
www.allitebooks.com

http://www.allitebooks.org

Microsoft Windows
Workflow Foundation 4.0
Cookbook

Over 70 recipes with hands-on, ready-to-implement
solutions for authoring workflows

Andrew Zhu

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Microsoft Windows Workflow Foundation 4.0 Cookbook

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, Packt Publishing, nor its dealers
or distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2010

Production Reference: 1170910

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849680-78-3

www.packtpub.com

Cover Image by Tina Negus (tina_manthorpe@sky.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Andrew Zhu

Reviewers
Geert van Horrik

Ryan Vice

Acquisition Editor
Rashmi Phadnis

Development Editor
Dhwani Devater

Technical Editors
Gaurav Datar

Rukhsana Khambatta

Copy Editors
Janki Mathuria

Sanchari Mukherjee

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Priya Mukherji

Project Coordinator
Leena Purkait

Indexer
Monica Ajmera Mehta

Proofreader
Chris Smith

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

Andrew Zhu has six years of experience of software development and information
technology: three years in Java, three years in .NET/C#. During these years, he designed
and developed applications including computer language complier, SQL interpreter,
Library book management application, online sale application based on JSF/Java, and
SharePoint OA application. Two and half years ago he joined Microsoft. Since then, he
has been helping developers solve IIS and BizTalk problems, developing .NET/Workflow/
ASP.NET/SharePoint applications for his customers. Now, he is a Technology Support
Engineer working in Microsoft (Microsoft Globe Tech Support Center), Shanghai. He has
been supporting WF4 since its beta1 version.

No book is the product of just the author—he just happens to be the one
with his name on the cover.

A number of people contributed to this book, and it would take more space
than I have to thank each one individually.

I must thank my colleague Steven Cheng and Packt acquisition editor
Rashmi Phadnis—without you, I wouldn't have a chance to write this book.
Thanks to Packt Development Editor Dhwani and Project coordinator Leena.
You two stayed with me throughout the writing process. I cannot imagine
what could come out without your help. Also thanks to Technical Editor, cool
Gaurav and Rukhsana Khambatta. My thanks also go to the Copy Editor of
this title Sanchari Mukherjee.

I want to thank the reviewers of the book: Ryan Vice, Dave Newton, Geert
van Horrik, and Ryan Andrus. Thanks for your patience and comments.
Without your effort, the book would have been full of mistakes and
incomplete.

I also want to thank my colleagues from Microsoft: XianFeng Zhang, Guang
Yang, SGuy Ge, Steve Danielson, Nate Talbert, and Dan Glick. Thanks for
your help in the WF and WCF 4.0 discussion list.

Finally, I want to thank my Mom and Dad, thanks for your love and
understanding.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Geert van Horrik, after finishing high school in 2001, decided he wanted to learn more
about software development. During his education as a software engineer in university,
he wrote a some applications using Delphi. Soon, he discovered the power of C++ and
started writing open source projects.

During his study, one of his open source projects became very popular, and he spent
most of his time writing new features for this project. After finishing education in Software
Engineering cum laude, he decided to learn some more about business administration
at another university. However, the combination of his addiction to software development
and the open source projects made him quit the new study and start a company called
CatenaLogic.

The most important product of CatenaLogic is Updater—a tool to easily deploy new versions
of software on all clients. Geert van Horrik is also available as a freelance software
developer, and mostly concentrates on the latest technologies such as C# and WPF.

Geert also loves helping other people with software development problems on forums,
and tries to participate in open source projects in the spare time he has left.

www.allitebooks.com

http://www.allitebooks.org

Ryan Vice is an enterprise programmer with 10 years of experience working with
Microsoft Enterprise solutions. Over those 10 years, he has worked on network security
systems, high-volume e-commerce systems, title management systems, and a high-
volume financial trading application. Additionally he has built workflow solutions for a
geoseismic system and for a credit counseling management system. He has worked with
both thick and thin clients and is currently specializing in the WinFX suite of tools. He was
given Microsoft MVP in 2010 for connected systems and is an MSDN moderator. He also
frequently teaches classes on WF throughout Texas.

I'd like to thank my father Ken for being a huge inspiration in both my career
and my family, my mother Telsa for helping me get my career started,
my beautiful wife Heather for all her support and love over the years and
willingness to let me spend a lot of my free time tinkering with software
technology, my daughter Grace for reminding me of how amazing the simple
pleasures in life can be, and my new-born son Dylan for bringing so much
more joy and love into our lives.

www.allitebooks.com

http://www.allitebooks.org

Foreword

Microsoft has been putting a lot of resources toward the development of Windows
Workflow Foundation (WF). Therefore, before learning this new framework, it's important
to understand why Microsoft feels it is so important. For WF 4.0, Microsoft went back
to the drawing board and did a complete rewrite of WF technology with the goals of
improving WF 3.5 by providing a WF framework that simplifies the development of
workflow-based solutions and provides better performance. Microsoft's ultimate goal is to
get a higher rate of adoption of WF and to attempt to make WF an essential component
of the enterprise developer's tool kit. The questions that most developers and architects,
who are first exposed to workflow, will be likely to have are:

ff Why do I need it?

ff Why does Microsoft feel it's so important to learn this new WF framework?

ff What problems does WF make easier to solve to justify the non-trivial ramp up
time for my team and me?

These are the questions that need to be answered before you start to learn the details of
how to use the WF framework, as learning WF is not a small task and understanding the
benefits would go a long way in helping motivate you and your team. This section of the
book will help you better understand the "WHYs" of WF and lay the foundation for the rest
of the book, which will allow you to hit the ground running by getting up to speed on the
"HOWs" of WF. This book consists of short, easy-to-understand examples (or recipes) that
show how to take advantage of the many benefits of WF. Your first read will allow you to
get familiar with all the various features and extensibility points of the WF 4.0 framework
and, as you implement WF 4.0 based solutions, you will find yourself coming back again
and again to review these concise, easy-to-understand WF recipes. After reading this
short book, you will be ready to simplify your enterprise development architectures by
taking advantage of this powerful new workflow framework and all of its built-in,
out-of-the-box features.

www.allitebooks.com

http://www.allitebooks.org

Let's get to it then… Why workflow? For starters, what kinds of problems does workflow
make easier to solve? Let's suppose you need to build a solution for an accounting firm
and that firm wants to have a system built to allow them to provide income tax services.
This system needs to support the following features.

ff Account Creation: The system will allow clients to create accounts either by
coming into a branch where an employee can create the account via a thick client
application or by allowing the client to create the account via a website.

ff Income Tax Information Submission: The system will allow clients to submit
income tax-related information for review by an accountant either in a branch
office or on the Web.

ff Management of Assigning of Clients to Accountants: The system will allow for the
automated assigning of clients to accountants with support for manual updating
of assignments.

ff Managing the Approval Process: The system will allow for managing the review
and approval process involved in preparing income tax papers for submission
to the IRS, including management of requesting more information from clients,
following up with clients, and routing information received from clients to
correct accounts.

ff Notifications: The system will allow for notifying clients of various account and tax
submission-related events.

How would a system like this be built without using a workflow framework? Our first
attempt might be to create a set of web services that support:

ff Creating of a client account

ff Submitting income tax information for an existing account

ff Querying for income tax submissions assigned to an accountant

ff Querying for a specific tax submission

ff Requesting more information from the client about an income tax submission

ff Approving the information submitted to indicate that the income tax information
is complete and ready for an accountant to make an income tax return to be
submitted to the IRS

www.allitebooks.com

http://www.allitebooks.org

This income tax process could take several weeks or months to complete and so it's
not feasible that we could have a thread on the server waiting for the next input for
an account to arrive. For this application to scale and work with any type of realistic
enterprise volume, we'd have to persist the state of the account and when each
web service request arrives, we'd have to take some kind of identifier (account ID or
accountant ID) and retrieve the current state of the account before we could determine
if the call could proceed. A client can't submit income tax information before they've
created an account and the service for submitting income tax information would have to
query our persistence store (database or whatever we are using) to verify this. All of this
custom state-management code that would allow for sharing the account data among
the various client applications from the various servers would need to be written by the
developers including ways to deal with concurrency. We can't allow two clients to update
the same data at the same time, so we'd have to provide for that in our implementation.

Assuming we get all that worked out, what about the parts of this process that aren't
driven by web-services calls? How are we going to assign clients to accounts after they
submit their tax forms? How are we going manage our notifications that will be sent to the
clients when:

ff We receive their information

ff We approve or reject their information

ff We need to request more information

ff We've submitted their taxes to the IRS

We'd also need to build a scheduling system and an event routing (or messaging) system
to help us satisfy these needs.

How do we deal with scalability? One solution would be to break apart the functional
components of the application and deploy each one to a different server or set of servers
so that you'd have a server for:

ff Creating accounts

ff Submitting tax data

ff Assigning accountants to clients

Using this approach would allow us to scale but would make the application logic
separated and hard to understand and maintain, as it would be spread over several
deployments on different servers.

The ideal solution would be to have a framework that would allow us to:

ff Build our workflow logic in a unified way

ff Execute our workflow logic in a distributed way, across several servers

www.allitebooks.com

http://www.allitebooks.org

ff Allow for easy sharing of and persisting of state without having to worry
about concurrency

ff Allow for easily creating events or messages that can drive business logic,
including support for scheduling these events or messages

ff Allow us to track the history of an account

If we had a framework that allowed for all these things, then it might be worth our time to
go out and learn how to use that new workflow framework as it would provide us a lot of
built-in benefits that would save us from having to reinvent the wheel over and over again.
The good news is that this is only part of what Workflow Foundation provides. In addition
to helping solve these problems, WF also provides:

ff A re-hostable designer to allow us to create administration tools for visualizing
and managing our workflow logic

ff Support for parallel processing of tasks

ff Support for creating our own workflow constructs (or activities) to allow us to
model our own domain-specific languages

ff An extensible architecture that allows us to provide our own implementations for
things such as state persistence, workflow execution tracking, threading,
and so on

Given all that WF 4.0 brings to the table, it's a worthwhile investment to learn this
technology and add it to your enterprise development toolkit, and this book will help to
get you up to speed in a very short amount of time.

Ryan Vice

MVP for Connected Systems

Table of Contents
Preface	 1
Chapter 1: Workflow Program	 5

Introduction	 5
Creating the first WF program: HelloWorkflow	 6
Creating a WF program using C# Code	 9
Initializing a WF program using InArguments	 11
Creating a WF program using OutArgument	 15
Creating a WF program using InOutArgument	 17
Using Variable in a WF program	 20
Running a WF program asynchronously	 22
Customizing a MyReadLine activity with Bookmark	 25
Converting a WF program instance to XAML	 29
Loading up a WF program from an XAML file	 31
Testing a WF program with a unit test framework	 34
Debugging a WF program	 36

Chapter 2: Built-in Flow Control Activities	 41
Introduction	 41
Using the Foreach activity	 42
A number guessing game in Sequence	 47
A number guessing game using a flowchart	 49
Using the InvokeMethod activity	 52
Using the Switch<T> activity in Sequence workflow	 63
Using the FlowSwitch<T> activity	 67
Using the Parallel activity	 69
Using the ParallelForEach<T> activity	 71
Using the Pick activity	 73
Handling errors	 78

ii

Table of Contents

Chapter 3: Messaging and Transaction	 81
Introduction	 81
Creating a pure WCF service	 82
Receiving and replying to a WCF message	 87
Receiving and replying to a WCF message in code workflow	 92
Sending and receiving a reply to a WCF message	 98
Sending and receiving a reply to a WCF message in code workflow	 104
Using CancellationScope activity	 108
Performing a transaction by using TransactionScope activity	 112
Performing compensation by using Compensable activity	 117
Performing manual compensation by using Compensate activity	 120
Performing confirmation by using Confirm activity	 122

Chapter 4: Manipulating Collections	 125
Introduction	 125
Printing collection items	 125
Using AddToCollection<T> activity	 130
Using ClearCollection<T> activity	 133
Using RemoveFromCollection<T> activity	 137
Using ExistsInCollection<T> activity	 141

Chapter 5: Custom Activities	 145
Introduction	 145
Creating an activity by inheriting the root activity	 147
Creating a FileWriter activity 	 150
Creating a SendEmail activity	 153
Creating an Input Message activity using Bookmark	 156
Creating an Asynchronous HTTP Get activity	 158
Creating a Composite activity	 161
Creating an Activity Designer for the SendEmail activity	 164
Creating an Activity Designer for the MySquence activity	 170

Chapter 6: WF4 Extensions	 175
Introduction	 175
Configuring ETW tracking	 175
Creating FileTrackingParticipant	 180
Configuring the SQL persistence store	 182
Loading a persisted workflow from the database	 185
Using a persistence participant to persist additional data	 189
Using a customized extension	 195

iii

Table of Contents

Chapter 7: Hosting Workflow Applications	 199
Introduction	 199
Hosting a workflow service in IIS7	 200
Hosting workflow in ASP.NET	 206
Hosting workflow in WPF 	 212
Hosting workflow in a Windows Form	 216

Chapter 8: Custom Workflow Designer	 219
Introduction	 219
Implementing designer layout	 220
Implementing Toolbox, Workflow Designer, and Property Inspector views	 224
Implementing New Workflow and Load Workflow events	 227
Implementing Save and Save As events	 233
Implementing XAML Workflow Tab and Run events	 235
Implementing visual tracking	 238

Index	 247

Preface
WF4 is a process engine, as well as a visual program language, shipped along with Microsoft
.NET Framework 4.0. Traditionally, when we design a long-running application, we break
a large application into lots of small code blocks to address the business logic and use a
database to store the intermediate data. With the growing complexity of logic, managing code
blocks and authoring logic workflows becomes difficult. Now, with WF4, we can design and
create distributed, long-running programs easily.

The aim of this book is to provide a step-by-step guide to help us start WF4 programming.
Every recipe in this book is runnable.

What this book covers
Chapter 1, Workflow Program, provides recipes that will help us understand basic information
about WF4 programming.

Chapter 2, Built-in Flow Control Activities, provides recipes that demonstrate the usage of the
built-in control activities.

Chapter 3, Messaging and Transaction, provides recipes that demonstrate how to send and
receive WCF messages in workflow. The second part of this chapter focuses on applying
transactions in a workflow program.

Chapter 4, Manipulating Collections, demonstrates how to manipulate collection data in
workflow programs with WF4 built-in activities.

Chapter 5, Custom Activities, demonstrates how to create our own custom activities; the most
powerful unit of workflow.

Chapter 6, WF4 Extensions, demonstrates how to use the built-in extensions such as
persistence and tracking, and also how to create our own extensions.

Preface

2

Chapter 7, Hosting Workflow Applications, mainly explains how to host workflow applications
in IIS7. This chapter also provides recipes that demonstrate host workflow in ASP.NET, WPF,
and Windows Forms.

Chapter 8, Custom Workflow Designer, helps us create our own WF4 workflow designer with
visual tracking function.

What you need for this book
We need a PC having Windows Vista/7/2008/2008R2. We can also use Windows XP, but it
is not recommended. .NET Framework 4.0 is a must. Once we install .NET Framework 4.0, we
can run workflow applications. To develop WF4 workflow applications, we should also have
Visual Studio 2010 installed on our computer. To host WF4 as a WCF service in IIS, we should
install IIS7/7.5 in our computer.

Who this book is for
If you find yourself working with Windows Workflow Foundation 4.0 and you have basic
knowledge of C#/.NET Framework/VB and workflow, this book is for you. It will be best if you
know both C# and VB, because WF 4.0 expressions can be written only in VB (at the time of
writing). With this book, you will be able to enhance your applications with flexible workflow
capabilities using WF 4.0. To follow the recipes, you will need to be comfortable with .NET
Framework, C# programming, and the basics of SOA and how to develop them.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The ActivityLibrary project is for all customized
activities, whereas the WorkflowConsoleApp project is used for testing our customized
activities".

A block of code will be set as follows:

class Program {
 static void Main(string[] args) {
 WorkflowInvoker.Invoke(GetCodeStyleWorkflow());
 }

Any command-line input or output is written as follows:

.NET Framework 4 Full (32-bit) – silent repair

%windir%\Microsoft.NET\Framework\v4.0.30319\SetupCache\Client\setup.exe /
repair /x86 /x64 /ia64 /parameterfolder Client /q /norestart

Preface

3

New terms and important words are shown in bold. Words that you see on the screen, in
menus, or dialog boxes for example, appear in our text like this: "Click the Invoke button to get
the result".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply drop an e-mail to feedback@packtpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in, and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Preface

4

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Workflow Program

In this chapter, we will cover:

ff Creating the first WF program: HelloWorkflow

ff Creating a WF program using C# code

ff Initializing a WF program using InArguments

ff Creating a WF program using OutArgument

ff Creating a WF Program using InOutArgument

ff Using Variable in a WF program

ff Running a WF program asynchronously

ff Customizing a MyReadLine activity with Bookmark

ff Converting a WF program instance to XAML

ff Loading up a WF program from an XAML file

ff Testing a WF program with a unit test framework

ff Debugging a WF program

Introduction
Considering workflow programs as imperative programs, we need to think of three
fundamental things:

ff How to define workflow programs

ff How to build (compile) workflow programs

ff How to execute workflow programs

Workflow Program

6

In WF4, we can define a workflow in either managed .NET code or in XAML. There are two
kinds of code workflow authoring styles:

ff Creating a Custom Activity class

ff Creating workflow dynamically in the runtime

There are also two ways to author workflow in XAML:

ff By WF designer (recommended)

ff Typing XML tags manually

Essentially, a workflow program is a .NET program, no matter how we create it.

After defining workflows, we can build workflow applications as we build normal .NET
applications.

When it comes to workflow execution, we need to consider three basic things:

ff How to flow data into and out of a workflow

ff How to store temporary data when a workflow is executing

ff How to manipulate data in a workflow

This chapter is going to focus on answering these questions.

Before moving ahead, make sure we have the following installed on our computer:

ff Windows Vista/7 or Windows Server 2008

ff Visual Studio 2010 and .NET framework 4.0

We can also use Windows XP; however, its usage is not recommended.

Creating the first WF program:
HelloWorkflow

In this task we will create our first workflow to print "Hello Workflow" to the console application.

How to do it...
1.	 Create a Workflow Console Application project:

After starting Visual Studio 2010, select File | New Project. A dialog is presented, as
shown in the following screenshot. Under the Visual C# section, select Workflow, and
choose Workflow Console Application. Name the project HelloWorkflow. Name
the solution Chapter01 and make sure to create a directory for the solution.

Chapter 1

7

2.	 Author the workflow program:

First, drag a Sequence activity to the designer from Toolbox, next drag a WriteLine
activity into the Sequence activity. Finally, input "Hello Workflow" in the expression
box of the WriteLine activity. We can see in the following screenshot:

Workflow Program

8

3.	 Run it:

Press Ctrl+F5 to run the project without debugging. The result is as shown in the
following screenshot:

How it works...

When we press Ctrl+F5, Visual Studio saves the current project, and then it runs the project
from the Main method in the Program.cs file.

WorkflowInvoker.Invoke(new Workflow1());

The preceding statement starts the workflow. After the workflow starts running, the
WriteLine activity prints the "Hello Workflow" to the Console Application.

The workflow we created in WF Designer is actually an XML file. We can open Workflow1.
xaml with an XML editor to check it.

Right-click on Workflow1.xaml then click
Open With…, and choose XML Editor to open
Workflow1.xaml as an XML file.

All XAML files will be compiled to .dll or .exe files. That is why when we press Ctrl+F5, the
program just runs like a normal C# program.

There's more...
So far, there are no officially published WF4 Designer add-ins for Visual Studio 2008. We need
a copy of Visual Studio 2010 installed on our computer to use WF4 Designer, otherwise we
can only create workflows by imperative code or by writing pure XAML files.

Chapter 1

9

Creating a WF program using C# Code
In this task, we will create the same "HelloWorkflow" function workflow using pure C# code,
beginning from a Console Application.

How to do it...
1.	 Create a Console Application project:

Create a new Console Application project under the Chapter01 solution. Name
the project HelloCodeWorkflow. The following screenshot shows the Console
Application new project dialog:

2.	 Add reference to the System.Activities assembly:

By default, a new Console Application doesn't have reference to the System.
Activities assembly, due to which we need to perform this step.

Workflow Program

10

3.	 Create workflow definition code:

Open Program.cs file and change the code present as follows:
using System.Activities;
using System.Activities.Statements;

namespace HelloCodeWorkflow {
 class Program {
 static void Main(string[] args) {
 WorkflowInvoker.Invoke(new HelloWorkflow());
 }
 }

 public class HelloWorkflow:Activity {
 public HelloWorkflow() {
 this.Implementation = () => new Sequence {
 Activities = {
 new WriteLine(){Text="Hello Workflow"}
 }
 };
 }
 }
}

4.	 Run it:

Set HelloCodeWorkflow as StartUp project and press Ctrl+F5 to run it. As
expected, the result should be just like the previous result shown.

How it works...
We use the following namespaces:

using System.Activities;
using System.Activities.Statements;

Because WorflowInvoker class belongs to System.Activities namespace. Sequence
activity, WriteLine activity belongs to System.Activities.Statements. namespace.

public class HelloWorkflow:Activity {
 public HelloWorkflow() {
 this.Implementation = () => new Sequence {
 Activities = {
 new WriteLine(){Text="Hellow Workflow"}
 }
 };
 }
}

Chapter 1

11

By implementing a class inherited from Activity, we define a workflow using imperative code.

WorkflowInvoker.Invoke(s);

This code statement loads a workflow instance up and runs it automatically. The
WorkflowInvoker.Invoke method is synchronous and invokes the workflow on the same
thread as the caller.

There's more
WF4 also provides us a class DynamicActivity by which we can create a workflow instance
dynamically in the runtime. In other words, by using DynamicActivity, there is no need to
define a workflow class before initializing a workflow instance. Here is some sample code:

public static DynamicActivity GetWF() {
 return new DynamicActivity() {
 Implementation = () => new Sequence() {
 Activities ={
 new WriteLine(){Text="Hello Workflow"}
 }
 }
 };
}

Initializing a WF program using InArguments
In this task, we will create a WF program that accepts arguments when initialized in the WF
host. In WF4, we can use InArguments to define the way data flows into an activity.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application under the Chapter01 solution. Name
the project UseInArgument.

Workflow Program

12

2.	 Author the WF program:

Create a workflow as shown in the following screenshot:

3.	 Write code to host the workflow.

Open the Program.cs file and change the host code as follows:
using System.Activities;
using System.Activities.Statements;

namespace UseInArgument {
class Program {
 static void Main(string[] args) {
 WorkflowInvoker.Invoke(new Workflow1()
 {
 FirstName="Andrew",
 SecondName="Zhu"
 });
 }
 }
}

Chapter 1

13

4.	 Run it:

Set UseInArgument as StartUp project. Press Ctrl+F5 to build and run the workflow
without debugging. The application should run in a console window and print the
following message:

How it works...
Consider the following statement from the code we saw in the preceding section:

FirstName="Andrew"

FirstName is an InArgument type, but how can we assign a string to InArgument
without any explicit cast? This is because InArgument is declared with an attribute
System.ComponentModel.TypeConverterAttribute(System.Activities.
XamlIntegration.InArgumentConverter). The class inheritance is shown in the
following diagram:

Workflow Program

14

It is the InArgumentConverter that makes assigning a string to an InArgument
possible. If we want to know more about TypeConverter, we can check MSDN the reference
at http://msdn.microsoft.com/en-us/library/system.componentmodel.
typeconverter.aspx.

There's more
In WF3/3.5, we can pass values to Workflow wrapped in a Dictionary<T> object. This also
applies to WF4.

using System.Activities;
using System.Activities.Statements;
using System.Collections.Generic;

namespace UseInArgument {
 class Program {
 static void Main(string[] args) {
 IDictionary<string, object> inputDictionary =
 new Dictionary<string, object>()
 {
 {"FirstName","Andrew"},
 {"SecondName","Zhu"}
 };
 WorkflowInvoker.Invoke(new Workflow1(),
 inputDictionary);
 }
 }
}

If we are creating workflows using imperative code, we can use InArgument in the
following way:

public class WorkflowInCode:Activity {
 public InArgument<string> FirstName { get; set; }
 public InArgument<string> SecondName { get; set; }
 public WorkflowInCode() {
 this.Implementation = () => new Sequence() {
 Activities = {
 new WriteLine(){
 Text=new InArgument<string>(
 activityContext=>"My name is "+FirstName.
Get(activityContext)

http://msdn.microsoft.com/en-us/library/system.componentmodel.typeconverter.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.typeconverter.aspx

Chapter 1

15

)
 },
 new WriteLine(){
 Text=new InArgument<string>(
 ActivityContext=>SecondName.
Get(ActivityContext)
)
 }
 }
 };
 }
}

Creating a WF program using OutArgument
In this task, we will create a WF program that can return a result to the workflow host.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application under the Chapter01 solution; name the
project as UseOutArgument.

2.	 Author a workflow:

Author the workflow shown in the following screenshot. Here are the detailed actions:

i.	 Drag a Sequence activity from Toolbox to the designer panel.

ii.	 In the bottom of the designer panel, click the Arguments button, and click
Create Argument to create an OutArgument string named OutMessage.

iii.	 Drag two WriteLine activities from Toolbox into the Sequence activity and
fill the textboxes with "Start…" and "End" respectively.

www.allitebooks.com

http://www.allitebooks.org

Workflow Program

16

iv.	 Drag an Assign activity from Toolbox to the designer panel. Fill the right
expression box with OutArgument as OutMessage, whereas fill the right
expression box with the following string: This is a message from workflow.

3.	 Write code to host the workflow:

Open Program.cs file and change the host code as follows:
using System;
using System.Activities;
using System.Collections.Generic;

namespace UseOutArgument {
 class Program {
 static void Main(string[] args) {
 IDictionary<string,object> output=
 WorkflowInvoker.Invoke(new Workflow1());
 Console.WriteLine(output["OutMessage"]);
 }
 }
}

Chapter 1

17

4.	 Run it:

Set UseOutArgument as Startup project. Press Ctrl+F5 to build and run the
workflow without debugging. The application should run in a console window and
print the message as shown in the next screenshot:

How it works...
Look at the following code snippet:

IDictionary<string,object> output=
 WorkflowInvoker.Invoke(new Workflow1());
Console.WriteLine(output["OutMessage"]);

OutMessage is the name of OutArgument we defined in Workflow1.xaml. the
WorkflowInvoder.Invoke method will return a IDictionary type object.

There's more...
There is a third type of workflow argument: InOutArgument. It is a binding terminal
that represents the flow of data into and out of an activity. In most cases, we can use
InOutArgument instead of InArgument and OutArgument. But there are still some
differences—for example, we cannot assign a string to InOutArgument, while it is allowed to
assign a string to InArgument directly in the host program.

Creating a WF program using InOutArgument
In this task, we will create a WF program using InOutArgument. This type of argument is
used to receive values and is also used to pass values out to the caller (WF host).

How to do it…
1.	 Create a workflow project:

Create a new Workflow Console Application under the Chapter01 solution and name
the project as UseInOutArgument.

Workflow Program

18

2.	 Author a workflow:

Create an InOutArgument type argument: InOutMessage. Author a WF
program as shown in the following screenshot. In the Assign activity textbox, type
InOutMessage = "Now, I am an OutMessage".

3.	 Write code to host the workflow:

Open the Program.cs file and alter the code as shown:
using System;
using System.Activities;
using System.Activities.Statements;
using System.Collections.Generic;

namespace UseInOutArgument{
 class Program{
 static void Main(string[] args){
 IDictionary<string, object> input =
 new Dictionary<string, object>()
 {

Chapter 1

19

 {"InOutMessage","Now, I am InMessage"}
 };
 IDictionary<string,object> output=
 WorkflowInvoker.Invoke(new Workflow1(),input);
 Console.WriteLine(output["InOutMessage"]);
 }
 }
}

4.	 Run it:

Set UseInOutArgument as Startup project. Press Ctrl+F5 to build and run the
workflow without debugging. The application should run in a console window and
print the message as shown in the following screenshot:

How it works...
The following code block initializes the InArgument value:

IDictionary<string, object> input =
 new Dictionary<string, object>()
 {
 {"InOutMessage","Now, I am InMessage"}
 };

This statement will run the workflow program with the input dictionary.

IDictionary<string,object> output=
 WorkflowInvoker.Invoke(new Workflow1(),input);

The string Now, I am InMessage is printed by the workflow. The string Now, I am an
OutMessage is a message altered in the workflow and passed to the host and then printed by
the host program.

Workflow Program

20

There's more...
We cannot assign a string to InOutArgument directly, and the following style of parameter
initialization is not allowed:

IDictionary<string, object> output =
 WorkflowInvoker.Invoke(new Workflow1()
 {
 InOutMessage="Now,I am InMessage"
 });

See Also
ff Creating a WF program using OutArgument

ff Initializing a WF program using InArguments

Using Variable in a WF program
We can use Variable temporarily to store a value when a WF program is running. In this task,
we will create a WF program that prints five numbers to the console in a loop. We will use the
NumberCounter variable as a number counter.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application under the Chapter01 solution and name
the project as UseVariable.

2.	 Author a workflow:

Add a Sequence activity, click the Sequence activity, create an Int32
NumberCounter variable, and set its Scope to Sequence. Then, author the
workflow as shown in the following screenshot. In the second Assign activity type
NumberCounter=NumberCounter+1.

Chapter 1

21

3.	 Run it:

Set UseVariable as Startup project. Press Ctrl+F5 to build and run the workflow
without debugging. The application should run in a console window and print the
following message:

Workflow Program

22

How it works...
To make the workflow logic easy to understand, translate the workflow into C# code. It will
look like:

int NumberCounter = 0;
do
{
 Console.WriteLine(NumberCounter);
 NumberCounter++;
}while (NumberCounter <= 5);

While we can use arguments to flow data into and out of a workflow, we use Variable to store
data in a workflow. Every variable has its scope, and can be accessed by activities within its
scope. Variable in WF4 is pretty much like variables in imperative language such as C#.

There's more...
Please note that we cannot access to the workflow variables from the outside host. WF4
variables are designed for sharing data inside the workflow instance. We can use Bookmark to
access the workflow from the outside host.

See Also
ff Customizing a MyReadLine activity with Bookmark

Running a WF program asynchronously
In the previous tasks, we used the WorkflowInvoker.Invoke method to start a workflow
instance on the same thread as the main program. It is easy to use; however, in most real
applications, a workflow should run on an independent thread. In this task, we will use
WorkflowApplication to run a workflow instance.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application under the Chapter01 solution and name
the project as UseWorkflowApplication.

Chapter 1

23

2.	 Author a workflow:

In the opening Workflow1.xaml designer, click on Arguments, create two Int32
InArguments for Number1 and Number2. Create an Int32 OutArgument for
Result. Add an Assign activity to the workflow designer panel. In the Assign activity,
type Result=Number1+Number2.

