows that
we are running the ground wire to pin 1 of the P8 expansion header that is listed as digital
ground (DGND). We show this connection because we should have a common ground for
our components however what we actually want to do is to run a single ground connection
to the ground rail on a breadboard and then connect the ground for all of our components
to that breadboard's ground rail. This ensures a common ground for our components.

Swift on Single Board Computers

[300]

Now that we have our motors, motor controller and BeagleBone Black connected, lets test
them to ensure everything is connected correctly. To do this we will need to create a new
project and add the SwiftyBonesCommon.swift, SwiftBonesDigitalGPIO.swift,
SwiftyBonesAnalog.swift, and swiftybuild.sh files to it.

It is usually a good idea to keep the code that controls the different components of our robot
in a separate file from the robot's logic. This will allow us to very easily create different
versions of our robot that has different logic. With that in mind, we will create a new type
for the code that controls the components and name it Mastering Swift Bot (MSBot). In this
type, we will need a private instance of the SBDigitalGPIO type for each connection to the
motor controller. We will also need to create an initializer that will initialize these instances.
The following code shows how we will write this:

import Glibc

struct MSBot {
 private let rMotor1: SBDigitalGPIO
 private let rMotor2: SBDigitalGPIO
 private let lMotor1: SBDigitalGPIO
 private let lMotor2: SBDigitalGPIO

 init?() {
 if let rMotor1 = SBDigitalGPIO(id:"gpio68", direction: .OUT),
 let rMotor2 = SBDigitalGPIO(id:"gpio44", direction: .OUT),
 let lMotor1 = SBDigitalGPIO(id:"gpio26", direction: .OUT),
 let lMotor2 = SBDigitalGPIO(id:"gpio46", direction: .OUT),
 {
 self.rMotor1 = rMotor1
 self.rMotor2 = rMotor2
 self.lMotor1 = lMotor1
 self.lMotor2 = lMotor2
 } else {
 return nil
 }
 }

Notice that the initializer is a failable initializer. If any of the SBDigitalGPIO instances fail
to initialize then the MSBot type will fail to initialize. Also notice that we have two instances
of the SBDigitalGPIO for each motor. The rMotor1 and rMotor2 instances are for the
right motor and the lMotor1 and lMotor2 is for the left motor.

Swift on Single Board Computers

[301]

To make the motor spin, we need to bring one of the instances high and one low. For
example, if we set rMotor1 high and rMotor2 low the motor will spin in one direction. If
we reversed this, and set rMotor1 low and rMotor2 high, then the motor will spin in the
opposite direction. If rMotor1 and rMotor2 were set the same (both high or both low) then
the motor will stop spinning. With this in mind we can create methods to move the robot
forward or backwards, to stop the robot, or to turn the robot. These methods are shown in
the following code:

func stop() {
 _ = rMotor1.setValue(value: .LOW)
 _ = rMotor2.setValue(value: .LOW)
 _ = lMotor1.setValue(value: .LOW)
 _ = lMotor2.setValue(value: .LOW)
 }

 func forward() {
 _ = rMotor1.setValue(value: .HIGH)
 _ = rMotor2.setValue(value: .LOW)
 _ = lMotor1.setValue(value: .HIGH)
 _ = lMotor2.setValue(value: .LOW)
 }

 func reverse() {
 _ = rMotor1.setValue(value: .LOW)
 _ = rMotor2.setValue(value: .HIGH)
 _ = lMotor1.setValue(value: .LOW)
 _ = lMotor2.setValue(value: .HIGH)
 }

 func left() {
 _ = rMotor1.setValue(value: .LOW)
 _ = rMotor2.setValue(value: .HIGH)
 _ = lMotor1.setValue(value: .HIGH)
 _ = lMotor2.setValue(value: .LOW)
 }

 func right() {
 _ = rMotor1.setValue(value: .HIGH)
 _ = rMotor2.setValue(value: .LOW)
 _ = lMotor1.setValue(value: .LOW)
 _ = lMotor2.setValue(value: .HIGH)
 }

Swift on Single Board Computers

[302]

In these methods, all we are doing is setting the digital pins either high or low. Don't worry
too much about which pins are high and which are low at this point. The odds are, the first
time we wire the robot and write our code, the wiring and the code will not match. This
means when we call the forward() method for the first time, both motors many not spin in
the same direction. Our main concern is making sure that the logic is correct. For example,
for the stop() method all of the pins set either high or low.

Now that we have the code to initialize the robot and move it around, let's test it out. To test
the code that controls the motors of a robot, I usually put the robot on a block similar to
what mechanics do with cars. The following image demonstrates this:

Swift on Single Board Computers

[303]

Now let's test the motors and the controller code. Create the main.swift file and put the
following code in it:

import Glibc

if let bot = MSBot() {
 bot.forward()
 usleep(2500000)
 bot.left()
 usleep(2500000)
 bot.right()
 usleep(2500000)
 bot.stop()
}

Now let's compile the project and run it. If everything is wired correctly, the robot motors
will spin in the forward direction, then in the direction to turn the robot left, then to turn the
robot right and finally the motors will stop. If the motors spin in the wrong direction,
simply reverse the wires going in to the motor controller from the motor and then rerun the
test.

Now that we have the motors configured correctly, it is time to add the MaxSonar EZ1
range finders. The following image shows how we would wire the range finders to the
BeagleBone Black:

Swift on Single Board Computers

[304]

To connect the MaxSonar EZ1 sensor to the BeagleBone Black we connect a 1K ohm resistor
to the analog voltage output pin on the MaxSonar. Then, connect a 3.3K ohm resistor in
series with the 1K ohm resistor and tie the 3.3K ohm resistor to ground. Finally, we connect
the analog pin from the BeagleBone Black in series with the two resistors as shown in the
diagram. We will want to connect the sensor for the right side of the robot to AIN0 (P9
Expansion Header pin 39) and the sensor for the left side of the robot to AIN1 (P9
Expansion Header pin 40) on the BeagleBone Black.

Now we need to add the code that will read the range sensors. Add the following two
properties to the MSBot type:

 private let rRange: SBAnalog
 private let lRange: SBAnalog

Now we need to initialize these properties in the initializer. The new initializer for the
MSBot should look like this:

init?() {
 if let rMotor1 = SBDigitalGPIO(id:"gpio68", direction: .OUT),
 let rMotor2 = SBDigitalGPIO(id:"gpio44", direction: .OUT),
 let lMotor1 = SBDigitalGPIO(id:"gpio26", direction: .OUT),
 let lMotor2 = SBDigitalGPIO(id:"gpio46", direction: .OUT),
 let rRange = SBAnalog(id:"AIN0"),
 let lRange = SBAnalog(id:"AIN1")
 {
 self.rMotor1 = rMotor1
 self.rMotor2 = rMotor2
 self.lMotor1 = lMotor1
 self.lMotor2 = lMotor2
 self.rRange = rRange
 self.lRange = lRange
 } else {
 return nil
 }
 }

Swift on Single Board Computers

[305]

We are now initializing the motor controller's digital GPIO pins and the range finder's
analog pins. Finally, we will add a method to read the right range finder and another one to
read the left range finder:

func leftRange() -> Double {
 if let rawValue = lRange.getValue() {
 let mv = (Double(rawValue) / 4096.0) * 1.80
 return mv/0.002148
 } else {
 return 0.0
 }
 }

 func rightRange() -> Double {
 if let rawValue = rRange.getValue() {
 let mv = (Double(rawValue) / 4096.0) * 1.80
 return mv/0.002148
 } else {
 return 0.0
 }
 }

I am using 2.148mV/in in this code. The datasheets state that we should
get 6.4mV/in; however, every test I have done, on multiple MaxSonar
range finders, has shown that the 2.148mV/in is accurate. If you are getting
different results when you test your range finders, try adjusting this value.

Just like the motor controller, once we connect the range finders and write the code to
control them, we will want to test it. Let's erase the old main.swift file and create a new
one with the following code in it:

import Glibc

if let bot = MSBot() {
 while(true) {
 let rightRange = bot.rightRange()
 let leftRange = bot.leftRange()
 print("\(leftRange) .. \(rightRange)")
 usleep(250000)
 }
}

Swift on Single Board Computers

[306]

Now compile and run the project. As the ranges are being printed to the console, put an
object in front of the range finders and see what distances are being printed out. The range
finder should tell you pretty accurately what the range is to the object. Once the range
finders are working properly, we are ready to write the code for our robot, but first let's see
what the finished robot looks like if you were to print out the pieces from the downloadable
code. This first image shows what the front of the robot looks like:

Swift on Single Board Computers

[307]

This next image shows what the back of the robot looks like:

Let's create a new main.swift file that will contain the logic for our robot. We will start off
by importing the Glibc module and creating an enumeration that defines the states our
robot can be in. The enumeration is defined like this:

 enum BotState {
 case STOPPED
 case FORWARD
 case REVERSE
 case TURNINGLEFT
 case TURNINGRIGHT
}

Next we will want to create a constant that defines how close an object has to be to trigger
our robot to turn. We will use 18 inches in this example:

private let RANGE_CHECK = 18.0

Swift on Single Board Computers

[308]

We will need a variable to keep track of the current state of our robot. This can be done as
shown in the following code:

var botState = BotState.STOPPED

Now we can create the logic for the robot:

if let bot = MSBot() {
 while(true) {

 let rightRange = bot.rightRange()
 let leftRange = bot.leftRange()

 if leftRange < RANGE_CHECK || rightRange < RANGE_CHECK {
 if leftRange < rightRange && botState != .TURNINGLEFT {
 bot.right()
 botState = .TURNINGRIGHT
 } else if rightRange < leftRange &&
 botState != .TURNINGRIGHT {
 bot.left()
 botState = .TURNINGLEFT
 } else if leftRange == rightRange &&
 botState != .TURNINGLEFT {
 bot.right()
 botState = .TURNINGRIGHT
 }
 } else if botState != .FORWARD {
 bot.forward()
 botState = .FORWARD
 }
 if botState == .FORWARD {
 usleep(25000)
 } else {
 usleep(50000)
 }
 }
}

In this code, we begin by creating an instance of the MSBot type and start a forever loop that
will run until the process is stopped. Once we are in the loop, the first thing we do is to read
both range finders and then check if either of the range finders have an object close enough
to trigger a turn.

Swift on Single Board Computers

[309]

If there is an object close enough to trigger a turn, we check to see if the object is closer to
the left side, the right side or is the same distance. Whichever side of the robot is closer to
the object we turn in the opposite direction unless we are already turning. If we are already
turning we continue to turn in the current direction.

If we do not have an object close enough to trigger a turn, we then check to see if the state of
the robot is not .FORWARD. If the robot is not currently going in the forward direction we
then tell it to go forward.

Finally the robot pauses for a split second and then loops back to go though the process
again. Now, if we compile the project and let our robot go, it will move around the room
avoiding the obstacles that it detects. Be careful, as the robot will not detect obstacles that
are not at the height of MaxSonar range finders (ones that are too low) or cliffs. Definitely
keep your new robot away from cliffs.

Summary
This was a very brief introduction to what you can do with Swift and the BeagleBone Black.
There are so many different sensors that can be purchased; you are only limited by your
imagination and creativity. While there are numerous tutorials that show how we can use
JavaScript, Python and C to develop applications for the SBC, I have found that Swift is an
excellent language for these boards as well.