3.	 Write code to host the workflow:

Open Program.cs file and change code as follow:
using System;
using System.Activities;
using System.Activities.Statements;
using System.Threading;
using System.Collections.Generic;

namespace UseWorkflowApplication{
 class Program{
 static void Main(string[] args){
 AutoResetEvent syncEvent =
 new AutoResetEvent(false);
 IDictionary<string, object> input =
 new Dictionary<string, object>()
 {
 {"Number1",123},
 {"Number2",456}
 };
 IDictionary<string,object> output=null;
 WorkflowApplication wfApp =
 new WorkflowApplication(new Workflow1(),input);
 wfApp.Completed =
 delegate(WorkflowApplicationCompletedEventArgs e)
 {

Workflow Program

24

 Console.WriteLine("Workflow thread id:"+
 Thread.CurrentThread.ManagedThreadId);
 output = e.Outputs;
 syncEvent.Set();
 };
 wfApp.Run();
 syncEvent.WaitOne();
 Console.WriteLine(output["Result"].ToString());
 Console.WriteLine("Host thread id:"+Thread.
CurrentThread.ManagedThreadId);
 }
 }
}

4.	 Run it:

Set UseWorkflowApplication as Startup project. Press Ctrl+F5 to build and
run the workflow without debugging. The application should run in a console window
and print the following message:

How it works...
The function of this workflow is adding two InArgument Numbers and assigning the result to
an OutArgument Result.

AutoResetEvent syncEvent = new AutoResetEvent(false);

As the workflow thread runs simultaneously with the caller thread, the caller thread may
terminate before the workflow thread. To prevent this unexpected program quit, we need to
use AutoResetEvent to synchronize caller and workflow thread.

syncEvent.WaitOne();

The caller thread will wait there, until syncEvent is set.

wfApp.Completed =
delegate(WorkflowApplicationCompletedEventArgs e)
{
 output = e.Outputs;
 syncEvent.Set();
};

Chapter 1

25

When the workflow completes, syncEvent.Set() is invoked. After that, the caller can
continue running to its end.

Another thing we should be aware of is how we get the result when the workflow ends. Unlike
the WorkflowInvoker.Invoker method, in a WorkflowApplication-style caller, we get
dictionary output from WorkflowApplicationCompletedEventArgs's Outputs property;
see the preceding code snippet.

Customizing a MyReadLine activity with
Bookmark

By using InArgument, OutArgument, and InOutArgument, we can flow data into the
workflow when it starts and out of the workflow when it ends. But how can we pass data from
the caller into the workflow when it is executing?—Bookmark will help us to do this. In this
task, we will create a MyReadLine activity using a bookmark.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application under the Chapter01 solution and name
the project as UseBookmark. Next, add a code file to this project and name the file
as MyReadLineActivity. We can see this in the following screenshot:

Workflow Program

26

2.	 Customize the activity with Bookmark:

Fill the opening MyReadLineActivity.cs file with the following code:
using System.Activities;
namespace UseBookmark{
 public class MyReadLine : NativeActivity<string>{
 [RequiredArgument]
 public InArgument<string> BookmarkName { get; set; }
 protected override void Execute(
 NativeActivityContext context)
 {
 context.CreateBookmark(BookmarkName.Get(context),
 new BookmarkCallback(OnResumeBookmark));
 }
 protected override bool CanInduceIdle
 {
 get
 {
 { return true;}
 }
 }
 public void OnResumeBookmark(
 NativeActivityContext context,
 Bookmark bookmark,
 object obj)
 {
 Result.Set(context, (string)obj);
 }
 }
}

Save the file and press F6 to build the project so that the activity will appear in the
WF designer activity toolbox.

3.	 Author a workflow:

Open Workflow1.xaml and author the workflow as shown in the
following screenshot:

Chapter 1

27

4.	 Write code to host the workflow:

Open Program.cs file and change the code as follows:
using System;
using System.Linq;
using System.Activities;
using System.Activities.Statements;
using System.Threading;

namespace UseBookmark{
 class Program{

Workflow Program

28

 static void Main(string[] args)
 {
 AutoResetEvent syncEvent =
 new AutoResetEvent(false);
 string bookmarkName="GreetingBookmark";
 WorkflowApplication wfApp =
 new WorkflowApplication(new Workflow1()
 {
 BookmarkNameInArg=bookmarkName
 });
 wfApp.Completed = delegate(
 WorkflowApplicationCompletedEventArgs e)
 {
 syncEvent.Set();
 };
 wfApp.Run();
 wfApp.ResumeBookmark(bookmarkName,
 Console.ReadLine());
 syncEvent.WaitOne();
 }
 }
}

5.	 Run it:

Set UseBookmark as Startup project. Press Ctrl+F5 to build and run the workflow
without debugging. The application should run in a console window and print the
message as shown in the following screenshot:

How it works...
In the code shown in the second step, we create a class inherited from NativeActivity.
NativeActivity is a special abstract activity that can be used to customize complex
activities; we will talk about it more in Chapter 5, Custom Activities.

context.CreateBookmark(BookmarkName.Get(context),
 new BookmarkCallback(OnResumeBookmark));

Chapter 1

29

By this statement, the WF context creates a Bookmark with arguments BookMarkName
and BookMarkCallback. When the wfApp.ResumeBookmark method is called, the
OnResumeBookmark that was defined in the Customized Activity body will be executed.

protected override bool CanInduceIdle{
 get
 {
 { return true;}
 }
}

This is a built-in property that indicates whether the customized activity can cause the
workflow to become idle; the default value is false.

Consider the following code snippet of step 3:

wfApp.ResumeBookmark(bookmarkName,
 Console.ReadLine());

When this statement is executed, the OnResumeBookmark method defined in the
MyReadLine activity will be called and the method will accept the value passed via
Console.ReadLine().

Converting a WF program instance to XAML
In real applications, we would like to write and test WF programs in imperative code, while
storing, running, and transmitting workflow as an XAML string or file. In this task, we will
convert a WF program instance to an XAML string.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application under the Chapter01 solution and
name the project ConvertWFInstanceToXML. Delete the Workflow1.xaml file
that is created by default.

2.	 Write code to create the workflow and its host:

Open Program.cs file and change the code as follows:
using System;
using System.Activities;
using System.Activities.Statements;
using System.Text;
using System.Xaml;
using System.Activities.XamlIntegration;

Workflow Program

30

using System.IO;

namespace ConvertWFObjectToXML {
 class Program {
 static void Main(string[] args) {
 //Create a Workflow instance object 
ActivityBuilder ab = new ActivityBuilder();
 ab.Implementation = new Sequence()
 {
 Activities =
 {
 new WriteLine{Text="Message from Workflow"}
 }
 };

 //Convert Workflow instance to xml string
 StringBuilder sb = new StringBuilder();
 StringWriter sw = new StringWriter(sb);
 XamlWriter xw =
 ActivityXamlServices.CreateBuilderWriter(
 new XamlXmlWriter(sw,
 new XamlSchemaContext()));
 XamlServices.Save(xw, ab);
 Console.WriteLine(sb.ToString());
 }
 }
}

3.	 Run it:

Set ConvertWFInstanceToXML as Startup project. Press Ctrl+F5 to build and run
the workflow without debugging. The application should run in a console window and
print the message as shown in the following screenshot:

Chapter 1

31

Consider the following XML string reformatted from the screenshot:

<?xml version="1.0" encoding="utf-16"?>
<Activity x:Class="{x:Null}"
 xmlns="http://schemas.microsoft.com/netfx/2009/
xaml/activities"
 xmlns:x="http://schemas.microsoft.com/
winfx/2006/xaml">
 <Sequence>
 <WriteLine Text="Hello" />
 </Sequence>
</Activity>

How it works...
Consider the following code line:

XamlServices.Save(xw, ab);

XamlServices provides services for the common XAML tasks of reading XAML and writing
an object graph, or reading an object and writing out an XAML file. This statement reads an
ActivityBuilder object and writes XAML to an XamlWriter object.

We use ActivityBuilder as an activity wrapper so that the output XAML is a loadable
workflow. In other words, if we save, say, a Sequence activity to an XamlWriter directly, then
the output XML workflow will be unloadable for further use.

Loading up a WF program from an XAML file
In this task, we will run a WF program by loading it from an XAML file.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application under the Chapter01 solution and
name the project as LoadUpWorkflowFromXML.

Workflow Program

32

2.	 Author a workflow:

Author the Workflow1.xaml file; this workflow will print a string to console as shown
in the following screenshot:

3.	 Create code to load up the workflow instance from an XAML string:

Open Program.cs file and change code as follow:
using System;
using System.Activities;
using System.Activities.Statements;
using System.IO;
using System.Collections;
using System.Text;
using System.Activities.XamlIntegration;

namespace LoadUpWorkflowFromXML {
 class Program {
 static void Main(string[] args) {
 string filePath= @"C:\WF4Cookbook\Chapter01\
LoadUpWFFromXML\Workflow1.xaml";
 string tempString="";
 StringBuilder xamlWFString = new StringBuilder();
 StreamReader xamlStreamReader =
 new StreamReader(filePath);
 while (tempString != null){
 tempString = xamlStreamReader.ReadLine();
 if (tempString != null) {
 xamlWFString.Append(tempString);

Chapter 1

33

 }
 }
 Activity wfInstance = ActivityXamlServices.Load(
 new StringReader(xamlWFString.ToString()));
 WorkflowInvoker.Invoke(wfInstance);
 }
 }
}

We may need to change the file path
according to our real environment.

4.	 Run it:

Set LoadUpWorkflowFromXML as Startup project. Press Ctrl+F5 to build and run
the workflow without debugging. The application should run in a console window and
print the message as shown in the following screenshot:

How it works...
We use the following code block to read a workflow XML string from file and store the string in
xamlWFString:

string filePath= @"C:\WF4Cookbook\Chapter01\LoadUpWFFromXML\
Workflow1.xaml";
string tempString="";
StringBuilder xamlWFString = new StringBuilder();
StreamReader xamlStreamReader =
new StreamReader(filePath);
while (tempString != null)
{
 tempString = xamlStreamReader.ReadLine();
 if (tempString != null)
 {
 xamlWFString.Append(tempString);
 }
}

Workflow Program

34

Then, using the following statement, ActivityXamlServices reads the XML workflow and
builds up a workflow object graph:

Activity wfInstance = ActivityXamlServices.Load(
 new StringReader(xamlWFString.ToString()));

Testing a WF program with a unit test
framework

In this task, we will create a Test Project to do unit testing for a WF program.

How to do it...
1.	 Add a Test Project to the solution:

Add a Test Project to the Chapter01 solution and name the project as
UnitTestForWFProgram as shown in the following screenshot:

Chapter 1

35

2.	 Add a workflow file to the Test Project:

Add a workflow activity to this project. Right-click the newly created Test Project,
then go to Add | New Items… | Workflow | Activity and name the activity as
WorkflowForTest.xaml. In the opening WF designer, create an OutArgument
as OutMessage. Next, drag an Assign activity to the Designer panel and assign
the string "Test Message" to the OutMessage argument as shown in the following
screenshot:

In WF4, workflow is actually an Activity class. We could see
"Workflow" as a conception from a macroeconomic viewpoint,
while considering "Activity" as a development concept.

3.	 Create unit test code:

Open the UnitTest1.cs file and fill the file with following code:
using Microsoft.VisualStudio.TestTools.UnitTesting;
using System.Activities;

namespace UnitTestForWFProgram {
 [TestClass]
 public class UnitTest1 {

www.allitebooks.com

http://www.allitebooks.org

Workflow Program

36

 [TestMethod]
 public void TestMethod1() {
 var output =
 WorkflowInvoker.Invoke(new WorkflowForTest());
 Assert.AreEqual("Test Message",
 output["OutMessage"]);
 }
 }
}

4.	 Run it:

Set UnitTestForWorkflow as Startup project. Press Ctrl+F5 to build and run the
test without debugging as shown in the following screenshot:

How it works...
In the preceding code snippet, [TestClass] indicates it is a unit test class, whereas
[TestMethod] indicates a test method. When the Test Project runs, the test method will be
executed automatically.

There's more...
In real application development, we can also create a separate Unit Test project and add a
reference to the target project.

Debugging a WF program
In this task, we will debug a WF program.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application project under the Charpter01
solution. Name the project as DebugWFProgram. In the opening WF designer panel,
author a workflow as shown in the following screenshot:

Chapter 1

37

2.	 Create workflow host code:

Open Program.cs file and change the code to:
using System.Activities;
using System.Activities.Statements;

namespace DebugWFProgram{
 class Program{
 static void Main(string[] args){
 WorkflowInvoker.Invoke(new Workflow1()
 {
 InMessage="In Message"
 });
 }
 }
}

Workflow Program

38

3.	 Set a debug break point:

Right-click an activity and select Breadpoint | Insert Breakpoint to add debug
break point.

4.	 Debug it:

Press F5 to debug the WF Program; we can refer the following screenshot:

Chapter 1

39

There's more...
We can also debug an XAML workflow. Open Workflow with the XML editor, insert some
breakpoints, then press F5; we will see the breakpoints as shown in the following screenshot:

2
Built-in Flow Control

Activities

In this chapter we will cover:

ff Using the Foreach Activity

ff A number guessing game in Sequence

ff A number guessing game in a flowchart

ff Using the InvokeMethod activity

ff Using the Switch<T> activity in Sequence workflows

ff Using the FlowSwitch<T> activity

ff Using the Parallel activity

ff Using ParallelForEach<T> activity

ff Using the Pick activity

ff Handling errors

Introduction
The Flow is the center of workflow itself, and how to control the Flow is what we will see
in this chapter. WF is a lot like an imperative programming language such as C# when it
comes to flow control; we have many similar concepts in WF4 such as "if-else", "foreach",
"switch", "try-catch", and so on. Additionally, there are some other flow control activities that
enable us to control workflow easily and efficiently such as the Parallel activity, Pick activity,
ParallelForEach<T> activity, and so on.

Built-in Flow Control Activities

42

In C#, we use language control key words to control everything. In WF4, this is slightly
different. When we are developing a real workflow application, we will still write business logic
in .NET code and build it out as DLL files so that we can reuse it everywhere. WF4 has two
different types of workflow—Sequence workflow and Flowchart workflow. The famous State
Machine workflow will be released in .NET Framework 4.5.

Using the Foreach activity
In this task, we will use the Foreach activity to traverse a person-type object.

How to do it...
1.	 Create a Workflow Console Application project:

Create a new Workflow Console Application project and name it
UsingForeachActivity. We can refer to the following screenshot:

Chapter 2

43

2.	 Create a Person class file:

Add a new class file to the project, name the file Person.cs, fill the file with the
following code, and save and build the project.

namespace UsingForeachActivity {
 public class Person {
 public string Name { get; set; }
 public int Age { get; set; }
 public Person(string name, int age) {
 this.Name = name;
 this.Age = age;
 }
 public override string ToString() {
 return "Name:" + this.Name + " "
 + " Age:" + this.Age;
 }
 }
}

3.	 Import the UsingForeachActivity namespace to the workflow:

In the bottom of workflow designer, click Imports and import the
UsingForeachActivity namespace by using the drop-down list at the top of the
Imports panel and pressing the Enter key.

Built-in Flow Control Activities

44

4.	 Create a variable named people:

Open Workflow1.xaml in workflow designer, drag a Sequence activity to the
designer panel, and then create a List<Person> type variable named people
in the Sequence scope. To add a variable, we first need to click the variable button
at the bottom of the screen then add the name in the name column. Next, in the
Variable type drop-down, select Browse for Types.... Expand mscorlib[4.0.0.0]
and select System.Collections.Generic.List<T>. Click Browse for Types...
select Person. We can see the following screenshot:

Input the following VB Expression code in the Default Expression textbox of the
variable people:

New List(Of Person) From
{
 New Person("Andrew", 26),
 New Person("Jophy", 25),
 New Person("Steven", 29)
}

Chapter 2

45

5.	 Author a workflow:

Add a Sequence activity to the designer panel, and then add a ForEach<T> activity
to the Sequence activity. Click ForEach<T>, in its Properties panel browse for the
TypeArgument property, and select Person.

Input From a In people in the value expression. Next, drag a WriteLine to the body
of ForEach<Person>. Set the expression textbox of WriteLine to
item.ToString as shown in the following screenshot:

Built-in Flow Control Activities

46

6.	 Run it:

Press Ctrl+F5 to run the project without debugging and a console application will
show the result:

How it works...
When the workflow project is created, the following code in the Program.cs file will be
generated automatically:

static void Main(string[] args) {
 WorkflowInvoker.Invoke(new Workflow1());
}

Therefore, there is no need to add any code to the Program.cs file. The Foreach activity is
similar to the foreach keyword in C#.

Chapter 2

47

There's more...
Currently, we can use only VB expressions, but we may have C# expressions in the future.

A number guessing game in Sequence
In this task, we will create a guess number game in the Sequence activity. This task will also
demonstrate the usage of the DoWhile and IfElse activities.

How to do it...
1.	 Create a workflow project:

Create a Workflow Console Application and name it GuessNumberGameInSequence.

2.	 Create a ReadNumberActivity to receive your guess number:

Create a new code file, name it ReadNumberActivity.cs, and fill the file with the
following code:

using System;
using System.Activities;
namespace GuessNumberGameInSequence {
 public sealed class ReadNumberActivity : CodeActivity {
 public OutArgument<int> OutNumber { get; set; }
 protected override void Execute(CodeActivityContext
context) {
 OutNumber.Set(context, Int32.Parse(Console.
ReadLine()));
 }
 }
}

Save and build the project so that we can use this activity in workflow designer.

Built-in Flow Control Activities

48

3.	 Author a workflow:

Open Workflow1.xaml in workflow designer. Author the workflow as shown in the
following screenshot:

Chapter 2

49

4.	 Run it:

Set project GuessNumberGameInSequence as StartUp project. Press CTRL+F5
to build and run the workflow without debugging. The application should run in a
console window and print the following messages:

How it works...
When the workflow starts running, a random number will be generated and stored in the
Variable named RandomNumber. First, the workflow will print Input your number: to the
command console. In the ReadNumberActivity, the workflow will stop to wait our guess.
After we input an integer number, workflow will compare our input number and the generated
number, and will decide if we have made the right guess. If we do not input the right number,
the workflow will give us a hint that we should input a larger or smaller number next time.
As soon as we input the correct number, the workflow will then print you are right! to the
command console.

Please note that in real workflow applications we should not use such a
ReadNumberActivity because the ReadNumberActivity blocks the workflow execution.
One best practice of creating an activity is writing code that will not block the workflow
execution—for example, customizing an activity inherited from NativeActivity and creating
a bookmark in the customized activity. We will create a bookmark activity in Chapter 5, Custom
Activities.

A number guessing game using a flowchart
The flowchart was not invented in WF4. On the contrary, this type of diagram has a long
history. The flowchart was first introduced by Frank Gilbreth in 1921 and he created a tool to
use the flowchart in an industrial engineering curriculum.

Built-in Flow Control Activities

50

As a programmer, you may already have experience in using a flowchart to draw an algorithm
or process.

In this task, we will create a number guessing game using a flowchart. This task will also
demonstrate the usage of the FlowDecision activity.

How to do it...
1.	 Create a workflow project:

Create a Workflow Console Application and name it
GuessNumberGameInFlowChart.

2.	 Create a ReadNumberActivity to receive the guess number:

Create a new code file, name it ReadNumberActivity.cs, and fill the file with the
following code:

using System;
using System.Activities;
namespace GuessNumberGameInFlowChart {
 public sealed class ReadNumberActivity : CodeActivity {
 public OutArgument<int> OutNumber { get; set; }
 protected override void Execute(
 CodeActivityContext context) {
 OutNumber.Set(context,
 Int32.Parse(Console.ReadLine()));
 }
 }
}

Save and build the project so that we can use this activity in workflow designer.

3.	 Author a workflow:

Open Workflow1.xaml in workflow designer. Author the workflow as shown in the
following screenshot:

Chapter 2

51

Built-in Flow Control Activities

52

Click the ReadNumberActivity activity and set its properties as:

4.	 Run it:

Set GuessNumberGameInFlowChart as StartUp project. Press CTRL+F5 to build
and run the workflow without debugging.

How it works...
If you have finished both this and previous tasks, you may have already found out that we
can create workflow by using Sequence workflow or Flowchart workflow. The question is what
should we choose—Sequence or Flowchart. The rule is simple: if our workflow has many
backward transitions, we should use Flowchart, otherwise, we should use Sequence workflow.

There's more
WF4.0 doesn't provide the famous State Machine workflow. In fact, we can create State
Machine workflow by using Flowchart. However, there are many voices that demand a real
State Machine workflow in WF4.0. So, Microsoft will provide the State Machine workflow in
.NET Framework 4.5(WF4.5).

Using the InvokeMethod activity
In this task, we will use the InvokeMethod activity to invoke various kinds of methods.

How to do it...
1.	 Create a workflow project:

Create a Workflow Console Application and name the project as
UsingInvokeMethodActivityInCode.

Chapter 2

53

2.	 Create a class with various kinds of method:

Add a new class file to the project and name it TestClass.cs. Then fill the file with
the following code:

using System;
public class TestClass {
 public void Method() {
 Console.WriteLine("Hello, message from Method()");
 }
 public void Method(string message1, string message2) {
 Console.WriteLine
 ("Hello, your message1 is:" + message1);
 Console.WriteLine
 ("Hello, this is your message2:" + message2);
 }
 public string MethodWithReturn(string message1,
 string message2) {
 return "message1:" + message1 +
 " " + "message2:" + message2;
 }
 public void MethodWithRef(string message1,
 string message2,
 ref string resultMessage) {
 resultMessage = "message1:" + message1 +
 " " + "message2:" + message2;
 }
 public void Method<T1, T2>(T1 param1, T2 param2) {
 Console.WriteLine
 ("The type of T1 is:" + typeof(T1));
 Console.WriteLine
 ("The value of param1 is:" + param1.ToString());
 Console.WriteLine
 ("The type of T2 is:" + typeof(T2));
 Console.WriteLine
 ("The value of param2 is:" + param2.ToString());
 }
 public static string StaticMethod(string message1,
 string message2) {
 return "message1:" + message1 +
 " " + "message2:" + message2;
 }
}

Built-in Flow Control Activities

54

3.	 Author a code workflow:

Open Program.cs file and fill the file with the following code:

using System;
using System.Activities;
using System.Activities.Statements;
using System.Activities.Expressions;
namespace UsingInvokeMethodActivityInCode {
 class Program {
 static void Main(string[] args) {
 WorkflowInvoker.Invoke(CreateInvokeMethodWF());
 }
 static Activity CreateInvokeMethodWF() {
 TestClass testClass = new TestClass();
 Variable<string> resultValue = new Variable<string>();
 return new Sequence() {
 Variables = { resultValue },
 Activities ={
 new WriteLine(){Text="...Invoke void
 Method()"},
 new InvokeMethod(){
 TargetObject= new InArgument<TestClass>
 (aec=>testClass),
 MethodName="Method",
 },
 new WriteLine(){
 Text="...Invoke void Method(string"+
 "message1,string message2)"},
 new InvokeMethod(){
 TargetObject= new InArgument<TestClass>
 (aec=>testClass),
 MethodName="Method",
 Parameters={
 new InArgument<string>("This is
 message1"),
 new InArgument<string>("This is
 message2")
 }
 },
 new WriteLine(){
 Text="...Invoke string MethodWithReturn"+
 "(string message1, string message2)"},
 new InvokeMethod<string>{
 TargetObject=new InArgument<TestClass>
 (aec=>testClass),

Chapter 2

55

 MethodName="MethodWithReturn",
 Parameters={
 new InArgument<string>("This is
 message1"),
 new InArgument<string>("This is
 message2")
 },
 Result=resultValue
 },
 new WriteLine(){
 Text=new InArgument<string>
 (ctx=>resultValue.Get(ctx))},
 new WriteLine()
 {Text="...Invoke void MethodWithRef"+
 "(string message1, string message2,"+
 "ref string resultMessage)"},
 new InvokeMethod(){
 TargetObject=new InArgument<TestClass>
 (aec=>testClass),
 MethodName="MethodWithRef",
 Parameters={
 new InArgument<string>("This is
 message1"),
 new InArgument<string>("This is
 message2"),
 new InOutArgument<string>(resultValue)
 }
 },
 new WriteLine(){
 Text=new InArgument<string>
 (ctx=>resultValue.Get(ctx))},
 new WriteLine(){
 Text="...Invoke void Method<T1, T2>"+
 "(T1 param1, T2 param2)"},
 new InvokeMethod(){
 TargetObject=new InArgument<TestClass>
 (aec=>testClass),
 MethodName="Method",
 GenericTypeArguments={
 typeof(string),
 typeof(int)
 },
 Parameters={
 new InArgument<string>("string
 message"),

Built-in Flow Control Activities

56

 new InArgument<int>(123)
 }
 },
 new WriteLine(){
 Text="...Invoke static string"+
 "StaticMethod(string message1, string
 message2)"},
 new InvokeMethod<string>{
 TargetType=typeof(TestClass),
 MethodName="StaticMethod",
 Parameters={
 new InArgument<string>("This is
 message1"),
 new InArgument<string>("This is
 message2")
 },
 Result=resultValue
 },
 new WriteLine(){
 Text=new InArgument<string>
 (ctx=>resultValue.Get(ctx))}
 }
 };
 }
 }
}

4.	 Run it:

Set UsingInvokeMethodActivityInCode as StartUp project. Press CTRL+F5 to
build and run the workflow without debugging. We will see the following:

Chapter 2

57

How it works...
As we can see, there is a lot of code in this task, but we don't have to understand all of the
code at one time. We can read and understand it piece by piece. For instance, in TestClass,
we have the following method:

public void Method() {
 Console.WriteLine("Hello, message from Method()");
}

In the workflow, we want to call the following method:

new InvokeMethod(){
 TargetObject= new InArgument<TestClass>(aec=>testClass),
 MethodName="Method",
}

Here is the explanation of the important properties of InvokeMethod activity:

ff MethodName: Assign the method name to this property

ff TargetObject: When we want to invoke non-static methods, we need first to create
an object that contains the method to execute

ff TargetType: When we want to invoke static methods, we specify the type that
contains the static method to execute

ff GenericTypeArguments: When we want to invoke a generic method, we specify
generic types in this collection

Here is a sample from step 3:

newInvokeMethod(){

TargetObject=new InArgument<TestClass>(aec=>testClass),

MethodName="Method",

GenericTypeArguments={

typeof(string),

typeof(int)

},

Parameters={

newInArgument<string>("string message"),

newInArgument<int>(123)

}

},

ff Parameters: The parameter collection of the method to be invoked

ff Result: The return value of the method execution

Built-in Flow Control Activities

58

There's more
We can use the InvokeMethod activity in the visual workflow:

ff Invoke 'void Method()' (C# method):

A method without parameters and return type:

public void Method() {

 Console.WriteLine("'void Method()' is called");
}

InvokeMethod activity:

ff Invoke 'void Method(var1,var2)' (C# method):

A method with two parameters:

public void Method(string message1, string message2) {
 Console.WriteLine("'void Method(string message1, string
message2)' is called");
 Console.WriteLine
 ("Hello, this is your message1:" + message1);
 Console.WriteLine
 ("Hello, this is your message2:" + message2);
}

Chapter 2

59

InvokeMethod activity:

ff Invoke 'string MethodWithReturn(var1,var2)' (C# method):

A method with two parameters and String return type:

public string MethodWithReturn(string message1,
 string message2) {
 Console.WriteLine("'string MethodWithReturn(string
message1,string message2)' is called");
 return "message1:" + message1 +
 " " + "message2:" + message2;
}

Built-in Flow Control Activities

60

InvokeMethod activity:

ff Invoke 'void MethodWithRef' (C# method):
public void MethodWithRef(string message1,
 string message2,
 ref string resultMessage) {
 resultMessage = "message1:" + message1 +
 " " + "message2:" + message2;
}

Chapter 2

61

InvokeMethod activity:

Please note that the resultVar must be In/Out direction parameter to work with the
ref parameter.

ff Invoke generic method (C# method):
public void Method<T1, T2>(T1 param1, T2 param2) {
 Console.WriteLine
 ("The type of T1 is:" + typeof(T1));
 Console.WriteLine
 ("The value of param1 is:" + param1.ToString());
 Console.WriteLine
 ("The type of T2 is:" + typeof(T2));
 Console.WriteLine
 ("The value of param2 is:" + param2.ToString());
}

Built-in Flow Control Activities

62

InvokeMethod activity:

•	 Invoke static method (C# method):
public static string StaticMethod(string message1,
 string message2) {
 return "message1:" + message1 +
 " " + "message2:" + message2;
}

Chapter 2

63

InvokeMethod activity:

Using the Switch<T> activity in Sequence
workflow

In this task, we will inspect the usage of the Switch activity in Sequence workflow. The
Switch<T> activity will not only accept a string as a condition but also an object.

How to do it...
1.	 Create a Workflow project:

Create a new Workflow Console Application project and name the project as
UsingSwitchActivityInSequenceWorkflow.

Built-in Flow Control Activities

64

2.	 Create a test class file Product.cs:

Add a new class to the project, name it Product.cs, and fill the file with the
following code:

using System;
using System.ComponentModel;
namespace UsingSwitchActivityInSequenceWorkflow {
 [TypeConverter(typeof(ProductConverter))]
 public class Product {
 public string ProductName { get; set; }
 public Guid ProductId { get; set; }
 public Product() {
 this.ProductName = "Defualt Name";
 this.ProductId =Guid.NewGuid();
 }
 public Product(string productName, Guid productId) {
 this.ProductName = productName;
 this.ProductId = productId;
 }
 public override bool Equals(object obj) {
 Product product = obj as Product;
 if (product != null) {
 return string.Equals(this.ProductId,
 product.ProductId);
 }
 return false;
 }
 public override int GetHashCode() {
 if (this.ProductName != null) {
 return this.ProductName.GetHashCode();
 }
 return 0;
 }
 }
}

3.	 Add a class converter to the project:

Add another new class to the project, name it ProductConverter.cs, and fill the
file with following code:

using System;
using System.ComponentModel;
using System.Globalization;
namespace UsingSwitchActivityInSequenceWorkflow {
 public class ProductConverter : TypeConverter {

Chapter 2

65

 public override bool CanConvertFrom(
 ITypeDescriptorContext context,
 System.Type sourceType) {
 return sourceType == typeof(string);
 }
 public override object ConvertFrom(
 ITypeDescriptorContext context,
 CultureInfo culture,
 object value) {
 if (value == null) {
 return null;
 }
 if (value is string) {
 return new Product() {
 ProductName = (string)value,
 ProductId = Guid.NewGuid();

 };
 }
 return base.ConvertFrom(context, culture, value);
 }
 public override object ConvertTo(
 ITypeDescriptorContext context,
 CultureInfo culture,
 object value,
 System.Type destinationType) {
 if (destinationType == typeof(string)) {
 if (value != null) {
 return ((Product)value).ProductName;
 } else {
 return null;
 }
 }
 return base.ConvertTo(
 context,
 culture,
 value,
 destinationType);
 }
 }
}

Built-in Flow Control Activities

66

The WF4 Switch<T> activity will use this class to convert the Product class from/to
string. Before moving to step 4, we need to build the project so that the workflow can
find the Product and ProductConverter type.