17
Swift Formatting and Style

Guide
Throughout my development experience, every time I learned a new programming
language, there was usually some mention of how code for that language should be written
and formatted. Early in my development career (which was a long time ago), these
recommendations were very basic formatting recommendations, such as how to indent
your code, or something like having one statement per line. It really wasn't until the last 10
to 12 years that I started to see complex and detailed formatting and style guides for
different programming languages. Today, you will be hard pressed to find a development
shop with more than two or three developers that does not have style/formatting guides for
each language that they use. Even companies that do not create their own style guides
generally refer back to some standard guide published by other companies, such as Google,
Oracle, or Microsoft. These style guides help teams to write consistent and easy-to-maintain
code.

What is a programming style guide?
Coding styles are very personal and every developer has his or her own preferred style.
These styles can vary from language to language, person to person, and also change over
time. The personal nature of coding styles can make it difficult to have a consistent and
readable code base when numerous individuals are contributing to the code.

While most developers might have their own preferred styles, the recommended or
preferred style between languages can vary. As an example, in C#, when we name a method
or function, it is preferred to use camel case with the first letter being capitalized. While in
most other languages, such as C, Objective-C, and Java, it is also recommended that we use
camel case, but it is recommended that we make the first letter lower case.

Swift Formatting and Style Guide

[311]

The best applications are coded properly, and by properly we do not just mean that they
function correctly but also that they are easy to maintain and the code is easy to read. It is
hard for large projects and companies with a large number of developers to have code that
is easy to maintain and read if every developer uses their own coding style. This is why
companies and projects with multiple developers usually adopt programming style guides
for each language that they use.

A programming style guide defines a set of rules and guidelines that a developer should
follow while writing applications with a specific language within a project or company.
These style guides can differ greatly between companies or projects and reflect how that
company or project expects code to be written. These guides can also change over time. It is
important to follow these style guides to maintain a consistent code base.

A lot of developers do not like the idea of being told how they should write code, and
argue that as long as their code functions correctly, why should it matter how they format
their code? I liken this to a basketball team. If all of the players come in believing that how
they want to play is correct and believe that the team is better when they are doing their
own thing, then that team is probably going to lose the majority of their games. It is
impossible for a basketball team (or any sports team, for that matter) to win the majority of
their games unless they are working together. It is up to the coach to make sure that
everyone is working together and executing the same game plan, just like it is up to the
team leader of the development project to make sure all the developers are writing code
according to the adopted style guide.

Your style guide
The style guide that we define in this book is just a guide. It reflects the author's opinion on
how Swift code should be written and is meant to be a good starting point for creating your
own style guide. If you really like this guide and adopt it as it is, great. If there are parts that
you do not agree with and you change them within your guide, that is great as well. The
appropriate style for you and your team is the one that you and your team feel comfortable
with, and it may or may not be different from the guide in this book. We should also point
out that Swift is a very young language and people are still trying to figure out the
appropriate style to use with Swift; therefore, what is recommended today may be frowned
upon tomorrow. Don't be afraid to adjust your style guide as needed.

One thing that is noticeable in the style guide within this chapter, and most good style
guides, is that there is very little explanation about why each item is preferred or not
preferred. A style guide should give enough details so that the reader understands the
preferred and non-preferred methods for each item, but should also be small and compact
enough to make it easy and quick to read.

Swift Formatting and Style Guide

[312]

If a developer has questions about why a particular method is preferred, he or she should
escalate that concern up to the development group. With that in mind, let's get started with
the guide.

Do not use semicolons at the end of statements
Unlike a lot of languages, Swift does not require semicolons at the end of statements.
Therefore, we should not use them. Let's take a look at the following code:

//Preferred Method
var name = "Jon"
print(name)

//Non-preferred Method
var name = "Jon";
print(name);

Do not use parentheses for conditional
statements
Unlike a lot of languages, parentheses are not required around conditional statements;
therefore, we should avoid using them unless they are needed for clarification. Let's take a
look at the following code:

//Preferred Method
if speed == 300000000 {
 print("Speed of light")
}

//Non-Preferred Method
if (speed == 300000000) {
 print("Speed of light")
}

Naming
We should always use descriptive names with camel case for customer types, methods,
variables, constants, and so on. Let's look at some general naming rules.

Swift Formatting and Style Guide

[313]

Custom types
Custom types should have a descriptive name that describes what the type is for. The name
should begin with a capital letter and be in camel case. Here are examples of proper names
and non-proper names based on our style guide:

// Proper Naming Convention
BaseballTeam
LaptopComputer
//Non-Proper Naming Convention
baseballTeam //Starts with a lowercase letter
Laptop_Computer //Uses an underscore

Functions and methods
Function names should be descriptive, describing the function or method. They should
begin with a lowercase letter and be in camel case. Here are some examples of proper and
non-proper names:

//Proper Naming Convention
getCityName
playSound

//
//Non-Proper Naming Convention
get_city_name //All lowercase and has an underscore
PlaySound //Begins with an upper case letter

Constants and variables
Constants and variables should have a descriptive name. They should begin with a
lowercase letter and should also be in camel case. The only exception is when the constant is
global; in that case, the name of the constant should contain all uppercase characters with
the words separated by underscores. I have seen numerous guides that frown on having all
uppercase names, but I personally like them for constants in the global scope because
they stand out as globally, not locally, scoped. Here are some examples of proper and non-
proper names:

//Proper Names
playerName
driveSize
PLAYERS_ON_A_TEAM //Only for globally scoped constants

//Non-Proper Names

Swift Formatting and Style Guide

[314]

PlayerName //Starts with uppercase letter
drive_size //Has underscore in name

Indenting
The indenting width in Xcode, by default, is defined as four spaces, and the tab width is
also defined as four spaces. We should use this default for Swift with Linux as well.

We should also add an extra blank line between functions/methods. We should also use a
blank line to separate the functionality within a function or method. That being said, using
many blank lines within a function or method might signify that we should break the
function into multiple functions.

Comments
We should use comments as needed to explain how and why our code is written. We
should use block comments before custom types and functions. We should use the double
slashes to comment code in line. Here is an example of how to write comments:

/**
* This is a block comment that should be used
* to explain a class or function
*/
public class EmployeeClass {
 // This is an inline comment with double slashes
 var firstName = ""
 var lastName = ""

 /**
 Use Block comments for functions

 :parm: paramName use this tag for parameters
 :returns: explain what is returned
 */
 func getFullName() -> String {
 return firstName + " " + lastName
 }
}

When we are commenting methods, we should also use the documentation tags that will
generate documentation in Xcode, as shown in the preceding example. At a minimum, we
should use the following tags if they apply to our method:

parameter: This is used for parameters

Swift Formatting and Style Guide

[315]

returns: This is used for what is returned
throws: This is used to document errors that may be thrown

Even though we are developing code for the Linux platform and we do not use Xcode on
Linux, we should still use Xcode commit tags for consistency purposes.

Using the self keyword
Since Swift does not require us to use the self keyword when accessing properties or
invoking methods of an object, we should avoid using it unless we need to distinguish
between an instance property and local variables. Here is an example of when you should
use the self keyword:

public class EmployeeClass {
 var firstName = ""
 var lastName = ""
 func setName(firstName: String, lastName: String) {
 self.firstName = firstName
 self.lastName = lastName
 }
}

Here is an example of when not to use the self keyword:

public class EmployeeClass {
 var firstName = ""
 var lastName = ""
 func getFullName() -> String {
 return self.firstName + " " + self.lastName
 }
}

Constants and variables
The difference between constants and variables is that the value of a constant never
changes, whereas the value of a variable may change. Wherever possible, we should define
constants rather than variables.

One of the easiest ways of doing this is to define everything as a constant, by default, and
then change the definition to a variable only after you reach a point in your code that
requires you to change it. In Swift, you will get a warning if you define a variable and then
never change the value within your code.

Swift Formatting and Style Guide

[316]

Optional types
Only use optional types when absolutely necessary. If there is no absolute need for a nil
value to be assigned to a variable, we should not define it as an optional.

Use optional binding
We should avoid forced unwrapping of optionals, as there is rarely any need to do this. We
should prefer optional binding or optional chaining for force unwrapping.

The following examples show the preferred and non-preferred methods where the
myOptional variable is defined as an optional:

//Preferred Method Optional Binding
if let value = myOptional {
 // code if myOptional is not nil
} else {
 // code if myOptional is nil
}

//Non-Preferred Method
if myOptional != nil {
 // code if myOptional is not nil
} else {
 // code if myOptional is nil
}

If there is more than one optional that we need to unwrap, we should include them on the
same line rather than unwrapping them on separate lines provided our business logic does
not require separate paths if the unwrapping fails. The following examples show the
preferred and non-preferred methods:

//Preferred Method Optional Binding
if let value1 = myOptional1, let value2 = myOptional2 {
 // code if myOptional1 and myOptional2 is not nil
} else {
 // code if myOptional1 and myOptional2 is nil
}

//Non-Preferred Method Optional Binding
if let value1 = myOptional1 {
 if let value2 = myOptional2 {
 // code if myOptional is not nil
 } else {
 // code if myOptional2 is nil
 }

Swift Formatting and Style Guide

[317]

} else {
 // code if myOptional1 is nil
}

Use optional chaining over optional binding for multiple
unwrapping
When we need to unwrap multiple layers, we should use optional chaining over multiple
optional binding statements. The following example shows the preferred and non-preferred
methods:

//Preferred Method
if let color = jon.pet?.collar?.color {
 print("The color of the collar is \(color)")
} else {
 print("Cannot retrieve color")
}

//Non-Preferred Method
if let tmpPet = jon.pet, tmpCollar = tmpPet.collar {
 print("The color of the collar is \(tmpCollar.color)")
} else {
 print("Cannot retrieve color")
}

Use type inference
Rather than defining the variable types, we should let Swift infer the type. The only time we
should define the variable or constant type is when we are not giving it a value while
defining it. Let's take a look at the following code:

//Preferred method
var myVar = "String Type" //Infers a String type
var myNum = 2.25 //Infers a Double type

//Non-Preferred method
var myVar: String = "String Type"
var myNum: Double = 2.25

Swift Formatting and Style Guide

[318]

Use shorthand declaration for collections
When declaring native Swift collection types, we should use the shorthand syntax and,
unless absolutely necessary, we should initialize the collection. The following example
shows the preferred and non-preferred methods:

//Preferred Method
var myDictionary: [String: String] = [:]
var strArray: [String] = []
var strOptional: String?

//
//Non-Preferred Method
var myDictionary: Dictionary<String,String>
var strArray: Array<String>
var strOptional: Optional<String>

Use switch rather than multiple if statements
Wherever possible, we should prefer to use a single switch statement over multiple if
statements. The following example shows the preferred and non-preferred methods:

//Preferred Method
let speed = 300000000
switch speed {
case 300000000:
 print("Speed of light")
case 340:
 print("Speed of sound")
default:
 print("Unknown speed")
}

//Non-preferred Method
let speed = 300000000
if speed == 300000000 {
 print("Speed of light")
} else if speed == 340 {
 print("Speed of sound")
} else {
 print("Unknown speed")
}

Swift Formatting and Style Guide

[319]

Don't leave commented-out code in your
application
If we comment out a block of code while we attempt to replace it, once we are comfortable
with the changes, we should remove the code that we commented out. Having large blocks
of code commented out can make the code base messy and harder to follow.