4.	 Author a workflow:

Open the Workflow1.xaml file created by default. Import the
UsingSwitchActivityInSequenceWorkflow namespace. Drag a Sequence
activity to the designer panel and next drag a Switch<T> into the sequence. A dialog
will show up asking for type; choose Product type for it. See the following screenshot:

Chapter 2

67

5.	 Run it:

Set UsingSwitchActivityInSequenceWorkflow as StartUp project. Press
CTRL+F5 to build and run the workflow without debugging. A console application will
show the result:

How it works...
Traditionally, in C#, a switch statement can operate only on primitive types such as Boolean,
Int32, String, and enumeration types. In WF4, a Switch activity can operate on a user-
defined type at runtime.

To enable this interesting feature, we must perform the following steps:

1.	 Create a type converter class to convert an object of user-defined type to a string and
a string to object.

2.	 Override the following two methods of user-defined classes: public override
bool Equals(object obj) and public override int GetHashCode().

We can then see the Product class for the implementation sample.

There's more
We can change expression to let the sample project print another result—for example, New
Product("BMP Software", Guid.NewGuid()).

Using the FlowSwitch<T> activity
In the flowchart, we should use the FlowSwitch Activity instead of the Switch<T> activity,
which we used in the previous task. In this task, we will create a flowchart workflow using the
FlowSwitch<T> activity. This switch activity will operate on a string.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application project and name the project as
UsingFlowSwitchActivity.

Built-in Flow Control Activities

68

2.	 Author a workflow:

Open Workflow1.xaml and author a workflow as shown in the following screenshot.
Please note that when we drag the Flowswitch activity to the flowchart, we will be
shown a dialog to choose the type. In this task, we have chosen String.

Chapter 2

69

When we add the case links, please do not to add quotation marks ("") around the
case branch. Because the Flowswitch activity will not only operate on strings but
also other types.

3.	 Run it:

Set UsingFlowChartActivity as StartUp project. Press CTRL+F5 to build and
run the workflow without debugging. A console application will show the result.

How it works
Like the switch key word in C#, the FlowSwitch<T> activity is a Flowchart condition node
that handles multiple selections by passing control to one of the branch activities. Please note
that if the flow branching requires only two paths, we should use the FlowDescision
activity instead.

See Also
A number guessing game in a flowchart.

Using the Parallel activity
In this task, we will create a sample that will use the Parallel activity. The Parallel activity can
execute its child activities in parallel, asynchronously.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application under solution Chapter02 and name the
project as UsingParallelActivity.

Built-in Flow Control Activities

70

2.	 Create a workflow:

Open Workflow1.xaml and create a workflow as shown in the following screenshot:

Set the properties of both Delay activities:

Chapter 2

71

3.	 Run it:
Set UsingParallelActivity as StartUp project. Press CTRL+F5 to build and run
the workflow without debugging.

How it works...
Workflow execution starts from Sequence1, then there is a delay of 5 seconds and the
execution of Parallel will shift to the Sequence2 branch immediately. Now Sequence2 will
delay for 5 seconds and the execution shift to the Sequence1 branch again, and now, both
Sequence1 and Sequence2 are in a delaying state. The whole Parallel activity will wait there
until one of them awakes.

The embedded parallel branches are scheduled and run asynchronously,
but they do not run on separate threads. So, each successive branch will
execute only when the previous branch completes or goes idle.

Using the ParallelForEach<T> activity
ParallelForEach<T> is actually a special ForEach<T> activity. The difference between
ParallelForEach<T> and ForEach<T> is that ParallelForEach<T>'s embedded
statements are scheduled and run asynchronously. ParallelForEach<T> itself is akin to a
Parallel activity for its child activities. Let's create a sample to see how it works.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application under solution Chapter02 and name the
project UsingParallelForEachActivity.

Built-in Flow Control Activities

72

2.	 Create a workflow:

Open Workflow1.xaml and author a workflow as shown in the following screenshot:

Set the properties of both Delay activities:

Chapter 2

73

3.	 Run it:

Set UsingParallelForEachActivity as StartUp project. Press CTRL+F5 to build
and run the workflow without debugging. We can refer the following screenshot:

How it works...
We should find that the Delay activity in Seqence2 branch seems not to take effect at all. In
fact, whenever the ParallelForEach<Int32>'s embedded statement goes idle, the next
statement will be executed immediately rather than waiting there, that is why we call it the
ParallelForEach activity.

Using the Pick activity
The Pick activity in WF4 is similar to the Listen activity in WF3. This activity will execute one of
its parallel subactivities, and only one of its activities will be executed before the Pick activity
completes. Typically, we use Pick to set up a time-out for an activity.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application and name it UsingPickActivity.

Built-in Flow Control Activities

74

2.	 Create a workflow:

Create a workflow as shown in the following screenshot:

We are not allowed to define variables in
the Pick activity scope.

Set the Properties of the Delay activity of Branch1:

Chapter 2

75

Set the Properties of the Delay activity of Branch2:

3.	 Create a workflow host:

Open the Program.cs file and fill the file with following code:

using System;
using System.Activities;
using System.Activities.Statements;
using System.Threading;
namespace UsingPickActivity {
 class Program {
 static void Main(string[] args) {
 AutoResetEvent waitHandler =
 new AutoResetEvent(false);
 WorkflowApplication wfApp =
 new WorkflowApplication(new Workflow1());
 wfApp.Completed = (e) => waitHandler.Set();
 wfApp.Run();
 waitHandler.WaitOne();
 }
 }
}

4.	 Run it:

Set UsingPickActivity as StartUp project, and press Ctrl+F5 to run the workflow
without debugging.

Built-in Flow Control Activities

76

How it works...
In this workflow, there are two branches in the Pick activity. Each branch has a Delay activity—
Branch1 is delayed by 3 seconds, whereas Branch2 is delayed by 5 seconds. At execution
time, both branches are executed in parallel. When Branch1 completes, Branch2 is cancelled.

There's more
If we are already familiar with customized activities and bookmark, we can replace one of the
Delay activity with a bookmark activity.

To create a bookmark:

1.	 Add a new code file to the project and name the file as MyBookmark.cs. Fill the file
with the following code:
using System.Activities;
namespace UsingPickActivity {
 public class MyBookmark : NativeActivity<string> {
 [RequiredArgument]
 public InArgument<string> BookmarkName { get; set; }
 protected override void Execute(
 NativeActivityContext context) {
 context.CreateBookmark(BookmarkName.Get(context),
 new BookmarkCallback(OnResumeBookmark));
 }
 protected override bool CanInduceIdle {
 get { return true; }
 }
 public void OnResumeBookmark(
 NativeActivityContext context,
 Bookmark bookmark, object obj) {
 Result.Set(context, (string)obj);
 }
 }
}

Save and build the project for us to be able to use this bookmark in workflow
designer.

2.	 Open Workflow1.xaml. Click the left Trigger (Branch1) and create an
inputString Variable. Create an InArgument named BookmarkName. We now
need to replace the left Delay activity with our bookmark activity: MyBookmark. See
the following screenshot:

Chapter 2

77

Properties of MyBookmark activity:

Built-in Flow Control Activities

78

3.	 Change the host code in the program.cs file as follows:
///Pick Activity with bookmark Activity
string BMName = "StringInputBookmark";
AutoResetEvent waitHandler =
 new AutoResetEvent(false);
WorkflowApplication wfApp =
 new WorkflowApplication(new Workflow1() {
 BookmarkName = BMName
 });
wfApp.Completed = (e) => waitHandler.Set();
wfApp.Run();
wfApp.ResumeBookmark(BMName, Console.ReadLine());
waitHandler.WaitOne();

4.	 Set UsingPickActivity as StartUp project, and press Ctrl+F5 to run the workflow
without debugging. In the opening console application, we can either input a string or
wait for 5 seconds, and the workflow will time out and terminate.

Handling errors
In this task, we are going to create a Sequence workflow with a TryCatch activity. There
will be a dividend assigned with zero, and hence we can generate a divide-by-zero exception
deliberately so that we can handle this error in a TryCatch activity.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application and name it ErrorHandling.

2.	 Create a code workflow:

Create a new class file and name it ErrorHandlingWorkflow.cs. Fill the file with
the following code:

using System;
using System.Activities;
using System.Activities.Statements;
namespace ErrorHandling {
 public class ErrorHandlingWorkflow{
 public Activity GetInstance() {
 Variable<int> divisor = new Variable<int>("divisor",
 10);
 Variable<int> dividend = new Variable<int>("dividend",
 0);
 Variable<int> result = new Variable<int>("result");

Chapter 2

79

 DelegateInArgument<DivideByZeroException> eia = new De
legateInArgument<DivideByZeroException>();
 Activity workflow = new Sequence() {
 Variables = { divisor, dividend, result },
 Activities ={
 new TryCatch{
 Try=new Assign{
 To=new OutArgument<int>(result),
 Value=new InArgument<int>(
 aec=>divisor.Get(aec)/dividend.
 Get(aec)
)
 },
 Catches={
 new Catch<DivideByZeroException>{
 Action=new ActivityAction<DivideBy
ZeroException>{
 Argument=eia,
 Handler=new Sequence{
 Activities={
 new
WriteLine{Text="Divide By Zero Exception"},
 }
 }
 },
 }
 },
 Finally=new WriteLine{Text="finally,calcul
ation done"}
 }
 }
 };
 return workflow;
 }
 }
}

Built-in Flow Control Activities

80

3.	 Create host code:

Open Program.cs file and alter the code to:

using System.Activities;
namespace ErrorHandling {
 class Program {
 static void Main(string[] args) {
 ErrorHandlingWorkflow errorHandlingWorkflow=
 new ErrorHandlingWorkflow();
 WorkflowInvoker.Invoke(errorHandlingWorkflow.
GetInstance());
 }
 }
}

4.	 Run it:

Press Ctrl+F5 to run the sample. We will be able to see a console application
like this:

How it works...
The TryCatch activity in WF4 is pretty much like the "try catch" keywords in C#. They both
have "try", "catch", and "finally", and they even share similar structure. With the TryCatch
activity, we can use these keywords as follows:

new TryCatch{
 Try=//WF4 Activity
 Catch={}// Catch collection
 Finally= //WF4 Activity
}

Note that the Finally activity will not be executed unless the Try block or one of the Catch
blocks completes.

3
Messaging and

Transaction

This chapter will cover:

ff Creating a pure WCF service

ff Receiving and replying a WCF message

ff Receiving and replying to a WCF message in code workflow

ff Sending and receiving a reply to a WCF message

ff Sending and receiving a reply to a WCF message in code workflow

ff Using CancellationScope activity

ff Performing a transaction by using TransactionScope activity

ff Performing compensation by using Compensable activity

ff Performing manual compensation by using Compensate activity

ff Performing confirmation by using Confirm activity

Introduction
In a traditional imperative program language such as C#, if one wished to send/receive
message to/from a remote location, one was expected to write a lot of code, have thorough
knowledge of TCP/IP, HTTP, .Net Remoting, Web Service, and so on. Starting from .NET
Framework 3.0, Microsoft launched WCF (Windows Communication Foundation). By using WCF,
messaging has become an easy and flexible task. WF4 takes advantage of WCF and provides
some out of the box messaging activities. In this chapter, we will focus on the built-in messaging
activities shipped by WF4.

Messaging and Transaction

82

In the case of service host, though we can use the Local Web Development Server shipped
with .NET Framework4.0 as the WCF host, I personally recommend the real IIS7.0 or IIS 7.5.
For detailed IIS installation steps, we can refer to the documents from http://learn.iis.
net/page.aspx/85/installing-iis-7/.

To make sure our application has permission to open a WCF HTTP port, we should run Visual
Studio 2010 as administrator.

Creating a pure WCF service
In case one is new to WCF, he/she can use this task to become familiar with fundamental
WCF concepts. In this task, we will create a simple WCF stock price service host in IIS 7.

How to do it...
1.	 Create a IIS Application:

Right-click an IIS Site; we will see the menu shown in the following screenshot:

Then create a StockPriceService application.

Please remember its folder path. We will create files in this folder in the
following steps.

Please also note that the WCFSite should run in .NET Framework 4.0 application pool.

Chapter 3

83

2.	 Create WCF code:

Create a new folder named App_Code in the application folder. Next, create a
StockService.cs file in the App_Code folder. Fill the StockService.cs file with
the following code:

using System;
using System.ServiceModel;

namespace StockPriceService {
 [ServiceContract]
 public interface IStockService {
 [OperationContract]
 double GetPrice(string ticket);
 }
 public class StockService : IStockService {
 public double GetPrice(string ticket) {
 return 94.85;
 }
 }
}

3.	 Create an svc file:

In the application folder, create a new file named StockService.svc and fill the file
with the following code:

<%@ServiceHost language=c#

 Debug="true"

 Service="StockPriceService.StockService"%>

Messaging and Transaction

84

4.	 Create a config file:

In the application folder, create the configuration file by the name of Web.config,
and fill the configuration file with the following code:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 <services>

 <service name="StockPriceService.StockService"

 behaviorConfiguration="MEXServiceTypeBehavior">

 <endpoint address=""

 binding="wsHttpBinding"

 contract="StockPriceService.IStockService"/>

 <endpoint address="mex"

 binding="mexHttpBinding"

 contract="IMetadataExchange"/>

 </service>

 </services>

 <behaviors>

 <serviceBehaviors>

 <behavior name="MEXServiceTypeBehavior">

 <serviceMetadata httpGetEnabled="true" />

 </behavior>

 </serviceBehaviors>

 </behaviors>

 </system.serviceModel>

</configuration>

Please note that we must set the service and contract name correctly; refer to the
code part that is highlighted in the preceding code snippet.

5.	 Test it:

If we have finished the above steps, in the IIS content panel we shall see
the following:

Chapter 3

85

We can test it in two ways.

i.	 Using an internet browser: Right-click the StockService.svc and click
Browse.

IIS will open the service in IE by default.

ii.	 Using WCF Test Client: By default, navigate to C:\Program Files (x86)\
Microsoft Visual Studio 10.0\Common7\IDE. We should find
the WCF Test Client, WcfTestClient.exe. If we have our Visual Studio
2010 installed in another path, we can type wcftestclient in the Run
command box to search for the tool.

www.allitebooks.com

http://www.allitebooks.org

Messaging and Transaction

86

After we have found the tool, we will open it. Add the StockPriceService to the
tool, double-click the GetPrice() method, and then click the Invoke button to get
the result.

How it works...
To understand WCF, we need to understand the famous ABCs of WCF.

ff A stands for Address. Because of A, the service client knows where to find
the service; in this task the address is defined by the IIS site http://
localhost:8088/StockPriceService/StockService.svc .

ff B stands for binding. Because of B, the service client knows how to use the service.
There are many binding types such as basicHttpBinding, wsHttpBinding,
and so on. Different services use different binding types. In this task, we use
wsHttpBinding. This is defined in the web.config file.

ff C stands for contract. Because of C, the service client knows what content the
service provides. In this task, we use the IStockService interface that is
decorated with the ServiceContract attribute to define the WCF contract.

When the request comes, IIS will capture the request. IIS finds that the request is postfixed
with svc. The following are the httphandler mappings:

Chapter 3

87

According to the httphandler mappings, IIS will use the appropriate handler to handle the
WCF request. If it is the first running time of the WCF service, like an ASP.NET application, IIS
will compile the .NET code and configure the file to DLLs. That is why the first request will take
a little bit longer to get the response.

There's more
WCF (Windows Communication Foundation) is Microsoft's next-generation unified network
programming model for building service-oriented applications. WCF enables us to build
secure, reliable, and distributed solutions with ease. As this is a WF4 book, I am not going to
elaborate on WCF. We can work through the following tasks based on the understanding from
this task. Of course we will understand the following tasks better if we are already equipped
with enough WCF knowledge.

Receiving and replying to a WCF message
In this task, we will create a workflow with Receive and SendReply activities, and run a
workflow as a WCF service. This workflow will accept two integer numbers and return their
sum to the caller. We will use WCF Test Client to test the service.

How to do it...
1.	 Create a workflow project:

Create a new WCF Workflow Service Application project and name it
ReceiveAndReply; refer to the following screenshot:

Messaging and Transaction

88

2.	 Create a workflow:

Open the default created Service1.xamlx. We need to perform the
following actions:

i.	 Add two Int32 type WF4 Variables x and y to the Sequential Service scope.

ii.	 Click the View parameter… link of the ReceiveRequest activity and add
two Int32 type service parameters xIn and yIn as shown in the
following screenshot:

iii.	 Right-click the ReceiveRequest activity and select Properties; the
properties should be set as shown in the screenshot:

Chapter 3

89

iv.	 Click the View parameter… link of the SendResponse activity and add an
Int32 type service parameter named addResult; refer to the following
screenshot:

Now, we can save and close the workflow. The final workflow should be like this:

3.	 Test it in WCFTestClient:

We need to perform the following actions to test the WF service:

i.	 Right-click Service1.xamlx and select the View option in the browser; we
should see the following:

Messaging and Transaction

90

ii.	 Copy the following address (the port will be different in your computer):
http://localhost:11641/Service1.xamlx. Add the service
to WCFTestClient.

New to WCF Test Client?
By default, navigate to C:\Program Files (x86)\
Microsoft Visual Studio 10.0\Common7\IDE. You
will find the WCF Test Client, WcfTestClient.exe. If you have
your Visual Studio 2010 installed in your own folder, you can type
wcftestclient in the Run command box to search the tool.

iii.	 Double-click the GetData() method, input two numbers for xIn and yIn
respectively, and then click the Invoke button. If we can get the addition
result, we have successfully created the workflow service.

4.	 Deploy the Workflow service in IIS:

We need to perform the following actions to deploy the Workflow service in IIS:

i.	 Add an IIS application under an IIS Site.

Chapter 3

91

ii.	 Set the application's Physical path to the project folder path:

How it works...
When we create a WCF Workflow Service Application, Visual Studio 2010 will automatically
create many things. There are two items we need to pay close attention to.

ff The configuration file Web.config: When we deploy the workflow service to IIS, it will
look for configuration information against the Web.config file automatically, just like
the Web.config file in ASP.NET applications. We can also add or remove features by
editing the Web.config file.

ff Service.xamlx: We can notice that the postfix is xamlx instead of xaml. So, we
may think, What is the difference between XAMLX workflow and XAMLX workflow?
Well, XAMLX workflow is designed for IIS particularly. If we want to host workflow
service in IIS, we need to create XAMLX workflow. But what we should do if we have
already created many XAML workflows and still want to host it in IIS? The solution is
simple: remove all InArguments and replace the XAML with XAMLX.

By performing these two steps, we can host an XAML workflow service in IIS too.

Messaging and Transaction

92

When the WCF request comes, IIS will capture the request and use xamlx-ISAPI to handle
the request.

In the code behind, IIS uses WorkflowServiceHost as the workflow service host.

If we want to know how to create and host the workflow service with imperative code, we may
refer to the next task.

Receiving and replying to a WCF message
in code workflow

In this task, we will create a code workflow with Receive and SendReply activities, and will run
the workflow as a WCF service. This workflow will accept two integer numbers and return the
addition sum to the caller. This workflow is hosted in a console application rather than IIS. We
will use WCF Test Client to test the service.

How to do it...
1.	 Create a workflow Console Application project:

Create a new Workflow Console Application named ReceiveAndReplyInCode.

2.	 Create the workflow in code:

Add a new class file to the project and name it ReceiveAndReplyWorkflow.cs.
Fill the file with the following code:

using System;

using System.ServiceModel.Activities;

using System.Activities;

using System.ServiceModel;

using System.Activities.Statements;

namespace ReceiveAndReply {

 class ReceiveAndReplyWorkflow {

 public WorkflowService GetInstance() {

Chapter 3

93

 WorkflowService service;

 Variable<int> x = new Variable<int> { Name = "x" };

 Variable<int> y = new Variable<int> { Name = "y" };

 Variable<int> addResult =

 new Variable<int> { Name = "addResult" };

 Receive receive = new Receive {

 ServiceContractName = "ICalculateService",

 OperationName = "GetData",

 CanCreateInstance = true,

 Content = new ReceiveParametersContent {

 Parameters ={

 {"xIn",new OutArgument<int>(x)},

 {"yIn",new OutArgument<int>(y)}

 }

 }

 };

 Sequence workflow = new Sequence() {

 Variables = { x, y, addResult },

 Activities = {

 new WriteLine{Text="WF service is
 starting..."},

 receive,

 new WriteLine{Text="receive request with two
 numbers"},

 new WriteLine{

 Text=new InArgument<string>(aec=>

 "x="+x.Get(aec).ToString()+" y="+y.
 Get(aec)

)

 },

 new Assign<int>{

 Value=new InArgument<int>(aec=>x.
 Get(aec)+y.Get(aec)),

 To=new OutArgument<int>(addResult)

 },

 new WriteLine{

 Text=new InArgument<string>(aec=>

 "addResult="+addResult.Get(aec).
 ToString()

)

 },

Messaging and Transaction

94

 new WriteLine{Text="Then send the result back
 to client"},

 new SendReply{

 Request=receive,

 Content=new SendParametersContent{

 Parameters={

 {"addResult",new
InArgument<int>(addResult)},

 },

 },

 },

 new WriteLine{Text="sent result back done"}

 },

 };

 service = new WorkflowService {

 Name = "AddService",

 Body = workflow

 };

 return service;

 }

 }

}

3.	 Add configuration code:

Open the App.config file and alter the configuration code as follows (create one if
your project has no App.config file):

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 <behaviors>

 <serviceBehaviors>

 <behavior>

 <serviceDebug includeExceptionDetailInFaults="True"

 httpHelpPageEnabled="True"/>

 <serviceMetadata httpGetEnabled="True"/>

 </behavior>

 </serviceBehaviors>

 </behaviors>

 </system.serviceModel>

</configuration>

Chapter 3

95

4.	 Create workflow service host code:

Set up the workflow host in the Program.cs file:

using System;

using System.Linq;

using System.Activities;

using System.Activities.Statements;

using System.ServiceModel.Activities;

namespace ReceiveAndReply {

 class Program {

 static void Main(string[] args) {

 ReceiveAndReplyWorkflow rrw =

 new ReceiveAndReplyWorkflow();

 WorkflowService wfService = rrw.GetInstance();

 Uri address =

 new Uri("http://localhost:8000/WFServices");

 WorkflowServiceHost host =

 new WorkflowServiceHost(wfService, address);

 try {

 Console.WriteLine("Opening Service...");

 host.Open();

 Console.WriteLine

 ("WF service is listening on " + address.
 ToString());

 Console.ReadLine();

 } catch (Exception e) {

 Console.WriteLine

 ("some thing bad happened" + e.StackTrace);

 } finally {

 host.Close();

 }

 }

 }

}

Messaging and Transaction

96

5.	 Run it:

Set the ReceiveAndReplyInCode project as StartUp project and then press
Ctrl+F5 to run the project without debugging.

6.	 Test it in WCF Test Client:

Open WCF Test Client and add the service to the tool. Double-click GetData(), input
two numbers , click the Invoke button, and we will get the result.

When we test it in the WCF Test Client, the server console will be updated as follows:

Chapter 3

97

How it works...
ff Visual workflow or code workflow:

In real applications, we should use visual workflow instead of code workflow. If we
want to create workflow in imperative code, we have to take care of too many things;
those are hidden in visual workflow. On the other hand, creating code workflow will
help us understand workflow better. After all, all visual workflow declared as XAML will
be compiled to .NET assembly before execution.

ff WorkflowService class:

Let's again have a look at the code to see how it works. Consider this code line:

WorkflowService service;

One may wonder why we use WorkflowService class not Activity class. We use
WorkflowService rather than Activity because WorkflowService enables us
to run the workflow as a WCF service. By using WorkflowService class, we can
configure and access the properties of a workflow service.

ff Receive activity and Send activity:

We define WCF contract name, operation name, and parameters in the Receive
activity. When we set CanCreateInstance property to true, every WCF request will
create a new workflow instance to handle each request.

Receive receive = new Receive {
 ServiceContractName = "ICalculateService",
 OperationName = "Add",
 CanCreateInstance = true,
 Content = new ReceiveParametersContent {
 Parameters ={
 {"x",new OutArgument<int>(x)},
 {"y",new OutArgument<int>(y)}
 }
 }
};

Using the SendReply activity, the workflow service sends the result back to the client.

new SendReply{

 Request=receive,

 Content=new SendParametersContent{

 Parameters={

 {"addResult",new InArgument<int>(addResult)},

 },

 },

}

Messaging and Transaction

98

When the workflow is running, the client sends two integer numbers to the workflow, which
adds the numbers and assigns the addition result to the addResult variable and then sends
the addResult back to the client.

Sending and receiving a reply to a
WCF message

In this task, we are going to create a WCF client workflow. The workflow will send a WCF
request with two integer numbers to a WF service and receive a reply from the WCF service
with the addition result.

Getting ready
For this task, we need to choose one of the previous tasks that we performed as the WF
service—Receiving and replying a WCF message or Receiving and replying to a WCF message
in code workflow. I will use the WF service that is hosted in IIS.

How to do it...
1.	 Create a Workflow Console Application project:

Create a new Workflow Console Application named SendAndReceive.

2.	 Find out service information:

Before moving to authoring a workflow service client, we need to find out some basic
WCF service information—as we stated in the first task of this chapter, the famous
ABC of WCF services.

We can use WCF Test Client to collect those ABCs. Add WF service to WCF Test Client
and double-click the Config File.

Chapter 3

99

Now, we find out the ABC of the workflow service:

�� A(address): http://localhost:8088/ReceiveAndReply/
Service1.xamlx

�� B(binding): basicHttpBinding

�� C(contract): IService

Besides the ABC information, we also need to find out the service parameters' names.
Again, we can use WCF Test Client. Double-click GetData(), input two numbers,
click the Invoke button, and we should get the service result. Now, click the XML table
to see the string XML behind:

Now, we have the following:

�� Operation name: GetData

�� Request parameters' names: xIn and yIn

�� Response parameter name: addResult

Messaging and Transaction

100

3.	 Create a workflow:

Open Workflow1.xaml, which is a workflow created by default, and perform the
following actions:

i.	 Drag a SendAndReceiveReply activity to the designer panel.

ii.	 Right-click the Send activity and select Properties.

iii.	 Specify four properties of the Send activity. We obtained this information in
step 2.

Make sure not to use double quotation marks (" ") around the
AddressUri property.

iv.	 Add an Int32 type Variable named result to the Sequence scope:

The _handle1 variable is created by the SendAndReceiveReply activity
automatically, and this variable will not be used in this task. Just
leave it there.

Chapter 3

101

v.	 Click the Define… link of the Send activity and input the operation parameters'
names, which we obtained in step 2.

vi.	 Click the Define… link of the ReceiveReplyForSend activity and input the
response parameter we obtained in step 2.

Please note that we must input exactly the same parameter name that we obtain
from WCF Test Client.

vii.	 Add a WriteLine activity below the ReceiveReplyForSend activity and input
result.ToString() in the text expression box. Now the workflow should look like
the following screenshot:

Messaging and Transaction

102

4.	 Run it:

Save all files and set the SendAndReceive project as StartUp project. Press Ctrl+F5
to run the workflow. We will see the following:

How it works...
The Send activity enables us to start a conversation with the WCF service. In the behind
stage, the Send activity will fetch the wsdl file according to the endpoint address, and then
generate a proxy that can be used to call the WCF service. So, the Send activity gets many
tedious things done and we can use the activity by just performing some configurations.

We can use a Send activity alone to send a message without expecting a response, or we can
use a Send activity paired with a Receive activity to send a message and wait till a response
is received from the service.

In this task, we use the second pattern by dragging the built-in SendAndReceiveReply
pattern to the designer panel.

There's more
We can also add the WF service to the project service reference and use the service like a
local activity. We can accomplish it by following the next steps:

1.	 Add a WF service to the project's service reference.

2.	 Build the project.

3.	 Now we can see the WF service operation appearing in the toolbox.

Chapter 3

103

4.	 Use the GetData activity just like a local activity.

5.	 Edit the properties of the GetData activity:

Messaging and Transaction

104

6.	 Save the workflow and build the project.

It is easy to consume a WF service like this; however, there are two drawbacks as follows:

ff Visual Studio 2010 is needed, which is not available in the customized WF designer
by default.

ff We have to add a service reference to the project. While many workflows exist in
XAML files and may even be stored in a database, adding references is not an option
for standalone workflows.

Sending and receiving a reply to a WCF
message in code workflow

In this task, we are going to create a WCF client workflow. The workflow will send a WCF
request with two integer numbers to a WF service and receive a reply from a WCF service with
the addition result.

Getting ready
Now that we have finished at least one of the previous tasks—Receiving and replying to a WCF
message or Receiving and replying to a WCF message in code workflow—we can choose one
of them as the WF service in this task. In this task I will use the code-style WF service.

How to do it...
1.	 Create a Workflow Console Application project:

Create a new Workflow Console project and name it SendAndReceiveInCode.

2.	 Create workflow in imperative code:

Add a new class file SendAndReceiveWorkflow.cs to the project and fill the file
with the following code:

using System;

using System.Activities;

using System.ServiceModel;

using System.ServiceModel.Activities;

using System.Activities.Statements;

namespace SendAndReceive {

 class SendAndReceiveWorkflow {

 public Activity GetInstance() {

 Variable<int> x = new Variable<int>("x", 10);

 Variable<int> y = new Variable<int>("y", 20);

Chapter 3

105

 Variable<int> addResult = new
Variable<int>("addResult", 0);

 var endpoint = new System.ServiceModel.Endpoint {

 AddressUri = new Uri("http://localhost:8000/
WFServices"),

 Binding = new BasicHttpBinding(),

 };

 Send addRequest = new Send {

 ServiceContractName="ICalculateService",

 Endpoint = endpoint,

 OperationName = "GetData",

 Content = new SendParametersContent {

 Parameters = {

 {"xIn",new InArgument<int>(x)},

 {"yIn",new InArgument<int>(y)}

 },

 },

 };

 var workflow = new CorrelationScope {

 Body = new Sequence {

 Variables = { x, y, addResult },

 Activities ={

 new WriteLine{Text="Send x:10 and y:20 to
 WF service"},

 addRequest,

 new ReceiveReply{

 Request=addRequest,

 Content=new ReceiveParametersContent{

 Parameters={

 {"addResult",new
OutArgument<int>(addResult)}

 }

 },

 },

 new WriteLine{

 Text=new InArgument<string>(

 aec=>(

 "The result is:"+addResult.
Get(aec).ToString()

)

)

 }

Messaging and Transaction

106

 }

 }

 };

 return workflow;

 }

 }

}

3.	 Create workflow host code:

Open the Program.cs file and alter the present code to:

using System.Activities;

namespace SendAndReceive {

 class Program {

 static void Main(string[] args) {

 SendAndReceiveWorkflow srw =

 new SendAndReceiveWorkflow();

 WorkflowInvoker.Invoke(srw.GetInstance());

 }

 }

}

4.	 Run it:

Follow the steps given next:

i.	 Set the ReceiveAndReplyInCode project (the project we created in the
task Receiving and replying WCF message in code workflow) as StartUp
project and press Ctrl+F5 to run the service.

ii.	 Set the SendAndReceiveInCode project as StartUp project and press
Ctrl+F5 to run the WF service's caller workflow (client).