Summary
When we are developing an application in a team environment, it is important to have a
well-defined coding style that everyone on the team adheres to. This allows us to have a
code base that is easy to read and maintain.

If a style guide remains static for too long, it means that it is probably not keeping up with
the latest changes within the language. What is too long is different for each language. For
example, with the C language, too long will be defined in years, since the language is very
stable; however, with Swift, the language is so new and changes are coming pretty often,
thus too long can probably be defined as a couple of months.

It is recommended that we keep our style guides in a version control system so that we can
refer to the older versions if need be. This allows us to pull out older versions of the style
guide and refer back to them when we are looking at older code.

18
Adopting Design Patterns in

Swift
While the first publication of the Gang of Four's Design Patterns: Elements of Reusable Object-
Oriented Software was released in October 1994, I have only been paying attention to design
patterns for the past nine or ten years. Similar to most experienced developers, when I first
started reading about design patterns, I recognized a lot of them because I had already been
using them without realizing what they were. I would have to say that in the past nine or
ten years, since I first read about design patterns, I have not written a serious application
without using at least one of the Gang of Four's design patterns. I will tell you that I am
definitely not a design pattern zealot, and if I get into a conversation about design patterns,
there are usually only a couple of them that I can name without having to look them up.
However, what I do remember are the concepts behind the major patterns and the problems
they are designed to solve. This way, when I encounter one of these problems, I can look up
the appropriate pattern and apply it. So remember, as you go through this chapter, to take
the time to understand the major concepts behind the design patterns rather than trying to
memorize the patterns themselves.

In this chapter, we will take a look at the following topics:

What design patterns are
What types of patterns make up the creational, structural, and behavioral
categories of design patterns
How to implement the builder and singleton creational patterns in Swift
How to implement the bridge, façade, and proxy structural patterns in Swift
How to implement the strategy and commandbehavioral patterns in Swift

Adopting Design Patterns in Swift

[321]

What are design patterns?
Every experienced developer has a set of informal strategies that shape how he or she
designs and writes applications. These strategies are shaped by the experiences of
developers and the obstacles they have had to overcome in previous projects. While these
developers might swear by their own strategies, it does not mean that their strategies have
been fully vetted. The use of these strategies can also introduce inconsistent
implementations among different projects and developers.

While the concept of design patterns dates back to the mid 80s, they did not gain popularity
until the Gang of Four released their book Design Patterns: Elements of Reusable Object-
Oriented Software, published in 1994. The book's authors, Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (also known as the Gang of Four), discuss the pitfalls of object-
oriented programming and describe 23 classic software design patterns. These 23 patterns
are broken up into three categories: creational, structural, and behavioral.

A design pattern identifies common software development problems and provides a
strategy to deal with them. These strategies have been proven, over the years, to be an
effective solution for the problems they are intended to solve. Using these patterns can
greatly speed up our development process because they provide us with solutions that have
already been proven to solve several common software development problems.

Another advantage that we gain when we use design patterns is consistent code that is easy
to maintain, because when we look at our code months or years from now, we will
recognize the patterns and understand what the code does. If we properly document our
code and the design pattern we are implementing, it will also help other developers
understand what our code is doing.

The two main philosophies behind design patterns are code reuse and flexibility. As a
software architect, it is essential that we build reusability and flexibility into our code. This
allows us to easily maintain our code in the future and makes it easier for our applications
to expand to meet future requirements because we all know how quickly the requirements
change.

While there is a lot to like about design patterns and they are extremely beneficial for both
developers and architects, they are not the solution for world hunger that some developers
make them out to be. Sometime in your development career, you will probably meet a
developer or an architect who thinks that design patterns are immutable laws. These
developers usually try to force the use of design patterns even when they are not necessary.
A good rule of thumb is to make sure that you have a problem that needs to be fixed before
you try to fix it.

Adopting Design Patterns in Swift

[322]

Design patterns are starting points for avoiding and solving common programming
problems. We can think of each design pattern as a recipe and we can tinker and adjust it to
meet our particular tastes; however, we usually do not stray too far from the original recipe
because we may mess it up.

There are also times when we do not have the recipe of a certain dish that we want to make,
just like there are times when there isn't a design pattern to solve the problem we face. In
such cases, we can use our knowledge of design patterns and their underlying philosophy
to come up with an effective solution for our problem.

Design patterns are split into three categories. They are as follows:

Creational patterns: Creational patterns support the creation of objects
Structural patterns: Structural patterns concern types and object compositions
Behavioral patterns: Behavioral patterns deal with communication between
types

While the Gang of Four defined over 20 design patterns, we are only going to look at
examples of some of the more popular patterns in this chapter. Let's start off by looking at
creational patterns.

Design patterns were originally defined for object-oriented programming.
In this chapter, where possible, we will focus on implementing the
patterns in a more protocol-oriented way. Therefore, the examples in this
chapter may look a little different from examples in other design pattern
books, but the underlying philosophy of the solutions will be the same.

Creational patterns
Creational patterns are design patterns that deal with how an object is created. These
patterns create objects in a manner suitable for particular situations.

There are two basic ideas behind creational patterns. The first is encapsulating the
knowledge of which concrete types should be created, and the second is hiding how the
instances of these types are created.

Adopting Design Patterns in Swift

[323]

The following are the five well-known patterns that are a part of the creational pattern
category:

Abstract factory pattern: This provides an interface for creating related objects
without specifying the concrete type
Builder pattern: This separates the construction of a complex object from its
representation, so the same process can be used to create similar types
Factory method pattern: This creates objects without exposing the underlying
logic of how the object (or which type of object) is created
Prototype pattern: This creates an object by cloning an existing one
Singleton pattern: This allows one (and only one) instance of a class for the
lifetime of an application

In this chapter, we are going to look at examples regarding how to implement the builder
and singleton patterns in Swift. Let's start off by looking at one of the most controversial,
and possibly the most overused, design patterns: the singleton pattern.

The singleton design pattern
The use of the singleton pattern is a fairly controversial subject in certain corners of the
development community. One of the main reasons for this is that the singleton pattern is
probably the most overused and misused pattern. Another reason why this pattern is
controversial is that the singleton pattern introduces a global state into an application,
which provides the ability to change the object at any point within the application. The
singleton pattern can also introduce hidden dependencies and tight compiling. My personal
opinion is that if the singleton pattern is used correctly, there is nothing wrong with using
it. However, we do need to be careful not to misuse it.

The singleton pattern restricts the instantiation of a class to a single instance for the
complete life of an application. This pattern is very effective when we need exactly one
object to coordinate actions within our application. An example of a good use of a singleton
is if our application communicates with a remote device over Bluetooth and we also want to
maintain that connection throughout our application. Some would say that we could pass
the instance of the connection class from one page to the next, which is essentially what a
singleton is. In my opinion, the singleton pattern, in this instance, is a much cleaner solution
because with the singleton pattern, any page that needs the connection can get it without
forcing every page to maintain the instance. This also allows us to maintain the connection
without having to reconnect each time we go to another page.

Adopting Design Patterns in Swift

[324]

Understanding the problem
The problem the singleton pattern is designed to address is when we need one, and only
one, instance of a type for the lifetime of our application. The singleton pattern is usually
used when we need centralized management of an internal or external resource and a single
global point of access. Another popular use of the singleton pattern is when we want to
consolidate a set of related activities that are needed throughout our application, and do not
maintain a state, in one place.

In Chapter 5, Classes and Structures, we used the singleton pattern in the text validation
example because we only needed one instance of our text validation types throughout the
lifetime of our application. In that example, we used the singleton pattern for our text
validation types because we wanted to create a single instance of the types that could then
be used by all the components of the application without requiring us to create new
instances of the types. These text validation types did not have a state that could be
changed. They only had methods that performed the validation on the text and constants
that defined how to validate the text. While some may disagree with me, I believe types
such as these are excellent candidates for the singleton pattern because there is no reason to
create multiple instances of these types.

Understanding the solution
There are several ways to implement the singleton pattern in Swift. The way it is presented
here uses class constants that were introduced in version 1.2 of Swift. With this method, a
single instance of the class is created the first time we access the class constant. We will then
use the class constant to gain access to this instance throughout the lifetime of our
application. We will also create a private initializer that will prevent external code from
creating additional instances of the class.

Note that we use the word class in this description and not type. The
reason for this is that the singleton pattern can only be implemented with
reference types.

Adopting Design Patterns in Swift

[325]

Implementing the singleton pattern
Let's take a look at how we can implement the singleton pattern with Swift. The following
code example shows how to create a singleton class:

class MySingleton {
 static let sharedInstance = MySingleton()
 var number = 0

 private init() {}

}

We can see that within the MySingleton class, we created a static constant named
sharedInstance that contains an instance of the MySingleton class. A static constant can
be called without having to instantiate the class. Since we declared the sharedInstance
static constant, only one instance will exist throughout the life cycle of the application,
thereby creating the singleton pattern.

We also created the private initiator, which will restrict other code from creating another
instance of the MySingleton class.

Now let's take a look at how this pattern works. The MySingleton pattern has another
property named number, which is of the Int type. We will monitor how this property
changes as we use the sharedInstance property to create multiple variables of the
MySingleton type, as shown in the following code:

var singleA = MySingleton.sharedInstance
var singleB = MySingleton.sharedInstance
var singleC = MySingleton.sharedInstance

singleB.number = 2

print(singleA.number)
print(singleB.number)
print(singleC.number)

singleC.number = 3

print(singleA.number)
print(singleB.number)
print(singleC.number)

Adopting Design Patterns in Swift

[326]

In this example, we used the sharedInstance property to create three variables of the
MySingleton type. We initially set the number property of the second MySingleton
variable (singleB) to 2. When we printed out the value of the number property for
singleA, singleB, and singleC, we saw that the number property for all three equals 2.
We then changed the value of the number property of the third MySingleton variable
(singleC) to the number 3. When we printed out the value of the number property again,
we saw that all three now have a value of 3. Therefore, when we change the value of the
number property, in any of the instances, the values of all three change because each
variable points to the same instance.

In this example, we implemented the singleton pattern using a reference (class) type
because we wanted to ensure that only one instance of the type existed throughout our
application. If we implemented this pattern with a value type, such as a structure or an
enumeration, we would run the risk of there being multiple instances of our type. If you
recall, each time we pass an instance of a value type, we are actually passing a copy of that
instance, which means that if we implemented the singleton pattern with a value type, each
time we called the sharedInstance property, we would receive a new copy, which would
effectively break the singleton pattern.

The singleton pattern can be very useful when we need to maintain the state of an object
throughout our application; however, be careful not to overuse it. The singleton pattern
should not be used unless there is a specific requirement (requirement is the key word here)
for having one, and only one, instance of our class throughout the life cycle of our
application. If we are using the singleton pattern simply for convenience, then we are
probably misusing it.

Keep in mind that while Apple recommends that we prefer value types to reference types,
there are still plenty of examples, such as the singleton pattern, where we need to use
reference types. When we continuously tell ourselves to prefer value types to reference
types, it can be very easy to forget that there are times when a reference type is needed.
Don't forget to use reference types with this pattern.