The ReceiveAndReplyInCode Console looks like this:

Chapter 3

107

The SendAndReceiveInCode Console looks like this:

How it works...
In this task, there are three important activities we need to focus on.

ff Send activity:

The following code creates a WCF endpoint to which the Send activity will
send messages. In the endpoint object, we specify the A (address) of a WCF
service as http://localhost:8000/WFServices and the B (binding) as
BasicHttpBinding.

var endpoint = new System.ServiceModel.Endpoint {

 AddressUri = new Uri("http://localhost:8000/WFServices"),

 Binding = new BasicHttpBinding(),

};

The next code creates a Send activity. Please note that the Send activity will generate
a WCF contract dynamically when it is running.

Send addRequest = new Send {

 ServiceContractName="ICalculateService",

 Endpoint = endpoint,

 OperationName = "GetData",

 Content = new SendParametersContent {

 Parameters = {

 {"x",new InArgument<int>(x)},

 {"y",new InArgument<int>(y)}

 },

 },

};

In the Send activity, we specify C (contract name), which we defined in the WF
service, along with operation name and parameters. By using these properties, the
Send activity is able to establish a "connection" (not always connected)
with WF service.

Messaging and Transaction

108

ff ReceiveReply activity:

We can receive messages from the WF service by using a ReceiveReply activity.

new ReceiveReply{

 Request=addRequest,

 Content=new ReceiveParametersContent{

 Parameters={

 {"addResult",new OutArgument<int>(addResult)}

 }

 }

}

The ReceiveActivity will receive the WCF response message and will assign the
value to the addResult Variable.

ff CorrelationScope:

If we have many Send activities and ReceiveReply activities in one workflow,
we have to pay particular attention to the CorrelationScope activity. By using
CorrelationScope, we can make a Send activity pair with a ReceiveReply
activity. Every ReceiveReply activity will receive messages initiated by a Send
activity in the same correlation scope.

Using CancellationScope activity
As we know, the Parallel activity will not finish execution until all of its child branches have
finished execution. Sometimes, we want to break the parallel if one of its branch finishes
execution and cancel the other branches. To do this, we can use a CancellationScope
activity. In this task, we want to order products from two dealers (Dealer A and Dealer B) at the
same time. In this situation, the two dealers are in a competition, and so the one who ships
the product faster wins the business.

How to do it...
1.	 Create a Workflow Console Application:

Create a new Workflow Console Application project and name it
UseCancellationScope.

2.	 Create a code workflow file:

Add to the project a new class file and name it
WorkflowWithCancellationScope.cs. Fill the file with the following code:

using System.Activities;

using System.Activities.Statements;

Chapter 3

109

using System;

namespace UseCancellationScope {

 class WorkflowWithCancellationScope {

 public Activity GetInstance() {

 Activity workflow = new System.Activities.Statements.
Parallel {

 CompletionCondition = true,

 Branches ={

 new CancellationScope{

 Body=new Sequence{

 Activities={

 new Delay{

 Duration=new
InArgument<TimeSpan>(TimeSpan.FromSeconds(6))

 },

 new WriteLine{Text="Dealer A:Your
product has been shipped"}

 },

 },

 CancellationHandler=new
WriteLine{Text="Dealer A,cancel my order."}

 },

 new CancellationScope{

 Body=new Sequence{

 Activities={

 new Delay{

 Duration=new
InArgument<TimeSpan>(TimeSpan.FromSeconds(5))

 },

 new WriteLine{Text="Dealer B:Your
product has been shipped"}

 }

 },

 CancellationHandler=new
WriteLine{Text="Dealer B,cancel my order"}

 }

 }

 };

 return workflow;

 }

 }

}

Messaging and Transaction

110

3.	 Create workflow host code:

Open the Program.cs file and alter the code to:

using System;

using System.Activities;

using System.Activities.Statements;

namespace UseCancellationScope {

 class Program {

 static void Main(string[] args) {

 WorkflowWithCancellationScope wcs =

 new WorkflowWithCancellationScope();

 WorkflowInvoker.Invoke(wcs.GetInstance());

 }

 }

}

4.	 Run it:

Press Ctrl+F5 to build and run the workflow without debugging. Because dealer A
uses 6 seconds to ship the product to us, whereas dealer B uses only 5 seconds, we
will see the following result:

How it works...
This workflow is simply a Parallel activity with two CancellationScope activities. By
default, a Parallel activity will finish executing once all of its child branches have finished
executing. While in this task, we set CompletionCondition to true so that the Parallel
will finish if one of its branch runs to its end.

We created two CancellationScope activities as the Parallel activity's branches and
assigned each CancellationHandler with a WriteLine activity:

CancellationHandler=new WriteLine{Text="Dealer A,cancel my order."}

When the workflow is running, the second CancellationScope (dealer B) finishes in 5
seconds, whereupon the first CancellationHandler (dealer A) is executed to inform dealer
A that the order given to him is cancelled.

Chapter 3

111

There's more
To use the CancellationScope activity in visual workflow, please follow these steps:

1.	 Drag a Parallel activity to the workflow designer panel. Right-click the activity and
select Properties. Set the ConpletionCondition property to True:

2.	 Drag two CancellationScope activities into the Parallel activity.

3.	 Drag two Sequence activities to the bodies of the two CancellationScope
activities respectively.

4.	 Drag two Delay activities to the two Sequence activities respectively. Set the left
Delay activity's delay time to 6 seconds and set the right Delay activity's delay time
to 5 seconds.

5.	 Add two WriteLine activities below the Delay activities respectively. Input string
"DealerA: Your product has been shipped." to the left WriteLine activity and
"DealerB: Your product has been shipped." to the right-hand Writeline activity.

6.	 Add two WriteLine activities to the two CancelationHandler activities. Input
string "DealerA, cancel my order" to the left WriteLine activity and input string
"DealerB, cancel my order" to the right Writeline activity.

Messaging and Transaction

112

The final workflow should be as shown in the following screenshot:

Performing a transaction by using
TransactionScope activity

In this task, we will create a workflow with TransactionScope activity, in which a customized
activity will insert some data in the database. If any exception/error occurs, the newly inserted
data will be rolled back.

How to do it...
1.	 Create a Workflow Console Application:

Create a new Workflow Console Application and name it UseTransactionScope.

2.	 Create a database for testing:

Create a new database in SQL Server (or SQL Server Express) and name it
TransactionDB. Use the following SQL statement to create a new table:

create table UserTable(

	 UserID nvarchar(50) primary key

)

Chapter 3

113

3.	 Add references to the project:

Add a reference to the System.Tranactions namespace because we are going to
use IsolationLevel enumeration in our code.

4.	 Create InsertDataToDBActivity code:

Add a new class file to the project and name it InsertDataToDBActivity.cs.
By using this activity, we can insert a row of data into the database that has been
created in advance. Fill the file with the following code. Replace the SQL Server
connection string with our own one.

using System;

using System.Activities;

using System.Data.SqlClient;

namespace UseTransactionScope {

 public class InsertDataToDBActivity : NativeActivity {

 public InArgument<string> UserID { get; set; }

 protected override void Execute(NativeActivityContext
context) {

 SqlConnection con = new System.Data.SqlClient.
SqlConnection();

 con.ConnectionString =

 "Data Source=(local);Initial Catalog=TransactionDB
;Integrated Security=True";

 con.Open();

 SqlCommand cmd = con.CreateCommand();

 cmd.CommandText =

 string.Format("insert into UserTable (UserID)
values ('{0}')", UserID.Get(context));

 cmd.ExecuteNonQuery();

 con.Close();

 }

 }

}

5.	 Create workflow code:

Add a new class file in the project and name it TransactionWorkflow.cs. The
class will define the workflow structure. Fill the file with the following code:

using System;

using System.Activities;

using System.Activities.Statements;

namespace UseTransactionScope {

 class TransactionWorkflow {

 public Activity GetInstance() {

Messaging and Transaction

114

 Variable<int> num1 = new Variable<int>("num1", 0);

 Variable<int> num2 = new Variable<int>("num2", 10);

 Variable<double> result = new
Variable<double>("result");

 Activity workflow = new Sequence {

 Variables = { num1, num2, result },

 Activities = {

 new WriteLine{Text="Transaction workflow is
 running…"},

 new TransactionScope{

 IsolationLevel=System.Transactions.
IsolationLevel.Serializable,

 AbortInstanceOnTransactionFailure=false,

 Body=new Sequence{

 Activities={

 new WriteLine{Text="Begin
 Transaction"},

 new InsertDataToDBActivity(){
UserID=Guid.NewGuid().ToString()

 },

 new WriteLine{Text="data inserted
 to database "},

 new Assign<double>{

 To=result,

 Value=new
InArgument<double>(aec=>(num2.Get(aec)/num1.Get(aec))),

 },

 new WriteLine{Text="End
 Transaction"}

 }

 },

 }

 }

 };

 return workflow;

 }

 }

}

6.	 Create workflow host code:

Open the Program.cs file and alter the code to:

using System;

Chapter 3

115

using System.Activities;

using System.Activities.Statements;

using System.Threading;

namespace UseTransactionScope {

 class Program {

 static void Main(string[] args) {

 TransactionWorkflow tw = new TransactionWorkflow();

 AutoResetEvent waitHandler = new
AutoResetEvent(false);

 WorkflowApplication wfApp = new
WorkflowApplication(tw.GetInstance());

 wfApp.OnUnhandledException = (arg) => {
Console.WriteLine(arg.UnhandledException.Message);

 return UnhandledExceptionAction.Terminate;

 };

 wfApp.Completed = (arg) => {

 waitHandler.Set();

 };

 wfApp.Run();

 waitHandler.WaitOne();

 }

 }

}

7.	 Run it:

Press Ctrl+F5 to run the project. By default, we will see the following:

If we open the database table, we will find no data has been inserted into the table.
Next, we have to change the workflow definition (TransactionWorkflow.cs) from:

Variable<int> num1 = new Variable<int>("num1", 0);

to:

Variable<int> num1 = new Variable<int>("num1", 1);

Messaging and Transaction

116

This is to ensure that the divided-by-zero exception will not occur any more. Press Ctrl+F5 and
we will see the following:

How it works...
Let's start from the Program.cs file:

wfApp.OnUnhandledException = (arg) => {
 Console.WriteLine("Attempted to divide by zero exception, database
rolled back.");
 return UnhandledExceptionAction.Terminate;
};

By using this code block, any unhandled exception generated by the workflow will be handled
here. In our workflow, the divided-by-zero exception will be handled here. Once an exception
occurs, workflow will be terminated and the database rolled back. Be aware of the fact that
the table will be locked during the transaction processing. This is because we specified the
following in the TransactionScope activity:

IsolationLevel=System.Transactions.IsolationLevel.Serializable

By doing this, the database will place locks on all data that is used in a transaction, and will
prevent other users from updating and making non-repeatable reads.

There's more
To use Transaction Scope Activity in visual workflow, open Workflow1.xaml, which is created
by default. Then we need to create a workflow as shown in the following screenshot:

Chapter 3

117

Please note that if we cannot find the InsertDataToDBActivity activity, we need to
rebuild the project by pressing F6.

Performing compensation by using
Compensable activity

Imagine a scenario where we are buying a computer online and money has been deducted
from our bank account. Suddenly an unexpected exception occurs, workflow stops, and the
purchase gets cancelled. Obviously, such a thing should not happen in real life. If an exception
occurs that induces workflow stop, the money should be returned back to our account. In WF4
we can use a Compensable activity to handle such a compensation job.

Messaging and Transaction

118

How to do it...
1.	 Create a Workflow Console Application project:

Create a new Workflow Console application project and name it
UseCompensableActivity.

2.	 Create workflow code:

Add a new class file to the project and name it CompensationWokflow.cs. Fill the
file with the following code:

using System;

using System.Activities;

using System.Activities.Statements;

namespace UseCompensableActivity {

 class CompensationWorkflow {

 public Activity GetInstance() {

 Variable<int> num1 = new Variable<int>("num1", 10);

 Variable<int> num2 = new Variable<int>("num2", 0);

 Variable<int> result = new Variable<int>();

 Activity workflow = new Sequence {

 Variables = { num1, num2, result },

 Activities = {

 new CompensableActivity{

 Body=new WriteLine{Text="compensable
 activity take action"},

 CompensationHandler=

 new WriteLine{Text="CompensationHandler
 do some work..."}

 },

 new Assign{// This activity will generate a
divided by zero exception.

 To=new OutArgument<int>(result),

 Value=new InArgument<int>(aec=>(num1.
Get(aec)/num2.Get(aec))),

 }

 },

 };

 return workflow;

 }

 }

}

Chapter 3

119

3.	 Create workflow host code:

Open the Program.cs file and alter the code to:

using System;

using System.Activities;

using System.Activities.Statements;

using System.Threading;

namespace UseCompensableActivity {

 class Program {

 static void Main(string[] args) {

 CompensationWorkflow cw = new CompensationWorkflow();

 AutoResetEvent waitHandler = new
AutoResetEvent(false);

 WorkflowApplication wfApp = new
WorkflowApplication(cw.GetInstance());

 wfApp.OnUnhandledException = (arg) => {

 return UnhandledExceptionAction.Cancel;

 };

 wfApp.Completed = (arg) => {

 waitHandler.Set();

 };

 wfApp.Run();

 waitHandler.WaitOne();

 }

 }

}

4.	 Run it:

Press Ctrl+F5 to run the workflow. We should see this:

How it works...
As soon as the workflow starts, the Writeline activity in the body of
CompensableActivity performs its action and prints its message to the control.

new CompensableActivity{
 Body=new WriteLine{Text="compensable activity take action."},

Messaging and Transaction

120

 CompensationHandler=
 new WriteLine{Text="CompensationHandler do some work..."}
},

CompensationHandler will not be executed at this time. Next, the Assign activity will
generate a divided-by-zero exception due to the setting of 0 as the value of the Variable num2.

new Assign{
 To=new OutArgument<int>(result),
 Value=new
 InArgument<int>(aec=>(num1.Get(aec)/num2.Get(aec))),
}

The exception will be captured (code in Program.cs) and the workflow cancelled.

wfApp.OnUnhandledException = (arg) => {
 return UnhandledExceptionAction.Cancel;
};

Before the workflow is fully terminated, CompensationHandler will be executed and do
some compensation work.

Performing manual compensation by using
Compensate activity

In a certain workflow execution phase, we may want to compensate an activity manually
(rather than driven by an exception/error)—a Compensate activity will handle this job.

How to do it...
1.	 Create a Workflow Console Application project:

Create a new Workflow Console Application and name it UseCompensateActivity.

2.	 Create workflow code:

Add a new class file to the project and name it CompensationWorkflow.cs.
Fill the file with the following code:

using System;

using System.Activities;

using System.Activities.Statements;

namespace UseCompensateActivity {

 class CompensationWorkflow {

 public Activity GetInstance() {

 Variable<CompensationToken> token=new
Variable<CompensationToken>();

Chapter 3

121

 Activity workflow = new Sequence() {

 Variables={token},

 Activities = {

 new CompensableActivity{

 Body=new WriteLine{Text="Compensableactivity
 body take action."},

 CompensationHandler=new WriteLine{Text="Co
mpensationHandler do compensation work."},

 Result=token

 },

 new WriteLine{Text="Do some other work after
 CompensableActivity."},

 new Compensate{

 Target=token

 }

 }

 };

 return workflow;

 }

 }

}

3.	 Create host code:

Open the Program.cs file and alter code to:

using System;

using System.Activities;

using System.Activities.Statements;

namespace UseCompensateActivity {

 class Program {

 static void Main(string[] args) {

 CompensationWorkflow cw=new CompensationWorkflow();

 WorkflowInvoker.Invoke(cw.GetInstance());

 }

 }

}

Messaging and Transaction

122

4.	 Run it:

Press Ctrl+F5 to run the workflow and you should see the following:

How it works...
How could a compensate activity know which CompensableActivity it is going to
compensate? We use CompensationToken to link them together.

Variable<CompensationToken> token=new Variable<CompensationToken>();

In CompensableActivity, we assign the token to the Result property.

new CompensableActivity{
 Body=new WriteLine{Text="Compensable activity body take action."},
 CompensationHandler=new WriteLine{Text="CompensationHandler do
compensation work."},
 Result=token
},

In the Compensate activity we assign token to the Target property:

new Compensate{
 Target=token
}

If there is more than one CompensableActivity activity in the workflow, the token will link
to the latest assigned one.

Performing confirmation by using
Confirm activity

Like performing compensation, we can also perform confirmation by explicitly using a
Confirm activity. Confirmation will also be triggered when workflow is successfully finished.

Chapter 3

123

How to do it...
1.	 Create a Workflow Console Application project:

Create a new Workflow Console Application project and name it
UseConfirmActivity.

2.	 Create workflow code:

Add a new class file to the project and name it ConfirmationWorkflow.cs. Then
fill the file with the following code:

using System;
using System.Activities;
using System.Activities.Statements;
namespace UseConfirmActivity {
 class ConfirmationWorkflow {
 public Activity GetInstance() {
 Variable<CompensationToken> token = new
Variable<CompensationToken>();
 Activity workflow = new Sequence() {
 Variables = { token },
 Activities = {
 new CompensableActivity{
 Body=new WriteLine{Text="CompensableActivity1
 body take action."},
 ConfirmationHandler=new WriteLine{Text="Co
mpensableActivity1 confirmed."},

 },
 new CompensableActivity{
 Body=new WriteLine{Text="CompensableActivity2
 body take action."},
 ConfirmationHandler=new WriteLine{Text=
 "CompensableActivity2 confirmed."},
 Result=token
 },
 new Confirm{
 Target=token
 }
 }
 };
 return workflow;
 }

 }

}

Messaging and Transaction

124

3.	 Create workflow host code:

Open the Program.cs file and alter the code to:

using System;

using System.Activities;

using System.Activities.Statements;

namespace UseConfirmActivity {

 class Program {

 static void Main(string[] args) {

 ConfirmationWorkflow cw = new ConfirmationWorkflow();

 WorkflowInvoker.Invoke(cw.GetInstance());

 }	

 }

}

4.	 Run it:

Press Ctrl+F5 to run the workflow and we should see this:

How it works...
If we have a careful look at the result, we shall see that compensableActivity1 and
compensableActivity2 execute one after the other, and then the confirm activity
executes as the confirm activity is linked to CompensableActivity2 by token. The
ConfirmationHandler executes and prints a line of message to the console.

When the workflow finishes successfully, the ConfirmationHandler of
CompensableActivity1 will take action automatically and print a line of message to
the console.

4
Manipulating

Collections

In this chapter, we will cover:

ff Printing collection items

ff Using AddToCollection<T> activity

ff Using ClearCollection<T> activity

ff Using RemoveFromCollection<T> activity

ff Using ExistsInCollection<T> activity

Introduction
Imagine that we have defined a List<T> type Variable in workflow, and we want to add,
remove, and update items of the collection object. By default, WF4 provides us with four
activities—AddToCollection<T>, ClearCollection<T>, RemoveFromCollection<T>,
and ExistsInCollection<T>—using which we can manipulate collection as we wish.

Printing collection items
In this task, we will customize an activity that can print all collection items to
Console Application.

Manipulating Collections

126

How to do it
1.	 Create a Workflow Console Application:

Create a new Workflow Console Application and name it
PrintingCollectionItems.

2.	 Create an Activity that can print collection items to the Windows Console:

Add a new Code Activity to the project and name it CollectionPrinter.cs.
Refer to the following screenshot:

Open the CollectionPrinter.cs file and alter the code as follows:

using System;

using System.Collections.Generic;

using System.Activities;

namespace PrintingCollectionItems {

 public sealed class CollectionPrinter<T> : CodeActivity {

 public InArgument<ICollection<T>> CollectionInArg { get;
set; }

 protected override void Execute(CodeActivityContext
context) {

 ICollection<T> collection = CollectionInArg.
Get<ICollection<T>>(context);

 if (collection.Count > 0) {

 Console.WriteLine("---Print Collection Start---");

Chapter 4

127

 foreach (var item in collection) {

 Console.WriteLine(item.ToString());

 }

 Console.WriteLine("---Print Collection End---");

 } else {

 Console.WriteLine("Collection is empty.");

 }

 }

 }

}

3.	 Build the project:

Build the project so that the custom activity will appear in the toolbox.

4.	 Create a visual workflow:

To create visual workflow, we need to perform the following actions:

i.	 Open the default created workflow file Workflow1.xaml. Drag a Sequence
activity to the design panel.

ii.	 Drag a CollectionPrinterActivity activity onto the Sequence activity. A dialog
box will appear asking us to choose type; here we choose String.

iii.	 Click the Imports button and type in System.Collection.ObjectModel
to imported the namespace System.Collections.ObjectModel to
this workflow.

Manipulating Collections

128

iv.	 Create an ICollection<String> type Variable people for this workflow
and assign its default value with this VB Expression:
New Collection(Of String) From {"Steven", "Andrew", "Jophy"}

v.	 Assign the variable people to the CollectionInArg property of
CollectionPrinterActivity.

The following is the final workflow:

5.	 Run it:

Set PrintingCollectionItems as StartUp project. Press Ctrl+F5 to run the
project; we will see the following:

Chapter 4

129

How it works...
In this task, we created an activity that can accept generic type Collection object. We will use
this activity throughout this chapter. We need to make sure we have finished this task
before moving ahead.

There's more
We can also use CollectionPrinterActivity in code-style workflow. To create a
corresponding workflow in code, open the Program.cs file and alter the code to:

using System;
using System.Activities;
using System.Activities.Statements;
using System.Collections.Generic;
using System.Activities.Expressions;
namespace PrintingCollectionItems {
 class Program {
 static void Main(string[] args) {
 //WorkflowInvoker.Invoke(new Workflow1());
 WorkflowInvoker.Invoke(GetWfInstance());
 }
 static Activity GetWfInstance() {
 Variable<ICollection<String>> people = new
Variable<ICollection<string>>() {
 Default = new LambdaValue<ICollection<String>>(
 ctx => new List<String> { "Steven",
"Andrew","Jophy" }
),
 };
 Activity workflow = new Sequence() {
 Variables = { people },
 Activities = {
 new CollectionPrinter<String>(){
 CollectionInArg=people
 }
 },
 };
 return workflow;
 }
 }
}

Uncomment the following to run XAML-style workflow:

//WorkflowInvoker.Invoke(new Workflow1());

Manipulating Collections

130

Using AddToCollection<T> activity
In this task, we will use the AddToCollection<T> activity to add items to a collection object.

Getting ready...
We need to make sure we have finished the task of Printing collection items for us to be able
to use the CollectionPrinterActivity activity in this task.

How to do it...
1.	 Create a Console Workflow Application:

Create a new Workflow Console Application and name it
UsingAddToCollectionActivity.

2.	 Create a visual workflow:

We need to perform the following actions:

i.	 Open the Workflow1.xaml file that is created by default. Click the Imports
button and type in System.Collections.ObjectModel to import the
System.Collections.ObjectModel namespace to this workflow.

ii.	 Drag a Sequence activity to the workflow designer and then
drag an AddToCollection activity onto the Sequence activity.
Next, drag the customized CollectionPrinter activity right
below the AddToCollection—the type is String. Add a new
ICollection<String> variable named people to the Sequence's
scope. We can see the workflow shown in the following screenshot:

Chapter 4

131

iii.	 Set the properties of the AddToCollection<String> activity as shown in
the following screenshot:

iv.	 Set the properties of the CollectionPrinter<String> activity:

Manipulating Collections

132

3.	 Set UsingAddToCollectionActivity as StartUp project and press Ctrl+F5
to run the project. We will see:

How it works...
The AddToCollection<T> activity will append the new item to the end of the collection
object. If we want to insert an item to a specified position, we may need to create our own
activity to do this.

There's more
We can also use the AddToCollection<T> activity in code-style workflow. To use
AddToCollection<T> in code workflow, open the Program.cs file and alter the code to:

using System;
using System.Activities;
using System.Activities.Statements;
using System.Collections.Generic;
using System.Activities.Expressions;
using PrintingCollectionItems;
namespace UsingAddToCollectionActivity {
 class Program {
 static void Main(string[] args) {
 //WorkflowInvoker.Invoke(new Workflow1());
 WorkflowInvoker.Invoke(GetWFInstance());
 }
 static Activity GetWFInstance() {
 Variable<ICollection<String>> people = new
Variable<ICollection<string>>() {
 Default = new LambdaValue<ICollection<String>>(
 ctx => new List<String> { "Steven", "Andrew",
 "Jophy" }
),
 };

Chapter 4

133

 Activity workflow = new Sequence() {
 Variables = { people },
 Activities = {
 new AddToCollection<String>(){
 Collection=people,
 Item="Jack"
 },
 new CollectionPrinter<String>{
 CollectionInArg=people
 }
 }
 };
 return workflow;
 }
 }
}

Uncomment the following to run XAML-style workflow:

//WorkflowInvoker.Invoke(new Workflow1());

Using ClearCollection<T> activity
In this task, we will use the ClearCollection<T> activity to clear the content of a
collection object.

Getting ready
We need to make sure we have finished the task of Printing collection items for us to be able
to use the CollectionPrinter activity in this task.

How to do it...
1.	 Create a Workflow Console Application:

Create a new Workflow Console Application and name it
UsingClearCollectionActivity.

Manipulating Collections

134

2.	 Create a visual workflow:

Perform the following steps in order to create a visual workflow:

i.	 Open Workflow1.xaml, which is the workflow created by default. Click
the Imports button and type in System.Collections.ObjectModel to
import the System.Collections.ObjectModel namespace to
this workflow.

ii.	 Drag a Sequence activity to the workflow designer and then drag a
CollectionPrinter activity to the designer panel two times to add two
CollectionPrinter<String> activities to the designer panel. Next,
drag a ClearCollection activity between the two CollectionPinter
activities—the type is String. Add a new ICollection<String> variable
named people to the Sequence's scope. We can see the workflow as
shown in the following screenshot:

iii.	 Set the properties of both the CollectionPrinter<String> activities:

Chapter 4

135

iv.	 Set the properties for the ClearCollection<String> activity:

3.	 Run it:

Set UsingClearCollectionActivity as StartUp project, and then press Ctrl+F5
to run the project. We will see the following:

How it works...
By using this activity, we can remove all collection items, so that we can reuse the collection
variable again rather than defining a new one.

Manipulating Collections

136

There's more
We can also use the ClearCollection<T> activity in code workflow. Open the
program.cs file and alter the code to:

using System;
using System.Activities;
using System.Activities.Statements;
using System.Collections.Generic;
using System.Activities.Expressions;
using PrintingCollectionItems;
namespace UsingClearCollectionActivity {
 class Program {
 static void Main(string[] args) {
 //WorkflowInvoker.Invoke(new Workflow1());
 WorkflowInvoker.Invoke(GetWFInstance());
 }
 static Activity GetWFInstance() {
 Variable<ICollection<String>> people =
 new Variable<ICollection<string>>() {
 Default = new LambdaValue<ICollection<String>>(
 ctx => new List<String> { "Steven", "Andrew",
 "Jophy" }
),
 };
 Activity workflow = new Sequence() {
 Variables = { people },
 Activities = {
 new CollectionPrinter<String>{
 CollectionInArg=people
 },
 new ClearCollection<String>(){
 Collection=people
 },
 new CollectionPrinter<String>{
 CollectionInArg=people
 }
 }
 };
 return workflow;
 }
 }
}

Uncomment the following to run XAML-style workflow:

//WorkflowInvoker.Invoke(new Workflow1());

Chapter 4

137

Using RemoveFromCollection<T> activity
In this task, we will use the RemoveFromCollection<T> activity to remove an item from a
collection object.

Getting ready
We need to make sure we have finished the task of Printing collection items for us to be able
to use the CollectionPrinterActivity in this task.

How to do it...
1.	 Create a Console Workflow Application:

Create a new Workflow Console Application, and name it
UsingRemoveFromCollectionActivity.

2.	 Create a workflow:

We need to perform the following tasks to create a workflow:

i.	 Open Workflow1.xaml, which is the workflow created by default. Click the
Imports button and type in System.Collections.ObjectModel to import
the System.Collections.ObjectModel namespace to this workflow.

Manipulating Collections

138

ii.	 Drag a Sequence activity to the workflow designer panel. Next, drag
CollectionPrinter activity to the designer panel two times. Now drag a
RemoveFromCollection activity between the two CollectionPinter
activities—the type is String. Add a new ICollection<String> variable
named people to the Sequence's scope. We can see the workflow as shown
in the following screenshot:

iii.	 Set the properties of both the CollectionPrinter<String> activities:

iv.	 Set the properties of the RemoveFromCollection<String> activity:

Chapter 4

139

3.	 Run it:

Set UsingRemoveFromCollectionActivity as StartUp project and press
Ctrl+F5 to run the project. We will see the following:

How it works...
The Result property of RemoveFromCollection<String> activity indicates whether or
not an item is deleted successfully. If the item exists and is deleted by this activity, then the
Result property will be assigned a True value.

There's more
To use the RemoveFromCollection<T> activity in code-style workflow, open the Program.
cs file and alter the code to:

using System;
using System.Activities;
using System.Activities.Statements;
using System.Collections.Generic;
using System.Activities.Expressions;

Manipulating Collections

140

using PrintingCollectionItems;
namespace UsingRemoveFromCollectionActivity {
 class Program {
 static void Main(string[] args) {
 //WorkflowInvoker.Invoke(new Workflow1());
 WorkflowInvoker.Invoke(GetWFInstance());
 }
 static Activity GetWFInstance() {
 Variable<ICollection<String>> people =
 new Variable<ICollection<string>>() {
 Default = new LambdaValue<ICollection<String>>(
 ctx => new List<String> { "Steven", "Andrew",
 "Jophy" }
),
 };
 Variable<Boolean> result = new Variable<bool>();
 Activity workflow = new Sequence() {
 Variables = { people,result },
 Activities = {
 new CollectionPrinter<String>{
 CollectionInArg=people
 },
 new RemoveFromCollection<String>(){
 Collection=people,
 Item="Jophy",
 Result=result,
 },
 new CollectionPrinter<String>{
 CollectionInArg=people
 }
 }
 };
 return workflow;
 }
 }
}

Uncomment the following to run XAML-style workflow:

//WorkflowInvoker.Invoke(new Workflow1());

Chapter 4

141

Using ExistsInCollection<T> activity
In this task, we will use the ExistsInCollection<T> activity to check whether or not a
specified item exists in the collection object.