Now, let's take a look at the builder design pattern.

Adopting Design Patterns in Swift

[327]

The builder design pattern
The builder pattern helps us with the creation of complex objects and enforces the process
of how these objects are created. With this pattern, we generally separate the creation logic
from the complex type and put it in another type. This allows us to use the same
construction process to create different representations of the type.

Understanding the problem
The problem that the builder problem is designed to address arises when an instance of a
type requires a large number of configurable values. We could set the configuration options
when we create instances of the class, but that can cause issues if the options are not set
correctly or we do not know the proper values for all of the options. Another issue is the
amount of code that might be needed to set all of the configurable options each time we
create an instance of our types.

Understanding the solution
The builder pattern solves this problem by introducing an intermediary, known as a builder
type. This builder type contains most if not all of the information necessary to create an
instance of the original complex type.

There are two methods that we can use to implement the builder pattern. The first method
is to have multiple builder types, where each builder type contains the information to
configure the original complex object in a specific way. In the second method, we
implement the builder pattern with a single builder type that sets all of the configurable
options to a default value, and then we could change the values as needed.

In this section, we will look at both ways to use the builder pattern in because it is
important to understand how each works.

Implementing the builder pattern
Before we see how to the builder pattern, let's take a look at how to create a complex
structure without the builder pattern and the problem we run into.

Adopting Design Patterns in Swift

[328]

The following code creates a structure named BurgerOld and does not use the builder
pattern:

structBurgerOld {
 var name: String
 var patties: Int
 var bacon: Bool
 var cheese: Bool
 var pickles: Bool
 var ketchup: Bool
 var mustard: Bool
 var lettuce: Bool
 var tomato: Bool

 init(name: String, patties: Int, bacon: Bool, cheese: Bool, pickles:
Bool,ketchup: Bool,mustard: Bool,lettuce: Bool,tomato: Bool) {
 self.name = name
 self.patties = patties
 self.bacon = bacon
 self.cheese = cheese
 self.pickles = pickles
 self.ketchup = ketchup
 self.mustard = mustard
 self.lettuce = lettuce
 self.tomato = tomato
 }
}

In the BurgerOld structure, we have several properties that define the condiments on the
burger and also the name of the burger accordingly. Since we need to know which items are
on the burgers and which items aren't, when we create an instance of the BurgerOld
structure, the initializer requires us to define each item. This can lead to some complex
initializations throughout our application, not to mention that if we had more than one
standard burger (bacon cheeseburger, cheeseburger, hamburger, and so on), we would
need to make sure that each was defined correctly. Let's take a look at how to create
instances of the BurgerOld class:

// Create Hamburger
var burgerOld = BurgerOld(name: "Hamburger", patties: 1, bacon: false,
cheese: false, pickles: false, ketchup: false, mustard: false,
lettuce: false, tomato: false)

// Create Cheeseburger
var burgerOld = BurgerOld(name: "Cheeseburger", patties: 1, bacon:
false, cheese: true, pickles: false, ketchup: false, mustard: false,
lettuce: false, tomato: false)

Adopting Design Patterns in Swift

[329]

As we can see, creating instances of the BurgerOld type requires a lot of code. Now, let's
look at a better way to do this. In this example, we will see how to use multiple builder
types, where each type will define the condiments that are on a particular burger. We will
begin by creating a BurgerBuilder protocol, which will have the following code in it:

protocol BurgerBuilder {
 var name: String {get}
 var patties: Int {get}
 var bacon: Bool {get}
 var cheese: Bool {get}
 var pickles: Bool {get}
 var ketchup: Bool {get}
 var mustard: Bool {get}
 var lettuce: Bool {get}
 var tomato: Bool {get}
}

This protocol simply defines the nine properties that will be required for any type that
implements this protocol. Now, let's create two structures that implement this protocol with
the HamburgerBuilder and CheeseBurgerBuilder structures:

struct HamBurgerBuilder: BurgerBuilder {
 let name = "Burger"
 let patties = 1
 let bacon = false
 let cheese = false
 let pickles = true
 let ketchup = true
 let mustard = true
 let lettuce = false
 let tomato = false
}

struct CheeseBurgerBuilder: BurgerBuilder {
 let name = "CheeseBurger"
 let patties = 1
 let bacon = false
 let cheese = true
 let pickles = true
 let ketchup = true
 let mustard = true
 let lettuce = false
 let tomato = false
}

Adopting Design Patterns in Swift

[330]

In both the HamburgerBuilder and CheeseBurgerBuilder structures, all we are doing is
defining the values for each of the required properties. In more complex types, we might
need to initialize additional resources.

Now, let's take a look at our Burger structure, which will use instances of the
BurgerBuilder protocol to create instances of itself. The following code shows this new
Burger type:

structBurger {
 var name: String
 var patties: Int
 var bacon: Bool
 var cheese: Bool
 var pickles: Bool
 var ketchup: Bool
 var mustard: Bool
 var lettuce: Bool
 var tomato: Bool

 init(builder: BurgerBuilder) {
 self.name = builder.name
 self.patties = builder.patties
 self.bacon = builder.bacon
 self.cheese = builder.cheese
 self.pickles = builder.pickles
 self.ketchup = builder.ketchup
 self.mustard = builder.mustard
 self.lettuce = builder.lettuce
 self.tomato = builder.tomato
 }

 func showBurger() {
 print("Name: \(name)")
 print("Patties: \(patties)")
 print("Bacon: \(bacon)")
 print("Cheese: \(cheese)")
 print("Pickles: \(pickles)")
 print("Ketchup: \(ketchup)")
 print("Mustard: \(mustard)")
 print("Lettuce: \(lettuce)")
 print("Tomato: \(tomato)")
 }
}

Adopting Design Patterns in Swift

[331]

The difference between this Burger structure and the BurgerOld structure shown earlier is
the initializer. In the previous BurgerOld structure, the initializer took nine arguments-one
for each constant defined in the structure. In the new Burger structure, the initializer takes
one argument, which is an instance of a type that conforms to the BurgerBuilder protocol.
This new initializer allows us to create instances of the Burger class similar to this:

// Create Hamburger
var myBurger = Burger(builder: HamBurgerBuilder())
myBurger.showBurger()
// Create Cheeseburger without tomatos
var myCheeseBurgerBuilder = CheeseBurgerBuilder()
var myCheeseBurger = Burger(builder: myCheeseBurgerBuilder)
// Lets addtomatos
myCheeseBurger.tomato = true
myCheeseBurger.showBurger()

If we compare how we create instances of the new Burger structure with the earlier
BurgerOld structure, we can see that it is much easier to create instances of the Burger
structure. We also know that we are correctly setting the property values for each type of
burger because the values are set directly in the builder classes.

As we mentioned earlier, there is a second method that we can use to implement the builder
pattern. Rather than having multiple builder types, we can have a single builder type that
sets all of the configurable options to a default value; then we would change the values as
needed. I use this implementation method a lot when I am updating older code because it is
easy to integrate it with preexisting code.

For this implementation, we will create a single BurgerBuilder structure. This
BurgerBuilder structure will be used to create instances of the BurgerOld structure and
will, by default, set all of the ingredients to their default values. The BurgerBuilder
structure also gives us the ability to change the ingredients that will go on the burger prior
to creating instances of the BurgerOld structure. We create the BurgerBuilder structure,
such as this:

struct BurgerBuilder {
 var name = "Burger"
 var patties = 1
 var bacon = false
 var cheese = false
 var pickles = true
 var ketchup = true
 var mustard = true
 var lettuce = false
 var tomato = false

Adopting Design Patterns in Swift

[332]

 mutatingfunc setPatties(choice: Int) {self.patties = choice}
 mutatingfunc setBacon(choice: Bool) {self.bacon = choice}
 mutatingfunc setCheese(choice: Bool) {self.cheese = choice}
 mutatingfunc setPickles(choice: Bool) {self.pickles = choice}
 mutatingfunc setKetchup(choice: Bool) {self.ketchup = choice}
 mutatingfunc setMustard(choice: Bool) {self.mustard = choice}
 mutatingfunc setLettuce(choice: Bool) {self.lettuce = choice}
 mutatingfunc setTomato(choice: Bool) {self.tomato = choice}

 func buildBurgerOld(name: String) -> BurgerOld {
 return BurgerOld(name: name, patties: self.patties,
 bacon: self.bacon, cheese: self.cheese,
 pickles: self.pickles, ketchup: self.ketchup,
 mustard: self.mustard, lettuce: self.lettuce,
 tomato: self.tomato)
 }
}

In the BurgerBuilder structure, we define nine properties (ingredients) for our burger and
then create a setter method for each of the properties except the name property. We also
create one method named buildBurgerOld(), which will create an instance of the
BurgerOld structure based on the values of the properties for the BurgerBuilder
instance. We use the BurgerBuilder structure:

var burgerBuilder = BurgerBuilder()
burgerBuilder.setCheese(choice: true)
burgerBuilder.setBacon(choice: true)
var jonBurger = burgerBuilder.buildBurgerOld(name: "Jon's Burger")

In this example, we create an instance of the BurgerBuilder structure. We then use the
setCheese() and setBacon() methods to add cheese and bacon to our burger. Finally,
we call the buildBurgerOld() method to create the instance of the Burger structure.

As we can see, both methods that were used to implement the builder pattern greatly
simplify the creation of our complex type. Both methods also ensured that our instances
were properly configured with default values. If you find yourself creating instances of
types with very long and complex initialization commands, I would recommend that you
look at the builder pattern to see whether you can use it to simplify the initialization.

Now, let's take a look at structural design patterns.

Adopting Design Patterns in Swift

[333]

Structural design patterns
Structural design patterns describe how types can be combined to form larger structures.
These larger structures can generally be easier to work with and hide a lot of the complexity
of the individual types. Most patterns in the structural pattern category involve connections
between objects.

There are seven well-known patterns that are part of the structural design pattern type.
They are as follows:

Adapter: This allows types with incompatible interfaces to work together
Bridge: This is used to separate the abstract elements of a type from the
implementation so the two can vary
Composite: This allows us to treat a group of objects as a single object
Decorator: This lets us add or override behavior in an existing method of an
object
Façade: This provides a simplified interface for a larger and more complex body
of code
Flyweight: This allows us to reduce the resources needed to create and use a
large number of similar objects
Proxy: This is a type acting as an interface for another class or classes

In this chapter, we are going to look at examples of how to use the bridge, façade, and
proxy patterns in Swift. Now, let's start looking at the bridge pattern.

The bridge pattern
The bridge pattern decouples the abstraction from the implementation so that they can both
vary independently. The bridge pattern can also be thought of as a two-layer abstraction.

Understanding the problem
The bridge pattern is designed to solve a couple of problems, but the one we are going to
focus on here tends to arise over time as new requirements come in with new features. At
some point, as these new requirements and features come in, we will need to change how
the features interact. Usually, this will eventually require us to refactor our code.

Adopting Design Patterns in Swift

[334]

In object-oriented programming, this is known as an exploding class hierarchy, but it can also
happen in protocol-oriented programming.

Understanding the solution
The bridge pattern solves this problem by taking the interacting features and separating the
functionality specific to each feature from the functionality that is shared between them. A
bridge type can then be created that will encapsulate the shared functionality, bringing
them together.

Implementing the bridge pattern
To demonstrate how we would use the bridge pattern, we will create two features. The first
feature is a message feature that will store and prepare a message that we wish to send out.
The second feature is the sender feature, which will send the message through a specific
channel, such as e-mail or SMS.

Let's start off by creating two protocols named MessageProtocol and SenderProtocol.
MessageProtocol will define the requirements for types that are used to create messages.
SenderProtocol will be used to define the requirements for types that are used to send
the messages through specific channels. The following code shows how we would define
these two protocols:

protocol MessageProtocol {
 var messageString: String {get set}
 init(messageString: String)
 func prepareMessage()
}

protocol SenderProtocol {
 func sendMessage(message: MessageProtocol)
}

The MessageProtocol protocol defines one stored property of the String type, named
messageString. This property will contain the text of the message and cannot be nil. We
also define one initiator and a method named prepareMessage(). The initiator will be
used to set the messageString property and anything else required by the message type.
The prepareMessage() method will be used to prepare the message prior to sending it.
This method can be used to encrypt the message, add formatting, or do anything else to the
message prior to sending it.

Adopting Design Patterns in Swift

[335]

The SenderProtocol protocol defines a method named sendMessage(). This method
will send the message through the channel defined by conforming types. In this function,
we will need to ensure that the prepareMessage() method from the message type is
called prior to sending the message.

Now let's see how we would define two types that would conform to the
MessageProtocol protocol:

class PlainTextMessage: MessageProtocol {
 var messageString: String
 required init(messageString: String) {
 self.messageString = messageString
 }
 func prepareMessage() {
 // Nothing to do
 }
}

class DESEncryptedMessage: MessageProtocol {
 var messageString: String
 required init(messageString: String) {
 self.messageString = messageString
 }
 func prepareMessage() {
 // Encrypt message here
 self.messageString = "DES: " + self.messageString
 }
}

Each of these types contains the required functionality to conform to the MessageProtocol
protocol. The only real difference between these types is in the prepareMessage()
methods. In the PlainTextMessage class, the prepareMessage() method is empty
because we do not need to do anything to the message prior to sending it. The
prepareMessage() method of the DESEncryptionMessage class would normally contain
the logic to encrypt the message, but for our example, we will just prepend a DES tag to the
beginning of the message, letting us know that this method was called.

Now let's create two types that will conform to the SenderProtocol protocol. These types
would typically handle sending the message through a specific channel; however, in our
example, we will simply print a message to the console:

class EmailSender: SenderProtocol {
 func sendMessage(message: MessageProtocol) {
 print("Sending through E-Mail:")
 print("\(message.messageString)")
 }

Adopting Design Patterns in Swift

[336]

}

class SMSSender: SenderProtocol {
 func sendMessage(message: MessageProtocol) {
 print("Sending through SMS:")
 print("\(message.messageString)")
 }
}

Both the EmailSender and the SMSSender types conform to the SenderProtocol
protocol by implementing the sendMessage() function.

We could now use these two features, as shown in the following code:

var myMessage = PlainTextMessage(messageString: "Plain Text Message")
myMessage.prepareMessage()
var sender = SMSSender()
sender.sendMessage(message: myMessage)

This would work great, and we could add code similar to this anywhere we needed to
create and send a message. Let's say that one day in the near future, we get a requirement to
add new functionality that would verify the message prior to sending it to make sure it
meets the requirements of the channel we are sending the message through. To do this, we
will start off by changing the SenderProtocol protocol to add the verification
functionality. The new sender protocol would look like this:

protocol SenderProtocol {
 var message: MessageProtocol? {getset}
 func sendMessage()
 func verifyMessage()
}

To the SenderProtocol protocol, we added a method named verifyMessage()and also
added a property named message. We also changed the definition of the sendMessage()
method. The original SenderProtocol protocol was designed to simply send the message,
but now we need to verify the message prior to calling the sendMessage() function;
therefore, we couldn't simply pass the message to it like we did in the previous definition.

Now, we will need to change the types that conform to the SenderProtocol protocol to
make them conform to this new protocol. The following code shows how we would make
these changes:

class EmailSender: SenderProtocol {
 var message: MessageProtocol?
 func sendMessage() {
 print("Sending through E-Mail:")

Adopting Design Patterns in Swift

[337]

 print("\(message!.messageString)")
 }
 func verifyMessage() {
 print("Verifying E-Mail message")
 }
}

class SMSSender: SenderProtocol {
 var message: MessageProtocol?
 func sendMessage() {
 print("Sending through SMS:")
 print("\(message!.messageString)")
 }
 func verifyMessage() {
 print("Verifying SMS message")
 }
}

With the changes that we made to the types that conform to the SenderProtocol protocol,
we will need to change how our code uses these types. The following example shows how
we would now use them:

var myMessage = PlainTextMessage(messageString: "Plain Text Message")
myMessage.prepareMessage()
var sender = SMSSender()
sender.message = myMessage
sender.verifyMessage()
sender.sendMessage()

These changes are not that hard to make; however, without the bridge pattern, we would
need to refactor our entire code base and make the change everywhere that we are sending
messages. The bridge pattern tells us that when we have two hierarchies that interact
together closely, we should put this interaction logic into a bridge type that will encapsulate
the logic in one spot. This way, when we receive new requirements or enhancements, we
can make the change in one spot, thereby limiting the refactoring that we have to do. We
could make a bridge type for our message and sender hierarchies, as shown in the
following example:

struct MessageingBridge {
staticfunc sendMessage(message: MessageProtocol, sender: SenderProtocol) {
 var sender = sender
 message.prepareMessage()
 sender.message = message
 sender.verifyMessage()
 sender.sendMessage()
 }
}

Adopting Design Patterns in Swift

[338]

The logic of how our messaging and sender hierarchies interact is now encapsulated in the
MessagingBridge structure. Now when the logic needs to change, we will only need to
make the change to this one structure rather than having to refactor our entire code base.

The bridge pattern is a very good pattern to remember and use. There have been (and still
are) times that I have regretted not using the bridge pattern in my code because, as we all
know, requirements change frequently, and being able to make the changes in one spot
rather than throughout the code base can save us a lot of time in the future.

Now, let's take a look at the next pattern in the structural category: the façade pattern.

The façade pattern
The façade pattern provides a simplified interface to a larger and more complex body of
code. This allows us to make our libraries easier to use and understand by hiding some of
the complexities. It also allows us to combine multiple APIs into a single, easier to use API,
which is what we will see in our example.

Understanding the problem
The façade pattern is often used when we have a complex system that has a large number of
independent APIs that are designed to work together. Sometimes, it is hard to tell where we
should use the façade pattern during our initial application design. The reason for this is
that we normally try to simplify our initial API design; however, over time and as
requirements change and new features are added, our APIs become more and more
complex and then it becomes pretty evident where we should have used the façade pattern.
A good rule to use is that if you have several APIs that are working closely together to
perform a task, you should think about using the façade pattern.

Understanding the solution
The main idea of the façade pattern is to hide the complexity of our APIs behind a simple
interface. This offers us several advantages, with the most obvious being that it simplifies
how we interact with the APIs. It also promotes loose coupling, which allows our APIs to
change as requirements change, without the need to refactor all of the code that uses them.

Adopting Design Patterns in Swift

[339]

Implementing the façade pattern
To demonstrate the façade pattern, we will create three APIs: HotelBooking,
FlightBooking, and RentalCarBooks. These APIs will be used to search for and book
hotels, flights, and rental cars for trips. While we could very easily call each of the APIs
individually in our code, we are going to create a TravelFacade structure that will allow
us to access the functionality of the APIs in single calls.

We will begin by defining the three APIs. Each of the APIs will need a data storage class
that will store the information about the hotel, flight, or rental car. We will start off by
implementing the hotel API:

struct Hotel {
 //Information about hotel room
}

struct HotelBooking {
 static func getHotelNameForDates(to: NSDate, from: NSDate) ->
 [Hotel]? {
 let hotels = [Hotel]()
 //logic to get hotels
 return hotels
 }

 static func bookHotel(hotel: Hotel) {
 // logic to reserve hotel room
 }
}

The hotel API consists of Hotel and HotelBooking structures. The Hotel structure will be
used to store the information about a hotel room; the HotelBooking structure will be used
to search for a hotel room and also to book the room for our trip. The flight and rental car
APIs are very similar to the hotel API. The following code shows both of these APIs:

struct Flight {
 //Information about flights
}

struct FlightBooking {
 static func getFlightNameForDates(to: NSDate, from: NSDate) ->
 [Flight]? {
 let flights = [Flight]()
 //logic to get flights
 return flights
 }

Adopting Design Patterns in Swift

[340]

 static func bookFlight(flight: Flight) {
 // logic to reserve flight
 }
}

struct RentalCar {
 //Information about rental cars
}

struct RentalCarBooking {
 static func getRentalCarNameForDates(to: NSDate, from: NSDate)
 -> [RentalCar]? {
 let cars = [RentalCar]()
 //logic to get flights
 return cars
 }

 static func bookRentalCar(rentalCar: RentalCar) {
 // logic to reserve rental car
 }
}

In each of these APIs, we have a structure that is used to store information and a structure
that is used to provide the search or booking functionality. In our initial design, it would
have been very easy to call these individual APIs within our application; however, as we all
know, requirements tend to change, which causes our APIs to change over time. By using
the façade pattern here, we are able to hide how we implement the APIs; therefore, if we
need to change how the APIs work in the future, we will only need to update the façade
type rather than refactor all of our code. This makes our code easier to maintain and update
in the future. Now let's take a look at how we will implement the façade pattern, by creating
a TravelFacade class:

class TravelFacade {

 var hotels: [Hotel]?
 var flights: [Flight]?
 var cars: [RentalCar]?

 init(to: NSDate, from: NSDate) {
 hotels = HotelBooking.getHotelNameForDates(to: to, from: from)
 flights = FlightBooking.getFlightNameForDates(to: to, from:
 from)
 cars = RentalCarBooking.getRentalCarNameForDates(to: to, from:
 from)
 }

Adopting Design Patterns in Swift

[341]

 func bookTrip(hotel: Hotel, flight: Flight, rentalCar:
 RentalCar) {
 HotelBooking.bookHotel(hotel: hotel)
 FlightBooking.bookFlight(flight: flight)
 RentalCarBooking.bookRentalCar(rentalCar: rentalCar)
 }
}

The TravelFacade class contains the functionality to search the three APIs and also book a
hotel, flight, and rental car. We can now use the TravelFacade class to search for and book
hotels, flights, and rental cars without having to directly access the individual APIs.

As was mentioned at the start of this chapter, it is not always obvious where we should use
the façade pattern in our initial design. A good rule to follow is that if we have several APIs
that are working together to perform a task, we should think about using the façade
pattern.

Now, let's take a look at our last structural pattern, which is the proxy design pattern.

The proxy design pattern
In the proxy design pattern, there is one type acting as an interface for another type or API.
This wrapper class, which is the proxy, can then add functionality to the object, make the
object available over a network, or restrict access to the object.

Understanding the problem
We can use the proxy pattern to solve a number of problems, but I find that I mainly use
this pattern to solve two problems.