Getting ready
We need to make sure we have finished the task of Printing collection items for us to be able
to use CollectionPrinterActivity in this task.

How to do it...
1.	 Create a Console Workflow Application:

Create a new Workflow Console Application and name it
UsingExistsInCollectionActivity.

2.	 Create a workflow:

We need to perform the following actions to create a workflow:

i.	 Open Workflow1.xaml, which is the workflow created by default. Click
the Imports button and type in System.Collections.ObjectModel to
import the System.Collections.ObjectModel namespace to
this workflow.

ii.	 Drag a Sequence activity into the designer panel. Next, drag an
ExistsInCollection activity right below the CollectionPrinter
activity—the type is String. Now drag a WriteLine activity below the
ExistsCollection activity. Add a new ICollection<String> variable
named people to the Sequence's scope. Add a Boolean type variable
result to the Sequence's scope.

Manipulating Collections

142

We can see the workflow as shown in the following screenshot:

iii.	 Set the propertes of the CollectionPrinter<String> activity:

iv.	 Set the properties of the ExistsInCollection<String> activity:

Chapter 4

143

v.	 Set the Text property of the WriteLine activity as follows. By displaying the
result value, we will know whether or not the item exists in the collection:
"Andrew exists in collection is " + result.ToString

3.	 Set UsingExistsInCollectionActivity as StartUp project and then press
Ctrl+F5 to run the project. We will see the following:

How it works...
It is a simple activity by which we can test whether or not a specified item exists in a particular
collection object. Please note that we have to set the correct TypeArgument for this activity.

There's more
To use the ExistsInCollection<T> activity in code style workflow, open the Program.cs
file and alter the code to:

using System;
using System.Activities;
using System.Activities.Statements;
using System.Collections.Generic;
using System.Activities.Expressions;
using PrintingCollectionItems;
namespace UsingExistsInCollectionActivity {
 class Program {
 static void Main(string[] args) {
 //WorkflowInvoker.Invoke(new Workflow1());
 WorkflowInvoker.Invoke(GetWFInstance());
 }
 static Activity GetWFInstance() {
 Variable<ICollection<String>> people = new
Variable<ICollection<string>>() {
 Default = new LambdaValue<ICollection<String>>(
 ctx => new List<String> { "Steven", "Andrew",
 "Jophy" }

Manipulating Collections

144

),
 };
 Variable<Boolean> result = new Variable<Boolean>();
 Activity workflow = new Sequence() {
 Variables = { people,result },
 Activities = {
 new CollectionPrinter<String>{
 CollectionInArg=people
 },
 new ExistsInCollection<String>(){
 Collection=people,
 Item="Andrew",
 Result=result
 },
 new WriteLine{
 Text=new InArgument<string>(
 aec=>"Andrew exists in collection is
"+result.Get(aec).ToString()
)
 }
 }
 };
 return workflow;
 }
 }
}

Uncomment the following to run XAML-style workflow:

//WorkflowInvoker.Invoke(new Workflow1());

5
Custom Activities

This Chapter will cover:

ff Creating an activity by inheriting the root activity

ff Creating a FileWriter activity

ff Creating a SendEmail activity

ff Creating an Input Message activity using Bookmark

ff Creating an Asynchronous HTTP Get activity

ff Creating a Composite activity

ff Creating an Activity Designer for the SendEmail activity

ff Creating an Activity Designer for the MySequence activity

Introduction
Activity is the essence of workflow; even the workflow itself is an Activity. WF4 provides some
build-in activities that can be used directly in the workflow designer panel. But many times,
we need to create our own activities—for example, an activity that can send e-mail to inform
someone about finishing a task or any other important thing. To define our own activity,
we should write a class that implements the root abstract Activity or one of its
predefined subclasses.

Custom Activities

146

The following is the activity modeling class hierarchy diagram:

This chapter intends to provide readers not only with some additional activities besides the
built-in activities, but also with some concepts on how to build our own activities.

Before moving ahead, please create two projects. The first is the ActivityLibrary project named
ActivityLibrary.

Chapter 5

147

The other is the Workflow Console Application named WorkflowConsoleApp.

Delete Workflow1.xaml, which is created by default. We will use these two projects
throughout this chapter. The ActivityLibrary project is for all customized activities,
whereas the WorkflowConsoleApp project is used for testing our customized activities. The
following screenshot shows the project structure:

Creating an activity by inheriting the
root activity

The abstract Activity class is the root of all subactivity classes. In this task, we will create a
custom activity inheriting directly from Activity.

Custom Activities

148

How to do it...
1.	 Customize an Activity:

Add a new code file MyActivity.cs in the ActivityLibrary project, and fill the
file with the following code:
using System;
using System.Activities;
using System.Activities.Statements;
public class MyActivity:Activity {
 public MyActivity() {
 this.Implementation = () => new Sequence {
 Activities = {
 new WriteLine(){Text="Hello MyActivity"}
 }
 };
 }
}

Then build the activity project so that MyActivity appears in the toolbox panel of
the workflow designer.

2.	 Add a reference to ActivityLibrary:

In the WorkflowConsoleApp project, add an assembly reference to
ActivityLibrary for us to be able to use these customized activities in the
WorkflowConsoleApp project.

3.	 Create a workflow to test the Activity:

Add a new workflow to WorkflowConsoleApp project and name it
TestMyActivityWF.xaml. Please note that when we add a new workflow to the
project, we actually select Activity in the Add New Item dialog.

Chapter 5

149

Now we can perform the following actions to create the workflow:

i.	 Drag a Sequence activity to the designer panel.

ii.	 Drag a WriteLine activity into the Sequence activity and input Workflow
start… in the textbox.

iii.	 Drag MyActivity below the WriteLine activity.

iv.	 Drag a WriteLine activity below MyActivity and input Workflow end… in
the textbox.

4.	 Run it:

Set WorkflowConsoleApp project as Startup project. Check the Program.cs file;
the code should be like this:
class Program {

 static void Main(string[] args) {

 WorkflowInvoker.Invoke(new TestMyActivityWF());

 }

}

Custom Activities

150

Press Ctrl+F5 to run it. We should see the following:

How it works...
The abstract Activity class is a base class for all activities in WF4. This abstract class
defines the basic properties, method, and structure for all activities. We can directly create a
concrete activity by inheriting this Activity class.

In real workflow applications, when we need a complex flow control activity that was not
provided in the built-in activities, we can use this Activity class to create a new one.

There's more
We can also use the activity in code-style workflow:

class Program {
 static void Main(string[] args) {
 WorkflowInvoker.Invoke(GetCodeStyleWorkflow());
 }
 static Activity GetCodeStyleWorkflow() {
 Activity workflow = new Sequence {
 Activities ={
 new WriteLine{Text="Workflow start..."},
 new MyActivity(),
 new WriteLine{Text="Workflow end..."}
 }
 };
 return workflow;
 }
}

Creating a FileWriter activity
CodeActivity is an abstract class inherited from Activity. We can put our logic code in
its Execute method. In this task, we are going to create an activity that will write data to a
text file.

Chapter 5

151

How to do it...
1.	 Create the FileWriter activity:

Add a new code file to ActivityLibrary project named FileWriter.cs. Then
replace all default code with the following code:
using System;

using System.Activities;

using System.Threading;

public sealed class FileWriter : CodeActivity {

 [RequiredArgument]

 public InArgument<string> fileName { get; set; }

 [RequiredArgument]

 public InArgument<string> fileData { get; set; }

 protected override void Execute(CodeActivityContext context) {

 string lines = fileData.Get(context);

 // Write the string to a file.

 System.IO.StreamWriter file =

 new System.IO.StreamWriter(fileName.Get(context));

 file.WriteLine(lines);

 //simulate writing process.

 Thread.Sleep(5000);

 file.Close();

 }

}

We need to build the Activity project before using it in workflow.

Custom Activities

152

2.	 Create a workflow to test the FileWriter activity:

Add a new workflow to WorkflowConsoleApp project and name it
TestFileWriterWF.xaml. Next, create a workflow as shown in the following
screenshot:

Save and build the solution.

3.	 Run it:

Alter the Main method of the Program.cs file as follows:
static void Main(string[] args) {

 WorkflowInvoker.Invoke(new TestFileWriterWF());

}

Set WorkflowConsoleApp as Startup project. Next, press Ctrl+F5 to run the
workflow without debugging.

Now, Navigate to the (…)\WorkflowConsoleApp\bin\Debug; we shall find a
Test.txt file in this folder.

Chapter 5

153

How it works...
Using CodeActivity is very simple; it is used to create simple leaf activities. The only thing
we need to take care of is overriding the Execute method. The method will be called when
the activity is executed.

There's more
We can also use the activity in code-style workflow:

class Program {
 static void Main(string[] args) {
 //WorkflowInvoker.Invoke(new TestFileWriterWF());
 WorkflowInvoker.Invoke(CodeStyleWorkflow());
 }
 static Activity CodeStyleWorkflow() {
 Activity workflow = new Sequence {
 Activities ={
 new WriteLine{Text="Start..."},
 new FileWriter{
 fileName="Test.txt",
 fileData="Text Content"
 },
 new WriteLine{Text="End..."}
 }
 };
 return workflow;
 }

}

Creating a SendEmail activity
In this task we are going to create an activity that can send an e-mail message to a target user.

How to do it...
1.	 Create the SendEmail activity:

Add a new code file to the ActivityLibrary project named SendEmail.cs. Then,
replace all code that is created by default with the following code:
using System.Activities;

public sealed class SendEmailActivity : CodeActivity {

 public InArgument<string> from { get; set; }

Custom Activities

154

 public InArgument<string> host { get; set; }

 public InArgument<string> userName { get; set; }

 public InArgument<string> password { get; set; }

 public InArgument<string> to { get; set; }

 public InArgument<string> subject { get; set; }

 public InArgument<string> body { get; set; }

 public OutArgument<string> result { get; set; }

 protected override void Execute(CodeActivityContext context) {

 var mailMessage = new System.Net.Mail.MailMessage();

 mailMessage.To.Add(to.Get(context).ToString());

 mailMessage.Subject = subject.Get(context).ToString();

 mailMessage.Body = body.Get(context);

 mailMessage.From =

 new System.Net.Mail.MailAddress(from.Get(context));

 var smtp = new System.Net.Mail.SmtpClient();

 smtp.Host = host.Get(context);

 smtp.Credentials =

 new System.Net.NetworkCredential(
 userName.Get(context), password.Get(context));

 smtp.EnableSsl = true;

 smtp.Send(mailMessage);

 result.Set(context, "Sent Email Successfully!");

 }

}

We need to build the activity project before using it in workflow.

2.	 Create a workflow to test the SendEmail activity:

Add a new workflow in the WorkflowConsoleApp project and name it
TestSendEmailWF.xaml. Create the workflow as shown in the following
screenshot:

Chapter 5

155

Save and build the solution.

3.	 Run it:

Alter the Main method of the Program.cs file to this:
static void Main(string[] args) {

 WorkflowInvoker.Invoke(new TestSendEmailWF());

}

Set WorkflowConsoleApp as Startup project. Next, press Ctrl+F5 to run the
workflow without debugging.

How it works...
Sending an e-mail usually costs some time. In real workflow applications, we should create an
asynchronous activity or an independent WF service to send e-mail.

Custom Activities

156

Creating an Input Message activity using
Bookmark

When a workflow is running and we want to send a message to the workflow during run time,
how can we achieve this? We can use Bookmark to achieve this. In this task, we will create an
activity using Bookmark, which will function as a message input activity.

How to do it...
1.	 Create the InputMessage activity:

Add a new code file to the ActivityLibrary project named InputMessage.cs.
Then, replace all the default code with the following code:
using System.Activities;

public class InputMessage<T>:NativeActivity {

 public InArgument<string> bookmarkName { get; set; }

 public OutArgument<T> result { get; set; }

 protected override void Execute(NativeActivityContext context)
 {

 context.CreateBookmark(bookmarkName.Get(context),

 new BookmarkCallback(
 OnResumeBookmark));

 }

 public void OnResumeBookmark(NativeActivityContext context,

 Bookmark bookmark,

 object obj) {

 result.Set(context, (T)obj);

 }

 protected override bool CanInduceIdle {

 get { return true; }

 }

}

Next, build the activity project so that InputMessage activity appears in the toolbox
panel of the workflow designer.

2.	 Create a workflow to test InputMessage activity:

Add a new workflow to the WorkflowConsoleApp project and name it
TestInputMessageWF.xaml. Create a workflow as shown in the
following screenshot:

Chapter 5

157

When we drag the InputMessage<T> activity to the workflow designer panel, we will
see a dialog that will let us choose the type of the message we want to send to the
workflow. In this task we choose String.

3.	 Run it:

Alter the Main method of the Program.cs file to this:
static void Main(string[] args) {

 AutoResetEvent waitHandler = new AutoResetEvent(false);

 string bkName = "inputBookmark";

 WorkflowApplication wfApp =

 new WorkflowApplication(new TestWorkflow() {

Custom Activities

158

 bookmarkName=bkName

 });

 wfApp.Completed = (arg) => { waitHandler.Set(); };

 wfApp.Run();

 wfApp.ResumeBookmark(bkName, Console.ReadLine());

 waitHandler.WaitOne();

}

Set WorkflowConsoleApp as Startup project. Next, press Ctrl+F5 to run the
workflow without debugging.

When the workflow runs, input Hello bookmark and the workflow prints the input
message out.

How it works...
If we want to create an activity with Bookmark or a composite activity (for example, we want to
create our own Sequence activity), then we should use NativeActivity. NativeActivity
is more powerful and flexible than CodeActivity. However, we need to learn more about WF
runtime and the NativeActivity class.

A bookmark is actually a named and resumable pause point. When an activity with a
bookmark is executed, the activity will stop and wait for input. In workflow host, when the
ResumeBookmark method (with parameters bookmarkname and input value) is called, the
workflow will come out of the pause state and resume execution, and will keep executing until
it competes or takes a pause for another bookmark.

Creating an Asynchronous HTTP Get activity
The WebRequest class enables us to make an HTTP request in code. Usually, every
WebRequest call requires some time span—several seconds or even minutes. If there is only
one request, we can wait for the response. But what are we going to do if we have to make
more requests, say 100—every request uses several seconds, and so 100 requests will hang
our program.

Chapter 5

159

Then we come up with a good idea: why not use multiple threads with one request for each
thread? But it is quite expensive to initialize a thread. If one is writing.NET-managed code,
each thread will take up 1MB memory and so 100 threads will use up 100MB memory!
Apparently, multiple threads are not an option. So what should we do? In this task, we will
create a CodeActivity that can call a method asynchronously. The key is that our activity
must inherit from AsyncCodeActivity (or AsyncCodeActivity<T>).

How to do it...
1.	 Create the AsyncHttpGet activity:

Add a new code file named AsyncHttpGet.cs to the ActivityLibrary project.
Then replace all default created code with the following code:	
using System;
using System.Activities;
using System.Net;
using System.IO;
public class AsyncHttpGet: AsyncCodeActivity<string> {
 public InArgument<string> Uri { get; set; }
 protected override IAsyncResult BeginExecute(AsyncCodeActivity
Context context, AsyncCallback callback, object state) {
 WebRequest request = HttpWebRequest.Create(this.Uri.
 Get(context));
 context.UserState = request;
 return request.BeginGetResponse(callback, state);
 }

 protected override string EndExecute(AsyncCodeActivityContext
 context, IAsyncResult result) {
 WebRequest request = context.UserState as WebRequest;
 using (WebResponse response = request.
 EndGetResponse(result))
 {
 using (StreamReader reader =
 new StreamReader(response.GetResponseStream())) {
 return reader.ReadToEnd();
 }
 }
 }
}

Build the activity project before using it in workflow.

Custom Activities

160

2.	 Create a workflow to test the AsyncHttpGet activity:

Add a new workflow to the WorkflowConsoleApp project and name it
TestAsyncHttpGetWF.xaml. Create a workflow as shown in the
following screenshot:

3.	 Run it:

Alter the Main method of the Program.cs file to this:
static void Main(string[] args) {

 WorkflowInvoker.Invoke(new TestAsyncHttpGetWF());

}

Set WorkflowConsoleApp as Startup project. Next, press Ctrl+F5 to run the
workflow without debugging.

Chapter 5

161

The message Workflow is still running. is a proof that the workflow is not blocked by
the HTTP request.

How it works...
The Sequence activity will first call the BeginExecute method of
AsyncHttpGetActivity, and pass a callback delegate. When the BeginExecute
method finishes, it will return the callback delegate to its caller: Sequence. At the same
time both the workflow and the HTTP request are executing asynchronously. Once the HTTP
response data is ready, the callback delegate will be executed automatically. Now, the
workflow knows that it is time to call the EndExecute method of AsyncHttpGetActivity.

Creating a Composite activity
There are many built-in composite activities in WF4 such as Sequence, While, Parallel, and
so on. Is it possible to create our own composite activity? Well, the answer is we can. For
demonstration purposes, we will create a MySequence activity in this task.

How to do it...
1.	 Create the MySquence activity:

Add a new code file to the ActivityLibrary project named MySequence.cs.
Then, replace all the default code with the following code:
using System.Activities;

using System.Collections.ObjectModel;

namespace ActivityLibrary {

 public class MySequence:NativeActivity {

Custom Activities

162

 public Collection<Activity> Activities { get; set; }
 public MySequence() {
 Activities = new Collection<Activity>();
 }
 int activityCounter = 0;
 protected override void CacheMetadata(
 NativeActivityMetadata metadata) {
 foreach (var activity in Activities) {
 metadata.AddImplementationChild(activity);
 }
 }

 protected override void Execute(NativeActivityContext
 context)
 {
 ScheduleActivities(context);
 }

 void ScheduleActivities(NativeActivityContext context) {
 if (activityCounter < Activities.Count)
 context.ScheduleActivity(this.
 Activities[activityCounter++],
 OnActivityCompleted);
 }

 void OnActivityCompleted(NativeActivityContext context,
 ActivityInstance
completedInstance) {
 ScheduleActivities(context);
 }
 }
}

Build the activity project before using it in workflow.

2.	 Create a code workflow to test the MySequence activity:

Open the Program.cs file of the WorkflowConsoleApp project. Add a new
method, GetTestMySequenceWF, to the Program class:
static Activity GetTestMySquenceWF() {

 return new MySequence() {

 Activities ={

 new WriteLine(){Text="WriteLine1"},

 new WriteLine(){Text="WriteLine2"},

 new WriteLine(){Text="WriteLine3"}

 }

Chapter 5

163

 };

}

3.	 Run it:

Alter the Main method of the Program.cs file to this:
static void Main(string[] args) {

 WorkflowInvoker.Invoke(GetTestMySquenceWF());

}

Set WorkflowConsoleApp as Startup project. Next, press Ctrl+F5 to run the
workflow without debugging.

How it works...
First and the most important thing to create a custom composite activity is that we should
inherit from NativeActivity (or Activity). We cannot create a composite activity using
CodeActivity.

The metadata object is used for storing workflow information. By accessing metadata, the
workflow instance is aware of its child activities, variables, and arguments. We can override
the CacheMetaData method so that we can register its child activities to the metadata:

foreach (var activity in Activities) {
 metadata.AddImplementationChild(activity);
}

In the Execute method, we will call the ScheduleActivities method. With the help of
ScheduleActivities, we can determine child activities' execution behavior.

We might get confused by the OnActivitCompleted method—why do we need such a
method, can we just schedule activities with the help of the following code ?

void ScheduleActivities(NativeActivityContext context) {
 for (int i = 0; i < Activities.Count; i++) {
 context.ScheduleActivity(this.Activities[i]);
 }
}

Custom Activities

164

Well the answer is yes, we can schedule activities' in this way, but the child activities execution
order will change to:

This is because the workflow runtime stores activities in a stack and the first scheduled
activity will be executed last.

Creating an Activity Designer for the
SendEmail activity

An Activity Designer is actually a surface of an activity in the workflow designer. We have
already created a SendEmail to send an e-mail. In this task, we are going to create a
designer (activity surface) for it. The final appearance will be like this:

Now,let's create it from scratch.

Chapter 5

165

How to do it...
1.	 Create an Activity Designer:

As Activity Designer is built upon WPF, we need to add references to
PresentationCore, PresentationFramework, and WindowsBase. Add
an Activity Designer item to the ActivityLibrary project and name it
SendEmailActivityDesigner.xaml.

Now, open the code sample for this book and just copy the following code to replace
the default created code in SendEmailActivityDesigner.xaml:
<sap:ActivityDesigner x:Class="ActivityLibrary.
SendEmailActivityDesigner"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:sap="clr-namespace:System.Activities.
Presentation;assembly=System.Activities.Presentation"

 xmlns:sapv="clr-namespace:System.Activities.Presentation.
View;assembly=System.Activities.Presentation"

 xmlns:sapc="clr-namespace:System.Activities.Presentation.
Converters;assembly=System.Activities.Presentation"

 xmlns:s="clr-namespace:System;assembly=mscorlib">

 <sap:ActivityDesigner.Resources>

 <sapc:ArgumentToExpressionConverter x:Key="ArgumentToExpre
ssionConverter"/>

Custom Activities

166

 <DataTemplate x:Key="Collapsed">

 <StackPanel>

 <TextBlock>This is the collapsed view</TextBlock>

 </StackPanel>

 </DataTemplate>

 <DataTemplate x:Key="Expanded">

 <StackPanel>

 <Label Content="To"></Label>

 <sapv:ExpressionTextBox

 HintText="To:"

 OwnerActivity="{Binding Path=ModelItem}"

 Expression="{Binding Path=ModelItem.to,

 Mode=TwoWay,

Converter={StaticResource ArgumentToExpressionConverter },

 ConverterParameter=In}"

ExpressionType="s:String"/>

 <Label Content="Subject:"></Label>

 <sapv:ExpressionTextBox

 HintText="Subject"

 OwnerActivity="{Binding Path=ModelItem}"

 Expression="{Binding Path=ModelItem.subject,

 Mode=TwoWay,

Converter={StaticResource ArgumentToExpressionConverter },

 ConverterParameter=In}"

ExpressionType="s:String"/>

 <Label Content="Body:"></Label>

 <sapv:ExpressionTextBox

 HintText="Body"

 OwnerActivity="{Binding Path=ModelItem}"

 Expression="{Binding Path=ModelItem.body,

 Mode=TwoWay,

Converter={StaticResource ArgumentToExpressionConverter },

 ConverterParameter=In}"

ExpressionType="s:String" Height="100" />

 </StackPanel>

 </DataTemplate>

Chapter 5

167

 <Style x:Key="ExpandOrCollapsedStyle"
 TargetType="{x:Type ContentPresenter}">
 <Setter Property="ContentTemplate"
 Value="{DynamicResource Collapsed}"/>
 <Style.Triggers>
 <DataTrigger Binding="{Binding Path=ShowExpanded}"
Value="true">
 <Setter Property="ContentTemplate"
Value="{DynamicResource Expanded}"/>
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </sap:ActivityDesigner.Resources>
 <Grid>
 <ContentPresenter Style="{DynamicResource
ExpandOrCollapsedStyle}" Content="{Binding}" />
 </Grid>
</sap:ActivityDesigner>

Save and build the solution.

2.	 Add a Designer attribute to the SendMail activity:

To connect this Activity Designer with the SendMail activity, we need to add a
Designer attribute to the SendEmail activity.
using System.Activities;
using System.ComponentModel;
namespace ActivityLibrary {
 [Designer(typeof(SendEmailActivityDesigner))]
 public sealed class SendEmail : CodeActivity {
 public InArgument<string> from { get; set; }
 public InArgument<string> host { get; set; }
 public InArgument<string> userName { get; set; }
 public InArgument<string> password { get; set; }
 public InArgument<string> to { get; set; }
 public InArgument<string> subject { get; set; }
 public InArgument<string> body { get; set; }
 public OutArgument<string> result { get; set; }
 protected override void Execute(CodeActivityContext
 context) {
 var mailMessage = new System.Net.Mail.MailMessage();
 mailMessage.To.Add(to.Get(context).ToString());
 mailMessage.Subject = subject.Get(context).ToString();
 mailMessage.Body = body.Get(context);
 mailMessage.From =
 new System.Net.Mail.MailAddress(from.
 Get(context));
 var smtp = new System.Net.Mail.SmtpClient();
 smtp.Host = host.Get(context);
 smtp.Credentials =

Custom Activities

168

 new System.Net.NetworkCredential(userName.
 Get(context), password.Get(context));

 smtp.EnableSsl = true;

 smtp.Send(mailMessage);

 result.Set(context, "Sent Email successfully!");

 }

 }

}

Save and press F6 to build the solution.

3.	 Run it:

Now, open the TestSendMailWF.xaml file we created in a previous task. Fill out the
e-mail properties. The final workflow appears as shown in the following screenshot:

Chapter 5

169

How it works...
This task demonstrates the following:

ff Creating a custom Activity Designer with ExpressionTextBox:
<sapv:ExpressionTextBox

 HintText="To:"

 OwnerActivity="{Binding Path=ModelItem}"

 Expression="{Binding Path=ModelItem.to,

 Mode=TwoWay,

Converter={StaticResource ArgumentToExpressionConverter },

 ConverterParameter=In}"

ExpressionType="s:String"/>

 ModelItem is an object that can be used to draw workflow items in Workflow Designer.
The following illustration describes the layer infrastructure of Workflow Designer (not
Activity Designer):

ff Creating a custom Activity Designer with a "collapsed" and "expanded" view.

You can create a Activity Designer with a "collapsed" and "expanded" view by following
the following XAML style:
<sap:ActivityDesigner x:Class="ActivityLibrary.ActivityDesigner1"
 …>
 <sap:ActivityDesigner.Resources>
 <DataTemplate x:Key="Collapsed">

Custom Activities

170

 <TextBlock>collapsed</TextBlock>

 </DataTemplate>

 <DataTemplate x:Key="Expanded">

 <TextBlock>Expanded</TextBlock>

 </DataTemplate>

 <Style x:Key="ExpandOrCollapsedStyle"

 TargetType="{x:Type ContentPresenter}">

 <Setter Property="ContentTemplate"

 Value="{DynamicResource Collapsed}"/>

 <Style.Triggers>

 <DataTrigger Binding="{Binding Path=ShowExpanded}"
Value="true">

 <Setter Property="ContentTemplate"
Value="{DynamicResource Expanded}"/>

 </DataTrigger>

 </Style.Triggers>

 </Style>

 </sap:ActivityDesigner.Resources>

 <Grid>

 <ContentPresenter Style="{DynamicResource
ExpandOrCollapsedStyle}" Content="{Binding}" />

 </Grid>

</sap:ActivityDesigner>

Define all possible views and present style under DataTemplate element. Under
Grid element, use a ContentPrensenter to represent the final view.

Creating an Activity Designer for the
MySquence activity

We have already created a MySequence activity in a previous task. In this task, we are going
to create a designer for it.

How to do it...
1.	 Create an Activity Designer:

Add an Activity Designer item to the ActivityLibrary project and name it
MySequenceDesigner.xaml. Use the following code to replace the default
generated code:
<sap:ActivityDesigner x:Class="ActivityLibrary.MySequenceDesigner"

Chapter 5

171

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:sap="clr-namespace:System.Activities.
Presentation;assembly=System.Activities.Presentation"

 xmlns:sapv="clr-namespace:System.Activities.Presentation.
View;assembly=System.Activities.Presentation">

 <Grid>

 <StackPanel>

 <sap:WorkflowItemsPresenter HintText="Drop Activities
 Here"

 Items="{Binding
Path=ModelItem.Activities,Mode=TwoWay}">

 <sap:WorkflowItemsPresenter.SpacerTemplate>

 <DataTemplate>

 <Ellipse Width="20" Height="20"
Fill="Black"/>

 </DataTemplate>

 </sap:WorkflowItemsPresenter.SpacerTemplate>

 <sap:WorkflowItemsPresenter.ItemsPanel>

 <ItemsPanelTemplate>

 <StackPanel Orientation="Vertical"/>

 </ItemsPanelTemplate>

 </sap:WorkflowItemsPresenter.ItemsPanel>

 </sap:WorkflowItemsPresenter>

 </StackPanel>

 </Grid>

</sap:ActivityDesigner>

2.	 Add a Designer attribute for the MySequence activity:

To connect this Activity Designer with the MySequence activity, we need to add a
Designer attribute for the MySequence activity. Add the following statement right
above the MySequence class definition:
[Designer(typeof(MySequenceDesigner))]

Save the solution and build it by pressing the F6 key.

Custom Activities

172

3.	 Create a workflow to test the MySequence activity:

Add a new workflow to the WorkflowConsoleApp project and name it
TestMySequenceWF.xaml. Create the workflow as shown in the
following screenshot:

Save and build the project.

4.	 Run it:

Alter the Main method of the Program.cs file to this:
static void Main(string[] args) {

 WorkflowInvoker.Invoke(new TestMySequenceWF());

}

Set WorkflowConsoleApp as Startup project. Next, press Ctrl+F5 to run the
workflow without debugging.

Chapter 5

173

How it works...
This task demonstrates creating a custom activity using WorkflowItemsPresenter.

By using WorkflowItemsPresenter, we can create an activity that contains
multiple activities.

We can define our spacer template in SpacerTemplate. In this task, we use a black circle to
represent the spacer. If we wish to create a triangle spacer, we need to replace the following:

<Ellipse Width="20" Height="20" Fill="Black"/>

with the following:

<Path Margin="0,15,0,0" 	
 Stretch="Fill"
	 StrokeMiterLimit="2.75"
	 Stroke="#FFA8B3C2" Fill="#FFFFFFFF"
		 Data="F1 M 675.738,744.979L 665.7,758.492L 655.66,744.979L
675.738,744.979 Z "
		 Width="16" Height="10" />

Now save and build the project. The TestMySequenceWF workflow will appear like this:

6
WF4 Extensions

This chapter will cover:

ff Configuring ETW tracking

ff Creating a FileTrackingParticipant

ff Configuring the SQL persistence store

ff Loading a persisted workflow from the database

ff Using a persistence participant to persist additional data

ff Using a customized extension

Introduction
The focus of this chapter is WF4 tracking and persistence. In the old WF3, we usually call
them as services. In WF4, these features are implemented as extensions. The term "service"
in WF4 usually refers to WCF service.

The Tracking extension in WF4 can record the "foot prints" of the execution of a workflow
instance. The Persistence extension in WF4 can save running workflow instances in durable
storage such as a database or disk file.

Configuring ETW tracking
ETW stands for Event Tracing for Windows. Simply put, ETW tracking means our ability to see
tracking information in the famous Event Viewer.

WF4 Extensions

176

Getting ready
We need Windows Vista, Windows 7, or Windows Server 2008 to perform this task.

How to do it...
1.	 Create a Workflow Console Application project:

Create a new Workflow Console Application project and name it
ConfiguringETWTracking. Name the solution as Chapter06.

2.	 Author a workflow:

Open the Workflow1.xaml file, which is created by default, and create an extremely
simple workflow just for tracking.

Chapter 6

177

3.	 Enable ETW tracking:

Open Event Viewer, navigate to Event Viewer | Applications and Services Logs |
Microsoft | Windows | Application Server-Applications. Right-click Application
Server-Applications and select View | Show Analytic and Debug Logs. After
refreshing the node, we should see:

4.	 Create a workflow host:

Open Program.cs file, and fill the file with the following code:
using System.Activities.Tracking;

using System.Threading;

using System.Activities;

namespace ConfiguringETWTracking {

 class Program {

 static void Main(string[] args) {

 #region ETW tracking setup

 TrackingProfile trackingProfile =
 new TrackingProfile();

WF4 Extensions

178

 trackingProfile.Queries.Add(new WorkflowInstanceQuery
{

 States = { "*" }

 });

 trackingProfile.Queries.Add(new ActivityStateQuery {

 States = { "*" }

 });

 trackingProfile.Queries.Add(new CustomTrackingQuery {

 ActivityName = "*",

 Name = "*"

 });

 EtwTrackingParticipant etwTrackingParticipant =

 new EtwTrackingParticipant();

 etwTrackingParticipant.TrackingProfile =
 trackingProfile;

 #endregion

 #region Workflow Application

 AutoResetEvent waitHandler = new
 AutoResetEvent(false);

 WorkflowApplication wfApp =

 new WorkflowApplication(new Workflow1());

 wfApp.Completed = (arg) => { waitHandler.Set(); };

 wfApp.Extensions.Add(etwTrackingParticipant);

 wfApp.Run();

 waitHandler.WaitOne();

 #endregion

 }

 }

}

5.	 Run it:

Press Ctrl+F5 to run the workflow. After running the workflow, right-click the Analytic
node, and select Refresh. We will see the following:

Chapter 6

179

How it works...
To understand WF4 tracking, we need to understand three primary components:

ff The TrackingRecord object holds all the tracking data.

ff TrackingParticipant provides methods to access TrackingRecord. In this
task, EtwTrackingParticipant is a specified TrackingParticipant, using
which the workflow host can emit tracking records to the event viewer.

ff TrackingProfile functions as a filter in the tracking process. In this task, we
created a TrackingProfile that will tell TrackingParticipant to record
workflow instance states, activity states, and custom tracking states, rather than
using "*" to represent all workflow instance state items. We can use predefined
keywords to record states we need. Consider the following example:

trackingProfile.Queries.Add(new WorkflowInstanceQuery {

 States = { "Started","Idel","Persisted","Resumed","Unloaded" }

});

WF4 Extensions

180

To get the full list of workflow instance states, please check the MSDN document available at
http://msdn.microsoft.com/en-us/library/system.activities.tracking.
workflowinstancequery.states(v=VS.100).aspx.

Creating FileTrackingParticipant
We may want to create our own tracking participant and store tracking information in a text
file. In this task, we are going to create such a tracking participant.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application under the solution Chapter06 and name
the project CreatingFileTrackingParticipant.

2.	 Author a workflow:

Open the Workflow1.xaml file, which is created by default, and create an extremely
simple workflow just for tracking. 	

3.	 Create a custom tracking participant—FileTrackingParticipant.cs:

Now, create a class file and name it FileTrackingParticipant.cs containing
the following code
using System.Activities.Tracking;

using System;

using System.IO;

namespace FileTrackingParticipant {

Chapter 6

181

 public class FileTrackingParticipant:TrackingParticipant {

 string fileName;

 protected override void Track(TrackingRecord record,

 TimeSpan timeout) {

 fileName = @"c:\" + record.InstanceId + ".tracking";

 using (StreamWriter sw = File.AppendText(fileName)) {

 sw.WriteLine("----------Tracking
Started-----------");

 sw.WriteLine(record.ToString());

 sw.WriteLine("----------Tracking End--------------
-");

 }

 }

 }

}

4.	 Create a workflow host:

Open the Program.cs file and alter its code to:
class Program {

static void Main(string[] args) {

TrackingProfile fileTrackingProfile = new TrackingProfile();

fileTrackingProfile.Queries.Add(new WorkflowInstanceQuery {

States = { "*" }

});

fileTrackingProfile.Queries.Add(new ActivityStateQuery() {

States = {

ActivityStates.Executing,

ActivityStates.Closed

}

});

FileTrackingParticipantfileTrackingParticipant =

newFileTrackingParticipant();

fileTrackingParticipant.TrackingProfile = fileTrackingProfile;

AutoResetEventwaitHandler = new AutoResetEvent(false);

WorkflowApplicationwfapp =
new WorkflowApplication (new Workflow1());

wfapp.Unloaded = (wfAppEventArg) =>{ waitHandler.Set(); };

 wfapp.Extensions.Add(fileTrackingParticipant);

 wfapp.Run();

WF4 Extensions

182

 waitHandler.WaitOne();

 }

}

5.	 Run it:

Press Ctrl+F5 to run the project without debugging. After running, we can see a file
suffixed with .tracking in directory c:\.

How it works...
To create a custom tracking participant, the key is overriding the Tracking method. In this
method, we can write code to store tracking information to any place of our choice. In the
Tracking method, we can manipulate the tracking data in a lot of ways— for example e-mail
it or send it out by web service.

Configuring the SQL persistence store
In real-world applications, to make sure the performance meets requirements, it is
recommended to use a database as the workflow persistence store. WF4 has a built-in SQL
persistence store type. All we need to do is some configurations.

Getting ready
SQL Server (include express edition) 2005/2008 is needed to perform this task.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application under solution Chapter06 and name the
project as ConfiguringSqlPersistenceStore.

2.	 Set up a persistence database:

We can find SQL scripts in %WINDIR%\Microsoft.NET\Framework\v4.xxx\SQL\
EN. In this folder, only two files are needed: SqlWorkflowInstanceStoreSchema.
sql and SqlWorkflowInstanceStoreLogic.sql.

We first execute SqlWorkflowInstanceStoreSchema.sql and then execute
SqlWorkflowInstanceStoreLogic.sql. We can execute these SQL files in Visual
Studio or SQL Server Management Studio. I would prefer to write a batch file to do all
these steps. We need to create a SQL file to create a SQL persistence database:

Chapter 6

183

i.	 Create a file named CreateSqlPersistenceDatabase.sql in any folder
containing the following SQL statements.
Use Master

Go

IF EXISTS (SELECT *

	 FROM master..sysdatabases

	 WHERE name = N'PersistenceDatabase')

	 DROP DATABASE PersistenceDatabase

GO

CREATE DATABASE PersistenceDatabase

GO

ii.	 In the same folder, create a batch file named
SetupSqlPersistenceStore.bat containing the following commands.
echo Create SQL persistence database...

sqlcmd -S %COMPUTERNAME%\SQLEXPRESS -E -n -i
"CreateSqlPersistenenceDatabase.sql"

echo Execute SqlWorkflowInstanceStoreSchema.sql

sqlcmd -S %COMPUTERNAME%\SQLEXPRESS -E -n -d
PersistenceDatabase -i "SqlWorkflowInstanceStoreSchema.sql"

echo Execute SqlWorkflowInstanceStoreLogic.sql

sqlcmd -S %COMPUTERNAME%\SQLEXPRESS -E -n -d
PersistenceDatabase -i "SqlWorkflowInstanceStoreLogic.sql"

::Pause

iii.	 Before running the batch file, we need to copy
SqlWorkflowInstanceStoreSchema.sql and
SqlWorkflowInstanceStoreLogic.sql to the same folder as that of
the SetupSqlPersistence.bat file.

Double-click SetupSqlPersistenceStore.bat and the database will be
set up.

WF4 Extensions

184

3.	 Create a workflow:

Open the Workflow1.xaml file, which is created by default, and create a simple
workflow with a delay activity.

Set the Duration property of the Delay activity to 1 second. Once the Delay
activity is executed, the workflow will become idle and the whole workflow instance
will be persisted in the database.

4.	 Create a workflow host:

Add project references to System.Activities.DurableInstancing and
System.Runtime.DurableInstancing. Open the Program.cs file and alter the
code to:
using System.Activities.DurableInstancing;

using System.Threading;

using System.Activities;

namespace ConfiguringSqlPersistenceStore {

 class Program {

 static void Main(string[] args) {

 //setup sql persistence store

 string sqlPersistenceDBConnectionString=

 @"Data Source=.\sqlexpress;

 Initial Catalog=PersistenceDatabase;

 Integrated Security=True";

 SqlWorkflowInstanceStore sqlWFInstanceStore =

Chapter 6

185

 new SqlWorkflowInstanceStore(
 sqlPersistenceDBConnectionString);

 //create and run workflow application
 AutoResetEvent waitHandler = new
 AutoResetEvent(false);
 WorkflowApplication wfApp =
 new WorkflowApplication(new Workflow1());
 wfApp.InstanceStore = sqlWFInstanceStore;
 wfApp.Unloaded = (arg) => {
 waitHandler.Set();
 };
 wfApp.PersistableIdle = (arg) => {
 return PersistableIdleAction.Unload;
 };
 wfApp.Run();
 waitHandler.WaitOne();
 }
 }
}

5.	 Run it:

Press Ctrl+F5 to run the project without debugging. The running workflow instance
will be persisted in the database once the Delay activity is executed. We can
query the [System.Activities.DurableInstancing].InstancesTable
table against the PersistenceDatabase database to see the persisted workflow
instance data.

How it works...
The Delay activity can induce the workflow to be idle, and the workflow will be persisted in
the persistence store. Please note that after the workflow is persisted and unloaded from
memory, the workflow instance will not be resumed from the persistence store even after the
delay time. We need to resume the workflow instance manually or we can write a host service
to monitor the time and perform the task of resuming the workflow.

Loading a persisted workflow from the
database

Developing long-running applications is one goal of WF4, and resuming a persisted workflow
from the database is the key to long-running applications. In this task, we will create a
Sequence workflow with a Delay activity. The workflow will be persisted when it is idle. We then
press the Enter key and then the workflow will be resumed and will run until its end.

WF4 Extensions

186

Getting ready
The SQL workflow instance store needs to be already in use. We can refer the Configuring the
SQL persistence store section of this chapter.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application under solution Chapter06 and name the
project as LoadingUpWorkflowFromPersistenceDB.

2.	 Create a workflow:

Open the Workflow1.xaml file, which is created by default, and create a simple
workflow with a Delay activity.

Set the Duration property of Delay activity to 1 second. Once the Delay activity
is executed, the workflow will become idle and the whole workflow instance will be
persisted in the database.

3.	 Create a workflow Host:

Add project references to System.Activities.DurableInstancing and
System.Runtime.DurableInstancing. Open the Program.cs file and alter the
code to:

Chapter 6

187

class Program {

 static SqlWorkflowInstanceStore sqlWorkflowInstanceStore =

 SetupSqlPersistenceStore();

 static void Main(string[] args) {

 StartAndUnloadInstance();

 }

 static void StartAndUnloadInstance() {

 AutoResetEvent waitHandler = new AutoResetEvent(false);

 WorkflowApplication wfApp = new WorkflowApplication(new
 Workflow1());

 wfApp.InstanceStore = sqlWorkflowInstanceStore;

 wfApp.PersistableIdle = (e) => {

 return PersistableIdleAction.Unload;

 };

 wfApp.Unloaded = (e) => {

 waitHandler.Set();

 };

 Guid id = wfApp.Id;

 wfApp.Run();

 waitHandler.WaitOne();

 LoadAndCompleteInstance(id);

 }

 static void LoadAndCompleteInstance(Guid id) {

 Console.WriteLine("Press <enter> to load the persisted
 workflow");

 Console.ReadLine();

 AutoResetEvent waitHandler = new AutoResetEvent(false);

 WorkflowApplication wfApp = new WorkflowApplication(new
 Workflow1());

 wfApp.InstanceStore = sqlWorkflowInstanceStore;

 wfApp.Unloaded = (workflowApplicationEventArgs) => {

 waitHandler.Set();

 };

 wfApp.Load(id);

 wfApp.Run();

 waitHandler.WaitOne();

 }

 private static SqlWorkflowInstanceStore
SetupSqlPersistenceStore() {

 string connectionString =

 @"Data Source=.\sqlexpress;

WF4 Extensions

188

 Initial Catalog=PersistenceDatabase;

 Integrated Security=True";

 SqlWorkflowInstanceStore sqlWFInstanceStore =

 new SqlWorkflowInstanceStore(connectionString);

 sqlWFInstanceStore.InstanceCompletionAction =

 InstanceCompletionAction.DeleteAll;

 return sqlWFInstanceStore;

 }

}

4.	 Run it:

Before running it, we need to make sure that we have replaced the SQL connection
string with our own one. Then, press Ctrl+F5 to run the project without debugging.

How it works...
In the StartAndUnloadInstance method, we may want to use the following statement
to persist a workflow instance:

wfApp.PersistableIdle = (e) => {
 return PersistableIdleAction.Persist;
};

Instead of return PersistableIdleAction.Unload;, the persisted workflow
will be locked by the instance owner, and the workflow will exit without unloading. The
consequence is, if we try to load a locked workflow instance from the database with a new
WorkflowApplication object, we will get the following exception:

Unhandled Exception: System.Runtime.DurableInstancing.InstanceLockedException: The
execution of an InstancePersistenceCommand was interrupted because the instance
'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx' is locked by a different instance owner. This error
usually occurs because a different host has the instance loaded. The instance owner ID of
the owner or host with a lock on the instance is 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx'.

If we want to persist a workflow and unload the workflow from the memory, we should use
PersistableIdelAction.Unload instead of PersistableIdleAction.Persist.

Chapter 6

189

If we are going to have multiple hosts potentially loading the same workflow instance, we need
to specify the instance store's DefaultInstanceOwner:

InstanceHandle handle = instanceStore.CreateInstanceHandle();
InstanceView view=instanceStore.Execute(handle,new CreateWorkflowOwner
Command(),TimeSpan.FromSeconds(5));
handle.Free();
instanceStore.DefaultInstanceOwner=view.InstanceOwner

There's more
This is the execution sequence of persistence-related events:

ff PersisteableIdle

ff Idle

ff Completed (optional)

ff Unloaded (optional)

Using a persistence participant to persist
additional data

When the workflow instance is persisted, some additional data may need to be persisted
along with the workflow instance. For example, in web applications, different HTTP requests
are initialized by different people. So, to make sure our workflow instance is aware of its
owner, we should store the user information along with the workflow instance.

Getting ready
We need to make sure we have finished the task of Loading a persisted workflow from the
database, which we have seen earlier in this chapter.

How to do it...
1.	 Create a workflow project:

Create a new Workflow Console Application under solution Chapter06 and name the
project as UsingPersistenceParticipant.

WF4 Extensions

190

2.	 Create a custom persistence participant:

Add project references to System.Activities.DurableInstancing and
System.Runtime.DurableInstancing. Add a new code file to project and name
the file MyPersistenceParticipant.cs. Fill the file with the following code:
usingSystem.Activities.Persistence;

usingSystem.Xml.Linq;

usingSystem.Collections.Generic;

using System;

namespaceUsingPersistenceParticipant {

public class MyPersistenceParticipant : PersistenceParticipant {

public string message;

staticXNamespacedataNamespace =

XNamespace.Get("http://xhinker.com/");

protected override void CollectValues(out IDictionary<XName,
object>readWriteValues,

outIDictionary<XName, object>writeOnlyValues) {

readWriteValues = new Dictionary<XName, object>();

readWriteValues.Add(dataNamespace. GetName("messageXName"), this.
message);

writeOnlyValues = null;

}

protected override IDictionary<XName, object>MapValues(
IDictionary<XName, object>readWriteValues,

IDictionary<XName, object>writeOnlyValues) {

returnbase.MapValues(readWriteValues, writeOnlyValues);

}

protected override void PublishValues(

IDictionary<XName, object>readWriteValues) {

Console.WriteLine("message:" +

readWriteValues[dataNamespace. GetName("messageXName")]);

}

}

}

3.	 Create a custom CodeActivity:

Add a new code file containing the following code to the project and name it
CollectDataActivity.cs. This activity is used for collecting data when
workflow runs.

Chapter 6

191

using System.Activities;

namespace UsingPersistenceParticipant

{
 public sealed class CollectDataActivity : CodeActivity
 {
 protected override void Execute
 (CodeActivityContext context)
 {
 context.GetExtension
 <MyPersistenceParticipant>().message =
 "hello persistence participant";
 }
 }
}

Build the project so that we can use CollectDataActivity in workflow.

4.	 Create a workflow—Workflow1.xaml:

Open Workflow1.xaml, which is created by default, and author a workflow as
shown in the following screenshot:

WF4 Extensions

192

5.	 Create a workflow host:

Open the Program.cs file and alter the code to:
using System.Activities.DurableInstancing;

using System.Xml.Linq;

using System.Threading;

using System.Activities;

using System;

using System.Collections.Generic;

using System.Runtime.DurableInstancing;

namespace UsingPersistenceParticipant {

 class Program {

 static SqlWorkflowInstanceStore sqlWorkflowInstanceStore =

 SetupSqlpersistenceStore();

 static XNamespace dataNamespace = null;

 static void Main(string[] args) {

 StartAndUnloadInstance();

 }

 static void StartAndUnloadInstance() {

 AutoResetEvent waitHandler = new
 AutoResetEvent(false);

 WorkflowApplication wfApp = new
 WorkflowApplication(new Workflow1());

 wfApp.InstanceStore = sqlWorkflowInstanceStore;

 wfApp.Extensions.Add(new MyPersistenceParticipant());

 wfApp.PersistableIdle = (e) => {

 return PersistableIdleAction.Unload;

 };

 wfApp.Unloaded = (e) => {

 waitHandler.Set();

 };

 Guid id = wfApp.Id;

 wfApp.Run();

 waitHandler.WaitOne();

 LoadAndCompleteInstance(id);

 }

 static void LoadAndCompleteInstance(Guid id) {

 Console.WriteLine("Press <enter> to load the persisted
 workflow");

 Console.ReadLine();

 AutoResetEvent waitHandler = new
 AutoResetEvent(false);

Chapter 6

193

 WorkflowApplication wfApp = new
 WorkflowApplication(new Workflow1());

 wfApp.InstanceStore = sqlWorkflowInstanceStore;

 wfApp.Extensions.Add(new MyPersistenceParticipant());

 wfApp.Unloaded = (workflowApplicationEventArgs) =>

 {

 waitHandler.Set();

 };

 wfApp.Load(id);

 wfApp.Run();

 waitHandler.WaitOne();

 }

 private static SqlWorkflowInstanceStore
 SetupSqlpersistenceStore()

 {

 string connectionString =

 @"Data Source=.\sqlexpress;

 Initial Catalog=PersistenceDatabase;

 Integrated Security=True";

 SqlWorkflowInstanceStore sqlWFInstanceStore =

 new SqlWorkflowInstanceStore(connectionString);

 dataNamespace = XNamespace.Get("http://xhinker.com/");

 List<XName> variantProperties = new List<XName>();

 variantProperties.Add(dataNamespace.
 GetName("messageXName"));

 sqlWFInstanceStore.Promote("additionalProperty",
 variantProperties, null);

 sqlWFInstanceStore.InstanceCompletionAction =

 InstanceCompletionAction.DeleteAll;

 InstanceHandle handle = sqlWFInstanceStore.
 CreateInstanceHandle();

 InstanceView view = sqlWFInstanceStore.Execute(handle,
 new CreateWorkflowOwnerCommand(),

TimeSpan.FromSeconds(5));

 handle.Free();

 sqlWFInstanceStore.DefaultInstanceOwner =
 view.InstanceOwner;

 return sqlWFInstanceStore;

 }

 }

}

WF4 Extensions

194

6.	 Run it:

Set UsingPersistenceParticipant as the Startup project and press Ctrl+F5 to
run the project. We will see the following before pressing the Enter key:

Now open the InstancePromotedPropertiesTable table of the persistence
database. We will see a data row that stores the collected data: hello persistence
participant. Once back to the application console and after pressing the Enter key,
we will see the following:

How it works...
A persistence participant will be triggered by the workflow application host when the workflow
instance is saved into or loaded from durable storage.

We need to understand three key methods in the MyPersistenceParticipant class.

ff CollectValues: This method will be called first. We can use this method to collect
data that needs to be persisted along with the workflow instance.

ff MapValues: This method will be called following the CollectValues method.
Usually, we need to use only the following:
return base.MapValues(readWriteValues, writeOnlyValues);

Now all the collected data will automatically be stored in the persistence store. We
can also store data in some other durable store by writing I/O code.

ff PublishValues: This method will be called when the workflow is resumed from the
persistence store.

Chapter 6

195

Using a customized extension
WF4 also allows us to define our own WF4 extensions. In this task, we will create a simple
extension and use this extension in a workflow.

How to do it...
1.	 Create a Workflow Console Application:

Add a new Workflow Console Application to the Chapter06 solution and name it
UsingCustomizedExtension.

2.	 Create a customized extension:

Add a new code file to the project and name the file SimpleExtension.cs. Fill the
file with the following code:
using System.Activities.Hosting;

using System.Collections.Generic;

using System;

namespace UsingCustomizedExtension {

 public class SimpleExtension : IWorkflowInstanceExtension {

 private WorkflowInstanceProxy instance;

 public IEnumerable<object> GetAdditionalExtensions() {

 return null;

 }

 public void SetInstance(WorkflowInstanceProxy instance) {

 this.instance = instance;

 }

 public void DoSomething() {

 Console.WriteLine("Extension is doing something...");

 }

 }

}

3.	 Create a custom activity that will use the customized extension:

Add a new code file to the project and name it UseSimpleExtension.cs. Then fill
the file with the following code:
using System.Activities;

using UsingCustomizedExtension;

public class UseSimpleExtension : NativeActivity {

 protected override void Execute(NativeActivityContext context)
{

 var extension = context.GetExtension<SimpleExtension>();

WF4 Extensions

196

 extension.DoSomething();

 }

}

Build the project so that the customized activity will appear in the toolbox.

4.	 Author a Workflow:

Open the Workflow1.xaml file, which is created by default, and author a workflow
as shown as the following screenshot:

5.	 Create host code:

Open the Program.cs file and alter its code to:
using System.Threading;

using System.Activities;

namespace UsingCustomizedExtension {

 class Program {

 static void Main(string[] args) {

 AutoResetEvent waitHandler = new
 AutoResetEvent(false);

 WorkflowApplication wfApp =

 new WorkflowApplication(new Workflow1());

 wfApp.Unloaded = (e) => {

 waitHandler.Set();

Chapter 6

197

 };

 wfApp.Extensions.Add(new SimpleExtension());

 wfApp.Run();

 waitHandler.WaitOne();

 }

 }

}

6.	 Run it:

Set UsingCustomizedExtension as Startup project and press Ctrl+F5 to run it
without debugging. We should see the following:

How it works...
SimpleExtension, implementer of the IWorkflowInstanceExtension, will be called
by the WorkflowApplication class (which is an implementer of the abstract class
WorkflowInstance), before the workflow's execution. This makes sure extensions are
registered to the workflow instance. The following code actually registers a workflow extension:

wfApp.Extensions.Add(new SimpleExtension());

As an extension instance is already registered in the workflow instance context, we can call
the extension instance in a customized activity:

protected override void Execute(NativeActivityContext context) {
 var extension = context.GetExtension<SimpleExtension>();
 extension.DoSomething();
}

WF4 Extensions

198

There's more
When we are creating workflow services (XAMLX files), we can drop those XAMLX files directly
into the IIS virtual directory without host code. So, the question is, can we add our own
extensions to workflow service? Well the answer is, YES, we can add our extensions in the
CacheMetadata method of a customized activity. Consider the following as an example:

using System.Activities;
using UsingCustomizedExtension;
public class UseSimpleExtension : NativeActivity {
 protected override void CacheMetadata(NativeActivityMetadata
 metadata)
 {
 metadata.AddDefaultExtensionProvider<SimpleExtension>(
 ()=>new SimpleExtension()
);
 }
 protected override void Execute(NativeActivityContext context) {
 var extension = context.GetExtension<SimpleExtension>();
 extension.DoSomething();
 }
}

7
Hosting Workflow

Applications

In this chapter, we will cover:

ff Hosting a workflow service in IIS7

ff Hosting workflow in ASP.NET

ff Hosting workflow in WPF

ff Hosting workflow in a Windows Form

Introduction
WF4 is one part of .NET Framework 4.0, which means WF4 workflow can be hosted and run
in any type of application running with the .NET framework. We can host a workflow as a WCF
service. We can also invoke a workflow service from a workflow or host workflow in an ASP.NET
application and handle all the business logic behind the page.

When we design workflow applications, please let workflow be workflow. Don't couple workflow
with other logic. For example, in this chapter, hosting workflow in ASP.NET is for conception
demonstration only, not the best practice. In the real world, most of the time, workflow should
be implemented as a workflow service hosted in IIS7 or AppFabric.

AppFabric is an IIS7 extension that includes many tools to help us host a workflow service.
AppFabric is to workflow service like IIS7 is to ASP.NET website. However, we can run a
workflow service in IIS7 without AppFabric installed. Although AppFabric is powerful, we need
to spend some time to learn it. For more information about AppFabric, you can check this link:
http://msdn.microsoft.com/appfabric.

Hosting Workflow Applications

200

Hosting a workflow service in IIS7
The process of sending an e-mail would consume some time—maybe a few seconds or even
minutes. It would be a waste of time and resources for our applications to stop and wait for an
e-mail sending action to complete. Because sending e-mail is time-consuming, a better design
is to strip this feature out as an independent WCF workflow service and host that service
in IIS7.

Getting ready
We need the SendEmailActivity activity to send an e-mail. We can check this activity in
Chapter 5, Custom Activities.

How to do it...
1.	 Create a WCF workflow service application:

Create a WCF workflow service application and name it
HostingWorkflowServiceInIIS7.

2.	 Add SendEmailActivity to the toolbox:

In the Toolbox tab, right-click and select Choose Items. In the opening dialog, click
Browse and navigate to the ActivityLibrary.dll from the sample code of
chapter05. Next, check SendEmailActivity:

Chapter 7

201

Click OK. We will find SendEmailActivity in the toolbox:

3.	 Create a SendEmail workflow service:

i.	 Delete Service1.xamlx, which is created by default, and add a new WCF
workflow service to the project. Name it SendEmailService.xamlx.
Drag a TransactedReceiveScope activity to the design panel, click the
Variables button, and create a variable named emailMessage:

Hosting Workflow Applications

202

ii.	 Drag a Receive activity to the Request box of
TransactedReceiveScope. Set the OperationName to SendEmail.
Click the Content Definition link to create a parameter as shown here:

iii.	 Assign ISendEmailService to the ServiceContractName property.
Check the CanCreateInstance property.

iv.	 Next, drag SendEmailActivity to the body of
TransactedReceiveScope.

v.	 Assign the following properties to SendEmailActivity:

Chapter 7

203

vi.	 The final workflow will look as shown in the following screenshot:

Hosting Workflow Applications

204

4.	 Create a website in IIS7 for this WF service:

In IIS7 Manager Console, create a website and assign the website's physical path
to the project folder of HostingWorkflowServiceInIIS7. Assign it a new port
number. By default, an ASP.NET application will run under the built-in network service
account (or ApplicationPoolIdentity in IIS7.5). This account has the most
limited permissions. For testing, we can shift the application pool's identity to an
administrator account.

We should be able to find the following module and handlers in IIS7:

Chapter 7

205

If we cannot, then we should reinstall .NET framework 4.0 or repair it. Here are the
repair commands:

Repair command for 32-bit:

.NET Framework 4 Full (32-bit) – silent repair

%windir%\Microsoft.NET\Framework\v4.0.30319\SetupCache\Client\
setup.exe /repair /x86 /x64 /ia64 /parameterfolder Client /q /
norestart

Repair command for 64-bit:

.NET Framework 4 Full (64-bit) – silent repair

%windir%\Microsoft.NET\Framework64\v4.0.30319\SetupCache\Client\
setup.exe /repair /x86 /x64 /ia64 /parameterfolder Client /q /
norestart

5.	 Use WCFTestClient.exe to test the WCF service:

Usually, we can find the WCFTestClient.exe tool in C:\Program Files (x86)\
Microsoft Visual Studio 10.0\Common7\IDE.

Hosting Workflow Applications

206

We just need to open our mail. A new mail with subject Hello WF Service indicates
that we have created and hosted the WF service successfully.

How it works...
Simply put, once we have set up the IIS7, we need to copy all the workflow service project files
and folders to the IIS application folder and the workflow service will just work.

There's more
We can also host a WF4 service in IIS6 once we have installed .NET framework 4.0. Running a
WF4 service in IIS6 is not recommended.

See also
ff To host workflow service in console application, we need to refer to the Receiving and

replying to a WCF message section in Chapter 3, Messaging and Transaction.

Hosting workflow in ASP.NET
In this task, we will create an e-mail sending workflow and run it in an ASP.NET site.

Getting ready
We need an e-mail sending workflow service hosted in IIS7. We can refer to the previous
section, Hosting a workflow service in IIS7, in this chapter.

How to do it...
1.	 Create an ASP.NET4 web application:

Create an ASP.NET4 web application and name it HostingWorkflowInASPNET.
Because we are going to host WF4 workflow in this website, we have to make
sure it is an ASP.NET4 website. To check the version, right-click the project name
HostingWorkflowInASPNET and select Properties.

2.	 Author a Workflow:	

i.	 Add an activity to the website and name it Workflow.xaml.

Author the workflow as follows:

Chapter 7

207

ii.	 Set the properties for SendEmail1:

Hosting Workflow Applications

208

iii.	 Set the parameters for SendEmail1:

iv.	 Set the properties of SendEmail2. The only difference as compared to
SendEmail1 is the DisplayName.