The first problem that I use the proxy pattern to solve is when I want to create a layer of
abstraction between a single API and my code. The API could be a local or remote API, but I
usually use this pattern to put an abstraction layer between my code and a remote service.
This will allow changes to the remote API without the need to refactor large portions of our
code.

The second problem that I use the proxy pattern to solve is when I need to make changes to
an API but I do not have the code or there is already a dependency on the API elsewhere in
the application.

Adopting Design Patterns in Swift

[342]

Understanding the solution
To solve these problems, the proxy pattern tells us that we should create a type that will act
as an interface for interacting with the other type or API. In our example, we will see how to
use the proxy pattern to add functionality to an existing type.

Implementing the proxy pattern
In this section, we will look at an example of the proxy pattern by creating a House class
that we can add multiple floor plans to, where each floor plan represents a different story of
the house. Let's begin by creating a FloorPlanProtocol protocol:

protocol FloorPlanProtocol {
 var bedRooms: Int {get set}
 var utilityRooms: Int {get set}
 var bathRooms: Int {get set}
 var kitchen: Int {get set}
 var livingRooms: Int {get set}
}

In the FloorPlanProtocol protocol, we define five properties that will represent the
number of rooms contained in each floor plan. Now, let's create an implementation of the
FloorPlanProtocol protocol named FloorPlan, which is as follows:

struct FloorPlan: FloorPlanProtocol {
 var bedRooms = 0
 var utilityRooms = 0
 var bathRooms = 0
 var kitchen = 0
 var livingRooms = 0
}

The FloorPlan class implements all five properties required from FloorPlanProtocol
and assigns default values to them. Next, we will create the House class, which will
represent a house:

class House {
publicvar stories = [FloorPlanProtocol]()

 func addStory(floorPlan: FloorPlanProtocol) {
 stories.append(floorPlan)
 }
}

Adopting Design Patterns in Swift

[343]

Within our House class, we have an array of FloorPlanProtocols objects, where each
floor plan will represent one story of the house. We also have one function named
addStory(), which accepts an instance of a type that conforms to the
FloorPlanProtocol protocol. This function will add the floor plan to the array of
FloorPlanProtocols protocols.

If we think about the logic of this class, there is one problem that we might encounter. The
problem is that we are allowed to add as many floor plans as we want, which may lead to
houses that are 60 or 70 stories high. This would be great if we were building skyscrapers,
but we just want to build basic single-family houses. If we want to limit the number of floor
plans without changing the House class (either we cannot change it or we simply do not
want to), we can implement the proxy pattern. The following example shows how to
implement the HouseProxy class, where we limit the number of floor plans we can add to
the house:

class HouseProxy {
 var house = House()

 func addStory(floorPlan: FloorPlanProtocol) -> Bool {
 if house.stories.count < 3 {
 house.addStory(floorPlan: floorPlan)
 return true
 }
 else {
 return false
 }
 }
}

We begin the HouseProxy class by creating an instance of the House class. We then create a
method named addStory() that lets us add a new floor plan to the house. In the
addStory() method, we check to see whether the number of stories in the house is fewer
than three; if so, we add the floor plan to the house and return true. If the number of
stories is equal to or greater than three, then we do not add the floor plan to the house and
return false. Let's see how we would use this proxy:

var ourHouse = HouseProxy()

var basement = FloorPlan(bedRooms: 0, utilityRooms: 1, bathRooms: 1,
kitchen: 0, livingRooms: 1)
var firstStory = FloorPlan(bedRooms: 1, utilityRooms: 0, bathRooms: 2,
kitchen: 1, livingRooms: 1)
var secondStory = FloorPlan(bedRooms: 2, utilityRooms: 0, bathRooms: 1,
kitchen: 0, livingRooms: 1)
var additionalStory = FloorPlan(bedRooms: 1, utilityRooms: 0, bathRooms:

Adopting Design Patterns in Swift

[344]

1, kitchen: 1, livingRooms: 1)

print(ourHouse.addStory(floorPlan: basement))
print(ourHouse.addStory(floorPlan: firstStory))
print(ourHouse.addStory(floorPlan: secondStory))
print(ourHouse.addStory(floorPlan: additionalStory))

In our example code, we start off by creating an instance of the HouseProxy class named
ourHouse. We then create four instances of the FloorPlan class, each with a different
number of rooms. Finally, we attempt to add each of the floor plans to the ourHouse
instance. If we then run the code, we will see that the first three instances of the
floorplans class were added to the house successfully, but the last one wasn't because we
are only allowed to add three floors.

The proxy pattern is very useful when we want to add some additional functionality or
error checking to a type but we do not want to change the actual type itself. We can also use
it to add a layer of abstraction between a remote or local API.

Now, let's take a look at behavioral design patterns.

Behavioral design patterns
Behavioral design patterns explain how types interact with each other. These patterns
describe how different instances of types send messages to each other to make things
happen.

There are nine well-known patterns that are part of the behavioral design pattern type.
They are as follows:

Chain of responsibility: This is used to process a variety of requests, each of
which may be delegated to a different handler.
Command: This creates objects that can encapsulate actions or parameters so that
they can be invoked later or by a different component.
Iterator: This allows us to access the elements of an object sequentially without
exposing the underlying structure.
Mediator: This is used to reduce coupling between types that communicate with
each other.

Adopting Design Patterns in Swift

[345]

Memento: This is used to capture the current state of an object and store it in a
manner that can be restored later.

Observer: This allows an object to publish changes to its state. Other objects can
then subscribe so they can be notified of any changes.
State: This is used to alter the behavior of an object when its internal state
changes.
Strategy: This allows one out of a family of algorithms to be chosen at runtime.
Visitor: This is a way of separating an algorithm from an object structure.

In this section, we are going to look at examples of how to use the strategy and command
patterns in Swift. Let's start off by looking at the command pattern.

The command design pattern
The command design pattern lets us define actions that we can execute later. This pattern
generally encapsulates all the information needed to call or trigger the actions at a later
time.

Understanding the problem
There are times in our applications when we need to separate the execution of a command
from its invoker. Typically, this is when we have a type that needs to perform one of several
actions; however, the choice of which action to use needs to be made at runtime.

Understanding the solution
The command pattern tells us that we should encapsulate the logic for the actions into a
type that conforms to a command protocol. We can then provide instances of the command
types for use by the invoker. The invoker will use the interface provided by the protocol to
invoke the required actions.

Adopting Design Patterns in Swift

[346]

Implementing the command pattern
In this section, we will demonstrate how to use the command pattern by creating a Light
type. In this type, we will define the lightOnCommand and lightOffCommand commands
and will use the turnOnLight() and turnOffLight() methods to invoke these
commands.

We will begin by creating a protocol named Command that all of our commands types will
conform to. Here is the Command protocol:

protocol Command {
 func execute()
}

This protocol contains a method named execute, which will be used to execute the
command. Now, let's look at the command types that the Light type will use to turn the
light on and off. They are as follows:

struct RockerSwitchLightOnCommand: Command {
 func execute() {
 print("Rocker Switch: Turning Light On")
 }
}

struct RockerSwitchLightOffCommand: Command {
 func execute() {
 print("Rocker Switch: Turning Light Off")
 }
}
struct PullSwitchLightOnCommand: Command {
 func execute() {
 print("Pull Switch: Turning Light On")
 }
}

struct PullSwitchLightOffCommand: Command {
 func execute() {
 print("Pull Switch: Turning Light Off")
 }
}

Adopting Design Patterns in Swift

[347]

The RockerSwitchLightOffCommand, RockerSwitchLightOnCommand,
PullSwitchLightOnCommand, and PullSwitchLightOffCommand commands all
conform to the Command protocol by implementing the execute() method; therefore, we
will be able to use them in our Light type. Now, let's look at how to implement the Light
type:

class Light {
 var lightOnCommand: Command
 var lightOffCommand: Command

 init(lightOnCommand: Command, lightOffCommand: Command) {
 self.lightOnCommand = lightOnCommand
 self.lightOffCommand = lightOffCommand
 }

 func turnOnLight() {
 self.lightOnCommand.execute()
 }

 func turnOffLight() {
 self.lightOffCommand.execute()
 }
}

In the Light type, we start off by creating two variables, named lightOnCommand and
lightOffCommand, that will contain instances of types that conform to the Command
protocol. We then create an initiator that lets us set both of the commands when we initiate
the type. Finally, we create the turnOnLight() and turnOffLight() methods, which we
will use to turn the light on and off. In these methods, we call the appropriate command to
turn the light on or off.

We can then use the Light type, as shown here:

var on = PullSwitchLightOnCommand()
var off = PullSwitchLightOffCommand()
var light = Light(lightOnCommand: on, lightOffCommand: off)

light.turnOnLight()
light.turnOffLight()

light.lightOnCommand = RockerSwitchLightOnCommand()
light.turnOnLight()

Adopting Design Patterns in Swift

[348]

In this example, we begin by creating an instance of the PullSwitchLightOnCommand
type, named on, and an instance of the PullSwitchLightOffCommand type, named off.
We then create an instance of the Light type using the two commands that we just created
and call the turnOnLight() and turnOffLight() methods of the Light instance to turn
our light on and off. In the last two lines, we change the lightOnCommand method, which
was originally set to an instance of the PullSwitchLightOnCommand class, to an instance
of the RockerSwitchLightOnCommand type. The Light instance will now use the
RockerSwitchLightOnCommand type whenever we turn the light on. This allows us to
change the functionality of the Light type during runtime.

There are a number of benefits to using the command pattern. One of the main benefits is
that we are able to set which command to invoke at runtime, which also lets us swap the
commands with different implementations that conform to the Command protocol as needed
throughout the life of the application. Another advantage of the command pattern is that
we encapsulate the details of the command implementations within the command types
themselves rather than in the container type.

Now, let's look at our last design pattern, which is the strategy pattern.

The strategy pattern
The strategy pattern is pretty similar to the command pattern in that they both allow us to
decouple implementation details from our calling type and also allow us to switch the
implementation out at runtime. The big difference is that the strategy pattern is intended to
encapsulate algorithms. By swapping out an algorithm, we are expecting the object to
perform the same functionality but in a different way. In the command pattern, when we
swap out the commands, we are expecting the object to change the functionality of the
object.

Understanding the problem
There are times in our applications when we need to change the backend algorithm used to
perform an operation. Typically, this is when we have a type that has several different
algorithms that can be used to perform the same task; however, the choice of which
algorithm to use needs to be made at runtime.

Adopting Design Patterns in Swift

[349]

Understanding the solution
The strategy pattern tells us that we should encapsulate the algorithm in a type that
conforms to a strategy protocol. We can then provide instances of the strategy types for use
by the invoker. The invoker will use the interface provided by the protocol to invoke the
algorithm.

Implementing the strategy pattern
In this section, we will demonstrate the strategy pattern by showing you how we could
swap out compression strategies at runtime. Let's begin this example by creating a
CompressionStrategy protocol that each one of our compression types will conform to.
Take a look at the following code:

protocol CompressionStrategy {
 func compressFiles(filePaths: [String])
}

This protocol defines a method named compressFiles() that accepts a single parameter,
which is an array of strings that contain the paths to the files we want to compress. We will
now create two structures that conform to the CompressionStrategy protocol. These are
the ZipCompressionStrategy and the RarCompressionStrategy structures, which are
as follows:

struct ZipCompressionStrategy: CompressionStrategy {
 func compressFiles(filePaths: [String]) {
 print("Using Zip Compression")
 }
}

struct RarCompressionStrategy: CompressionStrategy {
 func compressFiles(filePaths: [String]) {
 print("Using RAR Compression")
 }
}

Both of these structures implement the CompressionStrategy protocol by having a
method named compressFiles(), which accepts an array of strings. Within these
methods, we simply print out the name of the compression that we are using. Normally, we
would implement the compression logic in these methods.

Adopting Design Patterns in Swift

[350]

Now, let's look at our CompressContent class, which will be called to compress the files:

class CompressContent {
 var strategy: CompressionStrategy

 init(strategy: CompressionStrategy) {
 self.strategy = strategy
 }

 func compressFiles(filePaths: [String]) {
 self.strategy.compressFiles(filePaths: filePaths)
 }
}

In this class, we start off by defining a variable-named strategy that will contain an instance
of a type that conforms to the CompressStrategy protocol. We then create an initiator that
will be used to set the compression type when the class is initiated. Finally, we create a
method named compressFiles(), which accepts an array of strings that contain the paths
to the list of files that we wish to compress. In this method, we compress the files using the
compression strategy that is set in the strategy variable.

We will use the CompressContent class, as follows:

var filePaths = ["file1.txt", "file2.txt"]
var zip = ZipCompressionStrategy()
var rar = RarCompressionStrategy()

var compress = CompressContent(strategy: zip)
compress.compressFiles(filePaths:filePaths)

compress.strategy = rar
compress.compressFiles(filePaths: filePaths)

We begin by creating an array of strings that contains the files we wish to compress. We
also create an instance of both the ZipCompressionStrategy and
RarCompressionStrategy types. We then create an instance of the CompressContent
class, setting the compression strategy to the ZipCompressionStrategy instance, and call
the compressFiles() method, which will print the Using zip compression message to
the console. We then set the compression strategy to the RarCompressionStrategy
instance and call the compressFiles() method again, which will print the Using rar
compression message to the console.

Adopting Design Patterns in Swift

[351]

The strategy pattern is really good for setting the algorithms to use at runtime, which also
lets us swap the algorithms out with different implementations as needed by the
application. Another advantage of the strategy pattern is we encapsulate the details of the
algorithm within the strategy types themselves and not in the main implementation type.

This concludes our tour of design patterns in Swift.

Summary
Design patterns are solutions to software design problems that we tend to see over and over
again in real-world application design. These patterns are designed to help us create
reusable and flexible code. Design patterns can also make our code easier to read and
understand for other developers and also for ourselves when we look back at our code
months or years later.

If we look at the examples in this chapter carefully, we will notice that one of the backbones
of design patterns is the protocol. Almost all design patterns (the singleton design pattern is
an exception) use protocols to help us create very flexible and reusable code.

If this was the first time that you really looked at design patterns, you probably noticed
some similarities to strategies that you have used in the past in your own code. This is
expected when experienced developers are first introduced to design patterns. I would also
encourage you to read more about design patterns because they will definitely help you to
create more flexible and reusable code.

Index

A
access controls
 URL 162
access levels, Swift
 fileprivate 124
 internal 124
 private 124
 public 124
animal types, for video game
 object-oriented design 161
 protocol-oriented design 166, 169
 requisites 161
Apple's URL loading system
 about 264
 HTTP GET request, creating 267
 HTTP POST request, creating 270
 HTTPURLResponse 266
 REST web services 267
 URL object 266
 URLRequest 266
 URLSession 265
 URLSessionConfiguration 265
 URLSessionTask 266
arithmetic operators 47
arrays, algorithms
 about 61
 closures, using 226
 filter 62
 forEach 63
 map 63
 sort 61
 sorted 62
arrays
 about 53
 adding 59
 algorithms 61

 appending 57
 creating 53, 54
 elements, accessing 55
 elements, counting 56
 elements, removing 58
 elements, replacing 58
 emptiness, determining 57
 initializing 53, 54
 iterating over 64
 reversing 59
 subarray, retrieving 59
 subscripts 185
 values, inserting 57, 58
 values, modifying 60
assignment operator 46
associated types 215
async method
 versus sync method 260
Automatic Reference Counting (ARC)
 about 137
 working 138, 139
autonomous robot
 about 294, 296, 298, 299, 300, 301, 302, 303,

304, 305, 306, 307, 308, 309
 requisites 294

B
base class 125
BeagleBone Black
 about 280
 expansion headers 283, 284
 references 280
behavioral design pattern
 about 344
 chain of responsibility 344
 command 344
 command design pattern 345

[353]

 iterator 344
 mediator 344
 memento 345
 observer 345
 state 345
 strategy 345
 strategy pattern 348
 visitor 345
boolean type 34, 35
Bourne Again SHell (BASH) 21
bridge pattern
 about 333
 implementing 334, 335
 problem 333, 334
 solution 334
builder pattern
 about 327
 implementing 327, 328, 329, 330, 331
 problem 327
 solution 327

C
case statements
 for...case statement, filtering with 88, 89, 90
 if-case statement, using 90, 91
 using, with conditional statements 87
classes
 about 107
 and structures, differences between 108
 and structures, similarities between 108
 computed properties 113, 114, 115
 creating 110
 methods 117, 119
 properties 110
 property observers 116, 117
 stored properties 111, 112, 113
 value, versus reference types 109
closures
 about 219
 selecting, based on results 233
 shorthand syntax 223
 strong reference cycles, creating 235
 using, with Swift's array algorithms 226
collection types 52
command pattern

 about 345
 implementing 346, 347, 348
 problem 345
 solution 345
Common Object Request Broker Architecture

(CORBA) 267
comparison operators 47
compound assignment operator 48
computed properties 113, 114, 115, 116
concurrency
 about 253
 GCD 254
conditional statements
 about 77
 if statement 77, 78
 if...else statement 78
 parentheses, avoiding 312
constants
 about 27
 boolean type 34, 35
 enumerations 42, 43, 45, 46
 string type 35, 36, 37
control flow
 about 77
 case statement, using with conditional

statements 87
 conditional statement 77
 control transfer statements 91
 for loop 79
 implementing 105
 switch statement 83
 where statements, suing with conditional

statements 87
 while loop 81
control transfer statements
 about 91
 break statement 92
 continue statement 91
 fallthrough statements 93
 guard statement 93, 94
Cpcap module
 creating 243
 using 244
Create/Read/Update/Delete (CRUD) 267
creational patterns

[354]

 about 322
 abstract factory pattern 323
 builder pattern 323, 327
 factory method pattern 323
 prototype pattern 323
 singleton pattern 323
curly brackets 76
custom initializers
 about 119, 120, 121
 external parameter names 121, 122
 failable initializer 122, 123, 124, 125
 internal parameter names 121, 122
custom module
 creating 242
custom style guide
 commented-out code, avoiding 319
 comments 314
 constants 315
 creating 311
 naming 312
 optional types 316
 parentheses, avoiding for conditional statements

312

 self keyword, using 315
 semicolons, avoiding at end of statements 312
 shorthand declaration, using for collections 318
 switch, using over multiple if statements 318
 type inference, using 317
 variables 315
custom subscripts
 avoiding 192
 read and write 186
 read-only 187

D
DateFormatter class 273
design patterns 321, 322
dictionaries
 about 65
 creating 65, 66
 emptiness, determining 67
 initializing 65, 66
 key value, updating 67
 key-value pair, adding 68
 key-value pair, counting 66

 key-value pair, removing 68, 69
 values, accessing 66

E
editor 24
element 53
enumerations 42, 43, 45, 46
error handling
 native error handling 175
 prior to Swift 2.0 174
exception handling 175
explicit types 29, 30
extensions 136, 137

F
facade pattern
 about 338
 implementing 339
 problem 338
 solution 338
failable initializer 122, 123, 124, 125
FileManager object 276
first-in, first-out (FIFO) 254
for loop
 about 79
 for...in loop, using 79, 80, 81
 reference link 79
Formatter class
 about 272
 DateFormatter class 273
 FileManager 276
 NumberFormatter class 275
functionality
 changing 230
functions
 about 95
 external parameter names, adding 101
 implementing 105
 inout parameters 103, 104
 multi-parameter function, using 97
 multiple values, returning 99, 100
 nesting functions 104, 105
 optional values, returning 100, 101
 optionals, returning 200
 optionals, using as parameter 201

[355]

 parameter's default values, defining 98
 parameter's values, defining 97
 single parameter function, using 95, 96
 variadic parameters, using 102, 103

G
General Purpose Input Output (GPIO) 284
generic functions 207
generic types 211
generics 206
global dispatch queue 255
Grand Central Dispatch (GCD)
 about 252
 concurrent queues 255
 main dispatch queue 255
 serial queues 254

H
Hello World 17, 19
helper functions
 about 255
 async, versus sync 260
 asyncAfter, using 261
 concurrent queue, creating 257
 concurrent queue, using 257
 main queue function, code executing 261
 queues, creating 256
 serial function, using 259
 serial queue, creating 259
HTTP POST request
 references 270

I
iachieved.it
 URL 285
inheritance 125, 126, 127
Internet Protocol (IP) 105

L
Linux
 man pages 249
logical AND operator 49
logical NOT operator 49
logical OR operator 49, 50

M
man pages 249
memory management
 about 137
 ARC, working 138, 139
 strong reference cycles 140, 144
methods
 optionals, returning 200
modules 241
multidimensional subscripts 190
mutability 52

N
naming, custom style guide
 constants 313
 custom types 313
 functions 313
 indenting 314
 methods 313
 variables 313
native error handling
 errors, catching 178
 errors, representing 175
 errors, throwing 176
nil coalescing operator 204
NumberFormatter 275
numeric types
 about 30
 floating-point 33, 34
 integers 30, 31

O
Object-Oriented Programming (OOP) 145
operators
 about 46
 arithmetic operators 47
 assignment operator 46
 comparison operators 47
 compound assignment operator 48
 logical AND operator 49
 logical NOT operator 49
 logical OR operator 49, 50
 remainder operator 48
 ternary conditional operator 48

[356]

optional chaining
 about 202
 nil coalescing operator 204
 using, over optional binding for multiple

unwrapping 317
optional variables 38, 39, 40, 41
optionals
 about 195, 316
 defining 197
 forced unwrapping 198
 need, for 196
 optional binding 198
 optional binding, using 316
 optional chaining, using for multiple unwrapping

317

 returning, from functions 200
 returning, from methods 200
 returning, from subscripts 200
 using 198
 using, as parameter in functions 201
 using, as parameter in methods 201
overriding
 methods 128, 129, 130
 preventing 131
 properties 128, 131

P
parallelism
 about 253
 GCD 254
parentheses 76
polymorphism
 with protocols 148
private queue 254
programming style guide 310
property observers 116, 117
protocol composition 171
protocol extensions 151
protocol-oriented design
 about 166
 protocol composition 168
 protocol inheritance 167
 where statement, suing with protocol 172
Protocol-Oriented Programming (POP) 145, 160
protocols

 about 132
 as types 146
 method, requisites 134, 135
 polymorphism 148
 property, requisites 133
 syntax 132
 type casting 149
proxy pattern
 about 341
 implementing 342, 343
 problem 341
 solution 342