Chapter 7

209

v.	 Set the parameters for SendEmail2:

3.	 Alter the Default.aspx page:

Add a Button control to the Default.aspx page:

<%@ Page Title="Home Page"

 Language="C#"

 MasterPageFile="~/Site.master"

 AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="HostingWorkflowInASPNET._Default" %>

<asp:Content ID="HeaderContent" runat="server"

 ContentPlaceHolderID="HeadContent">

</asp:Content>

<asp:Content ID="BodyContent" runat="server"

 ContentPlaceHolderID="MainContent">

 <p>

 <asp:Button ID="Button1" runat="server"

 Text="Start a workflow"

 onclick="Button1_Click" />

 </p>

</asp:Content>

Add this code to the button event handler in Default.aspx.cs:

using System;

using System.Activities;

using System.Threading;

namespace HostingWorkflowInASPNET {

 public partial class _Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 }

 protected void Button1_Click(object sender, EventArgs e) {

Hosting Workflow Applications

210

 AutoResetEvent waitHandler = new
 AutoResetEvent(false);

 WorkflowApplication wfApp =

 new WorkflowApplication(new Workflow());

 wfApp.Unloaded = (workflowApplicationEventArgs) => {

 waitHandler.Set();

 };

 wfApp.Run();

 waitHandler.WaitOne();

 }

 }

}

4.	 Run it:

Build the website and browse to the default page:

Click the Start a workflow button to start a workflow. Open your e-mail client. Two
mails with subject Hello WF Service indicate we have finished this task successfully.

Chapter 7

211

How it works...
We can treat a WF4 workflow as a managed .NET object and it can run in any .NET
framework 4.0 application. If we have experience with WF3/3.5, we may still remember
that we had to schedule the workflow instance in an ASP.NET application. In WF4, a
WorkflowApplication workflow instance runs in an independent .NET thread. No special
workflow schedule is needed.

There's more
As I have stated in the introduction of this chapter, usually we don't run a workflow instance in
an ASP.NET page directly; instead, we call a WF4 service in page events. For example, in this
task, we can call the WF4 service using pure .NET code by following these steps:

1.	 Use Svcutil.exe to generate the proxy code and configuration code. Usually, if we
have installed .NET 4.0 framework, we can find this Svcutil.exe in C:\Program
Files (x86)\Microsoft SDKs\Windows\v7.0A\Bin or C:\Program
Files\Microsoft SDKs\Windows\v7.0A\Bin.

2.	 In a command window, navigate to the svcutil.exe folder using the
following command:
cd C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\Bin

3.	 Input the following command:
svcutil.exe /language:cs /out:c:\GeneratedProxy.cs /config:c:\app.
config http://localhost:8089/SendEmailService.xamlx.

Press the Enter key, and we will find the GeneratedProxy.cs and app.config
files in C:\.

4.	 Add GeneratedProxy.cs to our ASP.NET web application.

5.	 Open the app.config file and copy the following configuration code into the web.
config file of the ASP.NET web application right below the <configuration> node:
<system.serviceModel>

 <bindings>

 <basicHttpBinding>

 <binding name="BasicHttpBinding_ISendEmailService"
closeTimeout="00:01:00"

 openTimeout="00:01:00"
receiveTimeout="00:10:00" sendTimeout="00:01:00"

 allowCookies="false"
bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard"

 maxBufferSize="65536"
maxBufferPoolSize="524288" maxReceivedMessageSize="65536"

Hosting Workflow Applications

212

 messageEncoding="Text" textEncoding="utf-8"
transferMode="Buffered"

 useDefaultWebProxy="true">

 <readerQuotas maxDepth="32"
maxStringContentLength="8192" maxArrayLength="16384"

 maxBytesPerRead="4096"
maxNameTableCharCount="16384" />

 <security mode="None">

 <transport clientCredentialType="None"
proxyCredentialType="None"

 realm="">

 <extendedProtectionPolicy
policyEnforcement="Never" />

 </transport>

 <message clientCredentialType="UserName"
algorithmSuite="Default" />

 </security>

 </binding>

 </basicHttpBinding>

 </bindings>

 <client>

 <endpoint address="http://localhost:8089/
SendEmailService.xamlx"

 binding="basicHttpBinding" bindingConfiguration="B
asicHttpBinding_ISendEmailService"

 contract="ISendEmailService"
name="BasicHttpBinding_ISendEmailService" />

 </client>

</system.serviceModel>

6.	 Use the following code to call the workflow service:

SendEmailServiceClient sesc = new SendEmailServiceClient();
sesc.SendEmail("message");

Hosting workflow in WPF
In this task, we will create a workflow running in a WPF application.

Chapter 7

213

How to do it...
1.	 Create a WPF project:

Create a WPF project and name it HostingWorkflowInWPF.

2.	 Create a workflow:

Add a workflow to the project named AdditionWorkflow.xaml and author a
workflow like this:

3.	 Create a WPF window:

Open the default created WPF file MainWindow.xaml. Alter its contents to:

<Window x:Class="HostingWorkflowInWPF.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="MainWindow" Height="160" Width="200">

 <Grid Width="180" HorizontalAlignment="Left"

 VerticalAlignment="Top" Height="124">

 <Label Content="x:" Width="20"

 HorizontalAlignment="Left" Name="LabelX"

 Margin="0,2,0,0" VerticalAlignment="Top" />

 <TextBox Name="textBoxX" Width="80"

 Height="20" VerticalAlignment="Top"

 HorizontalAlignment="Left" Margin="52,4,0,0" />

Hosting Workflow Applications

214

 <Label Content="y:" HorizontalAlignment="Left"

 Margin="0,26,0,0" Name="labelY"

 Width="20" Height="30"

 VerticalAlignment="Top" />

 <TextBox Height="20" HorizontalAlignment="Left"

 Margin="52,28,0,0" Name="textBoxY"

 VerticalAlignment="Top" Width="80" />

 <Button Content="Adding" Height="23"

 HorizontalAlignment="Left" Margin="52,54,0,0"

 Name="buttonAdding" VerticalAlignment="Top"

 Width="75" Click="buttonAdding_Click" />

 <Label Content="result:" Height="28"

 HorizontalAlignment="Left" Margin="0,83,0,0"

 Name="labelResult" VerticalAlignment="Top" />

 <Label Height="28" HorizontalAlignment="Left"

 Margin="52,83,0,0" Name="labelResultValue"

 VerticalAlignment="Top" />

 </Grid>

</Window>

We can see this in the WPF window designer:

Double-click the Adding button, and add code to the button event handler. The final
MainWindow.xaml.cs code will be:

using System.Windows;
using System.Threading;
using System.Activities;
using System;
namespace HostingWorkflowInWPF {
 public partial class MainWindow : Window {
 public MainWindow() {
 InitializeComponent();
 }

Chapter 7

215

private void buttonAdding_Click(object sender, RoutedEventArgs e)
{

 AutoResetEvent waitHandler = new
AutoResetEvent(false);

 string result = "";

 AdditionWorkflow addwf = new AdditionWorkflow {

 x = new InArgument<Int32>(Int32.
 Parse(textBoxX.Text)),

 y = new InArgument<Int32>(Int32.
 Parse(textBoxY.Text))

 };

 WorkflowApplication wfApp = new
 WorkflowApplication(addwf);

 wfApp.Completed =
 (workflowApplicationCompletedEventArgs) => {

 result = workflowApplicationCompletedEventArgs.
 Outputs["result"].ToString();

 };

 wfApp.Unloaded = (workflowApplicationEventArgs) => {
 waitHandler.Set(); };

 wfApp.Run();

 waitHandler.WaitOne();

 labelResultValue.Content = result;

 }

 }

}

4.	 Run it:

Set this project as StartUp project. Press Ctrl+F5 to run the workflow without
debugging. Now we shall see the following:

Hosting Workflow Applications

216

How it works...
This task is only for the purpose of concept demonstration. In a real application, it is not a
good idea to host a workflow in a WPF application. It would be better to host the workflow in
IIS and call it in the WPF application like we did in the previous ASP.NET web application.

Hosting workflow in a Windows Form
In this task we will create a workflow running in a Windows Form application.

How to do it...
1.	 Create a Windows Form project:

Create a Windows Form project and name it HostingWorkflowInWinForm.

2.	 Create a workflow:

Add a workflow to the project and call it AdditionWorkflow.xaml. Author the
workflow like this:

3.	 Create a Windows Form.

Open the default created Form1.cs file and alter it to:

Chapter 7

217

Double-click the Adding button and add code to the button event handler. The final
code will be:

using System;
using System.Windows.Forms;
using System.Threading;
using System.Activities;
namespace HostingWorkflowInWinForm {
public partial class Form1 : Form {
public Form1() {
InitializeComponent();
}
private void buttonAdding_Click(object sender,
 EventArgse) {
AutoResetEventwaitHandler =
newAutoResetEvent(false);
string result = "";
AdditionWorkflowaddwf =
new AdditionWorkflow {
x = new InArgument<Int32>(
 Int32.Parse(textBoxX.Text.ToString())),
 y = new InArgument<Int32>(
 Int32.Parse(textBoxY.Text.ToString()))
 };

WorkflowApplicationwfApp =
newWorkflowApplication(addwf);

wfApp.Completed =

(workflowApplicationCompletedEventArgs) => {

result = workflowApplicationCompletedEventArgs.Outputs["result"].
ToString();

};

wfApp.Unloaded = (workflowApplicationEventArgs) => {

waitHandler.Set();
};

wfApp.Run();

Hosting Workflow Applications

218

 waitHandler.WaitOne();

 labelResultValue.Text = result;

 }

 }

}

4.	 Run it:

Set this project as StartUp project and press Ctrl+F5 to run this project without
debugging. We shall see the following:

How it works...
This task is only for the purpose of concept demonstration. In a real application, it is not a
good idea to host a workflow in a Windows Form application. It would be better to host the
workflow in IIS and call it from a Win Form application like we did in the previous ASP.NET web
application.

8
Custom Workflow

Designer

In this chapter, we will cover:

ff Implementing designer layout

ff Implementing Toolbox, Workflow Designer, and Property Inspector views

ff Implementing New Workflow and Load Workflow events

ff Implementing Save and Save As events

ff Implementing XAML Workflow Tab and Run events

ff Implementing visual tracking

Introduction
Sometimes, workflow users are non-developers who may not have installed Visual Studio
2010. These users need the ability to create and/or modify workflow definitions with designer
support for things such as dragging and dropping of activities. WF4 provides a set of WPF
classes that we can reference and use to create our own custom workflow designer, allowing
for creating of rich administration tools for our workflow solutions.

There are several important classes involved in creating custom hosted workflow designers.

ff System.Activities.Presentation.WorkflowDesigner:

WorkflowDesigner provides a designer canvas that renders the visual workflow
model. WorklfowDesigner.View represents the designer canvas. We can get the
property inspector view from WorkflowDesigner.PropertyInspectorView.

Custom Workflow Designer

220

ff System.Activities.Presentation.ToolboxControl

ToolboxControl renders categorized workflow activities in the toolbox. We can use
System.Activities.Presentation.Toolbox.ToolboxCategory to create
an activity category, and use System.Activities.Presentation.Toolbox.
ToolboxItemWrapper to wrap a workflow activity. We can display an activities tree
in Toolbox by adding ToolboxItemWrapper objects to a ToolboxCategory object
and then adding the ToolboxCategory object to the ToolboxControl object's
Categories collection.

As WF4 workflow designer is based on WPF, familiarity with some basic WPF knowledge will be
helpful to gain more understanding.

The goal of this chapter is creating a workflow designer. Every task will build one part of it and
each task will be the base for the next task.

Implementing designer layout
In this task, we will create a WF4 designer layout window. This is just a WPF window. When we
finish this task, we will have built a designer window. Functions will be added to the window in
the following tasks.

How to do it...
1.	 Create a WPF Application project:

Open a new Visual Studio 2010 instance and create a new WPF Application project.
Name the project WF4Designer.

Chapter 8

221

Add the following three assembly references to the project: System.Activities,
System.Activities.Core.Presentation, and System.Activities.
Presentation.

2.	 Create XAML layout code:

Open the MainWindow.xaml file, which is created by default. Fill the file with
XAML code as follows:

<Window x:Class="WF4Designer.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="MainWindow" Height="600" Width="800">

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="25" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="200" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="200"/>

 </Grid.ColumnDefinitions>

 <GridSplitter HorizontalAlignment="Right"

 VerticalAlignment="Stretch"

 Width="5"

 Grid.Column="0"

 Grid.Row="1" />

 <GridSplitter HorizontalAlignment="Left"

 VerticalAlignment="Stretch"

 Width="5"

 Grid.Column="2"

 Grid.Row="1" />

 <StackPanel Grid.ColumnSpan="3">

 <Menu Height="25"

 VerticalAlignment="Top">

 <MenuItem Header="File">

 <MenuItem Header="New Workflow"

 Click="MenuItem_Click_NewWorkflow"/>

 <MenuItem Header="Load Workflow"

 Click="MenuItem_Click_
LoadWorkflow"/>

Custom Workflow Designer

222

 <Separator />

 <MenuItem Header="Save"

 Click="MenuItem_Click_Save"/>

 <MenuItem Header="Save As"

 Click="MenuItem_Click_SaveAs"/>

 </MenuItem>

 <MenuItem Header="Test">

 <MenuItem Header="Run"

 Click="MenuItem_Click_RunWorkflow"/>

 </MenuItem>

 </Menu>

 </StackPanel>

 <TabControl HorizontalAlignment="Stretch"

 VerticalAlignment="Stretch"

 Margin="0,0,5,0"

 Grid.Column="0"

 Grid.Row="1">

 <TabItem Header="Toolbox">

 <ContentControl Name="toolboxPanel"/>

 </TabItem>

 </TabControl>

 <TabControl HorizontalAlignment="Stretch"

 VerticalAlignment="Stretch"

 Margin="0,0,0,0"

 Grid.Column="1"

 Grid.Row="1">

 <TabItem Header="WorkflowDesinger">

 <ContentControl Name="workflowDesignerPanel"/>

 </TabItem>

 <TabItem Header="XAML workflow"

 GotFocus="TabItem_GotFocus_RefreshXamlBox" >

 <TextBox Name="xamlTextBox"

 AcceptsReturn="True"

 HorizontalScrollBarVisibility="Auto"

 VerticalScrollBarVisibility="Auto">
 </TextBox>

 </TabItem>

 </TabControl>

 <TabControl HorizontalAlignment="Stretch"

 VerticalAlignment="Stretch"

 Margin="5,0,0,0"

Chapter 8

223

 Grid.Column="2"

 Grid.Row="1">

 <TabItem Header="WorkflowProperty">

 <ContentControl Name="WorkflowPropertyPanel"/>

 </TabItem>

 </TabControl>

 </Grid>

</Window>

3.	 Add empty event handlers to the code-behind file:

Open the MainWindow.xaml.cs file and alter its code as follows:

using System.Windows;
namespace WF4Designer {
 public partial class MainWindow : Window {
 public MainWindow() {
 InitializeComponent();
 }

 private void MenuItem_Click_NewWorkflow(object sender,
 RoutedEventArgs e)
 {
 }

 private void MenuItem_Click_LoadWorkflow(object sender,
 RoutedEventArgs e)
 {
 }

 private void MenuItem_Click_Save(object sender,
 RoutedEventArgs e)
 {
 }

 private void MenuItem_Click_SaveAs(object sender,
 RoutedEventArgs e)
 {
 }

 private void MenuItem_Click_RunWorkflow(object sender,
 RoutedEventArgs e)
 {
 }

 private void TabItem_GotFocus_RefreshXamlBox(object
 sender, RoutedEventArgs e)
 {
 }
 }
}

Custom Workflow Designer

224

4.	 Build and run it:

Press Ctrl+F5 to run the project. We shall see:

How it works...
In the XAML code, the GridSplitter enables us to resize three columns without changing
the dimensions of the grid.

See also
ff To find more info about WPF layout, please check WPF MSDN document, available at

http://msdn.microsoft.com/en-us/library/ms745058.aspx.

Implementing Toolbox, Workflow Designer,
and Property Inspector views

In this task we will render the Toolbox, Workflow Designer View, and Property Inspector View to
their corresponding content panel.

Getting ready
Before we begin this task, we should have completed that task of implementing
designer layout.

How to do it...
1.	 Open the workflow designer project:

Open the workflow designer project we created in the previous task.

2.	 Add code to the designer:

Open the designer's backend CS code file and alter the code as following. Code in
bold style is the new added code.

Chapter 8

225

using System.Windows;

using System.Activities.Presentation;

using System.Activities.Presentation.Toolbox;

using System.Activities.Statements;

namespace WF4Designer {

 public partial class MainWindow : Window {

 public MainWindow() {

 InitializeComponent();

 this.AddDesigner();

 this.AddToolBox();

 this.AddPropertyInspector();

 }

 WorkflowDesigner wd = null;

 private void AddDesigner() {

 this.wd = new WorkflowDesigner();

 this.workflowDesignerPanel.Content = wd.View;

 }

 private void AddToolBox() {

 ToolboxControl tc = GetToolboxControl();

 this.toolboxPanel.Content = tc;

 }

 private ToolboxControl GetToolboxControl() {

 ToolboxControl toolboxControl = new ToolboxControl();

 ToolboxCategory toolboxCategory =
 new ToolboxCategory("Activities");

 ToolboxItemWrapper sequence =
 new ToolboxItemWrapper(typeof(Sequence));

 ToolboxItemWrapper writeLine =
 new ToolboxItemWrapper(typeof(WriteLine));

 toolboxCategory.Add(sequence);

 toolboxCategory.Add(writeLine);

 toolboxControl.Categories.Add(toolboxCategory);

 return toolboxControl;

 }

 private void AddPropertyInspector() {

 if (wd == null)

 return;

 this.WorkflowPropertyPanel.Content = wd.PropertyInspec
torView;

 }

Custom Workflow Designer

226

 private void MenuItem_Click_NewWorkflow(object sender,
 RoutedEventArgs e)
 {
 }

 private void MenuItem_Click_LoadWorkflow(object sender,
 RoutedEventArgs e)
 {
 }

 private void MenuItem_Click_Save(object sender,
 RoutedEventArgs e)
 {
 }

 private void MenuItem_Click_SaveAs(object sender,
 RoutedEventArgs e)
 {
 }

 private void MenuItem_Click_RunWorkflow(object sender,
 RoutedEventArgs e)
 {
 }

 private void TabItem_GotFocus_RefreshXamlBox(object
 sender, RoutedEventArgs e)
 {
 }
 }
}

3.	 Run it:

Press Ctrl+F5 to run it. We will see the following:

How it works...
Using the following code, we construct a complete Toolbox Control:

Chapter 8

227

ToolboxControltoolboxControl = new ToolboxControl();

ToolboxCategorytoolboxCategory =
 new ToolboxCategory("Activities");

ToolboxItemWrapper sequence =
 new ToolboxItemWrapper(type of(Sequence));

ToolboxItemWrapperwriteLine =
 new ToolboxItemWrapper(type of(WriteLine));

toolboxCategory.Add(sequence);

toolboxCategory.Add(writeLine);

toolboxControl.Categories.Add(toolboxCategory);

Using the following code, we render the workflow designer view to the designer panel:

this.wd = new WorkflowDesigner();
this.workflowDesignerPanel.Content = wd.View;

And using the following code, we render the property view to the property panel:

this.WorkflowPropertyPanel.Content = wd.PropertyInspectorView;

Implementing New Workflow and Load
Workflow events

In this task, we will give our workflow designer the ability to create new workflows and load
workflow from XAML files.

Getting ready
Before we begin this task, we must complete the previous task: Implementing Toolbox,
Workflow Designer, and Property Inspector views.

How to do it...
1.	 Open the workflow designer project:

Open the workflow designer project we created in the previous task.

Custom Workflow Designer

228

2.	 Create a new empty workflow as an empty workflow template:

Click on the Show All Files button and navigate to the project's bin\Debug folder.

Create a new XAML file named WFTemplate.xaml. Fill the file with the following
XAML code:

<Activity mc:Ignorable="sap" 		

 x:Class="WFTemplate"

 sap:VirtualizedContainerService.HintSize="240,240"

 mva:VisualBasic.Settings="Assembly references and
imported namespaces for internal implementation"

 xmlns="http://schemas.microsoft.com/netfx/2009/xaml/
 activities"

 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"

 xmlns:mv="clr-namespace:Microsoft.
VisualBasic;assembly=System"

 xmlns:mva="clr-namespace:Microsoft.VisualBasic.
Activities;assembly=System.Activities"

 xmlns:s="clr-namespace:System;assembly=mscorlib"

 xmlns:s1="clr-namespace:System;assembly=System"

 xmlns:s2="clr-namespace:System;assembly=System.Xml"

 xmlns:s3="clr-namespace:System;assembly=System.Core"

 xmlns:sap="http://schemas.microsoft.com/netfx/2009/xaml/
activities/presentation"

 xmlns:scg="clr-namespace:System.Collections.
Generic;assembly=System"

 xmlns:scg1="clr-namespace:System.Collections.
Generic;assembly=System.ServiceModel"

Chapter 8

229

 xmlns:scg2="clr-namespace:System.Collections.
Generic;assembly=System.Core"

 xmlns:scg3="clr-namespace:System.Collections.
Generic;assembly=mscorlib"

 xmlns:sd="clr-namespace:System.Data;assembly=System.
 Data"

 xmlns:sl="clr-namespace:System.Linq;assembly=System.
 Core"

 xmlns:st="clr-namespace:System.Text;assembly=mscorlib"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

/>

If we don't want to type in the code, we can create a new activity and copy this
WFTemplate.xaml file to the project's bin\Debug folder.

Open the file with XML Editor and make sure the x:Class property is set to
WFTemplate.

x:Class="WFTemplate"

3.	 Add code to the designer:

Open the designer's backend CS code file—MainWindow.xaml.cs—and alter the
code as following:

using System;

using System.Windows;

Custom Workflow Designer

230

using System.Windows.Controls;

using System.Activities.Presentation;

using System.Activities.Presentation.Toolbox;

using System.Activities.Statements;

using System.Activities.Presentation.View;

using System.Activities.Core.Presentation;

namespace WF4Designer {

 public partial class MainWindow : Window {

 public MainWindow() {

 InitializeComponent();

 (new DesignerMetadata()).Register();//Registers the
 runtime metadata.

 this.AddDesigner();

 this.AddToolBox();

 this.AddPropertyInspector();

 }

 WorkflowDesigner wd = null;

 private void AddDesigner() {

 this.wd = new WorkflowDesigner();

 this.workflowDesignerPanel.Content = wd.View;

 }

 private void AddToolBox() {

 ToolboxControl tc = GetToolboxControl();

 this.toolboxPanel.Content = tc;

 }

 private ToolboxControl GetToolboxControl() {

 ToolboxControl toolboxControl = new ToolboxControl();

 ToolboxCategory toolboxCategory =
 new ToolboxCategory("Activities");

 ToolboxItemWrapper sequence =
 new ToolboxItemWrapper(typeof(Sequence));

 ToolboxItemWrapper writeLine =
 new ToolboxItemWrapper(typeof(WriteLine));

 toolboxCategory.Add(sequence);

 toolboxCategory.Add(writeLine);

 toolboxControl.Categories.Add(toolboxCategory);

 return toolboxControl;

 }

Chapter 8

231

 private void AddPropertyInspector() {

 if (wd == null)

return;

this.WorkflowPropertyPanel.Content =

wd.PropertyInspectorView;

}

stringworkflowFilePathName = "temp.xaml";

private void LoadWorkflowFromFile(string fileName) {

workflowFilePathName = fileName;

workflowDesignerPanel.Content = null;

WorkflowPropertyPanel.Content = null;

wd = new WorkflowDesigner();

wd.Load(workflowFilePathName);

DesignerViewdesignerView =

	 wd.Context.Services.GetService<DesignerView>();

designerView.WorkflowShellBarItemVisibility =

ShellBarItemVisibility.Arguments |

ShellBarItemVisibility.Imports|

ShellBarItemVisibility.MiniMap|

ShellBarItemVisibility.Variables|
ShellBarItemVisibility.Zoom;

workflowDesignerPanel.Content = wd.View;

WorkflowPropertyPanel.Content =wd.PropertyInspectorView;

}

private void MenuItem_Click_NewWorkflow(object sender,

RoutedEventArgs e) {

workflowFilePathName = @"WFTemplate.xaml";

LoadWorkflowFromFile(workflowFilePathName);

workflowFilePathName = "temp.xaml";

}

private void MenuItem_Click_LoadWorkflow(object sender,
RoutedEventArgs e) {

Microsoft.Win32.OpenFileDialog openFileDialog=

new Microsoft.Win32.OpenFileDialog();

if(openFileDialog.ShowDialog(this).Value) {

workflowFilePathName = openFileDialog.FileName;

Custom Workflow Designer

232

 LoadWorkflowFromFile(workflowFilePathName);
 }
 }

 private void MenuItem_Click_Save(object sender,
 RoutedEventArgs e)
 {
 }

 private void MenuItem_Click_SaveAs(object sender,
 RoutedEventArgs e)
 {
 }

 private void MenuItem_Click_RunWorkflow(object sender,
 RoutedEventArgs e)
 {
 }

 private void TabItem_GotFocus_RefreshXamlBox(object
 sender, RoutedEventArgs e)
 {
 }
 }
}

3.	 Run it:

Press Ctrl+F5 to run the workflow designer. Now, we can create a new workflow or
load an XAML workflow from file by using this workflow designer.

Chapter 8

233

How it works...
The process of creating a new workflow is actually similar to loading an empty workflow from file.

wd.Load(workflowFilePathName);

Now consider this code:

DesignerViewdesignerView =
wd.Context.Services. GetService<DesignerView>();
designerView.WorkflowShellBarItemVisibility =
ShellBarItemVisibility.Arguments|
ShellBarItemVisibility.Imports|
ShellBarItemVisibility.MiniMap|
ShellBarItemVisibility.Variables|
ShellBarItemVisibility.Zoom;

Using this code, we enable the following buttons in the bottom of the designer:

If we want to show all items, we can use the following code statement:

designerView.WorkflowShellBarItemVisibility = ShellBarItemVisibility.
All;

Implementing Save and Save As events
In this task, we will give our workflow designer the ability to save workflow into an XAML file.

Getting ready
Before we begin this task, we must complete the previous task: Implementing New Workflow
and Load Workflow events.

How to do it...
1.	 Open the workflow designer project:

Open the workflow designer project we created in the previous task.

Custom Workflow Designer

234

2.	 Add code to the designer:

Open the designer's backend CS code file and add code for the following three
methods: Save method, MenuItem_Click_Save method, and
MenuItem_Click_SaveAs method:

private void Save() {

if (workflowFilePathName == "temp.xaml") {

Microsoft.Win32.SaveFileDialog saveFileDialog =
 new Microsoft.Win32.SaveFileDialog();

if (saveFileDialog.ShowDialog(this).Value) {

workflowFilePathName = saveFileDialog.FileName;

wd.Save(workflowFilePathName);

MessageBox.Show("Save Ok");

this.Title = "Workflow Designer - " + workflowFilePathName;

} else {

return;

}

} else {

wd.Save(workflowFilePathName);

MessageBox.Show("Save Ok");

}

LoadWorkflowFromFile(workflowFilePathName);

}

private void MenuItem_Click_Save(object sender, RoutedEventArgs e)
{

Save();

}

private void MenuItem_Click_SaveAs(object sender, RoutedEventArgs
e) {

Microsoft.Win32.SaveFileDialog saveFileDialog =
 new Microsoft. Win32.SaveFileDialog();

if (saveFileDialog.ShowDialog(this).Value) {

workflowFilePathName = saveFileDialog.FileName;

wd.Save(workflowFilePathName);

MessageBox.Show("Save Ok");

this.Title =
"Workflow Designer - " + workflowFilePathName;

}

}

Chapter 8

235

3.	 Run it:

Press Ctrl+F5 to run the workflow designer. We can now save the newly created
workflow or save our workflow as a new file.

How it works...
In this task, we added three methods to the MainWindow class (MainWindow.xaml.
cs). The Save method can save workflow as an XAML string into a file. The following code
statement does the actual saving job:

wd.Save(workflowFilePathName);

The MenuItem_Click_Save method is the save event handler; this method simply calls the
Save method.

The MenuItem_Click_SaveAs method can save workflow as an XAML string into a new file.

Implementing XAML Workflow Tab and
Run events

In this task, our workflow designer will have the ability to run workflow so that we can test our
workflow when we are editing.

Custom Workflow Designer

236

Getting ready
Before we begin this task, we must have completed the previous task: Implementing Save
and Save As events.

How to do it...
1.	 Open the workflow designer project:

Open the workflow designer project we created in the previous task.

2.	 Add code to the designer:

Open the designer's backend CS code file, MainWindow.xaml.cs, and create
a new method GetActivity. Then add code to the TabItem_GotFocus_
RefreshXamlBox method and the MenuItem_Click_RunWorkflow method:

Activity GetActivity() {

wd.Flush();

System.IO.StringReaderstringReader =
new System. IO.StringReader(wd.Text);

Activity root =
System.Activities.XamlIntegration.
ActivityXamlServices.Load(stringReader) as Activity;

return root;

}

private void MenuItem_Click_RunWorkflow(object sender,
RoutedEventArgs e) {

Save();

Activity activity = GetActivity();

WorkflowApplicationwfApp =
 new WorkflowApplication(activity);

wfApp.Run();

 }

private void TabItem_GotFocus_RefreshXamlBox(object sender,

RoutedEventArgs e) {

if (wd.Text != null) {

wd.Flush();

xamlTextBox.Text = wd.Text;

}

}

As we are using the Activity class in this task, we need to add an assembly reference
to System.Activities and add using System.Activities in the top of
the class file.

Chapter 8

237

3.	 Run it:

Right-click on the project name and select Properties. Then, change the project
type from Windows Application to Console Application for us to be able to see the
command output from the WriteLine activity.

Press Ctrl+F5 to run the workflow designer.

Custom Workflow Designer

238

How it works...
In the GetActivity method, the code statement wd.Flush(); saves the current state of
the workflow to the Text property, so that we can use wd.Text to get the current workflow's
XAML string. Using the following code statement:

System.IO.StringReader stringReader = new System.IO.StringReader(wd.
Text);

we created a StringReader object for the workflow XAML string (wd.Text). Using the
following code statement:

Activity root = System.Activities.XamlIntegration.
ActivityXamlServices.Load(stringReader) as Activity;

we finally build an activity object in the MenuItem_Click_RunWorkflow method. Using the
following code snippet:

WorkflowApplication wfApp = new WorkflowApplication(activity);
wfApp.Run();

we run the workflow instance. Please note that as we are running the workflow in a workflows
application, there is no need to use AutoResetEvent to synchronize threads as we did in
console applications.

Implementing visual tracking
In this task, we will create a visual tracking participant. The tracking participant will let the
workflow designer display the currently executing activity. When the workflow is executing, the
currently executing activity is shown with a yellow outline and debug arrow.

Getting ready
Before we begin this task, we should have completed the previous task: Implementing XAML
Workflow Tab and Run events.