R
range operator 59
Read Evaluate Print Loop (REPL) 20
remainder operator 48
requisites, autonomous robot
 battery holder 296
 BeagleBone Board 296
 DC motors and wheels 294
 miscellaneous 296
 motor controller 295
 range finders 295
 resistors 296
 screws and nuts 296
 swivel castor wheel 296

S
SBAnalog type
 tmp36 temperature sensor 290, 291, 292, 293
SBDigitalGPIO type
 LED, blinking 287, 289, 290
set
 about 69
 initializing 69
 items, checking 70
 items, counting 70
 items, inserting 70
 items, removing 71
 iterating over 71
 operations 71, 72, 73
simple closures 220
Simple Object Access Protocol (SOAP) 267
single board computer (SBC) 279

[357]

singleton pattern
 about 323
 implementing 325, 326
 problem 324
 solution 324
stored properties 111, 112, 113
strategy pattern
 about 348
 implementing 349, 350, 351
 problems 348
 solution 349
string type 35, 36, 37
strong reference cycles 140, 144
 creating, with closures 235
structural design pattern
 adapter pattern 333
 bridge pattern 333
 composite pattern 333
 decorator pattern 333
 facade pattern 333, 338
 flyweight pattern 333
 proxy pattern 333, 341
structures
 about 107
 and classes, differences between 108
 and classes, similarities between 108
 computed properties 113, 114, 115, 116, 117
 creating 110
 methods 117, 119
 properties 110
 property observers 116
 stored properties 111, 112, 113
 value, versus reference types 109
subclasses 125
subscripts
 about 184
 calculated value 188
 external names 189
 optionals, returning 200
 values 188
 with Swift arrays 185
Swift 3
 installing, for Linux 10, 11, 12
 references 10
Swift API Design Guidelines

 URL 155
Swift compiler 21
Swift Package Manager
 using 22, 24
Swift, features
 closure syntax 9
 collection mutability 9
 enumerations, with associated values 10
 generics 9
 multiple return types 10
 operator overloading 10
 optionals 9
 Switch statement 9
 type inference 9
Swift
 about 7, 9
 access levels 124
 assignment operator 16, 17
 assignment statement, optional space 17
 code, executing 19
 comments, writing 12, 13, 14
 conditional statement, optional space 17
 curly brackets 16
 features 9
 installing 285
 parentheses 15, 16
 references 8
 semicolons 15
 Swift 3, installing for Linux 10, 11, 12
 syntax 12
SwiftyBones 3
 about 285
 URL 285
SwiftyBones
 SwiftyBonesAnalog.swift 286
 SwiftyBonesCommon.swift 286
 SwiftyBonesDigitalGPIO.swift 286
 SwiftyBonesPWM.swift 286
 URL 285
SwiftyBuild 287
SwiftyGPIO framework
 URL 285
switch statement 83
sync method
 versus async 260

T
ternary conditional operator 48
throwing the error 176
tmp36 temperature sensor
 about 286
 with SBAnalog type 290, 291, 292, 293
tuples 73, 74
type casting
 with protocols 149
type inference 28, 29
type safety 28

U
unwrapping 198

V
variables
 about 26, 27
 Boolean type 34, 35
 enumerations 42, 43, 45, 46
 explicit types 29, 30
 numeric types 30
 optional variables 38, 39, 40, 41
 string type 35, 36, 37
 type inference 28, 29

 type safety 28
variadic parameter
 about 102
 using 102, 103
Visual Studio Code
 URL 24

W
where statement
 filtering, with 87, 88
 using, with conditional statements 87
while loop
 about 81
 repeat...while loop, using 82, 83
 using 81, 82
Worldwide Developers Conference (WWDC) 7,

160

X
Xcode, fields
 declaration 14
 declared in 15
 description 14
 parameter 13, 15
 return 13, 15
 throws 13, 15

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Taking the First Steps with Swift
	What is Swift?
	Swift's features
	Installing Swift 3 for Linux
	Swift language syntax
	Comments
	Semicolons
	Parentheses
	Curly brackets
	Assignment operators do not return a value
	Spaces are optional in conditional and assignment statements

	Hello World
	Executing Swift code
	Swift and the Swift REPL
	Swift compiler
	Using the Swift Package Manger
	Editors for Swift
	Summary

	Chapter 2: Learning About Variables, Constants, Strings, and Operators
	Constants and variables
	Defining constants and variables
	Type safety
	Type inference
	Explicit types
	Numeric types
	Integers
	Floating point

	The Boolean type
	The String type
	Optional variables
	Enumerations

	Operators
	The assignment operator
	Comparison operators
	Arithmetic operators
	The remainder operator
	Compound assignment operators
	The ternary conditional operator
	The logical NOT operator
	The logical AND operator
	The logical OR operator

	Summary

	Chapter 3: Using Swift Collections and the Tuple Type
	Swift collection types
	Mutability
	Arrays
	Creating and initializing arrays
	Accessing the array elements
	Counting the elements of an array
	Is the array empty?
	Appending to an array
	Inserting a value into an array
	Replacing elements in an array
	Removing elements from an array
	Adding two arrays
	Reversing an array
	Retrieving a subarray from an array
	Making bulk changes to an array
	Algorithms for arrays
	Sort
	Sorted
	Filter
	Map
	forEach

	Iterating over an array

	Dictionaries
	Creating and initializing dictionaries
	Accessing dictionary values
	Counting key or values in a dictionary
	Is the dictionary empty?
	Updating the value of a key
	Adding a key-value pair
	Removing a key-value pair

	Set
	Initializing a set
	Inserting items into a set
	The number of items in a set
	Checking whether a set contains an item
	Iterating over a set
	Removing items in a set
	Set operations

	Tuples
	Summary

	Chapter 4: Control Flow and Functions
	What we have learned so far
	Curly brackets
	Parentheses

	Control flow
	Conditional statements
	The if statement
	Conditional code execution with the if…else statement

	The for loop
	Using the for…in loop

	The while loop
	Using the while loop
	Using the repeat…while loop

	The switch statement
	Using case and where statements with conditional statements
	Filtering with the where statement
	Filtering with the for…case statement
	Using the if…case statement

	Control transfer statements
	The continue statement
	The break statement
	The fallthrough statement
	The guard statement

	Functions
	Using a single-parameter function
	Using a multi-parameter function
	Defining a parameter's default values
	Returning multiple values from a function
	Returning optional values
	Adding external parameter names
	Using variadic parameters
	Inout parameters
	Nesting functions

	Putting it all together
	Summary

	Chapter 5: Classes and Structures
	What are classes and structures?
	Similarities between classes and structures
	Differences between classes and structures
	Value versus reference types

	Creating a class or structure
	Properties
	Stored properties
	Computed properties
	Property observers
	Methods

	Custom initializers
	Internal and external parameter names
	Failable initializers

	Inheritance
	Overriding methods and properties
	Overriding methods
	Overriding properties
	Preventing overrides

	Protocols
	Protocol syntax
	Property requirements
	Method requirements

	Extensions
	Memory management
	How ARC works
	Strong reference cycles

	Summary

	Chapter 6: Using Protocols and Protocol Extensions
	Protocols as types
	Polymorphism with protocols
	Type casting with protocols
	Protocol extensions
	Summary

	Chapter 7: Protocol-Oriented Design
	Requirements
	Object-oriented design
	Protocol-oriented design
	Protocol inheritance
	Protocol composition
	Animal – protocol-oriented design
	Using the where statement with protocols

	Summary

	Chapter 8: Writing Safer Code with Error Handling
	Error handling prior to Swift 2.0
	Native error handling
	Representing errors
	Throwing errors
	Catching errors

	Summary

	Chapter 9: Custom Subscripting
	Introducing subscripts
	Subscripts with Swift arrays
	Read and write custom subscripts
	Read-only custom subscripts
	Calculated subscripts
	Subscript values
	External names for subscripts
	Multidimensional subscripts
	When not to use a custom subscript
	Summary

	Chapter 10: Using Optional Types
	Introducing optionals
	The need for optional types in Swift
	Defining an optional
	Using optionals
	Forced unwrapping optionals
	Optional binding
	Returning optionals from functions, methods, and subscripts
	Using optionals as a parameter in a function or method
	Optional types with tuples

	Optional chaining
	The nil coalescing operator

	Summary

	Chapter 11: Working with Generics
	An introduction to generics
	Generic functions
	Generic types
	Associated types
	Summary

	Chapter 12: Working with Closures
	An introduction to closures
	Simple closures
	Shorthand syntax for closures
	Using closures with Swift's array algorithms
	Changing functionality
	Selecting a closure based on results
	Creating strong reference cycles with closures
	Summary

	Chapter 13: Using C Libraries with Swift
	Modules
	Creating a custom module
	Creating the Cpcap module
	Using the Cpcap module
	Linux man pages
	Summary

	Chapter 14: Concurrency and Parallelism in Swift
	Concurrency and parallelism
	GCD
	Helper functions
	Creating queues
	Creating and using a concurrent queue
	Creating and using a serial queue

	async versus sync
	Executing code on the main queue function
	Using asyncAfter

	Summary

	Chapter 15: Swifts Core Libraries
	Apple's URL loading system
	URLSession
	URLSessionConfiguration
	URLSessionTask
	URL
	URLRequest
	HTTPURLResponse
	REST web services
	Making an HTTP GET request
	Making an HTTP POST request

	Formatter
	DateFormatter
	NumberFormatter
	FileManager

	Summary

	Chapter 16: Swift on Single Board Computers
	The BeagleBone Black
	BeagleBone Black's expansion headers
	Installing Swift
	SwiftyBones3
	Sources directory
	SwiftyBuild
	Blinking an LED with the SBDigitalGPIO type
	TMP36 temperature sensor with the SBAnalog type
	Autonomous robot
	Summary

	Chapter 17: Swift Formatting and Style Guide
	What is a programming style guide?
	Your style guide
	Do not use semicolons at the end of statements
	Do not use parentheses for conditional statements
	Naming
	Custom types
	Functions and methods
	Constants and variables
	Indenting

	Comments
	Using the self keyword
	Constants and variables
	Optional types
	Use optional binding
	Use optional chaining over optional binding for multiple unwrapping

	Use type inference
	Use shorthand declaration for collections
	Use switch rather than multiple if statements
	Don't leave commented-out code in your application

	Summary

	Chapter 18: Adopting Design Patterns in Swift
	What are design patterns?
	Creational patterns
	The singleton design pattern
	Understanding the problem
	Understanding the solution
	Implementing the singleton pattern

	The builder design pattern
	Understanding the problem
	Understanding the solution
	Implementing the builder pattern

	Structural design patterns
	The bridge pattern
	Understanding the problem
	Understanding the solution
	Implementing the bridge pattern

	The façade pattern
	Understanding the problem
	Understanding the solution
	Implementing the façade pattern

	The proxy design pattern
	Understanding the problem
	Understanding the solution
	Implementing the proxy pattern

	Behavioral design patterns
	The command design pattern
	Understanding the problem
	Understanding the solution
	Implementing the command pattern

	The strategy pattern
	Understanding the problem
	Understanding the solution
	Implementing the strategy pattern

	Summary

	Index