How to do it...
1.	 Open the workflow designer project:

Open the workflow designer project we created in the previous task.

2.	 Create the VisualTracking participant:

Create a new code file named VisualTracking.cs and fill the file with the
following code:

Chapter 8

239

using System;

usingSystem.Collections.Generic;

usingSystem.Activities.Tracking;

usingSystem.Activities.Presentation;

usingSystem.Activities.Presentation.Debug;

usingSystem.Windows.Threading;

usingSystem.Activities.Presentation.Services;

usingSystem.Activities.Debugger;

usingSystem.Activities;

usingSystem.Threading;

namespace WF4Designer {

public class VisualTracking : TrackingParticipant {

privateWorkflowDesignerwd { get; set; }

privateDebuggerServicedebugService { get; set; }

private Dictionary<object, SourceLocation>

sourceLocationMap = null;

//we need a activity id to activity object map

private Dictionary<string, Activity>idActivityMap = null;

publicVisualTracking(WorkflowDesignerwd) {

this.wd = wd;

this.debugService =
wd.DebugManagerView as DebuggerService;

TrackingProfile trackingProfile =

new TrackingProfile();

trackingProfile.Queries.Add(

new ActivityStateQuery {

ActivityName = "*",

States = {

System.Activities.Tracking.

ActivityStates.Executing

},

Variables = { "*" },

Arguments = { "*" }

}

);

this.TrackingProfile = trackingProfile;

sourceLocationMap = GetSourceLocationMap();

idActivityMap = GetIdActivityMap();

}

Dictionary<string, Activity>GetIdActivityMap() {

Dictionary<string, Activity>idToActivity =

new Dictionary<string, Activity>();

foreach (Activity activity in sourceLocationMap.Keys) {

Custom Workflow Designer

240

idToActivity.Add(activity.Id, activity);
}
returnidToActivity;
}
private Activity tempActivity;
protected override void Track(TrackingRecord record,
TimeSpan timeout) {
ActivityStateRecordactivityStateRecord =
record as ActivityStateRecord;
if (activityStateRecord == null)
return;
if (!idActivityMap.ContainsKey(activityStateRecord.
Activity.Id))
return;
wd.View.Dispatcher.Invoke(DispatcherPriority.Render, (Action)(()
=> {
tempActivity = idActivityMap[activityStateRecord. Activity.
Id.ToString()];
wd.DebugManagerView.CurrentLocation = sourceLocationMap[tempActivi
ty];
Thread.Sleep(1000);
}));
}
Dictionary<object, SourceLocation>GetSourceLocationMap() {
Dictionary<object, SourceLocation>runtime_debug =
new Dictionary<object, SourceLocation>();
Dictionary<object, SourceLocation>debug_debug =
new Dictionary<object, SourceLocation>();
System.Activities.Presentation.WorkflowFileItemfileItem =
wd.Context.Items.GetValue(typeof(WorkflowFileItem))
asWorkflowFileItem;// to get the workflow file path
Activity debugActivity = GetDebugActivity();
Activity runtimeActivity = GetRuntimeActivity();
SourceLocationProvider.CollectMapping(runtimeActivity,
debugActivity,
runtime_debug,
fileItem.LoadedFile);
SourceLocationProvider.CollectMapping(debugActivity,
debugActivity,
debug_debug,
fileItem.LoadedFile);
this.debugService.UpdateSourceLocations(debug_debug);
returnruntime_debug;
}

Chapter 8

241

 // get activity object from designer
Activity GetDebugActivity() {
ModelServicemodelService =
wd.Context.Services. GetService<ModelService>();
// GetCurrentValue will return ActivityBuilder, actually.
IDebuggableWorkflowTreedebugTree =
modelService.Root. GetCurrentValue()
asIDebuggableWorkflowTree;
if (debugTree != null) {
returndebugTree.GetWorkflowRoot();
} else {
return null;
}
}
// get activity object from the xaml string
Activity GetRuntimeActivity() {// get activity object from the
xaml string
wd.Flush();
System.IO.StringReaderstringReader =
new System. IO.StringReader(wd.Text);
Activity root =
System.Activities.XamlIntegration.
ActivityXamlServices.Load(stringReader);
WorkflowInspectionServices.CacheMetadata(root);
IEnumerator<Activity> list =
WorkflowInspectionServices.GetActivities(root).GetEnumerator();
list.MoveNext();
Activity runtimeActivity = list.Current;
returnruntimeActivity;
}
}

}

3.	 Add the tracking extension to the workflow designer:

Open the designer's backend CS code file and add two code lines to the
MenuItem_Click_RunWorkflow method:

private void MenuItem_Click_
RunWorkflow(object sender, RoutedEventArgs e) {
 Save();
 Activity activity = GetActivity();
 WorkflowApplication wfApp = new WorkflowApplication(activity);
 VisualTracking visualTracking = new VisualTracking(wd);
 wfApp.Extensions.Add(visualTracking);
 wfApp.Run();
}

Custom Workflow Designer

242

4.	 Run it:

Press Ctrl+F5 to run the workflow designer; we shall see the following:

How it works...
A workflow tree from the workflow runtime doesn't have the source location information,
while an IDebuggableWorkflowTree tree generated from the designer has the
source location information. To highlight the runtime activities in the designer, we can
use SourceLoactionProvider to extract the source location information from the
IDebuggableWorkflowTree.

Chapter 8

243

To understand the visual tracking, we need to understand two mappings.

ff Activity instance to Activity XAML text location:

In the source code, we declare a sourceLocationMap:

private Dictionary<object, SourceLocation>
sourceLocationMap = null;

To implement the mapping, we first need to get root activity instance from the
designer model service. This activity instance has the source location information.

// get activity object from designer
Activity GetDebugActivity() {// get activity object from designer
ModelServicemodelService =
wd.Context.Services. GetService<ModelService>();
// GetCurrentValue will return ActivityBuilder, actually.
IDebuggableWorkflowTreedebugTree =
modelService.Root. GetCurrentValue()
as IDebuggableWorkflowTree;
if (debugTree != null) {
returndebugTree.GetWorkflowRoot();
} else {
return null;
}
}

We then need to get a root activity instance from the XAML string. This activity
instance will be executed in the workflow runtime; it doesn't have the source
location information.

// get activity object from the xaml string
Activity GetRuntimeActivity() {// get activity object from the
xaml string
wd.Flush();
System.IO.StringReaderstringReader =
 new System. IO.StringReader(wd.Text);
Activity root =
System.Activities.XamlIntegration.
ActivityXamlServices.Load(stringReader);
WorkflowInspectionServices.CacheMetadata(root);
IEnumerator<Activity> list =
WorkflowInspectionServices.GetActivities(root).GetEnumerator();
list.MoveNext();
Activity runtimeActivity = list.Current;
returnruntimeActivity;
}

Now, we need to implement the map:

Dictionary<object, SourceLocation> GetSourceLocationMap() {

Custom Workflow Designer

244

Dictionary<object, SourceLocation>runtime_debug =
new Dictionary<object, SourceLocation>();
Dictionary<object, SourceLocation>debug_debug =
new Dictionary<object, SourceLocation>();
// to get the workflow file path
System.Activities.Presentation.WorkflowFileItemfileItem =
wd.Context.Items.GetValue(typeof(WorkflowFileItem)) as
WorkflowFileItem;
Activity debugActivity = GetDebugActivity();
Activity runtimeActivity = GetRuntimeActivity();
SourceLocationProvider.CollectMapping(runtimeActivity,
debugActivity, runtime_debug, fileItem.LoadedFile);
SourceLocationProvider.CollectMapping(debugActivity,
debugActivity,debug_debug,
fileItem.LoadedFile);
this.debugService.UpdateSourceLocations(debug_debug);
returnruntime_debug;
}

Let's now analyze the code. Consider the following code statement:

SourceLocationProvider.CollectMapping(runtimeActivity,
debugActivity,
runtime_debug,
fileItem.LoadedFile);

This statement creates an activity map from workflow runtime to source location so
that we can find the source location when the activity is running. Now, we have the
source location, but the designer still doesn't know which activity to highlight; so, we
need the following code to let the designer be aware of the relation of the source
location and the highlighted activities.

SourceLocationProvider.CollectMapping(debugActivity,
debugActivity, debug_debug, fileItem.LoadedFile);

This statement creates an activity map from designer o source location. And now
consider the following code line:

this.debugService.UpdateSourceLocations(debug_debug);

This line renews the activity to source location map stored in the designer.

ff Activity id to activity object:

In the source code, we declare the following:

private Dictionary<string, Activity> idActivityMap = null;

Then we map the activity ID to the activity object itself and return a dictionary object
that contains the mapping information.

Dictionary<string, Activity> GetIdActivityMap() {

Chapter 8

245

 Dictionary<string, Activity> idToActivity =

 new Dictionary<string, Activity>();

 foreach (Activity activity in sourceLocationMap.Keys) {

 idToActivity.Add(activity.Id, activity);

 }

 return idToActivity;

}

Using these two mappings, our visual tracking participant can locate the activity in
the designer panel according to its ID:

protected override void Track(TrackingRecord record,
TimeSpan timeout) {

ActivityStateRecordactivityStateRecord =
record as ActivityStateRecord;

if (activityStateRecord == null)

return;

if (!idActivityMap.ContainsKey(activityStateRecord.Activity. Id))

return;

wd.View.Dispatcher.Invoke(DispatcherPriority.Render, (
Action) (() => {

tempActivity =
idActivityMap[activityStateRecord.Activity. Id.ToString()];

wd.DebugManagerView.CurrentLocation =
sourceLocationMap[tempActivity];

Thread.Sleep(1000);

}));

}

See also
ff For more information about tracking, one can refer to the Creating a

FileTrackingParticipant section in Chapter 6, WF4 Extensions.

Index
A
abstract Activity class 147, 150
activity

AddToCollection<T> activity 130
ClearCollection<T> activity 133
creating, by inheriting root activity 147
customizing 148
ExistsInCollection<T> activity 141
reference, adding to ActivityLibrary 148
RemoveFromCollection<T> activity 137
running 149
testing, workflow created 148, 149
working 150

activity designer, for MySquence activity
creating 170, 171
designer attribute, adding 171
running 172
testing, workflow created 172
working 173

activity designer, for SendEmail activity
creating 164-167
designer attribute, adding to SendMail activity

167, 168
running 168
working 169, 170

ActivityLibrary project 146
ActivityXamlServices 34
AddressUri property 100
AddToCollection<T> activity

about 130
Console Workflow Application, creating 130
properties, setting 131
Sequence activity, dragging to workflow

designer 130
visual workflow, creating 130

working 132
Appfabric 199
ASP.NET

workflow service, hosting 206
ASP.NET4 web application, workflow service

hosting in ASP.NET
creating 206

Asynchronous Http Get activity
creating 159
running 160, 161
testing, workflow created 160
working 161

AsyncHttpGet activity. See Asynchronous Http
Get activity

B
bookmark

used, for creating Input Message Activity 156
MyReadLine activity, customizing 25-28

C
CacheMetadata method 198
CancellationScope activity

code workflow file, creating 108, 110
using 108
Workflow Console Application, creating 108
working 110

CanCreateInstance property 97
C# Code

Console Application project, creating 9
reference, adding to System.Activities as-

sembly 9
used, for creating WF program 9
workflow definition code, creating 10
working 10

248

ClearCollection<T> activity
properties, setting 134, 135
Sequence activity, dragging to workflow de-

signer 134
visual workflow, creating 134
Workflow Console Application, creating 133
working 135

code workflow file, CancellationScope activity
creating 108

CollectionInArg property 128
CollectionPrinter activity 133
CollectionPrinter.cs file 126
CollectValues, MyPersistenceParticipant

class 194
compensable activity

host code, creating 121
used, for performing compensation 117
used, for performing manual compensation

120-122
workflow code, creating 118, 120
Workflow Console Application project, creating

118, 120
workflow host code, creating 119
working 119, 122

compensation
performing, Compensable activity used

117-122
composite activity

creating 161
MySquence activity, creating 161-163
running 163, 164

configuration code, WCF message in code
workflow

adding 94
confirm activity

used, for performing compensation 122
Workflow Console Application project, creating

123
workflow host code, creating 124
working 124

confirmation
performing, Confirm activity used 122-124

ConpletionCondition property 111
Console Workflow Application,

AddToCollection<T> activity
creating 130

Console Workflow Application,

ExistsInCollection<T> activity
creating 141

Console Workflow Application,
RemoveFromCollection<T> activity

creating 137
CorrelationScope 108
customized extension

creating 195
host code, creating 196, 197
running 197
workflow, authoring 196
Workflow Console Application, creating 195
working 197

D
database, TransactionScope activity

creating, for testing 112
DataTemplate element 170
Default.aspx page, workflow service hosting

in ASP.NET
altering 209, 210

Delay activity 186
designer layout

building 224
empty event handlers, adding 223
implementing 220
running 224
working 224
WPF application project, creating 220, 221
XAML layout code, creating 221, 222

Dictionary<T> object 14
divided-by-zero exception 116
Duration property 184
DynamicActivity 11

E
empty event handlers, designer layout

adding, to behind code file 223
ETW

about 175
running 178
tracking, enabling 177
workflow, authoring 176
Workflow Console Application project, creating

176

249

workflow host, creating 177, 178
working 179, 180

Event Tracing for Windows. See ETW
Execute method 150, 153, 163
ExistsInCollection<T> activity

about 141
Console Workflow Application, creating 141
properties, setting 142
Sequence activity, dragging in designer panel

141
workflow, creating 141
working 143

F
FileTrackingParticipant

creating 180
running 182
Tracking Participant 180
workflow, authoring 180
workflow host, creating 181, 182
workflow project, creating 180
working 182

File Writer activity
creating 150, 151
running 152
testing, workflow created 152
working 153

FLOW 41
Flowchart

ReadNumberActivity, creating to guess
number 50, 52

workflow project, creating 50
working 52

FlowSwitch<T> activity
workflow, authoring 68, 69
workflow project, creating 67
working 69

Foreach activity
TypeArgument property 45
using 42
UsingForeachActivity namespace, importing to

workflow 43
variable, creating 44
Workflow Console Application project,

creating 42
working 46

G
GetData activity 103
Grid element 170
Guess number game

in sequence activity 47
ReadNumberActivity, creating to receive guess

number 47
workflow, authoring 48
workflow project, creating 47
working 49

Guess number game, Flowchart used
about 49
ReadNumberActivity activity 52
ReadNumberActivity, creating to guess

number 50
workflow project, creating 50
working 52

H
HelloWorkflow, WF program

creating 6
Workflow Console Application project,

creating 6
workflow program, authoring 7
working 8

host code, compensable activity
creating 121

host code, customized extension
creating 196, 197

I
ICollection<String> type variable 128
ICollection<String> variable 130
IIS7

workflow service, hosting in 200
IIS application, WCF service

creating 82
InArgumentConverter 14
InArguments

Author WF program 12
used, for initializing WF program 11
workflow project, creating 11
working 13, 14

InArgument type 13

250

InOutArgument
code, writing to host workflow 18
used, for creating WF program 17
workflow, authoring 18
workflow project, creating 17
working 19

Input Message Activity
creating 156
creating, bookmark used 156
running 157
testing, workflow created 156, 157
working 158

InputMessage<T> activity 157
InsertDataToDBActivity code,

TransactionScope activity
creating 113

InvokeMethod activity
using 52
Workflow Console Application, creating 52,

54, 56
workflow project, creating 52
working 57

L
List<T> type Variable 125
load workflow events

code. adding to designer 229, 230
new empty workflow, creating as empty

workflow template 228, 229
workflow designer project, opening 227

M
Main method 152
manual compensation

performing, Compensable activity used 120,
121, 122

MapValues, MyPersistenceParticipant class
194

MenuItem_Click_SaveAs method 235
MenuItem_Click_Save method 234, 235
metadata 163
ModelItems 169
MyPersistenceParticipant class

CollectValues 194
MapValues 194
PublishValues 194

MyReadLine activity
code, writing to host workflow 27, 28
customizing, with bookmark 25, 26
workflow, authorizing 26
workflow project, creating 25
working 28

MySequence activity
activity designer, creating for 170
creating 161

N
NativeActivity. NativeActivity 158
new empty workflow, new workflow events

creating, as an empty workflow template 228,
229

new workflow events
code, adding to designer 229-232
new empty workflow, creating as empty

workflow template 228, 229
workflow designer project, opening 227
working 233

NumberCounter variable 20

O
OutArgument

code, writing to host workflow 16
used, for creating WF program 15
workflow, authoring 15
workflow project, creating 15
working 17

OutMessage 17

P
Parallel activity

workflow, creating 70
workflow project, creating 69
working 71

ParallelForEach<T> activity
using 71
workflow, creating 72, 73
workflow project, creating 71
working 73

persisted workflow
execution sequence 189
loading, from database 185

251

running 188
workflow, creating 186
workflow host, creating 186, 187
workflow project, creating 186
working 188, 189

persistence database, SQL persistence store
setting up 182-184

persistence participant
custom a CodeActivity 190, 191
persistence participant, creating 190
running 194
using, to persist additional data 189
workflow, creating 191
workflow host, creating 192, 193
workflow project, creating 189
working 194

Pick activity
using 73
workflow, creating 74, 75
workflow host, creating 75
workflow project, creating 73
working 76

print collection items
Workflow Console Application, creating 126,

127
working 129

project
creating 146
WorkflowConsoleApp project 147

project, print collection items
building 127

property inspector view. See workflow de-
signer

PublishValues, MyPersistenceParticipant
class 194

R
Receive activity 87, 97
ReceiveReply activity 108
ReceiveReplyForSend activity 101
ReceiveRequest activity 88
references, TransactionScope activity

adding, to project 113
RemoveFromCollection<T> activity

about 137
Console Workflow Application, creating 137

properties, setting 138
properties setting for 138
workflow, creating 137
working 139

Result property 122
ResumeBookmark method 158
run events

code, adding to designer 236
workflow designer project, opening 236
working 238

S
save as events

code, adding to designer 234, 235
workflow designer project, opening 233

save events
code, adding to designer 234
workflow designer project, opening 233

Save method 234
Secure Sockets Layer. See SSL
Send activity 97, 102, 107
SendAndReceiveReply activity 100
SendEmail activity

activity designer, creating for 164
creating 153, 154
running 155
testing, workflow created 154
working 155

SendEmailActivity, workflow service hosting
in IIS7

adding, to toolbox 200
Send Email workflow service, workflow serv-

ice hosting in IIS7
creating 201, 202

SendReply activity 87, 92, 97
SendResponse activity 89
Sequence activity 7
service information, WCF message

finding 98, 99
SQL persistence store

configuring 182
persistence database, setting up 182, 184
workflow host, creating 184
workflow project, creating 182
working 185

SQL scripts 182

252

StartUp project 13
StringReader object 238
svc file, WCF service

creating 83
Switch<T> activity

class converter, adding to project 64, 65
FlowSwitch<T> activity, using 67
Parallel activity, using 69
ParallelForEach<T> activity, using 71
Pick activity, using 73
test class file Product.cs, creating 64
using, in Sequence workflow 63
workflow, authoring 66, 67
workflow project, creating 63
working 67

syncEvent 24
syncEvent.Set() 25
System.Activities assembly 9
System.Activities namespace 10
System.Activities.Presentation.ToolboxCon-

trol; 220
System.Activities.Presentation.WorkflowD-

esigner; 219
System.Collection.ObjectModel 127
System.Collections.ObjectModel 127
System.Collections.ObjectModel namespace

134

T
Target property 122
TestMySequenceWF 173
toolbox

code, adding to designer 224-226
workflow designer project, opening 224
working 226, 227

Tracking method 182
transaction

performing, TransactionScope activity used
112-116

TransactionScope activity
database, creating for testing 112
InsertDataToDBActivity code, creating 113
references, adding to project 113
used, for performing transaction 112
workflow code, creating 113
Workflow Console Application, creating 112

workflow host code, creating 114-116
working 116

TypeArgument property 45
TypeConverter 14

U
UnitTestForWorkflow 36
unit test framework

Test Project, adding to solution 34
unit test code, creating 35, 36
WF program, testing 34
workflow file, adding to Test Project 35
working 36

V
variable

using, in WF program 20
workflow, authoring 20
workflow project, creating 20
working 22

visual tracking
creating 238-241
mappings 243-245
tracking extension, adding in workflow de-

signer 241
workflow designer project, opening 238
working 242

visual workflow, AddToCollection<T> activity
creating 130

visual workflow, ClearCollection<T> activity
creating 134

visual workflow, print collection items
creating 127

W
WCF code, WCF service

creating 83, 84, 85
WCF message

receive activity 87
receiving 98
sending 98
SendReply activity 87
service information, finding out 98, 99
WCFTestClient, testing in 89, 90

253

Workflow Console Application project,
creating 98

workflow, creating 88, 89, 100-102
workflow project, creating 87
working 91-104

WCF message, in code workflow
code workflow 97
configuration code, adding 94
Receive activity 97, 98
receiving 92, 104
replying 92
Send activity 97, 98
sending 104
visual workflow 97
Workflow Console Application project, creating

92, 104
workflow, creating in code 92-94
workflow, creating in imperative code 104-

106
workflow host code, creating 106
WorkflowService class 97
workflow service host code, creating 95
working 97, 107, 108

WCF service
binding 86
contract 86
creating 82
IIS application, creating 82
svc file, creating 83
testing 84, 85
WCF code, creating 83
working 86

WCF (Windows Communication Foundation)
87

WCF workflow service application, workflow
service hosting in IIS7

creating 200
WebRequest call 158
WebRequest class 158
website, workflow service hosting in IIS7

creating, in IIS7 204-206
WF4

about 199
error, handling 78
Flowchart workflow 42
FlowSwitch<T> activity 67
Foreach activity 42

Guess number game, in sequence activity 47
InvokeMethod activity 52
Parallel activity 69
ParallelForEach<T> activity 71
Pick activity 73
Sequence workflow 42
Switch<T> activity 63

WF4, activities
AddToCollection<T> activity 130
ClearCollection<T> activity 133
ExistsInCollection<T> activity 141
RemoveFromCollection<T> activity 137

WF4 tracking 179, 180
WF, hosting in Windows Form

about 216
running 218
Windows Form, creating 216, 217, 218
Windows Form project, creating 216
workflow, creating 216
working 218

WF program
code workflow authoring styles, types 6
creating, InOutArgument used 18, 19
debugging 36-38
HelloWorkflow, creating 6-8
instance, converting to XAML 29-31
loading, from XAML file 31-34
prerequisites 6
running, asynchronously 22-25
testing, with unit test framework 34-36
variable used 20-22
variable, using 20
workflow, authoring in XAML 6

WF program, creating
C# Code used 9-11
InOutArgument used 17-19
OutArgument used 15-17

WF program, debugging
debug break point, setting 38
workflow host code, creating 37
workflow project, creating 36

WF program, initializing
InArguments used 11-15

WF program instance
code, writing to create host 29
code, writing to create workflow 29
converting, to XAML 29

254

workflow project, creating 29
working 31

Windows Form project, WF in Windows Form
creating 216

Windows Form, WF in Windows Form
creating 216, 218
workflow service, hosting 216

WorflowInvoker class 10
Workflow1.xaml. WorkflowInvoder.Invoke

method 17
WorkflowApplication class 197
WorkflowApplication object 188
workflow code, compensable activity

creating 118-120
workflow code, TransactionScope activity

creating 113, 114
Workflow Console Application, Cancellation-

Scope activity
creating 108

Workflow Console Application,
ClearCollection<T> activity

creating 133
Workflow Console Application, customized

extension
creating 195, 196

Workflow Console Application, print collection
items

creating 126
Workflow Console Application project

compensable activity
compensable activitycreating 120

Workflow Console Application project, com-
pensable activity

creating 118
Workflow Console Application project, confirm

activity
creating 123

Workflow Console Application project, ETW
creating 176

Workflow Console Application project, WCF
message

creating 98
Workflow Console Application project, WCF

message in code workflow
creating 92, 104

Workflow Console Application, Transaction-
Scope activity

creating 112
WorkflowConsoleApp project 147
workflow, customized extension

authoring 196
workflow designer

code, adding 224-226
workflow designerproject, opening 224

workflow designer project, new workflow
events

opening 227
workflow designer project, Run events

opening 236
workflow designer project, Save As events

opening 233
workflow designer project, Save events

opening 233
workflow designer project, visual tracking

opening 238
workflow designer project, XAML workflow tab

opening 236
workflow, ETW

creating 176
workflow, ExistsInCollection<T> activity

creating 141
workflow, FileTrackingParticipant

creating 180
WorkflowForTest.xaml 35
workflow host code, CancellationScope

activity
creating 110

workflow host code, compensable activity
creating 119

workflow host code, confirm activity
creating 124

workflow host code, TransactionScope activity
creating 114

workflow host code, WCF message in code
workflow

creating 106, 107
workflow host, ETW

creating 177, 178
workflow host, FileTrackingParticipant

creating 181, 182
workflow host, persisted workflow

creating 186, 188
workflow host, persistence participant

creating 192, 193

255

workflow host, SQL persistence store
creating 184, 185

WorkflowInvoker.Invoke method 11
WorkflowInvoker.Invoker method 25
WorkflowItemsPresenter 173
workflow, persisted workflow

creating 186
workflow, persistence participant

creating 191
workflow project, FileTrackingParticipant

creating 180
workflow project, persisted workflow

creating 186
workflow project, persistence participant

creating 189
workflow project, SQL persistence store

creating 182
workflow project, WCF message

creating 87
workflow, RemoveFromCollection<T> activity

creating 137
WorkflowService class 97
workflow service host code, WCF message in

code workflow
creating 95

workflow service, hosting in ASP.NET
ASP.NET4 web application, creating 206
Default.aspx page, altering 209, 210
running 210
workflow, authoring 206-208
working 211

workflow service, hosting in IIS7
about 200
SendEmailActivity, sending to toolbox

200, 201
Send Email workflow service, creating

201, 202
WCF workflow service application, creating

200
website, creating in IIS7 204-206
working 206

workflow service, hosting in WPF
running 215
workflow, creating 213
working 216
WPF project, creating 213
WPF window, creating 213, 214

workflow, WCF message
creating 88-100

workflow, WCF message in code workflow
creating, in code 92-94
creating, in imperative code 104, 105

workflow, WF in Windows Form
creating 216

workflow, workflow hosting in WPF
creating 213

workflow, workflow service hosting in ASP.NET
authoring 206, 208

WPF
workflow service, hosting 212

WPF application project, designer layout
creating 220, 221

WPF MSDN document
URL 224

WPF project, workflow hosting in WPF
creating 213

WPF window, workflow hosting in WPF
creating 213, 214

WriteLine activity 7, 8, 101

X
XAML

WF program instance, converting to 29
XAML file

code, creating to load up workflow instance
from XAML string 32, 33

WF program, loading from 31-33
workflow, authoring 32
workflow project, creating 31
working 33, 34

XAML layout code, designer layout
creating 221-223

XamlServices 31
XAML workflow tab

code, adding to designer 236
running 237
workflow designer project, opening 236
working 238

Thank you for buying
Microsoft Windows Workflow Foundation 4.0 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Programming Windows
Workflow Foundation:
Practical WF Techniques and
Examples using XAML and C#
ISBN: 978-1-904811-21-3 Paperback: 252 pages

A C# developer's guide to the features and programming
interfaces of Windows Workflow Foundation

1.	 Add event-driven workflow capabilities to your
.NET applications.

2.	 Highlights the libraries, services and internals
programmers need to know

3.	 Builds a practical "bug reporting" workflow
solution example app

WCF Multi-tier Services
Development with LINQ
ISBN: 978-1-847196-62-0 Paperback: 384 pages

Build SOA applications on the Microsoft platform in this
hands-on guide

1.	 Master WCF and LINQ concepts by completing
practical examples and apply them to your real-
world assignments

2.	 First book to combine WCF and LINQ in a multi-tier
real-world WCF service

3.	 Ideal for beginners who want to build scalable,
powerful, easy-to-maintain WCF services

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Foreword
	Table of Contents
	Preface
	Chapter 1: Workflow Program
	Introduction
	Creating the first WF program: HelloWorkflow
	Creating a WF program using C# Code
	Initializing a WF program using InArguments
	Creating a WF program using OutArgument
	Creating a WF program using InOutArgument
	Using Variable in a WF program
	Running a WF program asynchronously
	Customizing a MyReadLine activity with Bookmark
	Converting a WF program instance to XAML
	Loading up a WF program from an XAML file
	Testing a WF program with a unit test framework
	Debugging a WF program

	Chapter 2: Built-in Flow Control Activities
	Introduction
	Using the Foreach activity
	A number guessing game in Sequence
	A number guessing game using a flowchart
	Using the InvokeMethod activity
	Using the Switch<T> activity in Sequence workflow
	Using the FlowSwitch<T> activity
	Using the Parallel activity
	Using the ParallelForEach<T> activity
	Using the Pick activity
	Handling errors

	Chapter 3: Messaging and Transaction
	Introduction
	Creating a pure WCF service
	Receiving and replying to a WCF message
	Receiving and replying to a WCF message
in code workflow
	Sending and receiving a reply to a
WCF message
	Sending and receiving a reply to a WCF
message in code workflow
	Using CancellationScope activity
	Performing a transaction by using
TransactionScope activity
	Performing compensation by using
Compensable activity
	Performing manual compensation by using Compensate activity
	Performing confirmation by using
Confirm activity

	Chapter 4: Manipulating Collections
	Introduction
	Printing collection items
	Using AddToCollection<T> activity
	Using ClearCollection<T> activity
	Using RemoveFromCollection<T> activity
	Using ExistsInCollection<T> activity

	Chapter 5: Custom Activities
	Introduction
	Creating an activity by inheriting the
root activity
	Creating a FileWriter activity
	Creating a SendEmail activity
	Creating an Input Message activity using
Bookmark
	Creating an Asynchronous HTTP Get activity
	Creating a Composite activity
	Creating an Activity Designer for the
SendEmail activity
	Creating an Activity Designer for the
MySquence activity

	Chapter 6: WF4 Extensions
	Introduction
	Configuring ETW tracking
	Creating FileTrackingParticipant
	Configuring the SQL persistence store
	Loading a persisted workflow from the
database
	Using a persistence participant to persist
additional data
	Using a customized extension

	Chapter 7: Hosting Workflow Applications
	Introduction
	Hosting a workflow service in IIS7
	Hosting workflow in ASP.NET
	Hosting workflow in WPF
	Hosting workflow in a Windows Form

	Chapter 8: Custom Workflow Designer
	Introduction
	Implementing designer layout
	Implementing Toolbox, Workflow Designer, and Property Inspector views
	Implementing New Workflow and Load
Workflow events
	Implementing Save and Save As events
	Implementing XAML Workflow Tab and
Run events
	Implementing visual tracking

	Index

